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ABSTRACT 

In this thesis the origin of angle-independent yellowish-green coloration of the 

exoskeleton of a beetle was studied. The beetle chosen was a weevil with the Latin name 

Eupholus chevrolati. The origin of this weevil’s coloration was investigated by optical 

and structural characterization techniques, including optical microscopy, scanning 

electron microscopy imaging and focused ion beam milling, combined with three-

dimensional modeling and photonic band structure calculations. Furthermore, using color 

theory the pixel-like coloring of the weevil’s exoskeleton was investigated and an 

interesting additive color mixing scheme was discovered. 

For optical studies, a microreflectance microscopy/spectroscopy set-up was 

optimized. This set-up allowed not only for imaging of individual colored exoskeleton 

domains with sizes ~2-10 µm, but also for obtaining reflection spectra of these 

micrometer-sized domains. Spectra were analyzed in terms of reflection intensity and 

wavelength position and shape of the reflection features. To find the origin of these 

colored exoskeleton spots, a combination of focused ion beam milling and scanning 

electron microscopy imaging was employed. A three-dimensional photonic crystal in the 

form of a face-centered cubic lattice of ABC-stacked air cylinders in a biopolymeric 

cuticle matrix was discovered. Our photonic band structure calculations revealed the 

existence of different sets of stop-gaps for the lattice constant of 360, 380 and 400 nm in 

the main lattice directions, Γ-L, Γ-X, Γ-U, Γ-W and Γ-K. 
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In addition, scanning electron microscopy images were compared to the specific 

directional-cuts through the constructed face-centered cubic lattice-based model and the 

optical micrographs of individual domains to determine the photonic structure 

corresponding to the different lattice directions. The three-dimensional model revealed 

stop-gaps in the Γ-L, Γ-W and Γ-K directions. 

Finally, the coloration of the weevil as perceived by an unaided human eye was 

represented (mathematically) on the xy-chromaticity diagram, based on XYZ color space 

developed by CIE (Commission Internationale de l’Eclairage), using the micro-

reflectance spectroscopy measurements. The results confirmed the additive mixing of 

various colors produced by differently oriented photonic crystal domains present in the 

weevil’s exoskeleton scales, as a reason for the angle-independent dull yellowish-green 

coloration of the weevil E. chevrolati. 
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CHAPTER 1 

INTRODUCTION 

1.1 Photonic Crystals:  Properties and Applications 

Researchers have been inspired and determined to explore and solve the mystery 

behind the brilliant displays of color and chromatic effects found in the animal and plant 

kingdom.
1, 2

 Though many of the observed colors are due to the pigmentation, several 

insects, birds and marine animals have evolved to produce specific types of structures in 

their exoskeleton, feathers and bodies for the purpose of coloration.
3-9

 These structural 

colors are produced by diffraction, specular reflection, and interference of light rather 

than absorption and diffuse reflection.
8, 10-12

 The key to structural colors is a periodic 

arrangement of dielectric compounds with a periodicity on the order of the wavelength of 

visible light.
7
 Depending upon the periodicity, or lattice parameters, of the structure, 

certain wavelengths are classically forbidden to propagate in certain directions through 

the structures; hence, they are diffracted and reflected, giving rise to the myriad of 

brilliant colors we observe in many insects. 

For example, the bright, gem-like reflecting exoskeleton of many species of 

beetles, especially Coleoptera and Curculionidae, is not a result of the presence of 

pigments but the presence of three-dimensional photonic structures, also referred to as 

photonic crystals. To list two particularly interesting beetles, the scales of

Pachyrrhynchus congestus
13

 weevils have a hexagonal close-packed arrangement of air-
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spheres built into their exoskeleton, while the weevil Lamprocyphus augustus
14

 produces 

its spectacular green coloration with a diamond-based air-cuticle lattice (i.e., face-

centered cubic system).  

In biological systems structural colors are used as a defense mechanism, mating 

signals, mimicry or as a camouflage tool to blend into their habitat. Many harmless 

organisms have evolved to mimic aposematic
*
 species, for example, the black and yellow 

pattern on the hornet moth, Aegeria apiformis, contributes to its resemblance to a wasp or 

bee, but is not capable of stinging.
15

 Animals such as the poison dart frog
16

 native to 

Central and South America and cinnabar moth caterpillar
17

 display aposematic patterns to 

prevent attack by warning potential predators. Not only animals but some plant species 

such as scarlet trumpet use their unique pigments also to attract pollinators.
18

 

Millions of years after biology started to develop photonic structures and use 

structural colors, modern day research has embraced similar ideas to control light. While 

the motivation in biology and technology for developing photonic structures differs (the 

former uses these structures to create color effects for camouflage, mimicking, and 

signaling, whereas technological applications include coherent control of light, 

amplification, and guiding), structural features employed in both biology and technology 

are very similar. 

In the late 1980s, the quest to find new ways to control light in materials led to the 

discovery of photonic band structure materials, also known as photonic crystals. In a 

photonic crystal (Figure 1.1), the periodic variation of dielectric constant leads to the 

appearance of the photonic band structures. These control how photons move thorough 

                                                 
*
Aposematism, a primary defense mechanism, is the use of bright conspicuous coloration or other 

perceivable characteristics by the prey animal to warn potential predators. 



3 

 

 

 

Figure 1.1 Schematics of photonic crystals. Different colors represent different 

dielectric materials
19

.   

the crystal, in a similar way as the periodic arrangement of ions on a lattice gives rise to 

the electronic bands which controls the motion of charge carriers in semiconductors.
20

 

Photons propagate through the structure depending on their wavelength. The group of 

allowed modes, the wavelengths of light that are allowed to propagate, forms bands. In 

several recent studies, several dielectric structures have been predicted (and some also 

experimentally confirmed) to show a photonic band-gap, a range of frequencies for which 

no electromagnetic modes are classically allowed to propagate through the material.
21, 22

 

Such photonic crystals exhibit a variety of distinct optical phenomena such as 

suppression of spontaneous emission
20

, omnidirectional mirrors, low-loss waveguiding 

and quantum information processing.
23

 More recent studies show that the position of a 

photonic band-gap can be controlled by modifying the refractive index or the periodicity 

of the photonic crystal structure.
24
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1.2 History of Photonic Crystals 

In 1887, Lord Rayleigh studied the electromagnetic wave propagation in periodic 

media and predicted that there exists a one-dimensional photonic band-gap in one-

dimensional photonic crystals.
25

 These photonic crystals were studied in the form of 

periodically arranged multilayer dielectric slabs. About 100 years later, in 1987, two 

physicists Eli Yablonovitch and Sajeev John studied photonic crystals independently and 

published two milestone papers on high dimensional photonic crystals.
20, 26

 Yablonovitch, 

an American physicist, engineered the photonic density of states, in order to control the 

spontaneous emission of materials embedded within the photonic crystal, while John used 

photonic crystals to affect the localization and control of light. They created a three-

dimensional structure that exhibited a complete photonic band-gap.
21

 In 1996, Thomas 

Krauss fabricated a two-dimensional photonic crystal structure with photonic band-gaps 

at low wavelengths (in the range 800-900nm).
27

 This led to the novel phenomena in 

quantum optics and various technological applications. At the commercial level, photonic 

crystals have an excellent application in the form of photonic crystal fibers, developed by 

Philip St. J. Russell in 1998.
28

 

1.3 Theoretical Background in Photonic Crystals 

Photonic crystals are periodic dielectric structures with zero propagation of 

electromagnetic modes for the range of frequencies spanned by the band-gap.
20,26

 

Whenever electromagnetic radiation with a wavelength comparable to the lattice constant 

of the photonic crystal is incident upon the crystal, the electromagnetic waves are Bragg-

scattered and undergo constructive or destructive interference. Thus, given the Bragg 

condition is satisfied, there exists a range of photon frequencies where no photons are 
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allowed to transmit through the material, called a photonic band-gap. A Brillouin zone 

exhibits all the wavevectors k, which are Bragg-reflected by the crystal. Since the 

dispersion relation ω(k) is a periodic function of k outside the Brillouin zone, the 

calculations for the photonic band-gap are restricted only to the wavevectors k lying 

inside the irreducible Brillouin zone instead of considering all possible propagating 

directions in the photonic crystal. Hence, all the dispersion curves ω(k) of the photonic 

crystal can be represented by the wave vectors k present inside the irreducible Brillouin 

zone, which depends on the geometry of the lattice. 

 In 1928, in his doctoral thesis, Felix Bloch studied the propagation of electronic 

waves in three-dimensionally periodic media extending the Floquet’s theorem in one 

dimension by Gaston Floquet (1883).
29

 Bloch proved that waves in a periodic medium 

can propagate without getting scattered. He defined the Bloch wave function for a 

particle in a periodic environment by a periodic envelope function multiplied by a plane 

wave and predicted that the scattering of electrons in a conductor is due to the lattice 

defects and not from the periodic atoms.  

In 1997, three physicists at the Massachusetts Institute of Technology, John D. 

Joannopoulos, Pierre R. Villeneuve and Shanhui Fan applied the same technique to 

electromagnetic waves. They showed that one can obtain an eigenvalue equation in only 

the magnetic field H by solving Maxwell’s equations as an eigenvalue problem 

(analogous to the Schrӧdinger’s equation) starting from the source-free (ρ = J = 0) 

Faraday’s and Ampere’s laws at a fixed frequency
30

 (time dependence 𝑒−𝑖𝜔𝑡): 

    𝛁 ×
1

ɛ(𝐫)
𝛁 × 𝐇 = (

𝜔

𝑐
)

2

𝐇        (1.1)  
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where 𝛁 ×
1

ɛ(𝐫)
𝛁 × is the Hermitian eigen-operator, (

𝜔

𝑐
)

2

 is the eigenvalue, c is the speed 

of light, and ɛ(r) , r = (x, y, z), is the dielectric function. The periodic dielectric function 

corresponding to a photonic crystal is given by ɛ(r) = ɛ(r + Ri), where Ri are the primitive 

lattice vectors (i = 1, 2, 3 for a crystal periodic in one, two, or three dimensions, 

respectively).  

According to the Bloch-Floquet theorem for periodic eigenproblems, the solutions 

to Eq. (1.1) can be chosen in the form 𝐇(𝐫) = 𝒆𝑖𝒌𝐫𝐇𝑛,𝒌(𝐫) with eigenvalues ωn(k) 

representing the frequencies of allowed harmonic modes, where k is a Bloch wave 

function and 𝐇𝑛,𝒌 is a periodic function satisfying the following equation
30

: 

   (𝛁 + 𝑖𝒌) ×
1

ɛ(𝐫)
(𝛁 + 𝑖𝒌) × 𝐇𝑛,𝒌 = (

𝜔𝑛(𝒌)

𝑐
)

2

𝐇𝑛,𝒌      (1.2) 

This equation (1.2) produces a different Hermitian eigenproblem over the primitive cell 

of the lattice at each Bloch wavevector k.  

If the structure is periodic in all directions, this leads to discrete eigenvalues ωn(k) 

which are continuous functions of k with n = 1, 2, ···. The band structure or dispersion 

diagram can be obtained plotting these eigenvalues ωn(k) versus the Bloch wavevector k; 

where both ω and k are conserved quantities. The eigensolutions are periodic functions of 

the wavevector k. By solving equation (1.1) for the first few eigenvalues over the 

principle directions in the photonic crystal, the allowed frequencies within the crystal can 

be evaluated and summarized in a photonic band diagram.  

A complete photonic band-gap can be defined as the range of frequencies ω for 

which there are no propagating solutions of Maxwell’s equations (1.2) for any k, with 

propagating states above and below the band-gap. The maxima and the minima of the 
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function ω(k) occur at the irreducible Brillouin zone edges, which are obtained by 

eliminating the redundant regions inside the first Brillouin zone using the reflection 

symmetries. 

The harmonic modes can be found by using the variational principle. The 

eigenvalues minimize a variational problem in terms of the periodic electric field 

envelope 𝑬𝑛,𝒌: 

𝜔2
𝑛,𝒌 = min𝐄𝑛,𝒌

∫|(∇×𝑖𝒌)×𝐄𝑛,𝒌|
2

∫ ɛ|𝐄𝑛,𝒌|
2  𝑐2        (1.3)  

where the numerator and the denominator correspond to the kinetic and the potential 

energy, respectively. By symmetry, the harmonic modes of the propagating 

electromagnetic field can be divided into two polarizations, transverse-magnetic (TM) 

and transverse-electric (TE), each with its own photonic band structure (dispersion 

diagram). 

The higher bands are constrained to be orthogonal to the lower bands for 𝑚 < 𝑛. 

    ∫ 𝐇𝑚,𝒌
∗ 𝐇𝑛,𝒌 = ∫ ɛ𝐄𝑚,𝒌

∗ 𝐄𝑛,𝒌 = 0       (1.4)  

At each k, there exists a gap between the lower dielectric bands concentrated in the high 

dielectric region and the upper air bands that are concentrated in the low dielectric. The 

dielectric/air bands in the photonic crystal are similar to the valence/conduction bands in 

a semiconductor. In order for a complete band-gap to arise in two or three dimensions, 

the band gap corresponding to each k point should overlap, which implies a minimum ɛ 

contrast. 

The existence of a photonic band-gap depends on the two polarizations (TM and  
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TE) of the electromagnetic radiation (classically referred to as the s and p polarizations, 

respectively), and the boundary conditions at the material interface.
31

 An omnidirectional 

band-gap is achieved only with a three-dimensional photonic crystal when the incident 

electromagnetic radiation with a frequency in the photonic gap region is reflected from 

the crystal for all angles of incidence and all polarizations.
31

 A three-dimensional 

photonic structure is a face-centered cubic (fcc) lattice of air cylinders in a high-dielectric 

matrix. The first Brillouin zone of such a crystal is a truncated octahedron with an 

irreducible Brillouin zone defined by vertices Γ, L, U, X, W and K with origin at the 

point Γ = (0, 0, 0), as shown in Figure 1.2. The dispersion curves of the photonic band 

diagram can be analyzed by considering the wave vectors k, originating from the Γ-point, 

which describe the edge of the polyhedron-shaped irreducible Brillouin zone. 

The existence of a complete band-gap depends on the ratio of the dielectric 

constants, the volume fraction of the dielectric material, and the geometry of the three-

dimensional periodic structure.
32
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Figure 1.2 Brillouin zones of a face-centered cubic crystal: Truncated octahedron is the 

first Brillouin zone, and the polyhedron with vertices Γ, L, U, X, W and K is the 

irreducible Brillouin zone.  

 

 

 

 



  

CHAPTER 2 

BIOLOGICAL PHOTONIC CRYSTALS 

2.1 Introduction 

A delicate interplay of incident light with the intricate patterns of the weevil 

Eupholus chevrolati’s exoskeleton scales produces a large number of sparkling colors 

and vivid hues. The reason for this beetle’s coloration lies in a hierarchical photonic 

structure system covering its exoskeleton, consisting of multicolored micron-sized 

domains of three-dimensional photonic crystals. A striking feature of E. chevrolati’s 

appearance is that while it has a macroscopic uniform yellowish-green coloration, this 

‘uniform’ color is the result of multicolored (from blue to green, yellow and red) 

micrometer-sized domains. Figure 2.1 shows various scales with differently colored 

domains. To unravel the mystery behind this optical effect, the photonic structure within 

each micrometer scale and sub-micrometer domain was investigated using the valuable 

characterization techniques such as optical microscopy, scanning electron microscopy 

and focused ion beam microscopy. We modeled the three-dimensional architecture of the 

photonic crystals from the SEM images, studied the origin and properties of the resulting 

photonic band structure, computed the photonic band diagram using MIT’s photonic 

bands (MPB) software package,
33

 and compared the calculations to experimental high- 

resolution optical spectroscopy studies. 
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Figure 2.1 Optical microscopy images of iridescent scales of the weevil E. chevrolati, 

demonstrating differently colored domains. 

2.2 Materials and Characterization 

In this section we introduce the experimental techniques used in this thesis 

including the optical and structural characterization of biological photonic structures, and 

calculation of photonic band diagrams for the structure present inside the exoskeleton of 

the weevil E. chevrolati. 

2.2.1 Optical Characterization 

One of the most common methods to experimentally characterize a photonic 

crystal is optical reflectance measurement. The range of wavelengths of electromagnetic 

waves, which are forbidden to propagate in a certain direction through the photonic 

crystal, are totally reflected, determining the photonic stop-gap (a directional band-

gap).
20,26

 Experimentally, this is characterized by the presence of an inhibited 
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transmission with an associated reflection peak at the characteristic 

frequency/wavelength range.
20

 

The yellowish-green iridescence of the scales found on the exoskeleton of the 

weevil E. chevrolati was investigated by the optical microscopy technique. The optical 

spectra were taken at normal incidence with an Ocean Optics USB4000 spectrometer 

fiber coupled to a Nikon EclipseME600 microscope. White light from a ThorLabs OSL1 

Fiber Illuminator was focused onto the specimen using a 20 × objective lens with 

numerical aperture (NA) of 0.46. The experimental setup is shown in Figure 2.2. The 

reflection measurement was normalized to a high reflectance broadband mirror as 100%. 

A pinhole with 0.5 mm aperture was inserted into the image plane of the optical path to 

isolate small areas of the exoskeleton (as small as ~5 µm in diameter). The exoskeleton of 

the weevil was cut into small sections (~ 1 mm), and reflectance spectra from the 

individual domains in the scales were measured and analyzed. 

 

Figure 2.2 Experimental set up for optical characterization. 
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2.2.2 Structural Characterization 

The photonic structure inside of iridescent scales of the weevil E. chevrolati was 

examined by high-resolution structural analysis based on scanning electron microscopy 

(SEM) combined with focused ion beam (FIB) milling. SEM and FIB were conducted  

using a FEI NanoNova 630 microscope and a FEI Helios NanoLab 650 system, 

respectively. The structural characterization of the weevil scales was executed by first 

gently scraping a few scales from the exoskeleton of the weevil onto a microscope slide 

using a razor blade. The scales were then transferred onto the conductive carbon adhesive 

tab SEM sample holder. The scale was carefully oriented vertical using a scalpel. By 

orienting the scale vertical and adjusting the angles of rotation and tilt of the FIB stage, a 

layer of thickness ~0.7 µm was removed from the top surface of the scale using FIB with 

ion beam current of 430 pA and 30 kV accelerating voltage. The subsurface internal 

photonic structure thus exposed, provided us with a view of the all domains within a 

single scale. High resolution images of the structure of each domain were taken by FEI 

NanoNova SEM. Since the nonconductive specimens tend to charge when scanned by the 

electron beam using high vacuum mode, an ultrathin layer of gold was deposited on the 

top surface of the scale by sputter coating before SEM imaging. 

The SEM images were later processed using the image-processing software 

ImageJ. The structural parameters were obtained from analyzing the structural features of 

the cross-sectional SEM images of each domain. Using the quantitative information thus 

obtained, a face-centered cubic lattice-based
30

 three-dimensional photonic structure of the 

domains was created. The two-dimensional cross-sectional projections of the structure  

model obtained by making oblique cuts through the volume were compared with the 



14 

 

 

SEM images taken of each domain on the weevil scale. 

2.3 Results and Discussion 

In this section we present our detailed analysis of the observed wide range of 

chromatic effects in the weevil E. chevrolati (dried specimen) from spectral reflection 

studies and anatomy of the weevil by implementation of high-resolution imaging 

techniques. 

2.3.1. Micropixelation and Color Mixing 

To understand the origin of the angle-independent homogeneous yellowish-green 

color in the studied weevil (see Figure 2.3 (a)), we employed the routinely used 

characterization technique, optical reflection spectroscopy. 

A typical optical reflectance spectrum of large sections of the weevil (100’s of 

scales) is given in Figure 2.4. It displays a broad reflection peak centered at ~540 nm 

consistent with the weevil’s macroscopic yellowish-green appearance. The large number 

of spectral features of the reflection peak indicates that this reflection spectrum is a 

mixture of many individual reflection peaks originated from different scales. To test this 

hypothesis we collected reflectance spectra from individual scales of the weevil’s 

exoskeleton. These measurements revealed that reflection properties differ strongly from 

scale to scale. This finding is summarized in Figure 2.5, which compares the envelope 

reflection peak of a large area of the weevil’s surface with the wavelength position of the 

peak maxima of 17 individual scales. It is evident that the overall reflectance behavior of 

this weevil is the result of color mixing at the micrometer-scale. 

Moreover, analysis of the optical reflection micrographs of individual scales 
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Figure 2.3 Multiple levels of the weevil E. chevrolati’s hierarchical structure: 

exoskeleton, scales and domains. (a) Photograph of the weevil E. chevrolati. (b) Optical 

microscopy image of iridescent scales attached to the exoskeleton of E. chevrolati under 

white light illumination. (c) Magnified optical microscopy image of individual scales 

showing differently-colored domains. 
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Figure 2.4 Optical reflectance spectrum for the weevil E. chevrolati. 

450 500 550 600 650 700

0.0

0.2

0.4

0.6

0.8

1.0

450 500 550 600 650 700

0.0

0.2

0.4

0.6

0.8

1.0

 

 

Wavelength (nm)

 

 

R
ef

le
ct

a
n

ce
 (

n
o
rm

a
li

ze
d

)

 

Figure 2.5 Reflectance spectra for E. chevrolati as an envelope to the peak reflection 

from individual scales.
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 (Figure 2.1) shows that color-mixing occurs at even smaller length scales, namely 

between individual domains within a single scale. We therefore optimized our micro-

reflectance spectroscopy set-up to allow us to measure spectra of individual scale 

domains (around 2-10 µm in size). The resulting spectra of five domains of a particular 

scale are presented in Figure 2.6 (together with the optical micrograph) and demonstrate 

the distinct reflection properties of individual domains. 

These high spatial-resolution measurements were repeated for a total of 80 

different domains within different scales from multiple areas of the weevil’s exoskeleton. 

The results are summarized in Figure 2.7. A comparison of all the peak maxima 

wavelength positions with the envelope spectrum demonstrates excellent agreement, 

confirming the hypothesis of additive color-mixing of pixel-like domains as the origin 

behind the yellowish-green coloration of the weevil E. chevrolati. In addition, the 

generated mixed color depends on the luminance levels of all individual pixelated color 

domains. A full range of colors perceivable by a human observer can be produced from 

the colored domains and an adjustment of their luminance levels. To further analyze this 

color-mixing phenomenon and find an explanation for the weevil’s angle-independent 

coloration with a dull, low saturated hue, the concept of color theory has been applied 

and will be discussed in detail in Section 3.2 of Chapter 3. 

2.3.2   SEM Structural Studies of Individual Scales and Domains 

To examine the origin of the different coloration of individual domains the 

structural properties of scales and domains were investigated by a combined SEM 

imaging and FIB milling study. For this, the exoskeleton of a dead, dried weevil 

specimen was dissected into small pieces and individual scales, and mounted onto SEM
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Figure 2.6 Optical reflectance spectra of individual domains on a single scale shown  

as an inset. 
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Figure 2.7 Reflectance spectra for E. chevrolati as an envelope to the peak reflection 

from individual domains. 
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sample holders. The FIB milling technique was then used to cut scales and expose the 

interior cuticle structure. An example of a random cross-sectional cut is presented in 

Figure 2.8.  

In a single scale, differently-colored domains are horizontally stacked and spread 

across its entire volume, and the structure of each domain extends from the top to the 

bottom surface (~5 µm) of the scale. To investigate the structural arrangement of a 

domain generating a specific wavelength, the entire scale was first mapped with all the 

existing domains on its CCD image (see Figure 2.9 (a)), then, as mentioned in Section 

2.2.2, the outermost protective layer of the vertically-oriented scale, as shown in Figure 

2.9 (c), was removed from the top using the FIB technique. It was observed that the use 

of an ion beam on the horizontal scale on the SEM stub resulted in an uneven top surface, 

as can be seen in Figure 2.10. However, after the alignment of the xz-plane of the scale 

with the ion beam direction and limiting the ion beam current to 430 pA (higher values of 

current rendered the soft chitin structure to melt as can be seen in Figure 2.11) we were 

provided with a clean-cut top surface with clearly-defined domain boundaries as shown 

in Figure 2.9 (d). 

The high-resolution image of the scale’s top surface, thus obtained, was matched 

with its CCD image, and each individual domain was depicted in its SEM image (Figure 

2.9 (d)). To study the structural characteristics of each domain, individual domains were 

then imaged using SEM, as shown in Figure 2.12 and 2.13. 

Comparison of the exposed structural features of several different cross-sectional 

cuts with previous studies in the Bartl group on other types of weevils (in particular, 

Lamprocyphus augustus) revealed strong similarities. More detailed structural  
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Figure 2.8 SEM of the exposed side surface of the sample scale. 

 

 

 

examination confirmed a similar structure of ABC stacked layers of air cylinders 

arranged in a face-centered-cubic (fcc) lattice in a surrounding dielectric matrix made of 

chitin (a polysaccharide-based biopolymer with refractive index of 1.53).  

Quantitative analysis yielded a height and radius of the air cylinders of 300 ± 25 

nm and 71 ± 7 nm, respectively. The lattice constant, a, was found to vary in the range 

between 360 and 400 nm.  
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Figure 2.9 Images of the sample scale. (a) CCD camera image. (b) SEM image of the 

horizontal scale. (c) Ion beam image of the scale oriented in the xz-direction. (d) SEM 

image of the exposed top surface of the vertically-oriented scale.
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Figure 2.10 SEM image of the horizontal scale’s top surface after FIB milling. 

 

 Figure 2.11 SEM image of the melted internal structure when an ion beam current > 430 

pA was used.  
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Figure 2.12 SEM image of a single domain. 
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Figure 2.13 Cross-sectional scanning electron microscopy images of the individual 

domains on the sample scale.
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2.3.3. Band Structure Studies and Comparison to Optical Properties 

Due to the presence of additional symmetries of the face-centered cubic lattice 

structure, the energy bands are invariant under spatial reflection symmetry, the 

wavevectors describing an irreducible Brillouin zone of the lattice are sufficient to define 

the photonic band structure. The maxima and minima of the eigenvalues occur at the 

edges of irreducible Brillouin zone defined by the vertices Γ, L, U, X, W and K. The 

photonic stop-bands are the gaps between any two consecutive allowed modes in the 

photonic band diagram. As described in Section 1.3 of Chapter 1, electromagnetic modes 

inside a photonic crystal structure can be calculated by finding the eigenvalues of the 

modified Hermitian eigenproblem (the frequencies of allowed harmonic modes). MIT’s 

photonic bands (MPB) software, designed for the study of photonic band-gap materials, 

computes the definite-frequency harmonic modes of Maxwell’s equations in periodic 

dielectric structures and dispersion relations.
33

 Figure 2.14 presents a photonic band 

diagram of the weevil E. chevrolati’s photonic crystal structure with a face-centered 

cubic arranged air-cylinder lattice, calculated using the above mentioned photonic bands 

software.
†
 

A three-dimensional model of the photonic structure inside the weevil was 

constructed using the evaluated structural parameters. Two-dimensional projections were 

obtained by making cuts along specific directions through the constructed volume of with 

face-centered cubic air-cylinder lattice structure (Figure 2.15).
†
 These model crystal faces 

were compared to SEM images of the top-surface domains of individual scales (see 

Figure 2.13). A detailed comparison is shown in Figure 2.15, where the calculated  

                                                 
†
 The three-dimensional modeling and photonic band structure calculations (using the MIT photonic bands 

(MPB) software) were performed by Danielle Montanari, a graduate student in the Bartl group. 



26 

 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 

 

F
re

q
u

en
cy

 (
c/

a
)

Bloch wavevector

L           X            U            W            

 

Figure 2.14 Photonic band diagram of the weevil E. Chevrolati. 
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Figure 2.15 SEM images of individual single-crystalline domains oriented in Γ-L, Γ-K and Γ-W 

directions, with corresponding calculated dielectric function (insets in the figure).
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dielectric function of model crystal faces in the directions Γ-L, Γ-K and Γ-W is 

superimposed over the SEM images of individual domains. It was found that the domains 

within the weevil scales do not follow specific main orientation. Each domain, based on a 

face-centered cubic lattice, within a scale is relatively oriented in a different direction 

resulting in only a certain range of wavelengths in the electromagnetic spectrum being 

reflected by it. 

From the calculated frequency stop-band positions along main lattice directions, 

the corresponding wavelength ranges can be calculated from the mid-gap frequency 

values ωo, by choosing structurally-relevant lattice constants. For the weevil photonic 

crystal structure, we determined the lattice constant to be in the range 360-400 nm. Thus, 

we calculated wavelength stop-gap positions for all main lattice directions for lattice 

constants of 360, 380 and 400 nm. Results are listed in Table 2.1. The architecture of the 

weevil E. chevrolati’s exoskeleton consists of numerous scales, each scale with several 

domains and each domain built on the same set of building blocks, fcc cubic lattice 

structure, but different dimensions, more specifically, lattice constants. Depending on 

which facet of the domain’s lattice structure is oriented in the direction of incident light, 

the structure forbids a range of wavelengths to propagate through the structure. 

It can be concluded from the calculated values that each domain within the scale 

of the weevil E. chevrolati is capable of exhibiting a wide wavelength range within the 

visible part of the electromagnetic spectrum, with different directions spanning different 

ranges of wavelengths. As discussed earlier in Section 2.3.1, the yellowish-green 

coloration of the weevil results from the additive mixing of different colors reflected 

from different domains. 
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Table 2.1 Ranges of wavelength reflected by the photonic crystal structure with different 

lattice constants. 

 

Directions 
Mid-gap Frequency, ωo 

(in units of c/a) 
Wavelength Range (nm) 

    a = 360 nm a = 380 nm a = 400 nm 

Γ-L 0.66 511-585 540-618 568-650 

Γ-X 0.74 476-493 503-521 529-548 

Γ-U 0.78 451-474 476-500 501-526 

Γ-W 0.80 441-462 465-487 490-513 

Γ-K 0.79 444-470 469-496 494-522 

The comparison of structural data, optical results and band structure calculations 

suggest that the wavelength ranges exhibited by the weevil were generated from the same 

crystal lattice structure but from differently oriented domains within a lattice constant 

range of 360-400 nm. For example, only the fcc lattice structure with lattice constant of 

400 nm spans the red wavelength region in the Γ-L direction, whereas the green and blue 

wavelengths generate from at least one of the directions of the lattice built with a lattice 

constant ranging between 360 and 400 nm. 

 

 

 

 



 

CHAPTER 3 

MATHEMATICAL REPRESENTATION OF COLORS ON A  

COLOR SPACE 

3.1 Introduction 

As with all living organisms, animals evolve through thousands of generations, 

which has an enormous impact on their appearance and behavior. This process of change 

often results in accordance with their surroundings and the changes in their survival plan. 

Theories of evolution explain how various species are considered related to one another, 

like humans and apes, for example. 

Colors existed long before the conception of life in Mother Nature. However, 

studies show that the same objects are perceived of as having different colors by different 

observers. Depending on the wavelength ranges in the electromagnetic spectrum required 

to reproduce their full visible spectrum, animals can be categorized into dichromats, 

trichromats, tetrachromats and pentachromats.
34

 Humans and some other mammals have 

evolved trichromacy from early vertebrates.
35-38

 It is estimated that trichromatic humans 

can discern up to 2.3 million different surface colors
39

 and can distinguish wavelengths 

with a difference of as little as 0.25 nm
40

. Fish and birds are tetrachromats, that is, they 

have four types of cone cells and can detect energy of ultraviolet wavelength as well, 

whereas most other mammals such as the domestic dog and the ferret are dichromats.
41
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Colors help animals in identifying different objects.
40, 42

  

Several ancient scientists including Aristotle were intrigued by the theory of color 

and the physical reason behind its existence. Isaac Newton
43, 44

, Thomas Young, James 

Clerk Maxwell
45

 and Lord Rayleigh, who are considered the giants in the field of physics, 

studied the nature of light and developed theories of color vision. In the early 18
th

 

century, Thomas Young presented his hypothesis on color perception in his lectures, 

stating that the presence of three kinds of nerve cells in the human eye results in the 

perception of different colors.
46

  

Color vision is the ability to interpret the surrounding environment by processing 

the information contained in the visible light.
47

 The color of an object is a result of the 

mixture of all wavelengths in the light leaving the surface of that object. This depends on 

the object’s surface properties, its transmission properties and its emission properties. 

The viewer’s perception of the color of the object depends on the ambient illumination 

and the characteristics of the perceiving eye and brain.  

This chapter discusses the wide color ranges produced in the biological world, 

and the mathematical representation of perceived colors using color space diagrams. The 

color gamut can be specified in a color space such as the CIE XYZ color space, by 

calculating the tristimulus values of the three primaries: red, green and blue. The XYZ 

color system used here to produce the color gamut was developed by CIE (Commission 

Internationale de l'Eclairage) in 1931.
48, 49

 The perceived color of an object is a visual 

effect of a specific color combination, which makes it of absolute importance to 

understand the behavior of color mixtures in case of light (additive) and chemical dyes 

(subtractive). Color theory provides a guidance to color mixing and perceived colors. 
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3.2 Color Theory 

Colorimetry, the science of color, includes the perception of a color by the human 

brain and eye
50-52

, the physics of electromagnetic radiation visible to the human eye, and 

the origin of color in materials.
53-55

 

Colors can be broadly categorized in three ways: primary color, secondary color 

and tertiary color. Primary color cannot be produced from any combination of other 

colors, whereas secondary and tertiary colors can be created from a combination of two 

(primary) colors and three (primary or secondary) colors, respectively. Colors can be 

mixed together to produce other colors. This mixing of colors can be additive or 

subtractive.
56

 The creation of color by mixing light of different colors is known as 

additive color synthesis. The light sensitive cones in the human eye detect these light 

signals and send them to the brain for processing this information. This biological process 

is explained in detail in the following section. The additive color process is observed in 

television screens where an image is generated by mixing small pixels of red, green and 

blue lights. The subtractive color synthesis is the creation of color by mixing different 

colors of dyes or paints. The RGB color model is an additive color model, whereas 

CMYK color model
57

 is a subtractive color model (see Figure 3.1). 

The concept of color can be divided into two parts: chromaticity and brightness. 

The chromaticity represents the quality of a color, and consists of two independent 

parameters, hue and saturation. Brightness is one of the three psychological dimensions 

of color perception which refers to the visual stimuli of the light intensity. Hue refers to  

the purity of a color, and is defined as the degree to which the stimulus can be related 

similar to the unique hues (red, green, yellow, and blue). Saturation represents the degree 
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Figure 3.1 The color models: RGB (Additive) and CMYK (Subtractive). 

by which a color differs from the gray of the same brightness. 

An average human observer’s response to a color can be described in terms of the 

amount of three primary colors (red, green, and blue) mixed together additively or 

subtractively to produce each wavelength of the visible range before it is perceived by the 

human eye.
58

 

3.3 The Human Eye and Color Mixing 

Human visual perception is based on the color and the distance
59

. Due to the 

spatial contrast sensitivity function of the human eye, the closer it is to an object, the finer 

detail it can resolve. At greater distances, the human eye tends to lose its visual acuity, 

which is a measure of angular resolution, specified in units of cycles per degree (CPD). 

The maximum resolution is 50 CPD for a human eye with excellent visual acuity.
60

 The 

farther the eye moves away from an object (from the microscopic to the macroscopic 

view), the less resolved the features of the object become. This leads to the merging of 
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colors as the human brain tries to process the incoming information. Instead of seeing 

resolved spots/features, the human eye sees a total image of the object. In order to 

understand the response of a human observer to the colors found in their surroundings, it 

is of importance to understand the biological model of the human eye. 

A human retina is a mosaic of two basic types of light sensors, also called 

photoreceptors: cone cells and rod cells, which are responsible for color and peripheral 

vision, respectively.
61

 Each cell supplies information required by the visual system to 

create awareness of the surrounding environment through physical sensation. The 

resulting perception is known as eyesight or vision. Visual acuity, a property of the cone 

cells which are highly concentrated near the center of the retina called fovea centralis, is 

the ability to distinguish fine detail.
62

 The lens of the human eye focusses the incoming 

light onto the photoreceptive cells of the retina, which is a part of the brain. The retinal 

neurons detect visible electromagnetic radiation and respond by producing neural 

impulses. Specifically, the photoreceptor proteins in the cells absorb the photons resulting 

in a change in the cell’s membrane potential and produce electrical signals, which are 

processed by the brain to create an image of the visible surrounding environment. The 

color is detected by the cone cells which function best in the bright light. Although the 

rod cells are extremely sensitive to dim light, they cannot resolve sharp images or color. 

This explains why colors cannot be seen at night as only one photoreceptor cell is active.  

Humans are trichromats.
47, 61, 63

 Their retina consists of three different types of color 

receptors (called cone cells in vertebrates) with different absorption ranges of the 

electromagnetic spectrum, each containing a different photopigment. Young’s idea of 

color vision was that it is a result of the three photoreceptors.
46

 This was later expanded 
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by Helmholtz using color-matching experiments.
64

 Each of the three types of cone cells 

in the human retina contains a different type of photosensitive pigment.
65

 Each 

photopigment produces a neural response only when it is hit by a photon with a specific 

wavelength of light. The response curve is a function of wavelength and varies for each 

type of cone, giving the perception of any color sensation. The spectral sensitivity peaks 

of the three cone cells S, M, and L lie in the wavelength ranges 420-440 nm (S, short 

wavelength), 530-540 nm (M, medium wavelength) and 560-580 nm (L, long 

wavelength). They give three different signals based on the extent to which each cone 

cell is stimulated. These values of stimulations are called tristimulus values. The set of all 

possible tristimulus values determine the color space for a human observer. 

3.4 Calculation of Chromaticity Coordinates 

The tristimulus values depend on the observer’s field of view due to the 

distribution of cone cells in the human eye, so CIE defined a standard observer, which 

represents the chromatic response of a human within a 2⁰ arc of the fovea centralis
‡
.
66, 67

 

This particular angle was chosen by CIE because the fovea, a depression in the inner 

retinal surface, contains only the color-sensitive cone cells.
61

 The chromatic response of 

an observer can be represented mathematically by the color-matching functions as shown 

in Figure 3.2, which when combined with the spectral power distribution of the incident 

light and the spectral reflectance leads to the tristimulus values of a color. 

A color can be produced by additively mixing the red, green and blue color  

components of visible light. The primary colors are represented as X for red, Y for green 

and Z for blue.
6
 The magnitude of the tristimulus values of a color gives the amount of  

                                                 
‡
 A part of the human eye retina, where the density of cone-cells is the highest, responsible for sharp central 

vision. 
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Figure 3.2 Color-matching functions of 1931 CIE standard 2⁰ observer. 

Red, green and blue curves represent 𝑥̅, 𝑦̅ and 𝑧̅, respectively.  

each color required to be mixed additively in order to match a particular color. The 

chromaticity coordinates x and y can be computed by following the standard procedure 

given by CIE.
49

 

The CIE XYZ color space, more specifically, CIE xyY color space is a horseshoe-

shaped three-dimensional representation of all visible colors to a human observer, i.e., the 

gamut of all visible chromaticities where the solid outline represents the ‘pure’ hues that 

are perceivable to the human eye as shown in Figure 3.3. The parameter Y is a measure of 

brightness of a color, and the chromaticity of a color is defined by the parameters x and y.  
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Figure 3.3 CIE 1931 xyY color space. 

It is favorable to have a representation of ‘pure’ color in the absence of brightness.
68

 The 

chromaticity coordinates can be conveniently represented using the CIE XYZ model. 

Hence, this specific color model was used to define the color gamut, for the biological 

photonic structures for a standard human observer. 

The color perceived by a human observer can be represented numerically by the 

integral of the product of the spectral distribution of light source, spectral reflectance or 

transmittance of the object viewed and the color matching function of the standard 

observer over the visible range of the electromagnetic spectrum 380-780 nm.
69
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𝑋 = 𝑘 ∫ 𝑅(𝜆)𝐼(𝜆)𝑥̅(𝜆)

380

780

d𝜆 

𝑌 = 𝑘 ∫ 𝑅(𝜆)𝐼(𝜆)𝑦̅(𝜆)

380

780

d𝜆 

𝑍 = 𝑘 ∫ 𝑅(𝜆)𝐼(𝜆)𝑧̅(𝜆)

380

780

d𝜆 

where 𝑥̅(𝜆), 𝑦̅(𝜆) and 𝑧̅(𝜆) are the color-matching functions
49, 70

, 𝐼(𝜆) is the spectral 

power distribution of the light source, R(λ) is the spectral reflectance, dλ is the interval of 

wavelength and k is the normalization constant defined as 𝑘 = 100 ∫ 𝐼(𝜆)𝑦 ̅d𝜆⁄ . 

The tristimulus values X, Y and Z thus obtained are normalized to obtain the three 

chromaticity coordinates x, y and z as below, 

𝑥 =
𝑋

𝑋 + 𝑌 + 𝑍
 

𝑦 =
𝑌

𝑋 + 𝑌 + 𝑍
 

𝑧 =
𝑍

𝑋 + 𝑌 + 𝑍
 

Only two chromaticity coordinates, x and y, are needed to define the color of an object 

since x + y + z = 1. The two coordinates x and y can be plotted to obtain a two-

dimensional diagram of all possible visible chromaticities called the xy-chromaticity 

diagram. The two-dimensional chromaticity diagram demonstrates a linear relation 

between the colors when mixed additively as shown in Figure 3.4. A straight line drawn 

joining the chromaticity coordinates of any two colors that are mixed includes the 
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Figure 3.4 The CIE color space chromaticity diagram. 

chromaticity coordinates of all possible colors of the mixture. In case three colors are 

mixed additively, all the colors that can be produced by mixing any fraction of those 

three colors lie within the triangular region on the diagram formed by connecting the (x, 

y) coordinates of the individual colors. The triangular region, thus formed, is called the 

color gamut.
6
 The color gamut of a device or process is specified in the hue-saturation 

plane and is defined as that portion of the color space which can be reproduced. An 

unrealized goal within the color display engineering is a device that is able to reproduce 

the entire visible color space! 

3.5 Results and Discussion 

Colorful beetles have been studied by various research groups
8, 71-77

 and it has 

been experimentally shown that the selective reflection of light by multifaceted 
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arrangement of photonic structures inside exoskeleton cuticle scales leads to the brilliant 

structural coloration.
14, 78

 The weevil E. chevrolati belongs to one of the largest animal 

family with over 400 species all over the world, called Curculionidae. An average adult 

weevil is about 1 - 40 mm long and can be recognized by its elongated head that forms a 

snout and antennae with small clubs. These weevils have a somber yellowish-green 

appearance, as can be seen in Figure 2.3 (a). 

In our research, we chose to study the E. chevrolati weevil because of the brilliant 

multicolored micron-sized domains in its scales with three-dimensional photonic crystal 

based internal structure. E. chevrolati proved to be an excellent model for: 

a. studying the mechanism behind selective angle-independent reflectance 

from the structural architecture. 

b. understanding its usual dull, pastel-type appearance, in spite of the 

presence of bright differently-colored domains on its exoskeleton. 

c. producing the color gamut, range of reproducible colors, as observed by a 

standard human observer. 

The range of colors which can be reproduced by the biological photonic structures was 

defined by following the same procedure for the calculation of the chromaticity 

coordinates x and y, as explained in Section 3.4. The color gamut for the E. chevrolati 

weevil (Figure 3.5) was defined on the CIE 1931 chromaticity diagram by considering 

differently-colored domains within its scales, and calculating the xy-chromaticity 

coordinates of the three individual domains as listed in Table 3.1. Figure 3.5 shows the 

corresponding xy-chromaticity diagram containing the coordinate points of selected 

domains of weevil scales. 
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Figure 3.5 xy-chromaticity diagram for multicolored domains. 
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Table 3.1 xy-chromaticity coordinates for the individual domains on the weevil.  

Scale No. x y 

1 0.59 0.40 

2 0.34 0.54 

3 0.14 0.19 

4 0.44 0.51 

5 0.23 0.25 

6 0.19 0.21 

7 0.16 0.55 

8 0.41 0.54 

9 0.40 0.50 

10 0.15 0.13 

11 0.24 0.57 

12 0.21 0.44 

13 0.27 0.30 

14 0.48 0.42 

15 0.21 0.25 

16 0.24 48 

17 

18 

0.30 

0.25 

0.54 

0.38 
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The area lying within the lines connecting the domain’s chromaticity coordinates 

forms the color gamut for the weevil. This area represents all possible colors visible to an 

average human observer, which can be produced upon the incidence of light on these 

domains on the weevil. In contrast to the three-color RGB gamut in electronic display 

systems (TV screens
79

, for example), these biological systems demonstrate a wide gamut 

of colors which can be reproduced by the additive-mixing of reflected lights from a 

number of colored domains spanning almost the entire visible wavelength range. 

The calculated chromaticity coordinates corresponding to individual scales on the 

weevil are listed in Table 3.2. The corresponding locations in the xy-chromaticity 

diagram are shown in Figure 3.6. On comparing the chromaticity diagram for individual 

scales (Figure 3.6) with the one obtained for individual domains (Figure 3.5), we found 

that all the ‘color’ coordinates of individual scales lie within the color gamut produced 

for the three domains of red, green and blue-color. Interestingly, due to the low frequency 

of occurrence of blue domains within individual scales, the overall mixed color of 

individual scales is located far from the blue range in the xy-chromaticity diagram. 

Similarly, when analyzing the color of a whole weevil (without resolving 

individual domains or scales), the color gamut is reduced to a single point in the 

yellowish-green area on the xy-chromaticity diagram, as shown in Figure 3.7. The 

chromaticity coordinates were calculated to be (0.43, 0.55) in excellent agreement to the 

observed uniform yellowish-green color of this weevil. 

Detailed analysis of the color gamut produced in different size-levels suggested 

the additive mixing of primary colors occurring in the E. chevrolati weevils before the 

reflected colors are perceived by an observer. 
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Table 3.2 xy-chromaticity coordinates for the individual scales on the weevil E. 

chevrolati.  

 

Scale No. x y 

1 

2 

3 

0.42 

0.38 

0.61 

0.52 

0.55 

0.39 

4 

5 

0.44 

0.36 

0.49 

0.54 
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Figure 3.6 xy-chromaticity diagram for the weevil scales. 
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Figure 3.7 xy-chromaticity diagram for the whole weevil. 
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 In addition to the color coordinate analysis, the color mixing in E. chevrolati 

weevils is further supported by their dull appearance. The weevil appears to be of dull 

yellowish-green color when viewed with an unaided eye from a distance but differently 

colored brilliant domains become visible when viewed under the microscope. This is a 

result of the pointillistic color mixing since the primary-colored domains are placed so 

close to one another on the weevil’s exoskeleton that the reflected colors from these 

domains merge to generate a perception of other colors.
80

 Patterns beyond the neural 

resolution limit
81

 are removed from the retinal image by the optical system of the human 

eye.
82

 Pointillism is a painting technique in which the individual bright dots of different 

hues are placed so that the color spots blend into a fuller range of tones.
83, 84

 Most likely, 

this macroscopic dull yellowish-green appearance helps the weevil to hide in its 

surrounding habitat from its predators such as birds.
§85, 86

 

The mathematical representation of colors (color modeling) and the physical 

phenomena taking place inside the human eye suggest that the colors reflected from the 

exoskeleton of the studied weevil are mixed additively before the color information is 

processed by the human brain. In spite of a wide range of colors produced by the 

photonic crystal structure inside the exoskeleton of weevil E. chevrolati, the human eye 

perceives only the final color resulting from the additive-mixture of lights of different 

colors. 

3.6 Conclusions 

We studied the weevil E. chevrolati using color theory and xy-chromaticity 

diagrams based on the CIE XYZ color model. We found the exoskeleton of the studied 

                                                 
§
 A typical bird eye responds to the wavelength range of about 300 - 700 nm in addition to the ultraviolet 

wavelength (300 – 400 nm). 
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weevil is studded with micron-sized brilliantly colored domains, arranged beautifully in a 

pixel-like alignment similar to that found in modern-day display systems. By carefully 

examining the weevil microscopically and by representing the observed colors 

mathematically with the help of color models and reflectance spectra measurements, we 

found that the perceived yellowish-green color of the weevil is a result of the additive 

color mixing of the reflected lights from the photonic structured domains in its scales. As 

a possible practical application, this micropixelation and color mixing in the biological 

photonic structures, where the individual domains serve as primary color sources, can be 

replicated synthetically to be used in the RGB LED lighting designing, which consists of 

a red, a green and a blue LED, and delivers a color gamut to screens. Also, the distance 

between the red, green and blue points can be increased to reproduce more vivid colors, 

much similar to the pointillistic color mixing technique. 



 

CHAPTER 4 

SUMMARY AND CONCLUDING REMARKS 

We have studied the chromatic effects in biological three-dimensional photonic 

crystal structures (iridescent exoskeleton scales of a weevil) operating at visible 

wavelengths by a range of experimental and modeling techniques. The optical and 

structural properties of the biological photonic crystal were studied by high-resolution 

scanning microreflectance spectroscopy, focused ion beam milling and scanning electron 

microscopy. From these structural insights the photonic band structure was determined 

using MIT’s MPB software that combines Maxwell’s equations with solid-state physics 

concepts. In addition, the peculiar pointillistic coloration scheme of the weevil was 

investigated using colorimetric
**

 concepts, and an interesting color-mixing strategy was 

discovered. 

We found that the structural coloration in the weevil E. chevrolati is a 

consequence of the structural arrangement of individual color-producing elements, 

referred to as photonic domains, which contain the same photonic crystal lattice structure 

but slightly different lattice parameters (varying between 360 and 400 nm) and crystal 

orientations. The weevil’s exoskeleton is a multicomponent representation of micron-

sized photonic structures with varying dimensions. 

                                                 
**

 Science used to quantify and describe physically the color perception of a human observer. 
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The photonic architecture was investigated by optical and structural techniques. 

Our reflectance measurements for the weevil’s hierarchical structure consisted of 

multiple levels: domains, scales and exoskeleton. These detailed, hierarchical studies 

confirmed the proposed theory of additive color mixing as the reason behind the 

yellowish-green coloration of the weevil. We observed that the reflectance spectrum of a 

large section of the weevil encloses the peak reflectance maxima positions for the 

individual domains and the scales.  

On the microscopic level, we investigated the three-dimensional structure of the 

photonic crystal within each domain using the high-resolution cutting and imaging 

techniques such as focused ion beam milling and scanning electron microscopy. These 

studies provided us with the lattice dimensions and existing internal structural 

organization and presented the basis for three-dimensional structural modeling and 

photonic band structure calculations. Using MIT’s photonics bands software, the 

forbidden frequencies ranges for light propagation in the weevil’s photonic crystal 

structure were determined. In detail, we first compared the internal photonic structure 

(from electron microscopy imaging) with the cross-sectional images of the cuts through 

the re-constructed three-dimensional dielectric model (obtained from band structure 

calculations) based on face-centered cubic lattice structure along specific directions. We 

found good overlap between the two-dimensional model crystal faces with the structural 

images, confirming the ABC stacked layers of air cylinders ordered in a fcc-cubic lattice 

in a dielectric material.  

The calculated photonic band structure of the weevil’s photonic crystal possesses 

stop-gaps in all main lattice directions (L-Γ, Γ-X, Γ-U, Γ-W and Γ-K). It was discovered 
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that irrespective of the lattice constant value, longer wavelengths (reds) were generated 

only from the Γ-L direction, whereas the shorter ones (violets) were forbidden to enter 

the crystal in the Γ-W and Γ-K directions. We observed that the maximum range of colors 

that can be produced by a particular domain depends on the value of lattice constant. We 

found that photonic structures inside the exoskeleton of the weevil based on different 

lattice constants of 360 nm, 380 nm and 400 nm yield overall wavelength ranges between 

441 – 585 nm, 465 – 618 nm and 490 – 650 nm, respectively (as listed in Table 2.1). This 

result suggests that the sophisticated microdomain orientation of the fcc-based photonic 

structures of the weevil E. chevrolati generates a minimum wavelength of ~441 nm 

(violet region of electromagnetic spectrum) and a maximum of ~650 nm (the red region). 

This is in excellent agreement with our optical reflectance spectroscopy results for 

individual domains, with a minimum observed wavelength of ~442 nm and a maximum 

of ~657 nm (see Figure 2.7). 

As a major contribution of this thesis, we tested our hypothesis of additive color 

mixing in biological photonic structures by representing the observed colors on the 

mathematically-defined color space, CIE XYZ color space. We produced the color gamut 

for different structural levels (domains, scales, exoskeleton) by calculating the 

chromaticity coordinates (x, y) for a set of 18 individual domains and 5 different scales. 

This numerical analysis of generated colors at the microscopic level and its comparison 

to the macroscopic level, the weevil’s exoskeleton, suggests the mixing of colors before 

they are observed by a human observer. With regards to the observed dull yellowish-

green appearance of the weevil, our hypothesis is that it is a result of the blend of all the 

pointillistic colors reflected from the weevil’s multicolored domains, which are placed in 
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close proximity to each other, before the individual color details are identified and 

processed by the human brain. 
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