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ABSTRACT

High energy materials are commonly used as solid rocket motors propellants. The

properties of HE materials can be determined experimentally; however, the hazards

associated with experiments on these materials, as well as the costs, make this

approach unattractive. The simulations of these materials require techniques that

can bridge submicron scales and engineering scales. Micromechanics provides such

techniques. The objective of this research is to investigate the effects of stress bridging

on predicting the effective properties of high energy materials group. The research

focused on polymer bonded explosives (PBXs), since detailed numerical simulations

of PBXs are computationally expensive. The generalized method of cells was explored

for this research and its predictions of elastic moduli with and without stress bridging.

The results show that stress bridging affects the estimated properties considerably.

The generalized method of cells without stress bridging is shown to underestimate

the elastic moduli of the polymer bonded explosives.

Micromechanics analysis requires that the fundamental material properties of the

constituents are known initially. The composite material properties can be determined

experimentally by testing actual composite specimens. However, in recent years,

more and more attention has been given to the development of the analytical and

numerical models for predicting composite material properties from the properties of

the constituent materials and their relationship to each other. The other part of this

research is to identify the Representative Volume Element (RVE) and the boundary

conditions for calculation of transverse shear modulus (G23) and then compare the

results to the other classical micromechanics solutions.

The results show that the proposed approach for identifying the Representative

Volume Element (RVE) and the boundary conditions predict as accurately as the

other classical micromechanics solutions.
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CHAPTER 1

INTRODUCTION

1.1 Composites

A composite material as the name suggests is composed of two or more materials.

The general idea of combining several components is to produce a material with

properties that are different from the individual components themselves. A simple

example of a composite would be concrete. Concrete is made up of cement, sand,

stones, and water. A properly designed composite can offer significant advantages in

strength, stiffness, light weight, relative to conventional metallic materials.

Composites are typically classified into two main groups. The first group of

composites are called the filled materials. These composites are based on matrix

material. The properties of the matrix are improved by filling it with particles. This

group consists of the Metal Matrix Composites (MMC), Ceramic Matrix Compos-

ites (CMC), and Polymer Matrix Composites (PMC). The second group is called

reinforced materials. These composites are sometimes referred as the advanced com-

posites. The basic components of these materials are long and thin fibers bound in

a matrix material. The matrix holds the reinforcement to form the desired shape

while the reinforcement improves the overall mechanical properties of the matrix.

This group consists of Particulate Composites, Fibrous Composites and Laminate

Composites.

Fiber reinforced composites are composed of fibers and a matrix. Fibers are the

reinforcement and the main source of strength while the matrix glues all the fibers

together in shape and transfers stresses between the reinforcing fibers. The primary

function of the matrix is to transfer stresses between the reinforcing fibers (hold fibers

together) and protect the fibers from mechanical and/or environmental damages. A

basic requirement for a matrix material is that its strain at break must be larger than
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the fibers it is holding. Most matrices are made of resins for their wide variation in

properties and relatively low cost. Sometimes, fillers or modifiers might be added

to smooth manufacturing process, impart special properties, and/or reduce product

cost.

1.2 High Energy Materials

High-energy (HE) materials are commonly used as solid rocket motors propel-

lants. Interest in the mechanical properties of HE materials has developed with

improvements in computational capabilities that make possible simulations of con-

tainers filled with these materials. Though mechanical properties of HE materials

can be determined experimentally, the hazards associated with experiments on these

materials, as well as the attending costs, make this option unattractive. Improved

numerical and computational techniques make the determination of mechanical prop-

erties of HE materials possible by bridging the gaps between atomistic calculations of

molecular potentials, molecular dynamics simulations and micromechanics methods

for composite materials. In this research, some micromechanics based methods for the

determination of the mechanical properties of composites are explored and applied to

a group of HE materials called polymer-bonded explosives (PBXs).

1.3 Thesis Organization

This document contains a review of an admittedly unconventional master’s re-

search program. Rather than focusing all attention on a particular area of study,

this research program has given attention to two different aspects within the general

topic of particulate composites. To facilitate publication of results from specific

topics, this thesis has been organized into two main chapters, which are independent

documents. These papers are intended for publication in various technical journals;

hence each paper contains introduction, discussion, results section, references and

figures particular to that paper only.

A review of the properties of polymer bonded explosives and in particular PBX

9501 is provided in Chapter 2. The chapter discusses the effects of stress bridging
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in particulate composites. The estimations of effective properties of polymer bonded

explosives with stress bridging from generalized method of cells (GMC) are compared

to finite element based estimates.

Chapter 3 deals with the estimation of G23 in unidirectional composites. A

discussion of classical numerical methods of predicting the effective properties of

composites is provided. The new approach and the classical solutions are compared

for validation.

Finally, Chapter 4 presents a list of general recommendations for the topics

discussed in Chapter 2 and Chapter 3.



CHAPTER 2

STRESS BRIDGING IN PARTICULATE

COMPOSITES

2.1 Introduction

2.1.1 Polymer-Bonded Explosives

Polymer-bonded explosives (PBXs) are particulate composites containing two or

more components. One of the components is an explosive crystal while the other

components act as a binder that provides structural support to the crystals. Some

PBXs and their components [1, 2, 3] are listed in Table 2.1. It can be observed from

the table that all these PBXs contain a very high weight fraction of particles (>90%).

The particles are considerably stiffer than the binder at room temperature.

2.1.2 PBX 9501

The polymer-bonded explosive of interest in this research is PBX 9501 because of

the availability of experimental data. PBX 9501 is a particulate composite containing

crystals of HMX (High Melting Explosive) in a binder composed of Estane 5703 and

BDNPA/F. In addition, a free radical inhibitor such as diphenylamine or Irgonox is

usually added to the binder [4]. A detailed composition of PBX 9501 is shown in

Table 2.2. The small volume fraction occupied by Irgonox can be neglected. The

voids occupy only 2% of the volume and are neglected in this research.

The dry blend HMX particles in PBX 9501 are mixed in a 3 to 1 ratio of coarse to

fine grades of HMX. The coarse HMX grade particles are sized between 44 and 300

microns while the fine HMX grade particles are less than 44 microns in size. The finer

particles fit into the spaces between the larger particles. The large particles occupy

most of the volume of the composite.

The manufacture of PBX 9501 involves mixing the dry blend of HMX and the
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Table 2.1. Compositions of common PBX materials.

Binder Type PBX Explosive/Binder Weight(%) Source
Fluoropolymer LX-10-1 HMXa/Vitonb 95.5/4.5 [1]
(e.g., Viton) PBX 9502 TATBc/KEL-F-800d 95/5 [1]

PBX 9010 RDXe/KEL-F-3700f 90/10 [2]
PBX 9407 RDX/Exon-461g 94/6 [2]
PBX 9207 HMX/Exon-461 92/8 [2]

Polyeurethene PBX 9011 HMX/Estane 5703h 90/10 [2]
EDC 29 HMX/HTPBi 95/5 [3]

Polyeurethene PBX 9404 HMX/NCj+CEFk(1:1) 94/6 [2]
(with EDC 37 HMX/NC+K10l(1:8) 91/9 [3]
Plasticizers) PBX 9501 HMX/ 95/5 [2]

Estane 5703+BDNPA/Fm(1:1)
a HMX : 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane
b Viton : random copolymer of hexfluoropropane and vinylidene fluoride (1:2)
c TATB : triaminotrinitrobenzene
d KEL-F-800 : random copolymer of chlorotrifluoroethylene and vinylidene fluoride
(3:1)
e RDX : C3H6N6O6

f KEL-F-3700 : (CFClCF2CH2CF2)n
g Exon-461 : (CFClCF2CH2CF2)n
h Estane 5703 : segmented polyeurethene of low molecular weight poly(butylene
adipate) soft segments and 4,4 diphenylmethane diisocyanate 1,4 butanediol hard
segments.
i HTPB : hydroxyl terminated poly butadiene
j NC : nitrocellulose
k CEF : chloroethyl phosphate
l K10 : plasticizer (composition not known)
m BDNPA/F : bis-dinitropropylacetal/formal
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Table 2.2. Weight and volume fractions of the components of PBX 9501.

Component Weight Volume
Fraction Fractiona

HMX 0.9 0.92b

Estane 5703 0.025 0.039
BDNPA/F 0.025 0.033
Irgonox 0.001 0.0
Voids 0.0 0.01-0.02

a The volume fraction data have been obtained from Dick et al. [5].
b McAfee et al. [6] cite volume fractions of 0.912 and 0.088 for HMX and binder
respectively.

binder to form molding powder granules (prills) of PBX 9501. These powders are

then isostatically compressed at 90◦ C until the porosity is reduced to 1-2% and the

pressed form of PBX 9501 is obtained. The microstructure of the pressed PBX9501

[7] is shown in Figure 2.1. The size distribution of HMX particles in PBX 9501

after processing is significantly different from that before processing. Experiments

by Skidmore et al. [8] have shown that the cumulative volume fraction of the finer

sized particles is dramatically higher in pressed PBX 9501 compared to the dry blend.

Experiments by Skidmore et al. [7] have shown that the consolidation of prills initially

involves little damage to the large HMX crystals. As porosity is decreased, there is

an increasing incidence of transgranular cracking and twinning in the large HMX

crystals. If porosity is decreased to less that 1%, micro cracks grow across crystals

due to crystal-to-crystal contact and intercrystalline indentation. There is contact

between the fibers in PBX 9501 due to high volume fraction. In granular materials,

stresses are transmitted by contact between the fibers. So, when external forces

are applied to granular materials, concentration of forces in long paths, or “stress

bridging” is observed.

The term “micromechanics” describes a class of methods for determining the

effective material properties of composites given the material properties of the con-

stituents. In these methods, governing equations based on continuum approximations

are used to determine effective properties. The goal of micromechanics is to predict
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Figure 2.1. PBX9501 (adapted from [7]) pressed at ambient temperature to 2%
porosity

force-displacement response of the composite. The different types of micromechanical

models are analytical models, statistical models and numerical models. Micromechan-

ical models have been used extensively since the 1960s to predict the macroscopic be-

havior and the effective properties of advanced composites. Extensive characteristics

and capabilities of these models have already been defined. The material properties of

interest in this work are the linear elastic moduli of PBXs. The high volume fraction

of the dispersed component in PBXs as well as the high modulus contrast between the

dispersed and the continuous components provide the main challenges. Among the

many micromechanical models, the generalized method of cells (GMC) has emerged

as an attractive tool to predict the elastic, inelastic, and thermoelastic behavior of

a wide variety of composites. PBX 9501 microstructure is modeled using the GMC

method for this research.

2.1.3 Generalized Method of Cells

One of the attractive features of GMC is its capacity to produce accurate macro-

scopic stress-strain responses using a relatively small number of subcells; therefore

requiring very little computational effort. As a matter of fact, it has been shown by

Wilt [9] that the stress-strain response of composite microstructure with circular fibers

can be accurately modeled with a 7x7 subcell array. The fact that GMC is capable of
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modeling relatively complex microstructures using a small number of subcells has

led exclusively to implementations of the method. The method of cells (MOC)

[10] and its extension, the generalized method of cells (GMC) [11] are approximate

analytical methods for predicting the elastic as well as the inelastic response of fibrous

composites. The methods can be used for two-dimensional (e.g., continuous fibers)

or three-dimensional (e.g., short fibers or inclusions) analysis.

As in most micromechanics models, the analysis is limited to a representative

volume element (RVE) that includes one fiber and the surrounding matrix material.

In a typical method of cells representation, a repeating volume element consists of

four rectangular subcells of which one cell is the fiber and the other cells are the

matrix. The shape of the fiber does not affect the final calculations. The final

results of the composite are a function of the constituent properties and fiber volume

fraction. The results using this model have been shown to provide excellent correlation

with numerical and experimental results. The generalized method of cells (GMC)

extends the original method of cells to any number of rectangular subcells. This

generalization permits improved modeling of the specific fiber shape as well as the

ability to model the arrangement of fibers in the composite. Further, the inclusion of

interfacial regions or graduations of properties in the fiber and matrix can be modeled.

The generalized method of cells is particularly valuable for improved prediction of the

inelastic response of composites. This method is extremely computationally efficient.

A linear displacement field is assumed in each subcell. Small strains are assumed

and the strain field in each subcell is volume averaged assuming periodic boundary

conditions. The representative volume element (RVE) is discretized using a regular

grid as shown in Figure 2.2.

The following is a brief summary of the main concepts associated with the GMC.

Aboudi [11] has a more detailed presentation of the method. Mathematically, the

generalized method of cells can be conceived to be based on the following assumptions:

1. Within each subcell, the gradient of the displacement vector is constant and

equal to its value at the centroid of the subcell.

2. The entire cell can be mapped into a single point belonging to a homogeneous
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Figure 2.2. Discretization of the RVE into subcells

deformation field with displacement and displacement gradient.

This generalization permits improved modeling of the specific fiber shape as well

as the ability to model the arrangement of fibers in the composite. Further, the

inclusion of interfacial regions or gradations of properties in the fiber or matrix can

be modeled. The generalized method of cells is particularly valuable for improved

prediction of the inelastic response of composites.

2.1.4 Modeling of High Energy Composites

The major problems with modeling the composite are what should the represen-

tative volume fraction size be and what is the particle distribution. So, particles

are generated randomly in the RVE based on the size distribution of the composite

approximating PBX particles as spheres and cubes. Then the discretization of the

RVE is done and the RVE is homogenized to perform the GMC analysis to get

the results. The homogenization makes the calculation of the properties easy. The

homogenization is a very important step in using GMC to model the high-energy

' "' . ". 

, 

"/ P' :t:ti:1Y 
7, :1 

X ,I 
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composites. The homogenization method is clearly explained below.

A two-step homogenization scheme is used to obtain the effective mechanical

properties for the composite material. The first step is the subcell homogenization.

The HMX particles in PBX 9501 are approximated to be either spheres or cylinders.

Figure 2.3(a) shows the spherical and cylindrical distribution of the particles in the

subcell. The total volume fraction for the subcell is calculated by adding the volume

fractions of all the individual fibers. This distribution of particles is replaced with a

single centrally located particle producing the same particle volume fraction for the

subcell. Figure 2.3(b) shows the single spherical and cylindrical particle in the subcell

with the same volume fraction. The first assumption in GMC lets us do this kind

of operation. The properties for the resulting subcells are calculated and stored for

the next step of homogenization. This process is repeated for each subcell within the

RVE, effectively producing an array of subcells with different isotropic properties as

shown in Figure 2.4.

The second stage of homogenization is performed for the entire RVE. The subcell

properties calculated from the first step of homogenization are used in this step. The

effective properties of the subcells are averaged to predict the effective properties of

the composite material. This homogenization produces the desired set of material

properties that can be used in a structural simulation. Figure 2.4 shows the second

step of homogenization in which the different subcells with different properties are

used to calculate the effective properties of the material.

2.2 Stress Bridging

2.2.1 What Is Stress Bridging?

The PBXs of interest to this research contain more that 90% particles by volume,

so these particles are bound to have contact with other particles. To check the

efficiency of GMC when particles are in contact, we have simulated a number of

bridging models. In particular, when external forces are applied, concentration of

forces in long paths, or “stress bridging”, is observed. In granular materials, stresses

are transmitted by contacts between the grains. Grains vary in size, not all grains
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(a) Subcells with different materials (b) Homogenized RVE

Figure 2.4. Second step of homogenization

are in contact, and not all contacts are identical. Stress bridging is basically stress

paths due to contact between particles in the direction of loading.

GMC has been found to accurately predict the modulus values obtained using fi-

nite element analysis for all distributions modeled. Wilt [9] showed that 1088 constant

strain finite elements are required to accurately model the composite. Comparisons

of effective stiffness properties predicted by GMC with finite elements have shown

that GMC performs well for low modulus contrast materials with volume fraction

less than 60%. GMC predicts lower effective stiffness for high contrast materials with

high volume fraction. In this section GMC is applied to select models containing

stress bridging paths and the predicted properties are compared to the finite element

results. The goal is to demonstrate the effects of stress bridging on select models and

how to improve GMC to accurately predict the properties of the material.

The stress bridging model and the nonstress bridging model are shown in Figure

2.5(a) and Figure 2.5(b). The models have the same exact volume fraction. Figure

2.5(a) shows the stress bridging path in the subcell as the particles are touching

each other. The material in this case is really stiff in the vertical direction because

of the contact between the fiber particles. The contact between particles causes the

.. 
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particles to act like one continuous particle from the top to the bottom. Figure 2.5(b)

shows the nonstress bridging model as there is no contact between the particles. The

models started with the same fiber and same matrix properties. After the first step

of homogenization the stress bridging model and nonstress bridging model are shown

in Figure 2.6. The models have the same exact volume fraction but different effective

properties to proceed to the second step of homogenization. The stress bridging

model is stiffer than the nonstress bridging model. This difference changes the overall

prediction of the properties. Stress bridging in the composite has to be accounted for

during the first step of homogenization to predict accurately with GMC.

To validate that stress bridging has an effect on the overall properties of the

material, stress bridging and the nonstress bridging approaches were modeled using

the Finite Element Model (FEM). These models are shown in Figures 2.7 and 2.8.

The volume fraction of both the models are very close and the geometry is similar.

Figure 2.7 shows that there is significant contact between the fibers. Figure 2.8 shows

that the fibers are not in contact with each other. The following boundary conditions

were applied to the models to simulate multipoint boundary constraints. The bottom

wall and the left wall are fixed by setting the degrees of freedom equal to zero. A

strain of 0.005 is applied on the top face and the right wall nodes are coupled to move

in a straight line. ANSYS software was used to analyze these models. The stress was

calculated by taking into account the force on the right wall divided by the area. The

elastic modulus was calculated by division of the stress and the strain. The elastic

modulus calculated is listed in Table 2.3.

The results from Table 2.3 clearly show that stress bridging affects the elastic

modulus in the composite by at least two orders of magnitude. In the two-step ho-

mogenization process, stress bridging modifies the properties of the subcells during the

first step of homogenization. The second step of the homogenization would produce

inaccurate results if stress bridging was not taken into account while calculating the

composite properties during the first step. The contact between the particles can be

grouped in two main categories namely linear and nonlinear contact. This research

focuses on solving this problem by using these two approaches. The straight line
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Figure 2.5. Stress bridging and nonstress bridging models

composite properties
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Figure 2.8. Nonstress bridging finite element model

Table 2.3. FEM results for stress bridging and nonstress bridging models

Models Elastic Modulus (MPa)
Stress Bridging 2001.1

No Stress Bridging 29.1
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approach is based on the contact of the particles in a straight line. If the particles

are rectangular in nature this is the most likely contact that will be seen. The arc

approach models after the cases where the particles are more cylindrical in nature.

These approaches are discussed in more detail in the next section.

2.2.2 Approaches to Solve Stress Bridging

2.2.2.1 Arc Approach

The arc approach models the contact between the particles and the matrix. The

arc approach can be modeled for the cylindrical particles in PBXs. The stress bridging

path as seen in Figure 2.5 has to run from the top edge to the bottom edge for the

elastic modulus to be different from a model that has no stress bridging. The arc

approach has two submodels, namely the convex (curving out) and concave (curving

in) models. Figure 2.9 shows the convex arc model and Figure 2.10 shows the concave

arc model. The lighter shade in Figure 2.9 and Figure 2.10 represents the particle

or the fiber and the darker shade represents the matrix. In both models the arc is

drawn from the top edge to the bottom edge of the cell. The models may look the

same but clearly the volume fraction of the fiber varies greatly between the convex

and concave models but the contact points on the top edge and the bottom edge are

identical. In general, when the arc is concave the volume fraction is below 50% and

when the arc is convex the volume fraction is above 50%. Several models (convex and

concave) with different volume fractions have been used to find the stress bridging

parameter.

The arc approach has some drawbacks for a generalization theory. The top edge

contact area, bottom edge contact area and the particle volume fraction are needed

for this approach to accurately predict the properties. These three variables are not

related in any way or shape, so this makes it hard to find the bridging parameter using

this kind of generalization and leads us do more experimentation on the straight line

approach, which is explained more in detail in the next section.
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Figure 2.9. Convex arc (FEM)

Figure 2.10. Concave arc (FEM)
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2.2.2.2 Straight Line Approach

The straight line approach is very similar to the arc approach. It has the top

contact area, bottom contact area and the volume fraction of the particle; however,

in this approach we need only two variables instead of three. In this approach a

straight line is assumed to be connecting the top and the bottom edges, so if the top

contact area and bottom contact area are known, the volume fraction is fixed for that

specific model. Figure 2.11 shows the straight line approach model. The top contact

area of fiber is 10% and the bottom contact area is 90%, so the volume fraction of

the fiber is 50%.

2.2.3 Arc Approach vs Straight Line Approach

Several straight line and arc FEM models were analyzed to see if the methods

predicted different results altogether. The volume fraction for the arc approach was

varied from 30% to 65%. The straight line approach volume fraction varied from 25%

to 50%. The top and bottom contacts were changed between 10 to 100% for both

the straight and arc approaches. A strain of 0.005 is applied on the top face of the

subcell. The left edge, bottom edge are constrained from moving and the right edge

is coupled to move on a straight line. Figure 2.12 shows the above described setup.

The elastic modulus for each model is calculated by dividing the stress by strain,

which formulated is E = σ/ϵ where σ = stress and ϵ = strain. Stress is (F/A) where

F is the force applied to the object and A is the cross sectional area through which

the force is applied. Strain is δL/L where δL is the amount by which the length of the

object changes and L is the original length of the object. The elastic modulus for the

fiber (E) and the matrix (Em) are calculated for each model in both approaches. The

E/Em ratio was calculated for each model and these ratios are presented for different

volume fractions in Table 2.4.

Figure 2.13 graphs the values from Table 2.4 for the arc approach and the straight

line approach. The E/Em ratio is much further apart at lower volume fraction, as the

volume fraction increases the values converge. They are practically the same value

at 50% volume fraction. For volume fractions greater than 50%, the lines should
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Figure 2.11. Straight line (FEM)

Fiber

Matrix

A strain of 
0.005 is applied

Figure 2.12. Forces on the FEM model

Table 2.4. E/Em vs volume fraction for arc and straight line approaches.

Volume Fraction E/Em Volume Fraction E/Em

(Arc) (Arc) (St. Line) (St. Line)
31.9590 664.85 25 717.95
37.8781 782.25 30 793.60
43.2499 872.10 35 852.15
55.4237 996.30 40 896.75
62.1219 1022.55 45 930.15

50 955.10
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Figure 2.13. E/Em comparison between the straight line and arc approach

follow each other very closely; hence the straight-line approach can be used as a good

approximation to fit into the first homogenization step. The prediction is accurate

when the volume fraction is greater than 50%. The particle volume fraction for PBXs

is greater than 90% so this will be a good approach.

The straight line approach needed more data to predict the effective properties

accurately. New models were generated by varying the top contact area (0% to

100%) and the bottom contact area (0% to 100%) similar to Figure 2.11. The volume

fraction of the particle in the subcell was calculated from the top contact and the

bottom contact areas. For example, a model was generated by fixing the top contact

and then by changing the bottom contact length, resulting in different models. If the

top contact is fixed at 10%, then the bottom contact can change from 0% to 100%,

which would result in volume fractions of 5%-55% for this top contact case. This

was repeated for top contact area of 0% to 100%. This analysis gave us 121 data

points. These data points are presented in Table 2.5. These values will be applied

during the first step of homogenization to account for stress bridging if present and
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then subcell properties will be calculated accordingly. Figure 2.14 represents the 3D

graph of the data points from Table 2.5. The graph shows the graph between E/Em,

volume fraction and top contact.

2.3 Validation of the Method

Three different models have been taken and were validated against the stress

bridging model proposed above using GMC. The first model is to validate the accuracy

of the new stress bridging approach. The second model is to figure out the number

of cells required to predict the properties accurately. The third model is actually

modeling something close to PBX. The first two validation models have been run

against 2x2, 4x4 and 8x8 subcell grids. The final model was run against 2x2, 4x4,

8x8 and 16x16 subcell grids. The models were compared to the same FEM models to

validate the accuracy of the stress bridging model proposed above.

2.3.1 Simple Case Consisting of Two Particles

This is the first case for the validation of the method. The first case is divided

into two smaller cases. Figure 2.15(a) is the stress bridging case, the particles touch

each other causing a path to run from top of the model to the bottom through the

contact point. Figure 2.15(b) is the nonstress bridging case where the particles do

not touch each other; hence, there is no straight path from top of the model to the

bottom of the model. The stress bridging and the nonstress bridging models have

similar (not identical) geometries. The volume fraction for the stress bridging model

is 45.55% fiber and the volume fraction for nonstress bridging is 41.63% fiber. The

difference in volume fraction between these models is not negligible, but the effect

should be pretty minimal in predicting the effective properties. The stress bridging

model should produce a much higher modulus than the nonstress bridging model for

very similar geometry and volume fraction. The results of this analysis are listed in

Table 2.6.

Table 2.6 compares the GMC calculation of stress bridging model and the non-

stress bridging model for grids (or subcells) of 2x2, 4x4 and 8x8. The values from
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Figure 2.14. Plot between top contact vs. volume fraction vs. E/Em for a composite
material.
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(a) Stress bridging model (b) Nonstress bridging
model

Figure 2.15. Two particle validation model

Table 2.6. Comparison of the stress bridging vs. nonstress bridging case.

GMC Grid E/Em FEM E/Em E/Em FEM
(Stress (Stress (Stress (Stress bridging (No stress (No stress

bridging) bridging) bridging) turned off) bridging) bridging)
2 x 2 136.9580 137.564 3.34864 3.15830 8.0518
4 x 4 348.7401 137.564 3.12522 3.08918 8.0518
8 x 8 351.7123 137.564 3.09843 2.99784 8.0518
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this calculation are then compared to the FEM calculated E/Em and the percentage

error between both approaches is calculated for each grid size. The percentage error in

Table 2.6 can be attributed to two assumptions, firstly the straight line approach and

secondly the E/Em values for the volume fraction of the subcell is not a direct one to

one mapping but rather an approximation of the closest values. The stress bridging

model predicted similar values to non stress bridging when the GMC method ignored

stress bridging in the model and this is expected because they have very similar

geometry. If the stress bridging is turned off for the model, then the GMC calculation

of E/Em is highly inaccurate and hence the prediction of effective properties would

be wrong.

2.3.2 GMC with Three Particles

Figure 2.16 shows the second validation model. This model has three particles

that touch each other and hence there is a stress bridging path from the top to the

bottom of the RVE. The primary difference between the first model and this model is

that the stress bridging path is not in a simple straight line path but rather it passes

through the particles and reaches the bottom. The stress path in this model presents

an interesting case. This model would help in understanding how the grid size in

GMC calculation affects the prediction of effective properties. The GMC analysis

was done against the 2x2, 4x4 and 8x8 grids.

Figures 2.16(b), 2.16(c), 2.16(d) show the model overlayed with 2x2, 4x4 and 8x8

grids. The subcells that are marked with ‘S’ have stress bridging paths and need to

calculated differently using GMC. The 2x2 grid has only one subcell, the 4x4 grid has

five subcells and the 8x8 grid has 26 subcells with stress bridging paths. The subcells

with stress bridging would equate to 25% in the 2x2 grid, 31% in the 4x4 grid and 40%

in the 8x8 grid. The percentage of stress bridging increases as the grid size is increased.

The GMC calculation will not be accurate as the grid size increases because more

subcells calculate the stress bridging leading to higher effective properties. Wilt[9]

has shown that the stress-strain response of composite microstructure with circular

fibers can be accurately modeled with a 7x7 subcell array. The results of the 2x2,
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4x4 and 8x8 models are listed in Table 2.7.

The results clearly indicate that the prediction of effective properties was closer

for a 2x2 model than the 4x4 and 8x8 models. The 2x2 value is still not accurate but

it is closer to the FEM prediction. The E/Em is way off when GMC does not take

stress bridging into account. This model proves that by increasing the grid size the

E/Em ratios are much higher due to higher percentage of stress bridging and hence

resulted in higher prediction for the model.

2.3.3 GMC with Large Number of Particles

This model is a very close approximation of the actual PBX material. Figure

2.17 shows the model in detail. A regular PBX material is composed of different

size particles and they fill up the subcell. The fiber volume fraction in this model is

close to 80% of the total volume. This model will validate the stress bridging method

proposal for GMC calculations. There is one stress bridging path from the top to the

bottom between the two bigger particles on a 1x1 grid. The effective properties of

this model were calculated against the 2x2, 4x4, 8x8 and 16x16 grid sizes as shown

in Figures 2.18(a), 2.18(b), 2.18(c) and 2.18(d). The subcells that have been marked

with a ‘S’ have stress bridging paths. Figure 2.18(d) was not marked this way to

make it more readable. This model was then analyzed using FEM. The results of this

comparison are shown in Table 2.8.

The results from Table 2.8 clearly show that the predictions using stress bridging

in GMC are much closer to the predicted FEM E/Em ratios for all grid sizes than the

ones with no stress bridging. This model has predicted better results than previous

models. This primarily can be attributed to the higher fiber volume fraction in this

model compared to previous models. The previous models had a volume fraction

less than 50%. Table 2.8 shows that if the stress bridging is not accounted for in

the GMC calculations, then the E/Em ratios are inaccurate. The E/Em ratio when

stress bridging turned off is 11.4737. The actual E/Em ratio for the model is 332.448

and hence GMC would have predicted much lower effective properties than the actual

model. The grid size also played a significant role in the accurate prediction. The
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Figure 2.16. Three particles validation model

Table 2.7. Results of the second validation case against 2x2, 4x4 and 8x8.

GMC Grid E/Em FEM E/Em (Stress bridging
(GMC) turned off in GMC)

2 x 2 70.0982 26.349 2.47794
4 x 4 274.7631 26.349 2.47794
8 x 8 304.6658 26.349 2.47794
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Figure 2.17. Model close to actual PBX HMX material
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Figure 2.18. Grids for PBX HMX material validation model
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Table 2.8. Results of the final validation case.

GMC Grid E/Em FEM E/Em (Stress bridging
(GMC) turned off in GMC)

2 x 2 394.496 332.448 11.4737
4 x 4 370.604 332.448 11.4737
8 x 8 352.104 332.448 11.4737
16 x 16 327.335 332.448 11.4737

2x2 grid from the results is too small to get a meaningful calculation. The 4x4 has

lesser deviation but not as good as the 8x8 and 16x16 grid calculations. This research

agrees with Wilt [9] that at least a 7x7 subcell array is needed for GMC calculations.

2.4 Summary and Conclusions

The PBX’s materials have high volume fraction (>90%) of HMX crystals. This

high volume fraction causes particle to rub against each other and when this happens

the stress is transferred from one particle to another particle, creating a stress bridging

path. These stress bridging paths lead to a stiffer material. GMC is a technique in

micromechanics to effectively calculate the properties by dividing the particle into

smaller subcells and calculating each individual subcell’s properties and then the

whole model.

This research focused on seeing if the GMC calculation was negatively affected

in stress bridging scenarios. Table 2.3 shows that the stress bridging does exist and

if not considered in GMC calculations can predict effective properties inaccurately.

This investigation was to identify appropriate solution to account for stress bridging

in the calculation of effective properties using GMC. Two approaches, the straight

line and the arc approach, were considered and the straight line approach was picked

for the ease of modeling. The straight line approach also predicted with the same

accuracy as the arc approach. Several models were analyzed to come up with the

data points for the straight line approach. These data are in Table 2.5.

Three unique models were analyzed to see how this model faired in the GMC

calculations. These models were validated against FEM models. Grid sizes of 2x2,
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4x4 and 8x8 grid were analyzed for all models. The last model was also analyzed

against a 16x16 grid as it the closest model to represent PBX material.

These validation cases prove that GMC needs to account for stress bridging and

a subcell array of 8x8 is the best grid size for predicting the effective properties.

The higher the volume fraction, the better GMC with stress bridging predicted the

properties. The first two cases had a lower volume fraction than the last model. This

approach needs to complement GMC for an accurate prediction of effective properties.
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CHAPTER 3

EVALUATION OF G23 USING FINITE

ELEMENT METHOD IN

UNIDIRECTIONAL

COMPOSITES

3.1 Introduction

Micromechanics is the study of composite material behavior where the interaction

of constituent material is examined in detail and used to predict and define the

behavior of the heterogeneous composite material. Such analyses typically assume

that the fundamental material properties of the constituents are known initially. The

composite material properties can be determined experimentally by testing actual

composite specimens. However, in recent years, more and more attention has been

given to the development of the analytical and numerical models for predicting

composite material properties from the properties of the constituent materials and

their relationship to each other.

A basic notion in micromechanics is the Representative Volume Element (RVE).

This is a volume, that is small enough from a macroscopic point of view and could be

thus treated as a typical point of the heterogeneous continuum under study. On the

other hand, it should be large enough in the microscopic scale, in order to contain a

large number of single inhomogeneities and therefore to be indeed representative for

the microstructure of the solid. A more detailed discussion of RVEs, together with

certain criteria on how to identify them, can be found in the book by Nemat-Nasser

and Horis [1].

In discussing the mechanics of unidirectional composite materials, it is convenient

to use an orthogonal coordinate system that has one axis aligned with the fiber direc-
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tion. Figure 3.1 illustrates the orientation of the coordinate system. The transverse

shear modulus (G23) is calculated when the unit cell or the RVE is subjected to shear

stress, or strain in the 2-3 plane. Figure 3.1 shows the ideal RVE for the square

packed array of fibers.

Hill [2] and Hashin [3] proposed the concept of elastic moduli of heterogeneous

materials, which was considered by studying a representative volume of the composite

over whose surface the displacement and traction are uniform. The elastic moduli,

which is also called the effective moduli, has been defined with the average stress and

average strain.

One of the earliest micromechanics models of composite materials considered a

single infinitely long fiber surrounded by matrix (RVE in Figure 3.1). The force

was applied at the fiber ends, so the load transfer occurs at the end of the fiber.

However, because the length of most fibers is several hundred times greater than their

diameter, the region of stress transfer into the fiber from the matrix is so small that an

infinite-length fiber model can be justified. Laws and Mclauglin [4] investigated the

fiber length effect on the overall properties of composite materials with the application

of the self-consistent method and compared the results with experimental results using

fibers of same length. However, the comparison was only for the Young’s modulus.

Adams and Doner [5, 6] were among the first to use finite difference analysis on the

composite RVE to find the properties of the composite. These were two-dimensional

approximations for an array of fibers in a matrix. Our approach is to analyze the

composite material for transverse shear modulus (G23) using the finite element method

and to compare to other methods in the literature.

Figure 3.2 is an extension of the RVE in Figure 3.1 RVE. Both figures show

a fibrous composite with a cylindrical fiber running along the one axis. We see the

cross sectional area of the material in the Figure 3.2. Uniform displacements or strain

are applied to the RVE’s boundaries with outward normals in the two directions as

shown in Figure 3.2 to calculate E2.

The finite element method is commonly used to calculate the effective transverse

modulus E2 as it is straightforward to identify the RVE and the boundary conditions
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Figure 3.2. Unit cell (RVE) from Figure 3.1
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to apply to the boundaries of the RVE. However, there are challenges associated with

the selection of the RVE for the calculation of G23, which are explained in detail in

the following paragraphs.

The finite element method has been known to produce accurate results when an

appropriate number of finite elements are used. To model the RVE shown in Figure

3.2, one can model a quarter section and use symmetry boundary conditions to get

the end result for the whole unit cell shown in Figure 3.2. This quarter section RVE

used for finite element modeling is shown in Figure 3.3.

Next consider the RVE under shear strain or uniform shear displacements on the

boundaries of the RVE as shown in Figure 3.4(a). The RVE after the shear strains

are applied would look like that shown in Figure 3.4(b).

To calculate the transverse shear modulus (G23) for the unidirectional composite

in Figure 3.1, one may be tempted to consider the approach shown in Figure 3.4.

Figure 3.5 shows the results of this approach. Using the quarter section model, the

unit cell is broken into four different parts and the unit cell is no longer a continuous

region.

Figure 3.5(b) shows that we would get inaccurate results for shear modulus if we

proceed with the straight approach of applying shear forces on the quarter section

RVE as shown in Figure 3.3. The solution to this problem of identifying a RVE and

applying correct boundary conditions to calculate the transverse shear modulus is

presented in the following sections.

3.2 Solution Technique

The objectives of this research are first to develop a modeling approach using

the finite element method to calculate the transverse shear modulus (G23) of a

unidirectional composite material and secondly to compare the results with those

from classical micromechanics theory and other methods.

The focus is to identify a RVE and employ the finite element method to model a

plane normal to the fiber axis. In this plane, assuming generalized plane strain, the

material properties of the fiber and matrix are used to calculate the shear modulus
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Figure 3.3. The quarter section RVE to be used in finite element modeling
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Figure 3.4. The quarter section RVE under transverse shear loading

3

2

(a) Loading conditions for the
unit cell

3

2

(b) Results of the loading
conditions on the unit cell

Figure 3.5. Unit Cell (RVE) under transverse shear loading
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G23. The following section presents the modeling approach.

Figure 3.6 shows the cross section of the composite from Figure 3.1 rotated at 45

degrees to the 2-3 plane with shear strain being applied on the composite as shown by

the arrows. The dark square shown in the figure is the RVE to be used for calculating

G23. The RVE is being stressed in two directions in the 2-3 plane, a condition known

as equivalent biaxial loading.

With biaxial loading conditions on the RVE, we can specify the new boundary

conditions to be applied on the RVE as shown in Figure 3.7. With all the boundary

conditions specified, the transverse shear modulus (G23) can be calculated from the

average shear stress and shear strain applied on 2-3 plane. A constant displacement

has been applied on the boundaries of the RVE.

The solution to accurately modeling a RVE for calculating G23 is summarized in

Figure 3.8. In this figure the RVE is under shear strain loading. In Figure 3.8(b) the

RVE is under tension and compression strains on the boundaries of the RVE or the

biaxial loading on the RVE. Both these loading conditions should give us the same

result for the transverse shear modulus; however, it is easier to model the boundary

conditions shown in Figure 3.8(b) for finite element analysis.

The finite element code ANSYS R⃝ Academic Research, Release 5.5 was used for

analyzing the models. A two-dimensional six-node triangular structural solid element

was used in finite element model. This element is well suited for an irregular mesh.

The volume fraction of the fiber in the RVE was varied from 0.04 to 0.78 for the

models. The models were analyzed for carbon/epoxy and glass/epoxy composite

materials. The elastic properties used for the matrix and the fibers modeled are

listed in Table 3.1.

The finite element mesh model that was used for the computation of G23 is shown

in Figure 3.9. The volume fraction for this case is 0.40. The light areas in the figure

are the fibers and the darker areas represent the matrix. The volume fraction was

varied from 0.04 to 0.78. (A circle in a rectangle can have only a maximum area of

0.78.)

A displacement δ was applied on the faces of the RVE. Tension strain was applied
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(a) The RVE under shear strain
loading
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(b) The RVE under tension and
compression

Figure 3.8. The RVE and boundary conditions for calculation of G23

Table 3.1. Fiber and matrix properties for glass and carbon

Property Carbon Glass Epoxy
EA (GPa) 232 113.4 5.35
ET (GPa) 15 113.4 5.35
GA (GPa) 5.02 46.5 1.98
GT (GPa) 24 46.5 1.98
n12,n13 0.28 0.22 0.35

Figure 3.9. Finite element mesh for volume fraction of 0.04
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on the horizontal faces and compression strain on the vertical faces. The applied

strains make RVE’s deforming exactly the same manner as the composite would

deform under transverse shear loading. To be more specific, the following boundary

conditions were imposed on the models to simulate the multipoint boundary con-

straints. A unit displacement +δ was applied on the left face (0,y), -δ was applied on

the right face (L, y), -δ was applied on the bottom face (x, 0) and + δ was applied

on the top face (x, L). Figure 3.8(b) shows the boundary conditions applied to the

RVE.

The transverse shear modulus is defined as G23 = τ23/γ23 where τ23 is the shear

stress in the 2-3 plane and γ23 is the shear strain in the 2-3 plane. There are tension

and compression strains in the boundary conditions applied to the RVE, so the shear

strain γ23 is 2ϵ and ϵ is 2δ by adding the unit displacements along the horizontal faces

or vertical faces as shown in Figure 3.8(b). The finite element models used a strain

(2δ) of 0.01 along the horizontal and vertical faces.

To calculate the shear stress τ23 from the finite element model, the nodes on the

top surface are selected, the forces on these nodes are summed and the total force

is calculated. This force divided by the area of the top surface to produce the shear

stress τ23. The transverse shear modulus is then computed and the results of this

investigation are compared with classical micromechanics solutions.

3.3 Results and Discussion

The materials used for the investigation are carbon/epoxy and glass/epoxy com-

posites. The volume fraction of the fiber was varied from 0.04 to 0.78 in the RVE

models. The RVE is then subjected to a tensional strain and compressional strain of

0.01. Table 3.1 shows that the G23 for glass composite with no epoxy is 46.5 GPa

and for carbon with no epoxy is 5.02 GPa.

The results of these analysis have been compared to other classical solutions.

Herakovich’s [7] book explains these classical solutions in more detail. The results of

this investigation are compared with Voigt’s approximation, Reuss’s Approximation,

Self-Consistent, Mori-Tanaka and Generalized Method of Cells (GMC) solutions.
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The Voigt approximation method assumes that the strains are constant throughout

the composite. The Reuss approximation method assumes that the stresses were

constant throughout the composite. The Voigt and Reuss solutions are generally

known as the upper and lower bounds of the solutions and hence are not regarded

as accurate solutions compared to solutions developed later. The Self-Consistent

method is based on the solution to an auxiliary inclusion problem where a single

ellipsoidal inclusion is embedded in an infinite medium. Uniform stresses or strains

are applied at infinity with the objective of determining the stresses and strains in the

inclusion. The Mori-Tanaka solution basically is the fourth order tensor that relates

average inclusion strain to average matrix strain and approximately accounts for

fiber interaction effects. The Generalized Method of Cells (GMC) is an approximate

analytical method for predicting the elastic as well as inelastic response of fibrous

composites.

All results have been plotted to investigate how closely the finite element solution

models the transverse shear modulus when compared against the other classical

approaches.

3.3.1 Glass/Epoxy

Table 3.2 shows the transverse shear modulus G23 results for glass/epoxy compos-

ite. As shown in the table, the volume fraction of the fiber was varied between 0 and

0.77 to calculate the shear modulus for the glass/epoxy composite.

Figure 3.10 compares the results of the finite element model to the classical

solutions to investigate the accuracy of the finite element method for calculating

the transverse shear modulus (G23) for a glass/epoxy composite. The finite element

solution falls between the upper and lower bounds of the solutions. Figure 3.10 shows

that the finite element solution is in between the Mori-Tanaka and GMC solutions.

This clearly shows that the model used for calculating G23 in this research produces

similar results compared to other micromechanics solutions.
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Table 3.2. Results of G23 calculation for glass/epoxy composite

Volume Fraction Volume Fraction G23

(fiber) (matrix) (GPa)
0.000 1.000 2.075
0.040 0.960 2.193
0.098 0.902 2.366
0.204 0.796 2.710
0.304 0.696 3.098
0.392 0.608 3.523
0.501 0.499 4.249
0.604 0.396 5.368
0.705 0.295 7.736
0.770 0.230 12.690
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Figure 3.10. Transverse shear modulus (G23) for glass/epoxy with other classical
solutions.



43

3.3.2 Carbon/Epoxy

The same finite element models used for glass/epoxy composite were used for

the the carbon/epoxy composite with one exception of the material properties. The

carbon/epoxy material properties were used for this analysis. Table 3.3 shows the

transverse shear modulus G23 results for carbon/epoxy composite. The volume

fraction of the fiber was varied from 0.04 to 0.78 for the results.

Figure 3.11 compares the results of the finite element solution to the classical

solutions. This comparison is done to see the accuracy of the finite element solu-

tion for transverse shear modulus (G23) calculation. The finite element solution for

carbon/epoxy composite just like the glass/epoxy composite falls between the upper

and lower bounds of the solutions. The finite element solution in the carbon/epoxy

composite case is predicting a little higher values than the classical solutions like Self-

Consistent, Mori-Tanaka and GMC but the trend is very similar to these solutions.

3.4 Conclusions

This investigation focussed on the calculation of the transverse shear modulus

(G23) of unidirectional composites using the finite element method. The investigation

included identifying appropriate boundary conditions to be applied to the identified

Representative Volume Element (RVE). After identifying the boundary loading con-

ditions and running the element models using commercial finite element analysis

software, results were compared to other classical solutions. The finite element

results for glass/epoxy and carbon/epoxy composites compared well against classical

solutions like Self-Consistent, Mori-Tanaka and Generalized Method of Cells (GMC).

The results suggest that the finite element model may be used to predict transverse

shear modulus (G23) for unidirectional composites.
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Table 3.3. Results of G23 calculation for carbon/epoxy composite

Volume Fraction Volume Fraction G23

(fiber) (matrix) (GPa)
0.040 0.960 2.144
0.098 0.902 2.244
0.204 0.796 2.435
0.304 0.696 2.635
0.392 0.608 2.833
0.501 0.499 3.120
0.604 0.396 3.461
0.705 0.295 3.910
0.770 0.230 4.303
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Figure 3.11. Transverse shear modulus (G23) for carbon/epoxy with other classical
solutions.
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CHAPTER 4

RECOMMENDATIONS

4.1 Introduction

This research addressed two key aspects within the general topic of microme-

chanics for numerical prediction of composite properties. The stress bridging model

was developed so the generalized method of cells could predict much more accurate

effective properties of the composite. The transverse shear modulus G23 model

identified a representative volume element (RVE) and applied boundary conditions

to effectively predict the values. The need for these techniques has been established

through investigation into the effect of stress bridging and G23 calculation.

4.2 Recommendations for Future Work

This research focused on the stress bridging effects in high energy materials and

its incorporation into the generalized method of cell (GMC) solution and calculating

G23 in unidirectional composites. The recommendations are organized in the same

order in the following subsections.

4.2.1 Stress Bridging in Particulate Composites

This research used the straight line approach for the GMC calculations. Future

work would involve modeling the arc approach into the GMC. The arc approach

will be hard to map but may be more accurate when compared to the straight line

approach. This research focused on the cylindrical particles. Future research can

model other geometric fiber shapes to determine the stress bridging effects in polymer

bonded explosives (PBXs). This research focused on a two-dimensional plane. Future

research can include the three-dimensional models for better prediction of effective

properties when stress paths are present in the composite model.
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4.2.2 Calculation of G23 in Unidirectional Composites

This research primarily focused on calculating only the transverse shear modulus

G23. Future research can involve identifying the representative volume element (RVE)

and boundary conditions for other properties along the 2-3 plane using a solution

similar to that used to calculate the G23.


