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ABSTRACT

System administrators use application-level knowledge to identify anomalies in virtual appliances

(VAs) and to recover from them. This process can be automated through an anomaly detection and

recovery system. In this thesis, we claim that application-level policies defined over kernel-level

application state can be effective for automatically detecting and mitigating the effects of malicious

software in VAs.

By combining user-defined application-level policies, virtual machine introspection (VMI), expert

systems, and kernel-based state management techniques for anomaly detection and recovery, we are

able to provide a favorable environment for the execution of applications in VAs. We use policies to

specify the desired state of the VA based on an administrator’s application-level knowledge. By

using VMI we are able to generate a snapshot that represents the true internal state of the VA.

An expert system evaluates the snapshot and identifies any violations. Potential violations include

the execution of an irrelevant application, an unauthorized process, or an unfavorable environment

configuration. The expert system also reasons about appropriate recovery strategies for each of the

violations detected. The recovery strategy decided by the expert system is carried out by recovery

tools so that the VA can be restored to an acceptable state.

We evaluate the effectiveness of this approach for anomaly detection and repair by using it to

detect and recover from the actions of different types malicious software targeting a web server VA.

The system is shown to be effective in guarding the VA against the actions of a kernel-exploit kit,

a kernel rootkit, a user-space rootkit, and an application malware. For each of these attacks, the

recovery component was able to restore the VA to an acceptable state. Although, the recovery actions

carried out did not remove the malicious software, they substantially mitigated the harmful effects of

the malicious software.
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CHAPTER 1

INTRODUCTION

Virtual machines have significantly affected present day computing environments. The ease with

which a virtual machine can be deployed and the intrinsic properties of virtual machines such as

isolation, security, and mobility have moved many computing environments from multitasking to

multi-OS computing. Due to the benefits of virtualization such as reduced cost, ease of deployment,

and ease of management, more and more applications are being deployed on virtual machines. The

current trend is to have all related and mutually dependent applications deployed within a single vir-

tual machine, sharing an execution environment. The resulting lightweight, self-sufficient application

containers are known as virtual appliances [30].

A virtual appliance is created by installing a software application on a virtual machine and pack-

aging that into a disk image. Linux-Apache-MySQL-PHP (LAMP) is an example of an application

bundle generally deployed on a virtual appliance. In this controlled environment, the Linux operating

system, an Apache web server, a MySQL database server, and PHP, Perl, or Python processes would

be considered as legitimate. No other application is expected to run in this environment using a

noticeable share of the computing resources.

Operating systems and applications are designed to be highly reliable, flexible, and secure. How-

ever, bugs in operating system and application code are inevitable. Studies show that there exist six

to sixteen bugs per thousand lines of code [24, 25], which makes applications and operating systems

vulnerable to attacks that can compromise their integrity. A computer system can be subjected to

denial-of-service attacks preventing it from providing its intended service [27]. A system can be

subjected to attacks that violate the integrity of the service that it provides [22]. Further, once a system

is compromised, an attacker might gain and continue to retain complete control of the application or

OS.

The amount of damage caused by an attack is limited when a single application is compromised,

and such compromises are often easy to identify and recover from. However, attacks exploit applica-

tion bugs to gain access to the underling OS. Once the OS is compromised, the scope of the damage

is amplified because the attack can now affect all the applications running on top of the OS. Detecting
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such attacks becomes difficult because the attacker has all the privileges to hide his actions from the

user. Further, seamless recovery from these attacks is a challenge because of the lack of available

recovery tools and because of the extent of the damage already caused.

The execution environment provided by a virtual appliance may not be always favorable for the

execution of the applications that are intended to run within the appliance. There always exists a

chance that an irrelevant application may be using a considerable share of the system resources,

thereby depriving the intended applications of system resources. The intended applications may

crash, become unresponsive or otherwise not provide the intended service. Detecting such conditions

requires constant monitoring and validating of the execution environment.

An intrusion detection system (IDS) is software designed to aid in deterring or mitigating the

damage that can be caused by an attack. An IDS can detect attempts to compromise the confiden-

tiality, integrity, or availability of a computer or network. Most existing IDSs rely on specification

languages, predicates, or contextual inspection to detect anomalies [20, 11, 14]. Once an anomaly

is detected, the problem lies in identifying the set of actions to be taken to restore the compromised

system to an acceptable state. Generally, IDSs are not equipped to initiate repair actions to recover

from an attack [20, 16, 11]. At best they are capable of suspending the execution of an affected

application or just shutting down the OS so as to prevent further damage. A human administrator is

then responsible to decide the course of repair.

The most simple and widely used solution to recover a computer system from an attack is to

reinitialize the system to its starting state. This is generally done through an application or OS restart;

the worst case would involve reinstalling the affected application or the OS itself. The drawbacks

associated with this are the downtime and loss of state it incurs. In most production environments, this

downtime is not appreciated. If the repair requires a complete reinstall, then the state and information

gathered by the application may be completely lost. In either of these cases, the abrupt discontinuity

in service is directly exposed to the end user.

This thesis investigates an alternative recovery strategy: online repair. We identified the need for

a system that can monitor a virtual appliance, detect anomalies, and recover the virtual appliance to

an acceptable state. We claim that an administrator’s application-level knowledge can be used by

an anomaly detection system to detect anomalies. Once an anomaly is detected, generic recovery

actions can be performed to restore the virtual appliance to an acceptable state. An acceptable state

for a VA is decided by the administrator of that VA and approximated through an application-level

policy. Ideally, the policy should be able to capture all the possible acceptable states of the VA and

should not include any nonacceptable state.

There are two approaches to restore the virtual appliance to an acceptable state. We term these

approaches application-based state management and kernel-based state management. These two
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approaches address abstractions at different levels of the software stack and each has its own set of

advantages and drawbacks. We decided to base our solution on the kernel-based state management

approach because of the advantages associated with that approach.

1.1 Application-Based State Management
This approach allows an administrator to encode knowledge over application-level objects. Facts

about applications are expressed as statements over application-level objects and state. For example,

for the Apache web server, knowledge is encoded over objects such as requests, responses, config-

uration files, and enabled modules. This approach relies on a set of tools built specifically for each

application. These tools run along with the target applications with full access to the application’s

resources and data structures. For example, consider the DarkLeech [22] malware that compromises

the Apache web server and injects malicious iframes into the web pages that Apache serves. In this

case, an application-based recovery strategy could be implemented as an Apache repair module that

sits in the Apache process pipeline and detects and removes iframes with a particular signature.

An advantage of application-based state management is that it provides fine-grain control over the

repair actions needed to support the continuous execution of applications. Further, since the repairs

are application specific, the risk associated with a repair is contained to that particular application.

For example, an Apache repair module would not have access to the state and resources of other

processes in the VA, and hence it cannot affect their execution.

The main disadvantage of this approach is that application-specific knowledge is required to

develop repair tools. Since a different set of repair tools is needed for each and every application,

this approach cannot scale well.

1.2 Kernel-Based State Management
This approach allows an administrator to express knowledge over kernel-level objects such as

processes, files, loaded objects, and sockets. Facts about applications are expressed as statements

over kernel-level objects and state. Any violation of policies would result in a recovery action on

appropriate kernel data structures or the kernel’s view of the applications. Thus the recovery action

relies on tools that run in the kernel space with privileged access to the data structures that the higher-

layer applications rely on. Again, consider the Darkleech [22] malware that compromises the Apache

web server and injects malicious iframes into web pages. A possible kernel-based recovery strategy

would be to overwrite the instructions in the loaded object of the Darkleech module. This overwriting

of instructions can be done on the fly without having to stop and restart the Apache process.

The main advantage of kernel-based state management is its generality, which makes it possible

to build repair tools that support a wide range of applications. Further, developing repair tools based
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on this approach does not require application-specific knowledge. These repair tools can affect data

structures that are not within the direct control of applications.

The disadvantage associated with this approach is that the scope of the repair may be limited as

the repair tools are not application specific. For example, if a configuration file of an application

is compromised by malware, then restoring the configuration file to its original state would not be

possible using kernel-based state management. Further, the risk associated with the repair may not be

restricted only to the affected application.

1.3 Selected Approach
Recent developments in system intrusion techniques, the use of highly crafted attack vectors, and

the scope of these attacks demand a powerful yet generic approach for recovery actions. The repair for

a detected anomaly may scale beyond the scope of repair tools associated with particular applications.

Furthermore, the application-based state management approach would not scale well simply because

of the diverse range of available applications. We therefore decided to base our recovery actions on

kernel-based state management.

The policy-driven anomaly detection and recovery system we have designed consists of state

gathering, anomaly detection, and recovery components. The state-gathering component periodically

captures a snapshot of the virtual appliance state. The anomaly detection component validates the

point-in-time state information presented by the snapshot against the administrator-specified policies

and flags any deviations as anomalies. The recovery component reasons about and enforces an

appropriate recovery action that would restore the virtual appliance to an acceptable state.

Our anomaly detection system relies on kernel-level state information of the target virtual ap-

pliance, application-level knowledge, and expert systems to detect intrusions. We make use of

the Stackdb [17] programming libraries to build tools that capture point-in-time snapshots of the

virtual appliance being monitored. These snapshots have kernel-level information of the executing

processes, their credentials, memory layout, CPU utilizations, open sockets, and open files. It also has

information about the system-call table and the Linux modules loaded by the kernel. This information

about the virtual appliance is used as an input to the anomaly detection system.

Our anomaly detection and recovery system is designed to target virtual appliances. Since virtual

appliances are generally meant to deploy only one application, the normal behavior of a virtual

appliance is quite stable and can be easily defined. The normal behavior of the system can be defined

in terms of policies that capture an administrator’s application-level knowledge. The expert system

of our anomaly detection system is built using CLIPS [28] and the application-level knowledge is

represented as facts and rules. These facts and rules are used to examine the information contained in

the snapshot and detect anomalies.
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When an anomaly is discovered, our system is be able to take appropriate measures to restore an

affected virtual appliance to an acceptable state. The recovery component of our system relies on

the administrator’s application-level knowledge, expert systems, and loadable Linux kernel modules.

The expert system uses the application-level knowledge to decide on appropriate recovery strategy

for each anomaly that is detected. Recovery actions are then carried out by a collection of repair tools

that are implemented as loadable Linux kernel modules.

The rationale behind using guest kernel-based tools is that it makes it much easier to instate certain

repairs from within the kernel that would be nontrivial tasks using VMI. For example, to start a user

space application, it would be much easier use the usermode-helper APIs provided by the Linux

kernel than using VMI libraries. We acknowledge the fact that the guest kernel-based tools could

themselves be targeted by malicious programs. Protecting the guest kernel-based tools is a significant

research undertaking by itself, which we consider to be beyond the scope of this thesis.

1.4 Thesis Statement
Our thesis is: an application-level policy expressed over kernel-level application state can be

effective for automatically detecting and mitigating the effects of malicious software in virtual appli-

ances.

We designed and developed a policy-driven anomaly detection and recovery system to test our

thesis. This system uses: (i) Stackdb libraries to monitor the state of the virtual appliance; (ii) a

policy defined by the administrator that represents his or her application-level knowledge; (iii) an

expert system to detect anomalies and reason about appropriate recovery strategy; and (iv) recovery

tools implemented as loadable kernel modules to repair the affected virtual appliance.

We evaluated the effectiveness of our policy-driven anomaly detection and expert system against

different types of malicious software: (i) Darkleech, an application-level malware; (ii) Azazel, a

user-space rootkit; (iii) Suterusu, a kernel rootkit; and (iv) an exploit kit for CVE-2014-038. Our

policy-driven anomaly detection and recovery system was successfully able to detect and mitigate the

actions of all of these malicious software packages.

1.5 Contributions
The contributions of this thesis work are:

• We have designed a policy-driven anomaly detection and recovery system targeted at virtual

appliances.

• We have developed a prototype system and demonstrated its utility to monitor a virtual appli-

ance hosting an Apache web server.
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• We have demonstrated the effectiveness of our system in identifying and mitigating real-world

malicious software such as Darkleech, Azazel, Suterusu, and an exploit kit for CVE-2014-0038.

• We have explored the use of virtual machine introspection technologies to monitor virtual

appliances.

• We have explored the use of an expert system to detect anomalies and reason about appropriate

recovery strategies.

• We have explored the use of loadable Linux kernel modules as repair tools.



CHAPTER 2

BACKGROUND AND RELATED WORK

The policy-driven anomaly detection and recovery system we have designed relies on technolo-

gies such as virtual machine introspection, expert systems, and kernel-based state management.

The following sections give a brief introduction to intrusion detection systems, virtual machine

introspection, expert systems, and other work in areas related to this thesis.

2.1 Intrusion Detection Systems
Intrusion detection is the process of monitoring a system to identify any abnormal activities

that can compromise the integrity of the system [29]. These abnormal activities may be caused by

malicious software, unauthorized system access, or authorized users trying to exploit their privileges

to gain higher privileges. An intrusion detection system (IDS) is software that is responsible for

automatically detecting an intrusion. When an intrusion is detected, the intrusion detection system

reports the event to the system administrator, who may initiate some recovery action to minimize the

damage caused by the attack.

Intrusion detection systems can be broadly be classified into three types based on the layer at

which they operate: (i) host-based, (ii) network-based, and (iii) virtual machine monitor (VMM)

based [31]. Host-based intrusion detection systems run on the system being monitored. These

intrusion detection systems monitor the activities of a single host to detect malicious events. Since

a host-based intrusion detection system runs in the target system itself, it has a complete view

of all the system events. This view helps the intrusion detection system detect a wide range of

malicious activity, but at the same time, host-based intrusion detection systems have less isolation

from an attacker and risk being compromised by an attack. Network-based intrusion detection

systems monitor the target system at the network level. They are usually deployed at network

entry or exit points and have full visibility of incoming or outgoing network traffic. These intrusion

detection systems can have the ability to monitor multiple computer systems on the network or the

entire network itself. Compared to host-based intrusion detection systems, a network-based intrusion

detection system has lower visibility of the internal state of the systems it monitors. Hence it may be
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limited in its ability to monitor a wide range of events. Network-based intrusion detection systems

have the advantage of better isolation from an attacker. A VMM-based intrusion detection system

operates on the same physical machine as the virtual machine it monitors, but is separated from the

virtual machine by the VMM. The VMM allows the intrusion detection system to operate in a separate

hardware protection domain, thus providing better isolation from an attacker. The VMM also provides

the intrusion detection system with access to the hardware and software state of the virtual machine

being monitored. Thus, a VMM-based intrusion detection system can have the advantages of both

host-based and network-based intrusion detection systems.

Intrusion detection systems can also be classified into two types based on the approach used

to detect intrusions: (i) misuse detection and (ii) anomaly detection [31]. In the misuse-detection

approach, the abnormal system behavior is first defined, and then any other behavior is categorized

as normal system behavior. Thus, intrusion detection systems based on misuse detection require

predefined patterns or signatures of malicious events. An important advantage of the misuse-detection

approach is that it allows intrusion detection systems to be very effective at detecting attacks whose

signatures are known without having high false-alarm rates. The obvious drawback of the misuse-

detection approach is the need to have predefined attack signatures. This also makes it difficult for

intrusion detection systems based on misuse detection to detect new attacks.

The anomaly-detection approach requires the normal behavior (baseline) of the system to be first

defined, and then any other behavior of the system is categorized as an anomaly. Thus anomaly

detection relies on the baseline information that is collected over a period of normal operation. An

important advantage of this approach is its ability to detect novel attacks that exploit previously

unknown vulnerabilities in a system. Since the expected behavior of the system is not expected to

change often, constant updating of the baseline information is not required. Since the system depends

on the baseline information, it would categorize any small deviation as an anomaly, resulting in the

disadvantage of high false positive rate.

The system described in this thesis is an IDS paired with automatic repair capabilities. Our system

is VMM-based and implements anomaly detection.

2.2 Virtual Machine Introspection
Virtual machine introspection (VMI) is a technique for externally monitoring the state of a virtual

machine at run time. Using VMI, the memory of one virtual machine, called the target, can be

viewed from another privileged virtual machine. Thus, VMI allows monitoring and controlling the

target from an isolated and protected location. Virtual machine introspection allows:

• Reading and writing data from and to memory.

• Accessing memory using physical address, virtual address or kernel symbols.
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• Translating kernel symbols to virtual addresses or translating virtual addresses to physical

addresses.

• Controlling the execution state of the target virtual machine.

The biggest challenge for VMI is the semantic gap [6] between the monitoring and the target vir-

tual machines. The semantic gap arises mainly because of the independent design of the target virtual

machine and the privileged virtual machine used for introspection. The VMM and the privileged VM

can observe the low-level operations of the target but generally lack knowledge of OS-level semantics

of the target.

XenAccess [26] and LibVMI [3] are examples of powerful application programming interfaces

that facilitate VMI. LibVMI is an evolved version of XenAccess with additional support for 64-bit

guest operating systems and the KVM platform [21].

Stackdb [17] is a VMI-based debugging library that supports the analysis of software systems at

multiple levels of the software stack. The library allows users to write programs that can analyze

live, whole-system executions. Programs can use the library to pause, single-step, and resume target

executions. It also allows querying of symbol data, modifying memory and CPU state, and inserting

breakpoints and watchpoints.

The system described in this thesis uses VMI to inspect targets. It is implemented using Stackdb,

which has features that allow our system to overcome the semantic gap between the target’s OS and

our monitoring and repair system.

2.3 Expert Systems
Expert systems are artificial-intelligence programs that use human-like logic for problem solving

[12]. An expert system consists of a knowledge store and an inference engine. The knowledge store

is a collection of information known as “facts.” The inference engine uses facts to make intelligent

decisions.

Expert systems are generally built using the rule-based programming paradigm. In this paradigm,

program logic is expressed using a collection of “rules.” These rules resemble the if conditional

construct of C programming language A rule consists of an if part and a then part. If all the conditions

in the if part evaluate to true, the instructions specified in the then part are executed. This evaluation

and execution process of the inference engine is carried out every time a new fact is entered into the

knowledge store.

C Language Integrated Production System (CLIPS) is a tool for building an expert system. We

use CLIPS to implement an expert system that can detect anomalies in the target system and reason

about appropriate recovery strategies.
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2.4 Related Work
The major areas of work related to this thesis are kernel integrity measurement and monitoring,

virtual machine introspection, and automatic data structure repair. The following subsections describe

prior work in these areas.

2.4.1 Integrity Measurement and Monitoring
Linux kernel integrity measurement (LKIM) [23] is a tool that uses contextual inspection for

measuring the integrity of the Linux kernel. Contextual inspection is a technique that uses layout in-

formation of kernel data structures to examine all data structures associated with running processes. It

produces detailed records about the state of those structures within the kernel. Records are generated

during boot time, during major system events, and also on demand. These records are compared to a

baseline measurement to verify the integrity of the kernel. LKIM also cryptographically hashes the

static code and data in the Linux kernel so that their integrity can be verified.

The authors of LKIM modified the Linux kernel so that it notifies LKIM during module loading.

This was needed to support the integrity measurement of loadable Linux kernel modules.

LKIM executes in a separate virtual machine and it uses the memory mapping functionality of

Xen [5] to access the memory of the target virtual machine. This design isolates LKIM from the

possibly affected target virtual machine.

The goal of LKIM is to measure and attest the dynamic data structures within the Linux kernel.

The system administrator can use this to detect rootkits and malware that affect the integrity of the

system. The system we have designed, on the other hand, tries to maintain the target virtual appliance

in an acceptable state. We use virtual machine introspection to monitor the target system and kernel-

based state management techniques to restore a compromised target to an acceptable state.

OSck [14] is another system designed to ensure operating system kernel integrity. It builds on

hypervisor-based monitoring techniques to detect rootkits based on the violation of operating system

invariants. OSck verifies control-flow integrity to detect rootkits that operate by modifying control

flow. Static and persistent control transfers are made immutable by write-protecting kernel text,

read-only data, and the values of specific machine registers. Dynamic control transfers are protected

by making sure the function call target is known and the type signatures match. The integrity of heap

data structures is verified by making sure that any dereferences of pointers point to safe functions.

OSck also provides APIs to verify the integrity of noncontrol-flow data.

Unlike OSck, the research described in this thesis does not rely on write-protecting static data or

on kernel invariants. Our system uses policies that capture the expected state of the system at the

application level. These policies define invariants at the application level, which indirectly reflect an

expected state of the kernel in the target virtual appliance.
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2.4.2 Virtual Machine Introspection for Intrusion
Detection Systems

Several intrusion detection systems have used virtual machine introspection to monitor virtual

machines. These include Livewire, IntroVirt, and Lycosid.

The Livewire [11] IDS consists of three main components: a VMM interface, an OS interface

library, and a policy engine. The VMM interface sends management, inspection, and monitoring

commands to the virtual machine monitor. The OS interface library interprets the guest OS state based

on OS-specific knowledge. The policy engine consists of a policy framework that allows interactions

with other components and policy modules that implement the security policies. Livewire is capable

of detecting hidden process and modules, scanning file systems for signatures to detect malicious

programs, detecting the presence of raw sockets, and detecting NICs entering promiscuous mode. It

is highly effective because it uses prior knowledge of the system state and reliable state measurements

to determine the current system software state.

IntroVirt [20] is designed for checking if a vulnerability was exploited in the past before it was

publicly known and also preventing the vulnerability from being exploited until the system is patched.

InroVirt uses vulnerability-specific predicates to test the state of the target system. These predicates

are executed outside the target virtual machine. An important aspect of IntroVirt is that it makes

sure that the target system is not perturbed during the execution of the predicates. IntroVirt uses

virtual machine introspection to examine the state of the operating system or application running in

the virtual machine. The semantic gap between the virtual machine introspection abstractions and

the application or operating system abstraction is bridged by reusing the code present within the

application or operating system itself. IntroVirt uses vulnerability-specific predicates and the replay

functionality of ReVirt [9] to determine if the vulnerability was exploited in the past. Further, by using

the predicates with some response strategy, IntroVirt can detect attempts to exploit the vulnerability

in the future until the operating system or application is patched.

Lycosid [19] is a VMM-based system that can detect hidden processes. Lycosid is based on a

cross-view validation technique. This technique detects inconsistencies between objects by looking

at multiple views of the same object and noting any difference between them. Lycosid detects hidden

processes by comparing an untrusted view of the process data-structure list with a trusted view of

that list. Lycosid passively generates a trusted view of the system by using measurable quantities

associated with processes. An untrusted view is generated from the information returned by OS

utilities. Lycosid is different from other systems because it does not directly rely on low-level OS-

specific details. Because Lycosid does not depend on the consistency of OS data structures, hidden

process detection cannot be avoided by common evasion techniques. Further, since it is not dependent

on the implementation of any OS-level abstractions, it is not tied to any particular platform. Lycosid
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consists of detection and identification phases. Hidden processes are detected by comparing the

lengths of the process lists from the trusted and untrusted views. Any difference in views indicates

the existence of a hidden process. To identify the hidden process, Lycosid relies on measurable

quantities associated with the processes. Lycosid uses Antfarm [18] to get the execution times of

each process. These execution times are used to identify the hidden process.

The IDS presented in this thesis is complementary to previous work on VMI-based intrusion

detection systems. Unlike IntroVirt or Lycosid, our work concentrates on ensuring an acceptable

state of the virtual appliance. In addition to anomaly detection, our system also uses kernel-based

state management to restore the affected virtual appliance to an acceptable state. Further, we do not

rely on predicates for kernel data structures or cross-view validation to detect intrusions or to validate

the execution environment. Our system uses application-level policies to define an expected state of

the system. These application-level policies indirectly reflect an expected state of the kernel in the

target virtual appliance. Our anomaly detection and recovery system can identify and recover from

a wider range of problems that include intrusions, unfavorable executions, and unfavorable system

configurations.

2.4.3 Automatic Data Structure Repair
Exterior [10] and the work by Brian Demsky and Martin Rinard [8] are examples of systems that

are capable of data structure repair similar to the work done in this thesis. Exterior is a dual virtual

machine system that can be used for introspection, configuration, and recovery. Exterior uses a secure

virtual machine that runs the same operating system as the monitored target virtual machine which

Exterior calls the “guest” VM. This dual VM architecture defines a new program execution model:

secure code from a trusted virtual machine is used to operate on the data in the guest virtual machine.

The three main components of Exterior are kernel system call identification, kernel data iden-

tification, and guest virtual machine (GVM) memory mapping and address resolution. These three

components work together to produce the effect of executing programs in a guest virtual machine

while using trusted code from a secure virtual machine. Thus the OS utilities in the guest virtual

machine can be used in a reliable way to act as introspection, configuration, and recovery tools.

Exterior provides automation that uses the OS utilities and detects intrusions through cross-view

validation. Exterior also provides a repair tool called “MakeUp” that runs in the secure virtual

machine and is capable of fixing malicious entries in the system call table. This tools demonstrated

the feasibility of repair tools that are capable of fixing the guest virtual machine.

Brian Demsky and Martin Rinard developed a system for automatic detection and repair of data

structures [8]. It presents an approach to ensure application data structure consistency, thereby

enabling continued execution of applications in case of errors. This system had two main components:
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a specification language and an inconsistency detection and repair component. The specification

language was used to ensure consistency of data structures used by the application. The consistency-

checking algorithm evaluated all the application data structures against the stated specifications. If

any discrepancy was detected, then a repair action would be initiated that would fix the data structures

according to defined specifications. Thus, even though they were not able to restore the data structures

to the original state, they were able to recover data structures to a state that satisfies the consistency

definitions. An important feature of this system is that it provided the ability to enforce data structure

repair on the fly, thereby eliminating the downtime caused by system crashes. Since this system was

designed to mitigate the problems caused by bugs in applications, it could not handle data structure

inconsistencies intentionally injected by rootkits and malware.

As mentioned in earlier sections, our system relies on application-level knowledge encoded as

policies. Any deviation from these policies indicates an anomaly and an appropriate repair action can

be triggered to recover the system to an acceptable state. In contrast to the work by Brian Demsky et

al., since our application-level policies do not define application or kernel data structures, our repair

does not prevent application misbehavior resulting from bugs in the application. For example, our

recovery tools cannot prevent application crashes caused by NULL pointer dereferencing, but are

capable of restarting crashed applications. Exterior can be considered to be similar to our work; both

have the same end objectives but use different approaches. Unlike Exterior, our introspection and

recovery actions do not rely on trusted code from another virtual machine, but instead makes use

of application-level knowledge and OS-level abstractions. This gives us the flexibility to develop

customized tools and not be restricted by the utilities provided by the operating system.

2.4.4 Summary
Our anomaly detection and recovery system differs from previous work in integrity monitoring,

intrusion detection, and repair systems in the following aspects.

• It does not rely on a specification language or predicates for kernel data structures, cross-

view validation, or contextual inspection, but instead is driven by application-level policies

specifically defined for virtual appliances.

• Policies are not only used to detect and recover from intrusions but also help to ensure legitimate

use of computing resources.

• Validating the conditions specified by the policies does not rely on an operating system’s inbuilt

utilities. This eliminates the possibility of execution of compromised system code providing

false data.

• Our system uses both guest kernel-based and VMI-based tools to instantiate recovery to achieve

better scope and flexibility.
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DESIGN

To test the feasibility of our thesis, we designed and implemented a system that uses application-

level knowledge to detect anomalies in a virtual appliance and to restore the virtual appliance to

an acceptable state. The anomaly detection system is VMM-based and it uses kernel-based state

management techniques.

A high-level overview of our anomaly detection and recovery system is shown in Figure 3.1. The

three main design components of this system are (i) the state-gathering component, (ii) the anomaly-

detection component, and (iii) the recovery component. The state-gathering component consists of a

snapshot engine that captures point-in-time snapshots of the virtual appliance. The anomaly-detection

component consists of an application-level knowledge store and a policy engine. The policy engine

uses the information in the snapshots and the knowledge store to detect anomalies. The recovery

component consists of a repair engine, a repair driver, and a set of repair tools. The repair engine uses

the information in the knowledge store to reason about an appropriate repair strategy and conveys

it to the repair driver. The repair driver invokes an appropriate repair tool to carry out the repair as

directed. The above-mentioned components collectively operate to periodically monitor the virtual

appliance, detect anomalies, and recover from them. Furthermore, these components are designed in

a modular fashion so that one can be enhanced with little or no modification to another.

3.1 State Gathering Component
An anomaly detection system should have complete view of the state of the system it monitors.

The system being monitored is called the “target.” Once the anomaly detection system has access to

the target system state, it can validate it to detect anomalies.

The state gathering component is responsible for providing the anomaly detection system with

the state of the target system. The state gathering component we have designed consists of a snapshot

engine. This snapshot engine is a VMI application that executes in the user space of a control virtual

machine. The snapshot engine executes at regular intervals of time and captures snapshots of the state

of the target virtual appliance. It makes use of VMI libraries to probe and read values stored in the
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Figure 3.1. High Level Design
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kernel data structures of the target virtual appliance.

For each process executing in the target virtual appliance, the snapshot contains information about

the process credentials, the process priorities, the environment for the process, the CPU utilization

of the process, the files opened by the process, the network sockets opened by the process, and the

objects loaded for that process. In addition, for the virtual appliance as a whole, the snapshot engine

finds information about the CPU load, the system call table, and the loaded kernel modules.

This state information is encoded as a collection of “base facts.” Listing 3.1 is an example of a

base fact that represents an executing process in the virtual appliance.

This fact indicates that a process mysqld is executing in the virtual appliance. It also captures

other information about the process such as its credentials, priorities, and its parent process.

The state information gathered by the snapshot engine is reliable because the snapshot engine

operates outside of the target virtual appliance. State information could also be gathered from OS

utilities that run within the target, but there is always a chance of the target’s OS code being com-

promised, which could result in an inaccurate view of the state of the VA. For example, a malicious

process may prevent itself from being listed by the ps utility by hooking methods in the /proc file

system. Therefore, we use VMI-based tools to gather the state information that is required by the

anomaly-detection component.

Listing 3.1: Base Fact
1 (task-struct
2 (comm "mysqld") ; name of the process
3 (pid 663) ; process ID
4 (tgid 663) ; thread group ID
5 (is_vcpu 0) ; process is a vcpu
6 (is_wq_worker 0) ; work queue worker thread
7 (used_superpriv 1) ; process has super-user privileges
8 (is_kswapd 0) ; process is a kswap daemon
9 (is_kthread 0) ; kernel thread

10 (prio 120) ; process priority
11 (static_prio 120) ; static priority
12 (normal_prio 120) ; normal priority
13 (rt_priority 0) ; real-time priority
14 (nice 0) ; process nice value
15 (uid 108) ; real user ID
16 (euid 108) ; effective user ID
17 (suid 108) ; saved user ID
18 (fsuid 108) ; UID for VFS
19 (gid 120) ; real group ID
20 (egid 120) ; effective group ID
21 (sgid 120) ; saved group ID
22 (fsgid 120) ; GID for VFS
23 (parent_pid 1) ; parent process ID
24 (parent_name "init") ; parent process name
25 )
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3.2 Anomaly Detection Component
The anomaly detection component is the brain of the system. It responsible for detecting anoma-

lies in the target virtual appliance. The design of the anomaly detection component is shown in

Figure 3.2. It consists of a knowledge store and a policy engine. It takes as input the base facts

captured by the snapshot engine. It generates a new set of facts that represent anomalies in the target

virtual appliance.

The knowledge store contains information provided by the administrator of the virtual appli-

ance. This information reflects the administrator’s application-level knowledge about the virtual

appliance. It contains two types of information: application-level facts that are necessary to define

the execution environment, and a set of rules that are used to validate the execution environment.

The application-level facts represent the expected state of the target virtual appliance in terms of

kernel-visible abstractions such as processes, files, system users, loaded objects, kernel modules,

and sockets. For example, one could have a fact that identifies all the high-priority processes of an

execution environment. One could also define a rule that states that when CPU utilization is beyond

a certain threshold value, only high-priority process should be allowed to execute. In a web server

execution environment, one can have a rule that only allows Apache, MySQL, and other dependent

Figure 3.2. Anomaly Detection Component
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Linux process to be running. Any other running processes found to be running would be considered

as a policy violation. By means of a comprehensive set of facts and rules, the creator or deployer

of a VA can build a knowledge store that represents the administrator’s view of the expected system

behavior. For example, Listing 3.2 is a fact that captures the administrator’s knowledge of a process

expected to be executing on a web-server virtual appliance. For each process expected to be executing

in the VA, one can have facts that capture information about the process credentials, process lineage,

loaded objects, and other related information.

The information that is represented as facts includes:

• Processes that are expected to be executing in the virtual appliance.

• Credentials for each process (uid, gid, fsgid).

• Process hierarchies, i.e., parent-child relationships.

• Processes allowed to have network connectivity.

• Processes permitted file IO.

• Valid objects for each process.

• Linux kernel modules that are allowed to be loaded.

• Valid state of the system call table.

The policy engine is an expert system that executes in the user space of the control virtual machine

along with the snapshot engine, isolated from the target virtual appliance. The policy engine uses

information from the knowledge store and the base facts captured by the system snapshot as input. It

outputs a new set of facts called “anomaly facts.”

The rules in the knowledge store use the application-level facts and the base facts gathered by the

snapshot engine to validate the state of the system. These rules capture an administrator’s domain

expertise in anomaly detection. During each iteration of the system, the policy engine takes as input

the system snapshot and information from the knowledge store. It passes all the base facts through

the rules looking for all possible matches. Each of these matches results in a new anomaly fact being

asserted. Some of the anomalies detected by these rules are:

• Unknown executing process.

• Process with wrong credentials.

• Root shell.

• Invalid process hierarchy, i.e., wrong parent-child relationship.

• Unauthorized network access.

• Unauthorized file IO.

• Corrupted system call table entry.

• Hooked system call.
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Listing 3.2: Application-Level Fact
1 (deffacts application-facts
2 (known-process
3 (name "apache2")
4 (uid 33)
5 (euid 33)
6 (suid 33)
7 (fsuid 33)
8 (gid 33)
9 (egid 33)

10 (sgid 33)
11 (fsgid 33)
12 (parent_name "init" "apache2")
13 (object-list "httpd" "libnss_files-2.15.so"
14 "libnss_nis-2.15.so" "libnsl-2.15.so"
15 "libnss_compat-2.15.so" "libm-2.15.so" "mod_uni_mem.so"
16 "mod_rewrite.so" "mod_alias.so" "mod_userdir.so"
17 "mod_speling.so" "mod_actions.so" "mod_imagemap.so"
18 "mod_dir.so" "mod_negotiation.so" "mod_vhost_alias.so"
19 "mod_dav_fs.so" "mod_cgi.so" "mod_info.so"
20 "mod_asis.so" "mod_autoindex.so" "mod_status.so"
21 "mod_dav.so" "mod_mime.so" "mod_proxy_balancer.so"
22 "mod_proxy_ajp.so" "mod_proxy_scgi.so" "mod_dumpio.so"
23 "mod_proxy_http.so" "mod_proxy_ftp.so"
24 "mod_proxy_connect.so" "mod_proxy.so" "mod_version.so"
25 "mod_setenvif.so" "mod_unique_id.so" "mod_dbd.so"
26 "mod_usertrack.so" "mod_ident.so" "mod_headers.so"
27 "mod_expires.so" "mod_cern_meta.so" "mod_env.so"
28 "mod_mime_magic.so" "mod_logio.so" "mod_log_forensic.so"
29 "mod_log_config.so" "libz.so.1.2.3.4" "mod_deflate.so"
30 "mod_substitute.so" "mod_filter.so" "mod_include.so"
31 "mod_ext_filter.so" "mod_reqtimeout.so" "libdl-2.15.so"
32 "mod_auth_digest.so" "mod_auth_basic.so"
33 "mod_authz_default.so" "mod_authz_owner.so"
34 "mod_authz_dbm.so" "mod_authz_user.so" "libc-2.15.so"
35 "mod_authz_groupfile.so" "mod_authz_host.so"
36 "mod_authn_default.so" "mod_authn_dbd.so" "ld-2.15.so"
37 "mod_authn_anon.so" "mod_authn_dbm.so" "mod_authn_file.so"
38 "libcrypt-2.15.so" "libexpat.so.0.5.0" "libapr-1.so.0.4.5"
39 "libapr-1.so.0.4.5" "libaprutil-1.so.0.4.1")
40 )
41 )
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Listing 3.3 is an example of a rule that identifies all the unknown processes running in the virtual

appliance. The lines 2 and 3 are the left-hand side (LHS) of the rule, also called the if section,

and lines 5 and 6 are the right-hand side (RHS) of the rule, called the then section. When all

of the conditions on the LHS of a rule are satisfied, the RHS of the rule is executed. The rule

identify-unknown-process matches all the task-struct base facts with the known-

process application-level fact. If any process represented by the task-struct is not present as

a knownprocess fact, then it is identified as an anomaly and asserted as an unknown-process

anomaly fact.

The administrator of the VA is expected to define the application-level facts. These facts are

specific to applications hosted on a VA and are reusable for the same type of VAs. The rules in the

knowledge store are application-agnostic and are reusable for all VAs.

3.3 Recovery Component
Once an anomaly has been identified by the policy engine, the recovery component is responsible

for reasoning about an appropriate recovery strategy and restoring the virtual appliance to an accept-

able state. The design diagram for the recovery component is shown in Figure 3.3. The recovery

component consists of a repair engine, a repair driver, and set of recovery tools. The repair engine

is an expert system that executes in the control virtual machine along with the snapshot engine and

policy engine. It takes as input the anomaly facts generated by the policy engine and passes these

facts through a set of recovery rules. The repair engine outputs a set of “recovery facts” that are used

to drive the repair driver and eventually the repair tools.

Listing 3.3: Rule
1 (defrule identify-unknown-process
2 (task-struct (comm ?name1) (pid ?pid))
3 (not (exists (known-process (name ?name1))))
4 =>
5 (assert (unknown-process (name ?name1) (pid ?pid)))
6 (printout t "ANOMALY: Unknown process " ?name1 " found" crlf)
7 )

Figure 3.3. Recovery Component
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The recovery rules do not just provide one-to-one mappings of anomalies to repairs. Instead,

they consider other conditions, such as the history of previous occurrences of the anomaly and the

recovery actions already taken, before suggesting the next repair strategy. To be able to provide

reasoning, the repair engine maintains information about the recovery component’s previous actions.

This information is stored as facts. Thus the policy engine and repair engine together provide a

mapping between the administrator’s application-level knowledge, encoded in the knowledge store,

and an appropriate kernel-based repair strategy.

The recovery facts generated by the repair engine identify individual repair tools and their input

parameters. Recovery facts are interpreted as invocation commands for the repair tools. Com-

mands are communicated to the repair driver through an interdomain communication channel, which

in turn invokes an appropriate repair tool. Listings 3.4, 3.5, and 3.6 show examples of recov-

ery rules to deal with unknown processes executing in the virtual appliance. These rules apply to

unknown-process facts and map them to appropriate recovery actions. The three rules kill-

unknown-process, kill-unknown-process 1, and kill-unknown-process 2 deal

with recovering from unknown processes found executing in the virtual appliance. The rule kill-

unknown-process, shown in Listing 3.4, deals with unknown processes found executing in the

virtual appliance for the first time. If any unknown process is found, the recovery action is to kill the

process. The rule kill-unknown-processes 1, shown in Listing 3.5, deals with unknown

processes found executing in the virtual appliance for a second time. In this case, the recovery

action is to kill the process as well as its parent. The rule kill-unknown-process 2, shown

in Listing 3.6, deals with unknown processes found executing in the virtual appliance for the third

time. In this case, the administrator is notified and the entire recovery strategy is repeated.

Once an appropriate recovery action is identified, the repair driver is responsible for carrying

out that repair using the repair tools. The repair-tool invocation commands are received by the

repair driver through an interdomain communication channel. The repair driver and repair tools are

implemented as loadable kernel modules that execute in the target VA. On receiving an invocation

command, the repair driver loads and executes the repair tool as directed by the repair engine. The

result of the execution of the tool is communicated back to the repair engine from the repair driver

through the interdomain communication channel.

Repair tools are responsible for carrying out repair tasks as directed by the repair engine. The

functionality provided by the repair tools includes: (i) terminating processes, (ii) starting processes,

(iii) terminating network sockets, (iv) closing open files, (v) correcting process credentials, (vi) sled-

ding the text section of processes, (vii) preventing the loading of objects, (viii) correcting function

pointers in system call table, and (ix) unhooking system calls. Additional details regarding the

implementation of these tools are provided in Section 4.3. These repair tools provide a generic



22

Listing 3.4: kill-unknown-process Recovery Rule
1 (defrule kill-unknown-process
2 (declare (salience 10))
3 ?f <- (unknown-process (name ?name1) (pid ?pid))
4 (not (exists (unknown-process-recovery-prev-action
5 (prev_action ps_kill | ps_kill_parent)
6 (name ?name1))))
7 =>
8 (assert (recovery-action
9 (function-name kill_process) (arg_list ?name1 ?pid)))

10 (assert (unknown-process-recovery-prev-action
11 (name ?name1) (prev_action ps_kill)))
12 (retract ?f)
13 (save-facts "recovery_action.fac" visible recovery-action)
14 (save-facts "process_state_info.fac" visible
15 unknown-process-recovery-prev-action)
16 (printout t "RECOVERY: Killing the unknown process" ?pid crlf)
17 )

Listing 3.5: kill-unknown-process 1 Recovery Rule
1 (defrule kill-unknown-process_1
2 (declare (salience 20))
3 ?f <- (unknown-process (name ?name2) (pid ?pid1))
4 ?of <- (unknown-process-recovery-prev-action
5 (prev_action ps_kill) (name ?name2))
6 =>
7 (assert (recovery-action
8 (function-name kill_parent_process)
9 (arg_list ?pid1 ?name2)))

10 (retract ?f)
11 (retract ?of)
12 (assert (unknown-process-recovery-prev-action
13 (prev_action ps_kill_parent) (name ?name2)))
14 (save-facts "recovery_action.fac" visible recovery-action)
15 (save-facts "process_state_info.fac" visible
16 unknown-process-recovery-prev-action)
17 (printout t "RECOVERY: Killing the process and parent process" crlf)
18 )
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Listing 3.6: kill-unknown-process 2 Recovery Rule
1 (defrule kill-unknown-process_2
2 (declare (salience 30))
3 ?f <- (unknown-process (name ?name2) (pid ?pid1))
4 ?of <- (unknown-process-recovery-prev-action
5 (prev_action ps_kill_parent) (name ?name2))
6 =>
7 (retract ?of)
8 (retract ?f)
9 (save-facts "process_state_info.fac" visible

10 unknown-process-recovery-prev-action)
11 (printout t "RECOVERY: Tried killing the unknown
12 process and its parent, but the process
13 still exists! Repeating the recovery
14 cycle now. " crlf)
15 )

framework for recovering from malware and rootkit attacks and restoring the virtual appliance to an

acceptable state.

3.4 Operation
The overall control flow within the components of the anomaly detection and recovery system is

shown in Figure 3.4. The initialization phase depicts startup of the anomaly detection and recovery

system. During this phase, the snapshot engine captures an initial snapshot of the system. It is

expected that the virtual appliance was deployed around that time and is believed to be in a reliable

state.

The repetition phase represents the control flow during the periodic execution of the anomaly

detection and repair system. During each iteration, the main function in the anomaly detection and

recovery system first invokes the snapshot engine to capture a snapshot of the virtual appliance. This

snapshotting operation requires the virtual appliance to be paused. The main function then transfers

control to the policy engine. The policy engine uses the information present in the snapshot and the

knowledge store to detect anomalies in the target virtual appliance. If any anomalies are detected,

they are represented as anomaly facts. The control is then transfered back to the main function.

If anomalies are detected, the main function invokes the repair engine that uses anomaly facts and

the recovery rules to generate a set of recovery facts. For each recovery fact generated, control is

transfered to the repair driver, which in turn invokes the appropriate repair tool. The repair tool

performs the repair action as directed by the repair engine. After completion, the repair tool sends an

acknowledgment back to the repair driver, which in turn sends back an acknowledgment to the main

program.
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Figure 3.4. Sequence Diagram



CHAPTER 4

IMPLEMENTATION

We implemented the anomaly detection and recovery system for the Xen virtualization frame-

work. The state-gathering component is built using the Stackdb [17] VMI libraries. The anomaly-

detection component is implemented as an expert system built using the open source CLIPS [28]

framework. The recovery component is implemented as a combination of an expert system and

loadable Linux kernel modules. The communication channel between the expert system and the

loadable Linux kernel modules is implemented using the Stackdb libraries. Figure 4.1 depicts the

overall implementation of our anomaly detection and recovery system. The snapshot engine, policy

engine, and repair engine execute within the protected dom0 (control VM). The repair driver and the

repair tools execute within domU (target VA).

4.1 State-Gathering Component
The snapshot engine in the state-gathering component is a user-level application built using

Stackdb. Stackdb libraries allow the snapshot engine to probe the kernel data structures of the target

virtual appliance.

Figure 4.2 shows the working of the snapshot engine. To capture the value stored in a particular

kernel data structure, the snapshot engine calls an appropriate Stackdb API. Stackdb reads the value

stored in a data structure by making use of either the name or address of the data structure. The

snapshot engine traverses the linked list of Linux task struct structures to gather information

about all the executing processes in the virtual appliance. Each task struct contains information

about a single process’s credentials and priorities. Information about the files and network sockets

opened by a process is captured from the Linux file data structures, which can be reached by

traversing the file descriptor table of that particular process. The loaded-object list for a process is

obtained by traversing the linked list of vm area structures associated with the process. Similarly,

the information about the CPU utilization, system call table, and loaded modules is captured by

looking up the corresponding data structures from the kernel in the target virtual appliance.

The CLIPS facts representing the system state are written to plain-text files by the snapshot engine.
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Figure 4.1. Implementation Diagram

Figure 4.2. Snapshot Engine Internals



27

These files serve as input to the policy engine. These facts could also be directly loaded into the

policy engine using the API provided by CLIPS. Using the CLIPS API directly might improve

the performance of the snapshot engine, as the overhead of file IO would be eliminated. However,

we chose to use files to store snapshots for ease of implementation and for logging purposes. The

snapshot file also serves as a log that the administrator can later examine if need arises.

4.2 Anomaly Detection
The anomaly detection component consists of the knowledge store and the policy engine. This

component is implemented as an expert system using CLIPS. The knowledge store consists of application-

level facts and rules. The facts are application-specific and encode the administrator’s application-

level knowledge. The application-level facts are written to describe the expected state of the target

virtual appliance. Table 4.1 lists the kind of facts that can be used to represent the administrator’s

expected view of the system. Currently these application-level facts in the knowledge store need to

be manually coded. However, this step can automated so that the base facts are generated by probing

the virtual appliance when it is known to be in a reliable state.

Table 4.2 lists the rules that are used by the policy engine to detect anomalies in the target VA.

Our prototype implementation consist of about 300 lines of CLIPS anomaly detection rules. As

described in the table, these rules validate various attributes and actions of all the processes running

in the virtual appliance. These rules are CLIPS translation of an administrator’s domain expertise

in detecting anomalies in a virtual appliance. The rules are application-agnostic and can be reused

for different types of virtual appliances. The most challenging part about implementing these rules

is learning rule-based programming and effectively using the programming constructs that CLIPS

provides.

4.3 Recovery Component
The recovery component consists of a repair engine, a repair driver, and repair tools. The repair

engine is implemented as a CLIPS expert system that executes in the protected dom0. The repair

engine has about 500 lines of CLIPS rules. It inputs the anomaly facts generated by the policy engine

and outputs a set of recovery facts. A recovery fact contains the name of the repair tool to be invoked

and the list of parameters to be passed to the tool. Apart from the recovery facts, the repair engine

also generates some state information regarding each recovery fact asserted. The state information is

represented as facts in the expert system. This state information is used in the subsequent iterations of

the recovery component to make smart decisions based on the recovery actions taken in the previous

iterations.

The recovery actions dictated by the repair engine are carried out by the repair driver and the repair
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Table 4.1. Application-Level Facts
Fact Description

known-process Name of a process allowed to execute in the virtual
appliance.

known-process-cred Credentials for each of the processes running. This
includes name, uid, euid, gid, egid, and name of the
parent process.

mandatory-process List of processes that are expected to be executing at
all times.

process-run-as-root List of processes allowed to have root privileges.
known-objects List of objects that are allowed to be loaded for each

process.
known-open-files List of regular files that are known to be accessed by

each process.
process-with-udp UDP port numbers for a process allowed network

connectivity.
process-with-tcp TCP port numbers for a process allowed network

connectivity.
known-modules List of modules that are allowed to be loaded by the

kernel in the virtual appliance.
high-priority-processes List of high-priority processes.
low-priority-processes List of low-priority processes.
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Table 4.2. Application-Level Rules
Rule Description

identify-unknown-process Identifies all unauthorized process
executing in the virtual appliance.

identify-unknown-module Identifies all unauthorized modules
loaded by the kernel.

identify-open-udp-sockets Identifies any unauthorized UDP
sockets opened by processes.

identify-open-tcp-sockets Identifies any unauthorized TCP
sockets opened by processes.

identify-high-cpu-utilization Identifies all processes resulting in
high CPU utilization.

identify-privilege-escalation Scrutinizes process privileges for
unauthorized escalations.

identify-unknown-loaded-objects Scrutinizes process memory for un-
known loaded objects.

identify-unknown-open-files Makes sure only authorized process
perform file IO. Also makes sure
only permitted files are accessed.

identify-wrong-process-hierarchies Scrutinizes process lineages.
identify-missing-processes Identifies all mandatory processes

that are not currently executing.
identify-tampered-syscall A special rule for kernel integrity

check, that scrutinizes function
pointers in the system call table.

identify-hooked-syscall A special rule for kernel integrity
check, that detects system call
hooking.
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tools. The repair driver provides a communication channel between the repair engine and the repair

tools. One end of this communication channel is implemented as a VMI application that executes

in the protected dom0. It takes as input the recovery facts generated by the repair engine, parses

them into a command structure and sends it over to the other end of the communication channel. The

other end of the communication channel is the repair driver that executes within the target virtual

appliance. The repair driver provides a ring buffer of command structures. The VMI application part

of the repair engine writes commands into the ring buffer. The repair driver reads those commands

and invokes the appropriate repair tools. The repair tools finally carry out the repair action as directed

by the repair engine. These repair tools are implemented as loadable Linux kernel modules, one for

each kind of repair.

The psaction module can terminate a process that is running in the virtual appliance. This

module takes as input the process ID of the target process. It traverses the linked list of task struct

structures and matches the process ID to identify the target process. Once the process is identified,

it is systematically killed using the Linux force sig function to send a SIGKILL signal. When

the kernel later schedules the process to execute, it notices that the process has a pending SIGKILL

signal and terminates the process.

The ps deescalate module takes care of resetting process credentials. It takes as input the

process ID and the new values for the process credentials. Once the task struct is identified, the

process’s cred structure is obtained by invoking the Linux get cred function. The get cred

function increments the reference count and returns a pointer to the cred structure. After the

credential values are reset, the cred structure is released using the put cred function.

The kill socket module can shut down all open sockets of a target process. This module

takes the process ID of the target process as input. It traverses the file descriptor table of

target process and identifies all the open sockets. Finally, all the open sockets are closed by calling

the shutdown function on the socket structure.

The close file module can close files opened by a process. This module takes the process ID

of the target process and a file name as input. It traverses the file descriptor table of the target process

and matches the file name to locate the file descriptor of the open file. The file is closed by invoking

the filp close function. The file pointer in the file descriptor table is nullified to prevent further

access to the file.

The system map reset module provides two functions, one to fix corrupt system call table

entries and another to unhook hijacked system calls. It fixes corrupt function pointers in the system

call table by overwriting them with the original values that were captured during system initialization.

Similarly, it repairs highjacked system calls by rewriting the first 12 bytes of instruction in the function

prologue. The snapshot engine captures only the first 12 bytes in the function prologue because this
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is enough to implement function hijacking on the x86 64 architecture.

The start process module implements functionality to start a user-space process from the

kernel space. This module takes the path of the executable, executable parameters, and the environ-

ment parameters as input. It invokes the call usermodehelper function provided by the Linux

kernel to start a process in user space.

The trusted load and start process modules together implement functionality to start

processes in a trusted-boot environment. The trusted load module takes as input the names of

blacklisted objects that are not allowed to be loaded by the process. The trusted-boot environment

only allows the nonblacklisted objects to load during process startup. The start process module

starts a process from user space as mentioned earlier. The trusted load module hooks the

open and mmap system calls. The hooked versions of the open and mmap system calls return

an ENOENT error when the process tries to load a blacklisted object. Thus the blacklisted objects

are prevented from being loaded into process memory. The system calls are unhooked immediately

after the call usermodehelper function returns and the start process module completes

execution.

The sled object module is a special repair tool that deals with malicious objects loaded

in process memory. This module uses the Linux get user pages function to load the pages

containing the text segment of the object. These pages are mapped to the address space of the repair

tool using the kmap function. All instructions other than the return instruction in the text segment of

the module are then over written by noop instructions. Thus, the noop sled overrides the actions of

the malicious object code.

This repair tool works when the functions in the object being sledded have a void return type and

are not required to manipulate data. For example, consider the Apache web server. All of Apache’s

functionality is implemented as a set of modules. When a web request comes in, a request rec

data structure and a response rec data structure are created to represent the HTTP request and

response, respectively. Each module in the Apache pipeline examines the request rec record

and decides if it has to be processed or not. If the request needs to be processed processed by the

module, the module makes the necessary changes to the response rec record and forwards it in

the pipeline. If the request does not need to be processed by the module, then the module can simply

return without modifying the response rec. The next module in the pipeline does not rely on any

data from the previous modules for its execution.

Another possible approach for dealing with malicious objects is to terminate the infected process

and then restart it under a boot environment provided by the trusted load module.
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EVALUATION

Our anomaly detection and recovery system was deployed to monitor a web server virtual appli-

ance. In the following sections we describe our experiment setup and the evaluation of our system in

terms of (i) expressiveness of the policies, (ii) run-time cost, and (iii) effectiveness. Expressiveness

was qualitatively evaluated in terms of descriptiveness and the ease of writing the policies. The cost

of the system was measured in terms of the time required to execute the system, which can reduce

the run-time performance of the target VA. The effectiveness of the system was evaluated against

different types of malicious software such as an application malware, a user-land rookit, a kernel

space rootkit, and a kernel exploit kit.

The evaluation shows that an administrator’s application-level knowledge can be used by an

anomaly detection system to successfully detect anomalies in virtual appliances. Furthermore, the

detection and recovery system can often, but not always, restore an affected virtual appliance to an

acceptable state.

5.1 Experiment Setup
Our experiment setup consists of a web-server virtual appliance. This virtual appliance is a

virtual machine that runs under the Xen 4.1.2 hypervisor. The virtual appliance runs an Ubuntu

12.04 distribution with a Linux 3.8.0 kernel and provides the necessary execution environment for

the Apache 2.2 web server.

Dom0 acts as the control VM for the anomaly detection and recovery system. It also runs

an Ubuntu 12.04 distribution with Linux 3.8.0 kernel. This VM has the CLIPS libraries, Stackdb

libraries, and the debug symbols installed that are required by the anomaly detection system.

The Xen virtualization environment is deployed on a single d710 node in the Utah Emulab testbed

[32]. This d710 node consists of a 64-bit Intel 2.40GHz quad-core Xeon E5530 processor with 4

cores, and 12GB of RAM.

The policy in the knowledge store describe the acceptable states of the web server virtual ap-

pliance. It allows the execution of an Apache web server with support from a MySQL database

server, NTP daemon, FTP daemon, SSH daemon, and PHP processes. The policy also allows routine
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kernel processes such as kworker, swapper, rcu sched, kswap, and xenwatch. For each authorized

process executing on the virtual appliance, the policy declares the process’s credentials, priorities,

CPU utilization, loaded objects, file access, and network access information.

5.2 Expressiveness of Policies
The policy captures an administrator’s application-level knowledge for the VA used in our evalu-

ation. Our implementation of the knowledge store consists of 940 lines of CLIPS facts. The majority

of these facts describe the processes that are expected to execute in the virtual appliance. These facts

capture information about process credentials, process priorities, authority of the process to access

files or the network, and process lineage information. Since the administrator is expected to have

knowledge of all the processes that are allowed to execute on a virtual appliance, the administrator

should be able to express his or her knowledge as facts. The main challenge for an administrator

in expressing his or her domain knowledge as facts is to learn and use the programming constructs

provided by CLIPS. In the future, the process of expressing an administrator’s domain knowledge as

facts can be simplified by a tool that captures these facts from the target VA that is known to be in a

reliable state.

As mentioned earlier, the set of acceptable states for a virtual appliance is decided by the admin-

istrator and is specified through a policy. Ideally, the policy specified by the administrator should

capture the complete set of acceptable states and should not include any anomalous states of the

VA. For the evaluation of our system, we believe we were able to write a policy that reasonably

approximates administrators expectation of a web server VA. As shown in later sections, the policy

proves to be sufficient in detecting and mitigating a majority of anomalies caused by different types

of malicious software.

5.3 Run-Time Overhead
The execution of the anomaly detection and recovery system impacts the availability of the virtual

appliance. The snapshot engine makes use of VMI tools to capture snapshots of the virtual appliance.

For the snapshotting operation to be atomic with respect to the execution of the virtual appliance, the

anomaly detection system pauses the VA each time the snapshot engine is activated. During the time

that the virtual appliance is paused, no work is done by the virtual appliance. Table 5.1 shows the

average and standard deviation of the execution times for each of the VMI tools over 10 iterations.

The total runtime of the snapshot engine is about 140.3 milliseconds. During that time, the virtual

appliance is paused and no work is done by it.

With CLIPS debugging enabled, the average run times of the policy engine and the repair engine

over 10 iterations is about 118 microseconds with a standard deviation of 23. Since the execution of



34

Table 5.1. VMI Tool Execution Times
VMI Tool Time (msec) Standard Deviation

Process info 21.4 2.6
File info 16.3 1.9

Module info 62.5 0.5
CPU Load info 1.0 0.0

Object info 27.8 2.1
Command line info 10.3 0.7

System call table info 1.0 0.0
Total Time 140.3 5.4

the policy engine and repair engine does not require the target VA to be paused, their execution does

not affect the applications in the target VA.

The repair driver and the repair tools execute within the kernel space of the target VA. Their exe-

cution does not impact the availability of the VA but may indirectly affect the run time of applications.

If one schedules the anomaly detection and recovery system to run once in every 5 seconds, it

results in approximately 140.3 milliseconds of downtime for every 5 seconds of execution of the

virtual appliance. This equates to 2.79% unavailability for the virtual appliance, which may be too

high for some production environments. Based on requirements of the production environment, one

can tune the percentage of the time paused by changing the frequency of the snapshotting operation.

Higher frequency results in reduced availability of the virtual appliance, while lower frequency

increases the latency of anomaly detection and repair.

The anomaly detection and recovery system could be enhanced with a dynamic frequency scaling

capability. The frequency of the snapshotting operation could be varied based on the number of

anomalies detected in recent snapshots; a large number of anomalies detected results in a high

frequency and a small number of anomalies results in a low frequency.

5.4 Effectiveness
To test the effectiveness of our anomaly detection and recovery system, we ran it against different

types of malicious software: (i) a kernel exploit kit, (ii) a kernel-space rootkit, (iii) a user-land rootkit,

and (iv) an application malware.

For each of the experiments described in the following subsections, we manually start the anomaly

detection and recovery system only after the malicious software is installed on the VA. If the anomaly

detection and recovery system were active during the installation of the malicious software, it would

detect and try to terminate the installation of the malicious software itself.
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5.4.1 Kernel Exploit
CVE-2014-0038 [2] describes a bug in the x32 version of the recvmmsg system call in the Linux

kernel. The recvmmsg system call allows multiple messages to be received on a socket with just one

system call. The bug results from blindly trusting the contents of the timeout pointer that is passed as

input from user space. This bug can be exploited by making the timeout pointer refer to some kernel

memory and overwriting the memory location with malicious code. Figure 5.1 is a screenshot that

demonstrates how the bug can be exploited to gain root access on our web server VA. As shown in

the figure, timeoutpwn is the name of the exploit program [7] that spawns a root shell.

Figure 5.1. CVE-2014-0038 Exploitation
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The anomaly detection system detects this root shell by validating the process lineages of each

process against the defined policies. Because the root shell is spawned from a process that does

not have root privileges, the existence of the root shell is flagged as an anomaly. The root shell

is terminated as part of the recovery process. This is shown in Figure 5.2. Thus, although our

anomaly detection and recovery system is not able to identify or correct the underlying vulnerability

in the Linux kernel, the malicious activity emerging from the exploitation of this vulnerability can be

identified and subdued.

As shown in Figure 5.1, the exploit program takes about 255 seconds to complete its execution.

If the anomaly detection and recovery component were scheduled to execute at frequent intervals

of time, then the anomaly detection component would detect the execution of the exploit program

itself. Thus, the recovery component would have taken an appropriate measure to prevent the exploit

program from compromising the virtual appliance.

5.4.2 Kernel Rootkit
A kernel rootkit is a malicious program that can be used to provide continuous unauthorized root

access to a computer system. A rootkit can also hide the traces of existence of itself as well as that

of other malicious programs in a computer system. Suterusu [13] is a kernel rootkit targeting Linux

3.X kernels on x86 64 architectures. This rootkit provides multiple features including (i) root shell

access, (ii) process hiding, (iii) network socket hiding, (iv) file/directory hiding, and (v) enabling and

disabling module loading. Suterusu implements these features by hooking functions in the Linux

kernel, mainly the functions that implement /proc file system. Unlike traditional rootkits, Suterusu

does not perform system call hooking by modifying the function pointers in the system call table.

Instead, it overwrites instructions in the prologues of target functions. The advantage of this hooking

approach is that Suterusu can evade detection by most rootkit detectors. It allows not only system

calls but also any kernel function to be hooked.

Figure 5.2. Root Shell Detection and Recovery
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Suterusu hooks the proc root readdir function of the /proc file system to implement

process hiding. Figure 5.3 is a screenshot that demonstrates the use of Suterusu’s process-hiding

functionality to hide the process sample process with PID 1539. After the execution of the

“sock 1 1539” command, the process is not listed by the ps command.

Figure 5.4 shows how the snapshot engine is able to discover the existence of the sampl-

e process. The policy engine identifies the existence of the process as a policy violation and

reports it as an anomaly. The repair engine decides to terminate the process as a recovery action so

that the virtual appliance can be restored to an acceptable state. The repair action is carried out by the

psaction repair tool.

Legitimate programs can be compromised so that they perform certain malicious activities without

the knowledge of the administrator. To detect such malicious activities, the policy defined for our web

server virtual appliance restricts the actions of authorized processes. For example, for each process,

the policy defines the list of files that the process is allowed to access. Figure 5.5 is a screenshot

that captures the output of the lsof command. Here, samp proc is a process that is authorized to

execute in the virtual appliance, but it makes unauthorized access to the file log.txt.

Figure 5.6 shows how the anomaly detection system identifies this unauthorized access and closes

Figure 5.3. Process Hiding

Figure 5.4. Hidden Process Detection and Repair
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Figure 5.5. Unauthorized File Access

Figure 5.6. Unauthorized File Access Detection and Repair
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the process’s file descriptor for log.txt, releasing the file descriptor from the process. The second

lsof command output in Figure 5.5 shows that the samp proc process no longer accesses the file

log.txt.

The Suterusu rootkit hooks the tcp4 seq show, tcp6 seq show, udp4 seq show, and the

udp6 seq show functions so that it can hide any TCP or UDP socket. Figure 5.7 shows how the

Suterusu rootkit can hide network access.

According to the policy for our VA, the samp proc process is authorized to execute in the virtual

appliance but it is not allowed to have network connections. The samp proc process opens a TCP

listening socket that waits for incoming connections. The rootkit hides the TCP socket so that it is

not listed by the lsof and netstat utilities. The anomaly detection and recovery system is able to

detect the socket because of the external view provided by the snapshot engine. The recovery engine

decides to terminate the socket as part of the recovery action. This is shown in Figure 5.8.

The Suterusu rootkit implements most of its functionality by hooking functions that implement

the /proc file system. Our anomaly detection and recovery system is only equipped to detect and

recover from corrupted system call table entries and hooked system calls, so it cannot deactivate the

rootkit. Although our system is not able to detect and recover from the hooks on generic functions

implemented by this rootkit, it was able to detect and recover from the malicious activity enabled by

the hooked functions.

5.4.3 Userland Rootkit
A userland rootkit executes in the user space of a computer system along with other applications.

Azazel [1] is a userland rootkit based on the LD PRELOAD technique. This rootkit hooks individual

programs at the time of execution by setting the LD PRELOAD environment variable to override

standard C library functions with malicious ones. It also modifies the ld.so.preload file to load

malicious shared libraries during program startup.

Figure 5.7. Unauthorized Network Access
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Figure 5.8. Unauthorized Network Access Detection and Repair

Figure 5.9. Azazel Installation

A program infected by Azazel has a malicious object libselinux.so loaded into its memory.

This object provides functions to spawn unauthorized root shells, hide processes, and deploy back-

doors. Figure 5.9 shows the installation of the Azazel rootkit. This installation causes it to load the

libselinux.somalicious object into the sshd, login, and bash processes. This loaded object

is hidden from the ldd and lsof commands.

Figure 5.10 shows that the anomaly detection component is able to identify the loaded shared

object as an anomaly in the sshd, login, and bash processes. As a recovery measure, the recovery

component terminates and restarts the sshd process. Since the policy does not specify the bash and

login process to be mandatory, they are terminated (iteration 1 in Figure 5.10). In the second

iteration, the anomaly detection system notices that the unknown object is loaded again in the sshd

process memory. Hence this time, the sshd process is terminated and restarted in a trusted boot

environment (iteration 2 in Figure 5.10). The sshd process does not start correctly in the trusted
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Figure 5.10. Detecting Malicious Libraries
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boot environment as it is not allowed to load the libselinux.so object. If any processes that

is defined as mandatory for the virtual appliance is missing, then the absence of that process in the

virtual appliance is considered to be an anomaly and the process is restarted as part of recovery. In

this experiment, since sshd is an important service for the virtual appliance it is restarted in the

next iteration (iteration 3). However, since Azazel has overwritten the ld.so.preload file, the

malicious library is loaded again in the sshd process memory. In the next iteration, the recovery

component decides to sled all the instructions in the unknown object (iteration 4). In all subsequent

iterations no recovery action is initiated if the unknown object is detected in the memory of previously

observed sshd processes. However, if the unknown object is detected in new sshd processes, then

the unknown object is directly sledded.

The anomaly detection and recovery system is able to detect the Azazel compromise and restore

the virtual appliance to a state that is acceptable according to the policy defined. By restarting the

sshd process the recovery system is able to close the backdoor setup by Azazel. We noticed that

the sshd process becomes unresponsive to SSH-connection requests after the unknown object was

sledded. The nonresponsiveness of the sshd process is an anomaly that is not detected by our

anomaly detection system. The VA is in a state that is acceptable according to our policy, but still

has anomalous behavior. Since the backdoor is closed and the operation of the Apache web server is

not affected, we claim that the anomaly detection and recovery system is successful in mitigating the

malicious effects of Azazel.

The nonresponsiveness of sshd could potentially be eliminated by developing a recovery tool

that could rewrite the instruction in the unknown objects in a smart manner. Our anomaly detection

rules could also be enhanced to be able to detect unresponsive processes based on some process

statistics such as CPU utilization.

Figure 5.11 shows how Azazel can be used to exploit the substitute user (su) command to spawn

a root shell. Figure 5.12 shows that the anomaly detection system is able to detect the root shell

and terminate it. The anomaly detection system detects such privilege escalations by validating the

process lineage information in the snapshot against the process lineage specified in the policy.

Figure 5.11. su Command Exploitation
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Figure 5.12. Detection and Repair of su Exploit

Azazel sets up an SSH backdoor by preloading malicious objects during sshd process startup.

Figure 5.13 shows how a connection is established from a remote machine to the backdoor to get

access to a shell on our web server VA. The anomaly detection and recovery system detects that the

sshd process has been compromised and restarts it, resulting in the sshd session being terminated.

The detection and repair of the compromise is shown in Figure 5.14. In the case of Azazel, a

legitimate process is compromised to deploy a backdoor and hence the anomaly detection system

detects it as a corrupted process rather than a backdoor itself. However, termination of the corrupted

process also results in terminating the backdoor.

Thus, by validating the shared libraries loaded by processes, the anomaly detection and recovery

system is able to detect the anomalous actions of authorized processes.

5.4.4 Application Malware
Darkleech [22] is a malicious Apache web server module. Darkleech analyzes HTTP traffic and

injects malicious iframes into legitimate web server responses. These iframes redirect the HTTP

clients to other malicious sites. The Darkleech module is loaded every time the Apache web server

is started though a LoadModule command, which is added to one of the Apache configuration files

(generally httpd.conf).

Darkleech injects iframes into legitimate HTTP responses. However, it takes care so that is it not

easily detected. We received a sample of a version of the Darkleech binary from Sucuri Security [4].

A sample of the malicious code injected by the Darkleech malware is shown in Listing 5.1.

Figure 5.13. Azazel Backdoor
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Figure 5.14. Backdoor Detection and Repair

Listing 5.1: Iframe Sample
1 <style>
2 .loqxfd2c { position:absolute; left:-1004px; top:-1566px}
3 </style>
4 <div class="loqxfd2c">
5 <iframe
6 <src="http://xacirko.myftp.biza/a61f23b8bb0285742fc03463ec2aa0e10-
7 o0o02606900881" width="416" height="343">
8 </iframe>
9 </div>

The URLs in the iframes are obtained from an external server and they change periodically.

These URLs point to blackhole sites. Blackhole sites [15] host malicious programs that exploit the

vulnerabilities of machines trying to access them.

To test the effectiveness of our anomaly detection and recovery system against Darkleech, we

built an experiment setup consisting of three clients and a web server virtual appliance in Emulab.

The web server and the clients in the experiment are as shown in Figure 5.15.

Node1 hosts the web server VA. Node2, Node3, and Node4 are the clients that make HTTP

requests to the web server. The four nodes are configured to be in different networks and are

connected by a router. The web server virtual appliance was monitored using the policy-driven

anomaly detection and recovery system. The three client nodes make HTTP request to the web server
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Figure 5.15. Darkleech Test Setup
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virtual appliance. Each response received by the clients is checked for malicious iframes injected by

the Darkleech module. Since Darkleech does not respond to requests coming from the same IP more

than once, we built a script that would change the client’s IP and then set the routes on the router

appropriately before sending a new request to the web server. The user-agent string in the HTTP

request is that of an actual browser (Internet Explorer). Using such a configuration, we were able to

achieve an average request-response rate of approximately 45 HTTP request-responses per second.

Our anomaly detection and recover tool was configured to run once every 5 seconds.

Figures 5.16, 5.17, 5.18, and 5.19 show four iterations of the anomaly detection and recovery

system. The graph in Figure 5.20 shows the pattern of HTTP responses from the Darkleech-infected

web server over a period of 60 seconds. At time 0, the web server starts and the three hosts start

making HTTP requests. Since the Darkleech malware module is loaded at start time, the web server

is infected and the web server injects malicious iframes into the responses. This is shown by the

initially overlapping dotted and solid lines in the graph.

At time 5, the anomaly detection component is triggered and it detects an unknown object loaded

into the Apache process memory. This is reported as an anomaly. The repair action decided is

to restart the Apache processes. This is shown in Figure 5.16. The number of HTTP responses

drop at time 5 because the Apache processes are terminated and restarted. Since Darkleech modifies

the httpd conf file to load the Darkleech module at Apache start time, the unknown module is

Figure 5.16. Darkleech Detection and Repair - Iteration 1
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Figure 5.17. Darkleech Detection and Repair - Iteration 2

Figure 5.18. Darkleech Detection and Repair -Iteration 3
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Figure 5.19. Darkleech Detection and Repair - Iteration 4

Figure 5.20. HTTP Responses Over Time
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reloaded into the Apache process memory. In other words, simply restarting Apache is an ineffective

repair.

At time 11, during the second iteration of the anomaly detection system, the unknown module

is again detected in the Apache process memory. The recovery component does not repeat the same

repair action instead tries a different repair strategy. The recovery action decided this time is to restart

the Apache process in a trusted boot environment. This is shown in Figure 5.17 and corresponds to the

reduced responses in the graph between time 11 and 17. As the Apache threads were being killed by

the repair tool new threads were spawned by the main Apache process. These threads started outside

the trusted boot environment created by the repair tool. Hence the unknown objects were found in the

next iteration.

At time 22, during the third iteration, the recovery component decides to sled the text segment

of the unknown object with noop instructions. After the instructions are sledded at time 24, the

responses do not have any malicious iframes in them. This is depicted by the dashed line, which stays

at zero along the y-axis after time 24. The solid line periodically drops to zero at intervals of about

5 seconds. This is because the anomaly detection system pauses the VA every 5 seconds to capture a

snapshot.

The noop sled repair is effective because the Apache web server has a modular design. When a

web request comes in, it is processed by a set of modules. For each module that is enabled, its handler

method looks at the request rec record and decides if the web request has to be processed by it

or not. If a web request is processed by a module, the module updates the response rec and

forwards it to the next module in the pipeline. The handler has a void return type and is not required

to manipulate response rec. Thus, each module in the pipeline is independent from every other

module. When the Darkleech module is sledded by the repair tool, all the instructions in Darkleech’s

handler method are replaced by the noop instruction. The Darkleech handler executes those noop

instructions, does not invoke any other functions and simply returns. Hence, no iframes are injected

in the responses once the Darkleech module is sledded.

By validating the shared objects loaded in memory of the Apache processes, our anomaly detec-

tion system was able to detect the malicious Apache module loaded by Darkleech. By dynamically

overwriting the instructions in the text segment of the malicious module, it was able to nullify the

malicious actions of Darkleech.

5.5 Summary of Experiments
Table 5.2 summarizes the results of the experiments described in this chapter. We evaluated the

anomaly detection and repair system against a kernel exploit kit, a kernel-space rootkit, a user-land

rootkit, and an application malware. The anomaly detection component was able to detect all the
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Table 5.2. Summary of Experiments
Experiment Mitigated Acceptable Notes

Kernel Exploit Kit for recvmmsg 3 3 Root shell identified and
terminated.

Suterusu
Process Hiding 3 3 Process detected and ter-

minated.
File Access 3 3 Detected and stopped.
Network Access 3 3 Detected and stopped.

Azazel
Unauthorized Ob-
jects

3 ? Detected,mitigated but
not cleaned.

su exploitation 3 3 Detected and privileges
restored.

SSH backdoor 3 3 Detected and terminated.
Darkleech application malware 3 3 Unknown objected

detected and sledded.

anomalies introduced by the malicious software. The recovery component was not able to clear

the malicious object loaded into the process memory by Azazel. However, the malicious actions

performed by the processes compromised by Azazel were detected and terminated. The recovery

component was also successful in mitigating all actions of the other malicious software. Thus, the

anomaly detection and recovery system proved to be effective in detecting anomalies in the VA and

restoring the VA to an acceptable state.



CHAPTER 6

CONCLUSION AND FUTURE WORK

We have presented the design and a prototype implementation of a system capable of detecting

anomalies in a virtual appliance and restoring the virtual appliance to an acceptable state. By making

use of virtual machine introspection and expert systems, we demonstrated how an administrator’s

application-level knowledge can be used to detect anomalies in virtual appliances. Furthermore, by

combining expert systems and kernel-based state management techniques, we were able to reason

about and apply appropriate recovery actions for each anomaly detected. We demonstrated the ef-

fectiveness of our policy-driven anomaly detection and recovery system by testing it against different

classes of malicious software: (i) application malware, (ii) kernel rootkits, (iii) userland rootkits,

and (iv) kernel exploits. Based on our design and prototype implementation, we have proved the

feasibility of a policy-driven anomaly detection and recovery system. Further, based on the results of

evaluation of the system against real-world malicious software, we have established the correctness

of our thesis statement.

The results of this thesis can be used as the basis for future work in anomaly detection and

automated repair of virtual appliances. We have provided a detailed design and prototype imple-

mentation of a policy-driven anomaly detection and recovery system. The prototype implementation

provides a generic framework that integrates the state gathering, anomaly detection, and recovery

components. Each of these could be further individually enhanced to by adding more functionality.

For example, new VMI-based state-gathering tools could be added to the snapshot engine, and

the recovery component could be enhanced by the addition of new recovery tools. A particularly

interesting area of further work is to make the noop sledding tool more generic so that it can be used

to sled malicious code in applications other than the Apache web server.

In our evaluation we implemented a knowledge store for the anomaly detection component that

was tailored to a web server virtual appliance. New knowledge stores can be built and plugged into

the framework so that the system supports a wider range of virtual appliances. The process of building

a knowledge store is not automated, and it requires the administrator to manually encode the expected

state of the system as facts in the knowledge store. This process could be partially automated so that
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the application-level facts of the system are automatically generated when the system is known to be

in a consistent state.

When the anomaly detection and recovery system is scheduled to operate once in every 5 seconds,

it causes the VA to be unavailable about 2.79% of the time. This unavailability may be unacceptable

for some production environments. The anomaly detection system can be optimized by making use of

a dynamic frequency scaling technique. In this technique, the frequency of the snapshotting operation

can be varied to tune the overall fraction of time that the VA is unavailable. A large number of

anomalies detected in the recent snapshots would result in a high frequency and a small number of

anomalies would result in a low frequency.
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