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ABSTRACT

High-order finite element methods, using either the continuous or discontinuous

Galerkin formulation, are becoming more popular in fields such as fluid mechanics,

solid mechanics and computational electromagnetics. While the use of these methods

is becoming increasingly common, there has not been a corresponding increase in the

availability and use of visualization methods and software that are capable of display-

ing visualizations of these volumes both accurately and interactively. A fundamental

problem with the majority of existing visualization techniques is that they do not un-

derstand nor respect the structure of a high-order field, leading to visualization error.

Visualizations of high-order fields are generally created by first approximating the

field with low-order primitives and then generating the visualization using traditional

methods based on linear interpolation. The approximation step introduces error into

the visualization pipeline, which requires the user to balance the competing goals

of image quality, interactivity and resource consumption. In practice, visualizations

performed this way are often either undersampled, leading to visualization error, or

oversampled, leading to unnecessary computational effort and resource consumption.

Without an understanding of the sources of error, the simulation scientist is unable

to determine if artifacts in the image are due to visualization error, insufficient mesh

resolution, or a failure in the underlying simulation. This uncertainty makes it difficult

for the scientists to make judgments based on the visualization, as judgments made

on the assumption that artifacts are a result of visualization error when they are

actually a more fundamental problem can lead to poor decision-making.

This dissertation presents new visualization algorithms that use the high-order

data in its native state, using the knowledge of the structure and mathematical

properties of these fields to create accurate images interactively, while avoiding the

error introduced by representing the fields with low-order approximations. First, a

new algorithm for cut-surfaces is presented, specifically the accurate depiction of color-



maps and contour lines on arbitrarily complex cut-surfaces. Second, a mathematical

analysis of the evaluation of the volume rendering integral through a high-order

field is presented, as well as an algorithm that uses this analysis to create accurate

volume renderings. Finally, a new software system, the Element Visualizer (ElVis),

is presented, which combines the ideas and algorithms created in this dissertation in

a single software package that can be used by simulation scientists to create accurate

visualizations. This system was developed and tested with the assistance of the

ProjectX simulation team. The utility of our algorithms and visualization system are

then demonstrated with examples from several high-order fluid flow simulations.
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CHAPTER 1

INTRODUCTION

High-order finite element methods (a variant of which are the spectral/hp element

methods considered in this work [24]) have reached a level of sophistication that

they are now commonly applied to many real-world engineering problems, such as

those found in fluid mechanics, solid mechanics and electromagnetics [46, 23]. These

types of simulations are characterized by the use of high-order (i.e., nonlinear) basis

functions to represent the simulation mesh and resulting fields. Some commonly used

basis functions include nonlinear polynomials, trigonometric functions, wavelets and

splines.

Over the last 15 years, an increasing emphasis has been placed on providing

visualization algorithms and corresponding software solutions tailored specifically

to high-order methods. Despite this, however, there are still few high-order vi-

sualization algorithms in existence, and they exist solely as research papers and

prototype software that is not easily available for arbitrary simulation packages and

data representations. As a result, high-order solutions are still typically visualized

using well-established algorithms based on linear primitives rather than using the

newer, high-order methods.

In order to be visualized with linear methods, a high-order solution must first

be converted into a compatible format. Some common approaches are: sample

onto a regular grid of points, using trilinear interpolation between points; convert

high-order elements to linear elements by ignoring each element’s high-order nodes;

or, in the case of surfaces, represent the high-order surface with a polygonal mesh.

Each of these approaches approximate the high-order data of interest with a low-order

representation. The low-order approximation allows linear algorithms to perform

visualizations of high-order data, but this capability comes at a cost; the linear
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approximations used to represent the high-order data introduce error into the final

image and are computationally expensive.

Despite the error introduced by linear approximation, these approaches are still

frequently used for high-order visualization. The reasons for this are compelling:

first, there exists an extensive collection of visualization techniques that expect linear

primitives as input; and second, linear methods can be rendered interactively on

standard desktop computers, while existing high-order methods are often either too

slow to be practical, have expensive hardware requirements, or, as noted above, are

not available for the basis functions to be visualized. However, as we can see in

Figure 1.1, linear methods can not only introduce error into the visualization, they

can introduce significant error that is hard to detect visually. In this figure we show

a color-mapped cut-plane with contour lines. On the left are the contours generated

using VTK [52] (which uses linear interpolation across triangle edges to determine

the contour’s location), and on the right are the contours generated by our system.

The key to this comparison is that the visual cues most often used to determine if

an image contains error are either not present (there is no color smearing in the left

image) or are actually features of the accurate image (sharp corners in the contour

lines on the right).

This leads to the common question: are the features and artifacts seen in the

visualization a feature of the high-order data, or are they errors introduced through

the visualization process? Unfortunately, visualization errors arising from linear

interpolation often look the same as genuine solution artifacts arising from problems

such as insufficient mesh resolution. With traditional interpolation-based rendering

techniques, engineers are hard-pressed to differentiate between the numerous potential

causes of visual artifacts. The severity of these visualization errors can be mitigated by

refining the linear approximations, but this approach does not scale well, requiring too

much computational time and storage to be practical [51]. While there are techniques

for addressing the sampling problem [51, 31, 47], it is often desirable to skip the

intermediate step and visualize the high-order data directly (i.e., in its native form)

in order to avoid the associated approximation errors. By using the high-order data

directly, we can know that any features present in the visualization are also present
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Figure 1.1. Illustration of the difficulty involved in detecting error visually: (Left)
Contour lines on a cut-plane through a high-order finite element simulation, rendered
using low-order methods. There are no jagged lines or other visual indicators of error.
(Right) The accurate contours of the same cut-plane rendered using our algorithms.
There is considerable error that is not readily apparent without access to the true
solution.

in the data and are not artifacts of the approximation.

1.1 Contributions

This dissertation seeks to create a system for high-order finite element visual-

ization that is both accurate and interactive. Accuracy is essential for the correct

interpretation of visualization results, as well as for debugging simulation codes (ex-

amples of which are shown in Chapter 7). Interactivity is critical, as slow visualization

software will not be used, as evidenced by the continued use of linear methods to

visualize high-order fields, even though more accurate methods exist. In this work,

we seek to balance these competing goals, but fall on the side of accuracy when a

tradeoff must be made.

The following contributions have been provided in the course of meeting this goal:

• An algorithm for the visualization of cut-surfaces through high-order fields. A

surface visualization is one in which a scalar field is plotted on a surface using

color maps, isocontours or both. These types of visualizations, while concep-

tually simple, are very useful for the engineer when studying the simulation.

Much of the interesting behavior occurs on or near certain domain boundaries
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(e.g., a wing), and it makes sense to be able to plot the behavior of the field on

these surfaces accurately.

• An analysis of volume rendering high-order fields. It is natural to assume that

volume rendering of high-order fields can be accelerated through the use of

high-order quadrature techniques to evaluate the volume rendering integral.

We develop a volume rendering algorithm using the properties of spectral/hp

elements to categorize each ray based upon the properties of the transfer func-

tion composed with the scalar field. We prove that, in the optimal case of fields

that are smooth along the ray, the evaluation of the volume rendering integral

will generally exhibit second-order convergence, with a worst-case of first-order

convergence. We use these properties to develop an optimized high-order vol-

ume rendering algorithm in which we first categorize each ray based on the

local properties of the transfer function and scalar field and then evaluate the

volume-rendering integral with a quadrature method optimized for the category.

• An implementation of these methods in a visualization system. There is a

need among simulation scientists to have a single visualization package that

offers common visualization techniques optimized for their high-order fields.

There are a variety of algorithms and prototype applications being developed

for high-order data, but there has not been an effort to create an application to

combine and unify them into a cohesive system. Until this is done, users will

continue to use existing, low-order visualization systems, not because they do

not want accuracy, but they need a system that works, and can deal with the

accuracy issue in an ad-hoc fashion. We address this issue with the development

of a high-order visualization system, the Element Visualizer (ElVis), which is

designed to be a comprehensive visualization system for high-order data. This

system was developed in close cooperation with the ProjectX simulation team

from the Department of Aeronautics and Astronautics at MIT, both to ensure

required features are implemented, and to verify the effectiveness of the provided

visualization algorithms.



CHAPTER 2

PREVIOUS WORK

In this chapter, we document the existing algorithms designed for the direct

visualization of high-order fields

2.1 Linear Methods

To avoid the computational and storage penalties associated with the straightfor-

ward linear tessellations mentioned in the introduction, several adaptive subdivision

schemes have been developed [47, 50] to reduce the number of linear primitives

required. Subdivision is guided through the use of error estimates, which results in

few subdivisions for elements well approximated by linear approximation, and many

subdivisions for elements that are not. Adaptive subdivision does not eliminate the

error introduced into the simulation pipeline, and reducing the error to arbitrary

levels can still produce unacceptably large data sets and long execution times.

2.2 Color Maps on Cut-Surfaces

As we will discuss in Chapter 5, the display of cut-surfaces is an effective visual-

ization method for scalar fields. While there are no existing algorithms that apply

color maps to arbitrary cut-surfaces directly, there are several schemes that apply

color maps to cut-planes. In one approach, the color map is generated by what is

called a polynomial basis texture [17], in which a texture map corresponding to each

unique basis function used in the simulation is created by sampling the basis function

in reference space, then using that sample to create the texture map. When rendering

a cut-plane, each triangle on the surface is assigned a linear combination of one or

more of these basis textures, depending on the element’s order. In this way, a set of

basis textures can be generated in a preprocessing step, and then, assuming there is

sufficient resolution in the texture, accurate images can be generated for all high-order
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triangles. Accuracy is closely tied to the size of the basis textures. If the basis textures

are not large enough then the image can become inaccurate from some viewpoints.

This algorithm is also limited to linear color maps since the linear combination of

basis textures will give the wrong result if the color map is not linear.

Another method, is an OpenGL fragment shader that calculates the scalar value

at each pixel on a cut plane, resulting in a more accurate lookup into the color map

[5]. This is an improvement over the previous implementation because it can calculate

the correct color for each pixel in a view independent manner, and it can also handle

nonlinear color maps. It is, however, limited to planar surfaces.

Finally, another method analytically calculates the intersection of a plane and

quadratic tetrahedra, then uses a ray tracer to apply the color map to the new

primitive [62].

2.3 Contours on Cut-Surfaces

Most of the work that generates contour lines deals only with 2D high-order

elements. A common theme is to generate the contours in an element’s reference space

(which we will define in Section 3.1) and then transform them into global (world) space

for display. One approach [35] creates contour lines in an element’s reference space

by subdividing the domain and using linear interpolation within these subdomains to

create a piecewise-linear contour. Another approach steps along a direction orthogo-

nal to the field’s gradient [4], where each step is controlled by a user-defined step size.

A method for generating contour lines over quadrilateral elements by determining

the shape of the contour in reference space and then generating a linear polyline to

approximate it was developed [53] and later extended to linear and quadratic triangles

[54].

The only 3D contouring algorithm [28] generates contour lines on cut-planes

through finite element volumes. The procedure first locates a seed point for the

contour line along the element’s boundary. It then steps in a direction orthogonal to

the field’s gradient, using a user-controlled step size, to generate a polyline represent-

ing the contour. It differs from the previously described methods in that the plane is

a 3D entity. At each step, the contour can, and often does, move off of the cut-surface.
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The method introduces a correction term to fix this problem and keep the contour on

the cut-plane. As with the other object-space contour methods described, the step

size is useful to determine how accurately the polyline represents the contour in world

space, but is not as useful in expressing how accurate the final image is, as it can be

accurate from one view but have large error in another.

Approaches that use interval methods for generating contours [55] assume that,

once a suitable region has been isolated, that the intersection between the implicit

and a line segment can be computed efficiently.

2.4 Volume Rendering and Isosurfaces

While direct volume rendering of low-order data is treated extensively in the liter-

ature [33, 32, 40], there are relatively few methods designed specifically for high-order

data. In this section, we provide a brief overview of existing high-order visualization

methods.

Since the solution to the volume rendering equation does not, in general, have an

analytic solution, it is not sufficient to use the high-order data directly to guarantee

accuracy. This is because the volume rendering integral will be approximated with

numerical quadrature, which will introduce error into the visualization. An exception

to this is when rendering linear tetrahedra [64], for which the volume rendering

integral can be solved analytically. While highly accurate results can be obtained

for quadratic tetrahedra [62] and hexahedra [64], other element types and polynomial

orders cannot be solved analytically and require numerical quadrature. More recently,

direct volume rendering of arbitrary elements and polynomial order was introduced

[59], where clusters of GPUs are able to produce interactive results. In the special

case of volume rendering fields with no transfer function and no emissive component,

high-order quadrature techniques can be used to evaluate the attenuation portion

of the volume rendering integral without error, resulting in pixel-exact images [48].

Another approach uses point-based samples to approximate the volume rendering

integral [69], but sacrifices accuracy for execution speed.

Higher-order integration methods have been investigated in an attempt to achieve

faster convergence of the volume rendering integral and to provide better error bounds
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on the resulting calculation. An investigation of Simpson’s rule applied to voxel-based

data [11] showed improved accuracy at the expense of increased memory usage in the

preintegration table. Conservative bounds on the number of samples required for a

given level of accuracy has been developed for trapezoidal and Simpson’s rule, as well

as for a power series approach [43].

Approaches for isosurface rendering have been developed for quadratic tetrahedra

using analytical calculation of the isosurface in reference space [63] and through ray-

tracing approaches [62]. Other approaches include using a ray tracer for arbitrary

elements of arbitrary order [42] and a point-based approach that uses particles that

actively seek and distribute themselves on the isosurface [36].

2.5 Vector Fields

While most existing work has focused on the visualization of scalar fields, some

work has been made to address vector fields as well. Streamlines are a popular method

for vector field visualization since they effectively convey the salient features of the

field. Generating streamlines of high-order vector fields presents unique challenges

since the integration techniques used to create them typically have assumptions about

the smoothness of the field that are violated by the high-order field at the element

boundaries. Continuous Galerkin (CG) fields do not have continuous derivatives

at element boundaries. This means that streamline generation must be done in

a carefully controlled manner so that the integration accurately accounts for the

discontinuities at element faces [7]. Streamlines of discontinuous Galerkin (DG) fields

are discontinuous, which is not a generally expected feature of streamlines. One way

to address this problem is to apply a filter to the DG field in a post-processing step

that restores continuity to the field while maintaining the solution’s accuracy [56, 61].



CHAPTER 3

BACKGROUND

This chapter provides an overview of high-order finite element methods, focusing

specifically on those features that are relevant for visualization.

3.1 Finite Elements

The purpose of this section is to provide a high-level overview of the key features

of spectral/hp elements used in this work. An in-depth discussion of the finite element

method is beyond the scope of this chapter. We refer the interested reader to the

following reference works for a more in-depth discussion of finite elements and, in

particular, spectral/hp (high-order finite) elements [22, 57, 24, 9]. Instead, we will

focus our discussion on those features of spectral/hp methods that are relevant to

visualization.

One important property of finite element solution methods is the declaration of the

space of admissible solutions. Quite often the first step in the finite element method-

ology is to define, for the domain Ω over which the partial differential equation(s) of

interest are being solved, a tessellation T (Ω) of Ω. Four basic element types often

used in the construction of the tessellation T (Ω) are the hexahedron, tetrahedron,

prism, and pyramid, as presented in Figure 3.1.

The result of a finite element simulation is a scalar field F (�x) : Ω → R about which

certain properties are known. This field will be referred to as the high-order field.

In particular, when dealing with continuous Galerkin formulations (CG) we know

the field over Ω is a C0 function where a discontinuity in the derivative occurs at

element boundaries. When dealing with discontinuous Galerkin formulations (DG),

there are no continuity requirements between elements. In both CG and DG, the field

is Cp on the interior of each element, with p ≥ 1 indicating higher levels of smoothness

depending on the element’s approximating polynomial order and its mapping to world
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Figure 3.1. Schematic of the four basic element types in three dimensions: hexahe-
dron, prism, tetrahedron and pyramid.

space. The premise of this work is that since finite elements provide functions with

explicit levels of smoothness, this structure should be both respected and exploited in

the visualization.

To obtain greater accuracy, either the mesh can be refined by subdividing existing

elements into smaller elements (h refinement), or the approximating polynomial order

in an element can be increased (p refinement). Deciding whether to refine the element

size, order, or both is a nontrivial task [60].

3.1.1 Element Mappings

The solution is defined as a polynomial function on the reference element F (ξ) ∈
PN1,N2,N3 where N1, N2, N3 denote (possibly) different polynomial orders in the three

principle directions. A mapping function Φ is defined for each element that transforms

points from reference space to world space. An illustration of this mapping is shown

in Figure 3.2, which shows a reference hexahedron and the mapping to the element’s

actual position and orientation in world space. Since the solution is not defined with

respect to world space coordinates, a query for the solution value at point �x is found

by evaluating F (Φ−1(�x)). In the finite element packages considered in this work, the

inverse mapping Φ−1 is, in general, not known analytically and must be calculated

numerically when needed.
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Figure 3.2. Illustration of the mapping between world and reference space for a
hexahedron.

Due to the nature of the mapping function x = Φ(X) used in spectral/hp element

methods (for instance, in the case of a hexahedron, a trilinear mapping from reference

space to world space is used [24]), a line segment in world space does not always

correspond to a line segment in reference space. On the contrary, it is often the

case that the mappings cause line segments in world space to be curves in reference

space (as illustrated in the schematic given in Figure 3.2). Hence one is often forced

to decide between working with a polynomial function in reference space along a

not-necessarily-parameterizable curve, or a smooth function along a line segment in

world space. In this work, we choose the latter approach.

Although spectral/hp element methods [24] seek polynomial solutions with respect

to the reference element, the solution with respect to world space coordinates may not

be polynomial (and in general is not). Under the mappings used in spectral/hp finite

elements, we are guaranteed that the solution is at least C0 continuous and smooth

on the interior of each element. In this work, we assume that all discretizations

investigated respect smoothness criteria on the interior of each element. We exploit

the smoothness of the function within each element in each of algorithms described

in the following chapters.
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3.1.2 Element Field Evaluation

After finding the intersection point x and the element E that contains the point,

the field can be evaluated. The field is defined in terms of the local Cartesian

coordinate system associated with E’s tensor element. As we discussed in Section

3.1, the mapping between the local tensor space and the global Cartesian coordinate

system (in which x exists) is specified by the function Φe(ξ). Because Φe is a bijection

a.e., we can obtain the tensor space point for a given world space point by inversion.

To calculate the field’s value at a world point x inside the element:

F̂ (x) = F (Φ−1
e (x)). (3.1)

Unfortunately, Φe does not, in general, have an analytic inverse. We therefore

perform the inverse mapping numerically. We use the Newton-Raphson algorithm,

which generates the convergent sequence

ξi+1 = ξi + J−1 (Φ(ξi)− x) (3.2)

where J is the Jacobian of the mapping function given by

Jij =
∂Φi

∂ξj
(3.3)

with Φi as the mapping in the i direction. This method has well-known stability

issues and can fail to converge, even when roots do exist. In our case, since the

mapping function Φ is a bijection a.e., we know that there is a unique real root

inside the element, and we are able to position our initial guess close to the root,

which greatly increases the probability of finding the root. Our routines do detect

and report convergence errors and, in practice, they have not been encountered.

Fields are represented as the tensor product of one-dimensional polynomials:

F (ξ1, ξ2, ξ3) =
∑
i

∑
j

∑
k

ûijkφi(ξ1)φj(ξ2)φk(ξ3). (3.4)
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Implemented as written, if each polynomial is of order N , evaluating the field is

an O(N4) operation (O(N) to evaluate the polynomials in each iteration, and O(N3)

iterations), but if we use the sum factorization technique

F (ξ1, ξ2, ξ3) =
∑
i

φi(ξ1)
∑
j

φj(ξ2)
∑
k

ûijkφk(ξ3) (3.5)

this is reduced to O(N2). Due to the number of samples that must be taken to

provide an accurate visualization, using the sum factorization technique can provide

significant performance gains, especially as the field’s polynomial order becomes large.

3.2 Interval Arithmetic

Interval arithmetic was introduced as a way to bound the variation in function

evaluation [39].

Using interval arithmetic, we replace operations on real numbers with operations

on intervals. An interval X is defined as

X = [X,X] = {x ∈ R : X ≤ x ≤ X} (3.6)

and, for an arbitrary function ⊕ and intervals X and Y :

X ⊕ Y = {x⊕ y : x ∈ X ∧ y ∈ Y }. (3.7)

The set image of a function g is defined as:

g(X) = {g(x) : x ∈ X} (3.8)

and represents the true range of g over the interval X. The interval extension G of

g is formed by evaluating the steps to calculate g on interval numbers rather than

floating point numbers. The interval extension has the following useful property:

G(X) ⊇ g(X) = {g(x, y, z) : (x, y, z) ∈ X}. (3.9)
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In other words, if g is evaluated using interval arithmetic on an input interval X, the

result is a range that is guaranteed to contain the true range of g on that interval.

The interval extension G of g can be very wide, and in some cases can be too wide

to be useful. To reduce the width of the interval, we first subdivide the interval into

n segments of width h, such that the subdivision of X is:

Xi = [X + ih,X + (i+ 1)h]. (3.10)

We define the interval hull of two intervals as:

X∪Y = [min{X, Y },max{X, Y }]. (3.11)

The interval hull of a subdivided interval is

Gn =
⋃

i≤n
Xi. (3.12)

Subdividing an interval is useful because of the following property:

G(X) ⊇ Gn(X) ⊇ g(X) = {g(x, y, z) : (x, y, z) ∈ X}. (3.13)

In other words, we can decrease the width of an interval computation by subdividing

the interval into smaller regions, evaluating each of the subintervals separately, then

calculating the interval hull of the smaller intervals (see Figure 3.3).

To illustrate how this works, consider the the polynomial 3x2+2x−4 which has a

range of [−4.33, 1] over [−1, 1]. Using the following properties of interval arithmetic:

X + Y = [X + Y ,X + Y ],

X − Y = [X − Y ,X − Y ],

Xn =

⎧⎪⎨
⎪⎩
[Xn, X

n
] if X > 0 or n is odd,

[X
n
, Xn] if X < 0 or n is even,

[0, |X|n] if 0 ∈ X and n is even,
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Figure 3.3. Using interval arithmetic to estimate the range of a function. (a) If
function f is monotonic on an interval I = [a, b], then the range of f is bounded
by f(I) = [f(a), f(b)]. (b) If f is not monotonic, then f(I) �= [f(a), f(b)]. (c) An
interval extension F of f provides bounds that include f(I), i.e., f(I) ⊆ F (I). (d)
Uniform subdivision of the domain produces tighter bounds.

the range can be evaluated as 3[−1, 1]2+2[−1, 1]−4 = 3[0, 1]+[−2, 2]−[4, 4] = [−6, 1].

Note the true range, [−4.33, 1] ⊆ [−6, 1]. Dividing [−1, 1] into 10 evenly-spaced

intervals and evaluating produces a range of [−4.72, 1] and 100 evenly-spaced intervals

produces [−4.37, 1].

3.3 Ray-Tracing

Ray-tracing is a viewing paradigm characterized by a viewing ray cast from an

eyepoint through an image plane. The behavior of the ray as it interacts with the scene
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determines the final color of each pixel. Different methods are often characterized as

either ray-casting or ray-tracing. The former is often applied to methods consisting

of rays that are cast from the eyepoint and terminate at their first intersection,

while the latter method is often characterized by additional rays cast from the initial

intersection point to produce effects such as lighting and shadows.

Rays are generally represented in parametric form:

r = �o+ t�d (3.14)

where �o is the ray’s origin, �d is the ray’s direction, and t is the distance along the ray

from the origin along the specified direction. A typical ray-tracing scenario consists

of casting rays of this form into the scene, then testing each geometric object in the

scene for an intersection.

Implicit surfaces are defined as f : R → R, f(x, y, z) = 0, for which substitution

produces an equation

f(ox + dxt, oy + dyt, oz + dzt) = 0. (3.15)

Solving this equation is a one-dimensional root finding problem. Finding these roots

is equivalent to finding all of the ray-object intersections along the ray.

Another common surface type is a parametric surface:

�x = f(r, s). (3.16)

Simple substitution does not work in this scenario, so instead we solve the following

system of equations:

fx(r, s)− ox − dxt = 0

fy(r, s)− oy − dyt = 0

fz(r, s)− oz − dzt = 0.

(3.17)
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This type of surface appears frequently in the context of high-order finite element

volumes as the faces of curved elements, or the curved geometry that is part of the

simulation.

3.4 Visualization Verification

Visualization is the lens through which scientists and engineers interpret their

simulation results and view modeling and discretization interactions (see Chapter 7

for examples). Given that visualization occupies an important place in the overall

interpretation of a simulation’s result, it is surprising that there has not been much

consideration to date of the errors involved. In this section, we give a brief overview

of the error budget of the simulation pipeline, and then show how that relates to

high-order simulations and their visualization.

In Figure 3.4 (from [25] with the authors’ permission), we show the simulation

pipeline which is commonly used by scientists and engineers. The process starts

with a problem of interest and a collection of questions about the process that needs

answers. The next stage is the development of a mathematical model of the physical

process, which abstracts the salient features of the problem so that the resulting

problem is tractable and the model answers the desired questions. This is followed

by an implementation of the mathematical problem as a computer program, which is

then executed to generated the desired solutions. Visualization is then performed on

the output of the simulation.

Each stage of this process introduces error. Validation is the process of determin-

ing whether the mathematical model represents the physical process with sufficient

accuracy. Verification is the process of determining if the code written to implement

Figure 3.4. Overview of the simulation pipeline, from the phenomenon of interest
to the final image (from [25] with the authors’ permission).
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the mathematical model can calculate the result to a specified level of accuracy.

Verification includes such things as analyzing discretization error and verifying that

the code is written correctly.

Visualization is often performed in an ad-hoc fashion, with the commonly held

belief that the visualization can have error and still convey the essential points

of the simulation’s results. There is often an implicit, assumption that error in

the resulting visualization will be obvious and can be addressed by increasing the

visualization discretization. Unfortunately, when visualized using existing techniques

based on linear interpolation, it is often unclear if the resulting image conveys an

accurate representation of the underlying data, leading to the common question:

are the features and artifacts seen in the visualization part of the high-order data,

or are they errors introduced through the visualization process? Unfortunately,

visualization errors arising from linear interpolation often look the same as genuine

solution artifacts arising from problems such as insufficient mesh resolution (see Figure

3.5). The severity of these visualization errors can be mitigated by refining the

linear approximations, but this approach does not scale well, requiring too much

computational time and storage to be practical [51]. With traditional interpolation-

based rendering techniques, engineers are hard-pressed to differentiate between the

numerous potential causes of visual artifacts.

What is needed is to apply the principles of validation and verification to visual-

ization, which has recently gained renewed attention [25, 13, 14]. The revised pipeline

is shown in Figure 3.6. In this pipeline, we address the way in which we represent

the data (validation) and we verify the result of our visualizations (verification).

For the case of linear representations, error can be reduced by subsampling and/or

creating a finer linear representation of the underlying data. This can be done

either by brute force (such bisecting all linear segments in the approximation), or

adaptively, through the use of error metrics, where we refine the approximations

until the resulting error is less than some predetermined amount. There are several

drawbacks to this approach. First, it is computationally expensive. The time and

resource usage of brute force approaches grow exponentially, and are not useful for

practical visualization. Adaptive methods can provide better results, but still end up
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(a) (b)

Figure 3.5. An illustration of the difficulty of distinguishing visualization and
simulation artifacts. (a) - Visualization of a cut-plane through a fluid-flow field in
which there are several obvious artifacts. (b) - The same view using our visualization
system. We can see that some artifacts disappear in the accurate image, implying
they are caused by the visualization algorithm, while others remain, implying they
are part of the underlying data model.

Figure 3.6. Revised simulation pipeline with validation and verification included in
the visualization (from [25] with the authors’ permission).

using significant amounts of time and memory. And second, the adaptation is not

scale-invariant. In other words, sampling the volume to a particular level of error

may be acceptable for visualizations that span the entire volume, but be entirely

inadequate for closeup views of local regions of interest. Errors that scale with the

view will require runtime resampling of the high-order data set at runtime.

The approach we advocate is to use the data in its native form. In this way, there

is no need to perform validation as we are not using a different representation of the
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data; we have no representation error in our visualization pipeline. The downside is

that this approach means we can’t use the majority of existing visualization packages

and code, as they will be unable to display our data. Another disadvantage is that

evaluating the high-order field for visualization requires significantly more floating

point operations than are required to evaluate linear fields. Therefore, it takes more

effort and algorithmic manipulations to create interactive visualizations.

With this background, we can now define a term that will be used frequently

throughout the rest of this work: pixel-exact images. At a high level, what we mean

by a pixel-exact image is one in which there is no error; a viewer of the image can have

confidence that the image being presented is, in some sense, an accurate representation

of the underlying data. More formally, a pixel-exact image is one in which the error

introduced through the combination of visualization modeling error and visualization

algorithm discretization error is less than 0.001 for each color channel in the resulting

image. We choose 0.001 as our cutoff because, for an 8-bit per channel color image,

a pixel needs an error of 1/256 = 0.00390625 to be a different color than the true

color. By using a slightly more strict definition, we guard against round-off errors in

algorithms that try to adaptively control the error. This definition of image accuracy

deals only with those errors introduced after the simulation has been completed.

Errors in mathematical modeling and simulation may still exist and will appear in a

pixel-exact image (for an example of how this can be used for debugging a simulation,

see Section 7.4).

In practice we do not, in general, know if our algorithm is producing images with

this amount of error; if we knew the exact error of our method, we could use that

to generate the exact image. Instead, we verify our high-order algorithms on test

problems for which the exact visualization is known in advance, and use that to

verify that our algorithms produce the correct image.

We end by noting that it is not necessary to represent the high-order data directly

to produce a pixel-exact image; with sufficient refinement, methods based on linear

approximations to the model are also capable of producing these images. There

are two main advantages to using the high-order data directly. First, pixel-exact

images of object-space, linear methods are view-dependent, meaning that a linear
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approximation sufficient to produce an accurate image from one view may not be

sufficient from another. Second, visualizations produced with linear methods have to

account for two different sources of error (visualization modeling error and algorithm

error) before a pixel-exact image can be produced. Our methods, on the other hand,

only have to consider the errors in the algorithm to produce pixel-exact images.



CHAPTER 4

ISOSURFACES

In this chapter we give an overview of our high-order isosurface rendering algo-

rithm, which exploits the properties of spectral/hp element data to generate images

in which the visualization error is both quantified and minimized [42]. This is accom-

plished by reducing the determination of the ray-isosurface intersection of spectral/hp

element data to classic polynomial root-finding applied to a polynomial approximation

obtained by projecting the finite element solution over element-partitioned segments

along the ray. An overview of this procedure is given in Algorithm 1.

ALGORITHM 1: High-Order Isosurface Algorithm

Input: A ray r(t), a list of isovalues ρ, and a list of all elements E traversed by the
ray, ordered by intersection distance.

1 foreach Element Ei ∈ E do
2 Determine ray entrance ta and exit tb for element Ei.

3 Evaluate the field on the ray segment [ta, tb] using interval arithmetic to obtain
field bounds [fmin, fmax].

4 if ∃i : ρi ∈ [fmin, fmax] then
5 Project the field along the ray onto an nth order polynomial pn(t).

6 foreach ρi ∈ [fmin, fmax] do
7 Find all real roots r of pn(t)− ρi = 0.

8 if ∃i : ri ∈ [ta, tb] then
9 Report smallest rj such that rj ∈ [ta, tb].

10 end

11 end

12 end

13 end
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4.1 Traversing the High-Order Mesh

The first step of our algorithm (Line 1) is to traverse the mesh for each ray. We

start by casting the ray �r : [0,∞) → R
3, �r(t) = �o+ t�v (where �o denotes the ray origin

and �v denotes the ray vector) into the volume and find the closest element (i.e., the

ray-element intersection has the smallest value of the ray parameter t). Finding this

intersection, especially for a volume that consists of many elements, can take a long

time. Therefore, once the first intersection is found, we use a modified version of the

algorithm from Garrity [16] to move through the volume. Special care is required to

do this correctly, as high-order elements can have curved faces, which can lead to a

ray entering and exiting an element through a single face (Figure 4.1). Therefore, our

modified algorithm considers the current face as well as the other element faces when

searching for the next intersection point.

4.2 Range Estimation

Once we have identified the ray-segment that traverses an element, we next

estimate the field’s range along the ray (Line 3). This is an acceleration step based

on the observation that not every ray segment will contain the isosurface. Since the

root finding procedure described below is computationally expensive, we can achieve

significant speedup by skipping elements which cannot contain the isosurface. We

do this by using interval arithmetic (see Section 3.2) to give us an estimate of the

function’s range. If none of the requested isovalues falls within the range, then the

segment can be safely skipped.

r(t)

Figure 4.1. When elements are curved, rays can enter and exit an element through
the same edge (pictured) or face.
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4.3 Function Projection

Our goal of rendering an isovalue along a ray intersecting an element equates to

finding the zeroes of a smooth function. Since polynomial root finding is far easier, in

general, than finding the zeroes of a general function, we seek a means of representing

the function along the ray within an element in world space as a polynomial with

quantifiable and adaptability reducible error. This can be accomplished by finding

the L2 projection of the function onto a Legendre polynomial expansion (Line 5 of

Algorithm 1), which takes the form:

u(x) =
∞∑
n=0

ûnPn(x) , x ∈ [−1, 1]. (4.1)

Here, Pn(x) represent the nth order Legendre polynomial.

The expansion coefficients ûn can be obtained as

ûn =
2n+ 1

2
(u, Pn) . (4.2)

To perform the function projection one can use Gauss quadrature rules such as

the Gauss-Lobatto quadrature

ũn =
2n+ 1

2

N∑
i=0

u(xi)Pn(xi)wi, (4.3)

where (xi, wi) represent the Legendre-Gauss-Lobatto quadrature nodes and weights,

respectively (see [6]). This procedure is illustrated in Figure 4.2. The quadrature is

exact if u(x) is a polynomial of degree 2N − 1 at most.

4.4 Root Finding

Given the projection to a polynomial described above, the ray root finding problem

can now be formulated mathematically as the following problem: Find the smallest

value t ∈ [ta, tb] such that p(t)− C = 0 where C is the isovalue of interest (Step 7 of

Algorithm 1).
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Figure 4.2. Schematic showing how a projected polynomial is formed along the ray.
Once the entry and exit points within an element are known, the scalar field within
the element f(�x) can be sampled along the ray using a Legendre-Gauss-Lobatto point
distribution. A “best-fit” polynomial (in L2) can be formed, upon which root finding
can be accomplished.

Since we want to guarantee that we have found the smallest root in the interval

[ta, tb], we desire to find all possible roots, from which we can then easily ascertain the

smallest one which lies within our interval of interest. Since we desire an algorithm

which extends to arbitrary order, we utilize the mathematical idea of a companion

matrix of a given polynomial. The linear algebra concept of a companion matrix

provides us with the following result: given a polynomial of degree M , there exists

a matrix A determined by the coefficients aj (called the companion matrix of the

polynomial p(t)) such that the eigenvalues of A provide the roots of the polynomial

p(t). Hence, instead of a root-finding problem per se, we must solve an eigenvalue

problem. This concept naturally follows from the linear algebra concept of the

characteristic polynomial of a matrix [21]; there is a rich history between root finding

and eigenvalue solutions which we seek to exploit.

To help provide guidance as to how the companion matrix of a polynomial is
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formed, we will demonstrate with respect to a sixth-order polynomial example. For

example, consider the following polynomial:

p(t) = a6t
6 + a5t

5 + a4t
4 + a3t

3 + a2t
2 + a1t+ a0

where aj ∈ R, j = 0 . . . 6, and where we assume that a6 �= 0.

The companion matrix for this polynomial is as follows [58]:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −a0/a6
1 0 0 0 0 −a1/a6
0 1 0 0 0 −a2/a6
0 0 1 0 0 −a3/a6
0 0 0 1 0 −a4/a6
0 0 0 0 1 −a5/a6

⎞
⎟⎟⎟⎟⎟⎟⎠

.

This matrix is of upper Hessenberg form and hence a prime candidate for typical

eigenvalue-finding techniques. Easily generated companion matrices exist for the

monomial basis [58] and the Bernstein basis [65, 66]. The companion matrix associ-

ated with the Bernstein basis has been shown to be less prone to numerical precision

errors. Given our polynomial p(t) as a Legendre series, we can do a basis rotation

to either the monomial or the Bernstein basis. Once this has been accomplished, a

companion matrix can be formed, and the corresponding eigenvalue problem solved.



CHAPTER 5

CUT SURFACE VISUALIZATION

The behavior of a high-order scalar field along an arbitrary cut-surface can often be

one of the primary questions that must be answered by a simulation. For example,

a simulation of a proposed aircraft body may be performed to determine if it will

survive the stresses of flying in a variety of scenarios. In such a simulation, users are

interested in the behavior of the simulation at specific boundaries, such as the stress

field along the aircraft’s wing. An effective way to visualize these types of surfaces is

through the application of color maps and/or contour lines (see Figure 5.1).

In this chapter, we describe a new set of methods for rendering color-maps and

contour lines on arbitrary cut-surfaces (of which curved-element boundaries are of

particular interest), extending the existing methods for applying color-maps to cut-

Figure 5.1. A surface rendering of the ONERA wing (see Section 7.4.3) rendered
using the algorithm described in this chapter. The wing is represented by the curved
element faces, while the plane is a cut-plane through the solution.
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planes through high-order data [5, 17]. Our system’s goal is to generate accurate

and interactive images, allowing users to debug the simulation’s code, accurately

interpret the image and perform general exploratory visualization. The system uses

the high-order data in its native state, without the need for low-order approximation,

and uses the the knowledge of the structure and mathematical properties of the

underlying fields to provide accurate images.

Our algorithm consists of two principle components: a surface sampling module

and a color assignment module. The surface sampling module is responsible for

casting rays to find the surface associated with each pixel, then sampling the field

at the intersection point. The color assignment module is responsible for using the

samples to generate a color map or contour line.

5.1 Surface Sampling Module

The surface sampling module is a ray generation program that first queries the

downstream modules to determine the directions of the rays that are needed. It is

assumed that a ray through the center of each pixel will be required, but any of

the downstream modules can request additional rays. The module then casts rays

through each of the requested locations.

The behavior of the ray once it finds an intersection depends on the surface type.

This surface-dependent behavior is implemented using an OptiX closest-hit program.

If the surface is a cut-surface then a secondary ray is cast to determine which element

encloses the intersection point, and the scalar value at the point is then calculated.

If the surface is an element face, then the scalar value can be calculated directly.

Otherwise, the surface normal and color are determined. In this way, the scalar

values of the field on the cut-surface are calculated and made available to the color

mapping module, while at the same time, any surface geometry in the simulation can

also be rendered.

5.1.1 Ray/Cut-Surface Intersection

Cut-surfaces are generally specified as either implicit 3D surfaces or two-parameter

parametric surfaces. Implicit 3D surfaces are defined as the set of all points that

satisfy the equation
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f(x1, x2, x3) = 0 (5.1)

where f : R3 → R. The intersection between an implicit surface and a ray can be

found by substituting Equation 3.14 into Equation 5.1, yielding:

g(t) = f(r1(t), r2(t), r3(t))

= f(O1 + tD1, O2 + tD2, O3 + tD3) = 0. (5.2)

Viewed in this way, the intersection test becomes a univariate root-finding prob-

lem. For simple implicit functions, this equation can be solved analytically. For

example, a cut-plane is a simple implicit function of the form f(x1, x2, x3) = Ax1 +

Bx2 + Cx3 +D = 0 which, after substitution, becomes a linear equation in t.

When the implicit surface is more complicated, such as when it is a high-order

polynomial, it cannot be solved analytically. In these cases, numeric root-finding

techniques are required [27]. In some cases, such as functions representing isosurfaces

of high-order fields, the implicit function itself does not have an analytic form, and

numeric techniques are required to both evaluate f and find the intersection [42].

The other type of surface of interest in a high-order setting is that of parametric

surfaces, defined as x = p(u, v). If p is analytic, it may be possible to convert it into

an implicit form, allowing for the direct use of methods already available for implicit

forms.

A class of interesting parametric surfaces is that of the faces of the elements

themselves. Faces that border simulation geometry are of particular interest because

of their relationship to what happens at or near these locations (e.g., pressure at

specific locations on an aircraft’s wing). Faces are defined as parametric functions:

x = Φ(ξi, ξj) =
∑
a

∑
b

ûabφa(ξi)φb(ξj),−1 ≤ ξ1, ξ2 ≤ 1 (5.3)

with the ray-face intersection specified as the values for ξ1, ξ2, and t for which the

following holds:

Φ(ξi, ξj) = r(t). (5.4)
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The function Φ is the mapping function described in Section 3.1 and does not, in

general, have a conversion to a general implicit function.

5.1.2 Point Location

Once the cut-surface intersection point has been found, the next task is to deter-

mine the element in which it lies. We cast a new, secondary ray from the intersection

point in a random direction. If the intersection point is inside the volume, then,

no matter what direction we choose, the element corresponding to the closest ray-

element intersection is the enclosing element. Since this is not true if the cut-surface

intersection point is outside the volume, we constrain our cut-surfaces to lie entirely

within the finite element volume.

5.1.3 Color Mapping Module

To apply a color map to a cut-surface, we sample the scalar field at the center

of each pixel, using the procedures just described, and then use the resulting scalar

value as a look-up into the color map.

5.1.4 Contouring Module

A pixel (i, j) belongs to the contour curve for isovalue ρ if it satisfies

∃u,v : Pij(u, v) = ρ (5.5)

where P is the scalar field of the cut-surface projected onto the image plane. As

described in Section 3.1, the field is continuous over the pixel. Therefore, we can

determine if the isovalue exists in the pixel by finding two points that bracket the

isovalue:

∃ua,va,ub,vb : Pij(ua, va) ≤ ρ ≤ Pij(ub, vb). (5.6)

Determining if the isovalue exists somewhere in the pixel can be a complicated and

time consuming process that requires the determination of the global maximum and

minimum scalar value over the pixel. To reduce the complexity of this test, instead
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of checking the pixel’s interior, our algorithm looks for the isovalue along a pixel’s

edge. This approach is attractive because it detects the same contours as searching

the interior detects except for the case where the contour exists entirely in the pixel’s

interior (see the lower right corner of Figure 5.2). These types of contours will show up

as isolated points in the image and will not help the user interpret the visualization,

so the extra processing time to find them need not be taken.

A simple algorithm to determine if a pixel may be part of the contour is to perform

point sampling at the four pixel corners. If the values at the corners bracket ρ, then

the pixel can be marked as part of the contour with no further testing. This method

is appealing for several reasons. First, it is fast. Sampling the pixel corners requires

(w + 1)(h + 1) samples, where w is the image width and h the height. This is only

slightly more samples than are required for color mapping, which requires wh samples.

Second, if the field is monotonic over the pixel, then this test is also accurate (i.e., it

only marks pixels that are part of the contour and doesn’t mark pixels that are not

part of the contour). Sampling the endpoints of a monotonic function produces the

function’s range (see Figure 3.3(a)). Since the high-order field is not guaranteed to

be monotonic over the pixel’s edge, this algorithm cannot guarantee that it will find

all contour pixels. It does, however, find a large percentage of them.

Because the field is not guaranteed to be monotonic, contours can take a variety

of forms that will not be detected by the simple corner testing algorithm. As shown

in Figure 5.2, contours can cross edges multiple times and span many pixels and

still miss detection by the corner testing algorithm. We use interval arithmetic (see

Section 3.2) to provide an estimate of the range.

For high-order fields, calculating the field’s range over a pixel’s side produces

Figure 5.2. Contour lines that are not detected by simply checking if the pixel
corners bracket the isovalue.
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fairly good bounds, as can be seen in Figure 5.3, where we show that, even without

performing any subdivisions, the number of pixels that may contain the isovalue is

small. One factor that can contribute to wide interval extensions is the number of

operations performed when evaluating an expression. An example of this can be

seen in Figure 5.4, where the number of ambiguous pixels is compared between a

2nd-order and 6th-order data set. The 6th-order data set has more ambiguous pixels

than the 2nd-order data set. Interval arithmetic provides conservative bounds that

are obtained without using any derivatives, and are not negatively affected by the

presence of extremal features.

The cut-surface contouring algorithm proceeds as follows. First, sample the cut-

surface at each pixel’s corner. If any two pixel corners bracket an isovalue, mark the

pixel. For each unmarked pixel, calculate the approximate bounds of the function

along each side. If none of the contours fall within the approximate bound, reject

the pixel. Otherwise, mark it as possible. Finally, for each possible pixel, subdivide

the edge, taking additional samples as needed, to provide better bounds until a user

defined tolerance is met. If contours fall outside the range, reject the pixel, otherwise

accept.

Note that, when the algorithm completes, it is possible for some pixels to be

marked ambiguously. This cannot be avoided unless the global minimum and max-

imum over the pixel is calculated. Our system allows for these ambiguous pixels to

be colored a different color. The user can then increase the amount of subdivision as

needed to reduce the number of ambiguous pixels. In practice, we have found that

dividing a pixel’s side into eight subintervals is enough to handle most ambiguities

when dealing with data sets up to sixth order.

5.2 Results

The effectiveness of the methods described in this chapter are illustrated by

applying them to two high-order fluid flow data sets. Note that we will frequently

refer to nth-order volumes or elements as a shorthand for saying that the field is

represented by nth-order polynomials, in tensor space, in each direction.

The first example consists of incompressible flow past a block with an array of
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(a) 0.044 seconds. (b) 0.07 seconds.

(c) 0.11 seconds. (d) 0.18 seconds.

Figure 5.3. Contours generated on a cut-plane of the block/plates data set (see
Section 5.2). Pixels that contain the isovalue are marked in black. Pixels that cannot
contain the isovalue are white, and pixels that may contain the isovalue are teal. In
5.3(a), only corner testing has been performed. In 5.3(b), one level of subdivision has
been performed. Two levels were performed in 5.3(c), and three in 5.3(d). We can
see that additional testing reduces the number of ambiguous pixels. Rendering times
for a 1000×1000 image are given underneath each image. While subdivisions take
extra time, the rendering times are still interactive.
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(a) 2nd-Order (b) 6th-Order

Figure 5.4. Comparison of ambiguous pixels (teal) between a 2nd-order (left) and
6th-order (right) data set.
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splitter plates placed downstream of the block. A schematic of this regime is presented

in Figure 5.5(a). As the fluid impinges upon the block, it is diverted around the

structure, generating vorticity along the surface. For the purposes of this paper, we

will focus our attention on a configuration consisting of a plate spacing of one unit

(nondimensionalized with respect to the block height). The 3D computational mesh

consists of 3, 360 hexahedra and 7, 644 prisms. All simulations were performed at a

Reynolds Number (Re) of 200.

The second data set consists of a rotating canister traveling through an incom-

pressible fluid. A schematic of the flow regime under consideration is presented

in Figure 5.5(b). The 3D mesh consists of 5, 040 hexahedra and 696 prisms, with

the computational problem being solved using third-order polynomials within each

element. The solutions presented herein were computed at Re = 1000 and with an

angular velocity of Ω = 0.2.

All tests described in this section were performed on a desktop workstation equipped

with an NVIDIA Tesla C2050 GPU and Intel Xeon W3520 quad-core processor

running at 2.6 GHz. All code run on the GPU was implemented in OptiX. Code

executed on the CPU was written as single-threaded C++ code. The GPU algorithms

were run using 32 bit floating point precision, while the CPU code was run using 64 bit

floating point precision. In our tests, there is a negligible performance impact between

32 and 64 bit precision on the CPU, while 64 bit precision on the GPU generally

Flow Direction s1

s2

Flow
Direction

(a) Block/Plate Configuration (b) Canister Configuration

Figure 5.5. Schematic showing the basic block/splitter plate (left) and rotating
canister (right) configurations under consideration.
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doubles overall execution time. As we will show when we discuss performance, our

methods execute at 10-20 frames per second even for large image sizes, so 64 bit

precision can be used when necessary without significantly impacting performance.

5.2.1 Linear Comparison Models

Visualizations of high-order data are traditionally performed using linear primi-

tives. Because of this, we will contrast the performance, accuracy and resource con-

sumption of our methods to the commonly used linear algorithms. We will show that

while linear methods can produce acceptable images under the right circumstances,

a more effective way to reliably achieve accurate visualizations (under reasonable

resource constraints and without intervention) is through the methods described here.

The linear test cases were implemented using the Visualization Toolkit (VTK) [52]

because it is a well-known system, in current use, and therefore provides a good

foundation on which to base our tests.

Two approaches were used for representing the high-order data with the linear

structures found in VTK. In the first approach we sampled the entire high-order

volume onto a 3D regular grid of points, where the spacing between points is constant.

Values between grid points are calculated using linear interpolation. For the second

approach a triangular mesh is created and sampled with the high-order data at the

triangle vertices. As with the first volume, data values between vertices are obtained

via linear interpolation. Sampling was performed using a CPU-based implementation.

We used an octree data structure to accelerate the location of the element enclosing

a given sample point. Timings for sampling several high-order volumes onto a grid

are found in Figure 5.6(a), and the timings to sample a cut-plane running through

the center of the data set is in Figure 5.6(b).

While sampling onto a 3D grid is the most flexible approach (since so many

visualization algorithms can be applied), it is also the most time consuming and

quickly becomes prohibitive, especially as the volume order increases. Sampling

directly onto the cut-plane, while not as flexible, is fast enough to be practical. The

problem with sampling onto a triangular mesh is that the memory required to store

the mesh and samples grow roughly in a squared manner (by the spacing). We can
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Figure 5.6. Timings to sample high-order volumes onto linear data structures. (a) -
Time to sample a grid of evenly spaced points that span the high-order volume. (b)
- Time to sample a triangular mesh representing a cut-plane through the middle of
the volume.
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produce a cut-plane with 8, 388, 608 samples using the 2nd-order block/plate data set

in about 30 seconds, but it consumes 180 MB of memory, compared to 4 MB to

represent the entire high-order volume. And, as shown in the examples below, there

are not enough samples to produce highly-accurate visualizations.

In the remainder of this section, our comparison tests are performed with the

triangular mesh-based technique instead of the 3D grid-based approximation. We

found that the quality of the grid-based approach is worse (sometimes significantly)

than the mesh approach because the cut-surface may span between the grid samples,

meaning that the contours and colors produced are interpolated from samples that

do not actually lie on the surface. Using the triangular mesh, however, guarantees

that all samples are on the cut-surface, providing more accurate images and better

comparisons.

5.2.2 Contouring

While there are contouring algorithms available for high-order methods (as dis-

cussed in Section 2.3), we are unable to provide direct comparisons with those methods

because they either are restricted by the type of element or the maximum order.

Contours for the linear data were produced by the vtkContourFilter. The results are

shown in Figure 5.7.

The linear approximation in Figure 5.7(b) is a significant improvement when

compared to the more coarsely sampled volume, and it is difficult to see much

difference between this image and our high-order method. However, this is only true

at the current resolution, and if we zoom in to the image (Figures 5.7(d) and 5.7(e)),

we can see that there are still significant errors present. While further sampling can

improve the generated contour, there are limits to the sampling resolution (due to

the amount of resources consumed). And importantly, the method described in this

paper performs at about the same speed as the coarsely sampled image.

In the coarsely sampled contour image (Figure 5.7(a)), there are many errors that

have been noted with red circles: incorrect topology, missed contours and incorrect

shapes. What is interesting is that it is not possible to determine if these contours are

accurate from the image alone. We need either a cut-plane with greater resolution or
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(a) 524, 288 Triangles. VTK Contour Generation Time = 0.265 seconds.

(b) 8, 388, 608 Triangles. VTK Contour Generation Time = 3.5 seconds.

(c) High-Order Rendering. Rendering time for 2000×2000 image = 0.3 seconds.

(d) Detail View of 5.7(b) (e) Detail View of 5.7(c)

Figure 5.7. Comparison between pressure contours of the block/plane data set
generated using linear methods (5.7(a) and 5.7(b)) and our high-order method
(5.7(c)). The approximation in 5.7(a) has several significant errors, marked in red,
which disappear when using a smaller sampling. The highlighted area in 5.7(c) is
shown in more detail in 5.7(d) for linear interpolation and 5.7(e) for our system.
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an image from our system to notice the inaccuracy.

5.2.3 Color Maps

We next show show a comparison between linear approximations of a cut-plane

through the canister data set with our algorithm. Since the cut-plane is an inherently

linear cut-surface, there is no surface approximation error, so differences between our

method and the linear methods are due solely to the differences between linear and

high-order interpolation (see Figure 5.8).

As expected, the images get progressively closer to the image generated by our

algorithm as the number of samples increase. However, even at the very fine sampling

(shown here), there are still subtle errors. Additionally, the memory required to store

the mesh is large which requires a lengthy prepreprocessing step. It is interesting to

note that, unlike the contour images, it can be visually obvious when a color map

needs to be further refined by the presence of sharp and “boxy” gradients.

5.2.4 Performance

For the methods described in this paper to be useful, they must not only be

accurate but interactive as well. For each test, we rendered a view of a cut-plane

and cut-cylinder where the entire image was covered. Since the rendering pipeline is

restarted from scratch with every view change, there was no need to run the timing

tests with a variety of viewing changes. We executed the tests 100 times and reported

the average time to render the entire scene.

Since we did not have fluid flow simulation data higher than 6th-order, synthetic

data sets were generated to obtain the timings. We were interested in how timing

was related to the simulation’s order, number of elements, and the overall image size.

In Figure 5.9, we can see that the most important factor governing the performance

of our system is the image size. This figure also illustrates the impact of using more

complicated cut-surfaces, specifically bicubic patches. While overall rendering time

is increased with more complicated surfaces, it is still interactive. This has several

positive implications. First, if the system is not as interactive as desired, additional

speed can be gained by creating smaller images. Second, the system is capable of

handling large high-order data sets interactively, and there is no indication of an
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(a) Cut-plane with 902,289 triangles, VTK Rendering Time = 0.08 seconds.

(b) Cut-plane with 8,388,608 triangles, VTK Rendering Time is 2.0 seconds.

(c) Pixel-exact cut-plane color map. Rendering time is 0.015 seconds for a 1800×800 image.

Figure 5.8. Color maps for a cut-plane through the canister data set with a coarse
sampling (5.8(a)), a fine sampling (5.8(b)), and pixel-exact using our method (5.8(c)).
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upper limit to the number of elements that can be supported (except for the size of

the native solution that must fit in the GPUs memory).

Additional timing results are shown in Figure 5.10 and, unless specifically noted

otherwise, are valid for both the contouring and color mapping module (as they

generally take the same amount of time). In Figure 5.10(c), it can be seen how

increasing the field’s order impacts performance. If the order is increased significantly,

then it will impact performance negatively, but for typically-used orders, around

2-14, rendering times are not significantly impacted. In Figure 5.10(d), we tested our

system on large data sets with up to 200,000 elements and it can be seen that our

system’s speed is not strongly related to the number of elements.

In Figures 5.10(a), 5.10(b) and 5.11 we show the GPU memory required by our

system. We start with a 5, 000 element, 8th-order volume rendered in a 1000× 1000

image, then vary the number of elements, polynomial order, and image size. These

graphs show that our system is capable of storing large volumes of high order on a

single GPU. Increasing the image size results in a linear growth in memory usage due

to the constant amount of per-pixel memory required for calculation and rendering.

Increasing the number of elements also scales linearly, as the number of coefficients per
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element is constant for a given polynomial order. When increasing the polynomial

order, the number of coefficients required to support the solution grows as O(n3),

where n is the polynomial order, leading to the memory growth shown in Figure

5.11.

5.3 Summary

The algorithms presented in this chapter were motivated by the lack of existing

visualization techniques capable of interactively and accurately rendering color-maps

and contour lines on arbitrary cut-surfaces. We have described new algorithms that

are capable of rendering surfaces interactively and accurately while using the high-

order data in its native form (i.e., we do not need to resample onto lower-order

constructs). We have also shown that the most important factor for determining

rendering speed is the size of the final image, indicating that our system can efficiently

handle high-order data sets with a large number of elements with a large number of

modes. An additional benefit is that these interactive frame rates are achievable on

commodity GPUs, meaning simulation scientists can easily perform even the most

demanding visualizations at their workstations.
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Figure 5.11. Varying order with 50, 000 elements and a 1000× 1000 image.



CHAPTER 6

VOLUME RENDERING

The direct volume rendering of the high-order fields produced by spectral/hp finite

element methods using linear primitives (e.g., those used by existing volume rendering

packages such as Voreen [37], ImageVis3D [1] and VTK [52]) is not possible since these

primitives are unable to directly represent the high-order field. In order to use these

systems, engineers must first create compatible linear approximations of the high-

order data. Since linear approximations do not, in general, faithfully represent high-

order data, this approximation step introduces error into the visualization pipeline.

This error can be reduced by creating linear approximations with smaller spacing

between samples, but this comes at the expense of increased computation time to

sample the high-order data and increased memory usage to store the resulting data

set. In practice, it is difficult if not impossible to eliminate the error introduced by

linear approximations through the use of increased sampling.

In this chapter, we develop a new direct volume rendering method that uses the

properties of spectral/hp finite element fields to produce images that are both accurate

and interactive. We obtain accuracy by using the properties of spectral/hp elements

to categorize each ray based upon the properties of the transfer function composed

with the scalar field. We prove that, in the optimal case of fields that are smooth

along the ray, the evaluation of the volume rendering integral will generally exhibit

second-order convergence, with a worst-case of first-order convergence. We use these

properties to develop an optimized high-order volume rendering algorithm, in which

we first categorize each ray based on the local properties of the transfer function and

scalar field, then evaluate the volume-rendering integral with a quadrature method

optimized for the category. While our primary motivation is the desire to generate

pixel-exact images, which we define as an image which does not change with addi-
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tional refinement of the volume rendering integral, performance is also an important

consideration for a usable system. We have therefore implemented our system on

the GPU, using a combination of NVIDIA’s OptiX [45] ray-tracing framework and

Cuda.

6.1 Background and Overview

We use the emission-absorption optical model [34] for direct volume rendering, in

which the irradiance along a ray segment is given by:

I(a, b) =

∫ b

a

κ(f(t)) τ(f(t)) e−
∫ t
a τ(f(u)) du dt (6.1)

where a and b are the segment endpoints, κ and τ are the user-defined emissive (color)

and density transfer functions, respectively, and f(t) is the scalar field at a point t

along the segment. We refer to the integral −
∫ t

a
τ(f(u)) du as the inner integral and

I as the outer integral.

This integral cannot be solve analytically except in the case of linear tetrahedra

[64]. It is common, therefore, to use numerical integration techniques to evaluate it.

Evaluating the integral is often the bottleneck in the volume rendering process. A

commonly used strategy for accelerating the integral’s evaluation is through the use

of preintegration [12, 11]. The goal of preintegration is to perform as much of the

work of evaluating the integral as possible in a preprocessing step, and turn the task

of evaluating the integral into one of a table lookup. Given two samples s0 and s1

along a ray, and an assumption that the field varies linearly between these samples,

the result of the volume rendering equation can be computed in a preprocesing step

and stored in a 2D table, indexed by the two sample points. This table is often stored

as a texture on the GPU, allowing efficient lookup of the result. This approach does

not extend to high-order fields, however, since the assumption of a linear field between

sample points does not hold. To obtain accurate preintegrated tables for high-order

data, each segment along the ray must be represented by n samples points, where n is

the order of the field. This results in an n dimensional lookup table, which becomes

intractable for anything over a 2nd-order field. We must therefore find other ways of

accelerating the integral’s evaluation.
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While there are no theoretical constraints on a transfer function’s form, we assume

that transfer functions are piecewise-linear functions. While transfer functions using

different bases exist (e.g., Gaussian basis functions [26]), piecewise-linear transfer

functions are consistent with the transfer function interfaces provided by many ex-

isting volume rendering systems [18, 37, 1]. We limit our attention to the case of

one-dimensional transfer functions.

Piecewise-linear transfer functions are specified in terms of a finite number of

points (c0, T0), (c1, T1), . . . (cn, Tn), where ci is called a breakpoint and Ti is the corre-

sponding value of the transfer function at that point. Breakpoints correspond to the

transitions between linear pieces in the transfer function. While the transfer function

is continuous at the breakpoints, the derivative is undefined at these points.

Because the transfer function has breakpoints where the derivative is undefined,

so does the composition of the transfer function with the scalar field along the ray,

κ(f(t)) and τ(f(t)). Given a smooth function f , the result of composing the transfer

function with f is a piecewise-smooth function which is only C0 at a finite number

of breakpoints. This is applicable to both CG and DG methods because, as will be

discussed in Section 6.2, we evaluate the volume rendering integral on a per-element

basis.

Effective evaluation of the volume rendering integral requires proper accounting of

the breakpoints. Ideally, if the breakpoints can be found [64], we could then evaluate

the volume rendering integral as follows (with ti being the ith breakpoint):

I =
n∑

i=0

∫ ti+1

ti

κ(f(t))τ(f(t))e
−∑i−1

j=0

∫ tj+1
tj

τ(f(u)) du−∫ t
ti
τ(f(u)) du

dt (6.2)

where the integral of each segment, being smooth, could then be evaluated using high-

order methods such as Gaussian quadrature [8]. While this approach is conceptually

appealing, the high-order nature of the field makes it inefficient in practice. Finding

n breakpoints along the ray is equivalent to finding the isosurfaces associated with

each breakpoint. While this can be done, it is too computationally expensive for our

interactivity requirements [42].
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Since we do not know the location of each breakpoint, we cannot assume that the

use of high-order quadrature methods will automatically lead to high-order conver-

gence. The convergence properties of high-order quadrature methods assume smooth

functions, which is an assumption that is violated by the existence of breakpoints.

6.2 High-Order Volume Rendering

We begin our discussion by providing an overview of our high-order volume ren-

dering algorithm (Algorithm 2), followed by our analysis of the volume rendering

integral for piecewise-smooth functions that has motivated it.

Steps 1 and 2 represent traversal of the finite element grid and is performed in the

same way as the traversal discussed for isosurfaces in Chapter 4. The contribution of

ALGORITHM 2: High-Order Volume Rendering Algorithm

Input: A ray R(t), color transfer function κ, density transfer function τ , a list of all
transfer function breakpoints s, and a list of all elements E traversed by the
ray, ordered by intersection distance.

1 foreach Element Ei ∈ E do
2 Determine ray entrance ta and exit tb for element Ei.

3 Evaluate the field on the ray segment [ta, tb] using interval arithmetic to obtain
field bounds [fmin, fmax] and transfer function bounds [κmin, κmax], [τmin, τmax] .

4 Classify each transfer function into one of three categories based on these
bounds: empty (E), piecewise-smooth (PS), or smooth (S).

5 Integrate each segment based on the classification (details are given in Section
6.4).

6 if τ ∈ E (empty space) then
7 Skip this ray segment.
8 else if κ ∈ E ∧ τ ∈ S (nonemitting occlusion) then
9 Integrate τ using Gauss-Kronrod quadrature (Section 6.3.3), with the

number of sample points chosen based on the order of Ei.

10 else if κ ∈ E ∧ τ ∈ PS then
11 Integrate τ using trapezoidal rule (see Section 6.3.1).
12 else if κ ∈ PS ∧ (τ ∈ PS ∨ τ ∈ S) then
13 Evaluate inner and outer integrals using trapezoidal rule (see Section 6.4.3).
14 else
15 Evaluate inner integral using trapezoidal rule and outer integral using

Gaussian quadrature (see Section 6.4.3).

16 end

17 end
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this work begins on Step 4. In this step, we classify the transfer functions over [ta, tb]

into one of three categories based on the structure of the field over the segment:

empty space segments (E), where the transfer function is zero along the entire

segment; piecewise-smooth segments (PS), where the segment contains one or more

breakpoints; and smooth segments (S), where the segments contains no breakpoints.

We discuss how we use these categories to choose an appropriate quadrature method

for the volume rendering integral in Section 6.4.

Categorization of a ray segment requires the range of the scalar field along the

ray, from which we can determine if the transfer function is zero along the entire

segment or if it contains any breakpoints. One approach we can use is to calculate

the global min and max using standard optimization techniques. While this approach

will work, and will produce accurate segment categorization, it is a computationally

expensive operation that does not facilitate interactivity. Instead, we generate fast

and conservative estimates of the range through the use of interval arithmetic [39]

(see Section 3.2). The implication of this choice is that we may perform more work

than needed during integration, but save the time computing the exact range of the

function. As we discuss in further detail below, this is a reasonable trade off for

current GPU architectures.

We now discuss how we use interval extensions to categorize rays. Let f(t) be the

field along a ray segment on the interval X = [ta, tb]. We first construct the interval

extension F (X) (giving us an estimate of the true range of f) using interval arithmetic

as described above. Let ci, i ≤ n be the n breakpoints associated with the density

transfer function τ . We categorize τ as follows:

C(τ) =

⎧⎪⎨
⎪⎩
E if F (X) = [0, 0]

PS if ∃i : ci ∈ F (X)

S if ∀i : ci /∈ F (X).

(6.3)

The categorization for each of the color channels proceeds in an analogous fashion.

It is important to note that this categorization is not precise, meaning that a ray

can be categorized as a piecewise-smooth segment when it is actually smooth. This

is because the true range is a subset of the estimated range, so a breakpoint can be



50

in the estimated range while falling outside the actual range. The implication of this

is that we may handle some rays suboptimally by using the rules developed below

for piecewise-smooth functions, rather than the more optimal approach for smooth

functions. In this context, suboptimal means that, by classifying a smooth function

as piecewise-smooth, we will use a lower-order quadrature scheme and therefore will

require more samples to achieve a given level of accuracy. If tighter bounds on

the range estimate are desired, the ray segment can be broken into subsegments

to produce a tighter bound [41].

6.3 Integration Techniques

In this section, we provide the motivation for the integration methods we use to

evaluate the volume rendering integral. As we mentioned in Section 6.1, the field

along the ray is a smooth function, and seems to be a perfect candidate for the

use of high-order quadrature rules. However, as we show below, the existence of

breakpoints along the ray, which are introduced through the composition of the field

with the transfer function, limits us to linear or quadratic convergence, even when

using high-order quadrature rules such as Gaussian quadrature.

As indicated in Section 6.1, one way to address the presence of breakpoints along

the ray is to use a root-finding procedure to find the location of each breakpoint, then

to use high-order quadrature on the smooth segments between breakpoints. While

this approach is appealing in theory, it is not useful in practice due to both the

number of breakpoints found in typical transfer functions (increasing the number of

root-finding calls needed) and the high-order field along the ray (increasing the time

and complexity of the root-finding routine). Therefore, in the sections that follow,

we focus our attention on the case where the location of each breakpoint is unknown,

and only coincides with the location of a sample point through chance.

6.3.1 Quadrature of Piecewise-Smooth Segments

When the transfer function along a ray segment is piecewise-smooth (i.e., the

segment contains at least one breakpoint), we cannot use high-order quadrature

routines and expect high-order convergence. This is because the convergence analysis

for these methods assumes continuity in the function’s derivatives. We now discuss the
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convergence behavior of an arbitrary n-point quadrature rule when used to estimate

the integral of a piecewise-smooth function.

Let f(t) be piecewise-smooth in [a, b] with a single breakpoint at c ∈ (a, b):

f(t) =

{
e(t) t ≤ c

g(t) t > c
(6.4)

where e(c) = g(c), e′(c) �= g′(c), e ∈ C∞[a, b] and g ∈ C∞[a, b]. We consider n-point

quadrature methods of the form

∫ b

a

f(t) dt ≈
n∑

i=1

wif(ti) (6.5)

where a ≤ ti ≤ b, and
∑n

i=1 wi = b − a. The abscissas can be evenly-spaced

(corresponding to Newton-Cotes quadrature) or nonequally spaced (such as the case

of Gaussian quadrature). The error between the integral’s true value and this ap-

proximation is given by

E =

∫ b

a

f(t) dt−
n∑

i=1

wif(ti). (6.6)

To determine if high-order quadrature is effective for piecewise-smooth functions, we

wish to determine how this error behaves as the interval h = b−a becomes smaller. We

will do this by rewriting each term in Equation 6.6 using Taylor’s theorem, expanding

e and g around the breakpoint c, which gives

f(t) =

{
e(t) = Te(t) = e(c) + e′(c)(t− c) + e′′(ξe)

(t−c)2

2
t ≤ c

g(t) = Tg(t) = g(c) + g′(c)(t− c) + g′′(ξg)
(t−c)2

2
t > c,

(6.7)

for some ξe ∈ (t, c) and ξg ∈ (c, t). Using these series to rewrite the integral gives

∫ b

a

f(t) dt =

∫ c

a

Te(t) dt+

∫ b

c

Tg(t) dt =

(c− a)e(c)− (a− c)2

2
e′(c)− (a− c)3

6
e′′(ξe)+

(b− c)g(c) +
(b− c)2

2
g′(c) +

(b− c)3

6
g′′(ξg).

(6.8)
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Since e(c) = g(c), this then becomes

∫ b

a

f(t) dt = he(c)− (a− c)2

2
e′(c) +

(b− c)2

2
g′(c) +O(h3). (6.9)

To approximate the integral, assume we use an n-point quadrature formula spanning

the entire domain of integration where n ≥ 2 and where we are guaranteed that

the breakpoint c lies between two sample points, c ∈ (tk, tk + 1). The quadrature

approximation of the integral can then be written as:

Qn =
k∑

i=1

wiTe(ti) +
n∑

i=k+1

wiTg(ti)

=
k∑

i=1

wi

(
e(c) + e′(c)(ti − c) + e′′(ξe)

(ti − c)2

2

)
+

n∑
i=k+1

wi

(
g(c) + g′(c)(ti − c) + g′′(ξg)

(ti − c)2

2

)
.

(6.10)

This equation is not useful in its current form, as we would like to understand how

this approximation behaves in terms of h. Using the assumption that h = b − a =∑n
j=1 wj and the definition that e(c) = g(c), the terms not involving derivatives can

be rewritten as

Q0
n =

k∑
i=1

wie(c) +
n∑

i=k+1

wig(c) =
n∑

i=1

wie(c) = he(c). (6.11)

The terms involving first derivatives are given by

Q1
n = e′(c)

k∑
i=1

wi(ti − c) + g′(c)
n∑

i=k+1

wi(ti − c). (6.12)

In order to represent this equation in terms of h (i.e., the spacing between a and b),

we note that

ti = a+ βih

c = a+ βch

ti − c = a+ βih− (a+ βch) = h(βi − βc)

(6.13)
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where 0 ≤ βi ≤ 1. Substituting these relations into Equation 6.12, we get

Q1
n = e′(c)

k∑
i=1

wih(βi − βc) + g′(c)
n∑

i=k+1

wih(βi − βc). (6.14)

Expanding the and rearranging the summation yields:

Q1
n = he′(c)

k∑
i=1

wiβi + hg′(c)
n∑

i=k+1

wiβi−

hβce
′(c)

k∑
i=1

wi − hβcg
′(c)

n∑
i=k+1

wi.

(6.15)

It is not immediately apparent how the individual weights are related to the interval

spacing h. To elucidate the relationship, we first rescale the weights from [a, b] to

[0, 1]

wi = ŵi(b− a) = hŵi (6.16)

where ŵi is the rescaled weight. Substituting this relation into Equation 6.15 and

simplifying the expression in terms of h yields:

Q1
n = h2

(
e′(c)

k∑
i=1

ŵiβi + g′(c)
n∑

i=k+1

ŵiβi−

βce
′(c)

k∑
i=1

ŵi − βcg
′(c)

n∑
i=k+1

ŵi

)
.

(6.17)

A similar analysis reveals that the term involving the second derivative is O(h3).

Therefore, Equation 6.10, written in terms of h, is

Qn = he(c) + h2

(
e′(c)

k∑
i=1

ŵiβi + g′(c)
n∑

i=k+1

ŵiβi−

βce
′(c)

k∑
i=1

ŵi − βcg
′(c)

n∑
i=k+1

ŵi

)
+O(h3).

(6.18)
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The error is then found by subtracting Equation 6.18 from Equation 6.9, which gives

the following expression for the remainder term:

E =
(b− c)2

2
g′(c)− (a− c)2

2
e′(c)−Q1

n +O(h3). (6.19)

Since both (b − c)2 and (a − c)2 are O(h2), the error of an n-point quadrature rule,

given our two aforementioned assumptions (i.e., the quadrature rule consists of n ≥
2 samples and the breakpoint occurs between sample points), exhibits worst-case

second-order convergence.

If there are two breakpoints in the interval, a similar analysis indicates that an

n-point quadrature rule, where n ≥ 3 and in which the breakpoints lie intertwined

between breakpoints, will exhibit worst-case linear convergence. For two breakpoints

c0, c1 ∈ (a, b):

f(t) =

⎧⎪⎨
⎪⎩
f0(t) a ≤ t ≤ c0

f1(t) c0 < t ≤ c1

f2(t) c1 < t ≤ b.

(6.20)

Using Taylor’s theorem as we did in Equation 6.7, we can rewrite f(t) as

f(t) =

⎧⎪⎨
⎪⎩
f0(t) = T0(t) = f0(c0) + f ′

0(c0)(t− c0) +O(h2) a ≤ t ≤ c0

f1(t) = T1(t) = f1(c0) + f ′
1(c0)(t− c0) +O(h2) c0 < t ≤ c1

f2(t) = T2(t) = f2(c1) + f ′
2(c1)(t− c1) +O(h2) c1 < t ≤ b

(6.21)

and can then evaluate the integral as

∫ b

a

f(t) dt =

∫ c0

a

T0(t) dt+

∫ c1

c0

T1(t) dt+

∫ b

c1

T2(t) dt =

(c0 − a)f0(c0) + (c1 − c0)f1(c0) + (b− c1)f2(c1) +O(h2).

(6.22)

We next rewrite the quadrature formula, assuming that the breakpoints are between

two sample points, c0 ∈ (tj, tj+1) and c1 ∈ (tk, tk+1), yielding:

Qn =

j∑
i=1

wiT0(ti) +
k∑

i=j+1

wiT1(ti) +
n∑

i=k+1

wiT2(ti). (6.23)



55

The terms not involving derivatives are given by

Q0
n =

j∑
i=1

wif0(ti) +
k∑

i=j+1

wif1(ti) +
n∑

i=k+1

wif2(ti). (6.24)

We can then use the relation in Equation 6.16 to express this in terms of h

Q0
n = h

j∑
i=1

ŵif0(ti) + h
k∑

i=j+1

ŵif1(ti) + h
n∑

i=k+1

ŵif2(ti). (6.25)

Subtracting Equation 6.24 from Equation 6.22, and using the fact that f0(c0) = f1(c0),

we get

E = f0(c0)(c1 − a)− hf0(c0)
k∑

i=1

ŵi

+ f2(c1)(b− c1)− hf2(c1)
n∑

i=k+1

ŵi.

(6.26)

Since (c1−a) and (b−c1) are O(h), the error of an n-point quadrature rule when there

are two breakpoints in the domain exhibits worst case linear convergence. Similar

analysis indicates that this result holds for n > 2 breakpoints as well.

We can see from the results in Equations 6.19 and 6.26 that the quadrature

error exhibits worst case quadratic and linear convergence, respectively, under the

assumption that the locations of the breakpoints do not coincide with any of the

sample points, and that the quadrature rule uses two or more samples. While the

assumption of two or more sample points covers many popular types of quadrature

schemes (e.g., Newton-Cotes, Gaussian), it does not apply to two commonly used

methods based on a single sample: Riemann quadrature and the midpoint rule.

Neither of these rules will enable faster convergence; however, since, in the best

case as applied to smooth functions, Riemann quadrature exhibits worst-case linear

convergence and the midpoint rule exhibits worst case quadratic convergence.
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6.3.2 Composite Quadrature of Piecewise-Smooth Segments

In practice, the volume rendering integral along a ray is evaluated by breaking

up the domain into N subintervals and then applying an n-point quadrature rule to

each subinterval. Consider the quadrature of a smooth function (i.e., there are no

breakpoints) on [A,B] where the size of each subinterval is specified as h = (B−A)/N .

If we use a quadrature rule with a local truncation error of O(hn) for each interval,

then the overall error of this composite rule is given by:

E =
N∑
i=1

Oi(h
n) = NO(hn) = O(hn−1) (6.27)

where Oi represents the order of the error in the ith subinterval. In contrast, consider

a function that is not smooth and consists of N1 intervals containing no breakpoints

and N2 intervals containing a single breakpoint. From the analysis above, we can see

that the composite error will be

E =

N1∑
i=1

Oi(h
n) +

N2∑
i=1

Oi(h
m) (6.28)

where m = 2 if the interval contains a single breakpoint, and m = 1 if it contains two

or more. Therefore, the convergence of the entire integral is of order m.

The practical meaning of this result is that, when evaluating the volume rendering

integral, if we can detect that a breakpoint exists along the ray, then it is sufficient to

use the trapezoidal rule to evaluate the integral. Using methods designed for higher-

order convergence will not produce faster convergence and may introduce additional

error due to unnecessary floating point calculations.

To illustrate, we present two examples. In Figure 6.1, we show the convergence of

several quadrature methods when applied to the function

f(t) =

{
−2t3 + 4t2 − t+ .688528 t ≤ 0.54

2t3 − 4t2 + t+ 1.311472 t > 0.54
(6.29)

which contains a single breakpoint at t = 0.54. Notice that Simpson’s rule and

Gauss-Legendre quadrature both exhibit second-order convergence, even though, in
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Figure 6.1. Convergence of composite quadrature methods when applied to a
function containing a single breakpoint, using error as defined in Equation 6.6.

all intervals except the interval with the breakpoint, they approximate the integral

exactly.

In Figure 6.2, we show the convergence of the volume rendering integral over a

synthetic field (described in Section 6.6) where each ray consists of a transfer function

with two breakpoints with a spacing of w = 0.2, 0.02, 0.002 between them. What we

see is that the image converges linearly while the sample spacing is large enough to

contain at least two breakpoints. Once the sampling falls below that threshold, the

anticipated second-order convergence is observed.

6.3.3 Quadrature of Smooth Segments

When the transfer function along a ray is smooth (i.e., does not contain any

breakpoints), we can take advantage of the structure of the high-order field to use

high-order quadrature to evaluate the volume rendering integral. Since the field is

defined by high-order polynomials in reference space, a natural choice of integration

method is Gaussian quadrature, which can exactly integrate a 2n−1 order polynomial

with n function evaluations. Since the field along the ray is only guaranteed to be

smooth, Gaussian quadrature will be unable to evaluate the integral exactly. The

resulting error can be reduced by subdividing the ray and using Gaussian quadrature
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Figure 6.2. Convergence rates for transfer functions with closely-spaced breakpoints
(spacing indicated by w). Second-order convergence is only possible when every
quadrature interval contains at most one breakpoint. The closer the breakpoints, the
longer it takes to converge to a pixel-exact image.

on each subinterval. The disadvantage of this approach is that the points from the

subintervals do not coincide with the original evaluation points, requiring additional

samples at all points each time a subdivision is performed.

Since we would like high-order convergence combined with the reuse of sample

points, we turn to Gauss-Kronrod quadrature [29]. This method consists of an n

point Gaussian quadrature estimate, followed by an n + 1 point Kronrod extension,

for a total of 2n + 1 function evaluations. This rule is exact for polynomials up to

degree 3n+1. Since the field along the ray is smooth, we can obtain an error estimate

by looking at the difference between the n point Gaussian rule and the 2n+1 Kronrod

extension.

6.4 Evaluation of the Volume Rendering Integral

We now discuss how we apply the concepts from the previous section to evaluate

the volume rendering integral along a ray.
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6.4.1 Empty Space Skipping

Empty space skipping is an important acceleration technique that has shown

considerable performance improvements on data sets where sampling is cheap, such as

voxel-based volumes where sampling involves trilinear interpolation. Space skipping is

even more important in the context of high-order volume rendering because sampling

the field is considerably more expensive. Recall from Section 6.1 that sampling a point

requires the numerical inversion of the mapping function Φ as well as the evaluation

of a high-order polynomial. Therefore, performance improvements can be realized

by accurately detecting segments along the ray that do not contribute to the volume

rendering integral.

Empty space skipping is performed on a ray segment in which τ is zero along the

entire segment, which indicates that the segment does not contribute to the volume

rendering integral. The performance implications of this optimization are dependent

on the nature of the high-order field and of the transfer function. Transfer functions

that classify large portions of the range of the scalar field will not need to skip many

sections, while transfer functions that classify only targeted segments of the field will

see performance improvements.

6.4.2 Occlusion Only

We evaluate occlusion only when the density transfer function has a value (τ ∈
PS∨τ ∈ S) and the color transfer function is zero along the ray (κ ∈ E). In this case,

we do not need to evaluate the outer integral, as there is no emissive component to the

volume rendering integral. We do, however, need to evaluate the accumulated opacity

along this segment. We do this by using the trapezoidal rule if the transfer function

is piecewise-smooth, and Gauss-Kronrod quadrature if it is smooth, as discussed in

Sections 6.3.2 and 6.3.3.

6.4.3 Evaluating the Outer Integral

For all remaining cases, we must evaluate both the inner and outer integrals,

as both the density and color transfer functions contribute to the final color. The

convergence rate of the outer integral depends on the type of quadrature chosen for

the outer and inner integrals. To see why this is the case, let Qn be the quadrature
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rule used for the outer integral with error O(hn), and Im be the quadrature rule used

for the inner integral, with error O(hm). Evaluating the outer integral using Qn gives:

∫ b

a

f(t) dt =
∑
i

(wif(ti) +O(hm)) +O(hn). (6.30)

The term O(hm) in the summation comes from evaluating the inner integral on [a, ti]

using quadrature rule Im. This constrains the convergence of the outer integral to be

no greater than the convergence of the inner integral.

If either κ or τ are piecewise-smooth, then the entire outer integral will have either

second- or first-order convergence, depending on the location of the breakpoints.

Therefore, even if one of κ or τ is smooth, we use the trapezoidal rule to evaluate

both the outer and inner integrals. This has the added benefit of using the same set

of sampling points for both integrals, reducing the overall number of computations

required.

If κ and τ are both smooth, then we can obtain high-order convergence by applying

Gaussian quadrature to both the outer and inner integrals. In practice, however, this

does not work very well, since the evaluation points of the outer integral do not, in

general, correspond to the points required to evaluate the inner integral. So, for each

sample ti in the outer integral, we would need to resample all points to evaluate the

inner integral, which negates the anticipated performance improvements of high-order

quadrature. We therefore evaluate the outer integral using Gaussian quadrature, but

evaluate the inner integral using the trapezoidal rule. While this limits us to first-

or second-order convergence, we show in Section 6.6.1 that it does give us better

accuracy for a given number of samples.

6.4.4 Adaptive Quadrature

From the analysis presented above, we cannot expect to achieve better than

second-order convergence when evaluating the volume rendering integral. A natural

next step is to consider using adaptive quadrature to both reduce the number of

samples required to evaluate the integral, and to generate pixel-exact images through

the use of error estimators. This approach is especially appealing considering that
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transfer functions are often designed to ignore portions of the scalar field to allow

the user to focus on features of interest. Transfer functions that do this contain one

or more segments, τ(s) = 0, s ∈ [smin, smax], where the transfer function does not

contribute to the integral’s result. By using adaptive quadrature, we hope to avoid

sampling these areas, and instead concentrate our samples on the portions of the

transfer function that do contribute to the result.

Using adaptive quadrature, pixel-exact images are generated by refining the inte-

gral until the error estimate falls below the tolerance required for pixel-exact images.

Since there are 256 color levels for each channel in a standard 24-bit color image, we

consider each color channel to be pixel-exact once the estimated error in the channel’s

integration falls below 1/256 = 0.0039. To provide a buffer against underestimation

of the error, we use 0.001 as our threshold for a pixel-exact image. Therefore, when

an adaptive volume rendering has been performed, the resulting image can be known

to be pixel-exact and, because we were able to sample adaptively, we are also able to

reduce the number of samples required to generate the image.

We attempted several implementations of adaptive trapezoidal quadrature on

the GPU and, in each case, we found that we were able to reduce the number of

samples required to evaluate the integral and generate pixel-exact images. This

came, however, at the cost of an overall increase in image generation time. In

some cases, execution time doubled when using adaptive quadrature compared to

nonadaptive quadrature, even though adaptive quadrature reduced the number of

samples required. This performance result can be attributed to the GPU architecture

we are using. When using Cuda for sampling the field, the simple trapezoidal rule

with constant spacing h between samples can be implemented efficiently by first

loading the basis functions into memory, then evaluating each of the samples in

parallel. With adaptive quadrature, however, we interfere with the GPUs ability to

evaluate the samples in parallel. At each step in an adaptive quadrature algorithm, we

must determine if the current segment of the ray meets our predetermined accuracy

requirements and, if it does not, subdivide the segment in a recursive manner until it

does. In this manner, even though we may be evaluating fewer samples overall, our

GPU is not working as efficiently as it could, and the overall execution time is slower.
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At this time we have not found a way to perform adaptive quadrature on the

GPU in a way that improves performance. The methods we have tried are able to

reduce the number of samples taken at the expense of increased execution time, which

defeats the purpose of reducing the number of samples required. So while adaptive

quadrature is an attractive approach in principle, we have not yet found a feasible

implementation.

6.5 Implementation

The implementation of the algorithm shown in Algorithm 2 is done using a

combination of OptiX and Cuda. The OptiX ray tracer is responsible for traversing

the volume on an element by element basis. During each iteration, it stores the

current element and the entrance and exit points [ta, tb] for the element along the

ray. Our initial implementations evaluated the volume rendering integral in OptiX

as well. This was problematic for two reasons. First, the code necessary to perform

the ray-tracing is compiled by the OptiX engine at runtime. The code for evaluating

the volume rendering integral resulted in runtime initialization times on the order of

10 to 20 minutes. Secondly, and more importantly, evaluating the volume rendering

integral in OptiX prevented us from using the GPU to its fullest extent. In particular,

we have been able to achieve better performance by using shared memory, which is

unavailable for use within an OptiX kernel.

Once the ray tracer has completed, a Cuda kernel is launched to evaluate the

volume rendering integral on each ray segment. The kernel needs to be able to access

the data stored by the OptiX program, but the current Cuda implementations do not

allow for the direct sharing of memory between Cuda contexts (OptiX is built on a

Cuda context). While memory can be copied from OptiX to main memory, and them

from main memory to the Cuda integration context, this is far too expensive for our

interactivity requirements. Therefore, to share data between the OptiX and Cuda

contexts, we create OpenGL pixel buffer objects to store the intersection points and

element information. This approach requires the active GPU to be connected to a

display to achieve best performance. If the active GPU is not connected to a display,

such as is the case for GPUs used primarily for their computational capabilities, then
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the pixel buffer object will be allocated on a GPU connected to a display. When the

pixel buffer is used in either the OptiX or Cuda context, it is first copied to the active

GPU, resulting in a significant performance loss.

The Cuda module then evaluates the volume rendering integral as described in

Section 6.2. The loop continues until all rays exit the volume.

6.6 Results

We illustrate the utility of our algorithm, both in terms of the accuracy of the

generated images and its performance characteristics, by using it on three different

data sets. The first data set consists of a single, axis-aligned hexahedron with

extents [−1,−1,−2] − [1, 1, 4] and spherical field f(x, y, z) = x2 + y2 + z2. This

data set provides a good baseline upon which we can evaluate the accuracy of our

implementation. The other data sets are the flow scenarios presented in Section 5.2.

All tests were performed on a desktop workstation equipped with an NVIDIA Tesla

C2050 GPU and Intel Xeon W3520 quad-core processor running at 2.6 GHz. We used

OptiX Version 2.1.1 and Cuda Version 4.0, using 32-bit floating point precision for all

code executed on the GPU. Performance when using 64-bit precision varies depending

on the card.

6.6.1 Convergence Results

The goal of our system is the generation of pixel-exact images. The convergence

graphs shown in this section were obtained by first generating a pixel-exact image,

then comparing this image to the images created with varying values of sample

spacing. The error metric we used is the largest difference between pixel values over

the image: Max|Ir(x, y)−Ih(x, y)|, where Ir(x, y) is the pixel in the pixel-exact image

at position (x, y), and Ih(x, y) is the pixel in the image generated with sample spacing

h. We compare this overall image error to the total number of samples required to

generate the image.

We start by verifying the theoretical convergence of our method by using the

spherical synthetic data. We use this data set because we can evaluate the volume

rendering integral accurately enough to guarantee a pixel-exact image, which we can

then use as a “gold-standard” against which to verify our method. Even for a field
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as simple as this one we are unable to create an analytic expression for the volume

rendering integral. However, by placing the field in an axis-aligned hexahedron, we

know that the mapping function Φ from Section 6.1 is a linear transformation, which

means that the field along the ray will be quadratic.

Generation of the pixel-exact image proceeds as follows. We start by generating

a ray for each pixel. In this special case where we know the field along the ray

is quadratic, we can numerically find the location of each breakpoint along the ray

to obtain a list of ray segments with no discontinuities (similar to what is done

by Williams et al. [64]). We then evaluate the outer integral using Gauss-Kronrod

quadrature. At each of the sample points in the outer integral, we use Simpson’s rule

to evaluate the inner integral exactly. After evaluating all of the points in the outer

integral, we use the Gauss-Kronrod error estimator to determine if we have achieved

a pixel-exact image. We have found that for this simple data set, the 15-point Gauss-

Kronrod rule approximated the volume rendering integral well below the pixel-exact

error threshold.

We then generated visualizations using Riemann integration (which is representa-

tive of the types of integration performed by most existing volume rendering systems)

and our system to verify the expected convergence rates.

Results are shown in Figure 6.3(a). As expected, Riemann quadrature converges

linearly, while our method exhibits second-order convergence. Not only does our

method exhibit higher-order convergence than Riemann quadrature, the resulting

image is also more accurate for a given number of samples.

We next test our convergence on the canister data set for which we cannot calculate

the volume rendering integral exactly. Since we do not have an analytic solution, we

create the pixel image by refining the sampling size until the resulting image no longer

changes. We show convergence results for both Riemann quadrature and our method

in Figure 6.3. We can see that we achieved the expected second-order convergence,

and that our method always returns an image with less error than the image produced

using Riemann integration.

Finally, we illustrate the benefit of using high-order quadrature for the outer

integral when possible. We applied a transfer function to the sphere data set in which



65

101 102 103 104

10−5

10−3

10−1

101

Linear

Quadratic
Pixel-Exact

Average Number of Samples per Pixel

M
ax

E
rr
or

Riemann - Sphere
Riemann - Canister
High Order - Sphere
High Order - Canister

(a)

101 102 103
10−9

10−7

10−5

10−3

10−1

Quadratic

Average Number of Samples per Pixel

M
ax

E
rr
or

Gauss-Kronrod
Trapezoidal

(b)

Figure 6.3. Convergence rates for different integration schemes. (a) - Comparison
of convergence rates between Riemann integration and our high-order method. Our
method converges to the pixel-exact image an order of magnitude faster than simple
Riemann integration. (b) - Comparison of using Gauss-Kronrod quadrature to
evaluate the outer integral of the sphere data set versus trapezoidal rule.
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neither the density function nor the color transfer function contained breakpoints. As

discussed in Section 6.4.3, we expect second-order convergence in this case. In Figure

6.3(b), we compare evaluating the volume rendering integral using Gauss-Kronrod

quadrature and the trapezoidal rule for the outer integral. As expected, both methods

converge quadratically, but by using Gauss-Kronrod quadrature for the outer integral,

we are able to obtain a more accurate image for a given number of samples. In fact,

for a given level of accuracy, we see that the Gauss-Kronrod approach uses an order

of magnitude fewer samples.

6.6.2 Visual Comparisons

To understand the practical impact of our algorithm, we must not only understand

the improved convergence rates discussed in the previous section, but also see if it

is capable of producing a noticeably better image than existing algorithms when

given the same amount of time with which to generate the image. To illustrate the

effect our algorithm has on image generation, we created two images from each of

the data sets described above: the canister (Figure 6.4) and the block and splitter

plates (Figure 6.5). In each test, the image generated by our algorithm is compared

to the image generated by evaluating the volume rendering integral using Riemann

integration with evenly spaced samples. The transfer function for all tests is designed

to display three semi-transparent isosurfaces.

Observe that, in both tests, our method is able to produce noticeably better

images for a given number of samples and execution time. The images produced by

Riemann integration suffer from banding and other artifacts associated with insuffi-

cient sampling, artifacts that do not appear in the images generated by our method.

6.6.3 Performance

While the primary focus of our system is on accuracy, we posit that it must also

be interactive to be useful. We define interactivity as achieving rendering speeds

of at least one frame per second. Overall, our system is capable of achieving these

interactive frame rates for images of up to 512×512 pixels. For images larger than this,

our system reduces the sampling rate during user interaction to maintain interactivity,

and then generates the full, accurate image when user interaction has stopped.
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Figure 6.4. Volume rendering of the pressure of a high-order finite element solution of
fluid flow past a rotating canister. (Top) - Image generated using Riemann integration
and 60 million equally-spaced samples. (Bottom) - Image with improved accuracy
generated using the algorithm presented in this paper using the same number of
samples. Both images rendered in three seconds for a 1720× 860 image.
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Figure 6.5. Image quality comparison between Riemann sum evaluation (top) and
our algorithm (bottom) for the block and splitter plates data set. Both images were
generated using 140 million samples and rendered in two seconds for a 1600 × 800
image. Notice the banding present in the top image, which is an indication of
insufficient sampling resolution.
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The execution speed of our system is influenced by several factors: the desired

sample spacing h along a ray, the overall image size, the polynomial order of the

high-order data set, and the number of elements in the data set. To investigate the

impact of each of these factors, we have performed experiments where we varied one

of these parameters while holding the others constant.

In Figure 6.6, we show the performance of our system based on the number of

samples used to evaluate the volume rendering integral. Performance scales linearly

with the number of samples. Combined with the convergence analysis from Section

6.6.1, we see that we can generally expect to double execution time to reduce the error

by four. In Figure 6.7, we show performance as a function of image size. Finally, in

Figure 6.8, we show performance based on the polynomial order associated with each

direction. While the time required does grow quickly with order, in practice volumes

are rarely higher than 6th − 8th order per direction.

Of these parameters, we have control over h and the image size, but we do not

have control over the number of elements or their order, as these are established by

the engineer creating the simulation and are domain specific.
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Figure 6.6. Time in seconds to render volumes based on number of samples required
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6.7 Summary

We have presented a new technique for evaluating the volume rendering integral

in high-order finite element fields which addresses the often contradictory goals of

image accuracy and interactive performance. This system uses the high-order data

in its native form, thereby avoiding the approximation errors that are present when

sampling onto voxel-based data structures. We have shown that, while the worst

case convergence of our system is the same as that of simple Riemann integration,

we generally achieve second-order convergence and are capable of producing images

with less error for a given number of samples when compared to existing methods.

By reducing the number of samples used to generate accurate images, we have been

able to develop a system that can produce volume rendering images of high-order

data efficiently on a desktop system.

Although our algorithm is capable of generating pixel-exact images via adaptive

integration, we found that technical limitations made it far from interactive and

unsuitable for general use. We are currently investigating new ways in which adaptive

integration of the volume rendering integral can be framed in the context of GPU

computation to restore the lost performance.



CHAPTER 7

THE ELEMENT VISUALIZER (ELVIS)

To address the accuracy and performance issues raised in the preceding chapters,

we need an integrated visualization system that is designed specifically for high-order

finite element solutions. Specifically, such a system must have the following features:

• Extensible Architecture: To support data originating from any high-order

simulation, the system’s visualization algorithms should be decoupled from

the data representation, allowing them to change independently of each other.

The advantage of this approach is that the visualization algorithms can be

improved as new techniques and algorithms are developed, while engineers are

free to choose whatever basis functions are most appropriate for the scenarios

under investigation. This architecture enables the system to support methods

currently in use, as well as methods that have not yet been developed.

• Accurate Visualization: To avoid introducing error into the visualization, the

high-order system must work with the high-order data directly. Specifically, the

system must be able to evaluate the solution at arbitrary locations in the domain

to machine precision. The system must also support visualization methods

that have been developed based on the a priori knowledge that the data was

produced by a high-order finite element simulation. These methods will ideally

make use of the smoothness properties of the high-order field on the interior

of each elements, while respecting the breaks in continuity that may occur at

element boundaries.

• Interactive Performance: In terms of computational resources required,

using the high-order data directly carries significantly higher costs than using

simpler linear approximations. While a high-order system is not expected to
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provide the same level of performance as its linear counterparts, it should

provide an interactive experience on a standard desktop workstation (i.e., it

should not require expensive, special purpose hardware).

In this chapter we describe the Element Visualizer (ElVis), a new high-order

finite element visualization system that meets the requirements listed above. We

demonstrate ElVis’ utility by using it to visualize finite element simulations produced

by ProjectX, which is a general-purpose PDE solver with an emphasis on aerospace

applications [15, 44, 10, 68, 67] developed at the Department of Aeronautics and

Astronautics at MIT. Specifically, we will consider the visualizations necessary during

the debugging and verification processes of model generation.

7.1 Overivew

ElVis is designed to provide visualization tools that are broadly applicable to

any high-order finite element solution. ElVis’ implementation is generic and aims to

decouple the implementation of the visualization from the implementation of the

high-order basis functions. ElVis achieves this goal through the use of plugins,

which provide a simplified interface to the high-order data by exposing the minimal

amount of functionality required to generate a visualization. In this way, it is broadly

applicable to a wide variety of simulation products, and gives each product wide

latitude on how it behaves behind the scenes. We discuss plugins in more detail in

Section 7.2.

Once the data is accessible to ElVis through a plugin, ElVis can perform the

required visualizations without knowledge of the details of the underlying simulation.

ElVis’ visualization algorithms focus particular attention on the two often competing

goals of image accuracy and interactive performance. Image accuracy is obtained by

devising high-order specific versions of common visualization strategies (cut-surfaces,

isosurfaces, and volume rendering). Performance is achieved by careful implementa-

tion of these algorithms as parallel algorithms on a NVIDIA GPU, using the OptiX

[45] ray-tracing engine and Cuda [2] as the framework. We present more details about

ElVis’ visualization capabilities in Section 7.3.



74

7.2 Extensibility Module

One of the fundamental challenges of creating a general-purpose visualization

system for high-order finite element simulations is that there is no single set of basis

functions that is appropriate in all simulation settings. Therefore, each simulation

system chooses the basis that is most suited for the problems at hand. This means

that ElVis cannot be implemented in terms of any specific basis and expect to used

with arbitrary simulation systems. One way this can be addressed is to require users

of each simulation system to first convert their data into ElVis’ native file format,

which is a tedious, error-prone process that requires significant understanding about

the details of the target format.

The Extensibility Module addresses these issues by providing a plugin interface

that acts as a bridge between the visualization system and the simulation package.

The module accepts plugins written in one of two ways, each providing different

trade-offs as described below. The first type of plugin is the runtime plugin, which

provides an interface for ElVis to interactively query the simulation data on both the

CPU and GPU. The second plugin type is the data conversion plugin, which is used

to convert a data set from the format used by the simulation package to the format

used by ElVis’ default plugin, the Nektar++ extension [3].

The advantage of a runtime plugin is that ElVis is able to operate directly on the

high-order data, without needing to resort to an intermediate representation. The

downside is that it can require a significant amount of coding, especially for those

cases where the basis functions are not implemented in a C-like language. This type

of program also requires some familiarity with GPU programming: OptiX and Cuda

in particular.

Data conversion plugins have the advantage of requiring far less code than a

runtime plugin. In most cases, the only necessary functionality is translating the

data requested by ElVis into a form understood by the simulation. This type of

plugin must be written in C++, but does not require any GPU programming. The

downside is that this plugin will introduce error if the simulation’s data cannot be

represented with polynomials.
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7.2.1 Data Conversion

The purpose of the data conversion plugin is to convert fields and geometry from

the format used by the simulation package into the native Nektar++ format used by

ElVis. The Nektar++ data format is supported through a default runtime plugin

(described below) that is distributed with ElVis as a reference implementation for

the development of plugins for other simulation systems. Nektar++ uses a polynomial

basis to represent its data. Therefore, if the simulation’s basis is also expressed

in terms of polynomials, even polynomials of a different form, no projection error,

beyond that of floating-point rounding error, is introduced in the conversion.

The data conversion plugin requires two core inputs: a collection of elements (as

described in Section 3.1), and one or more scalar fields. The bridge between ElVis

and user code is contained in a collection of methods designed to obtain information

about the data set and evaluate the scalar fields at arbitrary points in the domain. It

is anticipated that, in implementing these methods, programmers will be responsible

for translating from ElVis’ API to the simulation’s data representation, and will not

need to reimplement any existing functionality. It is this feature that provides one of

the primary advantages of the data-conversion plugin—the minimal amount of code

required to implement it.

Projection of the data then occurs as follows. First, ElVis queries the plugin to

obtain information about the each element’s type (e.g., hexaheron, tetrahedron) and

the desired polynomial order of the converted data set. For simulations already using

a polynomial basis, this can be chosen so that the projection introduces no error

beyond floating-point rounding errors. For other bases, it can be set to the level

needed to meet the desired accuracy requirements. ElVis then queries the plugin to

determine if the resulting projection should be represented using functions that are

continuous or discontinuous at element boundaries. Finally, ElVis samples the field

at a collection of points determined by the choices made in the previous steps and

creates the projected data set.

The advantages of this approach when compared to runtime plugins (described

below) are that they will generally require less coding and, once the conversion is

done, ElVis will have no runtime dependencies on the simulation package. Another
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advantage is that ElVis handles all of the details about file formats and data storage—

the plugin is only responsible for sampling the solution. The downside is that the

native internal format represents fields and geometry as the tensor product of one-

dimensional polynomials [24]. Therefore, data sets from simulation packages where

fields are represented by nonpolynomial basis functions cannot be represented exactly,

so this approach will introduce projection errors into the visualization. Another

disadvantage is that simulations using nonstandard elements do not fit the input

requirements described above and cannot be converted.

7.2.2 Runtime Plugins

Runtime plugins are loaded into ElVis each time it is run; they provide access to

a simulation’s data during the rendering process. The data can be accessed directly

in the format used by the simulation without the need to convert formats first.

However, implementing a runtime plugin requires significantly more code than the

data conversion approach, and it also requires a working knowledge of both OptiX and

Cuda. All of ElVis’ visualization algorithms are implemented on the GPU; therefore,

all runtime plugins must provide a means to access data fields on the GPU.

A runtime plugin consists of three components:

• Volume Representation Component: This component is responsible for

reading a volume on the CPU and then transferring it to the GPU. ElVis

imposes only one restriction on the way in which the volume’s data is represented

and accessed on the GPU, leaving the choice of optimal implementation to

the extension. The sole requirement is that the data be accessible to the

OptiX-based ray tracer through a specially named node in the ray tracer’s

scene graph.

• Volume Evaluation Component: All of the visualization methods described

in the next section require the ability to evaluate a high-order field and its

gradient at arbitrary locations within an element. These functions must be

implemented on a GPU and will be called a large number of times for each of

the visualization methods discussed in the next section, so extra care must be

taken to ensure that they are as efficient as possible.
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• Ray-Tracing Component: Finally, the ray-tracing component connects the

OptiX portion of ElVis to the simulation data. This component is not re-

sponsible for handling the high-level mechanics of the ray tracer; however, it is

responsible for providing some of the primitives used by ElVis to perform the

ray-tracing. Examples include providing ray-element intersection tests, element

and element face bounding box procedures, and tests for whether a point is

located in an element.

7.3 Supported Visualizations

In this section, we discuss the visualization methods that are available in ElVis.

7.3.1 Surface Visualization

ElVis supports the rendering of an arbitrary number of cut-planes and surfaces, of

which the curved faces lying on domain boundaries are common choices. In Figure 7.1,

we show an example of the pressure field on an ONERA M6 wing (see Section 7.4.3

for details) and on a plane cutting through the wing. A color map is applied and

contour lines are plotted on the wing’s curved surface and on the cut-plane’s flat

surface.

ElVis also has the ability to plot the intersection of the 3D mesh and a surface

through an extension of the contouring algorithm discussed above. It is often useful

to see the mesh on a surface to verify that the mesh has been generated correctly,

Figure 7.1. Density field on the ONERA M6 wing (Section 7.4.3), rendered using
ElVis, illustrating the application of color maps and contours on curved and planar
surfaces.
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as well as to aid in debugging. Oftentimes features may appear in the visualization

that appear out of place, but turn out to be reasonable if they occur next to a mesh

boundary. An example of such a feature is a discontinuous contour line in a DG field.

In this scenario, a break in the contour is expected at element boundaries, but not

in the interior of the element. Further examples that apply the meshing tool can be

found in Section 7.4.

7.3.2 Isosurfaces

An advantage this method has over existing object-space methods is that it

respects the features of the high-order data. In particular, unless care is taken,

object-space isosurfacing methods such as marching cubes can miss valid features

of DG simulations, such as discontinuities across element boundaries that can cause

cracks in the isosurface, and isosurfaces that exist entirely within an element. An

example of this can be seen in Figure 7.2, where we plot an isosurface of the Mach

number for the delta-wing simulation described in Section 7.4.3.

Figure 7.2. Isosurface of Mach number 0.1919 for the delta wing simulation (Section
7.4.3), showing the development and roll up of the vortex structures along the leading
edge and downstream of the wing. Note the crack in the surface arises because the
underlying solution is from a DG method.
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7.3.3 Combining Visualizations

A constant challenge for high-order visualization is the computational cost of

each of the algorithms described above. This comes from the cost of sampling a

high-order field (primarily the cost of converting world points to reference points

and evaluating the field) and the cost of traversing the volume with a ray (where

ray-element intersections can be of high-order and require expensive, iterative root

finding procedures). Several of the visualization algorithms above have been shown to

be interactive while maintaining accuracy when applied in isolation; but combining

these visualization methods into a single image without taking into account their

interactions leads to slow performance.

Instead, when multiple visualization methods are used in a single image, we setup

a system of communication and sharing between modules to minimize the cost. Some

optimizations include:

• Sample sharing: When a ray intersects a surface and takes a sample, we use

the information from that sample to draw the mesh and generate color maps

and contours without the need for additional rays.

• Occlusion sharing: Of the algorithms listed above, volume rendering and

isosurface generation are significantly more expensive than the rendering of

surfaces. Therefore, we render the surfaces first and obtain depth values for

each pixel corresponding to the location of the intersection. During isosurface

generation and volume rendering, we terminate the mesh traversal portion of

the algorithms once we have reached the occluding structure.

• Mesh traversal sharing: Mesh traversal is an expensive operation, especially

when curved element faces are involved. To aid performance during both

isosurface and volume rendering, each ray moves from element to element,

evaluating the isosurface and volume rendering integral for each segment before

moving on to the next segment.
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7.4 Results

This section demonstrates the capabilities and advantages of ElVis through several

examples. Our examples are taken largely from engineering problems solved or being

worked on with ProjectX; some examples were toy problems designed to demonstrate

specific capabilities. The following subsection describes the sources of our examples,

enumerated as series of cases. Then we show results and comparisons with current

visualization “best-practices” used by ProjectX developers.

7.4.1 ProjectX

All results generated in this section are from solutions produced by the ProjectX

software. The results considered in this paper arise from solutions of the compressible

Navier-Stokes and RANS equations. ProjectX implements a high-order DG finite

element method; DG features relevant to visualization were discussed in Section 3.1.

It also strives to increase the level of solution automation in modern CFD by taking

the engineer “out of the loop” through estimation and control of errors in outputs

of interest (e.g., lift, drag) [15, 68]. Solution automation is accomplished through an

iterative mesh optimization process, which is driven by error estimates based on the

adjoints of outputs of interest [67].

We have worked closely with ProjectX engineers to endow ElVis with visualization

and interface features that they would find useful. Visualization has great potential

to aid ProjectX developers’ ability to understand and analyze their solutions. It has

perhaps even greater application in the realm of software debugging, where visual

accuracy is of the utmost importance since it is often difficult to discern visual artifacts

from genuine or erroneous (i.e., a result of a software bug) solution features. As we

will discuss below, to date, visual inaccuracies in their current software have often

inhibited ProjectX engineers’ analysis and debugging efforts.

7.4.2 Comparison of Visualization Software

ProjectX developers currently use Visual3 [20, 19] to examine and attempt to

understand their solution data. The reasons are simple: Visual3 is freely available,

can deal with general (linear) element types, is extendable and there is local knowledge

of this software. Visual3 supports a number of usage modes; e.g., cut-planes, surface
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rendering, surface contours, isosurfaces and streamlines/streaklines.1 ProjectX de-

velopers use Visual3 to explore their solution data and to support debugging of all

aspects of their solver.

At present, Visual3 is rather dated and more modern methods (e.g., those dis-

cussed in Chapter 2) exist. Visual3 is a complete, well-tested, and thoroughly-

documented application with a functional GUI and a clearly-specified API. Cutting-

edge visualization software often lack these features. Moreover, until recently, native

high-order visualization on commodity hardware was not possible. Ultimately, Pro-

jectX developers are not members of the visualization community; they do not have

the time or expertise to dedicate towards turning prototype software and technology

demonstrators into full-fledged visualization systems. As a result, ProjectX develop-

ers continue to use Visual3 since it is a robust and familiar tool.

Visual3 operates on a set of linear shape primitives (tetrahedron, hexahedron,

pyramid, and prism). The solution data and computational mesh must be transferred

onto these linear primitives (via interpolation) for visualization to occur. Although

originally designed for continuous fields, Visual3 can handle discontinuous data (e.g.,

from discontinuous Galerkin solutions) by duplicating multivalued nodes. However,

since ProjectX produces high-order solutions on curved meshes, some error is intro-

duced through the linear interpolation. To decrease visualization error, each individ-

ual element of the visualization mesh can be uniformly refined2 (in the reference space)

a user-specified number of times. Since the primary use is for data exploration where

areas of interest are not known beforehand, it is not possible to avoid the expense of

refinement. The computational time and storage requirements grow at a rate of 8n,

where n is the refinement level. Because of this, ProjectX developers typically use zero

or one level of refinement. In this paper, two levels of refinement are performed in some

cases for the sake of comparison. However there is usually insufficient memory for

1Visual3 does not support volume rendering, so no comparisons will be made with that ElVis
capability.

2Adaptive refinement is another option that potentially uses resources more efficiently. Such
schemes are typically driven by some error criteria, but the mesh adaptation scheme used by ProjectX
ensures that all elements have roughly equal data complexity. Thus, adaptive schemes were not
applied here.
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three levels of refinement on our typical workstations; additionally in the ever-larger

simulations run by ProjectX developers and users, two levels of refinement is often

infeasible as well.

7.4.3 Simulation Examples

We preface this subsection by noting that the upcoming cases are all characterized

by quadratic geometry representations and cubic solution representations. These are

not limitations of ProjectX nor ElVis; rather, both pieces of software can handle

different order geometry and solution representations in different elements. However,

they are representative of cases being examined by ProjectX engineers at present.

Additionally, these relatively low polynomial orders present a “best case” for Visual3

in the comparisons to ElVis presented in this section. The differences that exist could

only become more pronounced at higher polynomial orders. In the fluid dynamics

cases discussed below, M∞ denotes the Mach number, Rec the Reynolds number with

respect to chord length, and α the angle of attack.

7.4.3.1 Simulation Case 1

This case is an isolated half delta-wing geometry with a symmetry plane run-

ning down the center chord-line of the wing. The case was originally proposed [30]

to demonstrate the efficacy of their adaptation strategy. Delta-wings are common

geometries for computational fluid dynamics (CFD) testing due to their relatively

simple geometry and the complexities involved in the vortex formation along the

leading edge of the wing and the subsequent roll-up of those vortices. The equations

being solved are the compressible Navier-Stokes equations. The flow conditions are

M∞ = 0.3, Rec = 4000, and α = 12.5. The solution was obtained through ProjectX,

using an output-adaptive automated solution strategy [67].

The delta-wing geometry is linear. The computational mesh consists of 5032

linear, tetrahedral elements with 10434 total faces (linear triangles). The solution

was computed with cubic polynomials.
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7.4.3.2 Simulation Case 2

This case is an isolated ONERA M6 wing again with a symmetry plane running

down the center chord-line. NASA designed the wing originally with intent of studying

transonic flow phenomena with wind tunnel testing, and it has since become a popular

CFD validation case [49]. We are presenting a subsonic, turbulent flow over the same

geometry (transonic was not available). The flow conditions are Rec = 11.72 × 106,

M∞ = 0.3, and α = 3.06. The flow is fully turbulent; the RANS equations are

being solved with the Spalart-Allmaras model for closure. As before, the solution

was obtained using ProjectX.

The computational mesh consists of 70,631 quadratic elements with 146,221 faces

(quadratic triangles); meshing limitations restrict us to a quadratic geometry repre-

sentation. The solution polynomials are cubic.

7.4.3.3 Simulation Case 3

This case is toy example meant to demonstrate the mesh-plotting capability of

ElVis. The geometry is a hemisphere. The mesh is composed of 443 quadratic

tetrahedra with 1,037 faces (quadratic triangles). Case 2 also uses curved elements,

but the curvature is almost unnoticeable except on boundary faces. This mesh has

noticeably curved elements away from the geometry as well.

The mesh is too coarse to produce any meaningful solutions. Element-wise con-

stant data are presented because monochrome images make the geometry harder to

see.

7.4.3.4 Simulation Case 4

This case is another toy example designed to show how ElVis can display negative

Jacobians naturally. “Real” computational meshes with negative Jacobians are not

usable; as a result these are discarded. Thus it was simpler to create a one element

mesh with very obvious negative Jacobian issues. The mesh consists of one quadratic

tetrahedron with four faces (quadratic triangles). The tetrahedron has corners at

(0,0,0), (1,0,0), (0,1,0), and (0,0,1). The mesh was created by first placing quadratic

nodes at their locations on the linear element. Then the quadratic node at (0.5,0,0)
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was moved to (0.5,0,0.6), causing the element to intersect itself and leading to negative

Jacobians.

7.4.4 Visualization Accuracy

As discussed above, the primary motivation behind this work is the ability to

achieve accurate visualizations of high-order data. In this section, we demonstrate

ElVis’ accuracy, and describe how this enables ProjectX engineers to interpret and

debug their simulation data more effectively. In this subsection, we will present

examples demonstrating the superior visualization accuracy possible through ElVis

as compared to Visual3. Examples will be taken from surface renderings and contour

lines.

7.4.5 Surface Rendering

We begin with visualizations of the leading edge of the delta wing at the symmetry

plane, which we show in Figure 7.3. The black region is the airfoil at mid-span; the

wing is not plotted so that it does not occlude any of the details of the boundary layer.

This set of figures compares the pixel-exact rendering of ElVis to linearly-interpolated

results from Visual3. For comparison, Visual3 results are posted with zero, one, and

two levels of uniform refinement.

As rendered by Visual3 with zero refinements (Figure 7.3(b)), the characteristics

of the solution are entirely unclear. The boundary layer appears wholly unresolved

and severe mesh imprinting can be seen. It is not clear whether the apparent lack

of resolution is due to a poor quality solution, bugs in the solver, or visualization

errors. Even at one level of refinement (Figure 7.3(c)), the Visual3 results are still

marred by visual errors. Again, mesh imprinting is substantial and the thickness of

the boundary layer is not intelligible.

The Visual3 results continue to improve at two levels of refinement (Figure 7.3(d))

with the rough location of the boundary layer finally becoming apparent. But mesh

imprinting is still a problem, and engineers could easily interpret this image as the

result of a poor quality solution. Only the ElVis result (Figure 7.3(a)), clearly

indicates the location of the boundary layer and clearly demonstrates where solution

quality is locally poor due to insufficient mesh resolution. Although not shown here,
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(a) ElVis (b) Visual3 Zero Refinements

(c) Visual3 One Refinement (d) Visual3 Two Refinements

Figure 7.3. Plotting mach number at the leading edge of the delta wing (Case 1) at
the symmetry plane with ElVis (a) and Visual3 using zero (b), one (c), and two (d)
levels of refinement.

distinct differences, similar to the effects at the leading edge on the symmetry plane,

are also observed at the delta wing’s trailing edge and along its entire leading edge.

ProjectX developers were genuinely surprised at the difference between between

Figures 7.3(d) and 7.3(a). In fact, since users had only generated and viewed Fig-

ures 7.3(b) and 7.3(c) previously, the common misconception was that resolution at

the leading edge (and indeed in many other regions around the wing) was severely

lacking. Confidence in the solution accuracy arose from convergence analysis and the

fact that output values matched other published results.

However, had the ProjectX solver been subject to a software bug, engineers

expressed that they would have been hard pressed to interpret Visual3 results to

aid these efforts. Specifically, at zero or one level of refinement, the visualization

quality is so poor that developers are often unable to discern the precise source of

solution artifacts. Unfortunately, a misdiagnosis can lead to a great deal of time

wasted on a “wild goose chase.” As a result, visualization has not played as large a
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role as it could in debugging practices.

7.4.6 Contour Lines

For our next example, we illustrate the generation of contour lines. Contours

are useful visualization primitives since they, unlike color plots, limit the amount

of information being conveyed and allow for more detailed and targeted images. In

particular, it can be difficult to interpret the magnitude and shape of a field’s gradient

through color maps; this is much easier with contours.

In figure 7.4 we provide an overview of the scenario and indicate the location of

the cut-plane relative to the wing. In Figure 7.5, we show a comparison of contours

on a cut-plane behind the trailing edge of the delta wing. The images were generated

using ElVis and Visual3, once again using zero, one, and two levels of refinement for

the latter.

The images in Figure 7.5 reiterate the observations from the discussion of surface

rendering. With zero and one level of refinement (Figure 7.5(b) and 7.5(c)), most of

the contour lines produced by Visual3 are extremely inaccurate. These images do little

to illuminate the vortex structure they are trying to show. The situation improves

somewhat with two levels of refinement in Visual3 (Figure 7.5(d)), but substantial

errors remain. For example, the green contour running through the center of the ElVis

image is one contiguous structure, whereas it is split into two regions by Visual3.

Figure 7.4. A zoomed out ElVis generated image of the delta wing from Case 1
showing the location of the cut-plane used in Figure 7.5. The cut plane is located 0.2
chords behind the trailing edge of the wing.
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(a) ElVis (b) Visual3 Zero Refinements

(c) Visual3 One Refinement (d) Visual3 Two Refinements

Figure 7.5. Plotting mach number contours at the trailing edge of the delta wing
(Case 1). An overview of this scenario is shown in Figure 7.4, with a detailed view of
the contours on the trailing cut-plane generated by ElVis (a) and Visual3 using zero
(b), one (c), and two (d) levels of refinement. For visual clarity, we have modified
the contour lines produced by both systems so they are thicker than the default one
pixel width.
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Visual3 could eventually capture these features but substantially more refinements

could be required, leading to unacceptably high computational and memory usage

costs.

As before with surface rendering, the errors present in the Visual3 outputs at

all tested levels of refinement are too great to properly support visualization as a

debugging tool. With one and even two levels of refinement, the Visual3 images are

as colorful as those produced by ElVis, but nothing more. The resolution of vortex

structures like the one shown in Figures 7.4 and 7.5 is a prime candidate for the

application of high-order methods, because vortexes are smooth flow features. They

are also extremely common, arising as important features for lift and drag calculations

in any 3D lifting flow, amongst other things. Here, we are only showing a solution

with cubic polynomials; with the even higher polynomial orders that could be applied

to vortex flows, linear interpolation-based visualization methods will be even more

inadequate.

7.4.7 Curved Mesh Visualization

Following on the footsteps of the previous section on accuracy, it is impossible

to accurately visualize curved geometries with only linear interpolation techniques.

Here we will examine a mesh where highly curved elements can be seen clearly: the

hemisphere from Case 3. With zero levels of refinement (Figure 7.6(b)), the Visual3

results are not obviously hemispherical at all. Figures 7.6(c) and 7.6(d), showing

one and two levels of refinement respectively, provide successively greater indication

that the underlying geometry is in fact curved. However, without the color scheme

which helps outline true element boundaries (as opposed to boundaries generated

through refinement), typical Visual3 displays can make it difficult to discern which

computational element contains a particular point on the screen. This issue is further

compounded by the fact that curved elements are linearized.

Figure 7.6(a) does not have any of these issues. Produced by ElVis, this rep-

resentation accurately represents the curved surface. Engineers would be readily

able to localize particular flow features or artifacts to specific elements for further

investigation during debugging or analysis. ProjectX developers and users are given
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(a) ElVis (b) Visual3 Zero Refinements

(c) Visual3 One Refinement (d) Visual3 Two Refinements

Figure 7.6. A top-down view of the hemisphere form Case 3. The mesh plotting
tools of Visual3 and ElVis are enabled.
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easy and direct access to curved geometries and curved elements, capabilities that

were impossible using Visual3.

7.4.8 Negative Jacobian Visualization

Negative Jacobians can be extremely difficult to detect. In general, negative Ja-

cobians manifest in elements whose reference to world space mapping is not invertible

since it becomes multivalued. As a result, their presence can lead to severe stability

and convergence issues. In general, detecting negative Jacobians amounts to a multi-

variate root-finding problem of high-order polynomials. This procedure is very costly

and it is not practical to search every element. Instead, finite element practitioners

typically check for negative Jacobians at a specific set of sample points (usually related

to the integration rules used); unfortunately sampling is not a sufficient condition for

detection.

If negative Jacobians are suspected (e.g., through convergence failure of the solver),

visualization of problematic elements is a potential path for deciding whether Jaco-

bian issues played a role. At present, ProjectX developers have no way of directly

visualizing negative Jacobians. Linear tetrahedral elements have constant Jacobians;

thus the linear visualization mesh produced for Visual3 is of little use when it is

used to visualize inverted elements. However, ElVis is not subject to such constraints

since it handles curved elements naturally. Case 4 demonstrates our ability to directly

visualize negative Jacobians as shown in Figure 7.7. Case 4 represents a particularly

severe case, but more subtle cases can still be caught visually by zooming in. That is,

using visualization to verify negative Jacobians gives the user an interactive ability

to increase point-sampling resolution.

Visualization of negative Jacobians also has applications in the mesh generation

field. At present, metric-based 3D mesh generators3 (the type used by ProjectX)

generate curved meshes by first creating a linear mesh, and then curving it. Curving

only elements with face(s) lying on the boundary is not robust since the curving can

cause self-intersection (particularly with anisotropic elements). A number of heuris-

3Metric-based 3D mesh generation remains a challenging, open problem [38].
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(a) (b)

Figure 7.7. Views of Case 4 (negative Jacobians in a single tetrahedron) rendered
with ElVis. Colors show Jacobian values from -0.5 to 0.0. Left is a view of the
x + y + z = 1 face being intersected by the x − y face. Right is a view of the x − z
face, where the self-intersection effect of the quadratic node at (0.5,0,0.6) is apparent.

tics exist for performing this curving, but a common failure mode is the production

of a mesh with negative Jacobians.

7.4.9 Distance Function Visualization

A distance function is a scalar field defined by

d(�x) = inf{|�x− �p| : S(�p) = 0} (7.1)

where S is an implicit definition of a surface. In regard to ProjectX, the distance

function is an important part of the Spalart-Allmaras turbulence model, which is

used in Case 2. In fact, wall-distances are needed by most turbulence models. In

aerospace applications, turbulent effects typically first arise due to very near-wall

viscous interactions. The consequences of incorrect distance computations can vary

widely, from having no effect, to producing incorrect results, to reducing solver

robustness or even preventing convergence all together.

Visualization has the potential to be a valuable first attempt at diagnosing distance

calculation errors. Developers can inspect the distance field for smoothness and make

other qualitative judgments on the quality of the computation. Although visualization

cannot guarantee that distance computations are correct, they can provide confidence

and more importantly one would hope that visualization would make substantial

errors in distance computations apparent.

Existing visualization packages introduce error into this visualization because they

must interpolate high-order surfaces and interpolate the distance data, the latter of
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which is not even a polynomial field. Linear interpolation introduces a number of

problems. It is impossible to judge the quality of distance calculations without at least

being able to see the true shape of the underlying geometry. As a result, ProjectX

developers typically find themselves unable to use visualization to aid in debugging

distance computations; let us see why.

Figure 7.8 demonstrates the difficulty experienced by ProjectX developers when

using Visual3 to help diagnose problems with distance function computations. In the

zero refinement case (Figure 7.8(b)), the visualization mesh is so coarse that almost

nothing can be learned from this image, except possibly that the distance computation

is not producing completely random numbers. The 1 refinement case Figure 7.8(c))

does little to improve the situation. Here, a large protrusion is visible on the right

and a large recess is visible near the top of the isosurface. Other confusing-looking

regions are also present. After two levels of refinement (Figure 7.8(d)), Visual3 gives

strong evidence that a bug is present in the distance computation, but the linear

interpolation is still preventing rendering of the expected smooth surface.

On the other hand, ElVis renders (Figure 7.8(a)) a smooth surface with one

substantial protrusion (corresponding to the protruded region seen in Figures 7.8(c)

and 7.8(d)). From the ElVis result, the fact that the distance computation is wrong

is obvious. Additionally, the ElVis result was obtained in seconds, in stark contrast

to performing two uniform refinements in Visual3, which takes several hours.

Figure 7.9 shows the result from plotting the correct distance function in Visual3

and in ElVis. The effect of the bug was very local (manifested in the large protrusion

on the right side). The images from Figure 7.8 are largely unchanged, hence only the

highest resolution Visual3 image was replicated. Indeed, the zero refinement results

from Visual3 with the bug fixed appears indistinguishable from Figure 7.8(b), making

this level of Visual3 resolution useless for debugging. At one level of refinement,

the right-side bump is gone, but there are so many other recesses and protrusions

that ProjectX developers indicate they would have little confidence that the distance

evaluation is correct. After two levels of refinement (Figure 7.8(d)), the Visual3

results look believable for a linear interpolation of the distance field. Nonetheless,

ProjectX developers indicated that they would much rather have debugged the dis-
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(a) ElVis (b) Visual3 Zero Refinements

(c) Visual3 One Refinement (d) Visual3 Two Refinements

Figure 7.8. Plotting the isosurface for a distance of 6.2886 to the surface of the
ONERA wing (Case 2) with ElVis (a) and Visual3 using zero (b), one (c), and two
(d) levels of refinement. Here, the underlying distance computation has a bug.

tance function with ElVis, even if Visual3 could perform more refinements without

additional compute and storage overhead.

In fact, ProjectX developers used the distance computations shown in Figure 7.8

for a period of months before finding the bug that caused the large protrusion shown

in the isosurfaces. They had checked the distance function using views similar to

those shown in Figures 7.8(b) and 7.8(c). However, due to the lack of clarity in those

images and since the solver appeared to be performing reasonably, no issues were

suspected.

When presented with the before and after views from Figures 7.8(a) and 7.9(a), one
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(a) ElVis (b) Visual3 2 Refinements

Figure 7.9. An isosurface of the distance to the Onera wing after the bug in the
underlying computation has been fixed.

ProjectX developer expressed great frustration that ElVis was not available during

the development of the distance function. It would have saved him many hours of

confusion, greatly accelerating the debugging process by providing clear and direct

access to the underlying data.

7.5 Summary

In this chapter we presented ElVis, a new high-order finite element visualization

system. ElVis was designed with an extensible architecture; it provides interactive

performance; and it produces accurate, pixel-exact visualizations. The final point

deserves further emphasis: ElVis makes few assumptions about the underlying data,

nor does it use approximations when evaluating the solution. This degree of accuracy

is a substantial step beyond what is possible in contemporary, linear interpolation-

based methods. ElVis provides users with direct access to their finite element solution

data either through conversion to known storage formats or by querying user-provided

code directly. Direct data access is a capability previously unavailable to most finite

element practitioners, and judging from the reactions of ProjectX developers, this

capability is immensely valuable. We show that the software design elements behind

ElVis reduce barriers to entry (in terms of coding effort) for new users. ElVis is also

readily available as a full-fledged, ready-to-use application, making it a good choice
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for finite element practitioners seeking a native high-order visualization system.

We have summarized and demonstrated several of ElVis’ capabilities in the con-

text of aerodynamic flow problems taken from cases previously and currently being

investigated by ProjectX developers and users. These capabilities include rendering

of cut-surfaces, contours and isosurfaces. Then we provided multiple comparisons

between ElVis and Visual3—the visualization software presently used by ProjectX

developers and users—that emphasized the shortcomings not just of Visual3, but of

all linear interpolation-based visualization systems. We compared surface renderings

and contouring results using data from a cubic solution, linear geometry delta wing.

Even when running Visual3 at a higher level of accuracy than typically used by

ProjectX developers, substantial differences were observed between Visual3 and ElVis

results. The same message was repeated in Visual3’s inability to accurately represent

a hemisphere geometry with only moderate curvature. Finally, a potential debugging

application for ElVis was presented: the evaluation of the distance field around a

wing. Using Visual3 and other methods, ProjectX developers overlooked a bug in the

distance calculation that persisted for months. With ElVis, the issue was immediately

clear.

The capabilities demonstrated here are the components of ElVis’ initial release,

which has been focused on scalar field visualization. This is not a fundamental limi-

tation of the software; future releases will address additional visualization capabilities

to address additional user requests. In particular, ElVis will be enhanced to handle

solutions involving cut cells [15], a capability not available in any current visualization

system.

Even as it stands now, every ProjectX developer wanted to know how to “get

[ElVis] on my computer” or “when can I start using [ElVis].” ElVis fills a major gap

that has existed in scientific visualization. While solvers are moving toward high-order

methods, visualization systems continue to apply linear interpolations. ProjectX

developers and users were hard-pressed to debug their solver and analyze the results

it produced. High levels of visualization errors caused developers to misdiagnose bugs

and arrive at erroneous conclusions about mesh resolution, amongst other issues.

These problems could have been avoided with ElVis. Ultimately, everyone involved
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agrees that ElVis will be a welcome and valuable addition to their kit of development,

debugging, and analysis tools.



CHAPTER 8

CONCLUSION AND FUTURE WORK

The purpose of this dissertation has been to develop new visualization algorithms

for high-order spectral/hp scalar fields that are both accurate and interactive. The

isosurface algorithm described in Chapter 4 was developed prior to the start of this

dissertation. We then built upon this work by developing a new algorithm for

rendering cut-surfaces through high-order fields (Chapter 5) and volume rendering

(Chapter 6). In each of these cases, we demonstrated algorithms that are capable

of generating pixel-exact visualizations of the underlying high-order data. We also

implemented these algorithms on commodity GPUs, which enabled engineers to

interactively generate these images on typical desktop systems. Working closely

with the ProjectX simulation team, we developed the ElVis visualization framework

(described in Chapter 7), and were able to demonstrate the effectiveness of these

algorithms when applied to aerodynamic flow problems that are currently being

investigated.

This dissertation’s focus on high-order scalar fields is just the first step towards

a truly comprehensive visualization system for high-order simulations. High-order

vector fields are an important type of data that has received limited attention.

While techniques exist for generating streamlines in high-order fields [61, 7], it is

not immediately apparent how this will extend to a GPU implementation; additional

capabilities will need to be developed for ElVis to support these features. For other

types of visualizations, such as line integral convolutions on cut-surfaces and the

generation of pathlines, there has yet to be any analysis on their accurate or efficient

implementation for high-order fields.

Publications: The following publications relating to this work have been published:
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• Blake Nelson and Robert M. Kirby. 2006. “Ray-Tracing Polymorphic Multido-

main Spectral/hp Elements for Isosurface Rendering”, IEEE Transactions on

Visualization and Computer Graphics 12, 1 (January 2006), 114-125.

• Miriah Meyer, Blake Nelson, Robert M. Kirby and Ross Whitaker, ”Particle

Systems for Efficient and Accurate Finite Element Visualization”, IEEE Trans-

actions on Visualization and Computer Graphics, Vol. 13, Number 5, pages

1015-1026, 2007.

• Blake Nelson, Robert Haimes, and Robert M. Kirby. 2011. “GPU-Based

Interactive Cut-Surface Extraction From High-Order Finite Element Fields”,

IEEE Transactions on Visualization and Computer Graphics 17, 12 (December

2011), 1803-1811.

The following have been submitted for publication:

• Blake Nelson, Robert M. Kirby, and Robert Haimes, “GPU-Based Interactive

Volume Visualization From High-Order Finite Element Fields”, IEEE Visual-

ization Conference, 2012.

• Blake Nelson, Eric Liu, Robert M. Kirby, and Robert Haimes, “ElVis: A System

for the Accurate and Interactive Visualization of High-Order Finite Element

Solutions”, IEEE Visualization Conference, 2012.

• Blake Nelson, Robert M. Kirby, and Steven Parker, “Optimal Expression Evalu-

ation Through the Use of Expression Templates When Evaluating Dense Linear

Algebra Operators”, ACM Transactions on Mathematical Software.
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