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ABSTRACT 

 

 The RNA world hypothesis about the origin of life enjoys wide acceptance. The 

fact that RNA is capable of catalyzing a wide range of chemical reactions supports a 

RNA-based primitive metabolism. Redox reactions are very important to metabolism, 

and at the present time, protein enzymes need the assistance of redox coenzymes such 

as flavin and nicotinamide to promote these processes. In our current work, we 

investigate the potential role of 8-oxopurine nucleosides including 8-oxo-7,8-

dihydroguanosine (OG) and ribofuranosyl uric acid (RU) as primordial redox 

coenzymes that could help RNA in redox reactions to support primitive metabolism. 

   More specifically, we propose that 8-oxopurine nucleosides could function as 

primitive flavins in repairing cyclobutane pyrimidine dimers (CPD) that are 

photodamaged lesions of nucleic acids and are currently repaired by a flavin-dependent 

photolyase enzyme. In support of this, we incorporated OG proximal to a CPD in 

double-stranded oligonucleotides and investigated the repair of the CPD when OG is 

selectively photoexcited. Our results showed that OG is able to mediate the CPD repair 

following a flavin-type mechansim. The repair efficiency is dependent upon base pair 

context as well as the 5’ vs. 3’ orientation and the strand location. The photorepair 

activity of OG can operate on versatile environments including directly stacking on to a 

CPD in the same strand and base pairing with one or the other bases of these lesions.  



   

In addition, CPD repair can also be mediated by OG-containing dinucleotides that are 

closer mimics of flavin adenine dinucleotide. This finding further supports the potential 

role of OG as a primitive flavin.   

 Although RU has a slightly lower redox potential than that of OG, it is not as 

effective as OG in repairing CPD in a nucleoside model. The shorter life time of the 

photoexcited state of RU than that of OG is probably responsible for this result. 

Furthermore, the oxidation of RU gives a complicated mixture of products and this 

might reduce the possibility of using RU as a multiple turnover catalyst. Nevertheless, 

these studies present an unusual example of one form of DNA damage, oxidation, 

functioning to repair another, photodimerization, and may provide insight into the 

origins of prebiotic redox processes.  
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CHAPTER 1 

 

INTRODUCTION 

 

Among various theories about the origin of life, the RNA world hypothesis 

enjoys considerable support from scientists (Figure 1.1). It proposes that ancient life 

evolved from the replication and catalysis of RNA oligomers (1, 2). This idea was first 

suggested by Crick (3), Orgel (4) and Woese (5); however it was underestimated until 

the discovery of the catalytic capability of RNA about 30 years ago (6, 7). There are 

now various lines of evidence that support the existence of a primordial RNA world. 

For example, the current ribosome machine to synthesize proteins actually works based 

on the catalytic chemistry of RNA and no amino acids are found within 18 Å of the 

active site (8-10). This probably suggests that RNA evolved first and protein was then 

synthesized by RNA catalysis. RNA likely predated DNA because 

deoxyribonucleotides are now biosynthesized from the corresponding ribonucleotides 

by reduction of the 2‟-OH group (11). Furthermore, the RNA capability of catalyzing a 

wide range of chemical reactions supports the existence of a primitive RNA-based 

metabolism (12-15). Many studies have advanced our understanding of the primordial 

RNA world, such as the prebiotic synthesis of activated nucleotides (16), the 

nonenzymatic oligomerization and self-replication of RNA (17), and the confinement of 

RNA into protocells with primitive membranes (18). 
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Figure 1.1
*
. An RNA world model. After a long selection process, RNA with self-

replication properties has been preserved in its modern descendants. Functional proteins 

have come only after RNA was available to catalyze peptide ligation or amino acid 

polymerization. DNA took over the role of the genome about one billion years ago. 

LUCA (Last Universal Common Ancestors) already had a DNA genome and carried out 

biocatalysis using protein, RNP enzymes and ribozymes.  

*Reproduced with permission from Cold. Spring. Harb. Perspect. Biol. doi: 

10.1101/cshperspect.a006742  
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Ribozyme cofactors 

 In RNA-based life, RNA catalysis was obviously crucial for maintaining both a 

primitive metabolism and the self-replication of RNA (12). Because the chemical 

transformations made available by the canonical bases are quite limited, RNA may have 

needed the assistance of functional cofactors to expand the diversity of its catalysis (13, 

19-22). An example of a natural ribozyme utilizing a small organic cofactor for catalysis 

is the glmS ribozyme that uses glucosamine-6-phosphate (GlcN6P) to facilitate its self-

cleavage (23, 24). There are also several cofactor-dependent ribozymes that have been 

isolated from an RNA pool by in vitro evolution. For examples, Tsukiji and coworkers 

found a NAD
+
/NADH-dependent ribozyme that catalyzes the reduction of aldehyde or 

the oxidation of alcohol (25, 26). The Breaker lab discovered a DNAzyme employing L-

histidine as a cofactor to promote RNA cleaveage (27).  

   Interestingly, present-day proteins employ nucleotide cofactors such as flavins, 

nicotinamide, pterins, etc. (Figure 1.2) to catalyze processes outside the chemistry of the 

canonical amino acids. Because of the presence of “RNA parts” in these cofactors, they 

were referred as “the fossils of the RNA world” (28) and likely evolved from four 

ribonucleotide bases A, U, G, C or co-evolved as separate nucleotide components. There 

is also an argument that nucleotides are more suitable cofactors for ribozymes than amino 

acids in the RNA world (13). Recently, Yarus proposed AMP-containing dinucleotide 

cofactors might be descendants of the Initial Darwinian Ancestors (IDA) (29).  Therefore, 

it is likely that primordial ribozymes may have adopted nucleotide cofactors whose 

structures should be simple enough to be available via prebiotic processes for expanding 

their catalytic scope to support the primitive metabolism. 
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Figure 1.2. Structures of nucleotide coenzymes. (A) Flavin adenine dinucleotide, 

FADH2. (B) Tetrahydrobiopterin. (C) Nicotinamide adenine dinucleotide, NADH.  
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8-Oxopurine nucleosides as potential primitive redox cofactors  

 Early life would require redox reactions to support metabolism; however, our 

understanding of redox ribozymes is still limited. There is only one example of a 

ribozyme catalyzing alcohol oxidation or aldehyde reduction in the presence of 

NAD
+
/NADH (25, 26), but there are no examples of redox-active ribozymes utilizing 

RNA oligomers alone. Among the four canonical bases, G is the most redox-active base; 

however its redox potential (E
0

7 = 1.3V vs. NHE) (30) is still too high to be effective in 

catalysis. Instead, nature currently uses G as the starting point to biosynthesize current 

redox cofactors flavin and pterin with the help of several protein-based enzymes (31). 

Since this process is obviously optimized over million years of evolution, we asked what 

simple transformations would convert G into a more redox-active heterocycle capable of 

redox processes in the primitive RNA world?  

      The simple hydrolysis products of G arising from either N
2
 deamination 

(xanthine) or hydrolytic opening of the imidazole ring (Fapy-G) show only modestly 

lower reduction potentials, around 1.1V (32, 33) (Figure 1.3). In contrast, 8-oxo-7,8-

dihydroguanine (OG), the common oxidative damage product of G in DNA and RNA, 

has a greatly reduced redox potential of 0.74 V, representing a nearly 600 mV reduction 

in E
o
 at pH 7; at pH 9, the value is even lower, 0.5 V (34). OG is readily formed from G 

via ionizing radiation or Fenton-like reactions that produce HO
•
, conditions that are 

plausible on early Earth (35). In fact, given the likely complexity of primordial synthesis 

of G (36), OG may have been more plentiful than G. One more deamination step of OG 

leads to the formation of the even more redox-active molecule uric acid  nucleoside  (RU) 

(37). Therefore, we hypothesize that 8-oxopurine nucleosides including OG and RU may 
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Figure 1.3. Simple chemical transformations of guanosine that yield redox‐active ribo- 

nucleotides.  Guanine can undergo hydrolysis to xanthosine or FAPy‐G which both have 

somewhat lower redox potentials than G.  Oxidation to OG leads to a dramatic lowering 

of the redox potential and further deamination to RU further lowers the potential.  For 

present‐day coenzymes (pterins and flavins), several enzyme‐catalyzed biosynthetic steps 

are required that presumably were optimized over millions of years.  
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have functioned like primitive flavins that assist primordial ribozymes in redox processes. 

 Our hypothesis is further supported by the similarity in redox chemistry between 

8-oxopurine nucleosides and flavins (Figure 1.4). The two-electron oxidation of OG 

gives an unstable quinonoid intermediate (OG
ox

) that subsequently adds nucleophiles at 

C5 and rearranges to a spirodihydantoin (Sp) or guanidinodihydantoin (Gh) depending on 

the reaction conditions (38-45). An analogous quinonoid intermediate RU
ox

 is also 

proposed as an intermediate in the oxidation of uric acid nucleoside (RU), however it 

undergoes different rearrangement pathways compared to OG
ox 

(46-48). Both redox 

couples OG
ox

/OG and RU
ox

/RU are structurally similar to that of FAD/FADH2 (Figure 

1.4). In addition, a side-product of oxidized flavin chemistry is also a spirohydantoin 

heterocycle that is formed from the rearrangement of the nucleophilic adduct at C4a of 

flavin (equivalent to C5 of OG
ox

 and RU
ox

) under strongly basic conditions (Figure 1.5). 

It is necessary to note that the extensive decomposition of the oxidized forms of 8-

oxopurines to form hydantoin products makes them not as ideal redox catalysts as flavins 

whose oxidized and reduced forms can be readily interconverted. The similarity in redox 

chemistry between 8-oxopurines and flavins is also shown in the formation of analogous 

hydroperoxides though under different conditions (Figure 1.5). Flavin hydroperoxides are 

formed upon exposure of reduced flavins to dioxygen and have been extensively 

characterized (38, 49, 50).  The analogous hydroperoxides of OG and RU resulted  from 

reactions of these purines with singlet oxygen or superoxide (43, 48). While  flavin  

hydroperoxides  were  known to be reactive  intermediates  in flavin- catalyzed oxidation 

reactions (51), only decomposition or rearrangement was observed for hydroperoxides 
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Figure 1.4. Structural similarity of OG, RU and dihydroflavin and their oxidized forms.  
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Figure 1.5. (A). Spirocyclic reaarangements of oxidized OG and flavins.  

(B). Hydroperoxide formation from dioxygenation of OG or dihydroflavin.  
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of OG and RU (48). Therefore, the potential role of the latter as active specie in oxidation 

processes catalyzed by OG or RU may need further investigation. 

 

8-Oxopurine nucleosides as substitutes for the flavoenzyme in  

repairing cyclobutane pyrimidine dimer 

      To support our hypothesis on the role of 8-oxopurine nucleosides as primitive 

flavins, we have to find evidence that they can function as flavins in catalyzing electron 

transfer processes. After extensive searches of flavin-catalyzed reactions, we decided to 

investigate the possibility of 8-oxopurine nucleosides to promote the repair of 

cyclobutane pyrimidine dimers (CPD) that are photodamage lesions generated from two 

adjacent pyrimidine bases upon exposing DNA or RNA to UV light (260-300nm) (Figure 

1.6). We chose this process because of several reasons that are outlined below. 

 First, at the present time, CPD are repaired by flavin-dependent photolyase 

enzymes in plants and microorganisms (52, 53) and the repair mechanism has been 

extensively studied (Figure 1.6). The flavin cofactor plays a role as an electron donor 

after being photoexcited or receiving energy from another excited chromophore such as 

methylenetetrahydrofolate (MTHF) (52, 53) . CPD accepts one electron from a flavin to 

form a highly reactive radical anion that leads to the rapid cleavage of σ bonds and then 

electron transfer back to the flavin radical (54-56). The process regenerates an 

undamaged TT-containing DNA strand as well as the original flavin cofactor. The role of 

the protein is as a scaffold to  bind  CPD in DNA  in the  correct  orientation  with respect 

to the catalytic flavin (57). Flavins can also mediate the CPD repair outside the protein 

environment if they‟re “forced” to position proximally to CPD in conjugated systems   
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Figure 1.6. (A). Formation of cyclobutane pyrimidine dimers (CPD). (B). Mechanism of 

photolyase-mediated CPD repair. The excited state of FADH
-
 transfers an electron to the 

CPD; after bond cleavage, back electron transfer restores the FADH
-
 cofactor (Adapted 

from ref. 52).  
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(58-61) or DNA duplexes (60, 62-64), however with lower efficiency.  

      Secondly, we recognized that 8-oxopurine nucleosides have a longer wavelength 

absorption band that extends beyond 300nm. This makes it possible to excite the OG or 

RU bases in the presence of other DNA or RNA bases that normally have no absorbance 

above 290 nm (Figure 1.7). Because the ground states of OG and RU have a low redox 

potential, their photoexcited states are likely good electron donors. Therefore, the repair 

of CPD by photoexcited OG and RU is plausible and potentially follows the same 

mechanism as the flavin-catalyzed process discussed above (Figure 1.7). 

 Finally, the repair of CPD might be prebiotically relevant. Solar irradiation on the 

early Earth must have been powerful source of energy for chemical evolution; however it 

also causes damage to nucleic acids and potentially led to the formation of CPD (65-67). 

Indeed, studies have been done to understand whether nucleic acid enzymes can repair 

CPD since there were probably no protein-based enzymes in the primitive world. For 

example, Sen and coworkers discovered that a DNA enzyme containing a G quartet is 

able to photorepair a T=T lesion in a complementary strand (68-70) (Figure 1.8). This 

result is inspiring; however the use of the G quartet as a chromophore does not advance 

our understanding of the emergence of flavin nucleotides. In other work, Rokita  and 

coworkers found that the yield of thymine dimer formation is significantly lower when a 

G is present at the 5‟ side of a TT in DNA duplex, and they suggested a self-repair 

mechanism of inhibiting thymine dimer formation (71). However, a recent study showed 

that the low yield of thymine dimer formation caused by an adjacent G relates to 

“inhibition” rather than “repair” (72).  These studies suggest the possibility of repairing 

CPD by nucleic acid enzymes in the early earth; however, we think these enzymes may  
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Figure 1.7. (A)  UV spectrum of OG. Irradiation at wavelengths > 300 nm photoexcites 

OG, but not normal bases. (RU has a quite similar UV spectrum to OG). (B) 8-Oxopurine 

nucleosides are proposed to function as flavins in reparing CPD.  
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Figure 1.8. Repair of thymine dimer by a DNA enzyme containing a G quartet 

(Reproduced with permission from ref. 70).  
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need assistance of primitive cofactors rather than using a G quartet chromophore or 

unmodified G. 

 

Conclusion 

      The RNA world hypothesis proposed that RNA acts like both genetic and 

catalytic materials, and is now widely accepted. My dissertation work is directed toward 

understanding the potential origin of redox catalysis in the RNA world. We proposed that 

8-oxopurine nucleosides (OG and RU) that are simple oxidation products of G may have 

served as prebiotic versions of redox coenzymes to assist RNA in electron transfer 

processes. More specifically, we hypothesize that they can function as primitive flavins to 

repair cyclobutane pyrimidine dimers that are photodamage lesions of nucleic acids 

caused by UV irradiation. Toward this hypothesis, we first investigate the potential of 

OG in repairing CPD in various contexts of double-stranded oligonucleotides (Chapter 2 

and Chapter 3). Repair of CPD in DNA and RNA by a closer mimic of flavin 5‟-5‟ 

dinucleotide OA, under plausible prebiotic conditions is studied in Chapter 4. The 

comparison of CPD repair efficiency between OG and RU is reported in Chapter 5. In the 

final chapter, we investigate oxidation products of RU by various oxidants to further 

understand the redox chemistry of this nucleoside.  
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CHAPTER 2 

 

A PREBIOTIC ROLE FOR 8-OXOGUANOSINE  

AS A FLAVIN MIMIC IN PYRIMIDINE 

DIMER PHOTOREPAIR 

 

Introduction 

 The RNA World hypothesis suggests that ancient life evolved from the catalytic 

chemistry of RNA oligomers (1). Numerous in vitro selection experiments now 

demonstrate the concept that RNA can catalyze a wide range of chemical reactions 

including ligation, hydrolysis, and C-C bond formation (2, 3).  Early life would have also 

required redox reactions to support metabolism, but neither the four RNA bases nor the 

canonical amino acids are very redox active. We therefore hypothesized that prior to the 

evolution of more sophisticated cofactors such as flavin adenine dinucleotide, a simple 

and abundant derivative of guanine, namely OG, could have played the role of a redox 

coenzyme in RNA-based catalysis. 

 To investigate this hypothesis, we designed experiments that would test the 

electron-transfer capability of OG as a substitute for the flavoenzyme photolyase.  The 

role of the flavin cofactor in photolyase has been investigated extensively, and there is 

consensus that the photoexcited state of FADH
-
 transfers an electron to the cyclobutane 

thymine dimer (T=T) in bound duplex DNA, resulting in rapid cleavage of the sigma



23 
 

 

bonds and back electron transfer to the flavin radical (4-6). The process regenerates an 

undamaged TT-containing DNA strand as well as the original flavin cofactor.  In parallel 

with a lower redox potential than the natural nucleosides, OG also has significant 

absorbance above 300 nm, a region in which DNA and RNA oligomers have essentially 

no absorbance.  It therefore appeared feasible to photoexcite the OG base specifically in 

an oligomer using wavelengths >300 nm, and to examine the reversion of the cyclobutane 

dimer to two undamaged thymidines. 

 

Results and discussion 

 For ease of synthesis and comparison to other work, initial studies were 

conducted in DNA oligomers using 8-oxo-7,8-dihydro-2’-deoxyguanosine (designated 

“O” in sequences) at positions in a 22-mer strand that placed it near a T=T dimer that was 

either synthesized and purified in an 18-mer strand or installed via the T=T 

phosphoramidite. The difference in strand length permitted direct analysis of the 

quantities of T=T-containing strands vs. repaired TT strands in the presence of the longer 

OG-containing oligomer by denaturing HPLC conducted at 70°C (Figure 2.1).  Duplex 

1A has an OG:A base pair (Figure 2.2) positioned directly 5’ to the T=T site although OG 

is located in the strand complementary to the dimer. Irradiation of the duplex using a 

40W UVB light source (λmax=313 nm) and a polystyrene filter to remove wavelengths 

<300 nm led to repair of the T=T dimer in a process that showed first order kinetics and a 

rate constant of  ̴ 1x10
-2

 min
-1

 at 22°C (Figure 2.1). Control experiments in DNA 

duplexes without OG present resulted in no detectable repair (<5%) indicating the 

dependence of the repair process on OG. 
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Figure 2.1. Photorepair (λmax=313 nm) of T=T cyclobutane dimer in an 18mer strand of 

DNA annealed to an O-containing 22mer.  (A) Denaturing HPLC (70°C) analysis of 

strands as a function of time.  (B) Repair demonstrates first-order kinetics.  (C) Turnover 

catalysis is shown by repair of a 5.4:1 mixture of T=T and O-containing strands in a 

light/heat/cool cycle leading to ~200% yield of repair based on OG. 
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Figure 2.2. Repair of T=T by OG in duplex DNA.  (A) OG can form a stable Watson-

Crick base pair with C or, in the syn conformation, pair with A.  (B)  Studies herein 

support a photolyase-type mechanism in which the excited state of OG transfers and 

electron to T=T (or U=U) effecting cleavage of the cyclobutane; back electron transfer 

regenerates OG and the repaired pyrimidines. 
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 To better understand the catalytic role of OG, the OG-containing strand was 

isolated after ̴ 50% repair and reanalyzed by ion-exchange HPLC.  Under these 

conditions, the oxidation products of OG are readily separable; comparisons with 

authentic standards indicated that OG remained intact in the DNA strand. Thus, any 

reactive intermediates formed during photorepair, such as OG
+•

, revert to OG during the 

course of the reaction.  Furthermore, the OG-containing strand showed turnover catalysis. 

In this experiment, a 5.4:1 ratio of T=T and OG-containing strands was subjected to a 

reaction cycle of irradiation, thermal denaturation, and re-annealing. Each irradiation 

period, 45 min, was sufficient to effect approximately 40% repair of the bound strand, 

and the final yield of repair after 5 cycles was   ̴200% based on OG (Figure 2.1). 

 The dependence of the repair process on base pair and sequence context provided 

insight into the mechanism of repair.  OG can form stable base pairs with either C or A, 

depending upon the anti or syn orientation of the OG base with respect to the glycosidic 

bond (Figure 2.2), and these base pairs cause very little change in stability or structure of 

DNA duplexes (7). Surprisingly, the OG:A base pair was about three-fold more efficient 

than the Watson-Crick OG:C base pair in repairing the thymine dimer in both interstrand 

and intrastrand duplexes (1A vs 1C, 4A vs 4C, Figure 2.3). One explanation of these data 

is based on the finding that the G:C base pair has a shortened excited state lifetime due to 

proton-coupled electron transfer (8-11). If quenching of the OG* excited state also occurs 

via the assistance of the relatively acidic N1-H proton transfer to N3 of C, the OG:C base 

pair would exhibit a reduced excited state lifetime and therefore be less efficient than 

OG:A in donating an electron to the nearby T=T (Figure 2.2).  In addition, computations 

of ionization potentials predict a lower value for OG:A compared to OG:C (12).  Internal  
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Figure 2.3. Repair rates at 22°C for various sequence contexts for O and T=T.  The 

complete sequence of duplex 1A is shown in Figure 2.1; see Table 2.2 for others. Repair 

rates were obtained from fitting the repair yields to the first-order exponential curve.  

Error bars indicate the standard deviation of at least three experiments. 
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electron transfer in the OG:A base pair would be less efficient than in an OG:C base pair, 

because the N7-H of OG is less acidic and because purine bases have lower electron 

affinity than pyrimidine bases (8).   

 Strand, directional and distal effects on thymine dimer repair by OG were also 

investigated by changing the location and orientation of the OG:A base pair in the 

vicinity of the T=T dimer.  The highest rate of repair was observed when OG (with A 

opposite) was located immediately 5’ to the T=T lesion and in the same strand (Figure 

2.3, duplex 4A vs. 3); in this case, 85% repair was observed in 75 min.  The same 5’ 

preference was also exhibited when the orientation of the base pair was reversed, placing 

OG in the opposite strand (Figure 2.3, 1A vs. 2).  These data agree with the observation 

of Rokita and coworkers who found that formation of T=T in duplex DNA using 254 nm 

light was inhibited to some extent by the presence of a G nucleotide at the 5’ side of the 

TT sequence (13). In addition, we found a 4-5-fold preference for location of the OG 

nucleotide in the same strand as the lesion, consistent with the higher efficiency of 

intrastrand electron transfer (Figure 2.3, 4A vs. 1A, 4C vs. 1C,  3 vs. 2) (14, 15).  The 

presence of T=T is known to cause disturbance of the duplex DNA and destacking at the 

thymine dimer site also has an effect on charge migration through duplex DNA (16). 

NMR and crystal structures of thymine dimer-containing DNA show that though the 3’ 

side of T=T still retains good hydrogen bonding, the phosphate backbone changes to the 

BII conformation upon formation of T=T, which can destack the base at this site (17, 18). 

Therefore, the higher repair efficiency when OG is located at the 5’ side of T=T may 

result from better base stacking at this position, which would in turn facilitate formation 

of an exciplex between OG as an electron donor and the adjacent T=T acceptor (19).  
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 The preference for OG-mediated repair from the immediate 5’ side of the T=T 

dimer was reversed when the repair was attempted from a longer distance.  Insertion of 

an A:T base pair between the OG donor and T=T acceptor yielded sequences 5 and 6 

(Figure 2.3), respectively.  For these sequences, when OG was present in a 5’ orientation 

with respect to T=T, the presence of the intervening base pair led to a 25-fold reduction in 

rate, while only an 8-fold reduction in rate was observed from the 3’ direction (Figure    

2.3, 4A vs. 5, and 3 vs. 6); indeed, duplex 6 is now somewhat more reactive than duplex 

5.  We propose that the thymine dimer is repaired reductively via electron transfer from 

OG* to T=T in a manner analogous to flavin-dependent photorepair with the enzyme 

photolyase.  This constitutes an excess electron transfer (EET) mechanism in the DNA 

duplex, which has been shown to have a 3’ to 5’ directional preference (14, 15) due to the 

asymmetric overlap of frontier molecular orbitals of the two adjacent bases (20). Taken 

together, the studies of strand, direction and distance effects of OG-catalyzed photorepair 

of thymine dimers support an electron transfer mechanism of repair, analogous to that of 

photolyase, with the caveat that the immediate adjacency of the donor-acceptor pair 

creates a special preference for the 5’-3’ orientation because of enhanced exciplex 

formation resulting from better base stacking.   

 As reported, EET still occurs in double-stranded DNA containing a structural 

disturbance (21) as well as in single-stranded DNA, although only over a short distance 

(22). Conversely, hole transfer seems not to migrate through single-stranded DNA at all 

(23).  Thus, to further support the EET mechanism, we investigated thymine dimer repair 

by OG in single-stranded DNA in which there was an intervening dA between OG and 

T=T. The results showed that T=T is moderately repaired, reaching to 19% after 90 min 
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irradiation in strand 5S.  Without OG present, no detectable repair was observed after  

150 min of irradiation. The retention of activity of OG in single-stranded DNA further 

supports the EET mechanism in this system.   

 The relevancy of OG as a primordial flavin requires that its photorepair activity 

also operate on uracil dimers in RNA.  To this end, we synthesized the cyclobutane 

photodimer in an RNA sequence analogous to duplex 1A such at a U=U dimer was 

installed adjacent to an A:O base pair, although the photosynthetic method required that 

OG be present in the opposite strand where it is threefold less reactive.  Table 2.1 

compares the yields of T=T vs. U=U photorepair in the 1A sequence context for the 

DNA:DNA, RNA:DNA, and RNA:RNA duplexes.  While less efficient in the A form 

helices in which base stacking is dramatically altered compared to B form DNA, the 

photorepair of U=U by OG is still clearly evident.  

 

Conclusion 

 We have demonstrated that OG, a common base oxidation product in nucleic 

acids, can trigger cyclobutane pyrimidine dimer repair using wavelengths of light red-

shifted from the normal absorption spectrum of DNA or RNA.  A related example of such 

a repair process is the work of Sen and coworkers (24, 25) who generated a DNAzyme 

capable of photorepair of a bound thymine dimer substrate; in that case, a very different 

motif, a G quartet, appears to be responsible for repair rather than the flavin analogue OG.  

In addition, Carell and coworkers have demonstrated that the photolyase protein is not 

necessary for repair of T=T; synthetic incorporation of a flavin into the DNA stack also 

effects photorepair (26, 27). 
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Table 2.1.  Single time point repair yields for cyclobutane pyrimidine dimers in various 

strand contexts based on the sequence context of duplex 1A 
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 Although more detailed analysis of the photophysical events surrounding this 

phenomenon are clearly warranted, the context effects on repair kinetics support a 

catalytic mechanism involving excess electron transfer from OG to the pyrimidine dimer 

in a fashion analogous to that of the flavin-dependent photolyases.  This is an unusual 

example of one form of DNA damage serving to repair another.  While the formation of 

both OG and T=T are linked in present-day photochemical DNA damage, the relative 

amounts of these modifications in the prebiotic world are unknown.  Nevertheless, 

conditions favoring OG formation at the same time as cyclobutane pyrimidine dimers 

could have driven the further evolution of purine nucleotides toward flavin-like activity.  

The overall similarity of OG and flavin chemistry further suggests that nature may have 

adopted this close relative of the guanine base as a step towards organic-based redox 

metabolism, possibly as a component of the IDA, prior to the appearance of modern 

enzyme cofactors.   

 

Experimental 

 Oligodeoxynucleotide synthesis and purification. Phosphoramidites for 

oligodeoxynucleotide synthesis were purchased from Glen Research. 

Oligodeoxynucleotides were synthesized at the DNA/Peptide Core facility at the 

University of Utah. The [cis, syn] thymine dimer-containing oligodeoxynucleotides were 

first treated with thiophenol/triethylamine/THF (1/2/2) for 45 min at room temperature to 

remove the methyl phosphate group (28, 29).  The solid support was then washed with 

THF (10x), methanol (5x), acetonitrile (3x) and dried under argon flow. 

Oligodeoxynucleotides were cleaved and deprotected in sealed glass vials with 
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concentrated NH4OH for 16 h at 55 °C in the dark (in the cases of oligodeoxynucleotides 

containing OG, 0.25 M β-mercaptoethanol was added to the deprotection solutions to 

avoid the oxidation of OG). Oligodeoxynucleotides were purified by HPLC on a Dionex 

DNA Pac PA-100 column with linear gradient of 15% B to 100% B over 30 min (Solvent 

A: 10% acetonitrile in water; solvent B: 1.5 M sodium acetate, 10% acetonitrile in water, 

pH 7). Oligodeoxynucleotides were then desalted by dialysis against water for 36 h at 4 

°C in the dark.  The purity and identity of oligomers were determined by analytical 

HPLC and mass spectrometry. The [cis,syn] thymine dimer-containing 

oligodeoxynucleotides were quantified by UV-VIS spectroscopy on the Beckman DU 

650 spectrometer using extinction coefficient calculated as previously described (16).  

Complete sequences are shown in Table 2.2. 

 Photorepair of [cis, syn] thymine dimer in DNA duplexes. 5 µM of thymine 

dimer-containing DNA was annealed with 1.3 equiv. of the appropriate complementary 

strand in a buffer solution containing 20 mM NaPi, 100 mM NaCl, pH 7 by heating at 90 

°C for 2 min and cooling to room temperature over 4 h. The DNA duplex was irradiated 

in polystyrene cuvettes to cut off wavelengths below 300 nm(24) at ambient temperature 

(22 °C) with an FS40 UVB lamp (peak at 313 nm, Homephototherapy, OH, USA). The 

irradiation mixture was then analyzed by HPLC on Hamilton PRP-1 (5 μm, 250X4.6 

mm) column at 70 °C with linear gradient of 10% B to 14% B over 25 min (Solvent A: 

50 mM TEAA in water, pH 7; Solvent B: acetonitrile). Detector was set at 260 nm and 

the flow rate was 0.8 mL/min. Under these conditions, the DNA duplex was denatured 

and single-stranded DNA oligomers eluted in the following order: the thymine dimer 

T=T strand (18mer), the repaired TT strand (18mer) and the complementary strand  
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Table 2.2. Complete sequences studied.  Sequences 1-8 are DNA:DNA duplexes. 

Sequence 5S is single-stranded DNA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Sequences 

1A         5’-CACAGCAT=TACAGTACAC-3’ 

 3’-TCTGTGTCGOA ATGTCATGTGT-5’ 

1C        5’-CACAGCCT=TACAGTACAC-3’ 

3’-TCTGTGTCGOA  ATGTCATGTGT-5’ 

C1         5’-CACAGCAT=TACAGTACAC-3’ 

 3’-TCTGTGTCGTA ATGTCATGTGT-5’ 

C2        5’-CACAGCCT=TACAGTACAC-3’ 

3’-TCTGTGTCGGA  ATGTCATGTGT-5’ 

2         5’-CACAGCAT=TACAGTACAC-3’ 

 3’-TCTGTGTCGTA  AOGTCATGTGT-5’ 

3         5’-CACAGCAT=TOCAGTACAC-3’ 

 3’-TCTGTGTCGTA  AAGTCATGTGT-5’ 

4A         5’-CACAGCOT=TACAGTACAC-3’ 

 3’-TCTGTGTCGAA  ATGTCATGTGT-5’ 

4C        5’-CACAGCOT=TACAGTACAC-3’ 

 3’-TCTGTGTCGCA  ATGTCATGTGT-5’ 

5        5’-ACAGCOAT=TACAGTACAC-3’ 

 3’-TCTTGTCGATA  ATGTCATGTGT-5’ 

6        5’-ACAGCOTT=TACAGTACAC-3’ 

 3’-TCTTGTCGAAA ATGTCATGTGT-5’ 

7         5’-CACAGCAT=TAOCAGTACA-3’ 

 3’-TCTGTGTCGTA  ATAGTCATGTT-5’ 

8         5’-CACAGCAT=TTOCAGTACA-3’ 

 3’-TCTGTGTCGTA  AAAGTCATGTT-5’ 

RNA/DNA         5’-CACAGCAU=UACAGUACAC-3’ 

 3’-TCTGTGTCGOA   ATGTCATGTGT-5’ 

RNA/RNA         5’-CACAGCAU=UACAGUACAC-3’ 

3’-UCUGUGUCGOA AUGUCAUGUGU-5’ 

5S        5’-ACAGCOAT=TACAGTACAC-3’ 
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(22mer). HPLC peaks corresponding to the thymine dimer strand and the repaired strand 

were integrated. The peak areas were normalized against extinction coefficients of each 

strand and used to calculate the thymine dimer repair yield. Thymine dimer repair was 

plotted as function of irradiation time and fit to exponential curve using OriginPro 8.5 

software (Originlab). The repair rate (% min
-1

) was calculated and this value was used to 

compare the repair efficiency of different DNA duplexes (14). The presented data were 

averaged from three experiments.  

 Photorepair of [cis, syn] uracil dimer. Uracil dimer containing RNA (5’-

CACAGCAU=UAC AGUACAC-3’) was synthesized following a reported procedure 

(25) except using a higher concentration of acetone photosensitizer (10%), and the 

oligomer was purified by reversed phase HPLC. The preparations of RNA/DNA and 

RNA/RNA duplexes and irradiation procedure were the same as described above for the 

DNA duplex. The irradiation mixture was then analyzed by denaturing HPLC on a 

Hamilton PRP-1 (5 μm, 250x4.6 mm) column at 70 
°
C with a linear gradient of 9% B to 

13% B over 25 min (Solvent A: 50 mM TEAA in water, pH 7; Solvent B: acetonitrile). 

The detector was set at 260 nm and the flow rate was 1.0 mL/min. Under these 

conditions, the uracil dimer strand and the repaired strand coeluted as a broaden peak at  

9 min. This peak was isolated and reanalyzed by reversed phase HPLC at room 

temperature using an Ace C18 column (5 μm, 250x4.6 mm) with a linear gradient of 4% 

B to 12% B over 30 min (Solvent A: 20 mM CH3COONH4, pH 7; Solvent B: 

acetonitrile). Under these conditions, the uracil dimer strand eluted at 10 min and the 

repaired strand eluted at 12 min. These peaks were integrated and used to calculate the 

repair yield.  
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 Photorepair of [cis, syn] thymine dimer in single-stranded DNA. The 

irradiation procedure for single-stranded DNA was the same as described above for the 

DNA duplex. The irradiation mixture was then analyzed by HPLC on Ace C18 column (5 

μm, 250X4.6 mm) with linear gradient of 5% B to 15% B over 25 min (Solvent A:        

20 mM CH3COONH4, pH 7; Solvent B: acetonitrile). Under these conditions, the 

thymine dimer strand eluted at 10 min and the repaired strand eluted at 12.5 min.  
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CHAPTER 3 

 

EFFECTS OF SEQUENCE CONTEXTS ON THYMINE DIMER  

REPAIR BY 8-OXOGUANOSINE IN SINGLE-STRANDED 

AND DOUBLE-STRANDED OLIGONUCLEOTIDES  

 

Introduction 

 We earlier proposed that RNA could have employed simple derivatives of 

nucleosides to facilitate electron transfer processes prior to the evolution of modern 

enzyme redox cofactors such as flavin, pterins and nicontinamide (1). We showed that 8-

oxoguanosine (OG) can mimic the function of flavins to repair cyclobutane pyrimidine 

dimers (CPD) when installed into double-stranded DNA or RNA in proximity to these 

lessons. The repair mechanism is thought to be a photo-induced electron transfer process 

from OG to CPD. We also found that the repair efficiency has interesting correlations 

with base pairing, base stacking and the orientation of OG with respect to the CPD (5’-3’ 

vs. 3’-5’) (1). Therefore, we reasoned that extending the studies to the effects of sequence 

contexts on CPD repair efficiency may help us better understand the repair mechanism. 

 In a broader view, the mechanistic aspects of the CPD repair in this system relate 

to a question of how the photoexcited states of bases relax to the ground states. Indeed, 

this is an interesting question that has attracted considerable attention of scientists due to 

its importance to understand mechanisms of DNA photodamage (2). As previously 



41 
 

 
 

described, electron transfer (ET) leading to the formation of exciplexes is believed to be 

an important pathway for the deactivation of the photoexcited state of bases in single-

stranded or double-stranded DNA (2-10). The ground state is then recovered by either 

charge recombination in the case of intrastrand exciplexes (2-5, 11) or proton transfer in 

the interstrand G
+.

:C
-.
 exciplex (6, 8-10, 12). Although the formation of intrastrand 

exciplexes is widely accepted, the proton-coupled electron transfer (PCET) mechanism 

for the deactivation of the excited G:C base pair is still controversial (13). The unique 

structure of OG allows it to effectively bind with various bases such as a Watson-Crick 

base pair with C, a Hoogsten base pair with A and a potential wobble base pair with T 

(Figure 3.1) (14, 15). Therefore, monitoring the CPD repair efficiency in different 

sequence contexts for OG and CPD might differentiate the two photo-induced electron 

transfer pathways, through base stacking and base pairing, and help to validate the 

existence of an interstrand exciplex. In this chapter, we investigate the photorepair 

activity of OG in different environments of base stacking and base pairing to elucidate 

photodynamic insights into the repair mechanism. 

 

Results 

 Base pair effects on the repair of thymine dimer by OG. In the previous report, 

we proposed that the lower activity of  an OG:C base pair as compared to an OG:A base  

pair in repairing T=T derives from its capability of deactivation by a PCET mechanism 

(1).  To further support this argument, we postulate that removal of the base paired with 

OG will eliminate the PCET mechanism, and therefore may enhance the thymine dimer 

repair efficiency comparing to  the  OG:C base pair,  even  though  this modification  also  
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Figure 3.1. Base pairs of OG with different bases 

 

 

 

 

 

 

 

 

 

 



43 
 

 
 

destabilizes the DNA duplex. For this purpose, we constructed DNA duplexes placing 

OG opposite a tetrahydrofuran analog (F) used as an abasic site mimic. The photolysis 

experiments of these duplexes were carried out as previously described (1) and the 

irradiation mixtures were analyzed by denaturing HPLC to detect the repaired strand (see 

experimental section). Integration of HPLC peaks corresponding to the thymine dimer 

and the repaired strands, and plots of the repair yield vs. irradiation time were used to 

calculate the repair rates that are shown in Figure 3.2. 

 The repair of thymine dimer was first investigated with DNA duplexes containing 

OG neighboring to T=T. When OG is at the 5’ side of T=T, we observed the activity of 

an OG:F is 3-fold less than in OG:C base pair (Figure 3.2, 1C vs. 1F). However, the order 

is reversed when OG was presented at the 3’ side of T=T in which an OG:F is about 2-

fold more reactive than an OG:C base pair (Figure 3.2, 2C vs. 2F). These results are 

probably due to the different stacking environments between the two sides of T=T in 

DNA duplex (16, 17). Next, we compared the thymine dimer repair efficiency between 

OG:C and OG:F in duplexes in which an intervening dA was put in between OG and 

T=T. In these duplexes, OG does not directly stack onto the T=T, therefore, the 

intrastrand ET will be greatly reduced while the PCET pathway is not likely affected. The 

results showed that OG:F duplexes with OG in both sites of T=T (3’ and 5’) still showed 

some degree of  thymine  dimer  repair  although   the    reactivity  was  decreased   about 

4-fold compared to the corresponding duplexes with OG neighboring to T=T (Figure 3. 2, 

duplex 2F, 3F).  In contrast, no detectable repair of thymine dimer (<5%) was observed in 

OG:C duplexes  after 120 min of irradiation. These results support the plausibility of a 

PCET mechanism to deactivate the photoexcited state of OG in an OG:C base pair. 
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Figure 3.2. Repair rates of T=T in various sequence contexts of DNA duplexes. 
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 Thymine dimer repair in single-stranded DNA (ssDNA). As reported, an 

exciplex between two neighboring bases can be formed in ssDNA (2, 3). Therefore, if the 

thymine dimer repair is proceeded by formation of an exciplex, it should also be possible 

in ssDNA. We then investigated the repair efficiency of thymine dimer in OG-containing 

ssDNA to validate this argument. All the experimental procedures to determine the repair 

rates of thymine dimer in ssDNA were the same as described above for DNA duplex, 

except that reversed phase HPLC was used to analyze reaction mixtures (Figure 3.3). The 

results are shown in Figure 3.4. As expected, the repair efficiency of thymine dimer in 

ssDNA is generally lower than in the corresponding DNA duplex. In addition, we still 

observed the 5’-3’ preference for the thymine dimer repair efficiency in ssDNA with OG 

directly flanking T=T (Figure 3.4, duplex 1S vs. 2S). It is also not surprising that 

insertion of a dA in between 5’-OG and T=T led to a 5-fold decrease in repair efficiency 

(Figure 4, 1S vs. 3S). However, a reversed distance effect in which the activity was 

slightly increased with an insertion of a dA in between OG and T=T was observed at the 

3’ side of T=T (2S vs.4S, Figure 3.4).  

 Repair of thymine dimer by an opposite OG. We have so far demonstrated that 

OG is capable of mediating the thymine dimer repair via an electron transfer process 

through base stacking in the DNA duplex as well as in ssDNA. The highest repair 

efficiency was observed in a duplex with OG presented at the 5’ side of T=T and paired 

with a dA with a quantum yield estimated at 0.01 (see experimental section). Practically, 

for OG as an RNA repair catalyst, it may be not necessary for the OG to be in the same 

strand and directly stacked with the lesion T=T. The simplest arrangement one could 

imagine is that OG is brought close to this lesion by a ribozyme that facilitates the repair    
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Figure 3.3. Reversed phase HPLC analysis of strand 1S as a function of irradiation time. 
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Figure 3.4. Repair rate of T=T in single-stranded DNA 
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upon irradiation. Therefore, we next investigated thymine dimer repair in DNA duplexes 

placing OG opposite one or the other T of the dimer. Detection of the repaired strand 

after photolysis and calculation of repair rates were the same as described above. 

Surprisingly, OG opposite the 3’ T of the dimer (Figure 3.5, duplex 5T ) showed an 

excellent photorepair activity, and it is comparable to the most reactive duplex 1A 

(Figure 3.5) observed so far. The OG opposite the 5’T (Figure 3.5, duplex 6T) still 

showed  moderate activity but decreases about 8-fold in comparision to the duplex 5T. 

This result is possibly derived from the difference in the ability to form a base pair 

between these two Ts of the dimer (16). 

 Repair of uracil dimer in RNA/DNA duplexes by an opposite OG. Since OG 

is proposed as a ribozyme cofactor in the RNA world, its photorepair activity may also 

need to operate on uracil dimer (U=U) in RNA. Therefore, we investigated the possibility 

of this chemistry by constructing the RNA/DNA duplexes in the same sequence contexts 

as T=T containing DNA/DNA duplexes described above, placing OG opposite one of the 

Us of the uracil dimer (Table 3.1). After photolysis, the irradiation mixtures of these 

RNA/DNA duplexes were analyzed by denaturing HPLC to detect the repaired RNA 

strand. The repair yields are reported in Table 3.1. Similar to the case of the T=T -

containing DNA/DNA duplex, we observed better repair activity of OG opposite the 3’U 

than opposite the 5’ U of the dimer. Consistent with our previous study (1), the repair 

efficiency of U=U was less than T=T in the same sequence context, probably due to the 

change of the helical structure from the B form (DNA/DNA duplex) to the A form 

(DNA/RNA duplex).  
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Figure 3.5. Repair rates of T=T in DNA duplexes with OG opposite to one or the other T 

of the dimer (5T, 6T). 1A is the DNA duplex with the highest T=T repair activity. 
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Table 3.1. Single time point repair yields for cyclobutane pyrimidine dimers in various 

sequence contexts based on duplexes 5T and 6T. 
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 Discussion 

 In the previous work, we proposed that the repair of thymine dimer by an adjacent 

OG was first proceeded via the formation of an exciplex OG
+
T=T

-
 (1).  The cleavage of a 

cyclobutane ring, an ultrafast process estimated to occur at picosecond time scale (18, 

19), might efficiently compete with the charge recombination of an exciplex (  5 -180ps) 

(3, 11) and lead to the repair of T=T. Previous studies also suggested that the formation 

of an exciplex between T and its neighboring purines can prevent the dimerization of TT 

in DNA (20). Although G or A was incapable of repairing thymine dimer in a 

trinucleotide context via the electron transfer mechanism (21), the better electron donor 

OG in the stacked environments of ssDNA and the DNA duplex efficiently repaired this 

lesion.  In our system, we also found the OG:A base pair was more effective than the 

OG:C base pair even though the OG:C duplex is slightly more stable (1). This 

observation drove us to an argument that the photoexcited state of OG in the OG:C base 

pair may also decay via a proton-coupled electron (PCET) mechanism as was proposed 

for the G:C base pair (Figure 3.6). The results in this chapter further support this 

argument. 

 The difference in the thymine dimer repair efficiency between the OG:F and 

OG:C base pairs (Figure 3.2) suggests that there is a competition of electron transfer 

through base pairing (OG to C) vs. base stacking (OG to T=T). At the 5’ side where T=T 

still retains good stacking with its neighboring base (16, 17, 22), the ET through base 

stacking may be dominant and a higher activity is observed in the more stable duplex 

(OG:C>OG:F). Stacking at the 3’ site of T=T is highly perturbed (16, 17, 22); therefore, 

the photoexcited state of 3’-OG might mainly decay via a PCET mechanism in the OG:C 
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Figure 3.6. A proposed PCET pathway to deactivate the photoexcited state of OG in 

OG:C base pair  
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base pair. Because the PCET mechanism could not occur with OG:F, it is more reactive 

than the OG:C base pair, even though the OG:F duplex is clearly less stable than the 

OG:C duplex. Furthermore, we always observed a higher activity of OG:F than OG:C 

when OG does not directly stack to T=T (Figure 3.2), and this does not depend on the 

location of OG with respect to T=T. These results reasonably suggest that the PCET 

pathway to deactivate the photoexcited state of OG in OG:C base pair is possible, and it 

competes with the intrastrand electron transfer from OG to T=T that ultimately leads to 

the repair of thymine dimer.  

 In addition, the relative reactivity of OG:F to OG:A also shows interesting 

aspects. In duplexes with OG directly flanking T=T, OG:A is about 4-7-fold more 

efficient than OG:F depending on the orientation of OG with respect to T=T (Figure 3.2, 

1A vs. 1F, 2A vs. 2F). Obviously, the helical structure at the T=T site is highly disturbed 

(16, 17), therefore, a stable base pair OG:A that is incapable of being deactivated by a 

PCET mechanism (1) may be necessary to maintain efficient repair of the thymine dimer.  

However, OG:A and OG:F have quite similar reactivity when an A:T base pair was 

inserted in between OG and T=T (Figure 3.2, 3A vs. 3F, 4A vs. 4F). In these duplexes, 

we believe an A is possibly a bridge for an electron moving from OG to T=T (1). As 

previously described, the formation of an exciplex between two neighboring bases in 

oligonucleotides containing A and T was independent of base pairing (3). Because the 

stacking between OG and its adjacent base A is likely similar to the stacking motif of a 

normal DNA duplex, we thought the formation of an exciplex OG
+
-A

-
 may not depend 

on the base paired with OG unless this leads to the PCET deactivation pathway. 

Therefore, the thymine dimer repair efficiency is quite similar between OG:A and OG:F  
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duplexes with OG and T=T intervened by a dA.  

 The capability of OG mediating the repair of thymine dimer in ssDNA further 

supports a repair mechanism via the formation of an exciplex. Because ssDNA may have 

a similar base stacking motif as a DNA duplex (2), the 5’-3’ direction preference for the 

repair efficiency was still observed in ssDNA (Figure 3.4). When a dA was inserted in 

between 5’-OG and T=T, we observed the expected trend in which the thymine dimer 

repair efficiency decreased by 5-fold (Figure 3.4, 1S vs. 3S). In contrast, the same 

modification at the 3’ site of T=T even slightly increases the repair efficiency (Figure 3.4, 

2S vs. 4S). Indeed, this opposite trend was observed in the case of hole transfer from 2-

aminopurine to a guanine derivative in DNA duplex (23). In this case, the decomposition 

rate of the guanine derivative was used to determine the hole transfer efficiency and the 

distance effect was inverted because the back electron transfer at a short distance is much 

faster than the rate of the decomposition reaction (23). However, this explanation may 

not be applied to our system because we still observed the normal distance effect at the 5’ 

side of T=T. Instead, we thought the unusual distance effect at the 3’ side of T=T may be 

caused by the kinked structure at this site. Although ssDNA is considered to have the 

same stacking motif as duplex DNA, this structure in ssDNA is obviously more dynamic. 

Therefore, the formation of an exciplex between T=T and its neighboring 3’-OG will 

greatly be reduced in ssDNA resulting in very low thymine dimer repair efficiency. When 

a dA is inserted in between 3’-OG and T=T, the formation of the exciplex OG
+
A

-
 is more 

feasible, and the repair efficiency may be enhanced. Nevertheless, the fact that the 

photorepair activity of OG was able to operate in ssDNA suggested that repair was 

probably proceeded via the formation of an exciplex. In addition, the activity still remains 
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at longer range (one nucleotide distance) may also indicate an excess electron transfer 

(EET) mechanism for the repair (1, 24).   

  The finding that OG can efficiently repair CPD in both DNA and RNA contexts 

when it was opposite to one of the bases of these lesions strengthens the potential role of 

OG as a RNA coenzyme, because it shows that the photorepair activity of OG can 

operate in versatile environments. Since the coenzyme OG may not always directly stack 

next to CPD in the same strand, this finding implies that “OG containing ribozymes” 

could dock with the dimers and repair these lesions. As shown in an NMR study, G can 

form a wobble base pair with the 3’ T of the dimer T=T and cause only a little 

conformational distortion compared to the parent T=T:AA duplex (25, 26).  Having the 

same pyrimidine ring as G, OG may also have the capability of forming a similar wobble 

base pair with T (Figure 3.1), even though the carbonyl group at C-8 of OG might also 

affect the stability of this base pair. Similarly, OG also could form a wobble base pair 

with U in DNA/RNA duplex. Therefore, the CPD repair in these systems was likely 

triggered by an internal electron transfer in OG:T or OG:U base pairs (Figure 3.7). In 

addition, the higher feasibility of the 3’ T of the dimer in forming the base pair than the 

5’ T (16) may explain the higher activity of OG  when paired with this 3’ T.  

 The next question one would ask is how the electron can transfer in an excited 

OG:T base pair. As discussed above, we have evidence that electron transfer can occur in 

the excited OG:C base pair.  As for the G:C base pair (7, 9), the driving forces for an 

electron  transferring  from  the  photoexcited  state  of  OG  to  C  are  probably  the high 

electron affinity of C and a spontaneous proton transfer from  a radical cation OG
+.

 to a 

radical anion C
-. 

. This pathway will deactivate the photoexcited state of OG and decrease 
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Figure 3.7. Thymine dimer repair is triggered by an internal electron transfer in a wobble 

OG:T base pair   
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the thymine dimer repair efficiency. Since T of the T=T dimer is also a good electron 

acceptor, and the opening of the cyclobutane ring is ultrafast and entropically favorable 

(18), the formation of a charge-transfer species OG
+.

-T=T
-.  

and then the repair of thymine 

dimer from the radical anion T=T
-. 

are plausible. One could argue that a proton-coupled 

electron transfer mechanism may also occur in the OG:T base pair and does not lead to 

the thymine dimer repair. However, we think this pathway would be very inefficient. The 

reason is that in a wobble OG:T base pair the N1-H of OG forms a hydrogen bond with 

the oxygen at C6 of T (Figure 3.1) and the proton transfer from the N-H group to an 

oxyanion is an endothermic process. It is also interesting to note that the internal electron 

transfer in the G:C base pair was proposed as a deactivation pathway to avoid DNA 

photodamage in the early stages of the origin of life (9, 27). A similar pathway occurring 

in the OG:T base pair found in our study may contribute to understanding how the 

photodamage of nucleic acid was repaired during the evolution of life. 

 

Conclusion 

 In conclusion, we extended studies on the effects of sequence contexts on the 

repair efficiency of cyclobutane pyrimidine dimer by OG in DNA and RNA to better 

understand photodynamic insights of the repair mechanism. From findings in these 

studies, we believe the repair process was triggered by the formation of an intrastrand 

(via base stacking) or an interstrand (via base pairing) exciplex OG
+.

-T
-.
  The opening of 

a cyclobutane ring is fast enough to efficiently compete with the charge recombination of 

these exiplexes and leads to the repair of the dimer. We also have evidence of a PCET 

pathway to deactivate the photoexcited state of OG in an OG:C base pair, and this results 
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in the low repair efficiency of this base pair. Although the employment of ultrafast 

techniques to fully understand mechanistic insights is necessary, these results showed that 

the photorepair activity of OG could operate in versatile environments of base stacking 

and base pairing. This provides additional support for our hypothesis of OG as a prebiotic 

version of the redox coenzyme flavin. Furthermore, the ability of OG to bind with 

different bases and its property to induce electron transfer upon photoirradiation may 

make OG a promising probe to study the photodynamics of DNA. 

 

Experimental 

 All chemicals were purchased from commercial sources and used without further 

purification unless otherwise stated. DNA containing OG and T=T were synthesized at 

the DNA/Peptide Core Facility at the University of Utah and purified as previously 

described (1). RNA containing U=U was synthesized from the unmodified RNA by 

photoirradiation using acetone as a photosensitizer (1). The concentration of DNA and 

RNA was determined by UV-VIS spectroscopy on the Beckman DU 650 spectrometer. 

Complete sequences studied are shown in Table 3.2. 

 General procedure for photorepair of CPD by OG. 5 uM of DNA or RNA 

containing OG and CPD in a buffer solution containing 20 mM NaPi and 100 mM NaCl 

at pH 7 were irradiated in polystyrene cuvettes to cut off wavelengths below 300 nm (28) 

at ambient temperature (22 °C) with an FS40 UVB lamp (peak at 313 nm). The 

irradiation mixtures  were  analyzed  by  appropriate  HPLC  methods  to  calculate  the 

repair  yield. Thymine dimer repair yield was then plotted as a function of irradiation 

time and fit to exponential curve using OriginPro 8.5 software (Originlab). The repair  
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Table 3.2. Complete sequences studied and their corresponding quantum yields of 

thymine dimer repair.   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Sequences 

103 ᶲrepair  

1A         5’-CACAGCOT=TACAGTACAC-3’ 
 3’-TCTGTGTCGAA  ATGTCATGTGT-5’ 

10 

1C        5’-CACAGCOT=TACAGTACAC-3’ 
 3’-TCTGTGTCGCA  ATGTCATGTGT-5’ 

3.8 

1F         5’-CACAGCOT=TACAGTACAC-3’ 
 3’-TCTGTGTCGFA  ATGTCATGTGT-5’ 

1.3 

2A         5’-CACAGCAT=TOCAGTACAC-3’ 
 3’-TCTGTGTCGTA  AAGTCATGTGT-5’ 

4.7 

2C         5’-CACAGCAT=TOCAGTACAC-3’ 
 3’-TCTGTGTCGTA  ACGTCATGTGT-5’ 

0.7 

2F         5’-CACAGCAT=TOCAGTACAC-3’ 
 3’-TCTGTGTCGTA  AFGTCATGTGT-5’ 

1.3 

3A        5’-ACAGCOAT=TACAGTACAC-3’ 
 3’-TCTTGTCGATA  ATGTCATGTGT-5’ 

0.4 

3C        5’-ACAGCOAT=TACAGTACAC-3’ 
 3’-TCTTGTCGCTA  ATGTCATGTGT-5’ 

NA* 

3F        5’-ACAGCOAT=TACAGTACAC-3’ 
 3’-TCTTGTCGFTA  ATGTCATGTGT-5’ 

0.3 

4A        5’-CACAGCAT=TAOCAGTACA-3’ 
 3’-TCTGTGTCGTA  ATAGTCATGTT-5’ 

0.6 

4C         5’-CACAGCAT=TAOCAGTACA-3’ 
 3’-TCTGTGTCGTA  ATCGTCATGTT-5’ 

NA* 

4F        5’-CACAGCAT=TAOCAGTACA-3’ 
 3’-TCTGTGTCGTA  ATFGTCATGTT-5’ 

0.4 

1S         5’-CACAGCOT=TACAGTACAC-3’ 2.9 

2S         5’-CACAGCAT=TOCAGTACAC-3’ 0.3 

3S        5’-ACAGCOAT=TACAGTACAC-3’ 0.6 

4S        5’-CACAGCAT=TAOCAGTACA-3’ 0.4 

5T         5’-CACAGCAT=TACAGTACAC-3’ 
 3’-TCTGTGTCGTA  OTGTCATGTGT-5’ 

7.3 

6T         5’-CACAGCAT=TACAGTACAC-3’ 
 3’-TCTGTGTCGTO  ATGTCATGTGT-5’ 

0.9 

RNA/DNA         5’-CACAGCAU=UACAGUACAC-3’ 
  3’-TCTGTGTCGTA  OTGTCATGTGT-5’ 

 

RNA/DNA         5’-CACAGCAU=UACAGUACAC-3’ 
 3’-TCTGTGTCGTO  ATGTCATGTGT-5’ 

 

*
repair yields are too low for accurate calculation 
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rate (% min
-1

) was calculated and this value was used to compare the repair efficiency of 

different DNA duplexes (29). These values were converted to quantum yields (moles of 

T=T repaired per min/moles of photons absorbed by OG per min) with an assumption 

that OG is the only species that absorbed the light at 313nm with an estimated extinction 

coefficient ε = 24   L.mol
-1

.cm
-1

 (Table 3.2). The intensity of incident light was 

determined by the method of ferrioxalate actinometry (30).   
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CHAPTER 4 

 

TOWARD THE STUDY OF PYRIMIDINE DIMER REPAIR 

BY DINUCLEOTIDES CONTAINING 

8-OXOGUANOSINE  

 

Introduction 

 The existence of a primordial RNA world in which RNA carried out both 

functions as genetic and catalytic materials is widely accepted. The persistence of 

nucleotides in most of the modern coenzymes suggests a central role of RNA in early 

metabolism. In 1976, White first recognized this phenomenon and proposed that these 

coenzymes are “fossils” of the RNA world and probably evolved from nucleotides (1). 

Recently, Yarus hypothesized a stronger role in evolution for nucleotide coenzymes as 

modern descendants of Initial Darwinian Ancestors (IDA) (2) (Figure 4.1). He thought 

5’-5’ linked cofactors such as NAD
+
 and FAD were primordial replicators prior to the 

RNA world, because they potentially have stacked structures and might form base pairs 

with counterpart nucleotides during replication (Figure 4.1). In addition, the 5’-5’ link is 

easily formed from 5’-activated nucleotides and has more chemical resistance than 3’-5’ 

link in term of hydrolysis and is less sensitive to sugar chirality that might make it 

tolerant of various sugars. 5’-5’ replicators with functional nucleotides were later selected 

to participate in metabolism and then served as cofactors for primordial ribozymes to      
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Figure 4.1
*
. (A) The IDA in context. Roles of 5’-5’ dinucleotides in metabolism as 

primordial replicators and cofactors for ribozymes and ribonucleoproteins. (B) 

Replication scheme for AMP-containing dinucleotides such as FAD and NAD
+
. 

*Reproduced with permission from Cold Spring Harb Perspect Biol. doi: 

10.1101/cshperspect.a003590 
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support the more diverse metabolism in the RNA world. Through evolution, only a few  

extremely effective 5’-5’ dinucleotide cofactors in catalysis such as NAD
+
 and FAD were 

adopted by protein enzymes and are still present today.  

 Based on experimental observations and theoretical arguments, Yarus 

hypothesized that dinucleotide cofactors may have served the important roles as 

replicators in the pre-RNA world and cofactors in the RNA world, for. We proposed that 

8-oxoguanosine was a primitive flavin because both OG and flavin heterocycles are 

“matured” from the canonical base G, however flavin is made via several biosynthetic 

steps while OG is only one chemical step away from G (Chapter 1). Support for this 

proposal is that OG can mimic a function of flavin in repairing the photodamage lesions 

CPDs (Chapter 2 & 3). Following the logic of the Yarus hypothesis, we question is there 

any role for OG-containing dinucleotides in the origin of life? More specifically, could 

5’-5’ diphosphate diribonucleotide OA (OADH2), a closer mimic of FADH2 (Figure 4.2), 

be a component of IDA as a replicator and then enter the RNA world as a primitive redox 

cofactor?  A role for OADH2 as a replicator is reasonable because the unique structure of 

OG allows it to form base pairs with various bases. Therefore, in this chapter, we will 

investigate the cofactor chemistry of OADH2 in mediating CPD repair to see if it could 

have played any role in primitive metabolism. A hint for the possibility of this chemistry 

comes from a result in Chapter 3 in which OG effectively repairs CPDs when it pairs 

with the 3’ monomer (T or U) of the dimers in 18mer DNA/DNA or DNA/RNA 

duplexes. We postulate that OADH2 dinucleotide would potentially bind to CPDs, 

probably via a Watson-Crick base pair A:T(U) and a wobble base pair OG:T(U), under 

plausible prebiotic conditions of low temperature and high salt concentration and  lead to  
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Figure 4.2. Structures of 5’-5’ AMP-containing dinucleotides OADH2 and FADH2 
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CPD repair upon irradiation (Figure 4.3). In this case, OADH2 might be considered a 

“minimal ribozyme” to repair CPD. 

 

Results and discussion 

 Effects of temperature and salt concentration on thymine dimer repair by 

OG. In our proposal of utilizing OG-containing dinuleotides to repair CPDs, temperature 

and salt concentration are thought to be crucial factors to enhance the binding efficiency 

between substrates and catalysts. Thus, we first want to know if these two factors have 

any effect on CPD repair. For this purpose, we designed a 9mer duplex containing an OG 

paired with the 3’ T of a T=T dimer (Figure 4.4). This duplex, with a melting point in the 

range of 15-20 
°
C (by theoretical calculation), is convenient for studying effects of 

temperature and salt concentration on binding efficiency.  

 The thymine dimer repair was first investigated at ambient temperature (22 
°
C) in 

which the duplex is assumed to melt (Figure 4.4). The repaired strand was detected by 

denaturing HPLC and the peaks corresponding to the thymine dimer strand and the 

repaired strand were integrated to calculate the repair yield. In an experiment carried out 

in buffer solution containing 100 mM NaCl, about 14% of thymine dimer was repaired 

after 2 h of irradiation. This value is significantly lower than the repair yield observed in 

the case of a 18mer duplex under the same conditions (Chapter 3), suggesting the 

importance of maintaining a stable duplex for effective repair. As expected, the repair 

yield increased when the salt concentration was increased to 1 M, because high salt 

concentration favors duplex formation. However, we observed a lower repair yield at 3 M 

NaCl compared to that at 1 M NaCl. We postulate that at a very high salt concentration,  
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Figure 4.3. A proposed repair pathway of pyrimidine dimers by dinucleotide OA 
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Figure 4.4. Repair yields of thymine dimer in an 18mer DNA strand annealed to a OG-

containing 9mer DNA strand after 2 h of irradiation. 
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DNA might adopt conformations other than B-form and these conformations may be 

unfavorable structures for electron transfer and therefore reduce the efficiency of thymine 

dimer repair.              

 With experiments carried out at 2 
°
C, thymine dimer repair yield significantly 

increases at every salt concentration (Figure 4.4). This result again indicates that a stable 

duplex is necessary for effective repair of thymine dimer. However, we found that the 

repair yield was highest at 100 mM salt and decreased when the salt concentration was 

increased to 1 M or 3 M. Again, we think the change in conformation of the double helix 

is responsible for this result, and it is possible that this change might require lower salt 

concentration at low temperature. Nevertheless, we found temperature and salt 

concentration have significant effect on thymine dimer repair. To get effective repair, 

these two factors should be optimized to guarantee the T=T substrate and the OG catalyst 

“immobilized” in a stable duplex at a “correct” conformation of double helix.  

 Repair of thymine dimer by deoxyribodinucleotide d(OA). The above results 

suggest that the binding between OG-containing dinucleotides and CPD might be 

improved by changing the temperature and salt concentration of the buffer solution and 

make it possible for OG-containing dinucleotides to mediate CPD repair. For ease in 

synthesis, we first investigated the repair of thymine dimer in a 6mer DNA substrate 

(6mer T=T) by 5’-3’ monophosphate deoxyribodinucleotide d(OA), since d(OA) can be 

synthesized from commercially available phosphoramidites (Figure 4.5). In addition, OG 

was placed at the 5’ side, because our previous results showed that OG paired with the 

3’T of the dimer is more effective in repairing thymine dimer (Chapter 3). The irradiation  

procedure is described in the experimental section. The irradiation mixture was then 
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Figure 4.5. HPLC analyses of mixtures containing d(OA) and 6merT=T after 5 h of 

irradiation at various salt concentrations. 
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analyzed by reversed phase HPLC to detect the repaired strand and the repair yield was 

calculated by integration of appropriate HPLC peaks.  

 At 2 
°
C, thymine dimer repair yields after 5 h of irradiation were very low (<3%), 

even at 3 M salt. This result suggested that the binding between d(OA) and T=T is weak 

and the system seems to have bimolecular characteristic at this temperature (Chapter 5). 

Therefore, it may be necessary to lower the temperature to enhance the binding of the 

dinucleotide catalyst to the dimer substrate. In the next set of experiments, we irradiated 

the sample in a frozen aqueous solution on a dry ice surface (   -78 
°
C), which is a 

condition widely used to study the photochemistry of pyrimidine bases (3-5). Analysis of 

the irradiation mixture by HPLC showed that thymine dimer repair yield significantly 

increased as compared to that at 2 
°
C (Figure 4.5). In addition, the repair efficiency was 

dependent on salt concentration and was better at higher salt concentration. At 3 M NaCl, 

the thymine dimer repair yield after 5h of irradiation reached about 20%, a much higher 

yield than that of the bimolecular reaction (Chapter 5). Although this value is still lower 

than the yield observed in long DNA duplex, it clearly suggested that d(OA) can bind 

with the T=T site and facilitate the repair.  

 Repair of pyrimidine dimers by OADH2. Promising results from the repair of 

T=T by deoxyribodinucleotide d(OA)  triggered us to investigate the potential of OADH2 

in the same chemistry. Because OADH2 is not commercially available, we first designed 

a synthetic scheme for this compound following a general procedure to make 5’-5’ 

diphosphate diribonucleotides (6) (Figure 4.6). Initially, 8-oxoguanosine-5’- 

monophosphate (OGMP) was synthesized from guanosine-5’-monophosphate (GMP) by  

a method developed by Dr. Aaron Fleming in our lab (7). OGMP was then coupled with 
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an activated adenosine-5’-monophosphate (AMP) that was prepared in situ as previously 

described to form OADH2 with a 10% yield. Optimization of this coupling reaction to get 

a higher yield of OADH2 is a subject for our future investigation. The identity of OADH2 

was confirmed by mass spectrometric analysis and its UV spectrum was identical to the 

authentic d(OA), therefore no further characterization was carried out. 

 We next investigated the repair of thymine dimer in a 6mer DNA strand by 

OADH2 in a frozen aqueous solution containing 3 M NaCl. After 5 h of irradiation, 

approximately 8% of thymine dimer was repaired (Table 4.1). Apparently, OADH2 is less 

effective than d(OA) in repairing thymine dimer in DNA within experimental error. At 

this time, we think this result is caused by the difference in binding ability to T=T 

between OADH2 and d(OA). The diphosphate link in OADH2 may be too long for 

effective formation of base pairs between the components of OADH2 and the two T of 

the T=T dimer. Obviously, additional experimentation is needed to validate this 

argument. In addition, we also examined the possibility of repairing U=U in a 6mer RNA 

by d(OA) and OADH2. However, the repair yield was too low (<1%) in both cases to 

make a quantitative comparison (Table 4.1). Nevertheless, it is evident that OADH2 can 

bind to the CPDs and facilitate the repair of these lesions. Optimization of reaction 

conditions may be necessary to improve the repair yield, and this is our goal for next set 

of experiments.  

 

Conclusion  

 Inspired by the recent Yarus hypothesis on the role of dinucleotide cofactors in 

evolution and our findings on mediating CPD repair by OG paired with one monomer of 
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Table 4.1. Preliminary results on repair yields of pyrimidine dimers by OG-containing 

dinucleotides after 5 h of irradiation at 3 M salt concentration at -78 °C. 
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the dimers in Chapter 3, we investigated the potential of OG-containing dinucleotides as  

a minimal ribozyme to repair CPDs in short DNA and RNA oligomers. Our preliminary 

results showed that these dinucleotides could bind to CPDs at sufficiently low 

temperature and high salt concentration and mediate repair upon irradiation. We also 

found that OADH2 has lower photorepair activity than d(OA), probably because the long 

5’-5’ diphosphate linkage in OADH2 reduces the binding efficiency of this molecule to 

CPD. Our future work will focus on optimizing reaction conditions to increase the repair 

yield. 

 

Experimental 

 Synthesis and purification of d(OA). d(OA) was synthesized from the 

corresponding phosphoramidites at the University of Utah Core Facility. The 

dinucleotide was cleaved from the synthetic column by incubating with concentrated 

ammonium hydroxide solution containing 0.25 M β-mercaptoethanol as an antioxidant at 

room temperature for 16 h. The solution was then transferred into a vial, incubated at     

55 
°
C for 17 h to remove base protecting groups, then dried down. The crude material 

was purified by ion-exchange HPLC on a Dionex DNA Pac PA-100 column with linear 

gradient of 0% to 2% B over 15 min (solvent A: 10% acetonitrile in water; solvent B:    

1.5 M sodium acetate, 10% acetonitrile in water, pH 7). Dinucleotide was desalted by 

passing through a C18 column with isocratic 8% of B (Solvent A: 0.1% formic acid in 

water; solvent B: acetonitrile). Concentration of d(OA) was determined by UV 

spectroscopy. 
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 Synthesis of 6mer DNA containing T=T. A literature procedure was followed 

(8). Briefly, a solution containing 6mer DNA (CATTGC) (150 µM) and acetophenone   

(5 mM) in water was degassed by bubbling Argon for 30 min and then irradiated by a 

UVB lamp in a polystyrene cuvette for 2 h. The product (6merT=T) was purified by 

reversed phase HPLC on a Variant C18 column with linear gradient of 1% to 15% B over 

30 min (solvent A: 20 mM ammonium acetate in water, pH 7; solvent B: acetonitrile). 

 Synthesis of 6mer RNA containing U=U. Uracil dimer containing RNA was 

synthesized as previously described (9). Briefly, a solution containing 6mer RNA 

(CAUUGC) (150 µM) and acetone (10%) in water was degassed and then irradiated by a 

UVB lamp in a glass vial for 1.5 h. The product (6merU=U) was purified by reversed 

phase HPLC on a Variant C18 column with linear gradient of 1%B to 15%B over 30 min 

(solvent A: 20 mM ammonium acetate in water, pH 7; solvent B: acetonitrile). 

 Synthesis of OGMP. To a solution of 75 mM NaPi at pH 7 containing           

GMP (0.72 mg, 2 mM) was added copper (II) acetate (0.18 mg, 1 mM), NAC (3.26 mg, 

20 mM), followed by addition of 30% wt H2O2 solution (1.03 µL, 10 mM). The reaction 

mixture was stirred for 1 h at room temperature and quenched with EDTA (10 mM). 

OGMP was purified from the starting material and other reaction products by reversed 

phase HPLC on a Variant C18 column using the following method: isocratic 1% B in     

10 min, then increase to 15% B over 30 min by a linear gradient (solvent A: 0.1% formic 

acid in water, solvent B: acetonitrile). The structure of OGMP was confirmed by mass 

spectrometric analysis ([M-H] calcd: 378.2, found: 378.8). The yield for OGMP 

formation is 25%.  
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 Synthesis of OADH2. To a suspension of AMP (2 µmol, 0.7 mg) in acetonitrile 

(10 µL) were added TEA (32.2 µmol, 4.5 µL) and TFAA (32 µmol, 4.5 µL). The reaction 

mixture was incubated at 0 
°
C for 30 min under argon and was concentrated under 

vaccuo. The oily residue was dissolved in 10 µL acetonitrile and 10 µL DMF, followed 

by addition of TEA (20 µmol, 3 µL), N-methylimidazole (10 µmol, 1 µL) and incubated 

at 0 
°
C for 30 min under argon until a bright yellow solution was obtained. This solution 

was then added to a suspension of triethylamonium salt of OGMP (2.5 µmol, 0.9 mg) in 

DMF (10 µL). After 2 h, the reaction mixture was quenched by ammonium acetate (250 

mM, 1 mL) and washed with CH2Cl2 (3 X 1 mL). The OADH2 product was purified by 

reversed phase HPLC on a Variant C18 column by linear gradient from 1% B to 65% B 

over 20 min (solvent A: 100 mM TEAA, pH 7; solvent B: acetonitrile) (yield 10%). MS 

(ESI) [M-H] calcd: 707.4, found: 706.8.   

 General procedures for photorepair of pyrimidine dimers by OG-containing 

dinucleotides and analysis of reaction mixtures. Solutions of 20 mM NaPi buffer at pH 

7 containing different concentrations of NaCl and OG-containing dinucleotides (15 µM) 

and thymine dimer or uracil dimer-containing DNA or RNA (10 µM) were frozen in dry 

ice in polystyrene cuvettes. The frozen solutions were irradiated with an UVB lamp for   

5 h. The reaction mixtures were analyzed by reversed phase HPLC on a Variant C18 

column with isocratic 1% B in 5 min and then increasing to 15% B over 30 min (solvent 

A: 20 mM ammonium acetate, solvent B: acetonitrile). The repair yields were calculated 

from integration of HPLC peaks corresponding to the dimer and the repaired strands. 
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CHAPTER 5 

 

PHOTOREPAIR OF CYCLOBUTANE PYRIMIDINE 

DIMERS BY 8-OXOPURINE NUCLEOSIDES 

 

Introduction 

 In recent work (1) we proposed that a simple derivative of guanosine (G), namely 

8-oxo-7,8-dihydroguanosine (OG), may have been a primordial redox cofactor for 

electron transfer processes. We demonstrated that OG can mimic the function of the 

flavoenzyme photolyase to repair cyclobutane pyrimidine dimers (CPD) in single- or 

double-stranded DNA or RNA oligonucleotides by what appears to be a photoinduced 

electron transfer process. These results support the hypothesis that a simple chemical 

transformation of a base, such as G to OG or C to 5-hydroxyC, could have launched the 

evolution of the redox-active cofactors FADH2 or NADH (2). 

 One finding of our previous work was that the distance dependence of CPD 

photorepair by OG was very steep; the OG base had to be well stacked in the duplex and 

within a few nucleotides of the CPD for efficient repair (1).  A key aspect that may be 

inhibiting repair by photoinduced electron transfer is the separation of charge that occurs 

when a neutral base such as OG donates an electron to form CPD
•–

 and OG
•+

.  We 

postulated that electron transfer would be more facile if the nucleobase carried a negative 

charge in its resting state, as does FADH
–
 in photolyase (3).  This might be possible by 



82 
 

 

raising the pH to deprotonate the base, or by selecting a different purine with a lower 

pKa, such as uric acid.  While the synthesis of the ribonucleoside 9-ribosyluric acid (RU) 

is straightforward (4), the conversion of RU to a phosphoramidite and incorporation into 

an oligomer are not. Therefore, we elected to study the behavior of monomeric 

nucleosides toward photorepair of CPDs, realizing that the efficiency of the 

intermolecular reaction would be much less than that of an intrastrand or intraduplex 

reaction.   In this study, we report the feasibility of repairing the free base CPDs T=T and 

U=U by 8-oxo-purine nucleosides OG and RU (Figure 5.1) as a function of pH.  With 

respect to prebiotic chemistry, we note that the OG nucleoside is one step removed from 

the parent G via hydroxylation at C8, while RU could be obtained in one additional step 

via hydrolytic deamination of the N
2
 amino group of OG.  Both of these chemical steps 

would be plausible in the early Earth environment. 

 

Results and discussion 

  In the present experiments, the 2’, 3’, and 5’ hydroxyl groups of nucleosides 

were acetylated (4-6) to retard their elution times compared to CPDs and free base 

pyrimidines as monitored by reversed-phase HPLC.  Irradiation was carried out in 

polystyrene cuvettes to cut off wavelengths below 300 nm, thus directing light into the 8-

oxopurine chromophore (1).  Both OG and RU have absorption maxima near 295 nm and 

absorb significantly above 300 nm, where normal bases and pyrimidine dimers do not.   

The repair of thymine dimer was first investigated at pH 7, where we found that the 

presence of an equimolar amount of OG or RU increased the yield of thymine dimer 

repair   approximately   four  fold   compared to   background   repair,  while   the  parent  
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Figure 5.1. Structures of catalysts and substrates (R = 2’,3’,5’-tri-O-acetylribofuranosyl) 
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nucleoside G did not have any effect (Figure 5.2).  Although adjacent guanine bases in 

DNA have been shown to have an effect on the formation of T=T at shorter wavelengths, 

the inactivity of G at λ>300 nm is not surprising given that G displays essentially no 

absorbance above 290 nm (7, 8).  In addition, we note that no significant decomposition 

of nucleosides was observed by HPLC during the course of the irradiation, indicating that 

no permanent oxidation of OG or RU had occurred.  The products of such oxidation 

chemistry have been determined previously (4, 9). 

 We considered three possible mechanisms for the repair process: (1) excited state 

energy, (2) oxidative electron transfer from T=T to OG, and (3) reductive electron 

transfer from OG to T=T. The repair of thymine dimer  y direct energy transfer from the 

photoexcited state of  G and R  (mechanism (    is excluded  ecause the excited  

singlet state energy of  =  is much higher than the energy of    3 0 nm light used in our 

experiments (10). Although thymine dimer repair may proceed via an oxidative 

mechanism, particularly in the presence of redox active transition metal complexes (11-

14), the enhancement of the thymine dimer repair yield by OG and RU is more likely 

occurring via the reductive mechanism as proposed in our previous study (1). In this 

mechanism, T=T accepts one electron from a photoexcited purine, followed by rapid 

bond cleavage of the strained cyclobutane ring (Figure 5.3), and finally back electron 

transfer to the purine.  The reductive electron transfer mechanism is supported by the 

significantly lower redox potential of OG compared to G or other bases and by the 

observed preference for long-range electron transfer in the 3’-5’ direction in studies of 

duplex DNA (1).   ne can estimate the Gi   free energy (ΔGet) for the electron transfer 

from the photoexcited OG to T=T at about -1.30 eV or -125 kJ/mol from the a previously 
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Figure 5.2. (A) HPLC traces analysis of T=T vs. repaired T after 5 h irradiation at pH 7; 

2’,3’,5’-tri-O-acetylnucleosides eluted 20 min later.  (B) Plot of T=T repair yield as a 

function of irradiation time. 
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Figure 5.3. Proposed mechanism for the enhancement of CPD repair by 8-oxopurine 

nucleosides 
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reported method (10). This mechanism has also been well characterized for photolyase 

and for related model systems (3, 13, 15-24). 

 Mechanistic considerations aside, the absolute repair yield of thymine dimer in 

these systems is extremely low, only about 1% after 7 h of irradiation.  As anticipated, 

this bimolecular reaction is much less efficient than the case where OG was installed in 

proximity to the CPD in double-stranded oligonucleotides (1). Thus, the 

“immo ilization” of two species, thymine dimer and 8-oxopurine, in an oligomer is 

important to enhance the repair efficiency. 

 Nevertheless, the repair yields observed in the initial experiments were 

sufficiently above background to warrant further study, and we next turned our attention 

to the uric acid nucleoside.  We observed that RU is about equally efficient as OG in 

repairing thymine dimer at pH 7 (Figure 5.2).  This observation was surprising for two 

reasons:  (1) RU has a slightly lower reduction potential, about 200 mV below that of OG 

(25, 26), and it would therefore be a more powerful electron donor, all other factors being 

equal, and (2) RU exists as an anion at pH 7 which should be a favorable condition for 

excited state electron donation (27).  Thus, the finding that RU is not any more effective 

than OG at intermolecular photorepair was unanticipated.  This observation led us to 

investigate the dependence of thymine dimer repair yield on pH for both RU and OG.   

 The background photorepair rate of T=T (no purines present) is almost 

independent of pH in the range from 5 to 9 (Figure 5.4).  It is also not surprising that the 

repair yield only slightly increased from pH 7 to pH 9 in the presence of RU, because 

with pKa ~ 6 (27), RU exists in an anionic form across this pH range.  However, we also 

did not observe a significant increase of thymine dimer repair yield by RU in the pH  
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Figure 5.4.  Yield of thymine dimer repair after 5 h as a function of pH for various 

additives; red:  OG, violet:  RU, blue:  none. 
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range from 5 to 7, for which RU is supposed to change from a neutral to an anionic form.  

This could indicate that despite a favorable redox potential, the excited state lifetimes of  

R  and R ˉ are  oth too short to permit effective intermolecular electron transfer.  In 

contrast to RU, the activity of OG dramatically increased from pH 7 to pH 9 (Figure 5.4), 

which is in good agreement with its pKa of 8.6 (28).  At pH 9, the repair yield of T=T by 

OG reached to about 8%, which is a 30-fold increase compared to background repair.  

 The instability of 8-oxopurine nucleosides at higher pH precluded investigation of 

repair at pH>9.   Despite that limitation, the pH dependence observed further supports a 

reductive mechanism for thymine dimer repair by OG and agrees with previous work 

showing that flavins in an anionic form repair thymine dimer more efficiently (3, 20). 

The difference in activity between OG and RU may also imply that the purine redox 

potential is not the only factor determining the thymine dimer repair efficiency.  Indeed, 

previous studies showed that not all flavin derivatives are able to repair thymine dimer, 

and their different photoexcited state lifetimes were thought responsible for this 

phenomenon (21, 29).  In studies of duplex vs. monomer systems, base stacking and base 

pairing are important factors in determining the excited state lifetimes, and are therefore 

expected to play significant roles in the ability of base chromophores to undergo 

collisional charge transfer with CPDs (30-32).  Clearly, additional photophysical studies 

will be necessary to fully understand the complex factors contributing to the lower 

efficiency of RU compared to OG in repairing thymine dimer at high pH. 

 Repair of uracil dimer, a common type of CPD found in RNA, by 8-oxopurine 

nucleosides was also investigated.   A previous study demonstrated that repair of thymine 

dimer was faster than uracil dimer when mediated by the enzyme photolyase because of a 
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strain effect induced by the two cis methyl groups (33).  However, a more recent report 

produced an opposite result in a model system in which uracil dimer was repaired faster 

than thymine dimer in flavin-conjugated model compounds, and an explanation was 

based on stereoelectronic effects (34).  In previous work (1), our laboratory observed 

slower repair for a CPD in an A-form helix (U=U in RNA/DNA or RNA/RNA duplexes) 

compared to a CPD in a B-form helix (T=T in a DNA/DNA duplex) by OG.  We 

attributed this to the difference in base stacking between the two helical forms; an 

adjacent OG-containing base pair stacks poorly on a U=U lesion in A-form RNA.  Here, 

by using a nucleoside repair model, we are able to compare the repair efficiency of OG 

between these two types of CPD in an identical environment, absent base stacking. 

 At pH 7, we observed the repair of U=U increased by threefold in the presence of 

an equimolar amount of OG (Table 5.1).  In addition, the repair yield was not 

significantly different with that of thymine dimer. Unexpectedly, we found the 

background repair of U=U was somewhat pH dependent compared to T=T, and it reached 

to 5% at pH 9 (Table 5.1, entry 3).  We cannot explain this unusual observation at the 

present time.  In any case, the presence of OG still increased the repair yield for U=U 

about twofold. From these data, it is reasonable to conclude that OG enhances the 

intrinsic repair yield of uracil dimer with similar efficiency to that of thymine dimer in 

the absence of a specific helical environment. 

 

Conclusions 

 In conclusion, we showed that the 8-oxopurine nucleosides OG and RU are able 

to  mediate  the r epair  of  cyclobutane  pyrimidine  dimers   T=T  and   U=U,  even in a  
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Table 5.1. T=T and U=U repair yields in the presence of OG as a function of pH.  Errors 

are estimated at ±10% 
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bimolecular reaction. The observations are in accord with the mechanism proposed in our 

previous study (1) in which CPD  is repaired reductively by accepting one electron from 

the photoexcited state of the purine.  Unexpectedly, deamination of the OG base to form 

RU does not provide a more active photocatalyst, despite the lower redox potential of RU 

and its anionic nature, suggesting that other factors, such as the excited state lifetimes of 

purines and flavin mimics, may play equally important roles in the process.  In contrast, 

OG did display the expected pH-dependent behavior, and the photorepair of CPDs was 

enhanced as the pH approached the pKa value of 8.6.  These studies also showed that 

T=T and U=U underwent repair at similar rates in the absence of a helical environment, 

although the overall levels are sufficiently low as to not provide an accurate assessment.  

Nevertheless, the results are instructive with respect to a comparison of OG and RU, and 

support the hypothesis that 8-oxopurine nucleosides may have played primordial roles as 

precursors to modern-day flavins in redox reactions of the RNA world. 

 

Experimental 

 Materials.  All chemicals were purchased from commercial sources and used 

without further purification except where otherwise stated.   he 2’,3’,5’-tri-O-

acetylnucleosides OG and RU were synthesized as previously described (4-6).  [cis,syn]-

Thymine dimer and uracil dimer were synthesized according to published procedures and 

purified by reversed phase HPLC (29, 35, 36). NMR spectra, UV spectra and/or HPLC 

retention times of synthesized compounds were identical with literature data. 

Concentrations of nucleosides and cyclobutane pyrimidine dimer were determined by UV 

spectrophotometry using reported extinction coefficients (37-39).  
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 Photorepair of cyclobutane pyrimidine dimer (CPD).  A solution containing 

0.2 mM CPD (T=T or U=U) and 0.2 mM nucleoside (OG or RU) in 25 mM NaPi buffer 

adjusted to the appropriate pH was irradiated in a polystyrene cuvette to cut off 

wavelengths below 300 nm (40) at ambient temperature (22 °C) with an FS40 UVB lamp 

(λmax=313 nm, Home Phototherapy, OH, USA).  In the case of thymine dimer, the 

irradiation mixture was analyzed by HPLC on a Varian C18 column (5 μm, 250x4.6 mm) 

using a linear gradient of 2% to 10% B over 20 min, then increasing B to 65% over       

10 min (A: 0.1%TFA in H2O; B: MeOH). A slightly different HPLC method with 

isocratic B at 1% for 15 min and then increasing to 65% B over 10 min was used to 

analyze the irradiation mixture of uracil dimer repair (A: H2O; B: MeOH).  In both cases, 

the flow rate was 0.7 mL/min, and the detector was set at 260 nm.  The peaks 

corresponding to CPD and the repaired product were integrated and normalized against 

extinction coefficients to calculate the repair yield, average over 3 or more independent 

trials.  Because the extinction coefficient of thymine dimer at 260 nm is not yet reported, 

this value was estimated at about 2.8 x 10
2
  y the formula: ε260 = (A260/A220  x ε220.  
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CHAPTER 6 

 

OXIDATION OF 9-β-D-RIBOFURANOSYL URIC ACID 

BY ONE-ELECTRON VERSUS  

SINGLET OXYGEN  

 

Introduction 

 We showed that 9-β-D-ribofuranosyl uric acid (RU) can also function as flavin in 

mediating the repair of CPDs, though with less efficiency than OG. While oxidation 

products of OG have been extensively studied, those of uric acid ribonucleoside (RU) 

have not. To further understand the redox chemistry of RU, we therefore investigated the 

chemistry of RU oxidation by various oxidants. Moreover, we postulate that products of 

RU oxidation are potentially mutagenic lesions of DNA derived from OG under oxidative 

and deamination conditions. 

 8-Oxo-7,8-dihydro-2’-deoxyguanosine (OG) is an abundant product of oxidative 

damage in DNA (1, 2).  OG is also characterized by its high susceptibility to further 

oxidation, and its secondary oxidation products have been characterized under various 

conditions (3, 4).  In addition to oxidation, the exocyclic primary amino group of 

guanosine is known to be reactive with nitrogen electrophiles (5), such as nitric oxide (6), 

to form xanthosine and oxanosine as the major products both in vitro (6, 7) and in vivo 

(8-11).  However, the same reaction in the case of OG to form uric acid nucleoside has 

not been studied. One possible reason is that the deamination reaction of OG leading to 
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uric acid nucleoside is even more sensitive to oxidation than OG, undergoing subsequent 

oxidation more rapidly than it can be detected.  Thus, it was of interest to characterize the 

further oxidation products of uric acid nucleoside in order to gain more insight to the 

pathways and products of OG under conditions involving oxidation and deamination with 

the potential benefit of shedding light on additional products formed in peroxynitrite-

mediated damage to DNA, a common outcome of inflammation (12).  Moreover, the one-

electron oxidation of uric acid nucleoside is also of interest in terms of its mechanistic 

aspects, because of parallels between the oxidation of uric acid (UA) alone and the 

hydantoin products derived from OG nucleoside oxidation (13, 14).  Although the sugar 

moiety is known to have an influence on the redox properties of oxidized purines (15, 

16), no direct comparisons have been made between oxidations of OG nucleoside and 

UA nucleoside (termed “RU” in this work).  

 Uric acid is known to be a scavenger for reactive oxygen species (ROS) in vivo 

(17, 18).  While photophysical and biological aspects of the photosensitized oxidation of 

uric acid derivatives have been extensively studied (19-24), mechanistic aspects for the 

transformation to oxidation products still require more work.  There are arguments, for 

example, in differentiating between type I and type II photooxidation (25, 26) or in 

formation and decomposition of reaction intermediates (24-26).  In this study, some 

mechanistic aspects of the photosensitized oxidation of uric acid nucleoside will be 

presented and compared to the well-characterized photooxidation process of its analogous 

structure 8-oxo-7,8-dihydroguanosine (27-29).  
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Results and dicussion 

 The ribose form of uric acid nucleoside (9-ribofuranosyl-β-D-uric acid, RU) was 

chosen as the substrate to be oxidized due to its more convenient preparation compared 

with the 2’-deoxyribose form; in addition, the 2’-hydroxyl group should stabilize the 

glycosidic bond with respect to hydrolytic cleavage.  The 2’, 3’ and 5’ hydroxyl groups 

of RU were acylated (Ac3RU) to facilitate the separation of oxidation products by 

reversed phase HPLC and to better mimic the chemistry in a DNA strand in which no 

free hydroxyls are present (27). Metal complexes (Na2IrCl6 or K3Fe(CN)6) were used as 

one-electron oxidants. Riboflavin was used as a “Type I” photosensitizer to undergo 

electron transfer chemistry, while Rose Bengal or methylene blue were used as “Type II” 

photosensitizers that predominantly generate singlet oxygen (30, 31). 

 Oxidation of a 0.3 mM solution of Ac3RU in aqueous phosphate buffer at pH 7 by 

Na2IrCl6 (0.6 mM) led to the formation of five stable products  (1-5) that were 

characterized by RP-HPLC (Figure 6.1). An identical result was obtained from the 

oxidation with K3Fe(CN)6. Products were identified on the basis of their masses from 

LC-ESI-MS studies and compared with known products of uric acid derivatives (16, 25, 

26, 32-35).  From that, 1 was assigned as ribosylurea, 2 and 3 as two diastereoisomers of 

allantoin ribonucleoside, 4 as two diastereomers of 5-carboxamido-5-hydroxyhydantoin 

ribonucleoside (HICA amide) and 5 as caffolide ribonucleoside (Figure 6.2). 

 To obtain additional support for the structural assignments of the oxidation 

products, we attempted to characterize reaction intermediates. For this purpose, 100-μL 

aliquots were taken from the reaction mixture periodically, and the product composition  

was monitored immediately by HPLC. Three transient peaks, TP1-TP3, were identified 
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Figure 6.1. HPLC traces of (A) the starting material (B) the oxidation products of Ac3RU 

by Ir(IV), monitored at 220 nm 
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with retention times at 17.1, 20.9, and 21.2 min, respectively. TP1 was very unstable 

under these conditions, and totally disappeared after 5 min while the two peaks 

corresponding to allantoin diastereomers increased. TP2 and TP3 were more stable, but 

completely decomposed after 2 h, and the peaks corresponding to HICA amide, urea and 

caffolide appeared and increased during this period of time. It was therefore reasonable to 

assign TP1 as a precursor to allantoin, and TP2 and TP3 as precursors of urea, caffolide 

and HICA amide. The LC-ESI-MS analysis showed the masses of TP2 and TP3 were the 

same at 460 amu (M+34) and yielded a fragment at 442 amu corresponding to the loss of 

a neutral water molecule. The identical mass spectra and very close retention in RP-

HPLC time suggested that TP2 and TP3 were diastereoisomers. Experiments carried out 

in H2
18

O led to a gain of 4 amu for both TP2 and TP3, corresponding to incorporation of 

two 
18

O atoms from water.  These data are consistent with the structure of 4,5-OH-RU, 

analogous to the precursors of HICA in OG oxidation by peroxynitrite (36) and of 

caffolide in the caffolide degradation pathway of uric acid (37).   

 TP1 was very unstable at pH 7 but its stability was increased when the pH was 

lowered. The LC-ESI-MS analysis of TP1 could be performed only at pH 3.2, and it too 

indicated mass of 460 amu, although it did not behave like TP2 and TP3 in yielding a 442 

amu product due to dehydration.  Therefore, we propose TP1 is the 5,6-dihydroxylated 

structure 5,6-OH-RU, a precursor to allantoin, by analogy to the enzymatic oxidation of 

uric acid (38) and to the mechanism of formation of guanidinohydantoin (Gh) from OG 

oxidation (13, 39). When experiments were conducted in H2
18

O, the allantoin mass 

increased by 2 amu while a gain of 4 amu was observed for caffolide.  In the case of 

HICA amide, the results showed that two or three 
18

O were incorporated, suggesting 
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some solvent exchangeability occurred at one more carbonyl groups. These observations 

help support the mechanism in Figure 6.2 for the structural rearrangements occurring 

from precursors to products.  

 The dependence of the product distribution on pH was also investigated because 

previous investigations indicated that OG oxidation to form hydantoin products Sp and 

Gh, as well as uric acid oxidation, are highly pH dependent.  The oxidation of Ac3RU 

was carried out at pH 5.4, 6.2, 7.0, 8.0 and 9.2. The results showed that HICA amide was 

formed at pH values higher than 6.2, and the amount was increased when increasing the 

pH.  In contrast, both allantoin and caffolide formation were favored at pH 5.4-7.0 and 

decreased when increasing the pH.  

 Our experimental observation of reaction intermediates provides insights into the 

reaction mechanism of RU oxidation by one-electron oxidants (Figure 6.2). A common 

intermediate, 5-OH-RU may form first from the addition of water to C5 of a quinonoid 

intermediate RU
ox

. Two electrophilic centers, C4 or C6 of 5-OH-RU were further 

attacked by water and led to the formation of two observable intermediates 4,5-OH-RU 

and 5,6-OH-RU. In the case of 5,6-OH-RU, the C6-N1 bond was broken, followed by 

decarboxylation leading to the formation of allantoin.  

 The decomposition pathways of the intermediate 4,5-OH-RU are likely more 

complicated.  The first steps are probably the cleavage of either C4-N9 or C4-N3 bond 

with the assistance of the 5-OH group.  When the C4-N9 bond is broken, the final 

product is ribosylurea after elimination of alloxan.  When the C4-N3 bond is cleaved, two 

subsequent pathways may occur. One pathway involves hydrolysis of the amide linkage, 

C2-N1, which leads to HICA amide.  The fact that the amide linkage is more labile under 
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basic conditions explains the increasing amount of HICA amide when the pH increases. 

Another pathway is an intramolecular process in which 4-OH participates in formation of 

a carbonyl; a subsequent attack of the C5-OH at C2 and elimination of NH3 would form 

caffolide.  This process may occur more readily if the NH2 group could be protonated 

during elimination, consistent with caffolide formation being more favorable at low pH.  

 Our results show that the presence of the ribose moiety at the N-9 position led to 

the formation of more oxidation products than the uric acid heterocycle alone. The 

oxidation of uric acid by Ir(IV) at pH 7 gave allantoin as the only detectable product (see 

supporting information), while three more products (ribonucleosides of HICA amide, 

caffolide, and urea) were obtained in the case of uric acid nucleoside oxidation under the 

same conditions.  The influence of N-substitution on the redox property of uric acid 

heterocycle has been investigated; however, the explanations were mainly based on 

theoretical calculations (40).  The present mechanistic studies provided more details on 

understanding the difference between one-electron oxidation pathways of ribofuranosyl 

uric acid and the uric acid heterocyle. It is clear that 5-OH-UA and the analogous 5-OH-

RU are the common intermediates of UA and RU oxidation, respectively. At pH 7, the 

predominant form of 5-OH-UA is the N9-deprotonated species (38), and the C4 is 

therefore unreactive with nucleophiles due to the negative charge density (Figure 6.3 ). It 

is reasonable that pathway III (Figure 6.4) is the only degradation pathway of 5-OH-UA 

that leads to the formation of allantoin.  In contrast, 5-OH-RU is neutral, and C4 can 

therefore be readily attacked by water to form the 4,5-dihydroxyl intermediate that then 

decomposes to give urea, HICA amide and caffolide (Figure 6.1). In the oxidation          

of  RU by Ir(IV), the formation of a spirocyclic product (pathway I, Figure 6.4), that was  



106 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. N9-deprotonation of 5-OH-UA 
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Figure 6.4. Degradation pathways of the common 5-hydroxy intermediate  
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observed in OG oxidation (13) as well as UA oxidation under more basic conditions (41)   

was not detected.  Because 5-OH-OG and 5-OH-RU appear to be the initial and common 

intermediates in oxidation of both nucleosides, the difference in products must derive 

from degradation pathways of these analogous intermediates. Pathways I and II both 

involve nucleophilic addition to C4; however, one is an intramolecular process (I) and the 

other is an intermolecular one (II). The presence of a C2-carbonyl group in the case of 5-

OH-RU leads to an increase in C4 reactivity toward external nucleophiles compared to 5-

OH-OG.  Reasonably, the more reactive C4 was easier to attack by solvent water in 

competition with an intramolecular acyl shift. Thus, pathway I was not observed in the 

oxidation of RU by one-electron oxidants. 

 Nevertheless, we found that the distribution of products occurring at C4 and C6 in 

RU oxidation shares some similarity with that of OG oxidation. In the case of OG, 

pathway I was known to be dominant over pathway III at high pH and high temperature 

(13).  When the oxidation of RU was carried out at pH>7 or at 65°C, the amount of 

HICA amide was significantly increased, and the amount of allantoin decreased. This 

indicates that the C4 pathway is also more favorable at high pH and high temperature in 

RU oxidation. Interestingly, the competition between pathways I and III is also 

influenced by the nature of nucleophiles used to trap the quinonoid intermediate. When 

lysine was used as a nucleophile to compete with water to attack at C5 of RU
ox

 

generating a 5-Lys-RU intermediate, the allantoin-Lys adduct was the only detectable 

product, whereas pathway I dominated for the reaction of OG nucleoside under these 

conditions.  Thus, the replacement of an oxygen atom at C5 by nitrogen in the common 

intermediate drove its decomposition toward pathway III. 
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 In the work described above, the  oxidation reactions likely proceed by two one- 

electron oxidation steps with concomitant deprotonation.  In order to compare the 

outcome of a potential 4-electron oxidant, singlet oxygen, the reactions were repeated 

using two different Type II photosensitizers generating 
1
O2, Rose Bengal (RB) and 

methylene blue (MB).  For comparison, the Type I photooxidant riboflavin (Rf) was also 

used.  The excited state of riboflavin is a powerful one-electron oxidant, but its 

subsequent radical anion reacts with O2 to further yield superoxide, O2
.-
.   

The HPLC traces of photooxidation of Ac3RU mediated by Rf, MB, and RB at pH 

7 are shown in Figure 6.5.  Interestingly, Type I (Rf) and Type II (MB, RB) 

photosensitized oxidation of Ac3RU gave the same products with only a small difference 

in yield. On the basis of mass and by analogy to products for from manganese porphyrin-

mediated oxidation to guanosine (42-44) product 6 was tentatively assigned as oxidized 

allantoin Alla
ox 

and product 7 was assigned as oxaluric acid OA. Indeed, OA was also the 

product of riboflavin-mediated oxidation of OG (27), derived from the decomposition of 

the unstable intermediate Gh
ox

–an analogous structure to Alla
ox

. Thus, we wondered 

whether OA found in this experiment was also formed from decomposition of Alla
ox

.  As 

previously described, Gh
ox 

was relatively unstable at pH 7 and converted to OA after 3h 

(45).  In the present case, Alla
ox  

was found to be stable at pH 7 and did not significantly 

decompose after two days at room temperature.  This was not surprising because the 

Alla
ox 

nucleobase can be independently synthesized, although it decomposes in very 

strong acidic or basic conditions(46). However, we found that Alla
ox

 was unstable at high 

temperature.  When heated up to 65°C for 2 h, Alla
ox 

was gradually converted to OA at 

pH 7.  Thus, the small amount of OA detected in the photosensitized oxidation of Ac3RU  



110 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. HPLC traces of (A) starting material Ac3RU and the oxidation reactions with  

Riboflavin (B), Methylene Blue (C), Rose Bengal (D), monitored at 220nm. 
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may be evidence for the decomposition of the major  product Alla
ox  

when  the  reaction 

mixture was heated somewhat by the irradiation lamp. 

Riboflavin-mediated oxidation involves electron transfer from the purine to Rf, 

and the formation of O2
-.
, superoxide anion (47).  In the case of OG, the reactive 

intermediates (cation radical OG
+.

 or neutral radical OG
.
)  then can be trapped by either a 

water molecule or O2
-.
that lead to the formation of two sets of oxidation products (27).   

In the present study, the oxidation product Alla
ox 

was believed to be formed via the 

superoxide adducted intermediate 5-OOH-RU (Figure 6.6). Interestingly, water-derived 

products (48) were not observed under the experimental conditions, which is opposite to 

the case of OG where the water-derived product Sp was found to be dominant at pH 7 

(27).  As described for OG, the product distribution was strongly dependent on pH. The 

radical cation OG
+. 

is much more reactive toward superoxide anion than the deprotonated 

form OG
.
, and therefore O2

-.
-derived products were found to be dominant at low pH.  At 

pH 7, RU with a pKa of 5.4 (49), mostly exists as the anion RU
-
, so that the excited state 

after interaction with Rf must be the neutral radical RU
.
. Unlike OG

.
, this species was 

exclusively trapped by anion O2
-.
, not by a water molecule, and lead to the formation of 

5-OOH-RU that decomposed to give Alla
ox

.  A possible explanation is that the presence 

of an oxo function at C2 of RU
. 
instead of an NH2 group, as in the case of OG

.
, makes C5 

more electropositive due to the charge delocalization.  Thus, the affinity for anion O2
-.
 

was reasonably increased from OG
. 
to RU

. 
and O2

-.
 was preferable in competing with 

water to react with RU
.
. 

 

 Photooxidation mediated by RB or MB is known to generate singlet oxygen
           

as the reactive intermediate (47).  Interestingly, the  Type  II photosensitized oxidation of    
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Figure 6.6. Proposed mechanism for the photosensitized oxidations of Ac3RU 
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RU gave the same  products as Type I oxidation. This suggests that the 5-OOH-RU 

intermediate must be formed at some stage.  As for OG oxidation (28), singlet oxygen 

most likely adds to the C4-C5 double bond of RU to form the dioxetane intermediate.  At 

pH 7, RU exists as the anion RU
- 

and the negative charge at on O2 may force the 

dioxetane to decompose via C4-O bond breakage to form the superoxide intermediate 5-

OOH-RU (Figure 6.6). This is totally different from OG oxidation where the analogous 

dioxetane was preferably decomposed via the O-O and the C4-C5 bonds breakdown to 

generate the nine-member ring intermediate (28). 

 

Conclusions 

 The oxidation of the nucleoside 9-β-D-ribofuranosyl uric acid has been 

investigated with various oxidants to understand how the pathways and products differ 

from those of the free base uric acid.  Previously, oxidation of uric acid alone was shown 

to lead principally to a C5 oxidation pathway producing allantoin as the major product 

and spirodihydantoin as a trace product (46) . In this study, introduction of a ribosyl 

group at N9 of uric acid was found to alter the product composition. Urea, allantoin, 

HICA amide and caffolide were identified as the products of ribofuranosyl uric acid 

oxidation by one-electron oxidants at pH 7, while oxidized allantoin is the major product 

of the photosensitized oxidations.  In comparing the various oxidation pathways of uric 

acid nucleoside and OG, the C4 reactivity of the 5-hydroxy common intermediates was 

shown to play an important role in the formation of the various degradation products. The 

presence of an oxo group at C2 was also found to have a dramatic effect on the reactivity 

of intermediates in the photosensitized oxidation pathways.  These oxidation products of 
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uric acid nucleoside may be potentially mutagenic lesions derived from 8-oxoguanosine 

under oxidative conditions that include deamination.  A better understanding of these 

lesions in the context of 8-oxoguanosine oxidation in DNA is part of our continuing 

investigations. 

 

Experimental 

 Materials. Guanosine hydrate, 4-dimethylaminopyridine were purchased from 

Acros, Br2 from Fisher Scientific, benzyl alcohol and Pd (10% on activated carbon) from 

Aldrich, Na from Mallinckrodt and H2
18

O (>97% purity) from Icon. All other reagents 

were used at highest purity level commercially available. 9--D-ribofuranosyl uric acid 

was synthesized following a published procedure (50).  

 Synthesis of 2’,3’,5’-tri-O-acetyl-9--D-ribofuranosyl uric acid (Ac3RU). To a 

suspension of 9--D-ribofuranosyl uric acid (100 mg, 0.33 mmol) in acetonitrile (5 mL) 

were added DMAP (3 mg, 0.025 mmol), Et3N (0.18 mL, 1.35 mmol), and anhydride 

acetic acid (0.11 mL, 1.2 mmol). The reaction mixture was stirred for 1 h at room 

temperature and the solvent was evaporated under vacuum. The oily residue was purified 

by flash column chromatography to yield 127 mg (0.30 mmol, 91%) of product. 
1
H NMR 

(300 MHz, DMSO-d6) δ (ppm): 10.89 (m, 3H), 5.81 (m, 2H), 5.45 (m, 1H), 4.34-4.37 (m, 

1H), 4.09-4.20 (m, 2H), 2.01-2.09 (3s, 9H). HRMS: Calcd for C16H18N4O10Na 449.0921, 

found 449.0923.  

 Oxidation of Ac3RU with Na2IrCl6 or K3Fe(CN)6 at different pHs. In a final 

volume of 240 μL of 75 mM NaPi buffer, Ac3RU (0.3 mM) was incubated with Na2IrCl6 

(0.6 mM) or K3Fe(CN)6 (0.6 mM) at room temperature. The reaction mixture was 
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analyzed by reversed phase HPLC using a Varian C18 (5 μm, 250X4.6 mm) column with 

5% solvent B for the first 5 min followed by a gradient to 65% solvent B in 30 min 

(solvent A: 0.1% TFA in water, solvent B: 0.1% TFA in acetonitrile). The flow rate was 

1 mL/min and the detector was set at 220 nm.   

 H2
18

O labeling experiment. 40μL of Ac3RU (0.3 mM) in 75 mM NaPi buffer and 

8 μL of Na2IrCl6 (3 mM) were lyophilized to dryness and then redissolved in H2
18

O. The 

two solutions were mixed and analyzed by LC-ESI-MS after 2 h. 

 Photosensitized oxidation of Ac3RU.  A 200-μL sample of 75 mM NaPi buffer 

containing Ac3RU (0.3 mM) and Rose Bengal (RB) (30 μM) or methylene blue (MB) (30 

μM) or riboflavin (Rf) (30 μM) was irradiated with a sunlamp (λ>500 nm) for 2 h at 

room temperature. The sensitizers were removed after passing down a NAP-5 column 

(GE healthcare), and the reaction mixture was analyzed by reversed phase HPLC.  The 

method was 5% solvent B for the first 5 min followed by a gradient to 65% solvent B in 

30 min (solvent A: 0.1% TFA in water, solvent B: 0.1% TFA in acetonitrile). The flow 

rate was 1 mL/min and the detector was set at 220 nm.   

 LC-ESI/MS analysis. Two analytical methods were used. In the first method, 

samples were analyzed by positive electrospray ionization (ESI) on a Micromass Quattro 

II tandem mass spectrometer equipped with a Zspray API source. Samples were diluted 

in acetonitrile and water (1:1) and 50 μL was introduced via a Waters Alliance 2690 

Separations Module. A Waters 2487 Dual Absorbance Detector was placed in line 

between the Alliance 2690 Separations Module and the Zspray probe ion source.  

Chromatographic separation was accomplished using Phenomenex Luna C18 (3 μm, 

150x2.0 mm) reversed phase column and initial solvent conditions of 95% solvent A 
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(0.1% TFA in water) and 5% solvent B (0.1% TFA in acetonitrile). After 5 min a linear 

gradient of 5% solvent B to 65% solvent B over 25 min was used.  The flow rate was    

0.2 mL/min, and UV spectra were recorded at 220 nm.  The source and desolvation 

temperatures were 125 oC and 250 oC, respectively. The capillary voltage was set to 3.5 

kV, sampling cone voltage to 35 V, and the extractor cone to 3V. The instrument was 

operated and data accumulated with Micromass Masslynx software (version 4.0). 

 In the second method, samples were analyzed by positive electrospray ionization 

(ESI) on a Waters LCT XE Premier TOF mass spectrometer equipped with a Zspray API 

source. Samples were diluted in acetonitrile and water (1:1) and 5 μL was introduced via 

a Waters Acquity Separations Module. A Waters Acquity PDA Detector was placed in 

line between the Acquity Separations Module and the Zspray probe ion source.  

Chromatographic separation was accomplished using Acquity UPLC BEH C18 (1.7 μm, 

50X2.1mm) reversed phase column and initial solvent conditions of 95% solvent A 

(0.1% FA in water) and 5% solvent B (acetonitrile). After 1 min a linear gradient of 5% 

solvent B to 90% solvent B over 6 min was used.  The flow rate was 0.6 mL/min, and UV 

spectra were recorded at 220 nm.  The source and desolvation temperatures were 100 0C 

and 300 oC, respectively. The capillary voltage was set to 2.85 kV and  the sampling cone 

voltage to 85 V. The instrument was operated and data accumulated with Micromass 

Masslynx software (version 4.1). 
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