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ABSTRACT

Heparan sulfate (HS) chains play roles in numerous biological processes as they 

bind to various signaling molecules including fibroblast growth factors (FGFs). This 

graduate research aims at investigating the structural requirements and the biogenesis 

pathways of FGF8-binding HS motifs.

In the first part, the importance of HS multivalency in regulating FGF8 and FGF 

receptor (FGFR) interactions in vivo was examined. A library of mono-, bis- or tris- 

xylosides was injected into zebrafish embryos to stimulate the production of monomeric, 

dimeric or trimeric glycosaminoglycan (GAG) chains that are connected covalently, and 

thereby mimic naturally occurring proteoglycans. Upon their injection, bis- and tris- 

xylosides caused an elongation phenotype whereas mono-xylosides did not. In situ 

hybridization and other experiments showed that FGF8/FGFR signaling was specifically 

hyperactivated in elongated embryos. Based on our findings, we propose a molecular 

model in which two covalently linked GAG chains interact with two FGF8 molecules and 

their cognate FGFRs and induce FGFR dimerization that leads to the elongation 

phenotype. This proposed molecular model was reaffirmed by the results of experiments 

testing syndecan-1 constructs containing zero, one, two or three HS side chains, in which 

multivalency again demonstrated its essential role in activating FGF8 signaling.



In the second part, a library of HS oligosaccharides with defined sizes and 

structures was enzymatically synthesized to study the assembly of FGF8-binding HS 

motifs. Firstly, HS backbones, #-acetylheparosan, were produced in E.coli K5. The HS 

backbones were then fragmented to obtain size-defined oligosaccharides. Secondly, HS 

biosynthetic enzymes including #-deacetylase #-sulfotranferase, C5-epimerase, 2-0- 

sulfotransferase, 6-0-sulfotransferases and 3-0-sulfotransferases were expressed and 

purified. The actions of these isoforms were then studied to provide guidance to 

assemble the HS oligosaccharide library. Finally, this library was tested on zebrafish 

embryos for their effect on FGF8 signaling. With these results, we were able to reveal 

the minimum size, the specific structures and the biogenesis pathway of HS structural 

motifs that can activate FGF8 signaling in vivo.

In summary, the results provide new insights into how FGF8-binding HS motifs 

are synthesized in vivo and give rise to synthetic tools that facilitate the establishment of 

HS structure-function relationships in a comprehensive manner.
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CHAPTER 1

INTRODUCTION



1.1 Overview of proteoglycans

1.1.1 Structures of proteoglycans

Proteoglycans (PGs) are basic components of the extracellular matrix. Each PG 

molecule consists of a core protein and multiple glycosaminoglycan (GAG) side chains. 

The following four types of GAG chains are found to be attached to PG core proteins: 

heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS) and keratan sulfate 

(KS). Proteoglycans, such as syndecan, glypican, aggrecan, perlecan, decorin and 

biglycan can be categorized based on their core protein sequence, and the number and the 

type of their GAG side chains. A structural overview of PG family members is depicted 

in Figure 1.1.

2

Glypican-3 Syndecan-1

Figure 1.1 Structural representation of a few proteoglycans (adapted from (1)). 
Glypicans are GPI-linked cell surface PGs; syndecans are transmembrane cell surface 
PGs; perlecan, aggrecan, decorin and biglycan are secreted proteins found in the ECM. 
Most PGs contain two or more GAG side chains.



Syndecan is a group of transmembrane proteins with 3-5 HS and CS attachment 

sites on each core protein, whereas glypican is a group of glycosylphosphatidylinositol 

(GPI) anchored proteins with 2-3 HS attachment sites on each core protein. Aggrecan, 

the major component of cartilage, is another protein group with each molecule containing 

two globular structural domains at the N-terminal, a globular C-terminal, a CS region 

having several hundreds CS chains and a KS region. Perlecan is a group of secreted 

proteins with each molecule containing 3 attachment sites for HS or CS. Decorin and 

biglycan are small core proteins with leucine-rich repeats and each of their molecules 

contains single or 2 CS/DS attachment sites, respectively (2).

The GAG side chains are linear, sulfated polysaccharides containing repeating 

disaccharide units of hexosamine (glucosamine/galactosamine) and hexuronic acid 

(glucuronic/iduronic). GAG chains differ by the type of repeating units, glycosidic 

linkage and positions of sulfate groups. Particularly, HS contains glucuronic acid (GlcA) 

or iduronic acid (IdoA) and N-acetyl glucosamine (GlcNAc), CS contains GlcA and 

N- acetyl galactosamine (GalNAc), DS contains GlcA or IdoA and GalNAc, and KS 

contains galactose (Gal) and GlcNAc. Disaccharide building blocks of each type of GAG 

are illustrated in Figure 1.2.

1.1.2 Biosynthesis of proteoglycans

The biosynthesis of PGs requires many enzymes and their isoforms as well as 

various sugar activators and transporters. Differential expression of these enzymes and 

transporters creates diverse fine structures in a tissue-specific manner. An overview of 

the biosynthetic process of a PG is depicted in Figure 1.3. The first step in this process is
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Figure 1.2 Structures of repeating disaccharide units that are found in heparan sulfate, 
chondroitin sulfate, dermatan sulfate and keratan sulfate.
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the assembly of a tetrasaccharide linkage on specific serine residues within the core 

protein. A xylose residue is first transferred from UDP-xylose to a specific serine residue 

by xylosyltransferase. Three other enzymes subsequently transfer two Gal residues and 

finally one GlcA residue to complete the assembly of the linkage. This tetrasaccharide 

linkage region can be modified by phosphorylation and sulfation that may likely play a 

decisive role in the later assembly processes. The second step is the polymerization of 

the GAG chain. If a a1,4-linked GlcNAc is added as a fifth residue to the linker 

tetrasaccharide, HS chain will be assembled, whereas if a p1,4-linked GalNAc is added to 

the tetrasaccharide, CS chain assembly will occur. The factors that control the addition 

of the fifth residue, which dictates the fate of GAG type assembly, are largely unknown.

For HS chains, repeating disaccharide units containing GlcA and GlcNAc are 

added to the nascent chain by exostoses (EXT1 and EXT2) followed by a series of 

modifications. These modifications take place in specific compartments containing 

specific enzymes in the Golgi apparatus called GAGOSOMEs. The first modification 

normally is #-deacylation and ^-sulfation of GlcNAc residues, a gateway modification 

for subsequent modifications. GlcA can be epimerized to IdoA by C5-epimerase 

immediately following ^-sulfation but prior to other O-sulfations. A variety of O- 

sulfotransferase (OST) enzymes add sulfate groups to C6 (6-OST) and C3 (3-OST) of 

glucosamine residues and C2 (2-OST) of IdoA predominantly and GlcA rarely. These 

enzymes transfer the sulfate group from 3’-Phosphoadenosine-5’-phosphosulfate (PAPS) 

to the HS chain at a specific position. It has been reported that the concentration of the 

sulfate donor PAPS partly controls the extent of sulfation. Moreover, four NDST 

isoforms, one C5-epimerase, one 2-OST, seven 3-OST isoforms and three 6-OST
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isoforms have been found in humans and other organisms. These isoforms are expressed 

in a spatio-temporal manner and have distinct substrate specificity, giving rise to a vast 

structural diversity of HS chains. Substrate specificity of different enzyme isoforms is 

largely unknown with the exception of several enzymes. To further augment HS 

structural diversity, HS has a domain-like architecture composed of highly sulfated 

domains (NS domains), nonsulfated domains (NA domains), and partially sulfated 

domains (NA/NS domains). It is believed that the presence of GAGOSOMEs containing 

specific composition and location of HS biosynthetic enzymes gives rise to these 

different domains. In addition, 6-O-sulfate groups can be later removed outside of the cell 

by sulfatase (SULF). All of the factors mentioned above create a large structural diversity 

of HS chains, which are believed to regulate the precise functions of PGs (4). 

Understanding the HS structure-function relationships is probably the most intriguing 

topic in the field, even though only very few cases are well-understood up to now.

For CS chains, GlcA and GalNAc units are added alternatively to the growing 

chain by chondroitin sulfate synthase. Sulfation by specific sulfotransferases may occur 

at C4 and C6 of GalNAc. The differences in the sulfation sites categorize CSs into four 

classes, including CS A, C, D and E. For DS chains, GlcA/IdoA and GalNAc are the 

repeating disaccharide units. The sulfation of DS occurs at C4, C6 of GalNAc and C2 of 

IdoA.

1.1.3 Biological functions of heparan sulfate

The diverse functions of HS are determined by its interactions with various 

protein partners such as growth factors, chemokines, cytokines, morphogens, receptors
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and enzymes (5). Therefore, HS is involved in regulating cell proliferation, adhesion, 

migration and differentiation. It has been shown that HS plays important functional roles 

in angiogenesis, axonal growth, anticoagulation, cell signaling and embryonic 

development, among others (6). HS is also associated with various pathological 

phenomena such as tumor growth, inflammation and microbial pathogenesis.

The first and most well-known function of HS is its anticoagulation activity 

(Figure 1.4A). This function was first discovered with heparin, the highly sulfated form 

of HS that is produced mostly in connective tissue mast cells. Heparin/HS promotes 

anticoagulation through the binding of a specific pentasaccharide sequence (GlcNAc6S- 

GlcA-GlcNS3S6S-IdoA2S-GlcNS6S) to antithrombin III (ATIII), leading to a 

conformational change of ATIII and thus enhancing ATIII binding to its target proteases 

including thrombin and factor Xa (7-9).

HS binds to numerous viruses and bacteria, facilitating their entry and thereby 

assisting their infections (Figure 1.4B). It has been shown that HS is involved in the 

infections of over 16 viruses including herpes simplex virus (HSV), HIV and hepatitis C 

virus (10). The interactions of HS with viruses have been extensively studied in the last 

two decades, suggesting the function of HS as specific receptors in viral infection. A 

well-studied example is 3-O-sulfated #-unsubstitute GlcN3S, which has been shown to 

be required for HS binding to herpes simplex gD protein and promoting HSV infection 

(11).

It has been shown that HS can bind to a variety of cytokines such as chemokines 

and interferon y, transport them across cells and present them at the cell surface (Figure

8
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B. Viral infection C. Transport and

Figure 1.4 The many roles of HS (adapted from (12)). A: HS binds to ATIII and has 
coagulant activity. B: HS binds to various viruses and assists their infection. C: HS 
transports and presents a number of cytokines to the cellular surface. D: HS binds to a 
variety of ECM proteins, promoting cell adhesion and forming ECM. E: HS binds to 
various growth factors and their cognate receptors.



1.4C). This explains a number of HS functions in anti-angiogenesis, procoagulations, 

leukocyte activation, neutrophil adhesion and migration (12, 13).

HS binds to a number of extracellular matrix components including fibronectin 

and collagens (Figure 1.4D), and regulates the formation of extracellular matrix, cell 

adhesion and cell motility processes. HS also plays important roles in modulating a 

variety of growth factor signaling pathways including fibroblast growth factors (FGFs), 

which are crucial in embryonic development, homeostasis and regenerative processes 

(Figure 1.4E) (14, 15). It has been shown that HS functions as co-receptor for growth 

factors and their tyrosine kinase receptors. HS can also sequester the growth factors, 

release or present them at the cell surface (12). A large number of in vitro studies 

claimed the importance of HS in regulating FGF/FGFR signaling pathways but mainly 

focused on two proteins, FGF1 and FGF2, of the FGF family. Many groups have been 

attempting to deduce the absolute required sequence of HS in FGF signaling as in the 

case with ATIII (14, 15). However, more and more evidence has been found to prove 

that several HS structures can activate the same FGF signaling. These characterized 

structural requirements of HS in FGF signaling are discussed in details in Section 1.1.5. 

This is also the central matter of this thesis, in which structural requirements of HS in 

FGF8 signaling are studied and the absence of single HS sequence for activating FGF8 

signaling is shown.

A number of genetic studies have been carried out using invertebrates and 

vertebrates to understand how specific modifications of HS affect its interactions with 

proteins and hence their functions. Mutations in HS biosynthetic enzymes in D. 

melanogaster and C. elegans revealed that HS is important for many crucial biological

10



pathways such as wingless, Hedgehog, Notch and FGF signaling (16-22). Nevertheless, 

a significant disadvantage of genetic approaches is that mutations in the genes encoding 

HS biosynthetic enzymes, e.g., 2-OST, NDST1 in mice, normally cause neonatal lethality 

or have no effect due to compensation by other isoforms (23-25).

The importance of biological functions of HS is also understood through a variety 

of disorders in humans due to mutations in the genes involved in GAG biosynthetic 

pathways. Chromosomal mutation in glypican-3 is linked to Simpson-Golabi-Behmel 

overgrowth syndrome (26). Mutations in EXT, HS biosynthetic polymerase, are 

responsible for hereditary multiple exostosis, a bone disorder (27). Deficiencies of any 

one of 11 different enzymes, required for the degradation of GAGs, cause seven heritable 

lysosomal storage disorders, collectively known as mucopolysaccharidosis, which can 

lead to severe physical/facial deformation and mental retardation (28).

One of the major questions in the glycobiology field is to understand the critical 

structural parameters of HS chains that are essential for their interactions with a wide 

array of protein partners. Many attempts to further our understanding on these matters 

have been made in the past two decades using various biochemical, structural biology and 

molecular modeling approaches (6). The interactions of HS with proteins are regulated 

by strong ionic interactions, van der Waals forces, hydrophobic and hydrophilic 

interactions, and hydrogen bonding. There have been a number of studies on HS-protein 

interactions using X-ray crystallography but they have not been able to identify HS 

functional groups required for binding to proteins. Moreover, there is a lack of in vivo 

studies of these important interactions and their functional consequences.
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The functions of PGs are regulated not only by the GAG fine structure but also by 

the position and the number of their side chains. For example, the importance of multiple 

HS chains for syndecan-1 function has been investigated by expressing syndencan-1 

having a variable number of HS chains (zero, one, two, or three) in a cellular system (29). 

The presence of two HS chains instead of three chains resulted in a slight to moderate 

decrease in cell adhesion. Loss of two chains resulted in a significant decrease in cell 

adhesion, whereas elimination of all three chains led to total loss of adhesion. These 

findings clearly point out that the clustering of HS chains on adjacent amino acids within 

the core protein is essential for optimal cellular behavior.

1.1.4 FGFs and their biological functions

FGF are polypeptide growth factors of 150-250 amino acid residues, sharing a 

conserved P-trefoil core containing 100-120 residues and variable N- and C-terminal 

regions (30). There are 22 FGF members and 4 FGFR genes that have been described in 

humans. In zebrafish, there are 27 FGF members due to additional genome duplication 

(30). FGF signaling pathways have been found to be involved in many developmental 

processes including cell proliferation, migration and differentiation as well as in 

numerous physiological processes.

FGF gene families, together with their evolution and their functions in 

development, metabolism and disease, have been well studied in humans, mice and 

zebrafish. The majority of FGF functions have been studied by using FGF knockout 

mice, FGF knockout and knockdown zebrafish, and human hereditary diseases. In 

zebrafish development, it has been reported that FGFs play a key role in many

12
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morphogenesis processes including dorsal-ventral patterning of the gastrula and 

midbrain-hindbrain boundary formation (FGF8) (31, 32), octic placode and vesicle 

formation (FGF3, FGF8) (33), lens and retina development (FGF19) (34), fin formation 

(FGF10a, FGF16, FGF24) (35-37), fin regeneration (FGF20a) (38), forebrain 

development (FGF19) (39), primordium formation (FGF3, FGF10) (40) and 

hematopoiesis (FGF21) (41). In adult zebrafish, FGFs regulate a vast number of 

biological processes including homeostasis, wound healing, regeneration, cholesterol 

metobolism and serum phosphate regulation. Failure in FGF signaling leads to a variety 

of pathological conditions including skeletal, retinal, olfactory, metabolic disorders and 

cancer. FGFs have been also shown to be involved in many human diseases such as 

Michel aplasia (FGF3) (42), Borjeson-Forssman-Lehmann syndrome (FGF13) (43), 

Parkinson disease (FGF20) (44), Kallmann syndrome (FGF8) (45) and LADD syndrome 

(FGF10) (46).

1.1.5 FGF signaling and HS

FGF signaling is activated through the formation of two HS/FGF/FGFR ternary 

complexes leading to the dimerization and tyrosine autophosphorylation of the FGFRs. 

A large number of in vitro studies reported the importance of HS in regulating 

FGF/FGFR signaling pathways (14, 15). FGFs and their cognate receptors need to 

interact with HS chains to form a stable and fully functional ternary complex. HS is also 

believed to ensure FGF stability and availability at appropriate concentrations as well as 

the level and the duration of FGFR occupancy (47). Many studies have examined the 

nature of interactions among FGFs, FGFRs and HS or heparin, a closely related form of



HS produced by mast cells. In fact, heparin has a higher percentage of iduronic acid and 

sulfation density and does not contain domain structures like HS. In addition, most 

studies focus on FGF1 and FGF2, the first two FGFs isolated. Biophysical studies have 

revealed the crystal structure of the 2:2:2 complex of FGF2, FGFR1 and heparin 

decasacharide and the 2:2:1 complex of FGF1, FGFR2 and heparin decasaccharide, as 

shown in Figure 1.5 (48, 49).

Understanding the structural requirements of HS in its interactions with FGF and 

FGFR is a topic of great interest in the glycobiology field. There are a few studies 

indicating that these interactions can be regulated by the type of sulfation, the chain 

length as well as the sulfation density of HS chains (50-53).

Various studies have shown that particular types of sulfation are required for HS 

interactions with particular FGFs and FGFRs. For instance, 2-O-sulfation is essential for 

FGF2 binding, 6-O-sulfation is important for FGF10 binding, while both 2-0  and 6-O 

sulfation are critical for FGF1, 4, 7 and 8 binding (50-52). On the other hand, both 2-O 

and 6-O sulfations are required for the activation of FGF2-FGFR mediated signaling 

pathway (52). However, there has been no evidence of the contribution of specific 

sequences or sulfation patterns on interactions.

The HS backbone typically contains 50-150 monosaccharide units, thus it is 

possible that multiple FGFs and FGFRs can bind to one HS chain (54). Moreover, the 

analysis of HS polymer can be very challenging. Therefore, the minimum size of HS 

oligosaccharides for binding to FGFs has been investigated. FGF1 binds tetrasaccharide 

(Dp4), FGF2 binds pentasaccharide (Dp5) and FGF8b binds 5-7 mer oligosaccharides

14
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Figure 1.5 Two different crystal structures of FGF/FGFR/heparin ternary complex (55). 
A: Ribbon diagram of the 2:2:2 FGF2/FGFR1 c/heparin crystal structure. B: Ribbon 
diagram of the 2:2:1 FGF2/FGFR2c/heparin crystal structure. FGF ligand is colored in 
orange. FGFR is colored in green, blue and purple. Heparin is drawn with colored atom, 
gray for carbon, blue for nitrogen, red for oxygen and yellow for sulfur.

(53, 56, 57). However, the minimum size of oligosaccharides that can promote FGF 

activity is actually longer, 6-8 mer for FGF1 and 12-14 mer for FGF8b (56).

Beside the evidence stated above on the contribution of HS structural specificity 

on the interactions with FGFs, several studies have suggested that highly sulfated HS can 

mask the importance of specific sulfation (47, 58). Therefore, the total number of sulfate 

groups/sulfation density is also critical for HS/FGF/FGFR interactions. In a study using 

HS decasaccharide (Dp10), at least 4 O-sulfate groups are required to promote the ternary 

complex formation with FGF1/2 and FGFR. However, oligosaccharides with at least 6 

O-sulfate groups can generate much more stable complexes (47). In another study using 

HS octasaccharide (Dp8), 7-8 sulfate groups are required for the complex formation with 

FGF7 and FGFR2(IIIb) (58).



Due to the lack of a homogenous and structurally defined HS source, only the 

importance of ̂ -sulfation, 2-O and 6-O sulfation in HS/FGF/FGFR interactions has been 

studied. There has been no report on the role of 3-O-sulfation, the rare modification, in 

the interactions of HS with FGF and FGFR. Moreover, as mentioned earlier, the 

previous studies mostly focused on FGF1 and FGF2. Meanwhile, FGF8 is one of the 

FGFs that is expressed earliest during development and plays crucial roles in limb, 

central nervous system and cardiac outflow tract development (30). Our understanding 

of how HS orchestrates dynamic interactions with FGF8/FGFR in vivo remains obscure. 

Therefore, studying the structural requirements of HS in its interactions with FGF8/FGFR 

can provide a molecular basis of these crucial interactions and help expand our 

knowledge of FGF/FGFR-mediated signaling pathways.

There are only a few techniques available to determine the structural requirements 

of HS for FGF/FGFR interactions. To analyze the ability of binary and ternary complex 

formation, gel mobility shift assay, filter trap assay, protein bound oligosaccharide 

analysis and surface plasmon resonance (SPR) have been developed (57, 59). However, 

these methods require specially modified HS such as radioactive labeling or functional 

group conjugation. Furthermore, these assays are performed in vitro, which may not 

necessarily recapitulate interactions that occur in vivo. The only available assay for FGF 

activity is the mitogenic activation assay on BaF3 cell systems, transfected with specific 

FGFR or on xylosyltransferase mutated CHO cells, which do not produce any GAG. In 

this assay, HS is tested in terms of stimulating FGF activity or inhibiting FGF activity 

through competing with endogenous HS or added heparin. It is important to note that 

beside this proliferation assay, there is no other assay to determine the direct roles of HS
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in two other major FGF-modulated cellular processes, which are cell differentiation and 

cell migration.

1.1.6 Major sources of HS used for HS-FGF interaction studies

Due to the important roles of HS-protein interactions in various biological 

processes, designed HS has been synthesized (52, 57, 60). These exogenous HS 

molecules activate or inactivate targeted signaling pathways by competing with 

endogenous HS or inhibiting HS biosynthesis. Many small molecules that mimic the 

protein-binding structures of HS have been designed (61, 62). However, due to our 

limited understanding of the HS fine structures, applications of these molecules have not 

advanced our knowledge on HS structure-function relationships. The central difficulty is 

to discover the structures that can bind to proteins with nanomolar binding affinity and 

specificity.

The most common source of HS/heparin is from animals, this HS/heparin is 

purified, fractionated and modified through many different procedures. However, 

purification from natural sources remains a challenge. For instance, heparin, a world­

wide used anticoagulant purified from animal sources, has been reported to be tainted 

with over sulfated chondroitin sulfate chains that are linked to adverse clinical reactions 

(63). Substrates used in most HS/FGF/FGFR interaction studies are chemically modified 

from natural HS/heparin. Usually in these molecules, particular sulfate groups, i.e., N- 

sulfate, O-sulfate, 2-O-sulfate or 6-O-sulfate groups can be selectively removed or re- 

sulfated (52, 53, 64). However, due to the nonspecific nature of chemical reactions, 

absolute conclusions could not be drawn in some cases.
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The organic synthesis of HS is impractical due to structural complexity and 

difficulties in introducing labile functional groups in a regioselective manner. This 

process involves numerous steps and results in very low yield especially with 

oligosaccharides of higher sizes (65). A pentasaccharide-based anticoagulant that 

functions as well as heparin has been successfully synthesized but this is a result of three 

decades of extensive studies of heparin interactions with antithrombin III by Rosenberg 

and Lindahl groups (7, 8).

A recently developed and widely used approach is chemo-enzymatical synthesis 

of HS. In this approach, specific modifications are done on #-acetylheparosan, which is 

the HS backbone produced in E.coli K5 or chemically modified heparins (57, 60, 66). 

The modifications are achieved by a combination of HS biosynthetic recombinant 

enzymes, mimicking the reactions that happen in the Golgi apparatus. This approach can 

result in the assembly of bioactive HS molecules in a much shorter time with higher yield 

than the chemical process (60).

In addition, oligosaccharides are also obtained from these different HS sources by 

enzymatic and chemical cleavage. The advantages of utilizing synthetic oligosaccharides 

in structure-function relationship studies are that these substrates can be homogenous in 

size and structure. The chemo-enzymatic approach to synthesize size-defined 

oligosaccharides is very useful to study HS structure-function relationships. However, 

this approach requires the availability of all HS biosynthetic enzymes and careful 

characterization of each structure by high sensitive mass spectrometry. Therefore, only a 

few groups can utilize this approach. This thesis exploits this approach to deduce the 

structural requirements of HS in its interactions with FGF8 and FGFR.



The only approach to produce HS in vivo is utilizing a group of small molecules, 

designated as xylosides, to induce the biogenesis of HS inside the cells. Each xyloside 

molecule contains a xylose residue and a hydrophobic moiety that can prime HS, CS 

and/or DS in the absence of core proteins. Aglycone moiety of xylosides influences the 

priming activity and the nature of the primed GAG chains (67, 68). The xyloside-primed 

GAG chains are secreted to the extracellular matrix and regulate various biological 

processes. Mono-xylosides have been used in studies for over three decades (69-71). 

Treatment of P-mono-xylosides eliminates left-right asymmetry in the Xenopus laevis 

cardiac loop through competitively inhibiting proteoglycan biosynthesis (71). HS primed 

on P-D-xylosides behaves like endogenous HS in term of its ability to function as co­

receptor for FGF2 (71). Mono-xylosides can only initiate the formation of monomeric 

GAG chains. However, most proteoglycans contain more than one GAG side chain. 

Therefore, multimeric GAG chains primed by cluster xylosides might be better mimics 

for PGs. These cluster xylosides contain more than one xylose residue per scaffold; thus, 

they can prime covalently bonded multimeric GAG chains. However, there have been no 

studies on cluster xylosides in vivo. The GAG-priming process of a bis-xyloside, a 

cluster xyloside containing two xylose residues, is presented in Figure 1.6.

In summary, it is necessary to produce HS with specific structural parameters 

both in vivo and in vitro so that we can further our knowledge on the structural 

requirement of HS in its interactions with proteins including FGF/FGFR. Understanding 

the fine structural requirements of HS for its biological interactions with protein ligands 

is very crucial to the development of novel therapeutic agents.
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Figure 1.6 GAG-priming process by a bis-xyloside. A bis-xyloside containing two 
xylose residues (stars) diffuses into the Golgi apparatus and makes a PG mimetic 
containing two GAG chains. The primed molecule is subsequently secreted to the ECM.

1.2 Research objectives 

HS acts as co-receptor for FGF and FGFR to form a ternary complex, inducing 

receptor dimerization and signal transduction. Numerous models have been proposed to 

explain FGFR dimerization at the molecular level (48, 49). All of these models 

attempted to elucidate the nature of HS/FGF/FGFR interactions based on various in vitro 

or ex vivo biochemical and biophysical studies. However, the structural basis for the role 

of HSPGs in assisting FGF/FGFR signaling in vivo requires careful re-evaluation because 

most models employed single or two covalently disconnected, highly sulfated heparin 

oligosaccharides whereas naturally occurring PGs carry two or more GAG chains, 

suggesting the importance of GAG chain valency.



Our goal is to study the biogenesis pathway and structural requirements of HS 

including multivalency, sizes and specific sulfation compositions in the interactions and 

activation of FGF8/FGFR in a biological system. Our major questions are: What is the 

function of the multimeric form of HS in its interactions with FGF8 and FGFR? What are 

structural attributes, in terms of molecular size and specific functional groups of HS, 

required for assembling and activating the HS/FGF8/FGFR ternary complexes? Finally, 

how are these FGF8 binding HS motifs generated in vivo? To answer these fundamental 

questions, we used two approaches. The first approach involves the utilization of a 

library of xylosides, synthetic small molecules that can initiate the formation of single or 

multiple HS chains, to study the effect of HS multivalency on FGF8 signaling in 

zebrafish embryos during development. The second approach involves the utilization of 

enzymatic strategy to prepare a library of defined oligosaccharide structures to study the 

biogenesis of FGF8-binding HS motifs.

1.2.1 Specific Aim I

Utilizing a library of mono- and cluster-xylosides in zebrafish embryos to 

reveal the importance of GAG multivalency in FGF8 signaling during early 

development.

Endogenous PGs often possess multiple HS chains arranged in a clustered 

fashion. Thus, the contribution of clustered HS chains of PGs to FGFR dimerization and 

in vivo signaling through their co-operative interactions has not yet been shown in any 

animal model. We presume that one of the possible reasons for the inconsistency among 

published data stems from neglecting the significance of clustered HS chains, which
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naturally occurs in all PG structures. Therefore, in this study, a library of xylosides was 

screened in zebrafish embryos for their effect on FGF signaling throughout early 

development. This library included mono-, bis- and tris-xylosides, which can initiate the 

formation of monomeric, dimeric and trimeric GAG chains, respectively. By introducing 

these xylosides into zebrafish embryos, we were able to evaluate the importance of GAG 

multivalency in developing zebrafish embryos through modulating FGF signaling 

pathways.

1.2.2 Specific Aim II

In vitro enzymatic synthesis of HS oligosaccharides to elucidate the structural 

requirements of HS in activating FGF8/FGFR signaling in vivo.

The HS backbone is highly modified by about 20 different enzymes and their 

isoforms to make specific sulfation patterns, which are believed to be responsible for a 

wide array of HS functions. There have been no studies that attempted to elucidate the 

sulfation patterns critical for in vivo HS/FGF/FGFR interactions and how biogenesis of 

such sulfation patterns occurs. Therefore, by employing enzymatic synthesis to produce 

a library of HS oligosaccharides with different sizes for testing their effect on FGF8 

signaling during zebrafish development, we were able to reveal the importance of 

specific modifications of HS in FGF8 signaling in vivo.

The results from this study provide new insights into both HS assembly and HS- 

FGF interactions. As mentioned earlier, in order to develop bioactive HS, knowledge of 

the fine structures of HS that are crucial for HS-proteins interactions is required, but thus 

far these have not been well understood except for ATIII-binding HS motifs. By looking
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closely at the structures of HS and particularly at specific structural features required for 

FGF8 signaling, we could uncover their fine structures, their biogenetic pathways and 

their functional roles. The results also provide the basis for studies on the interactions of 

HS with other proteins, which play crucial roles in many developmental processes. This 

could be a foundation for the development of in vivo glycoengineering approaches to 

rescue developmental defects caused by impaired HS signaling pathways.
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CHAPTER 2

DIMERIZED GLYCOSAMINOGLYCAN CHAINS INCREASE FGF 

SIGNALING DURING ZEBRAFISH DEVELOPMENT



2.1 Introduction

The regulation of cell-cell and cell-matrix interactions is critical for various 

developmental processes including left-right axis induction, organ development, neuronal 

wiring and formation of blood vessels. Secreted molecules such as FGFs, Wnts and 

BMPs provide necessary informational cues through binding to their cognate cell surface 

receptors and subsequent activation of intracellular signaling pathways. It has been 

shown that proteoglycans (PGs) are essential to facilitate these interactions (1-4).

PGs consist of a core protein to which multiple glycosaminoglycan (GAG) chains 

are attached at specific amino acids (5, 6). Several types of GAGs exist, including 

heparan sulfate (HS), chondroitin sulfate (CS) and dermatan sulfate (DS; previously 

known as chondroitin sulfate B). Some PGs such as syndecans carry more than one type 

of GAG chain. Mutations altering GAG attachment sites on core proteins or disrupting 

GAG biosynthetic enzymes affect signaling and lead to a variety of disorders in human 

(7, 8). It is important to note that all naturally occurring PGs except decorin possess two 

or more GAG side chains. This suggests that multiple GAG chains are imperative for 

biological functions in vivo. However, only a few studies have examined the importance 

of GAG multivalency using cellular systems (9-11).

A large body of in vitro data indicates that PGs are essential for FGF/FGFR 

signaling (12, 13). HS chains facilitate FGF-mediated dimerization of FGFRs and 

subsequently regulate intracellular signal transduction pathways during development

(14). Recently, there has also been more evidence suggesting the roles of CS in FGF 

signaling (15, 16). Numerous models have been proposed to explain FGFR dimerization 

at the molecular level based on biochemical and biophysical studies (17-19). However,
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these models have not taken into consideration the effects of GAG multivalency, since 

the contribution of multiple GAG chains of PGs to FGFR dimerization has not previously 

been elucidated in vivo.

We hypothesized that the presence of dimeric GAG chains on endogenous PGs is 

essential for biological functions in vivo. In this study, we investigated whether GAG 

multivalency, as found in endogenous PGs, can regulate FGF/FGFR-mediated signaling 

pathways during development. It has been shown that mono-xylosides, which prime 

GAG chains free of core proteins, modulate development in various systems (20, 21). 

Our laboratory has recently utilized click chemistry to generate mono-xylosides and their 

fluorinated analogs that respectively stimulate or inhibit GAG biosynthesis in a cellular 

system (22, 23). In our companion studies, we have utilized a similar chemical approach 

to synthesize a library of bis- and tris-xylosides, and have probed the mechanism of their 

priming activity and GAG biosynthesis in a cellular system. Here, we use the embryonic 

zebrafish as an in vivo system to examine whether these bis- and tris-xylosides induce 

proteoglycan mimetics in vivo, and then further define their roles in modulating 

FGF/FGFR-mediated signaling pathway. Based on our findings, we propose that GAG 

multivalency plays a major role in the regulation of FGF-mediated signal tranduction 

pathways during development.

2.2 Experimental procedures

2.2.1 Animals and materials

Zebrafish were raised and bred according to standard procedures (24). Strains 

used were Tubingen wildtypes and Tg(TOP:dGFP)w25 (25). Zebrafish experiments were
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approved by the University of Utah Institutional Animal Care and Use Committee. 

Xylosides were synthesized using click chemistry as described in our companion paper 

and in earlier studies (22). Xylosides were dissolved in distilled water to a final 

concentration of 100 mM for injection into embryos. leftyl probe, SU5402, sprouty4 and 

syndecan constructs were generously provided by Drs. H.J. Yost, T. Piotrowski, L. 

Maves and R.D. Sanderson, respectively. Commercial sources: RNA polymerase-based 

labeling kit and BM Purple, Roche Applied Science; Rabbit anti-phospho ERK1/2, Cy-3 

anti-rabbit secondary antibody and Streptomyces griseus protease type XIV, disaccharide 

standards, Sigma-Aldrich; SU5402, Pfizer; mMessage mMachine transcription kit, 

Ambion; DEAE-sepharose and sephacel gel, NAP-10, Amersham Biosciences; 

Streptavidin-Alexa Fluor 350 conjugate (S-AF350), Invitrogen; G3000SWxl columns 

(7.8 mm x 30 cm, 5 ^m particle size), Tosoh Bioscience LLC; Sep-Pak Plus column, 

Waters.

2.2.2 Screening of xylosides in zebrafish embryos

Embryos were obtained by natural mating and raised at 28.5 °C in E3 buffer (5 

mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4). Xylosides were diluted 

with 1 % phenol red and each xyloside (33 pmoles) was microinjected in a 1 nl bolus into 

the blastomere of one-cell stage embryos. Embryos were staged and their phenotypes 

were compared to those of wild type (WT) embryos (24).

33



34

2.2.3 RNA in situ hybridization

Antisense digoxigenin-labeled probes were generated from cDNA clones using a 

SP6 or T7 RNA polymerase-based labeling kit. The following probes were used: mkp3 

(26), gsc (27), gfp (25), bmp2b (28), bambi (29) and lefty1 (30). Embryos were fixed 

overnight in 4% PFA, and then washed with PBST (0.1% Tween-20 phosphate buffer 

saline). Whole mount in situ hybridization experiments were performed as previously 

described (31). Embryos were then stained with BM Purple for imaging.

2.2.4 Whole mount antibody staining

Embryos were fixed with 4% PFA for 2.5 h at room temperature, washed with 

PBST, blocked with NCST (10% heat-inactivated newborn calf serum, 0.1% Tween-20, 

1% DMSO, in PBS) overnight at 4°C, incubated with rabbit anti-phospho ERK1/2 

antibody at 1:300 for 12 h at 4°C, washed with PBST, incubated with Cy-3 conjugated 

anti-rabbit secondary antibody at 1:300 overnight at 4°C, washed with PBST, mounted 

and finally imaged on an Olympus confocal microscope.

2.2.5 FGFR tyrosine kinase inhibitor SU5402 treatment

Twenty-five pmoles of xyloside II was injected per embryo at the one-cell stage 

and the embryos were subsequently dechorionated. Two-thirds of the embryos were 

placed in 3 ml of E2 buffer (15 mM NaCl, 0.5 mM KCl, 1 mM CaCl2, 1 mM MgSO4, 

0.15 mM KH2PO4, 0.042 mM Na2HPO4) with 25 ^M SU5402, and the remaining one- 

third were placed in 3 ml of E2 buffer as controls. SU5402 treated embryos were then 

compared to untreated embryos at 12 hpf.



2.2.6 mRNA and morpholino injection

Sprouty4 mRNA was synthesized using a SP6 mMessage mMachine transcription 

kit. An antisense morpholino against fgf8 (32) was obtained from Gene Tools (5’- 

GAGTCTCATGTTTATAGCCTCAGTA-3’; start codon is underlined). To insure 

uniform xyloside dosing, we used a double-injection protocol. First, xyloside II (25 

pmoles/embryo) was injected into all embryos at the one-cell stage. Then, two-thirds of 

xyloside-treated embryos were injected with 70 pg of sprouty4 mRNA or 6 ng offgf8  

morpholino. These embryos were then compared at 12 hpf with the remaining one-third 

embryos.

2.2.7 Purification of GAGs

One hundred embryos were injected with biotinylated xyloside XIII or XVII at 

the one-cell stage, lyophilized at 12 hpf and treated with 0.016% Streptomyces griseus 

protease type XIV (pronase) at 37°C overnight. After centrifugation at 16,000 x g for 5 

min, supernatant was diluted with one volume of 0.016% Triton X-100 and loaded onto a 

0.2 ml DEAE-sepharose mini column that had been pre-equilibrated with 2 ml of wash 

buffer (20 mM NaOAc, 0.1 M NaCl and 0.01 % Triton X-100, pH 6.0). After washing 

with 6 ml of wash buffer, the bound GAGs were eluted with 1.2 ml of elution buffer (20 

mM NaOAc, 1 M NaCl, pH 6.0), desalted and concentrated with 3000 MWCO Amicon 

columns. S-AF350 (0.2 ^g) was added, and the resulting mixture was incubated at room 

temperature in the dark overnight to capture the primed GAGs.
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2.2.8 Structural and compositional analysis of primed GAGs

GAG-streptavidin complexes were analyzed using a high-pressure size exclusion 

column coupled to a fluorescent detector with excitation and emission wavelength set at 

346 nm and 442 nm. The GAG-streptavidin conjugate was loaded onto two tandem 

G3000SWxl columns and was then eluted with phosphate buffer (100 mM KH2PO4, 150 

mM NaCl, pH 6.0) over 60 min at 0.5ml/min flow rate. GAGs from untreated embryos 

were also treated with S-AF350 and used as controls. The GAG-streptavidin conjugate 

was then digested with heparitinases I, II and III (in 3.3 mM Ca(OAc)2 and 40 mM 

NH4OAc, pH 7.0) or chondroitinase ABC (in 33 mM Tris, 33 mM NaOAc and 0.1 mg/ml 

BSA, pH 8.0) overnight at 37°C. The digested samples were subsequently loaded onto 

the size exclusion column (G3000SWxl) to determine HS/CS composition.

2.2.9 Disaccharide analysis of HS and CS/DS purified from 

zebrafish embryos

WT, bis-xyloside VI injected and mono-xyloside XVI injected embryos (100 

embryos per sample) were collected and freeze-dried at 12 hpf. Each sample was 

digested with 0.4 mg pronase at 55°C for 20 h, terminating the reaction by heating for 5 

min at 96°C, then adding MgCl2 to a final concentration of 2 mM. Each sample was then 

treated with 12.5 units of benzonase and incubated for additional 2 h at 37°C. The 

reaction was terminated by heating for 2 min at 96°C. Samples were loaded onto a Sep- 

Pak Plus column that had been primed in methanol and washed in water, then with 

equilibration buffer (50 mM Tris, 0.1 M NaCl, pH 8.0). The loaded cartridge was 

washed twice with the same buffer. Flowthrough and wash fractions were pooled and
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loaded onto a column of 200 ^l DEAE-sephacel, equilibrated with 50 mM Tris, 0.1 M 

NaCl, 0.1 % Triton X-100, pH 8.0. The flowthrough was loaded once again and the 

column was washed with six bed volumes each of a) 50 mM Tris, 0.1 M NaCl, 0.1 % 

Triton X-100, pH 8.0, b) 50 mM NaOAc, 0.1 M NaCl, 0.1% Triton X-100, pH 4.0, c) 50 

mM Tris, 0.1 M NaCl, pH 8.0. GAGs were eluted with 600 ^l of 50 mM Tris, 1.5 M 

NaCl, pH 8.0 and desalted on a NAP10 column. The isolated polysaccharides were 

incubated with 50 mU chondroitinase at 37°C for 3.5 h. After removal of 10 ^l for CS 

analysis by RPIP-HPLC, HS was recovered using a second round of DEAE-sephacel 

chromatography as described above for total GAG isolation. Each sample was 

lyophilized, then digested at 37°C overnight with 0.4 mU each of heparitinase I, II and

III, terminated by heat inactivation at 96°C for 2 min. The resulting HS disaccharides 

were separated by RPIP-HPLC analysis followed by post-column derivatization with 

cyanoacetamide and in-line detection using a fluorescence detector. Disaccharide 

standards were used to determine each disaccharide peak.

2.2.10 Injection of purified GAGs into zebrafish embryos

GAGs were isolated as above from approximately 1,000 embryos (12 hpf) that 

were injected with xyloside XIII. The isolated GAG chains were then digested with 

heparitinases I, II and III or chondroitinase ABC overnight at 37°C. The undigested 

CS/DS or HS, respectively, was then purified and concentrated to a final volume of 20 ^l 

using 3000 MWCO Amicon columns. One nl of each sample was injected into the 

animal pole of dome-stage embryos at 4 hpf. The phenotypes of these embryos were 

compared to those of WT embryos that had been injected with 1% phenol red.
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2.2.11 Injection of purified GAGs into zebrafish embryos

GAGs were isolated as above from approximately 1,000 embryos (12 hpf) that 

were injected with xyloside XIII. The isolated GAG chains were then digested with 

heparitinases I, II and III or chondroitinase ABC overnight at 37°C. The undigested 

CS/DS or HS, respectively, was then purified and concentrated to a final volume of 20 ^l 

using 3000 MWCO Amicon columns. One nl of each sample was injected into the 

animal pole of dome-stage embryos at 4 hpf. The phenotypes of these embryos were 

compared to those of WT embryos that had been injected with 1% phenol red.

2.2.12 Injection of mutated syndecan-1 mRNAs into 

zebrafish embryos

Seven mutagenic constructs of syndecan-1, in which serine residues at positions

37, 45 and 47 were replaced by alanine residues in all possible combinations, were 

generously provided by Dr. R.D. Sanderson (University of Alibama at Birmingham). The 

DNA fragments encoding the first 200 amino acids of each of the seven mutagenic 

constructs were subcloned into pCS2+ at BamHI and XhoI sites using forward primer 5’- 

GATCATGGATCCATGAGACGCGCGGCGCT -3’ and reverse primer 5’- CATCTCG 

AGTTAGTGATGGTGATGGTGATGTTCCTTCCTGTCCAAAA -3’. A similar 

experiment was done with the wild type. mRNAs of these DNA fragments carrying zero, 

one, two or three HS initiation sites were synthesized using a SP6 mMessage mMachine 

transcription kit. Each mRNA was injected into the blastomere of one-cell stage embryos 

at the concentration of 45 pg per embryo. These embryos were then compared at 12 hpf 

with WT.
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2.3 Results

2.3.1 Bis- and tris-xylosides affect the early development of 

zebrafish embryos

Mono-xylosides have been used in various systems to define the role of GAG 

chains (13, 20, 21). We have also previously reported the synthesis of clic^-xylosides 

and their ability to prime distinct GAG chains in the absence of a core protein in a 

cellular system (22, 33). However, mono-xylosides can only prime a single GAG chain 

per xyloside. On the other hand, bis- and tris-xylosides can prime multiple GAG chains 

that are covalently attached on the same scaffold, better mimicking naturally-occurring 

PGs (34). Various xylosides were synthesized using click chemistry in such a way that 

some scaffolds carry single xylose units and others carry two or three xylose units, 

allowing us to determine the importance of GAG multivalency as found in endogenous 

PGs (Table 2.1). Furthermore, a number of bis-xylosides were prepared with variable 

distances between two xylose residues. All of these xylosides were tested by injection 

into the blastomere of one-cell stage zebrafish embryos at a series of concentrations. 

Such injections provide convenient access to the cytoplasmic compartment without the 

need for plasma membrane permeability; as embryonic cells divide, injected material is 

partitioned into daughter cells. Bis- and tris-xylosides (xylosides I-XIII) at dosages of 33 

pmoles/embryo effectively caused elongation at 12 hpf (Figure 2.1A, C) whereas mono- 

xylosides (xylosides XIV-XVII) failed to cause any elongation at 33 pmol/embryo 

(Figure 2.1A, D), or even at higher dosages (up to 160 pmoles/embryo; see supplemental 

data). Xylosides I-VI, in which two xylose residues are linked by an aromatic ring, all 

effectively induced elongation in a majority of embryos, with the exception of xyloside I,
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Table 2.1 Structures of the xylosides studied in zebrafish embryos.
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Table 2.1 continued

Number Structure
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Table 2.1 continued

Number Structure
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Figure 2.1 Xylosides cause elongation of developing zebrafish embryos at 12 hpf. A: 
Treatment with bis- and tris-xylosides causes elongation. Mean +/- SEM from 3 
experiments (n = 145-246 embryos) are presented. B: Control embryo (WT). C: 
Elongated embryo treated with bis-xyloside II. D: Nonelongated embryo treated with 
mono-xyloside XIV. Lateral views, dorsal right, anterior up. Xyloside structures are 
shown in Table 2.1. Xylosides (33 pmoles) were injected into the blastomere of one-cell 
stage embryos.
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which induced elongation in only 14.3% of treated embryos (n =152). It is interesting to 

note that xyloside I has the shortest distance between the two xylose residues. In the case 

of xylosides VII-XI, in which two xylose residues are linked by a linear alkyl chain, a 

longer spacer between the two xylose residues induced elongation in a higher percentage 

of embryos (Figure 2.1A). These results suggest that both the multimeric nature and the 

conformational flexibility of the newly primed multivalent GAG chains are critical to 

have an effect on signal transduction during developmental processes.

2.3.2 Elongated embryos show specific increases in FGF signaling

Elongation of an embryo can result from activation of WNT, FGF or Nodal 

signaling or from inhibition of BMP signaling (35-38). To distinguish between these 

possibilities, we analyzed patterns of early gene expression in embryos treated with bis- 

xylosides and control embryos using in situ hybridization and immunostaining. When 

embryos were treated with bis-xyloside II, the expression of the FGF pathway target gene 

mkp3 at 8 hpf (26) was expanded (Figure 2.2A). The mkp3 pattern, a broadened ring 

around the margin, is just what would be expected from enhanced FGF signaling, given 

the expression of Fgfs at this stage in a marginal ring (26). A similar effect on mkp3 was 

seen at 6 hpf. When treating with bis-xylosides VII-XI, the percentage of embryos with 

expanded mkp3 expression varied with linker length in concordance with the percentage 

of elongated embryos (see supplemental data). On the other hand, the expression of 

mkp3 remained normal in embryos treated with mono-xylosides (see supplemental data). 

By contrast, the expression of the dorsal marker gsc (27) was unaffected by the injection 

of bis-xylosides (Figure 2.2B and see supplemental data). Thus at 8 hpf, bis-xylosides
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Figure 2.2 Analysis of developmental patterning in WT and bis-xyloside II-treated 
embryos. A -  F: in situ hybridization of control (A1-F1) and bis-xyloside II-treated (A2- 
F2) embryos at 8 hpf with probes for the FGF signaling target gene mkp3, dorsal marker 
gsc, WNT signaling reporter TOP:dGFP, BMP signaling ligand bmp2b, BMP signaling 
target gene nma/bambi and Nodal signaling target gene lefty1, respectively. A, B, D: 
animal pole view, dorsal right; C: lateral view, dorsal right; E, F: dorsal view. Only the 
expression of mkp3 was expanded, suggesting that FGF signaling is predominantly 
affected at 8hpf. G: Immunostaining with phospho-Erk 1/2 antibody in control (G1) and 
bis-xyloside II-treated (G2) embryos at 6 hpf. Animal pole view, dorsal right. Phospho- 
Erk 1/2 was expanded towards the animal pole in bis-xyloside II-treated embryos 
compared to control.
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enhanced FGF signaling without a detectable effect on dorsoventral patterning.

To investigate whether the Wnt, BMP or Nodal signaling pathways were also 

affected, the expression of corresponding pathway readouts was examined at 8 hpf. The 

expression of the transgenic Wnt reporter TOP:dGFP (25), which carries 4 TCF/LEF 

binding sites driving destabilized GFP, appeared unchanged following bis-xyloside II 

injection (Figure 2.2C). Similar observations were made for the BMP ligand bmp2b (28), 

the BMP pathway target nma/bambi (39) and the Nodal pathway target lefty1 (30) 

(Figure 2.2D, E, F). The expression of these genes was also unchanged following mono- 

xyloside injections (see supplemental data). Furthermore, immunostaining revealed that 

bis-xyloside-treated embryos have higher phospho-Erk 1/2 expression than controls, 

again with the greatest effect near the margin, indicating increased FGF activity through 

the FGFR/Ras/Mapk signaling pathway (Figure 2.2G). These results suggest that the 

FGF pathway is the only, or at least the primary, signaling pathway affected by bis- 

xyloside at 8 hpf. Once FGF signaling is affected, we would expect secondary effects on 

other pathways. For example, Furthauer et al. have shown that FGF signaling inhibits 

BMP signaling during early development (36). Hence, expression patterns of the FGF 

target mkp3 and BMP target nma/bambi were analyzed at 12 hpf. The expression of 

mkp3 expanded in the ventral ectoderm while the expression of bambi decreased in bis- 

xyloside II injected embryos compared to WT (see supplemental data). These results 

indicate that the primary effect of dimeric GAG chains primed by bis-xylosides is 

increased FGF signaling, with decreased BMP signaling as a later, secondary 

consequence.



2.3.3 Inhibition of FGFR-mediated signaling rescues the 

elongation phenotype

If bis-xylosides primarily activate the FGF/FGFR-mediated intracellular signaling 

pathway, we predicted that its inhibition would prevent the elongation phenotype. We 

used a well-known FGFR tyrosine kinase inhibitor, SU5402 (40), and applied a 

concentration (25 ^M) at which the kinase inhibitor has no significant effect on the 

normal morphology of the embryos through 12 hpf. After injection with bis-xyloside II, 

the embryos were immediately treated with SU5402. After continuous treatment through 

12 hpf, there was a complete rescue: no elongation was observed (n = 111; Figure 2.3D). 

When embryos were treated with SU5402 starting at 8 hpf instead of immediately after 

injection with bis-xyloside II, only 24 % (n = 115) of embryos developed normally, 

suggesting that bis- xyloside II exerts its activity by augmenting FGF signaling before or 

during gastrulation. We also tested whether expressiong of sprouty4, an FGF signaling 

antagonist, could rescue the phenotype. When injected with bis-xyloside II and 70 pg of 

sprouty4 mRNA, 18.7 % (n = 149) of the embryos were elongated at 12 hpf. In 

comparison, 85% of the embryos (n =119) were elongated when injected with bis- 

xyloside II only (Figure 2.3C, E). These results confirm the activation of FGF/FGFR- 

mediated signaling pathways upon treatment with bis-xylosides.

2.3.4 Suppression of FGF8 rescues the elongation phenotype

Which FGF is involved? FGF signaling is essential for many developmental 

processes (41), and FGF 3, 8, 17b and 24 are the main FGFs expressed during zebrafish 

gastrulation (42). Among these, FGF8 is thought to have the greatest role in early
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Figure 2.3 Rescue of elongation phenotype by inhibition of FGF signaling. A-C: 
Examples of control, elongated and rescued embryos at 12 hpf. Lateral views, dorsal 
right, anterior up. A: Control embryo. B: Embryo treated with bis-xyloside II. C: 
Embryo treated with bis-xyloside II and rescued by sprouty4 mRNA injection. D-F: 
Percentage of elongated embryos following treatment with bis-xyloside II alone, or with 
bis-xyloside II as well as 25 |iM SU5402 (D, n = 111), 70 pg of sprouty4 mRNA (E, n = 
149) or 6 ng of fgf8 morpholino (F, n = 98). All three treatments show significant 
rescue. *, p<.05; **, p<.01 using Student’s t-test.
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developmental events. Therefore, we investigated whether FGF8 is involved in causing 

elongation of embryos when treated with bis-xylosides. Bis-xyloside II and f gf8 

translation blocking morpholino were sequentially injected into one-cell embryos. After 

12 hpf, 52.6 % of these embryos were elongated (n = 98), whereas 93% of those that 

were injected with bis-xyloside II only were elongated (n = 125; Figure 2.3F). These 

results suggest that bis-xylosides activate FGFR signaling pathways at least partially via 

FGF8, and furthermore show that the effect of bis-xyloside II is FGF8-dependent.

2.3.5 Structural analysis of primed GAG chains

What type of GAG chains are primed by xylosides? Biotin conjugated bis- 

xyloside (xyloside XIII) and mono-xyloside (xyloside XVII) were therefore synthesized 

to identify primed GAG chains and to distinguish them from endogenous GAGs. Thirty- 

three pmoles of biotinylated xylosides XIII and XVII were injected into embryos at the 

one-cell stage. The GAG chains primed by these biotinylated xylosides were purified 

and captured with fluorescent-tagged streptavidin, S-AF350, as described in 

Experimental Procedures. Size exclusion chromatography (SEC) analysis confirmed the 

priming activity of these two xylosides: in both cases, the unbound S-AF350 peak was 

reduced or absent, and replaced by a GAG-streptavidin peak (Figure 2.4A). This result 

indicates that both mono- and bis-xylosides prime GAG chains in zebrafish embryos 

(Figure 2.4A). In the case of mono-xyloside, a small fraction of the unbound S-AF350 

peak still remained at 37 min. This result suggests that mono-xyloside XVII may not be 

as good a primer as bis-xyloside XIII. This is contrary to our findings, reported in our 

companion paper, that mono-xylosides are a better primer than bis-xylosides. To
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Figure 2.4 Structural analysis of GAG chains primed by xylosides. A: Fluorescent 
detection of GAG chains primed in embryos by biotinylated bis-xyloside XIII or 
biotinylated mono-xyloside XVII, or untreated embryos, after purification, complexing 
with streptavidin-Alexa Fluor 350, and elution from an HPLC-size exclusion column. B: 
Fluorescent detection of GAG chains primed by biotinylated xylosides (XIII and XVII) 
after treatment with chondroitinase ABC or heparitinases I, II and III to determine the 
relative proportion of HS and CS/DS, respectively.

exclude the possibility that differential priming activity may account for the 

elongation phenotype, we screened a number of additional mono-xylosides, which were 

found to be better primers than bis-xylosides (see supplemental data). None of these 

additional mono-xylosides caused elongation phenotype. In order to further demonstrate 

that the GAG chain valency plays a central role in causing the elongation phenotype, bis- 

xyloside XIII was injected at a lower concentration (15 pmoles per embryo). At this 

concentration, bis-xyloside XIII was found to have a similar priming activity as mono- 

xyloside XVII (see supplemental data) but still caused the elongation phenotype in 33 % 

total embryos (n = 240). Thus, these experimental outcomes suggest that the dimerized 

GAG chains are essential in causing the elongation phenotype. Since streptavidin is a 

globular multivalent protein, we could not determine the exact molecular weights of the



GAG chains. We estimated the HS/CS/DS composition of primed GAG chains by 

determining the extent to which GAG-Streptavidin conjugates were susceptible to 

heparitinase I, II and III or chondroitinase ABC treatment (Figure 2.4B). The results 

indicated that both bis-xyloside X III and mono-xyloside XVII primed mostly CS/DS 

(> 95 %) and very little HS (< 5 %) Similar results were obtained with GAG chains from 

6 hpf embryos (see supplemental data).

2.3.6 Kinetics of in vivo xyloside priming

To characterize the kinetics of priming, GAG chains primed by bis-xyloside XIII 

at different time points (2, 4, 6, 8, 10 and 12 hpf) were isolated and their size exclusion 

profiles compared (see supplemental data). Primed GAGs were detectable at 2 hpf; 

nearly all xyloside appeared to have primed by 4 hpf. The results suggest that the amount 

of primed GAGs increased throughout early development, and furthermore that the 

structure of primed GAGs continued to change, as reflected in differential SEC elution 

times (see supplemental data). The sulfation density of bis-xyloside primed GAG chains 

at 10 hpf was compared with the sulfation density of heparin using anion-exchange 

chromatography. The bis-xyloside primed GAG chains eluted at 33 min while heparin 

eluted at 55 min (see supplemental data), suggesting that the extent of sulfation of GAG 

chains synthesized during early development was much lower than that of heparin. 

Finally, disaccharide profiles of HS and CS/DS in WT embryos, bis-xyloside VI injected 

embryos and mono-xyloside XVI injected embryos were analyzed using HPLC coupled 

to a post-column reactor (Figure 2.5). The disaccharide composition of HS and CS 

chains were largely identical for WT, mono- and bis-xyloside injected embryos,
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Figure 2.5 Specific sulfation of GAG chains isolated from bis-xyloside Vi-treated, 
mono-xyloside XVI-treated and WT embryos. Disaccharide compositions were obtained 
as described in Experimental Procedures. Results show that treatment with either bis- or 
mono-xyloside does not affect overall sulfation of GAG chains, yielding specific 
sulfation types identical to those of endogenous GAGs. A: Percentage of different 
modifications of endogenous and xyloside-primed HS. B: Percentage of different 
modifications of endogenous and xyloside-primed CS/DS.



suggesting that these synthetic scaffolds do not overwhelm or disturb the GAG 

synthetic machinery in vivo, and that xyloside-primed GAGs have relatively normal 

sulfation.

2.3.7 Determination of GAG chain type responsible for the 

elongation phenotype

Our data showed that both mono- and bis-xylosides primed mostly CS/DS and a 

small amount of HS (Figure 2.4B). Therefore, we investigated which GAG type, HS or 

CS/DS, could cause the elongation of zebrafish embryos when assembled on bis- 

xylosides. GAG chains were purified from 12 hpf xyloside II-treated embryos as 

described in the “Methods” section. The GAG chains were then subjected to heparitinase

I, II and III or chondroitinase ABC treatment to obtain CS/DS or HS, respectively. Both 

samples were injected into zebrafish embryos at 4 hpf. At 12 hpf, 22% of embryos (n = 

102) were elongated after injection with HS and 16% of embryos (n = 100) were 

elongated after injection with CS/DS. These results imply that both dimeric HS and 

CS/DS primed by xylosides can cause the elongation phenotype. In order to further study 

the roles of these different GAG types, we injected commercially available monomeric 

GAG chains including heparin, CS-A, CS-C and DS (1ng/embryo) into zebrafish 

embryos. We found that injection into the animal pole at the dome stage (4 hpf) caused 

more frequent elongation than at other time points (0, 2 and 6 hpf). Injection of heparin, 

DS, CS-A and CS-C, respectively, caused 95%, 90%, 5% and 17% (n > 300) elongation 

phenotype at 12 hpf. Most notably, heparin caused 90% of the embryos to exhibit an 

elongation phenotype even at a lower dose (0.2 ng/embryo), whereas other GAG types
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failed to cause the effect at this dose. Expression of the FGF target mkp3 was analyzed 

after injection with heparin, DS, CS-A and CS-C. Seventy-seven percent (n = 35) of 

embryos injected with heparin and 72.5% (n = 40) of embryos injected with DS 

overexpressed mkp3, compared to CS-A (11 %, n = 45) and CS-C (16.3 %, n = 43) 

injected embryos (see supplemental data). The findings that elongation is seen after 

injecting either in vivo-primed GAGs or exogenous GAGs back into the cell mass of 

4 hpf embryos (which is unlike one-cell stage injections, which deliver xyloside 

intracytoplasmically), show that these GAGs can in fact act extracellularly, suggesting 

that in vivo-primed GAGs are likely secreted and act outside the cell. It is important to 

note that GAG chains primed by xylosides in vivo have a lower sulfation density than 

commercial GAG chains (see supplemental data). Thus, we speculate that the high 

sulfation of heparin and commercial DS allows them to undergo somewhat artificial 

interactions, while under in vivo conditions, primed GAG chains must be multimeric to 

facilitate ternary complex formation with FGF and FGFR and subsequently lead to FGFR 

dimerization and signal transduction.

2.3.8 Syndecan-1 carrying two and three HS chains causes 

elongation in significant number of treated embryos

One of the limitations of xyloside treatment in zebrafish embryos is our inability 

to ascertain the in vivo priming activity of each xyloside except in the case of biotinylated 

xylosides. Therefore, in order to confirm that GAG valency, rather than xyloside priming 

activity, is important in causing the elongation phenotype, syndecan-1 mutated mRNAs 

carrying zero, one, two or three HS initiation sites were injected (Figure 2.6). Injection
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Figure 2.6 Injection of mRNAs encoding mutated syndecan-1 carrying two and three HS 
chains significantly caused the elongation phenotype. A: Structures of syndecan-1 and 
mutated syndecan-1 with zero, one, two or three HS initiation sites. B: Percentage of 
elongated embryos after the treatment with 45 pg of each mRNA at one-cell stage. Total 
numbers of embryos injected with Syn-1, S37A, S45A, S47A, S37/45A, S37/47A and 
S45/47A are 188, 181, 126, 163, 199, 144, 160 and 159, respectively. *, p<.05 using 
Student’s t-test.



of mRNA carrying all three HS initiation sites caused the elongation phenotype at 12 hpf 

in 81.5 % of treated embryos (n = 188). Injection of mRNAs carrying two HS initiation 

sites at positions 45, 47; 37, 47; or 37, 45 caused the elongation phenotype at 12 hpf in

41.5 %, 72.9 % or 35.9 % of treated embryos, respectively. Injection of mRNAs carrying 

one HS initiation site at position 47, 45 or 37 caused the elongation phenotype in 0 %,

14.2 % or 17.4% of the treated embryos at 12 hpf. On the other hand, injection of mRNA 

carrying no HS initiation site did not cause any elongation phenotype at 12 hpf (n = 159). 

This result unequivocally indicates that proteoglycans with two or three HS side chains 

are more effective than proteoglycans with one or no HS side chain in hyperactivating 

FGF signaling in zebrafish embryos.

2.4 Discussion

All PGs, except decorin, have multiple GAG side chains, suggesting that 

multimeric GAG chains are essential for optimal biological activity (43). Surprisingly, 

only a few studies examined the importance of multiple HS chains of syndecan-1 and 

syndecan-4 in cellular systems and HS chain valency was shown to affect cell adhesion 

(10, 11). We surmise that the multivalency of GAG chains has a significant role in 

regulating complex spatiotemporal interactions with proteins, including FGF and FGFR, 

during the development.

A large body of in vitro data indicates that PGs are essential for FGF/FGFR 

signaling (12, 13, 44). FGFs activate their cognate receptor tyrosine kinases by inducing 

receptor dimerization. Numerous models have been proposed to explain FGFR 

dimerization at the molecular level (17-19). All of these models, based on biochemical
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and biophysical studies, attempted to elucidate the nature of interactions. However, the 

structural basis for the role of PGs in assisting FGF/FGFR signaling in vivo requires 

careful re-evaluation because the synergestic or individual contribution of multiple GAG 

chains of PGs to FGFR dimerization and the subsequent in vivo signaling have not yet 

been elucidated in any animal model. Our results presented here are the first ones to 

show the induction of PG mimetic in vivo with two or three GAG chains connected 

covalently and to study a plausible synergistic role of GAG chain valency in regulating 

FGF and FGFR interactions.

Mono-xylosides have been used in various organisms over three decades to define 

the role of GAG chains (20, 21, 45). However, these mono-xylosides can only make a 

single GAG chain per xyloside. On the other hand, bis- and tris-xylosides can prime two 

and three GAG chains that are covalently attached on the same scaffold. Therefore, GAG 

chains primed by bis- and tris-xylosides are able to better mimic naturally occurring PGs 

displaying multiple GAG chains. Our results indicate that treatment of embryos with any 

bis- or tris-xylosides, but none of mono-xylosides, caused elongation (Figure 2.1). Our in 

situ hybridization and whole-mount antibody staining experiments as well as rescue 

experiments with tyrosine kinase inhibitor SU5402, mRNA for FGF antagonist sprouty4 

and FGF8 morpholino indicated that FGF signaling is the direct target for bis-xyloside 

primed GAG chains (Figures 2.2 and 2.3).

It is important to note that in earlier studies, mono-xylosides have been shown to 

compete with endogenous core proteins for GAG priming and function as “decoys” by 

preventing HS from being attached to its acceptor sites on endogenous core proteins (20, 

21). In this case, we proved that the elongation phenotype is not caused by decoy activity
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by several measures. Firstly, the similarity in the types of sulfation of GAG chains 

obtained from WT and xyloside-injected embryos suggests that xyloside primers do not 

disturb the endogenous GAG biosynthesis (Figure 2.5). Secondly, bis-xyloside-primed 

GAG chains purified from zebrafish embryos can activate FGF signaling when injected 

back into embryos. It is important to note that injection of primed-dimeric GAGs, 

irrespective of whether they are heparin lyase or chondroitinase ABC susceptible, can 

cause the FGFR hyperactivation/ elongation phenotype under conditions where 

endogenous GAGs are largely unaffected. Lastly, injection of bis-fluoroxylosides 

(xyloside XVIII - XX, Figure 2.7A) did not cause elongation phenotype. These bis- 

fluoroxylosides are bis-xyloside analogs, in each of which the hydroxyl group at C4 

position is replaced by a fluorine group, therefore they can not prime GAG chains.

This result confirms that bis-xylosides do not act as “decoys” but act through 

their primed GAG chains (Figure 2.7B). Therefore, the elongation phenotype is best 

explained by a gain of function mechanism in which xyloside-primed multivalent GAG 

chains transit through the secretory pathway to the cell surface/ECM, recruit FGFs, 

facilitate GAG/FGF/FGFR signaling complex formation and eventually lead to FGFR 

hyperactivation (Figure 2.7B). This explanation is further corroborated by the fact that 

up to 160 pmoles of mono-xyloside, 5 times the injected dose for bis-xylosides, did not 

cause any elongation phenotype. Thus, primed GAG chains need to be at least dimeric to 

affect FGF signaling. However, except in the case of biotinylated xylosides, the in vivo 

priming activity of xylosides was difficult to be determined. Therefore, mRNAs encoding 

mutated syndecan-1 carrying zero, one, two or three HS initiation sites were injected. 

Injection of mRNAs carrying three or two HS chains caused a significantly higher
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Figure 2.7 Structures of screened bis-fluoroxylosides and their actions in zebrafish 
embryos compared to bis-xylosides. A: Structures of bis-fluoroxylosides (XVIII-XX) 
injected into zebrafish embryos. These compounds are analogs of bis-xylosides (VIII- 
X), in each of which the hydroxyl group at C4 position is replaced by a fluorine group. 
B: Mechanistic roles of bis-xylosides and bis-fluoroxylosides in the activation of FGF 
signaling in zebrafish embryos. Bis-xyloside enters the Golgi apparatus and primes 
dimeric GAG chains. The dimeric GAG chains are secreted to the extracellular matrix, 
form the ternary complexes with FGFs and FGFRs. Two complexes are then brought 
closer for active FGFR dimerization. On the other hand, bis-fluoroxyloside enters the 
Golgi but can not prime GAG chains. Therefore, bis-fluoroxyloside can not activate FGF 
signaling in zebrafish embryos.



percentage of elongated embryos as compared to mRNAs carrying one or zero HS chain. 

This result confirms the importance of GAG valency in hyperactivating FGF signaling in 

zebrafish embryos. Based on our current in vivo study, we propose a molecular model in 

which two covalently linked GAG chains interact with two FGF8 molecules and their 

cognate FGFRs, inducing FGFR dimerization that leads to the elongation phenotype. 

This model is also strengthened by the fact that all naturally occurring PGs bear multiple 

GAG chains.

One may alternatively argue that FGF8 could be sequestered in specific regions 

under normal conditions through its interaction with endogenous proteoglycans. When 

bis- or tris-xylosides are injected into embryos, the primed GAG chains, as long as these 

chains are at least dimeric, may effectively compete with endogenous PGs and increase 

FGF8-mediated FGFR dimerization and thus activation of the signaling pathway, leading 

to the elongation of embryos. In summary, the results presented here, for the first time, 

provide a structural basis for the ability of certain synthetic bis-xylosides to promote 

FGF8-mediated FGFR activation in vivo. It is, however, important to keep in mind that 

the GAG multivalency may not be necessary for FGF/FGFR pairs that form ternary 

complexes on the same GAG chain, allowing FGFRs to slide along the chain to form an 

active signaling complex. Efforts are currently underway to elucidate the requirement of 

specific sulfate groups for the activation of FGF8 signaling and the nature of interaction 

among GAG, FGF8 and FGFR in the formation of signaling complex.
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2.5 Supplemental data

Table 2.S1. Structures of additional mono-xylosides tested in zebrafish embryos. None of 
these mono-xylosides gave elongation phenotype at 12 hpf.

Number Structure

XXI N= N

OH

XXII N=rN

OH

XXIII n—n

OH

XXIV
H O ^---- O / ^  N /  \
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Table 2.S1 continued

Number Structure

XXIX „  N.
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Table 2.S2. Effect of bis-xylosides and mono-xylosides on the elongation phenotype at 
12 hpf and on mkp3 expression at 8 hpf.
Percentages indicate the fraction of elongated embryos 
Percentages indicate the fraction of embryos with expanded mkp3 expression

Structures of injected xylosides 12 hpf 
phenotype*

mkp3 
expression 

on 8 hpf 
embryos**

.N--

'N̂ N=N' - 0
OH

5 % 2%

OH

15%

o
10%

____ H m^ ' NH H ^ ---- 1 \  .N
HH' OH

OH

28%

o
20 %

OH
f N' N ° c ^ 28H

OH

82% 80%

ho^ ^ n' ^  
ho^ ^ O h

N^N O~

89% 90%
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Table 2.S2 Continued

Structures of injected xylosides 12 hpf phenotype* mkp3 expression 
on 8 hpf 

embryos**

HO- N 'N
O h

0 % 0 %
H O ^ -----°  kl.N

HO- N "N
OH

0% 0 %
h0 ^ ^ n ' %

OH \ = t

0% 0 %

OH

0% 0 %

OH

0% 0%
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Figure 2.S1. Developmental signaling in embryos injected with bis-xyloside XIII and 
mono-xylosides XVI, XVII. A-D: Embryos injected with bis-xyloside XIII (A1-D1), 
mono-xyloside injected XVI (A2-D2), mono-xyloside XVII (A3-D3) and control 
embryos (A4-D4) in situ hybridized at 8 hpf with probes for the FGF target gene mkp3 
(A), dorsal marker gsc (B), BMP ligand bmp2b (C) and Nodal target gene leftyl (D). 
Animal pole views, dorsal right.
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Figure 2.S2. Expression patterns of bambi and mkp3 at 12 hpf. Expression of the BMP 
target bambi in the border of the nonneural ectoderm (arrows) is downregulated in bis- 
xyloside II-treated embryos (B) compared to WT (A). Expression of the FGF target gene 
mkp3 in the ventral ectoderm (asterisks) is upregulated in bis-xyloside II-treated embryos 
(D) compared to WT (C).
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Figure 2.S3. Injection of bis-xyloside XIII and mono-xyloside XVII to zebrafish 
embryos at different concentrations. A: Bis-xyloside XIII and mono-xyloside XVII were 
injected to zebrafish embryos at 15, 33 and 160 pmoles/embryo. Percentage of elongated 
embryos increased with increased concentrations of injected bis-xyloside. Mono-xyloside 
did not cause elongation phenotype at all tested concentrations. B: Fluorescent detection 
of GAG chains primed in embryos by biotinylated bis-xyloside XIII (15 pmoles/embryo) 
and biotinylated mono-xyloside XVII (33 pmoles/embryo), after purification, 
complexing with streptavidin-Alexa Fluor 350 and elution from an HPLC-size exclusion 
column.
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Figure 2.S4. Structural analysis of GAG chains primed by xylosides. A: Priming of 
GAGs in embryos by bis-xyloside XIII over time. GAG chains primed by the 
biotinylated bis-xyloside XIII at 2, 4, 6, 8, 10 and 12 hpf (n = 100 per time point) were 
purified, mixed with 0.125 pg S-AF350 and analyzed using an HPLC-size exclusion 
column with fluorescence detector. The chromatographic profiles suggested that the 
amount of GAGs increased over time. B: Fluorescent detection of GAG chains primed 
by biotinylated bis-xyloside XIII at 6 hpf before and after treatment with chondroitinase 
ABC or heparitinases I, II and III to determine the relative proportion of HS and CS/DS, 
respectively. C: Comparison of DEAE elution profiles of bis-xyloside XIII-primed GAG 
chains and heparin. GAG chains primed by bis-xyloside XIII purified from embryos at 
10 hpf were complexed with S-AF350 and analyzed using an HPLC-DEAE ion-exchange

35column with fluorescence detector. Heparin was radiolabeled with [ S]-PAPS and 3-O- 
sulfotransferase and analyzed on the HPLC-DEAE column with radiodetector. Samples 
were eluted with a linear NaCl gradient of 0.2 M to 1 M over 80 min at 1 ml/min flow 
rate. Bis-xyloside primed GAG chains from 10 hpf embryos have significantly lower 
sulfation density than heparin.
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Figure 2.S5. Expression pattern of FGF signaling target gene mkp3 in embryos injected 
with different GAG types. Water (A, control), heparin (B), dermatan sulfate (DS) (C), 
chondroitin sulfate A (CS-A) (D) or chondroitin sulfate C (CS-C) (E) were injected into 4 
hpf embryos at 1 ng/embryo. In situ hybridization with a mkp3 probe was carried out at 8 
hpf. mkp3 expression was expanded in embryos injected with heparin (27/35) and DS 
(29/40), whereas fewer embryos have expanded mkp3 expression upon treatment with 
CS-A (5/45) or CS-C (7/43). Animal pole views.
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CHAPTER 3

ENZYMATIC SYNTHESIS OF FGF8-BINDING HS MOTIFS



3.1 Overview

In Chapter 2, our results demonstrated the importance of GAG multivalency in 

the FGF8 signaling pathway in zebrafish embryos. In developing embryos, 

endogenously produced GAG chains need to be at least dimerized to form two ternary 

complexes with FGF8 and FGFR, leading to the activation of FGF8-mediated signaling 

pathway. Furthermore, heparin and dermatan sulfate, but not chondroitin sulfate A and 

C, can have the same effect on FGF8 signaling. These findings suggest that even though 

specific structures are required for GAG-FGF8 interactions, promiscuity is also involved, 

i.e., different structures can have the same function.

This chapter outlines effort to elucidate the structural requirements of HS for its 

interactions with FGF8 and how these FGF8-binding HS structures are assembled in vivo. 

In order to achieve this goal, one needs to analyze the structures of HS molecules that 

activate FGF8 signaling and cause elongation phenotype in zebrafish embryos. However, 

the amounts of HS produced in developing zebrafish embryos are extremely low, making 

it impossible to derive any meaningful structural information about endogenously 

produced HS in the embryos. Therefore, a more practical approach was employed to 

answer these questions that would also provide more specific information regarding HS- 

FGF8 structure-activity relationships. A library of HS oligosaccharides carrying specific 

sulfation with defined sizes was enzymatically synthesized. This library was tested in 

zebrafish embryos considering the elongation phenotype as a FGF8 activity indicator. In 

this assay, the HS oligosaccharides, which cause the elongation phenotype, contain the 

structural parameters that are important for HS-FGF8 interactions.

In order to assemble this HS oligosaccharide library, several intermediate studies
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were performed. #-acetylheparosan, polysaccharide HS backbone, is isolated from E.coli 

K5. This backbone was then fragmented with heparitinase I to obtain size-defined 

oligosaccharides. In parallel, we prepared uniformly and atom-specifically 13C-labeled 

polysaccharide backbones (1). These labeled backbones provided high-resolution NMR 

signal and distinct mass spectrometric data, allowing one to distinguish exogenous and 

endogenous HS. The details of this study were reported in Section 3.2. In the next step, 

HS biosynthetic enzymes including #-deacetylase #-sulfotranferase (NDST-2), C5- 

epimerase (C5-Epi), 2-O-sulfotransferase (2-OST), 6-O-sulfotransferase (6-OST1, 6- 

OST2a, 6-OST2b, 6-OST3) and 3-O-sulfotransferase (3-OST1, 3-OST3a) were expressed 

using baculovirus system and purified. Each enzyme isoform can have distinct substrate 

specificity. Therefore, the action of each isoform was studied to provide a guidance to 

assemble distinct HS oligosaccharides. The study on the enzymatic actions of 3-OST3a 

and 3-OST1 was reported in Section 3.3 (2). Not only different isoforms of the same 

enzyme can have distinct substrate specificity but also enzymes can generate distinct 

structures depending on the order of enzymatic modifications. Therefore, we specifically 

investigated the actions of NDST-2, C5-Epi and 2-OST in concurrent and sequential 

manners to elucidate the possible mechanism by which the FGF-1 HS binding motifs are 

assembled. This study was reported in Section 3.4 (3). Finally, with all the above 

information, HS oligosaccharides with different sizes and structures were enzymatically 

synthesized. All structures were thoroughly analyzed by liquid chromatography coupled 

with mass spectrometry. This oligosaccharide library was tested on zebrafish embryos 

for their effect on FGF8 signaling. With these results, we were able to reveal the



minimum size, the specific structures and the biogenesis pathway of FGF8-binding HS 

motifs in vivo. These results were reported in Section 3.5.
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3.2 Characterization of uniformly and atom-specifically 13C-labeled 

heparin and heparan sulfate polysaccharide precursors using 

13C NMR spectroscopy and ESI mass spectrometry

Manuscript reproduced with permission from:

Nguyen, T. K., Tran, V. M., Victor, X. V., Skalicky, J. J., and Kuberan, B. (2010) 

Characterization of uniformly and atom-specifically (13)C-labeled heparin and heparan 

sulfate polysaccharide precursors using (13)C NMR spectroscopy and ESI mass 

spectrometry, Carbohydr Res 345, 2228-2232.

© 2010 Elsevier Ltd.
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A B S T R A C T

The biological actions of heparin and heparan sulfate, two structurally related glycosaminoglycans, 
depend on the organization of the complex heparanome. Due to the structural complexity of the hepara- 
nome, the sequence of variably sulfonated uronic acid and glucosamine residues is usually characterized 
by the analysis of smaller oligosaccharide and disaccharide fragments. Even characterization of smaller 
heparin and heparan sulfate oligosaccharide or disaccharide fragments using simple ID ’H NMR spec­
troscopy is often complicated by the extensive signal overlap. 13C NMR signals, on the other hand, overlap 
less and therefore, 13C NMR spectroscopy can greatly facilitate the structural elucidation of the complex 
heparanome and provide finer insights into the structural basis for biological functions. This is the first 
report of the preparation of anomeric carbon-specific 13C-labeled heparin and heparan sulfate precursors 
from the Escherichia coli I<5 strain. Uniformly 13C- and 15N-labeled precursors were also produced and 
characterized by 13C NMR spectroscopy. Mass spectrometric analysis of enzymatically fragmented disac­
charides revealed that anomeric carbon-specific labeling efforts resulted in a minor loss/scrambling of 13C 
in the precursor backbone, whereas uniform labeling efforts resulted in greater than 95% 13C isotope 
enrichment in the precursor backbone. These labeled precursors provided high-resolution NMR signals 
with great sensitivity and set the stage for studying the heparanome-proteome interactions.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

H eparan sulfate (HS), a m em ber o f the  glycosam inoglycan 
(GAG) family, is a linear, su lfated  polysaccharide com posed of 
repea ting  d isaccharide un its  com prising glucosam ine and  hexu- 
ronic acid (ido- o r gluco-). H ighly an ionic HS is w idely d istribu ted  
on the  cell surface and  in the  extracellu lar m atrix . In teractions of 
HS sequences w ith  various p ro te ins have been im plicated  in m any 
physiological and  pathological processes such as th e ir  partic ipation  
in  ce ll-ce ll and  ce ll-m atrix  in teractions, cell proliferation, cell 
m igration  and cell differentiation, an ti-coagulation , inflam m ation, 
tum or m etastasis, and  various infections.1,2 However, the  struc- 
tu re -fu n c tio n  re lationships of HS chains a re  difficult to  estab lish  
because of th e ir  s truc tu ra l com plexity  arising from  the ir highly 
variable length  and  com position.3 D uring HS biosynthesis, a num ­
ber o f enzym es incom pletely  modify a nascen t chain  com prised  of 
alternating  glucuronic acid an d  N -acetylglucosam ine residues. The 
resu lting  heterogeneity  in HS fine structu re , how ever, appears to

* Corresponding author. T el: +1 801 587 9474; fax: +1 801 585 9119. 
E-mail address: KUBY@pharm.utah.edu (B. Kuberan).

0008-6215/$ - see front m atter © 2010 Elsevier Ltd. All rights reserved, 
doi: 10.1016/j.carres.2010.08.011

be a key factor in de term in ing  th e  function of th e  HS chain, possi­
bly because it confers specificity for in teractions w ith  H S-binding 
pro teins.

There a re  a num ber of m ethods th rough w hich H S-protein  in ter­
actions can be studied, but one o f the  m ost pow erful approaches is 
NMR spectroscopy. NMR spectroscopy provides crucial structural 
and  conform ational inform ation useful in  identifying precise contact 
poin ts be tw een  in teracting  m olecules and  can also be used as an 
assay for identifying binding partners. Furtherm ore, NMR spectros­
copy can also be used to  detec t m odifications m ade by HS bio­
synthetic  enzym es on precursor m olecules and to  study  the  
biosynthetic process. However, high concentrations of HS chains 
a re  required  for such studies due to  the  low  natu ral abundance of 
nuclei w ith  a ne t spin (13C and 15N). The p repara tion  of HS biom ole­
cules enriched w ith  NMR-active nuclei w ould  im prove the  detection 
and  facilitate th e  analysis of struc tu re-function  relationships. Thus, 
the  goal o f this s tudy  is to  p repare HS s tructu res w ith  atom -specific 
13C labels a t th e  anom eric centers o f each sugar residue and  also to 
p repare 15N -enriched and  uniform ly 13C-Iabeled HS precursors.

Escherichia coli K5 strain  naturally  synthesizes N -acetylheparo- 
san  (heparosan), a non-sulfated  polysaccharide th a t resem bles

http://www.elsevier.com/locate/carres
mailto:KUBY@pharm.utah.edu
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th e  unm odified, nascent HS chain.4 Thus, the  p repara tion  o f iso­
tope-enriched HS precursors can easily be accom plished by grow ­
ing the  £  coli s train  K5 in a m inim al m edia containing 15N -labeled 
am m onium  salts and  13C-labeled glucose as the  principal nitrogen 
source and carbon source, respectively. Several groups including 
our group recently  published the p repara tion  o f isotope-enriched 
HS precursors for perform ing subsequen t structu ral analysis.5-7 
W e report herein  the  first p repara tion  of atom -specifically 
13C-labeIed HS precursor polysaccharides a t the  anom eric carbons. 
D ifferentially iso tope-enriched HS precursor polysaccharides w ere 
isolated, quantified, and  characterized using NMR spectroscopy. 
They w ere  also analyzed using ESI-qTOFMS to determ ine the  ex­
te n t of isotope incorporation.

2. Results and  discussions

The intrinsically narrow  range of pro ton  chemical shifts has sig­
nificant spectral overlap, particularly  in GAG chains, and m akes 1H 
NMR analysis challenging.8 On th e  o ther hand, 13C chem ical shifts 
have a m uch w ider range providing an opportunity  to  characterize 
com plex HS/heparin chains using 13C NMR spectroscopy. However, 
NMR-active 13C nuclei are less abundan t. Therefore, it is necessary 
to  develop a strategy  to prepare 13C iso tope-enriched  HS structures 
to  fully exploit recent advances in NMR techniques to further our 
understanding  of the structu ral basis for the biological actions of 
heparanom e.

2.1. Preparation o f  differentially ,3C-labeled HS precursors

N -Acetylheparosan, a capsular polysaccharide synthesized  by 
the £  coli K5 strain , has the sam e structu re  as the  non-sulfated 
and  non-epim erized HS backbone. Therefore, this polym er has 
been used in  the  production  of an tithrom bin  Ill-binding HS oligo­
saccharides and  polysaccharides.9-12 Our group recently reported  
the use of the  £  coli K5 strain  for the production  of 15N -labeled 
HS polysaccharide and oligosaccharide precursors.6 Zhang and 
co-w orkers produced uniform ly 13C-, 15N -labeled HS polym ers 
using a sim ilar strategy for enzym atic modifications.5 They subse­
quently  characterized  the  solution structu res of these uniform ly la­
beled HS polym ers. However, one of th e  m ain disadvantages of 
uniform ly 13C-labeled HS is tha t d irect detection  and assignm ent 
o f 13C signals m ay n o t be straightforw ard  due to the presence of 
one-bond 13C -13C couplings betw een  adjacent carbons. One 
po tentia l approach  to overcom e this difficulty is to  produce 
atom -specific 13C-labeled HS precursors by utilizing an appropriate 
13C-labeled glucose as a m etabolic source for the  backbone syn the­
sis by the £  coli K5 strain. However, uniform ly 13C-labeled glucose 
is less expensive than  atom -specific 13C-labeled glucose. Therefore, 
a t th e  outset, w e optim ized the  grow th conditions of the  £  coJi K5 
stra in  in a m inim al m edium  containing uniform ly 13C-labeled 
glucose and 15N -labeled am m onium  sulfate or 15N -labeled 
am m onium  chloride. W e found tha t the  overall yield of uniform ly 
13C-, 15N-labeled N -acetylheparosan is m uch higher w hen the 
£  coli K5 stra in  w as grow n in the  presence of 15N -labeled am m o­
nium  sulfate (yield ~ 100  mg/L of cu lture) than  in the presence of 
15N-labeled am m onium  chloride (yield ~ 3 0  mg/L of culture). After 
optim izing grow th  conditions to  obtain the m axim um  am ount of 
N -acetylheparosan polysaccharides using m inim al media, we then 
tu rned  our a tten tion  to prepare atom -specifically 13C-labeled HS 
precursors by grow ing the £  coli K5 strain  in a m inim al m edium  
containing [ l - 13C]-D-glucose as a carbon source and  15N -labeled 
am m onium  sulfate as a nitrogen source. D ifferentially iso tope-en­
riched N -sulfoheparosan polysaccharides w ere obta ined  from the 
respective N -acetylheparosan polysaccharides by N -deacetylation 
and  N -sulfonation as reported  in  th e  lite ra tu re .13,14

2.2. Structural analysis o f uniform ly or atom -specifically  R e ­
labeled HS precursor polysaccharides

Regular N -sulfoheparosan and differentially isotope-enriched 
N -sulfoheparosan polysaccharides and regular N-sulfoheparosan 
(1, 2, and  3, Fig. 1) w ere  exhaustively digested w ith  recom binant 
heparitinase 1. The disaccharide products obtained w ere purified 
from the  digestion m ixture using 3000 MWCO Amicon centrifugal 
filter colum ns. The flow -through carrying the  disaccharide com po­
nents w as dried in  a speed-vac system  and  subsequently  reconsti­
tu ted  in deionized w a te r prior to  m ass spectrom etric  analysis. 
ESI-qTOFMS w as utilized in  the  d isaccharide analysis to  determ ine 
the  isotope enrichm ent.15 The m ass spectrum  of a given analyte 
typically consists o f a sum  of signals of various possible naturally  
occurring isotopic com positions. Thus, the  m onoisotopic patterns 
of the  m olecular ions of the  given analyte provide fu rther insights 
in to  the  fine structure, th e  isotopic distribution, and  the  ex ten t of 
isotopic enrichm ent. Therefore, it is im portan t to  have high-resolu- 
tion  m ass spectra for w hich  one needs a m ass spectrom eter w ith 
TOF or FT-ICR capability. MS analysis revealed th e  presence of sig­
nificant peaks at m fz  values of 416.3520, 418.3559, and  429.3921 
for the  m olecular ions corresponding to  the  disaccharides derived 
from polysaccharides 1, 2, and  3, respectively (see Figs. 1 and 2). 
Based on the m onoisotopic pattern , the  isotopic purity  of uni­
formly 13C-, 15N -labeled N-sulfoheparosan, polysaccharide 3, w as 
found to  be greater than  95%, w hereas th e  isotopic purity  of 
atom -specifically 13C-labeled a t th e  anom eric carbon of each sugar 
building block of N -sulfoheparosan, polysaccharide 2 w as found to 
be ~70%. Thus, anom eric atom -specific 13C-labeling efforts re­
su lted  in a partial isotopic loss th a t could not be overcom e by alter­
ing the  am ounts o f 13C-labeled glucose added to  the  m inimal 
m edium . N evertheless, th is is still significant enough to  conduct 
NMR experim ents to obtain critical structu ral inform ation about 
glycosidic linkages w hich  w ould  n o t o therw ise be possible w ith 
the  polysaccharide 1. In addition  to  MS analysis, various NMR 
experim ents w ere  perform ed on these polysaccharides to  obtain 
ID  13C NMR (Fig. 3), 2D [13C -13C] COSY (Fig. 4). and  [13C, 'H] HSQC 
NMR spectra (Fig. 5). These NMR spectra confirm ed the  identity  
and the  isotopic purity  of differentially isotope-enriched N-sul- 
foheparosan polysaccharides 2 and  3. Our 13C and *H chemical shift 
assignm ents are  in  good agreem ent w ith  those previously reported  
in the  litera tu re (Table 1) considering th e  variations in NMR exper­
im ental conditions. Using in tra-residue 13C-spin connectivities 
from 2D [13C -13C] COSY experim ents, w e assigned the  peaks by a 
standard  sequential assignm ent procedure.

3. Concluding remarks

It is essential to elucidate both the  prim ary sequence and  the  3D 
conform ation of HS s tructu res of a biological origin to  understand  
HS structu re-function  relationships. However, these s tructu res are 
available only in a lim ited quantity , and this scarcity challenges our 
ability to characterize these  com plex m olecules using traditional 
approaches. W hile MS analysis allow s one to  characterize oligosac­
charide and  disaccharide m olecular w eights, sulfation densities 
and sulfation patterns, NMR analysis aids the characterization  of 
the  intact heparanom e a t the  polym er level in te rm s of conform a­
tion, m icrostructure, and  dynam ic solution properties. However, 
one of the m ajor lim itations of NMR spectroscopy is th a t its low 
sensitivity because o f the low  m agnetogyric ratio  and the  low  n a t­
ural abundance o f NMR-active isotopes, 13C (1.1%) and 15N (0.37%). 
Therefore, th e  production of HS chains enriched w ith  various iso­
topes w ill provide further insights in to  the ir sequence through 
MS-based fragm entation  approaches and conform ational dynam ics 
through m ulti-d im ensional NMR spectroscopy. Thus, the isotopic
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Table 1
1H and 13C chemical shifts of HS precursors in D20  at 25 °Ca

Position13 ’H Chemical 
sh ift (ppm)

13C Chemical 
sh ift (ppm)

A1 5.58 100.30
A2 3.24 60.77
A3 3.65 72.48
A4 3.65 81.11
A5 3.75 73.61
A6 3.84/3.79 62.65
G1 4.52 105.33
G2 3.38 75.83
G3 3.80 79.96
G4 3.89 78.70
G5 3.82 79.06
G6 - 176.85

3 Chemical shifts are given in ppm, ’ H chemical shifts is 
m easured indirectly w ith  reference to  DSS in D20  a t  25 °C. 
13C is m easured indirectly w ith  reference to 1H using a 
chemical shift ratio of 0.25144.

b A represents glucosam ine and G represents glucuronic 
acid. The num erical suffix corresponds to  the carbon position 
starting  w ith  th e  anom eric carbon as 1.

[1,2,3,4,5,6-1 C6]-D-glucose as the  principal carbon source and 2 g/L 
(15NH4)2S04 or 15NH4C1 as the  principal n itrogen  source. The cultures 
w ere  incubated  a t  37  °C for 48  h w ith  shaking  (250 rpm ) and then  
autoclaved. The autoclaved m edium  w as ad justed  to  pH 7.0 and  tre a ­
ted  w ith  p ro tease  for 12 h a t  37 °C w ith gentle sh ak in g (50 rpm ).T he 
insoluble m aterial w as rem oved by cen trifugation  (5000 rpm , 
30 m in), and  the  resu lting  su p e rn a tan t w as d ilu ted  to  tw o  tim es 
the  original vo lum e w ith  deionized  w ater. The d ilu ted  supern a tan t 
w as then  loaded on to  a 50-mL DEAE-Sepharose colum n, previously 
equ ilib ra ted  w ith  w ash  buffer (20 mM NaOAc, lOOmM  NaCl, pH 
6). The colum n w as w ashed  th ree  tim es (10 colum n vo lum es/w ash) 
w ith  w ash  buffer. The heparosan  polysaccharide w as elu ted  w ith  6 
colum n volum es o f e lu tion  buffer (20 mM  NaOAc, 0.6 M NaCl, pH 
6). The e lu a te  w as ad ju sted  to  1.0 M NaCl, and  4  volum es o f 99% EtOH 
w ere  added  to p rec ip ita te  the  desired  polysaccharide. A fter 24  h at 
4°C , th e  resu lting  [13C, 15N] N -acety lheparosan  w as recovered  by 
centrifugation  (5000 rpm , 30 m in, 4  °C) an d  rem oval of th e  su p ern a­
tan t, and  w as finally allow ed to  a ir-d ry  overnight. The am oun t of 
purified heparosan  ob ta ined  w as d eterm ined  using a carbazole as­
say for uronic acids w ith  the  aid  o f g lucuronolactone as a standard . 
The assay w as perfo rm ed  in trip licate. In a sim ilar m anner, the  ano ­
m eric carbon-specific 13C-labeled polysaccharide w as ob ta ined  from 
the  E. co/i K5 stra in  grow n in the  m inim al m ed ium  contain ing  1 g/L 
[ l - 13C]-D-glucose.

4.3. Preparation o f  JV-sulfoheparosan

Regular N -acetylheparosan, anom eric atom -specifically  13C-la- 
beled heparosan  or uniform ly 13C, 15N -labeled heparosan  w as 
dissolved in  2.5 M NaOH, s tirred  for 12 h  a t 55 °C, then  cooled to 
ice-cold tem p era tu re  and  ad ju sted  to  pH 7. The fully N -deacety lated  
p roduct w as N -suIfonated w ith  the  Et3N S03 as described  before13,14 
and purified to  ob ta in  polysaccharides 1, 2, and 3 (Fig. 1).

4.4. NMR acquisition

ID  [13C] and  2D [13C -13C] COSY spectra  w ere  recorded  at 
100 MHz on a V arian M ercury 400  MHz spectrom ete r. 2D [^ C ^ H ]

HSQC spectra  w ere  recorded  a t  125 MHz on a V arian Inova 
500 MHz sp ec tro m ete r (Varian, Palo Alto, USA). NMR m easu rem en ts 
w e re  perform ed a t 25 °C for acquiring ID  [13C] spectra  and  2D 
[13C -13C] COSY spectra  w hereas  2D [13C -1H] HSQC spectra  w ere 
acqu ired  a t 37 °C. Sam ples (~ 1 0  m g) w ere  lyophilized from  d eu te ­
rium  oxide (D20 )  and finally dissolved in 0.4 mL o f D20  (99.9% 
deuterium ).

4.5. Isotopom er analysis o f  disaccharides u sin g  LC-ESI-TOFMS

MS analyses w ere  perform ed on a Bruker ESI-TOFMS in s tru ­
m en t. The sam ples contain ing  disaccharides, ob ta ined  from  the 
d igestion  o f polysaccharides w ith  heparitinase  I, w e re  processed 
and  d issolved in  1:1 H20-C H 3CN con tain ing  5 mM  Bu2NH2OAc 
for the iso topom er analysis using m ass spectrom etry .15 M ass spec­
tra  w ere  collected  by the  d irect infusion o f sam ples contain ing  
disaccharides a t a flow rate  of 5 ^L/min. The electrospray  interface 
w as se t in th e  nega tive-ionization  m ode w ith  a collision energy  of 
7.0 eV, a capillary po ten tia l of 3500 V and  a source tem p era tu re  of 
180 °C. N itrogen w as u sed  as a dry ing  gas (4  L/min) an d  nebu lizer 
(0.4 bar). M ass spectra  w ere  processed  using  D ata Analysis 2.2 
so ftw are (Bruker D altonics Inc., Billerica, MA).
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Heparan sulfate (HS) glucosaminyl 3-O-sulfotranferases sulfate the C3-hydroxyl group of certain 
glucosamine residues on heparan sulfate. Six different 3-OST isoforms exist, each of which can 
sulfate very distinct glucosamine residues within the HS chain. Among these isoforms, 3-OST 1 
has been shown to play a role in generating ATIII-binding HS anticoagulants whereas 3-OST2,
3-OST3, 3-OST4 and 30ST-6 have been shown to play a vital role in generating gD-binding HS 
chains that permit the entry of herpes simplex virus type 1 into cells. 3-OST5 has been found to 
generate both ATIII- and gD-binding HS motifs. Previous studies have examined the substrate 
specificities of all the 3-OST isoforms using HS polysaccharides. However, very few studies have 
examined the contribution of the epimer configuration of neighboring uronic acid residues next to 
the target site to 3-OST action. In this study, we utilized a well-defined synthetic oligosaccharide 
library to examine the substrate specificity of 3-OST3a and compared it to 3-OST1. We found 
that both 3-OST 1 and 3-OST3a preferentially sulfate the 6-O-sulfated, JV-sulfoglucosamine when 
an adjacent iduronyl residue is located to its reducing side. On the other hand, 2-O-sulfation of 
this uronyl residue can inhibit the action of 3-OST3a on the target residue. The results reveal 
novel substrate sites for the enzyme actions of 3-OST3a. It is also evident that both these enzymes 
have promiscuous and overlapping actions that are differentially regulated by iduronyl
2-O-sulfation.

Introduction

Heparan sulfate (HS) is a highly sulfated polysaccharide that 
is located on cell surfaces as well as in the extracellular matrix 
(ECM). The nascent HS chain consists of repeating units of 
iV-acetyl glucosamine (GlcNAc) and glucuronic add (GlcA). 
This backbone subsequently undergoes a series of modifications 
by various HS modifying enzymes located in the Golgi. 
GlcNAc residues can be iV-deacetylated and iV-sulfated by 
iV-deacetylase-AT-sulfotransferase (NDST). GlcA can be epimerized 
to iduronic add (IdoA) by C5-epimerase. Additionally, a 
number of O-sulfotransferases (OST) can add sulfate groups
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to the C6 (by 6-OST) and C3 (by 3-OST) carbons of glucosamine 
(GlcN) residues and to the C2 carbon (by 2-OST) of IdoA or 
GlcA residues.1 These modifications create the enormous diversity 
that confers a wide array of biological functions. Among these 
modifications, 3-O-sulfation has been shown to play a vital role in 
creating HS chains that function as anticoagulants and as entry 
receptors for herpes simplex virus type 1 (HSV-1).2 5 It has also 
been shown that 3-O-sulfation has been assodated with both 
cancer and embryonic development.6 9 Six different isoforms of 
3-OST have been identified [3-OST1, 2, 3 (3a and 3b splice 
variants), 4, 5, and 6] and shown to generate distinct HS struc­
tures.10 18 3-OST3a has a broad expression profile and is present in 
many different tissues including heart, placenta, lungs, liver and 
kidneys.11 One of its pathological functions is to create binding 
sites for viral gD glycoprotdn and initiate the entry of HSV-1 into 
cells.5 3-OST 1 is expressed in heart, brain, lungs and kidneys.11
3-OST1 has been shown to play a vital role in generating ATIII- 
binding HS anticoagulants.19 However, it has been also shown 
that mice deficient in 3-OST1 still have normal hemostasis.20,21 
Therefore, it is important to carefully examine the contribution of 
other 3-OST isoforms to this crudal function of HS.

Though the substrate specifidty of 3-OST 1 has been rigorously 
studied, the substrate specifidty of other isoforms including

This journal is © The Royal Society of Chemistry 2012 Mol. BioSyst, 2012, 8, 609-614 | 609
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3-OST3a has not been examined extensively. The Rosenberg 
group has shown that 3-OST3a preferentially acts on GlcNH2, 
G1cNH26S and GlcNS residues that have an IdoA2S residue at 
their non-reducing side.10’15’22 Furthermore, earlier studies 
reported the crystal structures of 3-OST 1, 3, 5, and identified 
two amino acid residues that are responsible for the specific 
activity of 3-OST3a on the IdoA2S-GlcNH2/NS A  6S.23 
However, it is still unknown whether the epimer configuration 
of the neighboring uronic acid residue, i.e. GlcA or IdoA, 
located at the reducing side of the target site, influences the 
action of 3-OST3a. This structural information could not be 
obtained previously because commonly used fragmentation 
approaches such as heparitinase digestion or nitrous acid 
treatment cleaved the chains at the reducing side of the target 
GlcN residue. In this study, we utilized a library of chemically 
synthesized, well-defined oligosaccharides to  study the effect of 
precursor structures, in particular the influence of epimer 
configuration of adjacent uronyl residues, on the action of 
3-OST3a. We found that 3-OST3a preferentially sulfates the 
GlcNS6S residue when an IdoA residue is located to its 
reducing side. On the other hand, 2-O-sulfation of this IdoA 
inhibits the action o f 3-OST3a on the target residue.

Results

It has previously been shown that 3-OST3a can sulfate GlcNH2, 
G1cN H 26S and GlcNS that are located to the reducing side of 
IdoA2S.10,15 However, all previous substrate specificity studies 
relied on the analysis of 3-O-sulfotransferase modified heparan 
sulfate polysaccharides that were fragmented using nitrous 
acid or heparitinases. The heterogeneity of heparan sulfate 
makes it difficult to thoroughly analyze all the modified 
products. Moreover, enzymatic digestion leads to a loss of 
epimer configuration and chemically-induced chain scission 
occasionally causes isomerisation, thus complicating the study 
of the effect of neighboring uronic acid residues located next to 
the target glucosamine residues. In this study, we utilized a 
library of well-defined tetra- and hexa-saccharides to study the 
effect of precursor structures on the enzymatic action of 
3-OST3a (Table 1). We also compared the enzymatic action 
of 3-OST3a to that of 3-OST1. This library of oligosaccharides 
was previously synthesized and extensively studied by the 
Boons group.24 By utilizing HPLC coupled to a radiometry 
detector and capillary LC coupled to electrospray ionization- 
time-of-flight MS (ESI-TOF-LC-MS), we could detect and 
distinguish all possible modified products.

Six different oligosaccharides containing GlcA or IdoA at 
different locations were chosen for this study (Table 1). The 
first four oligosaccharides are tetrasaccharides containing either a 
GlcA or IdoA adjacent to the expected modification site (marked 
with an asterisk, Table I). The sequences of these tetrasaccharides 
are GlcA/IdoA-GlcNS6S-GlcA/IdoA-GlcNS6S. Oligosaccharide
5 contains a 2-O-sulfated iduronic acid residue in its sequence: 
GlcA-GlcNS6S-IdoA2S-GlcNS6S. Oligosaccharide 6 is a 
hexasaccharide with the following sequence: GlcA-GlcNS6S- 
IdoA-GlcNS6S-GlcA-GlcNS6S.

These six oligosaccharides were modified with either 
3-OST3a or 3-OST1 in the presence of [35S]PAPS as the sulfate 
donor. The 3-0-sulfated products could then be detected due

Table 1 Structures o f oligosaccharides examined as potential 
substrates for 3-OST3a and 3-OST1. Potential 3-OST substrate sites 
a re  m arked with asterisks

to the addition of radiolabeled sulfate ([35S]S042_). HPLC 
analysis showed that only oligosaccharides 2, 3 and 6 were 
radiolabeled by 3-OST3a (Fig. 1 and Fig. S1A, ESIf). Thus, it 
is clear that 3-OST3a can only act on three substrates: GlcA- 
GlcNS6S-IdoA-GlcNS6S (2), IdoA-GlcNS6S-IdoA-GlcNS6S24 
and GlcA-GlcNS6S-IdoA-GlcNS6S-GlcA-GlcNS6S (6). On 
the other hand, 3-OST 1 modification was detected on oligo­
saccharides 1, 2, 3, 5, and 6 (Fig. 2 and Fig. SIB, ESIf). Thus, 
oligosaccharides 2, 3 and 6 were modified by both isoforms 
whereas oligosaccharides 1 and 5 were exclusively modified by 
3-OST 1. Our finding that oligosaccharide 5 is the substrate for 
3-OST 1 but not for 3-OST3a is consistent with earlier findings 
that 3-OST1 modifies GlcNS6S residues that are flanked by 
GlcA at their non-reducing sides and IdoA2S residues at their 
reducing side.19’25 Furthermore, it is interesting to note that the 
reducing end GlcNS6S residue in oligosaccharide 5 is not modified 
by 3-OST3a even though it is located adjacent to IdoA2S. It has 
previously been observed that 3-OST1 modification preferentially 
occurs on the internal GlcNS residues whereas reducing end 
terminal GlcNS fails to undergo modification.25 Liu et ah have 
shown that 3-OST 1 can act on HS structures that lack IdoA 
residues.26 This is consistent with our observation that oligo­
saccharide 1, which lacks IdoA, is a substrate for 3-OST1. On 
the other hand, oligosaccharide 3 is also a substrate for

610  | Mot. BioSyst., 2012 , 8 , 609-614 This journal is © The Royal Society of Chemistry 2012
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Fig. 1 Radiochrom atogram s of oligosaccharide products generated 
by modification with 3-OST3a and [15 S]PAPS. Radiochromatograms 
indicated tha t oligosaccharides 2. 3 and 6 are substrates for 3-OST3a 
whereas other oligosaccharides are not substrates.
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Fig. 2 Radiochrom atogram s of oligosaccharide products generated 
by modification o f oligosaccharides l . 2. 3. 5. and 6 by 3-OST l and 
[35S]PAPS.

3-OSTl, albeit with much less [33S] incorporation (Fig. SI, ESIf). 
This suggests that 3-OSTl prefers GlcNS6S residues that 
contain GlcA at the non-reducing side. It has been reported in 
several studies that 30ST1 and 30ST3a act on distinct sites within 
HS chains. Surprisingly, earlier studies have not found that 
3-OSTl and 3-OST3 can act on the same oligosaccharide—as 
in the case of oligosaccharides 2, 3, and 6. Based on these 
interesting observations, we next focused our efforts to locate 
the 3-OST3a modification site within these oligosaccharides. 
Oligosaccharides 2 and 3 have one potential modification site 
whereas oligosaccharide 6 has two potential modification sites. 
However, the radiolabeled results could not pinpoint which

GlcNS6S residues on the oligosaccharides were modified upon 
3-0-sulfation by 30ST3a.

To determine which residue was modified, the oligosaccharides 
were treated with 3-OST3a again in the presence of non­
radioactive [32S]PAPS. The modified oligosaccharide products 
were then digested with heparitinase I, II and III to disaccharides 
and analyzed by LC-MS. Heparitinases catalyze the eliminative 
cleavage of heparin and heparan sulfate at the a(l,4)-glycosidic 
linkage between the glucosamine and the uronic acid.27’28 Since 
all oligosaccharides were terminated with the aminopentyl linker, 
cleavage with heparitinase created specific disaccharides species: 
a disaccharide containing no unsaturated bond, a disaccharide 
containing 4,5-unsaturated uronic acid (AUA), and a disaccharide 
containing both the aminopentyl linker and the 4,5-unsaturated 
uronic acid. For clarification, the potential modifications of 
oligosaccharide 2 and its disaccharides upon heparitinase 
digestion are presented in Fig. S2 (ESIf). Due to the mass 
differences among these cleavage products, we could distinguish 
all possible modified disaccharides from unmodified disaccharides 
and were able to pinpoint the 3-0-sulfation site (Table 2). 
MS data of 3-0-sulfated disaccharides revealed the precise 
location of 3-0-sulfation sites within the oligosaccharides 2, 3 
and 6 (Fig. 3). MS spectra of unmodified disaccharides as well 
as intact 3-0-sulfated oligosaccharide products are shown in 
Fig. S3 and S4 (ESIf). In the case of oligosaccharides 2 and 3, 
one 3-0-sulfated disaccharide with mjz =  593.96 was found, 
indicating that 3-OST3a sulfated the penultimate GlcNS6S 
residue from the non-reducing end of the oligosaccharide 
(Fig. 3). For oligosaccharide 6, two 3-0-sulfated disaccharides 
with m /: = 593.96 and 575.97 were found, indicating 
that 3-OST3a sulfated both the penultimate residue from the 
non-reducing end and the internal GlcNS6S residue. Since the 
only difference between these two disaccharides is the hydroxyl 
group at the C4 position of the uronic acid residue, we expect 
that the ionization to be similar or close to similar. The fact 
that the relative intensity of the peak with m/s = 593.96 is far 
higher than that of the peak with m /z = 575.97 suggests that 
the penultimate GlcNS6S residue is preferred over the internal 
GlcNS6S residue by 3-OST3a (Fig. 3). However, one may have 
to use isotope enriched disaccharides as internal standards to 
estimate quantitatively differential preference. It is interesting to 
note that the penultimate GlcNS6S residue has IdoA at its 
reducing side whereas the less preferred internal GlcNS6S 
residue, the third residue from the aminopentyl linker, has 
GlcA at its reducing side.

Current work demonstrates that 3-OST3a preferentially 
sulfates GlcA/IdoA-GlcNS6S-IdoA (Fig. 4) and that the 
presence of an IdoA residue at the reducing side of the target 
GlcNS6S promotes 3-OST3a activity. 3-OST3a could sulfate

Table 2 Potential 3-0-sulfated disaccharides resulting from  3-OST3a modified oligosaccharides w ith their expected mass

Oligosaccharide Structure Possible modified disaccharide product Exact mass

2 GlcA-GlcNS6S-IdoA-GlcNS6 S-(CH2)5N H 2 GlcA-GlcN S6  S3S 594.98
AUA-GlcNS6S3S-(CH2 )5N H 2 662.06

3 IdoA -GlcN S6 S-IdoA-GlcNS6 S-(CH,)3N H , Ido A -GlcN S6S3 S 594.98
AUA-GlcNS6S3S-(CHn)5N H , 662.06

6 GlcA-GlcNS6 S-IdoA-GlcNS6 S-GlcA-GlcNS6 S-(CH-OsNHo GlcA-GlcNS6S3S 594.98
AUA-GlcN S6S3 S 576.97
a  i ; a -c; i c \  s<rs3 s -< ( '  i h ), m  i . 662.06

This journal is © The Royal Society of Chemistry 2012 Mol. BioSyst., 201 2, 8 , 609-614  | 611
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Fig. 3 M S spectra o f 3-O-sulfated disaccharide products. The 
expected molecular weights o f possible disaccharide products are 
presented in Table 2.

Oligosaccharide Substrates J-OST-Ja Modified Products

■ ■
MS NS
IS

a »
HS NS

|  Glucosamine ^  Glucuronic add ^  Iduronicackl

NS A/-sulfated 2S 2-O-sulfated 6S 6-0-su(fated 3S 3-O-sulfated

Fig. 4 List o f oligosaccharides tested as substrates for 3-OST3a and 
their modified products.

the sequence, GlcA-GlcNS6S-IdoA, in the oligosaccharide 2, 
but not the sequence, GlcA-GlcNS6S-IdoA2S, in the oligo­
saccharide 5, which suggests that 2-0-sulfation of the IdoA, at 
the reducing side of the target site, is inhibitory for 3-OST3a. 
It is also interesting to note that 3-OST3a could sulfate IdoA- 
GlcNS6S-GlcA (6), albeit less preferentially, only if the target 
site was located downstream of a GlcA-GlcNS6S-IdoA 
sequence. It is possible that there could be a conformational 
change, after 3-OST3a sulfates the first glucosamine residue, in 
the oligosaccharide structure that may allow the enzyme to 
slide along the oligosaccharide sequence and continue to 
sulfate the next glucosamine residue on the reducing side in 
the oligosaccharide 6.

Discussion

The substrate specificities of the 30ST isoforms have been 
extensively studied before. However, in these studies, heparitinase 
treatment resulted in the loss of stereochemical information of the 
proximal uronyl residues next to the target residue. Furthermore, 
the employment of a nitrous acid degradation technique in earlier

studies resulted in the removal of the uronyl residue at the 
reducing side of the target residue. Therefore, the influence of 
the epimer configuration of adjacent uronyl residues could not 
be elucidated until now. In addition, the heterogeneous nature 
of HS precursors used in those earlier studies exacerbated the 
difficulties involved in elucidating the influence of epimer 
configuration. Therefore, it is essential to use defined oligo­
saccharides to elucidate the substrate specificity of the 3-OST 
isoforms in order to lay a foundation for uncovering their 
physiological functions. In the present study, we systematically 
investigated the substrate specificity of 3-OST3a and compared its 
specificity to that of 3-OST1 using well-defined oligosaccharide 
precursors that had different epimer configurations.

In this study, we expressed and purified 3-OST3a and 
3-OST1 recombinant enzymes using a baculovirus system. 
We then radiolabeled a library of synthetic oligosaccharides 
with these enzymes in the presence of [ SJPAPS. The reaction 
mixture was then analyzed using HPLC. It was found that 
oligosaccharide structures with the following sequence were 
preferentially modified by 3-OST3a: GlcA/IdoA-GlcNS6S- 
IdoA and less preferentially IdoA-GlcNS6S-GlcA. It was also 
found that 3-OST3a failed to modify the oligosaccharides that 
consisted of the following sequences: GlcA-GlcNS6S-IdoA2S 
and GlcA-GlcNS6S-GlcA. These sequence requirements have 
not been reported previously.

After the identification of novel sequence requirements for 
3-OST3a, we focused our efforts to compare the differential 
substrate preferences of 3-OST3a and 3-OST1. It is surprising 
to note that both 3-OST1 and 3-OST3a modified oligo­
saccharides 2, 3 and 6. Thus, both of these isoforms preferred 
an iduronyl residue at the reducing side of the target residue. 
Furthermore, oligosaccharide 4, carrying IdoA-GlcNS6S- 
GlcA, was not a substrate for either of these isoforms. This 
suggests that the presence of GlcA at the reducing side of the 
target residue is unfavorable for 3-OST enzyme action. Never­
theless, oligosaccharide 1 was moderately modified by 3-OST 1 
but not by 3-OST3a. This suggests that there are subtle 
differences in the substrate specificity between these enzyme 
isoforms. It is also interesting that both oligosaccharides 2 and
5 were substrates for 3-OST1 whereas only the oligosaccharide 
2 was the substrate for 3-OST3a. The only difference between 
these two oligosaccharides is the presence of the 2-0-sulfate 
group on the IdoA residue, located at the reducing side of 
the target residue. Additionally, even though oligosaccharide 
4, carrying IdoA-GlcNS6S-GlcA sequence, was not at all 
modified by 3-OST3a, the same sequence in oligosaccharide
6 was modified, albeit less efficiently. Based on the results 
presented here, we propose that both 3-OST1 and 3-OST3a 
have a significant overlap in their substrate specificity and that 
their activity is differentially regulated by 2-0-sulfation 
(Fig. 5).

In summary, the action of 3-OST1 and 3-OST3a on the HS 
substrates depends on the epimer configuration and the 2-0- 
sulfation. It is important to note that even though polymers 
are the substrates for HS biosynthetic enzymes in vivo, poly­
mers cannot be helpful in elucidating the influence of adjacent 
uronic acid configuration. Therefore, oligomeric substrates are 
utilized instead in this study to be able to pinpoint the 
influence of epimer configuration on the action of 3-OST

612 | Mot. BioSyst., 2012 , 8 , 609-614 This journal is © The Royal Society of Chemistry 2012
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3-OSTl ! 3-OST3a

-  IdoA -  GlcNS6S -  IdoA -  

*
-  GIcA -  GlcNS6S -  IdoA -  

*
GlcA/ldoA -  GlcNS6S -  ldoA2S -  

*
-  IdoA -  GlcNS6S -  GIcA -  

*
-  GIcA -  GlcNS6S -  GIcA -  

*
- ldoA2S -  GlcNH2±6S/GlcNS -

Fig. 5 Schematic model of the action of 3-OSTl and 3-OST3a at the 
target sites (*) representing the influence of neighbouring epimer 
configuration and 2-O-sulfate group.

enzymes. Future studies will focus on examining the substrate 
specificities of other 30ST isoforms and studying the influence 
of 6-O-sulfation with the aid of additional synthetic HS 
oligosaccharides.

Materials and methods

Materials

Oligosaccharides that were used in the current study were 
synthesized and characterized in an earlier report.24 Heparitinase 
(Hep) i. II, and III were cloned and expressed in E. call BL21. 
The DEAE-sepharose gel was purchased from Amersham 
Biosciences. The analytical strong-anion exchange column 
and capillary reverse phase C l8 column were purchased from 
various commercial vendors. [35S]Na2S 04 and Ultima-FloAP 
scintillation fluid were purchased from Perkin Elmer Life and 
Analytical Sciences. [,5S]PAPS was prepared as reported 
earlier.29 [32S]PAPS was purchased from Sigma-Aldrich. HS 
disaccharide standards were purchased from Iduron and 
Sigma-Aldrich. Insect cell Sf-900 SFM medium was purchased 
from Invitrogen. Dibutylamine was used as an ion-pairing 
agent in LC-MS analysis. 0 All other reagents and solvents 
were from Sigma-Aldrich unless otherwise stated.

Expression of 3-OST3a

The 3-OST3a recombinant enzyme was expressed using a 
baculovirus system. 20 ml of 3-OST3a viral stock was added 
to l x 109 Sf9 cells in l L Sf-900 SFM medium. Infected cells 
were shaken at 90 rpm in a humidified shaker-incubator 
maintained at 28 °C for 4 days. The cell suspension was then 
centrifuged at 1000 >: g for 30 min to pellet cells. PIPES and 
phenylmethylsulfonyl fluoride were added to the supernatant 
to a final concentration of 10 mM and l mM respectively. The 
supernatant was then adjusted to pH 7.0, chilled on ice for 
30 min, and subsequently centrifuged at 4000 x: g for 30 min. 
The solution was diluted twice with water, filtered and loaded 
onto a 100-mi column of ToyoPearl AF-heparin 650M. The 
column was washed with 600 ml of PCG-50 (10 mM PIPES, 
pH 7.0, l%  glycerol, 0.2% CHAPS, 50 mM NaCl) and eluted 
with a 450 ml linear gradient of 50-1000 mM NaCl in PCG. 
The elution of the protein was monitored by measuring its 
absorbance at 280 nm. The protein containing fractions were 
pooled and concentrated using an Amicon YM-10 filter.

3-OSTl recombinant enzyme was also expressed and purified 
in a similar manner for comparative studies.

Enzymatic modification of synthetic oligosaccharide substrates

All reactions were performed in a buffer consisting of 25 mM 
MES (pH 7.0), 0.02% Triton X-100, 2.5 mM MgCl2, 2.5 mM 
MnCl2, 1.25 mM CaCl2 and 0.75 mg m P 1 BSA. 5 j_Lg of an 
oligosaccharide was incubated with 10 ]4 3-OST3a or 3-OSTl 
(~20 j-Lg ml !) in the presence of [35S1PAPS (0.5 x 107 CPM) 
or [32S]PAPS (10 j_Lg) in a 50 j_il reaction. The radioactive 
samples were then analyzed using analytical SAX-HPLC 
coupled with an in-line radiometry detector. The oligosaccharides 
were eluted with a linear gradient of 0 to 1 M NaCl in 
70 mM phosphate buffer (pH 3.0) for 60 min. HS disaccharide 
standards were co-injected and detected at 232 nm. The 
non-radioactive samples were digested with Hep I, II and III, 
and analyzed using liquid chromatography-mass spectrometry 
(LC-MS). Disaccharides were separated on a capillary C18 
column (0.3 x 250 mm) using a linear gradient of acetonitrile 
at a flow rate of 5 |il min 1 over 70 min. 5 mM dibutylamine was 
used as an ion-pairing agent. C18-HPLC was coupled to an 
electrospray ionization time-of-flight MS (Bruker Daltonics, 
USA) and analyzed in the negative ion mode under the following 
conditions: cone gas 50 1 h_1, nozzle temperature 130 °C, drying 
gas (N2) flow 450 1 h , spray tip potential 2.3 kV, and nozzle 
potential 35 V.
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A B S T R A C T

Heparan sulfate (HS) chains play crucial biological roles by binding to various signaling molecules 
including fibroblast growth factors (FGFs). Distinct sulfation patterns of HS chains are required 
for their binding to  FGFs/FGF receptors (FGFRs). These sulfation patterns are putatively regulated 
by biosynthetic enzyme complexes, called GAGOSOMES, in the Golgi. While the structural require­
ments of HS-FGF interactions have been described previously, it is still unclear how the FGF-binding 
motif is assembled in vivo. In this study, we generated HS structures using biosynthetic enzymes in a 
sequential or concurrent manner to elucidate the potential mechanism by which the FGFl-binding 
HS motif is assembled. Our results indicate that the HS chains form ternary complexes with FGF1 / 
FGFR when enzymes carry out modifications in a specific manner.
© 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

Heparan sulfate (HS) is a linear, sulfated polysaccharide tha t 
consists of repeating units of glucosamine (GlcN) and glucuronic 
acid (GlcA) or iduronic acid (IdoA). As the  nascent HS undergoes 
elongation, a series of modifications occurs on the backbone. 
N-acetyl glucosamine (GlcNAc) residues are N-deacetylated and 
N-sulfated by N-deacetylase-N-sulfotransferase (NDST), w hereas 
GlcA residues are epim erized to  IdoA by C5-epimerase. Addition­
ally, a variety of O-sulfotransferases (OST) can add sulfate groups 
to the  C6 (6-OST) and  C3 (3-OST) carbons of GlcN residues and 
the  C2 carbon (2-OST) of IdoA residues. It is also possible for 
2 -0  ST to  add sulfate groups, albeit less preferentially, to  the  C2 
carbon of GlcA residues [1]. To further augm ent this structural 
diversity, HS has a domain-like architecture composed of highly 
sulfated domains (NS domains), non-sulfated domains (NA 
domains), and partially sulfated domains (NA/NS domains). This 
im m ense structural complexity is believed to  regulate the interac­

* Corresponding author at: University of Utah, 30 S 2000 E, Skaggs Hall Room 307, 
Salt Lake City, UT 84112, USA. Fax: +1 801 585 9119.

E-mail address: KUBY@pharm.utah.edu (B. Kuberan).

tions of HS w ith  several protein targets including growth factors 
and cytokines [2].

One o f the  m ost commonly studied H S-protein interactions is 
tha t of HS and FGF. The FGF family plays a m ajor role in several 
fundam ental biological processes including cell proliferation, cell 
differentiation and cell m igration [3,4]. Twenty tw o different FGFs 
and four FGFR genes have been discovered in hum ans [4]. FGF1 
(acidic FGF) and FGF2 (basic FGF) w ere the first FGFs isolated 
[5,6]. FGF1 is able to  bind to  all FGFRs w hile FGF2 can only bind 
to  FGFRlb, lc , 2c, 3c and 4  [7]. HS potentiates FGF signaling by 
acting as a  co-receptor and facilitates the formation of biologically 
relevant HS/FGF/FGFR ternary complexes. It facilitates the dimer- 
ization o f FGFRs and thereby regulates dow nstream  signaling 
pathways [8-10].

There have been many studies tha t have investigated the struc­
tural requirem ents of HS-FGF interactions. It has been shown that 
the  minimal HS sequence th a t can bind to FGF2 requires 2-O-sul- 
fated IdoA and N-sulfated GlcN residues [11-13]. Highly sulfated 
non-reducing end HS oligosaccharides w ere also found to bind 
FGF-2 w ith  a high affinity [14]. Similarly, short, highly sulfated, 
HS chains isolated from porcine liver and intestine could induce 
FGF-2 m ediated signaling efficiently [15]. However, w hile the 
structure o f the FGF binding m otif has been discovered previously,

0014-5793/536.00 © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved, 
doi: 10.1016/j. febslet.2011.07.024
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purchased from Perkin Elmer Life and Analytical Sciences. 
[35S]PAPS was prepared as reported earlier [21]. [32S]PAPS w as pur­
chased from Sigma-Aldrich. HS disaccharide standards w ere pur­
chased from Iduron and  Sigma-Aldrich. H um an FGF1, FGFRla 
(IIIc) and  FGFR2a (111c) w ere purchased from R&D Systems. All 
o ther reagents and  solvents w ere obtained from Sigma-Aldrich.

2.2. Preparation o f N-sulfated, epimerized and 2-O-sulfated HS 
polysaccharides

All reactions w ere perform ed in a buffer consisting of 25 mM 
IVIES (pH 7.0), 0.02% Triton X-100, 2.5 mM MgCl2, 2.5 mM MnCl2, 
1.25 mM CaCl2 and 0.75 m g/m l BSA [22]. In the  concurrent reac­
tion, 20 fig of heparosan 1 w as incubated w ith  10 jxl each of 
NDST-2, C5-epi and 2-OST (~ 20  fJ.g/ml), and w ith  5 fil of 
[35S]PAPS(1 X 107CPM )/100ng of [32S]PAPS in a 200 fil reaction. 
The reaction w as incubated for 24 h at 37 °C. The reaction w as ter­
m inated by heating for 2 m in at 96 °C. The sam ples w ere diluted 
w ith  one volum e of 0.016% Triton X-100 and loaded onto a mini 
DEAE-sepharose colum n (0.3 ml) th a t had been pre-equilibrated 
w ith  2 ml of w ash buffer (20 mM NaOAc, 0.1 MNaCl and  0.01% Tri­
ton X-100, pH 6.0). After w ashing w ith  9 ml of w ash buffer, the 
bound polysaccharide w as elu ted  w ith  1.8 ml of elution buffer 
(20 mM NaOAc, 1 M NaCl, pH 6.0). The eluate w as then desalted 
and concentrated to  100 fil final volume. In the sequential reaction, 
20 fig of heparosan 1 w as first incubated w ith  NDST-2 and 
[32S]PAPS. The sam ple w as purified, desalted, concentrated and 
used as the substrate for the next reaction w ith  C5-epimerase. 
Finally, the resulting product w as 2-O -sulfated by 2-OST in the  
presence of [35S]PAPS/[32S]PAPS. CDSNS polysaccharide 6 was 
2-O-sulfated by 2-OST in the presence of [35S]PAPS or [32S]PAPS 
and the resulting product 7 was used as a control in the gel mobil­
ity shift assay.

2.3. Disaccharide analysis o f the polysaccharides

Radioactive sam ples w ere  digested w ith heparitinase I, II, and III 
overnight at 37 °C and analyzed using strong anion-exchange 
(SAX)-HPLC coupled w ith  an in-line radiometry/UV detector. The 
disaccharides w ere  elu ted  w ith  a linear gradient of 0 -800  mM NaCl 
(pH 3.5) for 35 min and 2 M NaCl (pH 3.5) for 10 min. HS disaccha­
ride standards w ere co-injected and detected at 232 nm. 
Non-radioactive samples w ere analyzed using liquid chrom atogra­
phy-m ass spectrom etry (LC-MS). Disaccharides w ere separated on 
a C18 colum n (0.3 x 250 mm, Vydac, USA) using a gradient from 
0% to  100% of acetonitrile at a flow rate  of 5 fil/min over 70 min.

5 mM dibutylam ine w as used as an ion-pairing agent. Capillary 
HPLC coupled to an electrospray ionization tim e-of-flight MS (Bru- 
ker Daltonics, USA) w as used in th e  negative ion m ode at the fol­
low ing conditions: cone gas 50 1/h, nozzle tem perature 130 °C, 
drying gas (N2) flow 450 1/h, spray tip potential 2.3 kV, and nozzle 
potential 35 V.

2.4. Gel mobility shift assay

Enzymatically modified polysaccharide (1 fig), FGF (250 ng), 
and  FGFR (500 ng) w ere  m ixed in 20 fil of binding buffer 
(137 mM NaCl, 2.7 mM KC1, 4.3 mM Na2HP04, 10mM M gCl2, 
1 .4 mMKH2P04 and 12% glycerol) and incubated at 23 °C for 
30 m in to  facilitate complex form ation [22]. The entire m ixture 
w as loaded onto a native 4.5% polyacrylam ide gel (20 x 25 cm). 
The gel was subjected to  electrophoresis at 100 V for 6 h a t 4°C. 
The gel w as then  dried, exposed to a phosphor screen overnight 
and  im aged by a Typhoon Phosphorlmager system.

3. Results

The prim ary objective of the current study is to  elucidate how 
the  FGF binding m otif is generated in the Golgi. In order to deter­
m ine w hether the different m odifications p resent in  the FGF bind­
ing m otif are created by enzym atic modifications tha t may occur 
sequentially or concurrently, th ree different polysaccharides prod­
ucts w ere prepared in a sequential or concurrent approach as out­
lined in the  Schemes 1 and 2 using biosynthetic enzymes:

(1) Polysaccharide 2: Heparosan 1 w as treated w ith  NDST-2, C5- 
Epimerase and  2-OST all together.

(2) Polysaccharide 5: Heparosan 1 w as first treated w ith NDST-
2, then  C5-epimerase and followed finally by 2-OST.

(3) Polysaccharide 7: Completely desulfated, N-sulfated 
(CDSNS) heparin 6 w as treated  w ith  2-OST in the presence 
of [35S]PAPS to produce the polysaccharide 7 for use in the 
control experim ent.

Polysaccharides 2, 5 and 7 w ere characterized by SAX-HPLC 
(Fig. 1) by com paring the ir disaccharide com positions w ith  the 
aid of co-injected disaccharide standards. W hile polysaccharide 2 
had tw o radiolabeled disaccharides, AUA-GIcNS and AUA2S- 
GlcNS, polysaccharide 5 had only one radiolabeled AUA2S-GlcNS 
disaccharide because it w as N-sulfated using non-radioactive 
[32S]PAPS. Similarly, polysaccharide 7 only contained the radioac­
tive AUA2S-GlcNS disaccharide.

P A P S  2 -O S T

PH nooc r  A .

c , ^
OOC OH

■o3so °3S

-3 0  ° H

Schem e 2. Enzymatic 2-O-sulfation of CDSNS-heparin polysaccharide.
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Fig. 1. Disaccharide analysis of concurrently modified polysaccharide 2, sequen­
tially modified polysaccharide 5 and positive control polysaccharide 7. The 
disaccharide peaks w ere determined w ith the aid of co-injected disaccharide 
standards. (1) AUA-GlcNS, (2) AUA2S-GlcNS.

Sequential and concurrent modifications w ere carried out in the 
presence of [32S]PAPS so tha t w e could utilize LC-MS analysis to 
estim ate the  non-sulfated disaccharide content (Fig. 2). MS data 
suggested tha t the am ount of AUA2S-GlcNS disaccharide was sig­
nificantly higher in both the  sequentially modified polysaccharide
5 and the positive control polysaccharide 7 in com parison to  the 
concurrently modified polysaccharide 2.

Once the  polysaccharides w ere characterized, they w ere tested  
in a gel m obility shift assay to  determ ine w hether they could form 
the ternary complex w ith FGF1 and FGFR1 or FGFR2 (Fig. 3). A shift 
in the mobility of the  radiolabeled-polysaccharide indicates the

htens

300

200

100

400
300

200

500 nVz

Fig. 2. MS spectra of disaccharides from concurrently modified polysaccharide 2, 
sequentially modified polysaccharide 5 and positive control polysaccharide 7. The 
following disaccharides w ere detected: AUA-GlcNAc (m/z 378.1), AUA-GlcNS (m/2 

416.0) and AUA2S-GlcNS (m/z 496.0).

U t l
Fig. 3. Gel mobility shift assay to test the formation of the HS/FGF/FGFR ternary 
complex. Polysaccharide 2, 5 and 7 were used in combinations w ith FGF1 (FI) and 
FGFR1 (R l) or FGF1 and FGFR2 (R2). A shift in the mobility of radio-labeled 
polysaccharides indicates ternary complex formation. Only polysaccharides 5 and 7 
could form the ternary complex w ith FGF1/FGFR1 and FGF1/FGFR2.

formation of the ternary complex. Based on the data shown in 
Fig. 3, only polysaccharides 5 and 7 could form the ternary com­
plex significantly w ith  FGF1 /FGFR1 and FGF1 /FGFR2.

4. D iscussion

The FGF family m em bers play a m ajor role in various biological 
processes including organogenesis, w ound healing, and nervous 
system  developm ent and function [4]. D isrupted FGF signaling is 
also p resent in a variety of hum an pathologies including Crouzon’s 
syndrome, Pfeiffer’s syndrome, and Apert’s syndrom e [3]. It is well 
known tha t heparan sulfate acts as a co-receptor for FGF/FGFR 
m ediated cell signaling [8-10]. Various studies have reported that 
both specific sulfation patterns and  the  ex tent of sulfation of HS are 
key param eters tha t determ ine the form ation of the HS/FGF/FGFR 
ternary com plex [11-13,15]. However, it is still unclear how the 
FGF binding m otif on HS is assem bled in the  Golgi. Therefore, this 
w ork aim s to elucidate w hether the FGF binding m otif is assem ­
bled by enzym e actions tha t occur sequentially or concurrently.

In this investigation, three different enzym atically synthesized 
polysaccharides w ere utilized for binding studies w ith  FGF1 and 
FGFRs. The obtained data confirmed that NDST-2, C5-epimerase 
and 2-OST can act on heparosan concurrently. W hen acting con­
currently, these enzym es did n o t generate a significant am ount 
of the disulfated AUA2S-GlcNS disaccharide. However, w hen the 
enzym es w ere added sequentially, this disaccharide w as abundant 
in the  modified product.

After the structural characterization of the synthesized prod­
ucts, a gel mobility shift assay w as perform ed w ith  FGF1 and 
FGFR1 or FGFR2 to determ ine w hich polysaccharides could form 
the ternary complex. Surprisingly, only polysaccharides 5 and 7 
could form the  ternary com plex w ith  FGF1 /FGFR1 and FGF1 /FGFR2. 
W hile it is possible th a t polysaccharide 2 may form a few w eak 
complexes tha t are intangible in this gel m obility shift assay, it is 
evident tha t polysaccharide 5 has significantly higher binding 
affinity com pared to polysaccharide 2 resulting in tangible com­
plexes under the electrophoretic conditions. Differential binding 
ability of these polysaccharides w ith  FGF/FGFR may perhaps be
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NDST-2 + C5-Epimerase + 2-OST References

| NDST-2 

| C5-Epimerase

I 2'0ST
FGF1 Ternary complex 

formation

FGF/FGR binding HS motifs

Fig. 4. Plausible schematic model of the assembly of FGF/FGFR binding HS motifs. 
HS chains can form ternary complexes with FGF and FGFR only when they are 
modified by HS biosynthetic enzymes in a sequential manner.

quantitatively deduced through sophisticated biophysical m ethods 
such as surface plasm on resonance. Interestingly, an earlier study 
has shown tha t m ore potent ATIII-binding HS anticoagulant struc­
ture is generated w hen HS biosynthetic enzym es act concurrently 
[18]. The current study points to  a fundam ental difference in the 
sulfation patterns produced by HS biosynthetic enzym es w hen 
they act sequentially or concurrently on the polysaccharide back­
bone. Natural heparan sulfate has a domain-like organization 
w hereby som e segm ents of the  chain are highly sulfated (NS 
domains), som e segm ents have little to no sulfation (NA domains), 
and som e segm ents are partially sulfated (NA/NS domains). By 
sequentially modifying heparosan, it is likely tha t the resulting 
polysaccharides 5 and 7 have an extended sulfation pattern  that 
m imics natural HS w hereas polysaccharide 2 has a m ore random  
sulfation pattern  tha t is n o t present in the  natural FGF1-binding 
HS domain. Furtherm ore, polysaccharide 2 w as found to m igrate 
slow er than  polysaccharide 5 during gel electrophoresis, indicating 
tha t the  overall sulfation density of the  polysaccharide 2 is much 
less than tha t of the polysaccharides 5 and 7.

Based on the results from this study, w e can predict tha t the 
production of the FGF1 /FGFR binding m otif proceeds in a sequen­
tial m anner in the  Golgi. As the  nascent HS chain passes through 
GAGOSOMES, it is modified in a specific order by HS biosynthetic 
enzym es (Fig. 4). However, the factors tha t m odulate this orderly 
action rem ain unknown. A num ber of factors can affect the order 
of modification including: the specific location of these enzymes, 
the lim ited concentration of PAPS or the effect of sulfation patterns 
on the enzym atic action of o ther sulfotransferases. Future studies 
w ill further probe the  biosynthesis of the FGF/FGFR binding m otif 
in HS by using fluorescence assisted colocalization experim ents 
to track nascent HS chains as they are modified by GAGOSOMES.
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3.5 In vitro synthesis of HS library and screening for FGF8- 

binding HS motifs in zebrafish embryos

3.5.1 Introduction

Heparan sulfate (HS) is a linear and highly sulfated polysaccharide that plays 

crucial roles in a number of biological processes through binding to various proteins, 

including FGF8. Therefore, it is important to study the structure-function relationships of 

HS in these interactions in order to fully understand the biological processes governed by 

HS. However, one of the major problems in the GAG field is the tremendous difficulty 

in synthesizing bioactive HS molecules. The Rosenberg lab has developed an enzymatic 

approach to assemble antithrombin-III-binding pentasaccharides in a much shorter time 

with a higher yield than a typical chemical synthesis process (4, 5). In the enzymatic 

approach, recombinant HS modifying enzymes were utilized to modify #-acetylated 

oligosaccharides into homogenous bioactive HS oligosaccharides, mimicking the HS 

biosynthetic processes in the Golgi apparatus.

In this study, HS oligosaccharides with different sizes and structures were 

enzymatically synthesized to study the structure-function relationships of HS-FGF8 

interactions. FGF signaling pathways play critical roles in cell proliferation, migration 

and differentiation during embryonic development (6, 7). HS has been found to act as a 

co-receptor for FGFs and their cognate receptors (8, 9). Many studies have investigated 

the structure-function relationships for HS in its interactions with FGFs and FGFRs. 

However, most studies examined the interactions among FGF1/2, FGFR1/2 and heparin 

(10, 11). Furthermore, FGF8 is one of the FGFs expressed earliest during development 

and plays crucial roles in limb, central nervous system, kidney and cardiac outflow tract
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development (6). Very little is known about the size and structural requirements of HS 

for its interactions with FGF8/FGFR. Therefore, in this study, enzymatically synthesized 

HS oligosaccharides were utilized to study HS-FGF8 interactions in vivo to deduce such 

requirements as well as the biogenesis pathway of FGF8-binding HS motifs.

3.5.2 Materials and methods

3.5.2.1 Preparation of N-acetyl and N-sulfo oligosaccharides

#-acetyl heparosan polysaccharide was prepared from E.coli strain K5 following 

a published report (12). #-sulfo heparosan was prepared as described in literature (13). 

Heparosan (1 g) was treated with 2.5 M NaOH, added up to a total volume of 100 ml. 

The reaction was stirred at 55°C overnight and then neutralized to pH 7.0. Subsequently, 

5 g of sodium carbonate and 5 g of triethylamine sulfotrioxide were added. The reaction 

was stirred at 48°C for 2 days. #-sulfo heparosan was then purified through DEAE 

sepharose column, precipitated with ethanol and lyophilized.

^-Acetyl heparosan (NA) and #-sulfo heparosan (NS) were then partially 

digested into oligosaccharides using heparitinase enzyme for a very short time (usually 

less than 10 min) at 37°C. The reactions were terminated by boiling for 2 min. The 

oligosaccharide mixtures were separated on a semipreparative Carbopac column (PA1 9 

mm x 250 mm). The oligosaccharides with different degrees of polymerization (Dp) 

were eluted with a gradient of 1 M NaCl (pH 3.5) for 180 min at a flow rate of 2 ml/min 

and monitored by absorbance at 232 nm. The fractions containing each size-defined 

oligosaccharide were pooled together and desalted using a G-25 column (1.5 cm x 50 

cm).
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3.5.2.2 Expression of HS biosynthetic enzymes

The NDST-2, C5-Epimerase, 2-OST, 6-OST1 recombinant enzymes were 

expressed using a baculovirus system following the protocol described below. The viral 

stock (20 ml) was added to 1 x 109 Sf9 cells in 1 L of Sf-900 SFM medium. Infected 

insect cells were shaken at 90 rpm at 28°C for 4 days and then centrifuged at 1000 x g for 

30 min to pellet the cells. The supernatant was collected and added with PIPES (pH 7.0) 

and phenylmethylsulfonyl fluoride to a final concentration of 10 mM and 1 mM, 

respectively. The supernatant was chilled on ice for 30 min, and subsequently 

centrifuged at 4000 x g for 30 min. The enzyme was purified through a 100-ml column 

of ToyoPearl AF-heparin 650M. The column was washed with 600 ml of PCG-50 (10 

mM PIPES, pH 7.0, 1 % glycerol, 0.2 % CHAPS, 50 mM NaCl). The enzyme was eluted 

from the column with a 450 ml linear gradient of 50 -  1000 mM NaCl in PCG and 

monitored by measuring its absorbance at 280 nm. The fractions containing the enzyme 

were pooled and concentrated using an Amicon YM-10 filter.

3.5.2.3 Enzymatic modifications

Fifty pig of heparosan or oligosaccharide (Dp 4-14) was incubated with 20 pil of 

enzyme (~1 mg/ml) and 100 pig of PAPS in a total volume of 100 pil. The reactions were 

performed at 37°C for 24 h in a buffer consisting of 25 mM MES (pH 7.0), 0.02 % Triton 

X-100, 2.5 mM MgCh, 2.5 mM MnCh, 1.25 mM CaCh and 0.75 mg/ml BSA. With C5- 

epimerase, the reactions were carried out in D2O. The reaction mixtures were purified 

through a mini DEAE-sepharose column (0.2 ml) that had been pre-equilibrated with 

wash buffer (20 mM NaOAc, 0.1 M NaCl and 0.01 % Triton X-100, pH 6.0). After
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washing with 6 ml of wash buffer, the bound HS was eluted with 1.2 ml of elution buffer 

(20 mM NaOAc, 1 M NaCl, pH 6.0). The polysaccharide samples were desalted and 

concentrated with 3000 MWCO Amicon columns. The oligosaccharide samples were 

desalted through a G-25 column (1.5 cm x 50 cm). The fractions containing 

oligosaccharides were detected by measuring UV absorbance at 232 nm, the 

corresponding fractions were pooled and then lyophilized.

3.5.2.4 Mass spectrometry analysis of oligosaccharides

The oligosaccharides were analyzed using a capillary C18-HPLC column (0.3 x 

30 mm) coupled to an electrospray ionization time-of-flight MS (Bruker Daltonics, 

USA). The oligosaccharides were eluted with a linear gradient of acetonitrile at a flow 

rate of 5 ^l/min for 30 min. Dibutylamonium acetate (5 mM) was used as an ion-paring 

agent. The MS was acquired in the negative ion mode at the following conditions: cone 

gas flow rate at 50 L/h, nozzle temperature at 130°C, drying gas (N2) flow rate at 450 

L/h, spray tip potential at 2.3 kV and nozzle potential at 35 V.

3.5.2.5 Injection of HS oligosaccharides into zebrafish embryos

One nl of each oligosaccharide (1 ng/nl) was injected into the animal pole of 

dome-stage embryos at 4 hpf. The phenotypes of these embryos were compared to those 

of WT embryos that had been injected with 1% phenol red.
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3.5.2.6 RNA in situ hybridization

Mkp3 antisense digoxigenin-labeled probe was generated from cDNA clones 

using a T7 RNA polymerase-based labeling kit (14). Embryos were fixed overnight in 4 

% PFA, and then washed with PBST (0.1 % Tween-20 phosphate buffer saline). Whole 

mount in situ hybridization experiments were performed as previously described (15). 

Embryos were then stained with BM Purple for imaging.

3.5.3 Results and discussion

3.5.3.1 Polysaccharides containing N-sulfation and one type of 

O-sulfation can activate FGF8 signaling in zebrafish embryos

In order to understand the overall structural requirements of HS for its interactions 

with FGF8, we tested a HS polysaccharide library in zebrafish embryos. A HS 

polysaccharide library was assembled by modifying N-sulfo heparosan (NS) with HS 

biosynthetic enzymes as discussed in Section 3.5.2. Enzymes were added concurrently or 

sequentially in specific orders as noted in Table 3.4. Each HS structure was tested in 

zebrafish embryos for FGF8 activity, considering the elongation phenotype as a FGF8 

activity indicator (Figure 3.1). The results showed that all tested HS structures caused 

elongation phenotype in zebrafish embryos at 12 hpf, indicating the promiscuity of HS- 

FGF8 interactions. The results also indicated that N-sulfation and one type of O-sulfation 

are sufficient to activate FGF8 signaling pathway in zebrafish embryos.
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Table 3.4 Assembly of HS polysaccharide structures. The order of HS modification is 
indicated in the table.

NS C5-
Epimerase

2-OST 6-OSTl 
and 3

3-OSTl and 3a

NS6S 1st
NSEpi6S 1st 2nd
NSEpi2S3S 1st 2nd 3rd
NSEpi2S6S 1st 2nd 3rd
NSEpi3S2S 1st 3rd 2nd
NSEpi3S6S 1st 3rd 2nd
NSEpi6S3S 1st 2nd 3rd
NSEpi2S+3S 1st 2nd 2nd
NSEpi2S+6S 1st 2nd 2nd
NSEpi3S+6S 1st 2nd 2nd
NSEpi6S3S2S 1st 4th 2nd 3rd

35 4R 54 5fi 51 36 53 43 51 54 55

HS polysaccharides

Figure 3.1 HS polysaccharides caused elongation phenotype in developing zebrafish 
embryos at 12 hpf. Each HS polysaccharide was injected into the animal pole of dome- 
stage embryos at 4 hpf (1 ng/embryo). Total number of embryos injected with 
oligosaccharides is indicated on each bar.
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3.5.3.2 Nonsulfated oligosaccharides cannot activate FGF8 

signaling in zebrafish embryos

Results obtained from polysaccharide experiments indicated that in vitro 

enzymatically synthesized HS could activate FGF8 signaling in zebrafish embryos. 

However, structural analysis of polysaccharides could not provide more specific 

information of the minimum sizes of HS that can activate FGF8 signaling. Therefore, we 

fragmented the ^-acetyl heparosan polymer (NA) into oligosaccharides by heparitinase I 

digestion. ^-acetyl heparosan oligosaccharides were then separated on a strong-anion 

exchange column and purified through G-25 column (Figure 3.2). Each oligosaccharide 

(Dp4 -  Dp14) was injected into zebrafish embryos at 4 hpf and the embryos were 

screened for the elongation phenotype at 12 hpf (Figure 3.3). All of these 

oligosaccharides caused elongation phenotype in less than 5 % of injected embryos, 

indicating that nonsulfated oligosaccharides with their chain length of up to 14-mer are 

not efficient in activating FGF8 signaling pathway in zebrafish embryos.

Minutes
Figure 3.2 Separation of 7V-acetyl (NA) oligosaccharides on a strong anion exchange 
column. The oligosaccharides with different degrees of polymerization (Dp) were eluted 
with a linear gradient of 0 - 1 M NaCl (pH 3.5) over 180 min at a flow rate of 2 ml/min 
and monitored by UV absorbance at 232 nm.
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NA oligosaccharides

Figure 3.3 TV-acetyl oligosaccharides (NA) with their chain length of up to 14-mer did 
not cause elongation phenotype in zebrafish embryos at 12 hpf. Each oligosaccharide 
was injected into the animal pole of dome-stage embryos at 4 hpf (1 ng/embryo). Mean 
+/- SEM from 3 experiments are presented. Total number of embryos injected with 
oligosaccharides is indicated on each bar.

3.5.3.3 N-sulfo oligosaccharides with their chain length of 20-mer 

and longer can activate FGF8 signaling significantly

The next question is whether N-sulfated oligosaccharides can activate FGF8 

signaling and if so, what is the minimum size that can have the effect. N-sulfo heparosan 

oligosaccharides (NS) were prepared as described in Section 3.5.2. The oligosaccharides 

that were utilized were listed in Table 3.5. Mass spectral profiles of these 

oligosaccharides were shown in Table 3.6. These oligosaccharides were injected into 

zebrafish embryos at 4 hpf and the embryos were screened for elongation phenotype at 12 

hpf (Figure 3.4). The results showed that the minimum size of HS that can cause 

elongation phenotype is 14-mer (11%); however, a significant percentage of the 

elongation phenotype was observed with Dp20 (63%).
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Table 3.5 NS oligosaccharides utilized in the study.
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Table 3.5 continued
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Table 3.6 MS profiles o f NS oligosaccharides before and after epimerization by C5- 
epimerase.

Nu
mb
er

NS + C5- 
Epi

MS profile

2a NSEpi
Dp6

3a NSEpi
Dp8
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Table 3.6 continued

Num
ber

NS + 
C5-Epi

MS profile

4a NSEpi
Dp10

5a NSEpi
Dp12 Intens

[%]
125
100
75
50
25
0

150
125
100
75
50
25
0

83-
[M-3HJ

. .

5
5.12 
833.45 

n i 833.78
A 834.12 

A 834.45

83
.  833.45 

[M -3Hp- j
833.11

______________ Z j U u

5a

?'78834.12 
I 834.45

u l J X L ___________
831 832 833 834 835 836 nrVz

6a NSEpi
Dp14 Intens

[%]
125
100
75
50
25
[%}
2.0
1.5
1.0
0.5
0.0

; 972.4!
972.12 9

i

6
5
72.79 
ft 973.12 

ft 973.45

111 A  A973/ 9______________

; 97:
i 3 -  972.47 
j [M-3HJ li

972.13
I _______ _  J U L

6a
>.80
, 973.13

973-47 
| 973.80

971 972 973 974 975 976 rrVz
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Figure 3.4 A -̂sulfo heparosan (NS) oligosaccharides with a chain length of 20-mer or 
longer caused the elongation phenotype in a significant number of treated embryos at 12 
hpf. Each oligosaccharide was injected into the animal pole of dome-stage embryos at 4 
hpf (1 ng/embryo). Mean +/- SEM from 3 experiments are presented. The 
oligosaccharides are labeled as shown in Table 3.5. Total number of embryos injected 
with oligosaccharides is indicated on each bar.

3.5.3.4 C5-Epimerization alone is not sufficient to activate FGF8 

signaling significantly in zebrafish embryos

The next question is whether epimerized NS oligosaccharides carrying iduronyl 

residues can activate FGF8 signaling more effectively than unepimerized NS 

oligosaccharides carrying no iduronyl residues. It has been known that IdoA is required 

for FGF1/FGF2-mediated growth promoting activity (16, 17). We prepared epimerized 

NS oligosaccharides (NSEpi Dp6 -  Dp14) by C5-epimerase as described in Section 3.5.2. 

The reactions were carried out in deuterium so that the epimer content can be 

characterized by the hydrogen/deuterium exchange-LC-MS approach published earlier by 

our group (18). Mass spectral profiles of both substrates and products of these reactions 

were shown in Table 3.6. These oligosaccharides were injected into zebrafish embryos at
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4 hpf and the embryos were screened for elongation phenotype at 12 hpf (Figure 3.5). 

NSEpi oligosaccharides did not increase the percentage of elongated embryos 

significantly compared to NS oligosaccharides, indicating that iduronic acid alone is not 

sufficient to activate FGF8 signaling in zebrafish embryos.

3.5.3.5 N-sulfated, epimerized and 2-O-sulfated decasaccharide 

can activate FGF8 signaling significantly in zebrafish embryos

The next question is whether 2-O-sulfation can have an effect on FGF8 signaling. 

We prepared epimerized, 2-O-sulfated NS oligosaccharides (NSEpi2S Dp6 -  Dp12) by 

modifying K5NS oligosaccharides with C5-epimerase and 2-OST concurrently in D2O. 

Mass spectral profiles of NSEpi2S oligosaccharide products of these reactions are shown 

in Table 3.7. These oligosaccharides were injected into zebrafish embryos at 4 hpf and 

the embryos were screened for the elongation phenotype at 12 hpf (Figure 3.6). NSEpi2S 

Dp10 (4b) and Dp12 (5b) caused elongation phenotype in 92.8% and 95.1% of treated 

embryos while NSEpi2S Dp8 (3b) only caused elongation phenotype in 13.1%. These 

three oligosaccharides were subsequently tested in different dosages (Figure 3.7). The 

results showed that 10-mer is the critical size for NSEpi2S oligosaccharide that can 

activate FGF8 signaling in zebrafish embryos.

3.5.3.6 N-sulfated, 6-O-sulfated hexasaccharide can activate 

FGF8 signaling significantly in zebrafish embryos

Another question is whether 6-O-sulfation can have an effect on FGF8 signaling. 

We prepared 6-O-sulfated NS oligosaccharides (NS6S Dp6 -  Dp10) by modifying NS
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Figure 3.5 NSEpi oligosaccharides did not have a significant effect on FGF8 signaling in 
zebrafish embryos. Each NSEpi oligosaccharide was injected into the animal pole of 
dome-stage embryos at 4 hpf (1 ng/embryo). Mean +/- SEM from 3 experiments are 
presented. The oligosaccharides are labeled as shown in Table 3.6. Total number of 
embryos injected with oligosaccharides is indicated on each bar.
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Table 3.7 MS profiles of NSEpi2S oligosaccharides.

Nu
m
be
r

NS + 
C5- 

Epi + 
2-OST

Structure

2b NSEpi
2S

Dp6

3b NSEpi
2S

Dp8

4b NSEpi
2S

Dp10

5b NSEpi
2S

Dp12



117

CD

QJ
+->
CD
CUD

100

80

60

40

.9 20
LU
\0
o n  n

114 195

137

2b

126

3b 4b 5b

NSEpi2S oligosaccharides (Dp6 -  Dpl2)

Figure 3.6 NSEpi2S 10-mer and 12-mer caused elongation phenotype in significant 
numbers of treated embryos at 12 hpf. Each NSEpi2S oligosaccharide was injected into 
the animal pole of dome-stage embryos at 4 hpf (1 ng/embryo). Mean +/- SEM from 3 
experiments are presented. Total number of embryos injected with oligosaccharides is 
indicated on each bar. The oligosaccharides are labeled as shown in Table 3.7.
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Figure 3.7 Effect of various dosages of NSEpi2S Dp8 (3b), DplO (4b) and Dpl2 (5b) on 
FGF8 signaling in zebrafish embryos. Each NSEpi2S oligosaccharide was injected into 
the animal pole of dome-stage embryos at 4 hpf. Mean +/- SEM from 3 experiments are 
presented. Total number of embryos injected with oligosaccharides is indicated on each
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oligosaccharides with 6-OST1. Mass spectral profiles of NS6S oligosaccharide products 

of these reactions are shown in Table 3.8. These oligosaccharides were injected into 

zebrafish embryos at 4 hpf and the embryos were screened for the elongation 

phenotype at 12 hpf (Figure 3.8). NS6S Dp6 (2c) caused elongation phenotype in 46 

% treated embryos, indicating that N-sulfated and 6-O-sulfated hexasaccharide can 

activate FGF8 signaling in zebrafish embryos.

3.5.3.7 The elongation phenotype caused by injection of oligosaccharides 

is the result of hyperactivation of FGF8 signaling

In order to confirm that oligosaccharides affect zebrafish embryos in the same 

pathway with cluster xylosides and heparin, expression of FGF target gene mkp3 was 

analyzed. Expression of mkp3 was found to be expanded in embryos injected with 

NSEpi2S Dp12 (5b) and NS6S Dp6 (2c), compared to WT (Figure 3.9). These results 

indicated that, similar to cluster xylosides and heparin, enzymatically synthesized 

oligosaccharides with specific sizes and structures can activate FGF8 signaling in 

zebrafish embryos.

Based on our current study, we propose the structural requirements of HS that can 

activate FGF8 signaling pathway in vivo. Polysaccharides with N-sulfation and any one 

type of O-sulfation can activate FGF8 signaling in zebrafish embryos. These results 

suggest that HS-FGF8 interactions are promiscuous and O-sulfation can be substituted 

for each other in HS polysaccharides. It does not, however, reveal the minimum size 

requirements for FGF8 activation. Therefore, oligosaccharides were utilized to reveal 

size requirements. In the case of oligosaccharides with only N- sulfation, FGF8 signaling
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Table 3.8 MS profiles of NS6S oligosaccharides.

Nu
mb
er

NS + 
6- 

OST1

Structure

2c NS6S
Dp6 Intens.

3c NS6S
Dp8

4c NS6S
Dp10

Intens.
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NS6S oligosaccharides (Dp6 -  DplO)

Figure 3.8 Various NS6S oligosaccharides caused elongation phenotype in a significant 
number of treated embryos at 12 hpf. Each NS oligosaccharide was injected into the 
animal pole of dome-stage embryos at 4 hpf (1 ng/embryo). Mean +/- SEM from 3 
experiments are presented. The oligosaccharides are labeled as in Table 3.8. Total 
number of embryos injected with oligosaccharides is indicated on each bar.

Figure 3.9 Expression pattern of FGF signaling target gene mkp3 in WT and embryos 
injected with NSEpi2S Dp 12 (5b) and NS6S Dp6 (2c) at 1 ng/embryo. In situ 
hybridization with a mkp3 probe was carried out at 7 hpf. mkp3 expression was expanded 
in embryos injected with 5b and 2c compared to WT embryos. Animal pole views.



is effectively hyperactivated by oligosaccharides with the chain length of 20-mer or 

longer. In the presence of ̂ -sulfation and 2-O-sulfation, 10-mer is the minimum size that 

can affect FGF8 signaling significantly. With ^-sulfation and 6-O-sulfation, 6-mer is 

sufficient to activate FGF8 signaling in zebrafish embryos. These results suggested that 

6-O-sulfation is very important for HS-FGF8 interactions. However, this requirement 

can be compensated by longer oligosaccharides containing ^-sulfation and 2-O-sulfation, 

revealing the promiscuity of HS-FGF8 interactions for the first time. In summary, HS 

with different sulfations can activate the FGF8 signaling pathway but they require 

different minimum sizes. In other words, HS-FGF8 interactions are promiscuous yet 

require specific structural attributes. One may suggest that these oligosaccharides may 

undergo further modifications by the endogenous HS modifying enzymes to become 

active in the interactions with FGF8. However, if that were the case, NS 

oligosaccharides should have been modified by any of the O-sulfotransferase enzymes 

and causing the effect at a much shorter chain length than 20-mer. The fact that 

elongation phenotype was observed with NS6S 6-mer, NSEpi2S 10-mer and NS 20-mer 

indicates that oligosaccharides do not undergo further modifications. However, in order 

to confirm this hypothesis, several experiments can be set up. Zebrafish embryos can be 

injected with uniformly and atom-specifically 13C-labeled oligosaccharides, which are 

distinguishable by mass from endogenous HS. These oligosaccharides can be pulled out 

and analyzed by LC-MS to detect any additional modifications. Alternatively, zebrafish 

embryos can be treated with chlorate, which has been shown as a sulfation inhibitor (19), 

together with oligosaccharides. If the oligosaccharides do not undergo further 

modifications, their effect on FGF signaling should not be altered by chlorate treatment.
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In future study, the library will be expanded with 3-O-sulfated oligosaccharides as 

well as oligosaccharides modified with different enzyme isoforms and different orders of 

additions of enzymes to deduce additional structural features that can modulate FGF8 

signaling.
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CHAPTER 4

CONCLUSIONS



4.1 Conclusions

The FGF8 signaling pathway is essential for many biological processes, and 

previous studies have proven the crucial role of heparan sulfate (HS) in the FGF8 

signaling pathway. This dissertation was conducted to understand the biogenesis and 

structural characteristics of FGF8-binding heparan sulfate motifs. The study utilized 

zebrafish as an animal model and the elongation phenotype as a FGF8 activity indicator. 

In Chapter 2, the importance of HS multivalency in the activation of FGF8 signaling was 

illustrated using xylosides, a class of small molecules known to stimulate HS 

biosynthesis in vivo in the absence of core protein. A library of xylosides, including 

mono-, bis- and tris-xylosides, was used to treat zebrafish embryos at the one-cell stage. 

After injection, mono-, bis- and tris-xylosides stimulate the biogenesis of monomeric, 

dimeric and trimeric GAG chains in the Golgi apparatus, which are subsequently secreted 

into the extracellular matrix. Only dimeric and trimeric GAGs are capable of 

concurrently forming two ternary complexes with two FGF8 molecules and two FGFRs, 

induce FGFR dimerization and subsequently activate the downstream signaling pathway, 

finally causing the elongation phenotype. These results suggested a new molecular model 

in which endogenous multimeric HS is required for the activation of FGF8 signaling in 

zebrafish embryos (Figure 4.1A). In this model, at least two covalently linked GAG 

chains interact with two FGF8 molecules and their cognate FGFRs, thereby efficiently 

inducing FGFR dimerization that leads to the elongation phenotype. These results also 

support the 2:2:2 model (2 FGF: 2 FGFR : 2 HS) instead of the 2:2:1 model. This model 

was reaffirmed by the results of experiments testing syndecan-1 constructs containing 

zero, one, two or three HS side chains. Injection of mRNAs encoding for syndecan-1
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A: Endogenous HS needs to be in a multivalent form to activate FGF8 signaling

1-cell stage 12 hpf

B: Diverse HS structures can interact with FGF8 and activate signaling

4 hpf 12 hpf

Figure 4.1 Schematic model depicting the structural requirements of HS for its 
interactions with FGF8. A: A library of xylosides was utilized to stimulate HS 
biosynthesis in vivo, where endogenous HS has been shown to require multivalency to 
activate FGF8 signaling in zebrafish embryos. B: A library of enzymatically synthesized 
HS polymers/oligomers was assembled in vitro and tested for its effect on FGF8 
signaling in vivo. N-sulfo oligosaccharides can activate FGF8 signaling if their chain 
length is 20-mer or longer. With N-sulfation and 2-O-sulfation, a 10-mer oligosaccharide 
can affect FGF8 signaling significantly. With N-sulfation and 6-O-sulfation, a 6-mer 
oligosaccharide is sufficient to activate FGF8 signaling in zebrafish embryos.



protein capable of carrying two or three HS chains caused a significantly higher 

percentage of elongated embryos as compared to those carrying a single or no HS side 

chain. These results, once again, demonstrate the essential role of HS multivalency in 

activating FGF8 signaling. Moreover, heparin and dermatan sulfate but not chondroitin 

sulfate A and C activated FGF8 signaling in zebrafish embryos, which provides the 

evidence that diverse yet specific GAG structures are required for activating the FGF8 

pathway.

In order to understand the specific structural requirements that dictate HS-FGF8 

interactions, a library of HS oligosaccharides was enzymatically synthesized in vitro and 

tested for its effect on FGF8 signaling in zebrafish embryos, as described in Chapter 3. 

The results from this study allow us to deduce the structural requirements of HS for 

activating the FGF8 pathway. Surprisingly, the HS-FGF8 interactions are diverse, yet 

structurally defined promiscuity, in which varying HS structures can perform the same 

function. This study has shown for the first time that HS molecules with different 

sulfations can activate the same FGF8 signaling pathway in zebrafish embryos in a size- 

dependent manner. Thus, the minimum size of each structure, which can have an effect, 

is different, and depends on the type of sulfation. More importantly, different types of O- 

sulfation show different levels of activity. In particular, oligosaccharides with only N- 

sulfate groups need to have the chain length of 20-mer and longer to have a significant 

effect on FGF8 signaling. On the contrary, oligosaccharides with N- and 2-O-sulfate 

groups and oligosaccharides with N- and 6-O-sulfate groups only need the chain length of 

10-mer and 6-mer, respectively, to have the same effect on FGF8 signaling (Figure 4.1B). 

This new information concerning the HS-FGF8-based structure-function relationship
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paints a new picture of cellular processes in which HS structures can modulate many 

signaling pathways at the post-translational level and beyond.

It is interesting to note that these results on the promiscuity of HS structures in 

FGF8 signaling, in fact, can explain several earlier observations that suggest the 

compensatory effect of one type of sulfate group for another type (1-4). For example, 

Merry C.L. et al. have shown that the complete loss of 2-OST in mice is compensated by 

increased N- and 6-O-sulfation to maintain the overall charge density as well as HS 

functions. The 2-OST knock-out mice did not have the early developmental failure as 

observed in HS lacking embryos, suggesting that the loss of 2-OST is compensated by 

the increase of other types of sulfation (2). Similarly, it has been shown that in 6-OST 

knock-out mice, 2-O-sulfation is increased (1). A similar compensation effect was also 

observed in Drosophila as well (4). The loss of 2-O-sulfation is compensated by the 

increase in 6-O-sulfation to maintain the total charge density and vice versa. More 

importantly, the loss of either 2-OST or 6-OST did not cause severe phenotype as in the 

case of 2-OST and 6-OST double knock-out, suggesting that the compensation effect is 

not only observed in the content of overall charge but also in the functions of HS 

molecules (3). These results demonstrate that topology of charged groups rather than the 

exact sequence of sugar residues with fixed sulfate positions is crucial for HS functions 

and thus, different HS structures can have the same function. However, more severe 

defects were observed in 6-OST knock-out than 2-OST knock-out Drosophila, indicating 

the importance of a specific type of sulfation. This finding reaffirms our results that 

different types of O-sulfation show different levels of activity, in particular, 

oligosaccharides with 6-O-sulfate groups may require shorter chain lengths, in
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comparison with oligosaccharides with 2-O-sulfate groups, to have the same effect on 

FGF8 signaling in zebrafish embryos.

The injected exogenous oligosaccharides are monomeric but still exhibited the 

same effect as that of dimeric xyloside-primed HS. However, it is important to note that 

HS produced in zebrafish embryos at the early stages of development is only available at 

extremely low concentrations and also contains a few sulfate groups. Thus, the amount 

of monomeric oligosaccharides injected is much more than the amount of endogenous HS 

produced, suggesting that during early development, zebrafish embryos need to 

synthesize dimeric HS in order to effectively activate FGF8 signaling at low 

concentration. Furthermore, these HS molecules have a higher sulfation density than 

GAG chains primed by xylosides in vivo; thus, these HS molecules possibly contain more 

than one FGF and FGFR binding site. Therefore, we speculate that under in vivo 

conditions, GAG chains must be multimeric so that they can facilitate ternary complex 

formation with FGF and FGFR, and subsequently lead to FGFR dimerization and signal 

transduction.

This study also led to the development of a novel in vivo FGF8 activity assay. To 

date, the only available FGF activity assay is the mitogenic activation assay in cell 

culture using BAF3 cells. Therefore, the FGF8 activity assay in zebrafish using the 

elongation phenotype as an indicator is the first in vivo assay for FGF8-mediated cell 

differentiation and cell migration processes. It is important to note that in this assay, 

FGF8 signaling is the primary signaling pathway affected. Once FGF signaling is 

hyperactivated, we would expect secondary effects on other signaling pathways such as 

BMP and Wnt signalings. The reason that other signaling pathways are not affected
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directly perhaps is attributed to the fact that both xyloside-primed GAG chains and 

enzymatically synthesized HS molecules lack core proteins, and this needs to be 

investigated in future studies.

Further studies will focus on expanding the library of oligosaccharides carrying 

the rare 3-O-sulfation, and also on using different isoforms and different orders of 

addition of enzymes to generate distinct structures. This study has opened up a new 

approach towards the understanding of the structure-function relationships of HS by 

utilizing a library of size- and structure-defined oligosaccharides in studying a wide array 

of HS biological functions in a systematic manner.
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