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ABSTRACT

Computational fluid dynamic modeling was performed to describe and analyze 

the various processes occurring in three chemically reacting gas-particle flows: chemical 

vapor synthesis o f tungsten carbide and aluminum nanopowders, flame synthesis o f silica 

nanopowder, and a novel flash ironmaking process based on the direct gaseous reduction 

o f iron oxide concentrate particles.

The model solves the three-dimensional turbulent governing equations o f overall 

continuity, momentum, energy, and species transport including gas-phase chemical 

kinetics. For modeling nanopowder synthesis, the particle size distribution is obtained by 

solving the population balance model. The particle nucleation rate is calculated based on 

chemical kinetics or homogeneous nucleation theory. The particle growth rate is 

calculated by vapor condensation, Brownian coagulation or a combination o f both, 

depending on the type o f material. The quadrature method o f moments is used to 

numerically solve the population balance. For modeling the flash ironmaking reactor, a 

simplified chemical reaction mechanism for hydrogen-oxygen combustion is used to 

calculate realistic flame temperatures. The iron oxide concentrate particles are treated 

from a Lagrangian viewpoint.

First, the chemical vapor synthesis o f tungsten carbide nanopowder was 

simulated. Using available experimental data, a parametric study was conducted to



determine the nucleation and growth rate constants. Second, the flame synthesis o f silica 

nanopowder was simulated. A single value o f the collision efficiency factor was 

sufficient to reproduce the magnitude as well as the variations o f the average particle 

diameter with different experimental conditions. Third, the chemical vapor synthesis of 

aluminum nanopowder was simulated. Comparison o f model predictions with the 

available experimental data showed good agreement under different operating conditions 

without the need o f adjustable parameters.

For modeling the flash ironmaking reactor, experiments reported in the literature 

for a nonpremixed hydrogen je t flame were simulated for validation. Model predictions 

showed good agreement with gas temperature and species concentrations measurements. 

The model was used to design a nonpremixed hydrogen-oxygen burner. The distributions 

o f velocity, temperature, and species concentrations, and the trajectories o f iron oxide 

concentrate particles in a lab flash reactor were computed and analyzed.
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NOMENCLATURE

Symbol Units Definition

Ad
m 2 Spray droplet surface area

Af
m 2 Furnace cross-sectional area

A p
m 2 Particle surface area

B coag

C,

cJ

cP

# m -3 m -1 s-1 

m s-1 

m s-1 

J kg-1 K -1

Birth rate term due to coagulation in population balance 
equation
Mean molecular velocity o f  the ith species, defined 
by Equation (2-39)
Mean thermal velocity o f the j th  particle, defined 
by Equation (2-45)
Particle heat capacity at constant pressure in Equation (2-10)

cPg J kg-1 K -1 Gas heat capacity at constant pressure

Cc 1 Slip correction factor defined by Equation (2-44)

Cd 1 Drag coefficient

c mol m -3 M olar concentration o f  the ith species

Cm 1 Turbulent parameter used in Equation (2-23)

dj m Diameter o f particles in the j th  trajectory

d P m Particle diameter

d  * m Critical particle diameter

dPg m Geometric mean diameter



^̂ coag # m -3 m -1 s-1 Death rate term due to coagulation in population balance 
equation

Dk-mix
m 2 s-1 Diffusion coefficient o f the kth species in the vapor mixture

D j
m 2 s-1 Diffusion coefficient o f the j th  particle, defined by Equation 

(2-43)

eg W  m -3 sr-1 Volumetric emission term from gas phase

ep W  m -3 sr-1 Volumetric emission term from particle phase

E 1 Empirical constant used in Equation (2-24); E  = 9.793

E a,j cal mol-1 Activation energy o f the jth reaction

g
m 2 s-1 Gravity vector

gr
m 2 s-1 ith component o f the gravity vector

g j m Transition parameter o f the j th  particle, defined by Equation 
(2-46)

G W m -2 Total incident flux or irradiance

G m s-1 Linear particle growth rate by vapor condensation (gas-to- 
particle conversion), defined by Equation (2-37)

G m
m s-1 Linear particle growth rate under the control o f mass transfer

all

m s-1 Overall linear particle growth rate under the combined control 
o f surface chemical reaction and mass transfer

Grxn
m s-1 Linear particle growth rate under the control o f chemical 

reaction kinetics
hg J kg-1 Gas specific enthalpy

heff W m -2 K -1 Effective heat convection coefficient at inner wall surface

hf W m -2 K -1 Convective heat transfer coefficient at outer wall surface

hp J kg-1 Particle specific enthalpy

hs W m -2 K -1 Convective heat transfer coefficient o f the particle

H r W N et rate o f heat production o f the particle by chemical reaction

I W m -2 sr-1 Radiation intensity per steradian
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I  n,w W m -2 sr-1 Radiation intensity per steradian leaving the wall surface in 
the direction Q

J # m -3 s-1 Particle nucleation rate

J 1 Number o f particle trajectories

k 2 -2 m 2 s-2 Turbulent kinetic energy

k W m -1 K -1 Thermal conductivity

ka,g
m -1 Absorption coefficient o f gas

ka, p
m -1 Absorption coefficient o f particles

kB J K -1 Boltzmann constant; kB = 1.38 x 1023 J K -1

kci
m s-1 Convective mass transfer coefficient o f species i

kd
s-1 Decomposition rate constant

k f  j Various Rate coefficient o f the j th  forward reaction

kg W  m -1 K -1 Gas thermal conductivity

kg m 7 km ol-2 s-1 Growth rate constant; used in Equation (3-3)

k m
m s-1 Convective mass transfer coefficient; used in Equation (3-4)

kn # m -3 s-1 Nucleation rate constant; used in Equation (3-2)

k p m 2 s-2 Turbulent kinetic energy at point p  adjacent to the wall, used 
in Equation (2-23)

kr, j Various Rate coefficient o f the j th  backward reaction

ks
s-1 Scattering coefficient for radiation

K cj Various Concentration equilibrium constant

Kn 1 Knudsen number defined by Equation (2-38)

lj m Mean free path o f the j th  particle, defined by Equation (2-47)

Le m VfMean beam length; Le = 3 .6 ^ -
A f
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m kg Mass

m kg M olecular mass o f the ith species, used in Equation (2-39)

m kg Mass o f the j th  particle

mk
m k m-3 kth moment o f the particle size distribution

mp kg Particle mass

M , g mol-1 Molecular weight o f the ith species

n

n

1

# m -3 s-1

Normal vector used in radiation computations; 
used in Equation (2-17)
Particle number density function

nj # m -3 Number density o f particles o f the j th  trajectory

np # m -3 Particle number density

n  p # s-1 Particle number flow rate o f the j th  trajectory

n w

N

m

m ol-1

Local coordinate normal to the wall; used in 
Equation (2-21) and (2-22)
Avogadro’s number

N , # m -3 Number concentration o f the ith species in the vapor phase

p Pa Pressure

p , Pa Partial pressure o f the ith species

p , Pa Vapor pressure o f the ith species at the particle surface

P

Pr

1

1

Parameter used in Equation (2-24); defined by
V  V^4 I

P = 9.24 —  - 1 1  + 0.28e~0007Pr/Pr' 1
P rVr i t J

Laminar Prandtl number

Pr, 1 Turbulent Prandtl number; Pr, = 0.85 at the wall

q W  m -2 Wall heat flux



q w W  m -2 Incident radiation heat flux at the wall surface

Qh W  m -3 Net radiative heat-transfer rate to the gas phase

Qrp W Net radiative heat-transfer rate to the particle

Q h-ŝ rp
W  m -3 Net radiative heat-transfer rate to the particle phase

r m Radial coordinate direction

R J mol-1 K -1 Gas constant

R j mol m -3 s-1 N et rate o f the j th  reaction

S m Radiation path length; used in Equation (2-15)

S 1 Supersaturation ratio; defined by Equation (2-35)

St

-s-3- m
 

g k N et mass generation o f the zth species by gas-phase reactions

S h
W  m -3 Source term due to gas-phase chemical reactions

s p

-s-3- m
 

g k Mass generation or addition in the particulate phase from the 
interaction with the gas phase; used in Equation (2-51)

Shh W  m -3 

kg m -3 s-1

Source term due to the net heat transfer by convection from 
the particles to the gas phase

Spm Total mass source term in the gas-phase continuity equation 
[Equation (2-3)] due to the presence o f particles

S  * Various N et source term o f dependent variable *

t s Time

10 s Long enough time to obtain a smooth-averaged value

T K Temperature

Tb K Bulk temperature

Tg K Gas temperature

rji* 1 Dimensionless temperature defined by Equation (2-24)

Ttp K Particle temperature
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Ttp K Temperature at the cell p  adjacent to the wall; used in 
Equation (2-24)

Tw K Wall temperature

T K Surroundings temperature

u m s-1 Gas velocity vector

ut m s-1 Gas velocity component in the ith direction

m s-1 Instantaneous gas velocity component in the ith direction

v m s-1 Particle velocity vector

v ,
m s-1 Particle velocity component in the ith direction

v ,
m3 M olecular volume o f the ith species; used in Equation (2-36)

Vm
m s-1 M ixture velocity vector

V W C
m3 kmol-1

O 1
WC molar volume; vwc = 0.0125 m kmol-

ĉell
m3 Volume o f  a computational cell

Vf
m3 Furnace volume

v t m 3 m ol-1 M olar volume o f condensable the ith species

x m x-coordinate length

x m Coordinate length in the ith direction

y m y-coordinate length

Yt 1 Favre-averaged mass fraction o f the ith species

yp m Distance from point p  to the wall

*
y m Dimensionless distance from point p  to the wall; 

n  C y4k 1/2 vy* _  n gCM k P y P
m

%

y T 1 Thermal sublayer thickness calculated by the procedure 
described in conjunction with Equation (2-24)
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z m z-coordinate length

Greek Symbols

™k 1 Volume fraction o f the kth phase

1 Vapor-phase collision efficiency factor

a P 1 Particle collision efficiency factor

P 1 Collision frequency function defined by Equation (2-42)

Various Effective transport coefficient

S 1 Unit vector in the ith direction

1 Kronecker delta function

£ 2 -3 m 2 s-3 Turbulent dissipation rate

sg 1 Gas emissivity

£p 1 Particle emissivity

£ w 1 Wall emissivity

K 1 Von Karman constant; k  = 0.4187

A m Mean free path o f vapor molecules

M Pa s Viscosity

Mg Pa s Gas viscosity

Mt Pa s Turbulent viscosity

P kg m -3 Density

Pg kg m -3 Gas density

Pk
kg m -3 Density o f the kth phase



Pm

-3- m
 

g k M ixture density defined by Equation (2-49)

Pm mol m -3 M olar density; used in Equation (2-34)

P p
kg m -3 Particle density

a N  m -1 Surface tension

a W m -2 K -4 Stefan-Boltzmann constant; a  = 5.67 x 1 0 8 W m -2K -4

ags m Geometric standard deviation

p 1 Generic dependent variable

O 1 Phase function; used in Equation (2-15)

O sr Solid angle

Q , Q" 1 Outward and inward direction vectors of radiation intensity

Subscripts

b Bulk

d Droplet

i ith species, or inner wall surface, or ith coordinate direction

jth particle, or jth particle trajectory, or jth coordinate direct

g Gas

k kth phase, or kth moment, or kth species

m Mixture

o Outer wall surface

p Particle

w Wall
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Operators

V

4

m -1 Nabla operator in Cartesian coordinates;
d d d 

V  = —  Sx + —  Sy + —  SZ 
dx dy dz

Various Favre-averaged generic dependent variable
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1. INTRODUCTION

Chemically reacting gas-particle flows refer to material production technologies 

in which solid particles are generated in a gas stream and/or gas-solid reactions take 

place. Examples o f such processes include the chemical vapor synthesis (CVS) of 

inorganic nanopowders and the flash smelting and converting o f copper sulfides. This 

work is related to three reacting gas-particle flows: chemical vapor synthesis (CVS) o f 

tungsten carbide and aluminum nanopowders, flame synthesis o f silica nanopowder, and 

a novel flash ironmaking process based on the direct gaseous reduction o f iron oxide 

concentrate.

Nanopowders exhibit extreme physical and chemical properties due to their small 

sizes and large surface-to-volume ratios. High catalytic activities, special optical 

properties, electrical and magnetic characteristics, and other properties such as 

flowability, plasticity, and toughness make nanopowders suitable for a wide range of 

novel applications (Gleiter, 1989; Tholen, 1994). Specific applications require certain 

particle morphology, average particle size, and particle size distribution (PSD) (Jang, 

2001). The control o f these characteristics is one o f the technical challenges in the design 

and operation o f nanopowder production technologies.

A novel flash ironmaking process is under development at the University o f Utah 

(Choi and Sohn, 2010). This technology aims at significantly increasing energy 

productivity (by reducing energy consumption) and reducing environmental emissions,



especially CO2 emissions, versus the conventional blast furnace route. In flash 

ironmaking, iron oxide concentrate particles are injected directly into a refractory-lined 

reaction chamber, and they are reduced in flight by hot reducing gases produced by the 

partial combustion o f  natural gas, hydrogen or syngas.

1.1 Problem Statement 

In chemically reacting gas-particle flows, the product characteristics, such as 

particle size in vapor-phase nanopowder synthesis and reduction degree in flash 

ironmaking, are determined by the reaction temperature, residence time o f  the particles in 

the reaction zone, gas composition, and aerodynamic condition inside the reactor. These 

operating conditions originate from complex interactions between various physical and 

chemical processes occurring inside the reactor; namely, fluid flow, heat and mass 

transfer, gas-phase reactions, and the reaction o f solid particles with a hot gaseous stream. 

Therefore, the understanding o f  these rate processes plays a critical role in the 

development and operation o f  these processes.

The study o f chemically reacting gas-particle flows solely by traditional 

experimental methods is difficult because these methods do not provide information on 

the local gradients o f  velocity, temperature, and species concentrations, which the 

reacting particles experience inside the reactor. Furthermore, the mechanisms o f  

formation, growth, and transport o f  nanoparticles in high-temperature reactors with fast 

chemical reactions and complex fluid dynamics are still not well understood. 

Consequently, the experimental design and scale-up o f  these processes is a rather difficult
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task. M athematical models based on fundamental principles will thus provide a critical 

tool in the study and application of such processes.

Therefore, the present investigation was aimed at contributing to the 

understanding of chemically reacting gas-particle flows by computational fluid dynamic 

(CFD) modeling. The synthesis of tungsten carbide, aluminum, and silica nanopowders 

and a novel flash ironmaking process were studied and analyzed.

1.2 Research Objectives 

The overall objective of this work was to develop a three-dimensional 

mathematical model based on computational fluid dynamics (CFD) capable of describing 

the various processes occurring in chemically reacting gas-particle flows. Upon 

completion, the model can be used as a design, scale-up and operational optimization tool 

for such processes.

To achieve the overall objective, the following specific objectives were 

established:

1. Develop a realistic modeling approach to represent the formation and growth of 

nanoparticles in the vapor phase;

2. Validate the computational model with the available experimental data;

3. Simulate and analyze the chemical vapor synthesis of tungsten carbide and 

aluminum nanopowders, and the flame synthesis o f silica nanopowder;

4. Use the computational model to analyze the gas-phase distributions of velocity, 

temperature, and species concentrations; and the motion and temperature of iron 

oxide concentrate particles inside a lab flash reactor.
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2. ELEMENTS OF COMPUTATIONAL FLUID DYNAMIC

*
(CFD) MODELING

The mathematical modeling o f the various processes involved in chemically 

reacting gas-particle flows requires quantitative description o f the coupled gas-phase 

transport and chemical reaction rate equations; that is, fluid flow, heat and mass transfer, 

and reaction kinetics. For modeling vapor-phase nanopowder synthesis, the particle size 

distribution (PSD) is computed by solving the population balance model (PBM) coupled 

with kinetic expressions for the rates o f particle nucleation and growth. For modeling the 

flash ironmaking reactor, iron oxide concentrate particles are treated from a Lagrangian 

viewpoint. In this section, the elements o f computational fluid dynamic (CFD) modeling 

relevant to chemically reacting gas-particle flows are presented.

2.1 Gas-Phase Equations 

The generic transport equation, in steady state, can be written in the following

form:

v - P g U ^ - v - r ^ v ^  = s^  (2 - 1)

This section contains a significant part from Sohn, H. Y; Olivas-Martinez, M.; Perez-Fontes, S. 
E. Mathematical Modeling of Nanopowder Production by Vapor-Phase Processes. In Mathematical 
Modeling; Brennan, C. R., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, 2011; pp 179-208; for 
which permission to use has been obtained from Nova Science Publishers, Inc., copyright owner.



where *  represents the generic dependent variable, r  is the effective transport

coefficient, and S * is the source term. Other symbols are defined in the Nomenclature.

Table 2.1 presents the governing equations (ANSYS, 2011; Bird et al., 2007) 

considered in this work. Favre averaging, a density-weighted average used for 

compressible flows, was used in the turbulence modeling and is represented by

— 1 (• t+t0
* = — \ p ( t  )*(t )dt (2 -2) p i  t

where * is the Favre-averaged generic dependent variable, p  and p  are the density and 

its time-averaged value, respectively, and t0 is a long enough time to obtain a smooth- 

averaged value.

The description o f gas-phase processes comes from the conservation o f overall 

mass [Equation (2-3)], momentum in the three Cartesian directions [Equation (2-4)], 

turbulent kinetic energy [Equation (2-5)], turbulent dissipation rate [Equation (2-6)], 

energy [Equation (2-7)], and species continuity [Equation (2-8)]. The standard k-e 

turbulence model (Launder and Spalding, 1972) was used. Heat transfer by radiation was 

described using the discrete ordinate (DO) model (ANSYS, 2011).

2.2 Heat Transfer

Due to the importance o f the transport o f heat in chemically reacting gas-particle 

flows, this subsection provides a comprehensive description o f the mathematical 

treatments for representing the phenomena o f conduction, convection, and radiation 

within the gas phase and between the gas and particle phases. It also presents the various 

boundary conditions used in the solution o f the resulting model equations.
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d x . d x  3 1 dxtV 1 1 1J

+ ^ ~ n g U ' UJ ')+  n gg ,

d  ( ------ \  d
----- ( f i M , k  ) = ------
dxj  dXj

d  t ___ \ d
\n g ui s ) =

Mt
Mg +  —

\ dk

dx dx
Mg +

Mt
G,

k J dx,  

 ̂ d s

+  G k +  n gs  -  Ym  +  S k

s J dx

+ C s S o k - c 2s n g S + Ss

(n  u h  )
d x  g i g dx.

k ~ —
dxi V ° Xi J

+ Q g + S h + Sh

n g D k-mx + - Ml
S c

dY k

dx.
+ S t

n g u i u  =Mt
d u  du,   ̂ 2 f

' +  '
d x . dx tV J i

n * k +Mt
d u ,

dxk J3

(2-3)

(2-4)

(2-5)

(2 -6)

(2-7)

(2 -8)

(2-9)



2.2.1 Gas-Phase Energy Equation 

Equation (2-7) is the governing equation for the transport of heat in the gas phase 

under steady state. The term on the left-hand side represents heat transfer by convection 

(bulk flow). The first term on the right-hand side (RHS) represents heat transfer by 

conduction. The second term on the RHS denotes the net radiative heat transfer to the gas 

phase. The third term on the RHS is a source term due to the net heat transfer by 

convection and chemical reaction from the particles to the gas phase. The last term on the 

RHS represents a source term due to gas-phase chemical reactions such as combustion. 

The solution of Equation (2-7) yields the temperature (Tg) distribution of the gas phase 

inside the reactor.

7

2.2.2 Particle-Phase Energy Equation 

The temperature variation o f the reacting particles is described from a Lagrangian 

viewpoint in which particle trajectories are tracked from their injection points. The 

equation of energy for a particle moving along its trajectory is

dT
mpCp = hsAp T  -  Tp )+ Qrp + H r (2 - 10)

where Tp is the particle temperature. Equation (2-10) states that the rate o f change o f the 

particle temperature is due to the heat transfer by convection (first term on the RHS), the 

net radiation received by the particles (second term on the RHS), and the net rate o f heat 

production (third term on the RHS) by the reactions involving the particles. Equation (2­

10) assumes that there is negligible internal resistance to heat transfer, which means that 

a particle is at uniform temperature throughout. In typical CFD applications, Equation (2­

10) is part o f a coupled set o f ordinary differential equations (ODE’s) for the velocity,



temperature and composition o f the particle along its trajectory with its residence time as 

the independent variable. The heat transfer correlation needed to calculate the convective 

heat transfer coefficient (hs) can be found in the literature (Szekely et al., 1976).

The exchange o f energy between the reacting particle and the gas phase is 

computed as follows

1 J
S  )v„ = - , - I [ np[(mp*p )'n -  (mphr )“ %  + Qhp (2-11)

V cell j =1

where J  is the number o f particle trajectories, Vcell is the volume o f a computational cell, 

and n p is the particle number flow rate o f the j th  trajectory, and Qhrp is the net radiative

heat-transfer rate to the particle phase, per unit volume. The terms containing (mphp)in and 

(mphp)out correspond to the particle enthalpy entering and leaving the cell, respectively. 

The resulting source term S ,  is then added to the gas-phase energy equation [Equation 

(2-7)].

2.2.3 Radiation Modeling 

Thermal radiation plays a significant role as a heat transfer mechanism at the 

sufficiently high temperatures characteristic o f most chemically reacting gas-particle 

flows. Furnace walls emit, absorb, and reflect radiation from or to particles, gas or other 

furnace walls, and may have a nonuniform temperature distribution.

The modeling o f radiation considers the effects o f gas, walls, and particles on the 

radiation field. The radiative transfer equation (RTE) is set up for an absorbing, emitting 

and scattering media, and is solved in a full three-dimensional framework. The 

nonuniform temperature distribution o f the furnace walls can also be accounted for.

8



The objective o f the radiation model is to compute the coupling terms Qrg and Qrp

appearing in Equations (2-7) and (2-10), respectively. These terms are computed from the 

following expressions:

Qfhg = ka, gG -  4neg (2 - 12)

Qhp = k a,pG -  4rnp (2-13)

where G  is the total incident flux or irradiance. Equations (2-12) and (2-13) represent the 

difference between absorption and emission rates from each phase per unit volume. The 

Lagrangian term Qrp in Equation (2-10) is computed by

Qh
Qrp = —  (2-14)rp np

where np is the number density o f the particle phase.

The modeling o f radiation consists o f tracking the path followed by a beam of 

radiation. If  I  is the incoming radiation o f this beam, its rate o f change along a path length 

o f size dS  is given by

^  = -(ka,g + K p  + k ,) I  + eg + er + i  f I '® (Q ',Q ) fo ' (2-15)
4 n  o f= 4n

The first term on the RHS represents the loss o f radiant energy due to absorption 

by gas, absorption by particles and out-scattering. The second and third terms are 

generation terms due to gas and particle emission, respectively. The fourth term accounts 

for incoming radiation in the direction Q due to scattering from all directions Q" in the 

surroundings. The following assumptions were incorporated: (1) the medium is gray, (2) 

particle surface is diffuse, and (3) Kirchhoff’ s law is valid (i.e., the absorption and 

emission coefficients o f the medium are equal). The walls o f high-temperature furnaces

9



were assumed to be opaque, gray, and diffuse. Thus, only the surface emissivity values 

were needed to specify the radiative properties o f the wall. Once these are specified, the 

intensity o f radiation per steradian leaving the wall is obtained from the following 

relationship:

10

f  qT

V n  J

+ V----- (2-16)
n

which consists of emission from the surface and the intensity reflected by the surface. 

The incident heat flux at the wall surface is obtained by integrating the incoming 

radiation from all directions to the surface

kw = | ( n  Q ”) l "da" (2-17)w
a”=2n

Upon solving Equation (2-15), the irradiation term G, which is required to compute the 

coupling terms Qrhg and Qrhp, is computed as follows

G  = J I ”- a  (2-18)
a”=4n

The solution o f the radiative transfer equation [Equation (2-15)] requires the 

specification of the radiation properties of the medium (gas and particles) and 

participating surfaces. The absorption coefficient o f the gas phase is computed from the 

Bouguer-Lambert law:

- 1
kag = —  ln(1 -* g  ) (2-19)

Le

There are a number of sources for obtaining emissivity values of gases at different 

temperatures (Hottel et al., 2008). The ANSYS FLUENT software uses the weighted-



sum-of-gray-gases model (WSGGM) to compute the gas emissivity as a function of 

temperature and partial pressures (ANSYS, 2011).

The absorption coefficient o f the particles is computed by assuming independent 

absorbing spheres. The total coefficient is expressed as the summation over the 

contributions from all particles in a computational cell:

J
ka,P = — V Spnjd j  (2-20)

4  j=1
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2.2.4 Boundary Conditions for the Gas-Phase Energy Equation 

High-temperature reactors commonly have composite walls consisting o f layers 

o f refractory, insulating, and metallic materials. If  necessary, heat transfer by conduction 

through the composite wall can be computed. In such a case, boundary conditions are 

only needed at the external wall surface with matching conditions at the inner wall 

surface. The temperature in the wall layers is computed by solving heat conduction 

equations through them.

Thus, the matching condition at the inner surface and the boundary condition at 

the outer surface, respectively, are

ST
h eJf ( T g  -  T w  ^  +  S w ( q w -  G T W  ^  =  -  k r

Iory Sn 

and

hf  (Tw -  Tb )| +s„„,a(T: -  T,‘ i = -  k„„, 2 L
J lo lo n

(2 -21 )

(2 -22 )

The second term on the left-hand side o f Equation (2-21) represents the net 

radiation heat transfer to the surface wall, that is, the emitted energy minus the absorbed

o
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incident energy. To compute the convective coefficient ( h  ) at the inner surface

[Equation (2-21)], the ANSYS FLUENT software uses the law-to-the-wall approach 

which has been extensively used for industrial turbulent flows (ANSYS, 2011). The law- 

of-the-wall approach consists o f (a) a linear law for the thermal conduction sublayer 

where conduction is important, and (b) a logarithmic law for the turbulent region where 

effects o f turbulence dominate conduction. The convective coefficient ( he#) is then

computed as follows

heff =
n r C 1/4k 1/2 Pg°p,gCM kP

T  * (2-23)

where T  * is a dimensionless temperature defined by

T  * =
T  -  Tp 2

q

P r y  *

— ln( Ey*) + P
K

(y* < yT *) 

(y* > yT *)
(2 -24)

For laminar flows, Equations (2-23) and (2-24) reduce to case o f conduction in 

the fluid side. The procedure o f applying the law-of-the-wall approach for computing the 

wall temperature is as follows. Once the physical properties o f the fluid being modeled 

are specified, its molecular Prandtl number is computed. The thermal sublayer thickness 

yT  is then computed from the intersection o f the linear and logarithmic profiles and 

stored. During an iteration, depending on the y * value at the near-wall cell, either the 

linear or the logarithmic profile is applied to compute the wall temperature Tw.

In Equation (2-22), the convective coefficient ( h y ) can be calculated using heat-

transfer correlations such as those given in Geankoplis (1993). For example, the 

expression to compute h^. for a vertical cylinder when the product o f the Grashof and



Prandtl numbers is larger than 109 is given by

hf  = 1.24 AT13 (2-25)

where AT is the positive temperature difference between the outer wall and surrounding 

fluid. The second term on the left-hand side o f Equation (2-22) corresponds to the net 

energy leaving the outer surface by radiation. In a typical CFD problem, the RTE is not 

solved in the fluid side adjacent to the outer wall. Instead, simplified expressions are used 

to calculate the net radiation term. In ANSYS FLUENT, this is computed using the net- 

radiation method (Siegel and Howell, 1992) which is a simple approach commonly used 

to solve radiation exchange problems between gray-diffuse surfaces inside enclosures.

The radiative transfer equation [Equation (2-15)] is solved using the discrete 

ordinate method (ANSYS, 2011) in which a hypothetical sphere constructed around a 

computational cell is discretized in a finite number o f angular directions (solid angles). 

Each arbitrary direction is called a discrete ordinate. The radiation intensity within each 

solid angle is assumed to be uniform. The radiation intensity throughout the 

computational domain is obtained by writing Equation (2-15) for each discrete ordinate 

and solving the resulting integrodifferential equations using a finite volume method. The 

Lagrangian energy equation [Equation (2-10)] is an ordinary differential equation and is 

solved by standard numerical techniques, such as Runge-Kutta methods.

2.3 Gas-Phase Reaction Kinetics 

Gas-phase reactions often take place in chemically reacting gas-particle flows and 

can be represented by the following general form:

aA(g) + &B(g) = cC(g) + -D (g) (2-26)
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W hen the gas-phase reactions occur at high temperatures and the mixing o f the gaseous 

reactants takes place inside the reactor, it is customary to assume that the intrinsic gas- 

phase reaction rate is very fast and thus the reaction rate is controlled by the turbulent 

mixing. In this work, unless indicated differently, the rate o f gas-phase reactions was 

calculated using the eddy-dissipation model (EDM) developed by Magnussen and 

Hjertager (1977).

In the EDM, the net production rate o f the ith species due to reaction r ( R ) is 

determined by the lowest reaction rate o f the following expressions (ANSYS, 2011):

where v'ir  is the stoichiometric coefficient for the zth species in the rth reaction, v"jr  is 

the stoichiometric coefficient for the jth product species in the rth reaction, M  is the 

molecular weight o f the zth species, p  is the density o f the gas mixture, YR is the mass 

fraction o f any reactant species, YP is the mass fraction o f any product species, A  is an 

empirical constant equal to 4.0, and B  is an empirical constant equal to 0.5.

The population balance model (PBM), which incorporates particle transport, 

nucleation, growth and coagulation, describes the change in particle size distribution 

function in terms o f the particle size and the local spatial position (Friedlander, 2000). At 

steady state, the PBM  is expressed by

(2-27)

(2-28)

2.4 Population Balance Model



d
V • nvm + — (nG) = B -  D (2-29)

where n is the particle number density function, - p is the particle size (diameter), and G  is 

the particle size growth rate. The first term on the left-hand side o f Equation (2-29) 

denotes the convection o f particles due to the flow field. The second term represents the 

growth o f particles by gas-to-particle conversion; that is, nucleation, vapor condensation, 

and surface reaction. The terms on the right-hand side describe particle coagulation and 

are given by

1 rdp ^ , j3  j ' 3 \ V 3 >

15

Bcoag = 2 r  ^ ( - p .( - p  - < 3 )V3)n (-p )n ((-3 - -;3 )13) -< ,  (2-30)

and

’ ’ ’

Dcoag = n ( - p )f  P ( - p, - p )n ( -p ) - - p (2-31)

Equation (2-30) represents the rate o f birth o f particles o f size d  by collisions 

between particles o f sizes dp - dp and d ' . The term 1/2 prevents counting the collisions

twice, once each for the two colliding particles. Equation (2-31) describes the rate of 

death o f particles o f size d  by collisions o f particle o f size d  with particles o f all

sizes.

The boundary condition at d  =  0 for the integration o f the second term on the 

left-hand side of Equation (2-29) is given by

nl = — (2-32)-  =0 Q v '

where J  represents the rate o f nucleation o f particles.



The particle size distribution function can be expressed in terms o f the appropriate 

moments o f the size distribution. The kth moment (mk) is defined by (Friedlander, 2000)

mk = J7 d Pn(dp )ddp (2 -33)

The zeroth moment (m0) is equal to the total number o f particles per unit volume o f the 

system. The first moment (m1) gives the sum of the particle diameters per unit volume. 

The second moment (m2) gives, when multiplied by n, the total surface area o f particles 

per unit volume. The third moment (m3) yields, when multiplied by n/6 , the total volume 

o f particles per unit volume.

2.5 Kinetics o f Particle Nucleation and Growth 

For systems in which particles are produced by gas-phase reactions, the processes 

o f particle nucleation and growth need to be described by the population balance model 

given by Equation (2-29). In this subsection, these expressions will be introduced along 

with the underlying theories.

2.5.1 Particle Nucleation 

Homogeneous nucleation is responsible for the formation o f particles from the 

vapor phase. In this process, vapor atoms or molecules are transformed into solid 

particles in a supersaturated vapor without the presence o f a foreign phase. In chemical 

vapor synthesis where vapor-phase reactions produce the condensable product, the 

homogeneous nucleation process can be controlled by the degree o f supersaturation 

(Seinfeld and Pandis, 2006) or it can be reaction-limited (Bolsaitis et al., 1987; Kodas 

and Hampden-Smith, 1999) depending on the vapor pressure o f the condensed phase.
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The classical theory o f homogeneous nucleation describes the formation o f nuclei 

when the degree o f supersaturation o f the vapor phase is the driving force. In a 

supersaturated vapor, small clusters o f the secondary phase containing a few molecules 

are produced. However, most o f them are thermodynamically unstable and disappear in a 

short time. Only a small fraction o f these clusters will grow to a size large enough to 

produce nuclei; that is, the clusters have reached their critical size. In a cluster o f critical 

size, molecules condense and evaporate at the same rate. Hence, those clusters that have a 

size larger than the critical size will probably continue to grow and become particles. In 

contrast, clusters with a size smaller than the critical size will evaporate. The critical 

nucleus size is predicted by the Kelvin equation (Friedlander, 2000) given by

d  P = ----- — -----  (2-34)
P PmR T  ln S  V '

where the supersaturation ratio S  is defined as follows:

S = 4  (2-35)
Pr

The nucleation rate is therefore the net number o f clusters formed per unit time 

that has a size larger than the critical size and can be computed by (Seinfeld and Pandis, 

2006)

17

J  =
—  j V S J

exp
16— vi a  

V T  (ksT  y  (ln S  )2 J
(2-36)

Reaction-controlled nucleation occurs when the vapor pressure o f the nucleating 

species is very low (Bolsaitis et al., 1987; Kodas and Hampden-Smith, 1999; Rao and 

McMurry, 1989). Under such conditions, the nucleation process is indistinguishable from 

the chemical reactions that produce the condensable products. In other words, every



monomer formed by chemical reaction in the vapor phase can be regarded as a 

thermodynamically stable particle. Thus, the nucleation rate can be represented by the 

rate o f formation o f the vapor product.
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2.5.2 Particle Growth by Gas-to-Particle Conversion 

In vapor-phase synthesis, the growth o f particles by gas-to-particle conversion 

occurs as the result o f vapor condensation and/or surface reactions. In vapor 

condensation, particles grow when vapor atoms or molecules condense on the particle 

surface. The rate of change of the particle diameter with time by condensation is 

computed by the Fuchs-Sutugin interpolation formula (Friedlander, 2000; Seinfeld and 

Pandis, 2006), given by

G  = = 4 V D i n  (p  -  p ° ) [ ------------- °-75^ v (1 +  K n)------------- j  (2 -37)
dt d pR T  x ,b K n 2 +  K n  +  0 .2 8 3 K n « v +  0 .7 5 a vJ

where a v is the vapor collision efficiency factor, Kn is the Knudsen number defined as

Kn = 6D-nx (2-38)
C7d p

and C is the mean molecular velocity o f the 7th species expressed as follows

(2-39)
r \V2 
f 8kBT  v

v mn, j

Equation (2-37) represents the growth rate in the entire range o f Knudsen 

numbers. W hen K n  < < 1 , Equation (2-37) becomes the diffusion equation for the 

continuum regime. W hen K n  > >  1, Equation (2-37) becomes the growth equation in the 

free-molecule regime.



In certain systems, chemical reactions on the particle surface are the important 

mechanism for particle growth. The overall growth rate by this mechanism under the 

combined control o f surface chemical reaction and mass transfer can be expressed by:

G G
Goveral = " 1  (2-40)

Grxx + Gm

where Grxn and Gm are, respectively, the growth rates under the control of chemical 

reaction kinetics and mass transfer.

In terms of the particle growth rate, the rate of increase of the solid mass per unit 

volume of the system in the overall mass balance is given by

S ource = O  /  2)m 2GoverallPp (2-41)

where m2 is the second moment o f the PSD, which represents the total surface area of 

particles per unit volume of the gaseous mixture.
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2.5.3 Particle Coagulation 

The coagulation o f small particles takes place predominantly by Brownian 

motion. In this mechanism, two particles collide and stick together to form a new, larger 

particle. Coagulation increases the average particle size, decreases the total particle 

number density, and conserves the total particle mass concentration and volume 

(Friedlander, 2000). Particle coagulation is modeled by assuming that the rate of particle 

coalescence is infinitely fast, allowing the particle to always be spherical. The collision 

frequency function is computed using the Fuchs interpolation formula given by (Seinfeld 

and Pandis, 2006)



P ( - p1 , - p2  )  =
2 o ( D 1 +  D 2 ) ( - pl +  - ;1 )

- p1 +  - p2 8 ( D 1 +  D 2 )
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(2-42)

- p1 +  - p 2 +  2 ( g '  +  g22 ) 1 2  « p  ( C 12 +  C 22 ) 1 2  ( - p 1 + - p 2 )

where D  is the diffusion coefficient o f the j th  particle given by

r  k BJ C c . 

j 3O d P., ’

C  is the slip correction factor defined by

(2-43)

d„
1.257 +  0.4 exp

1.1d .
(2-44)

c is the mean thermal velocity o f the j th  particle expressed by the following equation:

cj = o n ,v  j  y
(2-45)

g  is the transition parameter given by

S ,  =
3 d P,jlj

'{dp,, + lj ) - {d p,j + 1) f -  d .p,j ■ (2-46)

l  denotes the mean free path of the j th particle as follows

8D 
L = j •

oc, ’
(2-47)

and ap is the particle collision efficiency factor. Equation (2-42) allows the calculation of 

the collision frequency function from the free-molecule regime (K n  > >  1) to the 

continuum regime ( K n  < <  1), including the transition ( K n «  1) stage. The parameter g, 

is related to the average distance that a particle travels in the transition regime (K n  « 1 ) 

before colliding with another particle.
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2.6 M ixture Model

The mixture model solves the governing equations for the mixture (gas and 

particles) and the continuity equation for the particulate phase. The generic mixture 

transport equation, in steady state, can be written in the following form:

V • P jm tm  -  V  • r ^,nV = S 0,m (2-48)

The density o f the mixture is given by

n
Pm = T a kPk (2-49)

k=1

where a k is the volume fraction o f the kth phase and p k is the density o f the kth phase. 

In general, any mixture-phase dependent variable is computed by

n
t ,  = Z a A  (2-50)

k=1

The mixture-phase equations take on the same form as the gas-phase transport 

equations given in Table 2.1.

The continuity equation for the particulate phase is given by

V a p P p V p  = Sp (2-51)

where a is the particle volume fraction, pp is the particle density, v velocity vector o f

the particle phase and Sp represents the mass generation or addition in the particulate 

phase from the interaction with the gas phase, for example, particle nucleation and 

growth.

21



22

2.7 Discrete-Phase Model

The discrete-phase model treats the particulate phase from a Lagrangian 

viewpoint in which the particle trajectories are tracked from its injection point in the flow 

field. The model consists o f a coupled set o f ordinary differential equations (ODEs) for 

the particle velocity, temperature, and composition along its trajectory with its residence 

time as the independent variable. In addition, the exchange o f momentum, energy and 

mass between the particle and the gas phase is computed. The resulting source terms are 

then added to the gas-phase equations. The model formulation includes the following 

assumptions: (a) spherical particles and (b) no particle-particle interaction.

The equation o f motion for a particle in a Lagrangian framework is given by

where u is the gas velocity vector, V is the particle velocity vector, pg is the gas density, 

pP is the particle density, dp is the particle diameter, CD is the drag coefficient and g  is

the gravity vector. Equation (2-52) states that the rate o f change o f particle momentum is 

equal to the forces acting upon it. The first and second terms on the right-hand side 

represent the aerodynamic drag force and the gravitational acceleration, respectively. The 

equation o f energy [Equation (2-10)] for a particle moving along its trajectory was 

discussed in Subsection 2.3.2.

d t  4  P p d p Pp
(2-52)

2.8 Numerical Solution 

The numerical solution o f the transport equations subject to the appropriate 

boundary conditions was obtained within the framework o f the ANSYS FLUENT CFD



code (ANSYS, 2011). The reactor geometries were discretized on nonuniform grids. A 

finite volume approach was used to solve the gas-phase equations [Equations (2-3) 

through (2-8)] and the mixture model [Equations (2-48) through (2-51)]. The population 

balance model (PBM) [Equation (2-29)] was solved by means o f the quadrature method 

o f moments (QMOM) (McGraw, 1997), which allows the direct tracking o f the particle 

size distribution (PSD).
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3. COMPUTATIONAL M ODELING OF CHEMICAL VAPOR 

SYNTHESIS OF W C NANOPOW DER FROM 

TUNGSTEN HEXACHLORIDE

3.1 Background

Due to the much desired properties o f high hardness and good wear resistance, 

tungsten carbide (WC) is widely used as a hard material in many industrial applications 

such as metalworking, drilling and mining industries under high pressure, high 

temperature, and corrosive environments. Its mechanical properties such as hardness, 

compressive strength, and transverse rupture depend on the composition and 

microstructural parameters such as the grain size o f W C (Fang et al., 2005; Lee and 

Kang, 2006; Petersson and Agren, 2004; Upadhyaya, 2002). Previous investigations (Fu 

et al., 2001; Nersisyan et al., 2005; Shi et al., 2006; W ahlberg et al., 1997; W u et al., 

2004; Zawrah, 2007; Zhu and Manthiram, 1996) have shown that the reduction of 

tungsten carbide grain size provides a significant improvement in the mechanical 

properties. The reduction in size o f the structure also means an increase in the dislocation 

density and the amount o f grain boundaries per unit area. Furthermore, nanosized powder 

changes the response during sintering, which results in lower sintering temperatures and 

shorter times to attain dense but small grain size structures. Therefore, the production of 

nanosized tungsten carbide powder is critical.



Nanosized tungsten carbide powders have been produced by various methods 

such as thermo-chemical spray drying process (Ban and Shaw, 2002; M cCandlish et al., 

1992), mechanical alloying (MA) (Hasanpour et al. 2007; Liu et al. 2006; Mi and 

Courtney, 1997), and chemical vapor condensation (CVC) (Chang et al., 1994). Chemical 

vapor synthesis (CVS) is a process for making fine solid particles by the vapor-phase 

chemical reactions o f precursors. The chemical vapor synthesis (CVS) process, which has 

been applied to the synthesis o f metallic and intermetallic powders at the University of 

Utah, has several advantages in producing nanograined powders having compositional 

uniformity, high purity, and small grain sizes (Sohn and PalDey, 1998a, 1998b, 1998c).

The CVS process o f W C is carried out by the reduction o f vapor-phase reactant 

precursors and subsequent carburization by gaseous carburization agents such as 

hydrocarbon (Ryu et al., 2007). Tungsten metal compounds such as tungsten 

hexachloride (W Cl6) (Won et al., 1993), tungsten hexafluoride (WF6) (Fitzsimmons and 

Sarin, 1995), and tungsten hexacarbonyl (W(CO)6) (Kim and Kim, 2004) are generally 

favored as the precursor because o f their relatively low volatilization temperatures as well 

as the ease o f reduction by hydrogen. Several carburizing agents have also been used 

such as propane (C3H8), acetylene (C2H 2), and methane (CH4). M ethane is the most 

commonly used carburizing agent because it is easy to control the amount o f carbon 

reacted and is stable up to a high temperature (Gao and Kear, 1995).

Although considerable work to produce nanosized W C powder by gas-phase 

reactions has been conducted, the mechanism o f WC particle formation is not well 

understood. This process is very complicated, with mass and heat transfer, chemical 

reactions, and particle formation all occurring simultaneously.
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In this work, the model formulated in Section 2 was used to simulate the chemical 

vapor synthesis o f W C in a tubular reactor. Tungsten hexachloride (W Cl6) was used as 

the precursor with reactant gases hydrogen (H2) and methane (CH4) as the reducing and 

carburizing agents, respectively. The CVS process was simulated to obtain the velocity 

profile, temperature profile, species concentration distribution, and particle size 

distribution (PSD).

3.2 Model Formulation 

The partial differential equations shown in Table 2.1 were solved to compute the 

velocity, temperature, and species concentration distributions inside the tubular reactor. 

The following assumptions were made: (a) steady state, (b) axisymmetrical tw o­

dimensional laminar flow, and (c) spherical particles.

A total o f six species considered in this simulation were W Cl6, CH4, H2, WC, HCl, 

and Ar based on the following overall chemical reaction:

W Cl6(g) + CH4(g) + H2(g) = W C(s) + 6HCl(g) (3-1)

3.2.1 Particle Formation and Growth 

The mechanisms o f nucleation and growth o f WC nanoparticles from the 

simultaneous reduction and carburization o f W Cl6 are not well understood. The Kelvin 

equation [Equation (2-34)] predicts that the material critical nucleus size o f tungsten 

carbide is smaller than the size o f its monomer. Thus, every W C monomer formed by 

chemical reaction [Equation (3-1)] in the vapor phase can be regarded as a 

thermodynamically stable particle. Moreover, particle growth takes place by chemical
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vapor deposition reactions of the precursors at the particle surface. This modeling method 

for particle formation and growth will be referred to as chemical kinetic approach.

The nucleation o f WC particles is therefore driven by the kinetics o f the chemical 

reaction [Equation (3-1)] that produces the monomers, and it is expressed by

J  = K N C wc  ̂Cch4 (3-2)

where J  is the nucleation rate, kn is the nucleation rate constant, N  is the Avogadro 

constant, and C  and C are the molar concentrations of W Cl6 and CH4, 

respectively.

The growth of W C nanoparticles takes place due to the chemical reaction of W Cl6 

and CH4 at the particle surface and the mass transfer of precursors to the particle surface. 

The growth rate due to the surface chemical reaction (Bolsaitis et al., 1987; Kodas and 

Hampden-Smith, 1999) is thus given by

G rxn = 2 v W Ck g C W Cl6 C C H 4 (3-3)

3 1where vWC is the molar volume o f tungsten carbide (0.0125 m kmol- ) and kg represents

the growth rate constant. It is noted that even though hydrogen is included in the overall 

reaction [Equation (3-1)], the proposed rate expressions for particle nucleation [Equation 

(3-2)] and growth [Equation (3-3)] are not dependent on the hydrogen concentration, 

because hydrogen is in large excess.

The volumetric rate of growth of a particle under mass transfer control, assumed 

to be driven by the limiting reactant (W Cl6), is given by

dv„
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where vp is the particle volume, km is the convective mass transfer coefficient, and the 

subscripts b and s represent bulk and surface, respectively.

The growth rate in terms of the particle diameter is obtained by substituting the 

expression for the particle volume ( vp = nd^p /6 )  into [Equation (3-4)], which yields

dd
= 2vwc • km ■ Cwct6j . (3-5)

In this work, it was assumed that concentration of WCl6(g) at the particle surface 

is negligible compared to its concentration at the bulk since Reaction (3-5) has a large 

equilibrium constant (e.g., K  = 3.5 x1022 at 1273 K).

The mass transfer coefficient (km) is calculated based on the assumption that the 

particles and gaseous mixture move at the same velocity. Thus, the correlation of Ranz 

and Marshall (Szekely et al., 1976) gives

k  d
Sh = _ m _^ = 2.0 (3-6)

DD WCl6

where Sh is the Sherwood number, D wcls is the diffusion coefficient of WCl6(g) in the 

gaseous mixture, and dp = m^/m0 is the number-weighted average particle diameter. By

substituting Equation (3-6) into Equation (3-5), the particle growth rate under mass 

transfer control is given by

Gm = 4vwc D WCk Cwc,b (3-7)
dp

The overall growth rate G  under the combined control of surface chemical 

reaction and mass transfer is given by Equation (2-40).
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In this work, the growth rate under the control of surface chemical reaction was 

the limiting factor, which means that the growth rate under the control of mass transfer is 

much faster than the growth rate by the surface chemical reaction. This is because gas- 

solid mass transfer is extremely fast for small particles.

29

3.3 Simulation Strategy 

Initial three-dimensional simulation runs considering the entire reactor geometry 

for reaction temperatures of 1473, 1573 and 1673 K showed that all species were mixed 

homogeneously before the reactant gases approached a temperature of 873, 993, and 

1108 K, respectively. These values were then adopted as the inlet temperatures. The 

three-dimensional simulations also showed that the flow of the gaseous mixture became 

symmetric around the reactor centerline before the reaction zone was reached. This 

evidence allowed us to do the simulation in a two-dimensional axisymmetrical 

framework.

The governing equations (Table 2.1) were solved using the following boundary 

conditions in cylindrical coordinates:

Inlet: At z = 0 vr = 0, vz = va, T = Ta, Y = Yio, mt = 0 for all r (3-8)

Wall: At r =

n SY  dmi 
v  = v7 = 0,— - = — - = 0 

D dr dr
1 \az + b 0 < z < z,

T  = \ 1 z  = 12cm
Twall Z > z.

(3-9)

Outlet: At z = H
dvr dv dT dYt dmt 
— -  = — -  = —  = — = 0 for all r 
dz dz dz dz dz

_ . dvr dv7 dT dY dm.
Symmetry: At r = 0 —L = —L = —  = — - = — - = 0 for all r

dr dr dr dr dr

(3-10)

(3-11)



where vr and vz are the velocity components in the rth and zth directions, respectively, D  

is the reactor diameter, H  is the reactor length, v0 is the plug-flow velocity calculated 

based on the experimental volumetric flow rates, and a and b are the empirical constants 

obtained by fitting the experimentally measured temperature profile to a linear equation.

Figure 3.1 shows the experimental wall temperature profile and the simulated 

reactor geometry. The inner diameter and total length of reactor simulated were 5.4 and 

38 cm, respectively. The temperature at the inlet was 1108 K and increased to 1273 and 

1673 K after 3.5 cm and 12 cm in distance from the inlet, respectively. According to 

Hojo and coworkers (1978) and Ryu and coworkers (2007), substantial WC formation 

from WCl6 starts to occur above 1273 K. The mass fractions of WCl6, CH4, and H2 at the 

inlet were 0.0347, 0.0483, and 0.0152, respectively, based on the experimental conditions 

(Ryu et al., 2007).

T(°C)
1400 
1200 
1000 
800

0 3.5 12 38
Distance (cm)

5 .4 cm

~ 1

Figure 3.1: Reactor wall temperature profile and geometry.
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3.4 Determination of Nucleation Rate and Growth Rate Constants

The nucleation rate and growth rate are important factors that determine the 

particle size distribution (PSD). However, it is extremely difficult to determine the 

nucleation rate constant (kn) and growth rate constant (kg) by experimental measurements 

for the synthesis of WC nanoparticles. Because there were no measured data on these 

parameters, we first obtained these parameters by adjusting kn and kg and comparing the 

computed results with experimental measurements of average particle diameter and the 

coefficient of variation in some cases. In the experimental results, in which WC was 

synthesized under the conditions of WCl6 feeding rate of 0.04 g min-1, H2 flow rate of 

0.25 L min-1 (298 K, 86.1 kPa), CH4 flow rate of 0.1 L min-1 (298 K, 86.1 kPa), and Ar 

flow rate of 0.75 L min-1 (298 K, 86.1 kPa), and the reaction temperature of 1673 K, the 

average particle diameter based on specific surface area measurement was 22.2  nm and 

the coefficient variation (C.V.) was 0.18.

The experimental average particle diameter ( d  ) was calculated from the

measured specific surface area (Sexp) under the assumption of spherical shape

<<„ = - ^ -  (3-12)
PsS exp

The coefficient of variation (c.v.) means the degree of spread of the size 

distribution. It is represented as the ratio of the standard deviation of a distribution (a) to 

its mean size (m), as follows

c.v. = — (3-13)
M

In the simulation results, the average particle size based on specific surface area 

was derived as follows
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d3,2

n pS a n
Hp

A„

P pVp

6 • — f d vn ( d ) d d p
6 V p 6 f0 p v pJ p m 3

Ap 7  • j 0 d l n ( d p ) d d p m

(3-14)

where d  is the computed local average particle diameter, Sa is the calculated specific

surface area of the particles, Ap is the total surface area density of the particles, Vp is the 

total volume density of the particles, and m2 and m3 are the second and third moments of 

the PSD, respectively.

The local coefficient of variation (c.v.) is calculated in terms of the moments of 

the PSD as follows (Randolph and Larson, 1988)

1 2
~ Jo  ( - p -  ̂ W p^ p ) d - p

V/2

c.v. =
m  •’0V m 2

d

m4m 2
~ ^ 2 T  - 1

V m3

V/2
(3-15)

To compare the experimental and simulation results, the corresponding average 

particle diameter of all the particles leaving the reactor was calculated from the computed 

radius-dependent flow rates of particle volume and surface area, as follows

M ,
d 3 2

M 0
(3-16)

where M t = f  m kVm • d A  is the flow rate of the kth moment of the PSD, Vm is the mixture

velocity vector, and A  is the cross-sectional area vector. Here, it was assumed that the 

particles have the same velocity as the gas. Similarly, the C.V. at the reactor outlet is 

given by

C.V. = 2 (3-17)
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However, in the experimental results, the particle diameter measurement was 

from the rather limited number of particles. In view of this, the average particle size and 

the concentration of WCl6 at outlet were used as the criteria to determine the values of kn 

and kg based on the experimental results that the reaction was complete at this 

temperature indicating no unreacted WCl6.

Table 3.1 shows the computed average particle size, coefficient of variation 

and % unreacted WCl6 at the reactor outlet for various sets of kinetic constants kn and kg.

1 3  1 1Even though the simulation with the set of constants kn = 10- m kmol- s- and kg = 400 

m4 kmol-1 s-1 resulted in an average particle diameter of 22.5 nm, which is closer to the

1 3  1 1experimental value of 22.2  nm, the kinetic constants kn = 1* 10- m kmol- s- and kg = 

300 m4 kmol-1 s-1 that provide an average particle diameter of 20.4 nm were selected 

since they were obtained from a converged numerical solution.

From Table 3.1, it is observed that the calculated average particle diameter 

increases as the growth rate constant increases at a constant nucleation rate. Thus, to find 

the best set of nucleation rate and growth rate constants, first the nucleation rate constant 

was fixed and the growth rate constant varied based on the experimental average particle 

diameter and the concentration of unreacted WCl6 at the outlet. From the results, if  the

1 3  1 1nucleation rate constant was smaller than 1* 10- m kmol- s- , the concentration of 

unreacted WCl6 at the reactor outlet increased even though the predicted average particle 

diameter matched the experimental value. In addition, if  this nucleation rate constant was

1 3  1 1higher than 1* 10- m kmol- s- , it resulted in an unstable numerical process, leading to a 

divergent solution.
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Table 3.1: Nucleation Rate and Growth Rate Constants with Average Particle Diameter
and Unreacted WCl6 Concentration.

kn
(m3-kmol-1-s-1)

kg
(m4-kmol-1-s-1)

d 3,2

(nm)
C.V.

%
unreacted 
WCl6 at 

outlet

Comments on 
computation

1x 10-5
4.0x100 12.2 0.33 98 converged
7.2x100 21.4 0.33 90 converged
4.0X101 64.5 0.37 33 converged

1x 10-4
4.0x100 11.6 0.33 85 converged
9.6x100 21.2 0.35 50 converged
4.0X101 44.3 0.41 22 converged

1x 10-3
4.0x100 9.2 0.35 54 converged
2 .2 x 101 22.3 0.42 20 converged
4.0x101 30.3 0.47 10 converged

1x 10-2
4.0x100 6.5 0.37 33 converged
6 .0 x 101 21.9 0.56 1.2 x 10-3 converged
4.0x102 39.6 0.66 2.4x10-14 converged
4.0x100 4.3 0.41 22 converged

1X10'1
3.0X102 21.7 0.67 1X10-19 converged 

unstable, residuals
4.0x102 23.9 0.67 1x 10-23 do not approach 

asymptotic value
1 1.2 x 103 '- - - divergence detected

10 6 .0 x 103 - - - not converged
Experimental conditions: WCl6 (0.04 g min-1), CH4 (0.1 L min-1 at 298 K and 86.1 kPa), H2 (0.25 L min-1

at 298 K and 86.1 kPa), Ar (0.75 L min-1 at 298 K and 86.1 kPa), and reaction temperature (1673 K). 
Measured average particle diameter based on specific surface area: 22.2 nm.
WCl6 is completely consumed in the reaction.
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3.5 Distributions of Temperature, Velocity and Species Concentration 

From the initial computed results (Table 3.1), the nucleation rate constant (kn) and 

growth rate constants (kg) were fixed at 1*10-1 m3 kmol-1 s-1 and 300 m4 kmol-1 s-1, 

respectively, for further simulation work.

Figure 3.2 shows the temperature contours with fixed nucleation and growth rate 

constants obtained numerically as mentioned above. The velocity magnitude of the 

mixture is shown in Figure 3.3, in which the total linear velocity of reactant gases at the 

inlet was 0.0298 m s-1. The inlet and the plateau wall temperatures were 1108 and 1673 

K, respectively. The highest velocity was observed at the center of reaction zone and the 

lowest velocity was observed near the wall of the reactor. These converged results are 

reasonable as far as the temperature and velocity profile are concerned.

Figure 3.4 presents the contours and profile of WCl6 mole fraction. The latter was 

generated by computing the local cup-mixing mole fraction as a function of the axial

Figure 3.2: Contours of temperature inside the reactor. Values in kelvins.
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position. A cup-mixing quantity is a flow-weighted average (Bird et al., 2007). In this 

work, the cup-mixing WCl6 mole fraction as a function of the axial position was obtained 

by

J * 2 n  pR
„ Jn Pm (r, Z)vm,z (r, z)XWCl̂ (r, z)rdrd0

XWCl6, cup-mix(z) _  (3-18)
J0 J0 Pm (r, z)Vm,z (r, z)rdrd0

where p m is the local mixture density, v m z is the local axial component of the mixture

velocity vector, and xwcl  ̂ is local WCl6 mole fraction.

Figure 3.4 shows that WCl6 was consumed completely and that the reaction with 

hydrogen and methane occurred rapidly. Figures 3.5 and 3.6 show the contours of mole 

fractions of hydrogen and methane, respectively, in which they are seen to be consumed 

rapidly for WC formation. These results were reasonable considering that the reaction in 

the vapor phase occurs rapidly.

The contours and profiles of nucleation rate and growth rate, obtained by applying
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Figure 3.4: Contours (a) and profile (b) of mole fraction of WCl6. 
Profile is based on the local cup-mixing value.
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Figure 3.5: Contours of H2 mole fraction.

Figure 3.6: Contours of CH4 mole fraction.



the kinetic constants as discussed previously, are shown in Figures 3.7 and 3.8. These 

results were in good agreement with the WC formation reaction, in which the nucleation 

and growth of WC particles start rapidly above 1273 K. It is also clearly seen that the 

nucleation and growth of WC particles take place rapidly as WCl6(g) is consumed.

Since the flow regime in this reactor is laminar, there is a parabolic velocity 

profile. As a result, the mass transfer by convection (bulk flow) in the axial direction is 

faster in the center of the reactor than near the walls. Therefore, at a fixed axial position 

the concentration of precursors at the center is higher than that near the wall (as shown in 

Figures 3.4 through 3.6). Consequently, the rates of nucleation and growth of the 

particles, which are proportional to the concentration of the gaseous precursors, are 

higher at the center and lower near the wall, at a fixed axial position.

3.6 Particle Size Distribution 

As mentioned earlier, the nucleation rate and growth rate constants are two 

important factors that determine the particle size distribution. Figure 3.9 shows the 

contours and profile of computed WC average particle diameter in the tubular reactor, in 

which the nucleation rate constant and growth rate constant were fixed at 1*10-1 

m3 kmol-1 s-1 and 300 m4 kmol-1 s-1, respectively. It is observed that the largest average 

particle diameter of 41 nm was near the reactor wall, where the linear velocity of mixture 

is lowest, and the average particle diameter at the outlet was 21 nm, as shown in Figure 

3.9(a). Figure 3.9(b) shows the profile of the local average particle diameter along the 

axial position. The decrease of its value at around 4 cm can be explained by the
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Figure 3.7: Contours (a) and profile (b) of nucleation rate of WC particles.
3 1Values in #-m- s- . Profile is based on the local value 

along the reactor axis.
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Figure 3.8: Contours (a) and profile (b) of growth rate of WC particles. Values in m s-1. 
Profile is based on the local value along the reactor axis.
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Figure 3.9: Contours (a) and profile (b) of WC average particle diameter. Values in nm. 
Profile is based on the local value along the reactor axis.

nucleation rate being a maximum at this point; that is, the number of particles is a 

maximum.

If more detailed experimental data on the average particle diameter are available, 

additional model verification and validation can be conducted. The nucleation rate (kn) 

and growth rate (kg) constants obtained at 1673 K of reaction temperature were applied to 

verify these constants by the comparison of the average particle diameter obtained at 

different CH4/WCl6 molar ratios in the reaction. Figure 3.10 shows the variation of the 

average particle diameter as a function of the CH4/W Cl6 molar ratio.
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Figure 3.10: Effect of the CH4/WCl6 molar ratio on the average particle diameter.

For all CH4/WCl6 ratios, the methane concentration was varied at a fixed WCl6 

concentration and methane was always in excess. The simulation results show that the 

average particle diameter first decreased with the increase of the methane concentration 

up to the CH4/WCl6 ratio of 12 where the smallest average particle diameter was 

observed. After this ratio, the average particle diameter increased with the increase in 

methane concentration. This behavior is the result of the coupled interaction among the 

rates of nucleation and growth of WC particles as the concentration of methane increased. 

However, it is important to note that the variation of the average particle diameter with 

CH4/WCl6 ratio was not large. The experimentally determined average particle diameter



from a rather limited number of particles was not affected by methane concentration. 

Thus, the rather small variation (4 nm) in the simulation can be considered to be 

consistent with the experimental results.

The experimental results indicate that the average particle diameter decreased 

with a decrease in reaction temperature. To determine the best set of nucleation rate and 

growth rate constants at different reaction temperatures, the same approach of adjusting 

these values to obtain the average particle diameter close to the experimental results was 

applied. At each temperature, a set of constants was obtained to determine the 

temperature dependence of the nucleation and growth phenomena. The optimum values 

of nucleation rate and growth rate constants that matched the experimental data at 1573 

and 1473 K were 1*10-1 m3 kmol-1 s-1 and 240 m4 kmol-1 s-1, and 1*10-1 m^kmol-1̂ -1 and 

132 m4 kmol-1 s-1, respectively.

These results indicate that the nucleation rate constant did not change with the 

variation of the reaction temperature. Ryu and coworkers (2007) defined the reaction 

temperature as the maximum temperature reached inside the reactor by external heating 

with a furnace as illustrated in Figure 3.1. Considering the fact that significant WC 

formation occurs above 1273 K (Hojo et al., 1978) and the overall chemical reaction 

[Equation (3-1)] is very fast, the nucleation rate constant was not affected by reaction 

temperature since the nucleation takes place rapidly once the gaseous reactants reached 

the temperature of 1273 K in this work. Experimental results (Ryu et al., 2007) showing 

the complete consumption of WCl6 even at a low temperature of 1473 K supports our 

simulation approach. In addition, the products experimentally obtained in the range of the 

reaction temperature from 1473 to 1673 K were mostly WC. On the other hand, the
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growth rate constant decreased with a decrease in the reaction temperature from 1673 to 

1473 K. This indicates that the particle diameter was mainly affected by the dependence 

of the growth rate on the reaction temperature.

The temperature dependence of the growth rate constant is expressed by the 

following Arrhenius equation:

45

,5 , 10202kg =1.412x105 exp^----- —  (3-19)

which gives an apparent activation energy value of 84.8 kJ mol-1, as shown in Figure 

3.11. This result must be considered approximate because experimental data were 

obtained only at three reaction temperatures.

3.7 Comparison between the Simulation Results of SiO2 

and WC Nanoparticles 

The direct determination of the actual kinetics of nucleation and growth of 

nanoparticles synthesized in the gas phase is a very complicated task. It may include the 

measurement of the gas-phase concentration of products and precursors inside the reactor 

by means of in situ spectroscopic techniques. Most of the previous modeling work on the 

gas-phase synthesis of nanoparticles involves one or several parameters fitted to yield 

agreements with the available experimental information such as average particle 

diameter, which is the most common and important parameter to be determined 

experimentally. In this laboratory, the simulation of the synthesis of SiO2 nanoparticles in 

a flame reactor was also carried out. Simplified expression for the rate of nucleation and 

growth were proposed and two rate constants were adjusted as described in this article (Ji 

et al., 2007).
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Figure 3.11: Arrhenius plot of the growth rate constant (kg).
Values in m4 kmol-1 s-1.

Although this fitting approach is empirical and the operating conditions (i.e., 

reaction temperature, residence time, etc.) of the synthesis processes of SiO2 and WC 

nanoparticles are different, it is of interest to compare the predicted rates of nucleation 

and growth of particles in both processes. As a result, an order of magnitude comparison 

between both rate processes was performed. Since the average particle diameter was the 

target variable that was adjusted by fitting the rate constants, the comparison between the 

predicted average particle diameters in both synthesis processes will be meaningful. The 

average particle sizes were 15.6 and 21.7 nm for SiO2 and WC nanoparticles, 

respectively. The magnitudes of the nucleation and growth rates of nanoparticles in both

18 3 1 7 1processes were in the order of 10 # m- s- and 10- m s- , respectively. This result 

correlates well with the fact that both materials, SiO2 and WC, have high melting points.



This finding indicates that the proposed fitting approach is a reasonable representation of 

the actual phenomena taking place in both synthesis processes.

3.8 Concluding Remarks 

The chemical vapor synthesis (CVS) of WC nanopowder from tungsten 

hexachloride in a tubular reactor was simulated by a two-dimensional multiphase 

computational fluid dynamic (CFD) model. A parametric study was conducted to 

determine the nucleation and growth rate constants. Experimental results obtained for the 

synthesis of WC nanopowder from WCl6 with H2 and CH4 in a tubular reactor system 

were used to validate the model. The combination of nucleation rate and growth rate 

constants that yielded the best agreement with experimental data was determined.

The simulation will be improved further when more experimental results and 

more accurate nucleation and growth model are available. However, it should be noted 

that this work is the first application of CFD to the chemical vapor synthesis of WC 

nanopowder. The simulation results have been matched with the experimental data under 

the conditions tested. The model tested in this work will also predict experimental results 

for other sets of experimental conditions. This simulation tool shows significant potential 

for the optimization and scaling up of the chemical vapor synthesis process.
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4. COMPUTATIONAL MODELING OF THE FLAME SPRAY 

PYROLYSIS PROCESS FOR SILICA NANOPOWDER 

SYNTHESIS*

4.1 Background

Silica (SiO2) nanopowder is used as an additive in plastics and rubbers to improve 

the mechanical properties of elastomers, and in liquid systems to improve the suspension 

behavior. It is one of the most commonly produced commodities of the flame process 

(Pratsinis, 1998). This process provides a good control of particle size and crystalline 

structure and it can also continuously produce high-purity, thermally stable particles with 

minimal further treatments. The sizes of the flame-made particles range from a few to 

several hundred nanometers, depending on the operating conditions.

Silica nanopowder is typically obtained from the oxidation of silicon tetrachloride 

in a flame (Pratsinis, 1998). However, Jang and coworkers (Chang et al., 2008; Jang et 

al., 2006) have developed a flame process in which organic silicon precursors such as 

tetraethylorthosilicate (TEOS) and tetramethylorthosilicate (TMOS) obtained from the 

recycling of silicon sludge are used. This modeling work was related to the production of 

silica nanopowder from waste silicon sludge using a flame spray pyrolysis (PSP) 

synthesis reactor (Chang et al., 2008) developed at the Korea Institute of Geoscience and

This section contains a significant part from Sohn, H. Y.; Olivas-Martinez, M.; Perez-Fontes, S. 
E. Mathematical Modeling of Nanopowder Production by Vapor-Phase Processes. In Mathematical 
Modeling; Brennan, C. R., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, 2011; pp 179-208; for 
which permission to use has been obtained from Nova Science Publishers, Inc., copyright owner.



Mineral Resources (KIGAM). Silica nanopowder was synthesized from the thermal 

oxidation of the volatile precursors: tetraethylorthosilicate (TEOS) and 

tetramethylorthosilicate (TMOS).

The final particle size and morphology of the product are determined by the flame 

temperature, the residence time of particles in the flame, and the aerodynamic conditions 

inside the reactor. Although experimental and theoretical work has been done on the 

flame synthesis process, the mechanisms of formation, growth and transport of 

nanoparticles in flames with rapid temperature changes, chemical reactions and complex 

fluid dynamics are still not well understood. As a result, the experimental design and 

scale-up of this process is a rather difficult task. Thus, mathematical models based on 

fundamental principles will provide a critical tool in the study and application of the FSP 

process.

Experimental and modeling studies on the flame synthesis of silica and other 

related metal oxide nanoparticles have been reported in the literature. Ulrich and 

coworkers (1976) conducted both experimental and theoretical work on the flame 

synthesis of silica particles using a flat-flame burner. The authors proposed a simple 

algebraic collision-coalescence model for particle growth with the sticking coefficient 

(defined as ratio of successful to actual collisions) as an adjustable parameter. They 

recognized that the morphology of silica nanoparticles produced in flames is seldom 

spherical. Rather, aggregates of primary particles are typically formed. Therefore, the rate 

of coalescence (sintering) of silica nanoparticles is finite.

Bolsaitis and coworkers (1987) studied, experimentally and theoretically, the 

formation of zinc oxide submicron particles in conditions similar to those found in a
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diffusion flame. They proposed a simplified mathematical model incorporating mass 

transfer (radial mixing of zinc vapor and oxygen), chemical kinetics (generation of 

nuclei), and a sectional model for the nucleation and growth of particles. The authors 

introduced the concept of collision-controlled nucleation for metal oxide particles, which 

occurs when the vapor pressure of the nucleating species is very low. Under such 

conditions, the nucleation process is indistinguishable from the chemical reactions that 

produce the condensable products. These authors also recognized that the flame 

aerodynamic conditions (i.e., gas velocities, degree of turbulence and mixing) play a key 

role in the kinetics of particle formation and growth.

Johannessen and coworkers (2000) simulated the synthesis of alumina particles by 

the combustion of aluminum tri-sec-butoxide in a diffusion flame using a commercial 

CFD code. The model solves the governing equations for mass, momentum and energy in 

a two-dimensional axisymmetric geometry. A monodisperse model incorporating the 

kinetics of particle coagulation and coalescence was implemented. The authors 

determined the growth kinetic parameters by comparing the model predictions with 

available experimental data.

The literature review reveals that most of the previous models do not take into 

consideration the combined effects of the fluid flow, heat and mass transfer, and chemical 

kinetics on the particle size distribution. Therefore, it is necessary to approach the 

modeling from the point of view of computational fluid dynamics (CFD). As a result, 

Sohn and coworkers (Ji et al., 2007; Olivas-Martinez et al., 2008) proposed a modeling 

technique that combines CFD, a multiphase model (mixture model) and a population 

balance model for the flame synthesis of silica nanopowders (Ji et al. 2007; Olivas-
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Martinez et al., 2008). In these works, the rates of nucleation and growth were computed 

using greatly simplified expressions. Since no experimental data are available on these 

rates, the kinetic parameters for nucleation and growth were treated as adjustable 

parameters.

Although the model by Sohn and coworkers (Ji et al. 2007; Olivas-Martinez et al., 

2008) represented reasonably well the available experimental data, it is necessary to 

incorporate particle nucleation and growth models based on theory to make the model 

more realistic and to reduce the need of adjustable parameters.

In this work, the model formulated in Section 2 was used to simulate the synthesis 

of silica nanopowder from tetraethylorthosilicate (TEOS) in a bench-scale FSP reactor. 

The transport and evaporation of liquid droplets were simulated from a Lagrangian 

viewpoint. The quadrature method of moments (QMOM) was used to solve the 

population balance equation (PBE) for particles undergoing homogeneous nucleation and 

Brownian coagulation. In the next subsection, the specific approach for modeling the 

formation and growth of silica nanoparticles is described.

4.2 Model Formulation

Figure 4.1 shows a schematic representation of the simulated flame spray 

pyrolysis (FSP) reactor. It consists of an external two-fluid mixing nozzle, a burner, a 

flame cover and a particle collector.

The FSP process starts with the formation of a hydrogen-oxygen diffusion flame. 

A precursor solution containing tetraethylorthosilicate (TEOS) and ethanol is then
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Figure 4.1: Schematic representation of the simulated FSP reactor.

sprayed into the flame through the nozzle. The spray droplets are vaporized and the 

resulting vapor is reacted producing condensable products that form particles.

4.2.1 Particle Nucleation 

In the flame synthesis of silica particles, the Kelvin equation [Equation (2-34)] 

predicts that the critical nucleus size is smaller than the size of the monomer. As a result, 

it is widely accepted that the nucleation process is reaction-limited (Kodas and Hampden- 

Smith, 1999). Thus, the nucleation rate of silica particles was represented by the rate of 

reaction of the vapor precursors. In this work, it was considered that the vapor precursors 

are thermally decomposed and oxidized in the flame.



The flame synthesis of silica nanopowder by the vapor-phase thermal oxidation of 

tetraethylorthosilicate (TEOS) is represented by

Si(OC2H 5)4(g) ^ S i O 2(s) + 4C2H 4(g) + 2H2O(g) (4-1)

and

Si(OC2H 5)4(g) +12O2(g) ^ S i O 2(s) + 8CO2(g) +10H2O(g). (4-2)

Equations (4-1) and (4-2) correspond to the thermal decomposition and oxidation 

of TEOS, respectively. Since the nucleation rate of silica nanoparticles is represented by 

the rate of reaction of the vapor precursors, the nucleation rate based on the thermal 

decomposition of TEOS [Equation (4-1)] is then given by

J = k dCTEOS N  (4-3)

with the decomposition rate constant (kd) expressed by the following equation (Chu et al., 

1991):

kd = 7 4  x1° 10exp 4 9 5 0 0  j  (4-4)

where C tEos is the molar concentration of TEOS in the vapor phase, and R  = 1.987 

cal mol-1 K-1. The nucleation rate based on the oxidation of TEOS, Equation (4-2), was 

computed using the eddy-dissipation model (Magnussen and Hjertager, 1977) in which 

the rate of reaction is limited by the turbulent mixing of the reactants, considering the 

very rapid chemical kinetics at the high temperatures of the system.
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4.2.2 Particle Coagulation 

Particle growth was modeled by Brownian coagulation. In the case of silica 

nanoparticles, a collision efficiency factor ( a p ) of unity in the collision frequency



function [Equation (2-42)] led to particle sizes ten times larger than the experimental 

value. This result is related to the assumption of infinitely fast coalescence rate. The 

morphology of silica nanoparticles produced in flames is seldom spherical. Rather, 

aggregates of primary particles are typically formed. Therefore, the rate of coalescence 

(sintering) of silica nanoparticles is finite. Various efforts (Ehrman, 1999; Lehtinen et al., 

1996) have been made to develop a model to describe the sintering of silica 

nanoparticles. However, these models have a semi-empirical nature and then their ranges 

of applicability are limited to the corresponding experimental conditions (Ehrman et al., 

1998). The finite sintering rate of silica nanoparticles is accounted for by setting a 

collision efficiency factor ( a  ) smaller than unity. Its value is adjusted to match the

experimentally measured average particle diameter.

4.2.3 Modeling of Spray Liquid Droplets 

The modeling of the spray liquid droplets was conducted from a Lagrangian 

viewpoint in which the droplet trajectories are tracked from their injection points. The 

combustion rate of the fuel was calculated using the eddy-dissipation model (Magnussen 

and Hjertager, 1977). The simulation was conducted in a two-dimensional axisymmetric 

framework.

The Lagrangian model consists of a coupled set of ordinary differential equations 

(ODE’s) for the velocity [Equation (2-52)], temperature [Equation (2-10)] and 

composition of a droplet along its trajectory with its residence time as the independent 

variable. The model formulation includes the following assumptions: (a) spherical 

droplets, (b) uniform initial droplet size, and (c) no droplet-droplet interaction.
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The vaporization of a droplet is driven by the convective mass transfer from the 

droplet surface to the gas phase and its rate expression is given by

dm.
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'd -A„M ,k,1(Cu  - Cl t ) (4-5)
dt

The gas-phase concentration at the droplet surface ( Q s) is calculated according to 

Raoult’s law. The mass of the droplet (md) is then calculated as the sum of the masses of 

its constituting species by

md = Z  m  ,d (4-6)

and the density of the droplet p d is computed as the volume-averaged value of the 

densities of its components by

-1

Pd =
m i,d (4-7)

V i mdPd j

The heat and mass transfer correlations needed to calculate the convective heat (h) 

and mass transfer (kc,i) coefficients can be found elsewhere (Szekely et al., 1976).

4.3 Simulation Strategy 

Figure 4.2 shows a schematic representation of the reactor geometry and inlet gas 

velocities used in the simulation runs. The inner/outer diameters of the four concentric 

tubes composing the burner were 32/35, 38/42, 45/48.5, 51.5/55 mm. The precursor 

solution feed rate was varied from 18.3 to 35.8 mL min-1. Table 4.1 shows the 

experimental conditions used during the simulation runs.

Precursor solution droplets of an initial uniform size of 10 ^m were injected into
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Figure 4.2: Schematic representation of the reactor geometry used in the simulation of the 
bench-scale FSP reactor. Inlet velocities converted from the experimental flow rates.

Table 4.1: Experimental Conditions for the Bench-Scale FSP Reactor.

Experimental
Condition

Flow Rate o f Feed Rate o f Concentration Particle
Dispersion

Air, L min-1
Precursor, 
mL min-1

o f Precursor, Size,
% vol. nm

Variation o f the Dispersion Air Feed Rate
JH060712 03 6 26.2 30 20.54
JH060714 03 8.3 26.2 30 13.41
JH060713 01 11 26.2 30 11.42
Variation o f the Precursor Solution Feed Rate
JH060719 02 11 18.3 50 10.57
JH060719 01 11 26.2 50 11.00
JH060802 01 11 35.8 50 14.41



the reactor at the position of the nozzle tip. Five droplet streams were defined at the 

injection port. Each stream supplied one-fifth of the total mass flow rate of the liquid 

solution. The linear velocity of the droplets was computed from the volumetric flow rate 

of the precursor solution and the cross-sectional area of the nozzle. The concentration of 

the droplets was defined according to the experimental conditions.

4.4 Distributions of Velocity, Temperature and Species Concentration 

Figure 4.3 shows the contours of the velocity magnitude inside the FSP reactor. 

The shape of the high velocity contours resembles the jet of a high velocity spray. Figure

4.4 shows the comparison between the observed flame and computed gas temperature 

contours inside the FSP reactor. It is seen that the computer model reasonably reproduces 

the shape of the flame. More importantly, the computed maximum temperature is close to 

the calculated adiabatic flame temperature for a hydrogen-oxygen diffusion flame, but 

somewhat lower than the theoretical value as expected when the components 

concentrations are decreased by mixing.
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Figure 4.3: Contours of gas velocity magnitude inside the bench-scale FSP reactor.
Scale values in m s-1.
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Figure 4.4: Photograph of the flame (a) and temperature contours (b) for the bench-scale
flame reactor. Scale values in kelvins.

Figure 4.5 shows the effect of the dispersion air feed rate on the gas temperature. 

It is noted that the flame length decreases as the dispersion air feed rate increases. This 

means that gas-phase species mixing is enhanced and as a result, the rate of the chemical 

reactions is increased. Therefore, the fuel species are consumed faster at higher 

dispersion air feed rates, producing a shorter flame.

Figure 4.6 shows that the dispersion air variation dilutes the content of 

C2H5OH(g) in the reactor and that the C2H5OH(g) is completely combusted within a 

small area close to the vicinity of the burner. The latter result explains why the maximum 

flame temperature does not vary as the dispersion air feed rate is varied. Figure 4.7 shows 

that the concentration of TEOS(g) also decreases as the dispersion air increases. By 

comparing the concentration contours shown in Figures 4.6 and 4.7, it can be seen that 

the region of the highest ethanol concentration is located closer to the nozzle than that of
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Figure 4.5: Contours of gas temperature in the entire simulated reactor geometry. 
Dispersion air flow rates: (a) 6, (b) 8.3, and (c) 11 L min-1. Values in kelvins.

Figure 4.6: Contours of molar concentration of C2H5OH(g) in the vicinity of the nozzle 
tip. Dispersion air flow rates: (a) 6, (b) 8.3, and (c) 11 L min-1. Values in mol L-1. 

The contours area shown is 0.029 x 0.15 m2.
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Figure 4.7: Contours of molar concentration of TEOS(g) in the vicinity of the nozzle tip. 
Dispersion air flow rates: (a) 6, (b) 8.3, and (c) 11 L min-1. Values in mol L-1.

The contours area shown is 0.029 x 0.15 m2.

the highest TEOS. This means the ethanol vaporizes faster than TEOS. This result is in 

agreement with the boiling points of ethanol and TEOS which are 351.6 and 442 K, 

respectively.

Figure 4.8 shows that the flame length is increased as the precursor feed rate 

increases. This is caused due to the addition of more fuel (ethanol) to the reactor. Here, 

the dispersion air feed rate is maintained constant, thus the increase in the rate o f  

combustion is not related to mixing but to an increase in the fuel concentration as shown 

in Figure 4.6.

4.5 Particle Size Distribution 

In this work, the processes of formation and growth of silica nanoparticles were 

represented by homogeneous nucleation (Subsection 4.2.1) and Brownian coagulation
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Figure 4.8: Contours of gas temperature in the entire simulated reactor geometry. 
Precursor solution feed rates: (a) 18.3, (b) 26.2, and (c) 35.8 mL min-1.

Values in kelvins.

(Subsection 4.2.2), respectively. The nucleation rate was computed with no adjustable 

parameters and only the collision efficiency factor aP, which appears in Equation (2-40), 

was adjusted to match the experimentally measured average particle diameter. A value of 

a  = 4 x10~4 was found to provide reasonable results for all experimental conditions. As 

discussed in Subsection 4.2.2, the value of the collision efficiency factor a  represents

the coalescence of primary particles. Such a small value can thus be expected since the 

coalescence rate is not only finite but also slower than the rate of particle coagulation.

The experimental average particle diameter ( d  ) was obtained from the

measured specific surface area (£  ) under the assumption of spherical shape as follows

d„_ =-
P p S ,

(4-8)
p exp

6



where p  is the particle density. This average particle diameter is also known as Sauter

diameter. The corresponding average particle diameter based on the model solution was 

derived as follows
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P p V p

where d  is the computed local average particle diameter, S  is the computed specific 

surface area of the particles, A  is the total surface area density of the particles, V is the 

total volume density of the particles, and m and m3 are the second and third moments of

the particle size distribution, respectively.

To compare the experimental and simulation results, the corresponding average 

particle diameter of all the particles leaving the reactor was calculated from the computed 

radius-dependent flow rates of the appropriate moments of the particle size distribution. 

The predicted Sauter diameter ( d 3 2) was then obtained by

d , 7 =M  (4-10)
3 ,2  M 2

where M t = \ mkvm • dA is the flow rate of the kth moment of the particle size

distribution, vm is the mixture velocity vector, and A is the cross-sectional area vector.

The comparison between the experimental and computed average particle 

diameters as a function of the dispersion air feed rate is presented in Figure 4.9. Overall, 

the model predictions showed reasonable agreement with the experimental data. As the
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Figure 4.9: Effect of the dispersion air feed rate on the average particle diameter. 
Precursor liquid solution with feed rate of 26.2 mL min-1 

and composition of 30 % TEOS by volume.

dispersion air feed rate increases, the average particle diameter decreases. The decrease in 

the concentration of TEOS(g) and the shortening of the flame length are likely the 

dominant factors. Considering the fact that the particle nucleation is controlled by gas- 

phase reactions of TEOS(g) and particle growth by Brownian coagulation, the decrease 

of the precursor concentration with increasing dispersion air flow rate will limit the 

maximum attainable particle diameter. In addition, the flame length plays an important 

role on the particle formation and growth by affecting the length of time reactants and 

particles remain in the reaction zone.

Figure 4.10 shows the comparison between the experimental and computed 

average particle diameters when the precursor feed rate was varied. The model is capable
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Figure 4.10: Effect of the precursor solution feed rate on the average particle diameter.
Flow rate of dispersion air of 11 L min-1 and a precursor liquid solution with a 

composition of 50 % TEOS by volume.

of reproducing reasonably well the magnitude and trend observed for the average particle 

diameter as the precursor feed rate increases.

Figure 4.11 depicts the contours of the average particle diameter inside the 

reactor. It is of interest to note that the particle diameter is larger close to the center line 

of the reactor and smaller close to the wall. Particles nucleate in the flame and are carried 

by the bulk flow. This causes the particle concentration to be higher near the reactor axis 

than close to the walls. The coagulation rate in the center of the reactor is therefore 

enhanced by the high particle concentrations and high temperature. As a result, particle 

size is larger around the reactor axis.
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Figure 4.11: Contours of average particle diameter inside the FSP reactor. Precursor 
solution feed rate: (a) 18.3, (b) 26.2, and (c) 35.8 mL min-1.Scale values in nm.

4.6 Concluding Remarks 

In this work, a CFD model for the flame spray pyrolysis (FSP) synthesis of silica 

nanopowder from volatile precursors was developed. The incorporation of a Lagrangian 

model to represent the spray droplets provided realistic predictions of the flame 

temperature and the rate of vaporization of the droplets. The nucleation rate of silica 

nanoparticles is computed based on the rates of thermal decomposition and oxidation of 

the volatile precursor. Brownian coagulation was included as the particle growth 

mechanism.

The model was used to simulate the synthesis of silica nanopowder from 

tetraethylorthosilicate (TEOS) in a bench-scale FSP reactor. Computed results showed 

that the model is capable of reproducing the magnitude as well as the variations of the 

average particle diameter with different experimental conditions using a single value of



the collision efficiency factor. Overall, the model has proved to be a promising a tool for 

the design and scale-up of industrial-size FSP units.
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5. COMPUTATIONAL MODELING OF CHEMICAL VAPOR

_
SYNTHESIS OF ALUMINUM NANOPOWDER

5.1 Background

Aluminum (Al) nanopowder is an important starting material for numerous 

aluminum-containing compounds such as AlH3, NaAlH4, LiAlH4, and Mg(AlH4)2, which 

have been identified as having high potential as hydrogen storage materials, especially 

for automotive applications (Choi et al., 2010). At the University of Utah, a chemical 

vapor synthesis (CVS) process has been developed to produce aluminum nanopowder 

from the reduction o f  aluminum chloride (AlCl3) vapor with magnesium (Mg) vapor in a 

wall-heated tubular reactor (Choi et al., 2010; Sohn et al., 2007). Experimental results 

showed average particle sizes between 20 and 100 nm.

Several researchers have worked on the modeling of synthesis processes of 

ultrafine aluminum particles and other materials such as silicon. Panda and Pratsinis 

(1995) developed a simplified plug-flow model for an aerosol flow reactor operating at 

nonisothermal conditions. A carrier gas saturated with aluminum vapor was flowed into a 

horizontal tubular reactor. As the gas mixture cooled down, particle formation and growth 

took place. The proposed model includes particle nucleation, condensation and 

coagulation. In this approach, the authors assumed a monodisperse particle size

This section contains a significant part from Sohn, H. Y.; Olivas-Martinez, M.; Perez-Fontes, S. 
E. Mathematical Modeling of Nanopowder Production by Vapor-Phase Processes. In Mathematical 
Modeling; Brennan, C. R., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, 2011; pp 179-208; for 
which permission to use has been obtained from Nova Science Publishers, Inc., copyright owner.



distribution. Their results agreed qualitatively with the available experimental data. 

Schefflan and coworkers (2006) proposed a model for a lab-scale tubular reactor in which 

a plug of aluminum is heated with microwave energy in order to produce aluminum gas 

that is carried by helium. The model solves the general dynamic equation (GDE) through 

a sectional method with particle volume and reactor holding time as the independent 

variables. The authors reported on the changes in particle size distribution with the 

residence time as a parameter. Prakash and coworkers (2003) described a simple 

numerical method to solve the GDE based on a sectional approach in which the particle 

size distribution domain is discretized into finite-sized sections. The model involves 

nucleation, surface growth, and coagulation. Computed results were shown for the 

synthesis of aluminum particles in an aerosol flow reactor.

Setyawan and Yuwana (2008) presented an evaporation-condensation model in 

which the carrier gas was completely saturated with Al vapor. The authors investigated 

the effect of the vaporization temperature, cooling rate and pressure on the resulting 

particle size distribution. Computed results indicated that the particle formation and 

growth take place in a narrow temperature range. In this particular case, the average 

particle size was dominated by surface growth. Furthermore, Schwade and Roth (2003) 

simulated the synthesis of silicon particles from silane in a wall-heated tubular reactor 

using a commercial CFD code. The model solves the governing equations for mass, 

momentum and energy in a two-dimensional axisymmetric geometry. A population 

balance model incorporating nucleation and coagulation was solved by a moment method 

in which the particle size distribution was assumed to be lognormal.
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It is important to note that most of the previous models do not take into 

consideration the effects of the fluid flow, heat and mass transfer, and chemical kinetics 

on the particle size distribution. These models are acceptable when the synthesis reactor 

has a simple geometrical configuration such as tubular reactor. Unfortunately, this type of 

systems is rarely encountered in practice. Therefore, if  the synthesis reactor presents 

complex flow configurations then it is necessary to approach the modeling from the point 

of view of computational fluid dynamics (CFD).

Sohn and coworkers (Ji et al., 2007; Olivas-Martinez et al., 2008) proposed a 

CFD model for the vapor-phase synthesis o f nanopowders. The model was used to 

simulate a lab flame reactor for the synthesis of silica nanopowder and a CVS reactor for 

the synthesis of tungsten carbide nanopowder. In these works, the rates of nucleation and 

growth were computed using greatly simplified expressions. Since no experimental data 

are available on these rates, the kinetic parameters for nucleation and growth were treated 

as adjustable parameters.

In this work, the model formulated in Section 2 was used to simulate the chemical 

vapor synthesis o f aluminum nanopowder from the reduction o f aluminum chloride 

(AlCl3) vapor with magnesium (Mg) vapor in a wall-heated tubular reactor. The main 

objective was to make the present CFD model more realistic and to reduce the need o f 

adjustable parameters. To achieve this, the rate of particle nucleation was computed by an 

expression based on the classical nucleation theory and the growth rate of particles was 

modeled by vapor condensation and coagulation.

69



5.2 Model Formulation 

The mathematical modeling of the various processes involved in the chemical 

vapor synthesis (CVS) of aluminum nanopowder requires the coupled solution of the gas- 

phase transport equations; that is, fluid flow, heat and mass transfer, chemical reaction 

kinetics, and the particle population balance model (PBM). In this work, the modeling 

framework described in Section 2 was used. The model formulation includes the 

following two general assumptions: (a) steady state and (b) negligible effect of the 

particles on the aerodynamic behavior of the gas phase.

The chemical vapor synthesis (CVS) of nanopowders starts with the mixing and 

reaction of the vapor reactants to form condensable products. Here, aluminum chloride 

(AlCl3) vapor is reduced by magnesium (Mg) vapor according to the following overall 

chemical reaction:

AlCls(g) + 3/2Mg(g) ^  Al(g) + 3/2MgCl2(g) (5-1)

The produced aluminum vapor is then condensed, that is, nucleation and vapor 

condensation, as follows

Al(g) ^  Al(s,l) (5-2)

where Al(s,l) is the condensed phase that could be liquid or solid depending on the local 

temperature.

Because the kinetic parameters of Equation (5-1) are unknown and the reactor is 

operated at high temperature, it is assumed that the intrinsic reaction rate is very fast and 

thus the reaction rate is controlled by the turbulent mixing of the vapor reactants. This 

approach is often used for this type of reaction (Magnussen and Hjertager, 1977). As a
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result, the rate of reaction of Equation (5-1) was calculated using the eddy-dissipation 

model.

The Kelvin equation [Equation (2-34)] predicts that the critical nucleus size of an 

aluminum particle is larger than its monomer size under this experimental condition. 

Therefore, the nucleation rate of aluminum particles was computed using the expression 

in Equation (2-36), based on the classical nucleation theory.

Particle growth was modeled by vapor condensation [Equation (2-37)] and 

Brownian coagulation [Equation (2-42)]. The collision efficiency factor a  for aluminum

particles was set equal to unity based on the fact that the reaction temperature is higher 

than the melting point of aluminum. This assumption is further supported by the 

experimental results (Choi et al., 2010) that yielded spherical particles.

5.3 Simulation Strategy

Figure 5.1 shows the geometry of the simulated reactor and the computational 

mesh. To minimize the computational time, the geometry was divided into two regions, 

namely, Region I and Region II, as shown in Figure 5.1(b). Then, three-dimensional 

meshes were made for each region. The solution using Region I, which considered only 

the first part of the reactor, was used to obtain profiles of the dependent variables at a 

plane perpendicular to the flow direction at an axial position (0.6 m from the beginning of 

Region I) before the end of the injection tubes. At this axial position, particles have not 

formed yet and thus only the gas-phase problem was solved. The obtained profiles which 

included temperature, velocity components, species mass fraction of Mg, AlCl3, MgCl2,
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Figure 5.1: Geometry of the simulated reactor: the left side of the figure’s parts represent 
the inlet of the reactants while the right sides represent the reactor outlet. (a) Actual 

reactor, (b) geometries used for the simulation, (c) magnified view of the mesh 
design, (d) sections for illustration of Region II.



Al and Ar, turbulence kinetic energy and turbulent dissipation rate were used as inlet 

boundary conditions for the simulation of Region II. With this geometry the full 

multiphase problem was solved.

Of particular importance for particle coagulation is the reactor zone located 

outside the furnace on the right-hand side of Figure 5.1(a). Simulation runs with a 

reduced reactor length resulted in smaller particle sizes. Table 5.1 shows the operating 

conditions for the simulations presented in this work. The experimental temperature 

profile (Figure 5.2) was used as a boundary condition at the furnace wall. The left-hand 

side of Region II [Figure 5.1(b)] represents the inlet where the profiles were included, 

while the right-hand side represents the reactor outlet. The total numbers of cells for the 

simulations of Regions I and II were 288,342 and 385,076, respectively. The cross­

sectional view of the mesh in Section A is shown in Figure 5.1(c).
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Table 5.1: Operating Conditions for the Simulations of the CVS Reactor 
for Aluminum Nanopowder.

Parameter Value

System Environment Argon
Precursors AlCls, Mg

Carrier Ar Flow rate 1.3 L min-1 in AlCl3 and Mg tubes
Temperature 298 K at inlet

Dilution Ar Flow rate 4, 6, 8 and 10 L min-1
Temperature 298 K at inlet

Total Ar flow Flow rate 10.6 L min-1

Precursor Precursor feeding rates AlCl3: 0.1 g min-1 
Mg: 0.03 g min-1

Furnace Wall temperature See Figure 5.2
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Furnace horizontal position (cm)

Figure 5.2: Experimental temperature profiles of the reactor wall.

5.4 Distributions of Velocity, Temperature and Species Concentration 

The velocity field o f the particle-laden flow has a strong effect on the 

characteristics o f the final product. Due to the assumption o f a negligible effect o f the 

particles on the aerodynamic behavior of the gas phase, the velocity field establishes the 

particle residence times which determine the final particle size; shorter residence times 

lead to smaller particle sizes, whereas the opposite is true for larger particle sizes. Figure

5.3 shows the contours of the magnitude of the velocity field along the B-B’ plane 

[Figure 5.1(c)]. The grey scale indicates the magnitude of the velocity field. The velocity 

magnitude in the zone after the funnel has the highest value, 16 m s-1, due to the reduced 

gas passage area (Section B).
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Section A

Section B

Section C

Figure 5.3: Contours of velocity magnitude along the B-B’ plane in Figure 
Scale values in m s-1. Ar flow rate of 8 L min-1 (86.1 kPa and 298 K).
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Figure 5.4 presents the contours of the temperature in the reactor. The reactants 

and carrier gas enter at room temperature (298 K). Due to the radiation heat transfer from 

the reactor wall, the temperature [Figure 5.4(a)] of the feeding tubes increases rapidly. 

The heat transfer from the feeding tubes to the carrier gas and precursor powders is then 

enhanced. As a result, the precursors are vaporized and the gaseous mixture is uniformly 

heated to the maximum reaction temperature by the end of the feeding tubes. After the 

funnel position [Figure 5.4(b)], the mixture temperature gradually decreased towards the 

end of the reactor.

Figures 5.5 through 5.8 show the mole fraction contours of the gaseous species 

inside the reactor. AlCl3 and Mg vapors enter into the reactor through the feeding tubes. 

The dilution Ar stream hinders the mixing of the reactants by separating the streams of
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Figure 5.4: Contours of mixture temperature along the B-B’ plane in Figure 5.1.Scale 
values in kelvins. (a) Region I and (b) Region II. Ar flow rate of 

8 L min-1 (86.1 kPa and 298 K).
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Figure 5.5: Contours of mole fraction of Mg(g) along the B-B’ plane in Figure 5.1. 
Ar flow rate of 8 L min-1 (86.1 kPa and 298 K).
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Figure 5.6: Contours of mole fraction of AlCl3(g) along the B-B’ plane in Figure 5.1. 
Ar flow rate of 8 L min-1 (86.1 kPa and 298 K).
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Figure 5.7: Contours of mole fraction of Al(g) along the B-B’ plane in Figure 5.1. 
Ar flow rate of 8 L min-1 (86.1 kPa and 298 K).

Figure 5.8: Contours of mole fraction of MgCl2(g) along the B-B’ plane in Figure 5.1. 
Ar flow rate of 8 L min-1 (86.1 kPa and 298 K).



AlCl3(g) and Mg(g), thus preventing premature nucleation. However, the funnel reduces 

the area, by which the mixing path in the radial direction decreases, facilitating the gas- 

phase reaction. Figures 5.5 and 5.6 show that Mg(g) and AlCl3(g) are fully reacted within 

a short distance from the end of the funnel. Figure 5.7 shows the mole fraction contours 

of aluminum vapor Al(g), which was completely consumed at the reactor outlet as a 

result of particle nucleation and vapor condensation onto the existing particles. Figure 5.8 

shows the mole fraction contours of MgCl2(g), which is formed where the reactant 

streams are mixed, and shows its maximum value after the funnel.

5.5 Particle Size Distribution 

Figure 5.9 shows a comparison between the simulation results with experimental 

average particle size as a function of total Ar flow rate. The average particle size was 

calculated from the value of m1/m0 that describes the average particle size based on the 

total length of the particle diameters divided by the number of particles, that is, the 

number-average size. Experimentally, the particle size distribution (PSD) was determined 

by ZetaPALS analysis and was a number-averaged PSD. This was the reason for 

calculating a number-average size in the simulation.

In general, the predicted average particle size shows a reasonable agreement with 

the experimental data, within 10 nm error range, without the use o f adjustable parameters. 

Thus, the model proposed in this work can be applied to other similar systems with much 

more confidence even without the need of any experimental data.

Figure 5.10 shows the particle number density (m0) computed along the reactor
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Figure 5.9: Comparison of computed and experimental average particle sizes. 
The vertical bars represent the experimental errors obtained 

from five repeated runs in each case.

C3
Oh

ioi; — -------- 1-------------- 1-------------- 1--------------
0.6 0.7 0.8 0.9 1.0

Reactor Axis, m

Figure 5.10: Computed particle number density (m0) along the reactor axis. 
Ar flow rate of 8 L min-1 (86.1 kPa and 298 K).



axis in the length interval where the nucleation process takes place. It is noted that there 

are two main nucleation zones: (1) right after the feeding tubes (0.64 m from the 

beginning of Region I) where the precursors react and (2) at the starting position of the 

funnel in the middle of Section B (0.74 ~ 0.90 m from the beginning of Region I). This is 

the result of the combined effect of the degree of supersaturation on the nucleation rate 

and particle coagulation.

Figure 5.11 shows the contours of average particle size (APS) which is mainly 

affected by nucleation and growth processes. Most nucleation takes place at the entrance 

of the funnel. Thereafter the particles grow by condensation of aluminum vapor onto the 

existing particles and coagulation. Since the reaction temperature was higher than the 

melting point of aluminum, the coalescence rate was extremely fast and thus spherical 

particles were formed after coagulation. Therefore, the coagulation process determined 

the final particle size. Computed results without coagulation (not shown here) showed 

particle sizes smaller than 10 nm for all experimental conditions tested (Choi et al., 

2010), which is much smaller than the experimental values. The distribution of the APS 

at the outlet is given in Figure 5.12. Near the wall, the average particle size is large 

because the velocity is lower there, which promotes particle growth. However, most of 

the particles at the outlet were less than 50 nm.

The geometric standard deviation, crgs, is commonly used as a measure of the 

degree of spread of the particle size distribution (PSD) of powders synthesized from the 

vapor phase, even in cases in which the PSD is not truly lognormal. This approach is 

justified by the fact that several types of aerosol processes are approximately represented
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Figure 5.11: Contours of average particle size along the B-B’ plane in Figure 5.1. 
Scale values in nm. Ar flow of rate 8 L min-1 (86.1 kPa and 298 K).
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Figure 5.12: Contours of the average particle size at the reactor outlet. 
(A-A’ plane in Figure 5.1). Scale values in nm. Ar flow rate 

of 8 L min-1 (86.1 kPa and 298 K).



by the lognormal distribution (Kodas and Hampden-Smith, 1999). The general moment 

expression of the size distribution function for a lognormal distribution is given by 

(Friedlander, 2000)

— i2 
ln —  = i ln dv + - ln2 °  (5-3)

—  2 g

where dpg is the geometric mean diameter.

By defining equations for the first three moments (i = 0, 1, 2), an expression for 

the geometric standard deviation can be obtained as follows

, 2 — 0 — 2
ln 2 = l n - 0^  (5-4)— 2

Figure 5.13 shows the effect of the carrier gas flow rate on the profiles of ogs 

along the reactor axis. It is seen that all profiles approached a single value of ogs (« 1.44). 

This value indicates the narrowest particle size distribution that can be obtained at the 

given conditions. It also indicates that the bulk flow has no effect on the spread of the 

distribution provided that enough reactor length is available. An interesting piece of 

information that can be obtained from the axial profile of ogs is the necessary reactor 

length to attain the narrowest particle size distribution. Thus, reactor overdesign could be 

avoided.

5.6 Concluding Remarks 

A three-dimensional computational fluid dynamic model incorporating fluid flow, 

heat and mass transfer, chemical kinetics and population balance was developed for the 

chemical vapor synthesis of aluminum nanopowder. The nucleation rate was computed
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Figure 5.13: Axial profiles of the geometric standard deviation (OgS). 
Flow rates at 86.1 kPa and 298 K.

using an expression from the classical nucleation theory. The growth rate was obtained 

by the combined effect of vapor condensation and coagulation.

The comparison of the model predictions with the available experimental data 

showed good agreement under different operating conditions. Computed results indicated 

that particle aggregation determined the final particle size in the simulated CVS reactor. 

The model proposed in this work can be applied to other similar systems with confidence 

even without the need of any experimental data, and can be used for scale-up of the 

process.



6. COMPUTATIONAL MODELING OF A NOVEL FLASH IRONMAKING

PROCESS: GAS-PHASE VALIDATION AND THREE-DIMENSIONAL 

SIMULATION OF VELOCITY, TEMPERATURE AND SPECIES 

CONCENTRATIONS, AND OF PARTICLE TRAJECTORIES 

IN A LAB FLASH REACTOR

6.1 Background

The University of Utah, with support from the American Iron and Steel Institute 

(AISI), is developing an entirely new transformational technology for alternate 

ironmaking. This novel technology is based on the direct gaseous reduction of iron oxide 

concentrates in a flash reduction process. The ultimate objective is to significantly 

increase energy productivity and reduce environmental emissions, especially CO2 

emissions, in contrast to the conventional blast furnace (BF) route. The considerable 

energy and environmental benefits arise largely from the elimination of cokemaking and 

pelletization/sintering steps in the predominant ironmaking technology (BF route). The 

proposed novel flash ironmaking process uses gaseous reducing agents, such as natural 

gas, hydrogen, other syngas, or a combination thereof.

The fundamental question regarding the feasibility of adapting the flash furnace to 

ironmaking concerned the speed of reaction; that is, could iron oxide concentrates be 

completely reduced in the few seconds of residence time typically available in a flash 

furnace? Previous experimental results (Choi and Sohn, 2010) using iron oxide



concentrates (~30 p,m size) showed that 90-99% reduction can be achieved within 2-7 

seconds of residence time at temperatures 1473 K or higher. This was verified by larger 

laboratory-scale testing. Thus, the question on whether the reduction rate of concentrate 

particles is fast enough for a flash reduction process has been resolved conclusively to be 

affirmative.

In this process, iron oxide concentrate particles are injected directly into a 

refractory-lined reaction chamber, and they are reduced in flight by hot reducing gases 

produced by the partial combustion of natural gas, hydrogen or syngas. The reducing gas 

is introduced through oxy/fuel burners on top of the vessel. The concentrate powder can 

be fed through the burners and/or various auxiliary ports located on the vessel roof. After 

reduction, the reduced concentrate particles fall to the bottom of the vessel. The vessel’s 

operating temperature ranges from 1473 to 1873 K.

The reduction degree of the iron oxide concentrate particles is determined by the 

reaction temperature, residence time of the particles in the reaction zone, gas 

composition, and aerodynamic condition inside the reactor. These operating conditions 

originate from complex interactions between various physical and chemical processes 

occurring inside the reactor; namely, fluid flow, heat and mass transfer, gas-phase 

reactions, and the reaction of solid particles with a hot gaseous stream. Therefore, the 

understanding of these rate processes plays a critical role in the development and 

operation of this process.

The study and analysis of chemically reacting particle-laden flows solely by 

traditional experimental methods is difficult because these methods do not provide 

information on the local gradients of velocity, temperature, and species concentrations,
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which the reacting particles experience inside the reactor. Consequently, the experimental 

design and scale-up of these processes is a rather difficult task. Mathematical models 

based on fundamental principles will thus provide a critical tool in the study and 

application of such processes.

The overall objective was to develop a three-dimensional mathematical model 

based on computational fluid dynamics (CFD) capable of describing the various 

processes occurring in this novel flash ironmaking process. This CFD model will thus be 

instrumental for major technology development tasks such as burner and powder injector 

design, experiment planning and analysis of lab and bench flash reactor operations, and 

eventual design of pilot and industrial plants.

In this work, the model formulation described in Section 2 was applied to the 

novel flash ironmaking process operated using hydrogen as a fuel/reductant. Particular 

model features include the use of a simplified chemical reaction mechanism for the 

partial combustion of hydrogen with oxygen and the tracking of iron oxide concentrate 

particles in a Lagrangian framework. Computed results of the simulation of benchmark 

experiments reported in the literature for a nonpremixed hydrogen jet flame are then 

presented for model validation. The design of a nonpremixed H2-O2 burner is discussed. 

The distributions of velocity, temperature, and species concentrations, and the 

concentrate particle trajectories in a lab flash reactor were computed and analyzed.
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6.2 Model Formulation

6.2.1 Combustion Modeling

In the flash ironmaking reactor, the required process heat (i.e., endothermic 

reduction heat, sensible heat o f products, and reactor heat loss) will be generated 

internally by the partial combustion of a fuel (e.g., hydrogen or natural gas) with oxygen. 

This subsection describes the modeling approach used in this work to compute the 

combustion rate o f a H2-O2 mixture.

In processes in which complete combustion occurs and the mixing of the fuel and 

oxidant takes place outside the burner (i.e., nonpremixed burner), it is customary to 

assume that the intrinsic gas-phase reaction rate is very fast and thus the reaction rate is 

controlled only by the turbulent mixing of the reactants. The combustion rate can 

therefore be calculated using the eddy-dissipation model (EDM) (Magnussen and 

Hjertager, 1977).

In initial modeling efforts, the partial combustion of hydrogen with oxygen was 

modeled by the EDM. Computed results showed flame temperatures much higher than 

the adiabatic flame temperature; that is, the model significantly overpredicted the 

combustion rate. The heat evolution in H2-O2 flames may be dominated by the reactions 

of intermediate species such as H and OH radicals and, consequently, the simple mixed- 

and-burnt approach (EDM) is not appropriate. A more realistic approach considering the 

reaction rates o f these intermediate species was then required.

In this work, a simplified reaction mechanism for H2-O2 composed of seven 

elementary reactions representing the combustion process was adopted along with the 

eddy dissipation concept (EDC) approach (ANSYS, 2011; Magnussen, 1981) to represent
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the turbulence chemistry interaction. In the EDC approach, finite reaction rates are 

computed in control (differential) volumes which behave as small constant-pressure 

reactors; the dimensions of which are defined by the length of the small scales of 

turbulence.

The gas-phase reaction mechanism (Table 6.1) adopted in this work was proposed 

by Eklund and coworkers (1990). It consists of seven chemical reactions involving six 

species: H2, O2, H2O, OH, H, and O. The chemical reactions were represented by the 

general form:

aA(g) + &B(g) = cC(g) + dD(g) (6-1)

for which the molar reaction rate was defined by

R, = kf ,j.CACB -  kr,jCCCD (6-2)

The forward and reverse rate constants in Equation (6-2) were computed from

f - e
k f = A T P exp ---- — (6-3)
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V R T  J

k,., = f  (6-4)

Table 6.1: Gas-Phase Reaction Mechanism for H2-O2 Combustion.

Reaction A
(cm3 mol-1 s-1)

P
(Dimensionless)

Ea 
(cal mol-1)

1 H2 + O2 - OH + OH 0.170x1014 0.0 48151
2 H + O2 - OH + O 0.142x1015 0.0 16401
3 OH + H2 == H2O + H 0.316x10°8 1.8 3030
4 O + H2 - OH + H 0.207x1015 0.0 13750
5 OH + OH -  H2O + O 0.550x1014 0.0 7000
6 H + OH - H2O + M 0.221x1023 -2.0 0
7 H + H - H2 + M 0.653x1018 -1.0 0
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6.2.2 Particle-Phase Equations

The modeling of the iron oxide concentrate particles was carried out from a 

Lagrangian viewpoint in which the particle trajectories are tracked from its injection 

point in the flow field. The model consists of a coupled set of ordinary differential 

equations (ODEs) for the particle velocity and temperature along its trajectory with its 

residence time as the independent variable. In addition, the exchange of momentum, 

energy and mass between the particle and the gas phase is computed. The resulting 

source terms are then added to the gas-phase equations. The model formulation includes 

the following assumptions: (a) spherical particles and (b) no particle-particle interaction.

The equation of motion for the concentrate particles in a Lagrangian framework is 

given by

where u is the gas velocity vector, v is the particle velocity vector, pg is the gas density, 

pp is the particle density, dp is the particle diameter, CD is the drag coefficient and g is

the gravity vector. Equation (6-5) states that the rate of change of particle momentum is 

equal to the forces acting upon it. The first and second terms on the right-hand side 

represent the aerodynamic drag force and the gravitational acceleration, respectively.

The cloud model (ANSYS, 2011) was used to describe the dispersion of particles. 

In this model, the mean trajectory [Equation (6-5)] and concentration of a particle cloud 

consisting of identical particles with the same initial conditions are computed. Within a 

cloud, all particles behave identically. All the particle equations are thus formulated for a 

single particle following the mean trajectory of the cloud to which it belongs.

dt 4 Pp dp Pp
(6-5)



The equation of energy for a particle moving along its trajectory is

- T  / \
mpcp =  hsAp [Tg - Tp ) +  +  H  (6-6)

where Tp is the particle temperature. Equation (6-6) states that the rate of change of the 

particle temperature is due to the heat transfer by convection (first term on the RHS), the 

net radiation received by the particles (second term on the RHS), and the net rate of heat 

production (third term on the RHS) by the reactions involving the particles. Equation 6-6 

assumes that there is negligible internal resistance to heat transfer, which means that a 

particle is at uniform temperature throughout. The heat transfer correlation needed to 

calculate the convective heat transfer coefficient (hs) can be found in the literature 

(Szekely et al., 1976). The details of the radiation heat transfer are described in 

Section 2.

6.3 Gas-Phase Model Validation

The flash ironmaking process will depend on one or more oxy/fuel burners as the 

main heat source. One of the key features of a computer model of this process is an 

appropriate description of the combustion aerodynamics of the burner(s). With the 

purpose of validating the gas-phase mathematical treatment, benchmark experiments 

reported in the literature for a nonpremixed hydrogen jet flame (Barlow, 2003; Barlow 

and Carter, 1994, 1996) were simulated in this work. The model predictions were 

compared with experimental data in terms of temperature and concentration of major 

species.

Barlow (2003) simultaneously measured the gas temperature, mass fractions of 

major species (O2, N2, H2, H2O), and mass fraction of OH and NO in a turbulent
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nonpremixed hydrogen jet flame at various axial and radial positions. These multiscalar 

measurements were obtained by combining spontaneous Raman scattering, Rayleigh 

scattering, and laser-induced fluorescence. Further information on the experimental setup 

and details of the data can be found elsewhere (Barlow, 2003; Barlow and Carter, 1994, 

1996).

In this work, the model predictions of gas temperature and mass fractions of H2, 

O2, H2O, and OH were compared with Favre averaged measurements. Table 6.2 presents 

the model parameters used in the simulations. Figure 6.1 shows a schematic 

representation of the geometry of the experimental hydrogen jet flame, which was 

simulated in this work for validation of CFD model. It also shows the computational 

domain used in the simulation. Due to the axial symmetry of the experimental setup, one- 

half of the physical domain was sufficient for simulation. Along the symmetry axis and 

the far-field boundary in the radial direction, the gradient of all dependent variables was 

set equal to zero, whereas the remaining boundary conditions were specified according to 

Table 6.2.

Figure 6.2 shows predicted and experimental radial gas temperature profiles at 

various axial positions. In spite of the complex interaction of turbulence, gas-phase 

chemistry and aerodynamics, the computer model yields a satisfactory prediction of the 

flame temperature.

Figures 6.3-6.6 show the comparison between experimental and computed radial 

mass fraction for the following gas-phase species: H2, O2, H2O, and OH. Overall, the 

computer model showed good agreement with the trends observed in the experimental
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Table 6.2: Boundary Conditions for the Simulation of the Nonpremixed 
Hydrogen Jet Flame. Data Source: Barlow (2003).

Parameter Value
Geometry, mm

H2 inlet radius, Ruel 1.875
Visible flame length, L 675

Hydrogen Jet 
Velocity components, m s-1

Axial 296
Radial 0

Turbulent model parameters
Intensity, % 5
Hydraulic diameter, m 0.00375

Temperature, K 295
Mass Fraction, kg kg-1 1.0

Air Coflow
Velocity components, m s-1

Axial 1.0
Radial 0.0

Turbulent model parameters
Intensity, % 5
Hydraulic diameter, m 0.295

Outlet
Turbulent model parameters

Intensity, % 5
Hydraulic diameter, m 0.3
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Figure 6.1: Schematic representation of the geometry of the experimental hydrogen jet 
flame (Barlow, 2003), which was simulated in this work for validation of the CFD model.
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Figure 6.2: Radial gas temperature profiles at various axial positions.
z/L = (a) 1/8, (b) 3/8, (c) 5/8, and (d) 1.
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Figure 6.3: Radial H2 mass fraction profiles at various axial positions.
z/L = (a) 1/8, (b) 3/8, (c) 5/8, and (d) 1.
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Figure 6.4: Radial O2 mass fraction at various axial positions.
z/L = (a) 1/8, (b) 3/8, (c) 5/8, and (d) 1.
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Figure 6.5: Radial H2O mass fraction profiles at various axial positions.
z/L = (a) 1/8, (b) 3/8, (c) 5/8, and (d) 1.
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Figure 6.6: Radial OH mass fraction profiles at various axial positions.
z/L -  (a) 1/8, (b) 3/8, (c) 5/8, and (d) 1.



measurements. The model overpredicts the consumption rate of oxygen (Figure 6.4) and 

the production rate of OH radicals (Figure 6.6). This behavior may be explained by the 

simplified nature of the adopted reaction mechanism (Subsection 6.2.1).

An exhaustive comparison between experimental data and model predictions is 

beyond the scope of this work. Such a study may require the implementation of advanced 

numerical techniques such as direct numerical simulation (DNS) and a comprehensive 

gas-phase reaction mechanism including hundreds of elementary reactions. These types 

of studies commonly contribute to the understanding of various specific phenomena 

occurring in flames such as the turbulence-chemistry interaction and the effect of various 

elementary chemical steps on flame ignition and stability.

Furthermore, these complex simulations are restricted to physical systems with 

simple flow configurations due to their large demand for computing time and resources. 

It is anticipated that the burner and injector geometries for the flash ironmaking reactor 

will involve complicated three-dimensional particle-laden flows (e.g., swirling flows). In 

this work, the objective was to develop a reliable simulation tool capable of representing 

complex particle-laden flows in a combusting environment. Thereby, predicting with 

reasonable accuracy the gas temperature and species distributions of a nonpremixed H2- 

O2 jet flame suffices.

6.4 Simulation of a Lab Flash Reactor

6.4.1 Basis of the Simulation Runs 

The computational model was used to evaluate various designs of a hydrogen- 

oxygen nonpremixed burner to be installed in a lab flash reactor (LFR). The design was
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aimed to quickly react the H2-O2 mixtures inside the reactor, which rapidly generates the 

hot reducing gas, thus better utilizing the reactor volume during the flash reduction of 

iron oxide concentrate particles.

The operating conditions for the lab flash reactor are determined by the following 

chemical reactions:

2H2 + O2 ^  2H2O (6-7)

Reaction (6-7) represents the combustion of hydrogen with oxygen. It is an irreversible 

and exothermic reaction that provides the energy required by the reduction process. The 

reduction of magnetite to metallic iron takes place in the following two successive steps:

Fe3O4 + H2 =3FeO + H2O (6-8)

FeO + H2 = Fe + H2O (6-9)

In the temperature range of interest (1473-1873 K), Reactions (6-8) and (6-9) are 

reversible. The reduction of magnetite to wustite [Reaction (6-8)] is considerably less 

equilibrium limited than the reduction of wustite to metallic iron [Reaction (6-9)]. The 

latter is significantly limited by equilibrium and, consequently, a sufficiently large excess 

of hydrogen over the stoichiometric amount is required to substantially reduce wustite to 

metallic iron [i.e., to achieve a high conversion for Reaction (6-9)]. This can be expressed 

in terms of an excess driving force defined by

P H 2,o #  P H 2,eq

Excess Driving F orce = P H 2° , o f — P H "O ,eq  (6-10)
P n 2,eq

P H 2O ,eq

where Pieq and Pi,off are the partial pressures of the ith species at equilibrium and in the 

off-gas, respectively. The off-gas partial pressures of H2 and H2O used in Equation (6-10)
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are affected not only by the reduction process but also by the partial combustion of 

hydrogen.

The LFR operating conditions for the burner design simulation runs were selected 

based on a target nominal residence time between 2-7 seconds (Choi and Sohn, 2010). 

Concentrate particles consisting of magnetite (Fe3O4) and other gangue materials (mostly 

SiO2) are fed to the reaction shaft at a maximum rate of 0.6 kg h-1. Thermal energy 

generated by the partial combustion of hydrogen with oxygen compensates for the reactor 

heat loss and maintains an off-gas temperature of 1373 K. Excess hydrogen is supplied to 

maintain an excess driving force in the off-gas of 2.8 (250 % excess hydrogen). Material 

balances yield the required flow rates of hydrogen and oxygen to effect Reactions (6-8) 

and (6-9) to completion while maintaining the target excess driving force.

In this work, hydrogen is only consumed by combustion; that is, the gas-solid 

reduction reactions are not included in the model. In addition, the stoichiometry of 

Reaction (6-7) indicates that for every two moles of hydrogen that are consumed, two 

moles of water vapor are produced. As a result, the total volumetric flow rate of the gas 

mixture after combustion is equal to the input hydrogen volumetric flow rate. Hence, the 

total volumetric flow rates are used when referring to the lower (820 NL h-1) and upper 

(8200 NL h-1) operating conditions. In this section, the flow rates are given at normal 

condition; that is, 1 atm and 273 K.

Table 6.3 presents the lower (820 NL h-1) and higher (8200 NL h-1) operating 

conditions for the lab flash reactor. Table 6.4 shows the resulting nominal residence times 

for the gas mixture and particles. It is noted that the particle nominal residence time
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Table 6.3 Operating Conditions for the Lab Flash Reactor.

Parameter Values
Lower Higher

Solid concentrate
Feed rate, kg h-1 0.06 0.6
Average particle size, |im 32 32

Process Gases
Hydrogen (H2) 

Flow rate, NL h-1 820 8200
Input temperature, K 1273 1273

Oxygen (O2)
Flow rate, NL h-1 56 560
Input temperature, K 298 298

Furnace wall temperature, K 1373 1373
Off-gas H2/H2O molar ratio 5.14 5.14
Excess driving force 2.8 2.8

Table 6.4: Nominal Residence Times in the Lab Flash Reactor.

Parameter Lower
Values

Higher
Average gas velocitya, m s-1 0.05 0.5
Particle terminal velocity, m s-1 0.10 0.10
Nominal residence times, s

Gas mixture 21.6 2.2
Particles 6.7 1.8

aCalculated at 1373 K.



ranges from 1.8 (820 NL h-1) to 6.7 (8200 NL h-1) seconds. In this work, the nominal 

residence time of the iron oxide concentrate particles was calculated using the 

methodology developed by Choi (2010) and considering a reaction zone length of 1 m.

6.4.2 Simulation Strategy 

Two-dimensional axisymmetric simulations were first carried out to obtain basic 

information about the proposed nozzle design such as the ratio of linear inlet velocities of 

hydrogen and oxygen, the stability of H2-O2 flame, and the flame length. A three­

dimensional simulation approach was then undertaken for more detailed and practical 

analysis considering the fact that the proposed nozzle design was three-dimensional in 

nature.

Figure 6.7 shows the three-dimensional geometry of the lab flash reactor with the 

designed burner. The latter consists of four H2 special pattern slotted ports surrounding 

four O2 inlet ports. This configuration was chosen so that the H2 distribution provides a 

shielding effect on the O2 mass transfer. Tables 6-5 and 6-6 present the parameters used 

in the simulation runs of the lower and higher operating conditions. Due to symmetry, 

only one-fourth of the reactor was simulated. The resulting computational mesh consisted 

of 292 566 cells.

6.4.3 Distributions of Velocity, Temperature and Species Concentrations 

Figures 6.8 and 6.9 show gas streamlines for the low (820 NL h-1) and high (8200 

NL h-1) hydrogen flow rate conditions, respectively. A streamline represents the path of a
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Figure 6.7: Schematic representation of the three-dimensional geometry 
used in the simulation of the lab flash reactor.

(a) Reactor and (b) designed burner.
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Table 6.5: General Parameters for the Simulation Runs 
of the Lab Flash Reactor.

Parameter Value
Reactor geometry

Diameter, m 0.19
Length, m 1.016

Wall temperature
Top reactor wall 1373
Side reactor wall 1373

Convective heat transfer coefficient, W m"2 K"1
External burner walls 10.9

Surface emissivities (inlets, outlet and walls) 0.3
Particle streams

Temperature, K 298
Particle velocity, m s"1 0.10

Particle density, kg m"3 5170
Number of injection points for the cloud model 3
Cloud diameters, m

Minimum 6.3x10"3
Maximum 0.19

Table 6.6: Inlet Boundary Conditions for the Simulation 
of the Lab Flash Reactor.

ValuesParameter
Lower Higher

Hydrogen stream
Temperature, K 
Mass flow rate, kg s"1

1273 1273
5.2x10"6 5.2x10"6

Turbulent intensity, % 5 5
Hydraulic diameter, m 0.0064 0.0064

Oxygen stream
Temperature, K 298 298
Mass flow rate, kg s"1 5.6x10"6 5.6x10"6
Turbulent intensity, % 5 5
Hydraulic diameter, m 0.0064 0.0064
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Figure 6.8: Gas streamlines inside the lab flash reactor. Lower flow rate (820 NL h'1) 
condition. Color scale represents velocity magnitude. Values in m s-1.
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Figure 6.9: Gas streamlines inside the lab flash reactor. Higher flow rate (8200 NL h'1) 
condition. Color scale represents velocity magnitude. Values in m s-1.



fluid element. It is noted that the radial expansion of the gas flow is simulated correctly. 

In both cases, recirculation zones are formed due to the lack of a surrounding secondary 

flow that can sustain the entrainment rate of the jet flame (Beer and Chigier, 1972). The 

length of the recirculation zone at a low hydrogen flow rate is significantly shorter than 

that at a high hydrogen flow rate. The latter is a result of the faster entrainment rate of the 

high flow rate flame. The flame length is proportional to the length of the recirculation 

zone in confined diffusion flames.

Figure 6.10 shows a comparison of the temperature distributions inside the 

reactor. The maximum flame temperatures for the lower (820 NL h-1) and higher 

operating (820 NL h-1) conditions were 2726 and 3155 K, respectively. The latter value is 

close to the adiabatic flame temperature (3079 K) of a stoichiometric H2-O2 mixture 

(Turns, 2012). It was found that the largest portion of the combustion reactions in the 

lower condition flame takes place in the vicinity o f the O2 port. It is noted that the higher 

condition flame provides a higher temperature and a longer flame compared to that o f the 

lower condition.

In this work, the temperature distribution was found to be affected not only by the 

combustion reaction but also by the heat loss from the reactor. For a small scale reactor 

like the lab flash reactor, higher heat release rates from the burner are necessary to 

achieve and/or maintain high temperatures inside the reactor. Unfortunately, a higher heat 

release from the burner would translate into an increase in the flow rates o f hydrogen and 

oxygen which, in turn, would shorten the residence time of the particles.

The consumption of O2 is a major concern in the design of the nozzle. Thus, the
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Figure 6.10: Contours of temperature in the lab flash reactor. Values in kelvins. 
Total flow rates: (a) 820 and (b) 8200 NL h-1.



design of the nozzle is aimed at providing the best O2 shielding; that is, O2 should not be 

transferred out of the flame core. Figure 6.11 shows the O2 mole fraction distributions. In 

both cases, O2 does not escape beyond the shield provided by H2. It is also noted that its 

complete consumption takes place within 15 cm from the nozzle tip in the axial direction 

in both cases. The above results indicate that the designed nozzle is promising.

Figure 6.12 shows a comparison of the H2/H2O molar ratio distributions for the 

lower (820 NL h"1) and higher (8200 NL h"1) operating conditions. This ratio represents 

the excess driving force for the reduction reactions. In both cases, the expected off"gas 

H2/H2O molar ratio is 5.14, that is, log10(H2/H2O) = 0.71. The upper values in the color 

scale (e.g., red color, H2/H2O = 32) represent zones rich in hydrogen, that is, highly 

reducing. These are narrow zones located in the mixing region next to the flame. In 

contrast, the lower values (e.g., dark blue, H2/H2O = 0.032) correspond to lean hydrogen 

zones, that is, highly oxidizing. These zones are concentrated within the flame core which 

is where most of the water vapor is generated. In both cases, homogenous distributions of 

H2/H2O are developed once the flame zone is passed.

By comparing Figures 6"10 and 6"12, it is noted that the flame length determines 

the length of the homogenous H2/H2O molar ration zones. Larger flames result in shorter 

homogeneous H2/H2O zones. From the point of view of reactor design, it is therefore 

desirable to generate shorter flames because they will provide larger homogenous 

temperature and H2/H2O (excess driving force) distributions and thus, improved reactor 

volume utilization. In this work, the length of the simulated flames was only a function of 

the volumetric flow rates of oxygen. Hence, the shorter flame was generated at the
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(b)

Figure 6.11: Contours of O2 mass fraction inside the lab flash reactor. 
Total flow rates: (a) 820 and (b) 8200 NL h-1.
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Figure 6.12: Contours of H2/H2O molar ratio inside the lab flash reactor. 
Total flow rates: (a) 820 and (b) 8200 NL h-1. Scale values 

indicate logarithm (base 10) of the H2/H2O molar ratio.



expense of a lower heating rate from the burner. This restriction can be eliminated by 

using swirl burners. By controlling the amount of angular momentum imparted to the fuel 

and oxidant streams, the length and shape of the flame can be controlled.

6.4.4 Motion and Heating of Iron Oxide Concentrate Particles 

The interaction of iron oxide concentrate particles with the gas phase was 

incorporated into the simulation from a Lagrangian viewpoint. Uniform size inert 

particles capable o f interchanging momentum and energy with the surroundings were 

injected from three points evenly located on the burner surface center within a diameter 

of 6.35 mm. Tables 6.5 and 6.6 show the parameters used in the simulations. The 

predicted mass-average particle residence times were compared with nominal ones for 

the lower (820 NL h-1) and higher (8200 NL h-1) operating conditions.

Due to the heating of the particles, the maximum gas temperature (Figure 6.13) 

decreased by about 200 K [see Figure 6.10(b)] for the higher condition (8200 NL h-1). 

Figure 6.14 shows a comparison of the mass-average particle temperature profiles along 

the reactor axis. For the lower (820 NL h-1) condition, the particles reached a maximum 

temperature lower than 2000 K. In contrast, particles reached a maximum temperature 

close to 2500 K in the higher flow (8200 NL h-1). In both cases, these high maximum 

temperatures will lead to the melting of the concentrate particles.

Figure 6.15 shows particle trajectories for the higher (8200 NL h-1) condition. 

Under this condition, the maximum particle residence time at 1 m from the injection 

point is approximately 0.5. Figure 6.16 shows a comparison of the mass-average particle
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Figure 6.13: Contours of temperature inside the lab flash reactor for the higher 
(8200 NL h"1) condition. Particle heating by the gas phase 

is accounted for in the calculations. Values in kelvins.
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Figure 6.14: Comparison of computed mass-average particle temperatures.
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Figure 6.16: Comparison of computed mass-average particle residence time.

residence time profiles along the reactor axis. At 8200 NL h-1, the predicted average 

particle residence time is 0.5 s at the reactor outlet. This value is significantly shorter than 

the nominal time of 1.8 s (see Table 6.4). At 8200 NL h-1, the predicted average residence 

time is 2.5 s at the reactor outlet. Again, this time is shorter than the nominal time of

6.7 s.

The importance of coupling fluid dynamics calculations with the particle force 

balance [Equation (6-5)] to obtain realistic particle residence times was demonstrated. 

Shorter residence times result from the exchange of momentum between particles and gas 

and from nonideal flow patterns. Therefore, CFD-based particle residence times should 

be calculated when analyzing experimental reduction degrees and/or designing reaction



vessels (i.e., selection of length and diameter). Furthermore, the ability to calculate 

particle trajectories will be useful for devising the best method for injecting the 

concentrate particles in the flash reactor.

In summary, the model was capable of simulating the simultaneous interaction of 

the hydrogen-oxygen combustion with the presence of iron oxide concentrate particles in 

a complex three-dimensional geometry. This model will be instrumental for the design of 

components (burner, reactor, particle injectors) as well as the scale up of this novel flash 

ironmaking technology.

6.5 Concluding Remarks 

A three-dimensional computational fluid dynamics model was developed for a 

novel flash ironmaking process. The model incorporates the turbulent governing 

equations of overall continuity, momentum, energy, and species transport including gas- 

phase reaction kinetics. The comparison of the model predictions with benchmark 

experimental data of a nonpremixed hydrogen jet flame showed good agreement in terms 

of gas temperature and species concentrations. The model was used to evaluate the design 

of a hydrogen-oxygen burner for a lab flash reactor. The distributions of velocity, 

temperature, and species concentrations, and the concentrate particle trajectories in a lab 

flash reactor were computed and analyzed.

The model was capable of simulating the simultaneous interaction of the 

hydrogen-oxygen combustion with the presence of iron oxide concentrate particles in a 

complex three-dimensional geometry. The importance of CFD modeling for predicting 

more realistically the residence time of concentrate particles was demonstrated. The
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present model shows potential as a useful tool for further design and scale up of this 

novel flash ironmaking technology.
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

Computational fluid dynamic modeling was conducted for three chemically- 

reacting gas-particle flows: chemical vapor synthesis of tungsten carbide and aluminum 

nanopowders, flame synthesis of silica nanopowder, and a novel flash ironmaking 

process based on the direct gaseous reduction of iron oxide concentrate particles. The 

conclusions from this work can be summarized as follows.

The chemical vapor synthesis of tungsten carbide nanopowder from tungsten 

hexachloride in a tubular reactor was simulated by a two-dimensional multiphase 

computational fluid dynamic (CFD) model. A parametric study was conducted to 

determine the nucleation and growth rate constants. Experimental results obtained for the 

synthesis of WC nanopowder from WCl6 with H2 and CH4 in a tubular reactor system 

were used to validate the model. The combination of nucleation rate and growth rate 

constants that yielded the best agreement with experimental data was determined. It is 

noted that this work is the first application of CFD in the chemical vapor synthesis of WC 

nanopowder.

The synthesis of silica nanopowder from tetraethylorthosilicate in a bench-scale 

flame spray pyrolysis reactor was simulated. The transport and evaporation of liquid 

droplets were treated from a Lagrangian viewpoint. The population balance model was 

solved for particles undergoing homogeneous nucleation and Brownian coagulation. The



nucleation rate was computed based on the rates of thermal decomposition and oxidation 

of the precursor with no adjustable parameters. The computed results show that the model 

is capable of reproducing the magnitude as well as the variations of the average particle 

diameter with different experimental conditions using a single value of the collision 

efficiency factor.

Three"dimensional simulations of a chemical vapor synthesis reactor of aluminum 

nanopowder were performed. The nucleation rate was computed using an expression 

from the classical nucleation theory. The growth rate was obtained by the combined 

effect of vapor condensation and coagulation. The comparison of the model predictions 

with the available experimental data showed good agreement under different operating 

conditions without the need of adjustable parameters. Computed results indicated that 

particle aggregation determined the final particle size in the simulated chemical vapor 

synthesis reactor.

In the simulation of the flash ironmaking reactor, the comparison of the model 

predictions with benchmark experimental data of a nonpremixed hydrogen jet flame 

showed good agreement in terms of gas temperature and species concentrations. The 

model was used to evaluate the design of a hydrogen"oxygen burner for a lab flash 

reactor. The distributions of velocity, temperature, and species concentrations, and the 

concentrate particle trajectories in a lab flash reactor were computed and analyzed.

The model was capable of simulating the simultaneous interaction of the 

hydrogen"oxygen combustion with the presence of iron oxide concentrate particles in a 

complex three"dimensional geometry. Analysis of the predicted particle residence times 

inside the lab flash reactor demonstrated the importance of CFD calculations for
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residence time calculations. The present model shows potential as a useful tool for further 

design and scale up of this novel flash ironmaking technology.

In summary, chemically reacting gas-particle flows involve complex interactions 

between physical and chemical processes, and as a result, they are difficult to study by 

traditional experimental methods alone. Consequently, methodologies based on 

computational modeling represent the best alternative to design and operate such 

processes. For example, successful commercialization of the novel ironmaking process 

depends largely on our ability to scale up the laboratory experimental setups. 

Furthermore, the operational optimization of existing processes such as the flame 

synthesis o f silica nanopowder can also benefit from the application of mathematical 

models, such as the one developed in this work.

7.2 Recommendations 

The development o f theory-based expressions for the nucleation and growth of 

tungsten carbide nanoparticles and an expression for the rate o f sintering of silica 

nanoparticles based on experimental data are recommended. These improvements would 

make the model presented in this work more realistic and would reduce the need of 

adjustable parameters.

Further experimental work characterizing the evolution of tungsten carbide and 

silica nanoparticles as a function of the reactor axial position would also be beneficial. 

This would provide more experimental data in the development of more realistic models 

for the nucleation and growth processes. It would also provide more experimental data 

for model validation.

123



For the simulation of the flash ironmaking reactor, it is recommended that a gas- 

solid reaction rate expression be incorporated into the model for predicting the reduction 

rate of iron oxide concentrate particles in hydrogen-containing gaseous streams.
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