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ABSTRACT 
 
 

 The palladium-catalyzed functionalization of sp3-hybridized carbons has been an 

active area of research in recent years.  In order to accomplish such transformations, 

control of β-hydride elimination is one of the central issues to be addressed.  In our 

group, palladium-catalyzed hydro- and difunctionalization reactions of alkenes have been 

a long-standing area of interest, and we have developed several catalytic systems that 

achieve precise control of β-hydride elimination from various Pd complexes.  Three of 

these systems are presented in this thesis. 

In the first chapter, a hydroalkoxylation of styrenes is discussed.  In this method, 

it is proposed that a Pd hydride is generated via Pd-catalyzed aerobic oxidation of an 

alcohol solvent.  The substrate would then insert into the Pd–H bond to form a Pd alkyl 

intermediate, which undergoes nucleophilic substitution to yield the overall 

hydroalkoxylation product.  Mechanistic experiments performed in parallel with the 

development of this transformation highlighted the precise control over relative rates of 

the different steps that is necessary for the reaction to proceed effectively.  Importantly, 

the stabilization imparted by π-benzyl interactions on the Pd alkyl intermediates was 

found to be crucial to allow for their functionalization. 

In the second chapter, an asymmetric hydroarylation of styrenes and dienes is 

described.  This was developed on the basis of several racemic styrene and diene 

hydroarylation reactions previously reported by our laboratory.  Analogously to the 

hydroalkoxylation, oxidation of the alcohol solvent was proposed to provide the 



hydrogen incorporated into product; and formation of a Pd π-benzyl or π-allyl 

intermediate was found to be essential for further functionalization.  Toward the 

development of an asymmetric variant of this reaction, several classes of ligands were 

explored, with bisoxazolines giving the highest enantioselectivities.  Bisoxazolines were 

then systematically modified and evaluated. 

As the effort toward an asymmetric hydroarylation was only moderately 

successful, we chose to investigate other routes to access hydroarylation-type products, as 

presented in Chapter 3.  Specifically, we decided to access Pd π-allyl complexes from 

homoallyl electrophiles by “walking” the Pd along the carbon chain of the substrate.  

This would result in a novel approach to Pd π-allyl complexes and their functionalization, 

which has the potential to be further developed into an asymmetric reaction.  The 

development of this reaction as well as the preliminary scope and mechanism are 

presented. 
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CHAPTER 1 
 
 

DEVELOPMENT OF A PD-CATALYZED HYDROHALOGENATION /  
 

HYDROALKOXYLATIONOF STYRENES 
 
 

Introduction 

Carbon-oxygen and carbon-halogen bonds are prevalent in organic compounds, 

and a vast number of methods exist for their introduction into carbon frameworks.1  A 

simple and atom-economic method is the addition of HX or HOR across a double bond, 

which can be catalyzed by acids to access the corresponding Markovnikov products.2  

However, these transformations often require forcing conditions, and are applicable to a 

limited substrate scope.  Therefore, it would be desirable to develop a mild, general 

method to affect these types of transformations.  This chapter describes our exploits in 

this area, resulting in a Pd-catalyzed hydrohalogenation of styrenes, the product of which 

undergoes a substitution reaction to give an overall hydroalkoxylation product.  

Throughout the development of this reaction, mechanistic experiments were performed to 

support the working mechanism, and to provide the basis for hypothesis-driven 

optimization.  Through these mechanistic studies, it was also found that control of β-

hydride elimination was crucial for the development of this reaction. 

 
 
 
 
 



Background 

Brønsted Acid-Promoted Hydrohalogenation Reactions 

The Markovnikov addition of acids across double bonds is one of the classic ways 

to introduce halogen functionalities into organic molecules.  However, strong acids are 

necessarily used as stoichiometric reagents in these reactions, resulting in harsh reaction 

conditions.  Additionally, these reactions proceed via carbocation intermediates, which 

are prone to undergo undesired rearrangements and other side reactions.  For these two 

reasons, the substrate scope is limited, and this type of reaction is typically not used in 

targeted syntheses.3  

In an effort to make alkene hydrohalogenations more practical, methods have 

been developed utilizing phase transfer catalysts, which permit the use of aqueous acid.  

Specifically, Landini and Rolla reported a hydrohalogenation reaction using 

phosphonium salts as phase transfer catalysts (Figure 1.1).4  Both activated and 

unactivated alkenes were competent substrates for this reaction; however, the functional 

group tolerance was severely limited by the use of concentrated acids and elevated 

temperatures.  

Additionally, several groups have developed methods to form acids in situ.  

Yadav and Babu reported a hydrochlorination of alkenes using AcCl and EtOH to form  

 

	

Figure 1.1. Hydrohalogenation of alkenes using phase transfer catalysis (adapted from 
Landini and Rolla, 1980). 

2



HCl in situ (Figure 1.2).5  While the yields are good for substrates that are competent, the 

reaction is limited to substrates that form stabilized carbocations, such as electron-rich 

benzylic, allylic, or tertiary cations.  Similarly, Campos et al. published a hydroiodination 

of alkenes and alkynes, using a combination of Cu(II), I2, and Et3SiH to form HI in situ 

(Figure 1.3).6  While the scope limitations are not explicitly discussed in the paper, the 

published scope is limited to styrenes and an α,β-unsaturated esters. 

Shimizu et al. reported the use of TiI4 for the hydroiodination of alkenes and 

alkynes (Figure 1.4).7  Simple primary as well as symmetric secondary alkenes are 

competent substrates.  The authors performed deuterium labeling experiments, and report 

“little or no” deuterium incorporation when using D2O, and no deuterium incorporation 

using CD2Cl2.  The source of the proton incorporated into product as well as the overall 

reaction mechanism is thus unclear.  

 
 

	

Figure 1.2. Hydrochlorination of alkenes with HCl generated in situ (adapted from Yadav 
and Babu, 2005). 

 

	

Figure 1.3. Hydroiodination of alkenes with HI generated in situ (adapted from 
Campos et al., 2002). 
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Ph

1) 1.0 equiv TiI4
CH2Cl2, rt

2) H2O Ph I

78% yield 	

Figure 1.4. Hydroiodination of alkenes with TiI4 (adapted from Shimizu et al., 
2005). 

 
 

Mechanistically Distinct Hydrohalogenation Reactions 

To the best of our knowledge, apart from the work outlined in this chapter, there 

is one example reported of a hydrohalogenation of alkenes proceeding via a mechanism 

unrelated to those discussed above.  Gaspar and Carreira developed a Co-catalyzed 

hydrochlorination of alkenes, which is proposed to proceed via a radical process (Figure 

1.5).3  The proposed mechanism is initiated by formation of a cobalt hydride, into which 

the alkene substrate inserts.  The cobalt alkyl complex then undergoes homolytic 

cleavage to form an alkyl radical, which abstracts a chlorine atom from TsCl to give the 

product and a toluenesulfonyl radical.  The Co hydride is regenerated by PhSiH3.  The 

toluenesulfonyl radicals are proposed to form sulfinylsulfonates, which are quenched by 

EtOH as evidenced by the observation of ethyl sulfinate in the reaction mixture.  The 

overall mechanism is proposed based on related reactions previously developed by the 

Carreira group.8   

Alternatively, it could be envisioned that HCl formed from TsCl and EtOH (along 

with TsOEt) was the true hydrochlorination reagent.  A control experiment was thus 

performed in the absence of alkene, showing that only small amounts of TsOEt were 

formed.  Additionally, a deuterium labeling experiment using PhSiD3 was carried out, 

showing that the proton incorporated into product originates from the silane.  The scope  
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Figure 1.5. Hydrochlorination of alkenes via proposed radical mechanism (adapted from 
Gaspar et al., 2008). 

 
 

of this reaction includes several acid-sensitive functional groups such as an ester, an 

amide, and a silyl-protected alcohol.  Primary as well as 1,1-disubstituted and tertiary 

alkenes are compatible with these reaction conditions.   

 
Brønsted and Lewis Acid-Catalyzed Hydroalkoxylation Reactions 

As discussed above, stoichiometric amounts of acids are typically necessary for 

acid-promoted hydrohalogenation reactions.  In contrast, hydroalkoxylation reactions can 

be promoted by catalytic amounts of strong Brønsted acids such as TfOH (Figure 1.6 

(top)).9,10  However, the reaction conditions have to be controlled carefully even with  

 

5



 

 

 

Figure 1.6. Examples of acid- and metal-catalyzed hydroalkoxylations. 
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simple substrates to avoid side reactions.9  Thus, numerous methods have been developed 

using Lewis acid catalysts instead, which appear to function under less stringent 

conditions (Figure 1.6).11-16  A wide variety of Lewis acids catalyze this process, which 

can be rationalized by the proposed general mechanism shown in Figure 1.7.  Typically, 

these reactions proceed via activation of the alkene by the Lewis acid followed by 

nucleophilic attack and protonation of the metal alkyl species.  This mechanism 

essentially parallels that of acid-catalyzed hydroalkoxylations (Figure 1.7). Based upon 

this, any sufficiently strong π-acidic Lewis acid should be a competent catalyst.  The 

scope of these reactions varies only slightly, with most of them comprising 

intramolecular reactions of simple substrates.  Of note, intermolecular variants have been 

developed as well.16-18 

Interestingly, a number of these catalysts are metal triflates (or combinations of 

metal halides and AgOTf), which has prompted several groups to question the nature of 

the active catalyst.19-21  Specifically, it was suspected that small amounts of triflic acid 

were formed in the reaction, which acts as the active catalyst.  In 2006, Hartwig and 

coworkers reported their observations that the outcomes of acid-catalyzed 

hydroalkoxylations and hydroaminations closely resembled those of metal-catalyzed 

reactions.19  In the original reports of the metal-catalyzed reactions, control 

 

	

Figure 1.7. Proposed mechanisms for acid- and metal-catalyzed hydroalkoxylations. 
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reactions using acid catalysts were typically performed with higher loadings of acid, 

which led to lower yields of the desired products due to side reactions.  Based on these 

results, researchers would conclude that acid catalysis was not operational in their 

systems.  Hartwig and coworkers found that if the acid concentration was kept low 

enough similar results could be obtained, both in terms of yields and product distribution.   

To test their hypothesis that a small amount of acid was the active catalyst, they 

designed a substrate containing a terminal as well as a trisubstituted double bond (Figure 

1.8).  It was assumed that under acid catalysis, the trisubstituted double bond would react 

preferentially, giving the Markovnikov product 1.2.  Under metal catalysis, however, the 

sterically less hindered terminal double bond should react preferentially to yield products 

1.3 or 1.4.  Hydroalkoxylation reactions were then performed using several different  

 

	

Figure 1.8. Parallel outcomes of metal- and acid-catalyzed hydroalkoxylation (adapted 
from Rosenfeld et al., 2006). 

 
 

8



published protocols.  It was found that, indeed, product 1.2 was the only observed 

product in all cases examined.  While this result does not explicitly support the presence 

of Brønsted acid, it does cast doubt on the nature of the active catalyst in these reactions. 

More recently, Ujaque and coworkers computed the relative energies for TfOH- 

and (PMe3)AuOTf-catalyzed hydroamination and hydroalkoxylation reactions.20  Overall, 

they found that both acid- and metal-catalyzed pathways were energetically reasonable 

for both reactions.  In the case of the addition of phenol to ethylene (their model 

hydroalkoxylation), the global reaction barrier was slightly lower for the acid-catalyzed 

pathway.  While this result seems to show that the acid-catalyzed pathway is favored, it 

disregards the fact that (PMe3)AuOTf may not be present in the reaction mixture, if 

HOTf is formed.  It would thus be more interesting to investigate the mechanism and 

energy barriers associated with decomposition of the metal catalyst, and to determine 

whether formation of TfOH is possible. 

In 2011, Hintermann and coworkers reported their investigations of generation of 

triflic acid from metal triflates under hydroalkoxylation reaction conditions.21  They 

evaluated several different metal catalysts, and observed the formation of TfOH (as well 

as other byproducts of its formation) by NMR under the reaction conditions.  They 

concluded that AgOTf or AuOTf abstract chloride ions from chlorinated solvents such as 

DCE followed by elimination of TfOH.  Furthermore, a catalyst mixture of [Cp*RuCl2]2, 

AgOTf, and PPh3 in toluene undergoes an undefined redox reaction to give a RuII species 

and TfOH.  While only a few metal catalysts were evaluated in this way, this report gives 

substantial evidence supporting the involvement of TfOH in some “metal-catalyzed” 

reactions.  This calls into question the mechanisms of metal triflate-catalyzed 

9



hydroalkoxylations; however, it should be noted that there are examples where triflate is 

not present in the reaction, such as a system reported by Widenhoefer and 

coworkers.14,18,22 

Lambert and coworkers published an interesting application of the deliberate use 

of Bi(OTf)3 as a precursor for both TfOH and TMSOTf.23  They achieved the formation 

of substituted tetrahydrofurans from homoallylic aldehydes and TMS-protected enol 

ethers via a Mukaiyama aldol/hydroalkoxylation sequence (Figure 1.9).  To summarize 

this section, there is a variety of Lewis acid catalysts for olefin hydroalkoxylations.  

Unfortunately, the nature of the active catalyst is often questionable, and detailed 

mechanistic work would be necessary to establish it for each case.  This is complicated 

by the fact that the reaction mechanisms for Lewis and Brønsted acid-catalyzed processes 

are closely related, and the two are not easily distinguished. 
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O
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Figure 1.9. Sequential Mukaiyama aldol/hydroalkoxylation (adapted from Kelly et al., 
2009). 
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Mechanistically Distinct Hydroalkoxylation Reactions 

In addition to the catalytic systems described above, several reactions have been 

developed that proceed through mechanisms unrelated to the ones described above.  

Several noteworthy examples will be discussed here. 

In 2007, Sakurai and coworkers reported an intramolecular hydroalkoxylation 

catalyzed by gold nanoclusters stabilized by poly(N-vinyl-2-pyrrolidone) with an average 

diameter of 1.3 nm (Au:PVP(1.3)) (Figure 1.10).24  When exposed to air, these 

nanoclusters are proposed to absorb oxygen, giving rise to Lewis acidic sites on the 

cluster surface.  These sites have been found to be competent catalysts for several 

reactions, such as aerobic alcohol oxidation25,26 and homocoupling of arylboron  

 

	

Figure 1.10. Intramolecular hydroalkoxylation catalyzed by gold nanoclusters (adapted 
from Kamiya et al., 2007). 
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compounds.27  While the mechanism of the alkene hydroalkoxylation was not studied in 

great detail, deuterium labeling studies revealed that the proton incorporated into the 

substrate stems from DMF.  Based on this result and the mechanisms of related reactions, 

the mechanism shown in Figure 1.10 was proposed, wherein the substrate alkene and 

hydroxyl group are initially coordinated to the cluster, followed by oxyauration of the 

alkene, giving a gold alkyl species.  This intermediate would undergo homolytic cleavage 

followed by abstraction of a hydrogen atom from DMF to give the desired product.  The 

DMF radical would then undergo single electron reduction by the gold nanocluster to 

form an anion, which would be protonated by the alcohol substrate or water. 

Furthermore, our laboratory reported a Pd-catalyzed hydroalkoxylation of 

vinylphenols in 2006 (Figure 1.11).28  The mechanism of this and related systems has 

been studied in some detail, and it is proposed to proceed as shown in Figure 1.11.28-30  

The reaction is initiated via oxidation of the alcohol solvent by PdII, giving a Pd hydride 

intermediate A.  The alkene substrate is then coordinated to the Pd complex, and inserted 

into the Pd–H bond, which can yield two isomeric intermediates C and D.  Based on 

deuterium labeling experiments, it is proposed that both isomers are formed reversibly, 

but only D, where Pd is bound to the benzylic carbon, proceeds to product via 

deprotonation of the phenol to give ortho-quinone methide E.  This intermediate is 

attacked by a second equivalent of alcohol to yield the desired product, while Pd0 is 

oxidized by CuCl2 and O2 to re-form the PdII catalyst. 

In this initial system, the alcohol solvent acted as both the nucleophile and the 

source of the proton incorporated into product.  Later, however, it was found that 1-  
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Figure 1.11. Hydroalkoxylation of vinylphenols (adapted from Gligorich et al., 2006). 
 
 

phenylethanol could be used as a hydride source, which allowed for lower loadings of the 

sacrificial alcohol as well as the incorporation of a greater variety of external 

nucleophiles.31  Unfortunately, this system was still limited to the use of vinylphenols as 

substrates, since the phenol plays an integral part in the reaction mechanism.   

 
Control of β-Hydride Elimination to Achieve Pd-Catalyzed Hydro- and 

Difunctionalizations of Alkenes 

The Pd-catalyzed hydroalkoxylation of vinylphenols discussed in the previous 

section is an unusual example of avoiding β-hydride elimination from a Pd alkyl 

intermediate.  There is a variety of mechanistic scenarios wherein β-hydride elimination 

13



can be controlled to achieve hydro- and difunctionalizations of alkenes.32,33  Four 

fundamental approaches to accomplish this will be discussed in this section.   

Absence of appropriately placed protons.  The most straightforward of these 

approaches is to design the substrate in such a way that there is no hydrogen in a position 

accessible for β-hydride elimination.  This concept was utilized by Loh and coworkers in 

an interesting intramolecular dioxygenation of alkenes (Figure 1.12).34  It is proposed that 

the alkene substrate is coordinated to Pd followed by intramolecular nucleophilic attack 

by the oxime to give Pd alkyl intermediate A.  As there are no protons available for β-

hydride elimination, the Pd is replaced by either hydroxy or acetoxy groups to form a 

mixture of products.  The acetate is then hydrolyzed to obtain the pure hydroxy-

substituted product.  Loh and coworkers performed labeling experiments to establish O2 

as the source of the hydroxide.  However, it is unclear how the products are formed from 

A. 

Blocking of coordination sites.  Alternatively, coordination sites on Pd can be 

blocked by excess halides or other ligands.  Using this concept, Henry and coworkers  

 

	

Figure 1.12. Intramolecular dioxygenation of alkenes (adapted from Zhu et al., 2010). 
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developed an asymmetric chlorohydroxylation of alkenes35-37 as well as an asymmetric 

dibromination38 using excess amounts of lithium salts to prevent the formation of 

Wacker-type products.  However, this approach is inherently limited to the addition of 

nucleophiles available in the form of metal salts.  The use of tridentate pincer ligands to 

block coordination sites is a potentially more general approach.  Michael and coworkers 

made use of this in their intramolecular hydroamination of alkenes (Figure 1.13).39,40  A  

 

	

Figure 1.13. Intramolecular hydroamination of alkenes (adapted from Cochran et al., 
2008). 
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PNP-type pincer ligand in combination with dicationic Pd was found to be a competent 

catalyst for this reaction.  To confirm that the ligand was necessary for the desired 

reaction, the reaction was performed without ligand, which led to the formal Wacker 

oxidation of the alkene, presumably via aminopalladation and β-hydride elimination 

(Figure 1.13.B).  When more in depth mechanistic studies were performed,40 it was found 

that protonation of the Pd alkyl complex was rate limiting, and the Pd alkyl species was 

in fact stable enough to be isolated.  Furthermore, an unusual inverse dependence of the 

reaction rate on the substrate concentration was observed, which was explained by the 

carbamate protecting group acting as a Brønsted base, binding protons in the 

reactionmixture and slowing down the rate-limiting protonolysis step.  Lastly, deuterium 

labeling studies showed that the proton incorporated into product originated from the 

protected amine, and was incorporated exclusively at the methyl position.  

Rapid transformation of Pd alkyl complex.  The concepts discussed above prevent 

β-hydride elimination operate by making it mechanistically impossible to occur, either 

through the absence of protons at the appropriate position, or by blocking cis 

coordination sites.  A different approach would be to kinetically “outcompete” β-hydride 

elimination by providing a mechanistic pathway that is more rapid, and leads to 

intermediates that do not undergo β-hydride elimination.  One approach to this is the 

rapid oxidation of the PdII alkyl intermediate to PdIV.  This has been an active area of 

research in recent years, and correspondingly, there is a variety of catalytic systems that 

make use of this concept.  The aminoacetoxylation of alkenes in particular has garnered a 

lot of attention from various groups.  This reaction was pioneered by Bäckvall and 

coworkers around 1980, although the reaction was then stoichiometric in Pd and the 
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regioselectivity of the addition was poor (Figure 1.14).41  However, it should be noted 

that Bäckvall and coworkers also developed an asymmetric variant of this reaction, 

giving the product in up to 60% ee.42  During the mid 2000s, several groups became 

interested in this type of transformation: Sorensen and coworkers published an 

intramolecular aminoacetoxylation, using a protected aminoalkene substrate.43  Sanford 

and coworkers reported the complementary intramolecular reaction, utilizing 

hydroxyalkenes,44 and an intermolecular variant was developed by Liu and Stahl (Figure 

1.15).45  This reaction is proposed to proceed by initial aminopalladation to form a PdII  

 

	

Figure 1.14. Early example of an intermolecular aminoacetoxylation of alkenes (adapted 
from Bäckvall et al., 1980). 

 

 

Figure 1.15. Intermolecular aminoacetoxylation of alkenes (adapted from Liu et al., 
2006). 
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alkyl complex, which is rapidly oxidized to PdIV, thus avoiding β-hydride elimination.  

C–O reductive elimination completes the catalytic cycle, yielding the desired product 

along with the PdII catalyst. 

Additional reactions were developed using this same concept, notably alkene 

diamination and dioxygenation reactions,46-49 a cyclopropanation of enynes 

(independently reported by Sanford and Tse),50,51 and an arylhalogenations of alkenes 

(Sanford and coworkers).52,53  The arylhalogenation is especially interesting in that two 

product isomers (the 1,2- or 1,1-arylhalogenation product) can be accessed depending on 

the terminal oxidant (Figure 1.16).  In both cases, an initial arylpalladation step results in  

 

	

Figure 1.16. Arylhalogenation of alkenes (adapted from Kalyani et al., 2010). 
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the formation of a PdII alkyl species.  Using PhICl2, this intermediate is rapidly oxidized 

to PdIV, followed by reductive elimination to form the 1,2-product (Figure 1.16, top).  

CuCl2, on the other hand, does not oxidize PdII to PdIV.  Under these conditions, a β-

hydride elimination/alkene insertion sequence leads to the formation of a stabilized Pd π-

benzyl complex, which is then chlorinated to release the product and Pd0 (Figure 1.16, 

bottom).  The Pd0 species is then reoxidized by CuII.  These examples clearly showcase 

the direct competition between β-hydride elimination and oxidation to PdIV.  

Another approach to “outcompeting” β-hydride elimination is to intercept the Pd 

alkyl via insertion into a precoordinated CO.  The Pd-catalyzed intramolecular 

hydroxycarbonylation of alkenes was first reported by Semmelhack and Bodurow in 

1984 (Figure 1.17).54  Several studies by Semmelhack and others have further explored 

this reaction since, studying its regio- and stereoselectivity,55-59 and expanding to related 

reactions such as aminocarbonylations and others.60-66 

Instead of insertion into CO, Pd alkyl intermediates have also been intercepted by 

reductive elimination with aryl groups.  This methodology has been developed most 

prominently by Wolfe and coworkers to achieve carboaminations67-70 and 

carboetherifications69-72 of various alkene substrates (Figure 1.18).  These reactions are 

proposed to proceed via initial oxidative addition of an aryl halide to give a PdII aryl  

 

	

Figure 1.17. Alkoxycarbonylation of alkenes (adapted from Semmelhack and Bodurow, 
1984). 
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Figure 1.18. Carboetherification of alkenes (adapted from Ward and Wolfe, 2010). 
 

complex.  The hydroxyalkene substrate is deprotonated and coordinated to the Pd via the 

alkoxide as well as the alkene.  It then undergoes syn-oxypalladation, yielding the Pd 

alkyl intermediate, and the product is released via reductive elimination. 

Lastly, the hydroalkoxylation of vinyl phenols presented above falls into this 

category, with the Pd alkyl being rapidly transformed into an o-quinone methide.28 

Stabilization of the Pd alkyl via substrate interactions.  There are several 

secondary interactions between the Pd and substrate that can stabilize Pd alkyl complexes 

to allow for their further functionalization.  Diene difunctionalizations, developed by 

Bäckvall and coworkers, proceed through a Pd alkyl complex that can be stabilized by a 

π-allyl interaction.73,74  This stabilization slows β-hydride elimination sufficiently to 
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allow for further functionalization and in some cases even for isolation of the 

intermediate.  Various reactions have been developed using this approach, including a 

hydroarylation of dienes and a three-component coupling by our group.75,76  The 

proposed mechanism for the hydroarylation (Figure 1.19) commences with a Pd-

catalyzed oxidation of the alcohol solvent to form a Pd hydride A.  The diene then inserts 

into the Pd–H bond, and the initially formed Pd alkyl B is stabilized as a Pd π-allyl 

complex C.  Transmetallation of the aryl boronic ester followed by reductive elimination 

yields the product.  The mechanism of this reaction will be discussed in more detail in 

chapter 2. 

Additionally, Hartwig and coworkers reported Pd-catalyzed hydroamination 

reactions of dienes as well as styrenes.77-84  Similarly to Pd π-allyl interactions, π-benzyl 

interactions provide stabilization to Pd alkyl complexes, albeit to a smaller extent.  

Hartwig and coworkers developed several systems for the Pd-catalyzed hydroamination 

of styrenes and dienes, using aryl- or alkylamine nucleophiles (Figures 1.20 and  

 

 

Figure 1.19. Hydroarylation of dienes (adapted from Liao and Sigman, 2010). 
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Figure 1.20. Hydroamination of styrenes and dienes (adapted from Johns et al., 2006). 
 

 

1.21).78,79  The mechanism was then investigated, and intermediate Pd π-benzyl complex 

A was isolated and successfully converted to the hydroamination product.80  This 

suggested a mechanism analogous to that proposed for our hydroarylation, involving 

insertion of the alkene into a Pd hydride to form a Pd π-allyl/ π-benzyl complex, followed 

by product formation (at the time of Hartwig’s publication, this type of reaction was not 

well known for Pd-catalyzed alkene hydrofunctionalizations).85  It should be noted that 

along with the hydroamination product, free 4-methylstyrene and morpholinium triflate 

were also formed (Figure 1.21).   

 

	

Figure 1.21. Hydroamination of styrenes (adapted from Utsunomiya and Hartwig, 2003). 
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This elimination is assumed to be reversible, which would retard the 

hydroamination reaction, without completely inhibiting it.  To ensure that the 

hydroamination product originated directly from the Pd π-benzyl complex, the same 

experiment was performed in the presence of styrene.  No styrene hydroamination 

product was observed, indicating that the product did indeed originate from the Pd 

complex. 

Our group reported several Pd-catalyzed transformations taking advantage of the 

stability of Pd π-benzyl complexes, some of which will be discussed in the following 

chapters.86-93 

Finally, heteroatom coordination can be used to stabilize Pd alkyls for further 

functionalization.  This approach has has been utilized to develop “cascade reactions” by 

intercepting Pd alkyls formed as intermediates in Heck reactions.  Larhed and coworkers 

thus developed a diarylation of dimethylaminoethyl vinyl ethers, wherein the pendant 

amine is crucial to avoid β-hydride elimination (Figure 1.22).94  Of note, the reaction 

parameters had to be finely tuned, and different sets of reaction conditions had to be 

developed for electron-rich and electron-poor boronic acids. 

 

	

Figure 1.22. Diarylation of aminoethyl vinyl ethers (adapted from Yahiaoui et al., 2011). 
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Zhu and Falck reported an interesting 1,1-oxyarylation of homoallylic alcohols 

(Figure 1.23).95  In this case, β-hydride elimination is not avoided entirely, but utilized to 

form a stabilized Pd π-benzyl complex via a β-hydride elimination/alkene insertion 

sequence.  The concept is analogous to the mechanism proposed by Sanford and 

coworkers for their 1,1-arylchlorination of alkenes (vide supra).52,53  To support this 

mechanism, deuterium labeling experiments were carried out, showing that the deuterium 

from the starting material is scrambled, but conserved in the product.  Additionally, a 

control experiment was performed using AcOH-d4 as co-solvent, and no deuterium 

incorporation into product was observed, precluding the involvement of acid catalysis. 

 

Bn

OH
Bn

MeO

B(OH)2
O

OMe

Bn
Bn

1.2 equiv

10 mol% Pd(F3CCO2)2
12 mol% dtbpy
20 mol% TFA

1 equiv BQ
DCE, 60 °C, 40 h

dtbpy = 4,4'-di-t-butyl-2,2'-bipyridyl
BQ = 1,4-benzoquinone

75% yield

OH

Ph
H

D

86% D

MeO

B(OH)2 O
OMe

1.2 equiv

10 mol% Pd(F3CCO2)2
12 mol% dtbpy
20 mol% TFA

1 equiv BQ
DCE, 60 °C, 40 h

36% D
50% D

D

Ph

O

Ln
Pd Ar

O PdLn Ar
H PdLn

O

Ar

H

O PdLn

Ar
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Approach to the Hydroalkoxylation of  

Styrenes Using Pd Hydrides 

As discussed above, our group has previously reported the Pd-catalyzed 

hydroalkoxylation of vinylphenols via quinone methide intermediates.28  While the 

presence of the phenol is an inherent limitation of this reaction, we were intrigued by the 

concept of using Pd hydrides to achieve hydrofunctionalizations of a wider variety of 

alkenes.  Instead of rapid conversion of the Pd alkyl to a quinone methide, we 

hypothesized that it might be possible to stabilize it via secondary interactions, which 

would allow for further functionalization (Figure 1.24).   

This prompted us to test the hydroalkoxylation with styrene substrates (not 

containing a phenol), which would provide stabilization of the Pd alkyl species via a π-

benzyl interaction (Figure 1.25).86,96,97  We hypothesized that the reaction should proceed 

via the same initial steps as the hydroalkoxylation of vinylphenols, in that oxidation of an 

alcohol solvent would provide the Pd hydride, and the alkene substrate would insert into  
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Figure 1.24. Functionalization of Pd alkyl species. 
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Figure 1.25. Hypothesized hydroalkoxylation of styrenes. 

the Pd–H bond.  At this point, two isomeric intermediates C and D could be formed, with 

D being stabilized as a Pd π-benzyl complex (E).  This complex could then undergo 

nucleophilic attack by the alcohol to form the hydroalkoxylation product. 

It should be noted that there are two distinct parts to this mechanism: the alcohol 

oxidation (Figure 1.26)29,98 and the alkene insertion/nucleophilic attack (Figure 1.25). 

Interestingly, β-hydride elimination is a crucial step in each of these.  In the alcohol 

oxidation, β-hydride elimination from the Pd alkoxide intermediate provides the Pd 

hydride, which reacts further with the styrene substrate.  In the alkene 

insertion/nucleophilic attack, on the other hand, β-hydride elimination can occur as the  

 

Figure 1.26.  Mechanism of Pd hydride formation. 
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reverse of styrene insertion into the Pd–H bond.  In this step, it could lead to a slowing of 

the overall reaction. 

Herein is described the development of an alcohol oxidation-coupled 

hydroalkoxylation of styrenes and several mechanistic experiments to probe the 

fundamental aspects of the reaction, which revealed that while an overall 

hydroalkoxylation occurred, it proceeded via an unexpected benzylic chloride 

intermediate.86 

 
Reaction Development 

In an initial experiment, performed by Dr. Keith Gligorich, the hydroalkoxylation 

of 4-methylstyrene was tested using conditions similar to those developed for vinyl 

phenols. While EtOH was used as the solvent and hydride source in the original 

hydroalkoxylation of vinyl phenols, it had been found previously that submitting simple 

styrene substrates to similar reaction conditions in EtOH leads to acetal products.99 

Therefore, iPrOH, a much less nucleophilic alcohol that readily undergoes 

oxidation,100,101 was selected as solvent.  Initially, 4-methylstyrene (1.9a) was chosen as 

substrate, using Pd[(–)-sparteine]Cl2 and CuCl2 in iPrOH at 40 °C.  Under these 

conditions, the desired hydroalkoxylation product is observed as the minor product, with 

the major product arising from Wacker oxidation (Figure 1.27).  Gratifyingly, the  

 

 

Figure 1.27. Initial discovery of hydroalkoxylation of styrenes. 
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hydroalkoxylation product 1.10a is formed as a single regioisomer, which can be 

rationalized with the stabilization of E (compared to C, see Figure 1.25) via a π-benzyl 

Pd complex. 

With this initial result in hand, control experiments were performed omitting 

either Pd or Cu to verify that both metals were required (Table 1.1, entries 1 and 2).  

Subsequently, the reaction conditions were optimized for the hydroalkoxylation product, 

the first steps of which are shown in Table 1.1.  We hypothesized that the Wacker 

product was likely arising from H2O2, which is formed as a byproduct of aerobic alcohol 

oxidation.102  Therefore, it was thought that the rate of alcohol oxidation should be 

decreased in order to obtain high selectivities for the hydroalkoxylation product, so that 

ideally, every Pd hydride formed is incorporated into product.  While the rate of alcohol 

oxidation could be decreased by lowering the concentration of the alcohol, iPrOH was 

also thought to be acting as the nucleophile, and lowering its concentration could 

 

Table 1.1. Initial optimization of hydroalkoxylation reaction. 
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potentially decrease the selectivity for the hydroalkoxylation product.  Testing several 

different solvent mixtures, 60% iPrOH in DCE was found to give the highest yield of 

hydroalkoxylation product (33%, entry 4).  Lowering the substrate concentration from 

0.1 M to 0.05 M, thus increasing the catalyst loading with respect to substrate, led to an 

additional improvement (46%, entry 5).   

Further variation of the reaction conditions unfortunately did not lead to 

improvement of the reaction outcome.  We therefore decided to evaluate other ligands on 

PdCl2, and found that bathocuproine (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, bc) 

dramatically increased the reaction rate.  However, when a timecourse of the reaction was 

performed by GC sampling, a significant induction period was observed (Figure 1.28, 

▲).103  Bathocuproine is known as a ligand for both Pd and Cu,100,104,105 and thus it was 

hypothesized that bathocuproine could be dissociating from the Pd complex during that 

induction period, with “ligandless” Pd acting as the active catalyst.  A separate 

timecourse was performed with preformed Cu(bc)Cl2 rather than Pd(bc)Cl2, mimicking 

the hypothesized catalyst mixture present after the induction period (Figure 1.28, ○).  

Upon performing the experiment, no induction period was observed when bathocuproine 

was bound to Cu instead of Pd prior to the start of the reaction.  As a control, the reaction 

was performed with Pd(MeCN)2Cl2 and CuCl2 as well as with Pd(bc)Cl2 and Cu(bc)Cl2. 

The latter reaction displayed lower selectivity for the hydroalkoxylation product, while 

using “ligandless” conditions led to decreased selectivity as well as a decreased reaction 

rate.106  From these experiments, it was concluded that improved selectivity and reaction 

rates are observed with a ligand on Cu rather than Pd, indicating that Cu was likely  
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Figure 1.28. Time course of hydroalkoxylation with Pd(bc)Cl2 and Cu(bc)Cl2, 
respectively.  a Condition A: 10 mol % Pd(bc)Cl2, 40 mol % CuCl2, 3 Å molecular sieves, 
60% iPrOH/DCE, 40 °C, balloon O2.  Condition B: 10 mol % Pd(MeCN)2Cl2, 10 mol % 
Cu(bc)Cl2, 30mol % CuCl2, 3 Å molecular sieves, 60% iPrOH/DCE, 40 °C, balloon O2. 

 
 

playing a more complex role than simply reoxidizing Pd0 to PdII, as is commonly 

proposed in Wacker-type oxidations.107,108 

Additionally, upon switching to bathocuproine, a careful analysis of the reaction 

mixture showed the presence of an intermediate (Figure 1.29, ▲), which was identified 

as the benzylic chloride 1.12a.  Based on this observation, it was concluded that the 

initial nucleophile is a chloride ion rather than iPrOH, and the hydroalkoxylation product  
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Figure 1.29. Time course of hydroalkoxylation showing chloride intermediate. 

 

likely arises from the benzylic chloride via an SN1 type mechanism (vide infra).  

Considering there is four times more CuCl2 in the reaction mixture than PdCl2, it is likely 

that CuCl2 is the major source of chloride.  Overall, this is an interesting and unexpected 

finding, since metal-catalyzed hydrochlorination reactions proceeding via nucleophilic 

attack on a metal complex had not been observed prior to our report. 

Having gained some crucial insight into the reaction from the experiments 

detailed above, further optimization was performed using Pd(MeCN)2Cl2 and a mixture 

of Cu(bc)Cl2 and CuCl2.  Interestingly, a combination of 10 mol% Cu(bc)Cl2 with 30 

mol% CuCl2 was optimal, giving 47% GC yield of the hydroalkoxylation product (Table 
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1.2, entry 2), while 40 mol% Cu(bc)Cl2 gave 15% hydroalkoxylation and 51% Wacker 

product (entry 1). Assuming that the chloride intermediate (1.12a) was converted to 

product via an SN1-type reaction, the rate of this substitution should be independent of 

the concentration of iPrOH (apart from polarity effects), and iPrOH should influence the 

reaction mainly via the rate of alcohol oxidation (vide supra).  When the concentration of 

iPrOH was further lowered to 10% iPrOH in DCE, the selectivity for the 

hydroalkoxylation product improved slightly to 49% GC yield (Table 1.2, entry 3).  

Subsequently, the temperature was raised in order to accelerate the nucleophilic 

substitution. This in turn would release more chloride and thus promote the formation of 

benzylic chloride 1.12a.  Indeed, when the temperature was increased from 40 °C to  

 

Table 1.2. Final optimization of hydroalkoxylation reaction. 
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60 °C, the GC yield of the hydroalkoxylation product increased to 62% (entry 4).  

Additionally, the amount of chloride in the reaction mixture was further raised by 

changing the loading of CuCl2 from 30 mol% to 40 mol%, leading to 84% GC yield of 

the desired product (entry 5).  Higher concentrations of CuCl2 unfortunately inhibited the 

reaction, presumably due to slowing of the rate of alcohol oxidation.107  Under these 

conditions, the catalyst loading could be reduced without substantial decrease in product 

yield (77% GC yield, entry 6).  

Having optimized the reaction for 4-methylstyrene, several other substrates were 

submitted to the reaction conditions (Table 1.3).  While electron rich styrenes are 

excellent substrates, electron poor styrenes gave mixtures of hydroalkoxylation and 

hydrohalogenation products along with increased amounts of Wacker products, 

illustrating the high sensitivity of the reaction to the electronic nature of the substrate.  

Interestingly, while 4-methylstyrene gave good yields of the hydroalkoxylation product, 

styrene was sufficiently electron poor to yield the hydrochlorination product.  For 

electron poor substrates, the reaction was thus optimized for hydrochlorination by 

lowering the temperature to 50 °C, increasing the catalyst loading to the previous level 

(with 50 mol% CuCl2) and decreasing the amount of iPrOH to 2.5% in DCE.  Upon 

isolation, the hydrochlorination product was found to contain ca. 5% of the regioisomeric 

primary chloride (2-chloroethylarene), which is likely formed from the regioisomeric Pd 

alkyl complex (C, see Figure 1.25).  This was entirely unexpected, since no primary ether 

product had been observed with the electron rich substrates.  It is reasonable, however, 

that the primary chloride is reversibly formed in the reaction of electron rich substrates, 

but does not undergo the SN1 reaction to produce the ether product.109  
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Table 1.3. Hydroalkoxylation substrate scope. 
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Mechanistic Investigations 

The unexpected results obtained above prompted us to study the reaction in 

greater detail.  Specifically, we wished to address the conversion of the benzylic chloride 

1.12 to the ether, the roles of the different metals, and finally the origin of the proton 

incorporated into the product.  In order to confirm that chloride 1.12 converted to the 

hydroalkoxylation product, hydroalkoxylation product, 1.12a was independently prepared 

and submitted to reaction conditions (Table 1.4).  Indeed, when 1.12a was heated to 40 

°C in iPrOH, it converted exclusively to the hydroalkoxylation product (1.10a).  In the 

presence of metal catalysts the reaction was significantly accelerated, possibly due to the  

metals acting as Lewis acid catalysts. This information together with the fact that electron 

poor benzylic chlorides do not convert completely to the ether product implies that a 

metal assisted SN1 reaction is most likely occurring.110-113 

 
Table 1.4. Promotion of nucleophilic substitution by different additives. 
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In order to determine the origin of the proton incorporated into the product, 

several deuterium labeling experiments were performed.  Based on precedence from our 

laboratory,28 our initial hypothesis was that a Pd hydride was formed during iPrOH 

oxidation and that this hydride was subsequently incorporated into the product (vide 

supra).  To confirm this, several deuterium labeling experiments were carried out, as 

shown in Figure 1.30.  Initially, two control experiments were performed in 

(CH3)2CHOD and DCE-d4 (Figure 1.30, eq. 1, 2), to probe the involvement of the acidic 

proton or protons from DCE solvent.  As expected, no deuterium incorporation was 

observed in any of the products, strongly suggesting the absence of Brønsted acid 

catalysis.  Subsequently, the reaction was performed in (CH3)2CDOH and (CD3)2CDOD, 

respectively (eq. 3, 4).  With both of these alcohols, deuterium incorporation into the 

double bond was expected, since the Pd hydride would be formed in the β-hydride 

elimination step of the alcohol oxidation, and thus would stem from the α-position of 

iPrOH.29  However, isotopic depletion could potentially occur via the enol form of 

acetone (the oxidation product of iPrOH) in the case of (CH3)2CDOH.  With 

(CD3)2CDOD, any such exchange would be inconsequential.114  Upon performing these 

experiments, similar results were observed, in which two main isotopologues are formed.  

The major isotopologue containing 2 or 8 D (1.14 or 1.16), respectively, is consistent 

with the proton incorporated into the side chain arising from alcohol oxidation, and is 

formed in 48 and 46% (of the overall hydroalkoxylation product).  However, another 

isotopologue with 1 (or 7) D (1.13 or 1.15) was observed in 39 and 43%, which was 

initially unexpected.  Closer investigation of the styrene at early time points revealed  
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Figure 1.30. Deuterium labeling studies. 
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Figure 1.31. Reversible styrene insertion/β-hydride elimination. 
 
 

partial D incorporation.  This D incorporation into substrate could arise from reversible 

alkene insertion/β-hydride elimination (Figure 1.31), and provide a pathway for D 

scrambling and potential isotopic depletion in the product.115  To probe this, substrate 

1.17 was prepared containing 3 D in the olefin (93% 3 D) and submitted to reaction 

conditions with (CH3)2CDOH or (CD3)2CDOD (eq. 1.5, 1.6).  As expected, significantly 

higher levels of isotopic incorporation are observed, consistent with the equilibrium 

shown above.  Specifically, the major isotopologue (1.19 or 1.21, containing 5 and 11 D, 

respectively) was formed in 74 and 81%, again indicating that no significant exchange 

via enol chemistry was occurring.   

Additionally, it was found that the reaction using deuterated substrate 1.17 in 

(CH3)2CDOH or (CD3)2CDOD was significantly faster than that using nonlabeled 

material (1.17 in (CH3)2CDOH: 43% conversion at 0.5 h; 1.9a in iPrOH: 18% conversion 

at 0.5 h), indicating a large inverse isotope effect.106  This unusual finding indicates that 

alcohol oxidation is probably not rate limiting in the overall reaction, since normal 

isotope effects have been measured for alcohol oxidation reactions under similar 

conditions.98,100  It is plausible that the isotope effect originates in the equilibrium shown 

in Figure 1.31.  Deuterium binds preferably with stronger bond constants,116 therefore the 

equilibrium for the Pd deuteride should lie further on the side of the Pd alkyl (compared 
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to the Pd hydride).  This would provide a higher concentration of the Pd alkyl complex, 

and thus accelerate the reaction, leading to an inverse equilibrium isotope effect. 

Having confirmed that alcohol oxidation is the source of the Pd hydride, we 

wanted to determine how many equivalents of alcohol were oxidized per equivalent of 

styrene converted.  For these experiments, a heavier alcohol was selected, namely 

2-octanol, which shows similar results to iPrOH, for ease of detection by GC.  Upon 

performing the experiment, it was found that 1.1 equivalent of 2-octanone was formed 

per equivalent of styrene consumed.  This confirmed our initial hypothesis that the rates 

of alcohol oxidation and alkene insertion/nucleophilic attack should be well matched to 

achieve an efficient reaction.  As an additional control to determine the role of the metal 

catalysts, 2-octanol was submitted to the reaction conditions omitting either Pd or Cu.  

Unfortunately, no alcohol oxidation occurred under those conditions, indicating that both 

metals are required for this transformation.  It is likely that CuII (Cu(bc)Cl2 and/or CuCl2) 

is acting as a cooxidant for Pd0, as it does for example in Wacker oxidations.106  The role 

of each metal in the subsequent olefin functionalization could not be tested, since the Pd 

hydride required for the reaction was not formed in the absence of either.  It seems 

logical, however, that CuCl2 and/or Cu(bc)Cl2 is acting as a chloride source to form 

benzylic chloride 1.12.  In order to test this, and potentially distinguish the roles of the 

two Cu species, CuCl2 and Cu(bc)Cl2 were separately substituted by Bu4NCl.106  In both 

cases, mainly the product of a Wacker oxidation is observed (1.11), indicating that 

neither CuCl2 nor Cu(bc)Cl2 can simply be replaced by other chloride sources.  The 

specific roles of ligated and nonligated CuCl2 unfortunately can thus not be distinguished. 
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Based on the information obtained from the isotopic labeling experiments, the 

observation of the chloride intermediate, and the other experiments shown above, the 

mechanism shown in Figure 1.32 is proposed.  Initially, Pd hydride B is formed via an 

alcohol oxidation, which is supported by the isotopic labeling experiments as well as the 

observed oxidation of 2-octanol.  The styrene substrate is then coordinated to Pd, 

followed by insertion into the Pd hydride.  The observed incorporation of deuterium into 

the styrene indicates both the coordination and the insertion steps are reversible.  Based 

on the observation of the primary chloride byproduct with electron poor styrenes, it is 

assumed that both Pd alkyls D and E are formed, as observed in the hydroalkoxylation of 

 

 

Figure 1.32. Proposed mechanism of hydroalkoxylation. 
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vinylphenols.  However, D can be stabilized via a π-benzyl intermediate (F), and thus is 

likely formed predominantly.  In the following step, chlorides 1.12 and 1.22 are formed, 

either via reductive elimination or nucleophilic attack on D or E, respectively, by an 

exogenous chloride ion.  In either case, PdII is reduced to a Pd0 species (G), which is 

subsequently reoxidized by O2 and/or CuCl2.  Since H2O2 has been shown to be a 

competent oxidant for PdIV chemistry,117 and reductive elimination of C-Cl bonds from 

PdIV has been observed previously,118 we cannot rule out the involvement of a PdIV 

species in this reaction.  In the case of electron rich aromatic systems, the benzylic 

chloride is transformed into the ether product 1.10 via a metal-promoted SN1 reaction, 

while in the case of more electron poor aromatic substrates, the rate of this step is slow 

enough to allow for isolation of the chloride.  A competing mechanism involving direct 

substitution of Pd by iPrOH as proposed in Figure 1.25 cannot be ruled out at this time.  

However, based on the isolation of the chloride product from electron poor styrenes and 

the timecourse showing its conversion to the hydroalkoxylation product, the mechanism 

shown in Figure 1.32 is proposed to be dominant. 

 
Conclusion 

In summary, we have developed a mechanistically unique hydrochlorination-

hydroalkoxylation of styrenes.  While the substrate scope of this reaction is limited, this 

was the first report of a hydrochlorination of alkenes not promoted by acid.  It is also one 

of a small number of reports of hydroalkoxylations that are clearly not catalyzed by 

Lewis or Brønsted acids.  Furthermore, we established the viability of our concept using 

Pd hydrides to functionalize styrenes, which has since been expanded to include several 
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research projects in our research group, including the one discussed in the following 

chapter. 

 
Experimental Section 

General Information 

DCE (1,2-dichloroethane) and CH2Cl2 were dried by distilling from CaH2; iPrOH 

was dried by refluxing over CaO for 12 h followed by fractional distillation; THF was 

dried by distilling from sodium benzophenone ketyl; chloroform was dried by passing 

through a plug of activated neutral alumina.  Liquid styrene substrates were purified by 

passing through a small plug of activated neutral alumina before use.  3Å molecular 

sieves were powdered and activated by heating with a Bunsen burner under vacuum.  

Flash column chromatography was performed using EM Reagent silica 60 (230-400 

mesh).  1H NMR were obtained at 300 MHz and referenced to the residual CHCl3 singlet 

at 7.26 ppm. 13C NMR were obtained at 75 MHz and referenced to the center line of the 

CDCl3 triplet at 77.23 ppm. GC/MS were obtained on a HP 5890 (EI) 20:1 split. IR 

spectra were obtained on a Bruker Tensor 37 FTIR spectrometer.  HRMS were obtained 

on an Agilent LCTOF.  Caution should be taken when heating flammable solvents in the 

presence of O2. 

 

 

Pd[(–)-sparteine]Cl2 was prepared as previously described in the literature.119 
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Preparation of Cu(bc)Cl2. In an oven-dried 100 mL round bottom flask were 

added 81.3 mg CuCl2 (0.606 mmol, 1.00 equiv.) and 20.0 mL CH2Cl2.  A solution of 218 

mg bathocuproine (0.606 mmol, 1.00 equiv.) in 30.0 mL CH2Cl2 was added slowly via 

syringe while stirring.  A red solution was observed, and the mixture was stirred for 12 h 

at room temperature.  Hexanes (5.00 mL) were added and the mixture was concentrated 

in vacuo, yielding a dark red solid, which was dried in vacuo for 2 h.  Yield: quantitative; 

mp: 185 °C (decomp.); IR (KBr): 1621, 1583, 1571, 1549, 1486, 1440, 1397, 1379, 1186, 

1185, 1108, 1077, 1029, 1000, 887, 864, 840, 781, 773, 734, 704, 643, 635, 611, 541. 

It should be noted that no difference was observed when using preformed 

Cu(bc)Cl2 or mixing CuCl2 and bathocuproine in situ. 

 

 

Preparation of t-butyl 4-vinylphenylcarbamate (1.9c): In an oven-dried 100 mL 

round bottom flask, 1.15 g of Boc2O (5.27 mmol, 1.15 equiv.) were dissolved in 20.0 mL 

of THF.  A solution of 546 mg 4-vinylaniline (4.58 mmol, 1.00 equiv.) in 20.0 mL of 

THF was added via syringe, and a dry condenser was placed on the flask.  The mixture 

was placed in an oil bath at 50 °C, and stirred under N2 for 12 h.  An additional 500 mg 
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of Boc2O (2.29 mmol, 0.500 equiv.) were added, and the reaction was stirred at 50 °C for 

another 12 h.  The mixture was then diluted with 20.0 mL of Et2O and washed with sat. 

aq. NH4Cl (2 × 50.0 mL), H2O (2 × 50.0 mL), brine (1 × 50.0 mL).  The organic layer 

was dried over MgSO4 and concentrated in vacuo.  Column chromatography eluting with 

4% Et2O/hexanes yielded a mixture of t-butyl 4-vinylphenylcarbamate (1.9c) and Boc2O.  

The mixture was diluted with 50.0 mL of Et2O and washed with sat. aq. NH4Cl (2 × 50.0 

mL) and brine (1 × 50.0 mL), followed by 1:1 aq. NH4OH/H2O (2 × 50.0 mL).  The 

combined aqueous layers were extracted with Et2O (1 × 50.0 mL), and the combined 

organic layers were washed with brine (1 × 50.0 mL).  Column chromatography eluting 

with 4% Et2O/hexanes  8% Et2O/hexanes yielded the product as a white solid.  Yield: 

622 mg (2.83 mmol, 62%); Rf: 0.50 w/20% EtOAc/hexanes; 1H NMR (300 MHz, CDCl3) 

δ 1.52 (s, 9 H), 5.16 (dd, J = 1.0 Hz, 11.0 Hz, 1 H), 5.65 (dd, J = 1.0 Hz, 17.6 Hz, 1 H), 

6.49 (br s, 1 H), 6.66 (dd, J = 11.0 Hz, 17.6 Hz, 1 H), 7.34 (m, 4 H); 13C NMR {1H} 

(75 MHz, CDCl3) δ 28.5, 80.8, 112.5, 118.6, 127.0, 132.7, 136.4, 138.1, 152.8; GC/MS: 

(m/z) calcd. 219.13 obsd. 219.10 [M] +, 163.05 [M-tBu]+; mp: 84 °C.120 

 
General Procedure for Hydroalkoxylation of Electron-Rich Styrene Derivatives 

Into an oven-dried 100 mL Schlenk flask equipped with a stirbar were added 13.0 

mg of Pd(MeCN)2Cl2 (0.0500 mmol, 0.0500 equiv.), 24.7 mg of Cu(bc)Cl2 (0.0500 

mmol, 0.0500 equiv.), 26.8 mg of CuCl2 (0.200 mmol, 0.200 equiv.) and 500 mg of 

freshly activated crushed 3Å molecular sieves.  A condenser was placed on the flask and 

the joint was lightly greased and wrapped with Teflon tape to ensure a good seal.  DCE 

(18.0 mL) followed by iPrOH (2.00 mL) were added and a three-way adapter fitted with 

a balloon of O2 was placed on the condenser.  The flask was evacuated via water 
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aspiration and refilled with O2 three times while stirring.  The orange mixture was then 

stirred under O2 at room temperature for 30 min.  The styrene substrate (1.00 mmol, 1.00 

equiv.) was then added via syringe and the reaction mixture was placed in an oil bath at 

60 °C.  The reaction mixture was stirred under O2 for 24 h.  During this time, the mixture 

turned from orange to brown and back to orange.  After 24 h, the mixture was cooled to 

room temperature and passed through a large plug of silica (ca. 8 g) with 100 mL of 1:1 

Et2O/hexanes. The solvent was removed in vacuo to obtain an orange oil.  This was 

mixed with hexanes (10.0 mL) and washed with saturated aqueous NaHCO3 (3 × 10.0 

mL).  The combined aqueous layers were then extracted with hexanes (2 × 10.0 mL). The 

combined organic layers were dried over MgSO4 and the solvent was removed in vacuo.  

The resulting pale yellow oil was purified by flash column chromatography.   

 

 

1-(1-isopropoxyethyl)-4-methylbenzene (1.10a): column chromatography: 

hexanes  1% Et2O/hexanes  3% Et2O/hexanes; yield: 55%; clear oil; Rf: 0.64 w/ 20% 

Et2O/hexanes; 1H NMR (300 MHz, CDCl3) δ 1.09 (d, J = 6.3 Hz, 3 H), 1.14 (d, J = 6.0 

Hz, 3 H), 1.39 (d, J = 6.3 Hz, 3 H), 2.34 (s, 3 H), 3.48 (qq, J = 6.0 Hz, 6.3 Hz, 1 H), 4.50 

(q, J = 6.3 Hz, 1 H), 7.12 – 7.24 (m, 4 H); 13C NMR {1H} (75 MHz, CDCl3) δ 21.3, 21.5, 

23.6, 25.0, 68.5, 74.6, 126.2, 129.2, 137.0, 142.0; MS (ESI/APCI) m/z (MNH4
+) calcd.: 

196.1701 obsd.: 196.1693. 
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1-(1-isopropoxyethyl)-4-methoxybenzene (1.10b): column chromatography: 

hexanes  1% Et2O/hexanes  3% Et2O/hexanes  5% Et2O/hexanes; yield: 73%; 

clear oil; Rf: 0.34 w/ 10% Et2O/hexanes; 1H NMR (300 MHz, CDCl3) δ 1.08 (d, J = 6.0 

Hz, 3 H), 1.14 (d, J = 6.0 Hz, 3 H), 1.38 (d, J = 6.3 Hz, 3 H), 3.47 (qq, J = 6.0 Hz, 6.0 

Hz, 1 H), 3.81 (s, 3 H), 4.49 (q, J = 6.3 Hz, 1 H), 6.88 (m, 2 H), 7.24 (m, 2 H); 13C NMR 

{1H} (75 MHz, CDCl3) δ 21.5, 23.6, 25.0, 55.4, 68.4, 74.3, 113.9, 127.4, 137.1, 159.0; 

GC/MS: (m/z) calcd. 194.13 obsd. 194.05 [M] +, 179.10 [M-CH3]
+.121 

 

 

t-Butyl 4-(1-isopropoxyethyl)phenylcarbamate (1.10c): column chromatography: 

hexanes  1% Et2O/hexanes  3% Et2O/hexanes  5% Et2O/hexanes  10% 

Et2O/hexanes  20% Et2O/hexanes  50% Et2O/hexanes; yield: 78%; white solid; Rf: 

0.40 w/ 20% EtOAc/hexanes; 1H NMR (300 MHz, CDCl3) δ 1.07 (d, J = 6.0 Hz, 3 H), 

1.13 (d, J = 6.0 Hz, 3 H), 1.37 (d, J = 6.3, 3 H), 1.52 (s, 9 H), 3.46 (qq, J = 6.0 Hz, 6.0 

Hz, 1 H), 4.48 (q, J = 6.3, 1 H), 6.44 (br s, 1 H), 7.25 (m, 2 H), 7.32 (m, 2 H); 13C NMR 

{1H} (75 MHz, CDCl3) δ 21.5, 23.6, 25.0, 28.5, 68.5, 74.4, 80.7, 118.8, 127.0, 137.5, 

139.7, 153.0; mp: 96 °C; MS (ESI/APCI) m/z (MNa+) calcd.: 302.1732 obsd.: 302.1725. 
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General Procedure for Hydrochlorination of Electron-Poor Styrene Derivatives 

Into an oven-dried 100 mL Schlenk flask equipped with a stirbar were added 25.9 

mg of Pd(MeCN)2Cl2 (0.100 mmol, 0.100 equiv.), 49.5 mg of Cu(bc)Cl2 (0.100 mmol, 

0.100 equiv.), 67.1 mg of CuCl2 (0.500 mmol, 0.500 equiv.) and 1.00 g freshly activated 

crushed 3Å molecular sieves.  A condenser was placed on the flask and the joint was 

lightly greased and wrapped with Teflon tape to ensure a good seal.  DCE (19.5 mL) 

followed by iPrOH (0.500 mL) were added and a three-way adapter fitted with a balloon 

of O2 was placed on the condenser.  The flask was evacuated via water aspiration and 

refilled with O2 three times while stirring.  The orange mixture was then stirred under O2 

at room temperature for 30 min.  The styrene substrate (1.00 mmol, 1.00 equiv.) was then 

added via syringe and the reaction mixture was placed in an oil bath at 50 °C.  The 

reaction mixture was stirred under O2 for 28 h.  During this time, the mixture turned from 

orange to dark brown.  After 28 h, the mixture was cooled to room temperature and 

passed through a large plug of silica (ca. 8 g) with 100 mL of 1:1 Et2O/hexanes. The 

solvent was removed in vacuo to obtain a clear oil.  The oil was purified by flash column 

chromatography.   

 

 

(1-Chloroethyl)benzene (1.12d): column chromatography: hexanes  1% 

Et2O/hexanes  3% Et2O/hexanes  10% Et2O/hexanes; yield: 22% (containing 6% 

primary chloride 1.22d); clear oil; Rf: 0.64 w/ 20% Et2O/hexanes; 1H NMR (300 MHz, 
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CDCl3) δ 1.86 (d, J = 6.9 Hz, 3 H), 3.08 (t, J = 7.4 Hz, 0.13 H), 3.72 (t, J = 7.4 Hz, 0.1 

H), 5.10 (q, J = 6.9, 1 H), 7.28 – 7.46 (m, 5 H).5,122 

 

 

1-Chloro-4-(1-chloroethyl)benzene (1.12e): column chromatography: hexanes  

1% Et2O/hexanes  5% Et2O/hexanes  10% Et2O/hexanes;  yield: 35% (containing 

6% primary chloride 1.22e); clear oil; Rf: 0.54 w/ 10% EtOAc/hexanes; 1H NMR 

(300 MHz, CDCl3) δ 1.83 (d, J = 6.9 Hz, 3 H), 3.04 (t, J = 7.4 Hz, 0.12 H), 3.70 (t, J = 

7.4 Hz, 0.13 H), 5.06 (q, J = 6.9, 1 H), 7.30 – 7.38 (m, 4 H); 13C NMR {1H} (75 MHz, 

CDCl3) δ 26.7, 58.0, 128.1, 129.0, 134.2, 141.5; GC/MS: (m/z) calcd. 174.00 obsd. 

173.90 [M] +, 139.00 [M-Cl]+. 

 
Initial discovery.  Into an oven-dried 10 mL sidearm flask were added 2.10 mg of 

Pd[(–)-sparteine]Cl2 (0.005 mmol, 0.0500 equiv.), 2.70 mg of CuCl2 (0.0200 mmol, 

0.200 equiv.) and 50.0 mg of activated 3Å molecular sieves.  A condenser was placed on 

the flask and 0.900 mL of iPrOH were added via the sidearm.  A three-way adapter fitted 

with a balloon of O2 was placed on the condenser.  The flask was evacuated via water 

aspiration and refilled with O2 three times while stirring.  The orange mixture was then 

stirred under O2 at room temperature for 30 min.  Subsequently, 11.8 mg of 4-

methylstyrene (1.9a, 0.100 mmol, 1 equiv.) were added as 0.100 mL of a 1.00 M solution 

in iPrOH with 5-nonanone (20.0 μL per mmol 4-methylstyrene) added as internal 

standard.  The flask was placed in an oil bath at 40 °C and stirred for 26 hours.  A sample 
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of the reaction mixture was passed through a short plug of silica eluting with EtOAc and 

analyzed by GC, showing 20% 1.10a and 50% 1.11 at 92% conversion. 

 
Timecourse Experiments 

Bathocuproine dissociation timecourses (A: preformed Pd(bc)Cl2; B: preformed 

Cu(bc)Cl2).  Into an oven-dried 5 mL sidearm flask equipped with a stirbar were added 

1.30 mg of Pd(MeCN)2Cl2 (0.00500 mmol, 0.100 equiv.) for A, or 2.70 mg of CuCl2 

(0.0200 mmol, 0.400 equiv.) for B, and 1.80 mg bathocuproine (0.00500 mmol, 0.100 

equiv.) for both.  A condenser was placed on the flask and 0.400 mL DCE and 0.500 mL 

iPrOH were added via the sidearm.  The solution was stirred for ca. 20 min to form the 

respective bathocuproine complex.  Subsequently, 2.70 mg CuCl2 (0.0200 mmol, 0.400 

equiv.) for A, or 1.30 mg Pd(MeCN)2Cl2 (0.00500 mmol, 0.100 equiv.) for B, and 50.0 

mg activated 3Å molecular sieves were added, and a three-way adapter fitted with a 

balloon of O2 was placed on the condenser.  The flask was evacuated via water aspiration 

and refilled with O2 three times while stirring.  The mixture was then stirred under O2 at 

room temperature for 30 min.  Then, 5.90 mg of 4-methylstyrene (1.9a, 0.0500 mmol, 

1.00 equiv.) were added as 0.100 mL of a 0.500 M solution in iPrOH with 5-nonanone 

(20.0 μL per mmol 4-methylstyrene) added as internal standard.  The flask was placed in 

an oil bath at 40 °C, and samples were taken periodically.  The samples were filtered 

through a small plug of silica eluting with EtOAc and analyzed by GC (see Table 1.5). 
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Table 1.5. Bathocuproine dissociation timecourse data. 

 

 

“Ligandless” conditions.  The reaction was performed in the same way as for the 

ligand dissociation timecourses, except no bathocuproine was added, and Pd(MeCN)2Cl2 

and CuCl2 could be added at the same time (see Table 1.5). 

Ligand dissociation using (–)-Sparteine: Cu[(–)-sparteine]Cl2.  Into an oven-

dried 100 mL Schlenk flask equipped with a stirbar were added 26.8 mg CuCl2 (0.200 

mmol, 0.400 equiv.).  A condenser was placed on the flask and 3.30 mL DCE, 11.7 mg of 

(–)-sparteine (0.0500 mmol, 0.100 equiv.) as 0.200 mL of a 0.250 M solution in DCE, 

and 6.00 mL iPrOH were added via the sidearm.  The solution was stirred for ca. 20 min 

to form the Cu[(–)-sparteine]Cl2 complex.  Subsequently, 13.0 mg of Pd(MeCN)2Cl2  

(0.0500 mmol, 0.100 equiv.) and 500 mg of activated 3Å molecular sieves were added, 

and a three-way adapter fitted with a balloon of O2 was placed on the condenser.  The 

flask was evacuated via water aspiration and refilled with O2 three times while stirring.  

The mixture was then stirred under O2 at room temperature for 30 min.  Then, 59.1 mg of 

4-methylstyrene (1.9a, 0.500 mmol, 1.00 equiv.) was added as 0.500 mL of a 1.00 M 

solution in DCE with tetradecane (20.0 μL per mmol 4-methylstyrene) added as internal 
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standard.  The flask was placed in an oil bath at 40 °C, and samples were taken 

periodically and analyzed by GC (see Table 1.6).  

Pd[(–)-sparteine]Cl2.  The reaction was performed analogously to the Cu[(–)-

sparteine]Cl2 timecourse, except Pd[(–)-sparteine]Cl2 was added as the preformed 

complex.  Therefore, 20.6 mg of Pd[(–)-sparteine]Cl2 (0.0500 mmol, 0.100 equiv.) were 

added along with 26.8 mg of CuCl2 (0.200 mmol, 0.400 equiv.) and 500 mg of activated 

3Å molecular sieves, before the solvents were added (3.50 mL DCE and 6.00 mL 

iPrOH).  The subsequent setup was the same as above (see Table 1.7). 

 

Table 1.6. Sparteine dissociation time course data using Cu[(–)-sparteine]Cl2. 

 

 
Table 1.7. Sparteine dissociation time course data using Pd[(–)-sparteine]Cl2. 
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Chloride intermediate timecourse.  Into an oven-dried 100 mL Schlenk flask 

equipped with a stirbar were added 13.0 mg Pd(MeCN)2Cl2 (0.0500 mmol, 0.100 equiv.), 

26.8 mg CuCl2 (0.200 mmol, 0.400 equiv.), 24.7 mg Cu(bc)Cl2 (0.0500 mmol, 0.100 

equiv.), and 250 mg activated 3Å molecular sieves.  A condenser was placed on the flask, 

and 9.00 mL DCE and 1.00 mL iPrOH were added via the sidearm.  A three-way adapter 

fitted with a balloon of O2 was placed on the condenser.  The flask was evacuated via 

water aspiration and refilled with O2 three times while stirring.  The orange mixture was 

then stirred under O2 at room temperature for 30 min, and 59.1 mg of 4-methylstyrene 

(1.9a, 0.500 mmol, 1.00 equiv.) were added with 10.0 μL 5-nonanone as internal 

standard.  The flask was placed in an oil bath at 60 °C, and samples were taken 

periodically.  The samples were filtered through a small plug of silica eluting with EtOAc 

and analyzed by GC (see Table 1.8).  Intermediate 1.12a was identified by comparison of 

GC/MS data to the independently prepared compound. 

 
 

Table 1.8. Chloride intermediate timecourse data. 
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Preparation of 1-(1-chloroethyl)-4-methylbenzene (1.12a).  Benzylic chloride 

1.12a (1-(1-chloroethyl)-4-methylbenzene) was prepared according to a literature 

procedure with slight modifications.122  In an oven-dried 25 mL three-neck round bottom 

flask, 1.26 g of 1-p-tolylethanol (9.25 mmol, 1.10 equiv.) was dissolved in 7.00 mL of 

CHCl3 under a positive N2 pressure, with an outlet leading into sat. aq. NaHCO3.  A 

solution of 1.00 g of SOCl2 (8.41 mmol, 1.00 equiv.) in 3.00 mL of CHCl3 was added 

dropwise via syringe, and the resulting mixture was stirred at room temperature for 12 h.  

To quench the reaction, 15.0 mL of sat. aq. NaHCO3 were added, and the mixture was 

extracted with CHCl3 (3 × 20.0 mL).  The combined organic layers were dried over 

MgSO4 and the solvent was removed in vacuo.  The product was purified by column 

chromatography using neutralized silica gel (netutralized w/ ca. 3% Et3N in hexanes) and 

eluting with hexanes. Yield: quantitative (1.38 g); clear oil; Rf: 0.49 w/hexanes on silica 

plate washed w/ca. 5% Et3N in CH2Cl2; 
1H NMR (300 MHz, CDCl3) δ 1.85 (d, J = 6.87 

Hz, 3 H), 2.35 (s, 3 H), 5.09 (q, J = 6.87 Hz, 1 H), 7.17 (m, 2 H), 7.32 (m, 2 H); 13C 

NMR {1H} (75 MHz, CDCl3) δ 21.4, 26.6, 59.0, 126.6, 129.5, 138.3, 140.1; GC/MS: 

(m/z) calcd. 154.05 obsd. 154.10.123 

 
Chloride Conversion Experiments (for Table 1.4) 

Procedure.  The catalyst mixture (see individual procedures) was added to a 10 

mL sidearm flask equipped with a stirbar.  A condenser was placed on top of the flask, 

and 0.400 mL of DCE were added followed by 0.500 mL of iPrOH.  A three-way adapter 
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fitted with a balloon of O2 was placed on the condenser.  The flask was evacuated via 

water aspiration and refilled with O2 three times while stirring.  The mixture was then 

stirred under O2 at room temperature for 30 min, and 7.70 mg of 1-(1-chloroethyl)-4-

methylbenzene (1.12a, 0.0500 mmol, 1.00 equiv.) were added as 0.100 mL of a 0.500 M 

solution in iPrOH with 5-nonanone added as internal standard (20.0 μL per mmol 1.12a).  

The flask was placed in an oil bath at 40 °C, and samples were taken out periodically and 

analyzed by GC. 

For Table 1.4, entry 1: no catalyst was added. 

For entry 2: 50.0 mg of activated 3Å molecular sieves were added. 

For entry 3: 2.70 mg of CuCl2 (0.0200 mmol, 0.400 equiv.) and 1.80 mg of 

bathocuproine (0.00500 mmol, 0.100 equiv.) were added first and allowed to stir in the 

iPrOH/DCE mixture for ca. 10 min before 50.0 mg of activated 3Å molecular sieves were 

added. 

For entry 4: 1.30 mg of Pd(MeCN)2Cl2 (0.00500 mmol, 0.100 equiv.) and 50.0 

mg of activated 3Å molecular sieves were added as catalyst. 

For entry 5: 2.70 mg of CuCl2 (0.0200 mmol, 0.400 equiv.) and 1.80 mg of 

bathocuproine (0.00500 mmol, 0.100 equiv.) were added first and allowed to stir in the 

iPrOH/DCE mixture for ca. 10 min before 1.30 mg of Pd(MeCN)2Cl2 (0.00500 mmol, 

0.100 equiv.) and 50.0 mg of activated 3Å molecular sieves were added. 
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Synthesis of 4-Methylstyrene-d3 (1.17) 

 

4-methylbenzaldehyde-1-d was prepared as previously described.124 

 

 

4-Methylstyrene-d3 (1.17) was prepared according to a literature procedure,125 but 

with slight modifications: In an oven-dried 25 mL round bottom flask, 347 mg of 

[PhPCD3]I (0.851 mmol, 1.02 equiv.) were dissolved in 4.00 mL of THF under N2.  The 

slurry was cooled to -78 °C, and 1.12 mL of a 0.860 M solution of nBuLi in hexanes 

(0.959 mmol, 1.15 equiv.) was added slowly via syringe.  The resulting mixture was 

warmed to room temperature and stirred for 1 h.  It was then cooled to -78 °C, and 101 

mg of 4’-methylbenzaldehyde-1-d (0.834 mmol, 1.00 equiv.) dissolved in 2.00 mL THF 

were added slowly.  Upon completion of the addition, the reaction mixture was warmed 

to room temperature again and stirred for 4 h.  Subsequently, 5.00 mL of sat. aq. NH4Cl 

were added and the mixture was stirred for 20 min, during which a white solid 

precipitated.  The mixture was partitioned between H2O and Et2O, and the aqueous phase 

was extracted with Et2O (3 × 20.0 mL).  The combined organic layers were dried over 

MgSO4 and concentrated in vacuo.  The product was purified by column chromatography 

eluting with pentane.  Yield: 63%; clear oil; Rf: 0.73 w/ 10% Et2O/hexanes; 1H NMR 
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(300 MHz, CDCl3) δ 2.35 (s, 3 H), 5.19 (m, 0.02 H), 5.64 (m, 0.03 H), 7.14 (m, 2 H), 

7.31 (m, 2 H); overall D incorporation: 93% (from 98% D LAD, 95% D [PhPCD3]I). 

 
Deuterium Labeling Studies (Figure 1.30) 

It should be noted that all GC/MS samples were taken at complete substrate 

conversion. 

Procedure for eq. 1.1.  Into an oven-dried 50 mL Schlenk flask equipped with a 

stirbar were added 6.50 of mg Pd(MeCN)2Cl2 (0.0250 mmol, 0.100 equiv.), 12.4 mg of 

Cu(bc)Cl2 (0.0250 mmol, 0.100 equiv.), 13.4 mg of CuCl2 (0.100 mmol, 0.400 equiv.) 

and 250 mg of activated 3Å molecular sieves.  A condenser was placed on the flask, and 

4.50 mL of DCE followed by 0.500 mL of iPrOD were added via the sidearm.  A 3-way 

adapter fitted with a balloon of O2 was placed on the condenser.  The flask was evacuated 

via water aspiration and refilled with O2 three times while stirring.  The orange mixture 

was then stirred under O2 at room temperature for 30 min, followed by addition of 29.6 

mg of 4-methylstyrene (1.9a, 0.250 mmol, 1.00 equiv.) via syringe.  The flask was placed 

in an oil bath at 50 °C.  After 24 h, a sample of the reaction mixture was analyzed by 

GC/MS (see Appendix A). 

Procedure for eq. 1.2.  Into an oven-dried 10 mL sidearm flask equipped with a 

stirbar were added 1.30 mg of Pd(MeCN)2Cl2 (0.00500 mmol, 0.0500 equiv.), 2.50 mg of 

Cu(bc)Cl2 (0.00500 mmol, 0.0500 equiv.), 2.70 mg of CuCl2 (0.0200 mmol, 0.200 

equiv.) and 50.0 mg of activated 3Å molecular sieves.  A condenser was placed on the 

flask, and 1.80 mL of DCE-d4 followed by 0.100 mL of iPrOH were added via the 

sidearm.  A three-way adapter fitted with a balloon of O2 was placed on the condenser.  

The flask was evacuated via water aspiration and refilled with O2 three times while 
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stirring.  The orange mixture was then stirred under O2 at room temperature for 30 min, 

followed by addition of 11.8 mg of 4-methylstyrene (1.9a, 0.100 mmol, 1.00 equiv.) as 

0.100 mL of a 1.00 M solution in iPrOH.  The flask was placed in an oil bath at 60 °C.  

After 22 h, a sample of the reaction mixture was analyzed by GC/MS (see Appendix A). 

Procedure for eq. 1.3.  Into an oven-dried 25 mL Schlenk flask equipped with a 

stirbar were added 3.20 mg of Pd(MeCN)2Cl2 (0.0125 mmol, 0.0500 equiv.), 6.20 mg of 

Cu(bc)Cl2 (0.0125 mmol, 0.0500 equiv.), 6.70 mg of CuCl2 (0.0500 mmol, 0.200 equiv.) 

and 125 mg of activated 3Å molecular sieves.  A condenser was placed on the flask, and 

4.50 mL of DCE followed by 0.500 mL of (CH3)2CDOH were added via the sidearm.  A 

three-way adapter fitted with a balloon of O2 was placed on the condenser.  The flask was 

evacuated via water aspiration and refilled with O2 three times while stirring.  The orange 

mixture was then stirred under O2 at room temperature for 30 min, followed by addition 

of 29.5 mg 4-methylstyrene (1.9a, 0.250 mmol, 1.00 equiv.).  The flask was placed in an 

oil bath at 60 °C.  After 4.5 h, a sample of the reaction mixture was analyzed by GC/MS 

(see Appendix A). 

Procedure for eq. 1.4.  The procedure for eq. 6 was followed, except iPrOH-d8 

was used instead of (CH3)2CDOH.  A sample for GC/MS analysis was taken after 19 h. 

Procedure for eq. 1.5.  Into an oven-dried 25 mL Schlenk flask equipped with a 

stirbar were added 2.60 mg of Pd(MeCN)2Cl2 (0.0100 mmol, 0.0550 equiv.), 4.90 mg of 

Cu(bc)Cl2 (0.0100 mmol, 0.0550 equiv.), 5.40 mg of CuCl2 (0.0400 mmol, 0.220 equiv.) 

and 100 mg of activated 3Å molecular sieves.  A condenser was placed on the flask, and 

3.10 mL of DCE followed by 0.400 mL of (CH3)2CDOH were added via the sidearm.  A 

three-way adapter fitted with a balloon of O2 was placed on the condenser.  The flask was 
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evacuated via water aspiration and refilled with O2 three times while stirring.  The orange 

mixture was then stirred under O2 at room temperature for 30 min, followed by addition 

of 21.9 mg of 4-methylstyrene-d3 (1.17, 0.181 mmol, 1.00 equiv.) as 0.500 mL of a 0.361 

M solution in DCE with tetradecane (20.0 μL per mmol 4-methylstyrene) added as 

internal standard.  The flask was placed in an oil bath at 60 °C.  Samples were taken out 

periodically via syringe and analyzed by GC (see Table 1.9).  After 3 h, a sample of the 

reaction mixture was analyzed by GC/MS (see Appendix A). 

Procedure for eq. 1.6.  Into an oven-dried 25 mL Schlenk flask equipped with a 

stirbar were added 2.60 mg of Pd(MeCN)2Cl2 (0.0100 mmol, 0.0500 equiv.), 4.90 mg of 

Cu(bc)Cl2 (0.0100 mmol, 0.0500 equiv.), 5.40 mg of CuCl2 (0.0400 mmol, 0.200 equiv.) 

and 100 mg of activated 3Å molecular sieves.  A condenser was placed on the flask, and 

3.10 mL DCE followed by 0.400 mL iPrOH-d8 were added via the sidearm.  A 3-way 

adapter fitted with a balloon of O2 was placed on the condenser.  The flask was evacuated 

via water aspiration and refilled with O2 three times while stirring.  The orange mixture  

 

Table 1.9. Isotope effect timecourse data using 1.17 and (CH3)2CDOH. 
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was then stirred under O2 at room temperature for 30 min, followed by addition of 24.2 

mg of 4-methylstyrene-d3 (1.17, 0.200 mmol, 1.00 equiv.) as 0.500 mL of a 0.400 M 

solution in DCE with tetradecane (20.0 μL per mmol 4-methylstyrene) added as internal 

standard.  The flask was placed in an oil bath at 60 °C.  After 3 h, a sample of the reaction 

mixture was analyzed by GC/MS (see Appendix A). 

Procedure for nonlabeled reaction for isotope effect.  The procedure for eq. 1.6 

was followed, except 23.6 mg of 4-methylstyrene (1.9a, 0.200 mmol, 1.00 equiv.) were 

used instead of 4-methylstyrene-d3 (1.17), and 0.400 mL of iPrOH was used instead of 

0.400 mL of iPrOH-d8. Samples were taken out periodically via syringe and analyzed by 

GC (see Table 1.10).   

 

Table 1.10. Isotope effect timecourse data using 1.9a and iPrOH. 

5 mol% Pd(MeCN)2Cl2
5 mol% Cu(bc)Cl2, 20 mol% CuCl2

3Å MS, 10% iPrOH/DCE
60 °C, O2

OiPr

1.10a1.9a

0.5
1.0
2.0
3.0
4.5
17

conversion
(%)

time
(h)

1.10a
(%)

18
19
24
36
64
80

8
12
14
29
59
86  
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Hydroalkoxylation Experiments Using 2-Octanol 

 

Preparation of 1-methyl-4-(1-(octan-2-yloxy)ethyl)benzene.  Into an oven-dried 

100 mL Schlenk flask equipped with a stirbar were added 6.50 mg of Pd(MeCN)2Cl2 

(0.0250 mmol, 0.0500 equiv.), 13.4 mg of CuCl2 (0.100 mmol, 0.200 equiv.), 12.4 mg of 

Cu(bc)Cl2 (0.0250 mmol, 0.100 equiv.), and 250 mg of activated 3Å molecular sieves.  A 

condenser was placed on the flask and 9.00 mL of DCE were added via the sidearm.  A 

three-way adapter fitted with a balloon of O2 was placed on the condenser.  The flask was 

evacuated via water aspiration and refilled with O2 three times while stirring.  The orange 

mixture was then stirred under O2 at room temperature for 30 min, and 59.1 mg of 4-

methylstyrene (1.9a, 0.500 mmol, 1.00 equiv.) were added as 1.00 mL of a 0.500 M 

solution in 2-octanol with 10.0 μL tetradecane as internal standard.  The flask was placed 

in an oil bath at 60 °C, and samples were taken out periodically for GC analysis.  After 3 

days, the reaction mixture was cooled to room temperature and passed through a silica 

plug eluting with 40.0 mL of 1:1 Et2O/hexanes.  The solvent was removed in vacuo to 

obtain an oil.  The oil was purified by flash column chromatography eluting with hexanes 

 1% Et2O/hexanes  5% Et2O/hexanes.  Yield: 47% (58.0 mg, 0.233 mmol); clear oil; 

Rf: 0.67 w/ 20% EtOAc/hexanes; 1H NMR (300 MHz, CDCl3) δ 0.8 – 1.61 (m, 19 H), 

2.34 (s, 3 H), 3.20 – 3.40 (m, 1 H), 4.49 (m, 1 H), 7.11 – 7.25 (m, 4 H); 13C NMR {1H} 

(75 MHz, CDCl3) δ 14.3, 19.4, 21.1, 21.3, 22.8, 24.7, 25.0, 25.5, 25.9, 29.5, 29.7, 32.1, 

36.2, 37.8, 71.8, 73.2, 74.4, 75.4, 126.3, 126.6, 129.1, 129.2, 136.9, 137.0, 141.7, 142.3; 

MS (ESI/APCI) m/z (MNH4
+) calcd.: 266.2484 obsd.: 266.2475. 
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Comparison of styrene conversion and 2-octanol oxidation.  Data were obtained 

from samples taken from the reaction described above (preparation of 1-methyl-4-(1-

(octan-2-yloxy)ethyl)benzene) (see Table 1.11).  

Hydroalkoxylation using 2-octanol omitting Pd (A) or Cu (B).  Into an oven-dried 

5 mL sidearm flask equipped with a stirbar were added 2.70 mg of CuCl2 (0.0200 mmol, 

0.400 equiv.) and 2.50 mg of Cu(bc)Cl2 (0.00500 mmol, 0.100 equiv.) (A), or 1.30 mg of 

Pd(MeCN)2Cl2 (0.00500 mmol, 0.100 equiv.) (B), and 50.0 mg of activated 3Å molecular 

sieves (both).  A condenser was placed on the flask and 0.800 mL of DCE and 0.100 mL 

of 2-octanol were added via the sidearm.  A three-way adapter fitted with a balloon of O2 

was placed on the condenser.  The flask was evacuated via water aspiration and refilled 

with O2 three times while stirring.  The orange mixture was then stirred under O2 at room 

temperature for 30 min, and 5.90 mg of 4-methylstyrene (1.9a, 0.0500 mmol, 1.00 

equiv.) were added as 0.100 mL of a 0.500 M solution in DCE with 5-nonanone  (20.0 

μL per mmol 1.9a) as internal standard. The flask was placed in an oil bath at 60 °C, and 

samples were taken out periodically for GC analysis.  None of the reactions showed a 

significant amount of 2-octanone or hydroalkoxylation product. 

 

Table 1.11. Comparison of styrene conversion and 2-octanol oxidation. 
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CHAPTER 2 
 
 

DEVELOPMENT OF AN ASYMMETRIC PD-CATALYZED  
 

HYDROARYLATION OF STYRENES AND DIENES 
 
 

Introduction 

 Diarylmethine motifs can be found in a variety of natural products and 

biologically active molecules (Figure 2.1).1-4  While they have been successfully 

synthesized stereoselectively,5-9 there are few methods to set diarylmethine stereocenters 

in unfunctionalized molecules.10  The majority of asymmetric methods to access 

diarylmethines rely on Michael-type additions into 3-aryl-substituted α,β-unsaturated 

carbonyls, and most other methods have limited substrate scope (vide infra).  An 

asymmetric preparation of diarylmethines based on a different mechanistic scenario 

would therefore be desirable. 

 

 

Figure 2.1. Biologically active structures containing diarylmethine centers. 



Our group has previously reported successful methods for Pd-catalyzed 

hydroarylations of styrenes to prepare diarylmethine compounds, one of which displayed 

activity against breast cancer cells (Figure 2.1, C6).  Due to the interest our group has in 

these molecules as well as the general lack of methods to prepare them, we decided to 

pursue the development of an asymmetric hydroarylation reaction.  This chapter 

describes the systematic evaluation of several ligand classes and our progress toward an 

asymmetric hydroarylation of styrenes and dienes.  The work in this chapter was done in 

close collaboration with Mr. Yasumasa Iwai. 

 
Background 

Racemic Markovnikov Hydroarylations of Styrenes 

Styrene hydroarylations are often achieved by direct addition of an 

unfunctionalized arene to a styrene.  There are two distinct mechanistic scenarios for this 

reaction: a Friedel-Crafts type and a C–H activation mechanism (Figure 2.2).11-13  The 

Friedel-Crafts type mechanism proceeds via a Lewis or Brønsted acid binding to the 

alkene to form a cationic intermediate, which then undergoes nucleophilic attack by the 

arene, leading exclusively to the Markovnikov product.  The C–H activation mechanism  

 

Figure 2.2. Markovnikov and anti-Markovnikov hydroarylation. 
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is initiated by C–H activation on the arene by transition metal catalysts.  The aryl group 

and proton are then added across the double bond, which typically results in the 

formation of the anti-Markovnikov product.  There have been reports of this type of 

mechanism leading to the Markovnikov product as well, although it is not clear what 

causes this shift in product distribution.14-18 

The Friedel-Crafts alkylation has been used extensively as an approach to the 

hydroarylation of styrenes.  It has the advantage of producing no byproducts, and a 

variety of Lewis and Brønsted acid catalysts are successful in promoting this reaction  

(Figure 2.3).11  Similarly to the hydroalkoxylation reaction reactions discussed in chapter 

1, the role of the catalyst is to activate the alkene for nucleophilic attack.  The relative 

 

Cl
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10 mol% FeCl3

o-xylene
80 °C, 4 h

89% GC yield
>99:1 4-/3-subst.
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79% yield
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Xiao et al, 2008

OMe

OMe

F OMe

OMe

3 equiv

2.5 mol% Ca(NTf2)2
2.5 mol% Bu4NPF6

DCM, rt, 2 h

78% yield
10:1 4-/2-subst.

Niggemann and Bisek, 2010

F

 

Figure 2.3. Catalytic Friedel-Crafts hydroarylation of styrenes. 
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simplicity of this mechanism allows for a variety of efficacious catalysts.  The general 

limitation of these reactions is the reliance on the inherent nucleophilicity of the arene, 

which rules out the use of electron-poor arenes, and leads to selectivity issues in many 

cases.19  Thus, Beller and coworkers developed a FeCl3-catalyzed hydroarylation of 

styrenes (Figure 2.3, top).20  While this catalyst is both cheap and convenient, the arene 

nucleophile had to be used as the solvent in this case, precluding the use of precious 

and/or solid substrates.  Additionally, the resulting substitution pattern on the arene was 

greatly dependent on the arene nuceophile, with selectivities varying between 1.3:1 and 

>99:1.  Che and coworkers were able to lower the amount of nucleophile to 10 

equivalents by using a gold catalyst (Figure 2.3, middle).21  However, the selectivity 

varied almost as much as in Beller’s system.  Niggemann and Bisek reported a calcium-

catalyzed hydroarylation, wherein they were able to lower the concentration of the 

nucleophile even further (Figure 2.3, bottom).22  They previously reported the use of the 

same catalyst for a Friedel-Crafts reaction of benzylic, allylic, and propargylic alcohol 

substrates,23 and proposed that the styrene hydroarylation might proceed via a benzylic 

alcohol intermediate (formed from adventitious water in the reaction).  While they were 

unable to detect such an intermediate, they showed in a competition experiment that 

phenyl ethanol was consumed in preference to styrene to yield the diarylmethine product.  

Furthermore, the reaction with styrene was inhibited when performed under strictly dry 

conditions.  While this evidence is inconclusive, it does pose questions on the exact 

mechanism of this type of reaction.  Additionally, the nature of the active catalyst 

becomes questionable, as Brønsted acids could potentially be formed under these 

conditions, which are known catalysts for this type of reaction. 
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The Friedel-Crafts type hydroarylation of styrenes offers a convenient and simple 

route to certain diarylmethine products; however, it is highly substrate-dependent by 

nature.  Therefore, there is a need for more general hydroarylation reactions.  One such 

system is the two-step sequence of hydroboration of styrenes followed by cross-coupling 

with aryl electrophiles, which is discussed in the following section.  Another 

mechanistically distinct approach toward hydroarylation reactions was developed in our 

laboratory and is discussed below. 

We became interested in the hydroarylation of styrenes along with the 

hydroalkoxylation reactions discussed in chapter 1.24-27  We envisioned that the Pd π-

benzyl complex formed during the hydroalkoxylation might undergo transmetallation 

followed by reductive elimination instead of nucleophilic attack via the general 

mechanism shown in Figure 2.4.  Parallel to the hydroalkoxylation, the proton 

incorporated into substrate was proposed to originate from the Pd-catalyzed oxidation of 

the alcohol substrate.24,28  The mechanism was envisioned to begin with a Pd-catalyzed 

aerobic alcohol oxidation, giving Pd hydride B.  The alkene substrate would insert into 

the Pd–H bond to form two isomeric Pd alkyl species D and E, wherein E can be 

stabilized by a Pd π-benzyl or π-allyl interaction (F), depending on the substrate.  

Intermediate E would then undergo transmetallation followed by reductive elimination to 

liberate the product. 

Based on this mechanistic manifold, several racemic hydroarylation reactions 

were developed in our laboratory using organostannanes and arylboronic esters as 

transmetallating agents (Figure 2.5).  It should be noted that the system using 
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Figure 2.4. Proposed Pd-catalyzed hydroarylation of styrenes with mechanism (adapted 
from Gligorich et al., 2009). 

 

organostannanes was applicable to styrenes as well as dienes,24 while the reaction using 

boronic esters did not tolerate diene substrates.25  A separate system was therefore 

developed for the coupling of dienes with boronic esters.27  To support our proposed 

mechanism, deuterium labeling studies were performed using the organostannane system 

(Figure 2.6).24  Deuterated product was observed when (CH3)2CDOH was used as 

solvent, but not with (CH3)2CHOD, indicating that the proton incorporated into product 

stems from the α-position of IPA, as would be expected according to the proposed 

mechanism. 

 

74



 

 

PhSnBu3

1.5 equiv

2.5 mol% Pd[( )-sparteine]Cl2
40 mol% ( )-sparteine

75 mol% MnO2

IPA, 25 psi O2, 60 °C

Ph

76% yield

tBu

OBu3Sn
3.5 mol% Pd[( )-sparteine]Cl2

40 mol% ( )-sparteine

75 mol% MnO2

IPA, 25 psi O2, 60 °C
1.5 equiv

tBu
40% yield

O

3 equiv

0.75 mol% [Pd(SIiPr)Cl2]2
6 mol% ( )-sparteine

6 mol% tBuOK
IPA, balloon O2, 55 °C

Ph

81% yield

Ph B
O

O

Ph

3 equiv

Ph B
O

O
0.75 mol% Pd[( )-sparteine]Cl2

20 mol% ( )-sparteine

0.5 mol% tBuOK
IPA, balloon O2, 75 °C

Ph Ph

75% yield

N N

( )-sparteine

Pd
Cl

Cl

Cl
Pd

Cl

N

N

N

N
Ar

Ar

Ar

Ar

[PdSIiPrCl2]2
Ar = 2,6-diisopropylphenyl

Gligorich et al, 2007

Iwai et al, 2008

Liao and Sigman, 2010

 

Figure 2.5. Racemic Pd-catalyzed hydroarylation reactions. 
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CH2D

PhSnBu3

1.5 equiv

2.5 mol% Pd[( )-sparteine]Cl2
40 mol% ( )-sparteine

75 mol% MnO2

(CH3)2CDOH
25 psi O2, 60 °C

D

70% 22%

8%

using (CH3)2CHOD: no D incorporation

 

Figure 2.6. Deuterium labeling studies (adapted from Gligorich et al., 2007). 

 
While the products formed in these reactions are similar (or identical), and the 

proposed mechanism is essentially the same, different problems and limitations were 

found for each.  With the organostannane system, oxidation of (–)-sparteine was 

observed, and (–)-sparteine-N-oxide was found to inhibit the reaction.  It was 

hypothesized that H2O2 was the (–)-sparteine oxidant, and to circumvent this issue, MnO2 

(which is known to disproportionate H2O2)
29 was added to the reaction.  In the case of the 

boron system, (–)-sparteine oxidation was not observed; instead, phenol was formed in 

the reaction.  H2O2 was likely causing this as well by oxidizing the arylboronic ester.  

Fortunately, the addition of a slight excess of boronic ester was sufficient to allow the 

hydroarylation to proceed to completion.  Additionally, the role of base had to be re-

evaluated with respect to boron, as it is intimately involved in transmetallation.30,31  

In summary, several different approaches to the hydroarylation of styrenes have 

been discussed.  While progress has been made regarding the extension of these methods 

to asymmetric reactions, this has proved nontrivial (vide infra).  Thus, other routes have 

been developed in order to access diarylmethines stereoselectively, including more 

circuitous paths and substrate-controlled methods relying on the assistance of 

neighboring groups. 
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Synthesis of Enantiomerically Enriched Diarylmethines 

The most common approach to enantiomerically enriched diarylmethines is the 

asymmetric 1,4-addition of aryl groups to aryl-substituted α,β-unsaturated carbonyls.  

Both transition metal-catalyzed additions of organometallic reagents and Friedel-Crafts-

type additions have been developed; however, the Friedel-Crafts reactions are typically 

limited to heteroaromatic nucleophiles such as indoles.32   

An interesting example of a cross-coupling approach was reported by Carreira 

and coworkers, who developed an asymmetric addition of arylboronic acids to 3-

arylpropenals catalyzed by Rh diene complexes (Figure 2.7, top).33,34  The scope of the 

reaction encompasses a variety of substituted benzene rings on both the aldehyde and the 

boronic acid, as well as a furan ring on the aldehyde, with ee’s between 89 and 93%.  

Additionally, a decarbonylation of the resulting 3,3-diarylpropanals was developed to 

access diarylethanes enantioselectively (Figure 2.7, middle).35  Both reactions could also 

be performed in one pot by swapping the solvent and adding the decarbonylation catalyst 

to the crude mixture (Figure 2.7, bottom).35  

Tokunaga and Hayashi utilized a Rh binap catalyst to achieve the 1,4-addition of 

arylzinc reagents to 3-arylpropenals in the presence of TMSCl (Figure 2.8).36  While the 

scope of this reaction is fairly limited, the ee’s are excellent for all substrates (98 – 

99%).The role of TMSCl is not examined in detail, but it is proposed that it activates the 

aldehyde for nucleophilic attack and stabilizes the resulting enol ether, inhibiting further 

reaction of the product.37 
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Figure 2.7. Enantioselective preparation of diarylmethines by Michael-type reaction 

followed by decarbonylation. 
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Figure 2.8. Enantioselective addition of arylzinc reagents to 3-arylpropenals 
(adapted from Tokunaga and Hayashi, 2006). 

 

A 1,4-addition of arylboronic acids to arylmethylene cyanoacetates catalyzed by a 

Rh-diene complex was published by Hayashi and coworkers in 2008 (Figure 2.9).6  The 

catalyst in this system is similar to that used by Carreira and coworkers.  Both yields and 

ee’s are excellent in this reaction, giving 96 – 99% ee and greater than 90% yield in all 

cases.  The products were isolated as 1:1 diastereomeric mixtures, which were subjected 

to ester hydrolysis and decarboxylation to determine the enantiomeric excess.  Hayashi 

and coworkers also used this methodology to set the stereocenter in a short synthesis of 

(R)-tolterodine. 

 

 
 

Figure 2.9. Enantioselective addition of arylboronic acids to arylmethylene cyanoacetates 
(adapted from Sörgel et al., 2008). 
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Miyaura and coworkers developed catalytic systems for the 1,4-addition into 

enones using both Rh and Pd catalysts (Figures 2.10 and 2.11).38,39  Interestingly, the 

same ligand (chiraphos) was successful in both cases.  Additionally, the Rh-catalyzed 

reaction was employed in a synthesis of an endothelin receptor antagonist,38 and the Pd-

based system was slightly modified for the 1,4-addition into 3-arylalkenals and applied to 

a short synthesis of a phosphodiesterase IV inhibitor.40 

Stereoselective Friedel-Crafts reactions are rare to date.  There are some 

diastereoselective Friedel-Crafts reactions of alcohols containing a chiral center at the α- 

position,11 but to the best of my knowledge, the only example of an enantioselective 

Friedel-Crafts reaction was published by Nishibayashi and coworkers (Figure 2.12).41  

The substrate scope is limited to the addition of 2-methylfuran and N,N-dimethylamine to 

aryl-substituted propargyl alcohols.  The reaction is proposed to proceed via a Ru 

alkenylidene complex, which undergoes nucleophilic attack by the arene.  The catalyst 

 

 

Figure 2.10. Enantioselective addition of arylboronic acids to enones (adapted from Itoh 
et al., 2006). 
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Figure 2.11. Enantioselective addition of aryltrifluoroborates to enones (adapted from 
Nishikata et al., 2005). 

 
 

 

Figure 2.12. Enantioselective Friedel-Crafts-type propargylation (adapted from 
Matsuzawa et al., 2007). 

 

used in this reaction is an unusual Ru disulfide dimer, which is proposed to induce 

stereoselectivity via a π-π interaction between an aryl group of the catalyst and that of the 

propargyl alcohol.42  Interestingly, the same catalyst system could be applied to the 

addition of various other nucleophiles to propargyl alcohols.43 

Using a different approach to the formation of diarylmethine stereocenters, 

Alexakis and coworkers reported an Ir-catalyzed asymmetric allylic substitution (Figure 
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2.13).9  While the enantioselectivity was generally good, the selectivity for the branched 

vs linear products was poor, even favoring the undesired linear product in several cases. 

Catalytic asymmetric hydrogenation is arguably one of the most powerful 

catalytic methods to date.  However, 1,1-diaryl-substituted olefins (without adjacent 

coordinating groups) are a problematic substrate class for this reaction, as the two 

enantiotopic faces differ very little.44  Andersson and coworkers overcame this difficulty 

and discovered that N,P-chelated Ir catalysts were competent hydrogenation catalysts for 

these as well as other challenging substrates (Figure 2.14).10,45  In their initial report in 

2009, Andersson and coworkers found that trisubstituted olefins bearing geminal aryl 

groups were efficiently and selectively hydrogenated by P,N-ligated Ir (Figure 2.14., 

top).10  In this report, the substrate scope is somewhat narrow, and two different ligands 

were found to be optimal depending on the third substituent on the alkene (L1 was the 

optimal ligand if the third substituent was an alkyl group).  In 2011, Andersson, Norrby,  

 

 
Figure 2.13. Enantioselective allylic substitution (adapted from Alexakis et al., 2007). 
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Figure 2.14. Asymmetric hydrogenation of 1,1-diarylalkenes. 

 
Diéguez and coworkers published a more extensive study on the hydrogenation of several 

challenging substrate classes, using Ir catalysts containing modular pyranoside phosphite-

oxazoline ligands (Figure 2.14, bottom).45  The oxazoline substituent and the biaryl 

phosphite moiety were varied independently, giving rise to a library of ligands that were 

evaluated for hydrogenations of “minimally functionalized olefins”.  Different ligands 

were found to be optimal for different types of substrates, such as E- and Z-alkenes, 

alkenes bearing a neighboring polar group, and terminal 1,1-disubstituted alkenes.  

Excellent conversions and good to excellent enantioselectivities were observed in all 

cases, the substrate shown in Figure 2.14 (bottom) gave the lowest ee reported in this 
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paper.  It should be noted that the previous catalyst system was successful only for 

trisubstituted alkenes.  Based on computational studies, quadrant models were proposed 

to explain the stereoselectivites observed with both types of catalysts.  Furthermore, it 

was suggested that the biaryl phosphite moiety in the second catalyst system is able to 

subtly change its dihedral angle to adapt its chiral environment to the substrate at hand, 

thus bringing about the greater versatility of this catalyst system. 

Another approach to enantiomerically enriched diarylmethines is the cross-

coupling of enantiomerically enriched transmetallating agents.  In this case, the 

stereocenter is set in a hydroboration or hydrosilylation followed by stereoretentive cross-

coupling.  There is a vast number of enantioselective hydroborations developed by a 

number of groups.46-56  The stereoretentive cross-coupling of secondary boronic esters 

has received far less attention until recently, when reports of this type of reaction were 

published by Suginome,57,58 Molander,59 and Crudden.60,61  Crudden and coworkers were 

the only group to utilize this methodology to access diarylmethines (Figure 2.15).  

Interestingly, the reaction proved to be completely selective for the reaction of secondary 

vs primary boronic esters.  

 

 

Figure 2.15. Cross-coupling of chiral boronic esters with stereoretention (adapted from 
Imoa et al., 2009). 
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Another approach to diarylmethines via cross-coupling was reported by Jarvo and 

coworkers (Figure 2.16).62  They found that benzylic and dibenzylic methoxy groups 

could be substituted by methyl groups under Ni catalysis with complete inversion of the 

stereocenter.  However, the substrate is limited with respect to functional groups, 

presumably due to the use of a Grignard reagent. 

In summary, there are several different approaches to the enantioselective 

formation of diarylmethines, the most general of them being the Michael addition and the 

newly developed hydrogenation.  While some successful methodologies have been 

developed in this context, novel paths toward the synthesis of these products are still 

desirable to provide access to a wide range of diarylmethine products. 

 
Approach to the Hydroarylation of Styrenes  

and Dienes Using Pd Hydrides 

Considering the relatively narrow range of approaches to enantiomerically 

enriched diarylmethine motifs and our groups own interest in them, we decided to pursue 

an enantioselective version of our previously developed alkene hydroarylation.  In  

 

 

Figure 2.16. Stereospecific cross-coupling of alkyl ethers (adapted from Taylor et al., 
2010). 
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parallel with the hydroalkoxylation discussed in chapter 1, β-hydride elimination proved 

to be a crucial step in this reaction.  The key intermediates from which β-hydride 

elimination could occur were the same as for the hydroalkoxylation: a Pd alkoxide 

formed during the alcohol oxidation (where β-hydride elimination was desired to form 

the Pd hydride A), and a Pd π-benzyl complex, from which β-hydride elimination was not 

desired, as this would result in the reverse reaction, leading ultimately back to starting 

material (Figure 2.17).  Importantly, the coordination of Pd to one enantiotopic face of 

the alkene is proposed to set the stereocenter in this reaction.  Deuterium labeling studies 

performed with racemic hydroarylations indicated that both alkene coordination and 

insertion could be reversible,24 which might be a problem in the asymmetric reaction. 

In order to be able to fine tune the reactivity and enantioselectivity of the system, 

we focused primarily on modular ligand classes.  The boronic ester method was initially 

selected as a starting point for the development of an asymmetric hydroarylation reaction 

due to the lower toxicity and easier handling of boronic esters compared to tin reagents.   

 
Initial Study of Chiral Carbenes 

For the racemic hydroarylation of styrenes using boronic esters, N-heterocyclic 

carbene Pd complexes had been found to be optimal.  Because of this and the modular 

nature of carbenes, it was initially thought that chiral N-heterocyclic carbene (NHC)  

 

 

Figure 2.17. Reversible alkene coordination and insertion. 
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ligands could promote the reaction effectively.  For the racemic hydroarylation of 

styrenes using organostannanes, on the other hand, (–)-sparteine had been found to be the 

optimal ligand.  (–)-Sparteine is notoriously difficult to modify, and it had been 

previously shown that it cannot generally be replaced with other bidentate amine 

ligands.63-66 

Thus, several NHC’s were prepared with chiral backbones as well as chiral 

substituents on nitrogen and evaluated under the optimized conditions for the racemic 

hydroarylation (Figure 2.18).  While all of these successfully promote the reaction, the  

 

 

Figure 2.18. Asymmetric hydroarylation using chiral carbenes. a The Pd carbene complex 
was formed in situ before addition of the remaining reagents (see experimental section 

for details). 
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product was nearly racemic in all cases.  When studying bioxazoline (Biox)-derived 

carbenes, a low ee (6%) was found for the iPrBiox-derived NHC (2.5), and a 32% ee was 

observed with the menthol-derived NHC introduced by Glorius and coworkers (2.7).67 

Unfortunately, this was accompanied by a significant loss in catalyst activity, and since 

this ligand could not be easily modified, this result was not pursued further. 

 
Bidentate Ligands 

We hypothesized that the generally low enantioselectivity may be due to the 

chiral information being too far removed from the catalytic center, and therefore decided 

to investigate bidentate ligands, since they should provide a more rigid steric 

environment, and potentially place the chiral substituents closer to Pd.  Since phosphine-

based ligands are known to be oxidatively unstable, we decided to evaluate several 

classes of bidentate nitrogen ligands initially (Figure 2.19).  Different combinations of 

oxazoline and pyridine or quinoline moieties were synthesized and tested.  Of these 

ligands, BINAM (2.21) and the valinol-derived bioxazoline 2.16 were the only ligands 

that did not promote the reaction at all.  While menthol-derived bioxazoline 2.17 as well 

as pyridine-oxazoline 2.18 and quinoline-oxazoline 2.19 gave some product with 10-14% 

ee, bisoxazoline 2.22 gave by far the highest yield and ee (52% yield, 45% ee).  

Somewhat surprisingly, when bridged pyridine-oxazoline 2.20 was tested, racemic 

product was observed.  Additionally, when (–)-sparteine was evaluated (in the absence of 

NHC’s), nearly racemic product was formed. 

A systematic study of bisoxazoline ligands was carried out in order to identify an 

optimal ligand, varying the substituent off the oxazoline ring.  Interestingly, a linear free  
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Figure 2.19. Bidentate N,N-ligands. a 3 mol% ligand were used. b 5 mol% Pd(MeCN)2Cl2, 
20 mol% ligand and 10 mol% KOtBu were used, and the reaction was performed at room 

temperature. 
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energy relationship between the steric bulk of the oxazoline substituent as defined by the 

Charton parameter68-70 and the log of the enantiomeric ratio of the product (corresponding 

to a relative rate of product formation for the two enantiomers) was observed up to a 

certain point (Figure 2.20).  While substituents with a tertiary carbon (such as (S)-iPrBox 

2.22, (S)-diEtBox 2.26) gave the predicted enantioselectivities, rapid precipitation of Pd 

metal along with diminished product formation and ee was observed with (S)-tBuBox 

(2.27) (vide infra).  Moreover, when the dicyclohexyl-substituted Box ((S)-diCyBox 

2.28) was synthesized and tested, the ee of the hydroarylation product was found to be 

63%, even though this substituent would be expected to give a higher ee than the diethyl 

one (2.26).  Unfortunately, no Charton value is reported for Cy2CH, making a 

quantitative comparison impossible.  Overall, this implies that over a certain range the 

enantioselectivity is dictated by the size of the oxazoline substituent, as would be 

expected.  However, when the substituent is too large, there is a change, possibly in the 

overall catalyst structure or reaction mechanism, which perturbs the enantioselectivity 

and/or reactivity of the catalyst.   

 
Optimization Using Organostannanes 

Interestingly, when an organostannane was used instead of a boronic ester as the 

transmetallating agent, a nearly identical ee was observed (Table 2.1, entry 1 vs. Figure 

2.20).  Additionally, changing from PhSnBu3 (2.30) to an enol ether (2.31) did not affect 

the enantioselectivity substantially (Table 2.1, entry 2).  This seemed to indicate that the 

enantiodetermining step occurred before transmetallation, which was consistent with our 

initial hypothesis of the stereocenter being set by the alkene coordinating to Pd.   
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Figure 2.20. Charton plot for Box ligands. 
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Table 2.1. Initial results using organostannanes. 

 

Excitingly, this gave us an opportunity to develop a set of reaction conditions that could 

be potentially used with a wide variety of reagents.  It was also observed that base was 

not required for the reaction when using an organostannane, as similar results were 

obtained with and without KOtBu (entry 3). 

Since variation of the ligand substituents alone did not provide sufficiently high 

enantioselectivity, it was decided to further optimize the reaction conditions.  For these 

studies, 4-methylstyrene (2.29) and an enol ether stannane (2.31) were used, since both 

reaction progress and ee could be conveniently monitored by gas chromatography (GC). 

The reaction was initially evaluated at different temperatures (Table 2.2).  It was 

found to be extremely slow at room temperature, but somewhat more efficient at elevated 

temperatures (65 °C, entry 4).  Interestingly, temperature only had a modest effect on 

enantioselectivity, and thus further optimization was performed at 65 °C.  Higher 

temperatures were not evaluated due to the lower solubility of O2 at high temperatures. 
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Table 2.2. Temperature optimization for organostannanes. 

 

Next, different counterions on Pd were evaluated.  However, the use of non-

coordinating anions (OTf, OTs, BF4) led to <5% product in each case, while acetate 

provided the product in 8% GC yield and 28% ee.  The use of 1:1 mixtures of IPA and 

other cosolvents also did not lead to any improvements.  Use of DCE, tBuOH, and PhMe 

led to extremely slow reactions, while DMA provided the product in comparable yield 

(39%), but diminished ee (37%).  It was also observed that Pd(MeCN)2Cl2 was not 

completely soluble in IPA at room temperature, and small amounts of Pd metal 

precipitate were typically observed during the reaction.  By preforming the 

Pd(iPrBox)Cl2 catalyst and using it in place of Pd(MeCN)2Cl2, these issues could be 

avoided and slight increases in yield and ee were observed (34% yield, 51% ee).  The 

reaction was also performed with Pd(MeCN)2Cl2 and no added ligand, which resulted in 

the formation of substantial amounts of Pd metal precipitate, and no product formation. 

The effect of excess ligand was then studied in more detail (Table 2.3).  It was 

found that at <5 mol% of exogenous iPrBox the yield deteriorated, and at very low excess 
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Table 2.3. Optimization for organostannanes. 

 

ligand loadings no reaction was observed.  Since copper additives are known to promote 

Stille couplings, several different copper salts were added to the reaction mixture.71,72  As 

bisoxazolines are known to bind to copper, and decreased ee’s have been observed by our 

group in reactions that contain “ligandless” copper,73 enough ligand was added to ligate 

both Pd and Cu (Table 2.3, entries 5 - 9).  It was found that CuCl2 gave the best result, 

furnishing product in 47% yield and 59% ee.  Using 10 instead of 5 mol% CuCl2 

improved the yield slightly, and interestingly, with CuCl2 present, excess ligand was not 

required for the reaction (entries 10-11). 

Since optimization of the reaction conditions led to only modest improvements, 

other bisoxazoline derivatives were evaluated.  Thus, (S)-tBuBox was tested again at 

lower temperatures and found to be a viable ligand at room temperature, providing the 
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product in a rather low 18% yield, but in 75% ee, the best achieved thus far (Table 2.4, 

entry 2).  It should be noted that the (S)-iPrBox catalyst is not active under these 

conditions (see Table 2.2).  This showcases the fact that (S)-tBuBox not only forms an 

active catalyst, but one that is significantly more active than the (S)-iPrBox-derived one.  

The most likely reason for the formation of Pd metal with (S)-tBuBox at 55 °C is that the 

hydroarylation is proceeding rapidly, but reoxidation of Pd0 is slow, potentially due to 

lower concentration of O2 in solution.74  At lower temperatures, the rate of hydroarylation 

decreases, while the solubility of O2 increases, leading to a more robust catalytic system.  

However, even at room temperature, small amounts of Pd metal precipitate were 

observed.  Unfortunately, lowering the temperature to 0 °C led to trace amounts of 

product.  

At this point, the Pd((S)-tBuBox)Cl2-catalyzed hydroarylation was also tested 

using boronic esters.  Unfortunately, while ee’s of up to 56% were observed for substrate 

2.14 with phenyl boronic ester, these results were found to be irreproducible. 

 
Table 2.4. Hydroarylation using (S)-tBuBox at lower temperatures. 
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Other Bisoxazoline Ligands 

Since formation of Pd black was observed with Pd((S)-tBuBox)Cl2, several 

bisoxazoline derivatives were synthesized and tested in hopes of discovering a ligand that 

would provide both good enantioselectivity and a robust catalyst.  Ligand 2.33 was 

synthesized by REU student Amanda Cook-Sneathen, following a report by Paquin and 

coworkers.  In their report, a dimethyl-substituted valinol-derived oxazoline was found to 

be a good substitute for a t-butyl oxazoline.75  This ligand was evaluated using boronic 

esters, and found to be slightly more selective than (S)-iPrBox (Figure 2.21).  However, 

the increase in ee was not substantial enough to warrant further optimization with this 

ligand.   

With the idea in mind that a catalyst just slightly less sterically bulky than tBuBox 

was needed, ligand 2.34 was synthesized, featuring a t-butyl-substituted oxazoline ring 

and an unsubstituted oxazoline (Figure 2.22). Unfortunately, this ligand gave rather poor 

results.  Next, the bridging carbon was modified.  It has been observed by Denmark and 

coworkers76 that placing rings of different sizes at this position alters the angle between 

 

2.5 mol% Pd(2.33)Cl2
7.5 mol% 2.33
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Figure 2.21. Hydroarylation using (S)-diMeiPrBox (2.33). 
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Figure 2.22. Bisoxazoline derivatives. a after 44 h. b 10 mol% ligand, 5 mol% CuCl2. 

 
the two oxazoline rings, resulting in a subtle change in the bite angle of the ligand.  

Ligands 2.35 and 2.36 were synthesized and tested to evaluate the effect of this on our 

reaction.  While this modification did result in improved ee’s compared to iPrBox, the 

enantioselectivity was lower than that of tBuBox.  Interestingly, the reactivity of the 

catalyst derived from ligand 2.35 was found to be slightly lower compared to its “parent” 

ligand tBuBox, suggesting that a slightly larger bite angle alleviated the steric crowdingin 

this catalyst, leading to both lower reactivity and enantioselectivity.  Additionally, ligand 

2.37 was synthesized, with an unsubstituted bridging carbon.  Ligands of this type have 

been found to be deprotonated upon binding to metals,77,78 and are therefore 
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fundamentally different from typical Box ligands.  Unfortunately, this ligand did not 

provide a particularly active or enantioselective catalyst. 

Since it seemed the reaction for organostannanes had been optimized as far as 

possible, we chose to evaluate different substrates to probe the generality of the reaction 

(Table 2.5).  In addition to the substrates used for ligand optimization with boron, styrene 

was found to be a viable substrate in combination with an electron poor aryl boronic 

ester.  Furthermore, since π-allyl and π-benzyl Pd complexes can accessed with this 

method, a diene was tested and indeed found to give the expected product, albeit in low 

 

Table 2.5. Scope using boronic esters. 
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yield.  Unfortunately, when attempting to isolate the product derived from enol ether 

stannane 2.31, it was found to be inseparable from the starting material, and therefore, 

styrene 2.7 was instead reacted with PhSnBu3 (2.30) (Figure 2.23). 

 
Conclusion 

To summarize, we have made progress toward the development of a Pd-catalyzed 

asymmetric hydroarylation of styrenes and dienes.  Unfortunately, the use of O2 as the 

terminal oxidant restricts the potential types of ligands to those stable to oxidative 

conditions, precluding the use of typical phosphorus-based ligands.  We believe that this 

limitation is the main obstacle that needs to be overcome to develop this reaction more 

fully.  Based on this hypothesis, the development of related hydroarylation-type reactions 

that are independent of O2 became the general goal pursued in the project described in 

Chapter 3.  

 
Experimental Section 

General Information 

THF, DCE (1,2-dichloroethane) and CH2Cl2 were dried by passing through a 

column of activated alumina; iPrOH (IPA) and MeOH were distilled from CaH2; NEt3  

 

 

Figure 2.23. Example of hydroarylation using organostannane. 
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was distilled from CaH2; CDCl3 was dried by passing through a plug of activated neutral 

alumina.  Liquid styrene substrates were purified by passing through a small plug of 

activated neutral alumina before use.  PhSnBu3 and Bu3SnCl were purchased from Gelest 

Inc.  NaOtBu, KOtBu and Cs2CO3 were stored in a glove box, and removed immediately 

prior to use.  TsCl was purified by washing its solution in Et2O with base, followed by 

crystallization from hot PhMe.  DMAP was crystallized from hot toluene.  (–)-Sparteine 

was  prepared from (–)-sparteine sulfate pentahydrate (purchased from Acros) according 

to a previously reported procedure.64  Aminoacid 3-ethyl-L-norvaline was prepared 

according to a literature procedure.79 (S)-valinol, (S)-t-leucinol, (S)-phenylalaninol, (R)-

phenylglycinol, and 3-ethyl-L-norvalinol were prepared from the corresponding amino 

acids according to a literature procedure,80 and their spectral data agreed with previously 

published ones81 (or those of commercial products).  Unless otherwise noted, reactions 

were performed under an atmosphere of N2 using standard Schlenk techniques.  Flash 

column chromatography was performed using EM Reagent silica 60 (230-400 mesh).  1H 

NMR were obtained at 300 MHz and referenced to the residual CHCl3 singlet at 7.26 

ppm. 13C NMR were obtained at 75 MHz and referenced to the center line of the CDCl3 

triplet at 77.2 ppm. GC/MS were obtained on Agilent 6890 (EI) 20:1 split. IR spectra 

were recorded using a Nicolate FTIR instrument.  HRMS (high resolution mass 

spectrometry) analysis was performed using Waters LCP Premier XE.  Melting points 

were measured on a Thomas Hoover capillary melting point apparatus and are 

uncorrected.  Optical rotations were obtained (Na D line) using a Perkin Elmer Model 

343 Polarimeter fitted with a micro cell with a 1 dm path length; concentrations are 

reported in g/100 mL.  Chiral GC (gas chromatography) analysis was performed using a 
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Hewlett Packard HP 6890 Series GC system fitted with a HP-Chiral permethylated β-

cyclodextrin column.  HPLC (high pressure liquid chromatography) analysis was 

performed using a Hewlett Packard Series 1100 instrument fitted with a chiral stationary 

phase (as indicated).  SFC (supercritical fluid chromatography) analysis was performed at 

40 °C, using a Thar instrument fitted with a chiral stationary phase (as indicated).   

Caution should be taken when heating flammable solvents in the presence of O2. 

 
Preparation of Ligands and Their Pd Complexes 

 

Pd(2.10)(allyl)Cl was prepared as previously described in the literature.82     

 

 

Carbene precursor 2.11·HOTf was prepared following a literature procedure.83   
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Pd(2.11)(allyl)Cl was prepared following a procedure for related complexes.66  To 

a dry 25 mL round bottom flask were added 25.0 mg of [Pd(allyl)Cl]2 (0.0676 mmol, 

1.00 equiv), 52.6 mg of 2.11·HOTf (0.142 mmol, 2.10 equiv), and 18.2 mg of KOtBu 

(0.162 mmol, 2.40 equiv), followed by 3 mL of THF.  The mixture was stirred under N2 

for 14 h.  The resulting crude product was purified by flash column chromatography 

eluting with Et2O, followed by crystallization from DCM/hexanes to obtain a white solid.  

Yield: 26.0 mg (0.0617 mmol, 46%, 1:1.5 ratio of isomers by NMR); Rf: 0.15 w/ Et2O; 

[α]D
20 = +123.3 (c 1.0, CHCl3);  

1H NMR (300 MHz, CDCl3) δ 0.90 (m, 6 H), 1.00 (m, 6 

H), 2.33 (d, J = 12.5 Hz, 0.55 H), 2.45 (d, J = 12.2 Hz, 0.69 H), 2.65 (m, 2 H), 3.25 (m, 1 

H), 3.49 (m, 1 H), 4.22 (m, 1 H), 4.64 (m, 4 H), 4.84 (m 2 H), 5.27 (m, 1 H); 13C NMR 

{1H} (75 MHz, CDCl3) δ 15.62, 15.7, 18.7, 18.8, 31.2, 31.4, 31.6, 44.1, 46.9, 47.7, 60.8, 

61.7, 72.1, 72.9, 114.6; IR (neat) 2960, 2874, 2360, 2339, 1749, 1464, 1424, 1376, 1343, 

1200 cm-1; HRMS: (m/z) calcd. 383.0951 obsd. 383.0951 [M-Cl] +; mp 64-67 °C 

(decomp.). 

 

 

 
Carbene precursor 2.12·HBF4 was obtained from the Rovis group at Colorado 

State University. 
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Carbene precursor 2.13·HOTf was prepared according to a literature procedure.67 

 

 

 
(S)-iPrBiox (2.16) was prepared according to a literature procedure.84 

 

 

 
Bioxazoline 2.17 was prepared according to a literature procedure.67 

 

 

 
(S)-iPrPyrox (2.18) was prepared analogously to 2.19 according to a literature 

procedure.73  Its spectral data agreed with those previously published.85 
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(S)-iPrQuinox (2.19) was prepared according to a literature procedure and its 

spectral data agreed with published ones.73,86 

 
Synthesis of Ligand 2.20 

Ligand 2.20 was synthesized as shown in Figure 2.24.   

 

 

 
Methyl ester 2.45 was prepared analogously to a published procedure.87  Into a 

round-bottom flask were added 2.00 g of 2.44 (11.5 mmol, 1.00 equiv) followed by 14 

mL of MeOH.  The solution was cooled to 0 °C, and 2.90 mL of TMSCl (23.0 mmol, 

2.00 equiv) were added dropwise.  The mixture was allowed to warm to room 

temperature and stirred overnight.  The solvent was then removed in vacuo, and the 

remaining solid was treated slowly with sat. aq. NaHCO3 (40 mL).  The aqueous solution 

was extracted with CH2Cl2 (4 × 40 mL), and the combined organic extracts were dried 

 

 

Figure 2.24. Synthesis of ligand 2.20. 
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over Na2SO4, filtered, and the solvent was removed in vacuo.  The crude product (2.45) 

was isolated as a clear oil (1.73 g, 11.47 mmol, quant.).  The spectral data of the 

compound agreed with published ones.87 

 

 

 
Precursor 2.46 was prepared analogously to a published procedure.88  Into a 

round-bottom flask were added 1.73 g of 2.45 (11.47 mmol, 1.00 equiv), followed by 60 

mL of THF and 3.22 g of KOtBu (28.68 mmol, 2.50 equiv).  The resulting mixture was 

stirred at room temperature for 30 minutes, followed by dropwise addition of 5.71 mL of 

MeI (91.76 mmol, 8.00 equiv).  The mixture was stirred overnight at room temperature.  

The reaction was found to be incomplete by TLC.  It was filtered through a glass fritte 

into a dry round-bottom flask, and rinsed with additional THF (25 mL).  An additional 

1.28 g of KOtBu (11.47 g, 1.00 equiv) were added, and the mixture was stirred for 1 hour 

at room temperature, followed by addition of 714 μL of MeI (11.47 g, 1.00 equiv).  The 

resulting mixture was stirred overnight at room temperature, upon which the reaction was 

complete by TLC.  The mixture was filtered through a glass fritte, and the solvent was 

removed in vacuo.  The product was purified by flash column chromatography (700 mL 

of 20% EtOAc/hexanes  200 mL of 50% EtOAc/hexanes).  The spectral data of 2.46 

agreed with those previously published.89 
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Amide 2.47 was prepared according to a published procedure, and its spectral data 

agreed with published ones.90,91   

 

 

 
Ligand 2.20 was prepared analogously to a previously published procedure.73  

Into a round-bottom flask were added 437 mg of TsCl (2.29 mmol, 1.20 equiv) and 23.3 

mg of DMAP (0.191 mmol, 0.100 equiv), followed by 10 mL NEt3, and the mixture was 

cooled to -5 °C.  A solution of 478 mg of 2.47 (1.91 mmol, 1.00 equiv) in 15 mL of DCE 

was added dropwise.  The mixture was allowed to warm to room temperature over the 

course of 2 h, and heated to reflux overnight.  The reaction mixture was allowed to cool 

to room temperature, and washed with sat. aq. NaHCO3 (1 × 40 mL), H2O (1 × 40 mL), 

and brine (1 × 40 mL).  The combined aqueous layers were extracted with CH2Cl2 (2 × 

40 mL), and the combined organic extracts were dried over Na2SO4, filtered, and the 

solvent was removed in vacuo.  The crude product was purified by flash column 

chromatography (400 mL of 20% EtOAc/hexanes  300 mL of 50% EtOAc/hexanes) on 

neutralized silica (treated with ca 3% NEt3/hexanes, and rinsed with hexanes prior to 

chrmoatography).  The product was isolated as a pale yellow oil (413 mg, 1.78 mmol, 

93%), and its spectral data agreed with published ones.90 
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(S)-BINAM (2.21) was prepared according to a literature procedure.92 

 

 

 
(S)-iPrBox (2.22) was prepared according to a literature procedure.93 

 

 

 
Pd((S)-iPrBox)Cl2 was prepared according to a literature procedure.94 

 

 

 
(R)-PhBox (2.23) was prepared according to a literature procedure, and its 

spectral properties agreed with those of the published enantiomer.95 
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(S)-BnBox (2.24) was prepared according to a literature procedure.96 

 
Synthesis of Ligand 2.25 ((S)-CyBox) 

(S)-CyBox (2.25) was prepared as shown in Figure 2.25, analogously to a 

literature procedure.95   

 

 
 

 

Figure 2.25. Synthesis of 2.25 (S)-CyBox. 
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Aminoalcohol 2.48 was prepared via reduction of (S)-2-amino-2-cyclohexylacetic 

acid according to a literature procedure.80  Thus, 400 mg of the amino acid (2.54 mmol, 1 

equiv), and 289 mg of NaBH4 (7.62 mmol, 3 equiv), followed by 10 mL of THF were 

added to a dry round-bottom flask, and cooled to 0 °C.  A solution of 646 mg of I2 (2.54 

mmol, 1 equiv) in 5 mL of THF was added dropwise, allowing the mixture to turn white 

after each drop.  Following the addition, the mixture was heated to reflux for 15 h.  The 

reaction mixture was then cooled to 0 °C and quenched slowly with MeOH.  The solvents 

were removed in vacuo, and the remaining solid was dissolved in 20% KOH and stirred 

at 50 °C for 1.5 h.  The mixture was cooled to room temperature, extracted with EtOAc 

(3 × 20 mL), and the combined organic extracts were dried over MgSO4 and filtered.  The 

solvent was removed in vacuo, and the crude material (2.48, 381 mg, quantitative yield) 

was taken forward.  Its spectral data matched those of the commercial compound. 

 

 

 
Diamide 2.49 was prepared analogously to a literature report.93  To a round-

bottom flask was added all of the material isolated from the previous reaction (2.48, 2.54 

mmol, 2.1 equiv), followed by 7 mL of CH2Cl2, and 405 μL Et3N (2.90 mmol, 2.4 equiv).  

The mixture was cooled to 0 °C, and 205 mg of dimethylmalonyl dichloride (1.21 mmol, 

1.0 equiv) was dissolved in 3 mL of CH2Cl2 and added dropwise.  The ice bath was 

removed, and the mixture was stirred at room temperature for 1 h.  It was then washed 

with sat. aq. NaHCO3 (1 × 20 mL), and the aqueous layer was extracted with CH2Cl2 (3 × 
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20 mL).  The combined organic layers were dried over MgSO4, filtered, and the solvent 

was removed in vacuo.  The product was obtained as a thick, colorless oil, and the crude 

material (2.49, 511 mg, quantitative yield) was taken forward.  1H NMR (300 MHz, 

CDCl3) δ 0.86 – 1.83 (m, 28 H), 3.51 (dd, J = 6.6, 11.1 Hz, 2 H), 3.64 – 3.87 (m, 4 H), 

6.41 (d, J = 8.8 Hz, 2 H). 

 

 

 
Chloride 2.50 was prepared analogously to a literature report.95  To a round-

bottom flask were added 511 mg 2.49 (1.21 mmol, 1.0 equiv), and dissolved in 10 mL 

PhMe.  Subsequently, 220 μL of SOCl2 (3.03 mmol, 2.5 equiv) were added dropwise, a 

water condenser was added, and the mixture was heated to reflux for 3 h.  It was then 

cooled to room temperature, and the solvent was removed in vacuo.  Chloride 2.50 was 

obtained as a pale brown solid in 64% yield (323 mg, 0.770 mmol) and taken forward as 

the crude material.  1H NMR (300 MHz, CDCl3) δ 0.81 – 1.36 (m, 12 H), 1.37 – 1.82 (m, 

16 H), 3.59 – 3.78 (m, 4 H), 3.96 (app sept, J = 3.9 Hz, 2 H), 6.64 (d, J = 8.4 Hz, 2 H). 
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(S)-CyBox (2.25) was prepared analogously to a literature report.95  All of the 

material from the previous reaction (2.50, 323 mg, 0.770 mmol) and 185 mg of NaOtBu 

(1.93 mmol, 2.5 equiv) were added to a round-bottom flask followed by 10 mL of 

MeOH, a water condenser was added, and the mixture was heated to reflux overnight.  

The solvent was removed in vacuo, and the resulting solid was partitioned between 1:1 

brine/H2O (20 mL) and CH2Cl2 (10 mL).  The aqueous layer was extracted with CH2Cl2 

(3 × 10 mL), the combined organic layers were dried over Na2SO4, filtered, and the 

solvent was removed in vacuo.  The resulting solid was purified further by flash column 

chromatography with 8% acetone/hexanes. The product (2.25) was isolated as a clear oil 

in 81% yield (216 mg, 0.624 mmol). Rf: 0.29 w/20% acetone/hexanes; [α]D
20 = -116.6 (c 

1.0, CHCl3); 
1H NMR (300 MHz, CDCl3) δ 0.86 – 1.32 (m, 12 H), 1.37 – 1.85 (m, 16 H), 

3.88 – 4.06 (m, 4 H), 4.19 (dd, J = 8.2, 9.8 Hz, 2 H); 13C NMR {1H} (75 MHz, CDCl3) δ 

24.6, 26.2, 26.3, 26.7, 28.2, 29.3, 38.7, 42.5, 70.4, 71.0, 168.8; IR 2920, 2850, 2361, 

1658, 1449, 1385, 1352, 1252, 1144 cm-1; HRMS: (m/z) calcd. 347.2699 obsd. 347.2700 

[M+H] +. 

 
Synthesis of Ligand 2.26 ((S)-diEtBox) 

(S)-diEtBox (2.26) was prepared analogously to 2.25, as shown in Figure 2.26, 

starting with 3-ethyl-L-norvalinol.95   
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Figure 2.26. Synthesis of 2.26 (S)-diEtBox. 

 
Diamide 2.51 was prepared analogously to a literature report.93  To a round-

bottom flask was added 443 mg 3-ethyl-L-norvalinol (3.37 mmol, 2.1 equiv), followed by 

7 mL of CH2Cl2, and 390 μL Et3N (3.86 mmol, 2.4 equiv).  The mixture was cooled to 0 

°C, and 272 mg of dimethylmalonyl dichloride (1.61 mmol, 1.0 equiv) was dissolved in 3 

mL of CH2Cl2 and added dropwise.  The ice bath was removed, and the mixture was 

stirred at room temperature for 1 h.  It was then washed with sat. aq. NaHCO3 (1 × 20 

mL), and the aqueous layer was extracted with CH2Cl2 (3 × 20 mL).  The combined 

organic layers were dried over MgSO4, filtered, and the solvent was removed in vacuo.  

The product was obtained as a thick, colorless oil, and the crude material (2.51, 555 mg, 

1.55 mmol, 96%) was taken forward.  1H NMR (300 MHz, CDCl3) δ 0.81 – 0.98 (m, 12 

H), 1.13 – 1.52 (m, 16 H), 3.42 – 3.77 (m, 6 H), 3.91 – 4.12 (m, 2 H), 6.45 (d, J = 8.9 Hz, 

2 H). 
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Chloride 2.52 was prepared analogously to a literature report.95  To a round-

bottom flask were added 502 mg 2.51 (1.40 mmol, 1.0 equiv), and dissolved in 10 mL 

PhMe.  Subsequently, 255 μL of SOCl2 (3.50 mmol, 2.5 equiv) were added dropwise, a 

water condenser was added, and the mixture was heated to reflux for 3 h.  It was then 

cooled to room temperature, and the solvent was removed in vacuo.  The resulting solid 

was crystallized from EtOAc/hexanes, to yield chloride 2.52 as a pale brown solid in 67% 

yield (369 mg, 0.933 mmol), which was taken forward as the crude material.  1H NMR 

(300 MHz, CDCl3) δ 0.81 – 0.96 (m, 12 H), 1.13 – 1.51 (m, 14 H), 1.52 – 1.65 (m, 2 H), 

3.64 (d, J = 4.5 Hz, 4 H), 4.19 (ddd, J = 4.6, 9.1, 12.3 Hz, 2 H), 6.67 (d, J = 8.5 Hz, 2 H). 

 

 

 
(S)-diEtBox (2.26) was prepared analogously to a literature report.95  All of the 

material from the previous reaction (369 mg, 0.933 mmol) and 224 mg of NaOtBu (2.33 

mmol, 2.5 equiv) were added to a round-bottom flask followed by 10 mL of MeOH, a 

water condenser was added, and the mixture was heated to reflux overnight.  The solvent 

was removed in vacuo, and the resulting solid was partitioned between 1:1 brine/H2O (20 

mL) and CH2Cl2 (20 mL).  The aqueous layer was extracted with CH2Cl2 (3 × 20 mL), 
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the combined organic layers were dried over Na2SO4, filtered, and the solvent was 

removed in vacuo.  The resulting solid was purified further by flash column 

chromatography eluting with 1:4 acetone/hexanes.  The product was obtained as a 

colorless oil.  Yield: 255 mg (0.791 mmol, 85%); Rf: 0.55 w/20% acetone/hexanes; [α]D
20 

= -67.8 (c 1.0, CHCl3); 
1H NMR (300 MHz, CDCl3) δ 0.90 (dd, J = 6.1, 7.3 Hz, 12 H), 

1.05 – 1.47 (m, 10 H), 1.50 (s, 6 H), 3.92 – 4.03 (m, 2 H), 4.16 – 4.27 (m, 4 H); 13C NMR 

{1H} (75 MHz, CDCl3) δ 11.8, 11.9, 21.5, 22.6, 24.6, 38.7, 45.5, 68.3, 70.3, 168.8; IR 

2961, 2933, 2875, 1659, 1463, 1384, 1257, 1145, 1118 cm-1; HRMS: (m/z) calcd. 

323.2699 obsd. 323.2699 [M+H] +. 

 

 

 
(S)-tBuBox (2.27) was prepared according to a literature procedure.97 

 

 

 
To prepare Pd((S)-tBuBox)Cl2, 56.7 mg of 2.27 ((S)-tBuBox) (0.193 mmol, 1.00 

equiv) were weighed into a dry 10 mL round-bottom flask and dissolved in 5 mL of 

DCM.  50.0 mg of Pd(MeCN)2Cl2 (0.193 mmol, 1.00 equiv) were added portionwise, and 

the resulting mixture was stirred for 1 h at room temperature.  The resulting solution was 
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concentrated to 1 mL, and hexanes were added.  The solvents were then removed 

completely in vacuo, to give the product as an orange solid.  Yield: 91.0 mg (0.193 

mmol, quant.); [α]D
20 = +344.9 (c 1.0, CHCl3); 

1H NMR (300 MHz, CDCl3) δ 1.10 (s, 18 

H), 1.86 (s, 6 H), 4.37 (app. t, J = 8.9 Hz, 2 H), 4.50 (dd, J = 4.3, 9.2 Hz, 2 H), 4.58 (dd, J 

= 4.3, 8.6 Hz, 2 H); 13C NMR {1H} (75 MHz, CDCl3) δ 25.6, 26.6, 71.8, 72.6, 173.4; IR 

2959, 2228, 1640, 1474, 1369, 1250, 1233, 1135 cm-1; HRMS: (m/z) calcd. 729.3338 

obsd. 729.3384 [Pd((S)-tBuBox)2Cl] +; mp 103-107 °C. 

 
Synthesis of 2.28 ((S)-diCyBox) 

Ligand 2.28 ((S)-diCyBox) was prepared as shown in Figure 2.27.  Aminoalcohol 

2.59 was prepared analogously to 3-ethyl-L-norvalinol.95 

 

 

 
Alcohol 2.53 was prepared via reduction of the corresponding carboxylic acid.  

Thus, 338 mg of LiAlH4 (8.92 mmol, 4.00 equiv.) were added to a round-bottom flask 

followed by 4 mL THF, and the mixture was cooled to 0 °C. A solution of 500 mg of 2,2-

dicyclohexylacetic acid (2.23 mmol, 1.00 equiv) in 1 mL THF was added dropwise, and 

the mixture was heated to reflux for 20 h.  The reaction mixture was then cooled to room 

temperature, quenched slowly with 4 M HCl (3 mL), and then partitioned between 

EtOAc (15 mL) and H2O (30 mL).  The aqueous layer was extracted further with EtOAc 

(3 × 15 mL), and the combined organic extracts were washed with brine (1 × 30 mL), 

dried over MgSO4, filtered, and the solvent was removed in vacuo.  The crude material  
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Figure 2.27. Synthesis of 2.28 ((S)-diCyBox). 
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obtained in this way (2.53, 403 mg, 1.92 mmol, 86%) was taken on to the next step.  1H 

NMR (300 MHz, CDCl3) δ 0.95 – 1.37 (m, 12 H), 1.40 – 1.81 (m, 11 H), 3.70 (d, J = 4.1 

Hz, 2 H). 

 

Cy

Cy

H

O

2.54  

 
Aldehyde 2.54 was prepared via oxidation of alcohol 2.53.  Thus, 0.169 mL of 

(COCl)2 (2.00 mmol, 2.00 equiv.) was added to a round-bottom flask followed by 2 mL 

of CH2Cl2, and the mixture was cooled to -78 °C.  Subsequently, 0.284 mL of DMSO 

(4.00 mmol, 4.00 equiv) were added dropwise, and the resulting solution was stirred at -

78 °C for 10 min.  A solution of 210 mg of 2.53 (1.00 mmol, 1.00 equiv) in 1 mL CH2Cl2 

was added dropwise, followed by dropwise addition of 0.836 mL of Et3N (6.00 mmol, 

6.00 equiv).  The solution was stirred at -78 °C for an additional 30 min, warmed to 0 °C, 

and stirred for an additional 2 h.  The mixture was then allowed to warm to room 

temperature, diluted with EtOAc (10 mL), and washed with a 1:1 mixture of brine and 

H2O (2 × 10 mL) and brine (1 × 10 mL).  The organic layer was dried over MgSO4, 

filtered, and the solvent was removed in vacuo.  The crude material was purified by flash 

column chromatography eluting with 3% EtOAc/hexanes.  The product 2.54 was isolated 

as a clear oil that solidified during storage in the freezer.  Yield: 126 mg (0.605 mmol, 

60%); Rf: 0.64 w/10% EtOAc/hexanes; 1H NMR (300 MHz, CDCl3) δ 0.85 - 1.35 (m, 10 

H), 1.50 – 1.89 (m, 13 H), 9.66 (d, J = 5.2 Hz, 1 H); 13C NMR {1H} (75 MHz, CDCl3) δ 

26.99, 27.05, 27.14, 30.60, 31.80, 36.02, 63.67, 208.39; IR (neat) 2920, 2850, 2717, 

2361, 2338, 1720, 1447, 1337; HRMS: (m/z) calcd. 231.1725 obsd. 231.1739 [M+H] +. 
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Cyanide 2.55 was prepared via an asymmetric Strecker reaction.  Thus, 1.76 g of 

2.54 (8.45 mmol, 1.00 equiv) were added to a round-bottom flask followed by 1.13 g of 

(S)-sec-phenethylamine (9.30 mmol, 1.10 equiv), 60 mg of KCN (9.30 mmol, 1.10 

equiv), and 21.1 mL of MeOH.  Subsequently, 780 μL of conc. HCl were added, and the 

reaction was stirred at room temperature for 4 h.  Then, 20.3 mL H2O were added very 

slowly (ca.  1 drop/5s), and the mixture was stirred at room temperature for 5 days.  The 

mixture was then stirred at 0 °C for 1 h, and filtered, rinsing with H2O.  The crude 

product was isolated as an off-white solid (2.55, 2.65g, 7.83 mmol, 92%, 17:1 dr) and 

taken on to the next step. 1H NMR (300 MHz, CDCl3) δ 0.80 – 1.42 (m, 15 H), 1.43 – 

1.85 (m, 11 H), 3.27 (d, J = 4.6 Hz, 1 H), 4.08 (q, J = 6.6 Hz, 1 H), 4.65 (m, 0.06 H), 7.21 

– 7.42 (m, 5 H).  

 

 

 
Primary amide 2.56 was prepared via hydrolysis of cyanide 2.55.  Thus, 5.1 mL 

of conc. H2SO4 were added to a round-bottom flask, and cooled to 0 °C.  Then, 2.58 g of 

2.55 (7.59 mmol, 1.00 equiv) were added, and the dark brown solution was stirred at 50 

°C for 18 h.  The mixture was then cooled to room temperature, and H2O (30 mL) and 

EtOAc (20 mL) were added.  The resulting mixture was cooled to 0 °C, and conc. 
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NH4OH (16 mL) was added.  The layers were separated, and the aqueous layer was 

extracted with EtOAc (3 × 10 mL).  The combined organic extracts were washed with 

brine (1 × 30 mL), dried over Na2SO4, filtered, and the solvent was removed in vacuo.  

The crude product was purified by flash column chromatography using 10:1 

hexanes/EtOAc  3:1 hexanes/EtOAc.  The product (2.56) was isolated as a pale yellow 

amorphous solid.  Yield: 2.50 g (7.01 mmol, 92%, d.r. 14:1 by NMR); Rf: 0.13 w/1:3 

EtOAc/hexanes; [α]D
25 = -0.088 (c 1.0, CH2Cl2); 

1H NMR (300 MHz, CDCl3) δ 0.72 – 

1.80 (m, 26 H), 3.07 (d, J = 4.9 Hz, 1 H), 3.64 (q, J = 6.7 Hz, 1 H), 5.55 (bs, 1 H), 6.80 

(bs, 1 H), 7.19 – 7.37 (m, 5 H); 13C NMR {1H} (75 MHz, CDCl3) δ 24.1, 26.6, 27.0, 27.2, 

27.4, 31.1, 31.7, 31.8, 32.9, 37.5, 38.5, 52.4, 57.5, 60.9, 144.8, 179.1; IR (neat) 3181, 

2922, 2850, 2361, 2339, 1668, 1576, 1448 cm-1; HRMS: (m/z) calcd. 357.2906, obsd. 

357.2917 [M+H] +; mp: 89-92 °C. 

 

 

 
Amine 2.57 was prepared via hydrogenolysis.  To remove the chiral auxiliary 

from 2.56, 2.66 g of 2.56 (7.46 mmol, 1.00 equiv), and 531 mg of 20% Pd(OH)2/C (max. 

50% H2O), followed by 26.6 mL MeOH were added to a sealed tube, which was purged 

with H2 3 times, and pressurized to 40 psi.  The mixture was then heated to 70 °C, 

repressurized to 80 psi, and stirred for 16 h.  It was then cooled to room temperature, and 

filtered.  The solvent was removed in vacuo, and the remaining crude product (2.57) was 

purified by flash column chromatography using 20:1 CH2Cl2/MeOH.  It was isolated as a 
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white solid.  Yield: 1.63 g (6.48 mmol, 87%); Rf: 0.28 w/10:1 CH2Cl2/MeOH; [α]D
25 = -

0.272 (c 1.0, CH2Cl2); 
1H NMR (300 MHz, CDCl3) δ 0.78 – 1.86 (m, 22 H), 1.97 (m, 1 

H), 3.47 (d, J = 1.8 Hz, 1 H), 5.39 (bs, 1 H), 7.44 (bs, 1 H); 13C NMR {1H} (75 MHz, 

CDCl3) δ 26.6, 26.9, 26.96, 27.0, 27.1, 27.3, 29.8, 31.4, 32.4, 33.1, 36.0, 37.8, 49.6, 54.4, 

179.6; IR (neat) 3420, 3187, 2922, 2849, 2361, 2339, 1669, 1576, 1559, 1447 cm-1; 

HRMS: (m/z) calcd. 253.2280 obsd. 253.2283 [M+H] +; mp: 94-96 °C. 

 

 

 
Aminoacid 2.58 was accessed via hydrolysis of amide 2.57.  Thus, 1.55 g of 2.57 

(6.16 mmol, 1.00 equiv.) was added to a round-bottom flask, followed by 31.1 mL of 

conc. HCl and 31.1 mL EtOH.  The resulting mixture was heated to reflux for 20 h, then 

cooled to room temperature, and the solvents were removed in vacuo.  The remaining 

solid was mixed with 15.5 mL of acetone.  The resulting mixture was filtered, and the 

solvent was removed from the filtrate in vacuo.  The crude product 2.58 was isolated as a 

pale brown solid (2.08 g, quant.) and taken on to the next step.  Spectral data of the 

compound matched those of the commercial product. 

 

 

 
Aminoalcohol 2.59 was prepared via reduction of the aminoacid.  Thus, 269 mg of 

LiAlH4 (7.08 mmol, 4.00 equiv), followed by 6 mL of THF were added to a round-
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bottom flask, and cooled to 0 °C.  A solution of 600 mg of 2.58 (2.07 mmol, 1.00 equiv) 

in 6 mL THF was added dropwise.  The resulting mixture was refluxed for 13 h, and then 

cooled to 0 °C.  Subsequently, 2 mL of H2O were added, followed by 404 mg of KOH, 

and the mixture was refluxed for 30 min.  It was then cooled again to 0 °C and filtered, 

rinsing with EtOAc and H2O.  The layers of the resulting biphasic solution were 

separated, and the aqueous layer was further extracted with EtOAc (3 × 10 mL).  The 

combined organic extracts were washed with brine (1 × 30 mL), dried over Na2SO4, 

filtered, and the solvent was removed in vacuo.  The crude product 2.59 was isolated in 

72% yield (359 mg, 1.50 mmol).  It was taken on to the next step without further 

purification.  1H NMR (300 MHz, CDCl3) δ 0.76 – 1.84 (m, 22 H), 2.10 – 2.60 (m, 1 H), 

2.92 – 3.75 (m, 2 H). 

 

 

 
Amide 2.60 was prepared analogously to a literature procedure.93  Thus, 751 mg 

of 2.59 (3.14 mmol, 2.50 equiv) were added to a round-bottom flask, followed by 20 mL 

of CH2Cl2 and 612 μL of Et3N (4.39 mmol, 3.50 equiv).  A solution of 212 mg of 

dimethylmalonyl dichloride (1.25 mmol, 1.00 equiv) in 6 mL of CH2Cl2 was added 

dropwise, and the resulting mixture was stirred at room temperature for 2 h.  It was then 

quenched by adding 30 mL of sat. aq. NaHCO3, and the aqueous layer was further 

extracted with CH2Cl2 (3 × 10 mL).  The combined organic layers were dried over 

MgSO4, filtered, and the solvent was removed in vacuo.  The crude product was further 

purified by column chromatography, separating a small amount of diastereomeric product 
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formed in the reaction (30:1 CH2Cl2/MeOH).  The product (2.60) was isolated as a white 

solid. Yield: 201 mg (0.349 mmol, 28%); Rf: 0.48 w/10:1 CH2Cl2/MeOH; [α]D
20 = +7.3 

(c 1.0, CHCl3); 
1H NMR (300 MHz, CDCl3) δ 0.97 – 1.34 (m, 24 H), 1.38 – 1.82 (m, 28 

H), 3.21 (bs, 2 H), 3.51 (m, 2 H), 3.69 (m, 2 H), 4.20 (m, 2 H), 6.43 (d, J = 8.9 Hz, 2 H); 

13C NMR {1H} (75 MHz, CDCl3) δ 23.47, 26.57, 26.62, 27.00, 27.06, 27.32, 30.66, 

31.17, 31.70, 33.23, 37.52, 38.40, 49.72, 51.78, 66.08, 174.00; IR 3331, 2924, 2851, 

1640, 1536, 1447, 1285 cm-1; HRMS: (m/z) calcd. 597.4607 obsd. 597.4607 [M+H] +; 

mp: 168-170 °C. 

To ensure diastereomeric purity, the amide 2.60 from several separate reactions 

was combined and crystallized.  Thus, 319 mg of 2.60 (0.555 mmol) were added to 1mL 

EtOAc, and the mixture was refluxed for 30 min, until 2.60 was dissolved.  Then, 3 mL 

of hexanes were added, and the mixture was refluxed for another 30 minutes.  It was then 

cooled to room temperature, and the precipitate was filtered off and rinsed with hexanes.  

Pure 2.60 was obtained as a white solid (209 mg, 0.364 mmol, 66%). 

 

 

 
Chloride 2.61 was prepared analogously to a literature report.95  To a round-

bottom flask were added 157 mg 2.60 (0.272 mmol, 1.0 equiv), and dissolved in 5 mL 

PhMe.  Subsequently, 500 μL of SOCl2 (6.88 mmol, 25 equiv) were added dropwise, a 

water condenser was added, and the mixture was heated to 60 °C for 3 h.  It was then 

cooled to room temperature, and the solvent was removed in vacuo.  The resulting 

yellow, amorphous solid taken forward to the next step.  Yield: 186.4 mg, quant.  1H 
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NMR (300 MHz, CDCl3) δ 0.79 – 1.96 (m, 52 H), 3.64 (app dq, J = 4.2, 11.5 Hz, 4 H), 

4.35 (app hept, J = 4.3 Hz, 2 H), 6.83 (d, J = 9.1 Hz, 2 H). 

 

 

 
(S)-diCyBox (2.28) was prepared from 2.61 analogously to 2.25 ((S)-CyBox).95  

Thus, 110 mg of chloride 2.61 (0.292 mmol) and 65.4 mg of NaOtBu (0.730 mmol, 2.5 

equiv) were added to a round-bottom flask followed by 5 mL of MeOH, a water 

condenser was added, and the mixture was heated to reflux overnight.  The solvent was 

removed in vacuo, and the resulting solid was partitioned between 1:1 brine/H2O (20 mL) 

and CH2Cl2 (20 mL).  The aqueous layer was extracted with CH2Cl2 (3 × 20 mL), the 

combined organic layers were dried over Na2SO4, filtered, and the solvent was removed 

in vacuo.  The crude product was purified by flash column chromatography (2% 

acetone/hexanes) and obtained as a pale yellow oil.  Yield: 72.1 mg (0.134 mmol, 49%); 

Rf: 0.59 w/ 20% acetone/hexanes; [α]D
25 = -51.2 (c 1.0, CH2Cl2); 

1H NMR (300 MHz, 

CDCl3) δ 0.79 – 1.84 (m, 52 H), 3.90 (m, 2 H), 4.26 (m, 4 H); 13C NMR {1H} (75 MHz, 

CDCl3) δ 24.4, 26.7, 26.8, 27.2, 27.2, 27.3, 27.4, 31.1, 32.0, 32.2, 32.9, 37.9, 38.2, 38.6, 

54.0, 66.4, 72.0, 167.8; IR 2921, 2850, 1623, 1448, 1145, 1112 cm-1; HRMS: (m/z) calcd. 

539.4577 obsd. 539.4587 [M+H] +. 

 
Synthesis of Ligand 2.33 ((S)-diMeiPrBox) 

Ligand 2.33 ((S)-diMeiPrBox) was prepared as shown in Figure 2.28. 
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Figure 2.28. Synthesis of 2.33 ((S)-diMeiPrBox). 

 

 

 
Boc-protected valine methyl ester 2.62 was prepared according to a literature 

procedure.98 

 

 

 
Protected aminoalcohol 2.63 was prepared according to a literature procedure.98 
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Deprotected aminoalcohol 2.64 was prepared analogously to a literature 

procedure.99  Thus, 100 mL of MeOH were added to a round-bottom flask and cooled to 

0 °C, followed by dropwise addition of 31.4 mL of AcCl (441 mmol, 10.0 equiv).  A 

solution of 10.2 g of 2.63 (44.1 mmol, 1.0 equiv) in 54 mL of MeOH was added 

dropwise.  The resulting solution was allowed to warm to room temperature, stirring for 2 

h.  The solvent was removed in vacuo to give a brown oil.  From this, the product was 

crystallized using a mixture of hot CH2Cl2 and Et2O.  The desired product 2.64 was 

obtained in 88% yield (6.50 g, 38.8 mmol).  Its spectral data agreed with published 

ones.98 

 

 

 
Diamide 2.65 was prepared analogously to a literature procedure.97  To a round-

bottom flask were added 3.26 g of 2.64 (19.4 mmol, 2.00 equiv), followed by 20 mL of 

CH2Cl2, and 9.46 mL of Et3N (67.9 mmol, 7.00 equiv).  The mixture was cooled to 0 °C, 

and a solution of 1.28 mL dimethyl malonyl dichloride (9.70 mmol, 1.00 equiv) in 10 mL 

CH2Cl2 was added dropwise.  The ice bath was removed, and the mixture was stirred 

overnight at room temperature.  It was then diluted with CH2Cl2 to dissolve the 

precipitate, and washed with 1 M HCl (1 × 80 mL), sat. aq. NaHCO3 (1 × 80 mL), and 
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brine (1 × 80 mL).  The combined aqueous layers were extracted with CH2Cl2 (3 x 100 

mL), and the combined organic extracts were dried over MgSO4, filtered, and 

concentrated in vacuo.  The crude product was isolated in 49% yield (3.43 g, 9.57 mmol).   

Its spectral data matched previously published ones.100  

 

 

 
(S)-diMeiPrBox (2.33) was prepared analogously to a literature procedure.75  To a 

round-bottom flask were added 500 mg of 2.65 (1.395 mmol, 1.00 equiv), followed by 15 

mL of CH2Cl2.  The mixture was cooled to 0 °C, and 1.09 mL of MsOH (16.7 mmol, 

12.0 equiv) was added dropwise.  The mixture was allowed to warm to room temperature 

and stirred for 1.5 h.  It was then slowly quenched with 30 mL of sat. aq. NaHCO3.  The 

aqueous layer was extracted with CH2Cl2 (2 × 30 mL), and the combined organic layers 

were washed with H2O (1 × 30 mL), and brine (1 × 30 mL).  The combined organic 

layers were then dried over Na2SO4, filtered, and concentrated under reduced pressure to 

yield an orange oil. This was purified by flash column chromatography eluting with 10% 

EtOAc/hexanes to give the product as an off-white solid.  Yield: 250 mg (0.774 mmol, 

55%).  Its spectral data were compared to published ones.100 
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Pd((S)-diMeiPrBox)Cl2, was prepared by adding 50.0 mg of (S)-diMeiPrBox 

(0.155 mmol, 1.02 equiv) to a dry 10 mL round-bottom flask under N2 and dissolving in 

5.00 mL of DCM.  Then, 39.4 mg of Pd(MeCN)2Cl2 (0.152 mmol, 1.00 equiv) were 

added portionwise, and the mixture was stirred for 2 h at room temperature.  The orange 

solution was concentrated in vacuo, and hexanes were added until an orange powder 

began to precipitate.  The resulting mixture was further concentrated until the DCM was 

removed and the majority of the Pd complex had precipitated.  The product was then 

filtered through a glass fritte and rinsed with a small amount of Et2O.  The product was 

isolated as an orange solid.  Yield: 65.2 mg (0.130 mmol, 86%); [α]D
20 = +84.0 (c 1.0, 

CHCl3); 
1H NMR (300 MHz, CDCl3) δ 1.05 (m, 12 H), 1.35 (s, 6 H), 1.57 (s, 6 H), 1.71 

(s, 6 H), 2.68 (m, 2 H), 4.18 (d, J = 3.4 Hz, 2 H); 13C NMR {1H} (75 MHz, CDCl3) 

δ18.8, 21.0, 25.0, 28.3, 29.0, 40.6, 76.0, 90.9, 170.3; IR 2928, 2835, 1714, 1593, 1458, 

1427, 1349, 1204, 1155, 1060 cm-1; HRMS: (m/z) calcd. 463.1344 obsd. 463.1357 [M-

Cl] +; mp 196-197 (decomp.). 

 

 

 
t-Butyl-substituted bisoxazoline 2.34 was prepared according to a literature 

procedure.101 
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Cyclopropyl-bridged bisoxazoline 2.35 was prepared according to a literature 

procedure.76 

 

 

 
Cyclopentyl-bridged bisoxazoline 2.36 was prepared according to a literature 

procedure.76 

 

 

 
Methylene-bridged bisoxazoline 2.37 was prepared analogously to a literature 

procedure from (S)-valinol and malonodiimidic acid diethyl ester dihydrochloride.76  

Malonodiimidic acid diethyl ester dihydrochloride was prepared according to a literature 

procedure.102  To prepare ligand 2.37, 500 mg of (S)-valinol (4.85 mmol, 1.97 equiv)) 

were added to a dry 50 mL round-bottom flask, followed by 20 mL DCM.  Then, 569 mg 

of malonodiimidic acid diethyl ester dihydrochloride (2.46 mmol, 1.00 equiv) were added 

portionwise, and the resulting slurry was stirred at room temperature overnight.  To 

dissolve the precipitate, 10 mL H2O were added, the mixture was transferred to a 
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separatory funnel, and the layers were separated.  The aqueous layer was extracted with 

DCM (3 × 10 mL), and the combined organic layers were washed with brine (1 × 30 

mL), dried over Na2SO4, filtered, and concentrated in vacuo.  The product was purified 

by bulb-to-bulb distillation under vacuum.  The product was obtained in 60% yield (353 

mg, 1.48 mmol).  Its spectral data agreed with published ones.78  

 
Preparation of Olefin Starting Materials 

 

 

 
Boc-protected vinylaniline 2.7 was prepared according to a literature procedure.24 

 

 

 
Acetyl-protected vinylaniline 2.14 was prepared according to a literature 

procedure,103 and its spectral data agreed with published ones.103,104 

 

 

Diene 2.41 was prepared according to a literature procedure.105 
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Preparation of Organometallic Starting Materials 

 

 

 
Phenylboronic ester 2.8 was prepared according to a literature procedure.106 

 

B
O

O

2.39

MeO2C

 

 
Methyl ester-substituted arylboronic ester 2.39 was prepared according to a 

literature procedure.106 

 

 

 
Dimethoxy-substituted arylboronic ester 2.42 was prepared according to a 

literature procedure.107 

 

 

 
Dihydropyranyl stannane 2.31 was prepared according to a literature procedure.24 
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Ligand Screening and Optimization 

Initial Product Analysis 

For reactions analyzed by GC, the products (2.15, 2.32) were identified by 

comparison with their racemates.  Product 2.32 has been previously synthesized.24  

Product 2.15 was synthesized following the same procedure as for 2.9, and a mixture of 

starting material 2.14 and product 2.15 was isolated.106 

For other reactions, the crude product (2.9) was isolated as described below and 

identified by NMR by comparison with the previously synthesized product.106 

 
General Procedure for Screen Scale Hydroarylation Using Substrate 2.7 with  

Carbene Ligands 2.10 and 2.11 

Into an oven-dried 25 mL Schlenk flask equipped with a stirbar were added 

0.0038 mmol of the appropriate Pd catalyst (1.5 mol%), followed by 2.85 mL of IPA.  A 

condenser and a three-way adapter fitted with a balloon of O2 were added, and the flask 

was evacuated via water aspiration and refilled with O2 three times while stirring.  A 

solution of 3.5 mg of (–)-sparteine (0.015 mmol, 6.0 mol%) in 1.0 mL of IPA was added, 

and the resulting mixture was stirred at room temperature for 30 min.  A solution of 54.8 

mg styrene substrate 2.7 (0.25 mmol, 1.00 equiv.) and 111 mg phenyl boronic ester 2.8 

(0.75 mmol, 3.00 equiv) in 1.00 mL IPA was then added, followed by a solution of 1.7 

mg KOtBu (0.015 mmol, 6 mol%) in 0.15 mL IPA.  The resulting mixture was heated to 

55 °C for ca. 24 h.  The reaction mixture was then cooled to room temperature, and the 

solvent was removed in vacuo.  The residue was partitioned between H2O (10 mL) and 

4:1 hexanes/EtOAc (10 mL).  The aqueous layer was extracted with 4:1 hexanes/EtOAc 

(3 × 10 mL), dried over a 1:1 mixture of MgSO4 and silica gel, filtered, and concentrated 

131



in vacuo.  The product was purified by flash column chromatography eluting with 20:1 

hexanes/EtOAc.   

 
Procedure for Screening of 2.12 

To a dry 10 mL sidearm flask under N2 were added 0.200 mL of a solution of 

[Pd(allyl)Cl]2 and KOtBu in THF (0.00375 M [Pd(allyl)Cl]2, 0.3 M KOtBu), and 0.300 

mL of a 0.0105 M solution of 2.12·HBF4 in THF.  The resulting mixture was stirred for 

20 min at room temperature.  Then, 0.800 mL of IPA was added followed by 0.200 mL 

of a 0.03 M solution of (–)-sparteine in IPA.  A three-way adapter fitted with a balloon of 

O2 was added, and the flask was evacuated via water aspiration and refilled with O2 three 

times while stirring.  The resulting mixture was stirred for 45 min at room temperature.  

0.500 mL of a solution of styrene substrate 2.14 and phenyl boronic ester 2.9 (0.2 M 

styrene 2.14, 0.6 M 2.9) in IPA containing a small amount of undecane as internal 

standard was then added, and the mixture was stirred at room temperature for 14 h.  At 

this time, low product formation was observed, and the mixture was heated to 55 °C for 

an additional 8 h.  The product yield was determined by GC, using the internal standard 

and a response factor.  The ee was determined as described below. 

 
Procedure for Screening of 2.13 

To a dry 10 mL sidearm flask were added 1.3 mg of Pd(MeCN)2Cl2 (0.005 mmol, 

5 mol%), 2.8 mg of 2.13·HOTf (0.005 mmol, 5 mol%), and 1.7 mg of KOtBu (0.015 

mmol, 15 mol%), followed by 1.5 mL of IPA. A condenser and a three-way adapter fitted 

with a balloon of O2 were added, and the flask was evacuated via water aspiration and 

refilled with O2 three times while stirring.  The resulting mixture was stirred for 30 min at 
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room temperature.  Then, 0.500 mL of a solution of styrene substrate 2.14 and phenyl 

boronic ester 2.8 (0.2 M styrene 2.14 0.6 M 2.8) in IPA containing a small amount of 

undecane as internal standard was then added, and the mixture was stirred at room 

temperature for 21 h.  The product yield was determined by GC, using the internal 

standard and a response factor.  The ee was determined as described below. 

 
General Procedure for Screen Scale Hydroarylation Using Substrate 2.7  

with Nitrogen Ligands (2.16, 2.21, 2.22-2.28) 

These experiments were performed analogously to the ones using preformed Pd 

carbene complexes ((2.10)Pd(allyl)Cl and (2.11)Pd(allyl)Cl), but instead of the 

preformed Pd carbene complex, 1.6 mg of Pd(MeCN)2Cl2 (0.00625 mmol, 2.5 mol%), 

followed by 0.025 mmol of the ligand (10 mol%) were added.  The ee was determined as 

described below. 

 
General Procedure for Screen Scale Hydroarylation Using Substrate 2.14  

with Nitrogen Ligands (2.17-2.20, 2.22) 

Into an oven-dried 10 mL sidearm flask under N2 were added 1.0 mg of 

Pd(MeCN)2Cl2 (0.00375 mmol, 2.5 mol%), and the appropriate ligand (0.015 mmol, 10 

mol%), followed by 2.05 mL IPA.  A condenser and three-way adapter fitted with a 

balloon of O2 were added, and the flask was evacuated via water aspiration and refilled 

with O2 three times while stirring.  The resulting mixture was stirred for 30 min at room 

temperature.  Then, 0.75 mL of a solution of styrene substrate 2.14 and phenyl boronic 

ester (2.8) in IPA (0.2 M 2.14, 0.6 M 2.8) containing a small amount of undecane as 

internal standard was added, followed by 0.200 mL of a 0.0375 M solution of KOtBu in 
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IPA.  The resulting mixture was heated to 55 °C for ca. 24 h.  The product yield was 

determined by GC, using the internal standard and a response factor.  The ee was 

determined as described below. 

The reaction using 2.17 was performed on a 0.100 mmol scale in 2.00 mL IPA, 

and 1.3 mg of Pd(MeCN)2Cl2 (0.00500 mmol, 5 mol%) was used, along with 7.8 mg of 

2.17 (0.020 mmol, 20 mol%) and 1.1 mg of KOtBu (0.010 mmol, 10 mol%). 

The reaction using 2.22 ((S)-iPrBox) was perfomed on a 0.100 mmol scale in 2.00 

mL IPA, and 1.1 mg of Pd((S)-iPrBox)Cl2 (0.0025 mmol, 2.5 mol%) was used along with 

2.0 mg of (S)-iPrBox (0.0075 mmol, 7.5 mol%).  

 
Procedures for Data in Table 2.1 (Initial Results Using Organostannanes) 

Procedure for Table 2.1, entry 1: To a dry 25 mL Schlenk flask was added 1.6 mg 

of Pd(MeCN)2Cl2 (0.00625 mmol, 2.5 mol%), followed by 0.250 mL of a 0.100 M 

solution of (R)-PhBox in IPA and 4.40 mL IPA.  A condenser and three-way adapter 

fitted with a balloon of O2 were added, and the flask was evacuated via water aspiration 

and refilled with O2 three times while stirring.  The resulting mixture was stirred for 30 

min at room temperature.  Then, a 0.250 mL of a 1.00 M solution of styrene substrate 2.7 

was added, followed by 122 μL of PhSnBu3 (0.375 mmol, 1.50 equiv.), and 0.100 mL of 

a 0.125 M solution of KOtBu in IPA.  The resulting solution was heated to 55 °C for 24 

h.  It was then cooled to room temperature, and the solvent was removed under reduced 

pressure.  The product was purified by flash column chromatography eluting with 5% 

EtOAc /hexanes, which gave a mixture of product 2.9 and starting material (2.7).  The ee 

was determined as described below. 
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Procedure for Table 2.1, entries 2 and 3: To a dry 10 mL sidearm flask was added 

1.0 mg of Pd(MeCN)2Cl2 (0.00375 mmol, 2.5 mol%), followed by 0.100 mL of a 0.15 M 

solution of (R)-PhBox in IPA and 2.65 mL IPA (entry 2) or 2.75 mL IPA (entry 3).  A 

condenser and 3-way adapter fitted with a balloon of O2 were added, and the flask was 

evacuated via water aspiration and refilled with O2 three times while stirring.  The 

resulting mixture was stirred for 30 min at room temperature.  Then, 0.150 mL of a 1.00 

M solution of 4-methylstyrene (2.29) in IPA containing a small amount of undecane as 

internal standard was added, followed by 73 μL of 2.31 (0.225 mmol, 1.50 equiv.), and 

0.100 mL of a 0.075 M solution of KOtBu in IPA (for entry 2).  The resulting mixture 

was stirred at 55 °C for 24 h.  Product yield and ee were determined by GC. 

 
Procedure for Data in Table 2.2 (Temperature Optimization for Organostannanes) 

The reactions were carried out analogously to those for Table 2.1, entries 2 and 3, 

except instead of (R)-PhBox, (S)-iPrBox was used, and the reactions were performed at 

different temperatures without KOtBu. 

 
Procedure for Data in Table 2.3 

To a dry 10 mL sidearm flask was added 1.1 mg of Pd(MeCN)2Cl2 (0.0025 mmol, 

2.5 mol%) and any additives, followed by the appropriate amount of a 0.025 M solution 

of (S)-iPrBox in IPA and additional IPA to give a total volume of 1.8 mL.  A condenser 

and three-way adapter fitted with a balloon of O2 were added, and the flask was 

evacuated via water aspiration and refilled with O2 three times while stirring.  The 

resulting mixture was stirred for 30 min at room temperature.  Then, 0.200 mL of a 

solution of 2.29 and 2.31 in IPA (0.5 M 2.29, 0.75 M 2.31) containing a small amount of 
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undecane as internal standard was added, and the resulting mixture was heated to 65 °C 

for 24 h.  Product yield and ee were determined by GC. 

 
Procedure for Data in Table 2.4 

Reactions for Table 2.4 (Hydroarylation using (S)-tBuBox at lower temperatures) 

were performed analogously, using (S)-tBuBox instead of (S)-iPrBox, and at room 

temperature or 0 °C, respectively. 

 
Procedure for Figure 2.21 (Using 2.33, (S)-diMeiPrBox) 

To a dry 10 mL sidearm flask under N2 were added 1.03 mL IPA, followed by 

0.150 mL of a 0.05 M solution of (S)-diMeiPrBox in IPA, 0.200 mL of a 0.025 M 

solution of KOtBu in IPA, and 0.500 mL of a solution of styrene 2.14 and phenyl boronic 

ester 2.8 in IPA (0.2 M 2.14, 0.6 M 2.8) containing a small amount of undecane as 

internal standard.  A condenser and three-way adapter fitted with a balloon of O2 were 

added, and the flask was evacuated via water aspiration and refilled with O2 three times 

while stirring.  The resulting mixture was stirred for 30 min at room temperature.  Then, 

0.125 mL of a 0.02 M solution of Pd((S)-diMeiPrBox)Cl2 in IPA was added, and the 

resulting mixture was heated to 55 °C for 24 h.  The product yield was determined by 

GC, using the internal standard and a response factor.  The ee was determined as 

described below. 

 
Procedure for Figure 2.22 (Bisoxazoline Derivatives) 

To a dry 10 mL sidearm flask under N2 was added 1.0 mg of Pd(MeCN)2Cl2 

(0.00375 mmol, 2.5 mol%), followed by 2.43 mL of IPA, 0.150 mL of a 0.1 M solution 

of CuCl2 in IPA (0.150 mmol, 10 mol%), and 0.225 mL of a 0.1 M solution of the 

136



appropriate ligand in IPA (0.0225 mmol, 15 mol%).  A condenser and three-way adapter 

fitted with a balloon of O2 were added, and the flask was evacuated via water aspiration 

and refilled with O2 three times while stirring.  The resulting mixture was stirred for 30 

min at room temperature.  Then, 0.200 mL of a solution of styrene 2.29 and 

organostannane 2.31 in IPA (0.75 M 2.29, 1.125 M 2.31) containing a small amount of 

undecane as internal standard was added.  The resulting mixture was heated to the 

appropriate temperature for 24 h.  Product yield and ee were determined by GC. 

Using ligand 2.34: The reaction was run for 44 h at 55 °C. 

Using ligand 2.35: The reaction was performed using 10 mol% 2.35, and 5 mol% 

CuCl2 at room temperature and 45 °C, respectively. 

Using ligand 2.36: The reaction was performed using 10 mol% 2.36, and 5 mol% 

CuCl2 at room temperature. 

Using ligand 2.37: The reaction was run for 42 h at 65 °C. 

 
Scope Using Boronic Esters 

 

 

 
t-Butyl (4-(1-phenylethyl)phenyl)carbamate (2.9).  Into a dry 100 mL Schlenk 

flask were added 6.7 mg of Pd((S)-iPrbox)Cl2 (0.015 mmol, 2.5 mol%), followed by 12.0 

mg of (S)-iPrbox (0.045 mmol, 7.5 mol%), and 9.00 mL of IPA.  A condenser and three-

way adapter fitted with a balloon of O2 were added, and the flask was evacuated via 

water aspiration and refilled with O2 three times while stirring.  The resulting mixture 
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was stirred for 30 min at room temperature.  Then, 132 mg of 2.7 (0.6 mmol, 1.00 

equiv.), 266 mg of of 2.8 (1.8 mmol, 3.00 equiv.), and 3.4 mg KOtBu (0.03 mmol, 5.0 

mol%) were added into a vial and dissolved in 2 mL IPA, and the solution was added to 

the Schlenk flask dropwise via syringe.  The remaining 1 mL IPA was used to rinse the 

vial, and added to the flask.  The resulting mixture was heated to 55 °C for 24 h.  It was 

then cooled to room temperature, and the solvent was removed under reduced pressure.  

The residue was partitioned between H2O (10 mL) and Et2O (20 mL), and the layers were 

separated.  The organic layer was washed with 1 M NaOH (1 × 10 mL), and the 

combined aqueous layers were extracted with Et2O (3 × 10 mL), and dried over a 1:1 

mixture of MgSO4 and silica gel.  They were then filtered, and the solvent was removed 

in vacuo.  The product was purified by flash column chromatography eluting with 5% 

acetone/hexanes, to give the product as a clear oil.  Its spectral properties matched those 

of the previously published compound.106  Yield: 94.1 mg (0.316 mmol, 53%, average of 

two experiments); 59% ee (average of two experiments); [α]D
20 = -6.8 (c 1.0, CHCl3). 

 

 

 
N-(4-(1-phenylethyl)phenyl)acetamide (2.15).  The same procedure as for 2.9 was 

followed, except 96.7 mg of 2.14 (0.600 mmol, 1.00 equiv.) was used.  The product was 

purified by flash column chromatography eluting with 18% acetone/hexanes.  At this 

stage, it was found to contain small amounts of starting material (2.14).  It was therefore 

crystallized from DCM/hexanes, which yielded pure product as a white solid. Yield: 41.6 

mg (0.174 mmol, 29%, average of two experiments); 27% ee (average of two 
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experiments); Rf: 0.63 w/ 50% acetone/hexanes; [α]D
20 = -5.0 (c 1.0, CHCl3); 

1H NMR 

(300 MHz, CDCl3) δ 1.61 (d, J = 7.3 Hz, 3 H), 2.16 (s, 3 H), 4.12 (q, J = 7.3 Hz, 1 H), 

7.10 (bs, 1 H), 7.12 – 7.23 (m, 5 H), 7.24 – 7.32 (m, 2 H), 7.39 (m, 2 H); 13C NMR {1H} 

(75 MHz, CDCl3) δ 22.0, 24.7, 44.7, 120.2, 126.2, 127.7, 128.3, 128.5, 135.9, 142.6, 

146.4, 168.3; IR 3294, 2966, 1660, 1601, 1535, 1512, 1409, 1370, 1317, 1268 cm-1; 

HRMS: (m/z) calcd. 262.1208 obsd. 262.1213 [M+H] +; mp 93-96 °C. 

 

 

 
Methyl 4-(1-phenylethyl)benzoate (2.40).  The same procedure as for 2.9 was 

followed, except 62.5 mg of 2.38 (0.600 mmol, 1.00 equiv.) and 371 mg of 2.39 (1.80 

mmol, 3.00 equiv) were used.  The product was purified by flash column chromatography 

eluting with 3% acetone/hexanes.  Its spectral properties matched those of the previously 

published compound.106  Yield: 66.4 mg (0.276 mmol, 46%, average of two 

experiments); 48% ee (average of two experiments); [α]D
20 = 3.7 (c 1.0, CHCl3). 

 

 

 
(E)-1,3-dimethoxy-5-(4-phenylbut-3-en-2-yl)benzene (2.43).  The same procedure 

as for 2.9 was followed, except 78.1 mg of 2.41 (0.600 mmol, 1.00 equiv.) and 374 mg of 

2.42 (1.80 mmol, 3.00 equiv) were used.  The product was purified by flash column 

chromatography eluting with 2% acetone/hexanes.  Its spectral properties matched those 
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of the previously published compound.107  Yield: 45.7 mg (0.170 mmol, 28%, average of 

two experiments); 45% ee (average of two experiments); [α]D
20 = -14.5 (c 1.0, CHCl3). 

 
Procedure for Hydroarylation Using PhSnBu3 (2.30) 

 

 

 
t-Butyl (4-(1-phenylethyl)phenyl)carbamate (2.9).  Into a dry 100 mL Schlenk 

flask were added 6.7 mg of Pd((S)-iPrbox)Cl2 (0.015 mmol, 2.5 mol%), followed by 6.7 

mg of CuCl2 (0.06 mmol, 10 mol%), 16.0 mg of (S)-iPrbox (0.06 mmol, 10 mol%), and 

9.00 mL of IPA.  A condenser and three-way adapter fitted with a balloon of O2 were 

added, and the flask was evacuated via water aspiration and refilled with O2 three times 

while stirring.  The resulting mixture was stirred for 30 min at room temperature.  Then, 

132 mg of 2.7 (0.6 mmol, 1.00 equiv.), and 330 mg of PhSnBu3 2.30 (0.9 mmol, 1.50 

equiv.) were added into a vial and dissolved in 2 mL IPA, and the solution was added to 

the Schlenk flask dropwise via syringe.  The remaining 1 mL IPA was used to rinse the 

vial, and added to the flask.  The resulting mixture was heated to 65 °C for 24 h.  It was 

then cooled to room temperature, and stirred with 5 mL 1 M NaOH for 1 h.  The resulting 

mixture was transferred to a separatory funnel and diluted with Et2O.  This was washed 

with a 1:1 mixture of brine and H2O (1 × 10 mL), and the aqueous layer was extracted 

with Et2O (3 × 10 mL).  The combined organic layers were washed with brine (1 × 20 

mL), dried over MgSO4, and the solvent was removed under reduced pressure.  The 

residue was purified by flash column chromatography eluting with 4% acetone/hexanes, 
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which yielded a clear oil containing product and a small amount of tin byproduct.  This 

was therefore purified again by flash column chromatography eluting with 4% 

EtOAc/hexanes.  The pure product’s spectral properties matched those of the previously 

published compound.25  Yield: 65.6 mg (0.221 mmol, 37%, average of two experiments); 

36% ee (average of two experiments); [α]D
20 = -4.5 (c 1.0, CHCl3). 

 
Chiral Separations 

Chiral separations were performed as shown in Table 2.6. 
 
 

Table 2.6. Chiral separations. 
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CHAPTER 3 
 
 

DEVELOPMENT OF A PD-CATALYZED ALLYLIC 
 

C–H FUNCTIONALIZATION REACTION 
 
 

Introduction 

As described in Chapter 2, we were interested in pursuing novel transfornations 

that would provide access to diarylmethines and related compounds without the necessity 

for external oxidants.  Toward this end, we envisioned the use of electrophile substrates, 

such as tosylates, that would undergo oxidative addition to Pd0, as is typical in Pd-

catalyzed cross-coupling reactions.1  Furthermore, we planned to utilize the concept of 

stabilized Pd alkyl intermediates to develop new approaches to C–C bond construction.  

Specifically, we proposed to use homoallyl electrophile substrates in a Pd-catalyzed 

allylic C–H functionalization reaction, as outlined below (Figure 3.1).  Our proposed 

mechanism would begin with the oxidative addition of the tosylate substrate to Pd0 to 

form Pd alkyl A.  As A is not stabilized via secondary interactions, it would undergo a β-

hydride elimination/alkene insertion sequence to form stabilized Pd π-allyl intermediate 

D, followed by transmetallation and reductive elimination to give the desired product.  

This mechanism takes advantage of controlled β-hydride elimination in order to “walk” 

the Pd along the substrate carbon chain to form a stabilized Pd π-benzyl intermediate.   
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Figure 3.1. Proposed allylic C–H functionalization of homoallyl tosylates. 

 
Overall, this reaction would constitute a novel type of allylic C–H functionalization, 

which are typically carried out under oxidative conditions,2 whereas we proposed to use 

the substrate itself as the oxidant. 

Within this scenario, no exogenous oxidant would be needed for cross-coupling, 

which would allow for the use of oxidatively unstable ligands on Pd.  Furthermore, this 

would be a unique way of potentially setting an allylic stereocenter.  To accomplish this, 

however, oxidative addition of a primary alkyl electrophile had to be achieved, which has 

been found to be challenging with Pd.3  Extremely electron-rich Pd complexes are 

typically needed for this type of reaction.3  The β-hydride elimination/alkene insertion 

sequence, on the other hand, should benefit from the use of a more electron-poor Pd 

catalyst, as it would bind the diene more tightly in intermediate B, preventing possible 

dissociation and formation of a diene byproduct.  Determining the optimal Pd catalyst to 

promote all of these steps was thought to be the main challenge for reaction development. 

This chapter details the development of the reaction described above as well as 

some initial mechanistic studies and efforts toward asymmetric catalysis.  The work in 

this chapter was performed in close collaboration with Dr. Benjamin Stokes.  As 
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discussed above, this reaction would require oxidative addition of homoallyl tosylates, as 

well as isomerization and cross-coupling of a Pd π-allyl intermediate.  In the following 

section, the oxidative addition of unactivated alkyl electrophiles will thus be discussed, 

followed by cross-coupling of allylic electrophiles. 

 
Background 

Oxidative Addition of Unactivated Alkyl Electrophiles to Pd0 

Pd-catalyzed cross-coupling reactions of alkyl electrophiles have been an active 

area of research in recent years.4  While cross-coupling of sp2-electrophiles has been 

extensively developed, Pd-catalyzed reactions using alkyl electrophiles are generally 

considered more difficult.3,5,6  The reasons for this lie in the difficult oxidative addition of 

alkyl halides (or pseudo-halides), and the relative instability of the resulting Pd alkyl 

complex (see Chapter 1).7,8  Alkyl–halide bonds are more electron-rich than the 

analogous aryl or vinyl halide bonds, which makes them inherently less susceptible to 

oxidative addition.  In aryl and vinyl electrophiles, both Csp2–X π* and σ* orbitals may 

participate in the new bonding interactions with Pd, while only the σ* orbital is 

accessible in alkyl electrophiles.7  Aryl and vinyl halides thus have lower-lying orbitals 

available to accept electrons from the metal, rendering the oxidative addition of these 

substrates more facile.  Additionally, the greater steric bulk of alkyl groups (especially 

secondary alkyl groups) hinders nucleophilic attack by the metal.  It should also be noted 

that the oxidative addition of Csp2–X is usually proposed to occur in a concerted fashion, 

while oxidative addition of alkyl-X typically occurs via SN2-type attack.1  Furthermore, 

the resulting Pd alkyl complexes are less stable than the corresponding Pd aryl or vinyl 

complexes, as the increased electron density can be better stabilized in aryl/vinyl groups 
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due to the generally electron-withdrawing character of sp2-hybridized carbons.  Pd alkyl 

complexes are also prone to undergo reactions such as β-hydride elimination, which are 

not possible with Pd aryl/vinyl complexes.  Finally, reductive elimination is proposed to 

be slower for Pd alkyl complexes than for Pd aryl/vinyl complexes, based on calculations 

of activation barriers for this step.8  This is rationalized via the involvement of π electrons 

in sp2-sp2 reductive elimination. 

Some reports detailing the use of aryl phosphine Pd complexes to catalyze the 

cross-coupling of alkyl iodides have been published.4  However, the majority of 

successful Pd-catalyzed alkyl electrophile cross-coupling methods make use of bulky, 

electron-rich ligands to overcome the difficulties discussed above.  Fu and coworkers in 

particular have developed several systems for cross-coupling different alkyl electrophiles 

with various transmetallating reagents.9,10  Most of their systems utilized trialkyl 

phosphine Pd complexes to catalyze the cross-coupling reactions.  In an early report, Fu 

and coworkers disclosed their evaluation of a range of phosphine ligands for the cross-

coupling of alkyl bromides and alkyl boranes (alkyl 9-BBN), a part of which is shown in 

Table 3.1.11  Not only were monodentate trialkyl phosphines the only ligand class capable 

of promoting this reaction, but the size of the ligand had to be within a narrow range: 

only PCy3 and PiPr3 show selectivity for the cross-coupling product.  However, it should 

be noted that these complexes catalyze the reaction at room temperature, showcasing 

their extreme activity. 

Fu and coworkers performed mechanistic studies, specifically on the two systems 

depicted below (Figures 3.2 and 3.3).12,13  Of particular interest was the nature of the  
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Table 3.1. Ligand evaluation for alkyl-alkyl cross-coupling (adapted from Netherton et 
al., 2001). 

 

	
	

	

Figure 3.2. Suzuki coupling of alkyl bromides and aryl boronic acids (adapted from 
Kirchhoff et al., 2002). 

	
	

 

Figure 3.3. Suzuki coupling of alkyl tosylates and alkyl boranes (adapted from Netherton 
and Fu, 2002). 
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oxidative addition step.  Thus, they discovered that alkyl bromides underwent oxidative 

addition to (PtBu2Me)2Pd at 0 °C, and were able to isolate the resulting Pd alkyl complex  

(Figure 3.4, top).13  This showcases not only the exceptional activity of the catalyst for 

oxidative addition, but also the stability of the Pd alkyl complex.  When it was 

crystallized, the arrangement of the phosphine ligands was found to be exclusively trans.  

To establish the complex’s competency in the reaction, it was treated with boronic acid 

under the reaction conditions, resulting in the formation of the cross-coupling product 

(Figure 3.4, bottom). 

Having established the stability of this type of Pd alkyl complex, Fu and 

coworkers further studied the oxidative addition of alkyl electrophiles to (R3P)Pd0.14  

They found strong dependencies on the leaving group, the steric bulk of the electrophile, 

and the nature of the ligand.  The relative reaction rates for different leaving groups 

mirror those for aryl oxidative additions, with the relative rates being in the order I > Br > 

OTs > Cl.  The relative steric bulk of the electrophile was varied by introducing 

branching at the γ-, β-, or α-position with respect to the halide.  Each of these substrates 

 

 

Figure 3.4. Formation of a stable Pd alkyl complex and cross-coupling thereof (adapted 
from Kirchhoff et al., 2002). 
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reacted significantly slower than the linear isomer, with the α-branched substrate not 

undergoing oxidative addition at all.  Only ligands that were known to be effective for 

alkyl cross-coupling reactions were examined (PtBu2Me, PCy3, PtBu2Et, PtBu3), and the 

relative rates of oxidative addition mirrored those of the overall cross-coupling reaction 

(PtBu2Me > PCy3 > PtBu2Et > PtBu3).  This indicates that oxidative addition, as 

suspected, is typically the rate-determining step in cross-coupling reactions of alkyl 

electrophiles. 

Lastly, Fu and coworkers investigated the stereochemistry of the Suzuki coupling 

of alkyl tosylates (Figure 3.5).12  Subjecting a deuterium-labeled substrate to the reaction 

conditions in the absence of alkyl borane resulted in oxidative addition followed by β-

hydride elimination to yield mainly two alkene isomers (Figure 3.5A).  Based on the 

observed product substitution patterns, it was concluded that oxidative addition 

proceeded with inversion, in an SN2-like fashion, analogous to early observations with 

benzyl halides made by Stille and coworkers.15  Furthermore, β-hydride elimination 

occurred with 3:1 selectivity for H over D.  The deuterated substrate was then also 

subjected to the standard reaction conditions, and the cross-coupling product was formed 

with overall inversion, indicating that reductive elimination proceeded with retention 

(Figure 3.5B). 

Apart from trialkyl phosphines, some examples of N-heterocyclic carbene (NHC) 

Pd complexes catalyzing alkyl cross-coupling reactions have also been published.4,9,16  In 

a recent publication, Organ and coworkers reported the use of pre-formed Pd-PEPPSI-IPr 

for a Suzuki cross-coupling of alkyl and aryl electrophiles with alkyl boranes (Figure  
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Figure 3.5. Stereochemistry of Suzuki cross-coupling of alkyl tosylates (adapted from 

Netherton and Fu, 2002). 
 
 

3.6).17  The reaction proceeds at room temperature, implying that this catalyst’s 

efficiency is comparable to that of Fu’s trialkyl phosphine catalysts. 

In an interesting report by Ackermann and coworkers, secondary phosphine 

oxides and chlorides were found to be competent (pre)ligands for alkyl Kumada-Corriu 

couplings (Figure 3.7).18  They do not comment on the nature of the active catalyst; 

however, it is plausible that the (pre)ligands undergo in situ reduction by the Grignard 

reagents.  It should be noted that alkyl chlorides, which are notoriously poor cross-

coupling substrates, are competent substrates in this reaction, and the majority of 

reactions published in this paper proceed at room temperature. 
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Figure 3.6. NHC-Pd catalyzed alkyl Suzuki coupling (adapted from Valente et al., 2008). 

 
 
 
 
 

	

Figure 3.7. Phosphine chloride-Pd catalyzed alkyl chloride cross-coupling (adapted from 
Ackermann et al., 2010). 
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Lautens and coworkers were able to develop cascade cross-coupling reactions involving 

secondary alkyl iodides as electrophiles (Figure 3.8).19-21  Utilizing norbornene as a 

temporary tether to bind Pd to the substrate, cascade reactions involving aryl C–H 

activation, aryl-alkyl cross-coupling, and Heck insertion were achieved.  Norbornene was 

proposed to act as a rigid tether, forcing the Pd into proximity with normally less reactive 

centers such as an aryl C–H bond and secondary alkyl iodides.  Another unusual aspect of 

this reaction is the Pd redox cycle, involving Pd0, PdII, and PdIV, wherein the alkyl iodide 

oxidatively adds to PdII to give a PdIV intermediate. 

In summary, in the absence of specific pathways facilitating alkyl halide oxidative 

addition, highly active Pd catalysts are typically needed to achieve cross-coupling 

reactions.  Furthermore, the only ligand class that has been systematically studied for 

these reactions is trialkyl phosphines, with the general conclusion being that only a 

narrow range of these ligands are competent. 

 
Cross-Coupling of Allyl Electrophiles 

In contrast to unactivated alkyl electrophiles, oxidative addition of activated allyl and 

benzyl electrophiles is generally facile.8,22  While the prevalent reaction with this type of 

substrate is the Tsuji-Trost allylic alkylation,23 a variety of cross-coupling methods have 

been developed as well.  Fundamentally, these reactions differ in that the common Pd π-

allyl complex undergoes nucleophilic substitution in the case of soft nucleophiles (Tsuji-

Trost reaction) and transmetallation followed by reductive elimination in the case of hard 

nucleophiles (cross-coupling) (Figure 3.9).  Since nucleophilic addition typically occurs  
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Figure 3.8. Domino aryl alkylation reaction (adapted from Rudolph et al., 2008). 
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Figure 3.9. Stereochemistry of Tsuji-Trost reaction and allyl electrophile cross-coupling. 
 
 

with inversion of configuration, while transmetallation and reductive elimination result in 

retention, the two pathways can be distinguished based on the stereochemical outcome of 

the reaction.23 

Cross-coupling reactions of allyl electrophiles are significantly less prevalent than 

aryl and vinyl electrophile cross-couplings.  However, allyl cross-coupling reactions 

utilize a wide variety of leaving groups, ranging from halides to free alcohols and ethers 

(vide infra). 

Moreno-Mañas and coworkers published a phosphine-free Suzuki-type coupling 

of allyl bromides in 1995 (Figure 3.10).24  It should be noted that the linear product 

isomer was observed exclusively.  Interestingly, it was found later that in “ligandless” 

systems like this, Pd nanoparticles are often formed, which can catalyze the reaction.25 

Sarkar and coworkers recently reported the use of a novel, air-stable phosphine 

ligand for the Suzuki coupling of aryl, allyl, and benzyl chlorides (Figure 3.11).26  

Unfortunately, the products of the allyl coupling are not well characterized, and it is 

unclear which isomer is formed. 

Ramu and coworkers reported the use of Pd nanoparticles for a Hiyama coupling 

of allyl acetates (Figure 3.12).27  The in situ formation of Pd nanoparticles was confirmed  
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Figure 3.10. Suzuki coupling of allyl bromides (adapted from Moreno-Mañas et al., 
1995). 

 
 

	

Figure 3.11. Suzuki coupling of allyl chlorides (adapted from Ghosh et al., 2010). 
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Figure 3.12. Hiyama coupling of allyl acetates (adapted from Dey et al., 2008). 

 
by transition electron microscopy.  Confirming the intermediacy of Pd π-allyl 

complexes,the conformation of the product alkenes was E in all cases, regardless of the 

starting material conformation. 

Nishikata and Lipshutz reported the use of allyl ethers in Suzuki couplings in 

water (Figure 3.13).28  The reaction was enabled by micellar catalysis using a nonionic 

amphiphile (PTS, see Figure 3.13).  The substrate scope includes several functional  
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Figure 3.13. Suzuki coupling of allyl ethers (adapted from Nishikata and Lipshutz, 2009). 

 
groups, such as tertiary amines and esters, and aryl- as well as alkyl-substituted allyl 

ethers.  Interestingly, the regioselectivity switched from linear to branched for non-

conjugated alkyl-substituted substrates. 

Selectivity for the linear products (as showcased in the examples above) can 

typically be achieved by the use of terminal allyl electrophiles.  There are fewer reports 

involving the selective formation of branched products, despite the potential for 

asymmetric catalysis.  Some interesting methods leading to branched allylic substitution 

are summarized below. 

Sawamura and coworkers developed a γ-selective coupling of unsymmetrically 

disubstituted allyl systems and aryl boronic acids (Figure 3.14).29-31  In this system, 

complete α-to-γ chirality transfer was achieved with several substrates.  A mechanism is 

proposed starting with transmetallation to form a Pd aryl complex, which is added across 

the alkene from the face of the substituent.  β-Acetoxy elimination then furnishes the 

product.  The reaction proceeds with overall syn-stereochemistry.  To provide support for 

this mechanism, stoichiometric studies were carried out (Figure 3.14, bottom).  Pd aryl  
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Figure 3.14. Suzuki coupling of allyl esters (adapted from Li et al., 2010). 

 
complex A was thus prepared and treated with allyl acetate to give Pd-alkene complex B 

without formation of a Pd π-allyl complex.  This complex underwent carbopalladation 

upon heating to give Pd alkyl complex C, supporting the proposed mechanism, which 

does not proceed via a Pd π-allyl intermediate.  IR and 1H NMR of the acetate group in 

either complex illustrate that the carbonyl in complex C is coordinated to Pd. 

An unusual enantioselective cross-coupling of allyl carbonates with allylboronic 

esters was reported by Morken and coworkers (Figure 3.15).32  Primary allyl carbonates, 

which typically give linear products in Pd-catalyzed allylic cross-coupling,33 

yieldedbranched products in this system.  Using a BIPHEP-Pd catalyst, good yields, 

excellent regioselectivity, and good to excellent ee’s were achieved for a variety of 

substrates.  Selectivity for the branched products was accomplished by using bidentate 

phosphine ligands with small bite angles.  The authors propose that small ligand bite 
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angles should result in larger C-Pd-C angles, and thus increased distance between C1 and 

C1’, which should in turn disfavor 1,1’-elimination. 

Nearly identical results were obtained with regioisomeric substrates (Figure 

3.15A), suggesting that both reactions proceed via a common intermediate, such as a Pd 

π-allyl complex (Figure 3.15B).  The authors proposed two potential mechanisms  

 

Figure 3.15. Enantioselective allyl-allyl cross-coupling (adapted from Zhang et al., 2010). 
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involving 3,3’-elimination from an intermediate bis(allyl)palladium species or external 

attack on a Pd π-allyl complex.  In order to distinguish between the two, a deuterium 

labeling experiment was carried out using isotopically labeled allylB(pin) (Figure 3.15C).  

Deuterium scrambling in the product was observed (with no scrambling in recovered 

allylB(pin)).  This result, in combination with the enantioselectivity achieved with 

racemic secondary carbonate substrates, suggests that both the carbonate substrate and 

the allyl boron substrate form η3-allyl Pd complexes at some point during the reaction.   

Unprotected allylic alcohols were used as coupling partners in a Suzuki coupling 

by Tsukamoto and coworkers (Figure 3.16).34,35  They proposed that the boronic acid acts 

as a Lewis acid to activate the alcohol and to enable oxidative addition.36  Interestingly, 

enantiomerically enriched secondary allylic alcohols led to racemic products, presumably 

via attack by nucleophilic Pd0 or phosphine.35  This type of epimerization has been 

previously described by Granberg and Bäckvall.37 

In summary, there are several interesting methodologies for the cross-coupling of 

allyl electrophiles, and a wide variety of leaving groups has successfully been used.  

However, linear products are often formed preferentially, and the selectivity is typically 

substrate-dependent.  Methods yielding branched products are scarcer, and 

enantioselectivity is rarely achieved.  Further research addressing these problems is 

therefore needed. 

 

 

Figure 3.16. Suzuki coupling of allyl alcohols (adapted from Tsukamoto et al., 2008). 
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Approach to the Allylic C–H Functionalization 

Following the scenario outlined in the introduction, we envisioned accessing 

unsymmetrical, disubstituted π-allyl Pd intermediates using homoallylic tosylate starting 

materials (Figure 3.17.A).  Building on our previous experience with stabilized Pd alkyl 

intermediates, our proposed approach would take advantage of a controlled β-hydride 

elimination/alkene insertion sequence to access a Pd π-allyl complex, which would then  
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Figure 3.17. Proposed coupling of homoallyl tosylates (A) compared with diene 
hydroarylation (B). 
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be further functionalized.  Specifically, we hypothesized that a homoallyl tosylate would 

undergo oxidative addition to Pd0 to yield Pd alkyl intermediate A.  As this primary Pd 

alkyl complex is not stabilized, it would undergo β-hydride elimination to form a diene, 

along with Pd hydride B.  The diene would then reinsert into the Pd–H bond to form Pd 

alkyl C, which is isomeric to A and can be stabilized as a Pd π-allyl complex D.  It 

should be noted that this proposed Pd π-allyl intermediate (D) is analogous to one 

proposed in a hydroarylation of dienes previously reported from our laboratory (Figure 

3.17B).38  Based on this previous work, we were confident that the Pd π-allyl complex, 

once formed, should undergo transmetallation and reductive elimination to form the 

desired product.   

In addition to being mechanistically unique, this unusual way of accessing Pd π-

allyl species has the potential to be expanded into an asymmetric reaction.  The 

enantioselectivity may be determined by the selectivity for Ha or Hb in the β-hydride 

elimination step (A → B).  Following this step, the Pd could remain bound to one specific 

face of the substrate, ultimately resulting in substitution on the same enantiotopic face, 

and selective formation of one enantiomer. 

The implementation of this mechanistic scenario posed several significant 

challenges.  The success of the proposed reaction depended heavily on the relative 

stability of the Pd π-allyl complex (D).  If D was sufficiently stable, transmetallation and 

reductive elimination to form the desired product should be possible.  However, 

formation of either a 1,3-diarylated product (desired) or a 1,1-diarylated product 

(undesired) would be possible (D → E, Figure 3.17A, vs D → F, Figure 3.18).  If the Pd  
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Figure 3.18. Formation of possible isomeric products. 

 
π-allyl complex was too unstable under the reaction conditions (or if π-allyl complex 

formation was not feasible), there were two possible outcomes: a diene product could be 

formed via β-hydride elimination from A or C followed by diene dissociation, or rapid 

transmetallation and reductive elimination could occur to form a linear product (Figure 

3.18).   

Additionally, as outlined in the introduction, the Pd catalyst would have to be 

finely tuned in order to perform the different steps of the reaction.  Initially, the Pd 

catalyst would have to undergo oxidative addition with a primary homoallyl electrophile.  

The oxidative addition of homoallylic tosylates or halides to Pd0 has not been previously 

reported to the best of our knowledge.  We initially assumed that it would proceed 

analogously to unactivated alkyl tosylates, as described by Fu and coworkers.12  This 

would require an electron-rich Pd complex, using bulky, strongly donating ligands such 

as trialkyl phosphines.  Additionally, the Pd catalyst would have to be sufficiently 

electron-poor to prevent dissociation of the diene in intermediate B, to avoid formation of 

an undesired diene product.  These opposing requirements would have to be balanced 

toachieve the proposed reaction, and it was not obvious how that balance would be 

achieved. 
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Lastly, the reaction conditions would have to be carefully tuned to avoid base-

promoted elimination of TsOH, which would again lead to diene formation (without the 

involvement of Pd).  This would limit the choice of bases, which would be needed to 

promote transmetallation with boron reagents. 

 
Reaction Development Using Phosphine Ligands 

The conditions that were initially explored were carefully chosen based on the 

potential problems outlined above.  For several reasons, 4-phenyl-3-butenyl tosylate (3.4) 

was a logical choice for the initial substrate.  Tosylates are conveniently accessed from 

alcohols, and their rate of oxidative addition to Pd had been shown by Fu and coworkers 

to be comparable to alkyl halides.12,14  The tosylate would also constitute a non-

coordinating counterion for Pd, to increase its electrophilicity and prevent dissociation of 

the diene.  The phenyl substituent on the alkene would give rise to a conjugated system, 

which should prevent formation of 1,1-substituted product (vide supra).  While this 

choice of a conjugated alkene could lead to limited reaction scope, we were confident 

that alkyl-substituted alkenes would ultimately be competent, based on the previously 

published diene hydroarylation.38  

As the transmetallating agent, PhB(OH)2 was chosen for its commercial 

availability, ease of use, and low toxicity.  Additionally, it has been used by Fu and 

coworkers in a Suzuki coupling of alkyl electrophiles.13  In this report, Fu and coworkers 

found KOtBu to be the most efficient base; however, with our substrate, KOtBu led to 

elimination of TsOH even in the absence of Pd catalyst.  Therefore, Cs2CO3 was chosen 

as a weaker base. 
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Phosphines were chosen as the initial ligand class to be evaluated based on the 

reports by Fu and coworkers of their successful use in the cross-coupling of alkyl 

electrophiles.10-14  A range of commercially available phosphine ligands were thus 

evaluated for our desired reaction under conditions similar to those published by Fu and 

coworkers (Table 3.2).  Gratifyingly, PtBu3 gave the desired product 3.5a with good 

selectivity (entry 1).  Additionally, to our surprise, P(o-tol)3 selectively gave the linear 

product 3.5b (entry 4).  Based on Fu and coworkers’ reports, triaryl phosphines had not 

been expected to result in significant product formation.  Interestingly, P(o-tol)3 and 

PtBu3 are similar in size, having cone angles of 194° and 182°, respectively.39  The shift 

in mechanism from isomerization and formation of a Pd π-allyl complex followed 

bytransmetallation to transmetallation of a primary Pd alkyl complex was therefore likely 

caused by a difference in ligand electronics. 

 

Table 3.2. Initial ligand screen. 

Ph
OTs PhB(OH)2

1.5 equiv

10 mol% Pd(MeCN)2Cl2
12 mol% ligand
3 equiv Cs2CO3

0.2 M PhMe
80 °C, 24 h

entry ligand 3.5a
(% yield)a

1
2
3
4
5
6
7

PtBu3

PCy3

PnBu3

P(o-tol)3
PPh3

S-Phos
dcpe

3.5b
(% yield)a

52
28
10
<2
17
4

<2

3
17
<2
31
3

10
<2

Ph

Ph

3.5a

a determined by GC analysis using internal standard

and response factor.

3.6
(% yield)a

41
51
79
13
66
76
13

Ph
Ph

Ph

3.5b

3.6

PCy2

OMeMeO

S-Phos

3.4
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Other alkyl or aryl phosphines resulted in lower product yields and/or poor 

branched:linear (B:L) selectivity.  In addition to simple triaryl and trialkyl phosphines, a 

biaryl phosphine (S-Phos) was tested, and found to give poor yield and selectivity (entry 

6).  It should also be noted that bidentate phosphines such as 1,2-

bis(dicyclohexylphosphino)ethane (dcpe) led to exclusive formation of the undesired 

diene product in low yield (entry 7).  With these initial results in hand, we decided to 

optimize the reaction for both the branched and linear product, using PtBu3 and P(o-tol)3, 

respectively. 

In the case of the PtBu3-promoted reaction, we found that the reaction could be 

performed at room temperature with no decrease in product yield (Table 3.3, entry 1).  

Examination of different bases showed that K2CO3 gave similar outcomes to Cs2CO3 

with regard to both yield and branched:linear selectivity (B:L) (entry 2); other bases gave 

poor results.  Solvents were evaluated next, and tAmOH was found to slow the reaction, 

but also to substantially reduce the amount of diene side product and increase product  

 

Table 3.3. Optimization with PtBu3. 
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yield (entry 3).  Finally, the amount of ligand relative to Pd was varied.  When the 

amount of PtBu3 was increased to a 2:1 phosphine:Pd ratio, no conversion was observed 

(entry 4), indicating the active catalyst was likely a monoligated Pd species.  This was in 

agreement with our previous finding that bidentate dcpe was incompetent. 

In parallel with the optimization of the PtBu3-promoted reaction, P(o-tol)3 was 

evaluated under analogous reaction conditions.  However, only the change from Cs2CO3 

to K2CO3 resulted in increased yield (Table 3.4).  Lowering the temperature gave trace 

amounts of product, and changing the solvent also did not improve the results.  As we 

were primarily interested in the branched product and the potential to develop an 

asymmetric variant of our reaction, we chose not to further optimize this reaction, and 

instead focus on the branched product. 

With optimized conditions for the branched product in hand, we decided to 

examine whether the alkene was required for the reaction.  Thus, phenethyl tosylate (3.7) 

and phthtalimide-substituted tosylate 3.8 were subjected to the reaction conditions  

 

Table 3.4. Optimization for linear product. 
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(Figure 3.19).  Having observed similar reactions of benzylic and allylic substrates 

before,40 we reasoned that a homobenzylic tosylate (3.7) might be a competent substrate.  

Phthalimides have been proposed by Feringa and coworkers to coordinate to Pd.41  We 

therefore hypothesized that this interaction might provide sufficient stabilization for our 

proposed Pd alkyl intermediate (similar to the example reported by Larhed and 

coworkers,42 see chapter 1).  In our case, however, no product was observed with either 

substrate.   

In order to further explore the scope of the reaction, it was scaled to 0.5 mmol.  

Unfortunately, on this scale the results proved to be irreproducible.  Although we could 

not definitively identify the problem, we hypothesized that mixing issues in larger flasks 

led to the inconsistent results, as the reactions are both concentrated and heterogeneous.  

The use of different sizes and shapes of stirbars and flasks changed the outcome of the 

reaction, but did not solve the reproducibility issues. 

 

 

 

Figure 3.19. Evaluation of non-alkenyl substrates with PtBu3. 
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Reaction Development Using Quinox Ligands 

In order to avoid these problems, we decided to evaluate other ligands in hopes of 

discovering a more robust system.  Because of their ready availability, stability and 

reactivity towards alkene substrates,43-47 Pd complexes of bidentate nitrogen-based 

ligands were tested.  Excitingly, it was found that quinoline-oxazoline (Quinox)-type 

ligands were capable of promoting the reaction (Figure 3.20).  Of note, these reactions 

could be performed on the benchtop using standard Schlenk technique, whereas those 

using PtBu3 had to be set up in a glove box.  Furthermore, Quinox and Pd(Quinox)Cl2 are 

air stable, adding to the practicality of this reaction. 

While this result was exciting, it was unexpected, as these ligands have not been 

reported to promote alkyl cross-coupling reactions.  A closely related pyridine-oxazoline 

ligand (Pyrox) was also successful, although the product yield was substantially reduced.  

Bipyridine (bipy), on the other hand, did not give any desired product.  Our group has 

previously shown that Quinox-type ligands show unique reactivity toward alkenes in 

Wacker-type reactions, and mechanistic data strongly indicate that this is due to their 

 

	

Figure 3.20. Screen of bidentate pyridine-based ligands. 
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electronic asymmetry.43,48  As bipy does not promote the cross-coupling reaction, it 

seems reasonable that two electronically distinct binding sites on Pd may be necessary in 

this reaction.  Given that nitrogen-based ligands were capable of promoting this reaction, 

as well as the requirement for electronic asymmetry, we hypothesized that the oxidative 

addition of homoallyl electrophiles may proceed through a mechanism distinct from alkyl 

electrophiles.  This hypothesis was tested further under optimized reaction conditions 

(vide infra).  

We thus explored the reaction conditions using Pd(Quinox)Cl2 as the catalyst 

(Table 3.5).  It was found that tAmOH and iPrOH were competent solvents, with tAmOH 

giving higher selectivity, but iPrOH leading to higher yield (entries 1 and 2).  Bases were 

evaluated next, wherein K2CO3 led to better selectivity in iPrOH (entry 4), and KF·2H2O 

resulted in excellent yield and selectivity in both tAmOH and iPrOH (entries 5 and 6).  At 

 

Table 3.5. Optimization using Quinox. 
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this point, the amount of Pd(Quinox)Cl2 was lowered to 2.5 mol%, and the reaction was 

diluted to 0.1 M without loss in yield or selectivity (entries 7 and 8).   

 
Initial Scope and Mechanistic Studies 

Gratifyingly, this reaction could be scaled to 0.5 mmol without problems, and the 

scope of the reaction with regard to boronic acids was explored.  Electron-poor as well as 

electron-rich arylboronic acids were successful, giving good to excellent yields and 

selectivities (Table 3.6).  When o-tolylboronic acid was used, the reaction still proceeded, 

although at a much reduced rate.  The scope with regard to the tosylate substrate has yet 

 

Table 3.6. Scope using different boronic acids. 
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to be fully developed (vide infra).  Thus far, a 4-MeOC6H4-substituted substrate resulted 

in comparable yield and selectivity to the Ph-substituted substrate. 

We then decided to evaluate nonalkenyl substrate 3.7 using Pd(Quinox)Cl2 

(Figure 3.21).  However, no conversion of substrate was observed, indicating that the 

alkene is necessary for the reaction. Several experiments were performed to further 

investigate the mechanism of this reaction.  As the mechanism of oxidative addition in 

this reaction was unclear, homoallyl bromides and chlorides were evaluated (Table 3.7).  

While the bromide reacted at a comparable rate to the tosylate, the reaction of the 

chloride was markedly slower.  This result is similar to Fu and coworkers’ studies, where 

it was found that tosylates are intermediate between bromides and chlorides in reactivity 

toward oxidative addition.14  Interestingly, the branched:linear ratio is excellent for the  

 

 

Figure 3.21. Evaluation of nonalkenyl tosylate with Pd(Quinox)Cl2. 

 
Table 3.7. Evaluation of homoallyl halides. 
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chloride, but substantially decreased for the bromide (compared to the chloride or 

tosylate).  While the influence of halide additives on regio- and enantioselectivity in 

Tsuji-Trost-reactions has been reported, the mechanism of influence in this case is 

unclear.49,50 

Considering the unusual ligand as well as the requirement of the alkene in the 

substrate, it appeared that homoallyl tosylates (and bromides) undergo oxidative addition 

with relative ease, compared to nonactivated alkyl electrophiles.  It seemed plausible at 

this stage that the alkene binds to Pd in an initial step, making oxidative addition more 

facile than would ordinarily be expected (Figure 3.22).  To further investigate the  

oxidative addition, secondary homoallylic tosylate 3.18 was synthesized and submitted to 

the reaction conditions (Figure 3.23).  Secondary alkyl electrophiles are generally 

considered to be less reactive toward oxidative addition with Pd0 than primary ones;21 

however, in our case, the product yield and selectivity were comparable to those of the  

	

 

Figure 3.22. Proposed oxidative addition of pre-coordinated substrates. 

 

 
Figure 3.23. Evaluation of secondary tosylate 3.18. 
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primary substrate (3.4).  This further supports our hypothesis that alkene coordination 

facilitates oxidative addition in this type of reaction, which may lead to different 

reactivity profiles than are typically observed.  To further probe this hypothesis, 

bishomoallylic substrate 3.20 was subjected to the reaction conditions (Figure 3.24).   

While the reaction did proceed, the product yield was greatly diminished, which is 

in agreement with this rationale.  A cyclic transition state leading to oxidative addition 

may be less favored with a longer carbon chain, leading to a less efficient reaction 

(Figure 3.22).  However, the longer chain may also influence the β-hydride 

elimination/reinsertion sequence, which has to occur two times with this substrate to form 

the π-allyl intermediate, which may also contribute to a less efficient reaction (Figure 

3.25).  Overall, this result showcases that the concept of “chain-walking” can be 

expanded beyond homoallylic substrates, although it would require additional 

optimization to achieve an efficient reaction.  Finally, we were interested in the efficiency 

of diene insertion into the Pd–H bond, specifically whether diene dissociation from the 

Pd hydride intermediate occurred.  Specifically, crossover experiments would be 

performed by addition of a diene (3.21) to the reaction mixture (Figure 3.26).  If the diene 

dissociated from the Pd hydride intermediate, added diene 3.21 could coordinate to it, and 

the hydroarylation of 3.21 would be observed.   

 
 

 
Figure 3.24. Evaluation of bishomoallylic tosylate 3.20. 
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Figure 3.25. Proposed “chain-walking” mechanism for bishomoallylic substrate 3.20. 

 

	
Figure 3.26. Crossover experiments. 
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This experiment could potentially be complicated by the fact that PdII is capable 

of oxidizing IPA.  In previous systems, Pd-catalyzed oxidation of iPrOH solvents has 

been observed, and Pd hydrides formed in the alcohol oxidation further reacted with the 

alkene substrates to give hydrofunctionalization products.38,51-53  The allylic C–H 

functionalization proceeds in tAmOH, a tertiary alcohol, with similar efficiency to IPA, 

indicating that alcohol oxidation (even if it is occurring as a background reaction) is not 

crucial for the reaction.  However, “additional” Pd hydride formed via alcohol oxidation 

might complicate the crossover experiment, which was therefore performed in both IPA 

and tAmOH. 

The crossover experiment was performed as described above in both iPrOH and 

tAmOH, with comparable results.  In both cases, only small amounts of crossover 

product were observed, indicating that diene dissociation does not pose a significant 

problem in this reaction. 

 
Summary and Outlook 

In summary, we have developed a Pd/phosphine-catalyzed allylic C–H arylation, 

which showed a strong dependence on phosphine sterics and electronics.  While this is 

mechanistically interesting, we were unable to develop a useful synthetic method on the 

basis of this reaction.  Turning to other potential ligand classes, we discovered that 

Pd(Quinox)Cl2 is a competent catalyst for the same reaction, and have begun to 

investigate the scope and mechanism of this mechanism.   

Further exploring the scope of the allylic C–H arylation, it was found that boronic 

esters (in addition to boronic acids) are competent transmetallating agents (Table 3.8).   
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Table 3.8. Preliminary scope using boronic esters. 

	

	
As a direct comparison, o-tolBpin gave the desired product in 74% yield and excellent 

selectivity after 24 h (Table 3.8, entry 1).  With o-tolB(OH)2, the reaction was 

significantly slower, giving 85% after 72 h (see Table 3.6).  Excitingly, the scope using 

pinacol boronic esters was found to be broader than with boronic acids, including a 

heteroaromatic boronic ester (entry 2).  Heteroaromatic boronic acids did not yield any 

desired products.  Vinyl boronic esters as well as vinyl boronic acids were found to give 

the corresponding products, although in reduced yields and as complex mixtures of 

products, presumably due to isomerization of the primary products (entries 3 and 4).  
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While these results require additional optimization, they indicate that the scope of the 

reaction may be expanded beyond aryl boronates. 

In addition to the alkene substrates described above, an electron-poor aryl-

substituted alkene as well as an alkyl-substituted alkene were evaluated (Table 3.9).  The 

preliminary results shown in Table 3.9 display the potential for further expansion of the 

scope with different homoallyl tosylates, notably with alkyl-substitution.  In the 

previously published diene hydroarylation, the selectivity for this type of substrate for the 

1,3- over 1,1-diarylated products has been found strongly dependent on the size of the 

substituent.38  Based on our proposed mechanism, we expect a similar dependence with 

the allylic C–H functionalization. 

As a long-term goal, we are pursuing an asymmetric version of this reaction.  In 

initial studies using chiral Quinox derivatives, it was found that tBuQuinox gave the 

product in good yield, excellent regioselectivity and a moderate 72:38 e.r (Figure 3.27). 

 

Table 3.9. Additional homoallyl substrates. 

 

182



	

Figure 3.27. Initial results for asymmetric catalysis. 

 
While this result clearly requires further optimization, it is a promising lead for the future 

development of asymmetric allylic C–H functionalizations. 

A more detailed investigation of the scope of the allylic C–H arylation is ongoing, 

and Dr. Benjamin Stokes is further pursuing the asymmetric variant and mechanistic 

details of this unique reaction.   

 
Experimental Section 

General Information 

MeOH, tAmOH, iPrOH, and NEt3 were dried by distilling from CaH2; DCM, 

Et2O, and PhMe were dried by passing through a column of activated alumina; CDCl3 

was dried by passing through a plug of activated basic alumina.  PhMe and tAmOH used 

in a glove box were freeze-pump-thawed prior to storing them in a glove box.  PPh3 was 

crystallized from Et2O and stored in a glove box.  Other phosphines were purchased and 

used as received.  TsCl was purified by washing its solution in Et2O with base, followed 

by crystallization from hot PhMe.  DMAP was crystallized from hot toluene.  K2CO3 and 

Cs2CO3 were crushed and dried at ca. 100 °C under vacuum, and stored in a glove box.  
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Flash column chromatography was performed using EM Reagent silica 60 (230-400 

mesh).  1H NMR were obtained at 300, 400, or 500 MHz and referenced to the residual 

CHCl3 singlet at 7.26 ppm. 13C NMR were obtained at 75, 100, or 125 MHz and 

referenced to the center line of the CDCl3 triplet at 77.23 ppm. GC/MS were obtained on 

a HP 5890 (EI) 20:1 split. IR spectra were obtained on a Bruker Tensor 37 FTIR 

spectrometer.  HRMS were obtained on an Agilent LCTOF.  SFC (supercritical fluid 

chromatography) analysis was performed at 40 °C, using a Thar instrument fitted with a 

chiral stationary phase (as indicated). 

 
Synthesis of (E)-4-Phenyl-3-butenyl Tosylate (3.4) 

Phenyl-3-butenyl tosylate was synthesized as shown in Figure 3.28. 

 

	

 
Preparation of (E)-Methyl 4-phenyl-3-butenoate (3.29).  To a dry 250 mL round-

bottom flask equipped with a stirbar under N2 were added 5.00 g of (E)-4-phenyl-3-

butenoic acid (30.8 mmol, 1.00 equiv) and 40 mL of MeOH.  The solution was cooled to 

0 °C, and 5.90 mL TMSCl (46.2 mmol, 1.50 equiv) were added dropwise.  The mixture  

 

Ph
OTs

Ph
OH

O

Ph
OMe

O
Ph

OHTMSCl

MeOH

LiAlH4

Et2O

TsCl, DMAP

Et3N, DCM
3.4

3.29 3.30

	

Figure 3.28. Synthesis of substrate 3.4. 
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was allowed to warm to room temperature and stirred overnight.  The solvent was 

removed under reduced pressure, and the crude product (5.26 g, 29.9 mmol, 97% yield) 

was taken forward after comparison to published characterization data.54 

 

	

 
Preparation of (E)-4-Phenylbut-3-en-1-ol (3.30).  To a dry 250 mL round-bottom 

flask equipped with a stirbar under N2 were added 3.40 g LiAlH4 (89.6 mmol, 3.00 equiv) 

and 60 mL Et2O.  The mixture was cooled to 0 °C, and a solution of 5.26 g (E)-methyl 4-

phenyl-3-butenoate (29.9 mmol, 1.00 equiv) in 20 mL Et2O was added dropwise.  The 

mixture was allowed to warm to room temperature, and quenched after 2.5 h by slow 

addition of 150 mL 1M HCl.  The mixture was transferred to a separatory funnel, and the 

layers were separated.  The aqueous layer is extracted with Et2O (3 × 40 mL); the 

combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo.  

The crude product (4.13 g, 27.8 mmol, 93% yield) was compared to published 

characterization data and taken on to the next step.55 

 

	

 
Preparation of (E)-4-Phenylbut-3-enyl tosylate (3.4).  To a dry 100 mL round-

bottom flask equipped with a stirbar under N2 were added 2.01 g TsCl (11.0 mmol, 1.10 

equiv), 122 mg DMAP (1.00 mmol, 0.100 equiv), 2.79 mL NEt3 (20.0 mmol, 2.00 equiv), 

and 20 mL DCM.  The resulting mixture was cooled to 0 °C, and a solution of 1.48 g (E)-

4-Phenylbut-3-en-1-ol (10.0 mmol, 1.00 equiv) in 10 mL DCM was added dropwise.  
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The mixture was allowed to warm to room temperature and stirred overnight, during 

which time a white precipitate formed.  DCM was then added to dissolve the precipitate, 

and the solution was washed with sat. aq. NaHCO3 (1 × 40 mL) and H2O (1 × 40 mL).  

The combined aqueous layers were extracted with DCM (1 × 40 mL).  The combined 

organic layers were dried over Na2SO4, filtered, and concentrated in vacuo.  The residue 

was purified by flash column chromatography eluting with 700 mL 12% EtOAc/hexanes 

 200 mL 20% EtOAc/hexanes.  The product was isolated as a white solid in 2.16 g 

(7.14 mmol, 64% overall yield based on the acid).  Its spectral data were compared to 

published ones.56 

 
General Procedure for the Tosylation of Alcohols 

 

	

 
 For 3-buten-1-tosylate.  To a dry 250 mL round-bottom flask equipped with a 

stirbar under N2 were added 5.56 g TsCl (29.0 mmol, 1.10 equiv), 326 mg of DMAP 

(2.70 mmol, 0.100 equiv), 7.40 mL of NEt3 (54.0 mmol, 2.00 equiv), and 60 mL of 

DCM. The resulting mixture was cooled to 0° C, and a solution of 2.00 g of 3-buten-1-ol 

(27.0 mmol, 1.00 equiv) in 60 mL of DCM was added dropwise. The mixture was 

allowed to warm to room temperature and was strirred overnight. The solution was then 

washed with sat. aq. NaHCO3 (1 × 120 mL) and H2O (1 × 120 mL). The combined 

aqueous layers were extracted with DCM (1 × 120 mL) and the combined organic layers 

were dried over Na2SO4, decanted, and concentrated in vacuo. The residue was purified 

by flash column chromatography (0:100  50:50 EtOAc:hexanes) to afford the product 

as a colorless oil (5.35 g, 87%).  Its spectral data were compared to published ones.57  
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4-Penten-2-tosylate was prepared analogously using 600 mg (3.1 mmol) of TsCl, 

35 mg (0.29 mmol) of DMAP, 0.80 mL (5.7 mmol) of Et3N, and 0.30 mL (2.9 mmol) of 

4-penten-2-ol in 14 mL of DCM. Purification by flash column chromatography (0:100  

50:50 EtOAc:hexanes) afforded the product as a colorless oil (282 mg, 41%), Rf = 0.29 

(20% EtOAc/hexanes). 1H NMR (CDCl3, 300 MHz): δ 1.25 (d, J = 6.8 Hz, 3 H), 2.22 –

 2.42 (m, 2 H), 2.45 (s, 3 H), 4.64 (sextet, J = 6.8 Hz, 1 H), 5.01 (s, 1 H), 4.98 – 5.08 (m, 

2 H), 5.52 – 5.68 (m, 1 H), 7.33 (d, J = 8.1 Hz, 2 H), 7.79 (d, J = 8.4 Hz, 2 H); 13C NMR 

58 (CDCl3, 75 MHz): δ 20.52, 21.87, 41.01, 79.58, 119.0, 128.0, 129.9, 132.5, 134.6, 

144.7; IR 2981, 1643, 1598, 1495, 1449, 1351, 1306, 1187, 1173, 1120, 1096, 1043, 

1019 cm-1; HRMS: (m/z) calcd. 263.0718 obsd. 263.0722 [M+Na] +. 

 

	

 
4-Penten-1-tosylate was prepared analogously using 1.04 g (5.5 mmol) of TsCl, 

61 mg (0.50 mmol) of DMAP, 1.4 mL (10 mmol) of Et3N, and 0.58 mL (5.0 mmol) of 4-

penten-1-ol in 25 mL of DCM. Purification by flash column chromatography (0:100 

 30:70 EtOAc/hexanes) afforded the product as a colorless oil (1.13 g, 94%).  Its 

spectral data were compared to published ones.59 
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Phenethyl Tosylate (3.7) was prepared analogously using 1.96 mL 2-

phenylethanol (16.4 mmol), 3.43 g TsCl (18.0 mmol), 200 mg DMAP (1.64 mmol), 4.56 

mL NEt3 (32.7 mmol), and 40 mL DCM.  The product was purified by flash column 

chromatography eluting with 1 L 10% EtOAc/hexanes  300 mL 20% EtOAc/hexanes.  

The product was isolated as a white solid in 98% yield (4.43g, 16.0 mmol).  Its spectral 

data were compared to published ones.60 

 

	

 
2-Phthalimidoethyl Tosylate (3.8) was prepared analogously, starting from 200 

mg phthalimide-protected ethanolamine (1.05 mmol), 219 mg TsCl (1.15 mmol), 12.8 mg 

DMAP (0.11 mmol), 292 μL NEt3 (2.09 mmol), and 10 mL DCM.  The product was 

purified by flash column chromatography eluting with 400 mL 15% EtOAc/hexanes  

100 mL 50% EtOAc/hexanes  150 mL EtOAc.  Its spectral data were compared to 

published ones.61 

 
General Procedure for Alkene Cross-Metathesis 

 

	

 
 For substrate 3.27.  Into a dry 10 mL round-bottom flask equipped with a stirbar 

were added 327 mg of homoallyl tosylate (1.40 mmol, 1.00 equiv) and 3 mL of DCM, 

followed by 2.0 mL of vinylcyclohexane (14.0 mmol, 10.0 equiv) that had been passed 
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through basic alumina, and 30 mg of Grubbs’s 2nd generation catalyst (0.04 mmol, 2.5 

mol%). The flask was equipped with a condenser and refluxed for 2 h at 45 C under N2, 

at which time TLC showed consumption of homoallyl tosylate. After cooling to ambient 

temperature, 0.02 mL of di(ethylene glycol) vinyl ether (0.16 mmol, 10 mol%) was added 

and the reaction stirred for 30 min. The reaction was concentrated in vacuo and the 

residue was purified by flash column chromatography (50% benzene/hexanes) to afford 

the product 3.27, an 87:13 mixture of E and Z isomers, as a beige oil (180 mg, 42%), Rf = 

0.16 (50% benzene/hexanes). Selected spectral data for the major (E) isomer: 1H NMR 

(CDCl3, 500 MHz): δ 0.90 – 1.02 (m, 2 H), 1.07 – 1.15 (m, 1 H), 1.15 – 1.26 (m, 2 H), 

1.56 – 1.63 (m, 3 H), 1.63 – 1.70 (m, 2 H), 1.77 – 1.87 (m, 1 H), 2.29 (q, J = 7.0 Hz, 2 

H), 2.42 (s, 3 H), 3.98 (dt, J = 7.0, 1.5 Hz, 2 H), 5.16 (dt, J = 15.5, 7.0 Hz, 1 H), 5.39 (dd, 

J = 15.5, 6.5 Hz, 1 H), 7.32 (d, J = 7.0 Hz, 2 H), 7.76 (dd, J = 8.0, 2.0 Hz, 2 H); 13C NMR 

{1H} (CDCl3, 100 MHz): δ 21.8, 26.2, 26.3, 32.4, 33.0, 40.8, 70.5, 121.2, 128.1, 130.0, 

133.4, 140.6, 144.9. Selected spectral data for the minor (Z) isomer: 1H NMR (CDCl3, 

500 MHz): δ 1.02 – 1.07 (m, 1 H), 1.49 (d, J = 9.0 Hz, 2 H), 2.06 – 2.15 (m, 1 H), 2.37 

(q, J = 7.0 Hz, 2 H), 2.42 (s, 3 H), 5.08 (dt, J = 11.0, 7.0 Hz, 1 H), 5.29 (t, J = 11.0 Hz, 1 

H); 13C NMR {1H} (CDCl3, 125 MHz): δ 26.0, 26.1, 27.5, 33.3, 36.6, 70.2, 120.9, 128.1, 

133.4, 140.1, 144.9. Spectral data for the mixture: IR 2922, 2849, 1598, 1448, 1360, 

1174, 1097 cm-1; HRMS: (m/z) calcd. 331.1344 obsd. 331.1349 [M+Na] +. 
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 Substrate 3.18 was prepared analogously using 120 mg (0.50 mmol) of 4-penten-

2-tosylate, 0.23 mL (2.0 mmol) of styrene, and 21 mg of Grubbs’s 2nd generation catalyst 

in 1 mL of 1,2-DCE. Purification by flash column chromatography (0:100  50:50 

EtOAc:hexanes) afforded the product as a white powder (66 mg, 42%), mp 70 C, Rf = 

0.33 (20% EtOAc/hexanes). 1H NMR (CDCl3, 300 MHz): δ 1.36 (d, J = 6.3 Hz, 3 H), 

2.36 (s, 3 H), 2.38-2.58 (m, 2 H), 4.67 (sextet, J = 6.3 Hz, 1 H), 5.87 (dt, J = 15.6, 7.2 Hz, 

1 H), 6.33 (d, J = 15.9 Hz, 1 H), 7.17-7.34 (m, 7 H), 7.76 (d, J = 8.1 Hz, 2 H); 13C NMR 

{1H} (CDCl3, 75 MHz): δ 21.1, 21.8, 40.2, 79.9, 124.1, 126.4, 127.6, 128.0, 128.7, 129.9, 

133.8, 134.3, 137.2, 144.7; IR 3029, 2891, 1595, 1493, 1450, 1380, 1343, 1307, 1293, 

1170, 1130, 1097, 1020 cm-1; HRMS: (m/z) calcd. 339.1031 obsd. 339.1031 [M+Na] +. 

 

	

 
 Substrate 3.20 was prepared analogously using 96 mg (0.40 mmol) of 

bishomoallyl tosylate, 0.09 mL (0.80 mmol) of styrene, and 17 mg (0.02 mmol) of 

Grubbs’s 2nd generation catalyst in 0.8 mL of DCM.  Purification by flash column 

chromatography (0:100  50:50 EtOAc:hexanes) afforded the product as a white solid 

(42 mg, 33%), Rf = 0.32 (20% EtOAc/hexanes).  Its spectral data were compared to 

published ones.59  
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 Substrate 3.25 was prepared analogously using 156 mg (0.69 mmol) of homoallyl 

tosylate, 0.5 mL (3.4 mmol) of 4-(trifluoromethyl)styrene, and 58 mg (0.07 mmol) of 

Grubbs’s 2nd generation catalyst in 3.0 mL of DCM. Purification by flash column 

chromatography (0:100  50:50 EtOAc:hexanes) afforded the product as a white powder 

(131 mg, 51%), mp 72 C, Rf = 0.29 (20% EtOAc/hexanes). 1H NMR (CDCl3, 500 

MHz): δ 2.41 (s, 3 H), 2.57 (qd, J = 6.5, 1.5 Hz, 2 H), 4.15 (t, J = 6.5 Hz, 2 H), 6.11 (dt, J 

= 16.0, 7.0 Hz, 1 H), 6.42 (d, J = 16.0 Hz, 1 H), 7.29 (d, J = 7.5 Hz, 2 H), 7.35 (d, J = 8.0 

Hz, 2 H), 7.53 (d, J = 8.0 Hz, 2 H), 7.76 – 7.79 (m, 2 H); 13C NMR {1H} (CDCl3, 125 

MHz): δ 21.8, 32.7, 69.5, 124.3 (q, JC–F = 270.4 Hz), 125.7 (q, JC–F = 3.8 Hz), 126.5, 

127.1, 128.1, 129.5 (q, JC–F = 32.1 Hz), 130.1, 132.2, 133.2, 140.5 (q, JC–F = 1.4 Hz), 

145.1; 19F NMR (CDCl3, 282 MHz): δ –62.9; IR 2931, 1654, 1611, 1597, 1494, 1469, 

1414, 1384, 1350, 1324, 1174, 1161, 1110, 1066, 1014 cm-1; HRMS: (m/z) calcd. 

393.0748, obsd. 39.0757 [M+Na] +. 

 
Synthesis of (E)-4-(4-methoxyphenyl)but-3-en-1-yl Tosylate (3.35) 

(E)-4-(4-methoxyphenyl)but-3-en-1-yl tosylate (3.35) was synthesized as shown 

in Figure 3.29. 

 

	

 
TBS-protected bromopropanol 3.31 was prepared according to a literature 

procedure.62  
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Figure 3.29. Synthesis of (E)-4-(4-methoxyphenyl)but-3-en-1-yl tosylate (3.35). 

 

	

 
Preparation of Wittig Reagent 3.32.  To a dry 25 mL round-bottom flask 

equipped with a stirbar under N2 were added 2.69 g of PPh3 (10.3 mmol, 1.30 equiv) and 

5 mL of PhMe.  While stirring, 2.00 g of 3.31 (7.90 mmol, 1.00 equiv) were slowly 

added.  The flask was equipped with a reflux condenser, and the mixture was heated to 

reflux for 3 h, during which time a white precipitate formed.  The mixture was allowed to 

cool to room temperature.  The stirbar was removed, and the product was allowed to 

crystallize overnight.  It was then filtered through a glass fritte, and dried at 80 °C under 

vacuum overnight.  The product was isolated in 76% yield (3.09 g, 5.99 mmol) as a white 

solid.  Its spectral data matched previously published ones.63  

 
OTBS

MeO
3.33 	
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Preparation of 3.33.  To a dry 100 mL round-bottom flask equipped with a stirbar 

under N2 were added 2.68 g of 3.32 (5.2 mmol, 1.3 equiv) followed by 30 mL of PhMe.  

A solution of 597 mg of KOtBu (5.32 mmol, 1.33 mmol) in 10 mL THF was added 

dropwise, and the orange mixture was stirred at room temperature for 4 h.  The mixture 

was then cooled to -78 °C, and a solution of 487 μL anisaldehyde (4.00 mmol, 1.00 

equiv) in 8 mL of PhMe was added dropwise.  The mixture was allowed to warm to room 

temperature overnight.  It was then quenched with 30 mL of sat. aq. NH4Cl, and stirred 

for 20 min.  Enough H2O to dissolve the precipitate in the mixture was added, and the 

layers were separated in a separatory funnel.  The aqueous layer was extracted with Et2O 

(3 × 40 mL), and the combined organic layers were washed with H2O (1 × 40 mL) and 

brine (1 × 40 mL), and dried over MgSO4.  The crude product was purified by flash 

column chromatography eluting with 3% acetone/hexanes, and the pure product was 

isolated in 74% yield (863 mg, 2.95 mmol).  Its spectral data matched previously 

published ones.63 

 

	

 
Alcohol 3.34 was prepared analogously to a literature procedure,63 and its spectral 

data matched previously published ones.64 
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Tosylate 3.35 was prepared analogously to the general procedure for alcohol 

tosylation described above.  The product was isolated as a clear oil in 91% yield (789 mg, 

2.38 mmol).  Rf: 0.21 w/ 20% acetone/hexanes; 1H NMR (CDCl3, 300 MHz): δ 2.43 (s, 3 

H), 2.52 (qd, J = 6.9, 1.8 Hz, 2 H), 3.80 (s, 3 H), 4.11 (t, J = 6.6 Hz, 2 H), 5.84 (dt, J = 

15.6, 6.9 Hz, 1 H), 6.33 (d, J = 15.9 Hz, 1 H), 6.83 (d, J = 9.0 Hz, 2 H), 7.20 (d, J = 8.7 

Hz, 2 H), 7.30 (d, J = 7.8 Hz, 2 H), 7.78 (d, J = 8.4 Hz, 2 H); 13C NMR {1H} (CDCl3, 

125 MHz): δ 21.9, 32.7, 55.5, 70.1, 114.1, 121.7, 127.5, 128.2, 129.9, 130.0, 132.9, 

133.3, 144.9, 159.3; IR 3032, 2996, 2956, 2840, 1604, 1576, 1509, 1462, 1453, 1440, 

1381, 1345, 1305, 1284, 1241, 1172, 1095, 1049, 1030 cm-1; HRMS: (m/z) calcd. 

355.0980 obsd. 355.0980 [M+Na] +. 

 
Synthesis of Homoallyl Halides 

 

 

 
(E)-4-phenyl-3-butenyl bromide (3.16) was prepared according to a published 

procedure.65 

 

	

 
(E)-4-phenyl-3-butenyl chloride (3.17) was prepared according to a published 

procedure66 from cyclopropyl(phenyl)methanol, which was prepared according to a 

published procedure.65 
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MeO
3.21 	

 
Synthesis of 1-Methoxy-4-(1,3-pentadien-1-yl)benzene 3.21.  To a dry 250 mL 

round-bottom flask equipped with a stirbar under N2 were added 4.88 g (13 mmol, 1.30 

equiv) of ethyltriphenylphosphonium bromide followed by 43 mL of THF. The flask was 

cooled to –78 °C and 5.6 mL of n-BuLi in hexanes (14 mmol, 1.40 equiv) was added 

dropwise. The reaction was allowed to warm to room temperature and stirred an 

additional 10 min before it was cooled to –78 °C and 1.66 g of trans-4-

methoxycinnamaldehyde (10 mmol, 1.00 equiv) was added slowly. The reaction was 

allowed to warm up to room temperature and stir overnight before being quenched with 

50 mL of sat. aq. NH4Cl. THF was then removed in vacuo and the residue was extracted 

with Et2O (2 × 50 mL) and washed with H2O (1 × 100 mL). The organic phase was 

concentrated in vacuo and the residue was purified by flash column chromatography 

(100% hexanes) to afford the product 3.21, a 50:50 mixture of E,E- and E,Z-isomers, as a 

low-melting pale yellow solid (1.35 g, 77%), mp 45 C, Rf = 0.56 (20% EtOAc/hexanes, 

visualized by 254 nm UV light). Selected spectral data for the E,Z-isomer: 1H NMR 

(CDCl3, 400 MHz): δ 1.82 (d, J = 6.8 Hz, 3 H), 3.82 (s, 3 H), 5.55 (ddq, J = 10.4, 7.2, 1.0 

Hz, 1 H), 6.13 – 6.25 (m, 1 H), 6.48 (d, J = 15.6 Hz, 1 H), 6.82 – 6.89 (m, 2 H), 6.97 (dd, 

J = 15.6, 10.8 Hz, 1 H), 7.29 – 7.39 (m, 2 H). Selected spectral data for the E,E-isomer: 

1H NMR (CDCl3, 400 MHz): δ 1.86 (d, J = 6.8 Hz, 3 H), 3.82 (s, 3 H), 5.79 (ddq, J = 

14.4, 6.8, 1.0 Hz, 1 H), 6.13 – 6.25 (m, 1 H), 6.38 (d, J = 15.6 Hz, 1 H), 6.63 (dd, J = 

15.6, 10.4 Hz, 1 H), 6.82 – 6.89 (m, 2 H), 7.29 – 7.39 (m, 2 H). Selected spectral data for 

the mixture: 13C NMR {1H} (CDCl3, 100 MHz): δ 13.8, 18.6, 55.5, 114.2, 114.3, 122.5, 
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126.2, 127.5, 127.6, 127.7, 128.7, 128.8, 128.9, 129.3, 129.5, 130.0, 130.7, 131.6, 132.2, 

133.9, 134.1, 159.1, 159.3; IR 3015, 2986, 2954, 2907, 2839, 2051, 2005, 1644, 1599, 

1573, 1508, 1467, 1440, 1417, 1372, 1298, 1249, 1175, 1148, 1110, 1026 cm-1; HRMS: 

(m/z) calcd. 175.1123 obsd. 175.1122 [M+H] +. 

 
General Procedure for the Synthesis of Pinacol Boronic Esters 

 

	

 
For ortho-tolylboronic acid pinacol ester. Into a dry 20 mL scintillation vial 

equipped with a stirbar were added 261 mg of pinacol (2.20 mmol, 1.00 equiv), and 300 

mg of ortho-tolylboronic acid (2.20 mmol, 1.00 equiv), followed by 3 mL of Et2O. The 

mixture was stirred overnight, concentrated in vacuo, and purified by flash column 

chromatography (0:100  20:80 EtOAc/hexanes) to afford the product as a colorless oil 

(398 mg, 83%), Rf = 0.69 (20% EtOAc/hexanes). Its spectral data matched previously 

published ones.67 

 

	

 
 For 1-pentenylboronic acid pinacol ester. The same procedure was followed 

using 100 mg (0.86 mmol) of 1-pentenylboronic acid. Purification by flash column 

chromatography (0:100  20:80 EtOAc/hexanes) afforded the product as a colorless oil 

(108 mg, 64%), Rf = 0.72 (20% EtOAc/hexanes). Its spectral data matched those of the 

commercial product. 
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For N-methylindole-4-boronic acid pinacol ester: Into a dry 10 mL round-bottom 

flask equipped with a stirbar were added 36 mg of a 60% dispersion of sodium hydride in 

mineral oil (0.89 mmol, 1.05 equiv) followed by 0.75 mL of THF, and the suspension 

was cooled to 0 C in an ice bath.  Then, a solution of 200 mg of  indole-4-boronic acid 

pinacol ester (0.85 mmol, 1.00 equiv) in 0.75 mL of THF was added dropwise and the 

reaction was stirred an additional 30 min, then 0.90 mL of methyl iodide (0.93 mmol, 

1.10 equiv) was added dropwise. The reaction was then warmed to ambient temperature 

and stirred overnight. The mixture was then partitioned between EtOAc and H2O (20 mL 

each), and the aqueous layer was extracted with an additional 20 mL of EtOAc. The 

organic layers were combined and washed with brine (1 × 20 mL) and subsequently dried 

over Na2SO4, filtered, and concentrated in vacuo.  Purification by flash column 

chromatography (0:100  30:70 EtOAc:hexanes) afforded the product as a white powder 

(96 mg, 35%).  The spectral data of the product matched previously published ones.68 

 
Synthesis of Ligands and Catalysts 

 

	

Quinox and Pd(Quinox)Cl2 (3.9) were prepared according to a published 

procedure.69 
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Pyrox was prepared analogously to Quinox.69  To an oven dried 100 mL round 

bottomed flask with a magnetic stirbar was weighed 400 mg of 2-picolinic acid (3.25 

mmol, 1.00 equiv.) and subsequently put under N2 atmosphere.  Dry CH2Cl2 (32 mL) was 

added to the reaction flask and the mixture was cooled to 0 °C.  To the mixture was 

added 1.25 mL NEt3 (8.94 mmol, 2.75 equiv), followed by dropwise addition of 485 μL 

of IBCF (3.74 mmol, 1.15 equiv.).  The mixture was stirred at 0 °C for 0.5 h.  In a single 

portion, 433 mg of HCl•H2NCH2CH2Cl (3.74 mmol, 1.15 equiv) was added.  After 

stirring for 10 min, the ice bath was removed and the mixture was allowed to warm to 

room temperature for 2.5 h. The solvent was then evaporated under reduced pressure. To 

the residue was added 20 mL MeOH along with 912 mg of KOH (16.3 mmol, 5.00 

equiv).  The flask was fitted with a water condenser and the reaction mixture was heated 

to reflux overnight.  It was then cooled to room temperature and the solvent was 

evaporated under reduced pressure.  The oily residue was dissolved in CH2Cl2 (50 mL) 

and washed with H2O (1 × 50 mL).  The aqueous layer was extracted with CH2Cl2 (3 × 

30 mL).  The combined organic layers were washed with sat. aq. NH4Cl (1 × 50 mL) and 

brine (1 × 50 mL), dried over Na2SO4, filtered and concentrated under reduced pressure.  

The product was purified by flash column chromatography eluting with 5% 

MeOH/DCM, and isolated as a white solid in 87% yield (421 mg, 2.84 mmol).  Its 

spectral data matched previously published ones.70 
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General Procedure for Screen Scale Reactions with Phosphine Ligands 

For Table 3.2, entry 1.  Inside a glove box, the catalyst was pre-formed by stirring 

a mixture of 3.5 mg Pd(MeCN)2Cl2 (0.0133 mmol) and 3.2 mg PtBu3 (0.0160) mmol in 

400 μL of PhMe for 30 min in a 4 mL vial.  Into another 4 mL vial were added 97.7 mg 

of Cs2CO3 (0.300 mmol, 3.00 equiv), 18.3 mg of PhB(OH)2 (0.150 mmol, 1.50 equiv), 

30.2 mg of 3.4 (0.100 mmol, 1.00 equiv), and MeONap as internal standard.  To the 

solids was then added 200 μL of PhMe and the mixture was stirred.  While stirring, 300 

μL of the catalyst mixture were added (resulting in 10 mol% Pd(MeCN)2Cl2 and 12 

mol% PtBu3).  The vial was then sealed and removed from the glove box.  It was further 

sealed with electrical tape and heated to 80 °C in an oil bath.  After 24 h, it was cooled to 

room temperature, and a small sample was removed for GC analysis. 

The products were initially identified based on GC/MS, and later confirmed by 

comparison with isolated or known compounds. 

The reactions for other entries in Tables 3.2, 3.3, and 3.4 were performed 

analogously, with the appropriate bases, phosphines, and solvents.  Reactions in tAmOH 

contained a small amount (ca 5%) PhMe to solubilize the starting material.  Reactions run 

at room temperature were stirred in the glove box for the time indicated. 

The attempted reactions using 3.7 and 3.8 were carried out analogously.   

 
General Procedure for Screen Scale Reactions with Pyridine-Based Ligands 

For Figure 3.20, Quinox.  The catalyst was pre-formed by stirring a mixture of 

3.5 mg of Pd(MeCN)2Cl2 (0.0133 mmol) and 3.2 mg of Quinox (0.0160 mmol) in 400 μL 

of tAmOH for 30 min in a dry 4 mL vial under N2.  Into another dry 4 mL vial under N2 

were added 97.7 mg of Cs2CO3 (0.300 mmol, 3.00 equiv), 18.3 mg of PhB(OH)2 (0.150 
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mmol, 1.50 equiv), 30.2 mg of 3.4 (0.100 mmol, 1.00 equiv), and MeONap as internal 

standard.  To the solids was then added 200 μL of tAmOH and the mixture was stirred.  

While stirring, 300 μL of the catalyst mixture were added (resulting in 10 mol% 

Pd(MeCN)2Cl2 and 12 mol% Quinox).  The vial was then capped and stirred vigorously 

at room temperature.  Small samples were removed for GC analysis at the indicated 

times. 

Other reactions for Figure 3.20 were performed analogously with the indicated 

ligands. 

Screening reactions using pre-formed Pd(Quinox)Cl2 were performed 

analogously, without addition of excess ligand.  Pd(Quinox)Cl2 was added directly to the 

reaction flask along with the other solids.  Reactions for Table 3.5, the attempted reaction 

of phenethyl tosylate (Figure 3.21), and arylations of homoallyl halides (Table 3.7) were 

performed in this way. 

 

	

 
 Arylation of secondary tosylate 3.18 (Figure 3.23).  Into a dry 4 mL vial equipped 

with a stirbar were added 4.0 mg of Pd(Quinox)Cl2 (0.01 mmol, 10 mol%), 28 mg of 

KF·2H2O (0.30 mmol, 3.00 equiv), 18 mg of PhB(OH)2 (0.15 mmol, 1.50 equiv), and 32 

mg of 3.18 (0.10 mmol, 1.00 equiv).  The vial was fitted with a septum and flushed with 

N2 for approximately 3 min. To the solids was then added 1 mL IPA, and the mixture was 

stirred for 16 h.  The heterogeneous mixture was then filtered through a plug of celite 

eluting with Et2O and concentrated in vacuo.  Purification by flash column 
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chromatography (100% hexanes) afforded the product 3.19 as a colorless oil (17 mg, 

0.076 mmol, 76%), Rf = 0.15 (100% hexanes). Its spectral data were matched previously 

published ones. 71 

 

	

 
Arylation of bishomoallylic tosylate 3.20 (Figure 3.24).  Into a dry 4 mL vial 

equipped with a stirbar were added 1.8 mg of Pd(Quinox)Cl2 (0.005 mmol, 10 mol%), 13 

mg of KF·2H2O (0.14 mmol, 3.00 equiv), 9.0 mg of phenylboronic acid (0.07 mmol, 1.50 

equiv), and 15 mg of tosylate 3.20 (0.05 mmol, 1.00 equiv). The vial was fitted with a 

septum and flushed with N2 for approximately 3 min. To the solids was then added 0.25 

mL IPA, and the mixture was stirred vigorously for 16 h at 85 C. The heterogeneous 

mixture was then filtered through a plug of celite with Et2O and concentrated in vacuo.  

A 17% NMR yield of 3.19 was determined using 0.1 mmol CH2Br2 as a standard and 

comparing the 1H NMR spectra to published ones.71 

For Table 3.8, entry 4.  3.24 was prepared analogously using 30 mg of 3.4 (0.10 

mmol) and 17.1 mg of 4-pentenyl boronic acid (0.15 mmol).  A 50% 1H NMR yield was 

determined using 0.10 mmol CH2Br2 as a standard and comparing to the characteristic 

sextet corresponding to the proton on the trisubstituted allylic carbon. 

 
Crossover Experiments 

 The general allylic arylation procedure on screen scale was followed using 32 mg 

of 3.18 (0.10 mmol) and 17 mg of 3.21 (0.10 mmol) in 1 mL of tert-amyl alcohol.  After 

stirring at ambient temperature overnight, the heterogeneous mixture was filtered through 
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a plug of celite with Et2O and concentrated in vacuo.  A 22% 1H NMR yield of 3.19 was 

determined using 0.1 mmol CH2Br2 as a standard and comparing to published spectra.  A 

2% 1H NMR yield of 3.22 was determined using 0.1 mmol CH2Br2 as a standard. 

Additionally, 3.22 was identified by GC-MS. 

 The above procedure was performed analogously in iso-propanol.  After stirring 

at ambient temperature overnight, the heterogeneous mixture was filtered through a plug 

of celite with Et2O and concentrated in vacuo.  A 27% 1H NMR yield of 3.19 was 

determined using 0.1 mmol CH2Br2 as a standard and comparing to published spectra.  A 

3% 1H NMR yield of 3.22 was determined using 0.1 mmol CH2Br2 as a standard. 

Additionally, 3.22 was identified by GC-MS. 

 
General Procedure for Allylic Arylation Using Boronic Acids 

 

	

 
For Table 3.6, 3.5a.  Into a dry 25 mL round-bottom flask equipped with a 

football-shaped stirbar were added 4.7 mg of Pd(Quinox)Cl2 (0.0125 mmol, 2.50 mol%), 

141 mg of KF·2H2O (1.50 mmol, 3.00 equiv), 91.4 mg of PhB(OH)2 (0.750 mmol, 1.50 

equiv), and 151 mg of 3.4a (0.500 mmol, 1.00 equiv).  The flask was flushed with N2 for 

ca 3 min, and equipped with a septa and N2 line.  To the solids was then added 5 mL IPA 

and the mixture was stirred vigorously for 24 h.  The heterogeneous mixture was then 

partitioned between Et2O and H2O (20 mL each), and the organic layer was washed with 

1 M NaOH (1 × 20 mL).  The combined aqueous layers were extracted with Et2O (2 × 20 

mL).  The combined organic layers were dried over Na2SO4, filtered, and concentrated in 
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vacuo.  The product was purified by flash column chromatography eluting with 400 mL 

of 0.5% acetone/hexanes  300 mL of 3% acetone/hexanes.  The product was isolated as 

a clear oil in an average 92% yield (experiment 1: 96.8 mg, 0.465 mmol, 93%, >20:1 

linear:branched; experiment 2: 93.3 mg, 0.448 mmol, 90%, >20:1 linear:branched).  Its 

spectral data matched previously published ones.38 

 

	

 
Product 3.10 was prepared analogously from 4-CF3-C6H4B(OH)2.  The product 

was purified by flash column chromatography eluting with 400 mL of 0.5% 

acetone/hexanes  300 mL of 2% acetone/hexanes.  The product was isolated as a clear 

oil in an average 81% yield (experiment 1: 106 mg, 0.382 mmol, 76%, 13:1 

linear:branched; experiment 2: 119 mg, 0.431 mmol, 86%, 11:1 linear:branched).  Rf: 

0.39 w/hexanes; 1H NMR (300 MHz, CDCl3) δ 1.51 (d, J = 7.0 Hz, 3 H), 2.52 (m, 0.18 

H), 2.76 (t, J = 7.7 Hz, 0.17 H), 3.63 (m, 1 H), 6.32 – 6.49 (m, 2 H), 7.22 – 7.43 (m, 7 H), 

7.60 (m, 2 H); 13C NMR {1H} (75 MHz, CDCl3) δ 21.2, 34.6, 35.8, 42.6, 125.6 (q, J = 

4.0 Hz), 126.2, 126.3, 127.3, 127.5, 127.8, 128.5, 128.7, 128.9, 129.3, 129.5, 131.0, 

134.1, 137.3, 149.8; IR 3026, 2968, 1618, 1495, 1448, 1417, 1322, 1162, 1114, 1067, 

1014, 963 cm-1; HRMS: (m/z) calcd. 383.0177 obsd. 383.0190 [M+Ag] +. 
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Product 3.11 was prepared analogously from 4-MeO2C-C6H4B(OH)2.  The 

product was purified by flash column chromatography eluting with 2% acetone/hexanes.  

The product was isolated as a clear oil in an average 82% yield (experiment 1: 110 mg, 

0.412 mmol, 80%, 11:1 linear:branched; experiment 2: 110 mg, 0.411 mmol, 82%, 13:1 

linear:branched).  Its spectral data matched previously published ones.38 

 

	

 
Product 3.12 was prepared analogously from 4-Cl-C6H4B(OH)2.  The product was 

purified by flash column chromatography, eluting with 400 mL 0.5% acetone/hexanes  

300 mL 3% acetone/hexanes.  The product was isolated as a clear oil in an average 73% 

yield (experiment 1: 91.7 mg, 0.378 mmol, 76%, 11:1 linear:branched; experiment 2: 

84.4 mg, 0.348 mmol, 70%, 11:1 linear:branched).  Its spectral data matched previously 

published ones.72 

 

 

 
Product 3.13 was prepared analogously from 2-Me-C6H4B(OH)2, and the reaction 

was allowed to proceed for 72 h.  The product was purified by flash column 

chromatography eluting with 400 mL of 0.5% acetone/hexanes  300 mL of 2% 

acetone/hexanes.  The product was isolated as a clear oil in an average 85% yield 

(experiment 1: 98.5 mg, 0.443 mmol, 89%, >20:1 linear:branched; experiment 2: 90.0 
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mg, 0.405 mmol, 81%, >20:1 linear:branched).  Its spectral data matched previously 

published ones.38 

 

	

 
Product 3.14 was prepared analogously from 4-MeO-C6H4B(OH)2.  The product 

was purified by flash column chromatography on Brockmann I activated basic alumina, 

eluting with 1% acetone/hexanes.  The product was isolated as a clear oil in an average 

72% yield (experiment 1: 81.3 mg, 0.341 mmol, 68%, 15:1 linear:branched; experiment 

2: 89.9 mg, 0.377 mmol, 75%, 15:1 linear:branched).  Its spectral data matched 

previously published ones.38 

 

	

 
Product 3.15 was prepared analogously from tosylate 3.35 (166.2 mg, 0.50 mmol) 

and PhB(OH)2 (91.4 mg, 0.75 mmol).  The product was purified by flash column 

chromatography, eluting with 1.5% acetone/hexanes.  The product was isolated as a clear 

oil in an average 86% yield (experiment 1: 99.1 mg, 0.416 mmol, 83%, 15:1 

linear:branched; experiment 2: 106.7 mg, 0.448 mmol, 89%, 15:1 linear:branched).  Its 

spectral data matched previously published ones.38 
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 Product 3.26 was prepared analogously in two trials using 111 mg (0.30 mmol) 

and 69 mg (0.19 mmol) of homoallyl tosylate 3.25, respectively. Purification by flash 

column chromatography (100% hexanes) afforded the product as a colorless oil (65 mg, 

78%, and 40 mg, 77%, respectively), Rf = 0.29 (100% hexanes, visualized by 254 nm UV 

light). 1H NMR (CDCl3, 300 MHz): δ 1.52 (d, J = 7.2 Hz, 3 H), 3.70 (quint, J = 6.9 Hz, 1 

H), 6.45 (d, J = 16.2 Hz, 1 H), 6.53 (dd, J = 15.9, 6.0 Hz, 1 H), 7.23 – 7.33 (m, 3 H), 7.33 

– 7.41 (m, 2 H), 7.46 (d, J = 8.4 Hz, 2 H), 7.56 (d, J = 8.4 Hz, 2 H); 13C NMR {1H} 

(CDCl3, 125 MHz): δ 21.3, 42.9, 125.7 (q, JC–F = 3.8 Hz), 126.5 (q, JC–F = 226.8 Hz), 

126.5, 126.7, 127.5, 127.6, 128.8, 128.9 (q, JC–F = 2.6 Hz), 138.2, 141.3, 145.3; 19F NMR 

(CDCl3, 282 MHz): δ –62.8; IR 3027, 2967, 1615, 1493, 1452, 1414, 1322, 1162, 1110, 

1106, 1065, 1015 cm-1; HRMS: (m/z) calcd. 383.0177 obsd. 383.0185 [M+Ag] +. 

 

	

 
Product 3.28 was prepared analogously using 132 mg (0.44 mmol) of homoallyl 

tosylate 3.27. Purification by flash column chromatography (100% hexanes) afforded the 

product, an 93:7 mixture of E and Z isomers, as a colorless oil (69 mg, 73%), Rf = 0.45 

(100% hexanes, visualized by 254 nm UV light). The spectral data for the E isomer were 

compared to published ones.38 Selected spectral data for the Z isomer: 1H NMR (CDCl3, 

400 MHz): δ 2.28 – 2.36 (m, 2 H), 2.36 – 2.49 (m, 2 H), 2.70 (dd, J = 8.0, 1.6 Hz, 2 H), 
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3.78 – 3.87 (m, 1 H), 5.25 (t, J = 10.4 Hz, 1 H); 13C NMR {1H} (CDCl3, 100 MHz): δ 

22.8, 30.0, 33.9, 34.8, 36.5, 36.9, 125.9, 127.1, 128.4, 128.6, 128.7, 142.5.  Spectral data 

for the mixture: IR 3025, 2963, 2921, 2849, 1601, 1492, 1448, 1371, 1009 cm-1. 

 
General Procedure for Allylic Arylations Using  

Boronic Acid Pinacol Esters 

 

	

 
 For Table 3.8, entry 1 (3.13): Into a dry 10 mL round-bottom flask equipped with 

a football-shaped stirbar were added 4.7 mg of Pd(Quinox)Cl2 (0.0125 mmol, 2.50 

mol%), 141 mg of KF·2H2O (1.50 mmol, 3.00 equiv), 164 mg of ortho-tolylboronic acid 

pinacol ester (0.750 mmol, 1.50 equiv), and 151 mg of 3.4 (0.500 mmol, 1.00 equiv).  

The vial was fitted with a septum and flushed with N2 for approximately 3 min. To the 

solids was then added 2.5 mL IPA and the mixture was stirred vigorously for 24 h.  The 

heterogeneous mixture was then partitioned between Et2O and H2O (20 mL each), and 

the organic layer was washed with 1 M NaOH (1 × 20 mL). The combined aqueous 

layers were extracted with Et2O (2 × 20 mL). The combined organic layers were dried 

over Na2SO4, filtered, and concentrated in vacuo.  Purification by flash column 

chromatography (100% hexanes) afforded the product as a colorless oil (77 mg, 0.35 

mmol, 69%). Its spectral data matched previously published ones.38  
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For Table 3.8, entry 2: 3.23 was prepared analogously using 0.046 g of 3.4 (0.15 

mmol) and 74 mg of N-methylindole-4-boronic acid pinacol ester (0.225 mmol).  

Purification to the best of our ability by flash column chromatography (0:100  30:70 

benzene/hexanes) afforded a faintly yellow oil that contained 71% of the desired product 

by NMR yield (Rf = 0.18 using 20% benzene/hexanes).  1H NMR (CDCl3, 500 MHz): δ 

1.62 (d, J = 7.0 Hz, 3 H), 3.80 (s, 3 H), 4.11 (quintet, J = 6.5 Hz, 1 H), 6.52 (d, J = 16.0 

Hz, 1 H), 6.59 (dd, J = 16.0, 6.0 Hz, 1 H), 6.63 (d, J = 3.0 Hz, 1 H), 7.05 (t, J = 4.0 Hz, 1 

H), 7.06 (d, J = 3.0 Hz, 1 H), 7.16 – 7.25 (m, 3 H), 7.29 (t, J = 7.5 Hz, 2 H), 7.35 – 7.40 

(m, 2 H); 13C NMR {1H} (CDCl3, 125 MHz): δ 20.7, 33.2, 40.3, 99.7, 107.7, 116.9, 

122.1, 126.4, 127.1, 127.4, 127.8, 128.5, 128.6, 128.7, 135.4, 136.1, 137.1, 138.1, 138.2. 

 

	

 
For Table 3.8, entry 3: 3.24 was prepared analogously using 30 mg of 3.3 (0.10 

mmol, 1.00 equiv) and 19 mg of 1-pentenyl-boronic acid pinacol ester (0.15 mmol, 1.50 

equiv).  A 64% 1H NMR yield was determined using 0.1 mmol CH2Br2 as a standard and 

comparing to the characteristic sextet corresponding to the proton on the trisubstituted 

allylic carbon. 
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Procedure for Asymmetric Reaction (Figure 3.27) 

An analogous procedure to the one for screen scale reactions using boronic acids 

was followed, using 30 mg of 3.4 (0.10 mmol), 96 mg of Cs2CO3 (0.30 mmol), 18 mg of 

PhB(OH)2, 3 mg of Pd(MeCN)2Cl2 (0.01 mmol), and 3 mg of (S)-t-Bu-quinox (0.01 

mmol) in 0.50 mL of tert-amyl alcohol. After stirring at ambient temperature overnight, 

the heterogeneous mixture was filtered through a plug of SiO2 with Et2O and 

concentrated in vacuo.  A 72% GC yield was obtained. SFC analysis (1% MeOH/CO2 @ 

2 mL/min on OJ-H column) revealed a 72:28 mixture of enantiomers (retention times: 

24.3 and 26.9 min, respectively). 
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APPENDIX A: 

GC/MS DATA AND CALCULATIONS FOR  

DEUTERIUM LABELING STUDIES IN CHAPTER 1 

  



 

Non-labeled 1-(1-isopropoxyethyl)-4-methylbenzene (1.10a): 

 

 

 

   m/z       abund. 

176.95        10 

177.05         1    

177.20         9    

178.15       786    

179.10        85    

179.25        32 

179.90         1 

180.25         8 
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4-methylstyrene w/ iPrOD 

 

GC/MS data for product: 

 

 

   m/z       abund. 

176.85        18    

177.10        52    

178.15       740    

179.00        36 

179.15        76    

179.80        13    

180.05        20    

180.30        11    
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Calculation of D incorporation: 

# of D atoms 0 1
M M+1

molecular ions 178 179

abund. unlabeled 786 117 (M+1)/M not labeled:
abund. labeled 740 112 0.15

relative abund. unlabeled 100.00 14.89
relative abund. labeled 100.00 15.14

no D 100.00 14.89 100 * 0.15 = 14.89
difference 0.25

1 D 0.25
sum rel. abund.:

100.25
percent distribution: 99.8 0.2  

 

4-methylstyrene w/ DCE-d4 

 

 

GC/MS data for product: 
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   m/z       abund. 

176.65         6    

176.85         3    

177.15        19    

178.15       611    

178.90         6    

179.15        79    

179.60         2    

179.90         5    

180.20         3    

 

Calculation of D incorporation: 

# of D atoms 0 1
M M+1

molecular ions 178 179

abund. unlabeled 786 117 (M+1)/M not labeled:
abund. labeled 756 116 0.15

relative abund. unlabeled 100.00 14.89
relative abund. labeled 100.00 15.34

no D 100.00 14.89 100 * 0.15 = 14.89
difference 0.46

1 D 0.46
sum rel. abund.:

100.46
percent distribution: 99.5 0.5  
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4-methylstyrene w/ (CH3)2CDOH 

 

 

GC/MS data for products: 

 

 

   m/z       abund.               m/z       abund. 

176.85 2                 179.05       142    

177.25 10                179.25       111    

177.50 4                 180.10       346    

177.80 3                 180.90         1    

178.10 12                181.15       118    

178.30         3                 182.10        13    
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Calculation of D incorporation: 

# of D atoms 0 1 2 3
M M+1 M+2 M+3

molecular ions 178 179 180 181

abund. unlabeled 786 117 (M+1)/M not labeled:
abund. labeled 17 253 346 119 0.15

relative abund. unlabeled 100.00 14.89
relative abund. labeled 4.91 73.12 100.00 34.39

no D 4.91 0.73 4.91 * 0.15 = 0.73
difference 72.39 100.00 34.39

1 D 72.39 10.78 72.39 * 0.15 = 10.78
difference 89.22 34.39

2 D 89.22 13.28 89.22 * 0.15 = 13.28
difference 21.11

3 D 21.11
sum rel. abund.:

187.63
percent distribution: 2.6 38.6 47.6 11.3  

 

4-methylstyrene w/ iPrOH-d8 
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GC/MS data for products: 

  

   m/z       abund.             m/z       abund.             m/z       abund.             m/z       abund. 

177.35 5               179.60         2               182.30         5              184.10         8    

178.15 3               179.80         3               182.45         3              184.20         5    

178.55         5               180.55         7               182.75        10             184.35         5    

178.65         2               180.90         5               183.20        27             185.05        22    

178.80         2               181.20         9               183.60         2              185.10       111    

179.35         9               181.80         7               184.05        36             185.20       328   

 

   m/z       abund.              

186.20       576                

187.20       201              

187.50         5                

187.95        10               

188.20        19               

188.40        10               

20 40 60 80 100 120 140 160 180 200
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

m/z-->

Abundance
Average of 33.996 to 34.416 min.: 07HP0031.D

1114
30

46
50 65 78

91
94

117

122

137142 163

170

186187 207

221



 

Calculation of D incorporation: 

# of D atoms 0 1 … 7 8 9
M M+1 … M+7 M+8 M+9

molecular ions 178 179 … 185 186 187

abund. unlabeled 786 117 (M+1)/M not labeled:
abund. labeled 461 576 201 0.15

relative abund. unlabeled 100.00 14.89
relative abund. labeled 80.03 100.00 34.90

7 D 80.03 11.91 80.03 * 0.15 = 11.91
difference 88.09 34.90

8 D 88.09 13.11 88.09 * 0.15 = 13.11
difference 21.78

9 D 21.78
sum rel. abund.:

189.90
percent distribution: 42.1 46.4 11.5  

 

 

4-methylstyrene-d3 w/ (CH3)2CDOH 

 

 

GC/MS data for products: 
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   m/z       abund.             m/z       abund.             m/z       abund.             m/z       abund. 

176.75 5               178.55         3               180.75         3               184.35         5    

177.00         5               178.80        15              181.10        42              184.65         4    

177.15         3               179.10        14              181.30        17              185.00         9    

177.30        17              179.45         3               182.00        52              185.20        15    

177.80        14              179.70         9               182.20        89               

178.05        10              180.00        15              183.20       602              

178.35        17              180.50        12              184.10        93               

 

Calculation of D incorporation: 

# of D atoms 0 1 … 3 4 5 6
M M+1 … M+3 M+4 M+5 M+6

molecular ions 178 179 … 181 182 183 184

abund. unlabeled 786 117 (M+1)/M not labeled:
abund. labeled 74 141 602 98 0.15

relative abund. unlabeled 100.00 14.89
relative abund. labeled 12.29 23.42 100.00 16.28

3 D 12.29 1.83 12.29 * 0.15 = 1.83
difference 21.59 100.00 16.28

4 D 21.59 3.21 21.59 * 0.15 = 3.21
difference 96.79 16.28

5 D 96.79 14.41 96.79 * 0.15 = 14.41
difference 1.87

sum rel. abund.:
130.67

percent distribution: 9.4 16.5 74.1  
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4-methy

GC/MS

 

   m/z  

176.75

177.05

177.15

177.30

177.45

177.65

177.85

lstyrene-d3 

D

D

D
1.17

S data for pr

     abund.    

        13       

         9        

         2        

0        13       

         6        

         2        

        19       

w/ iPrOH-d

5 mol%
5 mol% Cu(bc

3Å MS,1:9
6

roducts: 

         m/z    

       178.05 

       178.30 

       178.50 

       179.05 

       179.25 

       179.65 

       179.85 

d8 

% Pd(MeCN)2Cl
c)Cl2, 20 mol%

(CD3)2CDOD/D
60 °C, O2

   abund.    

       5          

       9           

      19         

      21         

       3          

      21         

       3          

l2
% CuCl2

DCE,

m/z

(D3C)2

        m/z     

     180.10   

     180.40   

     180.45   

     180.55   

     180.65   

     180.80   

     181.05   

z = 188.20 (M+

CD2H

D (H)2DCO

1.20a, 1.20b

  abund.     

     10           

     14           

      8            

      2           

      3            

      3            

      7            

m/z =

(D3C

+10)

H (CD3)

       m/z      

     181.40   

     181.85    

     182.10   

     182.40    

     182.65   

     182.80   

     183.00   

= 189.20 (M+11

CD3

DC)2DCO

1.21

 abund. 

     17 

     23 

      9 

     13 

     12 

      9 

      8 

1)

3
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   m/z       abund.             m/z       abund.             m/z       abund.             m/z       abund. 

183.20        11              185.20       29               186.85        5                189.15       762 

183.35         3               185.45       11               187.00       48               190.10       128 

183.55        12              185.85       36               187.25       25               190.50        14 

183.85        17              185.95        1                187.50        5                190.75         4 

184.20         9               186.10       21               187.65        2                190.90         2 

184.45        20              186.35        9                187.80       14               191.10        39 

184.80        15              186.70       10               188.10      154               

 

Calculation of D incorporation: 

# of D atoms 0 1 … 10 11 12
M M+1 … M+10 M+11 M+12

molecular ions 178 179 … 188 189 190

abund. unlabeled 786 117 (M+1)/M not labeled:
abund. labeled 175 762 128 0.15

relative abund. unlabeled 100.00 14.89
relative abund. labeled 22.97 100.00 16.80

10 D 22.97 3.42 22.97 * 0.15 = 3.42
difference 96.58 16.80

11 D 96.58 14.38 96.58 * 0.15 = 14.38
difference 2.42

sum rel. abund.:
119.55

percent distribution: 19.2 80.8  

 

225



 

 

 

 

 

 

 

 

 

 

APPENDIX B: 

NMR SPECTRA FOR CHAPTER 1 

 



3
.

8
0

0
.

9
6

0
.

9
1

1
.

0
0

1
.

0
0

9
.

0
0

p
p

m
1

2
3

4
5

6
7

B
oc

H
N

1.
9c

227



p
p

m
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

1
1

0
1

2
0

1
3

0
1

4
0

1
5

0

B
oc

H
N

1.
9c

228



3
.

6
6

1
.

0
0

0
.

9
9

2
.

9
4

3
.

0
7

6
.

0
9

p
p

m
1

2
3

4
5

6
7

8

O

1.
10

a

229



p
p

m
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

1
1

0
1

2
0

1
3

0
1

4
0

O

1.
10

a

230



0
.

9
6

1
.

8
6

1
.

0
2

3
.

0
0

1
.

1
2

2
.

9
5

5
.

8
0

p
p

m
1

2
3

4
5

6
7

M
eO

O

1.
10

b

231



p
p

m
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0

M
eO

O

1.
10

b

232



1
.

7
1 0
.

7
7

0
.

8
7

0
.

9
4

0
.

9
6

9
.

0
03

.
3

1
6

.
0

8

p
p

m
1

2
3

4
5

6
7

B
oc

H
N

O

1.
10

c

233



p
p

m
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

1
1

0
1

2
0

1
3

0
1

4
0

1
5

0

B
oc

H
N

O

1.
10

c

234



1
.

8
5 1

.
7

6
0

.
9

3
3

.
0

0
3

.
1

0

p
p

m
1

2
3

4
5

6
7

8

C
l

1.
12

a

235



p
p

m
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

1
1

0
1

2
0

1
3

0
1

4
0

C
l

1.
12

a

236



4
.

3
7

0
.

8
9

0
.

1
3

0
.

1
3

3
.

0
0

p
p

m
1

2
3

4
5

6
7

8

C
l

1.
12

d

237



3
.

4
2

0
.

9
1

0
.

1
3

0
.

1
2

3
.

0
0

p
p

m
1

2
3

4
5

6
7

8

C
l

1.
12

e
C

l

238



p
p

m
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

1
1

0
1

2
0

1
3

0
1

4
0

C
l

1.
12

e
C

l

239



1
.

7
0

1
.

7
9

0
.

0
3

0
.

0
2

3
.

0
0

p
p

m
1

2
3

4
5

6
7

8

D
D

D
1.

17

240



3
.

5
2

1
.

0
0

1
.

0
5

2
.

8
1

1
9

.
5

5

p
p

m
1

2
3

4
5

6
7

241



p
p

m
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

1
1

0
1

2
0

1
3

0
1

4
0

242



 

 

 

 

 

 

 

 

 

 

APPENDIX C: 

NMR SPECTRA FOR CHAPTER 2 

 



1
.

1
2

2
.

0
54

.
0

9
1

.
0

6
1

.
1

6
1

.
1

7
2

.
1

5 0
.

7
00
.

5
5

5
.

9
66
.

0
0

p
p

m
1

2
3

4
5

6
7

N
N

O
O

P
d

C
l

(2
.1

1)
P

d(
al

ly
l)C

l

244



p
p

m
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

1
1

0
1

2
0

N
N

O
O

P
d

C
l

(2
.1

1)
P

d(
al

ly
l)C

l

245



p
p

m
1

2
3

4
5

6
7

8

1
.

9
7

4
.

0
0

1
8

.
9

9
1

0
.

5
8

N

O
O

N

2.
25

((
S

)-C
yB

ox
)

246



p
p

m
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

N

O
O

N

2.
25

((
S

)-C
yB

ox
)

247



p
p

m
1

2
3

4
5

6
7

3
.

9
4

2
.

0
6

6
.

0
0

1
0

.
9

5
1

2
.

0
1

N

O
O

N

2.
26

((
S

)-
di

E
tB

ox
)

248



p
p

m
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

2
0

0

N

O
O

N

2.
26

((
S

)-
di

E
tB

ox
)

249



p
p

m
1

2
3

4
5

6
7

8
9

1
0

1
.

0
0

1
8

.
7

6
1

3
.

2
8

O

H

2.
52

250



p
p

m
0

2
0

4
0

6
0

8
0

1
0

0
1

2
0

1
4

0
1

6
0

1
8

0
2

0
0

2
2

0

O

H

2.
52

251



4
.

1
5

0
.

4
8

0
.

8
7

0
.

8
5

0
.

0
7 1
.

0
0

0
.

0
8

0
.

9
4

1
1

.
2

2
5

.
0

3
1

1
.

7
7

p
p

m
1

2
3

4
5

6
7

8

N H
O

H
2N

P
h

C
y

C
y

2.
54

252



p
p

m
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

N H
O

H
2N

P
h

C
y

C
y

2.
54

253



0
.

8
7

0
.

9
2

1
.

0
0

0
.

9
4

2
6

.
8

8

p
p

m
1

2
3

4
5

6
7

N
H

2
O

H
2N

C
y

C
y 2.

55

254



p
p

m
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

N
H

2
O

H
2N

C
y

C
y 2.

55

255



1
.

7
9

2
.

0
0

2
.

0
7

2
.

0
8

2
.

1
0

2
9

.
7

1
2

1
.

2
3

p
p

m
1

2
3

4
5

6
7

O

H N

O

H N
O

H

C
y

C
y

H
O C

y
C

y
2.

58

256



p
p

m
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

O

H N

O

H N
O

H

C
y

C
y

H
O C

y
C

y
2.

58

257



4
.

0
0

2
.

0
2

2
8

.
7

3
2

7
.

3
5

p
p

m
1

2
3

4
5

6
7

8

N

O
O

N

2.
28

((
S

)-
di

C
yB

ox
)

C
y

C
y

C
y

C
y

258



p
p

m
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

N

O
O

N

2.
28

((
S

)-
di

C
yB

ox
)

C
y

C
y

C
y

C
y

259



2
.

0
3

2
.

1
02
.

1
8

6
.

0
0

1
7

.
9

4

p
p

m
1

2
3

4
5

6
7

N

O
O

N

tB
u

tB
u Pd

((
S

)-t
B

uB
ox

)C
l 2

260



p
p

m
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

N

O
O

N

tB
u

tB
u Pd

((
S

)-t
B

uB
ox

)C
l 2

261



2
.

0
0

2
.

1
8

5
.

7
3 6

.
1

3
5

.
9

8
1

1
.

8
2

p
p

m
1

2
3

4
5

6
7

8

N

O
O

N
iP

r
iP

r
P

d(
(S

)-
di

M
ei

Pr
B

ox
)C

l 2

262



p
p

m
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

2
0

0

N

O
O

N
iP

r
iP

r
P

d(
(S

)-
di

M
ei

Pr
B

ox
)C

l 2

263



2
.

0
4

1
.

3
9

0
.

6
4

4
.

8
1

0
.

8
6

1
.

0
7

3
.

0
0

3
.

0
2

p
p

m
1

2
3

4
5

6
7

8

A
cH

N
2.

15

264



p
p

m
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

A
cH

N
2.

15

265



 

 

 

 

 

 

 

 

 

 

APPENDIX D: 

NMR SPECTRA FOR CHAPTER 3 

 



3.
25

3.
25

2.
31

2.
31 3.
16

3.
16

0.
99
2

0.
99
2

2
2

0.
92
9

0.
92
9

1.
95

1.
95

1.
84

1.
84

0

01
12

23
34

45
56

67
78

8p
pm

4-
Pe
nt
en
-2
-to
sy
la
te

O
Ts

M
e

 

267



0
02
0

20
40

40
60

60
80

80
10
0

10
01
20

12
01
40

14
01
60

16
01
80

18
02
00

20
0p
pm

pp
m

4-
Pe
nt
en
-2
-to
sy
la
te

O
Ts

M
e

 

268



7.
24
2.
23

2.
02

1.
08

3.
02

pp
m

1
2

3
4

5
6

7
8

3.
5a

269



2.
14

7.
94

2.
11

1.
04

0.
14

0.
15

3.
00

pp
m

1
2

3
4

5
6

7
8

3.
10

C
F 3

270



pp
m

10
20

30
40

50
60

70
80

90
10

0
11

0
12

0
13

0
14

0
15

0

3.
10

C
F 3

271



2.
05

6.
30
1.
13

2.
08

3.
18

1.
09

0.
15

0.
15

3.
00

pp
m

2
3

4
5

6
7

8

3.
11

C
O

2M
e

272



6.
24
3.
32

2.
08

1.
03

0.
17

0.
18

3.
00

pp
m

1
2

3
4

5
6

7
8

3.
12

C
l

273



4.
05

4.
10

1.
95

1.
03

3.
00

3.
05

pp
m

1
2

3
4

5
6

7

3.
13

274



3.
71

3.
07

2.
08

1.
90

3.
16

1.
10

0.
13

0.
13

3.
00

pp
m

2
3

4
5

6
7

3.
14

O
M

e

275



5.
64
1.
42

2.
17

2.
14

0.
14

3.
30

1.
10

0.
27

0.
14

3.
00

pp
m

1
2

3
4

5
6

7

3.
15

M
eO

276



3.
1
3.
1

3.
01

3.
01

2.
14

2.
14

1
1

0.
99
7

0.
99
7

0.
97
4

0.
97
4

6.
87

6.
87

1.
72

1.
72

0

01
12

23
34

45
56

67
78

8p
pm

O
Ts

M
e

3.
18

 

277



0
02
0

20
40

40
60

60
80

80
10
0

10
01
20

12
01
40

14
01
60

16
01
80

18
02
00

20
0p
pm

pp
m

O
Ts

M
e

3.
18

 

278



3.
11

3.
11

1.
99

1.
99

0.
98
4

0.
98
4

1
1 1.
02

1.
02

11
.5

11
.5

0

01
12

23
34

45
56

67
78

8p
pm

Et

Ph

3.
19

 

279



0
02
0

20
40

40
60

60
80

80
10
0

10
01
20

12
01
40

14
01
60

16
01
80

18
02
00

20
0p
pm

pp
m

Et

Ph

3.
19

 

280



3.
05

3.
05

3
3

2.
93

2.
93

3.
26

3.
26

0.
90
7

0.
90
7

0.
89
5

0.
89
5

1.
93

1.
93 0.
98
2

0.
98
21.
03

1.
03 1.
08

1.
08

3.
54

3.
54 1.
08

1.
08

4.
74

4.
74

0

01
12

23
34

45
56

67
78

8p
pm

M
e

M
eO

3.
21

 

281



-2
0

-2
00

02
0

20
40

40
60

60
80

80
10
0

10
01
20

12
01
40

14
01
60

16
01
80

18
02
00

20
0p
pm

pp
m

M
e

M
eO

3.
21

 

282



3.
1

3.
1

3.
15

3.
15

1.
03

1.
03

1.
03

1.
031.
08

1.
08

0.
85
6

0.
85
6

0.
98
3

0.
98
3 0.
73
9

0.
73
9

3.
23

3.
23 2.
09

2.
092.
05

2.
05

0

01
12

23
34

45
56

67
78

8p
pm

M
e

N
M
e 3.
23

 

283



0
02
0

20
40

40
60

60
80

80
10
0

10
01
20

12
01
40

14
01
60

16
01
80

18
0p
pm

pp
m

M
e

N
M
e 3.
23

 

284



3 3

2.
21

2.
21

2.
13

2.
13

0.
99
2

0.
99
2

0.
95
8

0.
95
8

1.
88

1.
882.
09

2.
09

1.
91

1.
91

1.
8

1.
8

0

01
12

23
34

45
56

67
78

8p
pm

F 3
C

O
Ts

3.
25

 

285



0
02
0

20
40

40
60

60
80

80
10
0

10
01
20

12
01
40

14
01
60

16
01
80

18
0p
pm

pp
m

F 3
C

O
Ts

3.
25

 

286



3.
14
3.
14

0.
99
2

0.
99
2

1
11.
02

1.
02

3.
14

3.
142.
08

2.
08 2.
07

2.
072.
03

2.
03

0

01
12

23
34

45
56

67
78

8p
pm

F 3
C

Ph

3.
26

 

287



0
02
0

20
40

40
60

60
80

80
10
0

10
01
20

12
01
40

14
01
60

16
01
80

18
0p
pm

pp
m

F 3
C

Ph

3.
26

 

288



1.
97

1.
97

0.
13
9

0.
13
90.
93
9

0.
93
9 2.
11

2.
11

0.
32

0.
32 2.
8

2.
82.
08

2.
08 0.
87
6

0.
87
6

0.
12

0.
12 1.
77

1.
770.
30
8

0.
30
8 3.
04

3.
04

2.
03

2.
03

0.
12

0.
120.
86
2

0.
86
2

0.
12
9

0.
12
90.
85
4

0.
85
4

2.
02

2.
02

2
2

0

01
12

23
34

45
56

67
78

8 p
pm

O
Ts

3.
27

 

289



10
10
20

20
30

30
40

40
50

50
60

60
70

70
80

80
90

90
10
0

10
01
10

11
01
20

12
01
30

13
01
40

14
01
50

15
01
60

16
01
70

17
01
80

18
0p
pm

pp
m

O
Ts

3.
27

 

290



5.
94 5.
943.
39

3.
39

5.
89

5.
89

1.
05

1.
05

0.
14

0.
140.
07
9

0.
07
9

0.
13
5

0.
13
5

1
1

0.
06
12

0.
06
12

0.
08
84

0.
08
84

1.
2

1.
2

1.
01

1.
01

3.
22

3.
222.
32

2.
32

0

01
12

23
34

45
56

67
78

8p
pm

pp
m

Ph

3.
28

 

291



-2
0

-2
00

02
0

20
40

40
60

60
80

80
10
0

10
01
20

12
01
40

14
01
60

16
01
80

18
02
00

20
0p
pm

pp
m

Ph

3.
28

 

292



3 32.
03

2.
03

3.
05

3.
05

2.
01

2.
01

1.
01

1.
01

1
1

2.
01

2.
01

1.
94

1.
94 2.
08

2.
08

1.
94

1.
94

0

01
12

23
34

45
56

67
78

8p
pm

pp
m

M
eO

O
Ts

3.
35

 

293



0
02
0

20
40

40
60

60
80

80
10
0

10
01
20

12
01
40

14
01
60

16
01
80

18
0p
pm

pp
m

M
eO

O
Ts

3.
35

 

294


	Opra_utah_0240D_11260.pdf
	appendix



