
DIRECT EQUIVALENCE TESTING OF EMBEDDED

SOFTWARE

by

Rohit Pagariya

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computing

School of Computing

The University of Utah

August 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276265338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© Rohit Pagariya 2011

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF THESIS APPROVAL

The thesis of

has been approved by the following supervisory committee members:

, Chair
Date Approved

, Member
Date Approved

, Member
Date Approved

and by , Chair of

the Department of

and by Charles A. Wight, Dean of The Graduate School.

Rohit Pagariya

John Regehr 10/18/2010

Ganesh Gopalakrishnan 10/18/2010

Matthew Might 10/18/2010

Al Davis

Computer Science

ABSTRACT

Direct equivalence testing is a framework for detecting errors in C compilers

and application programs that exploits the fact that program semantics should

be preserved during the compilation process. Binaries generated from the same

piece of code should remain equivalent irrespective of the compiler, or compiler

optimizations, used. Compiler errors as well as program errors such as out of

bounds memory access, stack overflow, and use of uninitialized local variables cause

nonequivalence in the generated binaries. Direct equivalence testing has detected

previously unknown errors in real world embedded software like TinyOS and in

different compilers like msp430-gcc and llvm-msp430.

CONTENTS

ABSTRACT . ii

LIST OF FIGURES . v

LIST OF TABLES . vi

ACKNOWLEDGEMENTS . vii

CHAPTERS

1. INTRODUCTION . 1

1.1 Errors in software . 1
1.2 Verification and validation . 1
1.3 Equivalence testing . 2

2. BACKGROUND . 5

2.1 Embedded systems and software . 5
2.2 Interrupts . 6
2.3 Device registers . 7
2.4 TinyOS . 8
2.5 Volatile qualifier in C . 9
2.6 Memory allocation in C . 9

3. DIRECT EQUIVALENCE TESTING . 11

3.1 Machine state . 12
3.1.1 Equivalence of machine states . 13

3.2 Computation . 13
3.2.1 Equivalence of computations . 13

3.3 Direct equivalence testing . 15
3.4 Memory access traces . 15
3.5 Compiler optimizations . 19
3.6 Equivalence checking . 19

3.6.1 Equivalence of input machine states . 20
3.6.2 Equivalence of output machine states . 21

3.7 Volatile locations . 22
3.8 Interrupt driven concurrency . 23

4. EXPERIMENTS AND RESULTS . 25

4.1 Tools . 25
4.1.1 Simulators . 25
4.1.2 Compilers . 26
4.1.3 Software . 26

4.2 TinyOS testing . 27
4.2.1 Unit of testing . 27
4.2.2 Test procedure . 27
4.2.3 Results . 28

4.2.3.1 Out of bounds memory access . 28
4.2.3.2 Portability error . 29
4.2.3.3 Reading an uninitialized local variable 31

4.3 Random testing . 32
4.3.1 Unit of testing . 33
4.3.2 Test procedure . 33
4.3.3 Results . 33

4.3.3.1 Correctness error in msp430-gcc . 34
4.3.3.2 Wrong code bug in llvm-msp430 . 36

4.4 Advanced compiler optimizations . 37
4.5 Range of bugs found . 38

5. RELATED WORK . 40

6. CONCLUSION . 43

REFERENCES . 45

iv

LIST OF FIGURES

3.1 Simple testing procedure for equivalence . 15

3.2 Sample memory access trace . 16

3.3 A simple computation that adds and copies values 17

3.4 An example relating the computation, memory access trace and the
machine states . 18

3.5 A simple example to demonstrate various compiler optimizations 19

3.6 Possible assembly code for foo() in Figure 3.5 20

4.1 Out of bounds memory access in MultihopOscilloscope application in
TinyOS . 29

4.2 ADC12CTL0 register access code from TinyOS ADC component 30

4.3 Assembly code for getCtl0() as compiled by msp430-gcc 31

4.4 Reading an uninitialized local variable . 32

4.5 Sample C code that causes msp430-gcc 3.2.3 to emit wrong code in
turn producing wrong results . 34

4.6 Incorrect msp430 assembly code generated by msp430-gcc at level -O1 35

4.7 msp430 assembly code for a large function that causes llvm-msp430
compiler to emit incorrect code with the branch instruction BR in it . . 37

4.8 A naive example to demonstrate the limitation of direct equivalence
testing . 38

LIST OF TABLES

3.1 Summary of the problems faced and their solutions 24

4.1 Bugs affecting TinyOS applications . 28

ACKNOWLEDGEMENTS

I am thankful to my advisor Prof. John Regehr for providing timely guidance

and support which helped me with my research and this thesis. He has been a

great mentor and motivator during the two years that I have spent here at Utah.

I would like to thank my committee members, Prof. Ganesh Gopalakrishnan and

Prof. Matthew Might for their comments and feedback on this thesis. I would also

like to thank my colleagues for the lively discussions during the past two years and

the feedback on my work.

I would like to Yang Chen and Xuejan Yang for their help with CIL and randprog

hacking. Thanks are also due to Parasaran, Tarun, Suman, Sriram, Rajvarma,

Niladrish, Clifton, Subodh and Anh for the various discussions on theoretical

computer science, economy, philosophy, and different cuisines between games of

Foosball. A big ‘Thank you’ to Karen Feinauer for answering hundreds of (silly?)

questions.

Lastly I would like to thanks my parents and family without whose support this

would not be possible.

CHAPTER 1

INTRODUCTION

Embedded systems are becoming an integral part of our lives as we move ahead

in the 21st century. Industries like automotive, aviation, defence systems, consumer

electronics, medical health equipment, and home automation depend on embedded

software more than ever before. Embedded software is used in various safety critical

systems like missiles and airplanes for navigation, in automobiles for throttle and

brake control, and inside pacemakers. It is also present in a number of gadgets like

cellphones, videogames, televisions, and other home appliances. Bugs in embedded

software could potentially be fatal. It is imperative to ensure the quality and

robustness of embedded software, most of which is written in type unsafe languages

like C and C++, using verification and validation.

1.1 Errors in software

An anomaly that causes a computer program to produce wrong or unintended

results is a software error. Errors can find their way into software in different

ways. Software errors have a negative impact on quality of a product and increase

development costs and time to market. This reduces profits and has an adverse

impact on productivity. The cost of an error depends on how early it is detected

in the development cycle. It is desirable to detect the errors as early as possible.

A National Institute of Standards and Technology study estimates that defective

software costs the U.S economy alone, around $60 billion per year [21].

1.2 Verification and validation

Testing is an effective way to detect and locate errors in a system. Testing helps

validate whether a system performs as per its specifications. Software testing is

2

the process of executing a program with the intent of finding errors [19]. Software

testing is very broad field and different techniques fall into various categories of

classification. If access to the source code is used as a category for classification,

there is white box and black box testing. White box testing is used to test the

internal structures of a program and determine the path and branch coverage of

the code. Black box testing is functional testing that tests the system against the

specifications and requirements.

If granularity at which software is tested is used as a category, testing can

be classified as unit testing, integration testing, and system testing. Unit testing

is where each module of the system is tested individually. Integration testing is

performed when two or more modules are integrated. System testing is an end-to-

end testing method to check if a system conforms to its specifications.

A combination of the above mentioned techniques is available to test embedded

software. Despite all the testing efforts, software may still contain errors. Edsger

Dijkstra [6] has famously mentioned “Program testing can be used to show the

presence of bugs, but never to show their absence!”

Symbolic execution reasons about all possible paths taken by an input in a

program. Model checking techniques aim to explore the program state space and

find an input which leads to an erroneous program state. Symbolic execution and

model checking techniques, effective as they are, cannot be applied to all software

as they lead to state explosion. There have been efforts to apply the techniques of

symbolic execution [2,5] and model checking [12] for testing of embedded software.

These approaches, though powerful and promising, are limited in scalability and

applicability due to the inherently nonportable nature of embedded software and

interrupt driven concurrency.

1.3 Equivalence testing

Equivalence of two objects means they are essentially same with respect to some

characterics. Given two different computer programs, they may produce equal

outputs for all valid inputs. This is known as functional equivalence. Conversely,

3

knowing that two programs are equivalent for some characteristic, we can test the

programs for violation of equivalence for a range of valid inputs. This is called

Equivalence Testing.

The technique of direct equivalence testing presented in this thesis is a combina-

tion of differential testing and equivalence checking. A valid input, a test program

in this case, is presented to several comparable systems, different compilers, and the

output, different binaries, is checked for violation of equivalence. Binaries generated

from the same piece of code should be equivalent, irrespective of the compiler, or

the compiler optimizations, used. The failure of equivalence check indicates an

error, either in the test program or in the compiler. The concept of a state of a

machine, represented by a snapshot of the memory at specific points during the

program execution, is used to determine equivalence.

Compiler optimizations, interrupt driven concurrency, and semantics of the

volatile type qualifier pose some of the key challenges for equivalence testing of

embedded software. The solutions to these problems are the research contributions

of this thesis.

I applied the technique of direct equivalence testing to detect errors in TinyOS,

an operating system for embedded sensor nodes, applications as well as cross

compilers like msp430-gcc and llvm-msp430, that are used to compile these applica-

tions. Direct equivalence testing has been successful in detecting errors in TinyOS

applications as well as compilers. It observes the whole system while still obtaining

low level information that enables it to detect memory safety errors, compiler errors,

and portability errors. It does not depend upon the timing properties of the system

and, as such, can not detect synchronization errors like deadlock, livelock, and

race conditions. Since it depends on differential testing, an error that makes all

the programs under test to behave in a similar way can not be detected. Direct

equivalence testing can detect any errors that lead to different values being stored

in the memory, across the different binaries. It is a way to determine if the program

semantics are changed by different compilers or compiler optimizations.

4

This thesis claims that the technique of direct equivalence testing, as explained

in the subsequent chapters, is effective in testing of embedded software to detect

errors in cross compilers as well as application programs.

CHAPTER 2

BACKGROUND

This chapter provides information about embedded software, interrupts, device

registers in microcontrollers, sensor networks, and TinyOS. It also talks about

the semantics of the volatile type qualifier in C, memory allocation in C, and its

significance for direct equivalence testing.

2.1 Embedded systems and software

An embedded system is a special purpose computer that performs one or few

dedicated functions. Users do not perceive an embedded system as a computer

in the traditional sense. More often than not, embedded systems perform or

control an action. The software that runs on these systems is optimized in terms of

performance, memory, and power to perform the few tasks well. Examples include

music players, cellphones, microwaves, traffic lights, cameras, televisions, MRI

scanners, cars, airplanes, missiles, etc. Today, embedded systems are pervasive.

Concurrency, robustness, responsiveness, and heterogeneity are essential char-

acteristics of embedded software. Concurrency in embedded software manifests as

interrupt driven concurrency, multiple processes, and threads. A simple example

of an embedded system is an air conditioner that maintains the room temperature

at a preset level. The basic components of an air conditioner are a temperature

sensor to detect the current temperature, a microcontroller to process the input

from the sensor, a heater to increase the room temperature, and a fan to cool the

room. Embedded software must perform the tasks of reading the room temperature,

processing the input, and controlling the actuators, concurrently, using interrupts,

processes, and threads. It should be reliable and robust to perform under normal

and extreme conditions. In the event of a failure, it should produce notifications

6

instead of failing silently. Embedded software should be able to respond in real

time to the changing conditions in the room. Depending upon the ability of an

embedded system to respond to an event, they are classified as hard real-time or

soft real-time systems. A hard real-time system is a system that meets all its

deadlines. Failure to meet a deadline in a real-time system could be catastrophic.

An airbag deployment after the stipulated time can result in a fatal injury to the

passenger. A soft real-time system can afford to miss a deadline. There is no

fatal damage if the DVD player skips a couple of frames once in a while, though

it might not be good for business. Embedded systems are heterogeneous. It is

common for embedded software to deal with analog-to-digital converters (ADC),

digital-to-analog converters (DAC), system timers, watchdog timers, Serial Periph-

eral Interface (SPI) bus controllers, Inter-Integrated Circuit (I2C) bus controllers,

Controller Area Network (CAN) bus controllers, etc.

The target embedded systems for direct equivalence testing are wireless sensor

nodes with low memory (few KB of RAM and few tens of KB of ROM) and low

power operation. These systems have very limited debugging or profiling support,

and as such, are not easy to test. These systems do not have dynamically allocated

memory.

2.2 Interrupts

Imagine you are waiting for a friend at your home and want to know of his

arrival. A simple way would be for you to go to the door every couple of minutes

and check if he has arrived. Obviously, this wastes a lot of your precious time. A

smarter solution would be for you to wait till you hear the door bell, letting you

know that your friend has arrived. An interrupt in a microprocessor is like the door

bell, an asynchronous signal which informs the processor about an event needing

its attention. Meanwhile, the processor can continue with its work in absence of an

interrupt.

When a microprocessor receives an interrupt request, after completing the ex-

ecution of the current instruction, it saves the program counter (PC) and other

7

registers on the stack, loads the PC with address of the interrupt handler, and

starts executing instructions from the interrupt handler. At the end of the interrupt

handler, the saved PC and other registers are restored from the stack and the

execution of the previously interrupted program resumes. Following are the most

common uses of interrupts: timers, network and disk IO, power-off signals, and

process context switching in an operating system. Any computer system has

multiple interrupts enabled simultaneously that may result in multiple interrupt

requests. The processor handles the interrupts based on a fixed priority or as set

by the user. Based on the processor architecture, an interrupt handler could be

interrupted by a higher priority interrupt handler. This leads to interrupt driven

concurrency.

Interrupt driven concurrency is an integral part of all software. The operating

system abstracts over interrupt driven concurrency and presents an easy to use

abstraction of processes and threads. Small embedded systems, that cannot afford

the overhead of an operating system in terms of memory or CPU cycles, have to

deal with interrupt driven concurrency.

2.3 Device registers

There are various devices in a microcontroller like analog-to-digital convert-

ers (ADC), digital-to-analog converters (DAC), system timers, watchdog timers,

Serial Peripheral Interface (SPI) bus controllers, Inter-Integrated Circuit (I2C)

bus controllers, Controller Area Network (CAN) bus controllers, radio etc. The

programming interface to these devices, as seen by the CPU, is the device registers.

The device registers are used to control a device as well as transfer of data across

a device. For example, to read a value converted by the ADC, the ADC control

register is loaded with calibration bits to start the conversion. The end of conversion

is signaled by an interrupt or a bit in the control register. The converted value is

then read from the ADC data register.

Device registers can be accessed directly using special IO instructions or can be

accessed like memory. Each memory mapped device register is allocated a memory

8

address and data can be read from/written to these registers by accessing the

memory address.

2.4 TinyOS

A wireless sensor node is a microcontroller based device with sensing and net-

working capabilities. It is a memory constrained device with only few KB of RAM

and tens of KB of ROM for code. A sensor node is highly power constrained device

in that it may be expected to work for months on a AA battery. Multiple sensor

nodes can be used to create a sensor network and monitor physical parameters like

temperature, pressure, etc. of an area for weeks or months. TinyOS [24] is an op-

erating system designed for low power wireless sensor networks providing excellent

capabilities for networking. It has support for protocols like time synchronization,

data collection, and data dissemination.

TinyOS is written in nesC [11], a dialect of C. It features a component-based

architecture where a component is data and code coupled together. Components

are wired together to form a TinyOS program. It transforms the TinyOS program

so that the compiler finds it easy to optimize. TinyOS has a vast component library

which enables rapid implementation while minimizing code size as required by the

severe memory constraints inherent in sensor networks.

TinyOS has a split-phase event-driven execution model to achieve concurrency.

The programming APIs are nonblocking and have completion call backs. To start

an operation, a call is made, which returns immediately. End of the operation is

signaled by a callback event. For example, to read an ADC value, a call to ADCRead

is made, which returns immediately. When the value is read, ADCReadDone event

is fired.

TinyOS is an nonpreemptive, task oriented operating system. A queue for ready

tasks is maintained and scheduler executes one task at a time to completion. An

application posts a task to perform some work. A TinyOS task runs to completion

and can only be preempted by an interrupt handler. A TinyOS task is a function

9

with no input parameters. This implies the contents of the stack frame are invalid

before the start and after the end of execution of the task.

2.5 Volatile qualifier in C

The volatile keyword in C is a type qualifier used to declare that an object

can be modified by the hardware or a concurrently executing interrupt/thread.

The volatile qualifier was primarily introduced for accessing the contents of device

registers in a C program.

In Section 6.7.3 the C99 standard [14] says:

An object that has volatile-qualified type may be modified in ways

unknown to the implementation or have other unknown side effects.

Therefore any expression referring to such an object shall be evaluated

strictly according to the rules of the abstract machine

The semantics of volatile qualified memory locations are such that values stored in

them can change without the knowledge of compiler. Thus the compiler should not

cache the value of a volatile-qualified object in a register.

A footnote in the same section elaborates:

A volatile declaration may be used to describe an object corresponding

to a memory-mapped input/output port or an object accessed by an

asynchronously interrupting function. Actions on objects so declared

shall not be “optimized out” by an implementation or reordered except

as permitted by the rules for evaluating expressions.

A compiler is not permitted to optimize accesses to volatile qualified locations.

2.6 Memory allocation in C

There are three different ways to allocate memory in C.

Static allocation Memory for objects is allocated at compile time by the compiler.

The life time of these objects is the execution time of the binary.

10

Automatic allocation is implemented in terms of a stack. Objects are allocated

memory on the stack at start of execution of a code block. When the control

flow exits the code block, the allocated space is automatically reclaimed.

Dynamic allocation Memory for objects is allocated at run-time on the heap

using malloc. The heap allocated memory is valid until returned using free.

Static and automatic allocation and deallocation of memory is taken care of by

the compiler, freeing the developer from the task of memory management. On the

other hand, dynamic memory allocation and deallocation on the heap has to be

managed by the developer.

Automatically and dynamically allocated memory is initialized if the initial-

ization value is specified. Otherwise, it contains garbage values. Reading an

uninitialized memory location is an undefined behavior in C. For example, reading

a uninitialized variable stored on the stack will return an indeterminate value. Only

when the program initializes a variable stored on the stack or writes to it before

reading it again, it contains a valid value. This value becomes invalid once the

program flow has exited the code block.

CHAPTER 3

DIRECT EQUIVALENCE TESTING

High level languages provide an abstraction over the machine language of a

computer. Software developers write programs that conform to this high level ab-

straction. They assume that the program semantics are preserved by the tools that

convert their programs to machine instructions, namely the compiler, assembler,

linker, and loader. These tools are not completely error free. Yet it is of vital

importance that they be error free, as it potentially affects all the software that

uses these tools. Direct equivalence testing addresses these problems.

Equivalence testing observes different versions of the same program under exe-

cution and checks for the failure of equivalence. Checking for equivalence can be as

easy as comparing the final output value. But embedded software runs continuously

for months and there is no final output to be compared. The solution lies in being

able to find points of equivalence in the program where the state of the different

versions of the program can be compared during execution. The semantics of the C

programming language make it easy to find such program points, usually the start

and end of a function. If a point A in the program is such a point of equivalence,

then the state of the system, when the execution of different binaries reaches point

A, should be equivalent. Block of code between two such points then becomes a

unit of testing. It is important to find as many units of testing in the code base as

possible for effective testing.

Direct equivalence testing does not test for timing equivalence. It needs the code,

i.e., the unit of testing to be deterministic. Interrupt driven concurrency makes a

system indeterministic. Compiler optimizations and volatile locations introduce

12

nonequivalence in the system. The rest of the chapter explains the technique of

direct equivalence testing and how it handles the above mentioned problems.

Before we proceed, let us define a state and a computation:

State A set of parameters that provides information about the system is called a

state. A snapshot of values stored in memory can be considered a state of a

computer system.

Computation It is a block of code or a sequence of instructions that operates on

a state.

Direct equivalence testing relies on the invariant that two equivalent computations

should produce the same output states for the same input states, for all valid input

states.

For testing the violation of the above invariant, we need to decide what does a

state and a computation mean in real terms? A computer’s main memory contains

most of the information that is needed by a program. A computation can be

expressed in high level languages like C, C++ or assembly language or machine

language. Irrespective of this, all forms of expression view the state, i.e., main

memory, similarly. For example, let variable foo in C correspond to memory location

0x12AB. The value in variable foo as interpreted by the C abstract machine is

same as that in memory location 0x12AB as interpreted by assembly and machine

language. Let us now define the notion of direct equivalence testing more concretely.

3.1 Machine state

A computer, in its simplistic form, can be thought of as a machine with only

memory and an execution unit. Main memory (RAM) is a part of the computer

memory while units like instruction decoder, ALU, FPU, shifters are all part of the

execution unit. Computer memory is a set of locations that store data. Logically,

registers and cache are part of the computer memory, with very fast access times.

At the start of the computation under consideration, main memory stores the data

related to computation while contents of the registers and cache are assumed invalid.

13

We can say that the main memory, i.e., the memory locations and the data present

in them, completely represents the state of a machine.

Let A be the set of memory locations while B is the set of values that can be

stored in a memory location. For example, A = {0x00, 0x01, 0x02,, 0xFF} is

the set of memory locations while B = {0, 1, 2,, 9} is set of values that can be

stored in a memory location. We say that a machine state is a function that maps

memory locations to values stored in them.

M : A 7→ B

In practice, we say that a snapshot of values stored in RAM is a machine state.

3.1.1 Equivalence of machine states

Two machine states are equivalent if, for all the memory locations in a machine

state, the corresponding memory location in other machine state contains same

value.

3.2 Computation

A computation is a block of code that performs an operation on a machine state.

This may or may not produce a new machine state. A computation, thus, can be

thought of as a function that maps a machine state to a machine state or special

nontermination state.

C : S 7→ S ∪ {∅}

where S is the set of all machine states. From here on, the machine states at the

start and end of execution of the computation are referred to as input machine

state and output machine state, respectively.

3.2.1 Equivalence of computations

Two computations are equivalent if, for all valid input machine states, they map

to the same output machine state.

The above definition of equivalence requires to map the whole of RAM as a

machine state. Embedded systems targeted for direct equivalent testing do not

14

contain dynamically allocated memory such as a heap. Though automatically

allocated memory or a stack is present.

The C standard does not mention the use of a stack frame. This allows the

compilers to optimize the contents of a stack frame whenever it can. There is no

uniform treatment of the stack frame across different compilers, which becomes a

major challenge in checking for equivalence.

The key insight of this thesis is to choose specific points in the program where

the contents of the stack frame are invalid. Thus, it becomes necessary to neglect

the values stored on the stack as part of the machine state.

Contents of a stack frame are invalid before the control flow jumps to a function

and after the function is exited. A value of an object stored on the stack is valid

only when the function in which it is declared is under execution. Indeed, reading

an uninitialized variable is an undefined behavior in C. This undefined behavior

can be easily checked by ensuring that the program never reads a value from stack

before writing it. If we choose a piece of code between two points where a stack

frame does not exist, as a unit of testing, then a machine state comprises only the

statically allocated memory, i.e., global variables.

The start and end of the execution of a TinyOS task is an example. Since the

TinyOS runs tasks to completion, stack frame is not valid before the start and after

the end of the task. Thus, a TinyOS task is an ideal candidate for selection as a

unit of testing. Given an input state, when different compiled versions of the same

TinyOS task or multiple execution runs of a single task result in nonequivalent

output machine states, we have found an error.

This notion of equivalence of computations can now be used for real world

software programs to test if the semantics of a computation are preserved by the

compiler during the compilation of the computation, expressed in C, to an assembly

language representation.

15

3.3 Direct equivalence testing

A simple and naive approach to test would be as follows:

• Compile a piece of code using different compilers and optimization flags

• Compare the different compiled versions of the computation for equivalence.

The approach as shown in Figure 3.1, though technically correct, is infeasible

in practice due to storage and compute overheads. Any computation reads and

writes only a small fraction of RAM. Equivalence testing requires storing a large

number of states. Storing all these states that include full contents of machine state

increases the storage overhead. Comparing full contents of a machine state makes

it difficult to match it with other machine states. A smarter and better approach

is needed, known as a memory access trace.

3.4 Memory access traces

Memory access traces are a set of read and write references generated by a

computation. The first read reference to a memory location, not previously written

Figure 3.1. Simple testing procedure for equivalence

16

by the computation, is considered as an input to the computation. A computation

does not necessarily read all the memory locations. If a read reference to a location

is missing, it means the output of the computation does not depend on the value

at that location and it is a do not care input to the computation. The last write

reference to a memory location is considered an output of the computation. A

missing write reference to a memory location can be inferred as the computation

reading the value at the said location and writing it back without changing it.

Figure 3.2 shows a sample memory access trace as generated by a computation

along with the input and output machine states obtained using the definition

explained above. The memory traces generated by a computation are sufficient

to infer about the input and output machine state of a computation.

Different compilers, or the same compiler at a different levels of optimization,

place the same variable in the code at different addresses in memory. Compiler A

can place a global variable foo at address 0x10 while compiler B can place it at

0x20. Obviously, comparing memory addresses to identify the variable foo does

not work.

A simple solution is to store symbolic information about the memory location

like the variable name instead of the memory address. Each memory location,

Figure 3.2. Sample memory access trace

17

except pointers, is assigned a unique name, which is a combination of a variable

name and an offset. A value of 25 at address 0x10 can be represented as value 23

at variable a_0. The mapping of variable names to their memory addresses and

their size in number of bytes is easily obtained from the symbol table stored in the

binary. The value stored in a pointer variable is the name of the object it points

to, instead of a scalar. For example, if pointer variable ptr points to variable bar

which is located at address 0x100, the value of ptr is the variable name string bar

instead of 0x100. Multilevel pointers are handled by recursively iterating over the

symbol table till the pointed-to object is identified.

Consider the computation as shown in Figure 3.3.

Figure 3.4 shows the contents of the memory before and after the execution

of each statement in the computation. The snapshot of memory before the start

and after the end of execution of the computation represent the input and output

machine state for the given computation.

The set represented as {(a, 4), (a, 5), (b, 1), (b, 6)} is the set of read references

and the order they are generated in. Looking at the contents of the memory, we

know the actual input machine state is in fact the set [(a, 4), (b, 1), (c, 3)]. As per

our definition of input machine state which uses extrapolation of memory traces,

the input machine state is the set [(a, 4), (b, 1), (c,X)]. Value stored in location c is

a do not care input to the computation as it is not read.

Similarly, the set of write traces generated by the computation is {(a, 5), (b, 6),

(a, 6)}. The actual output machine state as observed from the RAM is the set

[(a, 6), (b, 6), (c, 3)]. Our definition of output state using extrapolation of memory

traces tells us that in the output machine state, value 6 is stored at locations a and

b. But since there is no write memory reference to location c, we can infer that the

value stored in it is unchanged though we cannot tell what it is from the memory

a = a + 1;

b = a + b;

a = b;

Figure 3.3. A simple computation that adds and copies values

18

Figure 3.4. An example relating the computation, memory access trace and the
machine states

access trace. Assuming that values that can be stored in RAM range from 0 to 9,

we get 10 mappings of input to output machine state:

[(a, 4), (b, 1), (c, 0)] 7→ [(a, 4), (b, 1), (c, 0)]

[(a, 4), (b, 1), (c, 1)] 7→ [(a, 4), (b, 1), (c, 1)]

...

[(a, 4), (b, 1), (c, 9)] 7→ [(a, 4), (b, 1), (c, 9)]

The above set of mappings obtained from the memory access traces gives us

a corresponding output machine state when presented with an appropriate input

machine state. Thus, when an actual machine state [(a, 4), (b, 1), (c, 3)] is given as

an input, we can correctly infer the output state [(a, 4), (b, 1), (c, 3)] from memory

access traces.

19

3.5 Compiler optimizations

A straight method to check for nonequivalence of computation is to find match-

ing read reference sets but different write reference sets. This approach does not

work in the presence of commonplace compiler optimizations that eliminate read

and/or write reference to a location while preserving semantics of the program.

Consider a simple example as shown in Figure 3.5.

In function foo, global variable x is first written to and then read from resulting

in a write reference and a read reference in that order. The compiler can return the

cached value of x and eliminate the read reference as variable x is not volatile

type qualified. An optimizing compiler can eliminate both write as well as read

references if it can prove that x is not being written anywhere else in the program.

Figure 3.6 shows valid assembly code for foo() along with the read/write

reference sets.

Any technique checking for equivalence, when given these read/write reference

sets, must detect them as equivalent. The crux of the problem is to distinguish

between valid compiler optimizations and incorrect compiler behavior. My solution

is explained in the sections that follow.

3.6 Equivalence checking

Given two instances of memory access trace, how to check if they are equivalent?

• Compare the input machine states for equivalence.

• If equivalent, the output machine states are compared for equivalence. If

found nonequivalent, an error is reported indicating equivalence check failure.

/* Global variable */

int x = 1;

int foo(void)

{

x = 1; /* Write */

return x; /* Read */

}

Figure 3.5. A simple example to demonstrate various compiler optimizations

20

foo:

mov 1, &x

mov &x, r15

ret

R = {(x,1)} W = {(x,1)}

(a) Both read and write present

foo:

mov 1, &x

mov 1, r15

ret

R = {} W = {(x,1)}

(b) Read absent

foo:

mov &x, r15

ret

R = {(x,1)} W = {}

(c) Write absent

foo:

mov 1, r15

ret

R = {} W = {}

(d) Both read and write absent

Figure 3.6. Possible assembly code for foo() in Figure 3.5

We know that memory access traces represent the same computation as expressed

in C. When two input machine states are found equivalent, it is implied that output

machine states should be equivalent. If they fail the equivalence check, we have

detected an error.

3.6.1 Equivalence of input machine states

In practice, equivalence of two input machine states can be checked by a simple

rule: Two input machine states are equivalent unless there exists a memory location,

common to both the states, from which different values are read. The above rule

21

handles all possible cases that arise due to compiler optimizations, as discussed in

Section 3.5. Furthermore, it is trivial to check in practice.

Note our assumption that absence of read reference from one of the memory

access traces does not result in nonequivalence immediately. Absence of a read

reference means one of the following two scenarios. The value read from that

particular location is not an actual input to the computation, i.e., it is a do not care

input. Or the value read is a valid input but wrong code is generated and hence an

error must be reported. If wrong code is generated then the corresponding output

machine state will be nonequivalent and an error is reported eventually. If no error

is reported, it means the particular input was in fact a do not care input.

3.6.2 Equivalence of output machine states

To determine the equivalency of output machine states, we define a rule which

says when the two states are not equivalent.

Two output machine states are not equivalent when any one of the below

conditions is satisfied:

• If different values are written to same memory location.

• If there is a missing write to a memory location in one of the memory access

traces, except when the missing value to be written is the same as the value

that was read from the memory location.

When different values are written to the same memory location, it means generation

of wrong code by the compiler or a memory safety error. Absence of a write reference

means there is a compilation error except when the value to be written is the same

as the value read from that location.

The above two rules for checking equivalence of machine states are sufficient

for determining if two memory access traces are equivalent. Also no false positives

are reported by these rules. It is important that number of false positives reported

tend to zero. False bugs reduce the efficacy of the technique and lead others to

think if the particular technique really works.

22

3.7 Volatile locations

The volatile keyword in C is a type qualifier used to declare that an object

can be modified in the program by the hardware or a concurrently executing

interrupt/thread. The volatile type qualifier was primarily introduced for accessing

the contents of device registers in a C program. For the purposes of testing,

we consider all memory mapped hardware registers as volatile qualified memory

locations. The semantics of volatile qualified memory locations are such that values

stored in them can change without the knowledge of compiler. Thus the compiler

should not cache the value of a volatile-qualified object in a register. A compiler is

not permitted to optimize accesses to volatile qualified locations.

The semantics of volatile type qualifier present a unique challenge for direct

equivalence testing. While checking memory references to volatile qualified memory

locations for equivalence, the following invariants must hold:

• Order of memory references (read or write) to memory locations must be the

same across two equivalent memory traces. This means that not only should

the order of references to variable A be same but the order of references

to variables A and B should also be the same across equivalent memory

traces. A compiler is allowed to interleave references to volatile locations

only between sequence points. But the code that exercises such behavior is

rare and probably unintended.

• No memory reference (read or write) should be added or deleted.

As defined in Section 3.4, only the first read reference is part of input ma-

chine state while last write reference is part of output machine state. The above

mentioned invariants related to the volatile type qualifier mean that all memory

references, not just first read and last write, should be checked. Direct equivalence

testing handles the above invariants as follows:

• All the read references to the volatile qualified memory locations are consid-

ered as part of the input machine state but as separate inputs. Multiple read

references are enumerated to differentiate them from one another.

23

• All the read and write references are considered as part of the output machine

state. Whenever a memory location is accessed, that reference is appended

to a list of references to the particular memory location. While checking for

equivalence, the list of references is compared for equality, instead of just

the last value. For example, when a program reads the volatile variable

volatile_data twice, then value of volatile_data in the output machine

state is {(Read, X), (Read, Y)} where X and Y are the values read. This

ensures that we check for all the references as well as their order.

A missing write or read reference is detected when the list of references is compared,

leading to failure of equivalence check.

3.8 Interrupt driven concurrency

Interrupt driven concurrency is a characteristic feature of embedded software.

When an interrupt fires, control jumps from the executing program to an interrupt

handler. The interrupt handler performs some work and control goes back to the

interrupted program.

There is a possibility that interrupted program and the interrupt handler share

some data and may also modify the shared data. For example, let us assume that

the variable shared_data is written an interrupt handler as well as an interrupted

program. Consider the scenario when the interrupt fires right after the program

writes 10 to shared_data. Now the interrupt handler updates the shared_data

to 20. If shared_data = 10 is the last write to shared_data in the program,

the output machine state should reflect the value of shared_data as 10. But the

interrupt handler has updated shared_data to 20. This is the actual value reflected

as part of the output machine state and incorrectly leads to non equivalence of

output machine states. The modification of value in shared_data by the interrupt

handler happens outside the knowledge of the program. This leads to false positives

being reported due to the aliasing by the interrupt handler.

We solve the problem of interrupt driven concurrency by detecting this aliasing

by the interrupt handlers and discarding the tainted memory access traces. We

24

consider the interrupt handler as a separate computation, different from the inter-

rupted computation. This helps in testing the code in the interrupt handlers as

well. If the interrupting computation writes to a memory location that was either

read or written by the interrupted computation, the memory access traces from

that execution run of the interrupted computation are discarded. Discarding a few

memory access traces does not affect our testing because if there are errors in the

discarded traces, these errors will be detected in other memory access traces, not

tainted by interrupt driven concurrency. An error, if it exists, is very likely to

manifest itself while checking different memory traces of the same computation.

Thus discarding a few traces out of thousands doesn’t affect the efficacy of the

technique.

Table 3.1 shows a summary of the different problems faced during the testing

and the solutions to overcome them.

Table 3.1. Summary of the problems faced and their solutions
Problem Solution
Non equivalence due to presence of a
stack frame

Choosing points during program execu-
tion when contents of stack are invalid

Interrupt driven concurrency Discarding the tainted memory trace
Compiler optimizations Rules for equivalence of input and out-

put machine states
Device registers and volatile locations Checking all memory references for ex-

act match.

CHAPTER 4

EXPERIMENTS AND RESULTS

I have applied the technique of direct equivalence testing to detect errors in

TinyOS applications as well as various compilers. Below is a quick overview of the

tools and software I used for testing purposes.

4.1 Tools

4.1.1 Simulators

MSPSim It is a Java-based instruction level emulator of the MSP430 micro-

controller series by J. Eriksson et al. [9]. It supports emulation of sensor

networking platforms such as Contiki [7], and also TinyOS [24] to some extent.

It supports emulation of various peripherals on the sensor boards and enables

profiling, debugging and instrumentation. MSPSim was modified to recognize

the start and end of a TinyOS task or an interrupt handler and to monitor

a specified range of memory addresses. Memory references generated before

the start of the main() were discarded during random testing of compilers.

COOJA It is a sensor network simulator primarily designed to enable cross-level

simulation: simultaneous simulation at many levels of the system. It is a part

of the Contiki sensor network OS [7] and depends on MSPSim for low-level

simulation of sensor node hardware. COOJA is flexible and extensible in that

all levels of the system can be changed or replaced: sensor node platforms,

operating system software, radio transceivers, and radio transmission mod-

els [22]. COOJA was modified to use the hacked version of MSPSim and to log

memory access traces for a single sensor node during the network simulation.

26

4.1.2 Compilers

I have tested following compilers using direct equivalence testing:

• msp430-gcc

– mspgcc-3.2.3 dated 7th June,2005.

– mspgcc-3.2.3 SVN head.

– mspgcc-4.3.4 dated 8th September, 2009.

– mspgcc-4.4.2 dated 25th October, 2009.

• llvm-msp430 SVN head.

4.1.3 Software

TinyOS is an open-source operating system designed for wireless embedded sensor

networks [24]. TinyOS is a nonpreemptive, task oriented operating system. A

queue for ready tasks is maintained and scheduler executes one task at a time

to completion. TinyOS has a split-phase event-driven execution model to

achieve concurrency. Some of the applications that were tested include Mul-

tihopOscilloscope, BaseStation, BlinkTask, MViz, Oscilloscope, RadioCount-

ToLeds, RadioSenseToLeds, Sense, TestAdc, TestFtsp, TestOscilloscopeLQI

and RadioStress for TinyOS 2.1 release.

Randprog is a random C program generator by Eide et al. [8]. Randprog generates

nearly strictly conforming random C programs. Randprog supports various

options to control the structure of the generated C programs. Following are

some of the parameters that were varied for testing:

• Program size

• Number of functions

• Presence of structs

• Presence of arrays

• Presence of pointers

27

• Pointer depth

• 64-bit arithmetic

CIL C Intermediate Language is a high level representation and a set of tools for

analysis and source-to-source transformation of C programs [20]. CIL was

used to analyze the source code and identify the the global variables, volatile

variables, and pointers in the test program.

4.2 TinyOS testing

I tested various TinyOS applications with msp430-gcc. The goal was to detect

memory safety errors in TinyOS applications as well as to determine if TinyOS

applications were miscompiled.

4.2.1 Unit of testing

Every single TinyOS task as well as an interrupt handler is considered a unit of

testing.

4.2.2 Test procedure

The TinyOS scheduler code was modified to let the simulator know about the

start and end of a TinyOS task and interrupt handler. Different binaries for a given

TinyOS application are obtained by using different compilers and optimization flags.

These binaries are executed in MSPSim along with COOJA network simulator,

collecting a log of memory traces for each run. The simulator annotates the memory

traces according to the task or the interrupt handler to which it belonged. The

annotated traces are then parsed and separated according to the computation.

These traces are checked for the violation of equivalence. If a violation is found,

information about computation, compiler, optimization flags, memory traces and

source of violation are displayed.

Our aim was to test as many TinyOS applications as we could in the hope of

detecting previously unknown errors in TinyOS applications as well as the compilers

used in build process.

28

4.2.3 Results

Table 4.1 lists the errors we found using direct equivalence testing that affect

the TinyOS applications.

Some of the errors may not be termed as memory safety errors but they are

all undefined behaviors in C and must be avoided. Next, we present detailed

description of some of these bugs.

4.2.3.1 Out of bounds memory access

An out of bounds memory access error was discovered while testing the Multi-

hopOscilloscope application of TinyOS.

As shown in Figure 4.1, values stored in variable reading range from 0 to 5.

Timer.fired() event handler is executed periodically after Read.readDone() and

resets reading to 0 when its value reaches 5. A synchronization error in Multiho-

pOscilloscope application occasionally prevents Timer.fired() to be executed be-

tween two calls to Read.readDone(). In such a scenario, a call to Read.readDone()

happened when reading = 5, leading to an out of bounds memory access. Memory

location represented by readings[5] is a padding byte of a struct. At differ-

ent levels of optimization, different values were written to the memory location

readings[5].

When checking computations at different levels of optimization for equivalence,

input machine states were found equivalent for code in Figure 4.1. But output

machine states failed equivalence check as some computations contained a write to

the memory location with address same as readings[5]. The source of the error

Table 4.1. Bugs affecting TinyOS applications
Component affected Type of error
MultihopOscilloscope

Oscilloscope Out of bounds array access
TestOscilloscopeLQI

ADC Portability Error
MViz Read of uninitialized local variable

29

typedef struct oscilloscope {

uint16_t version;

uint16_t interval;

uint16_t id;

uint16_t count;

/* 5 element array, indexed from 0 to 4 */

uint16_t readings[5];

} oscilloscope_t;

/* Global instance of struct oscilloscope_t */

oscilloscope_t local;

/* Values range from 0 to 5 */

uint8_t reading;

void Read.readDone(error_t result, uint16_t data) {

if (result != SUCCESS) {

data = 0xffff;

report_problem();

}

local.readings[reading++] = data;

}

Figure 4.1. Out of bounds memory access in MultihopOscilloscope application in
TinyOS

was traced to Read.readDone(). This error had been reported and confirmed by

TinyOS developers.

C being an type unsafe language, there is no language provided mechanism to

detect and report a memory safety error at runtime. Instead, the machine state is

mutated leading to corruption of data. This causes nonequivalence of computations

and can be detected by direct equivalence testing.

4.2.3.2 Portability error

Every microcontroller is unique in its architecture with respect to accessing dif-

ferent regions of memory like hardware registers (memory mapped IO), RAM, and

ROM. These regions of memory have different constraints on how data can be read

or written. One such example is the ADC12 peripheral memory in the msp430F1611

30

microcontroller, the specification [13] for which states that, “Addresses in this

module should be accessed with word instructions. If byte instructions are used,

only even addresses are permissible, and the high byte of the result is always 0.”

The C99 standard [14] does not address such hardware specific concerns making

it unclear if it is compiler’s or user’s responsibility to ensure compliance. We define

a portability error as one that lies in this grey area that is outside the purview of

the standard. Below is the detailed description of one such portability error that

manifested itself in core TinyOS ADC component code.

Figure 4.2 shows how ADC12CTL0 register is accessed as an adc12ctl0 structure

in the TinyOS code base.

/* The adc12ctl0 struct corresponds to the ADC12CTL0 register

* with the struct member bitfields corresponding to bits that

* make up the ADC12CTL0 register.

*/

typedef struct __nesc_unnamed4254 {

volatile unsigned

adc12sc : 1,

enc : 1,

adc12tovie : 1,

adc12ovie : 1,

adc12on : 1,

refon : 1,

r2_5v : 1,

msc : 1,

sht0 : 4,

sht1 : 4;

} __attribute((packed)) adc12ctl0_t;

/* Memory address of ADC12CTL0: 0x1A0 */

volatile unsigned int ADC12CTL0 __asm ("0x01A0");

/* Reading ADC12CTL0 as adc12ctl0 structure */

static inline adc12ctl0_t getCtl0(void)

{

return * (adc12ctl0_t *)&ADC12CTL0;

}

Figure 4.2. ADC12CTL0 register access code from TinyOS ADC component

31

msp430-gcc compiles this code to the assembly shown in Figure 4.3.

According to the msp430F1611 specification [13], byte accesses to odd addresses

in 16-bit peripheral modules are not allowed. The msp430-gcc compiler generates

code that reads an odd address with a byte access which clearly violates the

alignment as well as access rules as mentioned in the specification.

A discussion ensued between the compiler writers and TinyOS developers con-

cluding that the compiler was correct in generating byte accesses to the structure.

getCtl0 type casts ADC12CTL0, a volatile unsigned int, to a packed structure

of type adc12ctl0. Thus, information about the original type (int) and qualifier

(volatile) is lost. Because of the packed attribute, the compiler may not assume

that the structure will be word aligned. Also, since the return type is not int, the

compiler is not required to generate word access. This error is interesting in that

it remained undetected for two major releases of TinyOS.

4.2.3.3 Reading an uninitialized local variable

Reading an uninitialized variable is an undefined behavior in C. We found an

instance of such undefined behavior in MViz application of TinyOS. As shown

in Figure 4.4, val is an uninitialized local variable. It is passed by reference to

getEtx() and getParent() to get the result back in val. Both these functions

have error paths when the function returns without writing to val. When val

is read in this context, it results in a read of an uninitialized local variable. The

garbage value present on the stack is stored in the fields local.link_route_value

and local.link_route_addr of the global struct local. This results in a failure of

equivalence check as garbage values written are different at different optimization

getCtl0:

mov.b &0x01A0, r14

mov.b &0x01A1, r15

swpb r15

bis r14, r15

ret

Figure 4.3. Assembly code for getCtl0() as compiled by msp430-gcc

32

typedef struct {

uint16_t reading;

uint16_t link_route_value;

am_addr_t link_route_addr;

} mviz_msg_t;

mviz_msg_t local;

void Read.readDone(error_t result, uint16_t data) {

uint16_t val;

if (result != SUCCESS) {

data = 0xffff;

report_problem();

}

local.reading = data;

call CtpInfo.getEtx(&val);

local.link_route_value = val;

call CtpInfo.getParent(&val);

local.link_route_addr = val;

}

Figure 4.4. Reading an uninitialized local variable

levels. The compiler, when passed the -Wall option that checks for uninitialized

variables, did not generate a warning.

4.3 Random testing

To detect bugs in compilers, various phases of a compiler must be exposed to

programs with varied and diverse C constructs as specified by the C standard [14].

The programs should be strictly confirming C programs. If a violation of equiva-

lence is detected, then we can be sure that it is due to a compiler error. We use

randprog to generate random C programs which are used for direct equivalence

testing. We have tested various versions of msp430-gcc and llvm-msp430 with

random programs.

33

4.3.1 Unit of testing

The whole random program, i.e., the main() is considered a unit of testing. The

purpose of random testing is to test the compiler and as such, the random programs

do not contain any interrupts. There are no behaviors in a random program that

force us to choose equivalent points at a finer granularity.

4.3.2 Test procedure

Random programs are annotated to indicate the start and end of the computa-

tion to the simulator. The differential testing procedure, as used for TinyOS testing,

is followed: binaries from different compilers and optimization levels, executing

them in a simulator to obtain memory traces and then equivalence checking to find

errors, if any.

I have tested the various versions of msp430-gcc and llvm-msp430 against thou-

sands of random test cases generated by randprog, manual tuning various options in

randprog to exploit the buggy phases of the compilers. My aim for TinyOS testing

was to detect application and compiler bugs in TinyOS while Random testing was

mainly used to expose bugs in compilation toolchain.

4.3.3 Results

Using direct equivalence testing and conforming random C programs generated

by randprog, I was able to detect various correctness as well as volatile related errors

in msp430-gcc, then stuck at version 3.2.3. Nature of random testing is such that

a few typical compiler bugs manifest themselves repeatedly unless fixed. msp430-

gcc was not being actively maintained and various bug reports went unheeded, in

turn reducing the motivation to file more bug reports. These factors led to the

discontinuation of random testing of msp430-gcc for the time being.

In the meantime, LLVM team [17] decided to work on a port for msp430

microcontrollers and I have been involved in the testing effort for the developmental

llvm-msp430 compiler. Direct equivalence testing was quickly finding bugs in

llvm-msp430 and the developers were responsive in fixing them. Next, I have

34

outlined some of the bugs that were found using direct equivalence testing in

msp430-gcc and llvm-msp430.

4.3.3.1 Correctness error in msp430-gcc

msp430-gcc support for 64-bit arithmetic is error prone. Every test case gener-

ated for random testing involved a fair amount of 64-bit arithmetic and every case

would fail equivalence check. Hence, I had to turn off 64-bit arithmetic support in

the test cases generated by randprog.

Figure 4.5 shows the C source code, containing the bitwise right shift construct,

that was miscompiled in every test case.

The miscompiled statement contains a 64-bit global variable crc that is bitwise

shifted to right by 40 and the last 8 bits of the result are stored to crc again.

Figure 4.6 shows the assembly code generated by msp430-gcc version 3.2.3 at

level -O1. A shift of 40 bits is broken into a shift of 32 bits and a shift of 8 bits.

The compiler generates wrong code while shifting the result by 8 bits. As seen in

Figure 4.6, content of register r12 is not shifted to right. This results in a wrong

value being stored in crc. Interestingly, this incorrect behavior is exhibited by the

compiler only at -O0 and -O1 levels of optimization. It generates correct code at

higher levels of optimization.

/* Global variable */

int64_t crc = 0;

int main()

{

....

/* Bitwise right shift a 64-bit variable */

crc = (crc >> 40) & 0xff;

....

}

Figure 4.5. Sample C code that causes msp430-gcc 3.2.3 to emit wrong code in
turn producing wrong results

35

/* Registers in msp430 micro controllers are 16 bits wide.

*/

/* Move the value of variable ‘crc’ present in

* registers r8 - r11 to temporary registers r12 - r15

*/

mov r8, r12

mov r9, r13

mov r10, r14

mov r11, r15

/* Bitwise right shift of 40 is broken into 2 parts:

* a shift of 32 bits and a shift of 8 bits. The code

* below is for bitwise right shift by 32.

*/

mov r14, r12

mov r15, r13

clr r14

clr r15

/* The code below is for bitwise right shift by 8.

* The correct code would have right shifted both

* the registers r13 and r12. Instead only register

* r13 is shift to right. Register r12 is never shifted

* to right.

*/

clrc

rrc r13

rra r13

rra r13

rra r13

rra r13

rra r13

rra r13

rra r13

mov.b r12, r15

Figure 4.6. Incorrect msp430 assembly code generated by msp430-gcc at level -O1

36

4.3.3.2 Wrong code bug in llvm-msp430

The msp430 user guide [13] specifies seven addressing modes for ‘br’ instruction.

The relevant ones are:

BR #LBL Branch to label LBL or direct branch (e.g., #0A4h). This instruction

is implemented as MOV @PC+,PC.

BR LBL Branch to the address contained in LBL or an indirect branch. This

instruction is implemented as MOV X(PC),PC.

BR &LBL Branch to the address contained in the absolute address LBL or an

indirect address. This instruction is implemented as MOV X(0),PC.

llvm-msp430 emitted the assembly code containing the branch instruction BR

using the indexed addressing mode. The branch instruction BR does not support

indexed addressing mode in msp430 instruction set. The correct solution would be

to use direct addressing mode for the BR instruction, as was intended.

As shown in Figure 4.7, the control flow is to be transferred from label .L_A to

label .L_B.

The correct instruction would be

BR #.L_B instead of BR .L_B

using the direct addressing mode with the branch instruction BR.

The incorrect code, which used the indexed addressing mode, changed the

semantics of the intended operation.

Desired behavior : PC = PC + offset

Actual behavior : PC = memory[PC + offset]

As such, control flow of the program changed resulting in differing outputs. These

different outputs, when stored to the memory, led to failure of equivalence check.

37

/* Let there be a branch from label A to label B.

* The msp430 assembly code would be as described below.

*/

.L_A

br .L_B

...

/* Some code that does not fit in the offset range of

* absolute jump. Hence branch instruction is used.

*/

...

.L_B

mov #0, r15

ret

Figure 4.7. msp430 assembly code for a large function that causes llvm-msp430
compiler to emit incorrect code with the branch instruction BR in it

4.4 Advanced compiler optimizations

Direct equivalence testing is effective in detecting bugs when common optimiza-

tions like function inlining, loop unrolling, constant propogation, subexpression

elimination and others are used. Interprocedural optimizations that extend outside

the computation under consideration limit the effectiveness of direct equivalence

testing. For example, consider an interprocedural optimization that tries to reduce

the code size of two TinyOS tasks. For the testing purposes, two TinyOS tasks are

considered separate computations. This renders direct equivalence testing ineffec-

tive in this scenario, leading to false positives. If the scope of the interprocedural

optimizations is within that of the computation, direct equivalence testing works

fine.

For random testing of compilers, the whole program is considered a computation

and thus, interprocedural optimizations do not affect the testing. Testing of TinyOS

applications was also not affected as no false positives were reported.

38

4.5 Range of bugs found

Direct equivalence testing is effective in detecting wide array of bugs in ap-

plication software and the compilation toolchain. It can uncover memory safety

bugs like stack overflow, out of bounds access, buffer overflow and use of dangling

pointers and wrong code and volatile related bugs in compilers. It can also detect

logic errors in software, integer overflow bugs and concurrency bugs in case it leads

to storage of differing values in memory.

Direct equivalence testing relies on executing the binaries and collecting the

memory trace for equivalence checking. Thus, it cannot detect bugs that crash the

compilation toolchain when presented with a valid program. Also bugs like nonter-

mination due to deadlock/livelock, divide by zero, dereferencing a null pointer and

latent bugs in the software that do not change the contents of the memory cannot

be detected.

To illustrate further, consider the example in Figure 4.8.

The computation under consideration only returns a value of 5. It does not

store this value in memory. If a compiler miscompiles the above program to return

a value 4 instead of 5, direct equivalence testing would not be able detect this bug

as the state of the computation being checked for equivalence remains unchanged.

Direct equivalence testing is effective in detecting any bug that eventually leads

the computation under consideration to mutate its state (the contents of memory).

Locating the bug in the source code is easy as direct equivalence testing collects low

level information about the system. Since the memory reference and the variable

name that leads to nonequivalence is known, a glance at the source and assembly

code or a breakpoint in the debugger leads to the source of the error. Optimizations

int main()

{

return 2 + 3;

}

Figure 4.8. A naive example to demonstrate the limitation of direct equivalence
testing

39

like function inlining and loop unrolling make it more difficult to locate the source

of the bug.

CHAPTER 5

RELATED WORK

Direct equivalence testing is an end-to-end technique to test system software for

errors using equivalence checking and differential testing. This enables testing of

the application software as well as the compilation toolchain.

Software testing is an integral part of the software development cycle. Several

software testing techniques have been developed and used [3]. Comparatively,

compiler testing, as a research area, has not received similar attention by the

academia and the industry. Compilers are large, complex software systems and

are not error free [8]. They must be tested aggressively.

McKeeman [18], Sheridan [23] and Eide et al. [8] have shown that differential

testing with manual and random program generation is quite successful in finding

compiler bugs. Differential testing is comparing the behavior of several comparable

systems (C compilers) when presented with a series of input. A failure inducing

test case is found when the behavior of compilers or the compiled test case dif-

fers. McKeeman [18] used randomly generated C programs to uncover bugs in

compilers as well as the application software. Sheridan [23] used manual as well as

randomly generated test cases to uncover bugs in several open source compilers and

assemblers. Eide et al. [8] have used sophisticated test case generation techniques

to uncover a special class of compiler bugs related to handling of volatile objects.

Lindig [16] uncovered errors in various compilers in the way they handle the C

calling conventions.

An important point to note is that all the above techniques used output compar-

ison to determine the behavior of the test cases and were targeted towards desktop

platforms like x86 and x64. To my knowledge, direct equivalence testing is the only

technique directed towards finding bugs in cross-compilers that are used to compile

41

embedded software. Direct equivalence testing is similar to the above techniques in

that it uses differential testing as the testing methodogy but equivalence checking

is used instead of output comparison to determine the behavior of the programs.

Equivalence checking is a widely used technique in the electronic design automa-

tion industry to formally prove that two representations of circuit design exhibit

identical behavior. The basic techniques used in most of the equivalence checking

tools for circuit design are:

• Binary Decision Diagrams [1, 15]

• Symbolic Simulation [4]

There are have been efforts to verify the equivalence of low level embedded

software by using the techniques of symbolic execution [5] and cutpoints [10].

Currie et al. [5] used symbolic execution to verify if two small blocks of assembly

code were equivalent. Given two blocks of assembly code, symbolic expressions

were built for each of them. Then they used decision procedures to determine if

the two symbolic expressions were equivalent. Their technique could not handle

sophisticated control flow analysis. By their own admission, their technique could

not handle interrupts, was inscalable beyond a couple of hundred lines of C code

and produced false positives, though they were fairly successful in verifying the

equivalence of the small blocks of assembly code for DSP and Pentium processors.

Feng et al. [10] applied the concept of cutpoints for formal equivalence verifica-

tion of combinational circuits to embedded software. The idea of cutpoints is very

simple. Given two combinational circuits whose equivalence is to be verified, we look

for points where the two circuits can be proved equivalent. The preceding equivalent

logic in the circuit is replaced by a new primary input. When this process is applied

recursively to reach the outputs, the two circuits have been proved equivalent. The

authors used symbolic simulation to determine cutpoints in the software. Though

they were able to speed up the simulation over the existing techniques, it inherited

all the drawbacks of using symbolic execution, namely, lack of scalability and failure

to address interrupt driven concurrency.

42

In comparison, direct equivalence testing addresses the problems of interrupt

driven concurrency, compiler optimizations and semantics of volatile type qualifier

while being able to test all the programming constructs in C language. It is also

scales well for small to medium sized embedded systems.

CHAPTER 6

CONCLUSION

Embedded software applications as well as compilers used to compile them are

not error free. This can cause the reliability and robustness of real time and safety

critical systems to be suspect. Testing is an effective way to ensure quality and

reliability of the software. I present Direct Equivalence Testing, a framework

for detecting compiler and application errors in embedded software. The results

indicate that the new technique is indeed effective in finding hitherto unknown

compiler as well as application errors. Direct equivalence testing can potentially

detect any error — application or compiler — that directly or indirectly results in

different values being stored to the monitored section of the memory (Data/BSS

sections) for equivalent computations. I have sucessfully detected following errors

using direct equivalence testing:

• Compilation Errors like wrong code and volatile related errors in compilers

like msp430-gcc and llvm-msp430.

• Programming Errors like out of bounds access, stack overflow and use of

uninitialized local variables in TinyOS applications.

• Portability Errors in TinyOS applications.

The research contribution of this thesis is to apply the technique of direct

equivalence testing to embedded software while solving the problems posed by

interrupt driven concurrency, compiler optimizations and semantics of volatile type

qualifier in C.

In theory, direct equivalence testing could be applied to software of any size,

but there are practical scalability issues when the code size exceeds few thousand

44

lines. This is due to the overhead of instrumenting the large binaries and saving,

parsing and comparing millions of memory traces. Future ideas to explore would be

better representation of structures that scale, using symbolic execution to determine

equivalence of machine states to reduce storage and compute overhead and test the

systems that include dynamically allocated memory such as a heap.

REFERENCES

[1] S.B. Akers. Binary decision diagrams. IEEE Transactions on Computers,
C-27(6):509–516, June 1978.

[2] Tamarah Arons, Elad Elster, Shlomit Ozer, Jonathan Shalev, and Eli Singer-
man. Efficient symbolic simulation of low level software. In DATE ’08:
Proceedings of the Conference on Design, Automation and Test in Europe,
pages 825–830, New York, NY, USA, 2008.

[3] Boris Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold
Co., New York, NY, USA, 1990.

[4] Randal E. Bryant. Symbolic simulation—techniques and applications. In DAC
’90: Proceedings of the 27th ACM/IEEE Design Automation Conference, pages
517–521, New York, NY, USA, 1990.

[5] David Currie, Xiushan Feng, Masahiro Fujita, Alan J. Hu, Mark Kwan, and
Sreeranga Rajan. Embedded software verification using symbolic execution
and uninterpreted functions. International Journal of Parallel Programming,
34(1):61–91, February 2006.

[6] Edsger Dijkstra. Technical Report: Notes on Structured Programming. De-
partment of Mathematics, Eindhoven University of Technology, Eindhoven,
Netherlands, April 1970.

[7] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In EMNETS ’04: Pro-
ceedings of the 1st IEEE Workshop on Embedded Networked Sensors, Tampa,
Florida, USA, November 2004.

[8] Eric Eide and John Regehr. Volatiles are miscompiled, and what to do about
it. In EMSOFT ’08: Proceedings of the 8th ACM International Conference on
Embedded Software, pages 255–264, New York, NY, USA, 2008.

[9] Joakim Eriksson, Adam Dunkels, Niclas Finne, Fredrik Osterlind, and Thiemo
Voigt. MSPsim – an extensible simulator for MSP430-equipped sensor boards.
In EWSN ’07: Proceedings of the European Conference on Wireless Sensor
Networks, Delft, The Netherlands, January 2007.

[10] Xiushan Feng and Alan J. Hu. Cutpoints for formal equivalence verification
of embedded software. In EMSOFT ’05: Proceedings of the 5th ACM Inter-
national Conference on Embedded Software, pages 307–316, New York, NY,
USA, 2005.

46

[11] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and
David Culler. The nesC language: A holistic approach to networked embedded
systems. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation, pages 1–11, New York,
NY, USA, 2003.

[12] Elsa Gunter and Doron Peled. Model checking, testing and verification working
together. Formal Aspects of Computing, 17(2):201–221, 2005.

[13] Texas Instruments Inc. Msp430x1xx family user’s guide (rev. f). http://www.
ti.com/litv/pdf/slau049f, February 2006.

[14] International Organization for Standardization. ISO/IEC 9899:TC2: Pro-
gramming Languages—C, May 2005. http://www.open-std.org/jtc1/
sc22/wg14/www/docs/n1124.pdf.

[15] Andreas Kuehlmann and Florian Krohm. Equivalence checking using cuts and
heaps. In DAC ’97: Proceedings of the 34th Design Automation Conference,
pages 263–268, New York, NY, USA, 1997.

[16] Christian Lindig. Random testing of C calling conventions. In AADEBUG ’05:
Sixth International Symposium on Automated and Analysis-Driven Debugging,
pages 3–11, September 2005.

[17] LLVM Team, University of Illinois at Urbana-Champaign. The LLVM compiler
infrastructure project. http://llvm.org/, 2008.

[18] William McKeeman. Differential testing for software. Digital Technical Jour-
nal, 10(1):100 –107, December 1998.

[19] Glenford J. Myers. Art of Software Testing. John Wiley & Sons, Inc., New
York, NY, USA, 1979.

[20] George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer.
CIL: Intermediate language and tools for analysis and transformation of C
programs. In CC ’02: Proceedings of the 11th International Conference on
Compiler Construction, pages 213–228, London, UK, 2002.

[21] National Institute of Standards and U.S. Dept of Commerce Technology. The
economic impacts of inadequate infrastructure for software testing. May 2002.

[22] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and Thiemo
Voigt. Cross-level sensor network simulation with COOJA. In SenseApp ’06:
Proceedings of the 1st IEEE International Workshop on Practical Issues in
Building Sensor Network Applications, Tampa, Florida, USA, November 2006.

[23] Flash Sheridan. Practical testing of a C99 compiler using output comparison.
Software: Practice and Experience, 37(14):1475 – 1488, November 2007.

[24] tinyos.net. http://www.tinyos.net.

http://www.ti.com/litv/pdf/slau049f
http://www.ti.com/litv/pdf/slau049f
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://llvm.org/
http://www.tinyos.net

