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ABSTRACT

This thesis presents an improved method for reconstructing the spectra of as-

tronomical objects from two-dimensional (2D) charge-coupled device (CCD) images.

We address two issues, namely, estimation of calibration matrix for a CCD, and

reconstruction of spectra of astronomical objects, which is referred to as extraction.

In the first part of the thesis we estimate the elements of system calibration matrix

by modeling the two-dimensional point-spread functions (PSF) in calibration images.

Our PSF model is valid for arbitrarily complicated 2D point-spread functions, as

compared to the state-of-art extraction methods which are valid only for class of sep-

arable PSFs. We present various models for PSFs and give a quantitative comparison

between the models. In the second part of the thesis the system calibration matrix is

used to extract the spectra of a particular type of calibration images called arc-images.

We also address the issue of resolution and covariance in the extracted spectra, and

present a method that establishes optimal properties in both these regards. We

also compare quantitatively the performance of our extraction technique with the

state-of-art extraction technique. The work presented in this thesis can be deployed

for estimation of spectra of faint galaxies in presence of strong night-sky foregrounds.



To my advisor, Adam Bolton
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CHAPTER 1

INTRODUCTION

Spectroscopy is the technique of obtaining and studying the spectra of celestial

bodies, from which their composition and motions can be determined. Spectrum is

the variation of energy in the light per cm2 per unit time with particular wavelength.

The quantity, energy in the light per cm2 per unit time at a particular wavelength

is termed specific flux. The spectra are studied for certain features to determine the

chemical composition of galaxies. The use of optical fibers provides us an advantage

of recording the spectra of multiple astronomical objects simultaneously hence saving

cost and time. Calibration forms an important step in the estimation of the spectrum

of an astronomical object. This thesis explores the area of calibration in greater

detail and introduces a novel technique to perform calibration. The images used in

this thesis are a part of Sloan Digital Sky Survey-III (SDSS-III) database [1]. This

chapter explains the hardware which is used to record the images, motivation of our

thesis and contribution of our thesis to the area of astronomy. [2] [3]

1.1 Hardware

Figure 1.1 shows a schematic representation of the telescope and spectrograph

used to capture the 2D spectrum images. It shows a telescope (obj.2) which is

pointed towards the night-sky and receives light from multiple astronomical objects

simultaneously. In our observation system there are a total of 1000 optical fibers

[1] (obj.5). The light from each optical fiber passes through an arrangement which

consists of collimator mirror, dichroic beam-splitter and diffraction grating (obj.6).

The light from each optical fiber passes through the collimator mirror, which focusses

the light into parallel beam. The light then passes to the beam-splitter which divides

the light on the basis of wavelength range.
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Figure 1.1: Schematic representation of telescope and spectrograph. courtesy: Prof.
Adam Bolton, The University of Utah (unpublished)

One part is from wavelength range 5000 to 10000 Angstroms (Å) called the red

range and the other part is from 3600 to 6500 Å called the blue range. The light

in each wavelength range now passes through the diffraction grating (obj.7). The

diffraction grating separates the light in each range into its wavelength components.

There are four cameras named r1, b1, r2 and b2 which capture light from the grating

and record on a CCD detector. Camera r1 receives light from the first 500 fibers and

camera r2 receives light from the remaining 500 fibers in the red range. Similarly,

camera b1 receives light from first the 500 fibers and camera b2 receives light from

the remaining 500 fibers in the blue range. The fibers, the spectrograph and the

detector are so aligned that the wavelength direction corresponds to one axis of the

two-dimensional CCD array which are shown as rows in our case. The other axis

(columns) corresponds to positions of different fibers. Fig 1.2 shows a fiber bundle.

Each fiber receives light from an astronomical object and passes it to the beam splitter.

The beam splitter divides the light into two wavelength ranges. The red wavelength

range is transmitted and the blue range is reflected. There are 25 such fiber bundles

with 20 fibers in each bundle.

We also need bookkeeping to keep track of which fiber belongs to which astro-

nomical object. Each blue and red light now passes through a diffraction grating

which splits it into separate wavelength components. The CCD detector is aligned

with the diffraction grating and the beam splitter in such a way that the one axis

(rows) corresponds to different wavelength components and the other axis (columns)
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corresponds to position of fiber in the fiber slit. The data value at any pixel position

in the CCD frame is called “counts.” We assume a linear CCD detector in which the

intensity of light captured by the CCD at a particular pixel is directly proportional

to counts generated in that pixel.

1.1.1 Point Spread Function

After passing through the diffraction grating, light from an optical fiber separates

into its wavelength components. The camera captures the image of fiber core emitting

light at a particular wavelength. This image convolves with the optics of camera. The

resulting image is pixelized by the CCD detector and is recorded. The recorded 2D

image is called the Point Spread Function (PSF). Due to various optical aberrations

like spherical aberration, astigmatism and coma in the camera, the recorded image is

distorted [4]. The shape of this image varies across the CCD field of view. Fig. 1.3

shows the representation of a 2D PSF in an arc frame. The first image in the figure

shows the arc frame where each white blob is the PSF. The second figure zooms in

one series of blobs in an arc frame. These are 20 PSFs each belonging to a fiber of

the bundle. The next figure is obtained by zooming in on one 2D PSF. It has a peak

value (indicated by red) at the center and it decreases spatially on either side from

the center.

1.1.2 Representation of Calibration Images

Calibration is the description of the way in which any set of astronomical and

environmental stimuli translate into the responses of the digital detectors. [5]. We

consider two types of calibration images, namely, arc-image and flat-field images.

Figure 1.4 shows one such calibration image called as arc-image (“Arc”). Each

illuminated blob represents a 2D PSF formed from a fiber at a particular wavelength.

Each row represents PSFs at the same wavelength. In other words, a particular row

is an indication of a particular wavelength. PSFs from fibers in a bundle appear

together. Since the PSFs are formed by light at different wavelengths which are

separated from each other, the PSFs are formed at rows which are also well separated

from each other. Due to the separation there will not be any cross-talk between
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Figure 1.3: Representation of 2D PSF in a arc-frame

PSFs centered at separate rows (wavelength). As a result, we can determine the

shape parameters for the PSF as a function of wavelength and fiber number. This

image is used to determine wavelength solution which gives the wavelength value as

a function of row number. This helps to know in which row the light of a particular

wavelength falls. Fig. 1.5 shows CCD image called as Flat-images (“Flat”). These

images are created by lamps which emit light at all the wavelengths recorded by the
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Figure 1.4: A section of arc image

CCD instead of few discrete wavelengths like the arc-frames. As a result a PSF is

formed for all wavelengths (rows). Due to overlapping of PSFs in adjacent rows we do

not see individual PSFs as arc-images but a continuous white line. These images are

used to find the “trace” positions, which are the pixel positions of each fiber in the

x direction for each row. It is also used to estimate relative fiber-to-fiber throughput

at each pixel. The current SDSS standard assumes the PSF to have Gaussian shape

and stores the shape parameters for these values in the database. The wavelength

solution, fiber-to-fiber throughput are also stored in SDSS database. We used these

values as the initial parameters in our simulations and optimized them further based

on our new models.

1.1.3 Extraction

The spectrum of an astronomical object is defined as the variation of specific flux

as a function of wavelength. Flux or intensity is defined as the energy in the light

per cm2, per second per unit wavelength. The optical fibers record the spectrum

of different astronomical object in a two-dimensional CCD frame. Extraction is the

process of estimating the one-dimensional spectrum one per fiber, from the two-

dimensional CCD frame. It involves estimating the flux at different wavelengths

where each wavelength occupies a distinct row of the CCD.
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Figure 1.5: A section of flat image

1.1.4 Sky Subtraction

Typically, the spectrum of an astronomical object which is recorded has the

spectrum of the night-sky superimposed on it. The sky acts as a foreground on the

actual spectrum and contributes to the noise in the spectrum. Out of the 1000 optical

fibers in a telescope, few fibers are not pointed towards any astronomical object and

only record the spectrum of the night-sky. These fibers are used to estimate the

spectrum of the night-sky. To get the actual spectrum of the target object we have to

subtract the spectrum of sky from its estimated spectra which is obtained from CCD

images. The accuracy with which sky contribution can be estimated determines the

accuracy with which spectrum of the astronomical object can be estimated [6].

1.1.5 Scattered Light Correction

In Fig 1.2 we see that before being recorded by the detector, light from an optical

fiber passes through a central optics assembly. Due to imperfections in the optics in

this assembly some light from optical fibers is scattered [7]. This scattered light is

not recorded on the row at which it should be recorded depending on its wavelength

value. It can be recorded in any row. Due to scattering of light we see counts even

at bundle gaps where we do not have any optical fiber and the count value should

ideally be zero. Also, the scattered light is superimposed on the light from optical
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fibers which causes the counts to increase in pixels where light from optical fiber falls.

This scattered light can be seen as a smooth background added to the actual pixel

counts. It is seen over the entire CCD frame and not just any particular region.

1.2 Motivation

The SDSS-III has recently initiated the Baryon Oscillation Spectroscopic Survey

(BOSS) [8] which aims at targeting faint, distant galaxies with lower signal-to-noise

ratio in comparison to the galaxies targeted by SDSS-I and II. The spectrum of the

night sky which is superimposed on these galaxies however remains the same for all the

galaxies irrespective of their distance from earth. Hence, our challenge is to extract

the spectrum of faint galaxies in the presence of strong sky spectrum. The presence

of sky errors in the estimated spectra of targeted object will make it noisy and reduce

its quality. The sky spectrum which contributes to the noise remains the same for

all surveys. Even after subtraction of sky spectrum from the spectrum of object we

may observe sky residuals in the object spectrum. This makes the spectrum of low

signal to noise ratio noisier in comparison to spectrum of galaxies with high signal to

noise ratio. It will also make the detection of subtle features in the spectrum difficult.

Hence, our aim is to remove our sky-subtraction residuals significantly in comparison

to previous surveys. Although there have been attempts to partially remove the

residual sky-subtraction residuals in the SDSS spectra [9][10], these are not sufficient

in case of the faint galaxies which are being targeted by BOSS. Hence, we need to

improve our calibrations to estimate the sky spectrum accurately and its projection

into the frame of the 2D CCD image. This thesis presents a novel technique for

calibration of 2D digital images which aims to improve the quality of estimation and

subtraction of sky spectra.

1.3 Related Work

The state-of-art technique in SDSS is called the optimal extraction technique

[11]. This technique fits a profile to the fiber profile in each row and the estimated

amplitude is termed specific flux of the fiber in that row. This technique was im-

plemented in many other forms in [12, 13, 14, 15, 16, 17, 18] [19] [20]. One of the
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old spectrum extraction techniques is the boxcar-aperture summing technique. This

technique defines flux at a given wavelength by summing all counts in the range of

pixels occupied by a fiber at that wavelength. These methods and their shortcomings

are discussed in detail in Chapter 2.

1.4 Contribution

This thesis presents a novel technique to construct the calibration matrix for a

CCD detector. The calibration matrix is used to extract the spectrum of astronomical

objects from two-dimensional CCD images or frames. The three main contributions

of the thesis are:

1. Introducing three models for 2D PSF: Circular Gaussian, Gauss-Hermite and

Modified Gauss Hermite model.

2. Introducing Lorentzian profile to model the wing component of the 2D PSF.

3. Presenting a technique to solve the problem associated with deconvolution of

2D CCD data.

We also present a quantitative performance analysis of various models that we have

used. We also compare our model with the existing technique in SDSS and give a

quantitative performance analysis of the two techniques.

1.5 Thesis Overview

The rest of the thesis is organized in four chapters and each chapter explains

the research undertaken in achieving the contributions. Chapter 2 discusses briefly

the currently implemented extraction techniques and their shortcomings. Chapter 3

explains the various models used for 2D PSF and compare the performance of these

models. We also present a model for the wing component of the PSF. Chapter 4

talks about the extraction process and explains the problems witnessed during its

implementation. It also discusses the method used to overcome them. Chapter 5

provides the summary of the results that we have achieved and explains the future

areas of research which can be undertaken. Throughout the thesis we will denote

vectors in lowercase bold-face type (f) and matrices in uppercase bold-face type (A).



CHAPTER 2

BACKGROUND

This chapter introduces the standard extraction techniques which have been imple-

mented in various astronomical surveys. The first section of this chapter introduces

Boxcar Extraction technique which is one of the most basic extraction techniques.

The second section of the chapter includes the optimal extraction technique which

is currently implemented to extract flux from 2D CCD images. The third section

includes various challenges faced by any extraction technique and the inability of the

existing extraction algorithms to overcome them. Finally, we discuss the model we

have developed for our novel extraction technique.

2.1 Boxcar Extraction

This is one of the most basic and oldest extraction techniques. The flux from an

optical fiber at a particular row is distributed in a profile on the CCD detector. To

estimate this flux we make a box (aperture) around each fiber. Fig. 2.1 shows two

black lines enclosing the fiber image. This box is bounded by midpoints between the

two adjacent fiber profiles. Fig. 2.2 is obtained by zooming on one of the rows of

Fig. 2.1. We estimate the flux value of a fiber in this row by summing the pixels

enclosed by the box. This is done for all the rows of the fiber. This process is

then repeated for all fibers of the CCD. This method is also referred to as tramline

extraction [21]. The flux from all the contributing pixels j in profile i, for wavelength

bin λ is given as

f =
∑
j(i)

dj,λ (2.1)

where dj,λ is the count value at wavelength λ and pixel j.
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Figure 2.1: A section of flat-field image

This is one the fastest methods of extraction, although this method suffers from

significant disadvantages. Since it gives equal weight to all pixels in the summation

regardless of the flux level of the fiber profile in a given pixel, it propagates the

maximum CCD readout-noise into the final extraction. Also, if the flux level is very

low, then the contribution of readout-noise from outer pixels, which are surrounding

the peak value as seen in Fig. 2.2, in a profile become significant and can even

dominate flux errors [21].

2.2 Optimal Extraction

Optimal Extraction [11] is the state-of-art extraction technique implemented in

SDSS-I and II. This method is more accurate than boxcar extraction. The flux
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Figure 2.2: Cross-sectional profile across one bundle of a CCD

from every fiber in a wavelength bin (row) is distributed in a profile on a detector.

The shape and extent of this profile depends on the detector [22]. In the current

implementation of this method a Gaussian function is chosen to model each profile. To

estimate the parameters (width and centroid) of the Gaussian function we use flat-field

calibration images, which are discussed earlier in Section 1.1.2. This image is chosen

because it is constructed by using lamps which emit light in the entire wavelength

which is recorded by the CCD. Hence we can estimate profile shape parameters at all

the wavelengths recorded by the CCD. We fit every profile in a row of a fiber bundle

to a Gaussian function to estimate the parameters of the profile. The estimated

parameters are used to create a profile for each fiber in every row. Each profile

is hereafter normalized. This normalized profile tells us the distribution of count

values on the CCD when a unit of flux at a particular wavelength falls on the CCD.

A normalized spatial profile for fiber k at a particular wavelength is defined as a

function of the CCD pixel i along the x-axis:

∑
i

φik = 1 (2.2)
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where φik is the value of profile of fiber k at pixel i and fk is the flux in fiber k

The model value for pixel i is given as,

Mi =
∑
k

φikfk (2.3)

Given pi and ni be the count value and an the estimate of the statistical error at

each pixel, we wish to estimate the fk, which is the flux in each fiber. This is achieved

by the χ2 minimization of the residual R.

χ2 =
∑
i

(Di −Mi)
2

n2
i

, (2.4)

and on setting ∂χ2

∂fk
= 0 and substituting for Mi we find,

∑
k

fk
∑
t

φjiφki
n2
i

=
∑
i

φjiDi

n2
i

(2.5)

where φji is the normalized profile of fiber j at pixel i Letting

ckj =
∑
i

φkiφji
n2
i

(2.6)

and

bj =
∑
i

φjiDi

n2
i

(2.7)

we find ∑
k

fkckj = bj (2.8)

On solving coupled equation (2.8) we can get the value of flux fk in each fiber.

The optimal extraction method allows for masking of cosmic rays. The pixels

which are affected by cosmic rays have the value of inverse of ni as zero. Boxcar

extraction technique gives equal weight to all pixels and hence does not provide any

protection from cosmic rays.

The optimal extraction technique suffers from various shortcomings. As we have

discussed earlier the light at a wavelength for a fiber forms a 2D image (I ) called the

Point Spread Function. The optimal extraction technique estimates the flux in each

row (wavelength bin) of the PSF independently of the other rows. It assumes that

the 2D PSF I(x,y) is a separable function of x and y [5].



14

I(x, y) = Ix(x)Iy(y) (2.9)

This assumption does not hold good for all the PSFs in the image. In fact, as we

go from the center of the CCD to the edges, the shape of the PSF changes and is no

longer a separable function of x and y. Our new extraction technique aims to model

PSFs of all shapes across the CCD.

2.3 Challenges for an Extraction Algorithm

This section discusses the various challenges which are faced by an extraction

algorithm.

2.3.1 Fiber-to-Fiber Cross-talk

The flux from a fiber in every wavelength bin (row) is distributed in a profile on

a detector. This profile occupies a set of pixels. If the fibers are placed very close to

each other, the profiles overlap with one another [23]. In case of SDSS, every fiber

bundle has 20 fibers which are placed very close to each other. This results in overlap

of profiles of adjacent fibers and this phenomenon is called cross-talk. Since the fiber

bundles are well separated from each other, we do not observe any significant cross-

talk between fibers of different bundles. The magnitude of the overlap depends on

three factors: the spectrum separation, the width of the profile and relative intensity

of each spectrum. The smaller the spectrum separation and the larger the width of the

profile the greater the overlap. The SDSS optical system is constructed such that we

can observe around 1000 different celestial objects together. To reduce the cross-talk

the fiber-to-fiber separation can be increased. If the number of fibers is decreased,

to increase the fiber-to-fiber spacing we would need multiple observations to record

the same number of astronomical objects. This leads to increase in operational costs.

Hence there is a trade-off between costs and fiber-to-fiber spacing. Fig. 2.3 shows a

row across a CCD frame, showing two fiber bundles. Fig. 2.4 is obtained by zooming

across one of the fiber bundles. We can see that the counts do not go to zero between

two fibers. It is difficult to determine to which fiber profile these counts belong.

The count between fibers in Fig. 2.4 is around the range of 2500 and the maximum
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Figure 2.3: Cross-sectional profile across a CCD frame

count value is 25000. This shows that around 10% of the count values are affected by

cross-talk. This number is significant and we need extraction algorithms which can

correct for cross-talk. Optimal extraction technique provides correction for cross-talk,

whereas Boxcar Extraction does not.

2.3.2 Blending

Blending is overlap of PSFs of a fiber formed at different wavelengths. A PSF

which is formed by light from a fiber at a particular wavelength forms a 2D image on

the CCD. Each 2D image occupies more than one row on the CCD and is centered at

the row corresponding to its wavelength. Each PSF overlaps with PSFs of different

wavelengths surrounding it. These PSFs are centered at different rows. This over-

lapping between PSFs in the wavelength or y-direction is called blending. Fig. 2.5

shows an arc frame which has PSFs centred at different rows. Fig. 2.6 shows a flat

frame which is constructed by lamps which emit light at all wavelengths recorded by

the CCD. Hence, PSFs are formed at all rows. Due to blending of PSFs in adjacent

rows we see continuous white lines in Fig. 2.6. Similarly, an astronomical object also

emits light in a continuous range of wavelengths. Hence the PSF will be formed at



16

0 5 10 15

fiber

0

5000

10000

15000

20000

25000

pi
xe

lc
ou

nt

Figure 2.4: Cross-sectional profile across one bundle of a CCD

continuous rows. As a result the PSF in different rows will overlap with each other.

Both Boxcar and Optimal extraction do not correct for blending.

2.4 Inverse Variance

Read-out noise in a pixel is introduced in the system due to amplifier noise [24].

The counts (N ) in a pixel are composed of actual electrons proportional to the pixel

intensity at that pixel and the counts generated in that pixel by shot noise. Shot

noise is random fluctuation in the number of photons arriving.

The variance for flux in every pixel k is given by

Vk = 〈Nk〉+ r2k (2.10)

where, Nk is the number of counts in pixel k

rk is the readout noise.

Shot noise has Poisson distribution and in the case of large N, the Poisson approaches

the Gaussian distribution. The standard deviation or the uncertainty (error) associ-

ated with any pixel is given by,
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Ek =
√
Vk (2.11)

Inverse Noise (IN) of any pixel k is defined as,

INk =
1

Ek
(2.12)

Inverse Variance (IV R) of any pixel k is defined as,

IV Rk = IN2
k (2.13)

or it can be written as,

IV Rk = Vk (2.14)

Any pixel with high error value will have low inverse noise and as a result it has

low inverse variance and vice versa. Hence, inverse variance is used to weight pixels.

Any pixel with higher value of error than others is given lower weight.

2.4.1 System Calibration Matrix

We assume our CCD detector to be a linear device because as the intensity of the

light recorded by a pixel increases the counts generated in that pixel increase. For

the case of a linear CCD we can model the counts at a particular pixel l from fiber k

at a wavelength w as,

pl =
∑
h

Al,hfh + nl, (2.15)

where, h indexes all combinations of (k,w) pairs.

Here, fh represents the flux in fiber k at wavelength w and nl represent additive

noise in pixel l. Note that we have suppressed the two-dimensionality of the CCD by

allowing l to index all pixel positions (i,j ). Also, we use h to index all (k, w) pairs.

The model given by (2.15) can be conveniently written in matrix form as,

p = Af + n, (2.16)

Our aim is to estimate flux f of an astronomical object, which requires the

knowledge of A. To estimate A we model the 2D PSF as a function of fiber and

wavelength. We use arc-images for modeling the PSFs as they are well separated
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from each other and there is no cross-talk from neighboring PSFs. Once we have

estimated A, we can use its knowledge to estimate f in science data which includes

on-sky galaxies, quasars, stars, etc. We have seen in Fig.1.4 (“Arc”) that the PSFs

at different wavelengths are well defined and do not overlap with each other. Hence,

these images are used to model the PSFs as function of fiber number and wavelength.



CHAPTER 3

2D PSF CALIBRATION

We present a technique that aims to overcome the shortcomings of the optimal

extraction method. As discussed earlier when light from an optical fiber at a particular

wavelength falls on the CCD it forms a 2D image called the point spread function. In

this technique we model the 2D image as a whole, contrary to the optimal extraction

method which models it row-by-row [5]. This technique also takes into account the

superposition of different PSFs from the same fiber but at different wavelengths. In

further sections we will also see that our model is valid for all classes of PSFs contrary

to row-wise extraction which is valid only for separable PSFs.

3.1 Modeling Approach

We estimate the system calibration matrix separately for different wavelength. In

addition, we estimate the system calibration matrix separately for different bundles.

In other words, we model the PSFs together formed at a particular wavelength from

fibers belonging to a particular bundle. This is based on the assumption that the

profile of the PSFs at a wavelength is approximately similar within the bundle. From

(2.15) since, w is fixed h indexes only k. Consequently, A, the calibration matrix,

at a particular wavelength would consist of elements, [Al,k] where k = 1 . . . , 20

represents the fiber at the considered wavelength. Similarly, we estimate the value of

A separately for different wavelengths and a different fiber bundle.

For the purpose of the estimation of calibration matrix A we use arc-images.

Arc-images have a special property where the PSFs are well separated for different

wavelengths. This enables us to estimate the calibration matrix separately for differ-

ent wavelengths. Moreover, all the fibers in the arc-images carry the same flux for a

particular wavelength. Thus, we can actually estimate the system calibration matrix
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for a unit of flux. The next section explains the estimation of system calibration

matrix the PSF is assumed to have a Gaussian profile.

3.1.1 Implementation of 2D Gaussian Calibration Analysis

on Arc-data

This section explains the estimation of calibration matrix A at a particular wave-

length in a bundle. Each bundle has 20 fibers, so light from each fiber at a wavelength

will form a PSF. So we model 20 PSFs at a particular wavelength together. We assume

that the contribution of PSF for a fiber k would extend to a relatively small region

around the centroid of the PSF of fiber k. In our implementation we assume it extends

to 10 pixels on either side of the x and y direction from the centroid of the PSF. We

propose to model the PSF from a fiber k as a 2D Gaussian function, given as,

Bl,k =
1

2πσ2
e
− 1

2

[
(xl−x

k
c )

2+(yl−y
k
c )

2

σ2

]
(3.1)

where,

• nonzero values of xl varies from (xkc − 10) < xl < (xkc − 10)

• nonzero values of yl varies from (ykc − 10) < yl < (ykc − 10)

• xkc : x-centroid for fiber k,

• ykc : y-centroid for fiber k,

• σ : width of the Gaussian core which is same for all fibers of a bundle at a

particular wavelength

Different optical fibers have different throughput. Even though the arc-lamps which

are used to construct calibration images have the same flux, the flux of light which

falls on the CCD pixels varies from one fiber to another due to difference in fiber

throughput. As a result the pixel count values which are produced when the light

hits the CCD also vary with fiber.
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Consequently we scale each PSF at a particular fiber k with rk which represents

the relative fiber-fiber throughput contribution.

〈rk〉 = 1 (3.2)

where, 〈〉 represents ensemble mean. Let Akl defines the noise free count value at pixel

l when light of unit flux falls on it from fiber k.

Al,k = rkBk
l , (3.3)

As given in (2.16), the observed CCD pixel count at pixel l is given as,

pl =
∑
k

Al,kfk + nl, (3.4)

By substituting the value of Al,k from (3.3) we get,

pl =
∑
k

(
rkBk

l

)
fk + nl, (3.5)

The system calibration matrix for 2D Gaussian is given by (3.3). However, we need

to evaluate its performance and also see if it perfectly models the PSF. For this we

evaluate its performance on arc-images. The model count value at pixel l for an

arc-image is then given as:

Ml =
∑
k

Al,kfk, (3.6)

where, fk is the input spectrum of fiber k.

The minimum χ2 solution for f from the data vector p is given by [25] [26]

f = (ATN−1A)−1ATN−1p, (3.7)

where, N is a pixel noise matrix. We treat raw pixel errors as statistically independent

and, thus, the noise matrix is diagonal matrix. Value of f gives us the estimate of

flux in different fibers at a particular wavelength. In the next section we evaluate the

2D Gaussian PSF on an example image and analyse the efficiency of the PSF model

in capturing the features of 2D PSF.
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3.1.2 Results of Using 2D Gaussian Profile to Model PSF

In this section we evaluate the performance of 2D Gaussian model on an example

image shown in Fig. 3.1. This image shows PSFs at a wavelength in a bundle. This

image region is chosen such that it includes all 20 PSFs. This image region is of

size 41 × 150 pixels. In Fig. 3.2 we show the model image constructed using a

circular 2D Gaussian profile with the estimated parameters. In Fig. 3.3 we show the

residuals of subtraction of the 2D Gaussian model and data. These residuals show
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Figure 3.1: Example data region for estimation of calibration matrix at a particular
wavelength

Figure 3.2: Model constructed using 2D Gaussian profile for the PSF
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Figure 3.3: Residuals for 2D Gaussian Model

that the model is not able to capture the skewness and the ellipticity in the PSF. The

pattern in the residual values indicates high positive values (indicated by red color)

along the diagonal in the upper left quadrant and it decays as it move towards the

southwestern direction. Since the residual is obtained by subtraction of model from

data and our model is radially symmetric we attribute this pattern in residual to

asymmetric distribution of values in data. The asymmetric values indicate skewness

in data PSFs. The model being symmetric is not able to capture this skewness.

In each PSF we see two regions, an under-subtracted (positive region) and an

over-subtracted region (negative values). The under-subtracted region indicates that

at these places the value of model is low as compared to the data. Moreover, the data

have higher values at an angle from the center of the PSF. The symmetrical Gaussian

has higher values along the vertical diagonals. Due to this ‘tilt’ in data we observe

the under-subtracted region at an angle of 45 from the center of the PSF. A closer

look at the PSF of this image in Fig.3.4(b) shows the tilt in the PSF.

Figure 3.5(a) shows another image section at the center of the CCD. Fig. 3.5(b)

shows a PSF of this image section. In this PSF we do not see the amount of ellipticity

and skewness as in 3.4(b). In fact, as we move from the center of the CCD to its edges,

the skewness of the PSF increases. This is because of various optical aberrations like

spherical aberration, astigmatism and coma [4] in the CCD instrument. Hence, we
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Figure 3.4: A data region at the edge of the CCD and by zooming on one of the
PSFs

need an efficient model which is able to capture both the ellipticity and skewness in

the data. In the next section, we present one such model.

3.2 Gauss-Hermite Formulaism for PSF

Decomposition

In this section we explain the modeling of the 2D the point spread functions

PSF using a Gauss-Hermite polynomial [27, 28]. The Gauss-Hermite function is

formed when Hermite polynomials are multiplied with 2D Gaussian function to change
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Figure 3.5: A data region at the center of the CCD and by zooming on one of the
PSFs
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its shape in the x and y direction, but at the same time maintaining its Gaussian

structure. The Gauss-Hermite polynomial of order (m,n) is represented as

g(m,n) =
1

2πσ2
Hm(

x

σ
)Hn(

y

σ
)e
− 1

2

[
x2+y2

σ2

]
(3.8)

where,

• Hm(x): Hermite polynomial of order ‘m′ in the x direction

• Hn(y): Hermite polynomial of order ‘n′ in the y direction

• e−
1
2

[
x2+y2

σ2

]
: 2D Gaussian core

The Hermite polynomial (probabilists’ Hermite polynomial) of order n is given by:

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2 (3.9)

3.2.1 Orders of Hermite Polynomial

The Gauss-Hermite function for order (0,0), g(0, 0) is essentially a 2D Gaussian

core. Different orders when multiplied with the 2D Gaussian core determine its profile

in the x and y direction.

The properties of different orders of Gauss-Hermite function can be summarized

as:

1. Order 1 provide corrections to the Gaussian centroid.

2. Order 2 provide corrections to the Gaussian sigma.

3. Order 3 provide corrections to the skewness of the Gaussian core.

4. Order 4 provide corrections to the kurtosis of the Gaussian core.

Order 2 of Gauss-Hermite polynomials either increases or decreases the Gaussian

sigma value. Fig. 3.6(a) shows the symmetrical Gaussian core that is Gauss-Hermite

order (0,0). Now when weighted Gauss-Hermite of order (2,0) is added to the Gaussian

core Fig. 3.6(a), the resultant profile as represented in Fig. 3.6(b) is wider in the

x-direction. Similarly when a Gauss-Hermite polynomial of order (0,2) is added to

order (0,0) the width increases in y-direction as given by Fig. 3.6(c).
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Figure 3.6: Profile of order (0,0), symmetrical Gaussian profile (b)Profile of order
(2,0) added to order (0,0) (c)Profile of order (0,2) added to order (0,0)

Order (1,1) adds ellipticity with a tilt at 45◦ to the x-direction. Fig. 3.7(b) shows

the resultant profile when a weighted Gauss-Hermite order (1,1) is added to order

(0,0) in Fig. 3.7(a). When the weight to order (1,1) is negative the ellipticity is at

135◦.

In Fig. 3.8 we see the profile obtained on adding order (0,0) to weighted order

(0,3). Order (0,3) adds skewness to the symmetrical Gaussian profile. We can see

that the PSF decays faster on the left of pixel (5,5). It is heavy-tailed on the right of

pixel (5,5) in the spatial domain. Due to the skewness, the PSF is no longer radially

symmetric.

3.2.2 Implementation of Gauss-Hermite Calibration

Analysis on Arc-data

This section explains the modeling of the 2D PSF using the Gauss-Hermite func-

tion. We model the PSF from a fiber k at a particular wavelength as a weighted

linear combination of different orders of the Gauss-Hermite functions. Our model of
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Figure 3.7: Profile of order (0,0), symmetrical Gaussian profile (b)Profile of order
(1,1) is added to order (0,0) (c)Profile of order (1,1) is subtracted from order (0,0)
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Figure 3.8: Resultant PSF when a Gauss-Hermite order (0,3) is added to 2D
symmetric Gaussian given by order (0,0)

a 2D PSF from fiber k at a particular wavelength is given as

vkl (m,n) =
1

2πσ2
Hm(

xl − xkc
σ

)Hn(
yl − ykc
σ

)e
− 1

2

[
(xl−x

k
c )

2+(yl−y
k
c )

2

σ2

]
(3.10)

where,

• nonzero values of xl varies from (xkc − 10) < xl < (xkc − 10)

• nonzero values of yl varies from (ykc − 10) < yl < (ykc − 10)

• Hm(x): Hermite polynomial of order ‘m’ in the x direction

• Hn(y): Hermite polynomial of order ‘n’ in the y direction

• σ: width of the Gaussian core, it is same for all fibers at a wavelength

• xkc : x-centroid for fiber k

• ykc : y-centroid for fiber k

Note that the orders are taken such that m + n 6 4. In other words, there are 15

different combinations of the order pair (m,n). These Gauss-Hermite orders modify

the shape of PSF in x and y direction.

Let t be a variable that indexes all orders (m,n) of the Gauss-Hermite function

and ct represents the weight to the Gauss-Hermite function of order index t. The

Gauss-Hermite weight of order (0,0) (c0) gives the flux in a fiber at a wavelength.
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Since the system calibration matrix is constructed for a unit flux, the value of c0

is one. The other weights to Gauss-Hermite determine the shape of PSF. Let rk

represent the relative fiber-fiber throughput contribution.

The noise free count value at pixel l from fiber k is given as:

Al,k = rk
∑
t

ctv
k
l (t) (3.11)

where, Al,k is the (l, k)th element of the system calibration matrix.

By substituting the value of Al,k from (3.11) in (2.16), observed CCD pixel count

at pixel l is modeled as,

pl =
∑
k

rk

(∑
t

ctv
k
l (t)

)
fk + nl (3.12)

3.2.3 Estimation of Weights for Gauss-Hermite Orders

This section explains the estimation of the weights for different Gauss-Hermite

orders. Combining (3.6) and (3.12) we get,

Ml =
∑
k

rk

(∑
t

ctv
k
l (t)

)
fk (3.13)

Since for arc-images the input flux is constant for all fibers, , fk = f for all k’s, the

model can be written as,

Ml = f
∑
k

rk

(∑
t

ctv
k
l (t)

)
(3.14)

By changing the order of summation we get

Ml = f
∑
t

(∑
k

rkvkl (t)

)
ct (3.15)

The inner summation sums the contribution of all fibers for a particular order, which

is denoted by Θl,t

Θl,t =
∑
k

rkv
k
l (t) (3.16)

The model can be represented as

Ml = f
∑
t

Θl,tct (3.17)

Ml =
∑
t

Θl,tc̃t (3.18)

where, c̃t = fct
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In vector notation it can be represented as,

M = Θc̃ (3.19)

Now, the minimum χ2 solution for vector c̃, from the data vector p is given by

ĉ = (ΘTN−1Θ)−1ΘTN−1p, (3.20)

where, ĉ is the estimated value of c̃. Here, N is a pixel noise matrix.

The system calibration matrix is defined when light of unit flux falls on the

CCD. The arc-lamp used to construct the arc-calibration images have a constant

flux, greater than unity. The estimated value of flux in arc-lamps at a particular

wavelength is given by the amplitude of PSF. Coefficient ĉ0 (t = 0 , (m,n) = (0,0))

gives the value of the amplitude or flux of the PSF and the remaining coefficients

determine the shape of PSF. To estimate the value of weights to Gauss-Hermite

orders (c) when light of unit flux falls on the CCD, we divide ĉ with ĉ0. The resulting

value is the estimated value of c which is used to construct the system calibration

matrix.

3.2.4 Estimating the Weights to Gauss-Hermite

Orders at all Wavelengths

In the previous section we estimated weight to Gauss-Hermite orders at a few

distinct wavelengths as the arc-images form PSFs only at a few distinct wavelengths.

Our next goal is to estimate weights to Gauss-Hermite orders at all wavelengths. We

expect the value of weights to be a smooth function of wavelength.

Fig. 3.9 shows the variation of weight to Gauss-Hermite polynomial of order (1,1)

with wavelength. The wavelength axis consists of all the known wavelengths in the

arc lamp spectrum. We observe the value of weights varying as a smooth function

of wavelengths although there are few outliers. At these outliers the value of weights

either increases/decreases abruptly. This abrupt behavior in the weights is observed

for all the orders of the Gauss-Hermite polynomial and at the same wavelengths. This

abrupt behavior in the weights occurs primarily for two reasons:

1. the pixel count value at these wavelength is very low.
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Figure 3.9: Variation of value of coefficient of order: (1,1) with the known wave-
lengths

2. the PSFs at these wavelengths are blended with PSFs at the adjacent wave-

lengths.

The pixel count value is directly proportional to the number of photons hitting

the CCD. So if the number of photons hitting the pixel is low the pixel count value

is also low. We observe low count at specific wavelengths and this phenomenon is

seen across the exact same wavelengths in all the images that we have tested. This

phenomenon is due to shortcomings in the arc-lamps which causes them to emit low

photon counts at few wavelengths. Also, few wavelengths at which arc-lamp emit

light are very close to each other. As a result the effect of the PSFs from these

wavelengths are also present in the nearby rows on the CCD. This causes the PSFs

to overlap with each other and we call this phenomenon blending.

The weight to the Gauss-Hermite coefficients for wavelength 8000 Å in Fig. 3.9

has very high value. The PSFs modeled at this wavelength are the PSF row, centered

at row number 20 in the image. Fig. 3.10 shows the image region at this wavelength.

The color scale of the image has been adjusted from 0 to 90 to show the low count

values across row 20. The typical peak pixel count value of arc-images is around
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Figure 3.10: Example image region where the data count is very low

1000 whereas the pixel count values of the PSFs at row 20 are very low, less than

90. Hence, the data in these regions are not sufficient for the coefficient value to be

determined accurately.

An example of an image region at λ = 8014 Å is shown in Fig. 3.11. The PSFs

modeled at this wavelength is the PSF row, centered at row number 20. The PSFs in

this row blend with the PSF at the wavelength(row) below it. The blending indicates

that the PSF in adjacent rows overlap with each other and the model tries to fit both

the PSF rows together. As a result of this we get very high value of coefficients which

is a deviation from the expected behavior.

The arc-lamps emit light only at few distinct wavelengths. Once we have deter-

mined the values of coefficients at specific wavelengths using calibration frames, we
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Figure 3.11: Example image region showing blending of PSFs
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have to estimate values at the entire wavelength range of the CCD. This can be done

by fitting a polynomial to the known coefficients values [29]. For this we mask the

value of weights which are outliers and fit a polynomial of degree three to the known

values. Figure 3.12 indicates polynomial fit to coefficient values of a bundle at all the

known wavelengths.

3.2.5 Modified Gauss-Hermite PSF Model

In the previous section we presented a model for modeling the PSF as a linear

combination of different orders of the Gauss-Hermite function, such that the sum

of orders is less than or equal to four. We initially assume a 2D Gaussian profile

for the PSF and try to optimize its parameters, width (σk) and centroid (xkc , y
k
c ) by

using a nonlinear optimization technique. The estimated values of these parameters

in the Gauss-Hermite model are assumed as their initial values in the modified

Gauss-Hermite model. The order (0,1) and (1,0) of Gauss-Hermite polynomial give

corrections to x and y centroids and (0,2) and (2,0) provide the corrections to Gaus-

sian width. Since these parameters have already been optimized we can exclude
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Figure 3.12: Polynomial fitting to coefficients of Order (1,1)
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Gauss-Hermite orders (0,1), (1,0), (0,2) and (2,0) although we include difference of

orders (2,0) and (0,2) in our model.

As a result, the number of parameters to be estimated decreases from 15 to 12 in

this case.

The basis function is given by

A = [B0,0, Bdiff , B0,3, B0,4, . . . B4,0] (3.21)

where,

Bdiff = (B0,2 −B2,0)] (3.22)

As seen in Section 3.2.1 Fig. 3.7 order (1,1) provides ellipticity with a tilt of 45◦

to the PSF. In addition, order Bdiff ((2,0 - 0,2)) is roughly equal to the order (1,1)

rotated by 45◦. Order Bdiff increase the ellipticity of the PSF in x or y directions.

A combination of order (1,1) and order Bdiff gives us ellipticity with arbitrary angle

of tilt. We need this behaviour as different PSF across the CCD image have different

‘tilt’ and a combination of order (1,1) and Bdiff will help us in getting this behaviour.

Figure 3.14(a) shows the PSF obtained after adding weighted order (1,1) to circular

Gaussian PSF. These figures have been represented in nonpixelized forms to shows

the tilt in the PSFs clearly. We see the tilt is at an angle 45◦ from the x-axis of the

PSF. Figure 3.13 show the order (1,1) and order Bdiff . Figure 3.14(b) shows the PSF
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Figure 3.13: Order (1,1) and Order (2,0 - 0,2)
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Figure 3.14: Ellipticity with tilt at 45◦ and ellipticity with tilt less than 45◦

when both Bdiff and order (1,1) are added to circular Gaussian profile. We can see

that the tilt is now at an angle less than 45◦.

3.3 Quantitative Comparison of Various Models

for 2D PSF

The comparison of the quality of Gauss-Hermite Modified Gauss-Hermite model

PSF models is done by calculating the average χ2 value for the whole image. The χ2

value is defined as the

χ2 =
∑
i

[
(pi −Mi)

2

n2
i

]
(3.23)

Here, the pi are the raw pixel data values, Mi are the model values in those pixels,

ni are the noise values in those pixels. We define average χ2 as the mean value of χ2

over all the wavelengths and bundles in the calibration image.

Fig. 3.15 shows the model constructed by using a Gauss-Hermite profile for the

PSF. We can see that this model shows higher values of skewness and ellipticity in

comparison to the model of Fig. 3.2.

Fig. 3.16 shows the residuals by subtracting the Gauss-Hermite model from the

data. In the residuals for Gauss-hermite models we do not observe any high positive

value region in any of the quadrant of the PSF as seen in Fig. 3.3 (indicated by red

color) and the values in Fig. 3.16 are mostly uniformly distributed. This indicates

that the Gauss-Hermite model is able to capture the skewness in model. Also, there
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Figure 3.15: Gauss-Hermite model
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Figure 3.16: Residuals for Gauss-Hermite model

are no two distinct regions, under-subtracted and over-subtracted regions, as in the

case of Fig. 3.3. This indicates that the model is able to capture the ellipticity in

data. Hence, the Gauss-Hermite model capture the data better than the circular 2D

Gaussian model.

Table 3.1 shows the comparison of reduced χ2 for various PSF models. Although

the performance of modified Gauss-Hermite model decreases by 12.21% in comparison

to Gauss-Hermite model, its complexity decreases by 20% due to reduction in number

of parameters from 15 to 12. This is because the the modified Gauss-Hermite model

does not optimize the value of orders (0,1),(1,0),(2,0),(0,2) and assumes them to fixed

parameters. These values of fixed parameters, width and centroid are obtained by
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Table 3.1: Table Showing Comparison of Reduced χ2 for Various PSF Models

Model Circular Gaussian Gauss-Hermite Mod. Gauss-Her
Reduced χ2: example image region 165.32 25.27 41.403

Reduced χ2: whole image 25.88 15.48 17.37

optimizing them by assuming a 2D Gaussian profile for the PSF. This assumption is

not true as the PSF is not necessarily a Gaussian over the entire CCD image.

The region where the PSF core is elliptical (in the example image) the improve-

ment is 84.71% in comparison to the 2D Gaussian model. This shows that the model

performs very well in comparison to the 2D Gaussian model in the image regions where

the PSF is tilted. The improvement for the entire image in χ2 when Gauss-Hermite

model is used is around 40%.

3.4 Modeling of Wing Component

Fig. 3.17 is obtained by adjusting the color scale of Fig. 3.16. We observe

under-subtracted (positive and yellow in color) regions around each PSF core. We

call these ‘halo’ regions surrounding the core of the PSF wings. Fig. 3.17 shows

the halo and the core regions. These regions indicate that the Gauss-Hermite model

is unable to model the wings accurately. In these halo regions the data values are

greater than the model. Hence, we need a slowly decaying spatial profile to model

these wings component. Our next step is to incorporate a wing model while modeling

the core of 2D PSF.

3.4.1 One-Dimensional Wing Profile

Figure 3.18 shows the one dimensional flux profile. The counts are plotted in

log10 scale. We can clearly see the core and the ‘wing’ component in this profile. For

estimation of parameters, flux and width of the wing profile we use a kind of frames

called as sparse frames. These frames have only one fiber plugged per bundle and

hence the plugged in fiber does not experience any cross-talk from neighboring fibers.

Figure 3.19 shows sparse flats and Fig. 3.20 shows the arc flats. We use sparse flats

in our analysis because they have higher signal to noise ratio in comparison to sparse
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Figure 3.17: Residuals from Gauss-Hermite Model
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Figure 3.18: One-Dimensional flux profile of a fiber at a particular wavelength



39

0 100 200 300 400 500
Pixel Column

0

100

200

300

400

P
ix

el
R

ow

Figure 3.19: Sparsely plugged flat-field image
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Figure 3.20: Sparsely plugged arc-field image

arcs. Wings are very low signal components so if we use the sparse arcs for our analysis

we get negative flux in wing components by nonlinear optimization techniques. This

is because the sparse arcs have low signal value for accurate determination of wing

parameters.

In the currently implemented optimal extraction technique, the one-dimensional

flux profile in a row is modeled with a Gaussian function. Figure 3.21 shows the

model to this profile. As the Gaussian function decays abruptly, the model is unable
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Figure 3.21: Modeling of cross-sectional profile using Gaussian function

to capture the wing component. Hence, we need a slowly decaying function to model

the wing component. We use Lorentzian function to model the wing component.

Figure 3.22 shows the model for the cross sectional profile which uses Gaussian

function to model the core and Lorentzian function to model the wing component.

Since Lorentzian is a slowly decaying function the model does not decay abruptly and

is able to capture the wings of the one-dimensional profile.

The Lorentzian profile is given as:

L(x) =
1

π

σw
(x− xc)2 + (σw)2

, (3.24)

where, xc is the center of the profile and σw is the parameter specifying the width

of the profile. We also add a linear background to the model which accounts for the

scattered light. We use a linear polynomial to model the background. The model for

1D profile is given as

M = aL(x) + (1− a)G(x) + Linear Background (3.25)

where,

1. G(x) is the normalized 1D Gaussian profile for the core
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Figure 3.22: Modeling of cross-sectional profile using Gaussian and Lorentzian
function

2. L(x) is the normalized Lorentzian profile for the wings

3. a is the fraction of the total flux in the wing component

4. We call this model M as the wing model and it also has a normalized profile.

The parameters of these profiles are:

• Gaussian profile

1. centroid of the Gaussian profile

2. width of the Gaussian profile

• Lorentzian profile

1. width of the wing profile (σw)

2. relative contribution of wing profile (a)
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3.4.2 Algorithm to Estimate Parameters of Wing Profile

We have assumed that the 1D profile of a PSF can be defined completely by a

Gaussian function for the core and a Lorentzian function for the wings. We fit the

model in ( 3.25) to the data in each row. Since in sparsely plugged images only

the fiber is plugged the data in each row are bounded by the central pixel between

adjacent fibers. For each row we construct the model M by assuming some starting

parameters of the model. We fit this model to the data and by techniques of linear

optimization estimate the relative flux in the wings. Then we use this relative flux

(a) value and by techniques of nonlinear optimization estimate the parameters of the

wing component. We construct the model and calculate the error, which is given by

E =
∑
i

(Di −Mi)
2

N2
i

(3.26)

These two steps are iterated till the error (E) does not reduce any further between

two simultaneous executions of these steps.

3.4.3 Results for 1D Lorentzian Profile

The algorithm explained in the previous section is implemented on all the rows

of the image. Table 3.2 shows the median value the estimated parameters in

different rows. The median width is estimated to be 6 pixels indicating that the

one dimensional profile extends 6 pixels on either side from the center. Also, the

percentage of flux in wings is around 6% of the total flux.

3.5 Incorporating Wing Profile in 2D PSF

We deproject the 1D profile in two dimensions using the Abel Transform [30] to

get a profile for the wing component of the PSF. The estimated width (σw) is taken

as the width for the deprojected profile in both the x and y direction.

Table 3.2: Estimated Parameters of Lorentzian Profile over the Whole Image

Parameters of Lorentzian Profile median value of parameter
width 6.0038

fraction of flux in wings 0.0613
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The deprojected Lorentzian profile is:

Lkl =
σ2
w

2π

a(
1 + (xl−xkc )2+(yl−ykc )2

σ2
w

) 3
2

,

• 2D PSF from fiber k at a particular wavelength is modeled as:

Mk
l = acv

k
l (t) + Lkfl,

• ac = 1-a

This is a normalized profile for a 2D PSF after including the wing component.

The System Calibration matrix is now modified to:

Al,k = rk

(∑
t

ctacv
k
l (t) + cwL

k
l

)
, (3.27)

We have to estimate the value of ct and cw using ( 3.20) which give the contribution

of Gauss-Hermite as well as deprojected 1D Lorentzian profile.

3.5.1 Results for 2D Lorentzian Profile

In this section we evaluate the performance of Gauss-Hermite model after incorpo-

rating a model for wing component on an example image shown in Fig. 3.1. Fig. 3.23

shows the residuals (data - model) of Gauss-Hermite model before incorporating the

wing profile and Fig. 3.24 shows the residuals of Gauss-Hermite model after incorpo-

rating the wing profile. In Fig. 3.23 we can see the ‘halo’ regions surrounding the PSF

core whereas in Fig. 3.24 after incorporation of the wing profile the undersubtracted

regions (halo) are no longer observed and the residuals are close to zero in the wing

regions. This indicates that the model is able to capture the wing component.Table

3.3 shows the comparison of Gauss-Hermite model before and after the inclusion of

wing profile. For the example image region where we have chosen the χ2 improves by

28 % and for the whole image the χ2 improves by 23.5 %. This indicates that to model

the PSF accurately we need to include the wing model along with the Gauss-Hermite

model. As indicated from Fig 3.24 it also gives a better representation of the PSF

as compared to Gauss-Hermite model.
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Figure 3.23: Residuals from Gauss-Hermite model
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Figure 3.24: Residuals from Gauss-Hermite model after incorporating wings

Table 3.3: Comparison of Performance of Gauss-Hermite Model vs. Wing Model in
Terms of Reduced χ2 (χ2

r) Value

Model Gauss-Hermite Wing Model
example region χ2

r 28.95 9.77
whole image χ2

r 24.09 13.65



CHAPTER 4

EXTRACTION

Extraction is defined as the technique of estimation of flux of astronomical objects

from CCD images. The aim of this section is to explain extraction of spectra by

using the system calibration matrix which we discussed in previous chapters. We also

explain the problem associated with deconvolution during extraction of flux from 2D

CCD images and the technique undertaken to resolve it. This section also deals with

the issue of scattered light and presents an algorithm to remove scattered light from

CCD images. At the end we give a quantitative comparison between the ‘optimal

extraction’ technique and our novel technique.

4.1 System Calibration Matrix

We have discussed earlier in Section 1.1 that the 2D PSF is formed by convolution

of image of fiber core with the system optics. The shape of the PSF varies across the

CCD field of view. We model each PSF as a weighted linear combination of different

orders of the Gauss-Hermite functions. In Section 3.2.4 we estimated the coefficients

to different Gauss-Hermite orders.

4.1.1 Construction of System Calibration Matrix for Extraction

This section explains the construction of system calibration matrix (A) using the

coefficients to Gauss-Hermite functions. The coefficients to Gauss-Hermite function

are estimated for all wavelength values which are recorded by the CCD and for all

fibers in the CCD. Each PSF is modeled as,

vk,λl (m,n) =
1

2πσ2
Hm(

xl − xkc
σ

)Hn(
yl − ykc
σ

)e
− 1

2

[
(xl−x

k
c )

2+(yl−y
k
c )

2

σ2

]
(4.1)

where,
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• k represents the fiber

• λ represents the wavelength

• l represents the (i, j) pixel pair

• σ is the value of width of the 1D profile in optimal extraction algorithm. This

value is taken from the SDSS database.

The system calibration matrix can be constructed as:

Ak,λl = rk,λ
∑
t

ctv
k,λ
l (t) (4.2)

where,

• ct are the Gauss-Hermite coefficients of order t which we have been estimated

• rk,λ is the relative fiber throughput of fiber k and wavelength λ

A is constructed for all wavelength ranges recorded by the CCD. We use h to

index all pairs of (k, λ) and l to index all pair of (i, j) pixels. Hence, A is essentially

a two-dimensional matrix. Ahl defines the noise free count value at pixel l when light

of unit flux at wavelength λ falls on it from fiber k.

Once A has been determined we can estimate flux f using the equation :

f = (ATNA)−1(ATNp) (4.3)

4.1.2 Extraction of Spectra

This section explains the issues related to extraction of spectra. Equation ( 4.3)

gives us the extracted spectra using the system calibration matrix A. This equation

not only extracts the spectrum, it also deconvolves the spectral resolution [5]. The

instability in deconvolution is seen as “ringing” in the extracted spectrum. Figure

4.1 shows extracted spectrum of a fiber. We are extracting spectra of arc-images and

since these images have data only at distinct wavelength we see a peak value at a

distinct wavelength in Fig 4.1. Ringing is an undesirable feature in the spectra and

our next step is to re-convolve the spectra with its original resolution as the raw data.
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Figure 4.1: Extracted spectra of a fiber, ringing is visible

Consider the inverse covariance matrix (C−1) of the deconvolved spectrum,

C−1 = ATN−1A (4.4)

This matrix is symmetric and band diagonal. It is divided into multiple blocks

with each block representing correlation between different spectra. Each sub-block

along the diagonal shows the coupling between flux samples of the same spectrum.

Since these sub-blocks have off-diagonal elements it indicates nonzero correlation

between flux samples of the same spectrum. The nonzero elements in the off-diagonal

blocks show that we have coupling between spectra of different fibers but this is not

important because these spectra are unrelated.

Each kth sub-block, along the diagonal in ( 4.4) represents the inverse covariance

matrix for the flux samples in spectrum k.

We construct an inverse covariance matrix for each spectra. The band diagonal

elements of each matrix Ck is given by the elements of the kth diagonal sub-block.

We can write each kth inverse covariance matrix as

C−1k = QT
kQk (4.5)
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Our next step is to diagonalize this matrix to make the flux samples in a spectra

statistically independent of each other.

Let us define a normalization vector s as,

skl =
∑
l

Qkl̃l
(4.6)

Rkl̃l
= s−1kl̃

Qkl̃l
(4.7)

Let C̃k be a new diagonal matrix whose entries are given as

C̃−1kl̃l̃
= s2kl (4.8)

By construction we have,

C̃k
−1

= RT
k C̃k

−1
Rk (4.9)

and hence,

C̃k = RkCkR
T
k (4.10)

The new covariance matrix C̃k is a diagonal matrix.

Hence the extracted 1D spectrum is

f̃k = Rkfk, (4.11)

Fig. 4.2 indicates the spectrum obtained after reconvolving the extracted spectra

using the resolution matrix Rk. As a result of the reconvolution the ringing has

almost reduced to zero. The diagonal covariance matrix, C̃k indicates that the flux

samples of a spectrum are statistically independent of each other.

4.2 Scattered Light Subtraction

As we have seen earlier, due to imperfections in the optical assembly the light is

scattered and the counts from this scattered light is superimposed on the true count

values. We estimate scattered light from the bundle gaps in the CCD image. The

bundle gaps are the regions between any two fiber bundles where we do not have
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Figure 4.2: Reconvoluted spectra of fiber, ringing is reduced to zero

any optical fiber. Due to the absence of any fiber these regions should ideally have

zero count values but due to the presence of scattered light in these regions we can

observe count values. Before the extraction of spectra we remove the scattered light

component from the calibration images.

4.2.1 Algorithm to Estimate Scattered Light

The aim of this section is to explain the algorithm to estimate the scattered

light component in calibration images. Consider a bundle gap between any two fiber

bundles. We observe few counts recorded in this region where ideally counts should

go to zero. We attribute these counts to scattered light. We fit a bspline curve to

the count values in the central pixels of this bundle gap. This is done for all the

bundle gaps in the image. Figure 4.3 shows the count values in the central pixels of

the rows in a bundle gap. It is difficult to fit these values to any single polynomial

function. Hence we use a bspline curve which gives a curve that is an average fit to

the count values in a bundle [31]. Figure 4.4 shows the spline fit to the count values

in a bundle.
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Figure 4.3: Counts recorded due to scattered light in a bundle gap

500 1000 1500 2000 2500 3000 3500 4000
Row Number

−20

0

20

40

60

80

100

C
ou

nt
s

Counts in a bundle gap
spline fit to the counts

Figure 4.4: Spline fit to counts in a bundle gap
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In the next step we estimate the component of scattered light in each pixel of the

image. For each row we know the counts recorded due to scattered light in the central

pixel of bundle gaps. We fit a bspline curve to each of these value in a row. The spline

curve is evaluated at each of the pixel positions in a row to give the counts generated

due to scattered light falling on that pixel. This is done for all the rows in the CCD

image. As a result, we get a 2D image which gives the counts generated only due

to scattered light. This image is subtracted from the data image and the resulting

image is used for extraction of spectra from different fibers. Figure 4.5 shows the 2D

image where each pixel represents the counts from scattered light. This image will

be subtracted from calibration images before the actual extraction.

Figure 4.6 is a section of a bundle gap. It shows the actual counts in the bundle,

the fitted counts due to scattered light and the data value after subtracting counts

from scattered light. Figure 4.7 shows the same bundle gap after zooming in. We can

see the red line which shows the CCD data after subtraction of scattered light. The

values after subtraction go to almost zero in these bundle gaps. These bundle gaps

are a good indicator of the quality of scattered light subtracted as they themselves

do not have any counts from any targeted object. Hence, we expect the counts to go

to zero in these regions. From Fig. 4.7 we see that in the bundle gap the count values

go to zero indicating that scattered light component has been subtracted.
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Figure 4.5: 2D image showing scattered light component in each pixel
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Figure 4.6: Scattered light subtraction in a section of a bundle gap

4.3 Quantitative Comparison Between Row-by-Row

and 2D PSF Extraction Technique

In this section we present a quantitative comparison between the standard optimal

extraction technique and our 2D PSF extraction technique. We compare the root

mean square error (RMSE) of the estimated flux from both the techniques. The

RMSE is scaled by the error estimates in each extracted sample

4.3.1 Calculation of RMSE for Row-By-Row Extraction

Using the row-by-row extraction technique as explained in Section 2.2 we extract

the spectra from CCD data. In our analysis we extract the spectrum of a bundle at

a time. We have used arc-images for extraction and each of the fiber in these images

have the same spectrum, which is the spectrum of an arc lamp, used to illuminate

these images. Our next step is to estimate a model spectrum of these arc-lamps from

all the extracted spectra. In row-by-row extraction we estimate the spectrum of a

fiber at each row. The wavelength in each row at which the spectrum is estimated

varies with fiber number. This is because of the flexure in the image of the fiber

on the CCD, as a result of which light at the same wavelength from different fibers
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Figure 4.7: Scattered light subtraction after zooming in a section of a bundle gap

falls on different rows. To estimate a common model we fit a bspline curve to the

estimated spectrum of all the fibers. The resulting curve is evaluated at wavelength

spaced at equal intervals. The interval is given by:

λmax − λmin
nrows

(4.12)

where,

• nrows: number of rows

• λmax: maximum wavelength in a bundle

• λmin: minimum wavelength in a bundle

For each fiber we subtract the estimated spectrum (by row-by-row technique) from

the model spectrum to get residual spectrum. The residual flux is weighted by errors

and the RMSE is evaluated.



54

The errors associated with each of the pixel are given by the square root of the

diagonal elements of inverse covariance matrix (C−1).

C−1 = ATN−1A (4.13)

4.3.2 2D PSF Extraction

In Section 4.1.2 we discussed 2D PSF extraction of arc-images. In science images,

the spectrum of sky is present in all fibers. In these images fibers which carry the

spectrum of celestial object, the spectrum of sky is superimposed on them whereas

others fibers carry only the spectrum of the sky. The sky spectrum in different fibers

is also from one source and is present in all fibers. Similarly the spectra in arc-frames

are also from a common arc-lamp and its spectrum is carried by all fibers. So, the

spectra in fibers of arc-frames can be assumed to be similar to a sky spectrum. We

estimate a common model to the spectra in all the fibers and assume it to be a

common model to sky spectrum.

The new calibration matrix used to estimate the common model to the spectra is

given as

Ãi,j,λ =
∑
k

Ai,j,k,λ (4.14)

This takes a sum of elements of A across all fibers at each wavelength to give a new

calibration matrix Ã. This gives us a calibration matrix independent of different

fibers. Using Ã we estimate the model flux (̂f) for each of the fibers.

model image = Ãf̂ (4.15)

We subtract this model image from the data image to give a residual image. We

estimate residual flux from the residual image using the extraction explained in

Section 4.1.2.

The errors associated with each of the pixel is given by square root of the diagonal

elements of the inverse covariance matrix (C−1).

C−1 = ATN−1A (4.16)

We remove the ringing effects associated with deconvolution by reconvolving

the spectra with the reconvolution matrix R as given in equation ( 4.7) and also
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diagonalize its inverse covariance matrix using the equation ( 4.10). We weight the

difference between the estimated flux and the model value by the errors and calculate

the RMSE as a function of wavelength.

This RMSE tells us the error in the extraction technique when no spectra are

observed. So, this represents the noise in the system which will be introduced even

when no spectra are observed. We compare this RMSE between both row-by-row

and 2D PSF and compare the errors introduced by each technique. We consistently

observed 2D PSF extraction technique to perform better than row-by-row extraction

technique.

The model spectrum is given in Fig. 4.8. Figure 4.9 shows the comparison between

RMSE of the 2D PSF extraction and row-by-row over a bundle. We see that at

all wavelengths the RMSE of 2D PSF extraction is less than that of row-by-row

extraction. Figure 4.10 gives a comparison of the RMSE of row-by-row and 2D

PSF extraction method over a limited range of wavelength in a bundle. Since we

have extracted spectra from arc images which are not pointed to the actual sky they

record only the spectra of arc-lamps.
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Figure 4.8: Estimated flux
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Figure 4.9: RMSE comparison of row-by-row and 2D PSF extraction method

We subtract the model from the extracted spectra and we are only left with noise

in the system. We observe that the RMSE (at wavelength 6935Å of model spectrum

in Fig. 4.8) that is given in Figure 4.10 for a 2D PSF extraction is approximately

half of that by row-by-row extraction. From this example image we can infer that for

estimation of sky spectrum the error introduced by row-by-row extraction will be twice

that of 2D PSF extraction near bright emission lines. As a result the value of residuals

of sky-subtraction will be twice in the object spectrum. Faint galaxies have very low

signal-to-noise ratio so in the presence of higher sky residuals the estimated spectra

of faint galaxies will be noisy and will make the detection of subtle features very

difficult. Lower RMSE in 2D PSF extraction will lead to lower sky residuals and the

estimated spectra of faint galaxies will be less noisy in comparison to spectra extracted

by row-by-row extraction. Figure 4.11 gives the comparison of RMSE of 2D PSF

Extraction Method using 4th order Gauss-Hermite model, 6th order Gauss-Hermite

model and Wing Model with Gauss-Hermite model for a limited wavelength range.

We see that the RMSE of the 6th order and Wing Model decreases in comparison
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to the 4th order Gauss-Hermite Model. We have seen earlier that in terms of 2D

modeling of raw CCD data also the wing model and 6th order Gauss-Hermite performs

better than the 4th order Gauss-Hermite model. Here we compare the Wing model

with Gauss-Hermite model in terms of extracted spectra. This is mainly because

the Wing model gives a better representation of the 2D PSF as can be seen by the

χ2 improvement of Wing Model in comparison to Gauss-Hermite model. Hence the

estimation of A is improved in Wing Model in comparison to Gauss-Hermite model.

This leads to improved estimation of spectra by Wing Model and hence, it has a lower

RMSE than the Gauss-Hermite model .
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Figure 4.10: RMSE comparison of row-by-row and 2D PSF extraction method for
a limited wavelength range
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CHAPTER 5

CONCLUSION

Fiber spectroscopy has provided us a great opportunity to record the spectrum

of multiple objects together. This advantage has brought with it several drawbacks

which must be dealt with. This thesis presented a novel technique to extract the

spectrum of objects and also makes an attempt to overcome these drawbacks. We

have seen in previous chapters that the performance of our technique is better than

the state-of-art techniques. This section aims to summarize the major contribution

of our thesis and also the future work which can be undertaken in this direction [21].

5.1 Summary

This thesis presents a novel technique of calibration of astronomical images. In

Chapter 3 we presented a model whose parameter A, the system calibration matrix

has to be estimated. We estimate it elements by modeling the 2D Point Spread

Function. Once the system calibration matrix has been estimated the extraction of

flux is an inverse problem. The major contributions of this study are:

1. We introduced three models for 2D PSF: Circular Gaussian, Gauss-Hermite and

Modified Gauss-Hermite model.

2. We introduced Lorentzian profile to model the wing component of the 2D PSF.

3. We addressed the issue of resolution and covariance in the extracted spectra, and

presented a method that established optimal properties in both these regards.

The performance comparison of the models using the χ2 tests show that the Gauss-

Hermite model performs better by 40 % in comparison to the circular Gaussian profile,

because it is able to capture the skewness and ellipticity in data. We also introduced

a modified form of Gauss-Hermite model called modified Gauss-Hermite function.
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The performance of this model decreased in comparison to Gauss-Hermite model by

12.21 %. We also subtracted the component of scattered light from 2D CCD images.

We also modeled the wing component in the 2D PSF by using a Lorentzian profile.

As a result of incorporating the wing profile the performance of the Gauss-Hermite

model improved by 23.52 % in comparison to only modeling the core of the PSF. At

the end we presented a quantitative comparison between the row-by-row extraction

and 2D PSF extraction technique. We saw the RMSE of 2D PSF was significantly

lower than that of row-by-row extraction.

5.2 Future Work

This research is an alternative to the existing calibration techniques in the field

of astronomy. Problems associated with these techniques have been discussed in

Chapter 2. This research provides a novel technique of modeling the PSF. We have

presented various models to do so and also compared our models qualitatively with

the existing techniques. Although we have covered all aspects of modeling of PSF

there are certain research areas which can be undertaken after modeling of PSF is

done. The major research directions in this area are :

1. Extraction of Flat and Science data

2. Analysis of tunable laser data as ‘best case calibration’ example

3. Faster implementation

5.2.1 Extraction of Flat and Science Data

Our technique has focussed mainly on extraction of arc-images but this technique

can be applied to other images too like the object and flat image frames.

5.2.2 Analysis of Tunable Laser Data as ‘Best Case

Calibration’ Example

The discharge lamps used to construct the calibration images do not have the

same intensity at all wavelengths. As a result, the pixel count values vary at different

wavelengths. Also for a few discrete wavelengths the discharge lamps emit light at
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wavelengths close to each other because of which the PSFs at these wavelengths

overlap with each other. To estimate the parameters of a PSF at a wavelength

accurately, we have to model it in isolation without any interference from PSFs at

other wavelength. Blending leads to inaccurate determination of weights to Gauss-

Hermite polynomials. Also, in Fig.3.9 we see that from wavelength range 7500 to

8200 Angstroms we have to mask the coefficient value because they overshoot either

because of low count values or blending between adjacent PSFs. As a result we do

not get weights at well sampled in wavelength range. Tunable lasers can be used to

overcome these problems. These lasers generate light of equal intensity and at evenly

spaced wavelengths. The tunable laser test data are available for BOSS spectrograph,

and they may be used to establish the performance of the algorithms under optimal

calibration-data conditions. [32]

5.2.3 Faster Implementation

To estimate the spectra we use ( 4.3) where the square matrix (ATN−1A) which

is inverted, is of size Nspectra × Nsamples per spectrum. For SDSS-III the number

of spectra are 500 and number of samples per spectrum is approximately 4000.

As a result, this square matrix with each size being 2 million. With the present

computational capability available it is not possible to store this matrix in dense

form. Since this is a sparse matrix we can utilize the sparsity of the matrix to

store this matrix. Even with sparse matrix implementation the execution time of the

extraction algorithm is high. At present we extract the spectrum of one bundle (20

fibers) at a time. We need to implement better storage methods and faster execution

methods for extraction algorithm. We can also implement high performance parallel

computing to extract all bundles together.
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