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ABSTRACT

High-performance supercomputers on the Top500 list are commonly designed 

around commodity CPUs. Most of the codes executed on these machines are message-pass

ing codes using the message-passing toolkit (MPI). Thus it makes sense to look at these ma

chines from a holistic systems architecture perspective and consider optimizations to 

commodity processors that make them more efficient in message-passing architectures.

Described herein is a new User-Level Notification (ULN) architecture that signifi

cantly improves message-passing performance. The architecture integrates a simultaneous 

multithreaded (SMT) processor with a user-level network interface (NI) that can directly 

control the execution scheduling of threads on the processor. By allowing the network in

terface to control the execution of message handling code at the user level, the operating 

system (OS) related overhead for handling interrupts and user code dispatch related to no

tifications is eliminated. By using an SMT processor, message handling can be performed 

in one thread concurrent to user computation in other threads, thus most of the overhead of 

executing message handlers can be hidden.

This dissertation presents measurements showing the OS overheads related to mes

sage-passing are significant in modern architectures and describes a new architecture that 

significantly reduces these overheads. On a communication-intensive real-world applica

tion, the ULN architecture provides a 50.9% performance improvement over a more tradi-



tional OS-based NIC and a 5.29-31.9% improvement over a best-of-class user-level NIC 

due to the user-level notifications.
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CHAPTER 1

INTRODUCTION

Clusters based on commodity processors and interconnects are currently the most 

common platform for high-end supercomputers. Of the machines listed on the November 

2012 Top 500 Supercomputer Sites list [134], 413 or 82.6% are reported to have Gigabit 

Ethernet or Infiniband as their primary interconnect. An additional 3 machines are based 

on Myrinet. Furthermore, 440 or 88.0% of these machines are based on the commodity x86 

microprocessor [116,125], with an additional 58 based on commodity SPARC [113] or 

Power [126] processors. Only two machines report custom processors. Virtually all of the 

machines are considered massively-parallel processor architectures (MPPs) or clusters.

In November 2005, 392 or 78.4% of the top 500 machines were based on an Infini

band, Ethernet, Quadrics or Myrinet cluster interconnect. MPPs and clusters made up 464 

of the 500 machines. The processor family for 343 of these machines is based on the x86 

processor, with another 143 listed as commodity Sun SPARC, Intel IA-64, IBM Power, 

Digital Equiptment Alpha [117], or Hewlett-Packard PA-RISC [17] processors. In Novem

ber 2000, only 33 were cited to be based on such a cluster interconnect, with 274 reported 

as MPPs or clusters. Additionally, 450 were based on commodity processors, only 6 of 

which were x86. These machines are increasingly becoming based on commodity intercon

nects and processors.



The most common parallel programming model used on cluster and MPP systems 

is message-passing, using the Message-Passing Interface (MPI) [130]. Given the popularity 

and prevalence of commodity clusters and commodity-processor-based MPP systems, 

there is reason to consider optimizations to commodity processors that make them more ef

ficient in message-passing architectures.

Current trends in very large-scale integrated (VLSI) chip design [19,80,127] are 

that transistor counts on a fixed-size die are quadrupling approximately every 3 to 4 years. 

In the past 7 years, we have seen the number of commodity x86 central-processing unit 

(CPU) cores in a socket or on a single die grow from a single core in early 2005 to dual 

CPU configurations with the dual-core AMD Athlon die and dual-die Intel Pentium D by 

the end of 2005 to the 10-core single-die Intel Xeon E7 and the 16-core dual-die Opteron 

6200 in early 2012. In the commercial research domain, Intel has addressed higher core 

counts with the 80-core Tera-scale research platform and the 48-core Single-Chip Cloud 

Computer. The Intel Many Integrated Core (MIC) architecture consists of in excess of 50 

simpler x86 cores on a single chip. Other commercial high-core count processors include 

the Tilera TILE, TILE-Pro, and Tile-Gx [133], the NVIDIA Tesla [74], the AMD Radeon 

[116], and the Clearspeed CSX700 [118]. While each vendor appears to count cores differ

ently, each of these processors contains a high degree of thread resource and function unit 

replication.

As on-die concurrency increases through both an increase in core count and an in

crease in the number of functional units per core, the demand for bandwidth into and out of 

the processor chip increases [96]. High-capacitance multidrop processor interconnection 

and input/output (I/O) buses have not kept pace with this demand. Their failings are many.
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The bandwidth on a multidrop bus is shared among all of the devices attached to the bus. 

Electrical transmission line effects such as the capacitance of multiple devices on a bus and 

reflections caused by impedance discontinuities from stubs in the multidrop bus architec

ture severely limit the achievable bandwidth, length, and number devices on these buses.

Due to these limitations, I/O and processor interconnect interfaces are increasingly 

becoming point-to-point interfaces that look much more like message-passing networks 

than the traditional broadcast multidrop buses. Legacy multidrop I/O buses such as PCI 

[132] have been replaced by point-to-point interconnects such as PCI-Express [131], USB 

[135], FireWire [120], HyperTransport [121], and InfiniBand [122]. In addition, processor 

front-side buses have been replaced by point-to-point interconnects such as AMD’s Hyper

Transport-based Direct Connect Architecture [121] and Intel’s QuickPath Interconnect 

(QPI) [123]. In the memory system, we are also starting to see the traditional multidrop 

stub-bus architecture reach fundamental limits [28, 55]. Candidates for point-to-point 

memory interfaces such as Fully-Buffered Dual Inline Memory Module (FBDIMM) [119], 

buffer-on-board approaches [124, 128], and Rambus dynamic random access memory 

(RDRAM) [34] are current evidence of this trend.

To this end, it is important to work toward an architecture that can be efficiently in

terconnected both on- and off-chip. Connections on- and off-chip should be point to point. 

Communication over these point-to-point networks can be viewed as low-level message- 

passing, where queries are sent to devices and responses are subsequently received. Since 

technology trends force the hardware to use point-to-point links, there is an interesting op

portunity to expose communication directly to user-level software through a message-pass

ing interface. By looking at this opportunity from a holistic systems point of view from
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user-level software down to hardware, we can dramatically reduce the latency and over

head for both processor-to-processor and processor-to-I/O message-passing.

Previous research has shown that latency and overhead in message-passing systems 

limit parallel efficiency and scalability [79]. As a result, considerable effort has been fo

cused on reducing overheads in message sends and receives. Proposals to virtualize net

work interfaces to reduce OS involvement in messaging have shown that the benefit of 

giving user-level code direct access to efficient network interfaces can be significant 

[12,41,44,50,86]. User-level access to the network interface combined with pushing much 

of the send and receive overhead onto the network interface (NI) reduces the software over

head associated with copying message data onto the NI, triggering the sends, and copying 

received messages back into main memory.

Message notification is defined as the process by which the user code is informed 

that a message has arrived. As the overheads of sending and receiving message data have 

been reduced, the overhead of message notification has become one of the more significant 

contributors to message overhead and latency. It is the limiting factor in many programs 

[79]. This is particularly true for codes that need to frequently communicate small or me

dium sized messages where the approximate arrival times of messages at a particular re

ceiver cannot be statically determined. As a result, a large degree of effort is often required 

to design codes to use larger messages in concert with a predictable communication pattern. 

Recoding in this way not only results in more time and effort spent in code development, 

but often contributes to code complexity and results in lower run-time efficiency on other 

parts of the code. Rather than simply living with a message-passing architecture that re

quires message aggregation, it makes sense to design an interface that allows for simple and
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efficient fine-grain communication, thus allowing the programmer to embed communica

tions at the places they naturally occur in codes.

The first step in accomplishing this goal is to understand the problems with message 

arrival notification in existing architectures. Message arrival notification has traditionally 

been accomplished either by polling for arrived messages or by posting an interrupt when 

a message arrives. Each of these mechanisms has significant overhead.

Polling, or periodically checking for a message arrival, has three primary disadvan

tages. First, the polling code must be inserted into the message-passing program. This often 

requires the program writer to call a polling routine periodically. Not only does this break 

up the flow of the program, but knowing when and where to insert such calls can be non

trivial. In the case of MPI programs, checks for message arrival are only being performed 

during the execution of an MPI library call. When the main user-code is being executed, no 

polling occurs. Second, the act of polling consumes CPU cycles and power, and adds over

head to the program when no message is there. Third, there is a trade-off between overhead 

and effective latency. Frequent polling results in low effective message latency but higher 

polling overhead. Conversely, infrequent polling results in less overhead, but significantly 

increases the effective message latency perceived by the user process.

Most of the effort in reducing the costs of message notification has been in the con

text of special-purpose space-shared batch-scheduled systems. In these systems, polling 

may be acceptable from a system performance perspective when compute and communica

tion patterns are coarse-grained and regular. Such a code may compute for some time, stop 

and exchange information between processors in the job, and then resume computation. 

Additionally, in a system without direct-attached I/O or other sources of random interrupts,
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a lightweight kernel can fairly quickly deliver an interrupt to the only running user thread. 

However, even in these special purpose systems there is unnecessary operating system 

(OS) overhead and there is an energy impact of polling.

The overhead of triggering an interrupt is that the operating system must be invoked 

to handle a user-level task. The overheads associated with these mechanisms for message 

notification are discussed in more detail in the following chapter. In general-purpose time- 

shared multiuser systems the overheads induced by the operating system when an interrupt 

occurs can be significant. A big part of the inefficiency of processing interrupt-based noti

fications is due to the legacy view that interrupts are expected to be infrequent. In a fine

grained message-passing environment that uses interrupts for notifications, this is not the 

case. In a multicore chip, with messaging between cores, such as in the Intel Single-Chip 

Cloud (SCC), the cost of invoking the OS to handle a message may mean going off-chip to 

fetch OS code and data just to handle a message from a neighboring core.

This dissertation shows that hardware and software support for user-level messag

ing, including user-level notifications improves performance for fine-grained message- 

passing. One of the main contributions of this work is to provide a mechanism whereby the 

network interface can directly deliver notifications to a user-level process without the aid 

of the operating system. This is accomplished by allowing the NI to share some control over 

thread execution. The User-Level Notification (ULN) message-passing architecture pre

sented herein addresses general message-passing latency and overhead problems from a 

full-system perspective, with a key goal of tackling the message arrival notification over

head problem. This is done with a combination of the following ideas:
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• A Simultaneous MultiThreaded (SMT) processor allows the overhead of message 

handlers to be effectively hidden.

• By convention, using of one or more threads on the SMT processor as communica

tions threads with the remainder used as computation threads.

• A network interface that supports user-level access can be tightly coupled to the CPU 

to avoid the overhead and latency of slower I/O buses.

• An event synchronization table through which communication threads can park and 

wait for notifications from the NI, thus eliminating OS involvement in the common 

case.

• Messages are sent out of and placed directly into the processor cache, reducing mes

sage latency and memory bandwidth.

• A zero-copy message protocol that allows messages to be delivered directly to user- 

space without copying.

Not all of these ideas are new. For example, previous research has explored user- 

level network interfaces [12,41,44,50,86] and efficient protocols [2,9,20,42,76,100,107, 

115]. However, this specific combination of features is both unique and synergistic. Expos

ing notification mechanisms directly to user-level programs is unique. The event synchro

nization table, though built upon previous ideas for communication between threads within 

a single processor, is new in the ULN architecture. The important aspect of this architecture 

lies in its support for user-level messaging, in a general-purpose commodity cluster system 

running an off-the-shelf operating system with small modifications to an SMT processor. 

The key to the approach is to consider the full system rather than to focus on a single aspect 

of the message-passing system.
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The combination of features in the ULN architecture reduces message handling 

overheads dramatically, without requiring gang-scheduling or forcing a change to the mes- 

sage-notification model seen by the user-level software. The SMT processor, originally tar

geted to hide memory latency, makes it possible to overlap computation and 

communication without the complexity and overhead of a secondary communication pro

cessor. The combination of a zero-copy protocol and user-level access to the network inter

face allows user code to communicate without the overhead of OS involvement or excess 

data copying. Finally, integration of the NI with the SMT processor allows the NI to com

municate message arrival events back to the target thread without most of the overhead that 

an interrupt-style notification would incur.

The architecture presented in this work provides an event synchronization table 

whereby the network interface can directly deliver notifications to a user-level process, 

without the aid of the operating system. By promoting the NI to a coprocessor level, like a 

floating-point unit, direct memory access (DMA) engine, or application accelerator, the NI 

and CPU can interact more efficiently. This is done by allowing the NI to deliver notifica

tions back to the process via shared control over thread execution.

This dissertation shows that an SMT processor and direct user-level access to hard

ware messaging mechanisms can reduce and hide communication latency and overhead. 

Multiple concurrent threads can be used to hide overhead by allowing send, receive, and 

notification processing to proceed in parallel with normal program execution. However, the 

more significant contribution of this work is that it shows the benefit of a user-level notifi

cation mechanism to reduce overheads associated with message arrival. A hardware lock 

mechanism can be used to allow the NI to directly deliver message arrival events to a user

8



process, without involving the operating system. Eliminating kernel overhead in notifica

tions not only significantly reduces message-passing overhead, but also reduces, by tens of 

microseconds, the end-to-end latency that the user context perceives.

Chapter 2 characterizes the overheads of interrupts in modern processors. Chapter

3 presents the ULN architecture. Chapter 4 shows key characteristics of the ULN architec

ture which are evaluated through a combination of simulation and analysis. Chapter 5 and 

Chapter 6 discuss a real-world compute-intensive application and its characterization, re

spectively. Chapter 7 describes a mathematical model of that application on the ULN ar

chitecture. Chapter 8 presents analysis of ULN based on that model and characterization. 

Chapter 9 discusses related work. Finally, Chapter 10 summarizes this work and suggests 

future research directions to further this work.
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CHAPTER 2

MESSAGE PASSING COSTS

As there are many differing definitions of key message-passing characteristics, such 

as latency and overhead, it is important to clarify the meanings of certain terms. Many mod

els have been proposed as ways to parameterize key characteristics of message-passing 

codes and architectures. Common models include Hockney [51], LogP [27], LogGP [8], 

and PLogP [61]. Further analysis of these models is presented by Pjesivac-Grbovic [95].

2.1 Message Latency and Overhead Models

The Hockney model is a simple straightforward model that estimates communica

tion latency as the sum of the time it takes to transfer a minimal-sized zero-payload mes

sage plus the number of payload bytes in the message divided by the effective 

interconnection bandwidth. This model does not further break down the components of 

message latency or bandwidth.

The LogP model further breaks down the components of message passing into a la

tency component (L), an overhead component (o), an intermessage gap (g), and a processor 

count (P). Latency in this model is defined as the network transit time, or the time from the 

first byte entering the network interface on the source processor node until the time the first 

byte comes out of the network interface at the destination. It does not include time spent in 

the send or receive calls required to process the message. The overhead includes the time



the processor is occupied on either end to process the send or receive. The gap is the min

imum interval between consecutive message sends or receives for minimal sized messages. 

This gap is usually an artifact of the overhead required to send a message and limits the 

message throughput for small messages. The primary source of this overhead is primarily 

the time spent processing the send call and the time spent interacting with the network in

terface to initiate the send. The message latency that a user observes in this model is the 

sum of the message traversal latency and the sender and receiver overheads.

The LogGP model builds upon the LogP model by adding an additional gap param

eter (G), which is the effective bandwidth of the system on long messages. This parameter 

distinguishes between the software message initiation overhead and the effective network 

bandwidth in most systems. In the LogGP model, the message latency that a user observes 

in a real system is sum of the wire latency, the software overhead, and the message size di

vided by the bandwidth component.

The PLogP (for Parameterized LogP) model redefines message latency to be the 

user-observable message latency, or the time from which a send call is initiated on the 

source processor node to the time a receive call completes on the destination processor 

node. It also defines gap to be a function of message size. In this model, the parameterized 

gap includes the messaging software overhead that dominates effective short message 

bandwidth as well as sustained interconnection network bandwidth limits that apply to long 

messages.

One of the key parameter definitions that varies in these models is the definition of 

latency. Indeed, there are multiple aspects of latency that are important in a message pass

ing system. To the applications programmer, end-to-end latency, or the time from when the
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send call happens until the earliest time the first datum can be accessed on the receive node, 

is the latency the user sees. In this work, this end-to-end latency is commonly referred to as 

latency, and is consistent with the definition used in the PLogP model. Where appropriate, 

hardware or wire latency is used to refer to the latency of traversing through the intercon

nection network from one NI, through one or more switches, to another NI.

In this dissertation, the term overhead is broadly defined as the delay or lost com

pute ability (in terms of lost instruction issue slots) induced by cache misses, translation 

lookaside buffer (TLB) misses, copy operations, and other similar delays induced as a re

sult of messaging. Here, messaging includes all operations related to message sends, mes

sage receives and message arrival notifications. In this model, some of this overhead is a 

part of the message latency since the message is actually placed on the network only after 

the overhead of setting up the message and copying the message into the network interface 

is incurred. In addition, the message data is not truly available to the application on the re

ceive side until after the data is copied from the network interface into the user’s address 

space, the destination user process is notified of the message arrival, and subsequently the 

first bytes of message data are loaded into the processor registers where the data can actu

ally be used.

2.2 Understanding Message Overheads

Assuming a fixed network latency, end-to-end latency can be reduced by minimiz

ing the time spent on both the send and receive nodes. It can also be hidden by allowing 

other useful work to proceed in parallel with message flight. Overhead can likewise be re

duced by minimizing the amount of overhead required to send or receive a message, and 

allowing other useful work to proceed in parallel to message handling. This work focuses

12



on improving the nodes, or the end-points in the system architecture, and does not focus on 

the topology of the network itself or on the internal architecture of the network switches. 

There are many network topologies, each with advantages and disadvantages that make 

them more or less applicable in specific domains. Keeping the end-point architecture inde

pendent of the specifics of the network topology allows the nodes to be used as an efficient 

building block in many of these domains.

Since message latency is not all that different from memory latency, many of the 

techniques used to hide memory latency have been or can be used to hide message latency. 

Direct user-level access to the messaging hardware can be used to reduce both end-to-end 

latency as well as overhead. In addition to the traditional approaches of reducing message 

send and receive latency, reducing or eliminating kernel involvement in message arrival 

notification is beneficial in the reduction of end-to-end latency.

Local parallelism is useful for hiding some of the overheads in messaging systems. 

That parallelism is often provided in the form of an external communication or protocol 

processor. An example of such an external communications processor is the protocol pro

cessor in the FLASH [67] multiprocessor. While these extra processors can deal with much 

of the overhead, they do so at a cost. In addition to having the added complexity of a second, 

often special purpose processor, communication between the two local processors may in

troduce additional latency and overhead. To off-load a message send, the primary processor 

must first get the attention of the communications processor. The communications proces

sor must also still communicate with the primary processor for message arrival notifica

tions. As opposed to building a second special purpose processor and paying the energy and 

latency for the extra hop, it makes sense to just build the right processor.

13



Figure 1 shows an example of a message transmission on a machine that uses a ker

nel-mode network interface and traditional interrupts for message arrival notification. In 

these architectures, sends, receives, and notifications all make passes through operating 

system code. Since the operating system code competes with the user process for cache and 

TLB space, cache and TLB misses occur each time the system transitions from user to ker

nel space or from kernel space to user space. This results in additional overhead to the user 

process. On the left side of this figure is a representation of the activity on the sending node. 

Here the user code executes a send call. This send call ultimately results in a kernel call, so 

that the kernel can feed the message to the network interface. From there, the message is 

sent across the network through the network wires and switches. The right side of this fig

ure represents the activity that occurs at the receiving node. The processor is executing 

user-level code when a message begins to arrive. The help of the kernel is requested by the 

NI via an interrupt. The kernel copies the message from the network interface to OS kernel 

memory. When the transfer is complete, the OS may notify the process that the message 

has arrived via a Unix signal or similar mechanism. Later, when the message is needed, the 

user application calls a receive routine that results in a system call to copy the message data 

from the kernel space into the user-space receive buffer.

User-level interfaces [12,41,44,50,86] and zero-copy protocols [20,33] significant

ly reduce the overhead of message sends and receives by eliminating operating system in

volvement and copying overhead. Figure 2 shows how a message send and receive may 

look on a machine that uses user-level network interface and traditional interrupts for mes

sage arrival notification. In such an architecture, sends and receives bypass the operating 

system. However, notifications still pass through the operating system code. On the left side
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Figure 2: Anatomy of a message for a user-level NI without user-level notifications

of this figure is a representation of the activity on the sending node. The user code interacts 

directly with the network interface to deliver a message from the local user memory to the 

network. This may be accomplished via a library call; the kernel is not involved in the send. 

Similar to traditional architectures, the message is sent across the network through the net

work cables and switches. The right side of this figure represents the activity that occurs at 

the receiving node. The processor, as shown, is executing user-level code when a message 

arrives. As the message begins to arrive, the NI copies the message directly into the space 

of the destination user-process. Once the entire message has arrived, the NI notifies the ker

nel of the message arrival via an interrupt. The kernel then notifies the user code of the mes



sage arrival via a Unix signal. When the message is subsequently needed, the user 

application can directly read the message from its local memory space, with no further ker

nel involvement.

With efficient message send and receive mechanisms in place, notifications become 

the primary performance and scalability bottleneck in both high-performance computing 

and general time-shared multiuser environments. Thus, streamlining notifications becomes 

the next significant optimization opportunity. Polling for notifications consumes signifi

cant processor and memory resources and is especially ill-suited for programs with irregu

lar or unpredictable communication patterns. Interrupts in current architectures and 

operating systems are costly in terms of the number of processor cycles lost determining 

the source of the interrupt as well as handling and returning from the exception [45]. The 

high cost of interrupts makes them suboptimal for message notifications.

The overhead components of an interrupt-based notification include:

• processor pipeline flushing (due to the interrupt)

• serial instructions to get and save the processor state

• cache and TLB misses to bring in OS code and data to determine the cause of the in

terrupt

• reading NI registers or data structures to determine which process should be notified

• posting the notification to the process via a signal or other such mechanism

• cache, TLB and context switch overhead to begin execution of the user-level notifi

cation handler via the signal handler

• a trap to return from the user-level handler back to the OS

• serial instructions to restore processor state
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• cache and TLB overhead to bring in OS code and data

• scheduler and context switch overhead to restore the original user process

• post kernel cache and TLB misses on the user process’s instructions and data that 

were evicted by the kernel’s memory references

As a part of this dissertation the overhead of servicing a network interrupt for a min

imum sized packet was determined using a refined version of Schaelicke’s interrupt mea

surement work [98]. Under Solaris 2.5.1 on a 147-MHz Ultra 1, such an interrupt takes 

approximate 119 microseconds (17500 cycles) when user-level code is utilizing the entire 

L2 cache. The process of handling such an interrupt results in approximately 380 kernel- 

induced L2-cache misses. (Fewer misses may be observed in practice if the user-level code 

is not utilizing the entire L2 cache). Assuming that each cache miss takes an average of ap

proximately 270 ns to service [81], this accounts for about 103 microseconds or 87% of the 

interrupt processing time. The remaining 13% of the time is spent in flushing the pipeline 

after the interrupt and trap, carefully reading and saving critical processor state, querying 

the NI for information about the interrupt, and executing operating system code to deter

mine how to respond to the interrupt. In addition to incurring the overhead of cache misses 

during an interrupt, the process that was running when the interrupt occurred could see up 

to another 380 L2 cache misses once it is rescheduled after the interrupt to refill the cache 

with its working set.

Other results indicate that servicing an interrupt may take anywhere from 20 to 100 

microseconds on a contemporary machine [16,45]. In addition, the process of handling an 

interrupt causes the user process to incur 800-2,000 L1 and 450-1150 L2 cache misses for
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a network induced interrupt [99]. While the clock-cycle times of modern machines have 

scaled, the number of misses has not reduced significantly.

The OS memory activity necessary to determine the cause of an interrupt and deliv

er the notification to the correct user-level process is by far the dominant overhead compo

nent that an interrupt style notification incurs. Since cache-miss related penalties scale at 

memory speeds, these penalties become even larger bottlenecks in terms of missed instruc

tion issue as the memory gap widens. Optimizations to the OS and signalling system can 

reduce this overhead. However, reducing the number of cache misses and other overheads 

to get the OS penalty down below a few microseconds does not seem plausible in the near 

future. To make frequent notifications acceptable, the involvement of operating system 

must be significantly reduced or eliminated. The latency and overhead of the necessary re

maining memory references in the notification process must be hidden by overlapping 

these memory references with other useful computation.

Schemes to combine polling and interrupts as a way to reduce these overheads, such 

as polling for a short time and then requesting an interrupt [68,77], have also been explored. 

They improve message-passing performance by improving the effective message-passing 

latency, or the amount of time that the user process perceives as message latency. However, 

these schemes do not directly improve the overhead associated with polling or interrupt 

handling. Instead, they attempt to balance those overheads to get some of the combined 

benefits of each. Rather than balancing these overheads, the right approach is to reduce and 

remove them by rethinking the notification mechanism. ULN does just that.
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CHAPTER 3

ULN ARCHITECTURE

The key elements of the ULN architecture are an SMT processor, a message and 

thread synchronization table integrated into the core, a per-core on-die user-level NI, and a 

zero-copy messaging protocol. Each of these components and their benefit in the overall 

system architecture are described. This chapter also shows how ULN is optimized for effi

cient messaging, describes how notifications are delivered to the user-level process without 

kernel involvement, and walks through the path that a one-way message takes through 

ULN. Figure 3 shows the high-level block diagram of ULN and how the key components 

are connected.

3.1 The SMT Processor

This architecture employs a simultaneous multithreaded (SMT) processor, original

ly proposed by Dean Tullsen and Susan Eggers [111]. The SMT concept is seen in com

mercial processors such as the Intel Pentium 4, Atom, Itanium, and Core i7 processors, 

where it is known as HyperThreading [66], as well as in the IBM POWER5, POWER6, and 

POWER7 processors [57]. Such processors maintain several thread contexts that are all ac

tive concurrently. Multiple instructions are chosen by the processor core across the active 

contexts to execute in any given cycle. Instructions from independent threads may be issued 

on the same cycle. This allows the processor to execute two or more threads in parallel on
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a single core. It also allows for more efficient use of the available functional units, since if 

any single context cannot fully utilize the functional units, instructions from another thread 

context may fill the open slots.

By convention, in the ULN architecture one of threads on the SMT processor is 

commonly used as a dedicated communications thread. This thread generally handles mes

sage receives and notifications. This allows some of the remaining overheads associated



with messaging to overlap with computation. Specifically, using an SMT processor allows 

communication-related threads to run concurrently with computation-based threads. Since 

the communication thread generally has a different function unit usage signature from the 

compute thread, the SMT processor allows the compute threads to utilize compute function 

units while the communications thread interacts with the NI through the memory system.

The simultaneous nature of the SMT processor makes it possible to provide this 

overlap without the overhead and complexity of an extra communications processor. Fur

thermore, having both the communication and computation threads in the same core pro

vides many opportunities for improved efficiency in communication between the 

computation and communication threads within the single node. This includes the effects 

of fast data communication via a shared first-level cache. It also allows for efficient thread 

synchronization through the mechanism described in Section 3.2.

3.2 User-level Notification and Synchronization Table

Part of the inefficiency of interrupt processing is due to the legacy view that inter

rupts are expected to be infrequent. In a fine-grained message-passing environment that 

uses interrupts for notifications, this is not the case. Having the NI tightly coupled to the 

CPU makes it possible for the NI to share some control over execution in much the same 

way as load-store units can control the pipeline as cache misses are detected.

Notifications are a way of telling the thread that it has work that is ready to be per

formed. In the case of message passing, it needs to deal with a message arrival. In a modern 

processor, when a cache miss occurs, the memory reference instruction stalls the processor. 

When the relevant data is returned from the memory system, the thread continues execu

tion. Likewise, in the ULN message-passing architecture, mechanisms are provided to al
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low a thread to block, without the involvement of the operating system, waiting for a 

message to arrive. When a message arrives, the thread continues execution. This user-level 

notification mechanism is one of the main contributions of this work.

A synchronization table like that proposed by Dean Tullsen [110] allows for effi

cient communication between threads on the SMT processor. This synchronization table is 

extended to allow the NI to trigger events. In addition to threads being able to park and 

wake-up when triggered by a sister thread, they can park and wait for notifications from the 

NI on message arrival. A thread wishing to be notified when a message arrives can set a 

lock in a hardware synchronization lock table. This causes instruction issue to stall for that 

thread until it is unblocked by an arrival notification. In the common case, when the receive 

thread is scheduled, the NI just unblocks the relevant thread.

Arriving messages have several key pieces of information in their headers. These 

include a connection identifier that identifies the target receive process and a notification 

flag which specifies whether to release the associated synchronization table lock on arrival. 

If an existing handler thread is to be unblocked, the NI will attempt to unblock the thread 

by resetting the blocked bit in the table. This will fail if the relevant thread is not currently 

part of the CPU’s active context. If so, the NI records the notification in a list and the OS 

wakes the relevant thread the next time the scheduler is run.

3.3 User-level Network Interface

Bringing the NI on die allows significantly more efficient interaction between the 

processor core and the NI [10]. Having the NI physically and logically closer to the proces

sor, as opposed to the legacy model where the NI resides on an external IO bus, reduces the 

interaction latency and overhead. Allowing the NI to be in the coherence domain as op
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posed to on a noncoherent IO bus reduces a significant amount of software coherence over

head associated with sending and receiving data. This results in a reduction of message 

overhead. Furthermore, messages are sent out of and placed directly into the processor 

cache. This reduces effective message latency as well as the memory system overhead of 

fetching the message shortly after arrival.

3.3.1 Message Send Mechanisms

The ULN NI provides both programmed I/O (PIO) and direct memory access 

(DMA) mechanisms for sending messages. With PIO, message data is copied to the net

work interface explicitly by the sending program. With DMA, the sending process provides 

the NI with a message descriptor that gives the virtual address and length of the message. 

From there, the DMA engine in the NI fetches and sends the message in the background. 

PIO is appropriate for sending short messages, such as control messages, directly from reg

isters without having to compose a message first in memory. DMA is more appropriate for 

larger messages or when messages are already composed in memory.

For both DMA and PIO transfers, message data is buffered in the NI and sent when 

there is enough data to make a full packet. This keeps the network from stalling for lack of 

message data. For PIO transfers, this can be due to any stall in the instruction issue stream, 

including a context switch. For DMA transfers, the memory system is more than capable 

of keeping up with the network demand. However, buffering is still necessary to cover any 

contention or stalls in the memory system.

Since messages are normally sent by the compute threads, if the CPU is busy copy

ing message data to the network interface, it is less free to continue computing results. Plac

ing DMA capability in the NI of a traditional design frees the CPU from the overhead of
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shuttling data for larger transfers. Since sends are initiated directly from the user-level pro

cess, virtual addresses are supplied to the NI when requesting a DMA send. In addition, 

when data is received by the NI, it is placed in the user address space at the specified virtual 

address. The network interface includes the appropriate address translation capabilities, in

cluding a TLB and a page-table walk engine, to enable the use of these virtual addresses.

3.3.2 Message Arrival Mechanisms

When a message arrives, the NI looks up information about the connection in a con

nection table. Entries in the connection table contain a local context number as well as the 

virtual address base and bounds the message can legally target. In addition, the connection 

entry contains information on whether to inject messages into the cache. As a result of the 

connection table lookup, the NI has the necessary information to translate the virtual ad

dresses in the message to physical addresses. It translates the address and combines the per- 

message injection hint with the per-connection message hint to determine whether to inject 

the message into the L2. If both the message and connection table agree to inject the mes

sage, the NI sends the message data to the L2 interface with a hint to inject the message into 

the cache. If the two disagree, the message is sent to the memory system with a hint not to 

inject the message into the cache.

Despite any hints, the NI does not inject message data into the L1 or L2 cache for 

any processes that are not currently running, to avoid unnecessary interference with the run

ning process. If a message arrives without the injection bit set or if it arrives for a nonresi

dent process but the corresponding addresses are already present in the cache, the data is 

just updated in that cache as opposed to evicting the line. Otherwise it is sent to lower levels
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of the memory system to minimize interference with the currently running processes. Fig

ure 4 illustrates the packet data injection process.

Generally connections will be marked in the connection table to allow a message to 

inject data into the cache. In this way, if a message proscribes cache injection, the message 

and connection table will agree and the message will be sent with the injection hint set. 

However, it may be desirable to have a large message that is not likely to be consumed im

mediately to bypass the cache so as to not evict live data. Additionally, the local operating
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system may force messages not to be injected on a connection basis by clearing the injec

tion bit in the connection table.

If directed to inject the message data into the cache, the L2 controller allocates a line 

in the cache and acquires exclusive ownership of the line. If the data injected covers a par

tial line, the cache fills the remainder of the line via a memory read. If a full line is written, 

the cache does not fetch the old contents of the line to avoid needlessly transferring data. 

This operation is the same as if the CPU were performing similar writes. If the L2 is not 

directed to inject the message, but the line is already in the cache, the line is not evicted, 

and is just updated. Otherwise, if the L2 controller is not directed to inject the message into 

the cache and the cacheline is not already present in the cache, the line is forwarded to lower 

levels of the memory hierarchy. If the cacheline injected is also present in the L1 cache, the 

L2 controller sends and update to the L1 cache to keep the contents coherent.

The primary advantages of this injection model are:

• In the cache injection case, it reduces overhead at the memory interface by saving the 

data two trips across the system memory bus, once to write the message and once to 

read it when used.

• It keeps the data near the CPU where it can be provided quickly on demand to reduce 

end-to-end latency.

• It avoids interference within the data cache when the current running process is dif

ferent from the one the message targets.

3.4 Messaging Protocol

The message passing protocol used in this study is an extension of a sender-based 

protocol, similar to that used in Avalanche [33]. A sender-based protocol is a protocol
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where the sender specifies where the message will be placed in the receiver's memory. Such 

a zero-copy message protocol allows messages to be delivered directly to user-space, thus 

avoiding the OS overhead of copying message data. In the Avalanche Direct Deposit Pro

tocol (DDP) [107], as part of communications setup each node allocates a small fixed re

ceive buffer that is pinned in physical memory. The send process is then permitted to write 

to any offset within the bounds of the buffer. In this way, the sender effectively owns and 

manages the remote receive buffer. This also serves to provide a simple end-to-end mes

sage flow control mechanism.

A sender-based protocol is used in order to reduce message latency and overhead, 

while simultaneously reducing overall hardware complexity. However, unlike with DDP, 

there are no restrictions on where a message can be placed in the receive node memory. In

stead of specifying an offset within a receive buffer, the sending node specifies a receive 

side virtual address. When that message arrives at the destination node, the receive side NI 

checks the validity of the virtual address by first checking if the address lies within the 

bounds of the communication segment, performs a virtual to physical page translation, and 

places the data at the specified address anywhere within the user address space. This use of 

a sender-based protocol with no restrictions on the receive address provides the necessary 

mechanisms to avoid the overhead of copying data multiple times.

3.4.1 Message Descriptors

Message descriptors are the software-visible structure used for message send and 

receive information. The same message descriptor is used on both the source and destina

tion side for simplicity. Some of the fields are only used on one side of the interface. On a 

message send, this structure is filled in by the user code and passed to the NI. On a message
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receive, this structure is filled in by the receiving NI and placed in a message receive queue 

in user memory. The message descriptor is shown in Figure 5.

The destination identifier (dest_node_id) and source node identifier (src_node_id) 

in the message descriptor structure are job-specific virtual-processor identifiers. On the 

source side, the src_node_id is ignored by the NI and is normally not written. On the source 

side, the comm_id is supplied by the user-level code, but is checked for validity on the 

sender side NI. On the receive side interface, this is used to lookup the destination context 

as well as other protection information. The message_flags field contains the doorbell and 

cache_hint flags. The doorbell flag specifies whether the message should try to wake a 

thread upon arrival. The cache_hint flag allows the sender to specify whether to inject the 

message into the cache. The metadata_dest and data_dest fields are the virtual address 

where metadata and data should be placed on the receive side node. The metadata_size and 

dest_size fields describe the size, in number of bytes, of those portions of the message. The 

use of the metadata and data portions of the packet are determined by the programmer.

typedef struct 
{
uint32_t dest_node_id; 
uint32_t comm_id;

uint32_t src_node_id; 
uint32_t message_flags;

uint32_t user_field; 
uint32_t metadata_size; 
uint64_t metadata_src; 
uint64_t metadata_dest; 
uint64_t data_size; 
uint64_t data_src; 
uint64_t data_dest;

} MessageDescriptor_t;
Figure 5: Message descriptor structure

// Destination node identifier
// Identifies the communication channel
// Checked for validity at source
// Filled in by the NI
// Notification method
// Where to inject into remote memory
// User defined
// Length of metadata
// Local metadata pointer
// Remote metadata destination address
// Length of data
// Local pointer to data
// Remote data destination address



The message descriptor includes source-side metadata and data pointers, 

metadata_src and data_src, respectively. These fields are used on the message source side, 

along with metadata_size and dest_size, to describe to the DMA engine where the metadata 

and data that is to be sent exists in local memory. These fields are not communicated over 

the network. Instead, these fields are filled with zeros on the destination side. The 

metadata_dest and data_dest pointers are destination side virtual addresses. They are trans

lated into physical addresses by the receiving NI. The user_field is just an arbitrary field 

that the programmer can use as desired.

3.4.2 Message and Packet Formats

On the wire, messages are composed of a message header, user-defined metadata, 

user-data and a per-message cyclic redundancy check (CRC). The message header consists 

of the relevant information from the message descriptor. The dest_node_id is a physical 

node number, translated by the outbound NIC. The comm_id in the network is trimmed to 

a physical width of 16 bits. There are 8 message flag bits, enough to encode the notification 

mechanism, the cache injection hints, and to leave room in the network protocol for expan

sion. The metadata_src and data_src are not transmitted over the network. The 

metadata_dest and the data_dest are both 64-bit pointers that are trimmed to 48-bits over 

the wire. Finally, the metadata_size and data_size are limited to 28 bits. This gives enough 

range to send a 512MB message. Larger transfers, if needed, could easily be composed of 

a series of these 512MB messages with minimal overhead.

The message format is shown in Figure 6. Upon message arrival, the NIC creates a 

message descriptor structure, shown in Figure 5. Relevant parts of the message descriptor 

are placed in the message header. The dest_node_id is replaced with the logical node at the
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Figure 6: Message structure

destination end. The metadata_src and dest_src are set to zero on the receive side. The other 

fields, which are trimmed over the network, are zero-extended to fill the fields in the struc

ture.

Messages are split into packets for efficient routing and transfer in the network. The 

packet header contains the physical destination node, the comm_id, a 16-bit packet se

quence number, and a 32-bit packet CRC, for a total of10 bytes of overhead. The maximum 

packet size chosen for this study is 1,034 bytes, 10 bytes of packet overhead plus a 1,024 

byte payload. This results in a 1% physical protocol overhead on the network for a maxi

mum size packet. Messages that are larger than 1,024 bytes in length are broken into mul

tiple packets. The first packet in a message does not need to duplicate the destination node, 

or the comm_id. Messages that are shorter than the maximum packet length only occupy a 

packet of the appropriate size for the message on the network. Thus, a message with a zero 

bytes in the metadata and data fields occupies only 36 bytes on the network.



3.4.3 Connection Setup and Protection

Initiating communication in this architecture is accomplished via system calls that 

set up the virtual NI interface, coordinate the cooperating processes, and provide the com

munication identifier (comm_id in the structures above). Parallel job launch and commu

nication setup are provided by a simple job launch utility. Protection between unrelated 

jobs is provided via the virtual memory system, and by checks and virtualization in both 

the source and destination network interfaces. User code uses virtual addresses for both lo

cal and remote side message data addresses. Node identifiers are virtualized and are 

checked and replaced with physical node numbers for routing purposes. The communica

tion identifier (comm_id) is matched against context-specific user-inaccessible state in the 

NI.

The contribution of this dissertation is to define a general-purpose message-passing 

architecture for trusted peer processes, rather than to provide a secure, general-purpose in- 

ternet-style protocol. A protocol such as UDP or TCP could be layered on top of this pro

tocol, either directly or through a kernel interface, for facilitating communication between 

untrusted peers. This could be done by sandboxing the communicators, checking the com

munications in software, and providing software-based firewall mechanisms. These mech

anisms, however, are not a part of this work.

3.5 Network Model

The network modeled in this dissertation is a simple point-to-point link with fixed 

latencies and bandwidths between nodes. Injection and ejection port contention are mod

eled. Contention within the internals of the network and details of the operation of the net

work internals are not modeled in detail. For reasonably well-behaved traffic patterns in
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well-designed networks, congestion is not a significant limiter to injection bandwidth. In 

these cases, modeling input and output contention as well as a fixed network latency cap

tures most of the relevant performance information for the network. Examples of large- 

scale system interconnection topologies with these properties include the folded Clos or 

multirooted high-radix fat-tree [25,72], flattened butterfly [62], and dragonfly [63]. In all 

of these, the network topology is relatively insensitive to a variety of reasonable traffic pat

terns. The message-passing architecture presented is deliberately architected not to be de

pendent on the network topology.

Network latency in a large-scale system with one of these high-radix is dominated 

by wire or optical fiber traversal times across the system. This is because the diameter of 

such networks is small, meaning that there are few router-to-router hops in the network. 

However, the cables connecting between the routers can be quite long. In a large system, 

cable length to reach from one end of the system to the other might be on the order of 40 

meters. At two-thirds of the speed of light [47], signals take 200 ns to traverse 40 meters of 

optical fiber or electrical cable.

A fat-tree-topology made from a radix-64 router, such as the Cray YARC [101], can 

reach scales of 2,048 endpoints with only two levels of routers. Furthermore, scales of 

65,536 endpoints can be connected with a three-level fat-tree. This implies that the maxi

mum number of router chips that must be traversed to send a message is three for a 2,048 

endpoint system and five for a 65,536 endpoint system.

Given that contention in the network is not critical, a flat fixed one-way intercon

nection network latency of 300 ns was assumed for the network in this evaluation. For the 

microbenchmarks presented in Chapter 4, the network latency can easily be factored out to
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easily understand the latency and overhead at the endpoints. For the larger applications, this 

network latency ultimately limits the performance that an application may achieve.

3.6 The Journey of a Message

A typical message send in the ULN architecture consists of the following steps. 

First, the user-level program wishing to send a message composes the message metadata 

and data locally. A message descriptor is composed by filling in the dest_id, comm_id, 

message_flags, metadata_dest, metadata_size, data_dest, and data_size fields. In the case 

of a PIO transfer, the metadata_size and data_size fields are limited to an implementation- 

specific maximum size, not less than 1,024 bytes. In the case of a DMA transfer, the 

metadata_src and data_src fields must also be filled with a legal local virtual address.

In the PIO case, the user program writes the message header, metadata, and message 

data to the NI via memory-mapped PIO register writes. When all of the pertinent data has 

been transferred to the NI, the user program initiates a send via a load of the PIO register. 

This register returns a pointer to the status indicating whether the message was accepted 

and gives error information if it was not accepted. In the DMA case, the program uses an 

atomic swap to the N I’s DMA register to provide a pointer to the message descriptor and 

to simultaneously get a status pointer.

The network interface begins the transfer by looking up the destination process and 

comm_id to check for permissions. If the destination is legal, the NI determines the route 

to the remote node, checks the pointers to the data to be transferred to ensure they are legal, 

begins to fetch the packet data, assembles the header of the message, and begins streaming 

the message to the network.
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On the receive side, the message is placed directly in the address space of the re

ceiving process by the NI. When the message header arrives, the NI checks base and 

bounds of the virtual address ranges in the message. As the data arrives, it is sent directly 

to the L2 interface with the appropriate cache hint. The L2 sends the message to lower lev

els of the memory hierarchy or acquires ownership of the relevant cache lines and injects 

the message into the cache as appropriate.

When the entire message has arrived, the NI fills in a notification structure in the 

user process's memory space, and if requested by the message, signals the SMT processor 

to unblock the relevant thread. If the associated thread is not currently in the CPU, the no

tification is still queued and a flag is set to let the OS know to unblock the thread the next 

time the relevant process is scheduled.

Figure 7 shows an example of a message in this architecture.

3.7 Summary

A user-level accessible NI is used to reduce send and receive overhead. Having the 

network interface physically and logically close to the processor opens up possibilities to 

more tightly integrate it with the processor core, further reducing overhead and latency. 

Having the NI on die gives the processor access to it on a per cycle basis. This close cou-
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pling further reduces the overhead in getting information to and from the NI. Message 

sends and receives do not have to go out over slow and inefficient I/O buses. A zero-copy 

protocol [20,33] is used to eliminate copying overhead for received messages. The combi

nation of user-level access to a closely coupled NI and the zero-copy protocol allow for ef

ficient sends and receives.

The ULN architecture presented significantly reduces send, receive, and notifica

tion overhead. The key features of the architecture are the following: SMT processors hide 

and tolerate message overhead and latency by allowing concurrency between communica

tion operations in one thread and computation in other threads, send and receive overhead 

is reduced by a user-level network interface combined with efficient protocols, and notifi

cations can be delivered directly to user-level without the overhead of an operating system. 

This architecture provides a low-latency, low-overhead message passing framework in 

which large-scale, fine-grained parallel applications can be efficiently executed across sev

eral processing nodes.
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CHAPTER 4

MICROBENCHMARKS

A few microbenchmark kernels are used to show the key latency and overhead char

acteristics of this architecture for sends, polling receives, thread wake-up receives, and in

terthread communication. These characteristics are applied to a set of ping-pong kernels, 

used to illustrate the end-to-end latencies of messages in the ULN architecture. These ping- 

pong kernels are described in Section 4.3. The performance of multiple simultaneous 

threads in the SMT processor is analyzed in Section 4.4. These results are evaluated using 

the simulator described in Section 4.1. Section 4.5 applies these results to a symmetrical 

messaging kernel to understand the overheads of messaging in ULN. This kernel also 

serves as an example of how to use the message-passing features of ULN and illustrates a 

framework for a full communication system.

In addition to evaluating the kernels on the simulator, a few kernels are measured 

on real machines to characterize overheads. The Tuning and Analysis Utilities (TAU) [102] 

from the University of Oregon are used as described in Chapter 6 to characterize the Dis

tributed Interactive Ray-Tracer (DIRT), a real-world computation and communication in

tensive application. These tools work by instrumenting the application source code, and as 

a result add some overhead. A simple kernel is used in Section 4.6 to characterize and ac

count for that overhead. DIRT also has some internal instrumentation based on g e t t i m -



e o f d a y ( )  that is used for understanding general performance characteristics. TAU and 

g e t t i m e o f d a y ( )  overheads are measured in Section 4.6 and Section 4.7, respectively, 

on the same machine used to characterize the application. This machine is described at the 

beginning of Section 4.6.

This chapter describes each of those microkernel benchmarks in turn along with the 

associated results from those benchmarks. Those results are used in subsequent chapters to 

model and project the performance of ULN on a real-world application.

4.1 Simulator

A simulator was built to extract characteristics for use in the modeling of the larger 

full-system application model. The simulator is an execution-driven, cycle-accurate, SMT 

capable system simulator, known as SMT-MLRSIM. SMT-MLRSIM is based on ML- 

RSIM [98] Mike and Lambert’s variant of the Rice Simulator, RSIM [94]. ML-RSIM adds 

a number of features to the baseline RSIM. ML-RSIM includes a first-level instruction 

cache (I-cache) model, translation lookaside buffer (TLB) models, a privileged mode mod

el and I/O component models such as a PCI bridge model, a real-time clock model, and a 

hard disk drive model. The privileged mode extensions include the traditional privileged 

levels of execution as well as privileged instructions and privileged control registers to en

able and disable interrupts, to manipulate TLB state, and to handle context switches. These 

extensions allow a full operating system to be accurately simulated.

SMT-MLRSIM adds SMT processor capability as well as the network interface de

scribed in Chapter 3 to the MLRSIM simulator. SMT-MLRSIM runs unmodified Solaris 

binaries under a modified NetBSD kernel, called lamix, when running in single-threaded 

mode. The kernel does not have the appropriate kernel locks to support a multithreaded pro
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cessor, hence lower-level programming is used when exploring multiple thread experi

ments.

SMT-MLRSIM is configured to simulate a system with the following characteris

tics:

• SPARC V8+ [113] instruction set

• 3 GHz core clock

• A M IPS R10000 [112] microarchitecture

• 2-4 SMT threads

• Up to 8 instructions issued per cycle

• 64 KB L1 instruction cache

• 64 KB L1 data cache

• 16 MB unified L2 cache

• 1 GB/s interconnection network injection bandwidth per core

• 300 ns interconnection network latency

Results from running kernels in this simulator are presented in the respective sec

tion below.

4.2 Messaging Overheads

Message sends, polling receives, notification-based receives, and interthread wake- 

up were examined on the simulator to understand the cost of each operation. These opera

tions were measured by looking at the instruction trace from running the code in Section

4.3 below. Table 1 shows the timing for a message send based on a polling receive.

The send operation sets up a message descriptor, does an exchange operation to the 

NIC to initiate the send by giving the NIC a pointer to the message descriptor and getting
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Table 1: Polling message timing

Event Time
Send call initiation T=0 ns
Send exchange issues T=5 ns
Exchange arrives at NIC, NIC initiates send T=15 ns
Exchange result returned to send processor T=25 ns
Send call returns T=26 ns
Message begins injecting at source T=45 ns
First byte arrives at destination T=345 ns
Last byte arrives at destination T=383 ns
Last missing poll arrives at destination NIC (on average) T=413 ns (+/- 10 ns)
Destiation NIC marks message as arrived T=423 ns
Successful poll arrives at NIC (on average) T=434 ns (+/- 10 ns)
NIC poll response returned to processor (on average) T=444 ns (+/- 10 ns)
Receive call returns (on average) T=448 ns (+/- 10 ns)

a status in return, and then checks the send status before returning. The send operation ex

ecutes 31 instructions and involves an exchange with the NIC that takes 20 ns for the round- 

trip time. The the total send call time is 26 ns.

Leading up to the exchange instruction that initiates the send, the send routine exe

cutes 23 of those 31 instruction in about 5 ns. So the NIC receives the send command 15 ns 

into the send operation, including the 10 ns one-way trip time to the NIC. The NIC begins 

placing data on the wire 30 ns after the send command is received at the NIC, or 45 ns after 

the start of the send call.

The polling receive reads a NIC register to see if a message is ready, and then if a 

nonzero message descriptor pointer is returned, the poll is a success and that pointer is re

turned. If it is zero, indicating no message received, it reads the NIC register again. In the 

case that the message is there when the poll message is called, 34 instructions are executed 

taking 31 ns, including a 20 ns round trip to the NIC. In the case that the message is not



there, the maximum serialized polling frequency is 21 ns, set primarily by the 20 ns round- 

trip to the NIC. If a message arrives just in time to catch the cycle where the NIC is polled, 

the additional latency added to the message receive is the 10 ns response from the NIC, plus 

4 ns to execute the code following the poll, or 14 ns. On average, however, the message will 

come in half-way through the polling cycle, thus the expected postmessage-arrival over

head is about 25 ns.

A message arrives from the NIC perspective 40 ns after the tail of the message is 

received on the wire. This is the effective pipeline latency of the NIC. For a minimal-sized 

message of 38 bytes on the wire, there is 38 ns of serialization latency between the head of 

the message arriving and the tail of the message arriving. Thus the minimal sized message 

is marked as arrived by the NIC 78 ns after the first byte arrives. For polling, the expected 

time before the processor notices the message is 93 ns after the first message byte reaches 

the NIC input. For a nonminimal-sized message, this also includes the serialization latency 

of the data and metadata portions of the message at 1.01 ns per byte over the 1 GB/s per 

core network, including packet overheads.

The notification-based receive, shown in Table 2, is similar to the polling-based re

ceive with the exception that instead of repeatedly polling, it sets the wake mechanism, 

checks for an arrived message, and then sleeps on the mechanism. In the case that the mes

sage has already arrived, the receive call executes 36 instructions in 32 ns. In the case that 

a message has not arrived, there is a 28 ns setup overhead. When the message arrives, it 

takes the NIC 10 ns to notify the core and wake the receive thread. The thread then requires 

25 ns to receive the message, for a total of 35 ns post message arrival, or 103 ns after the 

first byte of a minimal-sized message arrives at the input to the NIC. Thus the notification-
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Table 2: Notification-based message timing

Event Time
Send call initiation T=0 ns
Send exchange issues T=5 ns
Exchange arrives at NIC, NIC initiates send T=15 ns
Exchange result returned to send processor T=25 ns
Send call returns T=26 ns
Message begins injecting at source T=45 ns
First byte arrives at destination T=345 ns
Last byte arrives at destination T=383 ns
Destiation NIC marks message as arrived T=423 ns
NIC wakes receive thread T=433 ns
Receive thread completes receive of message T=458 ns (+/- 10 ns)

based mechanism takes an additional 1 ns of overhead in the case that a message is already 

there and adds an additional 10 ns of latency in the case that a message has not already ar

rived. However, this small penalty comes at the benefit of reduced overhead from not poll

ing in the case where the receive waits for some period for message arrival.

The thread wake-up overhead in the simulator at the lowest level is equivalent to a 

register write. However, for software convenience, this is wrapped by a function call. As 

the function call overhead is minimal, it takes 7 instructions and 2 ns to complete. The time 

until the thread wakes, however, and begins graduating instructions is 5 ns. This time is rel

atively low as the instructions are already fetched and decoded, hence instructions begin to 

issue immediately after wake-up. Table 3 summarized these overheads and latencies.

4.3 Ping-Pong

Ping-pong [52,53] message tests are commonly used in the characterization of a 

message-passing architecture. A ping-pong microbenchmark sends a minimal sized mes

sage round-trip from a source node to a destination node and back, which is useful for un-



42

Table 3: Message-passing latencies and overheads

Parameter Value
Send Overhead 26 ns
Send Initiation Latency (send call to NIC data out) 45 ns
Polling Receive Overhead (message already waiting) 31 ns
Polling Receive Latency (no message waiting) 93 ns
Notification Receive Overhead (message waiting) 32 ns
Notification Receive Latency (no message waiting) 103 ns
Thread Wake-Up Overhead 2 ns
Thread Wake-Up Latency 5 ns

derstanding end-to-end message latency and message send, receive, and notification 

overhead. Consider two nodes, A and B. Node A sends a message to node B and then ex

pects a response. Node B, waits for a message from node A and then immediately responds 

by immediately returning a message to node A .

Since messages in ULN can be received either by polling or by posting a user-level 

notification, both styles are demonstrated. The operation of the two styles is conceptually 

the same, with the only difference being the receive style. Additionally, the envisioned use 

of the multiple threads in the ULN architecture is to use one thread as a receive communi

cations thread. A third style of ping-pong is to setup a receive thread on both nodes and 

have the receive thread on node B respond to the ping, and then have the receive thread on 

node A wake the initiating thread upon arrival of the pong message. In all three of these 

versions, node A and B first synchronize by doing a ping-pong before measurements are 

taken. This is to ensure that the message from node A is not sent before node B is waiting 

to receive it, so that round-trip latency measured does not include arbitrary synchronization 

overhead.



The common m a in ( )  function for the two single-threaded versions is shown in 

Figure 8. This function starts with establishing the connection between two nodes in the 

e s t a b l i s h _ c o m m u n i c a t i o n ( )  call. It then calls the appropriate function for the 

node, n o d e A _ s id e ( )  or n o d e B _ s i d e ( ) . After the tests in those functions are com

plete, it tears down the connection by calling te a r d o w n _ c o m m u n ic a t io n ( ) .

A helper function called s y n c ( ) , shown in Figure 9, is also shared across these 

ping-pong tests. It is a simple routine that ensures the other node is ready before the mea

surements begin. Here, a polling message receive is used to keep the code similar to the re

ceive style used in the first ping-ping test. The choice of the messaging style in this sync 

function does not impact the results as the purpose of the function is to ensure that the other 

node is ready before measurements are made on the real ping-pong test.

4.3.1 Polling-Based Ping-Pong

For the polling ping-pong test, the function n o d e A _ s id e ( )  shown in Figure 10, 

is executed on node A. The function n o d e B _ s i d e ( ) , shown in Figure 11, is executed on 

node B. After initializing variables, both sides call s y n c ( )  to perform an effective barrier

int main()
{
CommID_t comm_id;

// establish communication with the other node, exchange receive 
buffer information, etc.

comm_id = establish_communication(2);

if(my_node_id() == nodeA) 
nodeA_side(comm_id); 

else
nodeB_side(comm_id); 

teardown_communication(comm_id);
}

Figure 8: Ping-pong microbenchmark: m a i n ( )
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MessageDescriptor_t request;

request.comm_id = comm_id; 
request.dest_id = remote_node; 
request.doorbell = NOTE_POLL; 
request.metadata_size = 0; 
request.metadata_src = (uint64_t) NULL; 
request.metadata_dest = (uint64_t) NULL; 
request.data_size = 0; 
request.data_src = (uint64_t) NULL; 
request.data_dest = (uint64_t) NULL;

send(&request);
poll_recv();

}
Figure 9: Ping-pong microbenchmark: s y n c ( )

void sync(CommID_t comm_id, uint3 2_t remote_node)
{

operation with the other node to make sure the node is ready. In n o d e A _ s id e ( ) , node A 

sends a ping message and immediately polls, or busy waits, for a return pong message to 

arrive. In n o d e B _ s i d e ( ) , node B polls waiting for the initial ping message from node A 

and when received, immediately returns a pong message. Round trip latency is measured 

on node A just before it sends the ping message to node B and ends just after it receives the 

pong message from node B . This gives us the minimal round-trip message time that would 

be expected for any communication. Though it takes advantage of the optimized sends and 

receives in the ULN architecture, it does not utilize the efficient notification mechanisms.

Again, referring to Table 1, on node A, the send call occurs at what we will call time 

T=0 ns. Data begins going out at time on the wire 45 ns after the call to s e n d ( ) . The net

work delivers the packet after a 300 ns latency and the first byte arrives at node B ’s input 

at time T=345 ns. The message is received by node B ’s NIC 78 ns after the first byte hits 

node B ’s input, or time T=423 ns. By varying when node B began polling, we can see the 

receive call return at anywhere from time T=438 ns to time T=458 ns, with an expected
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// Misc variables
unsigned long long start, stop;
// Message system defined types 
MessageDescriptor_t request;
MessageDescriptor_t *response_ptr;
// Example User defined type 
user_request_header_t user_request;

// Specify communication
request.comm_id = comm_id;
request.dest_id = nodeB;
request.doorbell = NOTE_POLL;
user_request.message_type = ECHO_REQUEST;
request.metadata_size = sizeof(user_request);
request.metadata_src = (uint32_t) (caddr_t) &user_request;
request.metadata_dest = KNOWN_NODE_B_LOCATION;
request.data_size = 0;
request.data_src = (uint64_t) NULL;
request.data_dest = (uint64_t) NULL;

// Sync up before measuring latency 
sync(comm_id, nodeB);
// measure round trip latency 
start = get_clock();
send(&request); // send the ping message to nodeB
response_ptr = poll_recv(); // wait for the pong message 
stop = get_clock(); 
free_note(response_ptr);
printf("Node A end-to-end latency is %d clocks\n", stop - start);

}
Figure 10: Poll-based ping-pong: n o d e A  s i d e ( )

void nodeA_side(CommID_t comm_id) // Node A code
{

one-way latency of 448 ns. The same thing then happens in the other direction. Thus the 

expected round-trip ping time is 896 ns +/- 20 ns.

4.3.2 Notification-Based Ping-Pong

Other than the difference in notification, the code and operation, the notification- 

based ping-pong is identical to the polling version. The n o d e A _ s id e ( )  and 

n o d e B _ s id e ( )  functions are nearly identical to the polling version, with the exception 

of using the NOTE_WAKE doorbell instead of the NOTE_POLL doorbell and the use of
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// Message system defined types 
MessageDescriptor_t *request_ptr;
MessageDescriptor_t response;
// Example User defined type 
user_response_header_t user_response;

// Specify communication
response.comm_id = comm_id;
response.dest_id = nodeA;
response.doorbell = NOTE_POLL;
user_response.message_type = ECHO_RESPONSE;
response.metadata_size = sizeof(user_response);
response.metadata_src = (uint32_t) (caddr_t) &user_response;
response.metadata_dest = KNOWN_NODE_A_LOCATION;
response.data_size = 0;
response.data_src = (uint64_t) NULL;
response.data_dest = (uint64_t) NULL;

// Sync up
sync(comm_id, nodeA);
// Wait for a request from nodeA and respond 
request_ptr = poll_recv(); 
send(&response); 
free_note(request_ptr);

}
Figure 11: Poll-based ping-pong: n o d e B  s i d e ( )

void nodeB_side(CommID_t comm_id) // Node B
{

s l e e p _ r e c v ( )  instead of p o l l _ r e c v ( ) . These functions are shown in Figures 12 and 

13. The differences are highlighted in bold. These changes cause the node to suspend wait

ing for the arrival of the ping and pong messages, respectively. When the message from 

node A arrives at node B, the thread wakes up, handles the receive, and returns a pong mes

sage. Likewise, after node A sends the initial ping message to node B, it sleeps until the 

pong message is returned. This measures the minimal additional overhead of handling a 

message receive with ULN’s notification mechanism over polling.

Likewise, by examining the instruction trace, we can see that notification ping-pong 

has identical timing up until the notification. However, the notification time happens as a

result of a thread wake-up and is independent of exactly how far in advance the thread goes
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// Misc variables
unsigned long long start, stop;
// Message system defined types 
MessageDescriptor_t request;
MessageDescriptor_t *response_ptr;
// Example User defined type 
user_request_header_t user_request;

// Specify communication
request.comm_id = comm_id;
request.dest_id = nodeB;
request.doorbell = NOTE_WAKE;
user_request.message_type = ECHO_REQUEST;
request.metadata_size = sizeof(user_request);
request.metadata_src = (uint32_t) (caddr_t) &user_request;
request.metadata_dest = KNOWN_NODE_B_LOCATION;
request.data_size = 0;
request.data_src = (uint64_t) NULL;
request.data_dest = (uint64_t) NULL;

// Sync up before measuring latency 
sync(comm_id, nodeB);

// measure round trip latency 
start = get_clock();
send(&request); // send the ping message to nodeB
response_ptr = sleep_recv(); // wait for the pong message 
stop = get_clock(); 
free_note(response_ptr);
printf("Node A end-to-end latency is %d clocks\n", stop - start);

}
Figure 12: ULN-based ping-pong: n o d e A  s i d e ( )

void nodeA_side(CommID_t comm_id) // Node A code
{

to sleep. Hence, the one-way message time is 458 ns and the round-trip ping-pong time is 

916 ns.

4.3.3 Receive Thread Ping-Pong

In the ULN architecture a separate communications thread will commonly be used 

to handle incoming communications. A third variant of ping-pong explores message pass

ing with multiple threads per node. Here, node A has two threads, a thread that mimics a 

compute thread, shown in Figure 14, and a simplified receive communications thread,
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// Message system defined types 
MessageDescriptor_t *request_ptr;
MessageDescriptor_t response;
// Example User defined type 
user_response_header_t user_response;

// Specify communication
response.comm_id = comm_id;
response.dest_id = nodeA;
response.doorbell = NOTE_WAKE;
user_response.message_type = ECHO_RESPONSE;
response.metadata_size = sizeof(user_response);
response.metadata_src = (uint32_t) (caddr_t) &user_response;
response.metadata_dest = KNOWN_NODE_A_LOCATION;
response.data_size = 0;
response.data_src = (uint64_t) NULL;
response.data_dest = (uint64_t) NULL;

// Sync up
sync(comm_id, nodeA);
// Wait for a request from nodeA and respond 
request_ptr = sleep_recv(); 
send(&response); 
free_note(request_ptr);

}
Figure 13: ULN-based ping-pong: n o d e B  s i d e ( )

void nodeB_side(CommID_t comm_id) // Node B
{

shown in Figure 15. The compute thread on node A sends a ping message to node B and 

then suspends itself pending a wake-up event from the incoming communications thread 

running on the same node. Node B uses only a single thread, shown in Figure 16, that mim

ics a communication thread. When node B receives the ping message, the communications 

thread wakes up, handles the ping message and responds with a pong message. When the 

pong message arrives back at node A , the incoming communications thread wakes up to in

spect the incoming message. It determines that the incoming message is destined for the 

compute thread and signals that thread to wake-up. Finally the compute thread on node A 

receives the message.
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void nodeA_side(CommID_t comm_id) // Node A code 
{
// Misc variables
unsigned long long start, stop;
pthread_t response_thread;
MessageDescriptor_t request; // Message system defined types 
user_request_header_t user_request; // User defined type

// Spawn response handler thread 
assert(pthread_create(&response_thread, NULL,

response_handler_task, (void *) comm_id) == 0);

// Specify communication
request.comm_id = comm_id;
request.dest_id = nodeB;
request.doorbell = NOTE_WAKE;
user_request.message_type = ECHO_REQUEST;
request.metadata_size = sizeof(user_request);
request.metadata_src = (uint32_t) (addr_t) &user_request;
request.metadata_dest = KNOWN_NODE_B_LOCATION;
request.data_size = 0;
request.data_src = (uint64_t) NULL;
request.data_dest = (uint64_t) NULL;

// Set this global variable before sync - helper will read it 
main_thread = get_thread_handle();

// sync with the comm thread then the other node 
local_sync(); 
sync(comm_id, nodeB);

stage_sleep(); // initialize wake table

// measure round trip latency 
start = get_clock();
send(&request); // wake ping thread to do send 
thread_sleep(); // sleep until the response handler wakes us 
stop = get_clock();

free_note(response_ptr);
assert(pthread_join(response_thread, NULL) == 0);
printf("Node A end-to-end latency is %d clocks\n", stop - start);

}
Figure 14: Multithreaded notification-based ping-pong: n o d e A  s i d e ( )
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void *response_handler_task(void *arg)
{
// Misc variables
CommID_t comm_id = (CommID_t) arg; 

local_sync();

response_ptr = sleep_recv(); // wait for the pong message

// wake the main thread 
wake_thread(main_thread);

pthread_exit(NULL);
}

Figure 15: Multithreaded notification-based ping-pong: communications thread

void nodeB_side(CommID_t comm_id) // Node B 
{
// Message system defined types 
MessageDescriptor_t *request_ptr;
MessageDescriptor_t response;

// Example User defined type 
user_response_header_t user_response;

// Specify communication
response.comm_id = comm_id;
response.dest_id = nodeA;
response.doorbell = NOTE_WAKE;
user_response.message_type = ECHO_RESPONSE;
response.metadata_size = sizeof(user_response);
response.metadata_src = (uint32_t) (addr_t) &user_response;
response.metadata_dest = KNOWN_NODE_A_LOCATION;
response.data_size = 0;
response.data_src = (uint64_t) NULL;
response.data_dest = (uint64_t) NULL;

// Sync up
sync(comm_id, nodeA);

request_ptr = sleep_recv(); 
send(&response);

free_note(request_ptr);
}

Figure 16: Multithreaded notification-based ping-pong: n o d e B  s i d e ( )



The multithreaded version of ping-pong illustrates one side of how two cooperating 

compute nodes may request services from each other. An example of such services may in

clude requesting and returning data in a software shared memory system implemented on 

a cluster. It also illustrates the basic framework from which a full communications thread 

that handles incoming messages for several compute threads may be structured. It also al

lows the overhead of coordinating message events between a communications thread and 

a computation thread on a single node to be measured.

As the OS for the SMT-MLRSIM simulator does not support multiple threads, this 

code was run under a simpler development emulation environment and pieces were extrap

olated to the simulator. In this case, the operation of the measured part of node A and all of 

node B are identical to that presented in Section 4.3.2. The primary difference is the addi

tion of the interthread wake-up. The call to s t a g e _ s l e e p ( )  sets a trigger for the inter

thread wake-up. This just clears the wake-up bit and should be done before the wake-up 

may be posted to avoid a race condition. We place this trigger outside the measured section, 

though the overhead is a small function call that executes in approximately 2 ns. The more 

critical operation is the interthread wake-up latency, which is about 5ns. Thus, this ping- 

pong variant requires an additional 5 ns over the single-threaded notification-based ping- 

pong for a total of 921 ns round-trip.

4.4 SMT Performance

An understanding of how fast multiple threads execute simultaneously on the SMT 

processor is needed to make a complete model of real-world applications. The simulator 

was used to measure the per-thread speedup with multiple threads running on a hand-writ

ten assembly kernel. The kernel performs a mix of operations including loads and stores as
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well as computation. As the kernel is cooperative, there is little cache and memory interfer

ence as the number of threads increases, this model is optimisitic. The results of those runs 

are shown in Table 4 .

The relative aggregate IPC can be thought of as a function that saturates as the ar

chitecture schedules the maximum number of instructions afforded by the workload’s in

struction mix. This model can be used to model the SMT aggregate speedup by solving for 

the least-squares fit of the above data for a and b in the equation,
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The data is graphed against the best-fit equation in Figure 17.

Table 4: SMT thread speedups

Number 
o f  Active 
Threads

Measured
Aggregate
IPC

Relative
Aggregate
IPC

Per-Thread
Relative
Speedup

1 0.778 1 1
2 1.36 1.75 0.876
3 1.67 2.15 0.717
4 2.00 2.58 0.644
5 1.95 2.51 0.502
6 2.35 3.03 0.504
7 2.24 2.89 0.412
8 2.39 3.07 0.384
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Active Threads 

Figure 17: Measured SMT speedup versus best-fit model

As can be seen, the fit fairly closely matches the measured data. The model provides 

a smooth curve that does not include artifacts of the simulated microarchitecture. This 

thread speedup model is used for the application model in Chapter 7.

4.5 Polling versus User-Level Notification Overheads

A two-sided or symmetrical messaging kernel is used to show the envisioned use of 

the ULN architecture and to measure the overhead of polling. This microbenchmark builds 

upon the threaded version of ping-pong. Each node has two or more threads, one or more 

compute threads and a single communications thread. The communications thread re

sponds to requests from the other nodes in the system, returning responses to messages and 

directs responses initiated by compute threads running on the local node to the requesting 

compute thread. The compute threads each execute local code for some amount of time and



periodically send a message to another node in the system and suspend, awaiting a re

sponse.

This version of the microbenchmark simulates and illustrates a simple but complete 

communications system in this architecture. In particular, it shows the framework from 

which a software shared-memory library for a cluster built around this architecture may be 

constructed. Alternately, this benchmark could be used as an example framework from 

which a simple service request or synchronization/coordination library could be construct

ed in this architecture.

By comparing the per-thread speedup of n threads with n+1 in threads, we can get 

an idea for how much of a performance penalty a polling communication thread can have 

on a number of compute threads. In the single compute thread case, the time penalty for 

polling is up to 18.5% for both the compute and communication threads. For 7 compute 

threads, the penalty is 11.6% compute and communication threads. The result is that the 

round-trip time for a minimal sized message with polling and thread notification increases 

from 881 ns to 886 ns, only 15 ns or 1.66% faster than the low-overhead 901 ns case of 

user-level notifications. For a model where the compute thread executes for some time, 

sends out a request and then waits for a response, the computation per message would have 

to comprise less than 81 ns of single thread work between the communications requests be

fore polling even begins to make sense from a performance perspective. However, in this 

case, the energy for polling unproductively for the entire cycle instead of having the pro

cessor be actively dealing with message receives 3.16% to 3.50% of the time far outweighs 

the up to 1.66% performance advantage. This shows that notification-based receives should 

be used at all times in the ULN architecture.
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4.6 TAU Measurement Overhead

To understand how much time is split between local computation, communication, 

and load-imbalance in a run of the DIRT application, the application was instrumented us

ing TAU. The profiling information produced with the TAU tools is used to determine the 

time spent in various tasks.

Fully instrumenting the code with TAU adds nontrivial measurement overhead to 

the run data. To properly account for that overhead, measurements were taken on the TAU 

code itself. A small benchmark was constructed that measure the TAU overhead. This code

is shown in Figure 18. A triple nested set of TAU_PROFILE calls were used in a 1,000,000- 

iteration outer loop to include many samples of the measurement overhead. A triple nest 

was used to ensure that the overhead was consistent across two calls and that nesting did 

not have an unexpected impact on the results. The benchmark code was run 100 times to 

ensure enough outer loop samples to determine that the tiny differences between the “loop 

level 1” and “loop level 2” measurements were not statistically significant.

#include <TAU.h>
#define ITER_COUNT 1000000 
int main()
{

{
TAU_PROFILE("outer loop measurement", " ", TAU_USER); 
for(int i = 0; i < ITER_COUNT; i++)
{
TAU_PROFILE("loop level 1 measurement", " ", TAU_USER);
{
TAU_PROFILE("loop level 2 measurement", " ", TAU_USER);
{
TAU_PROFILE("loop level 3 measurement", " ", TAU_USER);

}
}

}
}

}
Figure 18: TAU instrumentation overhead measurement technique



The results measured on a real machine were gathered on a 120 node Dell Power- 

Edge 2650 based cluster. The nodes are connected via switched gigabit ethernet. Each node 

has two 2.4 GHz Intel Xeon 80532 processors. This is a Pentium 4 class processor employ

ing a Prestonia core. Each processor has an 8KB L1 cache, a 512 KB L2 cache, and a 400 

MHz front-side bus. The node has 2 GB of PC1600 DDR1 registered dynamic random ac

cess memory (DRAM) with a total of 3.2 GB/s system memory bandwidth attached via a 

ServerWorks Grand Champion LE chipset.

The average time of the “loop level 1” measurement and “loop level 2” measure

ments are 0.997 ^s and 1.01 ^s, respectively. The difference between the two is less than 

1% and is well within the expected values of the measurements. The standard deviation of 

the two measurements are 0.0115 and 0.0126, respectively, indicating that there is not sta

tistical difference between these two samples. The average between the two, or 1.00 ^s, is 

used as the TAU measurement overhead in the subsequent performance calculations below.

The 1.00 ^s overhead is a measure of the total overhead associated with each mea

surement. That overhead can be split into two parts: The exterior portion is the overhead 

associated with the TAU timer function before the time-stamp counter is sampled when 

starting a counter plus the overhead of the TAU timer function after the time-stamp counter 

is sampled when stopping a timer. The interior portion of the overhead is associated with 

the measurement between the two time-stamp counter samples. The inner loop, has an av

erage measured time of 0.487 ^s. This represents the interior overhead. The exterior over

head is then the difference between the total measurement overhead and the interior 

overhead. This is approximately 0.520 .̂s.
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TAU reports the time spent in a function in terms of inclusive and exclusive time. 

The exclusive time of a function is the time spent in the function proper, excluding any time 

spent in children function calls. The inclusive time of a function is the total time from the 

invocation until the time the function call returns, including the time spent in any children 

function calls. To account for TAU overheads in measured codes, the interior and exterior 

overhead are removed from the function’s measured time. For each function invocation, the 

interior overhead is subtracted from the function’s exclusive and inclusive time. For each 

subroutine invoked, the TAU exterior time is subtracted from the caller function’s exclu

sive and inclusive time. The number of invocations of each function and the number of sub

routines called for each function is reported by TAU.

4.7 Manual Instrumentation Overhead

DIRT was also manually instrumented by its authors at a coarse-grain in select plac

es using an internal set of timing and event counting macros. All of these macros are trivial, 

built using POSIX m u te x ( )  and where appropriate, g e t t i m e o f d a y ( ) . The overhead 

of these macros were measured and subtracted from the TAU measured results. A simple 

kernel that repeatedly calls each of these macros was used to measure that overhead. The 

counting macros are shown in Figure 19 and the timing macros are shown in Figure 20.

The measurements were taken on the same machine described in Section 4.6. The 

overheads of c o u n t i t ( ) , c o u n te m ( ) , t i m e s t a m p s ( ) , t i m e s t a m p e ( ) ,

#define countit(a) {pthread_mutex_lock(&iolock);a++; \
pthread_mutex_unlock(&iolock);}

#define countem(a,d) {pthread_mutex_lock(&io- 
lock);a+=d;pthread_mutex_unlock(&iolock);}

Figure 19: Manual instrumentation counter macros
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#define timestamps(tO) \ 
struct timeval tO; \ 
if (gettimeofday(&t0, 0) != 0) \

fprintf(stderr, "Error getting time\n");

#define timestampe(t0, te) \
{ struct timeval t1; \

if (gettimeofday(&t1, 0) != 0) \
fprintf(stderr, "Error getting time\n"); \ 

pthread_mutex_lock(&iolock); \
te += (t1.tv_sec - t0.tv_sec) + (t1.tv_usec - t0.tv_usec)*1.e-6; \ 
pthread_mutex_unlock(&iolock); }

#define timestamps2(te) \
{ struct timeval t0; \

if (gettimeofday(&t0, 0) != 0) \
fprintf(stderr, "Error getting time\n"); \ 

pthread_mutex_lock(&iolock); \ 
te = t0.tv_sec+t0.tv_usec*1.e-6; \ 
pthread_mutex_unlock(&iolock); }

#define timestampe2(t0) \
{ struct timeval t1; \

if (gettimeofday(&t1, 0) != 0) \
fprintf(stderr, "Error getting time\n"); \ 

pthread_mutex_lock(&iolock); \ 
t0 = (t1.tv_sec + t1.tv_usec*1.e-6 - t0); \ 
pthread_mutex_unlock(&iolock); }

Figure 20: Manual instrumentation timing macros

t i m e s t a m p s 2 ( ) , and t im e s ta m p e 2 ( )  are measured at 0.150 ^s, 0.150 ^s, 0.384 ^s, 

0.544 ^s, 0.544 ^s, and 0.544 ^s per call, respectively.

4.8 Speedup of Modern Core

The analysis presented in Chapter 5 was performed on the same Pentium 4 machine 

described above. To understand how DIRT would perform on a more recent CPU core, a 

small workload appropriate for a single worker node was run on a single worker node o f 

the Pentium 4 machine and a 3.4 GHz Intel Core i7-2600K Sandy Bridge-based machine. 

A single worker thread on the Pentium 4 machine took 1956 seconds to render 100 frames 

of this small scene, where a single thread on the Core i7 machine took 312 seconds. This is



an absolute speedup of 6.27. However, correcting this for the clock frequency difference 

gives an architectural or clock-per-clock speedup of 4.43.

Since the SMT processor in this work operates at a frequency of 3 GHz, the speedup 

is corrected by the ratio of 2.4 GHz to 3 GHz to give a speedup of 5.53.

4.9 Microbenchmark Summary

In summary, this section shows that the ULN architecture provides message arrival 

notification mechanisms that approximate the effective latency of continuous polling with 

little overhead. An example framework for a communication infrastructure is illustrated. 

The SMT processor in the architecture is characterized showing the speedup of multiple 

threads running simultaneously. The overheads of TAU and the manual instrumentation are 

characterized. These key speedups and overheads are used in the evaluation and forward 

projection of DIRT. These key parameters are summarized in Table 5.

These measurements and microbenchmark results are used in Chapter 6 to account 

for overhead in the analysis of DIRT and to produce the results presented in Chapter 8 on 

the application and architecture model presented in Chapter 7.
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Table 5: Summary of key speedups and overheads

Parameter Value
Send Overhead 26 ns
Send Initiation Latency (send call to NIC data out) 45 ns
Polling Receive Overhead (message already waiting) 31 ns
Polling Receive Latency (no message waiting) 93 ns
Notification Receive Overhead (message waiting) 32 ns
Notification Receive Latency (no message waiting) 103 ns
Thread Wake-Up Overhead 2 ns
Thread Wake-Up Latency 5 ns
Per-thread Speed-up 2 Threads 0.876
Per-thread Speed-up 3 Threads 0.717
Per-thread Speed-up 4 Threads 0.644
Per-thread Speed-up 5 Threads 0.502
Per-thread Speed-up 6 Threads 0.504
Per-thread Speed-up 7 Threads 0.412
Per-thread Speed-up 8 Threads 0.384
SMT Speed-up Model

(  ”r3
3.20 1 -  e 2 67

V J

TAU Interior Overhead 487 ns
TAU Exterior Overhead 520 ns
c o u n t i t ( ) / c o u n t e m ( )  Overheads 150 ns
t im e s t a m p s ( )  Overhead 384 ns
t im e s ta m p e ( )  / t im e s ta m p s 2 ( )  / t im e s ta m p e 2 ( )  Overheads 544 ns
Core i7 vs. Pentium 4 Speedup, corrected to 3 GHz 5.53



CHAPTER 5

REAL-WORLD APPLICATION: DIRT

The microbenchmarks presented in Chapter 4 show the characteristics of the ULN 

architecture. A real-world application is needed to show the benefits of the ULN architec

ture. The Distributed Interactive Ray Tracer, or DIRT [35,36], is a scalable interactive ray 

tracer used to visualize large volumes in a distributed computing environment. DIRT, pro

duced by Demarle, is a cluster-based derivative of Steve Parker’s Real-Time Ray Tracer 

(RTRT) [91,92,93]. This ray tracer is an example of a compute and communication inten

sive, real-world, scalable application that serves as a test case for the ULN architecture. 

This chapter describes the structure and operation of DIRT.

5.1 The Real-Time Ray-Tracer

RTRT is a highly scalable parallel interactive ray-tracing system designed for large 

cache-coherent nonuniform memory access (CC-NUMA) [73] distributed shared-memory 

(DSM) [1] multiprocessor systems, such as the SGI Origin 2000 [69] supercomputer. The 

system was designed to prove that a software ray-tracer could be used to interactively ren

der and explore both conventional scene models as well as large complex data sets. It has 

been shown to scale to many hundreds of processors and has been used to render both an

alytical object models as well as multihundred gigabyte polygonal data sets, structured 

mesh volumes and unstructured mesh volumes. It can be used to visualize simple surface



models as well as to extract and visualize isosurfaces or maximum intensity projections 

from large data sets.

To be interactive, the ray-tracer must be capable of rendering many frames per sec

ond over these large data sets. Large shared-memory systems have sufficient aggregate 

memory to hold the entire data set in memory, enough computational resources to render 

the scene in real-time, and the necessary interconnection bandwidth to move the large data 

set to the appropriate computational resource. The shared memory also contains a shared 

hierarchical acceleration structure used to reduce the quantity of scene data that must be tra

versed to render, a shared work queue used to manage work assignments, and shared frame

buffer used to store the rendered frames.

RTRT’s architecture consists of a D i s p l a y  thread and a number of R e n d e r e r  

threads. Each one of these threads executes on its own CPU core. The D i s p l a y  thread 

manages the set of tasks required to render and display frames. For each frame rendered, it 

determines viewing information such as the camera position and direction, as well as the 

color and position of lights in the scene. It makes that information available to all of the 

R e n d e r e r  threads by placing it in shared memory. The D i s p l a y  thread also generates 

a set of work assignments necessary to render the frame and places those assignments in a 

shared global work queue. At the start of each frame, the D i s p l a y  thread populates the 

work queue with all of the assignments necessary to render the current frame.

Each R e n d e r e r  thread pulls a work assignment from the shared work queue. An 

assignment consists of a rectangular group of rays that pass from the camera model through 

the viewing window, known as primary rays. The R e n d e r e r  thread processes that assign

ment, contributing the resulting image tile to the shared framebuffer. It processes each ray
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by tracing the ray along its trajectory, through the large data set contained in the machine’s 

shared memory. It writes the resulting piece of the frame’s image, called an image tile, to 

the shared frame buffer. After rendering each tile, it returns to the work queue for another 

work allocation. If the queue is empty, it joins a completion-of-frame barrier. Each R en - 

d e r e r  thread repeats this process until explicitly signalled to exit by the D i s p l a y  thread. 

When all of the image tiles for a particular frame have been written back to the frame buf

fer, the D i s p l a y  thread displays the resulting frame on the screen and repeats the process 

of determining the new viewing information and refills the work queue.

It is worth noting that the number of assignments exceeds the number of R e n d e r -  

e r  threads such that each thread will complete several assignments per frame. The work 

queue is generated with varying size work allocations. In particular, for each frame, it con

tains a number of large assignments in the queue followed by successively smaller assign

ments per frame. This results in the R e n d e r e r  threads receiving larger assignments 

toward the beginning of the frame and successively smaller allocations toward the end of 

each frame. Compared to a fixed size allocation, this work distribution scheme minimizes 

the overhead of going to the queue an excessive number of times, yet results in small as

signments toward the end of the frame resulting in good load balance.

5.2 The DIRT Derivative

Large CC-NUMA machines provide the mechanism needed to support fine-grained 

access to the acceleration volume hierarchy, the underlying scene data, the work queue, and 

the frame buffer. Unfortunately, scaling CC-NUMA architectures beyond a few thousand 

nodes becomes prohibitive in the amount of hardware state and coherence traffic required
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to keep the caches coherent among all of the processors. To address this issue DIRT was 

created as a distributed memory variant of RTRT for use on clusters.

DIRT shares much of the same basic structure as RTRT. DIRT runs on a number of 

nodes. One of those is called the supervisor node. It runs the display thread, manages and 

distributes the scene state, manages and distributes the work allocations, and collects the 

rendered tiles. The remainder of the nodes are called worker nodes. They each run one or 

more R e n d e r e r  threads.

However, there are differences. Since clusters do not implement a shared memory 

in hardware, DIRT implements a software shared memory across the worker nodes to store 

and manage the shared scene data. The work assignments are explicitly sent as messages 

from the supervisor node to the worker nodes, as opposed to being in a shared memory- 

based queue. The hierarchical acceleration structure is much smaller than the scene data 

and is replicated on each node. Finally, the framebuffer only exists on the supervisor node. 

All of the worker nodes explicitly communicate rendered tiles back to the supervisor node. 

As opposed to joining a barrier at the end of a frame, the worker nodes are unaware of frame 

boundaries. They repeatedly process assignments and return tiles. The supervisor knows 

that a frame is complete when all of the tiles are returned.

The scene data is split into blocks known as bricks. Each node in the system is con

sidered the owner of some portion of the bricks and keeps those bricks in local memory. 

The node that owns a brick is referred to as the home node for that brick. A part of the mem

ory on each node is also used to cache remote scene bricks. When a node in the system 

needs to access a brick, it does a check. If it is the owner of the brick, a pointer to the brick 

is satisfied out of local memory. If it is not the owner of the brick, the local brick cache is

64



checked to see if the local node already has a copy of the brick. On a miss in the brick cache, 

the local node sends a request message to the home node o f the brick. The home node up

dates the list of nodes sharing the data and responds with the requested scene data. These 

request messages are said to be asynchronous in nature in that the home node does not know 

i f  and when data may be requested.

To facilitate the message passing for the control system as well as for the software 

shared memory system, each node also runs a c o m m u n ic a to r  thread. This thread han

dles all incoming messages

5.3 DIRT Details

DIRT is a broad ray-tracing framework capable of rendering a variety of scenes, 

from traditional polygonal scene models to mathematical surface models, isosurface ex

traction or maximum intensity projections in structured and unstructured volume data. Iso

surface extraction or visualization is used as the focus application o f this work as is requires 

a mixture of local computation to compute intersections of the rays with an isosurface in 

the data as well as remote communication to share the large dataset among the nodes. This 

section focuses on the pieces o f  DIRT that are utilized to render isosurfaces present in such 

a dataset. Some real-world examples of such a visualization include examining structures 

in medical data or visualizing isovoltage surfaces in a large electric field. Chapter 6 de

scribes the dataset and analyzes DIRT in the context of visualizing isosurfaces in a large 

generated 3-D volume.
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5.3.1 Node Initialization

The supervisor node parses the command line, sets up the display output, checks for 

the existence of relevant scene files, creates the scene, and starts a local c o m m u n ic a to r  

thread. It then starts the jobs on the worker nodes. Next it waits at a barrier for all of the 

worker nodes to finish initialization and then sends out the initial scene state and work as

signments to each worker node. On each worker node there is a m a in , a c o m m u n ic a to r  

thread, and some number of R e n d e r e r  threads. The m a in  thread is responsible for ini

tializing the node and spawning the other threads. It initializes the software shared memory 

layer and reads in the local node’s portion of the scene dataset. It then starts the R e n d e r e r  

threads and the c o m m u n ic a to r  thread, builds the macrocell hierarchy and sleeps until 

the job is complete. The c o m m u n ic a to r  thread handles received communication on the 

node. The application initialization time both on the supervisor and on the worker nodes is 

not considered important by the authors of DIRT and is ignored in this work.

5.3.2 Worker Node Operation

After initialization, the R e n d e r e r  threads sit in a loop waiting for work assign

ments from the supervisor node. Since the R e n d e r e r  threads are spawned before the ini

tialization is complete, they sit and wait for a task assignment until after all nodes have 

performed initialization and have passed a barrier. This overhead is subtracted out of the 

R e n d e r e r  thread runtime in Chapter 6.

Each assignment contains a variable number of pixels to render from a rectangular 

region of the screen. For each of the pixels, the R e n d e r e r  thread traverses the local ac

celeration structure, known as the macrocell hierarchy, along the direction of the ray. The 

macrocell hierarchy is a 3-D volume hierarchy that, at each level, tracks a summary such
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as the 3-D bounds as well as minimum and maximum values of the underlying data. The 

top-level of the hierarchy is a coarse structure, such as the 3x3x3 grid used in the scene in 

Chapter 6. Each of those top-level cells has a similar sized grid of macrocells under it. Mac

rocell hierarchies tend to be about 2 to 3 levels deep. The bottom level of the hierarchy 

maps to a number of scene bricks, which encapsulate the scene data.

Initially, the ray is checked against the top-level of the macrocell hierarchy. For the 

macrocells the ray passes through, if  any, the target isovalue is checked against the macro

cell’s minimum and maximum values. If the value is between the minimum and maximum, 

the ray could potentially intersect with the target isosurface within that macrocell. In this 

case, the next level of macrocells in the hierarchy is checked. If the isovalue is outside the 

range of a macrocell, the macrocell and all underlying data can be skipped over, saving 

computation and data references.

If the isovalue is in the bounds of a particular macrocell at the lowest level of the 

hierarchy, the brick data is traversed along the ray. Since the macrocell hierarchy and brick 

data are traversed in order from closest to farthest along the path of the ray, once the ray 

intersects with the target isosurface, no further searching is required. In this case, the pixel 

corresponding to the ray is colored according to the scene parameters. If the ray misses the 

volume or does not intersect with the isosurface in the volume, the pixel is colored accord

ing to the background color in the scene.

5.3.3 Software Shared Memory System

As the brick data is traversed, the references to the brick data go through the distrib

uted software shared memory. When a R e n d e r e r  thread references shared memory, it 

firsts checks if the local node is the home for the data referenced. If it is, the reference is
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satisfied directly out of local memory. If the local node is not the home node, the local soft

ware shared memory cache is checked to see if a local copy of the data is already cached. 

If the reference is in the local shared memory cache, it is satisfied from local memory.

If the reference is remote and misses in the local software shared memory cache, the 

R e n d e r e r  thread sends a shared memory read request to the associated home node.The 

thread then blocks until the shared memory request is satisfied. The communication asso

ciated with these cache misses is the most interesting part of DIRT in the context of this 

work. The measured latency waiting for these cache misses to be filled by a remote node is 

significant. Furthermore, the overhead associated with processing these requests on both 

the local and remote node directly interferes with the performance of other R e n d e r e r  

threads on both nodes.

The c o m m u n ic a to r  thread running on each node handles all incoming message 

traffic. For incoming scene data, it updates the local copy of the scene state. For work allo

cations, it places assignments in a node-local work queue. The R e n d e r e r  threads receive 

assignments from this work queue. For shared memory messages, the c o m m u n ic a to r  

thread executes the DataServer class that implements the software shared-memory layer.

5.4 Key Points

The macrocell structure eliminates a lot of unnecessary requests for remote data. It 

allows DIRT to scale reasonably well on small to medium clusters. However, end-to-end 

round trip message latency still significantly limits the efficiency and scalability of DIRT 

in medium and large cluster configurations. DeMarle measured end-to-end latency for re

mote brick access to be about 19us on 32 nodes of the same Dell cluster described in Sec

tion 4.6.This large latency limits the scalability of DIRT.
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When a worker node requests bricks from a remote node, there is a trade-off be

tween the amount of network bandwidth and message system overhead that DeMarle con

sidered. Fetching a single brick on demand results in using only the necessary global 

bandwidth and would make best use of the remote memory cache. However, as each re

quest has some message overhead and latency, this results in lower overall efficiency. In

stead, DIRT precomputes the set o f  bricks that a ray may intersect with in a particular 

macrocell each time there is a miss and requests them all in one message. While this results 

in lower overall message overhead and lost time due to message latency, it wastes network 

bandwidth and unnecessarily pollutes the local brick cache with data that in some cases is 

ultimately not needed.

In addition to resulting in a nontrivial amount of extra computation to compose a 

set of brick requests into a single request, this precomputation step required source code 

changes and added software complexity to the core o f  the ray tracer. The additional com

plexity could have been avoided i f  the underlying message passing system were capable o f 

delivering requests at a sufficiently low latency and with sufficiently low overhead.

DIRT is an interesting application for the ULN architecture in that it has one to sev

eral compute threads and a communication thread per node and it relies on frequent unpre

dictable messages. When a computation thread needs to communicate, the CPU can switch 

to other tasks. The communicating thread is blocked until a round-trip message occurs. The 

remote nodes involved in a communication are also simultaneously computing pixel val

ues. The act of responding to requests induces additional local overhead. If occasional poll

ing is used, the effective round-trip latency is negatively affected. If frequent polling is used 

there is a high induced overhead. If interrupts are used for notification, an interrupt penalty
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is incurred for each message. Given the application’s small, frequent messages, the total no

tification overhead can be significant.

DIRT is an excellent test case for the architecture as DIRT’s computation and com

munication architecture match the hardware architecture well. The concept and use of com

munication and computational threads is very similar in both models. Thus, DIRT 

represents an interesting test of the architecture’s capabilities. DIRT’s c o m m u n ic a to r  

thread can be executed as a thread on the SMT processor and can take full advantage of 

both the interthread communications primitive as well as the message notification primi

tives that this architecture provides. One or more R e n d e r e r  threads can be mapped on to 

the remaining compute threads on the SMT processor.

The low overhead, low latency characteristics of the ULN architecture reduces the 

granularity of remote data access that is necessary to get efficient scaling to any number of 

nodes when compared to the commodity interconnect cluster architecture that DIRT origi

nally targeted. Having such an efficient architecture may have also reduced or eliminated 

the need to make as many changes to the RTRT code base that were required to precompute 

remote brick intersections and coalesce remote block prefetches. Reducing the need for 

such aggressive prefetching has the benefit of minimizing wasted bandwidth and lowering 

cache pollution. ULN’s benefit on DIRT is shown in Chapter 8.
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CHAPTER 6

DIRT CHARACTERIZATION

This chapter presents performance data gathered from running DIRT on the Dell 

cluster described in Section 4.6.This performance data is analyzed to gain an understanding 

of the time spent in computation versus time spent in the communication system. The code 

was characterized with the help of the TAU utilities as well as internal instrumentation. The 

performance numbers presented in this section represent the timings with these overheads 

removed according to the results and methods in Sections 4.6 and 4.7.

6.1 Experimental Setup

While DIRT is a complete ray-tracing system capable of rendering many types of 

scene models, the runs examined here are of a visualization of isosurfaces within a large, 

generated, regular 3-D grid volume dataset. The volume dimensions are 2,892 by 2,892 by 

2,892 data points, and each data point is a a 2-byte “s h o r t ” value. The total volume is 

approximately 48 GB. The volume data is distributed evenly amongst the workers such that 

on a 32 worker node run, each node has 1.5 GB of scene data. As each of the nodes has 2 

GB of memory, the remaining 512 MB per node is shared by the code, the local variables, 

and by the local software shared memory cache that caches remote scene data.

The volume consists of 20 randomly positioned spheres. The center of each sphere 

is a randomly chosen isovalue within the range of the signed s h o r t .  The isovalue of each



sphere decreases linearly along the radius of the sphere. Four sample images of this scene 

are shown in Figure 21. These images are taken from a sequence 5 frames apart. In each 

frame, the camera rotates clockwise around the scene by 5 degrees and the isovalue being 

viewed increases by 1,000. Thus the scene appears to rotate counter clockwise about 20 de

grees in each of these 4 images as the spheres appear to shrink. It should be noted that the 

apparent holes in the spheres are manifestations of the edges of the volume.
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Several runs were made using a total of 33, 41, 49, 57, and 65 nodes. In DIRT, 1 of 

the nodes is always a supervisor node, so there are 32, 40, 48, 56, and 64 worker nodes in 

each of these runs, respectively. An additional variable in the experiment is to vary the 

number of R e n d e r e r  threads per worker node from 1 through 4.

Throughout this section, these runs are identified using the nomenclature of Xw_Yr, 

where X  is the number of worker nodes in the job and where Y is the number of R e n d e r e r  

threads per node. For instance, 32w_1r refers to the run that has 32 worker nodes, or 33 

total nodes including the supervisor node, and 1 R e n d e r e r  thread per worker, or 3 threads 

total per worker node including the m a in  thread and the c o m m u n ic a to r  thread.

Sections 6.2.1 through 6.2.7 and Sections 6.3.1 through 6.3.3 show abstracted code 

for the ray-tracers key components. This code is shown to illustrate the operation of DIRT 

and to provide an explanation of the performance analysis of the code presented in Section

6.3.5 and Section 6.4. These code in these sections is annotated to illustrate where time is 

spent in various parts of the code for a single node, specifically node 1, on a single 32w_1r 

experiment. While the analysis used in Chapter 8 uses the average information across all of 

the nodes in this experiment, examining the single node provides a concrete view of the 

analysis as well as the operation of DIRT. All of the times annotated in the code in these 

sections are in seconds. These annotated figures in Sections 6.2 and 6.3 show the call-tree 

hierarchy and delineate the time spent in initialization, computation, communication, and 

load imbalance. Sections 6.2.1 through 6.2.7 illustrate the R e n d e r e r  thread call-tree hi

erarchy, while Sections 6.3.1 through 6.3.3 illustrate the c o m m u n ic a to r  thread call-tree 

hierarchy.
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The timing annotations in these figures follow the TAU naming conventions. The 

inclusive time of a function is annotated in the figure using the abbreviation “i . ” The ex

clusive time of a function is annotated in the figure using the abbreviation “e .” As a remind

er, the inclusive time is the time spent executing in and under a function including all child 

function calls, where the exclusive time is the time spent only in the function proper. Each 

figure shows one function detailing the inclusive and exclusive time spent in that function, 

that is annotated on the top line of the figure with the function declaration. Each child func

tion call is also annotated with the child’s inclusive time. The inclusive time for a parent 

function, or “i ” time, is equal to that function’s exclusive time, or “e ” time, plus the inclu

sive time for all of the child functions called. Mathematically this can be expressed as:

iparent = e parent + i child_1 + i child_2 + ... + i child_n

Since the TAU tools instrument the source code, built-in library calls are not mea

sured separately. Instead their time is included as part of the time spent in the calling func

tion. In a few instances a routine is called from multiple functions. Since the particular 

instrumentation of DIRT used did not explicitly separate out the time spent in routines 

based on where they were called from, it is necessary in a few places to compute the times 

spent in each invocation based on the unaccounted time in the calling routine. In the single 

thread case, it is possible to account for the time spent in all of the calls exactly. In the mul

tiple thread runs, there are a few places where it is not possible to know exactly how the 

time is split between a few invocations of a routine. However, the exact split is not material 

to understanding how the time was spent between compute and communication as the un

certainty is only whether the time is spent in communication in one part of the code or an
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other. The multiple thread case will be described later. In all cases, the sum of the computed 

times across all such invocations was checked against the total time spent in these routines.

6.2 R e n d e r e r  Thread Characterization

The figures in Sections 6.2.1 through 6.2.7 show the R e n d e r e r  thread’s call tree 

hierarchy on the worker nodes annotated with the corrected TAU timing numbers from 

node 1 of the 32t_1r run. The precision shown in the figures and discussed in the text rep

resents the full 1 ^s granularity precision reported by TAU. Though that leads to more pre

cision than is necessary, the full precision is reported to illustrate that the times o f the 

children functions and the parent exclusive time add up to the parent inclusive time.

6.2.1 R e n d e r e r : : r u n  Function

Figure 22 shows the annotated body R e n d e r e r  thread, including the main loop. 

The total time spent in the R e n d e r e r  thread is 185.925720 seconds. Of that, a negligible 

12 ^s is spent in P e r P r o c e s s o r C o n t e x t ,  ~ P e r P r o c e s s o r C o n t e x t ,  and s o c k  

performing initialization tasks. Since this time occurs once per invocation of the ray-tracer, 

this overhead is subtracted out of the total time of the operation of the ray-tracer’s main 

loop, leaving 185.925708 seconds as the key time for that loop. The time spent in C on

t e x t  is time spent in per-assignment data-structure setup. Both m akeR ay  and 

p a c k _ p i x e l  are per-pixel operations. The ray direction is computed in m akeR ay. The 

pixels are packed in preparation for sending in p a c k _ p i x e l .  The R e n d e r e r : : r u n  

exclusive time as well as the C o n te x t ,  m akeR ay  and p a c k _ p i x e l  inclusive times are 

all local computation.
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Renderer::run() { 185.925720 i, 0.401760 e
PerProcessorContext() 0.000007 i 
~PerProcessorContext() 0.000002 i 

[...] // initialization 
sock() 0.000003 i 
while (true) {

[... ]
Context(); 0.000881 i 

[... ]
popTask(); 27.669846 i 

[... ]
//go through the assigned assignments 
For each tile assignment {

[... ]
//finally ray trace the tile 
for each pixel {

makeRay(); 0.352950 i 
traceRay(); 157.176001 i

[... ]
pack_pixel(); 0.169314 i

}
[... ]

send_buffs() 0.154946 i
}

}
}

Figure 22: Annotated R e n d e r e r  thread r u n  function (main loop)

The R e n d e r e r  thread calls the p o p T a s k  routine to receive new work assign

ments. The time spent in this function is a mixture of communication, computation, and 

load imbalance and is shown in Section 6.2.2. The traceRay routine is where rays are traced 

through the scene data. This time is split between computation and communication. Details 

are shown in Sections 6.2.3 through 6.2.7. The pixels are sent to the supervisor in 

s e n d _ b u f f s . This routine is a thin thread-safe wrapper around a send call and is all com

munication time. Finally, the exclusive time spent in the r u n  routine is due to local per- 

assignment and per-pixel computation.



6.2.2 p o p T a sk  Function

The p o p T a sk  routine, shown in Figure 23, is a semaphore wrapper that waits for 

a task to be queued from the supervisor node. In p o p T a sk , the t a s k s e m a v a i l  sema

phore is used to wait for work to be placed in the local work queue. When the com m uni

c a t o r  thread receives work, it places the work in this queue and signals “u p ” on this 

semaphore releasing the ta s k s e m a v a i l - > d o w n  call. There is an additional t a s k -  

s e m a c c e s s  semaphore that is used to protect the critical section of removing the tasks 

from the local shared work queue. This semaphore is needed when there are multiple ren- 

derer threads per node to ensure that each renderer thread atomically removes a task from 

the queue.

The time spent in ta s k s e m a v a i l - > d o w n  is a combination of communication 

overhead and load imbalance time, as this is where the R e n d e r e r  thread waits for the next 

frame to start at the end of each frame. It is not possible to know explicitly how much of 

the time is spent in communication versus load imbalance since the communication over

head appears to the endpoint as a component of the load imbalance. Therefore, the time 

spent in communication here is estimated by averaging the amount of time spent in com

munication per cache miss times the number of assignments. The average time for these 

requests in this instance is about 426 ^s per communication. In this case, a total of about

TaskManager::popTask() { 27.669846 i; 0.018432 e 
[...]
tasksemavail->down(); 27.633445 i 

[... ]
tasksemaccess->down();

[...] // remove the task from the work queue 
tasksemaccess->up(); 0.017969 i 

[... ]
}

Figure 23: Annotated R e n d e r e r  thread p o p T a s k  function
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6.177874 of the 27.633445 seconds spent in the ta s k s e m a v a i l - > d o w n  routine are at

tributed to communication. The remaining 21.455571 seconds are due to load imbalance. 

The minimal p o p T a sk  exclusive time is local computation time and the t a s k s e m a c -  

c e s s - > u p  is local communication time.

6.2.3 t r a c e R a y  Function

The t r a c e R a y  routine, shown in Figure 24, calls the i n t e r s e c t  routine, where 

the ray is checked to see if it intersects with the dataset, and then colors the resulting pixel 

accordingly. If the ray hit the scene, it is colored with s h a d e , otherwise, it is colored with 

g e t _ b g c o l o r .  The t r a c e R a y  exclusive time, the s h a d e  inclusive time and the 

g e t _ b g c o l o r  inclusive time are purely local computation. The i n t e r s e c t  routine is 

a mixture of communication and computation, broken down further in Section 6.2.4.

6.2.4 i n t e r s e c t  Function

The i n t e r s e c t  routine, shown in Figure 25, performs one of the key computa

tions in a ray tracing system - determining the closest point for which the ray intersects a 

particular surface. This version, which is specialized for isosurfaces of 3-D volumes, uses 

a macrocell hierarchy to accelerate the query. After setting up the parameters for the mac-

Renderer::traceRay() { 157.176001 i; 0.390552 e 
[...]
intersect(); 156.622203 i 
if(hit) {

// color the object according to the scene data 
shade(); 0.130357 i

} else {
// no scene data found, thus we hit the background 
get_bgcolor(); 0.032899 i

}
}

Figure 24: Annotated R e n d e r e r  thread t r a c e R a y  function



DISOVolume::intersect() { 156.622203 i; 1.205502 e 
[...]

getVolumeDpy(); 0.043382 i 
[...] // calculate where ray crosses macrocell boundaries 

isect(mc_depth-1, ...); 155.373319 i
}

Figure 25: Annotated R e n d e r e r  thread i n t e r s e c t  function

rocell hierarchy walk, i n t e r s e c t  calls i s e c t ,  the routine that walks the macrocell hi

erarchy and, if  necessary traverses the scene data. The i n t e r s e c t  exclusive and 

g e tV o lu m eD p y  inclusive times are local computation. The i s e c t  time is split between 

communication and computation.

6.2.5 i s e c t  Function

The i s e c t  routine shown in Figure 26 has a more complex call hierarchy than the 

previous routines. In addition to being called from i n t e r s e c t ,  the i s e c t  routine also 

recursively calls itself to traverse the macrocell hierarchy. If the routine reaches the bottom 

level o f  the macrocell hierarchy, it performs an intersection test on the underlying scene da

ta.

The g e t r h o s _ m a n y  routine gathers the set scene data values associated the ray 

may intersect with. The H i t C e l l  routine solves a cubic function to determine if the ray 

hits the cell, and if there is a hit, G r a d i e n t C e l l  computes the angle of intersection. The 

g e tr h o s _ m a n y  routine is a mixture of computation and communication. The i s e c t  ex

clusive time, the H i t C e l l  time, and the G r a d i e n t C e l l  time are all computation.

6.2.6 g e t r h o s _ m a n y  Function

The i s e c t  function produces a list of cell corners needed to trace the ray through 

the bottom level of the macrocell hierarchy. The g e t r h o s _ m a n y  routine, shown in Fig-
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DISOVolume::isect() { 155.373319 i; 4.972253 e

if at bottom level {

//pretraverse to find which cells are needed 
//make as few calls as possible to get data 
getrhos_many(); 149.679501 i

//now traverse the data 
for each data point {

if in cell bounds { //may hit, solve explicitly

if (HitCellO) { 0.682755 i 
if (hit) {

GradientCell(); 0.038810 i

break;
}

}
}

}
} else {
//not yet at bottom mcell level, traverse mcells in 
//this level. if we hit any possible bricks, go down to 
//next level 
for each cell at this level {

[... ]
if can hit in this mcell {

[... ]
isect(mc_depth-1, ...); //time already accounted

}
[... ]

}
}

}
Figure 26: Annotated R e n d e r e r  thread i s e c t  function

ure 27, determines the set of cachelines needed to traverse the ray and requests each cache- 

line in sequence by calling the g e t _ d a t a  function on each line. The g e t _ d a t a  routine 

locks the cacheline from being evicted from the cache and returns a pointer to the data. The 

g e trh o s_ m a n y  routine then retrieves the needed value from each cacheline and releases 

the line with the r e l e a s e _ d a t a  call allowing it to be evicted from the cache if neces

sary.
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getrhos_many() { 149.679501 i; 6.908229 e 
[... ]
for () {

//get the next key 
get_data(); 140.736236 i
//get all data values that we need out of that key 

[... ]
//release the key 
release_data(); 2.035036 i

}
}
Figure 27: Annotated R e n d e r e r  thread g e t r h o s  m an y  function

6.2.7 g e t _ d a t a  Function

The last significant routine in the R e n d e re r  thread call hierarchy is the 

g e t _ d a t a  routine, shown in Figure 28. This routine is a member of the dataserver class 

where access to the shared memory data is managed. It does the check to see if the request

ed data is locally owned, remote but cached, or remote and not presently cached and com

pletes the appropriate action to satisfy the data request. If remote data is requested, this 

thread blocks until the data is returned to the c o m m u n ica to r  thread running on this node 

and until the c o m m u n ica to r  thread notifies this routine that the data has arrived via a 

semaphore.

The exclusive time spent in the g e t _ d a t a  routine as well as the inclusive time 

spent in the g e t_ a c c e s s ,  r e l e a s e _ a c c e s s ,  g e t_ s o l e _ a c c e s s ,  

r e l e a s e _ s o l e _ a c c e s s ,  an d  r e l e a s e _ s o l e _ a c c e s s _ b u t _ r e t a i n  routines 

are all a part of the software shared memory system. These pieces are considered part of the 

local computation.

The time spent in the send_m sg  and up  and down calls is time spent in the com

munication system. In particular, the time spent in the send_m sg  call is overhead associ

ated with sending a message to the home node for the shared memory request. The total
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dataserver_direct::get_data() { 140.736236 i; 1.811214 e 
[... ]
if (own == myrank) {

[...] // satisfy locally 
} else {

[... ]
semaphore.get_access(); 2.140364 i 
if (cache hit) {

[... ]
} else { // miss
semaphore.release_access(); 0.214406 i 
semaphore.get_sole_access(); 0.080460 i

[... ]
semaphore.release_sole_access(); 0.198639 i

[... ]
send_msg(); 3.481132 i

[... ]
// wait for the data response 
cache[pos]->down(); 132.520182 i
while (cache[pos]->key != key) { // not my response 

cache[pos]->sem2->up(); // let someone else try 
cache[pos]->sem2->down(); // sleep and try again

}
[... ]

release_sole_access_but_retain(); 0.289839 i
[... ]

}
}

}
Figure 28: Annotated R e n d e r e r  thread g e t  d a t a  function

time spent in the down and u p  calls is the time spent waiting for the return of data. This 

wait time includes message latency in both directions as well as message handling time on 

the remote node. Unlike p o p T a s k ( ) , there is not a component of load imbalance in this 

time. The message handling time on the remote node is the subject of Section 6.3.

The loop marked with the bar in Figure 28 is due to the way the shared memory 

cache is implemented to support multiple R e n d e re r  threads per node. When a cache miss 

occurs, the g e t _ d a t a  routine waits on a semaphore associated with the cacheline where 

the miss data will be stored. When multiple R e n d e re r  threads are running, two or more 

threads could be waiting for two different cachelines that map to the same cache index.



Since the semaphore is tied to the index, not to a unique cacheline, the wrong thread may 

see the “u p ” on the semaphore. If so, that thread resignals “u p ” and then waits again for 

the intended reference. In the single renderer thread per node case, this loop is never exe

cuted as there are no simultaneous conflicts to the same cacheline.

Unfortunately, in the multithreaded case, these iterations are common, thus the 

marked loop is not very optimal. The large number of loop iterations is caused when the 

target thread does not see the reference immediately and the interfering thread repeatedly 

releases and reacquires the semaphore, leading to a lot of unnecessary overhead. At a min

imum, this thread should call a y i e l d  function in between the up  and the down calls in 

the w h i le  loop to give the target thread the opportunity to be scheduled in the case that 

the processors on the node are over-subscribed. The current implementation can lock the 

intended node out of getting the intended response for some unbounded amount of time. A 

more robust solution would be to have a semaphore associated with each thread and then 

to tag requests and responses to wake up the exact thread that was waiting for the request. 

However, the primary focus of this work is to examine an existing code.

This is the key area where it is impossible to tell exactly how much time is spent in 

some parts of a function. Since up  and down are also used to implement p o p T ask  we can

not deduce exactly how much of the g e t _ d a t a  inclusive time is spent in up  versus down. 

However, it is easy to tell amount of time spent in the sum of the two. In the end it all counts 

as time waiting for a cache miss response. Since we are interested in understanding the time 

spent in the communication subsystem, in the multiprocessor analysis in Section 6.4, the 

time is aggregated into a single wait time. Since this loop is never entered in the single

thread case, our analysis of where the time is spent in the code is simplified.
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6.2.8 R e n d e re r  Thread Summary

Table 6 shows the average time, standard deviation of that time, and the invocation 

count for each of the above functions in the R e n d e re r  thread. For each function, it is not

ed if the time listed is the inclusive time or the exclusive time. The exclusive times are listed 

for all of the functions that are broken down above. For leaf functions in the call-tree or for 

functions where the hierarchy is not broken down above, the inclusive time is listed.

Each of the nodes has roughly the same total time, due to the fact that each of the 

nodes synchronize at each frame step as well as at the end of the simulation. There is a slight 

load imbalance between the nodes, partially evidenced by the somewhat larger standard de

viation of the p o p T ask  routine. The time spent in each of the compute components above 

is shown graphically in Figure 29. The time spent in each of communicate and load balance 

components is shown in Figure 30.

6.2.9 R e n d e re r  Thread Analysis

For the scene parameters described on the aforementioned cluster most of the ren- 

derer thread time is spent waiting for remote data due to scene cache misses. The summary 

of the total time spent in computation versus communication versus load imbalance is 

shown in Figure 31.

Since there is no little to no TAU measurement overhead in the load balance por

tions of the measurements, the time lost in the load balance overhead, as the remaining time 

components reduce, the fraction of the time in load imbalance appears larger in Figure 31 

than it would be if there were no measurement overhead. To get a better estimate of the ex

pected load imbalance if measurement overheads were not present, the time spent in load 

imbalance is scaled by a factor of the total corrected R e n d e re r  thread runtime divided by
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Table 6: Summary of R e n d e r e r  thread key function times across all nodes

Function Average 
Time (s)

Standard
Deviation

Invocations Category

Renderer::run excl 0.639 0.162 1 compute
Context incl 0.000512 0.000116 14081 compute
popTask excl 0.0170 0.00193 14081 compute
tasksemavail->down incl 32.6 2.55 14081 load balance
tasksemaccess->down incl 0.00681 0.000478 14081 compute
tasksemaccess->up incl 0.0169 0.000710 14081 compute
makeRay incl 0.300 0.0188 3604480 compute
traceRay excl 0.304 0.0447 3604480 compute
intersect excl 1.15 0.0570 3604480 compute
getvolumeDpy incl 0.0269 0.0108 3051845 compute
isect excl 4.65 0.163 5793250 compute
getrhos_many excl 6.57 0.240 992353 compute
get_data excl 1.58 0.0842 2663267 compute
semaphore.get_access incl 1.99 0.0731 2579696 compute
semaphore.release_access incl 0.197 0.00565 289719 compute
semaphore.get_sole_access incl 0.0742 0.0104 289719 compute
semaphore.release_sole_access incl 0.182 0.00683 289719 compute
send_msg incl 4.57 0.728 289719 comm
cache[pos]->down incl 130 1.85 289719 comm
release_sole_access_but_retain incl 0.258 0.00946 289719 compute
release_data incl 1.84 0.0802 2663267 compute
HitCell incl 0.602 0.0422 871690 compute
GradientCell incl 0.0355 0.00385 341814 compute
shade incl 0.110 0.0174 341814 compute
get_bgcolor incl 0.0162 0.0102 3262666 compute
pack_pixel incl 0.151 0.0154 3604480 compute
send_buffs incl 0.392 0.143 14080 comm
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Figure 29: R e n d e r e r  compute components

Figure 30: R e n d e r e r  communication and load balance components
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■ Renderer Computation

■ Renderer Communication

■ Renderer Wait

■ Renderer Load Balance

Figure 31: R e n d e r e r  thread breakdown summary

the uncorrected R e n d e re r  thread runtime. The corrected load imbalance time is estimat

ed at 24.992601 seconds and the resulting breakdown is shown in Figure 32.

On this cluster on this particular run, the average time per miss is 464 ^s. The mes

sage request is 20 user bytes and the response is 3,472 user bytes. The exact amount of time 

spent in the network versus in the OS is not visible from this run. Given the gigabit Ethernet 

network, assuming full bandwidth, the serialization of this data only accounts for 28 ^s, a 

small fraction of that time. The cluster is built using a hierarchy of switches that has a small

er bisection than needed to support all of the nodes at full bandwidth. It is likely that the 

serialization latency here and at each hop accounts for significantly more than that 28 ^s; 

however, there is clearly additional OS overhead associated with the messaging system on 

the nodes.

Only the compute times and the counts of communications events from this analysis 

are used in the model in Chapter 8. Thus, that model is independent o f the particular load 

imbalance overheads and communications overheads analyzed here.
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■  Renderer Computation

■  Renderer Communication

■  Renderer Wait

■  Renderer Load Balance

Figure 32: Corrected R e n d e r e r  thread breakdown summary

The total R e n d e re r  compute time per node spent per frame is 0.186656 seconds, 

per assignment it is 1.472 ms, and per cache miss it is 71.514 ^s. Technically this is com

posed of an average of a 13.662 ^s overhead per assignment plus a 70.850 ^s average time 

between misses within an assignment, however, at the macroscopic level the critical num

ber for the model is the average total time between cache miss requests. These key values 

are summarized in Table 7.

Table 7: Summary of key R e n d e r e r  thread characteristics

Characteristic Value
Total compute time per frame (all nodes) 6.03 s
Average compute time per node per frame 0.188 s
Average compute time per assignment 1.47 ms
Average compute time per cache misses 71.5 ^s
Total assignment per frame (all nodes) 4096
Average assignments per node per frame 128
Average cache misses per node per frame 2630
Miss Request Size 20 bytes
Average Pixel Assignment Send Size 796 bytes



6.3 Communicator Thread Characterization

In addition to one or more R e n d e re r  threads, each node has a co m m u n ic a to r  

thread that handles cache misses requests on behalf of other nodes and receives work as

signments from the supervisor node. The following figures show this c o m m u n ica to r  

thread and the associated d a t a s e r v e r  call tree hierarchy annotated with the corrected 

TAU performance data from node 1 of the 32w_1r run.

6.3.1 c o m m u n ic a to r : : r u n  Function

Figure 33 shows the thread’s main function. This implementation of the commu

n i c a t o r  thread is built using Unix sockets for communication. After a short initializa

tion, this thread sits in a loop waiting for a message to arrive. When a message arrives, the 

header is received and the appropriate handler is called. Since s e l e c t  is a library func

tion, it is not instrumented by TAU and is not explicitly timed, hence the exact amount of 

time spent in the select call is unknown. However, most of the exclusive time in commu- 

n i c a t o r : : r u n  is spent in the s e l e c t  call.

The computed time for the c o m m u n ica to r  thread is much higher than the com

puted total time of the R e n d e re r  thread above. This is primarily due to the fact that the 

TAU instrumentation overhead is much smaller in the c o m m u n ica to r  thread due to the 

relatively fewer dynamic subroutine call invocations. It is also due in small part because the 

c o m m u n ica to r  thread is started before the R e n d e re r  threads. The exact time the 

thread runs is unimportant. What is noteworthy is that the c o m m u n ic a to r : : r u n  thread 

is idle, waiting for requests to arrive, approximately 93.6% of the time, and is generally 

available to service requests as soon as they arrive. Finally, what is important is the amount 

of time spent handling each of the request types.
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//this is the communicator thread that runs in the background, 
//waiting for incoming messages, and directing them to 
//registered methods when they come. 
communicator::run() { 242.482501 i; 227.031638 e 
[...] 
while(true) {

[... ]
select();

[... ]
recv(); // get header 

[... ]
switch() { // figure out which handler to call - invoke one of: 

case DSM_MESSAGE: dataserver_group::handlemessage(); 15.272459 i 
case NEW_TASK: TaskManager::handlemessage(); 0.167519 i 
case SCENE_UPDATE: ViewManager::handlemessage(); 0.010339 i 
case BARRIER: barrier_group::handlemessage(); 0.000546 i

}
}

}
Figure 33: Annotated c o m m u n ic a t o r  thread main function

The T a s k M a n a g e r ::h a n d le m e s sa g e , V ie w M a n a g e r ::h a n d le m e s -  

s a g e , and b a r r i e r _ g r o u p : :h a n d le m e s s a g e ,  routines comprise well under 1% of 

the total runtime and are not broken down in detail here. The b a r r i e r _ g r o u p  receives 

a few messages during initialization and at the very end of the program as the ray-tracer 

exits, hence the time spent in that routine is initialization overhead. The V iew M anager 

receives a single message with the new view and scene parameters at the start of each frame 

and the T askM anager receives a number of task assignments for each frame. While the 

time spent in these two handlers is small, they are an important part of the ray-tracer’s op

eration. Finally, the software shared memory messages are handled by the 

d a ta s e r v e r _ g r o u p .  This is where the co m m u n ic a to r  thread spends the majority of

its nonidle time.
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6.3.2 d a t a s e r v e r _ g r o u p : :h a n d le m e s s a g e  Function

Figure 34 shows the d a ta s e r v e r _ g r o u p : :h a n d le m e s s a g e  routine. Since 

there are multiple implementations of the dataserver, the d a t a s e r v e r _ g r o u p  is a class 

hierarchy that encapsulates the set of dataserver types. In this case it calls the dataserver 

handler associated with the direct mapped cache implementation of the software shared 

memory system. The r e c v _ b u f f  call receives the dataserver packet, which may be either 

a shared memory miss request or a data return from a previous request.

6.3.3 d a t a s e r v e r _ d i r e c t : : h a n d l e m e s s a g e  Function

The d a t a s e r v e r _ d i r e c t : : h a n d l e m e s s a g e ( )  routine is shown in Figure 

35. A large fraction of the time is spent in the message passing system, rather than actually 

servicing the request. For a received request, the time to get the shared memory data for the 

response is a part of the exclusive time of this routine. The exclusive time also comprises 

the time required to look up the relevant cache miss information to determine where to 

place the received data. It is useful to note that the up  call in this routine releases the 

t a s k s e m a v a i l  semaphore in Figure 28.

//handle incoming dataserver messages from remote nodes 
dataserver_group::handlemessage(){15.272459 i; 0.450487 e 
[... ]
{
[... ]
recv_buff(); 2.079615 i (computed)

[... ]
dataserver_direct::handlemessage(); 12.742357 i

}

h a n d l e m e s s a g e  function
Figure 34: Annotated communicator thread dataserver_group::
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dataserver_direct::handlemessage(){12.742357 i;0.583733 e 
[... ]
//get header
recv_buff(); 4.366069 i (computed)
switch (MSGID) { 
case L_DM_RQST_DATA:

[...] // find the the data to be returned 
send_msg(); 6.232386 i 
break; 

case L_DM_SENT_DATA:
[... ]

semaphore.get_sole_access(); 0.144310 i
recv_buff(); // (time combined with first invocation above)

[... ]
up(); // data arrived, release worker 1.415859 i 
break;

}
}
Figure 35: Annotated c o m m u n ic a t o r  thread d a t a s e r v e r _ d i r e c t : :  

h a n d l e m e s s a g e  function

6.3.4 c o m m u n ica to r  Summary

Table 8 shows the average time, standard deviation of that time, and the invocation 

count for the important functions in the co m m u n ic a to r  thread. For each function, it is 

noted if the time listed is the inclusive time or the exclusive time. The exclusive times are 

listed for all of the functions that are broken down above. For leaf functions in the call-tree 

or for functions where the hierarchy is not broken down above the inclusive time is listed.

Due to the instrumentation of DIRT, it is not possible to tell the amount of time 

spent in the r e c v ( )  call in c o m m u n ic a to r : : r u n .  However, the receive call is similar 

in the amount of data read to the d a ta s e r v e r _ g r o u p  r e c v _ b u f f ( )  call implying an 

estimated 3.35 .̂s per call. It is invoked once for each call to d a t a s e r v e r _ g r o u p : :  

h a n d le m e s sa g e , T a sk M a n a g e r ::h a n d le m e s sa g e , and V iew M an ag er:: 

h a n d le m e s sa g e , for an estimated total r e c v ( )  time of 1.99 seconds.
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Table 8: Summary of c o m m u n ic a t o r  thread key function times across all nodes

Function Average 
Time (s)

Standard
Deviation

Invocations Category

dataserver_group::handlemessage excl 0.381 0.0258 579438 compute
dataserver_group recv_buff incl 1.94 0.0396 579438 comm
dataserver_direct::handlemessage excl 0.573 0.0299 579438 compute
dataserver_direct recv_buff incl 4.09 0.0830 869158 comm
dataserver_direct send_msg incl 12.9 3.40 289719 comm
semaphore.get_sole_access incl 0.131 0.0152 289719 compute
cache[pos]->sem2->up incl 2.65 2.59 289719 local sync
TaskManager::handlemessage excl 0.0315 0.00131 12430 compute
TaskState::getAssignment excl 0.00776 0.000432 12430 compute
TaskState recv_buff incl 0.0521 0.00182 12430 comm
pushTask excl 0.0311 0.00204 12430 compute
tasksemaccess->down incl 0.00601 0.000422 12430 compute
tasksemavail->up incl 0.0169 0.000782 14080 local sync
tasksemaccess->up incl 0.0149 0.000691 12430 compute
ViewManager::handlemessage excl 0.00194 0.00194 113 compute
getframe excl 0.000754 0.000057 111 compute
framestate.get_state excl 0.000193 0.000033 111 compute
get_state recv_buff incl 0.000732 0.000015 222 comm
setVolumeDpy 0.000043 0.000008 111 compute
animate incl 0.000023 0.000008 111 compute
camera->set_eye incl 0.000031 0.000005 111 compute
camera->set_lookat incl 0.000035 0.000006 111 compute
camera->set_fov incl 0.000025 0.000007 111 compute
camera->set_up incl 0.000025 0.000006 111 compute
camera->setup incl 0.000155 0.000007 111 compute
Thread::currentSeconds incl 0.000086 0.000006 111 compute
taskm->endframe incl 0.00304 0.000114 111 compute



94

6.3.5 32w_1r Communicator Thread Analysis

The c o m m u n ica to r  thread spends only 0.63% of its time in computation associ

ated with handling misses. The bulk of the time, 87.86% is spent idle waiting for incoming 

messages. The idle time here is the total R e n d e re r  time minus the time spent running in 

the c o m m u n ic a to r  thread. The bulk of the time spent while the c o m m u n ica to r  thread 

is running is in messaging overhead tasks with 10.09% of the time spent in sends and re

ceives, and 1.42% of the time spent in operations associated with waking the R e n d e re r  

thread. This breakdown is shown in Figure 36.

6.3.6 Combined 32w_1r Analysis

Combining the co m m u n ic a to r  communication time with the R e n d e re r  com

munication time, indicates that 14.11% of the total runtime is spent in the user-level com

munication system. This is in contrast to only 11.60% of the time spent in actual 

computation between the two threads. Clearly, even ignoring the invisible OS overheads

0.63%

■  Communicator 
Computation

■  Communicator 
Communication

■  Communicator Local 
Synchronization

■  Communicator Idle

Figure 36: c o m m u n ic a t o r  thread breakdown summary
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associated with messaging, there is plenty of room for optimization of the communication 

system. This summary is shown in Figure 37.

The summary with the corrected load balance overhead is shown in Figure 38.

Table 9 shows the key characteristics of the co m m u n ic a to r  threads for the 

32w_1r run.

6.4 All DIRT Runs

As a part of the experimentation, the number of nodes and number of R e n d e re r  

threads per node. Figure 39 shows an increase in performance as we scale from 1 to 32 

nodes. Figure 40 shows the speed up of the components of each of those runs as the number 

of nodes scale. The computation time scales perfectly with the number of nodes. The com

munication and wait times appear to scale super-linearly from 32 to 40 nodes and then scale 

close to linearly thereafter. The primary reason for this is that these runs were made on a

■  Renderer Computation

■  Renderer Communication

■  End-to-end Message Latency

■  Miss Handling Computation

■  Miss Handling Communication

■  Miss Handling Local Synchronization

■  Per Frame Computation

■  Per Frame Communication

■  Renderer Load Balance

Figure 37: Combined breakdown summary
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■  Renderer Computation

■  Renderer Communication 

L  End-to-end Message Latency

■  Miss Handling Computation 

Miss Handling Communication

L  Miss Handling Local Synchronization 

I Per Frame Computation 

I Per Frame Communication 

I Renderer Load Balance

■ 0.00%_

Figure 38: Corrected combined breakdown summary

Table 9: Summary of key c o m m u n ic a t o r  thread characteristics

Characteristic Value
Average computation time per cache miss 3.74 ^s
Average computation time per task assignment 7.35 ^s
Average number o f task assignments per node per frame 128
Average computation time per frame per node 57.7 ^s
Cache miss response size 3472 bytes
Assignment size 12 bytes
Per Frame Data Size 172 bytes

production machine where other jobs were running. While the nodes in the run were dedi

cated to the particular run, the network resources were shared. As the effective network 

bandwidth decreases the overall communications time increases.

The load imbalance also scales super-linearly from 32 to 40 nodes but then becomes 

fairly random thereafter. This is as expected. As the overall communication system perfor

mance is reduced, all nodes are effected equally. Due to the load balancing nature of the
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Figure 39: Total render time versus number of nodes

■Renderer Computation 

■Renderer Communication 

Renderer Wait 

■Renderer Load Balance

Figure 40: Relative speedupversus number of nodes
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work assignments in DIRT, the load imbalance is roughly proportional to the time it takes 

to complete an assignment. As the communication time increases, the time to render an as

signment increases by the same amount. Since the communication time on this cluster dom

inates the total render time, this results in an increase of the assignment time that is nearly 

proportional to the increase in communication time.

As can be seen in Figures 41 and 42, as the number of threads per node increases, 

the performance overall scales negatively. The primary reason for this is that there are only 

two processor cores per node on this cluster: one for the c o m m u n ica to r  thread and one 

for the R e n d e re r  thread. As more threads are added, context switch overhead degrades 

local compute performance. Furthermore, if the c o m m u n ic a to r  thread is not running 

when a message arrives, that adds to the perceived message latency.

Figures 43 and 44 show that the same basic trends hold for all of these runs. It is 

clear from the data that for the 56w_2r, 64w_2r, 56w_3r, 64w_3r, 56w_4r, and 64w_4r 

runs, there was competition for network resources at the time of these runs. It also appears 

there as some competition during the 23w_1r, 32w_3r, and 32w_4r runs.

■  Renderer Load Balance

■  Per Frame Communication

■  Per Frame Computation

■  Miss Handling Local 
Synchronization

■  Miss Handling Communication

■  Miss Handling Computation 

Figure 41: Total render time versus number of R e n d e re r  threads
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■Renderer Computation 

■Renderer Communication 

Renderer Wait 

■Renderer Load Balance

Figure 42: Relative speedup versus number of R e n d e re r  threads

350

^  ^  
0 3 ' v  v  < 0  to

rv‘ r0‘ ^  '■£ r0‘ 
03' v  v  <0 <0

°5‘ °5‘
03' v v <0 to

■  Renderer Load Balance

■  Renderer Wait

■  Renderer Communication

■  Renderer Computation

Figure 43: Total time summary versus node count for all runs
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Figure 44: Total time summary versus thread count for all runs

Analogous to Figure 37, Figures 45 and 46 show the combined time spent rendering 

organized by node count and by thread count, respectively. Again, it can be seen that the 

total runtime is dominated by end-to-end message latency both in the OS and on the actual 

network.

6.5 Cache Miss Model

In addition to looking at the performance data across several runs of DIRT, it is im

portant to understand how many software shared memory cache misses occur as a function 

of the number of nodes and R e n d e re r  threads. The data for this model was derived from 

looking at 3 runs for each data point. The cache misses per thread are summed to produce 

a total count of cache misses across all of the threads on all of the nodes. There are many 

interactions one might expect as the number of nodes and threads varies. The amount of 

total work is identical in all cases. As the number of nodes increases, there will be slightly 

more compulsory misses for common shared data as each node will need a copy of that da-

i i i i i i
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Renderer Load Balance

Per Frame Communication

Per Frame Computation

- Miss Handling Local Synchronization

i Miss Handling Communication

I Miss Handling Computation

-End-to-end Message Latency 
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Figure 45: Combined time summary versus node count for all runs
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Figure 46: Combined time summary versus thread count for all runs
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ta. However, as the cache per node is constant, the total cache capacity increases as the node 

count increases. In all of the runs, the cache hit rate is fairly high and has a fairly narrow 

range, from a low of 87.4% to a high of 89.1%. As more threads are added, there is more 

contention for the local caches. The data obtained from 3 runs of each node and thread 

count was used to produce a log-linear model that fits the total number of cache misses. The 

model is,

M  = 9154620 + 4454.49 • N n + 823834 • log(N r) 

where M is the total number of misses across all threads and nodes, Nn is the number of 

worker nodes, and Nr is the number of R e n d e re r  threads. The fit of that model to the ex

perimental data is shown in Figure 47.

1
Figure 47: Cache miss model fit



The average number of cache misses per frame per renderer thread, NM, can be de

scribed as,

9154620 + 4454.49 • N n + 823834 • log(N r)
N  = _______________ -____________ —

M N n • N r • 110

That per-thread cache miss model is used in the model in Chapter 7.

6.6 Characterization Summary

Using the analysis presented in this section, it is possible to build a model for both 

the R e n d e re r  and c o m m u n ica to r  threads of DIRT. The model is based on the view 

that the R e n d e re r  thread is a service that waits for an assignment, computes for some 

amount of time, requests some number of cachelines, waiting for each to be filled, and re

turns results to the supervisor. The co m m u n ic a to r  thread on each node is a service that 

listens for messages from other nodes. For each message type, there is an overhead as mea

sured above. The complete mathematical model for DIRT is developed in Chapter 7. The 

characteristics from the analysis of DIRT that are used in that model are summarized in Ta

ble 10.
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Table 10: Summary of key DIRT characteristics

Characteristic Value
Total R e n d e re r  compute time per frame (all nodes) 6.03 s
Total task assignments per frame (all nodes) 4096
Average c o m m u n ica to r  computation time per 
cache miss

3.74 ^s

Cache miss model 9154620 + 4454Nn + 823834log(Nr;
Nm  N n -N r - 110

Miss request size 20 bytes
Average pixel assignment send size 796 bytes
Cache miss response size 3472 bytes
Assignment size 12 bytes
Per frame data size 172 bytes



CHAPTER 7

A MATHEMATICAL MODEL OF DIRT

Running a large demanding application such as DIRT is beyond the capabilities of 

the simulator described in Chapter 4. To predict the performance of DIRT on the ULN ar

chitecture, a model has been generated for the worker nodes based on the analysis of the 

code and the characterization of the 32w_1r run from Chapter 6. That model is based on a 

simplified compute and communicate view of the operation of the worker node.

7.1 R e n d e re r  Thread Model

The renderer threads operate as follows:

• For each frame:

• For each assignment:

• Wait for the assignment

• For each pixel in the assignment

• Compute the ray intersections

• For each miss:

• Send a message to a remote node

• Sleep

• Wait for wake-up from c o m m u n ic a to r  thread



• Wait for frame load imbalance

The total time for the run can be described as:

T  = nF(nA (tA + np (tp + nMtM)) + tL )

where T is the total time, nF is the number of frames rendered, na is the average number of 

assignments per R e n d e re r  thread per frame, tA is the average assignment overhead, np is 

the average number of pixels per assignment, tp is the average time spent rendering per pix

el, -m  is the average number of misses per pixel, tM is the time spent waiting for the miss 

to be serviced, and tL is the expected load-balance wait time per frame.

This can be expanded to:

T  = nFnAtA + nFnAnp tp + nFnAnp nMtM + nFtL

As DIRT is intended to be an interactive raytracing tool, it is more meaningful to 

reason about the effective frame-rate or the time per frame than the total runtime for an ar

bitrary number of frames. The time per frame, Tf, is,

T
TF = n nAtA + nAnPtP + nAnPnMtM  + tLF

The nAtA component corresponds to the total time getting new assignments, exclud

ing load imbalance at the end of the frame. As the assignments are handed out preemptive

ly, there is no wait time associated with getting the next assignment, only computational 

overhead. The nAnptp term corresponds to the total time per frame actually rendering pix

els.

As the total number of total assignments per frame in DIRT is currently fixed at 

4,096 assignments, nA is just 4,096 divided by the total number of R e n d e re r  threads. Fur

thermore, the total amount of render work is independent of the number of nodes and
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threads shown in Chapter 6. Thus it makes sense to combine these terms into the total time 

spent on rendering tasks. If we let Tr represent the total computation time per R e n d e re r  

thread per frame then,

TR _ nAtA + nAnPtP

The n A n p n M tM  term corresponds to the total time lost to cache misses per frame. 

That is, it is the average number of cache misses per R e n d e re r  thread per frame times the 

expected miss time. If we let Nm represent the total number of misses per R e n d e re r  

thread per frame, and t R  represent the average time computing between misses, then,

NM = nAnPnM

NMtM  _ nAnPnMtM

t _ nAtA + nAnPtP _ J-R 
R nAnPnM NM

Rewriting Tf  in these terms gives us,

TF _ TR + NMtM + tL _ NM ( tR + tM) + tL

This is the model used as the time per frame. The number of misses per thread per 

frame comes from the model presented in Chapter 6. The time spent rendering per miss, tR, 

is computed as follows. The total time rendering per frame, with communication overheads 

removed is 6.027299 seconds. This is divided by the P4 versus i7 speedup, 5.53, giving an 

expected computational time per frame of 1.09 seconds. Dividing this by Nm  and by the 

total number of threads gives the expected rendering time per cache-miss if the thread were 

running alone on the SMT processor. The miss request send overhead of 26 ns is added to 

this, giving the raw R e n d e re r  CPU time between cache misses, Tr. Finally, the expected 

time of running this work on the shared SMT processor, tR, is computed by dividing Tr by 

the expected speedup from multiple threads running, Sr. Thus,
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„ 6.03s
Tr = ^ W -  +26nS

t = T l
R S r

The time to service a miss, tM, is the sum of the round-trip network latency to the 

home node, 2l, the serialization delay of the request, bg, the serialization delay of the re

sponse, bs, the expected queuing delay of both the request and the response, q, and the ex

pected c o m m u n ica to r  handling time for the request and response, H

tM  = 21 + bQ + bS + q + tH

where the tH  term is derived from the time expected to handle a single cache miss when 

running alone on the SMT processor, Th, and the expected speedup of the handler thread,

Sfo as,

t =ThlH s
S h

The one-way latency, l, is the sum of the wire latency of 300 ns, plus the send side 

latency of 45 ns, the receive side latency of 103 ns, and the wake-up latency of 5 ns. The 

serialization latencies are a function of bandwidth. The request size from Chapter 6 is 58 

bytes and the response size is 3530 bytes across 3 packets. Thus,

l = 300ns + 45ns + 103ns + 5ns = 453ns 
rg  = 58ns 

rs  = 3530ns

Th is discussed in Section 7.2 and Tr and Th are used in the model for computing Sr 

and Sh in Section 7.4. The queuing term, q, and the handling time are combined in the queu

ing model in Section 7.3.



7.2 Communicator Thread Model

The c o m m u n ica to r  threads operate as follows:

• Wait for incoming message

• Receive message

• Switch on message type:

• Dataserver request

• Read dataserver header

• Switch on request type:

• Cache miss request

• Look-up & read local scene data

• Send response

• Cache miss response:

• Receive data

• Fill cache-line

• Wake R e n d e re r  thread

• Task assignment response

• Place task in queue

In the ULN architecture, receives are handled by the hardware and placed directly 

in the user address space. The c o m m u n ic a to r  main loop would receive the entire mes

sage and pass a pointer to lower-levels of the call-tree for protocol specific packet data. 

Thus, for each of flows, we can simplify the view such that there is one receive and asso

ciated processing.
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For the model in Section 7.1, we just need the average service time for a single 

cache miss, which is the sum of the time spent handling the miss request and the miss re

sponse. The total request and response processing time is computed as 3.74 ^s in Chapter 

6. This is divided by the P4 versus i7 speedup, 5.53, giving an expected computational time 

per miss of 677 ns. To that we add the communications overheads from Chapter 4. On the 

request side there is a receive overhead of 32 ns to receive the request and a send overhead 

of 26 ns to send the response. On the response side, there is a receive overhead to receive 

the response or 32 ns, and a thread wake overhead of 2 ns to wake the R e n d e re r  thread. 

Thus,

3740ns
Th = .I-: + 32ns + 26ns + 32ns + 2ns = 769ns 

h 5.53

7.3 Expected Message Queueing Latency

As worker nodes render the scene, they must request scene data from other nodes. 

They do this by sending a request message to the home node for the data and then wait for 

a response. A simple model just modeling the average latency of each one-way message 

along with a simple average overhead model is sufficient to capture most of the message 

behavior. However, at each home node, there may be multiple requests that arrive in near 

succession to each other, causing some queueing delay in the system. A queueing model is 

applied to account for this behavior.

A model for a bounded single queue is used as a model for the message handler rou

tine used at each node. The common model, known as an M/M/1/B model [56] assumes 

that requests arrive at the handler with some average rate, X, and are handled at some aver

age rate, ^, each with an exponential distribution. A bounded queue is modeled here due to
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the fact that there are a limited number of workers. For a low traffic intensity, p, where 

p=X/H is much less than 1, and where the number of potential requests is relatively high, an 

unbounded queue is also a very good approximation of a bounded queue.

The model for an M/M/1/B queue is as follows. The expected response time is:

Er ri = E[n1_
[ 1 H 1  - p B)

where, E[n], the expected number of jobs in the system is,

E  r n 1 = P 1)P̂ -̂ 1̂)
[ 1 (1 -  P- D - p ^ 1-

where, p B, the probability of the maximum, B, jobs in the system is,

1 -  P B 
p B = rrpBTi-pB

Thus, the expected response time can be modeled as,

_p__(B + 1)pB+ -
]1 — f- 1- pB + 1 

E  [ r 1 = f  1 p
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The value of B  is the maximum number of outstanding messages that can be queued 

at a node. In this system, there can be one request message from each of the workers not 

local to the node, plus one response for each worker on the local node, therefore B  is equal

to the total number of workers in the run. As can be seen, as pB+1 approaches zero, this ap

proaches the equation for an infinite length M/M/1 queue model [56], where,

E  [ r1 = __ p__ = __ 1__  = 1
X(1-p) H( 1 - p) H-  X

This equation is useful for a quick and simple understanding of the queuing delay.

It can only overestimate the latency of handling a message, and does so by a surprisingly

small amount. In our case, p is approximately 0.11 or lower. The interesting values of B  are



D_|_ 1 'lr)
those greater than or equal to 32. This means the value of p is on the order of 10 or 

less. Therefore the error, or over estimation from using the simplified model in this work is 

trivial. The value of having a simplified equation is well worth the negligible error.

E[r] is the sum of the queuing delay and the handling delay. The following equa

tions relate X, and E[r] to the terms in Section 7.1.

E  [ r  ] = q + tH

x = _ 1 _
tR + tM

|i = max(—, T-) 
tH b

7.4 Multiple Thread Performance Model

A necessary component of the model of an SMT application is a model for how the 

threads interfere and subsequently reduce the speed of each other. From a single thread per

spective, a R e n d e re r  thread computes for some time and then blocks for some amount of 

time waiting for a communication response. On a single threaded processor, the ratio of the 

compute time to communication time can be combined with measured values for how a 

SMT processor performs with multiple threads running to understand the performance of 

the rendering step of DIRT as a function of those parameters. Having a mathematical model 

for this as opposed to just measuring it is necessary as the ratio of compute to communicate 

time is itself a function of the latency and overhead of the communication system.

On a SMT processor, capable of running N threads simultaneously, for a specific 

workload, there is a per thread speedup, Sn, when n of the N threads are active relative to 

when only one thread is active. If each thread, i, computes for some time Ti, as measured 

when only thread i is active, and then stalls for some time T ’i, an equation describing the
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histogram of how often the processor is running 0 to N  threads can be formulated using a 

rate-based Markov model. Where T ’o=T’i=T’n =T’ and To=T1=Tn =T, the model is a simple 

birth-death process as shown in Figure 48.

In that model, p i is the probability of being in a state i where i threads are running 

concurrently. In the steady state, the probability of a state times the sum of rates of all edges 

flowing out is equal to the sum of the product of the probability of the feeder states times 

the edge rate flowing the state. Thus,

or

N - i
T

T

Furthermore, the sum of the probabilities must be 1.

N

If we define 50=1 for convenience, the solution to that set of equations yields,

0

0

N /T ’ (N-1)/T’ (N-2)/T’ 1/T’

^  1 S / T —  2S2/T  ^ ^  3S3/T  M NSn/T1S1/T NSn/T

Figure 48: Markov model of isomorphic threads on an SMT processor
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The combinatorics in the summation account for all possible pairings of threads that 

can run simultaneously.

On a DIRT worker node, there are N-1 or Nr R e n d e re r  threads and 1 com m uni

c a t o r  thread. The R e n d e re r  threads all have the same profiles. However, the commu

n i c a t o r  thread has a distinct profile. Thus the model must account for the difference. It 

is not necessary to enumerate all of the possible of threads combinations, as all R e n d e re r  

threads are equivalent. However, it important to distinguish when the c o m m u n ica to r  

thread is and is not part of the mix. In this case, we will use Tr as the expected time it takes 

to render a chunk before communication and Tc as the expected time for the communication 

round-trip to characterize the R e n d e re r  threads. Likewise, we will use Th as the expected 

time for the co m m u n ic a to r  thread to handle a request and Tm as the expected time until 

the next message arrives. The states named 0, 1, ..., i, ..., Nr are the states where there the 

c o m m u n ica to r  thread is not running and i R e n d e re r  threads are running concurrently. 

The states named 0c, 1c, ..., ic, ..., Nrc are the states where the c o m m u n ic a to r  thread is 

running concurrent with i R e n d e re r  threads. The Markov model for this case is shown in 

Figure 49.

Figure 49: Markov model of DIRT threads on an SMT processor
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The solution to this yields,

'N;y T  
i
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TC n  *

; = 0

Nr

I
k = 0
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r Nr (N r

I k y , k + I \  k y k ks;n
kcT k = 0 TkTm n  ̂  + 1

; = 0 j ; = 0  J

N )
TrTh
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;=0

" " '

(N r
Tk

Nr (N r T %
\ k , k + I \  k k ks;

k
n k = 0 TkTm n  ̂  + 1

; = 0 j ; = 0 J

Nr

I
k = 0

These equations were checked by Monte Carlo simulation where synthetic 

“threads” requested the “processor” for a random amount of time centered around T, Tr, or 

Th as appropriate and then stalled for a random amount of time centered around T ’, Tc, or 

Tm as appropriate. After running for 1,000,000 cycles, the simulation results agree within 

1% of the calculated results for a range of parameters.

This equation can be used to compute the expected speedup of the threads running 

on the processor. The expected speedup is the sum of the speedup while running i threads, 

Si times the probability of i threads running, p t. For the renderer threads, the expected 

speedup E[Sr] is,

I K S P  + I  W S i + 1p ic
E  [Sr] = i =0 i =0

Nr i Nr i

I  N Pl + I  N"Pi'i = 0 r i = 0 r



The expected speedup of the c o m m u n ica to r  thread handling a message, E[Sh], 

abbreviated S^, is,

Nr
Z Si + lPic

S h = E  [ Shl = ^ --------
Nr
ZPic
i = 0

The expected speedup depends on Tm, which depends on the queuing delay from 

Section 7.3. However, — the average rate of handling a request depends on the expected 

speed of the handler, and hence on Sh. The arrival rate for messages, A, depends on the total 

time it takes to run a render and handle cycle. Thus these equations must be solved simul

taneously.

Tr and Th are parameters taken from the model in Sections 7.1 and 7.2 combined 

with the data in Chapter 6. Specifically, Tr is the expected time rendering before commu

nicating with only a single thread running. Th is the expected time handling a request and 

a response from a cache miss communication.

Tc is the expected time waiting for a remote cache miss to be handled and returned. 

This is equal to the round-trip wire latency of the message traversal, l, the round-trip wire 

latency including message serialization, plus the expected message handler response time. 

The expected message handler response time of the c o m m u n ic a to r  threads comes from 

the queueing model explained in section Section 7.3.

Tc = l + --T  c -  -  A

Tc = l + 1

116

C ‘ S h K N rm a x { ^ , -
Th b T J _ ±

Tc S r



The solution to this equation is,

1[ Th Tr UTr Th v2 7 Th T- Tr Tr
Tc = - m aX-s-, b){N r + 1) + l --=- + I s  - m a x(s-, b){N r +1) - 1\ -4lmax(s-, b)lN r- m a X s - ,  b ) s  - 1s

2 [ S h S r H S r S h '  S h S h S r S r

The total time for a renderer thread to do a computation and communication pass is 

Tc+Tr/Sr. Each renderer thread is issuing a new communication request every Tc+Tr/Sr sec

onds. Each of the renderer threads spreads its requests approximately equally amongst the 

c o m m u n ica to r  threads. The ratio of renderer threads is Nr.

At the co m m u n ica to r, the expected time until a new message arrives, Tm, is,

TrT  + —
T c S  r Th

m N r S h

7.5 Load Imbalance

The average load imbalance per processor for each frame can be modeled as the del

ta of the expected maximum render time and the average render time per frame. The aver

age or mean time spent rendering a frame is straightforward to compute. Extreme value 

theory [90,105,26] is applied to understand and model the expected maximum render time 

per frame across n worker threads.

The time it takes a single processor to render a single frame is equal to the time the 

processor takes to render the sum of its assigned tasks. Tasks are assigned to a processor 

essentially at random and are therefore independent of each other. Thus the time it takes a 

processor to render a frame can be described statistically as a random variable with an as

sociated probability density function (PDF). While the time distribution of the individual 

tasks is not Gaussian, the sum of the many tasks assigned to each processor is approximate

ly Gaussian as would be expected under the central limit theorem [90,105].
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The set o f times it takes the n  processors to complete the assigned tasks is viewed 

as n  samples from the normal distribution with a PDF of f x ) .

1 (x- u)2
f (  x) = -------- e  2 a

V2 rca2

where the mean time to complete a set o f tasks is -  and the standard deviation is a. The 

cumulative distribution function (CDF), or the probability that a given sample is less than 

or equal to x, o f this PDF is the integral from negative infinity to x o f the PDF.

(y -u )2
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F (x) = J  f(y )dy  = J y-1—-e 2a2 dy

Given a set o f n  samples, the probability that all o f these samples are less than some 

value X m ax  is the product o f the probability that each o f these samples is less than X m a x .

(y-u)2
Gn ( x ) = n  F (x) = F (x )n "

i =1

■ , ( y - u y  -

J  - t = \ e -iC72 dyV 2 rca2

By definition, the PDF of the maximum value is the derivative o f the CDF.

g n  (x) = dGd x ' )  = n f (  x )  F  (x) n 1

The expected extreme value as a function o f the number o f experiments can then be 

computed as,

r”
E  [ g n  (x )] = I x g n  (x) d x

Which expands to

n
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E [g n (x)] = j  n x f ( x ) F ( x ) n  -1 d x

ra
E  [g n  (X)] = j

(x -  u )2
nx- 2c2

7 2 n c f
( y - u ) 2

2c2
V2

dy
n c

n -  1
dxe e

"

This can be simplified as follows by letting v = •y-| 1  then,
T2C2

c

E  [ g n (  X )] = j n x -

y  = J2  c 2 v + i  

dy = a/2 c 2 dv

(x -  u) 2r x- 1 /----2
•• i\/2c- - /2 c 22c2

V2  n c 2

n -  1

a/2"tc c 2
e-v dv dx

If we let w  = x 1 then,
7 2 ^

x = a/ 2 c 2 w + i  

dx = a/ 2 c 2 dw

c

E  [ g n  (x)] = j
"  J lG 2™ + i  2n j*— r e w

a/ 2 n c 2
__v2

_ J l n c 1
e~v dv

n -  1
a/2 c 2 dw

This simplifies and expands as follows,

E [ (  )] r" ^/2c-2w + -.i 2 [ r w 1
E [g n (x)] = j n ------- 7=— ^ e w j - F

—" /\j n *— —"  aJ  n
w  I _ _  e-v2dv

A/n -

n -  1

"  h  ~2^, r /  i -in -1 1 r /  i
E[gn(x)] = j  n ^ e~w2l j  —  e~yldvI dw + | i j  n — e“w2Tj —  

- " A / n  L -ro^n J A/n L -^^/n

dw

-L  e-v2 dv
n -  1

dw

E  [ gn (x )] = j  n - i i c
A/n

" a/2 ^  e_w2
2 ( e rf( w) + 1 )

n -  1
dw + i j  n — e

~ " 4 n
2 (e rf( w) + 1)

n -  1
dw

If we let

"

w

2

In = j  nw-^2 e - ^ 1 (erf(w) + 1  )] dw 
A/n L2 J



and let
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r  r  1 _
J n = J n ~j=e 

- n  * JF
1 ( e r f (  w )  + 1)

n -  1
d w

then this can be written as,

E  [ g n ( x ) ]  = C In  + J  

We can show that J n  is equal to one for all n by letting

u = ^ (erf(w ) + 1)

then,

d u  = —  e w2dw 
4 %

.1
Jn = J nun -1 d u

J n = U" |0 = 1

This is as expected since J n  is equivalent to a PDF where ^=1 and c=1, which, by 

definition, integrates to 1 over the entire range.

Using this result, the expected extreme value equation can be further simplified to:

72
E  [ g n (x )] = c I n + ^ C J n  — j F - e

W 2-W2 1 (e r f (  w )  + 1)
n -1

J F

The only dependence on c  is that the extreme value scales linearly with c  and the 

only dependence on ^  is that the expected value is offset by ,̂. This shows that the expected 

maximum value out o f  n  samples from a Gaussian random distribution can be expressed as 

^ plus a scale, I n , times c . By symmetry, the expected minimum value is ^ minus c  times

2



In. Thus for the purposes of understanding load imbalance, the expected time between the 

shortest and longest task from a sample set is 2Ina.

A closed form solution for In for values of n greater than 5 is not known [136]. 

Therefore this integral is evaluated numerically using Mathematica for a range of values of 

n. These calculations were also verified by a simple experiment by producing N=100,000 

sets of n values from a normal distribution, by using a Box-Mueller transform [15] on uni

form random values generated by ra n d o m () , and comparing the average maximum value 

across the N  experiments with the analytical expected maximum value. For all experiments, 

the values compared are within 0.27% of the analytical model.

Figure 50 shows the values of In that are of the most interest for the experiments in 

this work. At 32 workers, In is about 2.07 and the expected delta between the minimum and 

maximum render times on a particular frame. Note that the x-axis is logarithmic.

Figure 51 shows how this function continues to grow to much larger values of n. As 

can be seen, this function grows sublogarithmically. However, it is not asymptotic. As n 

approaches infinity, In also approaches infinity. That is, with an infinite number of samples, 

the set will include the extremes at plus and minus infinity according to the Gaussian dis

tribution.

For fixed values of a  and ^, load imbalance grows slowly as a function of processor 

count. How ^ and a  change as the number of nodes scales is problem dependent. If ^ 

shrinks and a  remains constant, time spent in load imbalance (2aIn/^) grows more quickly. 

For the DIRT evaluation in this work, the task size is fixed. Thus for a given architecture 

the ratio of ^  to a  is roughly fixed. As communication time shrinks, the mean task time 

shrinks and the variance also shrinks slightly sublinearly. Thus, the percentage of time
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Figure 51: Value of In for n=1 to n=10,000



spent in load imbalance tends to be nearly constant, getting slightly worse as the commu

nication overhead approaches zero. This slightly dampens the improvement seen as the 

communication overhead approaches zero, however, the impact is small for practical val

ues of overhead.

This formula is particularly insightful when used as a ratio. The ratio of In at 64 

threads to In at 32 threads is a factor of 1.13. The ratio of In at 512 threads to In at 32 threads 

is a factor of 1.471. This means that the approximate load imbalance will increase from the 

measured 13% overhead at 32 nodes to 14.7% at 64 threads and 19.1% at 512 threads. This 

13% measured baseline is the baseline used in this model.

7.6 Combined Model

The queuing model and the speedup model have an interdependence. More threads 

executing simultaneously on the SMT processor implies that each of those threads run 

slower. As the communications thread runs slower, the total time between misses increases, 

as both Tr and T- increase, lowering the arrival rate in the queuing model. Since there is an 

interdependence, the equations are solved iteratively until the error is significantly smaller 

than 1 ns.

In addition to the parameters already described, the model includes parameters that 

can be used to add latency and overheads to the system. These parameters include addition

al Tr and Th overheads and additional latency in the network. These parameters are used in 

Chapter 8 to show sensitivities of the architecture to various overheads.

123



CHAPTER 8

DIRT ON ULN

There are several aspects of the ULN architecture that can be examined in the con

text of DIRT using the model presented in Chapter 7. These include the impact of the mul

tiple threads per node and the benefits of the various aspects of the architecture. Each of 

these studies are presented in this chapter. The average render time per thread for the 

32w_1r case on the ULN architecture is projected at 56.0 milliseconds versus the 1.69 sec

onds measured on the cluster in Chapter 6. Some fraction of that 30.2x speedup is due to 

the projected speedup of 5.53x of a modern core running at 3 GHz versus the older and 

slower Pentium 4 cores running at 2.4 GHz on the cluster during the compute portions of 

the code. However, the primary saving is due to significant improvements in the commu

nication architecture.

8.1 SMT Performance

As seen in Section 4.4, the SMT processor modeled in the ULN simulator has an 

aggregate speedup through at least the 8 threads modeled. In DIRT, the c o m m u n ic a to r  

thread is shared by all remote R e n d e re r  threads. As the number of local R e n d e re r  

threads increases, competition for the SMT processor increases and the per-threads speed

up decreases. The per-thread speedups of the R e n d e re r  threads (Sr) and the com m uni

c a t o r  thread (Sh) are shown in Figure 52.
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Number of Renderer Threads 

Figure 52: Per-thread speedup as a function of thread count

As the number of remote R e n d e re r  threads increases, the demand for services 

from the single c o m m u n ica to r  thread increases and the expected speed of the commu

n i c a t o r  thread decreases. This causes the queuing delay for the c o m m u n ic a to r  thread 

to increase. Furthermore, the contention for the processor resources also causes the R en

d e r e r  threads to operate slower. While this diminishes some of the benefit of the addi

tional threads, Figure 53 shows that there is still an application speedup as the number of 

R e n d e re r  threads increases.

This indicates that having more threads per SMT processor in the ULN architecture 

has a potential benefit. There are second order-effects and physical constraints that may re

duce the effectiveness of higher thread counts and place a practical limit on the number of 

threads that make sense. The actual data patterns and instruction mix in DIRT do not per

fectly match the workload investigated in the SMT thread performance model in Chapter 

4. This may result in the aggregate throughput to fall-off more sharply and eventually even 

regress as the thread count increases.
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Figure 53: SMT speedup at multiple nodes

As the number of threads increases, the size of the register file and various control 

structures around the processor also increase approximately linearly. As they increase, the 

power for these structures also increases proportionally. This results in a lower dynamic 

power efficiency per operation. As the size of these structures increase, they put pressure 

on static timing and eventually result in a reduction of the processor’s maximum clock fre

quency. This will further reduce the benefits of increased thread counts. However, the in

creased number of threads decreases the expected idle time of the processor and increases 

performance, thus the static power component is amortized more effectively.

Figure 54 shows the probabilities of being in each of the states, i, and ic, in Markov 

model from Figure 49 in Section 7.4. The math without the feedback from the queuing and 

message handling model inSection 7.3 causes the probabilities to weight more heavily to

ward higher values of i. The feedback caused by the cache-miss iteration cycle lengthening 

as the effective speedups increase lessens the probabilities at the higher values of i. The re-
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Figure 54: Markov model state probabilities

suit is that there is a greater probability that time will be spent more toward the middle of 

the thread count range.

By looking at the same data from Figure 53 organized by thread counts, Figure 55 

shows that the performance return of adding threads diminishes quickly beyond 3 or 4 

R e n d e re r  threads. Future work should also look at an energy model for the ULN proces

sor to suggest an optimal number of SMT threads from a power perspective.

From these results, a total number of 4 SMT threads appears to strike a reasonable 

balance between performance and keeping thread counts within reasonable bounds in the 

ULN architecture. For DIRT, this implies one c o m m u n ic a to r  threads and 3 R e n d e re r  

threads. While other thread counts are discussed below, the primary focus will center 

around this configuration.
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7
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Figure 55: Per-thread speedup as a function of thread count 

8.2 Scalability

Figure 55 gives an indication of the scalability of the architecture. The results indi

cate a scaling efficiency of 97.5% for Nr=1 to 97.4% for Nr=7. The scaling efficiency is 

dropping very slowly as the number of R e n d e re r  threads increases. Figure 56 shows the 

performance as the node count scales from 8 nodes to 512 nodes.

Looking at node counts up to 512 nodes pushes the model to its extreme. The per

formance the model is based on is for node counts from 32 to 64 nodes. This extends some 

of the data from those trends a factor of 4 below the bottom-end and a factor of 8 above the 

top-end. At the top-end one concern is that the total number of threads is nearly equal to the 

total number of assignments per frame. Thus the load-balancing features of DIRT will not 

have enough assignments to operate effectively. As the overhead per assignment is small, 

increasing the number of assignments per frame by decreasing the size of the assignments
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Figure 56: Scaling to 512 threads

would be reasonable. This would result in a slightly higher cache miss rate that should be 

similar to the increased miss rate observed by increasing the node count. So while the esti

mates toward the higher node and thread counts are probably an over-estimation o f the per

formance, the architecture clearly supports good scaling for N r=3 up to at least 4 times the 

node counts measured.

Figure 57 show the scaling efficiency o f the architecture on DIRT. On the left is the 

speedup relative to 8 nodes for each o f the thread counts. On the right is the parallel effi

ciency. There is a projected 80.9% scaling efficiency for Nr=3 at 512 nodes and a projected 

86.4% scaling efficiency at 256 nodes, both relative to 8 nodes.

8.3 Wire Latency

The effective end-to-end latency in the DIRT model is the sum of the latency in the 

NIC on the injection side, the latency on the NIC on the ejection side, the wire latency and
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serialization latency of the message. Recall that this latency is 453 ns plus 1 ns per byte. A 

request is 38 bytes and a response is effectively 3,350 bytes in the network including head

ers. The average latency between requests and responses is 2.24 .̂s. Figure 58 shows the 

effect as that one-way latency increases for each of the R e n d e re r  thread counts of inter

est. The y-axis is the effective slowdown (1/speedup) over the baseline of no additional la

tency. This is shown for 32 nodes.

The fact that the slope of the curve decreases with higher thread counts indicates 

that the additional threads are useful for hiding latency in DIRT. The Nr=3 case reaches a 

factor of 2 slowdown at 13.9 ^s. This graph is useful for understanding the impact of end

point and switch latency on performance. It is also useful in understanding the impact of 

bandwidth, which results in serialization latency. Halving the bandwidth per core to 0.5 

GB/s would correspond to 2 ns per byte on the network, an average of an additional 1.78 

^s per message. For the Nr=3 case that implies a 11.4% performance penalty due to the ad

ditional latency alone, not counting the additional queuing effect from the greater NIC oc

cupancy.
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Figure 58: Slowdown on 32 nodes due to wire latency for Nr = 1 to 7

8.4 Send and Receive Overheads

Overheads can also be increased in the model to see the impact of features such as 

zero-copy protocols, and low-overhead interaction with the NIC. Prior work has shown that 

overheads are more important than latencies in application performance [79]. Figures 59 

and 60 show that this is also the case for DIRT on ULN. Figure 59 shows the slowdown for 

each Nr as the send overhead is increased. The slowdown is a factor of 2 for an additional 

overhead of only 6.61 ^s of additional send overhead for Nr=3. The flat portion of the curve 

between 0 .̂s and 1-2 ^s of additional overhead is due to the fact that the total send over

head in that region is still less than the occupancy in the NIC due to the average message 

size at 1 GB/s. In that region, the additional overhead results in more contention for the 

SMT processor, hence a lower per-thread speedup. Beyond that, the additional overhead re

sults in both higher contention for the SMT processor and more queuing delay.
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Figure 59: Slowdown on 32 nodes due to send overhead for Nr = 1 to 7

Figure 60 shows the slowdown for each Nr as the receive overhead is increased. The 

slowdown is a factor of 2 for an additional overhead of only 4.25 ^s of additional receive 

overhead for Nr=3. Again, the flatter region between 0 and 1 ^s is due to the fact that the 

total receive overhead in the c o m m u n ic a to r  is still less than the bandwidth occupancy 

in the NIC.

Unlike for network latencies, send and receive overheads have a greater negative 

impact as Nr increases. Part of this is due to the fact that these overheads mean that the prob

ability a thread is running increases, thus the average number of threads running simulta

neously increases. This means that the average per-thread speedup decreases. Furthermore, 

these overheads impact the service time of the c o m m u n ic a to r  threads. As the overheads 

increase, the service time increases, and along with that, the queuing delay also increases.

The receive overhead is more critical than the send overhead because there are two 

receives per miss in the shared handler and only one send per miss. The model is more sen-
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Figure 60: Slowdown on 32 nodes due to receive overhead for Nr = 1 to 7

sitive to the shared handler overhead as it has an impact on the queuing delay and it has a 

lower effective per-thread speedup as shown in Section 8.1. Notification overhead is a form 

of receive overhead, so this key result shows the importance o f reducing the notification 

overhead, one o f more significant contributions o f the ULN architecture.

Injecting received messages directly into the cache reduces receive latency by ap

proximately the amount o f a cache miss for both requests and responses. The impact on the 

request side is modest if  all o f the other overheads in the recieve process are small. How

ever, since the received scene data is consumed by the R e n d e r e r  thread, the overhead for 

not placing this data in the cache behaves more like send overhead. While the impact of 

send overhead is less than receive overhead in absolute terms, each shared-memory fill may 

incur several local L2 cache misses if  the data is not injected. Assuming one-third o f the 

data is referenced, this can result in up to 800 ns o f overhead at 50 ns overhead per L2 miss.



Comparing the ULN architecture to an architecture with all of the other features ex

cept user-level notifications can be done by looking at Figure 59. An optimistic overhead 

of 1 ^s per notification corresponds to a slowdown of 1.053 for 32 nodes and Nr=3. Having 

2 |j,s of overhead per notification results in an overhead of 31.9% over ULN. In other words, 

having the user-level notifications in this architecture results in a 5.29-31.9% speedup over 

an architecture without user-level notifications. Figure 61 shows that the penalty of the ad

ditional receive notification overhead decreases slightly, going from 5.31% down to 5.03%, 

as the node count increases. However, for the 2 ^s overhead, the benefit increases from a 

31.7% improvement at 8 nodes to 33.5% at 256 nodes.

This is a good speedup on a problem where the message size is not fully optimized 

for the architecture and thus causes the system to be bandwidth constrained. The benefit of 

notifications where the message size has been optimized is discussed in Section 8.9.
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Comparing ULN to an efficient OS-based NIC requires having overheads for sends, 

receives, and notifications. Figure 62 illustrates the speedup of the ULN architecture over 

a SMT-based architecture that does not have user-level notifications and requires OS or 

other high-overhead interaction to interact with the NIC. The overheads modeled are 1 ^s 

for send overhead, 1 ^s for receive overhead, and 1 ^s for notification overhead at Nr=3. 

As above, the speedup of ULN over the baseline architecture improves as the system size 

scales. At 32 nodes, ULN is 50.9% faster than a traditional OS-based NIC under these con

ditions.

8.5 Thread Communications

Polling for message receives in the ULN architecture would result in all of the 

threads competing for the processor all of the time instead of just when there is useful ren

dering work or miss handling work to perform. At 32 nodes, for Nr=3, there are 4 total
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Figure 62: Speedup of ULN versus OS-based NIC, Nr = 3
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threads, and Sh is 0.8066. The expected speedup for 4 threads running simultaneously ac

cording to the model in Section 4.4 is 0.621. This speedup does not apply to the latency 

portion of the communication. Since the computation accounts for 68.5% of the 32 node, 

Nr=3 time per miss, the performance penalty for polling full time would be 20.5%

By adding overhead to both the R e n d e re r  thread and to the co m m u n ic a to r  

thread we can get an approximation of how overheads in the interthread communication 

system affect performance. Since there is only one thread wake per communication, adding 

just the wake overhead to the c o m m u n ica to r  has one half the impact of receive over

head. Adding the same amount of wake overhead to both the c o m m u n ic a to r  and the 

R e n d e re r  threads has the same impact as adding send overhead. Figure 63 shows two 

views of the same data representing the speedup of a light-weight thread wake mechanism 

versus a lock-based mechanism with OS overheads. The wake overhead is the overhead in 

the c o m m u n ic a to r  thread required to wake the appropriate R e n d e re r  thread. The Tr 

overhead is the overhead in the R e n d e re r  thread generally paid when the thread sleeps.

1.12

1.5 2
Tr Overhead

Tr Overhead

Figure 63: Speedup of ULN thread wake versus OS-based lock, Nr = 3, 32 nodes



On the R e n d e r e r  side, just adding Tr overhead to model wake overhead would result in 

an over-estimation o f the impact due to the way the model works. Adding this not only 

models the overhead o f extra time spent with the R e n d e r e r  thread running before sleep

ing, but also adds effective end-to-end latency to the message. Since the thread sleep hap

pens after sending the cache miss request, that additional latency is not accurate. This effect 

is compensated for by reducing the round-trip wire latency by an equivalent amount.

This data makes clear that the wake overhead in c o m m u n ic a to r  is more critical 

to performance than the sleep overhead in the R e n d e r e r , since a 2 ^s o f wake overhead 

results in a performance penalty o f 5.29% versus a 3.52% penalty for a 2 ^s sleep overhead. 

This is consistent with the observations made above that overhead in the c o m m u n ic a to r  

is more critical than overhead in the R e n d e r e r  above.

A reasonable overhead for a sleeping lock operation on the R e n d e r e r  thread is on 

the order o f 1-1.5 ^s. A reasonable trip into the OS in the c o m m u n ic a to r  thread to wake 

the R e n d e r e r  thread is on the order o f 0.5-1 ^s. This implies that there is a 2.45% to 

4.19% speedup on ULN compared to an architecture without an efficient thread synchroni

zation table. Having overheads as low as 5 ns is probably unnecessary, as there is a 0.83% 

performance penalty for adding 500 ns to the sleep side and a 0.69% penalty for adding the 

same to the wake side. Adding 50 ns to both o f those mechanisms would result in less than 

a 1% penalty. However, having a low overhead mechanism is not costly given that the syn

chronization table is needed for the notification mechanisms. Plus, these overheads become 

more significant as communication becomes more frequent.
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8.6 DMA versus PIO

DMA sends in the ULN architecture have such low overhead that they are more ef

ficient than PIO messages in all but the tiniest of messages. Even sending the 20 user-byte 

send request using PIO with an extremely efficient implementation will reduce Tr by 18 ns 

from about 15.288 .̂s to 15.270 ^s and will reduce the message latency on the request side 

by 10 ns. The result would be a 0.12% performance increase. The reason for supporting PIO 

in the ULN architecture is for software convenience rather than for performance.

For the responses, the data for the response is already in memory. This data would 

have to be read in and written to the NIC. Assuming the c o m m u n ica to r  thread consumed 

half of the load/store bandwidth of the processor without impacting the performance of the 

R e n d e re r  threads, there would be a 3.03% performance penalty over the DMA method 

at 32 nodes and Nr=3. Assuming the communicator could only get one-quarter of the 

load/store bandwidth, the performance penalty would be 12.8%.

Neither of these are huge penalties, as the SMT processor can perform those oper

ations efficiently while allowing other work to proceed concurrently. However, the cost of 

providing DMA in a modern NIC architecture is very small. For a different style of code 

where the compute thread could continue computation after a send, the DMA features 

would have an even greater impact.

In addition to the performance benefits, there would be a power benefit of not bring

ing cacheline all the way to the processor only to send them back down to the NIC. Finally, 

as the DMA transfers are so efficient even for the smallest of messages, one could consider 

changing the maximum PIO transfer to be much smaller, possibly even only a single cache- 

line. This could simplify the implementation of the NIC, allowing it to restrict PIO to single
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transaction operations. This would still allow PIO operation to still be used for efficient 

control messages and would allow for an efficient mechanism for supporting partitioned 

global address space puts. Larger transfers could be done as either a series o f small PIO 

messages or as a lightweight DMA operation.

8.7 ULN Performance Summary

The preceding sections characterize the benefits o f the various features o f the ULN  

architecture. The model developed in Chapter 7 proves very useful in evaluating a wide 

spectrum of configurations and options. The ULN architecture provides a 50.9% perfor

mance improvement over a more traditional OS-based NIC and a 5.29-31.9%% improve

ment over a user-level NIC due to the user-level notifications alone.

Figure 64 compares the performance impact o f latency, receive overhead, send 

overhead, and notification overhead for the 32 node, Nr=3 case. The impact o f receive over

head is identical to notification overhead, and thus is hidded behind the notification over

head curve in the graph. The slopes o f these curves can be used to understand the relative 

contributions o f each part o f the architecture when combined. Notification overhead is es

timated to be about 2 times recieve and send overhead in modern architectures, and the im

provements to latency are less than half that o f the other improvements. Under these 

assumptions, the reduced latency contributes, receive overhead reduction, send overhead 

reduction, and notification overhead reduction contribute 18%, 16%, 35%, 32%, respec

tively, to the projected speedup o f ULN when those latencies and overheads are small and 

3%, 27%, 16%, and 54%, respectively, as those overheads approach the right half o f this 

graph.
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Figure 64: Impact of additional latency and overheads

In addition to showing the benefits o f the ULN architecture on the existing DIRT 

code, the model can be used to investigate possible enhancements in DIRT supported by 

the architecture. Two o f these what-if scenarios are discussed in Sections 8.8 and 8.9.

8.8 What-if: Finer-grained Cache Block

When a miss occurs in the dataset being visualized, there is a trade-off between 

fetching a large block of data to fill the local cache, thus minimizing overhead per byte 

transferred, and having a small block reducing over-fetch, thus moving unnecessary data 

and wasting space in the cache. In the cluster platform that DIRT was designed and evalu

ated on, the messaging overheads are significantly higher than on ULN. This lead to a large 

cache block being chosen to amortize large message overheads per cache miss request. Re

call that the data points in the volume being visualized are 16-bit (2-byte) short integer val

ues. A cache block is organized as a 12x12x12 subvolume o f these short values, resulting 

in a 3,456 byte block. Consider a ray passing through this subvolume normal to one o f the



faces, perfectly aligned with the voxel, the ray will trace through 12 elements or until an 

isosurface match occurs, whichever comes first. A set o f rays from the same assignment 

will reuse the nearby values in the same block. Rays pass through this subvolume in a ran

dom orientation, however, the same basic operation applies.

A simple model for reducing the block size would be to imagine using a 6x6x6 sub

volume. This subvolume is one-eigth the size o f the 12x12x12 block. The worst case would 

be that a miss o f a single 12x12x12 block in the original would result in 8 misses if  a 6x6x6 

block were used. However, the expected miss count grows approximately with the area of 

the face o f the block versus the volume o f the block. This implies that the expected miss 

rate grows closer to a factor o f 4 while the block size reduces by a factor o f 8. There would 

also be an additional benefit due to a finer-grained mapping into the acceleration structure 

at the cost o f slightly more memory consumed by that structure.

Other block sizes between these two values are possible and reasonable, including 

square aspect ratios, such as 9x9x9 and rectangular aspect ratios such as 9x9x10. The ex

pected cache misses for a square aspect ratio follows a squared-cube law, where the block

9 /'Xsize shrinks by a factor o f n and the cache miss rate increases by approximately n .

Figure 65 shows a family o f curves for the expected performance, using the 

squared-cube law, for a block sized nxnxn on 32 through 64 nodes for Nr=3. The perfor

mance above corresponds to a 12x12x12 or 3,456 byte block size.

The optimal cacheline size according to this study for all node counts from 24 nodes 

to 256 nodes is a 7x7x7 element block. This corresponds to a 686 byte line. For node counts 

8 and 16, the 8x8x8 block is slightly better than a 7x7x7 block, by under 0.005%. The worst 

case difference between the optimal 7x7x7 block and the 8x8x8 block occurs at 256 nodes
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Figure 65: Optimal cacheline size, expected cache-miss behavior

and is only 0.0076%. Furthermore, the 7x7x7 block is better than a 6x6x6 block by only 

0.74% at 8 nodes to 0.84% at 256 nodes. For smaller cache blocks, the performance drops 

fairly gently. For larger cache blocks, the time to send the response due to the bandwidth 

constraint exceeds the time for the c o m m u n ic a to r  to handle an incoming message. Thus 

the handling time becomes NIC bandwidth bound and the performance drops quickly. This 

indicates it is better to err on the side o f a smaller cacheline size.

Figure 66 shows a the corresponding family o f curves for the worst-case perfor

mance o f the miss rate increasing with the ratio o f the block size decrease. The worst-case 

is calculated by multiplying the misses by the ratio o f the block size to a 12x12x12 block. 

Under that condition, the optimal cacheline size is 8x8x8 for all node counts. The fall-off 

is a little more steep on both sides, with a 0.97% to a 0.99% performance penalty for mov

ing to a 7x7x7 cache block.
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Figure 66: Optimal cacheline size, worst-case cache-miss behavior

The best case would be one in which the number o f cache misses does not increase 

as the line size decreases. Clearly this case favors the smallest cacheline size possible. Fig

ure 67 directly compares the worst, expected, and best case for 32 nodes.

Again, it is clear that the fine-grained message features favor a smaller cache block 

than the point chosen for DIRT on the cluster. The optimal point results in a block size that 

is a little under one-fifth o f the original block size and a block size one-eighth o f the original 

are still in the range o f optimal. This is an interesting result as it indicates that optimizing 

for finer-grained messages not only impacts performance directly, but also allows for soft

ware to optimize for a more natural point, gaining additional performance by doing so.

8.9 What-if: Directly Resume R e n d e re r

In ULN a single thread is commonly used as a received communications handler. 

This is how DIRT is modeled. However, the architecture makes it possible to have any
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thread block on different communication events. It would be simple to direct requests to the 

c o m m u n ic a to r  thread and to direct a response to return directly to the original request

ing R e n d e r e r  thread. The changes to DIRT required to support this are minor. A request

ing R e n d e r e r  thread would have to include its context ID in the request and the 

c o m m u n ic a to r  thread would have to respond, targeting the supplied context ID instead 

of the one associated with the source node’s c o m m u n ic a to r  thread. Finally, the R en -  

d e r e r  thread would have to perform the cache functions o f marking the line valid and 

waking any other subsequent R e n d e r e r  threads that waited on the same line.

This optimization can be easily modeled with the model above by estimating the 

overhead o f the c o m m u n ic a to r  on the response versus on the request and subtracting the 

appropriate overhead from the c o m m u n ic a to r  and adding it to the R e n d e r e r . From 

Table 8, the time spent in s e m a p h o r e .g e t _ s o l e _ a c c e s s  is associated with miss re

sponses. Outside o f that function, from inspection o f the code, many o f the code paths are 

shared or similar. Thus, it is assumed that the time spent processing in the 

d a t a s e r v e r  g r o u p : : h a n d le m e s s a g e  and d a t a s e r v e r  d i r e c t : : h a n -



d le m e s s a g e  functions is split evenly between request and response processing. Thus, 

56.0% of 0.677 ^s spent in the c o m m u n ica to r  per miss is associated with miss response 

handling. Additionally, there is another 32 ns associated with receiving the response and 2 

ns of overhead associated with the wake operation. The resulting overhead of 0.413 ^s is 

subtracted from Th. The 5 ns thread wake latency is also removed from the effective round- 

trip time.

Conservatively all of the overhead subtracted from Th except the wake overhead is 

added to Tr. However, it should be noted that the purpose of the d a t a s e r v e r _ g r o u p : :

h a n d le m e s s a g e  function is to select the appropriate dataserver based on the request. 

Since the R e n d e re r  thread already calls the associated miss function and the response is 

sent directly to the requestor, that selection is redundant. Thus, in the aggressive case, we 

only add 38.1% of the 0.677 ^s plus the receive overhead, for a total of 0.293 ^s to Tr.

For the default block size of 3,567 bytes, the conservative optimization results in a 

1.31% to 1.37% performance penalty in the range of 8 to 256 nodes. Even the more aggres

sive optimization results in a slight 0.77% to 0.81% performance loss. The reason for this 

is that with those large blocks, the Th overhead in the model is effectively hidden under the 

serialization latency of the large block message. As that overhead is moved to the Tr side, 

the overhead is fully exposed.

However, as the block size decreases, the optimization begins to make a small dif

ference. At the optimal 7x7x7 block size from Section 8.8 of 686 bytes, there is negligible 

(0.344% to 0.397%) performance gain for the conservative approach at Nr=3, and for the 

aggressive approach a small (1.50% to 1.64%) gain. However, the reduced overhead in the 

c o m m u n ica to r  makes the optimal block size in this case a 6x6x6, 432 byte block. Figure
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68 shows the comparison o f this optimized code at varied block sizes compared to the tra

ditional response handling for a fixed best-case 7x7x7 block size o f 686 bytes.

This shows that there is a small but nonnegligible 3.28% to 3.70% additional per

formance to be gained by further optimizing the application in this way for the ULN archi

tecture. Since the performance gain is small and only occurs for a narrow range o f block 

sizes, it is important understand whether this benefit makes the architecture more sensitive 

to the optimal block size. Figure 69 shows the speedup o f the optimized versions o f the 

code versus the baseline as the block-size is varied for both the optimized and unoptimized 

code.

The optimized code improves the performance in the 4.81% to 16.6% range over 

the unoptimized code for smaller than optimal block sizes. The average improvement over 

this range is 8.99%. Performance for larger than optimal block-sizes ranges from a 1.14% 

penalty to a 1.15% improvement with an average penalty o f 0.55%.
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8.10 Combined Benefits

The combination o f the ULN architecture and these what-if optimizations results in 

a speedup that ranges from 1.89 to 1.99 over that o f the original code running on an OS- 

based NIC with send, receive, and notification overheads o f 1 ^s each. Not only does the 

combination o f ULN and the optimizations it enables provide a good speedup, but it im

proves the overall scalability o f the code. The speedup o f ULN with the additional proposed 

optimizations is shown in Figure 70.
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CHAPTER 9

RELATED WORK

There is a rich set o f related work that has preceded ULN, related to each o f the key 

architectural aspects. This includes work on multithreaded processors, thread synchroniza

tion, efficient message passing protocols, tight NIC integration, and even several proposals 

for complete message passing architectures. This chapter addresses related work in each of 

those areas in turn.

9.1 Simultaneous Multithreading

Simultaneous MultiThreading (SMT) architectures [40,75, 108,109, 110,111], as 

proposed by Susan Eggers et al. from the University o f Washington, have seen commercial 

success in the Intel Pentium4, Intel Core i7, Intel Atom chips [66], and IBM Power5, 6 and 

7 [57] architectures. SMT architectures combine the benefits o f traditional superscalar ar

chitectures with that o f more recent multithreaded architectures to provide a processor core 

that is capable o f issuing instructions from multiple threads across multiple execution units 

on a single cycle. This is accomplished in part by duplicating context registers and associ

ated context handling hardware to allow multiple contexts to be active within the CPU at 

the same time. In short, SMT architectures provide the ability to simultaneously take ad

vantage o f both instruction-level parallelism (ILP) and thread-level parallelism (TLP) with

in a single processor core.



Having an SMT processor provides benefit in addition to just enabling the user-lev

el notification mechanism discussed in this work. The SMT processor is targeted to tolerate 

latency and hide overhead by allowing one thread to process overhead or wait for long la

tency operations, such as memory access or synchronization while the execution o f inde

pendent threads continues. When one thread is stalled on a long-latency network operation, 

other threads can still utilize the available functional units. Since multiple threads can be 

active on any given cycle, overhead processing can execute in parallel with primary com

putation. In particular, the SMT processor allows communications threads to run concur

rent with computational threads sharing unused instruction issue slots in the processor core. 

Thus, overhead tasks related to communication can be at least partially hidden underneath 

computation tasks.

9.2 Thread Synchronization

Dean Tullsen et al. [110] show how extra lock and release hardware can be intro

duced to provide fine-grained synchronization for threads in an SMT processor. This effi

cient locking mechanism allows one thread to block on a hardware semaphore and be 

released by another co-operating thread quite efficiently. A blocked thread does not con

sume any processor issue slots, allowing other threads to proceed as usual. Thus, a blocked 

process does not introduce any extra overhead, other than that o f holding a context control 

block. However, the thread synchronization hardware proposed in Tullsen’s work is fo

cused on threads communicating within the subsystem of a single core.

The notification primitive in this work extends some o f the control over this hard

ware locking table to external events, such as message arrival notifications from the NI. In 

this way, asynchronous I/O events can be delivered directly to the appropriate user thread

150



without the help o f a privileged kernel. This same mechanism can be used to help the pro

cessor tolerate message latency by freeing the CPU to process other threads instead o f poll

ing or requesting an interrupt for a message arrival. In effect, this work pushes the SMT 

idea one step farther by extending many o f the mechanisms to the I/O realm.

9.3 Efficient Protocols

A number o f message-passing protocols have been proposed. The following does 

not represent a complete list o f those protocols, but instead compares those which are most 

relevant to this work.

W ilkes’ Hamlyn [20] presents sender-based protocols, to reduce overhead. Having 

the sender manage its destination buffers implies that data can be easily and effectively re

ceived directly into the receiver's process space while simultaneously side-stepping the is

sues o f buffer-overruns. The Hamlyn network interface, though designed for closely- 

coupled clusters, resides on an I/O bus. This again implies extra overhead, latency, and 

bandwidth limitations. Avalanche [106] also used a sender-based messaging protocol, 

called the “Direct Deposit Protocol” (DDP) [107], and a local message cache to reduce la

tency and overhead.

Sender-based protocols allow simple and efficient hardware to place incoming mes

sages directly into the receive process's address space. In sender based protocols, the re

mote node manages the local receive buffer, and places incoming messages directly in the 

appropriate location in memory, which avoids unnecessary copies. This avoids kernel in

volvement on receives. The message cache stores incoming messages, which saves the ex

tra system bus traffic o f writing the messages to main memory, and provides for quick
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retrieval on a processor request. These two ideas will also be used in the evaluation o f the 

proposed work.

Unlike Hamlyn and DDP, the protocol in this work uses virtual addresses in com

bination with an NI TLB to remove restrictions on receive buffers.

Thorson von Eicken’s U-Net [41,114, 115] reduces communication overhead and 

latency by virtualizing the network interface. In one implementation, Cornell uses an off 

the shelf I/O bus network interface, which contains an embedded processor to provide a 

safe, user-accessible communication medium. In other implementations, where the local 

interface card does not have any on-board processing or user-level protection capability, 

the direct interface is faked by the local kernel. The local process communicates with the 

network interface by placing and picking up message packets from per-process send and 

receive queues. In earlier implementations, send and receive data must be placed into 

pinned pages, to avoid page eviction problems. In a later proposals, Welsh suggests placing 

a TLB in the network interface to avoid the added restriction o f fixed pinned pages [115]. 

The architecture in this work also gives the NI access to a TLB to allow sends and receives 

to be handled in user-space.

However, the network interface in this architecture differs from U-Net in that NI is 

placed on the same die as the CPU and is tightly integrated with the CPU core. This limits 

flexibility in terms o f being able to adapt to a new network by simply removing a network 

card and plugging in another. It does, however, provide for much lower latency, it allows a 

much higher bandwidth, and it enables efficient notification mechanisms, all o f which are 

necessary for a fine-grained communication multiprocessor.
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Active Messages [42,76] embeds a message handler in the header o f a message. 

When a message arrives, the message handler is executed to handle the payload o f the mes

sage. This enables a custom mechanism to be implemented to handle each and every mes

sage arriving at a node. Though it is not specifically a goal o f this work, it has been noted 

that this architecture would provide a good hardware base to implement Active Messages. 

A thread waiting for a message could immediately jump to the handler code in the header 

without the penalty o f an interrupt and without interfering with the currently running 

thread. If messages are received directly into a message cache, then this handler code could 

potentially execute directly out o f the message cache, also saving the cache overhead of 

bringing in conventional handler code. Illinois’ Fast Messages [58,59,70,88,89] is effec

tively a platform independent implementation o f Active Messages.

The Cray T3E [100], X1 [3,39], BlackWidow [2], XMT [64,82], and XE6 [9] ar

chitectures all provide hardware mechanisms for Partitioned Global Address Space 

(PGAS) that makes all o f the memory in the machine accessible by all o f the processors. 

The X1, BlackWidow, and XMT architectures provide direct load and store access to all of 

the memory in the machine by translating a 64-bit virtual address to a global physical ad

dress composed o f a node and a physical address within that node. The T3E and XE6 ar

chitectures provide this by providing windows o f local addresses that map to global 

addresses. In all o f these machines, only local node addresses are cached. References to re

mote node addresses are not placed in a local cache. Global memory references are kept 

coherent by maintaining coherence within the home node and disallowing that data to be 

cached elsewhere. This model behaves much like the sender-based protocol in the ULN ar

chitecture in that writes, or in the ULN case, message sends, may target all o f the global
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memory. It also adds to that the ability to read a snapshot o f remote memory. Adding this 

mechanism to the ULN architecture should be investigated in future work.

Work has also been done to optimize message-passing protocols that are built on 

top o f shared memory systems [23,46]. ULN presents a flat message-passing architecture, 

both on-chip and off-chip, thus these optimizations are not directly applicable to ULN. 

However, it would possible to combine a traditional shared memory model on-chip with an 

off-chip message passing architecture based on ULN. Future work should consider such an 

architecture.

9.4 Message Passing Architectures

Several previous systems have advocated moving the NI closer to the CPU. Flash

[67], Avalanche [106], Alewife [5], SHRIMP [12], and Tempest [97] all placed the NI di

rectly on the system memory bus. Having the NI attached to the system bus significantly 

reduces the overhead o f accessing it compared to having it attached to an I/O bus. In addi

tion to reducing overhead, placing the NI on the system bus allows these systems efficient 

access to coherency traffic, which several o f these systems use to an additional advantage. 

The MIT J-Machine [31] and M-Machine [44] take it one step closer by bringing the NI 

directly onto the custom processor. Alewife, the J-Machine, and the M-Machine also have 

interesting characteristics in common. They all use a thread model or a thread-like model 

to deal with communication. Alewife uses a modified SPARC processor in an unconven

tional way to implement these threads.The J-Machine and M-Machine both build a custom 

processor to get the desired thread behavior. SMT processors now seem to be a natural way 

to achieve effective functionality o f these machines with only minor modifications to the 

CPU structure.
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In many ways the ULN architecture shares the same goals as the M-Machine. Both 

take advantage o f thread capable processors to hide message overhead, and both have forms 

of automatically dispatching threads when a message arrives. The ULN architecture differs 

from the M-machine in the following ways. Messages are received directly into a user’s ad

dress space with hardware support, eliminating the need for trusted message handlers. In

coming messages are placed into a message buffer, or message cache, to avoid pollution of 

the processor’s cache hierarchy. Finally this architecture is based on modifications to ex

isting SMT architectures.

This work extends the Avalanche Scalable Parallel Processor architecture devel

oped at the University o f Utah. Avalanche [33,106] placed the network interface on the sys

tem bus, keeping it close to the processor. This allowed it to participate in coherency traffic, 

and thus maintain a local network cache. The local cache enables the Avalanche network 

interface, named the “Widget,” to supply network data to the processor more quickly than 

the main memory. In addition, it avoids the overhead o f wasting system bus bandwidth to 

transfer message data across the system bus twice. Namely, on the way to main memory on 

message arrival, and on the way back to the processor when the message is consumed.

The work builds on Avalanche by eliminating kernel involvement on message 

sends and message arrival notification. User processes are given direct access to the NI's 

send engine. Security is maintained via an NI TLB. The user process communicates virtual 

addresses to the network interface, which are checked and translated to physical addresses 

using this TLB. In this way, the NI can both ensure that the user-process is requesting sends 

of legal memory and perform the address translation service for the user process.
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The MIT Alewife [4,5,6,7] is a hybrid message-passing and DSM machine that em

ploys several mechanisms to reduce communication latency and overhead. The network in

terface is effectively coupled to a SPARC based CPU core at the cache interface level. The 

integrated Communications and Memory Management Unit (CMMU) serves as the cache 

controller, network interface, and main memory controller. This design afforded Alewife 

the flexibility o f more tightly coupling the network interface with the processor core, with

out having to squeeze both on a single die.

The Alewife CPU core is a modified SPARC-based processor, called Sparcle. Spar- 

cle was augmented with several custom instructions to more directly and efficiently handle 

sending and receiving o f messages. Hardware support and software conventions are used 

to implement a block multithreading scheme using the SPARC's register windows. Instead 

of using the windows as an efficient mechanism for function calls, Alewife uses these reg

ister windows as separate thread contexts.

By convention, one o f the contexts is dedicated to exception handling. This context 

is primarily used to avoid a context switch when a message arrives. As messages arrive, 

they commonly trigger an exception. Special interrupt lines are brought out o f the Sparcle 

ASIC, which signals a message arrival. This style o f interrupt causes the exception context 

to quickly vector to a message handler.

The Sparcle processor also has a few extra instructions that provide for efficient 

context switches. On a trap, the Sparcle can switch to a new context in a mere 14 clock cy

cles. A process can block on a remote access incurring only a few cycles o f overhead and 

switch to a new thread while the remote access is outstanding.
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The MIT J-Machine [29,30,31,87,103] reduces send/receive overhead by tightly 

coupling the network interface with a custom processor, the Message Driven Processor 

(MDP). The entire processor and instruction set is designed around the idea o f sending, pro

cessing, and receiving object-oriented messages. Messages arriving at the MDP are han

dled immediately if  the processor is ready to consume the message. If not, they are buffered 

in a message queue in local memory by the Message Unit (MU) for subsequent handling. 

The overhead o f sending and receiving message is on the order o f tens o f clock cycles. Pro

tection is provided by only allowing a single user process on the machine at a time. A gen

eral purpose host CPU is used as a front end interface to access the parallel capabilities of 

the machine.

The J-Machine uses a data-flow style processor with two register sets to efficiently 

handle message arrival. If an incoming message has a higher priority than the currently ex

ecuting message, the other registers are used to begin execution on the incoming message 

immediately, without buffering the message in a message queue. Incoming messages spec

ify how they are to be handled. As messages are handled, a handler class specified in the 

message header was invoked by looking up the handler in a table. A message handler could 

begin execution o f a message within a few cycles o f the arrival o f a message header if  the 

processor was idle or executing a lower priority message.

The J-Machine provided the user with two sets o f registers, a high priority and a low  

priority set. Arriving messages can have either a low or a high priority. If the priority o f an 

incoming message is equal to or greater than the currently executing process, the incoming 

message uses the register set corresponding to its priority, and begins execution immedi
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ately. Otherwise, the message waits for the processor to switch back to a lower priority be

fore being consumed.

The MIT M-Machine [44,60,71] is made from custom, multithread capable, inte

grated CPU and network chips. Each node contains 12 function units local cache and a local 

memory controller. The entire cluster maintains a flat address space, accessible from any 

processor. The M-Machine, unlike its predecessor, adds safety mechanisms enabling easier 

debugging, and multiprogram support.

This work differs from the three MIT machines in that it uses a simultaneous mul

tithreading processor to provide latency tolerance and concurrent handling o f message ar

rival events. This allows it to achieve many o f the benefits o f the MIT machines in a modern 

processor and also reduce the cost o f blocking on message arrival events. The work also 

provides for a multiuser model, and does not require that the entire machine resources be 

dedicated to a single user at any given time.

The Stanford FLASH machine [48,49,67] integrates the network interface with the 

memory controller. This is done primarily because it is intended to be more o f a DSM ma

chine. However, integrating the network tightly with the memory controller affords that 

FLASH is able to see and participate in coherency traffic. In this way, as with other sys

tems, it is able to invalidate and/or update data in the local processor's cache as it arrives 

from the network. Again, FLASH uses a processor core in the NI to help manage all o f the 

protocol processing.

The FLASH architecture utilizes its custom built “MAGIC chip,” which sits be

tween the CPU, memory, the network, and the I/O controller. The ASIC acts as an integrat

ed memory controller and network interface. Integrating the network interface avoids the
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overhead o f copying network traffic across the system bus. However, as implemented in 

FLASH, the integration bloats the overhead o f the memory controller in servicing CPU 

memory requests. This added local memory latency exacerbates the already large 

CPU/memory gap.

The “OS only” programmable FLASH chip make flexible DSM and message pass

ing protocols possible. However, since the protocol processor (PP) offers no particular pro

tection, only the OS can download protocol handlers to MAGIC. By downloading 

appropriate protocol handlers, it can support several message passing schemes and DSM  

protocols simultaneously. It can handle OS level active messages, but cannot support user 

level active messages, as the PP cannot safely execute user code. These limitations imply 

extra overhead to a user level process, as it must rely on either existing mechanisms or must 

ask the kernel for support.

This work differs from FLASH in that it uses existing threads on an SMT processor 

for off loading communications tasks as opposed to requiring a separate communication 

controller. It also provides more direct access to the network hardware, and provides for 

message arrival notification to be delivered directly to the user process. The work also 

looks at the scalable multiprocessor problem from a message-passing standpoint, rather 

than a shared-memory perspective. If a shared-memory model is desired, that effect could 

be achieved through software or additional hardware mechanisms.

Wisconsin's Typhoon [97] machine provides a network interface which is placed on 

the system bus. Typhoon provides a “stock” integer core in the network interface, and al

lows a user process to program that processor. The dedicated network CPU is intended to 

handle protocol processing and off load work from the main processor. Since the main CPU
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is a traditional processor, Wisconsin designers elected to context switch the network pro

cessor along with the regular CPU. Since the current user process has full access to the raw 

network, the entire cluster must also be gang scheduled to provide protection and ensure 

message arrival. Gang scheduling can provide extra performance benefits in many cases, 

since the receive process will in general be active when a message arrives. However, re

quiring that the machine be gang scheduled adds potentially undesirable restrictions to the 

conventional computing model.

This work differs from Typhoon in that the NI does not contain a dedicated proces

sor. Instead, contexts within the SMT processor perform message sends and receives. It 

also does not introduce restrictions that would require gang scheduling.

Princeton’s SHRIMP multicomputer [12,13, 14,37,38,43] provides a mechanism for 

mapping memory pages o f a local sender process's virtual memory space to a remote re

ceiver process's virtual memory space. Writes to the local memory are forwarded to the cor

responding remote memory location as well. Though the map call used in SHRIMP is 

unidirectional, complementary mappings may be used to setup bidirectional communica

tion. The remote node may be updated either automatically or via explicit “update” com

mands. In this way, SHRIMP can “separate data movement from destination specification,” 

as the destination is specified when the buffer is mapped. The data is specified by writing 

to the send buffer (a page in memory). That page may be marked as either an automatic or 

as a deliberate update. If it is marked as an automatic update, then the data is sent automat

ically when the data is written in the local processor. If it is marked as a deliberate update, 

then a send call must be executed to direct the hardware to send the message. Since this
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mechanism is supported with page mapping tricks, a minimum send (and hence receive) 

buffer must be a page.

SHRIMP has no complicated custom protocol processor and no processor core on 

the NI. The simple design allows for efficient access to the interface, but gives no flexibility 

to support custom protocols. This work differs from SHRIMP in that is more o f a traditional 

message-passing machine. Upon receives, the local processor is notified with little over

head, allowing the user application to immediately catch and process an incoming message. 

This provides a bit more flexibility than the SHRIMP design.

9.5 Tighter NIC Integration

In addition to the tight integration o f the NIC as a part the M-machine and Ava

lanche architectures cited above, Nate Binkert explored the benefit o f integrating the NIC 

on the CPU die in his SINIC architecture [10]. Unlike many o f the message-passing archi

tectures above, the SINIC architecture focuses on the general IO problem of accessing de

vices on a logically distant noncoherent IO bus. These key tighter integration principles are 

also found in several o f the message passing and PGAS architectures cited above and are 

also found in the ULN architecture. The same conclusions apply. The overheads required 

to interact with a NIC that is on a distant noncoherent legacy IO bus are key to reducing 

network overheads and thus reducing end-to-end latency. This work differs from Binkert’s 

work in that the ULN architecture includes components o f efficient interaction with the net

work interface related to message arrival notification and in that it couples the efficient NIC 

interaction with an efficient protocol and system architecture that optimizes ULN as a ded

icated message passing architecture.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

ULN considers message-passing from a holistic point o f view targeting messaging 

overheads and latencies at all levels to provide an architecture that is efficient for fine

grained message-passing. The ULN architecture combines mechanisms for low-overhead 

send and receive operations, an efficient user-level notification mechanism, efficient inter

thread synchronization, and an SMT processor that can help tolerate message latencies and 

keep the network busy. The results presented in this work show that this hardware signifi

cantly improve the performance o f fine-grained message-passing. Indeed, the ULN archi

tecture can be thought o f as providing efficient hardware support for active messages.

ULN provides an estimated speedup of1.51 over an OS-based NIC on DIRT, a fine

grained message-passing code, even assuming a well-optimized OS. A speedup in the 

range o f 1.05-1.32 comes from the inclusion o f the user-level notification mechanism, the 

namesake o f the archtecture.

The analysis o f DIRT is not only useful in the evaluation o f the ULN architecture, 

it also serves as an example for how other applications can be profiled using TAU or similar 

tools for evaluation and modeling on ULN or other large-scale architectures. The key ele

ments o f that analysis are in understanding the behavior o f the node in terms o f local com

putation, synchronization, and communication components. By measuring these elements



and understanding the flow o f the code a model can be created similar to the one made for 

DIRT on the ULN architecture.

The analysis and modeling o f DIRT also lead to key insights for how DIRT may 

be modified to improve performance. Two such what-if scenarios were presented with the 

associated benefits. Optimizing DIRT for a finer-grained messaging on ULN results in an 

additional speedup o f 1.22 over the original DIRT code. Returning block miss requests di

rectly to the requesting R e n d e r e r  thread instead o f to the c o m m u n ic a to r  thread may 

result in an additional speedup o f 1.04. The resulting code is factor o f 1.9 faster after all 

optimizations are applied than the original DIRT on a projected NIC with a traditional OS- 

based interface.

In addition to providing a model for DIRT on the ULN architecture, Chapter 7 dem

onstrates a Markov model for the expected number o f concurrent homogeneous and hetero

geneous threads running simultaneously on an SMT processor. This mode can be used to 

analyze other message-passing codes on the ULN architecture. It can also be used to help 

model SMT performance on nonmessage-passing applications.

Chapter 7 also includes an extreme-value-theory-driven model for estimating load- 

imbalance as a function o f problem scaling. This model can be used as a model for under

standing load-imbalance as a function o f scale independent o f the ULN architecture. Such 

a model is particularly useful as we scale into the many thousands or even millions of 

threads in the Exascale era.

ULN bases the processor model on an SMT processor. Other concurrent, but non- 

simultaneous multithreaded processors exist. Examples include the Oracle UltraSPARC 

T1, UltraSPARC T2, UltraSPARC T2 Plus, SPARC T3, SPARC T4, and SPARC T5 pro
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cessors [65] as well as the Cray MTA, XMT, and XMT2 processors [64]. Nonsimultaneous 

fine-grained multithreading still provides the benefit o f managing multiple threads to keep 

the memory system and network busy, while avoiding some o f the complexities associated 

with SMT processors. It is not immediately clear how such a processor would compare to 

an SMT processor for these codes. If the performance impact is small, the simplicity could 

be a big win. An evaluation o f other fine-grained concurrent multithreaded processors in 

the ULN architecture could be evaluated in future work.

The ULN architecture provides a mechanism for user-level interrupts through the 

use o f multiple threads by allowing threads to park awaiting a notification event. Other 

user-level notification mechanisms would be possible for a single-threaded processor. One 

such mechanism would be to provide hardware support for a Unix-like signal handler. The 

hardware could interrupt the currently running thread and switch to a handler on a notifica

tion event. To make this possible, the code would need to register an alternate signal-han- 

dler stack to the hardware and the hardware would need to be capable o f at least 

automatically saving and restoring a minimal amount on state on a notification.

The notification mechanism in the ULN architecture has the benefit that a wake-up 

event is a hint. That is, just because a wake-up occurs does not guarantee a message has 

arrived. It is up to the user-code to check for message arrival upon wake-up. This allows 

for simplification o f the wake-up mechanisms. If the process is not currently running on 

ULN when a notification arrives, the hardware can safely drop the notification silently. The 

OS can always trigger a notification when a thread is rescheduled on the processor so that 

the thread can check for missed notifications, if  any. A user-level interrupt mechanism 

would likely want to retain this benefit by making the trap to the signal handler a hint that
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a message may have arrived. In this way, the signal handler semantics would be slightly 

different than a standard Unix signal handler in that the handler may wake spuriously. Fu

ture work could consider such mechanisms for a nonmultithreaded processor.

Investigating user-level interrupts combined with multiple cores as a mechanism 

for increasing local thread count for tolerating network latencies should be considered. As 

feature sizes continue to shrink and power becomes a limiting factor, having cores that are 

underutilized, and are therefore not consuming maximum power is less o f a concern than it 

has been in the past. However, having messages come in to a unified SMT core makes the 

communication o f synchronization events and data values much less expensive, both from 

a performance and energy perspective. Future work could evaluate the trade-off o f a more 

complex SMT core with cheap interthread communication versus a less complex multicore 

approach that has higher interthread communication overheads.

Future work should also expand the set o f codes analyzed on the ULN architecture. 

In particular, the MPI library would be a good candidate for optimization on ULN. MPI 

messages require processing on arrival. Control messages are used to coordinate transfer of 

large messages and user messages require matching with message tags to determine now 

where to place the data and what further actions to perform. In this way, an MPI message 

behaves like an active message.

Finally, there is a lot o f interest in mechanisms that increase productivity by, among 

other things, simplifying the job o f programming. This work shows how ULN improves 

parallel performance, particularly on codes with irregular or unpredictable message pat

terns. It is the author’s belief that providing architectures that efficiently support irregular 

communication patterns will significantly increase parallel programming productivity.
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Providing efficient mechanisms for irregular and fine-grained messaging allows program

mers the flexibility to support programming models where remote interaction can be han

dled in a code at or near the place that it is needed. This helps reduce the amount of 

programmer effort required to gather communications together into bundles before sending 

messages. It also saves the programmer the effort o f rewriting or even o f trying to come up 

with entirely new algorithms that minimize communication frequency. It would be inter

esting to study improvements in programming productivity on this new architecture.
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