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ABSTRACT

This thesis aim s to  m easu re  th e  difference in sea ted  norm al and  sh ear 

s tresses  based  upon d ifferen t types of w heelchair p ropu lsion  types. P revious 

stud ies have m easu red  b iom echanical influence of w heelchair p ropulsion  a t  the 

u p p er extrem ities. This study  in tends to  m easu re  the  b iom echanical differences a t 

the  seating  surface w here  w heelchair u sers  are  vu lnerab le  to  deep tissue and  skin 

breakdow ns. P ressu re  u lcers have been  s tud ied  to  form  based  upon a nu m b er of 

factors, specifically: too m uch p ressu re , friction, shear, and  h e a t/m o is tu re  buildup. 

However, very  little research  has been  perfo rm ed  m easuring  seating  s tre sses  in vivo 

based  upon  w heelchair propulsion.

M ultiple m etrics w ere  used  to  m easu re  the  no rm al and  sh ea r s tresses  in 10 

am bulato ry  subjects (5 m ale and  5 fem ale). To m easure  norm al p ressu re , p ressu re  

m apping  w as used. To m easu re  the  sh ea r s tresses, a M olten P redia w as used  to 

m easu re  shear. Two dram atically  d ifferen t w heelchair cushions w ere  used: an air 

ad justab le  cushion and  an HR-42 Foam block of sim ilar size. Two d ifferen t types of 

m anual w heelchair p ropu lsion  w ere  used: the  trad itiona l hand-rim  w heelchair and  

the  developm ental lever-arm  w heelchair.

It w as hypothesized  th a t th e  com bination of the  lever-arm  w heelchair and 

the  p ro p erly  ad justed  a ir cushion w ould significantly reduce the  norm al p ressu re  

and  sh ear s tre sses  associated  w ith  chair propulsion . The data  show ed  a significant



difference for the  norm al p re ssu re  for 9 of the  10 subjects in favor of th e  a ir cushion 

over th e  foam  cushion. H owever, the  sh ea r data  did n o t show  a significant 

difference for a reduction  of sh ear for any configuration of testing.
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BACKGROUND

W heelchairs are designed to provide support and mobility for persons who are not 

able to do so under their own power. Because o f this, the duration o f wheelchair use is 

often prolonged periods o f time. This necessitates the use o f cushions to help provide 

comfort and protection against pressure ulcers. This breakdown o f skin or underlying 

tissues occurs most commonly when sustained mechanical loads are subjected over a 

period o f time, particularly common in persons who must remain in a bed or a wheelchair 

for long periods o f time. Four main factors lead to the occurrence o f pressure ulcers: 

normal pressure, shear stress, surface friction, and the accumulation o f heat and moisture 

(Bader, Bouten, Colin, & Oomens, 2005; Ferrarin, Andreoni, & Pedotti, 2000; Minkel, 

2000; Reuler & Cooney, 1981). The majority o f wheelchair users are spinal cord injury 

(SCI) individuals who do not have sensation at the cushion interface (Reuler & Cooney, 

1981). This presents a problem as SCI individuals are not able to identify when 

dangerous amounts o f pressure or stress are applied to critical areas, whereas an able

bodied individual would simply shift positions due to discomfort. Cushions attempt to 

distribute the seating pressure over as much o f the surface as possible, which in turn 

decreases the normal pressure. A common way to distribute pressure better is to contour 

the cushion surface, which increases the surface area and provides stability to the cushion 

such that the user is secured in place (Bader et al., 2005; Brienza, Geyer, Karg, & Jan, 

2001; Brienza & Karg, 1998).



The idea that a pressure threshold exists for the creation o f pressure ulcers is 

highly debated within the industry. Many theoretical and studies involving animals have 

suggested that the risk o f pressure ulcers is a function o f time and load (Armstrong, 1985; 

Brienza, Karg, Geyer, Kelsey, & Trefler, 2001; Edwards & Marks, 1995; Manorama, 

Baek, Vorro, Sikorskii, & Bush, 2010; Sacks, 1989). Over a 2-hour period, it is theorized 

that a pressure range o f 60-80 mmHg (8.0-10.6 kPa) would be sufficient to cause pressure 

ulceration (Armstrong, 1985; Reuler & Cooney, 1981; Stekelenburg et al., 2007).

W hen diagnosing pressure ulcers, friction at the seating surface is commonly 

found to be the source because the skin traditionally shows signs o f irritation or 

inflammation. However, the influence o f shear stress is typically a hidden factor, as it is 

not commonly identified at the skin surface. W hile friction induces shear and results in 

ischemia, the presence o f shear is less distinguishable than friction because shear usually 

causes deep tissue pressure ulcers (Hanson, Langemo, Anderson, Thompson, & Hunter, 

2010; Sanders, Goldstein, & Leotta, 1995). The influence o f deep tissue shear under 

prolonged load can limit blood flow through capillaries where diffusion o f oxygen and 

metabolites to the cell are reduced or blocked (Hendrik & Goossens, 1994; M anorama et 

al., 2010; Stekelenburg et al., 2007). Over time, shearing force can cause extensive 

dissection or tearing within the tissue, located in the plane o f the greatest concentration of 

shear (Reichel, 1958). The reason for this is the addition o f shear reduces the amount of 

normal pressure required to cause a breakdown o f the skin (Doughty et al., 2006;

Gilsdorf, Patterson, Fisher, & Appel, 1990; Hanson et al., 2010; Ohura, Takahashi, & 

Ohura, 2008; Reichel, 1958; Sanders et al., 1995).
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Much research has been performed as to the performance o f wheelchair cushions 

with respect to the four major pressure ulcer influences. However, very little research has 

been performed to measure the effect o f wheelchair propulsion on wheelchair cushion 

stresses seen by the user, particularly with respect to various forms o f propulsion. 

Traditional manual wheelchairs require significant use o f the upper body, exposing the 

user to upper-body musculoskeletal disorders (Aissaoui, Arabi, Lacoste, Zalzal, & 

Dansereay, 2002; Bloswick, Erickson, Browns, Howell, & Mecham, 2003; Boninger, 

Baldwin, Cooper, Koontz, & Chan, 2000; Chaffin, Andersson, & Martin, 2006). Raphael 

et al. undertook a study to measure the biomechanical difference between four wheelchair 

propulsion types, two o f which will be used in this study (Raphael, Merryweather, Butler,

& Bloswick, 2011). The two wheelchairs used in this study are the traditional hand-rim 

propelled chair and the lever-arm propelled chair, which incorporates a rowing motion, 

putting the wrists in a more neutral position. Using the lever-arm wheelchair design, 

Raphael et al. measured a 14% decrease in moment about the shoulder, a 67% decrease in 

moment about the elbow, and a 92% decrease in moment about the wrist (Raphael et al., 

2011).

This study aims to investigate the normal pressure distribution and shear stress 

accumulation for two different manual wheelchair propulsion methods and two different 

wheelchair cushions: the traditional hand-rim method and the lever-arm propulsion 

method, with a polyurethane foam cushion and an air adjustable cushion. Additionally, 

this study investigates the effects o f different forms o f cushions, particularly a basic foam 

cushion and an air adjustable cushion, on these manual wheelchairs to identify the
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effectiveness o f cushion influence to reduce the pressure and increase the comfort o f the 

user. Below is a list o f the hypotheses for the study:

Hi: The air adjustable cushion will result in greater pressure distribution than the 

foam cushion.

H 2: The air adjustable cushion will result in less shear stress than the foam 

cushion.

H 3 : The lever-arm wheelchair propulsion method will result in less shear stress 

than the wheel-rim propulsion method.

H 4: The combination o f lever-arm wheelchair propulsion and air adjustable 

cushion will produce less shear stress than the combination o f wheel-rim 

wheelchair propulsion and the form cushion.

4



METHODS

Test Subject Participants 

Five male and five female test subjects were enlisted for this study, all between 

the ages o f 18 to 65. Gilsdorf et al. undertook a study that measured approximately a 

10% difference in pressure on critical boney structures. This is due to various levels of 

muscle atrophy for long-term wheelchair users as opposed to larger muscle mass for able 

bodied individuals (Gilsdorf, Patterson, & Fisher, 1991). For purposes o f comparative 

differences between testing configurations, able-bodied individuals were used for this 

study. All subjects were o f good health and could fit comfortably on the cushions 

without tissue interference from the wheelchairs. After reviewing and signing a 

University-Approved Informed Consent Document, subjects changed into tight fitting 

shorts (81% polyester and 19% elastane), shown in Figure 1. Three different sizes of 

tight fitting shorts were used: small, medium, and large. The shorts were laundered 

between each subject. Anthropometric data was gathered for each participant and is 

shown in Table 1. The test subject order was randomized to reduce any test effect. The 

order o f testing is shown in Table 1.

Cushion Descriptions 

Two cushions were used for testing: an open-celled polyurethane HR42 foam of 

size 10cm x 41cm x 41cm and an air-adjustable cushion o f similar size. The function of



the air-adjustable cushion is to distribute air over the cushion to reduce areas o f increased 

pressure, particularly boney structures such as the ischial tuberosities, sacrum, and the 

greater trochanters. The same cover stretchable cover, consisting o f Nylon Lycra, was 

used for both cushions. The Foam and Air-adjustable cushions can be seen in Figure 2 

and Figure 3, respectively.

W heelchair Descriptions 

Two wheelchair propulsion methods were included in the testing: (1) the wheel- 

rim wheelchair: a sling Everest and Jennings capable o f fitting a 44cm wide cushion, 

shown in Figure 4; and (2) the lever-arm wheelchair: a custom-made lever-arm 

propulsion chair, constructed by the University o f Utah Ergonomics and Safety 

Laboratory. The lever-arm chair was modified from a wheel-rim wheelchair, as shown 

in Figure 5. The armrests were removed to allow clearance for lever actuation. Lever 

arms extend from the front o f each side o f the chair, attached to a caliper and rotor 

assembly. The rotors are fixed to a sprocket, which actuates a bicycle chain to a sprocket 

on the rear wheel, as shown in Figure 6 . The left or right side lever controls the 

corresponding wheel, allowing forward or reverse movement o f each wheel, independent 

o f the other. A similar wheelchair design is currently available to consumers: the WIJIT 

("WHIT: Move at the Speed o f Life,"). The concept behind both designs is similar; 

however, the levers are concentric with the axle o f the wheel on the WIJIT.

The participants were allowed time to familiarize themselves with the two types 

o f wheelchairs. Many o f the subjects struggled with the lever-arm chair at first, but were 

able to maneuver the chair satisfactorily after a few minutes o f practice. Once the
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subjects were able to demonstrate their capabilities to run the courses in both 

wheelchairs, testing began.

Pressure Map Calibration and Validation 

The XSensor X2 Pressure Map was calibrated prior to testing as per the XSensor 

guide to map calibration. This process involves calibration of a low and high value, 

calibrating the range from 0 to 200 mmHg. The calibration was then validated using 4.5 

kg and 22.7 kg weights by placing each weight on the map for 120 seconds at a time, 

recording the pressure displayed by the map. The values were within the allowable 10% 

range o f the actual weight in both cases. The pressure map calibration was accepted.

Only one calibration was performed over the course o f testing.

Cushion Adjustment Method 

The traditional method for adjusting air adjustable cushions is to have a physical 

therapist use their hand to palpate the subject at the ischial tuberosities. The purpose of 

this is to identify a 13mm to 25mm gap under the “sitting bones” to ensure that the ischial 

tuberosities are not resting on the hard surface below the cushions. The cushion 

manufacturer identified a gap o f 13-25mm between the ischial tuberosities and the 

bottom o f the cushion as the optimal pressure distribution over the seating surface. This 

is a variable process as each physical therapist has different size fingers and different feel 

for what a proper gap is at the ischial tuberosities. Additionally, the physical therapist 

may endure excessive stresses in the wrists and fingers while palpating the sit bones of 

larger sized individuals.



Another method was developed for this study to reduce the variability o f cushion 

adjustment from physical therapist palpation, producing a repeatable and quantitative 

adjustment method for the cushion. A physical therapist was not used in the adjustment 

o f the air cushion. Instead, a developmental adjustment method, which measures the 

height offset at the iliac crest, was performed and validated using pressure mapping. The 

air cushion was completely deflated and the pressure map was set on the top surface of 

the cushion. The testing subject then sat on the deflated cushion, displaying areas o f high 

pressure (usually at the IT ’s). The cushion adjustment instructions state that the cushion 

should be inflated such that there is 13-25mm offset o f cushion between the user and the 

flat surface o f the wheelchair. To achieve the 13-25mm offset, the pressure map was 

used to inflate the cushion until the IT ’s were starting to lift o ff the surface, this was seen 

by a decrease in pressure at the IT ’s. This is illustrated in Figure 7 for a representative 

subject. The pressure map was used to identify the point at which the IT ’s were 

transitioning off the bottom out point and was measured as the datum point. The testing 

subject was explained the location o f the iliac crest and was then asked to identify the top 

o f their right iliac crest. A bubble level was used to translate the height o f the iliac crest 

to a ruler to measure the height from the floor to the point at the iliac crest. The cushion 

was then inflated to 19mm higher than the datum point. Note: 19mm is the ideal 

adjustment offset, but the range o f 13-25mm is suggested for customization for the 

individual, as per the manufacturer instructions. The testing subject was allowed to sit on 

the cushion for 1 2 0  seconds while the pressure map recorded the pressure distribution. 

This is illustrated on Figure 8  for a representative subject. The testing subject was asked 

if  they felt comfortable in the cushion after the adjustment; every testing subject said the
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cushion was comfortable for them. As a third check, the pressure distribution was 

monitored with the pressure map to verify the cushion was redistributing the pressure 

over the surface while not producing any high pressure points. At this point, the cushion 

was considered adjusted for the individual testing subject. No repeatability cushion 

adjustment methods were tested after the first adjustment.

This method worked well for able-bodied individuals with no visual signs of 

obliquities from the pressure map output. However, for robustness o f study, it is 

recommended that the left and right side o f the iliac crest be measured for offset. This 

would identify if  one side has a smaller gap. The iliac crest was picked as a relatively 

fixed location within the skeletal system. Originally it was suspected that the greater 

trochanter could be used. However, it was identified the greater trochanter produced 

some rotation when air was applied to the cushion, producing inaccurate measurement of 

cushion adjustment offset.

Pressure Mapping

The wheel-rim propulsion wheelchair was adjusted as needed for the testing 

subject. The only major adjustment was raising or lowering the foot rests. A cushion 

was secured in place with Velcro tabs to the bottom of the cover and top o f the sling of 

the chair. The pressure map was placed on the cushion. The testing subject then sat on 

the cushion in a comfortable upright posture. Any wrinkles were smoothed out in the 

pressure map, if  needed. The test subject sat on the cushion for 120 seconds before 

standing up to unload the cushion, as shown in Figure 9. This gave the cushion time to 

accept the user. The testing subject was removed from the cushion for 120 seconds, 

allowing the cushion to recover form the previous loading. Each testing subject
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performed five loading periods for each cushion, with 1 2 0  seconds allowed between each 

loading period for cushion recovery. The order was randomized to eliminate test effect.

Shear Sensor Validation 

To measure shear at the cushion seating surface interface, a Predia sensor was 

used. The sensor is from the M olten Corporation out o f Hiroshima, Japan. See Figure 

10. The Predia measures shear in the forward and backward direction. A LabView 

program was created to record the data at 100 Hz. To validate the measurement and 

logging capabilities, a fixture was constructed to achieve a 30° angle. A smoothed piece 

o f Teflon sheet o f a low coefficient o f friction was placed on the 30° inclined plane with 

a cutout that the Predia sensor could fit into, as shown in Figure 11. The Sensor was 

adhered into the cutout using aggressive double-sided adhesive; as shown in Figure 12. 

2.0 kg and 7.0kg masses whereas placed over the sensor adhered to the sensor with 

aggressive two-sided adhesive. Calculating the lateral load on the sensor and comparing 

it with the measured shear loads produced a calibration curve. The calibration was only 

performed once. A validation was performed at the start and finish o f each test subject. 

The validation process included the same fixture as shown in Figure 11, but only one 

mass (2.4kg) was used to measure the shear.

Shear M easurement 

In the Akins et al. study, the Predia sensor was placed anterior o f the ischial 

tuberosity location to mount the sensor on a flat section rather than on the boney 

prominence o f the ischial tuberosities. This method was followed to compare bench 

testing data to human subject data (Akins, Karg, & Brienza, 2011). For the Predia sensor
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placement, the subject was asked to sit on the lever-arm wheelchair and, using their left 

hand, identify the left ischial tuberosity. The subjects were asked to leave a finger 

located at the ishcial tuberosity while they stood up. The Predia sensor was positioned 

1 0 cm on center anterior (in the orientation o f the seated subject) o f the left ischial 

tuberosity. The subject was then asked to compress the Predia sensor against the 

skintight shorts. The Predia sensor was oriented such that the direction o f positive shear 

was facing in the anterior direction (to the seated subject). Aggressive two-sided 

adhesive held the Predia in place, though special care had to be taken during testing to 

maintain the sensor in place.

In a previous study o f wheelchair propulsion by Bloswick et al., a series of 

obstacle courses were set up to analyze the biomechanical stresses o f wheelchair 

propulsion (Bloswick et al., 2003). Based upon initial pilot testing, it was identified that 

the course shown in Figure 13 produced the largest amount o f repeatable shear. The 

obstacle course was setup for maneuvering the two wheelchairs. The course required the 

test subjects to complete a three-point turn by starting at the right side o f the course (as 

shown in Figure 13), and then inverted the course and the test subjects performed the 

same three-point turn by starting on the left side (as shown in Figure 14). The testing 

subjects were asked to maneuver the chairs at a comfortable pace and perform a complete 

stop before progressing to the next portion o f the course. The course was divided into 

four segments: 1. Start o f the course (from complete stop), 2. Full stop after turn before 

backing up, 3. Full stop after backing up, and 4. Full stop after turn to end trial. Prior to 

the start o f a trial, subjects were asked to perform a pressure relief lift. The pressure 

relief lift was incorporated to reduce any test effect o f built up shear from previous trials
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or positioning. The pressure relief lift was performed by having the subjects lift 

themselves straight up using the frame or armrests o f the chair, as shown in Figure 15.

A LabView circuit was created to log the data from the Predia shear sensor. A 

voltage trigger was used to identify key locations in the shear data, ie locations 1-4 of 

Figure 13 and Figure 14. The test operator actuated a circuit that trigger a voltage spike 

at the time of each of the four testing segments for the three-point turn, as shown in 

Figure 16. A small amount o f voltage could be seen in the test data while the trigger was 

compressed, allowing ease of the test operator to identify key locations of the testing for 

data analysis. The Predia sensor is rated at 60 Hz; however, initial testing indicated 

missing peaks in the data as observed from visual inspection of the Predia sensor during 

testing. The LabView VI logged the data at 100 Hz and the square waves o f the Predia 

were filtered.

The two cushions, with the two wheelchair propulsion types, and the two courses 

were tested in a random order to produce 16 testing configurations, as shown in Table 2. 

Each configuration was tested at three trials each, with a pressure relief lift between each 

trial.
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Figure 1 -  T est sub ject w earing  tig h t fitting short, experim enting  w ith  lever-arm  
w heelchair p rio r to  testing.

Die 1 -  T est sub ject an th ro p o m etric  data  c isplayed by sub jec t o rder.

G ender Age Height
(cm)

Body 
Weight (kg)

Seated Hip 
Width (cm) BMI

Subject 1 Male 24 190.5 99.8 43.2 27.5
Subject 2 Male 25 185.4 79.4 35.6 23.1
Subject 3 Female 33 172.7 63.5 40.6 21.3
Subject 4 Male 26 185.4 70.3 35.6 20.5
Subject 5 Female 24 157.5 54.4 35.6 21.9
Subject 6 Female 29 175.3 77.1 43.2 25.1
Subject 7 Male 56 188.0 104.3 43.2 29.5
Subject 8 Female 51 172.7 57.2 38.1 19.2
Subject 9 Male 51 180.3 77.1 38.1 23.7

Subject 10 Female 27 175.3 64.4 38.1 2 1 . 0

Average 34.6 178.3 74.8 39.1 23.3
Male Average 36.4 185.9 8 6 . 2 39.1 24.9

Female Average 32.8 170.7 63.3 39.1 21.7
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Figure 3 -  A ir-adjustable cushion w ith  cover.



15

Figure 4 -  T raditional w heel-rim  propu lsion  w heelchair w ith  sling se a t and  
footrests.

Figure 5 -  Lever-arm  w heelchair. Levers w ere  a ttached  w ith  b rak ing  levers to 
actuate  th e  chain and  propel the  w heel. The lever controls the  co rrespond ing  w heel 
independently .
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Figure 6  -  Chain activation assem bly. The calipers are  com pressed  upon the  ro to r 
w hen th e  b rake  is applied  from  th e  hand  lever. Upon application  of brake, the  lever 
is clam ped to  the  ro to r, ro ta tin g  th e  w heel fo rw ard  or backw ard.

0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mmHg

Figure 7 -  Air cushion deflated, p read ju stm en t. Note th e  areas of high p ressu re  
located a t  th e  rig h t ischial tuberosity .
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0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
m m H g

Figure 8  -  Air cushion p o s t ad justm ent. Note th e  p ressu re  has been  d is tribu ted  
aw ay from  th e  ischial tuberosity .

Figure 9 -  Subject p ressu re  m apping  on the  w heel-rim  w heelchair.
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Figure 10 -  P redia sh ear sensor, m anufactu red  by  M olten C orporation.

Figure 11 -  30° inclined sen so r validation  fixture w ith  senso r cutout.
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Figure 12 -  P redia senso r em bedded  in validation  fixture.

172.7 cm

i  *

Figure 13 -  R ight handed  tu rn  course. Subject s ta rts , from  a com plete stop, a t 
n um ber 1 and  m aneuvers th e ir  w ay th rough  the  course to  nu m b er 4, stopp ing  a t 
each num ber.
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172.7 cm

4 1

Figure 14 -  Left handed  tu rn  course. Subject s ta rts , from  a com plete stop, a t 
n um ber 1 and  m aneuvers th e ir  w ay th rough  the  course to  nu m b er 4, stopp ing  a t 
each num ber.

Figure 15 -  P artic ipan t perfo rm ing  p ressu re  re lief lift on w heel-rim  w heelchair.
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Figure 16 -  T est p ro c to r w ould  follow te s t  sub ject w ith  com puter and  sw itch in 
hand.

Table 2 -  Testing m atrix  for sh ea r te stin g  p erfo rm ed  w ith  a r ig h t tu rn  and  a left 
tu rn , th ree  t rials each. The te stin g  o rd e r for each sub jec t w as random ized.

W heel-rim Chair with Foam 
Cushion

Lever-arm Chair with Foam 
Cushion

W heel-rim Chair with Air 
Adjusted Cushion

Lever-arm Chair with Air 
Adjusted Cushion



RESULTS

Pressure Mapping

P ressu re  m apping  data  w ere  analyzed based  upon  th e  following calculations: 

average p ressu re  (mmHg), Peak P ressu re  Index (mmHg), Contact A rea (cm 2), and 

D ispersion Index (%). The average p ressu re  and  con tact a rea  w ere  calculated from  

th e  p re ssu re  m ap data  a t  the  end  of th e  1 2 0 -second loading period  over the  surface 

of th e  m ap w ith  a m inim um  th resh o ld  of 5 mmHg. The peak  p re ssu re  is n o t a 

reliable m easu re  as bony prom inences, such as the  ischial tuberosity , are  la rger than  

an  individual sensor. The peak  p ressu re  index (PPI) takes the  average p ressu re  

over an  area, 9-10 cm 2, w hich includes th e  ischial tu b e ro s ity  ("ISO W orking Group 

Clinical Use Guidelines," 2008). The D ispersion Index is a ra tio  of the  sum  of 

p re ssu re  in the  ischial tu b e ro sity  and  sacrum  region rela tive to  the  sum  of the 

p re ssu re  over the  en tire  surface. It is trad itiona lly  expressed  as a percen tage of u se r 

loads in th e  critical areas. Shown in Figure 17 th rough  Figure 20 are  the  average 

p ressu re , PPI, con tact area, and  d ispersion  index values for each te stin g  subject, 

respectively. The significance for the  differences be tw een  the  cushions w as 

calculated for each of the  four data  points: Average P ressure , PPI, Contact Area, and 

D ispersion Index; p-values are  show n in Table 3.



It can be seen from Figure 17 through Figure 20 that the average pressure, peak 

pressure index, contact area, and dispersion index differ between air and foam cushions 

for each subject. There were statistically significant differences (p=0.05) for average 

pressure and PPI between the two cushions for each subject, except subject number nine. 

There were statistically significant differences (p=0.05) for the dispersion index between 

cushions for each subject except number seven. There were statistically significant 

differences (p=0.05) for contact area between the two cushions for all subjects.

As a population, the air cushion measured a significant decrease o f average 

pressure compared to the foam cushion, dropping the average pressure from 29.8 mmHg 

for the foam cushion to 25.6 mmHg for the air adjustable cushion (p=0.05). The PPI 

reduced from 50.0 mmHg for the foam cushion to 35.4 mmHg for the air adjustable 

cushion (p=0.05). The Dispersion Index decreased from 41.6% for the foam cushion to 

36.2% for the air adjustable cushion (p=0.05).

A new metric labeled the “Pressure Distribution Index” was created specifically 

for this study to represent the data. The Pressure Distribution Index is the ratio of 

Average Pressure to PPI. This value is very similar to the Dispersion Index; however, it 

is a ratio o f a given point relative to the entire surface whereas the Dispersion Index is the 

ratio o f a region relative to the entire surface. The Dispersion Index includes area of 

potentially low and high pressures, relative to the entire cushion surface. The resolution 

o f this metric does not truly measure the pressure over the boney prominences relative to 

the surface. The Pressure Distribution Index, however, is a measure o f when a surface 

properly distributes the pressure away from critical points. Ideally, a value closer to 1.0 

would indicate the average pressure is equivalent to the PPI, giving an equal pressure
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distribution over the surface. The Pressure Distribution Index was calculated for each 

subject and can be seen in Figure 21. The p-values for the difference between the air and 

foam cushions are shown in Table 4. For the entire population, the Pressure Distribution 

Index increased from 0.613 for the foam cushion to 0.739 for the air adjustable cushion 

(p=0.05).

Shear M easurement

The shear stress measurements at the seating surface were analyzed based upon 

the static shear (sitting still before the participant started the obstacle course) and the 

dynamic shear (moving during the obstacle course). The static shear was measured as the 

shear measured by the Predia sensor. The dynamic shear was analyzed as a range o f data, 

from start to finish o f the particular segment o f the obstacle course. The decision to 

analyze dynamic shear as a range allowed the data to be observed as an influence o f the 

chair and cushion over a given movement. The data were also separated from the left 

turn course to right turn course as differences between the two orientations proved to be 

significant.

Static Shear Results 

W ithin the static shear data, the data were separated according to the obstacle 

course segments as defined in Figure 13 and Figure 14 as shown in the METHODS 

section. The static shear was measured each time was about to begin the next segment. 

Shown in Figure 22 and Figure 23 is the static shear after the pressure relief lift prior to 

the movement into the obstacle course for the left and right hand test, respectively. The 

static shear data prior to the reverse portion o f the left and right obstacle courses is shown
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in Figure 24  and Figure 25, respectively. Lastly, the static shear data after the reverse to 

segment three is shown in Figure 26 and Figure 27 for the left and right turn courses, 

respectively.

Visually, Figure 22 through Figure 27 do not show any trends for a configuration 

that produced lower shear values. A  Least Squares Means analysis was performed on the 

static shear data. The effects o f test subjects, gender, cushion, wheelchair type, turn, 

gender x cushion, cushion x turn, type o f chair x turn, and cushion x chair x turn were 

evaluated. As a population, the chair type or cushion does not play a significant effect in 

reducing the shear. However, individual parameters did have a significant effect. For the 

static shear gathered at zone one, the parameter with the most significant effect at 

reducing shear was the air cushion over the foam cushion, p=0.0160. The Air cushion 

combined with right turn produced a significant effect to reduce shear, p=0.0090, and 

Females crossed the Air cushion produced a significant effect to reduce shear, p=0.0329. 

For the static shear gathered at zone two, the only significant effects at reducing shear 

were the air cushion and the air cushion crossed the right turn, p=0.0081 and p=0.0178, 

respectively. However, for the static shear gathered at zone three, the only significant 

effect at reducing shear was the use o f the air cushion with p = 0 .0 0 2 2 .

Dynamic Shear Results 

The dynamic shear was segmented into the same intervals as defined in Figure 13 

and Figure 14. Dynamic shear was measured each time the participant was maneuvering 

through the obstacle course, separated by sections o f the course. Shown in Figure 28 and 

Figure 29 is the dynamic shear from zone 1-2 for the left and right turns o f the obstacle
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course, respectively. Section 2-3, the reverse, is shown in Figure 30 and Figure 31 for 

the left and right obstacle courses, respectfully. Lastly, the dynamic shear zone from 3-4 

for the left and right turns o f the obstacle course are shown in Figure 32 and Figure 33, 

respectfully.

As was the case with static shear, the dynamic shear, as shown in Figure 28 

through Figure 33, does not produce any configurations that produced lower shear values 

upon inspection. A Least Squares Means analysis was performed on the dynamic shear 

data. The effects for the analysis included test subjects, gender, cushion, wheelchair type, 

turn, gender cross cushion, cushion cross turn, type o f chair cross turn, and cushion cross 

chair cross turn. The dynamic shear did not produce a chair or cushion configuration that 

produced a significantly lower shear value. Over the population, a few parameters did 

produce significantly lower shear values. For the dynamic shear from zone one to two, 

Males, Females crossed with the left turn course, and Females crossed with the Air 

adjustable cushion produced significance in lowering shear values; p<0.0001, p=0.0005, 

and p=0.0037, respectfully. For the dynamic shear from zone two to three, no parameters 

produced significant reductions in shear. Finally, for the dynamic shear zone from three 

to four, Females crossed with the Air cushion, the W heel-rim propulsion type, and Males 

produced significant reductions in shear; p=0.0009, p=0.0112, and p=0.0474, 

respectfully.

Power calculations based upon given data set indicate that statistical significance 

between testing configurations might occur with a sample size on the order o f 250+, a 

sample size beyond a reasonable amount for this research project.
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"igure 17 -  A verage p ressu re  by sub ject for bo th  a ir and  foam  cushions. E rro r bars 
indicate confidence in tervals to  95%.
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E rro r b ars  indicate confidence in tervals to  95% .
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indicate confidence in tervals to  95% .
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Table 3 -  P-values for the  individual sub jec t difference be tw een  th e  a ir and  foam 
cushions. P-values d isplayed for Average P ressure , PPI, C ontact Area, and 
D ispersion Index.

Average
Pressure
(mmHg)

Peak Pressure 
Index 

(mmHg)

Contact 
Area (cm2)

Dispersion 
Index (% )

Subject 1 0.0099 0.0248 <0.0001 0.0088
Subject 2 <0.0001 <0.0001 0.0317 <0.0001
Subject 3 0.0027 0.0045 <0.0001 0.0202
Subject 4 <0.0001 0.0002 <0.0001 <0.0001
Subject 5 <0.0001 0.006 0.0002 0.0039
Subject 6 0.0147 0.0022 0.0002 0.0012
Subject 7 0.014 0.0001 0.002 NS*
Subject 8 0.001 <0.0001 0.0003 0.001
Subject 9 NS* NS* 0.0073 <0.0001

Subject 10 <0.0001 0.0002 0.0055 <0.0001

*NS = Not Significant Difference

Pressure Distribution Index by Subject
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"igure 21 -  P ressu re  Ratio by sub ject for b o th  a ir and  foam  cushions. P ressu re  Ratio 
is the  ra tio  of average p ressu re  to  PPI. E rro r b ars  indicate confidence in tervals to 
95%.
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Table 4 -  P-values for the  individual sub jec t difference be tw een  th e  a ir and  foam 
cushions for th e  P ressu re  D istribution Index.

Pressure
Distribution

Index
Subject 1 0.0276
Subject 2 0.0004
Subject 3 0.0187
Subject 4 0.0096
Subject 5 NS*
Subject 6 0.0149
Subject 7 0.0002
Subject 8 0.0014
Subject 9 0.0353

Subject 10 NS*

*NS = Not Significant Difference
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igure 22 -  Static sh ea r a t zone 1 of the  obstacle course for the  left hand  tu rn  
d isplaying each te sting  configuration sep a ra ted  by subject. E rro r b ars  indicate 
confidence in terval to 95% .
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Static Shear at Zone 1, Right Turn
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igure 23 -  Static sh ea r a t zone 1 of the  obstacle course for the  righ t hand  tu rn  
displaying each te sting  configuration sep a ra ted  by subject. E rro r b ars  indicate 
confidence in terval to  95% .

Static Shear at Zone 2, Left Turn
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Figure 24 -  Static shear at zone 2 of the obstacle course for the left hand turn
displaying each testing configuration separated by subject. Error bars indicate
confidence interval to 95%.
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Static Shear at Zone 2, Right Turn
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"igure 25 -  Static sh ea r a t zone 2 of the  obstacle course for the  righ t hand  tu rn  
displaying each te sting  configuration sep a ra ted  by subject. E rro r b ars  indicate 
confidence in terval to  95% .

Figure 26 -  Static shear at zone 3 of the obstacle course for the left hand turn
displaying each testing configuration separated by subject. Error bars indicate
confidence interval to 95%.
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"igure 27 -  Static sh ea r a t zone 3 of the  obstacle course for the  righ t hand  tu rn  
displaying each te sting  configuration sep a ra ted  by subject. E rro r b ars  indicate 
confidence in terval to  95% .
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Figure 28 -  Dynamic shear during zone 1-2 of the obstacle course for the left hand
turn displaying each testing configuration separated by subject. Error bars indicate
confidence interval to 95%.
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igure 29 -  Dynamic sh ea r du ring  zone 1-2 of the  obstacle course for the  rig h t hand 
tu rn  displaying each te sting  configuration sep ara ted  by subject. E rro r b ars  indicate 
confidence in terval to  95% .
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Figure 30 -  Dynamic shear during zone 2-3 of the obstacle course for the left hand
turn displaying each testing configuration separated by subject. Error bars indicate
confidence interval to 95%.
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Dynamic Shear Zone 2-3, Right Turn
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igure 31 -  Dynamic sh ea r du ring  zone 2-3 of the  obstacle course for the  rig h t hand  
tu rn  displaying each te sting  configuration sep a ra ted  by subject. E rro r b ars  indicate 
confidence in terval to  95% .
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Figure 32 -  Dynamic shear during zone 3-4 of the obstacle course for the left hand
turn displaying each testing configuration separated by subject. Error bars indicate
confidence interval to 95%.
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"igure 33 -  Dynamic shear during zone 3-4 of the obstacle course for the right hand 
tu rn  displaying each testing configuration separated  by subject. Error bars indicate 
confidence interval to 95%.



DISCUSSION

Pressure Mapping

Ideally, a good cushion would have a low average pressure, a low PPI, a low 

dispersion index, and a high contact area (Crawford, Walsh, & Porter-Armstrong, 

2006; Ferguson-Pell, Nicholson, Lennon, & Bain, 2001; "ISO W orking Group Clinical 

Use Guidelines," 2008; Nicholson, Ferguson-Pell, Lennon, & Bain, 2001). A low 

Pressure Distribution Index would indicate the average pressure is much lower than the 

PPI, suggesting a poor pressure distribution over the surface.

With the exception of subject 9, the air adjustable cushion produced significantly 

lower average pressures and peak pressure index values for the population. The air 

cushion did very well at redistributing the peak forces away from critical areas, such as 

the ischial tuberosities and the sacrum. The foam cushion measured a much larger 

distinction of pressure accumulation at the ischial tuberosities.

A few gender differences were identified. Females had a much larger percentage 

of load on the air adjustable cushion compared to males, with 65 ± 9 % of body mass 

being present on the cushion for females compared to 56 ± 6 % for males. The air 

adjustable cushion did not produce statistically significant values, but the foam cushion 

did with a p-value of 0.0145. Females measured 85 ± 8 % of their body mass on the 

foam cushion, as opposed to 70 ± 7% of the male body mass on the foam cushion. 

Females also produced a center of pressure more towards the center of the cushion. One



flaw with the body mass calculations is that the resultant force seen by the pressure map 

is a function of contact area. As seen in Figure 19, the contact area is dramatically lower 

for the air adjustable cushion. As the cells of the air bladder collapses, gaps can be seen 

between the cells, causing an area of no contact, thus influencing the resultant load 

calculations for the air cushion. As well, the functional heights of the foam and air 

adjustable cushions were quite different, ie the adjusted 13-25mm offset of the air 

adjustable cushion compared to the compression of the 100mm foam.

A difference in the center of mass from the posterior side of the cushion was 

identified between genders: females produced a center of pressure 17.9 ± 1.2 cm forward 

of the posterior side of the cushion, while males produced only 17.4 ± 0.7 cm for the air 

adjustable cushion. For the foam cushion, females produced a center of pressure 17.9 ± 

1.3 cm forward of the posterior side of the cushion while males produced only 16.4 ± 1.0 

cm. Though the values are not statistically significant, the trend is that females have a 

center of pressure closer to the center of the cushion than males. This follows the 

traditional observed difference that females are more “pair” shaped and carry more of 

their mass in the pelvic and thigh regions while males are more “apple” shaped and carry 

more of their mass in the abdomen and upper body (Blaak, 2001; Chaffin et al., 2006).

Pressure mapping was only used in static seating on the cushions. The XSensor 

X2 pressure map system setup does not easily allow for the map to record data in a 

mobile test, as cables and the logging computer must be transported with the map.

Newer pressure mapping technology allows for wireless logging of data, which would be 

better suited to measure the dynamic normal loading of the cushion based upon 

wheelchair propulsion. However, the map should not be used during the course for shear
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data collection, as the use of the map at the seating surface will drastically change the 

shear values because the map is a lower coefficient of friction surface.

The pressure distribution of the two cushions was measured as a function of 

multiple metrics. The hypothesis, Hi, that the air adjustable cushion would produce 

greater pressure distribution than the foam cushion can be accepted based upon the 

metrics: normal pressure, peak pressure index, dispersion index, and pressure 

distribution index with population data being significant at p<0.05. Similar studies 

follow the trend that an air adjustable cushion produces lower average pressures and peak 

pressures (Gilsdorf et al., 1991).

Shear Testing

Though not significant in every case, a trend was observed that there was lower 

shear stress for males than for females. This may likely be a function of normal weight 

distribution as pressure mapping data measured that the females placed a larger percent 

of the total body mass on the cushion than the males.

The orientation of the obstacle course proved to play an influence, though it was 

not significant over all testing configurations. The Predia sensor was adhered on the left 

side of the subject, and the trend concluded that shear was largest on the left turn where 

the sensor would be at a smaller turning radius.

A few remarks made by some of the testing subjects indicated that they never 

consistently felt a large amount of shear or sliding at the cushion surface. The subjects 

felt that if the obstacle course were longer and allowed for greater speeds to be achieved 

that perhaps more shear could be measured. Another problem occurred where a few of 

the data points gathered by the Predia had to be discarded when the data was a flat line,

39



measuring no shear at all. A more robust sensor and connection to LabView may 

produce better results for future research.

No wheelchair propulsion type, cushion type, or wheelchair propulsion method 

and cushion configuration could be identified that resulted in a consistent reduction of 

shear stresses at the seating surface. A trend was noticed that in a few situations, the air 

adjustable cushion measured lower shear than the foam cushion, but this was not 

consistent or significant for the population. Hypotheses H2, H3, and H4 could not be 

accepted with this data set for either static or dynamic shear.
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CONCLUSIONS

Excess pressure over time can lead to detrimental and even dangerous skin or 

deep tissue break down resulting a pressure ulcer. The addition of shear stress can further 

reduce the pressure at which tissue breakdown can occur. This study was undertaken to 

measure the normal pressure and shear stress involved with various forms of wheelchair 

propulsion and cushion configurations to help identify a wheelchair designs that might 

reduce shear and normal pressure. Two cushions were used during this study, high 

resiliency polyurethane foam and an air adjustable cushion readily available in the 

wheelchair cushion market. Two wheelchair propulsions methods were used in 

conjunction with the two cushions to measure a difference in the seating stresses.

The following hypotheses were tested:

H 1 : The air adjustable cushion will result in greater pressure distribution than the 

foam cushion.

H 2 : The air adjustable cushion will result in less shear stress than the foam 

cushion.

H3: The lever-arm wheelchair propulsion method will result in less shear stress 

than the wheel-rim propulsion method.

H4: The combination of lever-arm wheelchair propulsion and air adjustable 

cushion will produce less shear stress than the combination of wheel-rim 

wheelchair propulsion and the form cushion.
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The hypothesis, Hi, that the air adjustable cushion better distributes normal 

pressure over the surface of the cushion can be accepted based upon the sample size 

tested. The average pressure, peak pressure index, dispersion index, and pressure 

distribution index all produced significant differences between the two cushions, 

indicating the air adjustable cushion produced better pressure distribution than the foam 

cushion.

The hypothesis, H2, that the air adjustable cushion produces less shear stress than 

the foam cushion cannot be accepted based upon the sample size tested. A trend was 

noticed that the air cushion produced less shear, but it was not a significant difference for 

the population.

Hypotheses H3 and H4, that the lever-arm wheelchair propulsion method would 

produce less shear than the traditional wheel-rim propulsion method and the combination 

of air cushion paired with the lever-arm wheelchair propulsion method would produce 

less shear than the foam cushion and wheel-rim propulsion method, could not be accepted 

with the sample size tested, respectively. No trend was identified that one chair or one 

cushion and propulsion type configuration produced less shear than any of the others.



APPENDIX A

PRESSURE MAPPING DATA



44

0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mniHg

Figure 34 -  Test subject #1 on foam cushion after 120 second loading.
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0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mmHg

Figure 35 -  Test subject #1 on adjusted air cushion after 120 second loading.
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0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mmHg

Figure 36 -  Test subject #2 on foam cushion after 120 second loading.
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0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mmHg

Figure 37 -  Test subject #2 on adjusted air cushion after 120 second loading.
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0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mmHg

Figure 38 -  Test subject #3 on foam cushion after 120 second loading.
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1
0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150

mmHg
Figure 39 -  Test subject #3 on adjusted air cushion after 120 second loading.
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I
0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150

mmHg

Figure 40 -  Test subject #4 on foam cushion after 120 second loading.
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0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mmHg

Figure 41 -  Test subject #4 on adjusted air cushion after 120 second loading.
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0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mmHg

Figure 42 -  Test subject #5 on foam cushion after 120 second loading.
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0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mmHg

Figure 43 -  Test subject #5 on adjusted air cushion after 120 second loading.
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0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mmHg

Figure 44 -  Test subject #6 on foam cushion after 120 second loading.
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0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mmHg

Figure 45 -  Test subject #6 on adjusted air cushion after 120 second loading.
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0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mmHg

Figure 46 -  Test subject #7 on foam cushion after 120 second loading.
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0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mmHg

Figure 47 -  Test subject #7 on adjusted air cushion after 120 second loading.
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0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mmHg

Figure 48 -  Test subject #8 on foam cushion after 120 second loading.
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0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mrnHg

Figure 49 -  Test subject #8 on adjusted air cushion after 120 second loading.
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I
0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150

mmHg

Figure 50 -  Test subject #9 on foam cushion after 120 second loading.
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0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mmHg

Figure 51 -  Test subject #9 on adjusted air cushion after 120 second loading.



62

0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
nimHg

Figure 52 -  Test subject #10 on foam cushion after 120 second loading.
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0 9 18 28 37 46 56 65 75 84 93 103 112 121 131 140 150
mmHg

Figure 53 -  Test subject #10 on adjusted air cushion after 120 second loading.



Static Shear at Zone 1, Left Turn
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igure 54 -  Static shear at zone 1 of the obstacle course for the left hand turn displaying each testing configuration separated
by subject. Error bars indicate confidence interval to 95%.
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Static Shear at Zone 1, Right Turn
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igure 55 -  Static shear at zone 1 of the obstacle course for the right hand turn displaying each testing configuration separated
by subject. Error bars indicate confidence interval to 95%.
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Static Shear at Zone 2, Left Turn

10

rem

-5

-10

2

M

3

F

I i

I Air-Wheelrim

Foam-Wheelrim

Air-Leverarm

Foam-Leverarm

M

9

M

10

F

igure 56 -  Static shear at zone 2 of the obstacle course for the left hand turn displaying each testing configuration separated
by subject. Error bars indicate confidence interval to 95%.
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Static Shear at Zone 2 , Right Turn
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igure 57 -  Static shear at zone 2 of the obstacle course for the right hand turn displaying each testing configuration separated
by subject. Error bars indicate confidence interval to 95%.
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Static Shear at Zone 3, Left Turn
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"igure 58 -  Static shear at zone 3 of the obstacle course for the left hand turn displaying each testing configuration separated
by subject. Error bars indicate confidence interval to 95%.



Static Shear at Zone 3, Right Turn
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"igure 59 -  Static shear at zone 3 of the obstacle course for the right hand turn displaying each testing configuration separated
by subject. Error bars indicate confidence interval to 95%.



Dynamic Shear at Zone 1 -2 , Left Turn

"igure 60 -  Dynamic shear during zone 1-2 of the obstacle course for the left hand turn displaying each testing configuration
separated by subject. Error bars indicate confidence interval to 95%.
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Dynamic Shear at Zone 1-2, Right Turn
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igure 61 -  Dynamic shear during zone 1-2 of the obstacle course for the right hand turn displaying each testing configuration
separated by subject. Error bars indicate confidence interval to 95%.
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Dynamic Shear at Zone 2 -3 , Left Turn

4

rem

1

Air-Wheelrim

Foam-Wheelrim

Air-Leverarm

Foam-Leverarm

1

M

2 3 4 5 6 7 8 9 10

M F M F F M F M F

igure 62 -  Dynamic shear during zone 2-3 of the obstacle course for the left hand turn displaying each testing configuration
separated by subject. Error bars indicate confidence interval to 95%.
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Dynamic Shear at Zone 2 -3 , Right Turn
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igure 63 -  Dynamic shear during zone 2-3 of the obstacle course for the right hand turn displaying each testing configuration
separated by subject. Error bars indicate confidence interval to 95%.



Dynamic Shear at Zone 3-4, Left Turn
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"igure 64 -  Dynamic shear during zone 3-4 of the obstacle course for the left hand turn displaying each testing configuration
separated by subject. Error bars indicate confidence interval to 95%.
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igure 65 -  Dynamic shear during zone 3-4 of the obstacle course for the right hand turn displaying each testing configuration
separated by subject. Error bars indicate confidence interval to 95%.
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Table 5 -  Average static shear data for left turn obstacle course. Error bars indicate
confidence interval to 95%.

Average Static Shear 1 (N)
Air-Wheelrim Foam-Wheelrim Air-Leverarm Foam-Leverarm

1 3.66 ±0.36 5.75 ±0.84 2.73 4.90 ±1.04
2 3.03 ±0.55 1.71 ±0.25 6.74 ±0.37 5.41 ±3.17
3 2.18 ±3.00 0.27 ±1.84 -- -4.96 ±7.33
4 1.50 ±0.30 4.26 ±0.50 -3.83 ±3.87 --
5 6.68 ±1.66 4.34 ±1.55 2.35 ±2.93 3.03 ±0.82
6 3.32 ±1.92 5.19 ±2.96 5.58 ±0.58 5.75 ±0.87
7 -3.64 1.14 ±2.12 3.15 ±1.90 6.98 ±1.83
8 0.52 ±1.04 1.67 ±0.44 0.52 ±1.04 2.35 ±0.25
9 3.96 ±1.46 5.15 ±0.76 4.90 ±1.26 3.03 ±1.79

10 4.94 ±0.74 2.81 ±0.22 5.58 ±0.36 2.79 ±2.87

Average Static Shear 2 (N)

Air-Wheelrim Foam-Wheelrim Air-Leverarm Foam-Leverarm

1 5.83 ±1.31 7.57 ±0.80 4.77 6.13 ±0.74
2 3.24 ±0.88 1.77 ±0.12 8.08 ±0.50 5.53 ±3.26
3 4.77 ±1.04 2.26 ±0.93 -- 0.27 ±3.54
4 2.18 ±0.51 4.64 ±0.25 -3.13 ±3.25 --
5 12.84 ±1.88 6.81 ±2.00 5.28 ±2.32 5.58 ±1.66
6 4.64 ±1.75 6.42 ±1.30 7.44 ±0.52 7.87 ±1.02
7 -1.98 2.60 ±1.50 4.34 ±1.72 7.83 ±2.88
8 1.63 ±1.23 4.39 ±0.63 1.63 ±1.23 5.24 ±0.96

9 7.15 ±2.25 5.75 ±0.36 6.17 ±1.15 3.71 ±1.31
10 6.04 ±0.38 4.00 ±0.66 5.66 ±0.29 3.49 ±2.25

Average Static Shear 3 (N)

Air-Wheelrim Foam-Wheelrim Air-Leverarm Foam-Leverarm

1 4.26 ±1.26 7.36 ±0.73 3.88 6.17 ±0.52
2 2.69 ±0.79 1.71 ±0.25 6.23 ±1.87 5.87 ±2.68
3 4.85 ±0.94 2.73 ±0.88 -- -1.09 ±2.36
4 1.67 ±0.30 5.11 ±1.06 -3.39 ±2.75 --
5 11.61 ±1.44 6.85 ±2.09 4.60 ±1.90 5.36 ±1.31
6 4.73 ±1.54 6.59 ±1.40 7.27 ±0.22 7.74 ±0.74
7 -1.73 2.28 ±1.87 4.60 ±2.05 8.29 ±2.58
8 3.07 ±2.10 4.68 ±0.93 3.07 ±2.10 5.62 ±0.84
9 6.09 ±1.92 4.94 ±0.67 4.34 ±1.40 3.41 ±1.01

10 5.53 ±0.95 4.13 ±0.50 5.87 ±0.30 3.49 ±1.75
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Table 6 -  Static shear data for right turn obstacle course. Error bars indicate
confidence interval to 95%.

Average Static Shear 1 (N)
Air-Wheelrim Foam-Wheelrim Air-Leverarm Foam-Leverarm

1 5.15 ±2.92 9.65 ±3.10 1.07 ±1.30 2.60 ±1.09
2 4.20 ±4.62 4.09 ±2.46 7.25 ±4.37 4.24 ±4.23
3 4.22 ±2.28 1.58 ±0.63 3.75 ±3.25 4.17 ±0.96
4 -1.98 ±4.78 5.15 ±1.14 -0.46 ±4.00 2.73 ±0.25
5 1.03 ±1.08 2.39 ±1.34 4.47 ±3.42 5.53 ±0.88
6 3.24 ±2.18 3.62 ±0.38 4.26 ±0.72 3.79 ±1.20
7 -4.02 1.97 ±3.75 0.56 ±1.01 7.40 ±1.06
8 -1.69 ±1.72 5.11 ±0.68 -9.59 ±2.31 3.03 ±0.36
9 3.24 ±1.25 4.43 ±1.10 1.12 ±1.20 2.86 ±0.14

10 4.09 ±0.58 3.05 ±0.37 1.97 ±0.58 3.05 ±0.37

Average Static Shear 2 (N)
Air-Wheelrim Foam-Wheelrim Air-Leverarm Foam-Leverarm

1 8.38 ±2.32 11.48 ±3.03 2.69 ±0.71 3.66 ±1.08
2 4.13 ±3.50 4.09 ±1.88 7.51 ±4.12 5.49 ±3.17
3 5.96 ±1.34 1.84 ±0.80 4.83 ±0.62 4.60 ±1.23
4 0.95 ±1.01 4.26 ±1.13 -1.03 ±4.87 3.71 ±0.46
5 2.81 ±0.92 6.64 ±0.30 6.72 ±2.62 7.61 ±1.01
6 3.83 ±0.84 5.19 ±0.55 4.39 ±0.66 4.85 ±1.99
7 -0.07 4.20 ±2.37 3.28 ±0.46 8.76 ±1.96
8 -0.54 ±2.51 6.85 ±0.93 -8.78 ±1.12 6.13 ±0.68
9 4.70 ±1.62 4.34 ±0.93 3.07 ±0.17 2.73 ±0.63

10 5.15 ±0.80 3.62 ±0.50 2.81 ±1.06 3.62 ±0.50

Average Static Shear 3 (N)
Air-Wheelrim Foam-Wheelrim Air-Leverarm Foam-Leverarm

1 7.70 ±1.13 11.22 ±3.00 2.56 ±0.71 3.75 ±1.38
2 4.32 ±3.37 4.22 ±1.84 6.55 ±4.25 5.41 ±2.56
3 6.89 ±1.58 1.71 ±0.50 4.64 4.09 ±0.73
4 0.56 ±1.25 3.92 ±0.79 -0.84 ±4.74 3.37 ±0.63
5 2.60 ±0.80 6.59 ±1.02 6.30 ±2.12 7.53 ±1.47
6 4.34 ±0.79 5.28 ±0.14 4.51 ±0.38 4.81 ±1.92
7 -1.35 3.62 ±2.00 3.41 ±1.09 9.02 ±1.40
8 -1.09 ±0.90 5.45 ±0.68 -8.82 ±2.19 6.04 ±0.14
9 5.53 ±2.00 4.60 ±0.79 3.15 ±0.22 3.07 ±0.55

10 5.11 ±0.36 3.37 ±1.00 3.03 ±0.84 3.37 ±1.00
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Table 7 -  Dynamic shear data for left turn obstacle course. Error bars indicate
confidence interval to 95%.

Average Dynamic Shear 1 (N)
Air-Wheelrim Foam-Wheelrim Air-Leverarm Foam-Leverarm

1 2.13 ±1.01 1.70 ±0.36 1.97 1.57 ±0.21
2 0.83 ±0.13 0.71 ±0.19 2.62 ±0.06 1.15 ±0.70
3 3.25 ±2.46 3.54 ±1.05 -- 9.80 ±4.09
4 1.29 ±0.73 2.19 ±0.33 0.94 ±0.40 --
5 6.66 ±3.63 3.04 ±0.82 2.97 ±2.07 2.56 ±0.88
6 2.13 ±0.62 1.85 ±0.99 2.04 ±0.52 2.59 ±0.97
7 1.66 1.64 ±0.67 1.92 ±1.07 1.59 ±0.29
8 2.39 ±0.94 3.52 ±0.27 2.39 ±0.94 3.31 ±0.63
9 3.44 ±1.00 1.22 ±0.16 2.13 ±0.85 1.23 ±0.38

10 2.30 ±0.20 2.55 ±0.71 1.93 ±0.59 1.56 ±0.89
Average Dynamic Shear 2 (N)

Air-Wheelrim Foam-Wheelrim Air-Leverarm Foam-Leverarm

1 1.53 ±0.09 0.76 ±0.22 2.10 0.78 ±0.17
2 0.73 ±0.29 0.81 ±0.17 2.34 ±0.79 1.12 ±0.35
3 1.14 ±0.62 2.23 ±0.36 -- 3.44 ±1.36
4 1.20 ±0.10 1.27 ±0.47 0.74 --
5 1.91 ±0.35 1.34 ±0.45 1.27 ±0.10 1.22 ±0.60
6 0.91 ±0.16 0.88 ±0.17 1.01 ±0.12 0.99 ±0.25
7 0.51 0.88 ±0.06 1.21 ±0.12 0.87 ±0.17
8 2.02 ±0.52 1.13 ±0.26 2.02 ±0.52 1.01 ±0.45
9 1.47 ±0.75 1.34 ±0.77 1.86 ±0.24 1.37 ±0.31

10 1.68 ±0.33 1.03 ±0.15 1.22 ±0.12 1.28 ±0.35

Average Dynamic Shear 3 (N)
Air-Wheelrim Foam-Wheelrim Air-Leverarm Foam-Leverarm

1 1.10 ±0.18 0.76 ±0.38 1.25 0.91 ±0.25
2 1.29 ±0.01 0.97 ±0.15 2.61 ±0.33 1.01 ±0.22
3 0.72 ±0.19 2.16 ±1.50 -- 4.06 ±1.74
4 0.87 ±0.42 1.22 ±0.60 1.62 ±0.77 --
5 1.39 ±0.34 1.58 ±0.31 0.90 ±0.11 1.50 ±0.14
6 1.13 ±0.58 0.98 ±0.17 2.19 ±0.98 1.43 ±0.49
7 0.79 0.80 ±0.27 1.13 ±0.24 1.05 ±0.40
8 1.44 ±0.42 1.49 ±0.73 1.44 ±0.42 1.33 ±0.35
9 1.22 ±0.37 1.22 ±0.23 2.56 ±1.09 0.97 ±0.08

10 1.73 ±0.59 1.34 ±0.35 1.39 ±0.18 1.14 ±0.27
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Table 8 -  Dynamic shear data for right turn obstacle course. Error bars indicate
confidence interval to 95%.

Average Dynamic Shear 1 (N)
Air-Wheelrim Foam-Wheelrim Air-Leverarm Foam-Leverarm

1 3.14 ±1.95 2.18 ±0.81 1.49 ±0.54 1.41 ±0.39
2 0.82 ±0.40 1.03 ±0.10 1.73 ±0.27 1.99 ±0.90
3 2.28 ±1.05 2.17 ±1.61 2.52 ±1.48 2.26 ±0.50
4 4.18 ±3.57 1.81 ±1.22 1.10 ±0.83 1.32 ±0.82
5 1.71 ±0.95 4.22 ±1.24 2.51 ±0.69 2.27 ±0.33
6 1.29 ±0.55 2.00 ±0.39 1.36 ±0.53 1.54 ±0.45
7 4.12 3.42 ±1.54 3.03 ±1.40 1.66 ±1.04
8 2.54 ±1.37 2.43 ±1.19 1.92 ±0.16 3.24 ±0.77
9 1.95 ±0.79 0.93 ±0.06 2.41 ±0.60 1.08 ±0.06

10 1.72 ±0.61 1.45 ±0.73 1.86 ±0.73 1.45 ±0.73
Average Dynamic Shear 2 (N)

Air-Wheelrim Foam-Wheelrim Air-Leverarm Foam-Leverarm
1 1.66 ±0.34 0.92 ±0.17 1.18 ±1.10 0.77 ±0.23
2 0.88 ±0.15 0.74 ±0.20 1.61 ±0.58 1.44 ±0.15
3 1.39 ±0.68 1.35 ±0.69 0.86 ±0.15 2.00 ±1.01
4 1.15 ±1.56 1.68 ±1.03 0.74 ±0.17 1.11 ±0.51
5 0.93 ±0.06 1.04 ±0.44 1.22 ±0.40 1.09 ±0.16
6 0.98 ±0.21 0.81 ±0.06 0.93 ±0.20 1.06 ±0.45
7 1.76 0.97 ±0.40 1.68 ±0.50 1.10 ±0.29
8 2.14 ±1.14 1.91 ±0.15 1.50 ±0.85 1.33 ±0.32

9 1.45 ±0.23 1.04 ±0.24 1.03 ±0.47 0.86 ±0.06
10 0.93 ±0.21 0.79 ±0.12 0.99 ±0.58 0.79 ±0.12

Average Dynamic Shear 3 (N)
Air-Wheelrim Foam-Wheelrim Air-Leverarm Foam-Leverarm

1 1.68 ±0.12 1.15 ±0.30 0.97 ±0.21 1.00 ±0.23
2 1.01 ±0.31 0.88 ±0.16 0.94 ±0.19 1.43 ±0.49
3 1.22 ±0.42 1.27 ±0.06 1.10 ±0.57 2.21 ±1.27
4 2.07 ±0.67 0.98 ±0.29 1.16 ±0.90 1.23 ±0.36
5 0.92 ±0.07 0.97 ±0.22 1.75 ±0.24 1.44 ±0.31
6 0.96 ±0.27 0.87 ±0.15 1.01 ±0.29 1.05 ±0.37
7 3.36 1.34 ±0.41 1.99 ±0.59 1.33 ±0.42
8 2.15 ±1.20 1.25 ±0.52 1.76 ±0.84 1.80 ±0.29
9 1.11 ±0.27 0.88 ±0.21 1.08 ±0.08 1.27 ±0.22

10 1.01 ±0.36 1.25 ±0.04 1.09 ±0.43 1.25 ±0.04
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