
 

 

 

 

 

 

 

DEVELOPMENT OF A NONINVASIVE 

 

CALCIUM IMAGING PROBE 

 

 

 

 

 

 

by 

 

Joel Robert Pieper 

 

 

 

 

 

 

A thesis submitted to the faculty of 

The University of Utah 

in partial fulfillment of the requirements for the degree of 

 

 

 

 

 

 

Master of Science 

 

 

 

 

 

 

Department of Bioengineering 

 

The University of Utah 

 

August 2013 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276265248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Joel Robert Pieper 2013 

All Rights Reserved 



 

T h e  U n i v e r s i t y  o f  U t a h  G r a d u a t e  S c h o o l  

 

 

 

STATEMENT OF THESIS APPROVAL 
 

 

 

The thesis of Joel Robert Pieper 

has been approved by the following supervisory committee members: 

 

Edward Hsu , Chair 6/14/2013 

 

Date Approved 

John Phillips , Member 6/14/2013 

 

Date Approved 

Frank Sachse , Member  

 

Date Approved 

 

and by Patrick A. Tresco , Chair of  

the Department of Bioengineering 

 

and by Donna M. White, Interim Dean of The Graduate School. 

 

  



 

 

 

 

 

 

ABSTRACT 

 

 

 

 Genetically encoded calcium indicators (GECIs) are Ca
2+

 sensitive fluorescent 

proteins that have expanded the usefulness of optical calcium imaging to longitudinal in 

vivo studies due to their advantage of direct expression in the tissue being imaged. 

Several generations of GECIs have been developed using green fluorescent protein (GFP) 

or one of its variants with each generation improving upon Ca
2+

-binding affinities and 

optical properties. However, the tissue penetration of excitation or emission light through 

tissue is small due to high absorption of available GECI wavelengths, which are shorter 

than the infrared range. The field still lacks a GECI with excitation or emission 

wavelengths in the infrared range, which has significantly less attenuation in biological 

tissue.  Here we propose the development of an infrared GECI by insertion of the Ca
2+

-

binding domain calmodulin (CaM) into regions surrounding the biliverdin chromophore 

binding pocket of infrared fluorescent protein (iRFP). We proposed seven DNA 

constructs of iRFP with different CaM insertion sites. Six of the seven DNA constructs 

were successfully produced with protein expressed from one of these constructs 

exhibiting similar optical properties to iRFP, showing successful receptor insertion into 

iRFP. Though our initial Ca
2+

 sensitivity test to monitor change in fluorescence due to 

Ca
2+

 binding is not conclusive, we open the field of GECI engineering to exciting new 

possibilities for noninvasive deep tissue calcium imaging.  
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INTRODUCTION 

 

 

 

Biological Role of Calcium 

 

 The calcium ion (Ca
2+

) performs diverse functions in cell signaling and 

physiology, including cellular differentiation, motility, proliferation, apoptosis, gene 

transcription and more specialized roles in excitable cells [1]. Increase in intracellular 

Ca
2+

 concentration ([Ca
2+

]i) is responsible for release of neurotransmitter vesicles from 

presynaptic neurons and synaptic plasticity in postsynaptic neurons. In muscle cells, 

transient increases in [Ca
2+

]i underlie the coupling between electrical excitation and 

mechanical contraction [2]. 

 Ca
2+

 induced Ca
2+

 release is the means by which calcium transients mediate 

excitation-contraction coupling in cardiomyocytes. Upon depolarization of the 

cardiomyocyte, L-type Ca
2+

 channels localized in the cell membrane along transverse 

tubules pass calcium ions down their electrochemical gradient into the cell. These Ca
2+

 

ions interact with ryanodine receptors (RyR) in the membrane of the sarcoplasmic 

reticulum (SR) which is located near the T-tubules. Upon binding of Ca
2+

, RyRs release 

large amounts of calcium ions from the SR into the cytosol, increasing [Ca
2+

]i 10-fold 

from around 100 nM to more than 1 μM [2]. 

 Calcium ions diffuse to the actin and myosin contractile fibers where they become 

chelated in site II of the regulatory domain of troponin C (TnC). This event alters the 

structure of the regulatory domain, exposing hydrophobic residues that interact with 
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troponin I (TnI), disrupting its inhibitory effect on actin-myosin interactions [3]. Once 

allowed to interact, myosin heads walk along actin filaments, consuming ATP and 

shortening sarcomere length which produces contraction in the activated cardiomyocyte. 

Myocyte contraction is a transitory event because free Ca
2+

 ions in the cytosol are 

continually sequestered back into the SR through the sarco/endoplasmic reticulum 

ATPase (SERCA) and removed from the cell through Ca
2+

 pumps and the Na
+
-Ca

2+
 

exchanger (NCX).  

 Alterations of calcium handling in the excitation-contraction process are known to 

occur in cardiac disease [2]. For instance, total Ca
2+

 content of cardiomyocytes is known 

to be decreased in some types of heart failure. With less available Ca
2+

 to interact with 

contractile elements, the total force of contraction is lessened, decreasing the heart’s 

pumping efficiency. Overloading of Ca
2+

 in the SR along with increased sensitivity in 

RyR can cause spontaneous Ca
2+

 leaks into the cytosol [2]. This spontaneous increase in 

[Ca
2+

]i during diastole is countered by increased activity in NCX. Because three Na
+
 ions 

are brought into the cell for each Ca
2+

 ion exiting, there is a net inward current that causes 

early (EAD) or delayed (DAD) afterdepolarization. This depolarization can lead to 

extrasystoles that may be arrhythmogenic. 

Monitoring changes in calcium handling during disease development and 

treatment in cells and tissue preparations has been of great importance for understanding 

cellular mechanisms. In monitoring the spatial distribution of Ca
2+

 ions within whole 

tissues and subcellular compartments, optical calcium imaging has been an indispensable 

technique. This imaging technique makes use of a diverse range of calcium probes (Ca
2+

-

chelating structures coupled with fluorescent moieties) in order to report changes in Ca
2+

 

concentration as changes in fluorescence intensity. 
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Calcium Imaging 

Fluorescence is the process by which a molecule absorbs and emits photon 

energy. It occurs after photon energy is absorbed by and thereby excites a ground state 

electron in the molecule, moving it into a higher energy state [4]. After dissipation of 

some vibrational energy, the electron will return to the ground state, emitting the 

remaining absorbed energy in the form of a photon with less energy and longer 

wavelength than the absorbed photon. The fluorescence phenomenon occurs seemingly 

instantaneously following excitation. The difference between excitation and emission 

wavelengths of a fluorescent molecule is known as the Stoke’s shift. Imaging fluorescent 

molecules at their emission wavelength during excitation allows localization of the 

fluorescent molecule. When a fluorescent molecule preferentially localizes to a particular 

region or colocalizes with another molecule, it is considered a probe, because it allows 

spatial visualization of a particular space or target molecule. Calcium probes display 

quenching or alteration of fluorescence when Ca
2+

 is not bound which decreases 

background signal where there is no Ca
2+

 for the probe to bind.  

 Two classes of fluorescent calcium probes currently exist [5]. The first class 

consists of calcium dyes, which are small synthetic molecules that change fluorescence 

upon chelating Ca
2+

 ion. The second class is genetically encoded calcium indicators 

(GECIs), which are fluorescent proteins that are Ca
2+

 sensitive due to fusion of a 

fluorescent protein with a Ca
2+

-binding peptide. There are strengths and limitations 

associated with both of these classes of probes that should be taken into account before 

use in calcium imaging procedures. 
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Calcium Dyes 

 Commonly used calcium dyes include fura-2, rhod-2 and fluo-4. These dyes 

utilize stilbene, rhodamine and fluorescein as their respective fluorescent moieties, each 

of which is coupled with the BAPTA Ca
2+

 chelating moiety. The BAPTA moiety 

contains high electron density which is able to be donated into the highly conjugated 

fluorescent moieties. When Ca
2+

 becomes chelated by the oxygen atoms in BAPTA, 

electron density donation is decreased, increasing fluorescence intensity or shifting 

excitation or emission wavelength peaks of the molecule [6]. Because of the large 

negative charge on the BAPTA moiety, the carboxylate ions are derivitized as 

acetoxymethyl esters (AM) to give the molecule a neutral charge, allowing it to diffuse 

across cell membranes. These AM derivatives are then cleaved with endogenous 

intracellular esterases, restoring the negative charge and preventing the calcium dye from 

diffusing back out of the cell. 

The on/off kinetics for the BAPTA-derived calcium dyes is typically around 

2/100 ms, a highly desirable property when used to visualize short-lived calcium 

transients [5]. They also have calcium affinities that are beneficial for monitoring 

physiologic changes in [Ca
2+

]i. These binding affinities are generally reported as 

dissociation constants (Kd), which is the concentration of Ca
2+

 at which half of the 

species in solution are bound to Ca
2+

. Calcium dyes generally have Kds ranging from 200 

to 600 nM, with some desirable exceptions. 

 Fura-2 is one of the oldest available calcium dyes and is still used frequently due 

to its ratiometric property [7]. Binding of Ca
2+

 (Kd = 224 nM) shifts the excitation 

wavelength from 380 to 340 nm while keeping emission at 510 nm. This allows a more 
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quantitative measure of [Ca
2+

]i as the ratiometric fluorescence imaging method is not 

dependent upon the concentration of calcium dye in the cell. 

 The use of fluo-4 quickly caught on due to its wavelength compatibility (494/516 

nm ex/em) with fluorescein optical filter sets already available at the time [8] and its 120-

fold increase in fluorescence intensity upon binding Ca
2+

 (Kd = 350 nM). Rhod-2 is also 

an intensiometric calcium dye with 552/581 ex/em fluorescence wavelengths and a Kd of 

570 nM. These optical properties are more red-shifted than fura-2 or fluo-4. Another 

benefit to rhod-2 is that it is preferentially taken up into the mitochondrial subcellular 

compartment because it contains a net positive charge as an AM derivative [9]. However, 

its use as a mitochondrial Ca
2+

 reporter is much improved when reduced to dihydro-rhod-

2-AM, which experiences fluorescence quenching until oxidized in the mitochondria to 

rhod-2. This helps to prevent simultaneous reporting of cytosolic [Ca
2+

]. 

 Other methods have been used to increase the ability to localize calcium dyes or 

alter their Ca
2+

 affinities for more specified applications. Boca-1 BG (522/536 ex/em and 

200 nM Kd) has a 180-fold change in fluorescence intensity and has been developed to 

covalently bind to SNAP-tagged proteins, making it able to colocalize into desired 

subcellular spaces [10]. X-Rhod-5F has been engineered with decreased Ca
2+

 binding 

affinity (1.6 μM Kd), making it more useful for imaging in regions with high basal [Ca
2+

] 

such as the endoplasmic reticulum. 

 KFCA is a more recently developed calcium dye that has excitation and emission 

wavelengths in the near infrared range [11]. This contains a BODIPY based fluorescent 

moiety with sharp 650/660 nm ex/em peaks and a Kd of 500 nM. Similar to fluo-4, KFCA 

also experiences 120-fold change in fluorescence intensity upon binding Ca
2+

. The far red 

shifted wavelengths of this calcium dye are of particular interest to deep tissue imaging. 
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While calcium dyes are more easily applied in experimental application and can 

be more easily engineered to obtain desired Ca
2+

-binding affinities and fluorescence 

change, they suffer major limitations for longitudinal (repeatable studies over the lifetime 

of a subject) and noninvasive use in vivo. Because calcium dyes are delivered to the 

cytosol via passive diffusion across the cell membrane, the dye loading process requires 

removal of tissue for bathing in a dye-containing solution or invasive perfusion 

procedures if done without tissue removal [12]. This process is also nonselective with 

regard to cell type and undesirable background signal lowers signal to noise ratio during 

imaging. Cell-specific delivery of calcium dyes can also be done by patch pipette, but this 

technique is impractical for multicellular tissue imaging. Dyes also suffer from wash out 

from the cell, decreasing signal intensity over the course of imaging. These limitations 

prohibit noninvasive application of calcium dyes for in vivo calcium imaging. 

 

Genetically Encoded Calcium Indicators 

 GECIs have been largely complementary to calcium dyes’ abilities. Though 

GECIs suffer from smaller changes in fluorescence and more limited Ca
2+

-binding 

affinities, they have the advantage of being expressed in vivo. The gene encoding a GECI 

can be delivered to the nucleus of a cell via transfection [13], viral transduction [14] or 

development of a transgenic organism [15]. Localization of expression can also be highly 

specific when coupled with tissue-specific promoters and/or subcellular localization tags 

[16, 17]. These strengths make GECIs an efficient tool for noninvasive calcium imaging 

in vivo. 

GECI engineering has previously been achieved by either fusion of a single 

fluorescent protein (variants of green fluorescent protein (GFP)) with a Ca
2+

-binding 
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peptide [18] or connecting two fluorescent proteins with a Ca
2+

-binding peptide and a 

peptide that can interact with the Ca
2+

-binding peptide [19, 20, 21]. The former method 

produces changes in fluorescence intensity while the latter can make use of Förster 

resonance energy transfer (FRET) to provide a change in the ratio of intensities of two 

emission wavelengths. Examples from each of these types of GECIs include camgaroo 

[18], GCaMP [19] and cameleon [20]. 

Camgaroo was produced by replacing the 145
th

 amino acid of a GFP-like protein 

with the Ca
2+

-binding peptide calmodulin (CaM) [18]. Ca
2+

 and pH titrations revealed 

that the binding of Ca
2+

 to the fused CaM domain alters its structure in a similar manner 

to TnC (a close relative of CaM) which causes deprotonation of the chromophore, 

changing the ratio of 400 nm to 490 nm emission. GCaMP also utilizes fusion of CaM to 

GFP, however, the GFP is circularly permuted (cp) and CaM is placed at the end of 

cpGFP while the CaM-binding peptide of myosin light chain kinase (M13) is placed at 

the beginning of cpGFP [19]. The fluorescence intensity change in GCaMP is due to M13 

interacting with CaM after CaM binds Ca
2+

, thereby restoring natural GFP chromophore 

structure by bringing the two ends of cpGFP closer together [22]. 

The FRET-based cameleon is produced by using CaM and M13 to link two 

different GFP-like proteins (such as YFP and CFP) together [20]. Upon binding of Ca
2+

 

to CaM, M13 folds in to interact with CaM, bringing YFP closer to CFP. When CFP is 

excited at 440 nm, it undergoes nonradiative FRET with YFP causing the YFP 

chromophore to emit 535 nm wavelength light. In the absence of Ca
2+

, fluorescence 

emission from only the CFP is detected at 480 nm. Variants on cameleon have also been 

produced using TnC instead of CaM as the Ca
2+

-binding domain and TnI instead of M13 
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as the interaction peptide in an effort to prevent interaction of the fused CaM domain 

with targets of its multiple cellular signaling pathways [21]. 

 

GECI Calcium Binding Affinities 

CaM and TnC are effective fusion inserts for conferring Ca
2+

 sensitivity to 

fluorescent proteins due to their Ca
2+

-chelating structure. Both belong to a dumb-bell 

shaped protein family containing two domains (N and C) linked by a flexible strand of 

amino acids. Each domain contains two Ca
2+

-chelating sites (I and II on the N domain 

and III and IV on the C domain) in the form of EF hand motifs that are two helices (E and 

F) connected by a loop containing multiple negatively charged residues involved in Ca
2+

 

chelation. The helices comprising the EF hands change conformation with respect to one 

another when Ca
2+

 binds to the loop between them, exposing previously buried 

hydrophobic residues. These activated regions can then bind to a number of different 

targets within the cell including TnI and actin for the N and C domains of TnC, 

respectively [3], and a host of different targets for CaM [23]. When ligated into particular 

regions around the chromophore of fluorescent proteins, these domains will bind Ca
2+

 

ions and change conformation, affecting the fluorescence intensity of the fluorescent 

protein with which they are fused.  

 The Ca
2+

-binding affinities of the CaM and TnC inserts are important to consider 

when designing a GECI. The N and C terminal domains of CaM and TnC consist of 

Ca
2+

-binding sites I/II and III/IV, respectively. CaM N and C terminal Kd have been 

measured at 2.4 μM and 18 μM [24]. The N terminal domain of skeletal troponin C 

(sTnC) has a much lower affinity for Ca
2+

 (Kd = 32 μM) compared to the C terminal 

domain (Kd = 200 nM) [25, 26]. Cardiac troponin C (cTnC) differs from sTnC in that site 
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I is nonfunctional and site II has about 10-fold more affinity (Kd = 3.8 μM) compared to 

the N terminal of sTnC [27]. Presence of M13 with CaM increases its Ca
2+

 affinity nearly 

100-fold to a Kd of 26 nM [24]; and interestingly, when M13 is fused to the C terminal of 

CaM with a GG linker, there is a biphasic response with Kds of 80 nM and 2 μM with an 

overall Kd of around 500 nM. 

 These Ca
2+

 affinities affect the GECIs in which they are incorporated but a 

GECI’s Kd is not necessarily the same as the insert it contains. For instance, camgaroo, 

which contains the CaM insert, has a Kd of 7 μM which is similar to the overall biphasic 

response of CaM N and C terminal Ca
2+

 binding [18]. But, the CaM and M13 containing 

GECI GCaMP has a Kd of 235 nM compared to the 26 nM Kd of the CaM and M13 

peptides alone [19]. The cameleon derivatives with CaM and M13 fusion may have 

similar or much lower affinities compared to the CaMM13 hybrid molecule [14]. The 

receptor insert used in our study was CaM. 

 

Advantages of Infrared Imaging 

With all of the successful GECIs heretofore engineered, GECIs’ full potential as 

noninvasive in vivo calcium probes has not yet been realized. This is because GECIs are 

not yet available in the infrared range (700 to 1,000 nm) for excitation or emission 

wavelengths. The infrared wavelength range exhibits both decreased attenuation and 

detectable autofluorescence in biological tissue [28]. Thus, although GECIs are expressed 

in vivo, imaging still requires removal or exposure of the tissue being imaged for either 

penetration of excitation wavelength light to the tissue or visualization of the emission 

wavelength signal produced in the tissue.  
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Another incentive to move imaging into the infrared range is the recent 

development of an exciting new optical imaging technique known as fluorescence 

molecular tomography (FMT) that is able to calculate a pseudo 3D distribution of 

fluorophores in biological tissue [29]. A point source of light is applied below the scan 

subject at many locations and an image of the light transmitted through the subject is 

acquired from above for each location of the point source applied below. This process is 

performed with the point source set to the emission wavelength of the fluorophore, where 

there is no fluorescence detected, and the camera filtered to only receive light at the 

emission wavelength. This allows mapping of the diffusion and attenuation of light 

through the tissue being imaged. The same scan is then performed with the point source 

set to the excitation wavelength of the fluorophore and the camera still detecting emission 

wavelength light. In this manner, the only signal detected by the camera is originating 

from the locations of the fluorophores. These scan data are fed into complex algorithms 

describing the propagation of light through tissue, creating an inverse problem that can be 

solved by regularization and a number of techniques including singular value 

decomposition. The solution is a quantitative distribution of fluorophore intensity in the 

tissue. 

 

Experimental Aims 

The purpose of the current study is to propose that an infrared fluorescent protein 

could be used with the previously outlined GECI engineering techniques to produce a 

Ca
2+

 sensitive infrared fluorescent protein (an infrared GECI). This novel calcium probe 

will enable calcium imaging of deeper tissues, allowing noninvasive calcium imaging in 
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vivo. We seek to accomplish development of this novel tool by inserting CaM into a 

recently developed infrared fluorescent protein known as iRFP. 

 The infrared fluorescent protein we chose for testing was one recently developed 

by Filonov et. al. and termed iRFP [30]. iRFP is derived from a Rhodopseudomonas 

palustris bacteriophytochrome (RpBphP2) and has more than twice the signal to 

background ratio in vivo compared to far red GFP variants and around 18-fold higher 

brightness compared to the previously used infrared protein IFP1.4. iRFP covalently 

binds the tetrapyrrole biliverdin to form its chromophore, giving the protein a green color 

due to the  high absorbance in the 350 to 450 nm wavelength range by biliverdin’s 

conjugated pi system and producing fluorescence emission at 715 nm when excited with 

690 nm light. We propose that introducing Ca
2+

 sensitivity into iRFP’s infrared excitation 

and emission wavelengths would produce an infrared GECI that would allow in vivo 

calcium imaging at depths not currently attainable. When such a tool is used with FMT, 

pseudo 3D calcium imaging may be achievable where only 2D surface mapping has 

typically been reported with currently available GECIs. 

 



 
 

 

 

 

 

 

MATERIALS AND METHODS 

 

 

 

Construct Design 

 

 The primary structures of RpBphP3 (a close relative of RpBphP2), RpBphP2, 

iRFP, and CaM in addition to the available crystalline structure of RpBphP3 [31] and 

CaM [32] were viewed in PyMOL as templates for construct design. We first identified 

residues in the RpBphP3 crystalline structure that were involved with biliverdin 

chromophore binding [31]. Then we identified pi conjugated His, Phe, Tyr, and Trp 

residues facing toward the chromophore that might be involved in establishing the 

fluorescence properties of iRFP. Sites in the immediate vicinity of the chromophore were 

then identified that, after removal of a number of amino acid residues, could spatially 

accommodate insertion of the CaM protein crystalline structure (residues A2-A148) as 

determined by loading both structures into the same PyMOL session and placing them in 

a conformation that may be adopted in the final GECI structure. 

We wanted the protein domains of the designed constructs to fold in such a way 

that they adopted similar structures to those resolved separately for iRFP and CaM. If 

they folded in this manner, the biliverdin chromophore binding pocket could be 

maintained in the new protein constructs while allowing slight changes in CaM 

conformation due to Ca
2+

 binding to cause minor changes in the locations of the 

identified pi conjugated residues with respect to the chromophore. Seven ligation sites 

were chosen that met these criteria (Figure 1) where we would replace one or more 
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residues of iRFP with the CaM insert and linker peptides (GAP linker on N terminal of 

CaM and VD linker on C terminal of CaM). With insertion of CaM in these regions, 

Ca
2+

-induced conformational changes of the CaM insert might affect a change in iRFP 

chromophore structure thereby making its fluorescence properties Ca
2+

 sensitive. 

Considerable flexibility was assumed in the linker peptides and strand connecting 

the N and C domains of CaM such that the distance between the N and C terminals of the 

CaM insert could span the length of residues removed at each site. As such, residues 211-

216 were removed for ligation at site 1. Likewise, residues 231-232, 236, 270-276, 288-

289, 301-302, and 324-329 were removed for ligation into sites 2, 3, 4, 5, 6 and 7. We 

recognize the highly speculative nature of this method of construct design. More robust 

methods may have been used such as molecular modeling. However, there is no resolved 

 
 

Figure 1 – Calmodulin ligation sites in iRFP for construct development. Crystalline 

structure of RpBphP3, a close relative to iRFP, shown with biliverdin chromophore 

(green) [31]. Seven ligation sites are in magenta, numbered from 1 to 7. These residues 

were replaced by CaM with the GAP and VD linker peptides. Residues colored in yellow 

are known to interact with chromophore binding or have conjugated pi systems. 
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structure available for iRFP which would be ideal for molecular modeling. Also, due to 

the many advances in molecular cloning techniques, computational studies would take 

considerably more time to perform than generating a number of different constructs 

through molecular biology cloning techniques. 

Thus, seven DNA constructs (designated C1-C7) were designed which were 

sequentially composed of the portion of the iRFP gene upstream of a ligation site, the 

CaM gene insert and the portion of the iRFP gene downstream of a ligation site (Figure 

2). For each of the seven constructs, the portion of the iRFP gene upstream of the ligation 

site was termed fragment A and the downstream portion was termed fragment C. These 

unique fragments were also numbered according to the construct they would comprise. 

 
 

 
 

Figure 2 – Primary structures of final constructs. Constructs consist of fragments A, B 

and C joined by restriction sites AscI and SalI and framed by NcoI and HindIII restriction 

sites. Green fragments (A and B) are the indicated residues of wild type iRFP (WT iRFP) 

while the blue fragment (B) is residues 2-148 of calmodulin (CaM). 
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The common CaM insert was termed fragment B for each construct. Altogether, 

fragments A, B (450 bp) and C make open reading frames (ORF) which translate to 

proteins around 500 amino acid (AA) residues for the novel constructs. The final protein 

constructs are around 55 kDa in size. 

 

Construct Fragment Production 

The pBAD/His-B-iRFP and pDONR223-CALM3 plasmids deposited by 

Vladislav Verkhusha [30] and William Hahn [33], respectively, were obtained from 

Addgene. Polymerase chain reaction (PCR) was used to amplify the A, B and C 

fragments that would compose the DNA constructs similar to the method performed for 

the production of camgaroo (Figure 3) [18]. The common B fragment was amplified 

using oligonucleotide primers designed to have 3’ ends complementary to the ends of the 

CALM3 insert in the pDONR223-CALM3 plasmid with 5’ ends containing the 

nucleotides coding for an AscI restriction site on the sense primer and a SalI restriction 

 
 

 
 

Figure 3 – Primer setup for PCR method of acquiring fragments A, B and C. Green 

double stranded DNA is iRFP. Blue double stranded DNA is CaM. Ligation site is shown 

as red dashed line. Restriction site sequences for AscI and SalI were contained within the 

portion of the primer that was not complementary to the original DNA sequence. 

 

 

 



16 

site on the antisense primer. For fragment A amplification, a common sense primer 

matching the 5’ end of the iRFP sense strand was used with one of seven unique 

antisense primers with 3’ ends designed to match the iRFP antisense strand just upstream 

of their respective ligation sites and 5’ ends that contain nucleotides coding the AscI 

restriction site. Likewise, for fragment C amplification, a common antisense primer 

matching the 5’ end of the iRFP antisense strand was used with one of seven unique 

sense primers with 3’ ends designed to match the iRFP sense strand just downstream of 

their respective ligation sites and 5’ ends that contain nucleotides coding the SalI 

restriction site. The iRFP gene already contained an N terminal His tag and was flanked 

by restriction sites NcoI and HindIII which were incorporated into the common sense and 

antisense primers. Because PCR primer cooperation is essential to fragment 

amplification, all primer pairs needed to have similar melting temperatures (Tm). The 

amount of GC content in unique primers for sites 3, 4, 5 and 7 required use with longer 

versions of the common sense or antisense primers. Variations of antisense primers for 

5A and 7A were also produced due to difficult PCR reactions. These primers contained 

complementary regions before and after the AscI-coding nucleotides. All primers ensured 

that the final constructs would be in frame after ligations were completed.  

PCR was performed with Platinum Taq DNA Polymerase from Invitrogen 

according to the recommended protocol with 2 mM MgCl2. Fresh PCR product was ran 

on a 0.7% agarose gel stained with ethidium bromide (EtBr) to confirm presence of 

fragment with the desired length and visualize fragments of incorrect lengths that resulted 

from nonspecific primer binding. For reactions that resulted in no visible bands on 

agarose gel, the concentration of MgCl2 was increased to 3 mM to promote primer 

binding at the expense of nonspecific binding. 
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The fresh PCR product fragments generated by Taq polymerase contained single 

3’ adenine overhangs on each strand when amplified in the absence of a proofreading 

polymerase. These fragments could then be TOPO-cloned using a TOPO TA cloning kit 

from Invitrogen into linear pCR2.1-TOPO vector, which contains 3’ thymine overhangs 

in the cloning ORF, using topoisomerase enzyme. TOPO cloning creates a PCR 

fragment-containing circular plasmid that can be replicated when transformed into DH5α 

bacterial cells and plated on LB plates containing 50 μg/mL kanamycin and 40 μL of 

both 40 mg/mL X-Gal and 100 mM IPTG. Because the fragment cloning site in pCR2.1-

TOPO is contained in a LacZα ORF which codes for the beta-galactosidase enzyme, 

insertion of a fragment disrupts production of this enzyme which normally converts X-

Gal into blue products when expressed with IPTG. Therefore, bacterial colonies 

containing fragment insertions are white compared to the blue colonies containing 

pCR2.1-TOPO vector with no PCR fragment insertion. 

White colonies were selected and grown in 10 mL LB overnight cultures to 

amplify fragment-containing plasmids. Plasmids were isolated with a QIAGEN Plasmid 

Mini kit and digested in New England Biolabs (NEB) recommended restriction enzyme 

buffers with restriction enzymes corresponding to the fragment’s unique restriction site 

and another compatible site in the pCR2.1-TOPO vector (NcoI and AscI for fragment A, 

NcoI and SalI for fragment B, EcoRI and HindIII for fragment C) and run on 0.7% 

agarose gels to ensure correct fragment sizes and determine fragment orientation in the 

cloning site. For plasmids containing the correct fragment size, M13 forward and reverse 

primers were added in separate samples and sent to the DNA sequencing core to ensure 

no deleterious mutations resulted from PCR amplification of the fragments. 
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Fragment Ligation Procedure 

When desired fragments were confirmed by sequencing, they were sequentially 

moved into the pCDFDuet-1 bacterial expression plasmid which contained NcoI, AscI, 

SalI, and HindIII restriction sites in the desired sequence and orientation for building the 

full DNA constructs (Figure 4). Each of the unique A fragments and the pCDF backbone 

were isolated by double digestion with NcoI and AscI enzymes. The backbone and 

fragments were combined in a vector to insert ratio of 1:3 and ligated using T4 DNA 

ligase according to NEB protocol. Meanwhile, each of the unique C fragments and the 

pCDF2.1 vector containing the B fragment were isolated by sequential digestion with 

 

 

 
 

Figure 4 – Ligation method for creating final constructs. Two ligation steps combine 

fragments A, B and C into expression vector pCDFDuet-1. For C7, fragment B was 

added to pCR2.1-TOPO containing fragment C via digestion with SalI and EcoRV. The 

EcoRV site is just upstream of the cloning site in pCR2.1-TOPO.  
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SalI and HindIII enzymes and the C fragments were ligated adjacent to the B fragment. 

The plasmids containing adjacent BC fragments were then double digested with AscI and 

HindIII and ligated into the double digested pCDFDuet-1 vector containing the A 

fragment that corresponded to the C fragment insert. Wild type iRFP (WT iRFP) was also 

cloned from the pBAD/His-B vector into pCDFDuet-1 with NcoI and HindIII sites. 

The only exception to this cloning protocol was for construct 7 which had a C 

fragment less than 100 bp in length. For this construct, fragment B was cloned into the 

pCR2.1 vector containing fragment 7C with cutting and ligating at sites NcoI and SalI. 

Then the BC adjacent fragment was ligated into the pCDFDuet-1 vector containing the 

fragment 7A. For each cloning step, digested plasmids were run on 0.7% agarose gels 

and the desired inserts and backbones were extracted from the gel using a QIAquick Gel 

Extraction kit. After each ligation reaction, the fresh ligation products were transformed 

into DH5α cells and plated overnight. Colonies were selected from the plates for 10 mL 

overnight cultures and plasmid isolation the next morning. Digestions were performed on 

the purified plasmids to determine which colonies contained the successful ligation 

product. 

 

Protein Purification and Optical Characterization 

Due to difficulties with obtaining A and C fragments for construct 4, only the full 

DNA constructs (C1, C2, C3, C5, C6 and C7) and the WT iRFP gene were transformed 

into BL21 PLysS competent cells along with the pAT-BV vector obtained from Clark 

Lagarias for coexpression of heme oxygenase (HO1), which provides biosynthesis of 

biliverdin from endogenous heme in E. coli for iRFP chromophore formation [34]. 

Colonies were selected with all of three antibiotics: 50 μg/mL spectinomycin (for 
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pCDFDuet-1 vector containing WT iRFP and constructs), 50 μg/mL kanamycin (for 

pAT-BV) and 34 μg/mL chloramphenicol (for the PLysS plasmid in the BL21 competent 

cells). Individual colonies were inoculated into 50 mL cultures in Luria-Bertani (LB) 

broth containing antibiotics and incubated at 37° C overnight. The next morning, the 

overnight cultures were diluted to an optical density (OD) of 0.1 at 600 nm into 1 L of 

LB medium containing 0.1 mM δ-aminolevulinic acid (ALA) and 0.05 mM FeCl3 and 

incubated at 30° C until reaching 0.6 OD. The addition of ALA and FeCl3 helps to 

facilitate production of heme for subsequent catabolism into biliverdin. At 0.6 OD, 

expression was induced with 1 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) 

except for a WT iRFP culture used as the noninduced control. Expression was continued 

at 30° C for 4 hours. Cells were then incubated on ice for 5 min, spun at 3,000 RPM for 

20 min at 4° C, resuspended in 20 mL of 20 mM Tris pH 7.5 and spun again. 

Supernatants were discarded and cell pellets were frozen. 

All frozen pellets were resuspended in 30 mLs lysis buffer (50 mM monobasic 

sodium phosphate (NaH2PO4) and 300 mM sodium chloride (NaCl)) and sonicated for 5 

min on ice with 10 s cycle length and 50% duty cycle. Lysates were spun at 15,000 RCF 

for 45 min at 4° C. The supernatant was incubated with 250 μL of 50% HisLink Ni-NTA 

bead slurry from Promega overnight at 4° C in a rotorack to preferentially bind the His-

tagged constructs and WT iRFP for purification. Ni-NTA beads were washed and eluted 

sequentially with 50 mM, 250 mM and 500 mM imidazole the next morning to obtain 

purified constructs and WT iRFP. The purified constructs and WT iRFP were then 

dialyzed into MOPS buffer with 15 kDa cutoff dialysis tubing to remove imidazole and 

stored at 4° C. 
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 Absorbance spectra from 250 to 800 nm were obtained for the constructs and WT 

iRFP using a spectrophotometer. Excitation and emission spectra were also obtained from 

550 to 800 nm with excitation at 700 nm and emission at 715 nm; 400 μL aliquots of the 

purified protein were spiked with either 40 mM EDTA to chelate any free Ca
2+

 or 20 mM 

CaCl2. Absorbance and fluorescence spectra were also obtained for these aliquots to find 

any changes between the non-Ca
2+

 bound constructs and Ca
2+

-bound constructs.



 
 

 

 

 

 

 

RESULTS 

 

 

 

 PCR yielded all required fragments for building constructs 1, 2, 3, 5, 6 and 7. 

Fragment sequencing revealed a silent mutation in fragment 1A at 260 bp and a removal 

of three nucleotides from 3A such that it contained only five His residues instead of six in 

the His tag, keeping the length of the fragment in frame. Multiple PCR attempts at 

fragment B amplification resulted in deleterious mutations. Two clones of fragment B 

containing mutations on opposite sides of a ClaI restriction site were cut with ClaI and 

XbaI to isolate the nonmutated regions of each clone. These regions were then ligated 

together to obtain a nonmutated version of fragment B, confirmed by sequencing.  

None of the initial attempts at PCR amplification for fragments 4A or 4C were 

successful. After increasing the concentration of MgCl2 to 3 mM to promote primer 

binding, some products of the right size were obtained but were also fraught with 

mutations. Construct 4 was therefore abandoned with attention turned to the other 

successfully generated construct fragments. 5A and 7A were able to be obtained using the 

newly designed primers and QIAGEN Multiplex PCR kit.  

 Initial attempts at ligation consisted of combining all digested fragments A, B and 

C with the cut pCDF backbone. However, ligation efficiency was too low to generate 

colonies after transformation due to the low probability of all four ligation sites coming 

together in the same reaction. Thus, the stepwise ligation procedure was preferred, 

though it was considerably more tedious and time-consuming. Ligations eventually 
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successfully generated each of the six remaining full constructs, confirmed by restriction 

enzyme double digestion with NcoI/AscI (for fragment A) and NcoI/HindIII (for full 

length) (Figure 5). Sequencing results with PACYCDuetUP1 and DuetDOWN-1 primers 

for the entire constructs also confirmed proper fragment arrangement. 

Previous attempts at expression using 10 L fermenter auto-induction resulted in 

production of WT iRFP but not any of the novel constructs. We learned this by 

submitting the FPLC purified protein SDS PAGE gel band thought to be the novel 

constructs for mass spec. The mass spec results came back positive for E. coli lac 

repressor. The fermenter method may yet prove successful with culturing at 30° C and 

possibly require addition of IPTG. However, we turned to smaller-scale 1 L IPTG 

inductions with culturing in shaker flasks. IPTG-induced expression resulted in 

production of correct sized WT iRFP (~38 kDa) and remaining constructs (~55 kDa), 

confirmed by α-His probed western blot of the total lysates from each culture (Figure 6). 

 

 
 

Figure 5 – Digestion confirming proper fragment construction. Lanes include DNA 

digestion of wild type iRFP (WT) and final constructs (C1-C7, excluding C4). Lower 

bands on left gel are fragment As. Lower bands on right gel are entire gene lengths. The 

450 bp increase in molecular weight for the constructs from WT is due to CaM insert. 
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C2 and C3 showed significantly less expression than the other constructs, possibly due to 

less protein stability. During Ni-NTA purification, WT iRFP and C1 were a noticeably 

green color when bound to the beads and following elution. The noninduced control 

displayed no color and had no His-tagged proteins in the total lysate.  

 It is interesting to note that all of the bacteria cultures used for construct 

expression also co-expressed HO for biliverdin production. However, only expression of 

HO and WT iRFP or C1 together resulted in bacteria cells with green hue (Figure 7). 

Expression of HO alone resulted in normal colored cells. While we know that our 

expression method does result in degradation of endogenous heme for biliverdin 

production, it appears that expression of HO was not continued long enough to produce 

excessive amounts of biliverdin. 

 The absorbance spectrum for WT iRFP showed peaks at 280, 390 and 695 nm 

with a shoulder at 638 nm on the left side of the 695 nm peak as has been previously 

 
 

Figure 6 – Expression results for WT iRFP and constructs. Coomassie stained gel 

(top) and α-His stained western blot (bottom) of total lysates from noninduced culture 

(NI), wild type (WT) (38.6 kDa) and constructs (C1-C7, excluding C4) (55 kDa).  
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reported [30]. When compared to the absorbance spectrum of free biliverdin with nearly 

the same peak height at 390 nm, obvious chromophore formation is visible in the WT 

iRFP sample compared to the very low peak in free biliverdin at 695 nm (Figure 8). 

Excitation and emission spectra for WT iRFP had peaks at 695 and 713 nm, 

respectively. Our excitation and emission spectra show large peaks with 20 nm base 

widths appearing at 2 nm lower than the excitation wavelength in the emission spectra 

and at 2 nm higher than the emission wavelength monitored in the excitation spectra. 

These peaks suggest that the detector is picking up excitation wavelength light from the 

light source. These peaks may be eliminated by adjusting time delay between the source 

flash and photomultiplier integration of the emission signal or by narrowing slit width. 

Batch purification of C1 successfully yielded elution fractions containing the 

construct (Figure 9). The absorbance spectrum for construct 1 had similar absorbance 

peaks to WT iRFP with the exception of a 5 nm peak shift and decrease in height from 

the WT iRFP 695 nm peak, placing C1’s peak at 700 nm (Figure 10). Excitation and  

 
 

Figure 7 – Pelleted cultures showing green hue for WT iRFP and C1. The green color of 

WT iRFP and C1 are due to chromophore formation with biliverdin. Color of noninduced 

WT iRFP is that of normal E. coli. 
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Figure 8 – Absorbance spectra for iRFP and free biliverdin. Incorporation of biliverdin 

into the chromophore binding pocket of iRFP results in an increase in the 695 nm peak 

with respect to the 390 nm peak. 

 

 

 

 

 

 

 
 

Figure 9 – Ni-NTA batch purification of C1. Arrow shows the eluted C1 protein at the 

expected 55 kDa molecular weight. std = standard, TL = total lysate, pel = pellet, sup 

= supernatant, e1 = elution in 50 mM imidazole, e2 = elution in 250 mM imidazole, e3 

= elution in 500 mM imidazole, bead = Ni-NTA beads after elutions, + = positive 

control wild type iRFP for size comparison. 
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emission spectra for construct 1 were also similar to WT iRFP, though seemingly lower 

in amplitude. However, these traces were not normalized to total chromophore 

concentration as represented by the 390 nm absorbance peak so this difference in peak 

height could simply be due to lower amount of present chromophore. 

Addition of 40 mM EDTA to aliquots of the purified WT iRFP and C1 or addition 

of 20 mM CaCl2 had no effect on the absorbance spectra except for a high rise in 

absorbance at less than 280 nm for the EDTA samples. This had no interference with the 

biliverdin absorbance peak or the chromophore absorbance peak. Emission spectra were 

acquired for C1 without and with calcium saturation (Figure 11). No observable 

difference was seen between the EDTA and CaCl2 conditions. However, due to the 

limited amount of purified protein, no duplicate or triplicate measurements could be 

taken for a statistical analysis. Therefore, these studies must be repeated upon purification 

of additional protein. 

 
Figure 10 – Absorbance spectra for WT iRFP and C1. Note the wavelength shift from 

695 nm for WT iRFP to 700 nm for C1 along with a decrease in maximum absorbance 

at the longer wavelengths with comparable 390 nm peak heights. 
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Figure 11 – Emission spectra for C1 in the absence and presence of calcium ions. 

Results are inconclusive for calcium sensitivity test on C1 emission. The large peak in 

each trace is thought to be artifact from the light source. Statistical analysis is not 

available due to N of 1 for the experiment. 

 

 

 



 
 

 

 

 

 

 

DISCUSSION 

 

 

 

 Our results for expression of construct 1 show that receptor insertion into iRFP 

can be accomplished with successful binding of the biliverdin chromophore. This success 

holds exciting new possibilities for GECI engineering which has been limited to GFP 

variants up to this point. Though more conclusive studies with C1 fluorescence changes 

in the absence or saturation of Ca
2+

 may prove C1 to be Ca
2+

 insensitive, we have 

demonstrated the possibility that a different insert could lead to a successful infrared 

GECI. 

 Experimental determination of fluorescence sensitivity of calcium probes to Ca
2+

 

is typically performed by measuring emission wavelength fluorescence intensity in 

aliquots of the purified protein containing various concentrations of Ca
2+

, usually ranging 

from 10
-10

 to 10
-2

 M. If construct 1 is a feasible GECI, we should see a sigmoidal 

response from a minimal fluorescence intensity value at 10
-10

 M Ca
2+

 to a maximum 

fluorescence value at 10
-2

 M Ca
2+

. Because we selected CaM as the insert, similar to 

camgaroo, we would also expect the sigmoidal curve to cross the 50% maximal 

fluorescence intensity level somewhere around 10
-6

 M. Excitation and emission spectra 

may also be obtained for each sample to check for any changes in peak wavelengths. If 

such shifts do occur, construct 1 may be ratiometric, allowing more quantitative 

measurement of Ca
2+

 concentration. 
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 While our primary focus is in demonstrating successful receptor insertion into 

iRFP, CaM, with an overall Kd of around 10 μM, is a less than ideal insert for visualizing 

[Ca
2+

]i fluctuations in cardiomyocyte or neuron cytosol which range from 100 nm to 1.3 

μM [2]. With such a low Ca
2+

 affinity, very few of the infrared GECI containing the CaM 

insert would bind Ca
2+

 at peak [Ca
2+

]i, though CaM inserts resulting in affinities of 

greater than 2 μM have proven effective for monitoring [Ca
2+

] in the ER or mitochondria. 

The GECI engineering techniques that have resulted in Kd values ideal for cardiomyocyte 

cytosolic calcium transient imaging require the additional use of M13 in a circular 

permutation of the fluorescent protein or in conjunction with a second fluorescent protein 

with excitation wavelength near the emission wavelength of the first fluorescent protein 

to produce FRET between the two. The latter method may be accomplished with use of 

eqFP670, a red-shifted variant of katushka, a protein isolated from the E. quadricolor sea 

anemone [35]. eqFP670 exhibits emission at 670 nm which can excite iRFP, but may 

only result in half the excitation energy required for maximum emission intensity from 

iRFP. This scenario is likely more feasible than the circular permutation approach using 

CaM and M13 due to iRFP’s different structure as compared to GFP. 

 Compared to GFP’s structure of a ß barrel surrounding a residue-derived 

chromophore, iRFP is composed of a knot-like structure with two domains [31]. The PAS 

domain is the N terminal of iRFP and contains the Cys residue that covalently binds to 

biliverdin. The C terminal is contained by the GAF domain which comprises the 

chromophore binding pocket. The N terminal of the PAS domain is surrounded by a large 

loop of the GAF domain, forming the knot. Though GFP is known to self-assemble into 

its properly folded structure, iRFP is not known to behave this way, making successful 

receptor insertion of a 150 residue domain even more significant. However, iRFP’s knot-
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like structure and the large distance between the N and C terminals make circular 

permutation unlikely. 

 Other inserts have provided GECIs with higher Ca
2+

 binding affinity such as TN-

humcTnC, which contains only sites I-III of TnC’s EF hand motifs as the insert between 

cyan fluorescent protein (CFP) and citrine [21]. TN-humcTnC has a Kd of only 470 nM, 

which is similar to the affinity of the widely used rhod-2 calcium dye. This affinity is 

comparable to the C terminal domain of TnC. Similar inserts may be tried comprising 

other EF hand motifs from either CaM or TnC. 

The crystal structure of C1 would be of benefit for analyzing possible mutations 

or insert modifications that would have greater possibility of affecting chromophore 

structure by conformational change of the insert upon chelation of Ca
2+

. Molecular 

modeling may also be utilized once a solved structure is available for iRFP and C1, 

though such computational modeling of whole protein structural behavior is lengthy and 

computationally intensive. Once a successful insert is found with or without molecular 

modeling, the infrared GECI can also be subjected to site-directed mutations with high 

throughput FACS sorting to determine mutants with the most practical Ca
2+

-binding 

affinities and fluorescence properties for use in the desired imaging application. 

 The applications for an infrared GECI will be diverse from improving current 

GECI studies by providing increased signal to noise ratio to novel noninvasive 

applications with possible pseudo-3D calcium mapping. Due to the noninvasive nature of 

an infrared GECI, longitudinal studies may also be performed on the same animal over 

the course of disease development or treatment with inducible infrared GECI expression 

at different stages of the disease or treatment [36]. Our understanding of changes in 

calcium handling will improve as we implement this novel noninvasive calcium probe.
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