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ABSTRACT

Multiple Instance Learning (MIL) is a type of supervised learning with missing data.

Here, each example (a.k.a. bag) has one or more instances. In the training set, we have only

labels at bag level. The task is to label both bags and instances from the test set. In most

practical MIL problems, there is a relationship between the instances of a bag. Capturing

this relationship may help learn the underlying concept better. We present an algorithm

that uses the structure of bags along with the features of instances. The key idea is to allow

a structured support vector machine (SVM) to “guess” at the true underlying structure, so

long as it is consistent with the bag labels. This idea is formalized and a new cutting plane

algorithm is proposed for optimization.

To verify this idea, we implemented our algorithm for a particular kind of structure

– hidden markov models. We performed experiments on three datasets and found this

algorithm to work better than the existing algorithms in MIL. We present the details of

these experiments and the effects of varying different hyperparameters in detail. The key

contribution from our work is a very simple loss function with only one hyperparameter

that needs to be tuned using a small portion of the training set.

The thesis of this work is that it is possible and desirable to exploit the structural

relationship between instances in a bag, even though that structure is not observed at

training time (i.e., correct labels for all the instances are unknown). Our work opens a new

direction to solving the MIL problem. We suggest a few ideas to further our work in this

direction.
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CHAPTER 1

INTRODUCTION

Machine Learning is a scientific discipline that is concerned with the design and devel-

opment of algorithms that allow computers to evolve behaviors based on empirical data,

such as from sensor data or databases. There are three primary branches of this discipline

– supervised learning, unsupervised learning and semisupervised learning.

Supervised learning infers a function from the given labeled data (training data). For

example, given a set of documents, each of which is labeled relevant or irrelevant, a

supervised learning algorithm outputs a function that would take an unseen document

and label it relevant or irrelevant. This particular task is also called classification.

Unsupervised learning tries to determine how the input data are organized. The primary

difference between unsupervised learning and supervised learning is that the former takes

unlabeled data as input. For example, consider the problem of mining different topics in a

given set of documents. Here, the topics are not known ahead of time. The unsupervised

learning algorithm is supposed to mine them.

Semisupervised learning is a combination of the above two scenarios. Here, both labeled

and unlabeled data are given. Unlabeled data, when used in conjunction with a small

amount of labeled data, can produce considerable improvement in learning accuracy. Since

manual labeling of data could be expensive, labeling a small part of the data and applying

semisupervised algorithms could be of great practical value.

Structured prediction is a variant of supervised learning. In conventional supervised

learning, each label is a scalar i.e., the classifier’s output domain is R. On the other

hand, in structured prediction, each label is a vector. For example, consider the task of

part-of-speech (POS) tagging in which input is a sequence of words and the output is a

sequence of POS tags. The domain of output is the set of all possible POS tag vectors.

1.1 Multiple Instance Learning

Multiple Instance learning (MIL) (10) is a variation of supervised learning. In supervised

learning, each example along with its label is a single unit of information. In Multiple
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Instance learning, there are bags of information. Each bag1 is a composition of one or more

instances. Each instance has an unknown label. One or more of the instances cause the

(known) label for the bag. The goal of MIL is to classify unseen bags and instances.

MIL is typically done in the context of binary classification, where there are only two

mutually exclusive labels possible per instance (and bag) – positive or negative. A bag is

said to be positive if there is at least one positive instance in it. A bag is said to be negative

if none of its instances is positive.

MIL finds applications in many areas like drug activity prediction (10), content-based

image retrieval (41), text categorization (1) etc.

We formalize our notation for the binary MIL problem in Table 1.1.

Let us assume that the instances of each bag X in χp and χn are arranged in a sequence.

Now, each bag has a sequence of labels, with a one-to-one correspondence between instances

and labels in it. We assume that the correct output vector (a.k.a. label sequence) for each

bag X to be Y . Let us denote the set of possible output vectors for X be Υ. Now, the

feature function for each bag depends both on the input X and the full output vector Y .

Let us denote this by Φ(X,Y ). Our goal is to build a classifier that takes χp, χn and Φ to

output a model that can classify bags and instances.

1.2 Structure in MIL Bags

The key idea in our work is to use the structure of input bags in MIL. Consider the

following example. Suppose you are given a set of images, each of which is labeled as to

whether it contains a car or not. The task is to come up with a model which, when input

a new image, tells whether it contains a car or not. If it says that the image does contain

a car, it must also list down the pixels of the image which belong to the car. This problem

1A bag is also referred to as an example. Throughout this document, we do not refer to bags as examples.

Table 1.1: Notations

Legend Description

χ Set of bags used for training
χp ⊂ χ Set of positive bags
χn ⊂ χ Set of negative bags
χ̃ Set of instances from all bags i.e., χ̃ = {x|x ∈ X ∈ χ}
χ̃p Set of instances from positive bags i.e., χ̃p = {x|x ∈ X ∈ χp}
χ̃n Set of instances from negative bags i.e., χ̃n = {x|x ∈ X ∈ χn}
φ(x) Feature vector of any instance x
φ(X) Sum of all feature vectors of all instances in a bag X i.e., φ(X) =

∑

x∈X φ(x)
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is an instance of MIL. Here, each image is a bag and its pixels are the instances. We know

labels for the bags but not for the instances.

Let us call any pixel depicting a car a “car pixel.” Each image with a car has at least one

car pixel whereas an image without a car has no car pixels at all. Intuitively, car pixels do

not appear in isolation i.e., a car pixel is likely to be surrounded by other car pixels. Put in

other words, there is a structure among the instances of each pixel. A typical classifier takes

features of a pixel (RGB values, location in the image etc.). One could also try to use the

information from neighboring pixels by including them as additional features, depending on

the structure. Our idea is to come up with a general technique to solve the MIL problems

in which bags are expected to have a structure that can be modeled.

In this thesis, we formulate a classifier that considers the structural information in the

bags along with the instance features. In Chapter 2, we describe the literature from MIL

and structured prediction in detail. This is necessary to understand the formulation of our

classifier in Chapter 3. In Chapter 4, we describe the datasets used and the results of our

experiments with a thorough discussion of our results. We conclude our work and describe

our ideas for future work in Chapter 5.



CHAPTER 2

BACKGROUND

Our work is built on concepts from two areas - MIL and structured prediction. In this

section, we look at the existing work in both these areas.

2.1 Multiple Instance Learning

MIL was originally proposed under this name by Dietterich et al. (10) although earlier

examples (18) of such similar research exist. Many classical classification techniques have

been adapted to work in the context of MIL. Dietterich et al. (10) proposed three learning

algorithms, each of which illustrates an approach to constructing Axis Parallel Rectangles

(APR) in the MIL context. The best of these algorithms starts with a point in the feature

space. It “grows” a rectangle in such a way that it covers at least one instance from each

positive bag and no instance from any negative bag.

Maron and Lozano-Pérez (23) proposed a diverse density (DD) based algorithm which

tries to find out the region of high positive bag density and low negative bag density. Zhang

and Goldman (40) built an EM algorithm upon this. In the E-step, the current hypothesis

h is used to pick one instance from each bag that is most likely to be the one responsible

for the label given to the bag. In the M-step, the standard DD algorithm is used to find a

new hypothesis h′ that maximizes DD{h}. These steps are repeated until convergence.

Several methods have been proposed to adapt support vector machines (SVM) to MIL

settings. In the following sections, we discuss these ideas in detail.

2.1.1 Single Instance Learning

The most obvious way to use an SVM to solve the MIL problem is to apply the bag’s

label to all its instances and train a regular SVM on the resulting data. This is referred to

as Single Instance Learning(SIL). This is illustrated in Figure 2.1.

The objective (Eq (2.1)) has two components – the regularizer (12 ||w||
2) which tries to

keep the feature weights small and the slack component which tries to keep the “adjust-

ments” on the scores of training instances (training error) small. There is a trade-off between

these two which is controlled by the cost-factor C. A high value for C means that we want

the training error to be low even if the model is complex whereas a low value for C says that
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minimize:

F (w, b, ξ) =
1

2
||w||2 +

C

L

∑

x∈χ̃

ξx (2.1)

subject to:

wφ(x) + b ≤ −1 + ξx ∀x ∈ χ̃n (2.2)

wφ(x) + b ≥ +1− ξx ∀x ∈ χ̃p (2.3)

ξx ≥ 0

Figure 2.1: SIL-SVM optimization problem

we require the model to be simple even if a few training instances are misclassified. This

trade-off is related to the bias-variance trade-off that is well-documented. Equations (2.2)

and (2.3) constrain that the instances from negative bags have a score of at most −1 (modulo

slack) and the instances from positive bags have a score of at least +1 (modulo slack).

Depending on the nature of the dataset, SIL can give very decent results. Suppose that

a dataset has a very high density of positive instances in positive bags, then the number

of instances that SIL wrongly assumes to be positive is very low in comparison to the

total number of instances. SIL’s performance under such a condition will be very close

to learning from the actual labels. However, when the positive bags are sparse (i.e., the

fraction of instances in a positive bag that are positive), SIL would not work well.

2.1.2 Statistic Kernel and Normalized Set Kernel

Gärtner et al. (12) proved some key results about the applicability of kernels to the

MIL problem. They introduced the Statistic Kernel (STK ) and the Normalized Set Kernel

(NSK ).

In STK, every bag is transformed into a feature vector, where each instance-level feature

contributes two bag-level features: the minimum and the maximum value it takes across all

the instances in the bag. Thus, each bag is transformed into two instances having the same

label as the bag. Using these derived instances, an SVM is trained.

In NSK, each positive bag is represented by the sum of feature vectors of its instances

divided by its ℓ1 or ℓ2-norm. The negative bags are used as they are. The resulting feature

vectors are used for training a regular SVM. This formulation is shown in Figure 2.2.

These two approaches, just like SIL, tend to work well when most instances in positive

bags are actually positive. They are less effective when only a few of the positive-bag

instances deserve a positive label.
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minimize:

F (w, b, ξ) =
1

2
||w||2 +

C

|χ̃n|

∑

x∈χ̃n

ξx +
C

|χp|

∑

x∈χp

ξX (2.4)

subject to:

wφ(x) + b ≤ −1 + ξx ∀x ∈ χ̃n (2.5)

w
φ(X)

|X|
+ b ≥ +1− ξX ∀X ∈ χp (2.6)

ξx ≥ 0, ξX ≥ 0

Figure 2.2: NSK optimization problem

2.1.3 MI-SVM and mi-SVM

Andrews et al. (1) suggested two iterative SVM approaches for MIL. The maximum

pattern margin formulation (mi-SVM ) is essentially a self-training algorithm. It begins by

training a model using the SIL formulation. This model is used to relabel the instances

in positive bags. If some positive bag contains no instances labeled as positive, then the

instance in that bag that gives the maximum value of the decision function is relabeled as

positive. The SVM is then retrained with this new dataset. This process of relabeling and

retraining is repeated until no labels are changed.

In the maximum bag margin formulation (MI-SVM ), a model is trained on the given

dataset using NSK. For every positive bag, the learned decision function is used to select

the bag instance that gives the maximum value. This instance becomes the new bag

representation. The SVM is then retrained with this new dataset, and the process is

repeated until no bag representation is changed.

2.1.4 Sparse MIL, Sparse Transductive MIL, Sparse Balanced MIL

Bunescu and Mooney (4) proposed three more SVM-based methods that are particularly

effective when the positive bags are sparse. Sparse MIL (sMIL) constrains that all the

instances of the negative bags be labeled negative and at least one instance in each positive

bag be labeled positive. This formulation is shown in the Figure 2.3.

In this formulation, the objective (Eq (2.7)) states that we want a simple (low norm)

weight vector that achieves low error on negative bags (first sum) and positive bags (second

sum), where ξs measure the losses. The negative bag constraint (Eq (2.8)) is identical

to the usual SVM constraint for negative data points. It states that the prediction on any

instance, x from a negative bag should be less than −1, modulo slack of ξx. The positive bag

constraint (Eq (2.9)) applies to a bag X of size |X|. It requires that the average per-instance
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minimize:

F (w, ξ) =
1

2
||w||2 +

C

|χ̃n|

∑

x∈χ̃n

ξx +
C

|χp|

∑

X∈χp

ξX (2.7)

subject to:

wTφ(x) + b ≤ −1 + ξx ∀x ∈ χ̃n (2.8)

w
φ(X)

|X|
+ b ≥

2− |X|

|X|
− ξX ∀X ∈ χp (2.9)

ξx ≥ 0, ξX ≥ 0

Figure 2.3: sMIL optimization problem

prediction (the l.h.s. term) be at least (2 − |X|)/|X| (modulo slack). This term appears

because if exactly one of the instances gets a score of 1, and the rest get scores of −1, then

the sum will be 1− (|X| − 1) = 2− |X|.

Sparse transductive MIL (stMIL) extends sMIL formulation with an additional con-

straint that each instance in the positive bag be classified positive or negative with a margin

(essentially akin to a transductive constraint). This is shown in Figure 2.4.

The stMIL formulation (see Figure 2.4) is identical to that of sMIL, except for an

additional term added to the objective, and an additional set of constraints. The new

constraints (Eq (2.12)) are from the idea of semisupervised SVMs, where we say that we do

not know the labels for unlabeled points, but we should be confident about them one way

or the other. The new term in the objective, C
|χ̃p|

∑

x∈χ̃p
ξx, tries to minimize the value of

slack terms in the new constraint set.

The third algorithm that they proposed is Sparse balanced MIL (sbMIL). It is an iterative

minimize:

F (w, ξ) =
1

2
||w||2 +

C

|χ̃n|

∑

x∈χ̃n

ξx +
C

|χp|

∑

X∈χp

ξX +
C

|χ̃p|

∑

x∈χ̃p

ξx (2.10)

subject to:

wTφ(x) + b ≤ −1 + ξx ∀x ∈ χ̃n (2.11)

|wφ(x) + b| ≥ +1− ξx ∀x ∈ χ̃p (2.12)

w
φ(X)

|X|
+ b ≥

2− |X|

|X|
− ξX ∀X ∈ χp (2.13)

ξx ≥ 0, ξX ≥ 0

Figure 2.4: stMIL optimization problem
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algorithm based on sMIL. An SVM is trained on a small labeled dataset, and then used to

score all instances from the larger unlabeled dataset. The top η% of them as ranked by the

decision function are labeled positive and the rest are labeled negative. Then, the algorithm

proceeds in iterative fashion: at each iteration, it finds a pair of instances with different

labels that were classified on the wrong side of the hyperplane, switches their labels and

retrains the SVM. This is illustrated in Figure 2.5.

2.2 Structured Prediction

In structured prediction, both the examples and output are expected to be vectors which

have a structure among their components. The goal is to model that structure. It is possible

that each component of the vector has a “feature list.” Consider the task of POS tagging

where the goal is to determine the part of speech of each word in a sentence. Obviously,

a sentence in English has to follow certain grammar – which we refer to as structure. For

instance, a noun is likely to follow a determiner (the/an/a). So our input is a sequence

of words and the output is a corresponding sequence of part of speech tags. For each

component (words) of the input vector (sentence), there could be features like “Is the word

capitalized?,” “Is the word in our dictionary?” etc..

Typically structured prediction algorithms concentrate on sequence labeling (i.e., the

input and output are sequences like in POS tagging). While some of the following algorithms

are applicable to only sequences (HMM, MEMM etc.), there are some which are applicable

to more general structures like graphs (e.g., CRF). In this section, we describe the most

popular methods to model structured data.

2.2.1 Hidden Markov Models

Hidden markov models (HMM) are one of the earliest methods to deal with sequence

labeling. Rabiner (32) wrote an excellent tutorial about HMMs. Briefly, we describe them

in this section.

SBMIL(χn, χp, φ, C, η)

(w, b)← solve sMIL (χn, χp, φ, C)
order instances x ∈ χp using f(x)
label instances in χ̃p :

the top η|χ̃p| as positive
the rest (1− η)|χ̃p| as negative

(w, b)← solve SIL(χ̃n, χ̃p, φ, C)
return (w, b)

Figure 2.5: Sparse balanced MIL
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A stochastic process is a nondeterministic process in which there is uncertainty over the

future state of the system. This uncertainty is described by a probability distribution. In

its simplest form, a stochastic process amounts to a sequence of states known as time series

i.e., the state of the process at time t = 1, . . . , n is s1, . . . , sn. Suppose we are noting down

the weather of a city on a daily basis. For Sunday through Saturday, the observations are

<sunny, cloudy, rainy, cloudy, sunny, sunny, cloudy>. This is a stochastic process because

it is impossible to deterministically say what the weather on the following day would be,

given the observations about the past few days. However, weather does follow a particular

pattern. For instance, a cloudy day is more likely to be followed by a rainy day than a

sunny day.

A stochastic process is said to have the markov property1 if the conditional probability

distribution of the future state of the process (conditional on both past and present values)

depends only upon the present state. A process with this property is called a markov

process. Let xt be the random variable corresponding to the state of the process at time

unit t. Markov property essentially means:

p(xt = i|x1, x2, . . . , xt−1) = p(xt = i|xt−1) ∀i = 1 . . . n

In the example mentioned above, if we are guaranteed that the weather on a particular

day is influenced only by the previous day’s weather, it can be modeled as a markov process.

Let us consider a markov process P which has n states (s1 . . . sn). When we try to model

it from observed data, the parameters we are trying to estimate are the initial probabilities

(p(x = i|t = 1) for i = 1 . . . n) and the transition probabilities

(p(xt = i|xt−1 = j)∀i, j ∈ [1, n]).

In general, markov processes are of order 1 i.e., the future state of the process depends

on only the current state. If the future state depends on both the current state and the

previous state, it is said to be of order 2. Markov processes of higher order are also used

for modeling some data.

A hidden markov model is a markov process in which the states are hidden. Here, we

cannot know the state of the system at any time, but we can make an observation that

has a direct relationship with it. To modify our example to this situation, let us suppose

that we are not allowed to visit the city directly. Instead, we are shown pictures of some

trees in the city at the sunset. We know that the leaves of trees look different based on the

1Markov processes are named after the Russian mathematician Andrew Markovi.
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weather during the day. Using the pictures and the markov property, one has to estimate

the weather on the following day.

Let us denote the observation made at time t by ot. To simplify the discussion, let us

assume that any observation can take only a value between 21 . . .m. In addition to the

parameters of a regular markov process, we now have emission probabilities to estimate

i.e., the probability with which the observation i can be made while the system is in state

sj : p(ot = i|xt = sj).

HMMs make the three key assumptions which are as follows:

1. Markov assumption: the next state depends only on the current state.

2. Stationary assumption: state transition probabilities are independent of the actual

time at which the transitions happen.

3. Output independence assumption: the current observation is independent of the

previous outputs given the current state.

Typically, the observation made at time t is assumed to be dependent only on the state

of the system at t. However, one could imagine a process which emits observations based

on the previous states of the system. The number of states before the current state that

have a say in the observation to be emitted now is called the emission order of the HMM.

Once we know the transition order and emission order of the model, there are efficient

algorithms that answer relevant questions about the process. Viterbi algorithm takes

the initial, transition and emission probabilities and outputs the most likely sequence of

states that the process went through. Forward algorithm gives the probability of a given

observation sequence. Forward-backward algorithm, using the same inputs, finds the most

likely state of the system at any point of time. Given a few sequences of observations

produced by the same process, one can estimate the parameters of an HMM using an

expectation maximization algorithm (2).

HMMs have applications in a wide range of machine learning problems like speech

recognition (32), handwriting recognition (31), POS tagging (14) and musical score following

(28).

2.2.2 Maximum Entropy Markov Models

McCallum et al. (24) introduced Maximum Entropy Markov Models (MEMM) to over-

come the following problems with the traditional HMMs:

1. In HMM, one has to list down all the observations (for Viterbi and Forward-backward

algorithms) to utilize or estimate the emission probabilities. In some applications, it may

2The real observations need not be numeric. One could think of these numbers as identifiers to the
distinct observations.
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not be possible to enumerate all the possible observations. Consider parsing a document

containing frequently asked questions (24). Each line in the document has to be labeled

as one of { head, question, answer}. Obviously, there is a structure in the document. An

answer is more likely to follow a question rather than a head. So, we could model this

using an HMM. Here, the hidden states are { head, question, answer} and the lines of the

document are observations. As one could see, there can be a very large number of possible

lines. An HMM would try to build a multinomial distribution over all these lines – which

is a very unreasonable goal. Typically, the distribution of lines is very sparse i.e., we rarely

see lines repeating within a document. This is again a problem for modeling them using a

multinomial distribution.

2. Many applications benefit from a richer representation of observations. Consider the

task of POS tagging. It is modeled as an HMM traditionally. Here, POS tags are states

and the words are the observations. If one could use more features per observation like

“Is the first letter capitalized?,” “Does the word end in tion,” “Does the word exist in our

dictionary?” etc. As one can notice, these features need not be independent of each other

i.e., they are overlapping. But together, they increase the confidence of our prediction. With

more features per observation, listing down the set of possible observations (combinations

of features) would be hard.

3. In most text applications, the task is to predict the state sequence given the observation

sequence. HMM algorithms maximize the likelihood of the observation sequence (i.e.,

p(st, ot)) rather than estimate the probability of a state given the observation (i.e., p(st|ot))

i.e., they use a generative joint model to solve a conditional problem.

MEMM replaces transition and observation functions with a single function that gives

the probability of the current state given the previous state s′ and the current observation

o. Formally, p(s|s′, o) (also denoted by ps′(s|o)) is the probability of current state given

the previous state and current observation. One could imagine this to be a probabilistic

finite-state acceptor that goes from s′ to s on an input o. It is important to note that unlike

in common HMMs, MEMM does not require that the observation be dependent only on the

current state.

Suppose that each feature of an observation can be obtained by a function f<b,s>(ot, st)

which is defined as follows:

f<b,s>(ot, st) =

{

1 if b(ot) is true and s = st

0 otherwise
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f<b,s> is shortly written as fa where a =< b, s >. Now, constraints are added so that

the expected value of each feature in the learned distribution will be the same as its average

on the training observation sequence o1, o2, . . . , om. Put formally, this is:

1

ms′

ms′

∑

k=1

f<b,s′>(ot, st) =
1

ms′

ms′

∑

k=1

∑

s∈S

Ps′(s|otk)f<b,s′>(otk , s)

∀s′ ∈ {s0, s1, s2, . . . , sm−1}, all features b

The maximum entropy distribution 3 that satisfies these constraints has exponential

form as shown below. Here, Z(o, s′) is the normalizing factor that makes the distribution

sum to one across all the next states s.

Ps′(s|o) =
1

Z(o, s′)
exp

(

∑

a

λafa(o, s)
)

(24) suggest variants of Forward, Viterbi and Forward-backward algorithms for this

formulation. In order to estimate the distribution, they suggest a generalized iterative

scaling algorithm.

2.2.3 Conditional Random Fields

MEMMs have several advantages compared to HMMs but they suffer from a weakness

called the label bias problem due to the fact that the transitions leaving a particular state

compete only against each other, rather than against all the other transitions in the model.

In other words, there is conservation of score mass whereby all the scores that arrive at

a state must be distributed among the possible successor states. This results in a bias

towards states with fewer outgoing transitions. In the worst case, a transition with only

one outgoing transition effectively ignores the observation at that stage.

Lafferty et al. (19) introduced conditional random fields (CRF) to solve the label bias

problem while retaining all the advantages of MEMMs. In addition, CRFs can be applied

to structures other than sequences (unlike HMM, MEMM). In general, it can be applied to

label graph structures where nodes represent labels and edges represent the dependencies.

3Maximum entropy is a framework for estimating probability distributions from data. In contrast to
traditional learning methods like Naive Bayes classifiers, it does not assume statistical independence of the
variables (i.e., features of observations). Its basic principle is that the best model for the data is the one
that is consistent with certain constraints with the training data, but otherwise makes the fewest possible
assumptions i.e., with the highest entropy.
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Sequence labeling becomes a special instance of graph labeling where the graph is just a

path (a.k.a. chain). Below, we describe the basic idea behind CRFs.

Let G = (V,E) be a graph such that Y = (Yv)v∈V , so that Y is indexed by the vertices

of G. If the random variables Yv obey the markov property with respect to the graph when

conditioned on X i.e., p(Yv|X,Yw, w 6= v) = p(Yv|X,Yw, w ∼ v) where w ∼ v represents

neighborhood in the graph G, then (X,Y ) is called a CRF. Note that a CRF is a random

field globally conditioned on the observation X. If the graph is a tree, then the joint

distribution over the label sequence Y given X has the form:

pθ(y|x) ∝ exp
(

∑

e∈E,k

λkfk(e,y|e,x) +
∑

v∈V,k

µkgk(v,y|v,x)
)

(2.14)

In Eq (2.14), x is a data sequence, y is a label sequence and y|s is the set of components

of y associated with the vertices in subgraph S. fk, gk are features of edges and vertices,

respectively. They are assumed to be given and fixed. For example, fk may be true if the

edge is between a determiner and noun and the word Xi is not found in the dictionary.

The parameter estimation problem for this formulation would be to determine θ =

(λ1, λ2, . . . ;µ1, µ2, . . . ) from the given data D =
{(

x(i), y(i)
)}

with empirical distribution

p̃(x, y). They describe two improved iterative scaling algorithms that maximize the log-

likelihood objective function in Eq (2.15).

O(θ) =
N
∑

i=1

log pθ(y
(i)|x(i))

∝
∑

x,y

p̃(x,y) log pθ(y|x) (2.15)

The key to avoiding the label bias problem is that the probabilities are not normalized at

a transition level. Instead, they are normalized at the graph level (using the proportionality

relationship in Eq (2.14)).

2.2.4 Maximum Margin Markov Networks

Kernel-based methods like SVMs which maximize the margin of confidence of the clas-

sifier are regularly used under normal classification settings (i.e., without structure) due to

their ability to handle high-dimensional feature spaces and theoretical guarantees. Initial

methods to adapt these techniques to structured prediction involved representing the neigh-

boring nodes as features. However, there are many limitations to techniques like this. On

the other hand, probabilistic graphical models, such as HMMs and CRFs, can represent the
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structure well but cannot handle high-dimensional feature spaces. Furthermore, they lack

theoretical guarantees. Taskar et al. (35) proposed Maximum Margin Markov Networks

(M3N) that combine the advantages from kernel methods and graphical models.

The key idea is to select the weight vector w for which the score of the correct label Y

is uniformly most different from the closest runner-up, for each of the inputs X. This is

expressed as a set of linear constraints that require a margin between the score obtained by

the correct label and the rest. If this margin is a constant, then the formulation implicitly

assumes zero-one loss over the bag. Since this is inappropriate for structured prediction

where Υ could be large, they propose to re-scale the margin according to the loss incurred

in the linear constraints. This would increase the penalty for violating the margin constraint

involving Ŷ 6= Y with the loss ∆(Y, Ŷ ). The resulting formulation is called SVM∆m
1 (see

Figure 2.6). The feature function, denoted Φ(X,Y ) now depends both on the input X and

the full output sequence Y .

Here, as in most SVM-based models, we are optimizing (Eq (2.16)) for a simple solution

(low norm) with low training error (here, we have written 1T ξ to denote the sum of slacks).

In the structured SVM, the constraint says that the difference in score between the true

output Y and any incorrect output Ŷ should exceed the loss associated with predicting Ŷ .

(In other words, very bad outputs should be ranked very low.)

2.2.5 SVM-ISO

Tsochantaridis et al. (36) have proposed an SVM formulation similar to M3N except

that they rescale the slack instead of margin. The formulation is described in Figure 2.7.

They proposed a cutting plane algorithm to solve the QP optimization problem and it finds

a solution that is close to the optimal.

Rescaling the slack is more well-behaved than rescaling the margin. The problem with

margin rescaling is that it allows the contribution of instances which are already well-

minimize:

F (w, ξ) =
1

2
||w||2 + C1T ξ (2.16)

subject to:

wT
[

Φ(X,Y )−Φ(X, Ŷ )
]

≥ ∆(Y, Ŷ )− ξX

∀X ∈ χ, ∀Ŷ ∈ Υ\{Y } (2.17)

ξ ≥ 0

Figure 2.6: SVM for structured data - SVM∆m
1
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minimize:

F (w, ξ) =
1

2
||w||2 + C1T ξ (2.18)

subject to:

wT
[

Φ(X,Y )−Φ(X, Ŷ )
]

≥ 1−
ξX

∆(Y, Ŷ )

∀X ∈ χ, ∀Ŷ ∈ Υ\{Y } (2.19)

ξ ≥ 0

Figure 2.7: SVM for structured data - SVM∆s
1

separated from the margin to be high. Suppose that an instance is very distant from the

decision plane yet has a high loss value. The optimizer will automatically increase the ξX

for it to accommodate for the unreasonable margin requirement. Once this “adjusting”

happens, there is no incentive to check for better labeling of this instance. On the other

hand, the slack rescaling will ignore instances that are separated by a margin of 1, and

ξx is determined by instances which are close to the margin. However, if the loss function

∆ satisfies some conditions (33), then finding the maximally violating constraint is much

easier when the margin is rescaled compared to slack. So, rescaling the margin is more

popular than rescaling the slack.

2.2.6 Incremental Perceptron

Most structured prediction algorithms deal with the problem Ȳ = argmaxY ∈ΥwTφ(X,Y )

where X,Y,Υ denote the bag, a possible output vector and the range of Y , respectively.

For many structured predictions, this problem can be solved efficiently4. But, in some

conditions, exhaustive enumeration of the set of candidates for each input sequence is hard

– both in the training and decoding phases. One way to overcome this problem is to re-rank

the top N parses from an existing generative parser (6; 7). But this model presumes the

existence of a supplementary baseline parser. The performance of algorithms based on

re-ranking is dependent on the baseline parser. Many of such parsers are heuristic-based,

which means that the performance is dependent on effective search.

As an alternative, Collins and Roark (9) introduced a perceptron-based algorithm for

incremental parsing. This discriminative algorithm can be applied to other structured

prediction problems as well. The basic idea is to use a beam-search parser from Collins (8)

4For example, there are dynamic programming solutions like Viterbi and CYK algorithm for finding out
the most possible state sequence for an HMM and best parse for context free grammars, respectively.
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with two changes in the search strategy to accommodate the perceptron feature weights.

The changes are described below:

1. Repeated use of hypotheses: First, the model is updated with the current example

(by regular perceptron principle). Then, the example is added to a cache (of N examples).

Now, update the weight vector iteratively so long as there is an example in the cache for

which it does not produce the gold standard parse (correct output vector) as the best parse5.

The base algorithm looks at the only constraint on the current example and ignores those

implied by the older examples. Using this cache helps to avoid a long time to return to a

known constraint.

2. Early update during training: In the incremental parsing, if it is found that the parse

until the jth component of the input vector (e.g., jth word of a sentence in POS tagging) is

incorrect, then exit the parsing process and pass it to the parameter estimation. This leads

to less noisy input to the parameter estimation besides improving the efficiency.

While these refinements to the base algorithm are definitely intuitive and helpful (as

proved by their experiments), it must be noted that it supports only 0/1 loss. Its incremental

beam search is only a heuristic with no guarantees of finding the highest scoring parse.

5Of course, we stop after a certain number of iterations to avoid trying to separate inseparable data.



CHAPTER 3

OUR APPROACH

The basis for our approach is that there must be a reason for which a set of instances

are grouped. For example, consider the task of Drug Activity Prediction (10). The goal is

to measure the degree to which the molecule binds to a target “binding site.” A binding

site is a cavity into which the input molecule binds. Each molecule has many alternative

conformations i.e., the alternative shapes that the molecule can adapt by rotating its bonds.

Only some of these shapes actually bind to the binding site and produce the observed result.

When mapped to MIL settings, a molecule is represented by the set of conformations it can

have i.e., each molecule is a bag and each conformation is an instance. As one can see, there

is a relationship between different conformations of the same molecule. This relationship,

when captured, may improve our understanding of which molecule is more likely to bind.

We mathematically formulate this idea in the following section.

3.1 SVM Formulation

As we discussed in Section 2.2, structured prediction takes input examples which have

multiple components and tries to model the relationship between them. In MIL, each bag

is a union of instances. The difference is that structured prediction expects the components

of its example to be ordered i.e., there is a structure in the example. If we are assured that

the instances of a bag have a structure in them, then MIL becomes a variant of structured

prediction with partial information.

Suppose we have instance labels for an MIL dataset in which the bags have structure

(sequence, tree, context free grammar etc.). Then, we could directly use the formulation

in Figure 2.6 to train a model. Even without the instance labels, we know that the

negative bags contain only negative instances i.e., we know the right output vector. So,

the constraint (2.17) is still as good for negative bags. The problem is with the positive

bags where we do not know the right output vector. It is here that we use the same logic

as sMIL (Eq (2.9)). Since we do not know the correct output vector for positive bags, the

easiest way to modify this constraint to positive bags is to ensure that the best sequence

has at least one positive instance in it.
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More formally, on negative bags, where one should always predict the all-negative

sequence (which we denote as Ȳ ), the loss is simply the number of positive instances

predicted. This is just hamming loss measured against Ȳ . However, for positive bags,

the loss is zero if anything other than Ȳ is predicted (that is, if the hypothesized output

has at least one positive instance) and is 1 otherwise. The optimization problem for this

formulation is written in Figure 3.1.

The idea here is straightforward, if notationally abstruse. The objective (Eq (3.1)) states

that we want a simple weight vector (the norm part) that makes few errors, where C is the

trade-off between simplicity of the model and training error rate. As before, ξ is a vector of

slacks, and 1 is a vector of ones. The constraints are as follows: Eq (3.2) states that for any

negative bag, we must rank the completely-negative output vector highest (modulo slack).

This is equivalent to the usual SVM∆m
1 constraint when the full known output is equal to

Ȳ . Eq (3.3) states that for any positive bag, we must rank the completely-negative output

vector lower than some other sequences (modulo slack). In other words, the model must

not think that Ȳ is the best possible output. Here, the loss for making an error is 1.

If we know that each positive bag has to have at least k positive instances in it (say due

to domain knowledge), the second constraint in the above equation becomes:

wT
[

Φ(X, Ŷ )−Φ(X, Ȳ )
]

≥ k − ξX

∀X ∈ χp, ∃Ŷ ∈ Υ\{Ȳ }

Basically, this constraint is saying that there has to be an output vector (Ŷ ) that has at

least a difference of k labels compared to Ȳ i.e., it must have at least k positive labels in it.

minimize:

F (w, ξ) =
1

2
||w||2 + C1T ξ (3.1)

subject to:

wT
[

Φ(X, Ȳ )−Φ(X, Ŷ )
]

≥ ℓ(Ȳ , Ŷ )− ξX

∀X ∈ χn, ∀Ŷ ∈ Υ\{Ȳ } (3.2)

wT
[

Φ(X, Ŷ )−Φ(X, Ȳ )
]

≥ 1− ξX

∀X ∈ χp, ∃Ŷ ∈ Υ\{Ȳ } (3.3)

ξ ≥ 0

Figure 3.1: SVM for structured MIL
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3.2 Cutting Plane Optimization

The optimization problem Eq (3.1) is hard to solve for two reasons. First, the number

of constraints is exponential in the number of possible output vectors. However, this is the

case for most structured prediction problems, and can be addressed by clever optimization

techniques, for instance by using cutting planes (17). The second, more serious difficulty,

is the existential positive-bag constraint in Eq (3.3). We propose a method to overcome

this problem.

We first briefly describe the cutting plane optimization. The idea is relatively straight-

forward – we initialize the algorithm with no “active” constraints, and solve the resulting

optimization problem. In the first iteration, the solution will be a zero weight vector. We

then search for the most violated constraint. We add this most violated constraint to the

active constraint set, and re-optimize. We repeat this process until convergence within some

tolerance. One can show (17) that this will converge in a polynomial number of iterations,

meaning that only a polynomial number of constraints need to be active to obtain a good

solution.

In order to cope with the existential constraint, we employ a parameter augmentation

approach. For each positive bag X, we add a new variable to the model, YX . This can be

interpreted as our model’s current best “guess” as to what the best output vector forX is. In

other words, YX is a representative that demonstrates that the positive bag constraint holds.

The resulting formulation, which we refer to as Multiple Instance Structure Prediction

(MISP), can be seen in Figure 3.2.

The resulting problem is now a mixed optimization problem over continuous variables

(w, ξ) and discrete variables (YX). For negative bags, we use the regular cutting plane

minimize:

F (w, ξ, Yx) =
1

2
||w||2 + C1T ξ (3.4)

subject to:

wT
[

Φ(X, Ȳ )−Φ(X, Ŷ )
]

≥ ℓ(Ȳ , Ŷ )− ξX

∀X ∈ χn, ∀Ŷ ∈ Υ\{Ȳ } (3.5)

wT
[

Φ(X,YX)−Φ(X, Ȳ )
]

≥ k − ξX (3.6)

∀X ∈ χp where

YX = arg max
Ŷ ∈Υ\{Ȳ }

wTΦ(X, Ŷ )

ξ ≥ 0

Figure 3.2: SVM for structured MIL (updated) – MISP
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technique to solve this. In order to apply the technique, we must be able to find maximally

violated constraints. This can be solved using loss-augmented decoding with the MAP

inference algorithm corresponding to the structure. For positive bags, we use the MAP

inference algorithm to determine the most likely output vector (YX) for each input X and

enforce the inequality in Eq (3.6).

At this stage, we propose more constraints on positive bags to tackle the uncertainty

due to missing data. This is inspired from a standard paradigm in structured prediction –

to require a margin (p) between the scores obtained by the best (correct) and the second

best possible output vectors. Essentially this requires the classifier to be confident about

its prediction apart from being accurate. This formulation is described in Figure 3.3.

One could imagine adding constraints similar to these on negative bags as well. In fact,

in our experiments, we did that and found no difference in performance (see Section 4.3.4).

Since we are unsure about the original output vector for a positive bag, asking for a

margin between the best two output vectors may be slightly aggressive. This may make

the classifier adjust on negative bags, for which we know the right output vector. A

slightly milder version would be to require the margin against Ȳ rather than Y2. Then,

the constraints will appear like in Figure 3.4.

These additional constraints require us to find the second best output sequence for each

bag. Typically, the same inference algorithm used to find the best output vector can be

modified to deduce the second best output vector. For graphical models such as hidden

markov models and trees, the k-best paths problem is well-studied in both pure algorithms

community (27; 11; 3) and NLP/speech community (26; 25).

Coming back to the cutting plane algorithm, a point to be noted about all the constraints

if YX has at least k positive instances:

wT
[

Φ(X,YX)−Φ(X,Y2)
]

≥ p− ξX

otherwise:

wT
[

Φ(X,YX)−Φ(X, Ȳ )
]

≥ k − ξX

∀X ∈ χp where:

YX = arg max
Ŷ ∈Υ\{Ȳ }

wTΦ(X, Ŷ )

Y2 = arg max
Ŷ ∈Υ\{Ȳ ,Y2}

wTΦ(X, Ŷ )

ξ ≥ 0

Figure 3.3: MISP with margin constraint between the top two most likely sequences -
MISP Y2
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if YX has at least k positive instances:

wT
[

Φ(X,YX)−Φ(X, Ȳ )
]

≥ p− ξX

otherwise:

wT
[

Φ(X,YX)−Φ(X, Ȳ )
]

≥ k − ξX

∀X ∈ χp where:

YX = arg max
Ŷ ∈Υ\{Ȳ }

wTΦ(X, Ŷ )

ξ ≥ 0

Figure 3.4: MISP with margin constraint between the most likely sequence and Ȳ -
MISP Ȳ

on positive bags is that in each iteration of the cutting plane algorithm YX may change.

A constraint which is formed with YX found in the first iteration may not be the most

violating constraint with another YX found in the second iteration. This is against the

assumptions of the cutting plane algorithm. So, we store only one constraint per bag in

our working set at any point. This further raises questions about convergence because, in

successive iterations, we may be swinging between two different output vectors for the same

bag. In order to tackle this, we decide to stop adding constraints after α iterations.

3.3 Loss Function

Since we use loss-augmented decoding to check whether the constraints in our formula-

tion are being satisfied, most of our algorithm’s logic is embedded into a loss function. We

present our loss function below. This function takes three hyperparameters – k (expected

number of positive instances per positive bag), p (margin on positive bags as explained in

Figure 3.3), n (margin on negative bags just like p for positive bags). It takes a bag and

one of its possible output vectors as the input. If the bag is positive, we check if Ŷ has at

least k positive instances. If it does not, then we output the difference between k and the

number of instances in Ŷ . If the bag has the desired number of positive instances, then we

enforce the constraints in Figure 3.3 by requiring the margin between the best two output

vectors (as per the current model) for the bag. If the bag is negative and Ŷ has positive

instances, the output is the number of positive instances in it. Otherwise, we require a

margin between the best two output vectors for the bag. Here, [z]+ = max{0, z} is the

hinge function.

In Figure 3.5, we have shown the implementation corresponding to the constraints in

MISP Y2(Figure 3.3). One could set Y2 to be Ȳ (only for positive bags) in the above
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implementation to replace those constraints by those in MISP Ȳ (Figure 3.4). One could

consider this as an additional hyperparameter for MISP.
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MISP-LOSS(X, Ŷ )
if this is a positive bag then

η ← min(# instances in Ŷ , k)
if η > # positive instances in Ŷ then

return η −# positive instances in Ŷ
end if

γ ← p
else

if Ŷ has positive instances then
return # positive instances in ŷ

end if

γ ← n
end if

Y1 ← argmaxY ∈ΥwTΦ(X,Y )
Y2 ← argmaxY ∈Υ\{Y1}w

TΦ(X,Y )

return
[

γ −
[

wTΦ(X,Y1)−wTΦ(X,Y2)
]

)
]

+

Figure 3.5: MISP loss function



CHAPTER 4

EXPERIMENTS

We conducted several experiments on five datasets. The purpose of these experiments

was two-fold – to analyze the effect of varying the hyperparameters that we discussed

in Section 3.3 and to compare the performance of MISP with the existing techniques for

solving the MIL problem. To analyze the effect of varying the hyperparameters, we used

two manually labeled small datasets (see Section 4.3). The best hyperparameters found in

these experiments were used for the rest of the experiments. In all our experiments, we

considered two tasks – bag labeling and instance labeling.

For the datasets on which we have done n-fold cross-validation (MUC4-Hum, ProMed-

Hum, CR), we report the precision (P), recall (R) and F1-score obtained by using the

cumulative true positives, true negatives, false positives and false negatives corresponding

to the best F1-score in each fold. This is called micro-averaging. We decided to do away with

accuracy since it does not show the right picture when the number of positive documents

in the fold is significantly different. For the datasets in which we already have the train set

and test set separated (MUC4-Ans, ProMed-Ans), we will just report the performance of

algorithms on the test set with the parameters obtained after tuning on the tune set.

In our discussion through the Chapter 3, we have assumed a structure and a corre-

sponding inference algorithm (given the parameters of the model). To validate our idea

and evaluate its performance, we had to choose one particular structure. Due to the

ease of obtaining them, we decided to use datasets which can be modeled as HMMs (see

Section 2.2.1). Many such text datasets are publicly available.

4.1 Software

We compare the results of MISP against the following state of the art algorithms that

we discussed in Section 2.1 – Single Instance Learning (SIL), Statistic Kernel (STK),

Normalized Set Kernel (NSK), Sparse MIL (sMIL), Sparse Transductive MIL (stMIL),

Sparse Balanced MIL (sbMIL).

In the following sections, we describe our implementation of MISP for HMMs (based on

SVMhmm) and UniverSVM – a software that implements all the aforementioned algorithms.
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4.1.1 SVMhmm

SVMstruct (36) is an SVM algorithm for predicting multivariate or structured outputs1.

It performs supervised learning by approximating a mapping h : X → Y using labeled

training examples (x1, y1), . . . , (xn, yn). SVMstruct can predict complex structured objects

like trees, sequences and sets unlike regular SVMs which do univariate predictions.

SVMstruct is a general idea that can be easily adapted to complex prediction algorithms.

One of the original authors, Thorsten Joachims, has implemented it for many kinds of

tasks. For instance, SVM cfg learns weighted context free grammar, SVM rank learns a rule

for predicting rankings of instances in a bag and SVMhmm learns hidden markov models

(HMM).

Since our goal was to model text datasets that are likely to exhibit HMM properties,

we downloaded SVMhmm and modified its loss function as described in Section 3.3. For

finding the second best likely sequence, we used the algorithm described in Nilsson and

Goldberger (27). We modified the cutting plane optimization module in SVMhmm as

described in Section 3.2. More details about these modifications and the input format

are described in Appendix B.

SVMhmm has hamming loss (a.k.a. 0/1 loss) implemented by default (-l 0). We used

it as it is to get numbers for the rows corresponding to SVMH-H in Section 4.4.

4.1.2 UniverSVM

UniverSVM (34) is an SVM implementation written in C/C++. SIL, STK, NSK, sMIL,

stMIL, sbMIL have been implemented by Bunescu and Mooney (4) in UniverSVM. It can

be obtained by emailing the authors. Details about how to format the input files are

given in Appendix B. Basically, UniverSVM expects a set of instances with a common qid

(query-id) indicating that they all belong to the same bag. It outputs a single label for the

bag during the test phase. This brings up an important question – “How do we measure the

performance of the above algorithms on instance labeling?” Our approach was as follows:

For each of the tune and test sets, we created two files. In the first file, we maintained the

qids as the instances are in the original bag. These were used to evaluate the performance

on bag labeling. In the second file, we gave each instance a different qid i.e., the fact that

two instances are from the same bag was hidden from the classifier. This is reasonable

because none of the above algorithms use the structure of the document while predicting

the label. In other words, the model output by the above algorithms classifies each instance

independent of the other instances in its bag.

1It can be downloaded from http://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html
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We describe the optimization parameters of UniverSVM in Section 4.1.3, along with

those of SVMhmm.

4.1.3 Parameters of the Classifiers

There are several functionalities in both SVMhmm and UniverSVM. In particular, Uni-

verSVM is a general software that can be used for tasks like large-scale transduction,

data-dependent regularization. But for our tasks, we used a very limited number of options

from both of them. Here, we describe some of the settings we used for the software.

In SVMhmm, one could set the transition order (between 0, . . . , 3) and emission order (0

or 1) (see Section 2.2.1). From our preliminary experiments2, we concluded that a transition

order of 1 along with an emission order of 0 gives the best performance. So, throughout our

experiments, we used the same settings. We used the default values for all the remaining

parameters corresponding to the SVM-formulation.

In UniverSVM, there are not many options related to the tasks at hand. Nevertheless,

both SVMhmm and UniverSVM have a few options related to optimization in common that

are of high importance. We used the default values for all of them except two. We set

the tolerance for termination criterion (option -e in both of them) to 0.1. The cost-factor

(option -c in both of them) has a very strong effect on the performance of the classifier. We

felt that leaving it to their default values is not right. We decided to tune this parameter

based on a small manually labeled dataset (to be cut away from the available train set).

UniverSVM provides scores for the test bags instead of labels. This lets us choose an

appropriate threshold (a.k.a. bias) using a tune set. However, SVMhmm provides us the

labels directly. In some sense, SVMhmm has one degree of freedom less than UniverSVM.

So, we decided to tune the bias for SVMhmm. There are two components of an SVMhmm

model. One component tries to learn to associate the features of instances with a class

while the other tries to model the parameters of HMM (i.e., the initial and transition

probabilities). We tried introducing a bias at both these places.

To introduce bias in the features component, we added a feature with unit weight to

every instance in the train, tune and test sets. We identified the corresponding feature in

the model and modified it. We noticed that the performance of the model only worsens

with any change (positive/negative) to that feature. It means that SVMhmm is learning the

right value for the bias. Then, we modified the weights of features corresponding to the

transition probabilities. This showed a great improvement in performance. So, in all our

2We split the MUC4-Hum (and ProMed-Hum) dataset into train and test sets. We measured the
performance of SVMhmm on it with different combinations of transition, emission orders and chose the
best.
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experiments, we varied the bias on transition probability scores3 between 0 and 5 in steps

of 0.14.

For all the datasets, we used bag-of-words features i.e., unigrams. We stemmed the

words and eliminated the stop words. The feature vector is normalized i.e., the weight of

a feature is the ratio of the number of times it appeared in the document divided by the

total number of words in the document (after stemming and eliminating stop words).

4.2 Datasets

We used 5 datasets in our experiments. Below, we describe each of the datasets. For each

dataset, we clearly mention the entities – bag, instance and labels (positive vs negative).

4.2.1 MUC-4 Dataset

The Message Understanding Conferences were initiated by NRAD, the RDT&E division

of the Naval Command, Control and Ocean Surveilance Center (formerly NOSC, the Naval

Ocean Systems Center) with the support of DARPA, the Defense Advanced Research

Projects Agency (13). The purpose of these conferences is to assess and improve research

on the automated analysis of military message containing textual information. Organized

by Beth Sundheim, the goal of each MUC is a qualitative evaluation of the state of the art

in message understanding.

For each MUC, the participating groups are given sample messages and instructions on

the type of information that needs to be extracted. These participants develop systems

that can process such messages. Shortly before the conference, participants are given a set

of test messages. They are expected to run these through their system and the output of

each participant’s system is evaluated against a manually prepared answer key. Thus, the

MUCs are different from regular conferences (13).

We used data from the fourth MUC (called MUC-4) for our experiments. This dataset

consists of news reports about terrorist activities in Latin America. It has 1700 texts divided

into 5 sets. The DEV (development a.k.a. train) set contains 1300 documents. Four test

sets (TST1, TST2, TST3, TST4) contain 100 documents each. The information extraction

task was to identify relevant entities like: perpetrator individuals, perpetrator organizations,

physical targets, victims and weapons. MUC-4 data comes with the answer keys for this

3SVMhmm stores the probabilities as scores which need not be between 0 and 1.

4We modified the probability of a negative sentence following a positive one. It gave good results.
Modifying the rest of the probabilities did not help much.
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task5.

For the purpose of our experiments, we considered each document a bag and each

sentence an instance. Any document that contained a relevant event was considered relevant

(positive). Obviously, any document that did not contain at least one relevant event was

considered irrelevant (negative)6. Labeling the 1700 documents by this definition is trivial

given the answer keys. So, there is a sufficient amount of data for the document labeling

task. However, this dataset does not come with sentence annotated data. Patwardhan

and Riloff (30) hav e employed two human judges who annotated 100 documents from the

MUC-4 test set (TST3), at the sentence level. To verify that these two judges annotate

consistently, each of them has been asked to annotate 30 common documents individually.

They had a Cohen’s κ (5) of 0.77 on these documents, which is satisfactory. This data was

used for evaluation on both the bag labeling and sentence labeling tasks.

We performed two kinds of experiments with the MUC-4 dataset – training on data

annotated using answer keys and training on data annotated by humans. Below, we describe

each of these datasets.

4.2.1.1 MUC4-Hum dataset. The 100 manually annotated TST3 documents are

hereby referred to as the MUC4-Hum dataset. Out of these 100 documents, 69 are relevant.

There are 281 relevant and 800 irrelevant sentences in the relevant documents while there

are 628 sentences in the irrelevant documents.

Our basic idea is that the structure in positive documents is notably different from that

in negative documents. The initial and transition probabilities for negative documents are

trivial. Since this dataset has annotations at the sentence level, we computed the parameters

of the HMM from the positive documents, to verify that there is a notably different structure

in them. They are summarized in Tables 4.1 and 4.2.

As one can see, the probability of a positive sentence following a positive sentence is

much higher than that of it following a negative sentence. This is indicative of substantial

structure. Our hope is that we would be able to model these numbers reasonably well.

With this dataset, we do 10-fold cross-validation. In each round, the number of docu-

ments used for train, tune and test is 80, 10 and 10, respectively.

4.2.1.2 MUC4-Ans dataset. The 1600 MUC-4 documents (DEV, TST1, TST2,

TST4) that we used for document level annotations and the 100 TST3 documents that we

used for sentence level annotations are hereby referred to as the MUC4-Ans dataset. In

5MUC-3/4 data is available for free download at http://www-nlpir.nist.gov/related_projects/muc/
muc_data/muc_data_index.html

6Unlike some other IE datasets, many of these documents do not describe a relevant event.



29

Table 4.1: Initial probabilities estimated from MUC4-Hum

+ -

0.5072 0.4928

Table 4.2: Transition probabilities estimated from MUC4-Hum

From (↓) To (→) + -

+ 0.5506 0.4594
- 0.1329 0.8671

this, we used the 1600 documents for training, 10 randomly chosen documents from TST3

to tune the parameters of the classifiers and the other 90 documents as the test set.

4.2.2 ProMed Dataset

The second dataset that we use is from Patwardhan and Riloff (29). 4958 documents

were collected from ProMed-mail7, an open-source global electronic reporting system for

outbreaks of infectious diseases. Most of the ProMed documents contain email headers,

footers, citations, and other snippets of nonnarrative text. So, they wrote a “zoner” program

to automatically strip off some of this extraneous information.

Similar to the MUC4-HUM dataset, 120 of these documents have been manually an-

notated. Again, 30 documents have been annotated by both the annotators, individually.

They had a Cohen’s kappa of 0.72 on these documents, which is slightly lower than MUC-4

but still reasonable. Out of the 120 annotated documents, 99 contain relevant events. Going

by this estimate, the majority of the documents from ProMed data are relevant.

For irrelevant documents, they have collected 10191 biomedical abstracts from PubMed8,

a free archive of biomedical literature. To ensure that the PubMed articles are truly

irrelevant (i.e., did not contain any disease outbreak reports) they used specific queries

to exclude disease outbreak abstracts.

Again, similar to the MUC-4 dataset, we considered each document a bag, each sentence

an instance and any sentence that contained a relevant event a positive sentence. We

have performed two kinds of experiments with the ProMed dataset as well – training on

approximated data and training on manually annotated data. Below, we describe both the

datasets.

4.2.2.1 ProMed-Hum dataset. The 120 manually annotated documents are hereby

referred to as the ProMed-Hum dataset. Out of the 99 relevant documents, there are 708

relevant and 1793 irrelevant sentences, whereas the irrelevant documents contained 568

7http://www.promedmail.org/
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sentences. Just like in Section 4.2.1.1, we computed the parameters of the HMM from the

positive documents in this dataset. They are summarized in Tables 4.3 and 4.4.

The initial probabilities in the ProMed-Hum dataset are more skewed than those in

the MUC4-Hum dataset. The transition probabilities are not much different. The more

skewed the initial and transition probabilities are, the better it is for modeling the data

(because of the contrast with the negative documents). Therefore, we expect the results of

the ProMed-Hum dataset to be better than those on the MUC4-Hum8.

We have done 10-fold cross-validation on this dataset with the train, tune, test set sizes

being 80%, 10% and 10%, respectively, just like with the MUC4-Hum dataset.

4.2.2.2 ProMed-Ans dataset. As mentioned in Section 4.2.2, there are a total of

4958 ProMed documents which are labeled positive and 10191 PubMed documents which

are labeled negative i.e., a total of 15149 documents. All of these could be used for training.

The manually annotated 120 documents were used for tuning (10) and testing (110). There

are two important points to be noted here.

1. On average, a PubMed document is half the size of a ProMed document. In order

to ensure that a classifier sees the the same amount of text from both the positive and

negative documents, we used nearly twice the number of PubMed documents as there

are ProMed documents. Nevertheless, since all the documents in the test set are from

ProMed and the classifier has never seen words from ProMed documents being associated

with negative documents, it may be misled (by the bag-of-words component of the model)

against classifying any document (from the test set) as negative.

2. A classifier may depend heavily on the stark difference between the sizes of ProMed

and PubMed documents in its model. Again, this difference does not exist in the test set.

Therefore, there will be a further tendency to mark everything positive.

8Of course, assuming that the bag of words models of both the datasets are equally informative.

Table 4.3: Initial probabilities estimated from ProMed-Hum

+ -

0.6970 0.3030

Table 4.4: Transition probabilities estimated from ProMed-Hum

From (↓) To (→) + -

+ 0.5759 0.4241
- 0.1373 0.8627
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Due to the above reasons, we expect that any classifier tends to mark documents (from

the test set) positive aggressively i.e., there will be more recall and less precision with this

dataset.

Since 15149 documents is too large a dataset for training, we chose 1500 documents from

this, at random9. Out of these, 985 are from PubMed (negative) and 515 are from ProMed

(positive). This would be used for training. Note that there are roughly twice the number

of PubMed documents as there are ProMed documents.

4.2.3 Customer Review Dataset

Minging and Bing (15) have manually annotated customer reviews for 5 different prod-

ucts from http://www.amazon.com and http://www.cnet.com. There are 45 reviews for

Canon G3 digital camera, 34 for Nikon Coolpix 4300 digital camera, 41 for Nokia 6610

cellular phone10, 95 for Creative Labs Nomad Jukebox Zen Xtra 40GB mp3 player and 99

for Apex AD2600 Progressive-scan DVD player – a total of 314 reviews. Each review has

the following annotations:

A title: It is the headline given by the customer for his review.

Opinion strengths: A sentence marked with [+n] is a positive opinion with strength

n. Similarly, a sentence marked with [−n] is a negative opinion with strength n. A sentence

without any opinion strength is considered neutral.

Finer annotations: Other opinions like a suggestion about the product, comparisons

with a product from the same brand or different brand are given.

For our experiments, we considered any sentence with a positive comment about a

product to be positive11. Any negative or neutral comments are considered negative. There

are 244 positive documents in the corpus. We refer to this dataset as the CR dataset.

There are 1093 positive and 2383 negative sentences in the positive documents while

there are 468 sentences in the negative documents. We computed the parameters of HMM

from the positive documents in the CR dataset. They are summarized in Tables 4.5 and

4.6.

Obviously, these numbers are surprising. That a positive review begins with a neutral

or negative sentence is unexpected. The reason for this is that a typical review begins with

9Using the command $sort -R file.txt | head -1500

10On the 118th line of the file Nokia 6610.txt, there were three asterisks before the title marker [t]. We
removed them.

11There are about 28 sentences which have both a positive and negative comment e.g., this is a very

nice phone , but there is no warranty on it.
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Table 4.5: Initial probabilities estimated from CR

+ -

0.4016 0.5984

Table 4.6: Transition probabilities estimated from CR

From (↓) To (→) + -

+ 0.4727 0.5273
- 0.2333 0.7667

how the customer ended up buying the product. For instance, a review could begin with a

sentence like “after much research i decided on the nikon coolpix 4300”.

In the MUC4-Hum dataset and the ProMed-Hum dataset, we have noticed higher

probability of a positive sentence following a positive sentence, and the probability of a

positive sentence following a negative sentence was much lower. We note that the average

length of a document in the CR dataset is much smaller (12.56 sentences per document)

compared to the MUC4-Hum dataset (17.09) or ProMed-Hum dataset (25.58) i.e., customer

reviews tend to be shorter than news reports. Customers tend to review different features

of the same product in consecutive lines due to space constraint. While one feature of

a product is liked immensely, another could be considered suboptimal. As we have seen

before, sometimes customers write both positive and negative comments about the product

in the same sentence. This may have resulted in the surprising transition probabilities.

We have done 10-fold cross-validation on the CR dataset with train, tune and test set

sizes of 80%, 10% and 10%, respectively. Note that (314 mod 10) = 4 documents will be

left out of cross-validation. But it is a very small set compared to 310 to influence the

numbers significantly.

4.3 Effect of Varying Hyperparameters

In Section 3.3, we said that the following are the hyperparameters of the MISP loss

function.

1. Number of iterations in the cutting plane algorithm (alpha)

2. Penalty for misclassifying a positive bag as negative (k and f)

3. Margin constraint set for positive bags (MISP Ȳ vs MISP Y2)

4. Margins for positive bags (p) and negative bags (n)

In this section, we describe the effect of all these factors on the performance of MISP

on the MUC4-Hum and ProMed-Hum datasets. There are two reasons for choosing these

two datasets for these experiments – they are small, making the experiments faster and

they are manually annotated, having less chances of erroneous labels. The best performing
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hyperparameters in the experiments described in this section were used for the rest of the

experiments.

In general, we feel that the results on instance labeling are more important than those on

bag labelings. This is because the current results on bag labeling are satisfactory whereas

there is plenty of scope for improvement on instance labeling. So, our choice for certain

hyperparameters may be slightly biased towards the performance on instance labeling.

4.3.1 Number of Iterations in Cutting Plane Optimization (α)

In Section 3.2, we described the parameter α which controls the number of iterations

for which the cutting plane optimization module runs. Since we do not have guarantees on

convergence, it is important to see the effect of varying this parameter on the performance

of our classifier. We tried five different values for α – {10, 20, 30, 40, 50}. We kept the other

parameters constant throughout these experiments. They are – k = 1, p = 0, n = 0. Note

that the constraint on positive bags does not matter since the margin is 0. The results of

these experiments are summarized in Tables 4.7 and 4.8.

With the MUC4-Hum dataset, the best F1-scores obtained on bag labeling and instance

labeling are for α = 40 and α = 50, respectively. With increasing alpha, F1-score more or

less increases for instance labeling whereas there is no clear trend for bag labeling. This

reiterates the fact that our cutting plane algorithm does not necessarily give better results

as we increase alpha. Looking at the results of both the tasks, α = 40 balanced them well.

Surprisingly, With the ProMed-Hum dataset, for α = 20, we get the best F1-score for

Table 4.7: α vs performance on MUC4-Hum

Bag labeling Instance labeling

α P R F P R F

10 68.04 95.65 79.52 19.84 34.52 25.19
20 70.45 89.86 78.98 28.82 40.93 33.82
30 72.09 89.86 80.00 25.62 47.69 33.33
40 73.26 91.30 81.29 25.09 50.53 33.53
50 70.13 78.26 73.97 26.51 51.60 35.02

Table 4.8: α vs performance on ProMed-Hum

Bag labeling Instance labeling

α P R F P R F

10 83.19 94.95 88.68 37.57 56.78 45.22
20 86.11 93.94 89.86 40.12 64.27 49.40
30 85.85 91.92 88.78 38.80 75.14 51.18
40 85.71 90.91 88.24 39.55 74.58 51.69
50 85.71 90.91 88.24 38.74 72.18 50.42
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bag labeling and it becomes worse later on. The best F1-score for instance labeling happens

at α = 40 and decreases slightly later on. Clearly, any value of α ≥ 30 does about the same

job on both the tasks.

It is very important to note that the F1-score of instance labeling on the ProMed-Hum

dataset were better than training a classifier with the instance labels (50.00). This asserts

our proposition that ProMed has stronger structure in it.

From the above experiments, we feel that 40 is a reasonable value for the hyperparameter

for these datasets. However, there is a clear necessity to come up with a better cutting plane

algorithm which is guaranteed to converge, however slow it is. In practical scenarios, we may

need to try out different values of α, like with most iterative algorithms without guarantees

on convergence.

4.3.2 Penalty for Misclassifying a Positive Bag

By the definition of MIL, one is assured to have at least one positive label per bag.

However, there could be more. If we had the instance labels, the ideal penalty for misclas-

sifying a positive bag is hamming loss. But we do not have the instance labels. Suppose we

know the expected number of positive instances per bag. This would be the ideal penalty

for misclassifying a positive bag.

Let us define the density of a positive bag as the ratio of the number of positive instances

in it. If we could somehow estimate this – either from domain knowledge or by manually

labeling a small sample of the training set, then we could have a tighter loss function for

positive bags.

One more important reason to study this parameter is because we have plenty of correctly

labeled negative data but not positive data. That is, when it comes to misclassification, the

larger the size of the bag, the more the opportunity to learn about positive instances that

we are missing. So, this needs to be penalized much heavier than misclassifying a negative

bag.

We have tried two ways of varying the penalty for positive bags. One is to expect a

fixed fraction (f) of instances in the bag to be positive, and another is to expect an absolute

number (k) of instances in the bag to be positive. For these experiments, we set p = n = 0

and α = 40.

4.3.2.1 Effect of varying f . On the MUC4-Hum dataset (Table 4.9), clearly,

there is no trend for both bag labeling and instance labeling. However, the best result

is obtained for f = 1.0 on bag labeling. The same is the case with the ProMed-Hum

dataset (Table 4.10). f = 1.0 is nothing but SVMH-H (i.e., SVMhmm with hamming loss).
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Table 4.9: f vs performance on MUC4-Hum

Bag labeling Instance labeling

f P R F P R F

0.1 70.59 86.96 77.92 26.85 53.02 35.65
0.2 71.76 88.41 79.22 27.67 63.70 38.58
0.3 72.37 79.71 75.86 26.35 59.07 36.44
0.4 73.33 79.71 76.39 23.83 52.67 32.82
0.5 69.88 84.06 76.32 24.39 60.50 34.76
0.6 70.45 89.86 78.98 20.29 69.40 31.40
0.7 69.41 85.51 76.62 22.17 71.17 33.81
0.8 70.11 88.41 78.21 22.53 74.73 34.62
0.9 69.89 94.20 80.25 22.01 73.31 33.85
1.0 69.89 94.20 80.25 22.07 79.72 34.57

Table 4.10: f vs performance on ProMed-Hum

Bag labeling Instance labeling

f P R F P R F

0.1 83.49 91.92 87.50 37.13 74.15 49.48
0.2 86.67 91.92 89.22 32.83 82.91 47.04
0.3 86.36 95.96 90.91 34.92 77.54 48.16
0.4 85.32 93.94 89.42 29.35 90.11 44.27
0.5 85.32 93.94 89.42 29.69 90.54 44.72
0.6 85.59 95.96 90.48 27.36 95.48 42.53
0.7 83.33 95.96 89.20 26.64 95.90 41.69
0.8 83.93 94.95 89.10 26.52 91.10 41.08
0.9 83.76 98.99 90.74 27.55 87.29 41.88
1.0 83.19 100.0 90.83 25.52 90.40 39.80

Therefore, it appears that, for bag labeling, a heavy penalty for positive bag misclassification

helps.

For the ProMed-Hum dataset, the performance on instance labeling keeps going down

with increasing f . The average number of sentences in a ProMed document is 25 with the

mean and mode of the positive instance density being 0.3380 and 0.5, respectively. With

increasing f , we are asking the SVM to mark more and more sentences positive. Thus,

we see an increase in recall but the precision goes down more rapidly (compare f ≤ 0.3 vs

f > 0.3).

The average number of sentences in the MUC4-Hum dataset is 17 (much smaller than

ProMed-Hum). However, the mean and mode of positive instance density are 0.3628 and

1.0, respectively. This means that many (possibly small) documents contain only positive

sentences. Thus, for low values of f , we are losing out on some of these sentences. For high

values of f , we may be asking for too many sentences in positive documents to be labeled
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positive. Just like the ProMed-Hum dataset, as f increases, we have better recall. But, the

precision is not so badly effected.

4.3.2.2 Effect of varying k. We report the results of these experiments in the

tables presented in Appendix A under the columns corresponding to p = 0, n = 0. For ease

of analysis, we provide graphs here.

From the tables in Section 4.3.2.1 and Appendix A it is obvious that varying k gives

much better results than varying f . We perform better on instance labeling with the

MUC4-Hum dataset (43.51 vs 38.58 from Table 4.9) and on both bag labeling (92.38 vs

90.83 from Table 4.10) and instance labeling (51.69 vs 49.48 from Table 4.10). This trend

is a little different than what one would think. The standard deviation of positive instance

density in the MUC4-Hum dataset is 0.2935 which is very high given that the mean is just

0.3628. The corresponding numbers for the ProMed-Hum dataset are 0.2034 and 0.3380,

respectively. This tells us that the ratio of positive instances per document varies highly

even between the documents of the same dataset. Thus, using the same fraction for every

document may set wrong expectations for the SVM.

Using an absolute expectation per positive bag does not seem wise at the first look. But

as one can see, it performs better. One general observation about the datasets is that the

smaller relevant documents tend to have higher density. As described in Section 3.3, the

penalty for misclassifying a positive bag is: max(k, length). For small bags (i.e., number

of instances ≤ k), this would evaluate to the bag length and for large bags it would be an

absolute number. In some sense, using k adapts to the situation based on the length of the

bag. This could be the reason for its better performance.

In Figures 4.1 and 4.2, we see the precision, recall and F1-score trends for bag labeling

on the MUC4-Hum and ProMed-Hum datasets, respectively. Increasing the penalty does

not show a clear trend when k is small (≤ 7). After that, it steadily increases the recall.

Essentially, an increase in penalty is causing the model to learn a more “general” positive

bag structure that is fine with a higher number of misclassifications on negative bags.

However, this backfires after a certain value of k on each of the datasets due to overfitting.

The precision values are unsteady throughout.

In Figures 4.3 and 4.4, we see the precision, recall and F1-score graphs for instance

labeling on the MUC4-Hum and ProMed-Hum datasets, respectively. For instance labeling,

increasing the penalty increases the recall and reduces the precision in general. This can

be seen very markedly on the ProMed-Hum dataset (Figure 4.4. It is important to note

that the optimal values of k for bag labeling and instance labeling for a particular dataset

do not have any relation. For bag labeling, higher values of k seem to be working better

whereas lower values of k do well for instance labeling.
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Figure 4.1: k vs bag labeling on MUC4-Hum

Figure 4.2: k vs bag labeling on ProMed-Hum

4.3.3 Margin Constraint Set for Positive Bags (MISP Ȳ vs MISP Y2)

In Section 3.1, we referred to two possible sets of constraints for positive bags. MISP Y2

employs the set of constraints which require that the best possible labeling for a bag have a

margin of at least 1 from the second best labeling. MISP Ȳ describes the set of constraints

which require that the best possible labeling for a bag have a margin of at least 1 from

the all-negative sequence. For the experiments described in this section, we set α = 40

and k = 1. We do experiments for three different values of < p, n > – < 0, 1 >, < 1, 0 >,
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Figure 4.3: k vs instance labeling on MUC4-Hum

Figure 4.4: k vs instance labeling on ProMed-Hum

< 1, 1 >.

Tables 4.11 and 4.12 summarize the results of these experiments. From these tables,

we see that MISP Y2works better than MISP Ȳ for all values of p, n. As we mentioned in

Section 3.1, the constraints in Figure 3.3 subsume those in Figure 3.4. Hence, this behavior

is not very surprising. However, if the classifier tries hard to achieve the margin and tries

to overfit to the data, it may not perform well on the test set. This is what seems to have

happened with instance labeling, although the results are pretty close with either choice.

As we mentioned in Section 4.1.3, there are two components to the SVMhmm model –
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Table 4.11: Positive bags constraint vs performance on MUC4-Hum

Bag labeling

MISP Ȳ MISP Y2

p n P R F P R F

0 1 73.26 91.30 81.29 73.26 91.30 81.29
1 0 70.24 85.51 77.12 70.79 91.30 79.75
1 1 70.24 85.51 77.12 70.79 91.30 79.75

Instance labeling

MISP Ȳ MISP Y2

p n P R F P R F

0 1 25.09 50.53 33.53 25.09 50.53 33.53
1 0 28.63 49.82 36.36 25.47 53.38 34.48
1 1 28.63 49.82 36.36 25.47 53.38 34.48

Table 4.12: Positive bags constraint vs performance on ProMed-Hum dataset

Bag labeling

MISP Ȳ MISP Y2

p n P R F P R F

0 1 85.71 90.91 88.24 85.71 90.91 88.24
1 0 84.91 90.91 87.80 85.71 90.91 88.24
1 1 84.91 90.91 87.80 85.71 90.91 88.24

Instance labeling

MISP Ȳ MISP Y2

p n P R F P R F

0 1 39.55 74.58 51.69 39.55 74.58 51.69
1 0 37.49 76.84 50.39 37.95 72.32 49.78
1 1 37.49 76.84 50.39 37.95 72.32 49.78

the structure model (initial probabilities and transition probabilities) and the bag-of-words

model for individual sentences (emit probabilities). Depending on the data, the classifier

may have to compromise between these two. If the structure model has more emphasis than

the bag of words model, then the classifier will rely on the bag structure to predict the bag

label. but this works negatively on instance labeling.

4.3.4 Margins for Positive Bags (p) and Negative Bags (n)

To evaluate the performance of adding margins to positive and negative bags, we used

the three manually annotated datasets (MUC4-Hum, ProMed-Hum and CR) as the results

on the MUC4-Hum and ProMed-Hum datasets were not strong enough to ascertain certain

observations. We used MISP Y2constraints with α = 40 for these experiments. k is varied

in {1, 2, . . . , 12}. There are four combinations of p, n possible since each of p, n can be 0, 1.

Thus, we performed 12 ∗ 2 ∗ 2 ∗ 3 = 144 experiments. Since it is superfluous to report the
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results of bag labeling and instance labeling for all these experiments, we tabulate and plot

them in Appendix A. In the following discussion, we compare precision, recall and F1 scores

of one combination of p, n values against another. In each comparison, only one of p, n is

varied. In most of our comparisons, we see that neither of the contestants wins every time.

At times, one betters the other marginally. In order to do a fair comparison, we consider

only a difference of at least 2% against the base significant.

4.3.4.1 Margin on positive bags. Figures 4.5, 4.6, 4.7 show the bag labeling

performance of p = 1, n = 0 (with margin on positive bags) against p = 0, n = 0 (without

margin on positive bags) i.e., the effect of requiring a margin on positive bags in the absence

of a margin requirement on negative bags. On the MUC4-Hum (Figure 4.5), there is no

clear trend of how any one of precision, recall and F1-score vary with increasing k. On

both ProMed-Hum (Figure 4.6) and CR (Figure 4.7), we see that recall drops drastically

for p = 1 after k = 8. So, when the penalty for misclassifying a positive bag is already

high, margin requirement is hurting the performance. It is very likely that this is due to

overfitting of the positive bag structure.

Figures 4.8, 4.9, 4.10 show the instance labeling performance of p = 1, n = 0 against

p = 0, n = 0. Clearly, margin requirement on positive bags does not result in much difference

in any of them. In general, for instance labeling, the tuned bias values (for transition

probabilities) are much higher than in the case of bag labeling. This could be in order to

reduce the emphasis on the learned structure and put the bag of words model to better use

while classifying instances.

Figure 4.5: p vs bag labeling on MUC4-Hum
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Figure 4.6: p vs bag labeling on ProMed-Hum

Figure 4.7: p vs bag labeling on CR

4.3.4.2 Margin on negative bags. Figures 4.11, 4.12, 4.13 show the bag labeling

performance of p = 0, n = 1 (with margin on negative bags) against p = 0, n = 0 (without

margin on negative bags) for the three manually annotated datasets. The effect on bag

labeling for the MUC4-Hum dataset (see 4.11) is not very clear. Although from k = 6 . . . 9,

margin requirement helps in increasing recall, its behavior overall is very erratic with a huge

decrease in performance at k = 3, 5. On the ProMed-Hum (Figure 4.12) and CR (Figure

4.13) datasets, recall drops after k = 8 (just as with margin requirement on positive bags).

Again, for instance labeling (see Figures 4.14, 4.15, 4.16), margin requirement does not
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Figure 4.8: p vs instance labeling on MUC4-Hum

Figure 4.9: p vs instance labeling on ProMed-Hum

result in much of a difference, just like in the case of p = 1.

4.3.4.3 Margins on both types of bags. We observed that the precision, recall

and F1-score values corresponding to those with p = 1, n = 0 and p = 1, n = 1 are identical

almost all the time (see Appendix A). Out of the 6 tables corresponding to the manually

annotated datasets, with 12 rows in each, these columns differ only 4 times. Only 2 times,

this difference is significant. From this observation, we can safely conclude that requiring a

margin on negative bags does not help much when there is a margin requirement on positive

bags.
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Figure 4.10: p vs instance labeling on CR

Figure 4.11: n vs bag labeling on MUC4-Hum

4.3.4.4 Conclusion. In general, any margin requirement does not help instance

labeling much. Margin requirement on positive bags may help bag labeling when the value

of k is low (in our experiments k < 7) but hurts for higher values. The best F1-scores

across the four columns of each table in Appendix A do not differ significantly. So, instead

of tuning k, p and n, one could just vary k and choose the best value. This is good news

because this essentially means that we need not compute the second best output vector

(which is time consuming).
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Figure 4.12: n vs bag labeling on ProMed-Hum

Figure 4.13: n vs bag labeling on CR

4.4 Results

In this section, we compare the results of MISP on all the datasets with the state of the

art algorithms for MIL. From our previous experiments (see Section 4.3.4), it is evident that

the margins on positive and negative bags do not help as much as increasing the penalty

for positive bags. Therefore, we vary k between {1, 2, . . . 12} for MISP. The margins p, n

are set to 0 which means that there is no question of whether to use MISP Y2or MISP Ȳ .

In each of the tables in this section, we give the results of 8 algorithms for both bag

labeling and instance labeling. Similar to the previous sections, we report the precision (P),
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Figure 4.14: n vs instance labeling on MUC4-Hum

Figure 4.15: n vs instance labeling on ProMed-Hum

recall (R) and F1-score (F). While we do an analysis of precision and recall values, we stick

to F1-score for comparing the performance. The row following the results of MISP shows

the hyperparameters for which the result has been obtained.

4.4.1 Results on the MUC4-Hum Dataset

Table 4.13 summarizes the performance of different algorithms on the MUC4-Hum

dataset.

On bag labeling, we see that MISP performed the best with SVMH-H coming very close
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Figure 4.16: n vs instance labeling on CR

Table 4.13: Results on MUC4-Hum

Bag labeling results Instance labeling results

P R F P R F

SIL 68.49 72.46 70.42 25.43 52.31 34.23
NSK 68.57 69.57 69.06 36.87 49.47 42.25
STK 73.17 86.96 79.47 30.66 53.02 38.85
sMIL 68.82 92.75 79.01 26.45 56.94 36.12
stMIL 66.67 89.86 76.54 23.36 59.43 33.53
sbMIL 68.48 91.30 78.26 21.57 57.65 31.40

SVMH-H 69.89 94.20 80.25 21.83 79.00 34.21
MISP 73.26 91.30 81.29 31.61 69.75 43.51

k = 1 k = 6

to it. Among the other algorithms, only STK got a reasonable balance between precision

and recall. sMIL got much higher precision than recall. Note that SVMH-H obtained the

highest recall among all the algorithms.

On instance labeling, NSK and SVMhmm gave the best precision and recall, respectively.

MISP obtains the best F1-score, marginally better than NSK. Note that the difference in

precision between these two algorithms is ∼ 5% points whereas the difference in recall is

∼ 20%. Clearly, the recall gain obtained is much more significant.

4.4.2 Results on the ProMed-Hum Dataset

Table 4.14 summarizes the performance of different algorithms on the ProMed-Hum

dataset.
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Table 4.14: Results on ProMed-Hum

Bag labeling results Instance labeling results

P R F P R F

SIL 82.73 91.92 87.08 24.61 70.62 36.50
NSK 83.04 93.94 88.15 29.81 62.85 40.44
STK 82.30 93.94 87.74 32.94 58.62 42.17
sMIL 84.40 92.93 88.46 29.70 68.50 41.44
stMIL 81.65 89.90 85.58 25.44 79.94 38.60
sbMIL 81.65 89.90 85.58 26.03 84.89 39.84

SVMH-H 83.19 100.0 90.83 25.65 86.44 39.56
MISP 87.39 97.98 92.38 39.55 74.58 51.69

k = 10 k = 1

On bag labeling, MISP and SVMhmm obtained the best precision and recall values,

respectively. MISP got the best F1-score by trading off ∼ 2 points of precision with ∼ 4

points of recall.

On instance labeling, MISP and SVMhmm got the best precision and recall values,

respectively. MISP dominated the rest of the algorithms in precision by a large margin.

Even though stMIL and sbMIL obtained good recall scores, they performed very poor on

precision. SVMhmm obtained a very dominating recall with a reasonably low standard

deviation but was very poor on precision. MISP balances precision and recall, therefore it

gets the highest F1-score by a huge margin.

4.4.3 Results on the CR Dataset

Table 4.15 summarizes the performance of different algorithms on the CR dataset.

On bag labeling, MISP performed better than every other algorithm with the highest

precision, recall and F1-score. It must be noted that MISP increased precision and recall

Table 4.15: Results on CR

Bag labeling Instance labeling

P R F P R F

SIL 80.22 92.92 86.10 30.34 80.32 44.04
NSK 81.32 92.50 86.55 38.88 66.58 49.09
STK 82.16 92.08 86.84 36.06 69.72 47.53
sMIL 80.45 89.17 84.58 32.28 68.55 43.89
stMIL 82.12 93.75 87.55 33.73 66.58 44.77
sbMIL 79.55 87.50 83.33 29.18 91.55 44.26

SVMH-H 82.35 95.97 88.64 28.94 86.34 43.35
MISP 83.86 96.37 89.68 33.50 80.50 47.31

k = 9 k = 1



48

in nearly equal proportions when compared to the other algorithms.

On instance labeling, NSK and sbMIL obtained the best precision and recall, respec-

tively. Although NSK shows a higher F1-score than sbMIL, it must be noted that it trades

off ∼ 25 points of recall for ∼ 10 points of precision. Since F1-score looks for a balance of

precision and recall, it ranked NSK above sbMIL.

4.4.4 Results on the MUC4-Ans Dataset

Table 4.16 summarizes the performance of different algorithms on the MUC4-Ans dataset.

We see the same story with the MUC4-Ans dataset on both bag labeling and instance

labeling. Interestingly, SIL performed much better than most other algorithms (F1-score).

This is mainly due to its high precision compared to the rest. Most of the other algorithms

obtained high recall but low precision. MISP got better F1-scores for both bag and instance

labeling by balancing them.

4.4.5 Results on the ProMed-Ans Dataset

Table 4.17 summarizes the performance of different algorithms on the ProMed-Ans

dataset.

Most of the algorithms perform well on bag labeling. On instance labeling, although

MISP obtained the best F1-score, it must be noted that it gained ∼ 4 points on precision

for ∼ 27 points on recall (compared to NSK, STK, sMIL, sbMIL, stMIL). So, it cannot be

declared the winner. All the algorithms in UniverSVM but for SIL performed much better

on precision compared to MISP and SVMhmm.

Table 4.16: Results on MUC4-Ans

Bag labeling Instance labeling

P R F P R F

SIL 85.25 85.25 85.25 56.74 49.19 52.70
NSK 67.78 100.0 80.79 23.48 71.77 35.39
STK 67.78 100.0 80.79 45.28 56.05 50.09
sMIL 67.78 100.0 80.79 30.81 77.02 44.01
stMIL 67.78 100.0 80.79 21.48 89.92 34.68
sbMIL 67.78 100.0 80.79 16.06 88.31 27.17

SVMH-H 70.24 96.72 81.38 38.95 86.69 53.75
MISP 77.33 95.08 85.29 50.76 66.94 57.74

k = 7 k = 8
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Table 4.17: Results on ProMed-Ans

Bag labeling Instance labeling

P R F P R F

SIL 91.46 80.65 85.71 29.98 55.64 38.97
NSK 84.40 98.92 91.09 24.09 99.25 38.77
STK 83.96 95.70 89.45 24.11 98.50 38.73
sMIL 87.13 94.62 90.72 24.09 99.25 38.77
stMIL 84.38 87.10 85.71 24.11 99.25 38.79
sbMIL 81.40 75.27 78.21 24.09 99.25 38.77

SVMH-H 84.55 100.0 91.63 24.81 54.14 34.03
MISP 90.43 91.40 90.91 27.97 71.88 40.27

k = 2 k = 4

4.4.6 General Observations

The value of structure in these datasets is evident from the fact that SVMhmm with

hamming loss performed better than every algorithm in UniverSVM on all the datasets for

bag labeling. It performed marginally better than MISP on the ProMed-Ans dataset. One

possible reasoning for this is based on the very nature of MIL – with negative bags, you

already have all the information needed; with positive bags, even if you get one positive

instance right, you are correct on the whole bag. Since we enforce some of the negative

sentences in the positive bags to be labeled positive (0/1 loss function), SVMhmm probably

decided to concentrate less on the word features in the individual sentences (which it found

confusing due to contradictory evidences) and tried to learn the general flow of positive

documents. This also explains the fact that it did not match the performance of MISP for

instance labeling.

In Section 4.2.2.1, we mentioned that the ProMed-Hum dataset has better structure than

the MUC4-Hum dataset. This structure was particularly exploited by MISP. It performed

∼ 10% better than any other algorithm on instance labeling (see Table 4.14).

From the Tables 4.13 and 4.16, we can see the effect of increasing the training data

on MUC-4 based datasets. Clearly, there is an improvement on both bag labeling (∼ 5

points) and instance labeling (∼ 13 points). It means that with more training data, MISP

is able to learn the structure better. One would expect a similar result from Tables 4.14

and 4.17. However, there was no improvement. In fact, the results were only worse on both

bag labeling (by ∼ 1 point) and instance labeling (∼ 11 points). This behavior is easy to

explain from our discussion in Section 4.2.2.2. The problem with the ProMed-Ans dataset

is that the negative documents in the train set are from a different distribution compared

to the distribution of negative documents in the test set. To aggravate the problem further,

the negative documents in the test set come from the same distribution as the positive
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documents in the train set. This caused severe dip in the performance on both the tasks.

One can clearly notice from these tables that MISP obtains higher precision scores

than every other algorithm, on both the tasks. In some cases, it has better recall as well.

Also, the major difference between SVMH-H and MISP is that the latter has lower recall

values. While the former aggressively marks instances from positive bags as positive (due

to hamming loss on bags), the latter is careful with it due to an MIL-adapted loss function.

So, it gets precision and recall values which are more balanced.

4.4.7 On the Hyperparameter k

It would be fair to ask about the hyperparameter k which may turn out to be an

advantage for MISP compared to the other algorithms. If the dataset is small enough, it

may be worth trying a few different values for k and pick the best (like in Section 4.4).

Otherwise, one could use the method which Bunescu and Mooney (4) use to estimate the

positive instance density for sbMIL i.e., get human annotations for a small number of bags

and tune k on them12.

In our case, we already have small annotated samples for both MUC4-Ans (MUC4-Hum)

and ProMed-Ans (ProMed-Hum). Table 4.18 shows the performance of MISP on the larger

datasets using the value of k which gave the best result on the manually annotated datasets.

From the Table 4.18, we note that on the ProMed-Hum dataset, the performance of

MISP with the tuned value of k was better than any other algorithm (see Table 4.17). On

bag labeling for the MUC4-Hum dataset, it performed worse than the two basic algorithms

(SIL and SVMhmm) although it matched the performance of every other algorithm. On

instance labeling, it performed better only compared to NSK, stMIL and sbMIL. In fact,

its performance was nowhere close to the performance of SVMhmm. Our intuition as to why

there was such a mismatch between the performances on the smaller and larger datasets is

that the MUC4-Hum dataset does not have a uniform structure. We had seen such erratic

behavior with this dataset while varying k, p and n as well (see Figures 4.1, 4.5, 4.11, 4.14).

12It may be useful to try one or two neighboring values for the tuned k since the results on small datasets
may not be stable.
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Table 4.18: Results on the “Ans” datasets with tuned k

Bag labeling Instance labeling

P R F P R F

MUC4-Hum 67.78 100.0 80.79 32.19 49.19 38.92
k = 1 k = 6

ProMed-Hum 85.44 94.62 89.80 35.23 44.66 39.39
k = 10 k = 1



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In our work, we have seen a novel approach to solving the MIL problem based on

the structure of the bags. We proposed a variation to the cutting plane technique to

handle existential constraints on positive bags. We implemented an instance of our idea on

SVMhmmwith several hyperparameters. We performed experiments on several datasets and

all of them show that this idea indeed works very well. We presented a detailed analysis of

how different hyperparameters affect our algorithm.

It turned out that the margin constraints are not always useful. The key hyperparameter

to be tuned is the penalty on misclassifying a positive bag, for both bag labeling and

instance labeling. We could not find a genuine estimator for finding this hyperparameter

given a sample of the dataset and thus, we had to choose it using trial-and-error method.

Nevertheless, given that the loss function becomes trivial without the margin and that

a very small number of iterations is sufficient to get a decent solution, MISP is of great

practical value.

We intend to work on the following ideas hereupon:

• If a dataset has known distribution (of number of instances in a positive bag), can we

estimate the value of k (penalty for misclassifying a positive bag) for which the performance

is maximized? If the answer is yes, then one could manually label a small sample of the

training set and avoid the trial-and-error method to find the right value of k.

• Can we modify our variant of the cutting plane technique to ensure convergence

(possibly at the cost of ignoring a few opportunities to reach a better solution)? If yes, how

fast can this algorithm converge, in terms of the parameters of the dataset? One recent

approach to a very related problem is that of Chang et al. (22). They consider a structured

prediction problem (for instance, phonetic alignments of transliterated words) with a natural

associated binary classification problem (“Are these two words transliterations of each

other?”). They formulate an SVM-style model that uses both labeled structured data as

well as labeled binary data (which is presumably cheaper to obtain) and achieve impressive

results. The precise formulation of their approach differs from ours (as the task is somewhat

different), but theirs also leads to an existential constraint. Their approach to dealing with
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the existential constraint is different than ours, though it is unclear whether one is better

than the other or not.

• MIL falls under the category of machine learning algorithms which learn from partial

data (a.k.a. learning from missing data). In MIL, there is labeled negative data (χ̃n). The

missing piece of information is as to which of the instances in each X ∈ χp is negative.

Here, MIL is close to semisupervised learning. Adding transductive constraints in binary

classification settings helps SVMs significantly (37). Bunescu and Mooney (4) report that

moving from sMIL to stMIL (see Section 2.1.4). One could imagine formulating similar

transductive constraints for our formulation as well. The idea is to require a margin for the

classification on instances rather than examples.

• Recently, there has been plenty of work on multiclass multiinstance learning for image

categorization (38; 16; 42). One could imagine extending MISP to multiple classes as well.

This could be done using methods similar to those employed for multiclass MIL (16).

• PU Learning is the task of learning from only positive examples and unlabeled exam-

ples. This is roughly the opposite of MIL except there is no information at the bag level.

Techniques for PU learning (21; 39; 20) involve identifying other examples that are close to

the known positive examples. One could imagine a similar idea for MIL – to find instances

from positive bags that are close to those in negative bags (say, χ̃q). Then, we can train an

SVM or a Naive Bayes’ classifier with χ̃n ∪ χ̃q as negative examples and χ̃p− χ̃q as positive

examples.



APPENDIX A

RESULTS OF ALL EXPERIMENTS

In this appendix, we report the results of all the experiments with MISP that we

described in Sections 4.3.2, 4.3.4 and 4.4. We do not report the standard deviation values

for the three datasets, MUC4-Hum, ProMed-Hum and CR because of space constraints.

Like in previous sections, P, R, F represent precision, recall and F1-score, respectively. For

the manually labeled datasets, we use α = 40. For the larger datasets, we use α = 25. We

used MISP Y2constraints for all the experiments. We varied k in {1, 2, . . . , 12}.

After the tables, just for completeness, we present graphs showing the effect of p, n on

the MUC4-Ans and ProMed-Ans datasets (similar to the ones shown in Section 4.3.4).

Table A.1: Bag labeling results on the MUC4-Hum dataset

p = 0, n = 0 p = 1, n = 0 p = 0, n = 1 p = 1, n = 1

k P R F P R F P R F P R F

1 73.26 91.30 81.29 70.79 91.30 79.75 73.26 91.30 81.29 70.79 91.30 79.75
2 71.26 89.86 79.49 71.43 94.20 81.25 72.09 89.86 80.00 71.43 94.20 81.25
3 72.09 89.86 80.00 70.45 89.86 78.98 72.00 78.26 75.00 70.45 89.86 78.98
4 70.24 85.51 77.12 72.73 81.16 76.71 70.59 86.96 77.92 72.73 81.16 76.71
5 70.11 88.41 78.21 70.51 79.71 74.83 70.89 81.16 75.68 70.51 79.71 74.83
6 73.68 81.16 77.24 72.50 84.06 77.85 70.89 81.16 75.68 72.50 84.06 77.85
7 70.89 81.16 75.68 71.76 88.41 79.22 69.51 82.61 75.50 71.76 88.41 79.22
8 70.73 84.06 76.82 70.24 85.51 77.12 70.24 85.51 77.12 70.24 85.51 77.12
9 71.43 86.96 78.43 71.05 88.52 78.83 70.45 89.86 78.98 73.17 86.96 79.47
10 70.45 89.86 78.98 70.45 89.86 78.98 69.41 85.51 76.62 70.45 89.86 78.98
11 70.24 85.51 77.12 70.24 85.51 77.12 70.24 85.51 77.12 70.24 85.51 77.12
12 72.84 85.51 78.67 70.73 84.06 76.82 72.84 85.51 78.67 70.73 84.06 76.82
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Table A.2: Instance labeling results on the MUC4-Hum dataset

p = 0, n = 0 p = 1, n = 0 p = 0, n = 1 p = 1, n = 1

k P R F P R F P R F P R F

1 25.09 50.53 33.53 25.47 53.38 34.48 25.09 50.53 33.53 25.47 53.38 34.48
2 24.77 48.40 32.77 27.13 56.58 36.68 25.38 53.02 34.33 27.13 56.58 36.68
3 26.37 53.02 35.22 28.63 48.40 35.98 30.12 52.31 38.23 28.63 48.40 35.98
4 28.44 55.16 37.53 28.64 63.70 39.51 31.07 58.72 40.64 28.64 63.70 39.51
5 27.27 54.45 36.34 28.93 65.48 40.13 28.51 65.84 39.78 28.93 65.48 40.13
6 31.61 69.75 43.51 28.03 70.82 40.16 30.03 63.70 40.82 28.03 70.82 40.16
7 26.74 62.99 37.54 27.71 68.33 39.43 27.67 72.95 40.12 27.71 68.33 39.43
8 27.04 74.38 39.66 25.77 80.43 39.03 28.91 77.58 42.13 25.77 80.43 39.03
9 28.69 73.31 41.24 24.65 71.54 36.67 25.03 70.11 36.89 26.21 73.31 38.61
10 25.67 68.33 37.32 25.43 79.72 38.55 25.40 78.29 38.36 25.43 79.72 38.55
11 25.96 70.11 37.88 24.75 79.36 37.73 25.96 70.11 37.88 24.75 79.36 37.73
12 26.54 76.51 39.41 26.18 81.14 39.58 26.54 76.51 39.41 26.18 81.14 39.58

Table A.3: Bag labeling results on the ProMed-Hum dataset

p = 0, n = 0 p = 1, n = 0 p = 0, n = 1 p = 1, n = 1

k P R F P R F P R F P R F

1 85.71 90.91 88.24 85.71 90.91 88.24 85.71 90.91 88.24 85.71 90.91 88.24
2 84.91 90.91 87.80 85.05 91.92 88.35 84.91 90.91 87.80 85.05 91.92 88.35
3 86.24 94.95 90.38 86.92 93.94 90.29 86.24 94.95 90.38 86.92 93.94 90.29
4 86.36 95.96 90.91 86.49 96.97 91.43 86.36 95.96 90.91 86.49 96.97 91.43
5 86.24 94.95 90.38 89.22 91.92 90.55 89.52 94.95 92.16 89.22 91.92 90.55
6 88.46 92.93 90.64 89.32 92.93 91.09 89.32 92.93 91.09 89.32 92.93 91.09
7 88.46 92.93 90.64 88.57 93.94 91.18 87.74 93.94 90.73 88.57 93.94 91.18
8 89.52 94.95 92.16 87.04 94.95 90.82 87.04 94.95 90.82 87.04 94.95 90.82
9 88.07 96.97 92.31 87.04 94.95 90.82 87.16 95.96 91.35 87.04 94.95 90.82
10 87.39 97.98 92.38 87.27 96.97 91.87 87.27 96.97 91.87 87.27 96.97 91.87
11 87.16 95.96 91.35 85.45 94.95 89.95 87.16 95.96 91.35 85.45 94.95 89.95
12 84.07 95.96 89.62 79.69 91.07 85.00 84.07 95.96 89.62 83.93 94.95 89.10
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Table A.4: Instance labeling results on the ProMed-Hum dataset

p = 0, n = 0 p = 1, n = 0 p = 0, n = 1 p = 1, n = 1

k P R F P R F P R F P R F

1 39.55 74.58 51.69 37.95 72.32 49.78 39.55 74.58 51.69 37.95 72.32 49.78
2 34.80 82.77 49.00 36.98 82.20 51.01 34.80 82.77 49.00 36.98 82.20 51.01
3 34.80 83.62 49.15 34.47 80.08 48.19 34.48 82.20 48.58 34.47 80.08 48.19
4 33.76 90.25 49.13 31.88 86.86 46.64 33.13 83.90 47.50 31.88 86.86 46.64
5 31.11 89.69 46.20 30.57 87.99 45.38 30.94 91.10 46.19 30.57 87.99 45.38
6 29.07 88.98 43.83 30.81 91.24 46.06 30.85 90.54 46.02 30.81 91.24 46.06
7 28.07 89.55 42.74 28.60 88.98 43.28 28.53 92.51 43.61 28.60 88.98 43.28
8 27.86 92.09 42.78 27.74 92.94 42.73 28.01 92.66 43.02 27.74 92.94 42.73
9 27.74 96.61 43.10 27.65 93.50 42.68 27.36 93.64 42.35 27.65 93.50 42.68
10 26.22 94.07 41.01 27.31 95.76 42.49 27.36 96.19 42.60 27.31 95.76 42.49
11 27.03 92.66 41.85 26.83 97.18 42.05 27.03 92.66 41.85 26.83 97.18 42.05
12 26.83 95.48 41.88 26.79 96.98 41.99 26.83 95.48 41.88 26.82 97.88 42.10

Table A.5: Bag labeling results on the CR dataset

p = 0, n = 0 p = 1, n = 0 p = 0, n = 1 p = 1, n = 1

k P R F P R F P R F P R F

1 86.64 91.53 89.02 84.06 93.55 88.55 86.64 91.53 89.02 84.06 93.55 88.55
2 83.96 90.73 87.21 84.31 93.15 88.51 82.71 88.71 85.60 84.31 93.15 88.51
3 85.13 92.34 88.59 83.21 93.95 88.26 85.39 91.94 88.54 83.21 93.95 88.26
4 84.42 93.95 88.93 85.93 93.55 89.58 86.26 91.13 88.63 85.93 93.55 89.58
5 82.61 91.94 87.02 84.39 91.53 87.81 84.73 93.95 89.10 84.39 91.53 87.81
6 82.52 95.16 88.39 83.21 93.95 88.26 83.46 91.53 87.31 83.21 93.95 88.26
7 82.44 92.74 87.29 84.36 93.55 88.72 85.56 93.15 89.19 84.36 93.55 88.72
8 84.53 94.76 89.35 83.81 93.95 88.59 83.45 93.55 88.21 83.81 93.95 88.59
9 83.86 96.37 89.68 84.48 94.35 89.14 83.87 94.35 88.80 84.48 94.35 89.14
10 83.10 97.18 89.59 84.17 94.35 88.97 83.87 94.35 88.80 84.17 94.35 88.97
11 84.17 94.35 88.97 84.12 93.95 88.76 84.17 94.35 88.97 84.12 93.95 88.76
12 82.46 94.76 88.18 83.93 94.76 89.02 82.46 94.76 88.18 83.93 94.76 89.02
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Table A.6: Instance labeling results on the CR dataset

p = 0, n = 0 p = 1, n = 0 p = 0, n = 1 p = 1, n = 1

k P R F P R F P R F P R F

1 33.50 80.50 47.31 33.36 76.73 46.50 33.50 80.50 47.31 33.36 76.73 46.50
2 32.90 82.66 47.07 32.96 81.04 46.86 32.52 79.96 46.23 32.96 81.04 46.86
3 32.24 84.64 46.69 31.96 86.97 46.74 32.77 85.89 47.44 31.96 86.97 46.74
4 31.22 89.13 46.25 32.15 85.53 46.74 31.87 85.71 46.47 32.15 85.53 46.74
5 30.87 88.77 45.80 30.97 90.21 46.11 30.97 86.16 45.56 30.97 90.21 46.11
6 30.67 87.87 45.47 30.44 87.51 45.17 30.90 87.06 45.61 30.44 87.51 45.17
7 30.75 92.09 46.11 30.40 89.94 45.44 31.46 85.09 45.94 30.40 89.94 45.44
8 29.90 88.32 44.67 30.90 86.34 45.51 30.71 86.43 45.31 30.90 86.34 45.51
9 29.50 87.06 44.07 30.48 86.97 45.14 30.58 86.97 45.25 30.48 86.97 45.14
10 29.94 89.13 44.83 30.59 87.24 45.30 30.50 86.70 45.13 30.59 87.24 45.30
11 29.82 89.13 44.68 30.31 90.93 45.46 29.82 89.13 44.68 30.31 90.93 45.46
12 29.58 91.28 44.68 30.27 90.84 45.41 29.58 91.28 44.68 30.27 90.84 45.41

Table A.7: Bag labeling results on the MUC4-Ans dataset

p = 0, n = 0 p = 1, n = 0 p = 0, n = 1 p = 1, n = 1

k P R F P R F P R F P R F

1 67.78 100.0 80.79 69.88 95.08 80.56 74.29 85.25 79.39 69.88 95.08 80.56
2 70.89 91.80 80.00 78.33 77.05 77.69 70.89 91.80 80.00 78.33 77.05 77.69
3 75.68 91.80 82.96 74.03 93.44 82.61 75.68 91.80 82.96 74.03 93.44 82.61
4 78.12 81.97 80.00 74.19 75.41 74.80 78.12 81.97 80.00 74.19 75.41 74.80
5 71.60 95.08 81.69 72.15 93.44 81.43 67.78 100.0 80.79 72.15 93.44 81.43
6 76.39 90.16 82.71 75.00 93.44 83.21 76.39 90.16 82.71 75.00 93.44 83.21
7 77.33 95.08 85.29 85.94 90.16 88.00 67.78 100.0 80.79 85.94 90.16 88.00
8 75.00 88.52 81.20 76.32 95.08 84.67 76.12 83.61 79.69 76.32 95.08 84.67
9 73.42 95.08 82.86 76.71 91.80 83.58 71.60 95.08 81.69 76.71 91.80 83.58
10 71.08 96.72 81.94 67.78 100.0 80.79 79.17 93.44 85.71 67.78 100.0 80.79
11 78.46 83.61 80.95 78.12 81.97 80.00 78.46 83.61 80.95 78.12 81.97 80.00
12 78.12 81.97 80.00 78.12 81.97 80.00 78.12 81.97 80.00 78.12 81.97 80.00
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Table A.8: Instance labeling results on the MUC4-Ans dataset

p = 0, n = 0 p = 1, n = 0 p = 0, n = 1 p = 1, n = 1

k P R F P R F P R F P R F

1 16.35 49.19 24.55 52.94 43.55 47.79 56.98 39.52 46.67 52.94 43.55 47.79
2 54.61 33.47 41.50 56.55 33.06 41.73 54.61 33.47 41.50 56.55 33.06 41.73
3 46.39 62.10 53.10 34.51 35.48 34.99 46.39 62.10 53.10 34.51 35.48 34.99
4 61.48 33.47 43.34 52.85 52.42 52.63 61.48 33.47 43.34 52.85 52.42 52.63
5 34.71 64.52 45.13 34.20 52.82 41.52 55.36 50.00 52.54 34.20 52.82 41.52
6 32.19 49.19 38.92 32.51 37.10 34.65 41.88 66.53 51.40 32.51 37.10 34.65
7 51.60 52.02 51.81 51.18 70.16 59.18 49.83 58.87 53.97 51.18 70.16 59.18
8 50.76 66.94 57.74 58.08 53.63 55.77 56.72 54.44 55.56 58.08 53.63 55.77
9 40.70 70.56 51.62 34.61 58.47 43.48 36.90 73.79 49.19 34.61 58.47 43.48
10 41.96 67.34 51.70 55.50 48.79 51.93 40.85 81.85 54.50 55.50 48.79 51.93
11 39.83 75.00 52.03 45.45 68.55 54.66 39.83 75.00 52.03 45.45 68.55 54.66
12 40.04 72.18 51.51 44.14 65.32 52.68 40.04 72.18 51.51 44.14 65.32 52.68

Table A.9: Bag labeling results on the ProMed-Ans dataset

p = 0, n = 0 p = 1, n = 0 p = 0, n = 1 p = 1, n = 1

k P R F P R F P R F P R F

1 87.00 93.55 90.16 88.30 89.25 88.77 87.00 93.55 90.16 88.30 89.25 88.77
2 90.43 91.40 90.91 88.57 66.67 76.07 90.43 91.40 90.91 88.57 66.67 76.07
3 86.73 91.40 89.01 89.89 86.02 87.91 86.73 91.40 89.01 89.89 86.02 87.91
4 91.11 88.17 89.62 90.91 86.02 88.40 91.67 94.62 93.12 90.91 86.02 88.40
5 91.36 79.57 85.06 91.01 87.10 89.01 91.36 79.57 85.06 91.01 87.10 89.01
6 90.22 89.25 89.73 90.59 82.80 86.52 90.91 86.02 88.40 90.59 82.80 86.52
7 88.66 92.47 90.53 89.25 89.25 89.25 91.57 81.72 86.36 89.25 89.25 89.25
8 86.41 95.70 90.82 89.36 90.32 89.84 90.70 83.87 87.15 89.36 90.32 89.84
9 90.48 81.72 85.88 90.48 81.72 85.88 90.11 88.17 89.13 90.48 81.72 85.88
10 85.44 94.62 89.80 90.00 77.42 83.24 90.59 82.80 86.52 90.00 77.42 83.24
11 90.32 90.32 90.32 89.47 91.40 90.43 90.32 90.32 90.32 89.47 91.40 90.43
12 88.66 92.47 90.53 87.76 92.47 90.05 88.66 92.47 90.53 87.76 92.47 90.05
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Table A.10: Instance labeling results on the ProMed-Ans dataset

p = 0, n = 0 p = 1, n = 0 p = 0, n = 1 p = 1, n = 1

k P R F P R F P R F P R F

1 35.23 44.66 39.39 35.14 43.01 38.67 35.23 44.66 39.39 35.14 43.01 38.67
2 33.73 46.47 39.09 34.34 42.71 38.07 33.73 46.47 39.09 34.34 42.71 38.07
3 28.06 49.62 35.85 29.34 55.64 38.42 28.06 49.62 35.85 29.34 55.64 38.42
4 28.77 63.16 39.53 31.83 53.98 40.04 28.38 65.26 39.56 31.83 53.98 40.04
5 29.75 53.23 38.17 28.47 61.35 38.89 29.46 49.92 37.05 28.47 61.35 38.89
6 26.31 69.47 38.17 27.81 64.36 38.84 28.72 64.21 39.68 27.81 64.36 38.84
7 26.13 77.14 39.04 25.61 71.43 37.70 28.39 63.61 39.26 25.61 71.43 37.70
8 24.40 82.11 37.62 25.70 74.74 38.25 27.81 63.31 38.64 25.70 74.74 38.25
9 27.86 63.31 38.69 27.94 59.70 38.06 27.35 73.08 39.80 27.94 59.70 38.06
10 25.42 76.84 38.21 29.43 63.46 40.21 28.57 59.85 38.68 29.43 63.46 40.21
11 27.97 71.88 40.27 25.46 79.70 38.59 27.97 71.88 40.27 25.46 79.70 38.59
12 24.87 79.55 37.89 23.54 80.90 36.47 24.87 79.55 37.89 23.54 80.90 36.47

Figure A.1: p vs bag labeling on MUC4-Ans
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Figure A.2: p vs bag labeling on ProMed-Ans

Figure A.3: p vs instance labeling on MUC4-Ans
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Figure A.4: p vs instance labeling on ProMed-Ans

Figure A.5: n vs bag labeling on MUC4-Ans
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Figure A.6: n vs bag labeling on ProMed-Ans

Figure A.7: n vs instance labeling on MUC4-Ans
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Figure A.8: n vs instance labeling on ProMed-Ans



APPENDIX B

INPUT FORMATS

In this section, we discuss the format in which SVMhmm and UniverSVM expect the

input to be in.

B.1 Format of Input Files for SVMhmm

SVMhmmfollows the libsvm1 input format for most part. Figure B.1 shows a sample

input file. The general formatting rules are as follows:

• Each line in the file corresponds to an instance. It begins with a label (an identifier

for a class). All labels have to be positive integers. In our work, we used 1, 2 for negative

and positive bags, respectively.

• After the label, there will be a qid term to identify which example the instance is a

part of. It is the common link between multiple lines of a file.

• Following the qid part will be the features. Each feature has is represented as a positive

integer. The feature and its weight (a.k.a. value) will be separated by a colon. The features

must appear in ascending order. A feature with 0 weight can be ignored.

In the training set, we give the bag labels to each of the instance labels i.e., all the

instances with the same qid will have the same label. In the tune and test set, we give the

instance labels because the classifier needs to compare its results with the truth to output

the performance metrics (P,R,F).

B.2 Format of Input Files for UniverSVM

UniverSVM also extends the libsvm format. It is described below:

• The number of examples in the file has to be in the first line of the file. Each line

following this represents an instance.

• Each line corresponding to an instance begins with sid : qid : label where sid is the

instance id, qid is the example id and label is an identifier for its class. Note that the sid

has to be unique across all the examples, not just the example that it belongs to.

1LIBSVM is a very popular software among machine learning community for classification and regression.
It is available for free download along with a lot of free classification datasets at: http://www.csie.ntu.

edu.tw/~cjlin/libsvm/.
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Figure B.1: Input format for SVMhmm

• Features (along with their weights) must follow the metadata about the instance just

like SVMhmm.

A sample input file for UniverSVM can be seen in Figure B.2. UniverSVM has an

additional flexibility with the process of training a classifier. One could put the training

and test sets in the same input file and specify the split of train and test splits using id-files.

Each id-file contains a list of example ids (as used in the input file). Effectively, one could

train and test a classifier by specifying the input file and two id-files (train split, test split).

We did not use this functionality because we tuned the classifier parameters before testing.
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Figure B.2: Input format for UniverSVM



APPENDIX C

MODIFICATIONS TO SVMhmm CODE

In this section, we briefly describe the changes we have made to SVMhmm. Listing all

the changes will be too much since we wrote at least 1000 lines of code for this project.

SVMhmm comes as a svm hmm.tar.gz file. When you extract it using the command

tar xvzf svm hmm.tar.gz, you will get a directory named svm hmm. You may enter this

directory and see its structure using the command “tree .” (Figure C.1).

The directory svm light contains the code to perform optimization given the QP problem

whereas svm struct contains the code to perform cutting plane optimization for structured

inputs. Files in the parent directory i.e., svm hmm, contain API which can be modified

to use SVMstruct for a different kind of structure. By default, with SVMhmm we get HMM

versions of the API.

C.1 svm struct api.c

This file contains the logic for loss function and executing structure-specific inference

algorithms. For SVMhmm this would be viterbi algorithm.

C.1.1 loss()

The following two changes are made in loss function. We implement MISP function in

the stub left for “-l 0”.

• Take model as an additional parameter.

• If it is training phase, use MISP (Figure 3.5) instead of hamming loss. If it is testing

phase, use hamming loss.

C.1.2 viterbi forward order1()

If it is testing phase and a bias is provided (see Section 4.1.3), modify the transition

probabilities as required. There may be boilerplate code to obtain the values of bias from

the command line arguments through the main function.
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Figure C.1: Directory structure of SVMhmm

C.2 svm struct/svm struct learn.c

This file contains the logic to re-solve the QP optimization problem with the new most

violating constraints found in each iteration. Here, we made the following changes:

• If it is a positive bag on which we are finding the most violated constraint, then

we check if this constraint defies the “norm” of cutting plane optimization (slack of this

constraint is smaller than the slack of working set). If yes, then we replace the previous

constraint on this bag with this constraint. In fact, our implementation keeps exactly one

constraint for each bag.

• If we finish α number of iterations, we stop the cutting plane optimization and write

the model.
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C.3 Miscellaneous

The files svm struct main.c and svm struct classify.c contain code to parse the command

line options and store them in appropriate data structures, for svm hmm learn binary

(learning module of the classifier) and svm hmm classify binary (prediction module of the

classifier). They also set the default values to various data structures required for the

execution of SVMhmm. We modified these to add additional command line arguments (α,

bias for transition probabilities etc.).

For MUC4-Hum and ProMed-Hum datasets, we needed to segment the sentences. For

this, we used Lingua::EN::Sentence package from http://search.cpan.org/~shlomoy/

Lingua-EN-Sentence-0.25/lib/Lingua/EN/Sentence.pm.
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