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ABSTRACT 

Data quality has become a significant issue in healthcare as large preexisting 

databases are integrated to provide greater depth for research and process improvement. 

Large scale data integration exposes and compounds data quality issues latent in source 

systems. Although the problems related to data quality in transactional databases have 

been identified and well-addressed, the application of data quality constraints to large 

scale data repositories has not and requires novel applications of traditional concepts and 

methodologies.  

Despite an abundance of data quality theory, tools and software, there is no 

consensual technique available to guide developers in the identification of data integrity 

issues and the application of data quality rules in warehouse-type applications. Data 

quality measures are frequently developed on an ad hoc basis or methods designed to 

assure data quality in transactional systems are loosely applied to analytic data stores. 

These measures are inadequate to address the complex data quality issues in large, 

integrated data repositories particularly in the healthcare domain with its heterogeneous 

source systems. 

This study derives a taxonomy of data quality rules from relational database 

theory. It describes the development and implementation of data quality rules in the 

Analytic Health Repository at Intermountain Healthcare and situates the data quality 

rules in the taxonomy. Further, it identifies areas in which more rigorous data quality 
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should be explored. This comparison demonstrates the superiority of a structured 

approach to data quality rule identification. 
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INTRODUCTION 

This thesis describes the data quality rules used in Intermountain Healthcare’s 

Analytic Health Repository (AHR) and groups these rules within a data quality taxonomy 

derived from current research and literature.  

Large integrated analytic databases present enormous opportunities for medical 

researchers. Data extracted from a wide variety of clinical systems can be standardized, 

cleansed and integrated to facilitate population-based research that can span decades. 

Electronic clinical data on millions of individuals can include textual data from discharge 

summaries, history and physical examination reports, coded billing and insurance records, 

lab data, genetic information, prescriptions, medication administration records and data 

from various specialty datamarts and disease registries. Research can include clinical 

analyses, treatment protocols, epidemiologic studies and clinical process improvement. 

Due to the large volume of data and the wide range of data inconsistencies, data quality is 

always an issue. 

At Intermountain Healthcare, hospital information systems have been in place 

since the inception of the Health Evaluation through Logical Processing (HELP) system 

at LDS Hospital in 1967.(1) The 22 hospital system has been included on the Most Wired 

Hospital list by Hospitals & Health Networks, the journal of the American Hospital 

Association, for 12 out of the 13 years the survey has been in place.  Intermountain 

Healthcare has an abundance of data. For over a decade, data from Intermountain’s 
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clinical and operational systems has been extracted, transformed and loaded (ETL) into 

the Enterprise Data Warehouse (EDW).  The predominant data quality standard for the 

EDW was, and still is, that EDW data will reflect the quality of the source system. 

However, there is significant variation in adherence to that philosophy. For large data sets 

such as the HELP system, the quality of the data in the EDW closely reflects that of the 

source. In other cases, such as the data that is submitted to the Society of Thoracic 

Surgeons Adult Cardiac National Database,(2) extensive quality validations are run 

against the data, errors are reported to the source and the data is corrected, re-extracted 

and re-examined until it meets what is considered 100% accuracy. And in other cases, 

downstream datasets such as the Heart Failure Patient Registry are loaded with scrubbed 

data from the primary EDW tables. 

Development of AHR was initiated by Jason Jones in 2008 to maximize the value 

of Intermountain’s vast stockpiles of data to support clinical process improvement, 

clinical analysis, and clinically-oriented research. By consolidating and validating data, 

the AHR insures consistency in the information provided to consumers, thereby 

increasing confidence in the results obtained. The AHR benefits Intermountain by making 

its massive data stores user-friendly for clinical analysis. It takes the most commonly 

used data elements (labs, vital signs, medication orders, clinical assessments, diagnoses 

and procedures) from a variety of sources, cleans the data and stores it in a manner that is 

optimized for population-based research.  The AHR facilitates the development of 

clinical definitions. It can retain the definitions and rapidly return the defined populations 

and their attributes.  
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The AHR has already significantly reduced rework in data analysis and achieved 

consistency in its results.  As a result of the comprehensive integration of data, fewer 

mistakes are made extracting information from formerly overlapping and disparate 

system tables.  Speeding up the analysis cycle makes it easier to learn and discover 

iteratively, thereby allowing the researchers at Intermountain to execute the mission faster. 

The AHR currently resides as a data mart within the framework of the EDW. The 

AHR functions as a clearing house for analytic information, presenting a clinical view of 

a wide variety of diseases, processes, indicators and outcomes for an entire population. 

Discrepancies and duplications are resolved across multiple data sources to provide “one-

stop shopping” for consistent and validated data. The AHR provides research-based 

analytics which can be fed back into point-of-care decision support tools. It will be used 

to close the loop in the use of data for improving health care. 

Conceptually, the AHR is composed of three layers (see Figure 1):  

• Layer 1 (L1) – the preexisting source systems within the EDW (Clinical 

Data Repository (CDR), HELP, IDX, CaseMix, Sunquest Lab) 

• Layer 2 (L2) – the building blocks of the AHR (diagnosis, procedure, lab 

result, problem, medication order, medication claim, vital sign, clinical 

assessment, encounter, patient)  

• Layer 3 (L3) – the clinically-oriented, comprehensive analytic layer 

including the Charlson Comorbidity Index(3) 
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Figure 1, AHR layers 
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L2 is the layer in which data are imported from multiple disparate source systems, 

cleaned, integrated and loaded into the tables that create the building blocks for L3. At 

this stage in the development of the AHR, L3 contains only the Charlson Comorbidity 

Index and supporting data.  L2 is currently used by analysts and researchers to access 

data via more user-friendly views over the tables that make up the blocks. 

Four physical schemas currently make up the AHR: 

• AHR_REF – the definitions and reference data  

• AHR_L2 – multi-source data aggregated into clinical blocks 

• AHR_RULE – the logic and rule sets required for L3  

• AHR_L3 –patient-level analytic data   

One of the biggest challenges facing the AHR is identifying, correcting and 

logging the myriad of data quality issues found in each source system.  According to a 

Gartner study, “More than 50 percent of business intelligence and customer relationship 

management deployments will suffer limited acceptance, if not outright failure due to 

lack of attention to data quality issues.”(4) And Dasu, Vesonder and Wright report that 

operational databases commonly have 60% to 90% bad data.(5) 

It is obviously better to prevent errors at their source. Data integrity is considered 

by most to be synonymous with data quality and refers to the overall correctness and 

accuracy of the data. Data quality in operational—frequently known as transactional 

systems—can be addressed through multiple methods that have been described since the 

inception of databases. The father of relational database theory, Edgar F Codd, designed 

the relational model and a process called data normalization to reduce data redundancy 

and subsequently improve data integrity. Data can be, and often are, denormalized to 
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optimize the performance of a database. As a rule, data warehouses store their data in 

denormalized table structures. The process of denormalization, by its very definition, is 

going to obscure many data quality problems.  

Operational databases frequently come into existence secondary to the 

applications they support without addressing the overall structure of the data or its 

existence independent of the initial application. When the initial application gets 

upgraded, converted to a new system, or the data is mapped and interfaced to another 

system, unseen and frequently unanticipated data quality issues will surface. When 

strategic initiatives mandate a move towards data-driven decision making for planning 

and management, preexisting data is loaded into data warehouses or repositories.  As 

these data generally support analysis, data quality is of overriding importance.  

Data quality is an important aspect of any database but when aggregating and 

integrating primary health care data for clinical research, data quality management is 

critically important. There is no simple answer or “one size fits all” solution available.  

For over a decade, researchers have struggled to develop objective and subjective data 

quality measures.(6) Significant research has led to long lists of “candidate data quality 

attributes” or focused on “stimulating thinking by the design team”(7) but a specific 

methodology for deriving basic data quality rules for a data set remains vague. 

In the book “Data quality assessment”, Arkady Maydanchik (8) begins by 

grouping the causes of data problems into three broad categories. 

• External processes include manual data entry, batch feeds, real-time 

interfaces, data conversions, and system consolidations—all of which 
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either bring flawed data in from the outside or introduce errors during the 

process.  

• Internal processes such as data processing, cleansing and purging can 

inadvertently corrupt data.  

• Data decay results over time when experts leave a business taking the 

domain knowledge with them, system upgrades rely on out-dated data 

models and metadata, old data is inadequate for new uses, semantic 

changes are not captured by the data, or process automation replaces the 

human overseer of data quality. 

In large analytic data stores, data usage is much less predictable, compounding the 

challenge of sustaining a satisfactory level of data quality. Experienced data architects 

and analysts know anecdotally what data quality problems are common and it frequently 

falls upon those implementing the data repository to identify and implement the 

appropriate quality checks. Frequently these observations are organized into some sort of 

data quality classification schema and applied to data as it is extracted, transformed and 

loaded from the source into the analytic system. Unless there is current metadata or 

mapping-specifications available for the source system, the data quality specifications 

will focus on applying the basic syntactic and key constraints of the source system. There 

is seldom master reference data available to provide domain standards and the overall 

content can be even further obscured if the data set contains free text.  

This thesis reviews current literature on data quality, focusing on the taxonomies 

that have been suggested for categorizing data quality rules. Background information is 

presented on the data sources, relational database theory, and data integrity rules. A data 
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quality taxonomy is derived from relational database theory. In the results section, the 

data quality processes and rules currently in place in the AHR are described and 

subsequently categorized into the taxonomy. This taxonomy is reviewed for its strengths 

and weakness and a discussion of next steps for improving data quality in the AHR 

follows. 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

LITERATURE REVIEW 

As in other fields, poor data quality affects all levels of operational, tactical and 

strategic decision-making in healthcare. Anecdotal reports of the extent of the problem 

vary but its existence is pervasive throughout all industries.(9) Poor data quality in 

clinical data repositories includes data entry errors, inconsistent data types, multiple 

semantic representations and missing data elements.(10) Bad data impede clinical 

research, quality measurement and process improvement initiatives and inhibit the 

development of federated networks of electronic health databases.(11) 

Concerns regarding data quality emerged almost immediately after the first 

commercial database was developed at General Electric in 1964. Based on the network 

data model developed by C W Bachman, the primary function of the database was to 

isolate data from the logic of applications and to make it available to more than one 

program.(12) In 1970, E F Codd, the inventor of the relational model for database 

management, proposed applying his relational theory to “large banks of formatted data” 

as a solution to the problems of data independence and inconsistency that were surfacing 

from such systems. He described how the relational view of data provided better insight 

into the limitations of a system and a firm foundation for dealing with the data quality 

issues of redundancy, inconsistency, and the confusion surrounding derived data.(13) 

Throughout the past four decades, there has been a plethora of literature 

surrounding the topic of data quality. Because of the correlation between quality issues in 
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information systems and product quality in manufacturing, researchers in the field have 

suggested that a review of data quality literature be broken down into the following seven 

sections: 1) management responsibilities, 2) operation and assurance costs, 3) research 

and development, 4) production, 5) distribution, 6) personnel management, and 7) legal 

functions. The third section, research and development, is further divided into three 

subsections: the definition and characteristics of quality dimensions, the analysis and 

design of quality features, and the design of the systems that implement these 

features.(14) 

This literature review focuses primarily on the first subsection under research and 

development, the definition of data quality dimensions and their characteristics. 

Throughout the literature, quality dimensions have been defined and described in many 

different ways. Tu and Wang (15) suggest modeling data quality and context through an 

extension of the Entity-Relationship (ER) model. The ER model is used by database 

designers to capture the semantics and business rules related to a database. Chen, who 

first suggested the ER model, proposed that the model could be extended to incorporate 

quality aspects. However, there is no consensus on what constitutes a good set of data 

quality rules. Even the most commonly mentioned dimensions, accuracy and 

completeness do not have clear, unambiguous definitions. For example, Ballou and Pazer 

(16) define accuracy as when “the recorded value is in conformity with the actual value” 

and Loshin describes accuracy as “the degree to which data values agree with an 

identified source of correct information.”(17) Although the term appears synonymous 

with correctness, there is little structure or rigor to such definitions. 
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There are two principal ways of determining data quality dimensions: a pragmatic 

methodology and a scientific approach. Both processes present data quality as a 

“multidimensional” concept and can be implemented with varying degrees of structure 

and rigor.(4,18) 

The pragmatic approach bases the choice of dimensions on intuitive 

understanding, experience or a review of the domain literature in which the dimensions 

are user-defined, either by committee, expert consensus or the government, and depend 

heavily on the context of the data.(19) 

In a two-stage survey, Strong and Wang collected and analyzed a list of 118 data 

quality descriptors from data consumers and taxonomically grouped them into fifteen 

dimensions and four categories: intrinsic quality, contextual quality, representational 

quality, and accessibility. In the Strong and Wang study, accuracy is considered a 

dimension of intrinsic quality, completeness is a dimension of contextual quality, and 

consistency belongs to the representational quality class.(20) 

In 1998, Wang characterized data as a product.(21) He used a manufacturing-

based task cycle (define-measure-analyze-improve), with the data quality specifications 

defined by end-users, to create a process to generate a better quality information product. 

Wang’s conceptualization of data as a product was a significant departure from the 

traditional view of data as a system by-product and presented theoretically-grounded 

methodologies for Total Data Quality Management. This methodology relies heavily on 

end-user interaction with the data to define the data quality dimensions specific to each 

data set.  
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A large body of the literature seems to concur that business value is actually 

reflected more by the content and business use of data and therefore, a context-based 

assessment of quality is more appropriate for determining data quality dimensions. In a 

five-year study reported by Lee in 2003,(22) experienced practitioners solved data quality 

problems by analyzing the context of the data and defining data quality dimensions. This 

study found that the practitioners were able to solve data quality problems by “reflecting 

on and explicating knowledge about contexts embedded in, or missing from, data.” This 

arduous process required years of expert review of the data to derive the quality 

dimensions for a single data set. 

A second, more objective way of defining data quality dimensions is the scientific 

approach. The scientific approach is design-oriented and attempts to align the quality 

dimensions of data with the data structures themselves.  A design-oriented definition of 

data quality can reveal the expected use of the information and because it is rooted in 

database theory, it has the potential to provide guidance to system developers.(11) The 

following four methods indicate efforts toward a more scientific methodology. 

An ontology-based approach to data quality focuses on system design without 

being source specific and identifies data deficiencies in terms of the difference between 

the real-world representation (identified by direct observation), and the inferred 

information system representation.  This analysis generates four data quality dimensions: 

complete, unambiguous, meaningful and correct.(12) The ontology-based approach is 

similar to the conceptual guidelines presented by Codd and the presentation of the 

definitions is rigorous. But the derivation of the dimensions is less than scientific and 

fails to give any concrete guidelines to developers.  



  

 

13 

A semiotic framework for data quality uses the linguistic theory of sign-based 

communications as a theoretical basis for defining data quality dimensions and deriving 

the quality criteria in each category. This framework generates three intrinsic data quality 

dimensions: syntactic, semantic and pragmatic.(23) The quality criteria for the syntactic 

and semantic groups are derived from business integrity rules and Wand and Wang’s 

ontology-based theories.(12) The pragmatic dimension is based on subjective measures. 

Unfortunately, the first two dimensions rely heavily on the preexistence of database 

metadata which is frequently unavailable or nonexistent, particularly for legacy systems. 

Early information systems generally did not consider metadata a part of the development 

process and more recent systems frequently only include it as an afterthought. Even when 

metadata can be found, they are often outdated and incorrect. 

Oliveira, Rodrigues and Henrigues present a taxonomy of data quality problems, 

organized by level of database granularity from the lowest level of a single attribute to the 

highest level of multiple data sources. The significance of this taxonomy is that it is based 

on the fundamental relational model for database management and is expressed using 

relational algebraic notation. At the four levels of granularity—attribute, table, database 

and multiple source—this approach details specific data quality problems related to the 

data quality dimensions of completeness, consistency and accuracy.(24) This is a data-

centric methodology and comes closest to using a scientific approach to provide tangible 

data quality dimensions. However, it strays from scientific rigor in an attempt to be all 

inclusive of a wide variety of data quality problems. 

Finally, the amount of data available on the World Wide Web (WWW) has lead to 

the development of semantic web technologies to manage the quality of data published in 
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online networks. Fürber and Hepp propose the use of a “domain-independent machine-

readable conceptual model for data quality management in the form of an ontology.”(25) 

The requirements for this ontology are based on a series of questions which require the 

informant to know the content and context of the target database. The answers to the 

questions are then used to define the conceptual elements of the model, their properties 

and the associated rules. Currently, this approach has only been tested on a very small 

dataset and lacks a sufficient vocabulary to provide a tool for data quality management on 

the WWW.  

Despite the growing volumes and complexity of large analytic data repositories, 

there is very little consensus on usable data quality dimensions and much of the research 

literature on data quality rules remains theoretical. While most authors identify similar 

problems, there is no general agreement on a pragmatic, design-oriented methodology for 

identifying data quality dimensions and rules.(26) 

A recently published book, “Data quality assessment,” by Maydanchik (7) fills a 

void for those in need of a practical guide for the definition of data quality rules and the 

development and implementation of a data quality assessment process. Although 

rhetorically unassuming, the content is technically complex. “Data quality assessment” 

provides clear guidelines for identifying and implementing data quality rules in a large 

database. Based on decades of experience with large data sets, Arkady’s book focuses on 

data quality assessment, “the process of identifying data problems and measuring their 

magnitude and impact on various data-driven business processes.” He devotes five 

chapters to data quality rules and groups them into the following categories: 

• Attribute domain constraints 
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• Relational integrity rules 

• Rules for historical data 

• Rules for state-dependent objects 

• Attribute dependency rules 

These rules provide the foundation for a data quality assessment process, an 

integrated metadata repository and a data quality scorecard. The data quality scorecard is 

the end result that merges the various components of the data quality assessment. 

The question remains as to whether this type of data quality assessment is 

applicable to medical data. In a study examining the feasibility of using the data available 

from a computerized patient record to support point-of-care decision support for patients 

with community-acquired pneumonia, it was determined that the overwhelming source of 

error is free-text nurse charting. The study also notes that the dearth of computerized 

guidelines is related to the difficulty of retrieving clinically relevant data in a computable 

form and the need to validate the quality of data prior to the implementation of clinical 

guidelines. The authors mention that few studies focus on how to assess data quality in 

clinical data.(27)  

While the data quality of free-text remains a significant problem of its own, 

Intermountain’s AHR addresses the second obstacle to computerized guidelines by 

making clinically relevant data more available to researchers and clinicians. Many of the 

quality rules suggested by Maydanchik are directly applicable to data extracted from the 

source systems and the relational structures of the AHR. 

Hasan et al.(28) provide a quantitative analysis of the impact of poor data quality 

on clinical decision support systems. They propose future research to design controls to 
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detect and minimize data quality problems. One of their concluding goals is to define 

“realistic distributional and structural assumptions about the nature of patient data and 

errors.” This goal is consistent with the data quality rules suggested by Maydanchik and 

the taxonomy suggested in the following section of this paper. 

 

 



 

 
 

BACKGROUND 

Data Sources 

Intermountain Healthcare is a nonprofit, integrated healthcare delivery system that 

includes 22 hospitals, multispecialty clinics, InstaCare centers, lab services, homecare, 

hospice, a physician division and a health insurance service. It is a community-oriented 

organization with over 32,000 employees that serves the healthcare needs of Utah and 

southeastern Idaho.  

The EDW at Intermountain is comprised of data from most of Intermountain’s 

computer systems incorporating clinical, operational and financial systems. It is a 

relational database that includes over a terabyte of clinical data that is organized into 

source-specific data stores and clinical program datamarts. The AHR is contained within 

the EDW and includes data from the major clinical systems. The AHR is designed to be 

the trusted source of clinical data for research and quality improvement studies 

leveraging all of Intermountain’s data assets and expert knowledge.  AHR data are 

integrated across source systems. It is cleaned, standardized and optimized for 

population-based analysis. The multifaceted nature of clinical data and its complex 

representations combine to make data integration a challenge.  

Four types of data quality violations are tracked and reported in the AHR:  

• structural constraint violations, e.g., a letter value where there should be a 

number, 
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• single-source rule violations, e.g., missing patient identifier, 

• multisource rule violations, e.g., BP on a deceased patient, 

• expectation violations, e.g., trending in lab values.  

The specific data quality rules are established on a case by case basis. 

One of the primary sources of inpatient data for the AHR is the HELP system. 

One of the first computerized health information systems, HELP was installed at LDS 

Hospital in the late 1960s. It is currently in place at all Intermountain facilities and has 

evolved to become a complete knowledge-based patient care system. HELP data are used 

for the Lab, Vital Sign, Clinical Assessment, Problem and Encounter Blocks in the AHR. 

The hospital admission, transfer and discharge (ADT) data that originate in the HELP 

system are extracted from the EDW and transformed and loaded into the AHR Encounter 

Block. In the AHR, this dataset is formatted to include the date and time each patient 

entered a room or department (Lab, ED, OR) during their hospital stay. This supports 

research involving questions such as, what is the average time a patient spent in the 

emergency department prior to admission for pneumonia. The ADT component of HELP 

has evolved over the years to meet many needs in many different ways. It not only 

records when a patient is admitted, transferred and discharged, but it has been used to 

preadmit patients, create fictitious beds to report overflow, and track miscellaneous 

charges.  There is over a terabyte of patient data in HELP. Therefore, it is a formidable 

challenge to insure that the data are correct. 

A second significant data source for the AHR is the Clinical Data Repository 

(CDR). The CDR was developed by 3M in conjunction with Intermountain Healthcare 

and serves as a longitudinal patient record incorporating clinical data interfaced from 



  

 

19 

both inpatient and outpatient systems. CDR data are used for the Lab, Rx Order and 

Problem Blocks in the AHR.  

The Sunquest Lab System is the third major source of AHR data. Sunquest 

consolidates the lab data for all of Intermountain Healthcare. The terminology is 

standardized across the system and extensive quality checks are in place to verify the 

validity of the data.  

Relational Databases 

The relational model was developed in 1970 by Edgar F Codd who implemented 

the model using relational calculus. Codd used set theory to represent data as 

mathematical relations. By using relational calculus, Codd was able to develop a flexible 

and succinct model.(29) 

In the relational model, a database consists of several tables each representing an 

entity. An entity is similar to a noun. It can be a person, place or thing. It is something 

that is distinct from other aspects of the real world.  Examples of an entity include 

Employee, Patient, Room, or Discharge Order.  

A table consists of one or more columns that uniquely describe the entity. A 

column is referred to as an attribute and an attribute is populated from a domain. A 

domain describes the set of possible values for a specific attribute. A table is also made 

up of rows, sometimes called tuples. Each row holds a database record. 

A relationship describes how two entities relate to each other. A relationship can 

be thought of as a verb. An example of a relationship is an Occupies relationship between 

the Patient and Room entities. 
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Entities and relationships can both have attributes. The attributes of a Patient 

entity could include gender, birth date, death date and blood type. The attributes of the 

relationship Performs between the entities Physician and Procedure could be start time, 

end time, patient name and room.(30) 

A candidate key is any attribute or set of attributes that uniquely defines a record. 

For example, in a Patient table both the Enterprise Master Patient Identifier (EMPI) and 

the Social Security Number (SSN) may be candidate keys. However, if a candidate key is 

composed of more than one attribute, any subset of the candidate key cannot also be a 

candidate key. Therefore, if the Account table has a compound candidate key of hospital 

and account number, then the account number by itself should not be a candidate key.  

A primary key is a special case of a candidate key. One candidate key can be 

selected as a primary key and the other candidate keys become alternate keys. No two 

rows can have the same primary key value. A primary key may be a surrogate key or a 

natural key. A natural key is a candidate key and as such, has some sort of meaning, such 

as SSN or EMPI. A surrogate key is assigned by the database system and is used solely to 

identify a record. Surrogate keys frequently mask otherwise redundant records.  

The concept of functional dependency is related to the primary key and is 

important to data quality. Functional dependency describes the relationship between 

attributes in a table. In the statement of functional dependency X —> Y, attribute Y can 

be said to be functionally dependent on the attribute X (the candidate key), if each value 

of X is associated with one, and only one, value of Y.(31) 
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A foreign key uses the primary key of one table to link it to the data in another 

table to allow cross-referencing. A foreign key can be self-referencing causing a recursive 

relationship within the table. This generally allows for greater flexibility in design. 

There is a specific relationship between tables based on cardinality. Cardinality 

specifies how many rows of an entity relate to one instance of another entity. For example, 

to be in the Patient table a person must have at least one hospital encounter. It is also 

possible that the same patient could have many encounters. Therefore, one row in the 

Patient table is related to one or many rows in the Encounter table. In this case, the 

cardinality between the Patient and Encounter tables is one-to-many. 

The process of organizing data in relational databases to minimize redundancy 

and enforce data integrity is called database normalization. To identify and eliminate 

anomalies, normalization decomposes relations to produce smaller, well-structured 

relations. Normalization usually involves dividing large tables into smaller (and less 

redundant) tables and defining relationships between them. The objective is to isolate 

data so that additions, deletions, and modifications to a field can be made in just one table 

and then propagated throughout the rest of the database via the defined relationships. This 

is done to avoid redundancy and inconsistencies. The process of normalization evokes 

specific levels of data integrity constraints aligned with the progressive levels of 

normalization. Each consecutive form is dependent on the validity of the prior form so a 

table that is in Second Normal Form is by definition, also in First Normal Form. A 

database is generally considered normalized, if it is in Boyce-Codd Normal Form.(32) 

• First Normal Form (1NF) – Multi-valued attributes are removed. All 

domains must contain only scalar values. The intersection of each column 
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and row should contain only one value. Consider the attribute, Diagnosis.  

If the field contains a single diagnosis, it is in 1NF. If it can contain the 

string, “HF, COPD, MI” it is not in 1NF. 

• Second Normal Form (2NF) – In 2NF, every non-key attribute must be a 

fact about the entire key. 2NF is relevant only if the candidate key is a 

composite key. Partial dependencies are removed. Partial dependencies are 

when one attribute can be removed from the candidate key and the 

dependency still exists. Consider a table of patient lab results. If the 

candidate key for the table is (EMPI, Collection Date, LOINC,(33) Lab 

Name) —> Lab Result, there is a partial dependency. Lab Name is 

dependent on LOINC. When Lab Name is removed from the candidate 

key, it becomes (EMPI, Collection Date, LOINC) —> Lab Result, the 

partial dependency is removed, and the table is in 2NF.  

• Third Normal Form (3NF) – This form removes transitive dependencies. 

No non-key attribute is dependent on another non-key attribute. For 

example, if EMPI —> (City, State, Postal Code) it is not in 3NF. (City, 

State) is transitively dependent on Postal Code. However, EMPI —> 

Postal Code is in 3NF.  

• Boyce-Codd Normal Form (BCNF) – This form expands upon the 

previous forms to include tables with compound keys, in which all 

attributes contribute to some candidate key. BCNF requires that the only 

determinants are candidate keys. Table 1 is an example of a table in 3NF 

that is not in BCNF.  



  

 

23 

Table 1, OR Schedule 

Room Start Time End Time Surgeon 

OR1 0700 1000 Dr Jones 

OR1 1000 1200 Dr Jones 

OR2 0700 0930 Dr Brown 

OR2 1000 1130 Dr Brown 

 

• Fourth Normal Form (4NF) – In 4NF there are no multivalued 

dependencies. Therefore, all attributes are functionally dependent on the 

candidate key. 

Designing for Data Quality in an Integrated Data Repository 

When designing and implementing an integrated data repository, there are three 

broad categories to consider in defining data quality constraints. 

• The data imported from the source systems  

• The structure of the destination repository  

• The data loaded into destination repository 

The constraints placed on data imported from source systems are defined by the 

preexisting table structures and primary keys. If a table does not have a primary key, it 

must be identified by analyzing the data. Ideally, an initial data quality assessment of the 

sources would include a data profile of the interdependencies within the data and an 
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assessment revealing preexisting data errors and their causes. In reality, this is an 

enormous task and seldom done, especially on very large historical datasets.(6) However, 

the most basic review of the source tables should identify the primary keys, foreign keys, 

attribute constraints, and update timestamps for the tables that contain the data of interest. 

Primary keys may be the source system’s surrogate key or a key that has been identified 

by analysis as defining unique records. Foreign keys define the table joins and the 

validity of these keys should be evaluated. The source system probably has preexisting 

rules defining constraints on the attributes of interest but additional constraints can be 

developed to minimize the import of unusable data. Tangentially related to data quality 

are the update timestamps. Not all sources have update timestamps and the validity of 

those that do cannot be guaranteed.  However, if the repository is going to be 

incrementally updated, it is essential to be able to identify new and modified records. 

The structures of the destination data repository should ideally be in Fourth 

Normal Form. This insures the consistency and integrity of the incoming data and illicits 

additional data quality constraints that should be applied to the incoming data. The 

normalization process used to decompose the source tables is a fundamental methodology 

that helps to insure data consistency.(34) Normalized tables provide a framework that 

facilitates the application of relational data integrity rules. 

By adhering to a semantic methodology in conceptually defining the tables and 

their primary keys, the structure of the database can provide another layer of quality 

assurance. For example, when bringing encounter data into the AHR, the source system 

defined the primary key for each encounter as the compound key, (Facility, Account 

Number). Account numbers could be duplicated in different facilities but not in the same 
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facility. This was validated in the source system (Table 2). In the AHR, the base 

Encounter table had a unique key constraint assigned to the candidate key, (EMPI, Entry 

Timestamp). This candidate key represents the concept that a person can only be one 

place at a time and all other attributes in the table should be functionally dependent on 

that key. The key constraint failed. The root cause was a batch update in the source 

system that had inadvertently duplicated rows and assigned another facility to the 

duplicate (Table 3). This demonstrated the importance of using a semantic model and 

normalization to identify the data integrity rules in the analytic repository. 

Data Quality Constraints 

In relational databases, data quality and consistency are maintained by the use of 

constraints. Constraints restrict the data that can populate an attribute and which rows are 

allowed within a table and database. Constraints can be applied to the attribute, table and 

 
 
 

Table 2, Source System Primary Key 

Facility ID Account No 

128 10028557 

132 10028557 

128 23244412 

144 23244412 

132 98843398  

118 98843398 
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Table 3, AHR Candidate Key Constraint Reveals Data Quality Problem 

EMPI Entry DTS Account No Facility ID 

40312311 01/03/2008 12:53  10028557 128 

40312311 01/03/2008 12:53  10028557 132 

47822312  11/12/2004 04:11  23244412 128 

47822312  11/12/2004 04:11  23244412 144 

32106629  01/03/2008 12:53  98843398  132 

32106629  01/03/2008 12:53  98843398 118 

 

 

database levels, and upon the integration of disparate sources. The integrity constraints 

for an integrated data repository can be loosely categorized into four groups: domain 

constraints, entity constraints, database dependency constraints, and integration 

constraints. Domain-level data quality problems are related to inconsistencies and errors 

in the actual data content. Entity level problems are also reflected in the attributes but can 

best be addressed by improved database design.  

• Domain constraints refer to constraints on the values of single attributes.  

o Optionality constraints prevent attributes from being null or using 

defaults as a substitute. 

o Acceptability constrains domain values to atomic, 

nondecomposable values. 

o Domain dependency constraints limit the values that can populate 

an attribute based on the domain definition. This can include: 
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 Format constraints, which define a specific format and 

limit the values to that format. 

 Business domain constraints, which represent a business 

decision about the values that are acceptable to a specific 

domain. 

 Precision constraints, which require that all numeric values 

use the prescribed number of decimals and that all 

date/time values are carried out to the same level of 

granularity.(7) 

• Entity constraints refer to constraints between attributes and rows within a 

single table and are related to relational integrity. There are four basic 

types of  entity constraints: 

o Entity integrity concerns the concept of a primary key and states 

that no primary key can be null. A primary key insures that each 

record in a table corresponds to one and only one real world entity. 

Surrogate keys are conceptually meaningless and frequently mask 

real-world duplicates. 

o Functional dependency (FD) describes the relationship between 

attributes in the same table. FD is when one attribute in a relation 

uniquely determines the value of another attribute. A candidate key, 

and therefore primary key, should uniquely determine the values of 

the attributes in that record. For example, if the Encounter Room 

entity has a candidate key (EMPI, Entry Timestamp), it is assumed 



  

 

28 

that a person can only be in one place at a time. It would therefore 

be a FD constraint violation for two records with the same (EMPI, 

Entry Timestamp) key to have different values for the Facility 

attribute. 

o Business rule constraints define the relationship rules between 

attributes within the same record. Within a record, a business rule 

constraint might dictate that a patient’s admit date must precede 

their discharge date. 

• Database constraints refer to constraints related to multiple tables within a 

database. 

o Referential integrity refers to the relationship between tables. 

Every reference between tables must be successfully resolved. 

When the primary key from one table is included in the attributes 

of another table, it is called a foreign key. Foreign keys join tables 

and create dependencies between them. Foreign key constraints 

insure referential integrity. 

o Cardinality rules constrain the number of related occurrences 

between entities, e.g., all Patients will have at least one Encounter. 

o Inheritance rules constrain the data that is involved in sub-type 

relationships, e.g., Person, Patient and Provider entities.(6) 

• Multisource integration constraints refer to rules related to the integration 

of multiple sources. The integration of multiple sources compounds the 

data quality problems present in a single system. Multiple sources may 
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contain similar data but in semantically and syntactically different formats. 

Data can overlap and disagree.  Functional dependency constraints must 

be resolved when multiple sources contribute attributes for the same 

candidate key. Data quality rules must manage three types of issues that 

can occur with overlapping data: 

o When multiple sources contribute the same attribute and the values 

agree, which will be the system of record? 

o When multiple sources contribute the same attribute and the values 

disagree, how will the situation be resolved? 

o When multiple sources contribute conflicting attributes for the 

same record, e.g., death date precedes hospital admit date, how 

will the situation be resolved? 

Data Quality Taxonomy 

According to the Montague Institute, “A taxonomy is a system for naming and 

organizing things into groups that share similar characteristics."(35) In their article, 

Oliveira et al. describe the benefits of a data quality taxonomy as including the ability to 

identify data quality problems that deserve further attention.(36) 

Table 4 presents a taxonomy specifically for an integrated data repository derived 

from the data quality constraints described previously in this paper. In the results section, 

this taxonomy will be compared to the data quality checks actually in place in the AHR. 
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Table 4, Constraints by Type and Granularity 

 
 
 

Constraints against the source systems’ data are usually imposed by means of 

filters and transformations in the ETL process. The domain constraint of optionality is 

utilized to filter out records in which the attribute of interest is null. The acceptability 

constraint can be met by parsing strings of concatenated values into scalar elements. 

Nonstandard formats can be transformed during the ETL process. Business domain 

constraints are enforced in a number of ways such as requiring that numeric values be in 

Type ID Constraint  Source 
System 

Repository 
Structure 

Repository 
Data 

D
om

ai
n 

D1 Optionality X X  

D2 Acceptability X X  

D3 Format X X  

D4 Business domain constraints X X X 

D5 Precision X X  

En
tit

y 

E1 Entity integrity X X  

E2 Functional dependency   X  

E3 Business rule constraints X X X 

D
at

ab
as

e 

DB1 Referential Integrity X X  

DB2 Cardinality  X  

DB3 Inheritance  X  

M
ul

tis
ou

rc
e 

 

MS1 Functional dependency   X 

MS2 Inconsistent duplicate values   X 

MS3 Conflicting attributes   X 
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a certain range or text values in a specific domain. Precision constraints need to be 

reviewed by business users in order to develop an acceptable management strategy. 

Entity integrity can initially be maintained by filtering out any records which don’t 

contain valid primary key values as defined in the source system. Functional 

dependencies can be identified in the source systems by complicated queries or data 

profiling tools but is best enforced by the table structures and constraints of the 

destination repository. Business constraints can be enforced on source data with simple 

queries as can the referential integrity violations. Both cardinality and inheritance 

violations are more easily identified and enforced in the destination repository. 

The normalized design of the destination repository should enable most all of the 

subsequent domain, entity and database constraints. The remaining business rule and 

domain constraints can be evaluated in the repository. Multi-source constraints are the 

final step in this simplified methodology. 

 

 



 

 
 

RESULTS 

The AHR currently resides within the framework of the EDW. Layer 1 of the 

AHR consists of supporting schemas within the EDW that function as operational data 

stores (ODS).  These schemas contains data from CaseMix (the billing, coding and 

financial data system), the Clinical Data Repository (CDR), HELP, the outpatient billing 

system (IDX), lab (Sunquest) and claims systems. Data from L1 are used to populate the 

L2 Blocks as described in Table 5. 

 

Table 5, AHR Sources and Blocks 
 

AHR BLOCK 
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Case Mix X          

CDR   X X X      

Sunquest   X        

HELP   X    X X X  

PHXDBA      X     

IDX X X         

CLAIMS X X         

PATIENT          X 
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Source System Data Quality Rules 

There is a multipronged approach to data quality in L2 of the AHR. Data quality 

rules are specified in a declarative fashion so as to be reusable for multiple sources and 

various stages. A workflow infrastructure exists to execute all data validation steps in a 

traceable, flexible and robust manner. There are three distinct sections for quality checks 

within the AHR:  

• Filters applied during the extracts from the source systems,  

• The semi-normalized L2 data structures that minimize redundancy and 

enforce data integrity, and    

• The checks run against the attributes that populate the L2 tables. 

The AHR updates its SRCTRACK entities daily. SRCTRACK was developed by 

Steven Catmull to keep track of changes (insert, update and delete) in the source systems. 

The SRCTRACK table has a subtype table for each source system. A complete 

inheritance relationship exists between SRCTRACK and the subtype tables, requiring 

that each supertype record has an associated record in one of the subtype tables.  Global 

problems that frequently affect data quality in the source systems have included: 

1. No primary key. 

2. Unenforced foreign key constraints. 

3. Unindicated changes to the source system’s structure and content.  

a. Structural changes, such as adding a new field, are usually picked 

up when they cause the downstream ETL to fail.  

b. Content changes, such as adding a new discharge code, frequently 

slip through unnoticed. 

http://dictionary.reference.com/browse/unindicated?qsrc=2446
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4. No field indicating when the data was last inserted or updated. 

Filters exist on the extract from the source systems to exclude records that are 

missing the primary key (E1), the EMPI (D1), or have out-of-range event dates (D4). 

After the update to the SRCTRACK system, a final set of quality checks verifies that all 

records that are logically deleted have a quality check recorded that instantiates the 

reason for the delete (DB1). 

Specific data quality checks done against the daily updates to SRCTRACK are 

table driven (see Appendix A). Table 6 contains a summary of data quality issues 

identified in the daily SRCTRACK load. 

 

Table 6, SRCTRACK Quality Checks 
 

SRCTRACK Quality Checks (Constraint ID) 
Patient's first name is null (D1) 
Patient's last name is null (D1) 
Patient's last name is unknown and is not null (D3) 
Birth date after today (D4) 
EMPI for test patient (D4) 
SRCTRACK event date is too early or after todaya (D4) 
Birth date prior to 1850 (D4) 
Birth date is after death date (E3) 
EMPI not in PATIENT table (DB1) 
EMPI not used in a billing or clinical systemb (DB1) 
EMPI reconciled to a new identifierc (MS3) 
Event date after the death date of the patient (MS3) 
Event date prior to the birth date of the patient (MS3) 

 
aToo early is defined as prior to 1994. 
bThe EMPI has been reconciled to a new EMPI but the source system uses the old EMPI. 
cEMPI is found in the PATIENT table but not in any of the source systems. These records 
are logically deleted so the EMPI will not be used in clinical cohorts. 
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AHR Block Quality Rules 

The AHR runs a weekly full refresh of the data that populates its L2 Blocks. The 

data quality checks done during the weekly full refresh of the L2 Blocks are hard-coded, 

in-stream quality checks (see Table 7). The greatest proportion of quality checks involves 

domain constraints, functional dependency violations, business rule violations and 

integration inconsistencies.  

Table 8 presents a comparison of the number of data quality constraints that are 

currently in place in L2 of the AHR with the Data Quality Taxonomy presented earlier. 

There are no AHR rules listed for domain acceptability (value is constrained to atomic, 

non-decomposable values), domain precision, cardinality or inheritance rules for data that 

are involved in sub-type relationships.  
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Table 7, Block Quality Checks 

Domain Constraint Violations (Constraint ID) 
Provider ID is null (D1) 
Reported value is null (D1) 
Lab result date and time null (D1) 
Problem ID is null (D1) 
Medication ID is null (D1) 
Room Code is null (D1) 
Place of service is not numeric (D3) 
Lab result is not numeric (D3) 
Numeric result is outside of allowable range(D4) 
Account is marked as a junk account (D4) 
Entity Constraint Violations (Constraint ID) 
More than one final result for a lab test (E2) 
More than one result for vital sign (E2) 
More than one service type in the same claim (E2) 
More than Provider ID on a claim (E2) 
Patient in two or more rooms at the same time (E2) 
Multiple entry/exit for a room encounter (E2) 
Multiple results (by LOINC) for same test from single source and values differ (E2) 
Excessive time elapsed from ADT occurrence to data entry (E3) 

       

           

Database Constraint Violations (Constraint ID) 
Provider ID not found in reference data (DB1) 
Unrecognized CPT4 Code Used (DB1) 
Unrecognized ICD9 DX Code Used (DB1) 
Multi-Source Violations (Constraint ID) 
Multiple results for same test from multiple sources and the values agree (MS1) 
Multiple results for same vital from multiple sources and the values agree (MS1) 
Multiple results for same test from multiple sources and the values differ (MS2) 
Multiple results for same vital from multiple sources and the values differ (MS2) 
Patient not alive when transferred into room (MS3) 
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Table 8, Count of Quality Rules in the AHR 

 

Type ID Rule Count Constraint  
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D1 8 Optionality 

D2 0 Acceptability 

D3 3 Format 

D4 6 Business domain constraints 

D5 0 Precision 
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 E1 1 Entity integrity 

E2 7 Functional dependency  

E3 4 Business rule constraints 
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DB1 5 Referential Integrity 

DB2 0 Cardinality 

DB3 0 Inheritance 

M
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MS1 2 Functional dependency 

MS2 2 Inconsistent duplicate values 

MS3 4 Conflicting attributes 



 

 
 

DISCUSSION 

In their article, An Ontology-Based Approach for Data Cleaning, Oliveira et al. 

conclude that “a completely automated system that receives dirty data, detects and 

corrects the problems, and produces clean data without user intervention, is impossible to 

achieve.”(36) However true this may be, the data quality taxonomy presented in this 

thesis illustrates that a significant number of data quality constraints can be addressed by 

a well-designed conceptual data model. Business rules will always require user input. But 

many business rules can be captured in the data models and translated into data integrity 

constraints. A hybrid approach to the development and implementation of a data quality 

program will most likely involve a mixture of user input and automated rule generation. 

AHR Data Quality Shortcomings 

The data quality of the AHR is still far from perfect and it is a challenge to 

anticipate the different ways in which end users may need to query the data. The specific 

quality areas that are not adequately addressed by the AHR constraints include domain 

level acceptability, precision, cardinality and inheritance.  

• Domain level acceptability is defined by 1NF as the requirement that 

attributes be atomic and scalar. The blocks in L2 of the AHR were 

designed with that basic requirement in mind and a majority of the data 

currently imported is scalar. However, there are non-scalar values and free 
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text records in a few fields (e.g., room code and problem) that have been 

loaded into the AHR and rules should be developed to deal with this.  

• Precision has been a problem in the AHR and some convoluted strategies 

have evolved to identify and correct this issue. With end user input, these 

approaches can be standardized and applied to all numeric attributes to 

identify and, if possible, correct the imprecision.   

• Cardinality is used in loading the Patient table to exclude persons for 

whom no clinical data exists. Cardinality rules can be elicited from 

business users or identified by an analysis of the relationships in the 

source data. Generally, each relationship will have two cardinal rules.(6) 

• Inheritance refers to the requirement that each sub-type record must have a 

record in the super-type table and conversely each super-type record must 

participate in at least one sub-type entity. The classic example of this in 

the healthcare setting is between the entities Person, Patient and Provider. 

Every person is a patient, a provider, or both. Any Person record not found 

in either the Patient or Provider entity is either incorrect or indicates a 

missing Patient or Provider record. Although the AHR has not used 

cardinality constraints, their applicability should be evaluated.  

Data Quality Taxonomy Shortcomings 

The data quality checks listed in the taxonomy do not always address the causes 

of the constraint violations. Frequently, it is not obvious which data element has triggered 

the violation. Knowing the exact location of the error is important regardless of whether 
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the record is eliminated or corrected. The taxonomy is only a starting point. Techniques 

should be developed to identify false positives (records that prove to be correct), false 

negatives (errors that are missed by the data quality constraints) and uncertainties in 

which the exact location of the error is not clear.(6) 

Other data quality areas not covered by the taxonomy include quality issues 

related to historical data, the complex topic of state-dependent objects,(7) and trending 

violations for specific attribute values. All of these areas can contribute significantly to 

problematic data especially in datasets that are too large for manual overview. 

Data Quality Technologies 

“Every data quality management guru will tell you that data profiling is the first 

step towards better information quality. Every data warehousing professional knows that 

you must profile the source data before implementing a new BI application. A data 

migration consultant will place data profiling on the first page of the project plan. Master 

data management starts with data profiling and it is a cornerstone of any metadata 

repository.”(37) Data profiling is a series of techniques used to analyze a data source to 

understand its content. It generates information that can be used to evaluate the quality of 

the data, update preexisting metadata and models that describe the data, and understand 

the risks inherent in the data source. Basic types of data profiling include attribute 

profiling, relationship cardinality profiling, and dependency profiling. Data profiling can 

be done manually but many vended tools are currently on the market and should be 

evaluated for use in conjunction with the AHR. 
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Master Data Management (MDM) technology combined with a robust data 

quality program could significantly help in the maintenance of the domain constituents of 

the AHR. In an Internet article on MDM, Dan Power recommends, “profiling the 

individual source systems” and using “the selected data quality tool as a staging area and 

filter for loading the MDM hub.”(38) Terminology and domain management are areas 

that could be addressed within the context of MDM technology. 

A data quality taxonomy could evolve into an ontology and be used in 

conjunction with a rules engine to semi-automate the detection and resolution of data 

quality problems. The application of a table-driven rules engine to the data validation 

process would increase its flexibility, facilitate the identification and implementation of 

new rules, and support a more sophisticated data quality program. 



 

 
 

CONCLUSION 

Secondary use of Electronic Health Records (EHR) is increasingly important for 

clinical research. As more institutions port this information into clinical warehousing 

environments and federated database systems, clear and effective rules for insuring 

adequate data quality become essential. In a recent article on the data quality issues 

encountered in the use of secondary EHR data for a survival analysis of pancreatic 

cancers, the authors note that, “Effective strategies for secondary use of EHR data could 

also be accumulated from case studies and shared with the research community as the 

best practices.”(39) 

Experience gained in identifying data quality issues in the AHR indicates that 

many errors can be identified by the application of relational data integrity constraints 

both to the raw data as it is imported from the source systems and to the new data 

constructs within the integrated data repository. 

In this paper, a data quality taxonomy for an integrated data repository is 

presented. The taxonomy is based on relational database theory and provides a foundation 

for identifying and grouping data constraint violations. It builds in granularity from the 

attribute level on up to the multisource database level and aligns the described violations 

with the concepts explicated by normal form theory. 

The data quality rules applied to data coming into the AHR were originally 

designed in a heuristic manner by developers who had significant experience with the 
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source systems. The original AHR rules are listed in this paper and subsequently grouped 

within the taxonomy. It is noted that a significant amount of problematic data is excluded 

from the AHR at the onset by filtering out records that do not meet basic entity integrity 

requirements (i.e., they do not have a primary key). Good coverage by the AHR rules can 

be noted in several areas including domain optionality, business rules, functional 

dependency and multi-source inconsistencies. The areas that are not well covered by the 

AHR rules include domain level acceptability, precision, cardinality and inheritance. In 

those areas, a more rigorous data quality methodology should be explored.  

This comparison between a data quality taxonomy designed for an integrated data 

repository and the data quality rules developed for the AHR demonstrates the benefits of 

a structured approach to data quality rule identification. 

 



 

 
 

APPENDIX  

The data structures (see Figure 2) of the AHR Quality Checks revolve around a 

primary table, the Quality Check table that contains the information relevant to specific 

data quality constraints (see Table 9). The Quality Level table (see Table 10) contains 

information on the original Quality Levels recommended by Jason Jones for inclusion 

with the Quality Checks. Quality Message records are generated by the data constraints 

run during the ETL and identify the quality violation, the source of the error and the date 

the error was detected. 

 

 

 

 

Figure 2, Entity-Relationship Diagram for the AHR Quality Check 
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Table 9, Quality Check Table 

Attribute Description 

Quality_Id Primary Key 

Stage_Nm The ETL stage in which the quality check runs 

Stage_Seq_No Within the ETL stage, the order the quality check occurs 

Schema_Nm The schema from which the ETL job originates 

Table_Nm The primary table for the quality check 

Prmry_Field_Nm The primary field for the quality check 

Quality_Level_No Foreign key from the Quality Level table (see Table 13) 

Action_Cd Action triggered by the quality violation (Warn, Reject) 

Message_Txt The reporting message associated with this quality check 

Status_Cd Status of the Quality Rule (Active, Inactive, In Dev) 

Key_Column The primary key on the primary table with the violation 

Sql_Txt SQL for the quality check 

Last_Update_Dts Most recent date and time the quality check was edited 

 

Table 10, Quality Levels 

Quality Level  Description 

QL1 Structural Constraint Violations - violate basic database constraints  

QL2 Single-Source Context/Rule Violations - violate expected rules in a 
single source 

QL3 Multiple-Source Violations - cross-source integrity violations 

QL4 Expectation violations - trending violations 
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Table 11, Quality Message Table 

Attribute Description 

Quality_Id Primary Key  

Srctrack_Id Primary Key 

Insert_Dts The date and time the quality violation was identified 
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