
AN EULERIAN ONE-DIMENSIONAL TURBULENCE MODEL:

APPLICATION TO TURBULENT AND MULTIPHASE

REACTING FLOWS

by

Naveen Kumar Punati

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Chemical Engineering

The University of Utah

August 2012



Copyright c© Naveen Kumar Punati 2012

All Rights Reserved



T h e  U n i v e r s i t y  o f  U t a h  G r a d u a t e  S c h o o l  
 
 
 

STATEMENT OF DISSERTATION APPROVAL 
 
 
 

The dissertation of  

has been approved by the following supervisory committee members: 

 

 , Chair  
Date Approved 

 , Member  

 
Date Approved 

 , Member  

 
Date Approved 

 , Member  

 
Date Approved 

 , Member  

 
Date Approved 

 

and by  , Chair of  

the Department of  

 

and by Charles A. Wight, Dean of The Graduate School. 
 
 

Naveen Kumar Punati

James C. Sutherland 01/04/2012

Philip J. Smith 01/04/2012

Alan R. Kerstein 01/04/2012

Sean T. Smith 01/04/2012

Rodney C. Schmidt 01/04/2012

JoAnn Lighty

Chemical Engineering



ABSTRACT

This dissertation presents the development and validation of a variant of the One Di-

mensional Turbulence model (ODT) in an Eulerian reference frame. The ODT model solves

unfiltered governing equations in one spatial dimension with a stochastic model for turbu-

lence. The stand-alone ODT model implemented for this work resolves the full range of

length and time scales associated with the flow, in 1D, with detailed chemistry, thermody-

namics and transport in the gas phase.

The model is first applied to a planar nonpremixed turbulent jet flame and results

from the model prediction are compared with DNS data. Results indicate that the model

accurately reproduces the DNS data set. Turbulence-chemistry interactions, including trends

for extinction and reignition, are captured by the model. Differences observed between

model prediction and data are the result of early excess extinction observed in the model.

The reasons for the early extinction are discussed within the model context. A parameter

sensitivity is also done for the current model. Simulations are performed over a range

of jet Reynolds numbers for reacting and nonreacting configurations. Results from the

simulations are compared with DNS and experimental data for reacting and nonreacting

cases, respectively. Based on the identified sensitivity an empirical correlation is proposed

and conclusions are drawn about the parameter estimation.

The model is also applied to a planar premixed turbulent jet flame and results from the

ODT simulations are compared with DNS data. Two different Da cases are considered in

the study and comparisons between the model and DNS data in physical space are shown.

Results indicate that the model qualitatively reproduces the DNS data set. Mixing is well

captured by the model and the quantitative differences observed between model and data for

thermochemistry are due to the curvature effects in the data. The reasons for the differences

observed are discussed within the model context.



The model is then extended to simulate a coal gasification process. A Lagrangian track-

ing model is implemented for the particles, which are two-way coupled with the gas phase

in the mass, momentum, and energy balance equations. A novel modeling technique is im-

plemented for the particle-eddy interaction. For the coal particles, models are implemented

for moisture vaporization, devolatilization of the raw coal and oxidation of the residual char.

For this work, we consider the Chemical Percolation Devolatilization (CPD) model, which

provides production rates of various gas-phase species during the devolatilization process.

First a nonreacting particle laden jet simulation is performed and the results are compared

with available experimental data. Results indicate that model qualitatively captures the par-

ticle size influence on the dispersion behavior. For the coal gasification, simulation results

are presented in the near field region of the jet. The model indicates that particle size has

a significant influence on the initial heat up, vaporization and devolatilization processes.
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CHAPTER 1

INTRODUCTION

The conversion of chemical energy to sensible energy (heat) via a combustion process in

a turbulent flow environment is necessary to meet ever-increasing energy demands. Combus-

tion devices of practical interest include internal combustion engines, stationary and aircraft

gas-turbine combustors, and industrial burners. The number of combustion systems used in

the power generation and transportation industries are growing rapidly. This induces pol-

lution and environmental problems to become critical factors in our societies. Combustion

systems need to be operated such that the combustion reactions are brought to completion

with a minimum of pollutants being formed. An accurate prediction of the essential physical

and chemical properties of the combusting systems is important to achieve the two main

objectives, optimization of combustion efficiency and the reduction of pollutants. In fact,

turbulent combustion systems involve many phenomena and processes, such as turbulence,

mixing, mass and heat transfer, radiation, and multiphase flow phenomena, which strongly

interact. Their relative role depends on both the configuration and operating conditions.

Turbulent combustion systems are often discussed in terms of the characteristic time

scales required for mixing and reaction. If the mixing time scale (τm) is much higher the

chemical time scale (τc) the assumption of fast chemistry (local chemical equilibrium) can be

made. It is an assumption which introduces an important simplification, since it eliminates

many parameters, those associated with chemical kinetics, from the analysis. This global

comparison of time scales, however, may not be sufficient in turbulent flows where local

diffusion time scales vary considerably. The fast chemistry assumption is then locally not

valid and nonequilibrium effects must be taken into account. If the average diffusion time

scale approaches the order of magnitude of the chemical time scale, local quenching will

occur. A further reduction of diffusion time scales then leads to lift-off and even blow-
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off of the entire turbulent flame. But already in globally stable flames the variation of

diffusion time scales may interact selectively with the different chemical processes occurring

in the system. Their chemical time scales may be quite different. For instance, the time

required for combustion and generation of heat is much smaller than the time required for

the formation of pollutants such as NOx and soot. Controlling of the time scales within the

nonequilibrium range plays an important role in meeting the opposing requirements of fuel

burnout, stability and low pollutant emission.

“There is an axiom in physics which states that the simplest solution is usually the

correct solution” [96]. In that vein, scientists often search for a simple, practical theory

which will yield quantitative results for realistic problems in a relatively short time. For an

excess of one hundred years physicists, mathematicians, and engineers have been searching

for just that. However, a simple quantitative theory of turbulent combustion has not been

identified [116]. No one can tell the future, but the likelihood of such a theory seems

very distant in time. The scale-up from laboratory scale to industrial equipment is often a

major problem, and it is often done by relying on experimental data and experience. The

prediction of efficient operating conditions often based on empirical correlations, which tends

to be unreliable. In the absence of a simple qualitative theory, the emphasis is on computing

properties of turbulent combustion flows on computers.

This work is intended to develop a numerical model, which will capture enough of

the essential physics to predict quantitatively the turbulent combustion systems yet to be

simple enough to be able to solve problems of practical interest. This chapter is organized as

follows. First a brief introduction to computational fluid dynamics, gas phase combustion,

turbulence models and coal combustion is given followed by the description of modeling

technique adopted for the present work. This chapter concludes with an outline of the

dissertation.

1.1 Computational Fluid Dynamics

The philosophical study and development of the whole discipline of fluid dynamics

is evolving with time. In the seventeenth century, the foundations of experimental fluid
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dynamics were laid in France and England. The eighteenth and nineteenth century saw the

gradual development of theoretical fluid dynamics. For most of the twentieth century the

study and the practice of fluid dynamics involved the use of pure theory on the one hand and

pure experiment on the other hand. The advent of the high speed digital computer combined

with the development of accurate numerical algorithms for solving physical problems on these

computers has revolutionized the way we study and practice fluid dynamics today. It has

introduced a fundamentally important new third approach in fluid dynamics- the approach

of computational fluid dynamics (CFD) [2]. In the present era CFD is an equal partner with

pure theory and experiment in the analysis and solution of fluid dynamics problems and will

continue to play this role indefinitely, for as long as out advanced human civilization exists.

CFD is simply a new approach-but nothing more than that. It nicely complements the

other approaches, pure theory and pure experiment, but will never replace either of these

approaches.

Fluid flow and related phenomena can be described by partial differential equations,

which cannot be solved analytically except in special cases. In CFD, to obtain an approxi-

mate solution numerically, a discretization method is used which approximates the differen-

tial equations by a system of algebraic equations, which are then solved on a computer. The

approximations are applied to small domains in space and/or time so the numerical solution

provides results at discrete locations in space and time. When the governing equations are

known accurately solution of any desired accuracy can be achieved in principle. However, for

many phenomena (e.g., turbulence, combustion, and multiphase flow) the exact equations

are either not available or numerical solution is not feasible [33]. This makes introduction of

models a necessity. Even if we solve equations exactly, the solution might not be a correct

representation of reality. In order to validate the models, we have to rely on experimental

data.

1.2 Gas Phase Combustion

Webster’s dictionary defines combustion as “rapid oxidation generating heat, or both

light and heat; also, slow oxidation accompanied by relatively little heat and no light.”
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Combustion is very complex and understanding the underlying chemical processes is essential

in building more efficient systems. In many combustion processes chemical reaction controls

the rate of combustion, and, in essentially all combustion processes, chemical rates determine

pollutant formation and destruction. Ignition and flame extinction are intimately related to

chemical processes. The study of the elementary reactions and their rates, chemical kinetics,

is a specialized field of physical chemistry. Much progress has been made in understanding

the combustion because the chemists have been able to define the detailed chemical pathways

(for simple fuels) leading from reactants to products, and to measure or calculate their

associated rates [1, 65]. With this knowledge, combustion scientists and engineers are able

to construct computer models that simulate reacting systems.

Combustion can be categorized into two different regimes based on mixedness of the

reactants, i.e., premixed and nonpremixed [116]. If one looks at the complete range of

the systems wherein turbulence and chemistry interact, one will find that many of the so

called “mixing-sensitive” systems involve liquids or gas-phase reactions with modest density

changes. For these systems, a key feature that distinguishes them from classical combusting

systems is that the reaction rates are fast regardless of the temperature (e.g., acid-base

chemistry). In contrast, much of the dynamical behavior of typical combusting systems is

controlled by the fact that the reactants do not react at ambient temperatures. Combustion

thus can be carried out in either premixed or nonpremixed modes, while mixing-sensitive

reactions can only be carried out in nonpremixed mode [34].

1.2.1 Premixed Combustion

In a premixed flame, the fuel and oxidizer are mixed at the molecular level prior to the

occurrence of any significant reaction. Fresh gases, fuel mixed with oxygen, and combustion

products are separated by a thin reaction zone [119]. A strong temperature gradient exists

between the fresh and burnt gases. In premixed flames the flame propagates towards the

fresh gases. Because of the temperature gradient and the corresponding thermal fluxes, fresh

gases are preheated and then start to burn. The most striking features of the premixed

flames are counter-gradient diffusion and the large production of turbulent energy within
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the flame [80]. Both these phenomena result from the large density difference between

reactants and products and from the pressure field due to volume expansion. In applications,

because of the explosion hazard, premixing is generally avoided. Nevertheless, there are

several important applications of turbulent premixed combustion; the principal one is the

(homogeneously charged) spark-ignition engine. Other examples are reheat systems in jet

engines, industrial tunnel burners, and gaseous explosions in a turbulent atmosphere.

1.2.2 Nonpremixed Combustion

In a nonpremixed flame, the reactants are initially separated, and reactions occur only

at the interface between the fuel and oxidizer, where mixing and reaction both take place.

Contrary to the premixed flame, in nonpremixed flames fuel and oxidizer are on both sides

of a reaction zone where the heat is released. The burning rate is controlled by the molecular

diffusion of the reactants toward the reaction zone (diffusion is the rate-controlling step); that

is why nonpremixed flames are also referred as diffusion flames. The term diffusion applies

strictly to the molecular diffusion of chemical species, i.e., fuel molecules diffuse towards the

flame from one direction while oxidizer molecules diffuse toward the flame from the opposite

direction. The turbulent convection mixes the fuel and air together on a macroscopic basis,

whereas molecular mixing at the small scales then completes the mixing so that the chemical

reactions can take place. Diffusion flames are mainly mixing controlled and the thickness of

a diffusion flame is not a constant, but depends on the local flow properties. An example of

a diffusion flame is a simple candle.

1.2.2.1 Extinction

Efficient mixing is critical in nonpremixed combustion, because molecular mixing of

reactants is necessary to allow chemical reaction. High molecular mixing rates characteristic

of turbulent flows enhance reaction rates, and thereby improve combustion efficiency. How-

ever, the interaction of finite-rate chemistry with excessive mixing rates (τm < τc) can lead

to local extinction. Following this, local regions of fuel and oxidizer can mix and coexist

without significant reaction, and may later reignite.
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Extinction may lead to increased harmful emissions, and if pervasive, to flame desta-

bilization or blowout. Understanding the intimate coupling between turbulence, molecular

mixing, and finite-rate reaction is paramount to predicting the behavior of nonpremixed

combustion processes.

1.3 Turbulence

The governing equations describing the fluid flow phenomena can be found in many of

the sources [9, 81]. The complex behavior of the Navier-Stokes equations has two general

categories, one in which the viscous forces are extremely large, called laminar flow, and one

in which the inertial forces are extremely large, called turbulence. The physics Nobel prize

laureate Richard P. Feynman referred to turbulence as one of the last unsolved problems

in physics. Many scientists have devoted their lives to studying turbulence and as such the

volume of work on the subject is quite extensive.

Turbulent flows are highly unsteady, three-dimensional and contain a great deal of

vorticity. Stretching of vortices is one of the principal mechanisms by which the intensity

of turbulence is increased [81]. Turbulence increases the rate at which conserved quantities

are stirred. Stirring is a process in which parcels of fluid with different concentrations of

at least one of the conserved properties are brought into contact. The actual mixing is

accomplished by diffusion. Nonetheless, this behavior is often called diffusive. Turbulence

brings fluids of differing momentum content into contact. The reduction of the velocity

gradients due to the action of viscosity reduces the kinetic energy of the flow; in other words

mixing is a dissipative process. The lost energy is irreversibly converted into internal energy

of the fluid. It has been shown that turbulent flows contain coherent structures: repeatable

and essentially deterministic events that are responsible for a large part of mixing [81].

However, the random part of turbulent flows causes these events to differ from each other in

size strength, and time interval between occurrences, making study of them very difficult.

Turbulent flows fluctuate on a broad range of length and time scales.

The nonlinear terms in the Navier-Stokes equation and the pressure term make turbu-

lent fluid flows difficult to solve even on the fastest computers [81]. With this in mind people
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have made simplifications commensurate with what their needs and available tools (such as

computer speed) were. Different people have different ways of categorizing ways of modeling

turbulence. Based on the computational cost associated turbulence models can generally be

classified into three groups: direct numerical simulation (DNS) models, Reynolds-averaged

Navier Stokes (RANS) equation models, and large eddy simulation (LES) models [81].

1.3.1 Turbulence Models

As described in Section 1.1, the strategy in CFD is to approximate the continuous

character of the flow and fluid properties with a discrete set of data. These data are dis-

tributed across a computational domain and are mapped to spatial and temporal locations

of the physical problem of interest. When enough spatial and temporal points are used to

capture the smallest motions of the flow it is said that we are performing a DNS of the

Navier-Stokes equations. DNS also utilizes high-order numerical methods to marginalize

the impact of numerical error on the simulation results and also minimizes modeling error.

Therefore DNS is a standard to which other turbulence models can be compared. In order

to obtain the representation of the instantaneous velocity as a function of position (3-D) and

time DNS must resolve all scales to the smallest (Kolomogorov) length scale [81]. Although

the computational cost of such a calculation restricts DNS to small Reynolds numbers and

simple geometries, considerable work has been done with respect to incorporating complex

chemical kinetics and studying flame turbulence interaction [21,22] using this method.

LES utilizes a ‘filtered’ velocity field to obtain the flow simulation. The LES strategy

is to resolve scales far enough below the flow-dependent energy-containing scales so that the

unresolved motions are within the inertial subrange, whose properties are presumed to be

universal [94]. The fundamental questions about the conceptual foundations of LES, and

about the methodologies and protocols used in its application are discussed by Pope in [82].

In LES the grid is not fine enough to capture all the energy containing motions, hence a

substantial portion of the energy is in the Subgrid Scale (SGS). Models are required for the

SGS and a LES simulation is a priori more dependent on the SGS modeling than a DNS.
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RANS is the oldest and probably the most widely used of the methods for modeling

industrial scale problems. Once the Navier-Stokes equations are Reynolds averaged there

appear in the equations more terms than there are constitutive equations. Information about

the turbulent fluctuations is lost in the averaging process, leading to the classic “closure

problem" in turbulence. For detailed discussion on methods for solving the RANS closure

problem please refer to [81]. RANS has been the CFD strategy for engineering applications

for the last 30 years and to this day continues to be the most common way to solve problems

with complex geometry.

1.4 Coal Combustion and Gasification

Coal as an energy carrier plays an important role in the energy market and is a difficult

fossil fuel to consume efficiently and cleanly. Compared with other fossil resources, coal has

much greater reserve and involves lower costs, and so, is expected to remain an essential

energy resource into the 21st century. One principal user of coal is the power plant, where

pulverized coal combustion has become the generally accepted combustion system because of

its excellent capacity to increase power production [7]. The combustion of pulverized coal is

a complex process, involving coupled effects among heat and mass transfer, fluid mechanics,

and chemical kinetics.

Coal gasification offers a versatile and clean method for converting coal into gaseous

fuel. In entrained flow gasifier, coal or coal slurry particles are usually injected into the

furnace with pure oxygen at a high speed. Usually gasification process is carried out at high

pressures and temperatures. The elevated pressure and high temperature in the gasifier

guarantees a high carbon conversion in a short residence time. Under these conditions,

the coal is broken apart into a gaseous mixture of CO and H2, which compose syngas

fuel, the primary product of coal gasification, along with other products, such as CO2 and

H2O. In addition to producing combustible gaseous fuel, coal gasifiers are also more efficient

than traditional coal-fired boilers, both in thermal conversion of energy and in power cycle

design. The gasification process in an entrained flow coal gasifier is very complex. A series of

physical and chemical processes happen on the coal slurry particles, such as evaporation of
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water, pyrolysis of coal, and heterogeneous coal char reactions. At the same time, there are

strong coupling effects among turbulent fluctuation, chemical reactions, and heat transfer

to particles. Especially, temperature and local velocities have a strong influence on these

coupling effects, which makes the controlling mechanism and turbulent fluctuation effects

change at different regions of an entrained flow gasifier.

The coal combustion/gasification systems are turbulent and multiphase (solid-gas cou-

pling) in nature. Both homogeneous and heterogeneous reactions occur in these systems.

Modeling of such a complicated system needs accurate modeling of subprocesses. However

nonlinear coupling occurring across a multitude of length and time scales in these systems

poses a formidable challenge for accurate modeling. Even with the modern day computers,

resolving the entire physics of the problem remains unfeasible.

1.5 One-Dimensional Turbulence Model

Section 1.3.1 described the different turbulence models employed for the study of

turbulent and multiphase combustion phenomena. In 1999, Kerstein developed the One-

dimensional turbulence model [58]. As the name suggests in ODT the domain is restricted

to 1D and the one dimensional line represents a line of sight through a three dimensional

turbulent flow field. ODT simulates the evolution of fluid flow by completely resolving all

the spatial and temporal scales along this line. In a loose sense, ODT is a one-dimensional

surrogate for DNS. Being 1D, however, it does not suffer from the “curse of dimensionality"

which makes DNS intractable for even modestly turbulent flow [69]. The distinctive feature

of the model is the representation of turbulent advection by a postulated stochastic process

rather than an evolution equation and the key attribute is computationally affordable res-

olution of viscous scales in fully developed turbulence. However ODT is applicable only to

flows that are homogeneous in at least one spatial coordinate. Many flows of fundamental

interest and practical importance are of this type.

ODT is an outgrowth of the linear-eddy model (LEM). In LEM, flow properties are

specified empirically by assigning parameters governing the random event sequence. There is

no provision for feedback of local flow properties to the random process governing subsequent
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events. In contrast, ODT is formulated to capture this feedback with minimal empiricism. In

this regard, ODT is both a turbulence model and a methodology for fully resolved simulation

of mixing, chemical reaction, and related scalar processes in turbulence. The latter capability

is a key feature distinguishing ODT from conventional turbulence models (LES and RANS)

that require the incorporation of mixing submodels in order to treat scalar processes.

The distinguishing features of ODT are its scope, simplicity, minimal empiricism, and

capability to incorporate complex molecular processes (variable transport properties, chem-

ical reactions, etc.) without introducing additional approximations [58]. Because ODT is

a fully resolved simulation, various statistical quantities can be extracted that are not pro-

vided by conventional closure methods. Being low dimensional the model is an inexpensive

tool and it can be applied to problems of practical interest. The ODT model implemented

for this work resolves full range of length and time scales associated the flow in 1D with

detailed chemistry, thermodynamics and transport in the gas phase. More details of the

ODT model used for the current study are given in the subsequent chapters.

1.6 Outline of the Dissertation

The dissertation consists of formulation and validation of a new variant of the ODT

model when applied to different set of problems. Chapter 2 presents a treatment to cast the

various ODT formulations in a unified manner and a new variant in an Eulerian reference

frame is described. Several derivations relevant to equations given in Chapter 2 are covered

in Appendix A.1. This chapter establishes a mathematically sound basis for the various ODT

formulations that will allow more clarity in comparing various approaches and will also allow

a clear distinction between the equations being solved and the numerical method/algorithm

used to solve the equations.

Chapter 3 demonstrates the new ODT model’s capability in reproducing the statistics

for a nonpremixed reacting jet flame. The main focus of this chapter is to identify whether

ODT model can capture significant finite rate chemistry effects like extinction and reignition.

The results from the ODT simulation are compared with DNS data.
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The main focus of the Chapter 4 is to identify the sensitivity of the model parameters.

Simulations are performed over a range of jet Reynolds numbers for reacting and nonreacting

configurations. Results from the simulations are compared with DNS and experimental

data for reacting and nonreacting cases respectively. Based on the identified sensitivity an

empirical correlation is proposed and conclusions are drawn about the parameter estimation.

Chapter 5 demonstrates the model’s ability to predict the important statistics for pre-

mixed reacting jet flames. Results from the model are compared with DNS data. Mean

profiles of velocities and temperature along with minor species are presented. Important

statistics of premixed jet flames like flame surface density and surface area ratio are also

compared with the data.

In Chapter 6 the model is extended to simulate particle laden jets. For dispersed phase

(solid particles), governing equations are derived in Lagrangian reference frame and two-

way coupling, on momentum, between continuous and dispersed phases is implemented. A

new particle-eddy interaction model is implemented to accommodate the eddy effects on

dispersed phase. Turbulent particle laden jet simulations are performed and results are

compared with available experimental data.

Chapter 7 is an extension to Chapter 6, which mainly addresses the coal combustion and

gasification process. Models describing the coal physics are implemented and the two-way

coupling is extended for mass and energy. Qualitative assessment has been done for ODT

coal gasification simulations. This dissertation concludes with a discussion on the findings

from this study and some recommendations for future work in Chapter 8.



CHAPTER 2

MODEL FORMULATION

This chapter appears in much the same form as it is published in the technical report

by Sutherland et al. [113]. Dr. Sutherland is the lead author of the report and I mainly

contributed to the eddy events section.

2.1 Introduction

The One-Dimensional Turbulence (ODT) model represents, conceptually, a line of sight

through a turbulent flow field. First proposed by Kerstein [58], ODT is an outgrowth of

the Linear Eddy Model [55–57, 71], but includes the solution of the local velocity field to

determine the rate and location of eddy occurrence. Although ODT (and its predecessor

LEM) has been implemented as a subgrid scale model in LES and RANS (see, e.g., [20, 36,

69,70,72,88,89]), much of its application has been as a stand-alone model.

In stand-alone applications, ODT is applicable in situations where there is a direction of

predominant large-scale gradients such as shear-driven flow (channels, jets), buoyancy-driven

flow (plumes), etc. The one-dimensional domain is aligned perpendicular to the direction of

primary gradients (e.g., across the shear layer), thereby resolving the primary driving force

for turbulence. Of primary importance in ODT modeling is resolution of the streamwise (x-

direction) velocity component (perpendicular to the direction of the ODT domain), as this

velocity component captures the shear that results in the turbulent cascade. Indeed, early

ODT formulations considered only the streamwise component of velocity. Later, the model

was extended to include multiple components of velocity [59]. We refer to the ODT-aligned

coordinate as the y-direction, and the streamwise coordinate as x throughout this chapter.

This inherently assumes a Cartesian coordinate system, which is consistent with most ODT

applications to date. However, ODT has been formulated in cylindrical coordinates as
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well [64], where the ODT line is oriented in the radial direction, and the axial velocity

component is the critical one that drives turbulence in the ODT model. ODT has been

successfully applied as a stand-alone model for a variety of shear-dominated flows, both

nonreacting [3, 35,58,59] and reacting [29,50,51,64,85].

The ODT model consists of two primary ingredients:

• The governing equations written in terms of two independent variables: (t, y) for

“temporal” ODT formulations and (x, y) for “spatial” ODT formulations.

• Discrete “eddy events” that occur at various points in (t, y) or (x, y). In ODT, these

eddy events are influenced by the local shear rate. Therefore, the majority of ODT

formulations solve an equation to evolve the streamwise component of velocity. A

notable exception is application of ODT to Rayleigh convection [124].

Stand-alone ODT models (the focus of the remainder of this chapter) have been formulated

as temporally evolving, with (t, y) as independent variables, and spatially evolving, with

(x, y) as independent variables. With each of these approaches, both Lagrangian and Eu-

lerian variants can be used. Particularly in the case of variable-density flows, virtually all

of the literature regarding ODT combines the numerical solution algorithm with the discus-

sion of the governing equations so that it is not immediately clear what the actual governing

equations being solved are. In some cases, the equations presented are not the equations

being solved. In this chapter, we formulate the various stand-alone ODT approaches under a

single umbrella and illustrate the differences between them. This is done without discussion

of specific numerical algorithms, except in cases to illustrate nuances of implementations

presented in the literature. We hope to establish a mathematically sound basis for the var-

ious ODT formulations that will allow more clarity in comparing various approaches and

will also allow a clear distinction between the equations being solved and the numerical

method/algorithm used to solve the equations.

The remainder of this chapter is organized as follows: Section 2.2 presents the governing

equations solved for the ODT variants currently existing in the literature. The key modeling
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concepts in ODT, the triplet map and kernel transformation, are then addressed in Section

2.3. Both of these sections are supplemented with material presented in the appendix.

2.2 Governing Equations for ODT

In this section, we present several forms of the governing equations for use in ODT

simulations.

As shown in Appendix A.1, the governing equations for a single phase reacting system

can be written in Lagrangian form as

d

dt

ˆ
V(t)

ρψ dV = −
ˆ
V(t)

Φψ · a dS+

ˆ
V(t)

σψ dV, (2.1)

ρ
dψ

dt
= −∇ ·Φψ + σψ, (2.2)

where ψ is an intensive quantity, σψ is the net rate of production of ρψ, and Φψ is the

non-convective flux of ρψ. Equations (2.1) and (2.2) are, respectively, the integral and dif-

ferential forms of the Lagrangian evolution equations. In the Eulerian frame of reference,

the corresponding equations are written in integral, strong differential, and weak differential

forms as1

ˆ
V(t)

∂ρψ

∂t
dV +

ˆ
S(t)

ρψv · a dS = −
ˆ
S(t)

Φψ · a dS+

ˆ
V(t)

σψ dV, (2.3)

∂ρψ

∂t
+∇ · ρψv = −∇ ·Φψ + σψ, (2.4)

ρ
∂ψ

∂t
+ ρv · ∇ψ = −∇ ·Φψ + σψ, (2.5)

where v is the mass-averaged velocity. Equation (2.2) is often most convenient for math-

ematical manipulation, while (2.1) and (2.3) are more readily applied in a finite-volume

numerical solution approach. Table 2.1 shows the forms of ψ, Φψ, and σψ for several com-

mon forms of the governing equations. Appendix A.1 presents a derivation of the above

equations and the terms in Table 2.1.
1Note that the weak differential form is obtained by applying chain rule to (2.4) and substituting the

continuity equation (ψ = 1).
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Table 2.1: Forms of terms in the governing equations (2.1)-(2.5). Here p is the pressure,
τ = −μ

Ä
∇v + (∇v)T

ä
+ 2

3μ I∇ ·v is the stress tensor, v is the mass-averaged velocity, g is
the gravitational vector, Yi is the mass fraction of species i, ji is the mass-diffusive flux of
species i relative to a mass-averaged velocity, q = −λ∇T +

∑n
i=1 hiji is the heat flux, λ is

the thermal conductivity, T is the temperature, and hi is the enthalpy of species i.

Equation ψ Nonconvective Flux, Φψ Source Term, σψ

Continuity 1 0 0

Momentum v pI+ τ ρg

Species Yi ji σi

Total Internal
Energy e0 pv − τ · v + q ρg · v

Internal
Energy e q −τ : ∇v − p∇ · v

Enthalpy h q ∂p
∂t + v · ∇p− τ : ∇v

ODT formulations can be broadly classified into two categories:

• Temporal evolution, where (t, y) are chosen as the independent variables, and (through-

out this chapter) y refers to the direction associated with the one-dimensional ODT

domain.

• Spatial evolution, where (x, y) are chosen as the independent variables and x refers to

the streamwise direction.

In each of these categories, there are both Eulerian and Lagrangian variants of ODT. Early

ODT implementations were temporally evolving in a Lagrangian frame of reference. The spa-

tially evolving ODT formulation was first introduced in the original description of ODT [58].

However, recent improvements to the model significantly broadened the range of flows and

phenomena that the model can address [3, 64, 91]. Recently, Eulerian formulations for the

temporal and spatial evolution have been demonstrated [84, 85]. The following sections

consider each of these variants in turn.
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2.2.1 Temporal ODT Evolution Equations

We first consider temporal evolution. In this context, the ODT equations will describe

evolution of various quantities on a line oriented in the y-direction and evolving in time. We

consider two general forms of the governing equations: the Eulerian and Lagrangian forms.

2.2.1.1 Eulerian Temporal Form

Retaining (t, y) as independent variables, (2.4) becomes

∂ρψ

∂t
= −∂ρψv

∂y
− ∂Φψ,y

∂y
+ σψ, (2.6)

where Φψ,y = Φψ ·�y represents the component of Φψ in the y-direction, and v represents the

local mass-averaged fluid velocity in the y-direction. Current approaches using the Eulerian

form have solved the compressible form of these equations [84,85]. Specifically, (2.6) (or its

integral form equivalent) is solved as follows:

• ψ = 1 is solved for ρ.

• ψ = u is solved for the streamwise momentum (ρu) to provide the required information

for the eddy selection (see Section 2.3). Note that the pressure gradient could be

retained in this equation and imposed for pressure driven flow.

• ψ = v is solved for the lateral momentum (ρv), which is mainly required for the

continuity equation (ψ = 1). The pressure obtained from the equation of state is used

to calculate the pressure gradient that appears in this equation.

• ψ = e0 is solved for the total internal energy (ρe0).

• ψ = Yi is solved for the species masses (ρYi).

These equations are completed by an equation of state, p = p (ρ, T, Yi) . In a finite-volume

context (as implemented in [84, 85]), the integral form of (2.6) is solved. While one could

also solve the weak form of these equations (corresponding to equation (2.5)), there have

been no implementations to date using the weak form.



17

2.2.1.2 Lagrangian Temporal Form

In the Lagrangian frame of reference, choosing (t, y) as independent variables, (2.2)

becomes

ρ
dψ

dt
= −∂Φψ,y

∂y
+ σψ. (2.7)

Equation (2.7) is written in integral form as2

d

dt

ˆ
ρψ dy =

ˆ Å
−∂Φψ,y

∂y
+ σψ

ã
dy. (2.8)

Equations (2.7) and (2.8) are the forms most often used for temporally evolving ODT simu-

lations. In the Lagrangian reference frame, the volume of a finite material element V(t), and

its associated surface S(t), change with time according to the local mass-averaged velocity,

v. To determine the locations of the cell centroids (and faces) ODEs may be solved for

positions of cell centroids or faces by

dy

dt
= v, (2.9)

where v is the y-component of velocity. If we solve (2.7) for ψ = v then we have the lateral

velocity component required for use in (2.9). Since v is the mass-averaged velocity, (2.9)

describes the evolution of a surface defining a closed system for the mass, thereby enforcing

continuity,
d

dt

ˆ
ρ dy =

dm

dt
= 0. (2.10)

Specifically, the limits of the integral in (2.8) are determined by (2.9), and (2.8) with ψ = 1

implies (2.10). Thus, by solving (2.9), we evolve the size of the control volume that, by

definition, enforces continuity. Note that (2.10) need not be solved because it simply states

that mass is constant.3

2See Section A.5 for details.
3Note that in the case of a multiphase system, where the continuity equation for one phase may have

source terms due to interphase mass transfer, (2.9) is still the appropriate equation for enforcing continuity.



18

A full solution approach would solve:

• Equation (2.9) for cell face positions to define the limits on the integral in (2.8).

• Equation (2.10) need not be solved since its solution is simply that mass is constant.

Density is obtained using this constant mass and the volume determined by the evo-

lution of (2.9).

• Equation (2.8) with ψ = u for the streamwise momentum to provide the required

information for the eddy selection (see Section 2.3). Note that for pressure driven flow,

the pressure gradient term can be specified accordingly. Otherwise, the streamwise

pressure gradient is ignored.

• Equation (2.8) with ψ = v for the lateral momentum. This is required for use in (2.9).

• Equation (2.8) with ψ = e0, e, or h for energy conservation.

• Equation (2.8) with ψ = Yi for species.

• An equation of state p = p (ρ, T, Yi) . This is used in the lateral momentum equation

(ψ = v).

Early ODT formulations did not solve the y-component of velocity (v), and even among

the ones that do (e.g., [59]), it is typically not used to supply the velocity for (2.9). Indeed,

most ODT formulations to date use the y and z velocity components as repositories of kinetic

energy rather than advective velocities. Thus, even if v is solved, rather than solving (2.9)

to determine the limits for the integral in (2.8), (2.10) is used to describe the change in cell

size. Specifically, (2.10) is discretized using a first-order time approximation to find

(Δy)n+1 =
ρn (Δy)n

ρn+1
, (2.11)

where the density is calculated from an equation of state (typically assuming constant pres-

sure). This determines the new cell size, but does not specify position. In a time-split

scheme, ρn+1 is evaluated from the equation of state, Y n+1
i , and Tn+1, where the pressure

is typically assumed to be constant. Given the cell sizes at time n+1, the new cell positions

However, the mass of the system will no longer be constant, and (2.10) (with the appropriate interphase
exchange terms) would need to be evolved.
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are determined by calculating ε =
∑

i (Δy)ni − ∑
i (Δy)n+1

i , adding ε/2 to the volume on

each end of the domain, and then redistributing the control volumes with their new sizes

over the domain length (which remains fixed). This approach has been employed in all

variable-density temporal Lagrangian ODT simulations to date. Notably, it imposes a fixed

domain size, whereas solution of (2.9) does not.

To summarize, most current ODT temporal Lagrangian formulations solve (2.8) with

ψ = u, ψ = e0 (or an equivalent energy variable), ψ = Yi, and (2.10) to obtain cell volumes

that maintain continuity. However, as was shown in this section, an alternative would be

to solve (2.7) for ψ = v and use this in (2.9) to obtain the positions of the Lagrangian cell

centroids and faces.

2.2.1.3 Space-Time Mapping

It is often useful to transform the time coordinate to an equivalent spatial coordinate.

This can be done by solving an ODE for downstream position, and can be done in one of

two ways:

dx

dt
= u, (2.12)

dx

dt
= u, (2.13)

where u is the x (streamwise) component of the velocity. Equation (2.12) uses a suitably

chosen average velocity (u) to determine the downstream position for the ODT domain

whereas (2.13) uses the local velocity at each point on the ODT line and solves a position

equation for each point. Figure 2.1 illustrates the difference between these approaches for a

hypothetical constant (in time) u profile and u chosen in two different ways4:

u = u∞ +

´
ρ (u− u∞)2 dy´
ρ (u− u∞) dy

, (2.14)

u =
¨
u|u>uc

∂
, uc = α (maxu−minu) (2.15)

4Note that these are only two of many reasonable choices for u.
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Fig. 2.1: Downstream position (x) as a function of lateral position (y) for various times.
The solid line uses (2.13) (solid line), the dashed line uses (2.12) with (2.14), and the dotted
line uses (2.15) with α = 0.05 (dotted line).

Figure 2.1 clearly shows that the space-time mapping can be highly approximate, and must

be used cautiously.

2.2.2 Spatially Evolving ODT Equations

Because of the ambiguity in determining a downstream location (x) in the temporally

evolving approach, it may be advantageous in some situations to formulate the governing

equations so that (x, y) rather than (t, y) are the independent variables. Below we consider

Eulerian and Lagrangian equation sets that use (x, y) as independent variables.

2.2.2.1 Eulerian Spatial Form

The spatially evolving governing equations retain only (x, y) as independent variables

in (2.4) to obtain

∂ρψu

∂x
= −∂ρψv

∂y
− ∂Φψ,x

∂x
− ∂Φψ,y

∂y
+ σψ. (2.16)

This is an elliptic equation, and is not readily amenable for use with the stochastic eddy

events in ODT. If we neglect the term ∂Φψ,x

∂x , then we have
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∂ρψu

∂x
= −∂ρψv

∂y
− ∂Φψ,y

∂y
+ σψ, (2.17)

which is an incompletely parabolic (convection-diffusion) equation set that may be solved

using the method of lines for the streamwise fluxes, ρψu. Note that the continuity equation

(ψ = 1),
∂ρu

∂x
+

∂ρv

∂y
= 0, (2.18)

conserves mass flux rather than mass itself. The full set of equations to be solved is: (2.18),

(2.17) with ψ = { u v Yi e0 }, and an equation of state. Note that we can obtain

u =
ρuu

ρu
, (2.19)

ρ =
ρu

u
=

(ρu)2

ρuu
, (2.20)

ψ =
ρψu

ρu
, ψ �= { 1 u }. (2.21)

An alternative solution strategy is to solve the weak form of (2.17),

∂ψ

∂x
= − 1

ρu

ï
ρv

∂ψ

∂y
+

∂Φψ,y

∂y
− σψ

ò
, (2.22)

together with an alternate form of (2.18)

∂ρ

∂x
= −1

u

ï
ρ
∂u

∂x
+

∂ρv

∂y

ò
. (2.23)

The term ∂u
∂x in (2.23) may obtained from (2.22) with ψ = u. The full set of equations to be

solved is: (2.23), (2.22) with ψ = { u v Yi e0 }, and an equation of state. As discussed

in Section 2.2.1.1, the ∂p
∂y term comes from the equation of state while ∂p

∂x is only nonzero

in the case where a pressure driven flow is considered, in which case a fixed value of ∂p
∂x is

assigned.
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2.2.2.2 Lagrangian Spatial Form

Given that the independent variables for the spatial evolution equations are (x, y), we

can write
d

dx
=

∂

∂x
+

dy

dx

∂

∂y
=

∂

∂x
+

v

u

∂

∂y
. (2.24)

Using (2.24), we can rewrite (2.22) in Lagrangian form as

dψ

dx
= − 1

ρu

ï
∂Φψ,y

∂y
− σψ

ò
. (2.25)

This applies to all ψ except ψ = 1 (continuity), since (2.25) is in weak form. The Lagrangian

form of the continuity equation can be obtained by substituting (2.24) into (2.18) to obtain

dρu

dx
=

v

u

∂ρu

∂y
+

∂ρv

∂y
. (2.26)

In (2.25), dψ
dx is interpreted as the local rate of change in ψ as it moves with velocity v.

Equation (2.25) can also be written in integral form as

d

dx

ˆ
ρψu dy =

ˆ Å
−∂Φψ,y

∂y
+ σψ

ã
dy. (2.27)

This is most easily shown by applying Leibniz’ rule to (2.27) to find

d

dx

ˆ y2(x)

y1(x)
ρψu dy = ρ2ψ2u2

dy2
dx

− ρ1ψ1u1
dy1
dx

+

ˆ y2(x)

y1(x)

∂ρψu

∂x
dy

= ρ2ψ2v2 − ρ1ψ1v1 +

ˆ y2(x)

y1(x)

∂ρψu

∂x
dy

=

ˆ y2(x)

y1(x)

Å
∂ρψu

∂x
+

∂ρψv

∂y

ã
dy, (2.28)

where subscripts 1 and 2 indicate that the quantities are evaluated at y1 and y2, respectively,

and we have used (2.29). Equation (2.28) shows that (2.17) and (2.27) are equivalent. By
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virtue of the derivation of (2.25) from (2.17), we conclude that (2.25) and (2.27) are also

equivalent.

When (2.25) is solved, an equation for y is also required to determine the position of

the Lagrangian system
dy

dx
=

v

u
, (2.29)

where u and v are the local fluid velocities in the x and y directions, respectively. If solving

the integral form of the Lagrangian evolution equations, the position is required to determine

the limits on the integral in (2.27) for each discrete volume element. If solving the differential

form of the equations (via, e.g., a finite difference method) then the position is required to

evaluate the fluxes and their divergences. In both cases, the role of the velocity is to maintain

the proper definition of the Lagrangian control volume as discussed in Section 2.2.1.2.

Together with an equation of state, (2.25) and (2.29) form a complete set of equations.

When solving these equations, primitive variables are obtained using (2.19)-(2.21).

To date, ODT implementations using the spatial form of the governing equations have

solved (2.25) - see, e.g., [91]. All of these formulations present equations (2.17) (Eulerian

forms) as the governing equations to be solved, but the form of the governing equations

actually solved in these formulations is (2.25) (Lagrangian forms).5 As discussed in Section

2.2.1.2, the v component of velocity was not solved in the early ODT formulations. Rather

than solving (2.29), these formulations (and the ones cited above) obtain Lagrangian position

(y) via (2.27) with ψ = 1,

d

dx

ˆ
ρu dy = 0, (2.30)

so that a first-order time discretization results in

(Δy)n+1 =
(ρuΔy)n

(ρu)n+1 , (2.31)

5References [91] only present the discrete form of the equations they are actually solving, but they are
the discrete form of (2.25).
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where n refers to the solution at streamwise position xn while n+1 refers to the solution at

position xn+1. From the updated volume sizes, the local positions are obtained as described

in Section 2.2.1.2.

Alternatively (and equivalently), an equation for v could be solved (including the pres-

sure term as shown in Table 2.1) and (2.29) could be solved for cell and face positions.

However, as with the analogous approach in Section 2.2.1.2, this has not yet been demon-

strated in ODT.

Independent of which approach is taken to obtain the position evolution, the evolution

streamwise mass flux, ρu, need not be solved since it remains constant (as is evident from

(2.27) with ψ = 1). The exception is for multiphase flow where there may be a source term

in the flux continuity equation, as discussed in Section 2.2.1.2 for the mass conservation

analogue.

2.2.2.3 Time-Space Mapping

Occasionally in a spatially evolving formulation we are interested in determining a

“residence time,” e.g., in order to advanced a chemical-kinetic mechanism [29,50]. In analogy

to the discussion in Section 2.2.1.3 this can be obtained by solving one of

dt

dx
= u−1, (2.32)

dt

dx
= u−1. (2.33)

Equation (2.32) accounts for the variation of residence time due to variation in u while

(2.33) obtains a characteristic residence time for the domain assuming that it moves with

some characteristic velocity u. As discussed in Section 2.2.1.3, the choice for u in (2.33) is

somewhat arbitrary.

2.2.3 Summary

This section has presented four general approaches for ODT formulations. These can be

categorized as temporally developing and spatially developing equations, with Lagrangian

and Eulerian variants of each. When solving the Eulerian equations (see Sections 2.2.1.1
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and 2.2.2.1), the y-component of velocity advects fluid and serves to enforce continuity. On

the other hand, when solving the Lagrangian equations (see Sections 2.2.1.2 and 2.2.2.2)

continuity reduces to a statement that mass (temporal form) or mass flux (spatial form)

remains constant. However, in the Lagrangian form, the position must be evolved. This can

be done one of two ways:

1. Use the y-component of velocity to determine the system position by solving (2.9)

(temporal) or (2.29) (spatial). No boundary conditions are imposed on this ODE for

position, but the boundary conditions on v velocity directly influence the evolution of

this equation.

2. Use an operator-splitting approach along with a discrete form of the continuity equa-

tion (2.11) (temporal) or (2.31) (spatial). This also requires imposition of boundary

conditions directly, as discussed in Sections 2.2.1.2 and 2.2.2.2.

The boundary conditions mentioned in these two options are important as they directly affect

entrainment, large-scale flapping, etc. In addition, initial conditions may be particularly

important in the case of spatially developing flows because of the approximation discussed

in Section 2.2.2 that eliminated the elliptical nature of the problem [64].

2.3 Eddy Events

Stand-alone modeling of turbulent flows using ODT requires a dominant direction of

the flow (which we refer to as the y-direction) to be identified a priori. To mimic the

three-dimensional nature of turbulence in one spatial dimension, a stochastic process is

adopted whereby motions that accelerate mixing are modeled through a series of stochastic

rearrangement events. These events may be interpreted as the model analogue of individual

turbulent eddies which are referred to as “eddy events” or simply “eddies”. Each eddy

event modifies fields by applying an instantaneous transformation over some spatial interval

(y0, y0 + �), where y0 represents the eddy starting location and � is the eddy length.

A complete definition of the model for an eddy event requires specification of:
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1. A procedure for selecting the candidate eddy starting location (y0), length (�), and

the eddy rate distribution (which is a function of y0 and �). The selection procedure

of y0 and � is described in Section 2.3.1.

2. The transformation (mapping), which is the effect of an eddy on the solution variables.

The following sections address these elements of the eddy model.

2.3.1 Eddy Starting Location and Length

The selection of eddy event starting location and length are described in this section. At

each integration step, eddy length (�) and location (y0) are selected from randomly generated

numbers and flow properties.

From scaling analysis, the eddy length (�) can be defined as

� =
−2Lp

ln
(
2Lpr
ceddy

)
+ ln

Ä−2Lp

�min

ä (2.34)

where r is a random number, Re is Reynolds number of the flow, Lp = exp
(
ln(L)+ln(η)

2

)
is

the most probable eddy length, L is the integral length scale, η = L
Re0.75

is the Kolmogorov

length scale, �min = 6η is the minimum eddy length, �max = L is the maximum eddy length,

and ceddy is some arbitrary constant defined as follows,

ceddy =
2Lp

exp
Ä−2Lp

�max

ä
− exp

Ä−2Lp

�min

ä .
While computing the probability of eddy occurance, f(y0) and g(�) need to be specified.

The commonly used probability density functions of y0 and � are,

f(y0) =
ceddy
�2

exp

Å−2Lp

�

ã
(2.35)

g(�) =
1

�max − �min
. (2.36)
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2.3.2 Transformations

In ODT, each eddy is an instantaneous event and has no opportunity to interact directly

with other eddies. Rather, the interaction is indirect, mediated by the flow evolution. An

eddy event is represented by an instantaneous rearrangement in the form of a “triplet map.”

For a selected eddy event the triplet map of a function ψ(y) is ψ (f (y; y0, �)) , with f(y; y0, �)

given as

f(y; y0, �) ≡ y0 +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 (y − y0) y0 ≤ y ≤ y0 +
1
3�

2�− 3 (y − y0) y0 +
1
3� ≤ y ≤ y0 +

2
3�

3 (y − y0)− 2� y0 +
2
3� ≤ y ≤ y0 + �

y − y0 otherwise

. (2.37)

The triplet map defined by (2.37) forms the heart of any ODT modeling approach, rep-

resenting the effects of a three-dimensional eddy with a one-dimensional rearrangement.

Triplet maps are qualitatively similar to turbulence in that they have the effect of increasing

gradients by redistributing the fluid elements along the 1-D domain. The functional form

chosen for the triplet mapping function is the simplest of a class of mappings that satisfy

the physical requirements of measure preservation (the nonlocal analog of vanishing velocity

divergence), continuity (no introduction of discontinuities by the mapping operation) and

scale locality (at most order-unity changes in property gradients) over the eddy interval and

also strengthen the local stretch rate just as turbulent fluctuations do [58]. The desired

attribute of the triplet map is to provide a means of mimicking the increase in strain inten-

sity, the decrease in strain length scale and the increase in mixing due to eddies in actual

turbulent flow. This mapping rule assures that closest neighbors after the mapping event

were no more than 3 cells apart before the mapping event. Hence the increased strain rate

and shortening length scale is attained without undue introduction of discontinuities.

While the triplet map itself is measure preserving, occasionally we wish to augment the

transformation imposed by the eddy event to ensure conservation of other properties. For

example, application of the triplet map to ρψ results in conservation of momentum, energy,
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and mass. However, kinetic energy is not necessarily conserved. If an eddy occurs in the

presence of a gravitational field, then there is an exchange of potential and kinetic energy that

must be accounted for when the transformation is applied to the ρψ. To ensure conservation

of kinetic energy when applied to the momentum fields, the triplet map can be augmented

by a “kernel transformation,” ciK(y), which ensures conservation of kinetic energy. Applying

such a kernel transformation to velocity components rather than momentum components can

lead to a violation of momentum conservation, so that a second kernel, biJ(y), must be added

to repair momentum conservation in the situation where transformations are applied to ψ

rather than ρψ6. In this context, we can write the effect of an eddy on a velocity/momentum

field as

ψi(y) = ψi (f(y; y0, �)) + ciK(y) + biJ(y), (2.38)

where
K(y) = y − f(y; y0, �), (2.39)

J(y) = |K(y)| . (2.40)

The K(y) kernel enforces conservation of kinetic energy while the J(y) kernel enforces con-

servation of momentum [3]. If ρψ rather than ψ, is transformed, then J is not required (or

bi = 0) since momentum will be conserved by construction when (2.38) is applied to ρu, ρv,

ρw.

Generally speaking, selection of a kernel transformation is influenced by two primary

considerations:

1. What variables are being transformed? Typically this will be one of ψ, ρψ, since it

it typically most convenient to transform the solution variables. However, one could

impose a transformation on any set of variables in general.

2. What constraints are placed on the transformation? Most frequently we seek to impose

constraints on the momentum and kinetic energy when solving a temporal form of the
6Note that in cases where there are momentum sources from, e.g., a dispersed phase, a kernel ensuring

momentum conservation must be applied even if ρψ is transformed.
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equations and on the fluxes of momentum and kinetic energy when solving the spatial

form of the equations. However, these are modeling considerations, not fundamental

requirements. Additional constraints could be added as necessary.

The derivation of the transformations for various choices of transformed variables and con-

straints is presented in Appendix A.2. The coefficients ci and bi can be represented generally

as

ci =
1

2S

Ñ
−Pi + sgn(Pi)

√
P 2
i + α

∑
j

TijP 2
j

é
, (2.41)

bi = Hci, (2.42)

with specific forms for S, Pi, and H presented in Appendix A.2 and summarized in Table 2.2.

Table 2.2 summarizes the transformations for designed for ψ and ρψ with constraints on

conservation of kinetic energy and momentum and the fluxes of kinetic energy and momen-

tum.

In the original ODT model formulation, a single velocity component was considered

along with a set of scalars [58]. The application of the model to buoyant stratified flows,

where conversion between kinetic energy and potential energy was the key concern, moti-

vated the development of a kernel transformation to enforce the kinetic energy conserva-

tion [123]. Subsequently, a “vector” ODT formulation was considered, where an eddy event

incorporated energy transfer between velocity components [59].

The rules governing the partitioning of kinetic energy among velocity components, which

have been referred to as the “pressure-scrambling model,” also incorporate an element of

three-dimensionality into the 1D model. This model is derived in Appendix A.2 for various

ODT formulations, and the key results are summarized in Table 2.2.

2.3.3 Eddy Selection

The procedure to select an eddy event is described here in the context of temporally

evolving flows. A similar analysis with appropriate scaling can be used for spatial flows.

Unlike LEM, where frequency and eddy-size distribution of the events are based on a prede-
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fined kinetic energy spectrum [55], the eddy events are influenced by the local flow field in

ODT. Similar to the dimensional relationship applied to turbulent eddies, for events defined

in ODT, a relationship can be formulated between an eddy’s size, time scale, and kinetic

energy. Since ODT resolves one or more components of the velocity/momentum vector, the

“turnover” time (τe) for an eddy can be calculated from the local kinetic energy and the

length of a candidate eddy. 7 From τe, the eddy rate distribution (λ) that governs the eddy

events is calculated from

λ =
C

�2τe
, (2.43)

where C is a model constant often referred to as the “eddy rate constant.” The models used

to identify the turnover time (τe) are summarized in Table 2.3 for different ODT model

variants. The quantity �/τe is interpreted as an eddy velocity and ρ�3/τ2e is interpreted

as a measure of the kinetic energy of eddy motion. Based on the streamwise velocity (x-

component), the kinetic energy will be computed and equated to eddy energy to formulate

an expression for eddy velocity. 8

The model constant Z that appears Table 2.3 is a “viscous cutoff” parameter that

provides a lower limit on the eddy size roughly analogous to the Kolmogorov scale. In

principle, this is not necessary (and could be set to zero) since eddies smaller than the

Kolmogorov and Batchelor scales will have a negligible effect on the physical evolution of

the system.9

Because ρψ and ψ evolve continuously in time between eddy events, λ also evolves

continuously in time. The unsteadiness of the eddy rate distribution is both a fundamental
7Note that τe can be interpreted as an eddy turnover time or the time between eddies (inverse of the

eddy frequency). These two quantities are closely related, but there are situations where a clear distinction
is important, such as in particle-laden flows where particle-eddy interaction is important. In these cases,
τ−1
e is interpreted as an eddy frequency governing eddy sampling and the eddy turnover time is calculated

using an adjustable constant of proportionality [122].
8More recent formulations that employ the “vector” formulation and solve several components of velocity

use the kinetic energy from all velocity components in determining the eddy velocity and time scale [59].
9See [58] for exceptions.
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property of the model and a key consideration in its numerical implementation. λ is used

to compute the probability of the eddy occuring,

pe =
λΔt

f(y0) g(�)
, (2.44)

where f(y0) and g(�) are the probability density functions for y0 and �, respectively. The

functional forms for f(y0) and g(�) can influence the computational cost of the simulation,

but do not affect the results [58]. The commonly used functional forms of f(y0) and g(�)

are given in Section 2.3.1.

The probability (pe) is compared with a randomly selected number on the interval [0, 1].

If the random number is less than pe then the eddy will be implemented.

For spatially evolving flows (see Section 2.2.2) Δt is replaced by Δx/û, where

û =
1

�

ˆ y0+�

y0

u dy (2.45)

is the average velocity defined over the eddy interval. This results in a definition of the

probability of an eddy occurring of

pe =
λΔx

f(y0) g(�)û
(2.46)

for spatially evolving flows.

2.3.3.1 Large Eddy Suppression

While the viscous cutoff parameter Z suppresses the least energetic eddies, we require

a mechanism to prevent the occurrence of unphysically large eddies that result in unreal-

istic behaviour. We briefly outline the common methods for large eddy suppression in the

following subsections.

2.3.3.1.1 Eddy time scale method. Even though eddies are implemented as instanta-

neous events, the turnover time associated with each eddy event can be calculated from the
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scaling analysis as summarized in Table 2.3. The eddy turnover time can be compared with

the simulation elapsed time (t), and eddy events are allowed only when t ≥ βτe, where β is

a model parameter. This large eddy suppression mechanism is used in most of the temporal

formulations [29,50,51,85]. However, this approach can also be used in a spatially evolving

simulation by using x ≥ β� as the criteria for eliminating large eddies.

2.3.3.1.2 Median method. In this method, the eddy event rate (λ) for a given eddy

event is evaluated two different ways and the smaller of the two results is used in evaluating

the probability. One evaluation is by the expressions formulated in Section 2.3.3. The other

evaluation replaces each velocity profile ui(y) by a profile that is linear in y, and evaluates

of λ based on these linear proles. The slope of each profile is taken to be the median value

|dui
dy | within the eddy range [y0; y0 + �]. The procedure assigns a zero rate to any event for

which each velocity profile is flat (zero slope) in more than half of the eddy range, thereby

suppressing large eddies [59].

2.3.3.1.3 Scale reduction method. The scale reduction method is the most common

method for suppressing large eddies in spatially developing flows [3,64,91], although it could

be applied to temporally evolving flows as well. It involves auxiliary eddy-rate computations

for each of three equal subintervals of the eddy interval [y0, y0 + �]. For the selected eddy

event, λ is evaluated as if the eddy interval were
î
y0 + (j − 1) �

3 , y0 + j �
3

ó
, for j = 1, 2, and

3, respectively. If any of these three candidate eddies are disallowed due to dominance of

the viscous penalty, as described in Section 2.3.3, then the eddy is discarded. Otherwise it

is unchanged from its value computed for the complete eddy interval [y0, y0 + �].

2.4 Conclusions

We intend that this chapter will serve as a reference for those interested in ODT as

a modeling approach by providing a survey of the various ODT formulations along with a

sound mathematical basis for the equations being solved.

Most ODT formulations (particularly for variable density flows) have not clearly dis-

tinguished the governing equations being solved from the numerical method employed to
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solve them. The equations are often written in fully discrete form. This chapter attempts

to clarify the equations being solved by the various ODT formulations and, in so doing,

raise alternative solution techniques. Specifically, this chapter has formulated the governing

equations for use in ODT simulations in several forms:

• Temporally evolving Eulerian,

• Temporally evolving Lagrangian,

• Spatially evolving Eulerian,

• Spatially evolving Lagrangian.

In addition, the models for “eddy events” in ODT, including the transformations applied

to the solution variables (with appropriate kernel transformations) and the eddy selection

criteria, were discussed and compared for the various ODT formulations.

Both the governing equations and the variable tranformations associated with the eddy

events are presented in a general manner assuming variable density and a multicomponent

reacting system. Simplifications can be made in the event where density or composition is

constant. In such cases, the discussion here simplifies to many of the early forms for ODT

presented in the literature.



CHAPTER 3

NONPREMIXED TURBULENT JET FLAME

This chapter appears in much the same form as it is published in the article by Punati

et al. [86].

3.1 Introduction

Predictive methods based on fundamental principles to model turbulence-chemistry

interactions are important in turbulent reacting flow simulations to improve combustion

efficiency and to reduce emissions. The existence of a wide range of length and time scales

in high Reynolds number flows makes Direct Numerical Simulations (DNS) computationally

intractable [10]. To reduce the computational cost one generally averages or filters the

governing equations to remove fine scales as in the Reynolds-Averaged Navier-Stokes (RANS)

and Large eddy simulation (LES) approaches. These averaged equations are coupled with

turbulent combustion models to address the nonlinear nature of chemical reactions occurring

at molecular mixing scales (fine scales).

Turbulent combustion models can be broadly categorized into moment methods and

probability density function (PDF) approaches [77]. In moment methods, molecular trans-

port is explicitly represented and a reduced parameter space approach is adopted for the

solution of reacting scalars and their associated source terms. For PDF approaches, chemical

source terms appear in closed form whereas mixing is implemented stochastically using a

mixing model. The linear-eddy model, developed by Kerstein [55–57], is one such stochas-

tic mixing model which has been used as an alternative strategy for closure in turbulent

combustion [71,72,95] .

The main objective of the present study is to perform stand-alone Eulerian ODT sim-

ulations for a nonpremixed temporally developing planar syngas jet flame and to compare
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the model prediction with DNS data [46,48]. This work is the first time that a stand-alone

ODT model has been compared directly with 3D DNS data for a reacting flow, and also

demonstrates the richness of the data the model can produce. It also represents one of the

first attempts to model the DNS data set, the only other approach to date being a combi-

nation of LEM with LES [98]. In the present work, all simulation details, including mesh

spacing, initial conditions, boundary conditions, and thermodynamic, chemical kinetic and

transport models were matched with the DNS.

The chapter is organized as follows. First we present the governing equations that

are solved and then we evaluate the model’s capability to reproduce finite-rate chemistry

effects such as extinction and reignition. Flow entrainment effects are presented using axial

statistics for velocity and mixture fraction. Conditional statistics of species and probability

density functions of temperature and scalar dissipation are presented.

Fig. 3.1: Schematic of the DNS configuration for the syngas jet flame (Case M) showing the
logarithm of the scalar dissipation rate [47,48].
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3.2 Model Formulation

The transverse y-direction, which is the direction of the most significant gradients (Fig-

ure 3.1), is considered here as the ODT domain.

3.2.1 Governing Equations

The ODT model as formulated herein solves the following conservation equation set

∂ρ

∂t
= −∂v

∂y
, (3.1)

∂ρv

∂t
= −∂ρvv

∂y
− ∂τyy

∂y
− ∂P

∂y
, (3.2)

∂ρu

∂t
= −∂ρvu

∂y
− ∂τyx

∂y
, (3.3)

∂ρe0
∂t

= −∂ρe0v

∂y
− ∂pv

∂y
− ∂τyyv

∂y
− ∂q

∂y
, (3.4)

∂ρYi
∂t

= −∂ρYiv

∂y
− ∂Ji

∂y
+ ωi, (3.5)

where u and v refer to streamwise and lateral velocities, ρ is the density, p is the pressure, τ

is the stress tensor, e0 is the total internal energy, q is the heat flux, Yi is the mass fraction

of species i, Ji is the species mass diffusive flux, and ωi is the reaction rate. These equations

are completed with the ideal gas equation of state and constitutive relationships for the

diffusive fluxes:

τyy = −4

3
μ
∂v

∂y
, (3.6)

τyx = −μ
∂u

∂y
, (3.7)

q = −λ
∂T

∂y
+

ns∑
i=1

hiJi, (3.8)

Ji = −ρYi
Xi

Dmix
i

∂Xi

∂y
. (3.9)

where λ is the thermal conductivity, μ is the viscosity, T is the temperaure, hi is the enthalpy

of species i, Dmix
i is the mixture-averaged diffusivity for species i, and Xi is the mole fraction

of species i. Code verification details are included in Appendix B.1.
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3.2.2 Eddy Events

As discussed in Section 2.3, turbulent motions that accelerate mixing are modeled

through a series of stochastic rearrangement events. Continuously evolving gas phase is

subjected to instantaneous rearrangement through triplet mapping (see Section 2.3.2 for

additional details, specifically transformation is applied on conserved variables ρ, ρu, ρv,

ρe0, ρYi). To suppress the large eddies eddy time scale method is implemented.

3.3 Computational Configuration

DNS of three-dimensional (3D) temporal planar syngas jet flames with detailed chem-

istry over a range of jet Reynolds numbers (Re) from 2510 to 9079 have been performed

by Hawkes et al. [46, 48]. We consider a case with Re = 4478, which is addressed as Case

M in the literature. The jet consists of a central fuel stream (50% CO, 10% H2 and 40%

N2 by volume) surrounded by counter-flowing oxidizer streams comprised of 25% O2 and

75% N2. The stoichiometric mixture fraction is Zst = 0.42 and the steady extinction dis-

sipation rate (based on a steady laminar flamelet solution using erfc distribution on χ) is

χq = 2194 s−1 [48]. The fuel and oxidizer stream bulk velocities are U/2 and −U/2, re-

spectively, with U = 194 m/s. The initial fuel stream thickness is H ≈ 0.96 mm and the

characteristic jet time scale, computed using H/U , is tj ≈ 5 μs. Based on tj , a nondimen-

sionalized time parameter is defined as τ = t/tj.

The mixture fraction was computed from the local species compositions using Bilger’s

definition [8], and the scalar dissipation rate is calculated as χ = 2D
Ä
dZ
dy

ä2
with D = λ/(ρcp).

Figure 3.1 illustrates the scalar dissipation rate field of the jet at τ = 40. The DNS

data set exhibits significant finite-rate chemistry effects including extinction and reignition.

Maximum extinction occurs at τ ≈ 20, while by τ ≈ 40 most of the flame has reignited.

The ODT calculations consider a one-dimensional domain aligned with the y-direction

in Figure 3.1. The initial conditions for all the variables transported in the ODT model are

extracted directly from the DNS data. The detailed chemical mechanism considered in this

study (consisting of 11 species and 21 reactions [48]), temperature and pressure-dependent
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thermodynamic property evaluation, and the mixture averaged transport treatment are all

consistent with the DNS simulations. The spatial and temporal resolution are likewise the

same as used in the DNS simulation, with a spatial resolution of 15 μm and a time step

of 2 ns. Simulations are run for 0.25 ms (50 tj) and results are analyzed over 400 ODT

simulation realizations, which was enough to provide stationary statistics. ODT results at

different times are compared with DNS statistics on xz planes in Figure 3.1.

3.4 Results and Discussion

3.4.1 Flow Entrainment

The flow entrainment predicted by the ODT model is evaluated by comparing axial

evolution of velocity and mixture fraction at different time intervals. The entrainment is

sensitive to the choice of ODT parameters (particularly β and C), which have been tuned

to match the spreading rate and decay of the velocity and mixture fraction. The parameter

values used in this study are α = 0.5, C = 60, β = 1.0 and Z = 200. Figure 3.2 shows

comparison of observed and model behavior for axial evolution of the mean streamwise

velocity at τ = 6, 20 and 40. A similar comparison is shown for the mixture fraction in

Figure 3.3. For both velocity and mixture fraction DNS mean values on the left half of the

domain are a mirror image of the right half of the domain but for ODT, data at positive and

negative y are not combined (i.e., spatial profiles are not symmetrized). For both velocity

and mixture fraction, the decay and spreading rate are very well reproduced by the model,

demonstrating the model’s efficacy in capturing the flow entrainment.
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3.4.2 Conditional Statistics

Figures 3.4 and 3.5 show the mean temperature and OH evolution, respectively, as a

function of the mixture fraction at different time intervals. The steady laminar flamelet

solution at the critical dissipation rate (χq = 2194 s−1) is also shown for reference. For the

case simulated, mixing is initially rapid enough relative to reaction to cause local extinction,

which is followed by reignition as mixing rates relax. The conditional mean for both tem-

perature and species predicted by ODT is low compared to the DNS data atτ = 6, 20 over

the entire mixture fraction range. The ODT model starts predicting local extinction earlier

(at τ ≈ 6) than the DNS, as indicated by both temperature and OH species mean values

dropping close to the extinction limit predicted by the laminar flamelet solution. As the

simulation progresses (at τ = 20) the ODT model exhibits stronger extinction than the data

as indicated by the low mean values. At τ = 40 both 〈T |Z〉 and 〈YOH |Z〉 are above the

values predicted by the steady flamelet model at χq, indicating that reignition has occurred.

Also note that the ODT values of both 〈T |Z〉 and 〈YOH |Z〉 are larger than the DNS.

0 0.2 0.4 0.6 0.8 1

600

800

1000

1200

1400

1600

1800

Z

<
 T

 >
[K

]

 

 

ODT−τ=6
DNS−τ=6
ODT−τ=20
DNS−τ=20
ODT−τ=40
DNS−τ=40
Flamelet

Fig. 3.4: Conditional mean temperature, 〈T |Z〉, at τ = 6, 20 and 40. The steady flamelet
solution at χq is also shown for reference .
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Figures 3.6 and 3.7 show evolution of the conditional probability density function (PDF)

of T and log10 (χ/χq), respectively near Zst = 0.42 at three different time intervals (τ =

6, 20 and 40). In the early stages of the simulation (at τ = 6), the scalar dissipation

PDF evolution shows a narrower distribution and is shifted toward higher values relative to

the DNS data. These higher values of χ cause extinction in the early stages of the ODT

simulations, resulting in a corresponding temperature PDF shift toward lower values with

the most probable state near the steady flamelet extinction limit of T ≈ 1250 K. The higher

χ predicted by ODT in the early stages of development is followed by a decrease in χ that

is more rapid than exhibited by the DNS data. At τ = 20 the mixing rates are still high

enough to cause extinction in the model, as indicated by the tails of the PDF in Figure

3.7. During the later stages of the simulation (τ = 40), mixing rates relax as indicated by

the dissipation PDF shift toward lower values and the temperature PDF evolution starts

shifting toward high values as reignition occurs.
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There are three different modes through which reignition can happen: autoignition,

triple or edge flame propagation and turbulent flame folding [110]. The dominant reignition

mechanism for the present case is turbulent flame folding [45, 48], where neighboring flame

segments that are vigorously burning can provide a source for reignition. ODT can capture

this mode of reignition because of triplet map action during an eddy event. The triplet

map (2.37) instantly rearranges momentum and scalar fields enabling heat transfer from

burning to nonburning regions. Since the domain is restricted to one dimension in ODT,

the triple flame reignition mode (for which nonaligned gradients of mixture fraction and

progress variable are needed [51]) cannot be addressed.

Figure 3.8 shows comparison of 〈χ|Z〉 as a function of time for stoichiometric and fuel

rich regions. The ODT model predicts higher 〈χ|Z〉 (exceeding χq), in the early stages,

for both the regions compared to the DNS data, and as a result, early extinction occurs.

In the fuel rich region 〈χ|Z〉 starts increasing as the simulation starts and exceeds χq as

early as τ = 2 and starts decaying from τ = 3, whereas the corresponding times for the

stoichiometric region are 4 and 6, respectively. The DNS data also exhibits regions in which

χ exceeds χq consistent with the model results; however the maximum mean χ occurs later

than in the model, resulting in earlier occurrence of extinction.

In subsequent stages, the predicted 〈χ|Z〉 is lower than the DNS data. However,

extinction continues until τ = 20 which is evident from Figure 3.6. In the later stages of the

simulation, 〈χ|Z〉 predicted by ODT is lower in both regions compared to the DNS data,

indicating a faster increase towards equilibrium resulting in higher mean temperature and

OH species concentration.

Early extinction observed in the model is the primary reason for the discrepancies

observed between the ODT and DNS data. In the ODT model, the large eddies control

the flow entrainment [29], which is well reproduced by the model (see Figures 3.2 and 3.3),

whereas small eddies influence the small-scale mixing. Because of the high shear available

in the initial stages, the eddy frequency is high. Implementation of an (instantaneous) eddy

event further increases the strain rate within its interval, generating a turbulent cascade



46

0 5 10 15 20 25
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

τ

<
 lo

g 10
χ
 >

 

 

ODT−Z=0.42
DNS−Z=0.42
ODT−Z=0.55
DNS−Z=0.55
χ

q

Fig. 3.8: Evolution of log10 〈χ|Z〉 with time (recall Zst = 0.42). The horizontal line indicates
the steady extinction limit, χq.

process (vortex stretching). For DNS, in the initial stages Kelvin-Helmholtz instabilities

occur because of the high shear and significant velocity differences between fuel and oxidizer

surface. Gradual growth in the size of coherent structures is observed for this case due to

vortex pairing. Vortex pairing is inherently a multidimensional process that requires large

structures at two different downstream locations to interact. The stand-alone ODT model

cannot address this process because of its one-dimensional nature. This limitation of the

model could help explain why early extinction occurs. As the simulation progresses, the

strain rates become low and mixing rates relax. Once these rates relax the reignition takes

place as described above. Overall the model exhibits stronger extinction and reignition

characteristics compared to the DNS data. LES combined with ODT as a subgrid model

may better capture both large-scale amalgamation as well as small-scale mixing processes

representative of extinction in reactive jets.

The present results may be compared with another recent effort to model this DNS flame

that combined LEM with a three-dimensional LES and an artificial neural network approach
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to accelerate chemistry computation [98]. The results obtained in the present work are of

comparable quality to those obtained in [98], with a significantly reduced computational

effort. Interestingly, both works exhibit the same key discrepancy with the DNS, i.e., the

over-prediction of both the extinction and reignition processes.

3.5 Conclusions

In this work, the ODT model is applied to a syngas jet flame, and direct comparison is

made with DNS data. This study is first of its kind where a direct comparison has been made

between ODT and 3D DNS data for a turbulent reacting flow. The present study focused

on evaluating the model’s ability to capture finite-rate-chemistry effects including extinction

and reignition. A detailed comparison of jet spread rate as well as the thermochemistry for

OH species has been presented. Results indicate that the ODT formulation can reproduce

characteristics of the jet such as spread rate and entrainment. Additionally, the ODT model

can qualitatively capture both extinction and reignition that are exhibited by the DNS data.

The ODT calculations presented herein required approximately 2 hours per realization,

and 400 realizations were used to provide well-converged statistics. Relative to DNS, ODT

represents a very inexpensive modeling approach that can describe much of the physics

present in the DNS, including PDF evolution, minor species evolution, finite-rate chemistry

effects etc. Indeed, these results, together with the body of previous work in ODT of reacting

flows [29,50,51], suggest that ODT can provide reasonably accurate predictions for turbulent

combustion, even as a stand-alone model.



CHAPTER 4

PARAMETER SENSITIVITY ANALYSIS

4.1 Introduction

As described in Section 2.3, ODT model has number of adjustable parameters and

simultaneous tuning of the parameters is needed to simulate a particular flow of interest.

Presently, no theory or correlations exist to form the basis for parameter selection. In this

chapter sensitivity analysis is performed to establish a common basis on which parameter

values can be estimated. Two different configurations are chosen for the current study,

turbulent nonreacting and reacting jets.

4.2 Turbulent Planar Jet Flame

4.2.1 Computational Configuration

DNS of three-dimensional (3D) temporal planar syngas jet flames with detailed chem-

istry over a range of jet Reynolds numbers (Rej) from 2510 to 9079 have been performed by

Hawkes et al. [46–48]. Details of the DNS simulations (cases L, M and H) are summarized

in Table 4.1. The number of grid points across slot width (D) is denoted by ND. Spatial

(Δy) and temporal (Δt) resolutions are also given. The jet consists of a central fuel stream

(50% CO, 10% H2 and 40% N2 by volume) surrounded by counter-flowing oxidizer streams

comprised of 25% O2 and 75% N2.

Table 4.1: Nonpremixed planar jet flame details [46].

Case D (mm) ND Rej U (m/s) tj =
D
U Δy Δt

L 0.72 48 2510 144 5 μs 15 μm 2 ns

M 0.96 64 4478 194 5 μs 15 μm 2 ns

H 1.37 72 9079 276 5 μs 19 μm 2 ns
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The fuel and oxidizer stream bulk velocities are U/2 and −U/2, respectively. The

initial temperature of oxidizer stream is set to 500 K and pressure is set to 1 atm. For the

chemical mechanism 11 species, H2, O2, O, OH, H2O, H, HO2, CO, CO2, HCO and N2,

are considered with 21 reactions.

For all of the cases considered here mixing is initially rapid enough relative to reaction

to cause local extinction. Varying degrees of extinction are observed for the three cases. All

three cases reignite following extinction, although at different rates. The dominant reignition

mechanism for the cases considered here is turbulent folding [47].

The mixture fraction was computed from the local species compositions using Bilger’s

definition [8]. The scalar dissipation is computed based on the unity Lewis number (Le)

assumption as χ = 2D
Ä
dZ
dy

ä2
with D = λ/ (ρcpLe). The stoichiometric mixture fraction is

Zst = 0.42 and the steady extinction dissipation rate is χ = 2194 s−1.

The transverse direction in Figure 3.1 is chosen as the ODT domain and initial condi-

tions for all the variables are extracted directly from the DNS data. The detailed chemical

mechanism considered in this study (consisting of 11 species and 21 reactions [48]), temper-

ature and pressure-dependent thermodynamic property evaluation, and mixture-averaged

diffusion are all consistent with the DNS simulations. The spatial and temporal resolution

are likewise the same as used in the DNS simulation. The statistics from the DNS were

extracted on xz planes in Figure 3.1.

Figure 4.1 illustrates the temperature and χ/χq evolution with time in the form of

contour plots for different DNS cases described in Table 4.1. These flames exhibit strong

flame–turbulence interactions resulting in local extinction followed by reignition. The ex-

tinction levels increase with increasing Rej . The maximum extinction is observed at τ = 20

for all three cases and is clearly evident from the low temperatures in Figure 4.1. The scalar

dissipation rate χ is a quantity of critical importance in understanding and modeling non-

premixed flames. As a measure of the local rate of molecular mixing, it plays a major role

due to the intimate coupling of mixing and chemical reaction. It is heavily implicated in

nearly every strategy to model turbulent combustion.
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The magnitude of χ/χq plays an important role in understanding the relative rates of

mixing and chemical reactions. As Rej increases, χ/χq also increases and the maximum

as seen in Figure 4.1 also peaks earlier for high Rej . Once the mixing rates relax all three

flame reignite. However the onset of reignition event is different. Case L has largely reignited

at τ = 40, whereas cases M and H are not fully reignited yet. Case H does not reignite

until τ = 50. The greater degree of extinction at higher Rej , and therefore lower mean

temperature and radical pool, account for the longer reignition times.

Initial estimate on the model parameters indicated that the model behavior is quite

sensitive to the choice of parameter C, and much less sensitive to the values α, β and Z. In

Chapter 3, it is mentioned that the statistics are also sensitive to choice of β. However in

the present study sensitivity analysis is restricted to the choice of model parameter C.

The model parameter C determines the strength of the turbulence in ODT. Low values

of C give a low rate of occurrence of eddies and consequently almost no eddies are imple-

mented. In other words, when C is small enough, the flow is laminar. On the other hand,

large values of C produce a lot of eddies, and thus the flow is very turbulent. The value of

C is varied between 10− 100. Strictly speaking 3 different C values are chosen, 10, 60 and

100. The other parameter values are α = 0.5, β = 1.0 and Z = 50 same for all the ODT

simulations.

The following procedure is employed to identify the influence of the C on the model

behavior and also its dependency on the flow properties,

• Check if a unique C value can reproduce the DNS statistics across Rej .

• If a universally applicable C value is not identified, run simulations for cases L, M and

H at different C values.

• Identify the individual values for C that can produce qualitative agreement between

the model and the data.

• From the individual values identified for each of the L, M and H cases, deduce an

empirical relationship between the parameter C and Rej .
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• Check if the empirical correlation identified, when applied across Rej , can reproduce

the DNS statistics, if not modify the coefficients of the correlation and identify the

influence of them on the model outcome.

4.2.2 Results and Discussion

Simulations are run for 0.23 ms, 0.25 ms and 0.3 ms for cases L, M and H, respectively.

All the results reported here are analyzed over 400 ODT simulation realizations. The ODT

calculations presented herein required approximately 2 h per realization.

4.2.2.1 Flow Entrainment (constant C)

Figures 4.2, 4.3 and 4.4 show the comparison between the model behavior and DNS

data of the mean streamwise velocity and mixture fraction evolution for cases L, M and H

respectively. The following observations can be made when compared with DNS data:

• For all the cases results indicate that changing C from 10 to 100 has little to no effect

on the evolution of 〈u〉 and 〈Z〉 at τ = 6.

• Case L: For C = 10, mixing is underpredicted at τ = 20 and 40, which is evident from

the low spread and also slow decay of the 〈u〉 and 〈Z〉.
• Case L: For both C = 60 and C = 100, profiles match well at all the time intervals.

• Case M: At τ = 20, mixing is underpredicted for C = 10 and overpredicted for both

C = 60 and 100 (evident from fast decay in 〈Z〉).
• Case M: The trend for over prediction in the mixing continues for C = 100 even at

τ = 40, whereas mixing is in good agreement for C = 60.

• Case H: For both C = 60 and 100 mixing is continuously over predicted (evident from

fast decay in the 〈u〉 and 〈Z〉 and also low spreading).

• Case H: At τ = 20, model shows very good agreement for C = 10. However underpre-

dicts at τ = 40.
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Fig. 4.2: Case L: Mean velocity (left) and mixture fraction (right) profiles for different C
values at τ = 6, 20 and 40. Dashed line (DNS), solid line (ODT), light gray (C = 10),
medium gray (C = 60), dark gray (C = 100).
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Fig. 4.3: Case M: Mean velocity (left) and mixture fraction (right) profiles for different
C values at τ = 6, 20 and 40. Dashed line (DNS), solid line (ODT), light gray (C = 10),
medium gray (C = 60), dark gray (C = 100).
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Fig. 4.4: Case H: Mean velocity (left) and mixture fraction (right) profiles for different C
values at τ = 6, 20 and 40. Dashed line (DNS), solid line (ODT), light gray (C = 10),
medium gray (C = 60), dark gray (C = 100).
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4.2.2.2 Conditional Statistics (constant C)

Figures 4.5, 4.6 and 4.7 show the comparison between the model behavior and DNS data

of the mean temperature and hydroxyl radical, as a function of mixture fraction, for cases

L, M and H, respectively. As described in Section 4.2.1 for all the cases simulated, mixing

is initially rapid enough relative to reaction to cause local extinction, which is followed by

reignition as mixing rates relax. The following observations can be made when compared

with DNS data:

• Case L: There is no difference in the way model behaves for C = 60 and 100. Both

〈T |Z〉 and 〈OH|Z〉 compare well with data, except at τ = 40 where strong reignition

is observed.

• Case L: At τ = 6, low temperature and OH values are reported for all values of C.

However they are still above the extinction limit predicted by the laminar flamelet

solution, indicating no extinction.

• Case L: At τ = 20, for low value of C model predicts higher values of both 〈T |Z〉
and 〈OH|Z〉. For medium and high values of C profiles fall below the extinction limit,

indicating extinction.

• Case L: At τ = 40, strong reignition is observed for all values of C.

• Case M: At τ = 6, model indicates extinction for both C = 60 and 100.

• Case M: At τ = 20, for all values of C the profiles fall below the extinction limit

indicating extinction. The extinction event is stronger for C = 60 and 100.

• Case M: At τ = 40, strong reignition is observed for all vales of C. Profiles of both

〈T |Z〉 and 〈OH|Z〉 are above the values predicted by the steady flamelet model at χq,

indicating that reignition has occurred.

• Case H: At τ = 6, model indicates extinction for all the values of C, i.e. profiles fall

below the extinction limit.

• Case H: At τ = 20, global extinction is observed for both C = 60 and 100. The

temperature profiles are well below the extinction limit and the 〈OH|Z〉 is almost zero.

For low value of C, the flame sustains but the values are still low compared to data.
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Fig. 4.5: Case L: Conditional mean temperature (left) and hydroxyl radical (right) profiles
for different C values at τ = 6, 20 and 40. Dashed line (DNS), solid line (ODT), light gray
(C = 10), medium gray (C = 60), dark gray (C = 100). The steady flamelet solution at χq

is also shown for reference (red line).
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Fig. 4.6: Case M: Conditional mean temperature (left) and hydroxyl radical (right) profiles
for different C values at τ = 6, 20 and 40. Dashed line (DNS), solid line (ODT), light gray
(C = 10), medium gray (C = 60), dark gray (C = 100). The steady flamelet solution at χq

is also shown for reference (red line).
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Fig. 4.7: Case H: Conditional mean temperature (left) and hydroxyl radical (right) profiles
for different C values at τ = 6, 20 and 40. Dashed line (DNS), solid line (ODT), light gray
(C = 10), medium gray (C = 60), dark gray (C = 100). The steady flamelet solution at χq

is also shown for reference (red line).
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• Case H: At τ = 40, reignition is not observed for C = 60 and 100, where the profiles

match the data for C = 10.

4.2.2.3 Empirical Correlation

One of the main objectives of this study is to find if a unique value of C can reproduce

the DNS statistics over a range of Rej . From the results discussed so far, in Sections 4.2.2.1,

4.2.2.2, it is clearly evident that C value needs to be changed based on Rej . Overall, for

cases L, M and H, the selected model parameter values are 100, 60 and 10 respectively.

These values are selected based on the following criteria.

• The selected C value should reproduce the qualitative trends for extinction and reig-

nition. For case H, only C = 10 reproduced both extinction and reignition.

• If more than one value of C reproduces the qualitative behavior for both extinction

and reignition, a value of C which quantitatively shows good agreement with data for

both mixing and thermochemistry should be selected.

The common notion of the ODT modeling community is that C value should be increased

to increase the turbulence intensity (increases the number of eddies being implemented).

However a reverse trend is observed in the current study (with increasing Rej , C decreases).

Eddy events selection in ODT is a stochastic process and the acceptance/rejection of the

candidate eddy depends on both the shear kinetic energy and the model parameter (see

Section 2.3 for more details). For the cases described here the magnitude of gradients

increase as the Rej increases. For case H, the gradients are so high that even a value of

C = 10 reproduces the data.

Based on the individual C values identified for all the cases the following empirical

correlation is developed. Least squares regression is applied to identify the coefficients.

Three different sets of coefficients are considered and included in Table 4.2 along with the

residual values (R2).

logC = log b+ a logRej , (4.1)
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Table 4.2: Proposed empirical correlation (4.1) coefficients, a and b, values. Residual values
are also given.

set a log b R2

1 -1.49 15.11 0.834
2 -1.69 17.4 0.652
3 -1.69 16.9 0.768

When the correlation is considered for the simulations, C changes during the course

of the simulation based on the local Rej which is computed from ujD/ν, where uj is the

difference between maximum and minimum velocities and ν is the kinematic viscosity. The

following sections focus on the comparison of model behavior ,with data, for different sets

proposed in Table 4.2.

4.2.2.4 Flow Entrainment (variable C)

Figures 4.8, 4.9 and 4.10 show the comparison between the model behavior and DNS

data of the mean streamwise velocity and mixture fraction evolution for cases L, M and H,

respectively. The following observations can be made when compared with DNS data:

• Case L: At τ = 6, for all the different sets of coefficients considered here model behavior

shows good agreement with the data.

• Case L: At τ = 20 and 40, the model overpredicts the decay and spreading of both

〈u〉 and 〈Z〉.
• Case M: At τ = 6, the model behavior shows good agreement with the data.

• Case M: At τ = 20 and 40, the model overpredicts the decay and spreading of both

〈u〉 and 〈Z〉. However the set-1 is in close agreement with the data compared to other

two cases.

• Case H: At τ = 6, the model behavior shows good agreement with the data.

• Case H: At τ = 20, model indicates the same behavior for set-1 and set-3. The

spreading matches well but the velocity at the jet center is high. Both spreading and

decay of the centerline velocity matches well for set-2.

• Case H: At τ = 40, model indicates high mixing for set-2, whereas set-1 and set-3

behaves much the same way.
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Fig. 4.8: Case L: Mean velocity (left) and mixture fraction (right) profiles for different C
values at τ = 6, 20 and 40. Dashed line (DNS), solid line (ODT), light gray (set-1), medium
gray (set-2), dark gray (set-3).



63

−4 −2 0 2 4
−100

−50

0

50

100

y/D

<
u>

 [
m

/s
]

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

y/D

<
Z

>

(a) τ = 6

−4 −2 0 2 4
−100

−50

0

50

100

<
u>

 [
m

/s
]

y/D
−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1
<

Z
>

y/D

(b) τ = 20

−4 −2 0 2 4
−100

−50

0

50

100

y/D

<
u>

 [
m

/s
]

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

y/D

<
Z

>

(c) τ = 40

Fig. 4.9: Case M: Mean velocity (left) and mixture fraction (right) profiles for different C
values at τ = 6, 20 and 40. Dashed line (DNS), solid line (ODT), light gray (set-1), medium
gray (set-2), dark gray (set-3).
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Fig. 4.10: Case H: Mean velocity (left) and mixture fraction (right) profiles for different C
values at τ = 6, 20 and 40. Dashed line (DNS), solid line (ODT), light gray (set-1), medium
gray (set-2), dark gray (set-3).
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4.2.2.5 Conditional Statistics (variable C)

Figures 4.11, 4.12 and 4.13 show the comparison between the model behavior and DNS

data of the mean temperature and hydroxyl radical, as a function of mixture fraction, for

cases L, M and H, respectively. The following observations can be made when compared

with DNS data:

• Case L: At all the time intervals the model behaves the same way for different sets of

coefficients considered here.

• Case L: At τ = 6, model reports low temperature and OH values. However they are

still above the extinction limit.

• Case L: At τ = 20, profiles fall below the extinction limit indicating extinction. Com-

pared to data, higher extinction is reported in the simulation.

• Case L: At τ = 40, strong reignition is observed in the model behavior. The values

predicted by the model are higher compared to DNS data.

• Case M: There is little to no difference in the way model behaves for different sets of

coefficients considered here.

• Case M: At τ = 6, model reports low temperature and OH values. However they are

still above the extinction limit.

• Case M: At τ = 20, for all values of C the profiles fall below the extinction limit

indicating extinction. The extinction event is stronger in the model.

• Case M: At τ = 40, reignition is observed in the model. Profiles of both 〈T |Z〉 and

〈OH|Z〉 are above the extinction limit indicating that reignition has occurred and also

compare well with the data.

• Case H: At τ = 6, model indicates early extinction for all the sets which is not observed

in the data.

• Case H: At τ = 20, profiles fall below the extinction limit for all the sets indicating

extinction. For set-1 and set-3 the model shows good agreement with the data.

• Case H: At τ = 40, reignition is not observed for set-2. The profiles for set-1 and set-3

match well with the data.
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Fig. 4.11: Case L: Conditional mean temperature (left) and hydroxyl radical (right) profiles
for different C values at τ = 6, 20 and 40. Dashed line (DNS), solid line (ODT), light gray
(set-1), medium gray (set-2), dark gray (set-3). The steady flamelet solution at χq is also
shown for reference (red line).
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Fig. 4.12: Case M: Conditional mean temperature (left) and hydroxyl radical (right) profiles
for different C values at τ = 6, 20 and 40. Dashed line (DNS), solid line (ODT), light gray
(set-1), medium gray (set-2), dark gray (set-3). The steady flamelet solution at χq is also
shown for reference (red line).
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Fig. 4.13: Case H: Conditional mean temperature (left) and hydroxyl radical (right) profiles
for different C values at τ = 6, 20 and 40. Dashed line (DNS), solid line (ODT), light gray
(set-1), medium gray (set-2), dark gray (set-3). The steady flamelet solution at χq is also
shown for reference (red line).
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4.2.2.6 PDF Evolution

From the results discussed so far it is clearly evident that proposed correlation can

reproduce the DNS statistics. The choice of the coefficients influence the mixing and ther-

mochemistry behavior. The extinction and reignition observed in the model is reproduced

by the model. However it is important to look at the higher order statistics like probability

density function evolution (PDF) before drawing major conclusions about the model. In

this section PDF evolution of temperature and scalar dissipation are compared with the

DNS data. The PDFs are generated for both a constant value of C and correlation based

C based with set-1 coefficients. The constant values of C are 100, 60 and 10 for cases L, M

and H, respectively.

Figures 4.14, 4.15 and 4.16 describe the PDF evolution of both T and log10(χ/χq), con-

ditioned on stoichiometric mixture fraction (Zst = 0.42), for cases L, M and H, respectively.

The following observations can be made from the comparison:

• For all the cases (L, M and H), qualitatively, model indicates the same behavior for

both constant and varying C.

• Case L: At τ = 6, scalar dissipation PDF evolution shifted towards higher values

relative to the DNS data. These higher values of χ cause extinction in the early stages

of the ODT simulations, resulting in a corresponding temperature PDF shift towards

lower values.

• Case L: At τ = 20, mixing rates are still high enough to cause extinction in the model,

as indicated by the χ PDF. The temperature keeps dropping as indicated by the PDF.

• Case L: At τ = 40, mixing rates relax and temperature PDF evolution starts shifting

towards high values as reignition occurs.

• Case M: At τ = 6, mixing rate is high as indicated by the χ PDF shift towards higher

values. The corresponding temperature PDF shifts towards lower values.

• Case M: At τ = 20, the mixing rates are comparable to DNS. However the rates are

still high enough to cause extinction in the model.
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Fig. 4.14: Case L: Probability Density Function profiles of temperature (left) and log10(χ/χq)
(right), conditioned on stoichiometric mixture fraction (Zst = 0.42), at τ = 6, 20 and 40.
Dashed line (DNS), solid line (ODT), light gray (set-1), dark gray (C = 100).
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Fig. 4.15: Case M: Probability Density Function profiles of temperature (left) and
log10(χ/χq) (right), conditioned on stoichiometric mixture fraction (Zst = 0.42), at τ = 6, 20
and 40. Dashed line (DNS), solid line (ODT), light gray (set-1), dark gray (C = 60).
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Fig. 4.16: Case H: Probability Density Function profiles of temperature (left) and
log10(χ/χq) (right), conditioned on stoichiometric mixture fraction (Zst = 0.42), at τ = 6, 20
and 40. Dashed line (DNS), solid line (ODT), light gray (set-1), dark gray (C = 10).



73

• Case M: At τ = 40, mixing rates relax as indicated by the dissipation PDF shift

towards lower values and the temperature PDF evolution starts shifting towards high

values as reignition occurs.

• Case H: At τ = 6, mixing rates are high in the model compared to data as indicated

by the χ profiles. The corresponding temperature values are low.

• Case H: At τ = 20, mixing rates are comparable to the data and corresponding

temperature PDF profiles also show good agreement.

• Case H: At τ = 40, mixing rates relax and the dissipation PDF compares well with

the data. Interestingly temperature PDF shows bimodal distribution whereas data

indicate a monomodal distribution.

Overall, the model exhibits stronger extinction and reignition characteristics compared to

the DNS data. The early extinction observed in the model is not directly explicable from

mean profiles of 〈u〉 and 〈Z〉. However the χ PDF profiles indicate that the mixing rates

are high in the model compared to data. The high mixing rates in the early stages causes

extinction in the model, see profiles of 〈T |Z〉 and 〈OH|Z〉 at τ = 6 for cases M and H. The

reasons for high mixing rates in the early stage are discussed in Chapter 3. As the flame

evolves in the time, the decay of mixing rates allow 〈T |Z〉 and 〈OH|Z〉 to move towards their

equilibrium values.

4.3 Nonreacting Turbulent Planar Jet

In this section the proposed correlation is applied to a different nonreacting configura-

tion.

4.3.1 Computational Configuration

Temporally developing planar jet configuration with air, at room temperature and pres-

sure as the fluid, is simulated to validate the model. The initial conditions for simulating

planar jet are given in Table 4.3. The streamwise velocity at the inlet is specified using the

following hyperbolic tangent function and is shown schematically in Figure 4.17.
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Table 4.3: Initial conditions of different Rej cases defined for parameter sensitivity analysis.

Rej D (m) u0 (m/s) u∞
(m/s)

dt (s) dy (m)

2250 0.002 28 10 2e-7 100e-6
5000 0.003 37 10 2e-7 100e-6
9000 0.004 46 10 2e-7 100e-6
14000 0.005 55 10 2e-7 100e-6
27500 0.007 73 10 2e-7 100e-6
36000 0.008 82 10 2e-7 100e-6

Fig. 4.17: Schematic of tanh profile used to specify streamwise velocity profile.
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where A is the amplitude of the change w is the width of the transition and L1 and L2 are

the midpoints of the transition.

4.3.2 Experimental Data

Following semiempirical relation developed by Gutmark [40], for center line velocity

(uc) decay of spatially developing planar jet, is used to compare with simulation data,
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uc = u∞ +
u∗√

0.188(x−x0)
b

, (4.3)

where u∗ =
»
u0(u0 − u∞), offset (x0) near the jet nozzle depends on the jet velocity con-

ditions, for the current study a value of −4D is considered. To compare the temporally

evolving flow simulation results with spatially evolving jet experimental data, the procedure

described in Section 2.2.1.3 is followed.

4.3.3 Results and Discussion

Figure 4.18 shows the comparison of mean centerline velocity evolution between sim-

ulation and experimental data. Simulations for the low Rej range (2250-9000) performed

only using the empirical correlation. For high Rej regime, simulations are performed using

a constant value of C and also the corrleation based C. As it can be clearly seen from the

comparison, for Rej ranging from 2250-9000, the model reproduces the experimental data.

The proposed correlation for C underpredicts the velocity decay for high Rej (14000-36000),

whereas a constant C value (C = 10) reproduces the experimental data. For the proposed

correlation, in the limit of Rej → ∞, C goes to zero. Model parameter, C determines the

turbulence strength in the flow, if C value is very low fewer eddies will be implemented and

the flow behaves as if it is laminar.

4.4 Conclusions

In this chapter, the ODT model parameter with strong influence on the simulation

performance is identified. Based on the sensitivity analysis performed on a reacting jet, an

empirical correlation is derived for the model parameter in terms of flow properties (local

Rej). The proposed correlation is applied to two different configurations. For the reacting

jet configuration, the results are compared with DNS data and the model qualitatively

reproduces the data.
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Fig. 4.18: Mean streamwise center line velocity evolution for different Reynolds number
cases described in Table 4.3.

The correlation is also verified for high Rej by simulating a nonreacting planar jet

configuration and results are compared with experimental data. Based on the validation

performed the following conclusion is drawn,

C =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
10 if Rej > 9000

bReaj if 2250 ≥ Rej ≤ 9000

(4.4)

where a = −1.49 and b = e15.11. The other parameter values are α = 0.5, β = 1.0 and

Z = 50.



CHAPTER 5

PREMIXED TURBULENT JET FLAME

5.1 Introduction

The advancement of turbulent combustion models has a crucial role to play in meeting

the ever increasing energy demands and increasingly stringent emission standards. Technical

processes in gaseous turbulent combustion can be subdivided in terms of mixing: premixed,

nonpremixed, or partially premixed turbulent combustion [77]. Turbulent premixed flames

occur in several applications including low NOx gas turbine combustors and spark-ignited

internal combustion engines. Increasing efficiency and minimizing pollutant emissions from

these devices calls for improved predictive models. Models must be capable of accommo-

dating the effects of large fluctuations in the thermodynamic state observed in turbulent

premixed flames. There have been significant efforts on both the experimental [19,24,26,28]

and modeling fronts to better understand the structure of the premixed flames and the

fundamental processes involved.

Modeling efforts for turbulent premixed flames can be broadly categorized into two

classes: direct numerical simulations (DNS), [41–44], to gain the understanding of the phys-

ical phenomena and Large-Eddy Simulation or Reynolds-Averaged Navier-Stokes (RANS)

simulations, both of which require models for closure [11, 12, 23, 63, 83]. However to the

authors’ knowledge there have been no attempts to predict turbulent premixed jet flames

using one-dimensional models.

The main objective of the present study is to perform stand-alone Eulerian ODT sim-

ulations for a premixed temporally developing planar hydrogen jet flame and to compare

the model prediction with DNS data [42]. This work is the first time that a stand-alone

ODT model has been compared directly with 3D DNS data for a premixed jet flame, and

also demonstrates the richness of the data the model can produce. It also represents one
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of the first attempts to model the DNS data set. In the present work, all simulation de-

tails, including mesh spacing, initial conditions, boundary conditions, and thermodynamic,

chemical kinetic and transport models were matched with the DNS.

This chapter is organized as follows. First we present some details of the model used

for the present work followed by description of the computational configuration. We then

evaluate the model’s capability to predict the important statistics for premixed jet flame.

Mean profiles of velocities, temperature, hydroxyl radical, progress variable and flame surface

density are presented. Transient evolution of flame speed, surface area ratio and burning

rate per unit area are also presented.

5.2 Model Formulation

The transverse y-direction, which is the direction of the most significant gradients (see

Figure 5.1), is considered here as the ODT domain. The parameter values used in the

present work are 10, 50, 0.5 and 1.0 for C, Z, α and β, respectively. The same set of

equations described in Section 3.2.1 are solved with transformation procedure described in

Section 2.3.2.

Fig. 5.1: Premixed jet flame: Schematic of the DNS configuration. Case Da+.
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5.3 Computational Configuration

DNS of three-dimensional (3D) temporal planar premixed jet flames with detailed chem-

istry over a range of Damköhler numbers (Daj) from 0.13 to 0.54 have been performed by

Hawkes et al. [42]. The jet Reynolds number is 10000. Details of the DNS simulations (case

Da− and Da+) are summarized in Table 5.1, 150 grid points span over slot width (D).

Spatial (Δy) and temporal (Δt) resolutions are also given. Based on the characteristic jet

time scale, tj , a nondimensionalized time parameter is defined as τ = t/tj .

The DNS database is generated based on an idealized scenario of two initially planar

flames propagating towards each other into a temporally developing plane jet of premixed

reactants. Lean premixed hydrogen combustion with a detailed chemical kinetic model is

considered. Mean shear exists in the DNS configuration that drives strong turbulent mixing

within the flame structure.

The initial conditions for all the variables transported in the ODT model are extracted

directly from the DNS data. The detailed chemical mechanism considered in this study

(consisting of 9 species and 21 reactions [65]), temperature and pressure-dependent thermo-

dynamic property evaluation, and the mixture-averaged transport treatment are all consis-

tent with the DNS simulations. The spatial and temporal resolution are likewise the same

as used in the DNS simulation. Simulations are started approximately at 10tj and run for

22tj and 28tj , respectively, for cases Da+ and Da−, respectively. ODT results are analyzed

over 900 ODT simulation realizations, which was enough to provide stationary statistics.

ODT results at different times are compared with DNS statistics on xz planes in Figure 5.1.

For transverse profiles DNS mean values on the left half of the domain are a mirror image of

the right half of the domain but for ODT, data at positive and negative y are not combined

(i.e., spatial profiles are not symmetrized).

Table 5.1: Premixed jet flame details.

case Daj D (m) U (m/s) dy (m) dt (s) tj= D
U (s) ts (s) Rej

Da− 0.13 0.0027 312.6 18e-6 2.5e-9 8.6372e-6 8.625e-5 10000
Da+ 0.54 0.0054 156.3 36e-6 5e-9 3.45e-5 3.45e-4 10000
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The following definitions are used while gathering the statistics from the ODT data

(consistent with DNS),

• The progress variable (c) may be defined using any reactive scalars, for the present

study c is defined from the H2 mass fraction:

c =
YH2 − YH2,f

YH2,b − YH2,f
, (5.1)

where YH2,f = 0.0201376 and YH2,b = 0.00021773 are the hydrogen mass fractions in the

fresh and burned gases, respectively

• Flame surface density (FSD), defined using the generalized approach [119] as:¨∑′∂
= |∇c|. (5.2)

• Integrated consumption speed (sc,H2) based on hydrogen mass fraction be defined as:

sc,H2 =
1

ρ0(YH2,b
−YH2,f)

ˆ Ly

0
〈ωH2〉 dy, (5.3)

where ρ0 = 0.395 kg/m3, sL = 7.9m/s and 〈ωH2〉 is the mean H2 reaction rate

• Flame surface area ratio (σ) [77], representing the ratio of the total turbulent flame

surface area to that of a flat laminar flame, defined as:

σ =

ˆ Ly

0

¨∑′∂
dy. (5.4)

• Factor I0 representing changes to the burning rate per unit area is defined as:

I0 =
sc,H2

sLσ
. (5.5)

5.4 Results and Discussion

5.4.1 Mean Profiles (Da+)

Figure 5.2 shows the evolution of streamwise and transverse velocities at different time

intervals. The spreading and decay for streamwise velocity, 〈u〉, is well predicted by the

model. For transverse velocity, the model overpredicts and underpredicts the values in the

initial and later stages, respectively.
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Fig. 5.2: Da+: Streamwise (left) and transverse (right) velocity profiles at τ = 12, 15 and
18. Solid line (ODT), dashed line (DNS). Units for both the velocities are m/s.

Figure 5.3 shows the evolution of temperature and hydroxyl radical at different time

intervals. Both 〈T 〉 and 〈YOH〉 show good agreement with the data at τ = 12 and 15.

Thereafter the model starts underpredicting the values, in the jet core, which can be clearly

seen from the comparison at τ = 18. Specifically 〈YOH〉 reaches a vlaue of 0.01 for the DNS

data indicating strong flame existance (also can be seen from the temperature profile) in

the jet core, whereas in the model, low values of 〈YOH〉 are reported reflecting in the low

temperature values.

Figure 5.4 shows the evolution of progress variable, c, and flame surface density at

τ = 12, 15 and 18. At τ = 12 both 〈c〉 and
¨
Σ

′∂ show good agreement with the data.

The transition from bimodal to unimodal distribution of
¨
Σ

′∂, exhibited by the data, is well

captured by the model. Model starts underpredicting the values for 〈c〉 starting from τ = 15

and the deviation is more clearly evident at τ = 18. The deviation is more significant for

〈c〉 compared to
¨
Σ

′∂.
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Fig. 5.3: Da+: Temperature (left) and hydroxyl radical (right) profiles at τ = 12, 15 and
18. Solid line (ODT), dashed line (DNS). Units for temperature are kelvin (K).
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Fig. 5.4: Da+: Progress variable (left) and flame surface density (right) profiles at τ = 12, 15
and 18. Solid line (ODT), dashed line (DNS).
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5.4.2 Mean Profiles (Da−)

Figure 5.5 shows the evolution of streamwise and transverse velocities at different time

intervals, τ = 14, 18 and 22. The spreading and decay for streamwise velocity, 〈u〉, is well

predicted by the model at τ = 14 and 18. The spreading of the 〈u〉 is low compared to

data at τ = 22, however matches well at the center. For transverse velocity, the model

overpredicts and underpredicts the values in the initial (τ = 14) and later stages (τ = 18

and 22), respectively.

Figure 5.6 shows the evolution of temperature and hydroxyl radical at different time

intervals. Both 〈T 〉 and 〈YOH〉 show good agreement with the data at τ = 14. In the jet

core, the model starts underpredicting the values starting from τ = 18. The deviation is

more significant at τ = 22.

Figure 5.7 shows the evolution of progress variable,c, and flame surface density at

different time intervals. At τ = 14 the model shows good agreement with data for 〈c〉
whereas

¨
Σ

′∂ is underpredicted. The bimodal to unimodal transition for
¨
Σ

′∂ is delayed in

the model compared to data.
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Fig. 5.5: Da−: Streamwise (left) and Transverse (right) velocity profiles at τ = 14, 18 and
22. Solid line (ODT), dashed line (DNS). Units for both the velocities are m/s.
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Fig. 5.6: Da−: Temperature (left) and hydroxyl radical (right) profiles at τ = 14, 18 and
22. Solid line (ODT), dashed line (DNS). Units for temperature are kelvin (K).
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Fig. 5.7: Da−: Progress variable (left) and flame surface density (right) profiles at τ = 14, 18
and 22. Solid line (ODT), dashed line (DNS).
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5.4.3 Flame Speed and Surface Area Ratio

Figures 5.8 and 5.9 show the evolution of integrated consumption speed, (sc,H2), and

flame surface area ratio, σ, with time for cases Da+ and Da−, respectively. ODT profiles

peak earlier and also broader compared to data.

Table 5.2 summarizes the maximum values and the time at which the maximum occurs

from both simulations and data.

The following observations can be made from the comparison (Table 5.2),

• For both the cases (Da+ and Da−), the maximum overall burning rate (sc,H2/sL)

predicted by the model is low compared to data. However the trend for increasing

burning rate with decreasing Da is captured.
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Fig. 5.8: Da+: Flame speed and flame surface area evolution with time. Solid line (ODT),
dashed line (DNS).
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Fig. 5.9: Da−: Flame speed and flame surface area evolution with time. Solid line (ODT),
dashed line (DNS).
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Table 5.2: Maximum values for sc,H2/sL and σ for both Da+ and Da− cases. τ represents
the time at which the maximum values are observed.

DNS ODT

D
a
+

sc,H2/sL 5.41 3.07
τs 15.8 13.9
σ 4.49 2.4
τσ 15.8 13.9

D
a
−

sc,H2/sL 5.89 3.42
τs 17.7 15
σ 4.34 2.35
τσ 17.1 14.6

• For both the cases (Da+ and Da−), the maximum flame surface area ratio (σ) pre-

dicted by the model is low compared to data. However the trend for decreasing burning

rate with decreasing Da is captured.

• Model indicates maximum values at earlier times compared to data. However the

trend for increasing time delay for decreasing Da is captured.

• For Da+, the time at which maximum reported by the model is same for both sc,H2/sL

and σ, consistent with the data.

• For Da−, the trend for time delay between maximum occurrence of sc,H2/sL and σ is

captured by the model.

Both the cases (Da+ and Da−) are nearly identical from the fluid-dynamic perspective and

the streamwise velocity profiles (〈u〉) are well predicted by the model (even quantitatively),

at all the time intervals reported here (see Figures 5.2 and 5.5). The reasons for the discrep-

ancies between the model and data, for the other statistics, are discussed in the following

sections.

5.4.4 Triplet Map Effects

Instantaneous rearrangement of the fluid elements through triplet mapping (eq. 2.37)

is an artifact of the ODT model. In reality, the fluid displacement associated with turbulent

motions occur over a finite time interval. This effect is more pronounced for large eddies,

whose turnover time is relatively long in reality, but are implemented instantaneously in

ODT.
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Figure 5.10 shows the contour plot of the mean H2 reaction rate, for case Da−, from

both DNS and ODT in the lower half of the jet. The reaction rate increases in the model

starting from τ = 12, indicating that the entrainment of products into the jet core appears

to happen before it does in the DNS (a similar trend is observed for Da+). The expansion

associated with the increased reaction in the center of the jet in ODT explains the over-

prediction of 〈v〉 relative to the DNS results (see Figures 5.2 and 5.5). Given that the

mean velocities (Figures 5.2 and 5.5) are well-captured by the ODT, the net mixing rate

is appropriate. This indicates that the entrainment is modeled appropriately. However,

because entrainment occurs stochastically in instantaneous events, the products that are

entrained into the jet during an eddy event happen instantaneously, whereas in reality the

entrainment occurs over a period of time τeddy. While the distinction is unimportant from

a fluid-dynamic perspective (and yields correct jet spreading, etc.) the thermochemistry is

more sensitive to this difference. For large eddies, which entrain more products into the

reactants, τeddy should be relatively large. While the net effect on entrainment is the same

whether an eddy occurs instantaneously or over τeddy, the effect on the thermochemistry is

quite different, particularly for large eddies. Therefore, it is plausible to conclude that the

instantaneous nature of the triplet mapping may be responsible for the early introduction

of products into the shear layer of the jet.

5.4.5 1D to 3D Mapping

There have been some efforts by the premixed combustion community to derive rela-

tionships to relate the statistical mean values of measured one or two-dimensional quantities

to those of the true three-dimensional quantity [49, 61, 118]. Following the same principle,

the relationship between surface surface area ratio in 1D (σ1D) and true surface area ratio

in 3D (σ3D) can be represented as

σ1D = |cosφ|σ3D (5.6)
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Fig. 5.10: Contour plot of the mean H2 reaction rate for the lower portion of the jet for the
Da− case. Top (DNS), bottom (ODT).

where φ is the angle between line of sight and flame normal. Similarly, the relationship for

flame speed can be defined as

s1D = s3D/|cosφ| (5.7)

where s1D and s3D are the surface-averaged mean flame consumption speeds in 1D and 3D,

respectively. If φ = 0 or π, meaning the line of sight coincides with the flame normal, the

observed 1D flame speed and surface density match the corresponding 3D measurements. As

φ increases from 0 to π/2, the apparent 1D flame speed grows unboundedly and s1D → ∞
as φ → π/2. This can be seen in Figure 5.11, where line “1” is nearly parallel to the flame

front. The apparent flame front propagation speed along the line is very large due to the

primary propagation direction being nearly perpendicular to the line 1. Line 2, on the other

hand, would observe a flame speed much closer to the true flame speed, since the direction

of flame propagation is nearly parallel to line 2.

The ODT calculations only resolve flame propagation along the 1D line of sight and,

therefore, cannot represent anything except φ = 0, and φ = π. Therefore, the ODT predic-

tions will always underpredict the true turbulent flame speed, assuming the flame surface

density was the same, compared with that which should be observed on a 1D line of sight.
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Fig. 5.11: Schematic of the 1D line of sight intersection with the flame front. Arrows indicate
the direction of flame propagation and φ represents the angle between the line of sight and
the flame normal.

This may explain why the maximum flame speed observed in the ODT is significantly lower

than in the DNS (see Figures 5.8 and 5.9) and why the ODT predicts later flame annihilation

than the DNS (see Figures 5.3 and 5.6).

The above argument shows that the local displacement or consumption speed predicted

by ODT would be smaller than observed on a line of sight. In a statistically planar flame,

this would not necessarily imply a smaller turbulent flame speed. Flame propagation in

the net is well known to cause flame surface area destruction [119]. Therefore, if the flame

speed is smaller, less flame surface area destruction could result. With less destruction, and

production still ongoing via turbulence, ODT could possibly respond to the error estimating

the local flame speed with an increased flame surface density so that the turbulent flame

speed might remain roughly constant. This is not observed in Figures 5.4 and 5.7, where

sc,H2/sL relative to σ is similar between the ODT and DNS (although both are lower in

the ODT). However, this argument assumes a statistically stationary flame. In the present

situation, the flame might be expected to respond with a time-scale the order of the flame

brush thickness divided by the turbulent flame speed. Since, in the present configuration, the

characteristic size of the reactant region is the same order of magnitude as the integral scale

and flame-brush thickness [42], it could be expected that the ODT burning rate would lag

compared with the DNS, which is precisely the behavior observed. In summary the under-

prediction of flame speed is expected to lead to a lag in the response time of the overall
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burning rate to turbulence, which here leads to an underprediction of the peak burning rate.

The author speculates such a behavior might also be applicable to other jet type flows.

5.4.6 Curvature Effects

For the DNS data considered here, the propagating flame is statistically planar. In

the early stages, the curvature has zero mean and in the later stages the flames merge and

the curvature becomes negative, with center of curvature in the reactants (only pockets of

reactants remaining). For negative curvature, the focusing of diffusion fluxes for heat and

radicals into the reactants increases the flame speed [43]. The ODT model cannot capture

the effects of curvature and, thus, will underpredict the flame speed in cases where the mean

curvature is negative, as prevails at later times in the DNS. This may explain why the ODT

predicts a lower turbulent flame speed than the DNS at later times (see Figures 5.8 and

5.9).

5.5 Conclusions

In this chapter, the ODT model is applied to a premixed jet flame, and direct comparison

is made with DNS data. This study is first of its kind where a direct comparison has been

made between ODT and 3D DNS data for a turbulent premixed jet flame. The present

study focused on evaluating the model’s ability to capture important statistics of premixed

combustion. Two different Da cases are considered in this study. Results indicate that

model can qualitatively predict the important statistics of premixed jet flames. Comparing

the ODT predictions to the DNS data, it is observed that the overall turbulent mixing rate

(jet entrainment) is well captured by the ODT model, as evidenced by the mean velocity

profile evolution. However, the peak predicted flame speeds were lower than those observed

in the DNS. Several possible explanations were offered, based on the one-dimensional nature

of the model. The model precludes incorporation of curvature effects as well as three-

dimensional flame propagation effects that occur normal to the ODT domain. Finally,

over-prediction of the flame surface density early on in the calculation is attributed to the

instantaneous nature of the triplet mappings that form the heart of the ODT simulation. The

ODT calculations presented herein required approximately 1 hour per realization, and 900
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realizations were used to provide well-converged statistics. Relative to DNS, ODT represents

a very inexpensive modeling approach that can describe much of the physics present in the

DNS.



CHAPTER 6

TURBULENT PARTICLE LADEN JETS

6.1 Introduction

Particle transport in turbulent flows is of immense importance in engineering and sci-

entific disciplines. Gas-solid flows, defined as multiphase flows consisting of solid particles

dispersed throughout a gas medium, parameters such as particle-to-fluid length-scale and

timescale ratios are expected to play an important role in interface coupling [25]. Under-

standing the gas solid flows is of paramount importance because of their wide range of use in

physical and reactive operations. Physical operations include pneumatic conveying of solids

for purposes of transport, heating and drying. The reactive operations for gas-solid flows in-

clude any reactions which involve both gas-phase and a particle-phase. Few examples of this

category include fluid catalytic cracking, pulverized coal combustion, and the production of

high purity alumina.

For most practical gas-solid flows, particles move in a strong turbulent gas stream, they

will interact with turbulent eddies, and their motion will be altered by the turbulent motion

of the gas. Local variations in the flow properties influence the dispersion of the particles

in the gas medium. The motion of the particles in gas-solid flows is often more complex

than the fluid in single-phase flow because the particles are completely distinct from the

continuous-phase. Unlike the continuous carrier phase, the discrete particles have finite

sizes and can have significantly different density than the carrier phase (denser than the gas

phase by about three orders of magnitude). Particle transport with combustion includes

the fluid dynamic considerations of two-phase flow and the complexities of the integrated

exchanges of mass, momentum and energy [107]. Randomly distributed dispersed phase

complicates the inherent stochastic nature of carrier phase and the distribution of dispersed
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phase throughout the carrier phase plays a crucial role in determining the kinetic reactions

and heat transfer rate.

The physics of gas-solid flows is very complex and the designs of both the physical

and reactive systems depend not only on the relationship between macroscopic operating

variables, but also on local variations in the flow properties [66]. In order to improve the

understanding of gas-solid flows, extensive experimental studies have been performed in

the past 30 years. These studies play a crucial role in probing the physical mechanism

governing the gas-solid flows and also to help develop and improve the existing models for

computational fluid dynamics (CFD).

From the modeling stand point of view resolving the wide range of length and time

scales existing in these flows plays an important role in the efficient design of the practical

systems. Like single phase systems, in LES or RANS models of multiphase systems, only

macroscale level information is resolved and microscale details are modeled [5]. Because

particle laden turbulence is of such important practical applications there are also quite

extensive publications on this subject. An in depth review of particle laden turbulence is

beyond the scope of this work. There have been numerous reviews of the many facets of

particle laden flow published in the literature [5,13,18,25,31,32,37,38,66,67,78,99,109,125]

and the reader is referred to those for the broad perspective on turbulence and particle laden

turbulence. The majority of the rest of this chapter will focus on placing the present work

in context relative to the work which motivated it.

This work is intended to develop a numerical model, which will capture enough of

the essential physics to predict quantitatively the individual trajectories of particles (in

contrast to the average location) yet to be simple enough to be able to solve problems of

practical interest. For the present study we consider the development of One-Dimensional

Turbulence model (ODT) [58] to simulate gas-solid flows. Some attempts have been carried

out in the past years to simulate gas-solid flows using ODT model. Schmidt [96] proposed

a new method to consider particle motion in a temporally developed turbulent channel flow

based on Lagrangian frame with one-way coupling. Kerstein [60] studied bidispersion and
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monodispersion for low inertia particles and indicated that the ODT model is useful for

clarifying the origin of clustering.

This chapter is organized as follows: first the equations governing the continuous and

dispersed phase are presented, then a new particle-eddy interaction model is described,

followed by the comparison between model results with the corresponding experimental

data.

6.2 Governing Equations

6.2.1 Gas Phase

The temporally developing ODT model as formulated, for gas-solid flows, herein solves

the following conservation equation set

∂ρ

∂t
= −∂v

∂y
, (6.1)

∂ρv

∂t
= −∂ρvv

∂y
− ∂τyy

∂y
− ∂P

∂y
+

np∑
j=1

Spjv, (6.2)

∂ρu

∂t
= −∂ρvu

∂y
− ∂τyx

∂y
+

np∑
j=1

Spju, (6.3)

∂ρe0
∂t

= −∂ρe0v

∂y
− ∂pv

∂y
− ∂τyyv

∂y
− ∂q

∂y
, (6.4)

∂ρYi
∂t

= −∂ρYiv

∂y
− ∂Ji

∂y
, (6.5)

where Spjv and Spju are the gas phase momentum changes induced by jth particle for

y-momentum and x-momentum, respectively, np represents the number of particle tracks

simulated. For the present work, two velocity component system is considered. In the

following sections, when deriving the equations for the particle phase subscript j is dropped

to avoid the confusion.

6.2.2 Particle Phase

There are two fundamentally different ways of formulating governing equations, La-

grangian and Eulerian. From the Lagrangian point of view, the flow field is regarded from

a moving reference frame associated with the fluid element itself. The motion of each fluid
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element behaves according to Newton’s second law of motion. In contrast to following indi-

vidual fluid elements, the Eulerian approach considers all fluid elements which pass a given

point for all time, i.e., the flow properties are described at each point as a function of time.

Flow field solutions are obtained by integrating the governing equations over all points in

the flow field. The Eulerian description requires the fluid properties to be defined at a point

in space and thus relates all fluid elements. The Lagrangian reference frame does not assume

a continuum but follows representative particles or droplets and describes their interactions

with its surroundings. The Lagrangian approach is generally impractical to describe the

flow of a continuum because of the large number of mass elements needed to achieve a

reasonably accurate description. On the other hand, the Lagrangian approach is appealing

for dispersed two-phase flows, since each particle or droplet naturally constitutes a discrete

mass element [107]. Drew [27] has presented a very detailed mathematical derivation of

the Eulerian form of two-phase flow equations and indicates the magnitude of error to be

expected by assuming a continuum. Smoot and Pratt [106] derived other techniques to

combine an Eulerian gas-phase description with a Lagrangian particle-phase treatment. In

the present work a Lagrangian framework for the particle is used.

The full equation of motion for a particle suspended in a fluid can be found in many

places [4,52,68,111,121]. Many of the terms of full particle motion equation can be ignored if

the density of the particle is much greater than the density of the air, as long as the diameter

of the particle stays below the smallest turbulent eddy scale. Following Sirignano [100] who

states that “good engineering analysis can be performed using only modified stokes drag and

the gravitational force,” the equation of motion for the particle described by using Newton’s

second law,

mp
dui,p
dt

= mpgi + Ffp + Fc (6.6)

where i denotes the ith direction, mp, ui,p, gi, Ffp, and Fc are mass of single particle,

particle velocity, gravity acceleration, force generated by fluid-particle interaction, and force

generated by particle-particle interaction. For this study particle-particle interaction is
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neglected so Fc = 0. The drag law, Equation (6.6), may seem too simple when compared to

full equation [68], but a majority of the state-of-the-art publications in the area of two-phase

flow use the simplified drag force to compute the motion of particles.

In a gas-solid flow, the particle motion is affected by the drag force, which can be

described by the Stokes drag law. Now the particle momentum equation can be expressed

by an ordinary differential equation.

dup
dt

=
fd
τp

(u− up) +
g (ρp − ρ)

ρp
, (6.7)

dvp
dt

=
fd
τp

(v − vp) + Sevp , (6.8)

where Sevp is the eddy source term (see Section 6.3 for details) and fd is the coefficient of

the drag force,

fd =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 Rep < 1

1 + 0.15Re0.687p 1 < Rep < 1000

0.0183Rep Rep > 1000

which has a close relationship with particle Reynolds number [13],

Rep =
ρdp |up − u|

μ
(6.9)

where Rep, dp, μ are the particle Reynolds number, particle diameter and gas dynamic

viscosity, respectively. In Equations (6.7) and (6.8), τp is the particle response time which

indicates the response of particles to the fluctuating motion of fluid turbulence. Assuming

Stokes flow, the particle response time (τp) can be calculated as the time required for a

spherical particle to accelerate from rest to achieve 63% of the free stream velocity. Then

τp corresponds to

τp =
ρpd

2
p

18μ
. (6.10)

Now the particle position equation can be defined as
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dxi,p
dt

= ui,p, (6.11)

where xi,p is particle position in ith direction.

6.2.3 Two-Way Coupling

The development of two-phase flow models with a turbulent gas phase is traditionally

broken into three categories, 1-way coupling, 2-way coupling, and 4-way coupling. The

simplest is 1-way coupling or passive particle transport. In 1-way coupling the turbulent

contribution of the dispersed phase is negligible. The turbulent field is much more likely to

gain kinetic energy from the gas flow rather than from the flow of the dispersed phase.

The 2-way coupling flows are the next complicated. In this case the volume fraction of

the dispersed phase is high enough that the mean flow of the particles can induce turbulent

motion in the fluid. The most complicated of the flows is referred to as 4-way coupling. In

this case, the volume fraction of the dispersed phase is so large, that the dispersed phase

particles not only affect the fluid flow, but also affect each other by way of collisions or

near collisions (wake or boundary layer interactions). Elghobashi [30,31] shows the range in

which the three types of coupling are of importance.

A majority of the state-of-the-art publications in the area of two phase flow use the

1-way coupling assumption along with a drag force to compute the equation of motion of

particles. For the current work the 2-way coupling on momentum transport is implemented

and the source terms for gas phase are given by

spu = −mpfd
τpVpg

(u− up) (6.12)

spv = −mpfd
τpVpg

(v − vp) (6.13)
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where Vpg is the scaling term representing the volume of the ODT cell. Since in ODT, the

domain is restricted to one dimension, the source term coupling depends on the initialization

of the problem. More details are given in Section 6.4.

6.3 Particle-Eddy Interaction

Overturning motions representing individual eddies are implemented as instantaneous

rearrangement events and these events punctuate continuous time advancement of gas phase

transport. It is straightforward to implement the drag coupling, for the particles, using the

fluid velocity profiles evolved by ODT, but motion (displacement by eddy events) and ve-

locity are distinct in ODT [96]. The eddy events instantaneously displace the fluid parcels,

whereas such an analogy cannot be applied for the particles. Figure 6.1 describes a sce-

nario where selected eddy occupies 6 fluid elements. Due to the application of (2.37) fluid

parcels will be instantaneously rearranged, whereas particles of different sizes should move

differently relative to gas phase. For the scenario described here three particles of different

sizes (small particle-zero inertia, big particle-infinite inertia) occupy fluid element 5. During

the implementation of (2.37), the fluid parcel occupied by the eddy region (y0 - y0 + �)

will be subjected to a certain displacement (h). If a tracer particle (zero inertia) occupies

the same region as the fluid parcel it should follow the fluid parcel and displaced by the

same distance h, on the other hand particles with finite inertia should not follow the fluid

parcels but should be displaced according to drag exerted on them. ODT model’s capability

in accurately representing the gas-solid flows depends on how well particle-eddy interaction

will be modeled.

� � � � � �

� �� � � �

�	
��	
�������

�
�	�
�������

Fig. 6.1: Triplet mapping effects on different size particles.
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Schmidt [96, 97] came up with a novel idea to deal with the above stated problem,

and proposed particle-eddy interaction model. Some of the important details from his work

are included in the following discussion. Before getting into the details it is important to

understand the coordinate system here. For the present work the ODT domain is chosen

to be the y-direction and the solution is evolved with time. Therefore evolution in the x

direction is an interpretation of the model rather than explicit within the model. For a flow

whose statistical properties do not vary in x (which includes all flows considered here), there

is generally no need to introduce such an interpretation.

The particle-eddy interaction model is implemented only when the particle and eddy

occupy the same region in space and time (here space is the particle position in y-direction

and time is the simulation elapsed time). Although eddy event implementation is instanta-

neous, they are characterized by a local instantaneous time scale (τe), see Section 2.3. Thus

particle-eddy interaction can be described using space-time diagram, where space being the

eddy size and time being the eddy life time. Figure 6.2 describes the space-time diagram for

the particle transport during particle-eddy interaction. Here t0 refers to the time of eddy

occurrence. Based on the fluid parcel displacement (which coincides with the particle at the

time of eddy occurrence) and eddy life time, eddy velocity can be defined as, ve = h
τe

.

Fig. 6.2: Eddy representation using a space-time diagram. Displacement of different size
particles during the interaction with the eddy is shown.
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Schmidt considered the following options for the particle-eddy interaction model. For

complete description refer to Schmidt’s thesis [96].

1. Type-C interactions : Particle is acted upon by the eddy event continuously in time

as long as the particle is inside the box. Schmidt suggests that this type of interaction

would give the best result only when the particle enters the eddy space-time diagram

from the vertical edges (particle is not occupied by the eddy at t0). For the present

work Type-C interactions are implemented and more details are given in the following

section.

2. Type-I interactions : Implemented by Schmidt for his work in which a fictional time

coordinate (Te) is defined, for each eddy, the drag law is integrated over Te of the

corresponding physical eddy, and applying the resulting particle location and velocity

change at the instant of eddy occurrence. Meaning particle goes through instantaneous

jump during the eddy interaction. Schmidt also took proper care to deal with the

“trajectory crossing effects” [100] and “double counting effects” resulting from these

types of interactions in his model. At a given instance in time only one eddy will

be active in this implementation and also, of all the different type of particle-eddy

interaction models, this model is the most complicated to implement.

6.3.1 Type-C Interactions

The fundamental difference between the method implemented by Schmidt [96] and

the one implemented for this work is that particle-eddy interaction is implemented in a

continuous manner even if the particle is occupied by the eddy at t0. In other words the

particle undergoes continuous interaction with eddy if both of them occupy the same space

and time region, irrespective of when the particle enters the eddy region. Figure 6.3 describes

the eddy sequence diagram from a single realization, from one of the cases simulated, and

different scenarios encountered during the particle-eddy interaction. Because of the random

nature of the ODT triplet maps, virtually any conceivable combination of eddies may occur

in a turbulent flow simulation (see Figure 6.3).
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Fig. 6.3: Eddy sequence describing the multiple eddies overlapping. Different scenarios
encountered during particle-eddy interaction are also shown.

Once eddies are allowed to exist in time for the eddy lifetime, it is quite probable that

a particle motion can be effected by two or more eddies at the same time. In Figure 6.3,

three different scenarios encountered during particle-eddy interaction are presented. In the

present work all these scenarios are taken into consideration.

1. Particle occupies the eddy region for the entire duration of the eddy life time from t0

to t0 + τe.

2. Particle exits the space-time diagram before the eddy time elapses (between t0 and

t0+τe).

3. Particle leaves the eddy region before the eddy life time elapses and reenters the same

eddy region again.

Since particle-eddy interaction changes only the y-position of the particle the eddy source

term (Sevp) is added only to the y-momentum equation and defined as follows,
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Sevp =
ne∑
j=1

f

τp
vje (6.14)

where ne represents the number eddies simultaneously influencing the particle motion and vje

is the jth eddy velocity. In type-C interactions implementation, the eddies would have either

a positive or negative velocity (vje > 0 or vje < 0 ). Hypothetically, in some scenarios, the

summation in Equation 6.14 which is a vector sum over all overlapping eddy events, might

be zero, meaning the effects of eddies could cancel each other out. Being simple enough this

method has some drawbacks, which are listed below

• Implementation of type-C interactions in ODT requires keeping track of the positions

of all eddies from the time each eddy is born until that individual eddy’s lifetime has

expired.

• During the triplet mapping, fluid parcels continuously go through instantaneous jumps

whereas particles continuously evolve with time. When multiple eddies interact with

the particle, very small particles (very low inertia) which are supposed to follow fluid

parcels may deviate. For reacting particle flows, since the particle position is important

in determining the heat transfer rates and chemical kinetics, the separation of the small

particles from the fluid parcels might create some anomalies.

This method is considered to be simpler than the one implemented by Schmidt. However

Schmidt’s main focus is the accurate representation of the marker particle limit. For the

problems simulated here, particles have finite inertia and an accurate representation of the

tracer particle is not needed. The following are some of the strengths of type-C interactions:

• Multiple eddies can interact simultaneously with particle.

• Easy to implement and no need to define any fictional time coordinate. Both gas and

particle phase continuously evolve in time where the eddy implementation is instan-

taneous for gas phase and continuous for particle phase.

• Triplet mapping is an artifact of the ODT model and is only an idealization of the

physical reality in which eddies have a finite lifetime. Type-C interactions take the
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eddy life time into consideration, evolve the particle phase continuously, mimicing the

real turbulence effects.

6.4 Computational Configuration

6.4.1 Experimental Details

Experimental investigations have been performed on turbulent gas solid flows in co-

axial jet configuration by Budilarto [17]. Reynolds number (Rej) based on the maximum

velocity of the air in the central nozzle was set at 11000 for all experimental investigations.

Fully developed turbulent flow conditions at the nozzle exit are used. Glass bed particles

with number average diameter of 25 and 70 micron are used for the study, and based on the

material properties mean particle density is 2500 kg/m3. Solid or mass loading (φs) of the

particles was set at 0.5 and the effects of fluid aerodynamics on particle motion in the near

field region of the jet are studied. Fluid aerodynamics was modified by varying the inlet

velocity ratio (VR) of the annular to central jet velocity at 0.0, 1.0 and 1.5. The fluid used

in the experiment was air at room temperature.

6.4.2 Simulation Details

For ODT simulations, VR = 0.0 case is considered and different simulations are per-

formed. For all the simulations, spatial and temporal resolutions are 50 μm and 0.2 μs,

respectively. The ODT model parameters used in the present study are α = 0.5, Z = 50,

β = 1.0 and C = 10. Simulations initialization details are given in the following discussion.

6.4.2.1 Gas Phase

Planar jet configuration with air, at room temperature and pressure as the fluid, is

simulated to understand the fluid dynamic behavior of the gas phase. The initial conditions

for simulating planar jet are given in Table 6.1.

Table 6.1: Initial conditions for the gas phase simulation.

Rej D(m) u0 (m/s) u∞ (m/s)

11000 0.0142 m 11.7 0.0
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The streamwise velocity at the inlet is defined by Equation 4.2.

6.4.2.2 Particle Phase

The mass/solid loading of the dispersed phase can be defined as

φs =
mpNDup0Ag

ρu0Ag
(6.15)

where ND is number density (np/Vpg) and Ag is the area of the jet. Assuming the particle

as a sphere, mp is given by

mp = ρp
π

6
d3p. (6.16)

For a given solid loading, if up0/u0, dp and ρp are known, the only unknown in the equation

6.15 is ND. Since in ODT the domain is restricted to 1D, for the calculated ND there are

2 degrees of freedom to choose either the np or Vpg. For both the particle laden jet cases

simulated here the number of particles are fixed to be 15000. Details related to the above

discussion are summarized in Table 6.2.

Once the number of particles are fixed, particle size distribution needs to be specified

based on the number average diameter. Tables 6.3 and 6.4 describe the particle distribution

used in the simulations for 25 and 70 μm cases, respectively.

Table 6.2: Simulation initialization details of turbulent particle laden jets.

dp
(μm) φs

ρ
(kg/m3)

up0/u0 ρp
(kg/m3)

mp(kg) ND np Vpg(m
3)

25 0.5 1.0 1.0 2500 2.04e-11 2.44e+10 15000 6.14e-07
70 0.5 1.0 0.8 2500 4.49e-10 1.39e+09 15000 1.09e-05

Table 6.3: Particle size distribution: Number average diameter is 25 μm.

Particle Size (μm) 4 8 12 16 20 24 28 32 36 40
% of np 10 10 10 10 10 10 10 10 10 10
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Table 6.4: Particle size distribution: Number average diameter is 70 μm.

Particle Size (μm) 45 50 55 60 65 70 75 80 85 90
% of np 10 10 10 10 10 10 10 10 10 10

6.5 Results and Discussion

Before discussing the results it is important to understand the critical differences be-

tween the simulations and experimental data

• The simulations are performed for a planar jet configuration, whereas the experimental

data considered here are from a round jet configuration.

• The simulation represents a temporally evolving jet whereas the data are taken from

a spatially evolving jet configuration. To compare the simulation results (temporally

evolving) with experimental data (spatially evolving) space-time mapping is applied

based on Equation (2.14).

• The radial (r) and axial (x) directions in round jet configuration correspond to trans-

verse (y) and streamwise (x) directions, respectively, in the planar jet.

The data from the experiments (round jet) denoted as Exp whereas the data generated from

spatially evolving planar jet is denoted as Exp1. Statistics from all the simulations reported

here are gathered over 400 realizations.

6.5.1 Single Phase Jet

Figure 6.4 describes the statistics gathered from the single phase ODT simulation. The

centerline development of 〈u〉 is compared with both experimental data from the round jet

configuration, denoted as Exp, and the data from the correlation (equation (4.3)) developed

for the planar jet, denoted as Exp1. The development of 〈uc〉 follows the common profile

of a planar jet and can be characterized into two regions. The first region is located where

the magnitude of the velocity tends to decrease with a slow rate. This region is also known

as potential core region and the length of this region for the simulation is 5D whereas for

experiments it is 4D.
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Fig. 6.4: Planar jet simulation results for Rej = 11000. Top (Eddy events from a single
realization), middle (contour plot of the mean streamwise velocity) bottom (mean centerline
velocity evolution). Exp (Budilarto’s data), Exp1 (calculated from equation 4.3).
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Most of the eddies are confined to the shear layer and the entrainment of the low velocity

of the fluid into the jet only influences the velocity decay in the shear layer. The second

region begins as the jet shear layer approaches the jet centerline at x = 5D, promoting a

significant enhancement of the decaying rate of 〈uc〉. The merging of the shear layer and

jet from center is not clearly seen from the eddy events realization (eddies are still confined

to the shear layer). However it is clearly seen from the contour plot that the shear layer

approaches the jet centerline. The decay of the velocity is low compared to experimental

data (Exp). The velocity decay is closer in appearance to Exp1 than that of Exp.

Figure 6.5 compares the transverse distribution of the gas mean velocity (〈u〉), normal-

ized with initial jet velocity (u0), with experimental data, at different streamwise locations:

x = 5D, 10D and 15D. The radial distribution is closely related to the centerline devel-

opment which is shown in Figure 6.4. As the jet moves downstream from the nozzle exit

the profiles become flatter for both simulation and the experiment. At the center of the jet,

simulation always overpredicts the velocity consistent with the underpredicted 〈uc〉 decay

observed in Figure 6.4. At the jet edges the simulation always underpredicts the velocity

compared to experimental data.

6.5.2 Particle Laden Jet

Figure 6.6 compares the transverse distribution of the particle number density (ND),

normalized with initial number density (ND0), at different streamwise locations: x =

5D, 10D and 15D. Three different simulations are performed for each particle size by

changing the γ, where γ is a model parameter used to scale the eddy life time (τe). Low

values of γ indicate high eddy velocities. In the model, particle motion in the transverse

direction is continuously affected by eddies, which makes particles disperse in the flow. The

particle-eddy interaction is considered through a source term in the particle momentum

equation as described in Section 6.3. For simulations with low γ values, the source term will

be higher and should induce higher dispersion of the particles.
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Fig. 6.5: Transverse distribution of the gas mean velocity (〈u〉) profiles, normalized with
initial jet velocity (u0), at different axial locations: x = 5D, 10D and 15D.
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Fig. 6.6: Particle number density profiles, normalized with initial number density (ND0), at
different streamwise locations: x = 5D, 10D and 15D.
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Interestingly, for all the γ values considered here, the number density profiles are evolv-

ing in the same manner indicating that the results are not sensitive to the choice of γ.

The same statement holds true for both the particle sizes studied here. This contradicts

the earlier observations (using ODT model but with a different particle-eddy interaction

model [122]) that only small particle dispersion is not sensitive to the γ. For both particle

sizes, a bimodal distribution is observed in the number density distribution. For smaller

particles, reported low values of ND and the wider distribution, compared to large particles,

indicate that dispersion is higher for smaller particles.

Figure 6.7 compares the predicted particle mean centerline velocity evolution with the

experimental data. The profiles are compiled form the simulations using γ = 0.3.

For the 70 micron particle case, up0/u0 = 0.8 at the nozzle exit. As the particles exit the

nozzle the gas accelerates the particles via the drag force, therefore increasing the magnitude

of 〈upc〉. The region extends from the nozzle inlet to the streamwise location where the gas

and particle velocities are same, in the simulations it is x = 7D, whereas for experiments it

is x = 5D. Model indicates that, for x > 7D, the particle centerline velocity starts dropping

as the gas velocity decays because of the entrainment of the low velocity fluid into the jet

core (see Figure 6.4c).

For the 25 micron particle case, the trend exhibited by the model is consistent with

what has been observed for gas phase velocity decay in Figure 6.4.
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Fig. 6.7: Particle mean centerline velocity evolution.
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Since the inertia of the 25 micron particles is considerably smaller than that of 70 micron

particles, the 25 micron particles will respond faster to the variations in the gas motion. Due

to the fast response the smaller particles closely follow the gas phase behavior. Compared

the experimental data, the decay is slower for the model, but the trends are captured.

Figure 6.8 compares the transverse distribution of the particle mean velocity (〈up〉),
normalized with initial jet velocity (u0), at different streamwise locations: x = 5D, 10D and

15D. The profiles are compiled from the simulations using γ = 0.3. When a dilute particle

suspension is introduced in a free shear flow, the motion and trajectories of the particles

will be mostly influenced by a fluid-particle interaction. The following observations can be

made from the comparison

• At x = 5D, for 25 micron case, model predicts high velocities near the centerline and

low velocities near the jet boundary. In the model, gas phase centerline velocity starts

decaying from x = 5D (see Figure 6.4). Since small particles are more responsive

to gas phase they follow the gas phase and high velocities are predicted. As can be

seen from the eddy events realization diagram (see Figure 6.4), for x < 5D, eddies are

confined to jet boundary, so the particles in the same region will be dispersed through

the particle-eddy interaction. Particles are moved into the regions of low velocity and

the low gas velocities slow down the particles.

• At x = 10D, for 25 micron case, profiles are in good agreement.

• At x = 15D, for 25 micron case, the velocity near the centerline is overpredicted and

at the jet boundary the velocity is in good agreement, consistent with what is observed

for gas phase behavior.

• At x = 5D, for 70 micron case, the spreading is low compared to the experimental

data. In this region the particle velocities are lower than the gas phase and the particles

are accelerated by the gas phase.

• For 70 micron case, as the particle velocity becomes faster than the gas, at x = 10D

and 15D, the particles transfer kinetic energy to the gas.
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Fig. 6.8: Transverse distribution of the particle mean velocity (〈up〉) profiles, normalized
with initial jet velocity (u0), at different streamwise locations: x = 5D, 10D and 15D.
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The transverse distribution becomes steeper as the streamwise distance increases. This

is because the gas velocity near the jet boundary is much lower than the centerline

gas velocity; hence the gas near the jet boundary decelerates the particles faster than

that near the jet centerline.

• Particle size has a negative effect on the overall spreading, as can be seen from the

spreading of the profiles. Small particles spread faster compared to large particles.

Overall the model qualitatively captured particle size effects exhibited by the experimental

data. The following factors might contribute to the quantitative differences observed between

the simulations and experimental data

• Initial conditions: For the gas phase fully developed conditions are used in experimen-

tal data, whereas streamwise velocity in the simulations is specified using a hyperbolic

tangent function. The initial transverse velocity in the simulation is zero. In the sim-

ulations, the particle velocities are interpolated from the gas phase according to the

ratios specified in Table 6.2.

• Different quantities conserve in temporally developing and spatially developing flows.

For detailed discussion please refer to Chapter 2.

• The centerline velocity decay rate is different for planar and round jets. The velocity

decays at ∝ 1/x and ∝ 1/
√
x for planar and round jet configurations, respectively [81].

• In the simulations it is assumed that particles streamwise location always coincides

with the ODT domain streamwise location, whereas ODT streamwise location is de-

termined by applying space-time mapping as described in Section 2.2.1.3.

• We speculate that the bimodal distribution observed in the simulation is a result of

the implemented particle-eddy interaction. Turbulence mixing is implemented through

eddy events, and the eddy implementation is instantaneous for the gas phase and

continuous for the dispersed phase.

• In the model particle-particle and particle-wall collisions are not accounted. In the

experimental data these collisions occur for larger particles (at the nozzle exit) which

distributes the momentum among the particles [17].
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6.6 Conclusions

In this chapter, temporally evolving planar ODT model is extended to simulate turbu-

lent particle laden jets. A Lagrangian tracking model is implemented for the particles, which

are two-way coupled with the momentum balance equations. A novel modeling technique

is implemented for the particle-eddy interactions. Eddy effect on the particle motion is ac-

counted through source term in the particle motion equation. The source term is active only

when the particle and eddy occupy the same region in space and time. The novel feature

of the particle-eddy interaction model implemented for the present work is that multiple

eddies can simultaneously influence the particle motion.

Simulations are performed for both single phase and particle laden jets. The results

from the single phase simulation indicate that model qualitatively captures the fluid dynamic

behavior. For particle laden jet simulations, two different particle sizes are considered and

the results are compared with experimental data. Particle centerline velocity evolution and

transverse profiles of number densities and velocities are compared. Results indicate that

the model qualitatively captures the particle size influence on the dispersion behavior.



CHAPTER 7

COAL COMBUSTION AND GASIFICATION

The objective of this chapter is to extend ODT model’s capability to simulate entrained

coal gasification process.

7.1 Introduction

There have been attempts in the past to model the coal gasification systems and the

literature related to coal utilization, characterization and modeling is substantial. A review

of mathematical models for pulverized coal combustors and gasifiers can be found in [104].

The key aspects of the modeling of fixed, fluidized, and entrained systems were reviewed by

Smoot [105]. With limited number of comparisons, Ubhayaker [117], Sprouse [108], Beck [6]

and Smith and Smoot [103] demonstrated that one-dimensional models can reproduce the

experimental data for entrained-flow reactors. Coarse-grained modeling approaches, in two

and three dimensions, are also developed and the model results are compared with experi-

mental data for combustion and gasification [87,102]. Recently high fidelity LES simulations

are also performed for coal gasification systems [90]. In all the modeling approaches dis-

cussed thus far the level of information resolved on the gas phase chemistry is very limited,

i.e., equilibrium chemistry approximation is made. The primary emphasis of this work is

the implementation of detailed gas phase chemistry calculations in the one-dimensional code

base to simulate coal gasification systems.

Figure 7.1 shows the single particle description used in the present work. Moisture

contained in the particle will evaporate and form steam. The ash mass is fixed, and ash

is treated as inert. The volatile matter of the particle will be released into gas through

devolatilization process. The solid char goes through oxidation process (heterogeneous re-

actions) and releases more gaseous products.
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Fig. 7.1: Schematic of the coal particle model.

The gasification of coal is thought to occur in two steps: the evolution and combustion

of volatile matter released though devolatilization process, and the heterogeneous reaction

of the char with the surrounding gases. The models, used in the present work, describing

the vaporization, devolatilization, char oxidation and gasification of a single particle are

included in Appendix C.1. All the models describing the coal physics are implemented by

Babak Goshayeshi (graduate student in Dr. Sutherland’s group); in that regard coal model

implementation should not be considered as author’s original work.

7.2 Governing Equations

7.2.1 Gas Phase

The temporally developing ODT model as formulated, for gas-solid reacting flows,

herein solves the following conservation equation set
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∂ρ

∂t
= −∂v

∂y
+

np∑
j=1

Spjρ, (7.1)

∂ρv

∂t
= −∂ρvv

∂y
− ∂τyy

∂y
− ∂P

∂y
+

np∑
j=1

Spjv, (7.2)

∂ρu

∂t
= −∂ρvu

∂y
− ∂τyx

∂y
+

np∑
j=1

Spju, (7.3)

∂ρe0
∂t

= −∂ρe0v

∂y
− ∂pv

∂y
− ∂τyyv

∂y
− ∂q

∂y
+

np∑
j=1

Spjρe0 , (7.4)

∂ρYi
∂t

= −∂ρYiv

∂y
− ∂Ji

∂y
+ ωi +

np∑
j=1

SpjρYi , (7.5)

where Spjρ, Spjρe0 and SpjρYi are the jth particle source terms for gas phase mass, total inter-

nal energy and species, respectively, and np represents the number of particles. We assume

that coal gasifier is adiabatic, i.e., did not account for the heat losses due to convection and

radiation. In the following discussion subscript j is dropped to avoid confusion.

7.2.2 Particle Phase

The particle dynamics are solved by following representative individual particles trajec-

tories in a Lagrangian frame of reference. The particle position and momentum evolution

equations are discussed in Section 6.2.2. The particle mass evolution is given by

dmp

dt
=

dmH2O

dt
+

dmv

dt
+

dmc

dt
(7.6)

where dmH2O

dt , dmv
dt and dmc

dt are rate of change of moisture, volatile and char mass, respec-

tively. The derivations are included in Appendix C.1.

The particle energy evolution is given by:

dTp

dt
=

−Ap

mpCp

î
hc (Tp − T ) + εσ

Ä
T 4
p − T 4

w

äó
+ Spr (7.7)

where Tp and Tw are the particle and wall, respectively. Cp, mp and Ap are the particle

heat capacity, mass and area, respectively; σ is the Stefan-Boltzmann constant, ε is the
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emissivity, hc is the coefficient for convection heat transfer and Spr is the reaction source

term. mH2O, mv, mc are the mass of moisture, volatile matter and char, respectively. The

following relationship is used to compute hc,

hc =
Nuλ

dp
(7.8)

where dp is the diameter of the particle and Nusselt number, Nu, is calculated from the

following correlation

Nu = 2.0 + 0.6Re
1
2
p Pr

1
3 (7.9)

where Pr is the Prandtl number of the gas phase.

The reaction source term, Spr is given by

Spr =
1− α

mpCp
(Sp,COΔHCO + Sp,CO2ΔHCO2)

OXID

− 1− α

mpCp

Å
dmH2O

dt

ãGASIF

ΔHGASIF
H2O

− 1− α

mpCp

Å
dmCO2

dt

ãGASIF

ΔHGASIF
CO2

+
1− α

mpCp

dmH2O

dt
ΔHvap

where (1 − α) represents the fraction of heat being absorbed by the gas released during

heterogenous combustion. For the present work α = 0.3, meaning 70% of the of the total

heat released will be absorbed by the particle. Reaction enthalpies (ΔH) for char oxidation

and gasification are given in Table 7.1. The derivations of Sp,CO, Sp,CO2 ,
(
dmH2O

dt

)GASIF

and
(
dmCO2

dt

)GASIF
are included in Appendix C.1.

Table 7.1: Reaction enthalpies, (ΔH), of char oxidation and gasification reactions

Oxidation Gasification
CO2 CO H2O CO2

kJ/kg 33075.72 9629.64 10.94× 103 14.37× 103



119

7.2.3 Two-Way Coupling

7.2.3.1 Mass Coupling

The production rate of the species i is given by:

SpρYi =
−1

Vpg

ñÅ
dmi

dt

ãEV AP

+

Å
dmi

dt

ãCPD

+

Å
dmi

dt

ãOXID

+

Å
dmi

dt

ãGASIF ô
(7.10)

•
Ä
dmi
dt

äEV AP
is non-zero for only H2O species.

•
Ä
dmi
dt

äOXID
is non-zero for CO, CO2 and O2 species. The char oxidation process con-

sumes O2 and produces CO and CO2.

•
Ä
dmi
dt

äGASIF
is non-zero for H2O, CO2, CO and H2 species. Gasification process con-

sumes H2O, CO2 and produces CO and H2.

• Details of the
Ä
dmi
dt

äCPD
can be found in Appendix C.1.

The summation over all the species production rates represents the source term for gas phase

mass conservation and is given by:

Spρ =
ns∑
i=1

SpρYi . (7.11)

7.2.3.2 Energy Coupling

The source term for gas total internal energy is given by:

Spρe0 =
α

mpCp
(Sp,COΔHCO + Sp,CO2ΔHCO2)

OXID

− α

mpCp

Å
dmH2O

dt

ãGASIF

ΔHGASIF
H2O

− α

mpCp

Å
dmCO2

dt

ãGASIF

ΔHGASIF
CO2

.
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7.3 Computational Configuration

7.3.1 Experimental Details

Experimental investigations have been performed on laboratory-scale gasifier by Brown

[14,15]. Coal type influence on the entrained coal gasification process is studied by conduct-

ing experiments under atmospheric conditions. For the present work, one of his experimental

cases using North-Dakota Lignite coal type is considered and the density of the coal is 1000

kg/m3. The particle mean mass diameter is 40 μm. The coal, oxygen and argon tracer were

premixed and injected as the gasifier at 367 K. The mass flow rate of both particles and

gas phase is maintained at 0.00774 kg/s. Approximate exit gas temperature for this case is

1300 K. The proximate and elemental analyses of the coal are given in Tables 7.2 and 7.3,

respectively.

7.3.2 Simulation Details

7.3.2.1 Gas Phase

The gas phase initial conditions, of the primary jet, for simulating the coal gasifier are

given in Table 7.4.

The streamwise velocity is specified by Equation 4.2. The coflow velocity(u∞) is zero

and the coflow species composition is calculated from mass balance and the details are

summarized in Table 7.5. Remaining species are initialized to zero.

Table 7.2: Brown coal gasifier simulation: Proximate analysis wt. % of North-Dakota Lignite
coal.

Moisture Ash Volatiles Fixed Carbon High Heating value (MJ/kg, dry)
19.0 6.1 35.1 39.8 17.9

Table 7.3: Brown coal gasifier simulation: Elemental analysis, dry, wt. % of North-Dakota
Lignite coal.

Ash H C N S O
6.9 4.2 57.6 1.0 1.2 29.1
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Table 7.4: Brown coal gasifier simulation: Initial conditions for the gas phase in the primary
jet.

ṁ (kg/s) D(m) Y p
O2

Y p
H2O

Y p
AR T p u0 (m/s)

0.00774 0.0131 m 0.694 0.143 0.163 367 46

Table 7.5: Brown coal gasifier simulation: Initial conditions for the gas phase in the coflow.

Y co
H2O

Y co
CO Y co

CO2
Y co
H2

Y co
CH4

Y co
AR T co

0.1195 0.37 0.418 0.004 0.0065 0.0814 1300

For the present work, only a fraction of the total gasifier domain is considered for the

simulation. Temporal and spatial resolutions are 5e − 9 ns and 20 μm, respectively. The

ODT model parameters used in the present study are α = 0.5, Z = 50, β = 1.0 and C = 10.

7.3.2.2 Reduced Methane Mechanism

Slavinskaya [101] developed reduced GRI mechanism to predict reliably the heat release

rate for different syngas flames. For the present work, one of the reaction models containing

19 species and 86 reactions is considered. Figure 7.2 shows the comparison between original

GRI and reduced GRI mechanism behavior for H2 flame. A nonpremixed configuration

under laminar conditions is selected and one-dimensional simulations are performed. The

mechanism is also verified for CO and CH4 species, but not included here. The reduced

GRI mechanism reproduces the behavior of the original GRI mechanism.

7.3.2.3 Particle Phase

Following the same procedure described in Section 6.4.2.2, the number of particles,

scaling term (Vpg) are calculated and the details are summarized in Table 7.6. Particle size

distribution is given in Table 7.7 and wall temperature, (Tw), for the simulation is 1300 K.

Table 7.6: Brown coal gasifier simulation: Initialization details for the particle phase.

dp
(μm)

φs ρ
(kg/m3)

up0/u0 ρp
(kg/m3)

mp(kg) ND np Vpg(m
3)

40 1.0 0.9855 1.0 1000 2.01e-11 4.92e+10 10000 2.03e-07
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Table 7.7: Particle size distribution: Mass mean diameter is 40 μm.

Particle Size (μm) 15 25 30 36 40 45 50 86
% of np 20 20 20 20 5 5 5 5

0 0.005 0.01 0.015 0.02
500

1000

1500

2000

2500

3000

y

T

(a) Temperature (T)

0 0.005 0.01 0.015 0.02
0

0.01

0.02

y

Y
O

H

(b) Hydroxyl radical (YOH)

0 0.005 0.01 0.015 0.02
0

0.01

0.02

y

Y
H

2

(c) Hydrogen (H2)

Fig. 7.2: Verification of reduced GRI mechanism. Circles (GRI [1]), line (reduced GRI [101]),
light gray, medium gray and dark gray correspond to t = 0, 5e−5 and 2.5e−4 s, respectively.
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7.4 Results and Discussion

Simulation results are presented within 16D downstream of the jet exit and only quali-

tative assessment is done for gas phase ignition and particle size effects on the initial heat up,

vaporization and devolatilization behavior. Mean profiles are computed from 30 realizations

and each realization took approximately 200 hours.

7.4.1 Gas Phase

Figure 7.3 describes the evolution of mean gas phase temperature, YOH , YH2O and YO2

with downstream distance from the jet exit. In the initial stages the small particles are

dispersed into high temperature coflow environment and due to the heat transfer from the

gas phase to the particle phase, the gas phase temperature at the jet boundaries decreases.
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Fig. 7.3: Contour plots of the mean gas phase variables. Clockwise: temperature, hydroxyl
radical, steam and oxygen.
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At about 14D downstream of the jet exit sudden increase in the temperature is observed

indicating ignition. A corresponding increase in the hydroxyl radical concentration can also

be observed.

During the particle heat up the moisture content in the particle phase will be evaporated

and corresponding increase in the concentration of gas phase H2O can be observed. The

initial increase in the H2O concentration is due to the evaporation from small particles and

in the later stages its due to the medium and large size particles.

The gas phase ignition consumes oxygen and the corresponding decrease in the O2

concentration can also be observed.

7.4.2 Particle Phase

To process the particle phase statistics, the domain is divided into bins with resolution

of 0.1 mm. Table 7.8 describes the initial total mass and individual constituents mass in

the spatial bin for three different particle sizes. Here mt0, mH2O,0, mv0 and mc0 correspond

to total mass, moisture mass, volatile mass and char mass, respectively.

Figure 7.4 describes the evolution of particle temperature, for different size particles,

with downstream distance. The following observations can be made from the contour plots:

• 15 micron: The small particles quickly moved into the high temperature environment

(coflow temperature is 1300 K) and they respond faster to the high temperatures.

As the jet evolves, due to heat transfer from the gas phase the particles temperature

increases and the peak particle temperature reported is ≈ 1750 K.

Table 7.8: Initial total mass and individual constituents mass in the spatial bin (0.1 mm)
for three different particle sizes.

15 μm 40 μm 86 μm

mt0(kg) 1.7679e-12 3.3524e-11 3.3317e-10
mH2O,0(kg) 3.3589e-13 6.3695e-12 6.3303e-11
mv0(kg) 4.7631e-13 9.0322e-12 8.9766e-11
mc0(kg) 8.4781e-13 1.6077e-11 1.5978e-10
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Fig. 7.4: Contour plots of the mean particle temperature for different particle sizes. Left
(15 micron), right (40 micron).

• 40 micron: Few particle streaks are dispersed into the high temperature environment.

These particles exhibit high thermal inertia compared to small particles and the peak

particle temperature reported is ≈ 950 K.

• 86 micron: Due to strong momentum inertia the large particles are concentrated at

the center of the jet and also due to the strong thermal inertia the reported particle

temperatures are low.

Qualitative trends for the influence of particle size on heat up are captured by the model.

Figures 7.5, 7.6 and 7.7 describe the particle mean contour plots for 15, 40 and 86 micron

particle sizes, respectively. The following observations can be made from the profiles:

• 25 micron: The moisture content evaporated within 10D downstream distance. The

temperatures at the jet boundaries observed in the model are ≈ 1750, indicating

devolatilization, char oxidation and gasification processes can be active for the small

particles. The speciation from the particles due to devolatilization process decreases

the volatile mass at the jet boundary ( x > 12D and −2D < y < −1D). The decrease

in the char mass is also observed in the same region which can be attributed to char

oxidation process.
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Fig. 7.5: 15 micron: Contour plots of the mean particle variables. Clockwise: total mass,
moisture mass, volatile mass and char mass.

• 40 micron: Particle dispersion is low compared to smaller particles and higher com-

pared to larger particles. These particles go though vaporization process and the

corresponding decrease in the moisture mass can be observed.

• 86 micron: Not shown here, most of the particle streaks are concentrated at the center

of the jet at x = 16D. Only evaporation process is active for these particles, i.e., the

moisture content continuously decreases.

7.5 Conclusions

In this chapter, ODT model is extended to simulate coal gasification. Models describing

the evoporation, devolatilization, char oxidation and gasification are implemented, which are

two-way coupled with the gas phase in the mass, momentum, and energy balance equations.
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Fig. 7.6: 40 micron: Contour plots of the mean particle variables. Clockwise: total mass,
moisture mass, volatile mass and char mass.

Simulation is performed for a coal gasification system and qualitative assesment is done

within 16D downstream of the jet exit. Results indicate that for small particles, all the

mechanisms are active which is evident from the decrease in the mass of the individual

constituents, i.e., moisture, volatile and char mass. For medium and large particles only

evoporation process is active and decrese in the moisture mass content is observed. Results

also indicate that the ignition occured in the jet boundaries at a downstream location of

x ≈ 14D. The results presented here are compiled from 30 realizations and in the current

form the simulation is expensive to run, only a fraction of the gasifier domain is chosen. To

simulate the whole gasifier, for a single realization, it takes approximately 6 months on a

single core.
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Fig. 7.7: 86 micron: Contour plots of the mean particle variables. Clockwise: total mass,
moisture mass, volatile mass and char mass.

However, the initial results from the model show promise in its ability to capture size

influence on the initial heat up, vaporization and devolatilization of the coal particle.



CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

Conclusions and findings from the present work are included at the end of each chapter.

Here the novel features of the present work along with recommendations for future work are

presented.

8.1 Novel Features

ODT is formulated in Eulerian reference frame and validated against a different set of

problems. A unified approach is proposed for various ODT formulations which will serve as

a reference for those interested in ODT as a modeling approach by providing a survey of the

various ODT formulations along with a sound mathematical basis for the equations being

solved.

One of the unique features of the model is that it resolves full range of length and time

scales, with detailed chemistry, thermodynamics and transport in the gas phase. No addi-

tional approximations are made while computing the source terms for species reaction rates.

With detailed chemical kinetics calculation the model is used to simulate a nonpremixed pla-

nar jet flame and results are compared with DNS data. A first time ODT model is validated

against DNS data for such flows. Sensitivity analysis is also performed for nonpremixed

reacting and nonreacting configurations to identify the parameter with most influence on

the simulation behavior. Proposed a correlation for the model parameter which accurately

represents the low Rej regime (Rej<10000).

The model is also applied to a premixed jet flame configuration and simulation results

are compared with DNS data. The model qualitatively predicted the important statistics of

these flames. This is also one of the first attempts to model the premixed jet flames with a

one-dimensional model.
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To simulate the gas-solid flows, using the ODT model, a new particle-eddy interaction

model in which multiple eddies can simultaneously interact with the particle is proposed.

The new model qualitatively captured the particle size influence on the dispersion behavior.

ODT coal gasification simulations are performed with detailed gas phase chemistry

calculations. Implemented CPD model for coal devolatilization process which generates the

source term for species transport. Qualitative assessment of the simulation results is done

in the near field region of the jet. The model qualitatively captured the size influence on

the initial heat up, vaporization and devolatilization of the coal particle.

8.2 Recommendations for Future Work

This work was performed with an objective to develop an engineering tool for simulating

complex combustion problems. The work performed as part of this dissertation would require

a great deal of future work in order to meet the final objective. The key areas where the

author suggests more work should be carried out are:

• Model parameters in ODT play an important role in the accurate prediction of the

complex multiphysics systems. In the present work, parameter sensitivity analysis is

done for nonpremixed configurations and conclusions are drawn about the parameter

values estimation. However more rigorous analysis is needed to make them universally

applicable.

• The current model is implemented in the temporal form and additional approximations

are made to compare the results with spatial form data (see Chapters 4, 6 and 7).

Eulerian ODT spatial formulation equations are derived in Chapter 2 and can be used

to simulate spatially evolving flows to characterize the uncertainty associated with

space-time mapping.

• For the present work, in some simulations initial conditions are specified using hyper-

bolic tangent function. However in most practical systems, fully developed turbulent

conditions exist at the nozzle exit. Initial conditions can significantly affect the mixing

and evolution characteristics of freely evolving jets in the near and far fields [75]. In this
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regard the author recommends using conditions that best represent the experimental

data to initialize the simulations.

• In the gasification simulations, the chemical stiffness mandates using very small time

steps. The author recommends developing techniques which can remove the stiffness

in chemical time scales, so that bigger time steps can be used making the model

inexpensive for the gasification simulations.

• Most practical combustion and coal gasification systems are nonadiabatic in nature

[107]. Radiation and heat loss effects should be characterized in the modeling ap-

proaches to accurately predict the practical combusting systems. In the present work,

for the gas phase appropriate radiation models should be implemented and also heat

loss should be characterized. Detailed radiation calculation using the discrete ordi-

nates method has already been implemented with the ODT model [91, 92] to study

sooting ethylene flames in planar configurations. A similar approach can be under-

taken to extend the capabilities of the current model by solving the radiative transport

equation in conjunction with the ODT simulation.

• As demonstrated in Chapters 3, 4 and 5, for turbulent reacting systems ODT can

provide detailed information of scalars and their corresponding source terms much like

the data obtained from direct numerical simulation (DNS) calculations. These data

can then be analyzed using various statistical techniques to identify suitable manifold

parameters or principal components that can then be used to represent the entire

state-space of the reacting system.



APPENDIX A

GOVERNING EQUATIONS

A.1 Reynolds’ Transport Theorem

Consider an extensive property Ψ with a corresponding intensive property ψ = ∂Ψ
∂m . We

can define the following relationships involving ψ and Ψ

∂ψ

∂V
= 0,

∂Ψ

∂V
=

∂Ψ

∂m

∂m

∂V
=

1

ρ

∂Ψ

∂m
,

Ψ =

ˆ
ρψ dV = mψ. (A.1)

Consider a control volume (CV) of volume V enclosed by an arbitrary surface S which

may change in time, i.e., V(t), S(t), as depicted in Figure A.1. Furthermore, consider a

control volume Vψ(t) with a corresponding surface Sψ(t) that is defined such that it moves

with the local velocity of the property ψ, vψ.

��

�

Vψ(to − dt)

Vψ(to)

V(to)

Fig. A.1: A depiction of the volume, V(t) and a differential surface element, dS with its
associated unit normal area vector, a. Also depicted is the volume Vψ(t) at times to − dt
and at to.
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The Reynolds transport theorem may be written for an intensive property ψ moving

with velocity vψ as

d

dt

ˆ
Vψ(t)

ρψ dV

︸ ︷︷ ︸
1

=

ˆ
V(t)

∂ρψ

∂t︸ ︷︷ ︸
2

dV +

ˆ
S(t)

ρψvψ · a︸ ︷︷ ︸
3

dS. (A.2)

The terms in the above equation are interpreted as:

1. The change in Ψ in a closed system defined by Vψ(t). A closed system implies that

the boundary surface Sψ(t) moves locally at vψ. Also note that d
dt

´
Vψ(t)

ρψ dV = dΨ
dt .

2. The instantaneous change in ρψ at a point in space.

3. The flux of Ψ across a differential element dS due to advection. Note that Gauss’

theorem states
´
S(t) ρψvψ · a dS =

´
V(t)∇ · ρψvψ dV.

The LHS of (A.2) represents the change of Ψ in a Lagrangian frame of reference traveling

through space at velocity vψ, while the RHS of (A.2) represents the change of Ψ in an

Eulerian reference frame (at a point in space and time). The utility of (A.2) is that it

relates the Eulerian reference frame to the Lagrangian reference frame.

Note that, in principle, each different quantity ψ could have a unique vψ and thus a

unique Vψ(t) associated with it. Rather than have a different velocity for each property ψ,

it is convenient to define a mass-averaged velocity,

v =
ns∑
i=1

ρYivi (A.3)

where Yi is the mass fraction of species i and vi is the velocity of species i in the mixture.

Using this definition of the mass-averaged velocity, (A.2) can be written as

d

dt

ˆ
Vψ(t)

ρψ dV =

ˆ
V(t)

∂ρψ

∂t
dV +

ˆ
S(t)

(ρψv + jψ) · a dS, (A.4)

where

jψ ≡ ρψ (vψ − v) (A.5)
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represents the flux of ψ relative to the mass-averaged velocity. Indeed, the quantity vD
ψ =

vψ − v can be interpreted as a “diffusion velocity.”

If we want to use the same volume V(t) for all ψ then we must account for the fact that

V(t) may not define a closed system for Ψ. For convenience, we define V(t) as a Lagrangian

control volume that moves with the local mass-averaged velocity, v. Making this choice, we

can relate the Lagrangian volume associated with Vψ(t) to the one associated with the mass

averaged velocity, V(t), by

d

dt

ˆ
Vψ(t)

ρψ dV =
d

dt

ˆ
V(t)

ρψ dV +

ˆ
S(t)

jψ · a dS. (A.6)

Note that in this case, we can define the evolution of any point in our Lagrangian system

by dx
dt = v. In deriving various forms of the governing equations, we seek:

1. The diffusive flux, jψ. Of course, this is only nonzero if vψ �= v.

2. An expression for d
dt

´
Vψ(t)

ρψ dV, the change of Ψ in a closed system whose boundaries

move at vψ.

With this information, equations (A.4) and (A.6) allow us to describe evolution of ψ or Ψ

in an Eulerian or Lagrangian frame of reference. As we will see, it is possible to cast the

governing equations in the form

d

dt

ˆ
V(t)

ρψ dV = −
ˆ
S(t)

Φψ · a dS+

ˆ
V(t)

σψ dV, (A.7)
ˆ
V(t)

∂ρψ

∂t
dV +

ˆ
S(t)

ρψv · a dS = −
ˆ
S(t)

Φψ · a dS+

ˆ
V(t)

σψ dV, (A.8)

where Φψ is the flux of ψ apart from the flux associated with the mass-averaged velocity,

ρψv. Equation (A.7) is the Lagrangian conservation equation for ψ using a Lagrangian

control volume moving at v, and (A.8) is the Eulerian conservation equation for ψ. The

following subsections will detail the definitions of Φψ and σψ for various governing equations.
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A.1 Continuity

For the continuity equation, we have Ψ = m and ψ = ∂Ψ
∂m = 1. Also, vψ=1 = v, i.e.,

the velocity advecting the density is the mass averaged velocity. Because of this, jψ=1 = 0

and, from (A.6), Vψ=1(t) = V(t). Now since mass is conserved for a closed system, we have

d

dt

ˆ
V(t)

ρ dV = 0, (A.9)

which, together with (A.4), implies

d

dt

ˆ
V(t)

ρ dV = 0, (A.10)
ˆ
V(t)

∂ρ

∂t
dV +

ˆ
S(t)

ρv · a dS = 0. (A.11)

Comparing these with (A.7) and (A.8), we can identify

Φψ=1 = 0, (A.12)

σψ=1 = 0. (A.13)

A.2 Momentum

For the momentum equation, we have Ψ = mvv and ψ = v. It is commonly assumed

that vv = v, i.e., that the mass averaged velocity is the one that advects momentum in a

closed system. Therefore, jv = 0 and Vv(t) = V(t) so (A.2) becomes

d

dt

ˆ
V(t)

ρv dV =

ˆ
V(t)

∂ρv

∂t
dV +

ˆ
S(t)

ρv ⊗ v · a dS. (A.14)

Furthermore, Newton’s second law of motion states that

d

dt

ˆ
V(t)

ρv dV =

ˆ
S(t)

(pI+ τ ) · a dS+

ˆ
V(t)

ρg dV, (A.15)
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where τ is the deviatoric stress tensor, p is the pressure, I is the unit tensor, and g is the

gravitational acceleration vector. From (A.7) we conclude

Φv = pI+ τ , (A.16)

σv = ρg. (A.17)

A.3 Species

For the species equations, we have Ψ = mYi, and ψ = Yi. Clearly, individual species

velocities (vi) can differ, which implies that v �= vi. We define ji = ρYi (vi − v) as the

species mass diffusive flux. For an ideal system, the Maxwell-Stefan equations relate the

species mass diffusion fluxes to their mole fraction gradients as1

∇xi =
M

ρ

n∑
j=1

1

Dij

Ç
xijj
Mj

− xjji
Mi

å
, (A.18)

where Dij are the binary diffusion coefficients, xi are species mole fractions, Mi are the

species molecular weights, and M is the mixture molecular weight. The Maxwell-Stefan

equations can be cast in Fick’s law form as

ji = −ρ
n−1∑
j=1

Dij∇xj , (A.19)

where Dij are the multicomponent diffusion coefficients, and are functions of the local ther-

modynamic state of the system as well as the binary diffusion coefficients, Dij .

In a closed system defined by Vi(t) which moves at the species velocity vi, the ith species

mass may be changed via chemical reaction,

d

dt

ˆ
Vi(t)

ρYi dV =

ˆ
Vi(t)

ωi dV, (A.20)

d

dt

ˆ
V(t)

ρYi dV =

ˆ
V(t)

ωi dV −
ˆ
S(t)

ji · a dS, (A.21)

1For thermodynamically nonideal systems and systems with pressure diffusion, electrical fields, or ther-
mal diffusion, additional terms are required. See, e.g., [9] for more details.
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where the second equation comes from applying (A.6) to the first equation. Comparing with

(A.7), we can define

ΦYi = ji, (A.22)

σYi = ωi. (A.23)

A.4 Total Internal Energy

For total internal energy we have Ψ = me0 = E0, ψ = e0. As with momentum, it

is customary to define ve0 = v so that je0 = 0 and Ve0(t) = V(t). From the first law of

thermodynamics, we have

dE0

dt
=

dQ

dt
+

dW

dt
(A.24)

= −
ˆ
S(t)

q · a dS︸ ︷︷ ︸
dQ
dt

−
ˆ
S(t)

(τ · v + pv) · a dS+

ˆ
V(t)

ρg · v dV︸ ︷︷ ︸
dW
dt

, (A.25)

where q = −λ∇T +
∑ns

i=1 hiji is the diffusive flux of heat2. We can thus define

Φe0 = pv + τ · v + q, (A.26)

σe0 = ρg · v. (A.27)

A.5 Differential Forms

Using (A.1) and (A.5), (A.2) can be written in differential form by taking the derivative

with respect to the system volume,

∂

∂V

dΨ

dt
=

∂ρψ

∂t
+∇ · ρψv. (A.28)

Since Ψ = mψ then dΨ
dt = mdψ

dt + ψ dm
dt . By virtue of the continuity equation (dmdt = 0), we

have dΨ
dt = mdψ

dt . Therefore,

2Here we have neglected the Dufour effect. Inclusion of this effect should be accompanied by modification
of the species diffusive fluxes to include the Soret effect.
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∂

∂V

dΨ

dt
=

∂m

∂V

dψ

dt
+m

d

dt

∂ψ

∂V
.

Since ψ is an intensive quantity, ∂ψ
∂V = 0 so that we have

∂

∂V

dΨ

dt
= ρ

dψ

dt
. (A.29)

Substituting (A.29) into (A.28), we obtain the differential form of the Reynolds transport

theorem,

ρ
dψ

dt
=

∂ρψ

∂t
+∇ · ρψv. (A.30)

We can thus write differential forms of (A.7) and (A.8) (the governing equations in the

Lagrangian and Eulerian frames, respectively) as

ρ
dψ

dt
= −∇ ·Φψ + σψ, (A.31)

∂ρψ

∂t
+∇ · ρψv = −∇ ·Φψ + σψ. (A.32)

Note that (A.32) also follows directly from applying Gauss’ theorem and differentiating (A.8)

with respect to V. The Eulerian form can be written in weak form by rewriting (A.32)

ρ
∂ψ

∂t
+ ψ

∂ρ

∂t
+ ρv · ∇ψ + ψ∇ · ρv = −∇ ·Φψ + σψ (A.33)

and then using the continuity equation (ψ = 1) to obtain

ρ
∂ψ

∂t
+ ρv · ∇ψ = −∇ ·Φψ + σψ. (A.34)

The terms Φψ and σψ are summarized in Table A.1 for various governing equations.

A.6 Other Forms of the Energy Equation

Table A.1 shows definitions of Φψ and σψ for internal energy (ψ = e) and enthalpy

(ψ = h). The following subsections show a derivation of these equations.
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Table A.1: Definitions of Φψ and σψ for use in equations (A.7), (A.8), (A.31), (A.32) and
(A.34).

Equation ψ Φψ σψ

Continuity 1 0 0

Momentum v pI+ τ ρg

Species Yi ji ωi

Total Internal Energy e0 q+ τ · v + pv ρg · v
Internal Energy e q −p∇ · v − τ : ∇v

Enthalpy h q dp
dt − p∇ · v − τ : ∇v

A.6.1 The Internal Energy Equation

Beginning with the momentum equation in Lagrangian form (equation (A.31) with

ψ = v)

ρ
dv

dt
= −∇ · τ −∇p+ ρg, (A.35)

we take the dot product with the velocity to obtain (after applying the chain rule)

ρ
dk

dt
= −v · ∇ · τ − v · ∇p+ v · ρg, (A.36)

where k = v·v/2. Now since e0 = e+ k, we have de
dt =

de0
dt − dk

dt . From Section A.4 and (A.31)

we have

ρ
de0
dt

= −∇ · (pv + τ · v + q) + ρg · v. (A.37)

Subtracting (A.36), we find

ρ
de

dt
= −p∇ · v − τ : ∇v −∇ · q. (A.38)

Comparing (A.31) and (A.38), we identify
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Φe = q, (A.39)

σψ = −p∇ · v − τ : ∇v. (A.40)

A.6.2 The Enthalpy Equation

The relationship between enthalpy and internal energy is e = h − p
ρ so that ρdh

dt =

ρde
dt +

dp
dt . Substituting (A.38), we find

ρ
dh

dt
=

dp

dt
− p∇ · v − τ : ∇v −∇ · q. (A.41)

Comparing with (A.31), we conclude

Φh = q, (A.42)

σh =
dp

dt
− p∇ · v − τ : ∇v. (A.43)

A.2 Kernels for Kinetic Energy Conservation

As described in Section 2.3.2, when energy is transferred between velocity/momentum

components, conservation laws are enforced through kernel transformations. As shown in

Section 2.3.2, the effect of an eddy on a velocity/momentum field is given by (2.38),

φi(y) = φi (f(y; y0, �)) + ciK(y) + biJ(y), (2.38)

where K(y) is given by (2.39), and J(y) is given by (2.40). The coefficients, ci and bi,

for the kernel transformation that augments the triplet map closely depends on the fields

transformed in the model and conservation laws applied on them.

In the following sections, we derive kernel coefficients for the situations summarized in

Table 2.2. Specifically, Section A.1 discusses kernel transformations designed to conserve

momentum and kinetic energy while Section A.2 discusses kernel transformations designed

to conserve the flux of momentum and kinetic energy. This appendix is not meant to be
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exhaustive. Rather, it summarizes some of the key kernel transformations in the literature,

provides a few new transformations not present in the literature, and illustrates the strategy

for deriving such transformations.

The coefficients for kernels are derived based on the following constraints,

1. Enforce kinetic energy conservation:∑
ΔEi = 0, (A.44)

where ΔEi is the change in kinetic energy associated with the ith velocity component due

to the transformation.

1. When more than one velocity component is transformed during eddy event applying

(A.44) imposes only one constraint. Two additional constraints are needed to define

all the kernel coefficients. One such constraint is based on the following observation.

ci for given i can be chosen so as to add an arbitrarily large amount of kinetic energy

to component i, but the maximum amount that can be removed is a finite value, which

is evaluated by maximizing the kinetic energy change with respect to ci. To identify

the maximum energy (Qi), ΔEi is differentiated with respect to ci, equated to zero

and the corresponding expression for ci will be substituted back into ΔEi.

2. An additional constraint is based on the motivated phenomenological interpretation

of pressure scrambling as a tendency to restore isotropy. This dictates the kernel

coefficients to be invariant under the exchange of indices. So the kinetic energy changes

imposed on the velocity components must be of the form

ΔEi = α
∑
j

TijQj (A.45)

where transfer matrix Tij is defined by

Tij =
1

2

â
−2 1 1

1 −2 1

1 1 −2

ì
. (A.46)
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The change in kinetic energy for component i can be written as

ΔEi = α

ï
−Qi +

1

2
(Qj +Qk)

ò
, (A.47)

where α is a model parameter and {i, j, k} is any permutation of the component indices

{1, 2, 3}. The value α = 1 maximizes the inter-component transfer.

A.1 Transformations Conserving Momentum and

Kinetic Energy

A.1.1 Transformations Involving ψ

When applying the transformation to ψ, the change in the ith component of velocity,

u′′i , due to an eddy event is represented as

u′′i = u′i + ciK(y) + biJ(y), (A.48)

where u′i represents the velocity field after application of the triplet map as defined by (2.37).

Following step 1, the change in kinetic energy associated with the ith velocity component

during an eddy event is

ΔEi =
1

2

ˆ y0+�

y0

ρ′
î(
u′′i

)2 − (
u′i
)2ó

dy,

=
1

2

ˆ y0+�

y0

ρ′
î(
u′i + biJ + ciK

)2 − (
u′i
)2ó

dy. (A.49)

Expanding (A.49), we can define the following [3]:
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ρJ ≡
ˆ y0+�

y0

ρ′J dy =
4

9

[ˆ y0+
�
2

y0

(�+ y0 − y) ρ(y) dy +

ˆ y0+�

y0+
�
2

(y − y0) ρ(y) dy

]
,

ρK ≡
ˆ y0+�

y0

ρ′K dy =
4

9

ˆ y0+�

y0

(�− 2 [y − y0]) ρ(y) dy,

ρJK ≡
ˆ y0+�

y0

ρ′JK dy =
8

27

[ˆ y0+
�
2

y0

Ä
�2 − 3� [y − y0] + 2 [y − y0]

2
ä
ρ(y) dy

+

ˆ y0+�

y0+
�
2

(y − y0) [�− 2 (y − y0)] ρ(y) dy

]
,

ρKK ≡
ˆ y0+�

y0

ρ′J2dy =
8

27

ˆ y0+�

y0

î
�2 − 3� (y − y0) + 3 (y − y0)

2
ó
ρ(y) dy, (A.50)

ρiJ ≡
ˆ y0+�

y0

ρ′u′iJ dy =
4

9

[ˆ y0+
�
2

y0

(�+ y0 − y) ρ(y)ui(y) dy +

ˆ y0+�

y0+
�
2

(y − y0) ρ(y)ui(y) dy

]
,

ρiK ≡
ˆ y0+�

y0

ρ′u′iK dy =
4

9

ˆ y0+�

y0

(�− 2 [y − y0]) ρ(y)ui(y) dy,

H ≡ ρK
ρJ

, (A.51)

Pi ≡ ρiK −HρiJ , (A.52)

S ≡ 1

2

Ä
H2 + 1

ä
ρKK −HρJK . (A.53)

From these definitions, (A.49) can be rewritten as

ΔEi = Pici + Sc2i , (A.54)

and following step 1, the maximum energy available with velocity component i is

Qi =
P 2
i

4S
. (A.55)

From (A.44), (A.47), (A.49) and (A.55), expressions for the kernel amplitudes (ci) are ob-

tained as

ci =
1

2S

Å
−Pi ±

…
P 2
i (1− α) +

α

2

Ä
P 2
j + P 2

k

äã
, (A.56)

=
1

2S

Ñ
−Pi + sgn(Pi)

√
P 2
i + α

∑
j

TijP 2
j

é
.
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An additional kernel must be applied on the velocity components to enforce momentum

conservation during an eddy event. Momentum conservation over the eddy interval is given

by ˆ y0+�

y0

ρ′u′′i dy =

ˆ y0+�

y0

ρ′u′i dy. (A.57)

From the identities defined above, it may be shown that (A.57) implies
bi = −Hci. (A.58)

Note that here and below, significant simplifications are afforded when the density is con-

stant.

A.1.2 Transformations Involving ρψ

When applying the transformation to ρψ, the change in the ith component of momen-

tum, (ρu)′′i , due to an eddy event is represented as

(ρu)′′i = (ρu)′i + ciK(y), (A.59)

where (ρu)
′
i represents the momentum field after application of the triplet map as defined

by (2.37).

Following step 1, the change in kinetic energy associated with the ith velocity component

during an eddy event is

ΔEi =
1

2

ˆ y0+�

y0

î
(ρu)′′i u

′′
i − (ρu)

′
i u

′
i

ó
dy,

=
1

2

ˆ y0+�

y0

[
(ρu)′′i

(ρu)′′i
ρ′ − (ρu)

′
i (ρu)

′
i

ρ′

]
dy. (A.60)

Combining (A.59) and (A.60), ΔEi is represented as

ΔEi =
1

2

ˆ y0+�

y0

[
((ρu)′i + ciK)2

ρ′
− ((ρu)′i)

2

ρ′

]
dy,

=
1

4

î
c2iS + 2ciPi

ó
, (A.61)
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where
S ≡

ˆ y0+�

y0

2K2

ρ′
dy, (A.62)

Pi ≡
ˆ y0+�

y0

2(ρu)′iK
ρ′

dy. (A.63)

Following step 1, the maximum energy that is available with velocity component i is

Qi =
P 2
i

4S
. (A.64)

From (A.44), (A.47), (A.61), and (A.64), expressions for the kernel amplitudes (ci) are

obtained as

ci = − Pi

2S
±

√Å
Pi

2S

ã2
(1− α) +

α

2

ÇÅ
Pj

2S

ã2
+

Å
Pk

2S

ã2å
, (A.65)

=
1

2S

Ñ
−Pi + sgn(Pi)

√
P 2
i + α

∑
j

TijP 2
j

é
.

A.2 Transformations Conserving Fluxes of Momentum

and Kinetic Energy

In the following subsections, we consider transformations on ψ and ρψ that conserve

the flux of momentum and kinetic energy.

A.2.1 Transformations Involving ψ

The ODT model was first proposed with only the streamwise component of velocity [58],

and was later extended to a velocity vector formulation with kernel transformations to allow

for intercomponent energy transfer [3, 122]. When energy transfer is enabled between the

velocity components, mass is necessarily conserved but mass flux may not be. When an

eddy event is implemented, mass flux conservation over the eddy interval in the continuous

form is given by

ˆ y0+�

y0

ρ′u′dy =

ˆ y′0+�′

y′0
ρ′u′′dy′, (A.66)
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where u′i represents the velocity field after application of the triplet map as defined by (2.37)

and u′′i is given by

u′′i = u′i + ciK(y) + biJ(y). (A.67)

To ensure mass flux conservation, each cell volume will be modified to account for accel-

eration and expansion. The cumulative effect of these control volume adjustments requires

adjustment of the overall eddy length [122].

The kernel coefficients are derived in the same manner as in Section A.1.1, except that

conservation of momentum and kinetic energy fluxes are enforced here. Following step 1,

the kinetic energy flux change for velocity component i over the modified eddy interval (�′)

is given by

ΔEi =
1

2

ˆ y′0+�′

y′0
ρ′u′

(
u′′i

)2
dy′ −

ˆ y0+�

y0

ρ′u′
(
u′i
)2

dy (A.68)

In (A.68), we define the following by neglecting the eddy interval change (i.e., � = �′ and

y0 = y′0),

ρu,J ≡
ˆ y0+�

y0

ρ′u′J dy,

ρu,K ≡
ˆ y0+�

y0

ρ′u′K dy,

ρu,KK ≡
ˆ y0+�

y0

ρ′u′K2dy, (A.69)

ρu,JK ≡
ˆ y0+�

y0

ρ′u′JK dy,

ρu,uiK ≡
ˆ y0+�

y0

ρ′u′u′iK dy,

ρu,uiJ ≡
ˆ y0+�

y0

ρ′u′u′iJ dy,
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Pi ≡ ρu,uiK −Hρu,uiJ , (A.70)

H ≡ ρu,K
ρu,J

, (A.71)

S ≡ 1

2

Ä
H2 + 1

ä
ρu,KK −Hρu,JK . (A.72)

From these definitions, (A.68) becomes

ΔEi = Pici + Sc2i . (A.73)

Following step 1, the maximum energy that is available with velocity component i is

Qi =
P 2
i

4S
. (A.74)

From (A.44), (A.47), (A.73) and (A.74), expressions for the kernel amplitudes (ci) are ob-

tained as

ci =
1

2S

Å
−Pi ±

…
P 2
i (1− α) +

α

2

Ä
P 2
j + P 2

k

äã
,

=
1

2S

Ñ
−Pi + sgn(Pi)

√
P 2
i + α

∑
j

TijP 2
j

é
. (A.75)

The momentum flux conservation over the eddy interval is given by

ˆ y0+�

y0

ρ′u′u′i dy =

ˆ y′0+�′

y′0
ρ′u′u′′i dy

′. (A.76)

Using the identities above, it can be shown that (A.76) implies

bi = −Hci. (A.77)
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Equations (A.75) and (A.77) complete the specification of the triplet map and kernel trans-

formation for the case where ψ is transformed and flux conservation for momentum and

kinetic energy is desired.

A.2.2 Transformations Involving ρψ

When applying the transformation to ρψ, the change in the ith component of momen-

tum, (ρu)′′i , due to an eddy event is represented as

(ρu)′′i = (ρu)′i + ciK + biJ. (A.78)

where (ρu)′i represents the momentum field after application of the triplet map as defined

by (2.37).

Following step 1, the change in kinetic energy flux associated with the ith velocity

component during an eddy event is

ΔEi =
1

2

ˆ y0+�

y0

î
(ρu)′

(
u′′i

)2 − (ρu)′ (u′i)
2
ó
dy,

=
1

2

ˆ y0+�

y0

⎡
⎣(ρu)′

î
(ρu)′′i

ó2
(ρ′)2

− (ρu)′
î
(ρu)′i

ó2
(ρ′)2

⎤
⎦ dy. (A.79)

Combining (A.78) and (A.79), ΔEi is represented as

ΔEi =
1

2

ˆ y0+�

y0

ñ
(ρu)′

(ρ′)2
Ä[
(ρu)′i + ciK + biJ

]2 − [
(ρu)′i

]2äô
dy,

=

ˆ y0+�

y0

ñ
(ρu)′

2 (ρ′)2
Ä
c2iK

2 + b2i J
2 + 2cibiKJ + 2(ρu)′ibiJ + 2(ρu)′iciK

äô
dy.(A.80)

Momentum flux conservation through the kernel transformation requires

ˆ y0+�

y0

(ρu)′ u′idy =

ˆ y0+�

y0

(ρu)′ u′′i dy,

ˆ y0+�

y0

(ρu)′

ρ′
[ciK + biJ ] dy = 0. (A.81)

Defining
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A1 ≡
ˆ y0+�

y0

(ρu)′K
ρ′

dy, A2 ≡
ˆ y0+�

y0

(ρu)′ J
ρ′

dy, (A.82)

equation (A.81) can be rewritten to identify the relationship between bi and ci,

bi = −A1

A2
ci. (A.83)

Defining

A3 ≡
ˆ y0+�

y0

(ρu)′K2

2 (ρ′)2
dy =

ˆ y0+�

y0

(ρu)′ J2

2 (ρ′)2
dy,

A4 ≡
ˆ y0+�

y0

(ρu)′K (ρu)′i
(ρ′)2

dy,

A5 ≡
ˆ y0+�

y0

(ρu)′ J (ρu)′i
(ρ′)2

dy,

A6 ≡
ˆ y0+�

y0

(ρu)′KJ

(ρ′)2
dy, (A.84)

Pi ≡ A4 −A5
A1

A2
, (A.85)

S ≡ A3

Ç
1 +

Å
A1

A2

ã2å
−A6

A1

A2
, (A.86)

equation (A.80) can be written as

ΔEi = Pici + Sc2i . (A.87)

Following step 1, the maximum energy that is available with velocity component i is

Qi =
P 2
i

4S
. (A.88)

From (A.44), (A.47), (A.87) and (A.88), expressions for the kernel amplitudes (ci) are ob-

tained as
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ci =
1

2S

Å
−Pi ±

…
P 2
i (1− α) +

α

2

Ä
P 2
j + P 2

k

äã
, (A.89)

=
1

2S

Ñ
−Pi + sgn(Pi)

√
P 2
i + α

∑
j

TijP 2
j

é
.

A.3 Eddy Time Scale

As described in Section 2.3.3, the eddy time scale (τe) is defined based on scaling

analysis. Dimensions of various quantities defined as part of the pressure scrambling model

are given in Table A.2.

Expressions for the eddy energy are constructed from the quantities described in Ta-

ble A.2 and the following average quantities defined over the eddy interval:

μe =

ñ
1

�

ˆ y0+�

y0

dy

μ

ô−1

, (A.90)

ρe =
1

�

ˆ y0+�

y0

ρ dy, (A.91)

νe =

ñ
1

�

ˆ y0+�

y0

ρ

μ

ô−1

. (A.92)

In the following section we derive eddy time scale for cases which involve transformation

of ρψ. For situations where ψ is transformed, the expressions are given based on what is

available in the literature [3, 122].

A.3.1 Transformations Involving ρψ

When ρψ is transformed, the eddy energy (Qe) can be denoted as

Qe = Qy +
∑
j

TyjQj . (A.93)

The dimensions for Qe depends on the conservation laws enforced during kernel transforma-

tion. When momentum and kinetic energy are conserved, Qe scaled with density (ρe) and

eddy length (�) has the dimensions of m2/s2. Now the following relationship can be developed

based on scaling analysis,
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�

τe

ã2
∼

Qe

ρe� e
. (A.94)

Some of the energy available with the eddy is dissipated by the viscous effects. To

account for these effects a model constant Z is introduced, as discussed in Section 2.3.3.

However, following the same arguments of scaling analysis the term representing these effects

should have the dimensions of m2/s2, and the time scale expression can be denoted asÅ
�

τe

ã2
∼
ñ
Qe

ρe�
−Z

Å
νe
�

ã2ô
, (A.95)

where ν2e/�
2 has units of m2/s2.

Following the same procedure, when momentum and kinetic energy fluxes are conserved,

Qe is scaled with
´ y0+�
y0

ρu dy, to obtain dimensions of m2/s2. In this case, the time-scale

expression can be denoted asÅ
�

τe

ã2
∼

⎡
⎣ Qe´ y0+�

y0
ρu dy

−Z
Å
νe
�

ã2⎤⎦ . (A.96)



APPENDIX B

MODEL VERIFICATION

B.1 Model Verification

Verification seeks to answer the question of whether the equations that compose the

mathematical model are being solved correctly, and quantify or estimate the error resulting

from the computational implementation of that mathematical model; it does not answer

the question of whether the equations can be used to accurately describe physical reality.

Verification has two separate but equally important parts, code verification and solution

verification.

Code verification is intended to accomplish two goals: first, to ensure that the imple-

mentation of the mathematical model is free of mistakes, and second, to use exact solutions

to quantify the discretization error associated with the implemented discrete operators,

and verify that they exhibit expected behavior. For the current work an automated algo-

rithm generation is used and it is is based on partial separation of the physics from the

numerics. The physics implementation is accomplished by first decomposing the differential

equation into basic expressions. Subsequently, these expressions are mapped as nodes in

a direct acyclic graph that exposes the network of data requirements. The numerics are

implemented through operators and it corresponds to a precise mathematical object that

performs a certain calculation on a field associated with an expression. A second order

spatial discretization and third order explicit Runge-kutta method to march the solution

forward in time are used. The details related to the software and verification can be found

in [93,112,114]. Since turbulent mixing in ODT is implemented through eddy events, error

check is performed during the eddy implementation procedure. Table B.1 shows the errors in

mass, momentum, energy and species values for the simulation cases, Rej = 2250, described

in Table 4.3.
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Table B.1: Errors from the eddy implementation procedure, for the Rej = 2250 case de-
scribed in Table 4.3.

Mass 8.283e-17
X-Momentum 1.253e-16
Y-Momentum 4.236e-17

Energy 9.675e-17
Species 1.023e-16

Solution verification has the goal of estimating numerical error in the intended use

regime, leading to results that are more directly applicable, but it also eliminates the avail-

ability of exact solutions. Because exact solutions are unavailable, solution verification

quantifies numerical uncertainty, not numerical error. For the current work, solution verifi-

cation performed at different levels because of the turbulent mixing implementation through

eddy events. The solution verification involves mesh and time step independent study. In

the ODT model context, the time step independent study is important to impose the con-

vergence on the number of eddies being selected for the specified random number feed and

selected parameter set. The mesh independent study dictates the spatial resolution needed

for a given case. Table B.2 describes details from the time step independent study for the

simulation corresponding to Rej = 2250, described in Table 4.3. Since the change in the

number of eddies being selected is very small from 1e-7 to 2e-7, time step 2e-7 is selected

for the simulation.

For the grid convergence study, simulations are performed over different spatial resolu-

tions for the Rej = 2250 case and centerline velocity evolution is compared. Based on the

observed performance of the simulation a spatial resolution of 100 microns is selected.

Table B.2: Number of eddies selected for different time steps, for the Rej = 2250 case
described in Table 4.3.

Time step (s) Number of eddies
8e-7 553
5e-7 596
2e-7 634
1e-7 637



APPENDIX C

COAL MODELS

C.1 Coal Models

C.1 Vaporization

Moisture is one of the important constituent of coal particles. Because of considerable

latent heat of vaporization and heat capacity of water, moisture can have considerable effect

on coal particle behavior during combustion. Vaporization induces changes in both the mass

and energy evolution. Moisture vaporization can be expressed by

dmH2O

dt
= kv

Ç
Psat

RTp
− P̄

RTg

å
ApMw,H2O (C.1)

where kv, is mass transfer coefficient of steam m2

s , Psat is the saturation pressure of water

at particle temperature,P̄ is partial pressure of water in gas and Ap is the area of particle.

kv can be calculated from equation below

Sh =
kvdp

DH2O,gas
= 2.0 + 0.6Re1/2p Sc1/3g (C.2)

where Sh is the Sherwood number, Rep is Reynolds number of particle, Scg is Schmidt

number of gas, DH2O,gas is diffusivity of water into gas phase and dp is diameter of the

particle.

The saturation pressure of water is a function of particle temperature, that can be

obtained by Buck relation [16],

Psat = 611.21exp

ÇÅ
18.678− Tp

234.5

ãÇ
Tp

257.14 + Tp

åå
. (C.3)
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Water has considerable latent heat of vaporization plays an important role on energy evo-

lution. The latent heat of vaporization(ΔHvap) is calculated from the Watson relation [79]

ΔHvap = ΔHTref

Ç
1− Tr

1− Tr,ref

ån

. (C.4)

where ΔHTref
is the latent heat of vaporization at the reference temperature (Tref ). The

reference temperature selected for the present study is the boiling temperature of the water

at atmospheric pressure (373 K). The residual temperature, Tr =
Tp

Tc
and residual reference

temperer, Tr,ref =
Tref

Tc
. The critical temperature (Tc) is 647 K.

C.2 Devolatilization

Devolatilization of volatile matter plays an important role in the life of coal particle

from injection to burnout. The total volatile yield for a particular coal is a strong function

of the temperature of the particle, the heating rate is of minor importance [14]. The rate

of volatiles release depends on the bridges and functional groups contained in coal [39].

Different models describing the volatile matter release from the coal particle are available

in the in the literature [39, 53, 62, 76]. For the present work we considered the Chemical

Percolation Devolatilization (CPD) model to predict the production rates of the species

coming off the coal particle during the devolatilization [39,53].

In CPD, reactions start with cleaving liable bridge (l) to form a highly reactive inter-

mediate (l∗), l kb−→ l∗, where kb is the reaction constant. The intermediate then decomposes

to form a char bridge (c) and gas (g) as well as side-chains (δi)

l∗ kc−→ c+ 2g2 (C.5)

l∗ kδ−→ 2δi (C.6)

where kc and kδ are reaction constants.

The side chains (δi) then decompose to form the light gases,
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δi
kg−→ gi. (C.7)

where kg is the reaction constant.

The balance equations for the above quantities are given by

dl
dt = −kbl (CPD − 1)

dl∗
dt = kbl − (kδ + kc)l

∗ (CPD − 2)

dc
dt = kcl

∗ ∼= kbl
ρ δ
c
+1 (CPD − 3)

dδi
dt =

ñ
2ρ δ

c
kbl

ρ δ
c
+1

ô
fgi∑16
j=1

fgj
− kgiδi (CPD − 4)

where kc is reaction rate constant and index j is number of functional groups.

The evolution of gi is given by

dgi
dt

=

⎡
⎣ 2kbl

ρ δ
c
+ 1

⎤
⎦ fgi
Σ16
j=1fgj

+ kgiδi (C.8)

where ρ δ
c
= kδ

kc
and fgi is functional group of each species.

The following steps describe the procedure to calculate kb,

kb = Abe
−Eb
RT (C.9)

In the above equation, Eb is the activation energy which is calculated from the following

expression,

F (Eb) =
1√
2πσ2

Ebˆ

−∞
e−(1/2)(Eb−E0)/σ2

dEb (C.10)

where F (Eb) =
di

di,max
= l

l0
, l0 is the initial amount of liable bridge.

Equations C.9 and C.10 can also be used to compute kgi by modifying the definition

for di
di,max

as,
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di
di,max

=
gi

gi,max
=

gi

2(1− c0)
fgi∑16
j=1

fgi

(C.11)

where c0 is the initial char content in the volatile matter defined as below,

if C > 0.859 → c0 = 11.83C − 10.16

if O > 0.125 → c0 = 1.25O − 0.175

The evolution of volatile mass during the devolatilization process can be expresses by

the following equation

dmv

dt
= −

(
16∑
i=1

dgi
dt

+
dc

dt

)
(C.12)

The following equation describes the production rate of species iÅ
dmi

dt

ãCPD

= mv

nk∑
k=1

dgk
dt

(C.13)

where k is the functional group index and nk represents the number of functional groups

associated with species i.

C.3 Char Oxidation

Coal mostly consists of char where its reaction with oxygen releases most of the heat

during the combustion. Char oxidation is a very complex phenomenon and depends on many

factors such as temperature, concentration of oxygen at particle surface, particle porosity

and tortuosity of pores in the particle. Temperature determines the rate-controlling step in

char reactions. At low temperatures char reactivity controls the reaction rate, whereas mass

transfer limitations control it at high temperatures.

Heterogeneous reactions of char with gases prevalent in gasification environments are

much slower than devolatilization reactions, and coal type dependence is a more important

issue. The oxygen-carbon reaction is much faster than the other heterogeneous reactions
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and has been studied extensively. The char oxidation mechanism used in the present study

is presented here and the other heterogeneous reaction are discussed in the next section.

There are several approaches available in the literature to model the char oxidation

process. Langmuir-Hinshelwood kinetic expression is the most commonly used to model char

oxidation. One of the important features of this expression is that competing adsorption

(O2) and desorption (CO) on char surface are taken into consideration. There are several

forms for Langmuir-Hinshelwood expression but it was shown by Murphy [74] that Equation

C.14 performs better. The reaction rate of char (rp) is defined as ,

rp =
k2k1p

n
O2,s

k1pnO2,s
+ k2

(C.14)

where k1 and k2 are Arrhenius rate constants. Table C.1 summarizes the values for n,

activation energies and pre-exponential factors of k1 and k2. Following Murphy [74], the

partial pressure of oxygen at particle surface, pO2s, can be given by:

pO2s

p
=

Å
pO2,inf

p
− γ

ã
exp

Ç
− rpdp
2CmDO2,mix

å
+ γ (C.15)

where DO2,mix, Cm are diffusion coefficient of O2 in the mixture and concentration of gas

mixture. γ = (ψ−1)/2 where ψ = (CO2/CO) / (1 + CO2/CO), represents fraction of carbon

that become CO2. Determining the ratio of production of CO2 to CO is investigated by

Mitchel [73] and is given by:

CO

CO2
= Aexp

Ç
− E

RTp

å
(C.16)

where A = 103.3, E = 14300 cal/mole.

Later, Tognotti [115] included partial pressure of oxygen into the equation, and is given

by:
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Table C.1: Char oxidation: Rate constants for equation C.14.

A (mol/sm2atmn) E (kJ/mol)

k1 93.0 0.1

k2 26.2 109.9

n 0.3

CO2

CO
= A0P

η0
O2exp

Ç
B

Tp

å
(C.17)

where A0 = 0.02, B = 3070K, η0 = 0.2.

The consumption rate of particle char mass is described by

dmc

dt
=

rpwc

νp
πd2p (C.18)

where νp = 2/(1 + ψ) is the stoichiometric ratio of carbon consumption and wc is the

molecular weight of carbon.

Equations C.18, C.14, C.15 and C.17 are solved simultaneously to evolve the particle

char mass in time.

The source terms from particle phase to the gas phase are given by:Å
dmCO2

dt

ãOXID

= (Sp,CO2)Oxid =
dmc

dt
ψ
wco2

wc
(C.19)

Å
dmCO

dt

ãOXID

= (Sp,CO)Oxid =
dmc

dt
ψ

wco

(CO2/CO)wc
(C.20)

Å
dmO2

dt

ãOXID

= −dmc

dt

ψwO2

wc

Ç
1

2 (CO2/CO)
+ 1

å
(C.21)

where wi represents the molecular weight of species i.
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C.4 Gasification Reactions

The carbon-oxygen reaction is much faster than the other heterogeneous reactions and

details are given in Section C.3. The carbon-hydrogen reaction occurs so slowly that it can

be neglected in entrained systems [107]. The other two heterogeneous reactions (carbon-H2O

and carbon-CO2), are considered for the present study and are given by:

C + CO2 −→ 2CO (C.22)

C +H2O −→ CO +H2 (C.23)

The rate constants for the above equations strong functions of particle temperature [120]

and is given by:

ki = Aip
n
i exp (−Ei/RTp) (C.24)

where pi represents the partial pressure of reactant gaseous species(here CO2 and H2O).

The pre-exponential factor (A) and activation energy (E) for the reactions considered here

are given in Table C.2.

The evolution of char mass due to gasification reactions is given by:Å
dmc

dt

ãGASIF

= −kimchar (C.25)

The source terms from particle phase to the gas phase are given by:Å
dmH2O

dt

ãGASIF

=
mchar

wc
kH2OwH2O (C.26)

Å
dmCO2

dt

ãGASIF

=
mchar

wc
kCO2wCO2 (C.27)
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Table C.2: Pre-exponential factors and activation energies for gasification reactions taken
from [54].

CO2 H2O

< 1473 � 1473 < 1533 � 1533

E (J/kmol) 2.71× 108 1.63× 108 2.52× 108 1.40× 108

A 3.34× 108 6.78× 104 2.89× 108 8.55× 108

n 0.54 0.73 0.64 0.84

Å
dmCO

dt

ãGASIF

= −mchar

wc
(2kCO2wCO + kH2OwCO) (C.28)

Å
dmH2

dt

ãGASIF

= −mchar

wc
kH2OwH2 (C.29)
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