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ABSTRACT

Latent structures play a vital role in many data analysis tasks. By providing compact
yet expressive representations, such structures can offer useful insights into the complex
and high-dimensional datasets encountered in domains such as computational biology,
computer vision, natural language processing, etc. Specifying the right complexity of
these latent structures for a given problem is an important modeling decision. Instead
of using models with am priori fixed complexity, it is desirable to have models that can
adapt their complexitas the data warrant. Nonparametric Bayesian models are motivated
precisely based on this desideratum by offering a flexible modeling paradigm for data
without limiting the model-complexity priori. The flexibility comes from the model’s
ability to adjust its complexity adaptively with data.

This dissertation is about nonparametric Bayesian learning of two specific types of la-
tent structures: (1) low-dimensionaktent featuresinderlying high-dimensional observed
data where the latent features could exhibit interdependencies, datef#)task structures
that capture how a set of learning tasks relate with each other, a notion critical in the
paradigm of Multitask Learning where the goal is to solve multiple learning tasks jointly
in order to borrow information across similar tasks.

Another focus of this dissertation is on designing efficient approximate inference algo-
rithms for nonparametric Bayesian models. Specifically, for the nonparametric Bayesian
latent feature modelhere the goal is to infer the binary-valued latent feature assignment
matrix for a given set of observations, the dissertation proposes two approximate inference
methods. The first one is a search-based algorithm to findritv@mum-a-posteriori
(MAP) solution for the latent feature assignment matrix. The second one is a sequential
Monte-Carlo-based approximate inference algorithm that allows processing the data one-
example-at-a-time while being space-efficient in terms of the storage required to represent

the posterior distribution of the latent feature assignment matrix.
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CHAPTER 1

INTRODUCTION

The ubiquity of complex and high-dimensional datasets is presenting ever-increasing
challenges in modern-day data analysis problems. More and more application domains are
nowadays witnessing the phenomena of data-deluge: advances in microarray technology
have made it feasible to acquire high-throughput gene-expression measurements; the explo-
sion of the world-wide-web has led to the creation of text and other multimedia collections
of enormous scales; prevalence of networks of various types (social networks, coauthorship
networks, etc.) has generated huge amounts of data about the social-personal preferences
of people; and so on.

Translating this wealth of information into useful knowledge is not always easy and
often requires uncovering and understanding the latent structures that underlie these data.
A natural but principled way of accomplishing this is to come up with a statistical model of
the data generation process in terms of these underlying latent structures, and explaining the
data in terms of these structure. Such an explanation of the data can help in uncovering the
complex relationships underlying the data and, by providing a succinct and rich representa-
tion, can also help in dealing with problems resulting from the noisy and high-dimensional
nature of the data.

A key question is how to model these latent structures. Probabilistic modeling (Bishop,
2006), by its virtue of providing a flexible and natural generative model of the data, is
an appealing way of modeling the data. In particular, taking a Bayesian approach to
probabilistic modeling allows incorporating prior knowledge about these structures and
gives a principled and coherent way of performing inference in the model. This is done
by specifying aprior distribution on the model parameters and using the Bayes rule to
compute thegosterior distributionof the model parameters given data.
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Complexity control is an important issue while specifying any model. Bayesian meth-
ods provide an elegant way of accomplishing this by endowing each model parameter with
a prior distribution which (implicitly) acts as a regularizer. However, specifying the right
level of complexity remains a challenge. Parametric prior distributions assume a fixed
model complexity that is independent of the data. This is undesirable since fixing the model
complexitya priori before even seeing the data seems unnatural. Ideally, it is desirable to
have models that are flexible enough to adjust their complexity as warranted by the data.

Nonparametric Bayesian methods (Gershman and Blei, 2012) are designed precisely
with this motivation. These methods provide a flexible modeling paradigm for data without
restricting the model complexity priori. This flexibility is desired as it avoids the need for
doing model-selection, which is both a time-consuming and error-prone process. Moreover,
nonparametric methods allow the model complexity to adapt itself as more and more data
are observed. This flexibility is desired as the model can “create parameters” to explain the
data as and when the data warrant it. This is more appropriate than having a model with a
predefined model with ixedcomplexity that does not depend on data.

This thesis focuses on developing new nonparametric Bayesian models for learning
latent structures, and designing efficient inference methods for these models. Specifically,
two types of latent structures are considered in this thesis: (1) low-dimensional latent
factors underlying high-dimensional data, with the additional property that the latent factors
are not independent of each other but are related vea@rori unknown structure, and (2)
latent task structures capturing how a set of multiple learning tasks (e.g., classification or
regression) relate to each other, and leveraging this task structure for sharing information
across multiple tasks in order to improve learning. This paradigm is commonly known as
learning to learn (Heskes, 2000) or Multitask Learning (Caruana, 1997).

Efficient inference in nonparametric Bayesian models remains an open problem. To
this end, this thesis presents two efficient inference methods for the Indian Buffet Pro-
cess (Ghahramani et al., 2007), which is a nonparametric Baykedent feature model.

In particular, for the nonparametric Bayesian latent feature model, which posits each ob-
servation as being generated by a small (angriori unknown) number of latent fea-
tures, the thesis presents two inference methods: (1) a searchrbas@sum-a-posteriori

(MAP) inference method, and (2) a Sequential-Monte-Carlo-based fully Bayesian infer-
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ence method that allows processing one observation at a time, while maintaining a compact

approximation of the posterior distribution.

1.1 Overview of Methods and Contributions
Here, we give a brief overview of the methods developed as part of this thesis. In
particular, the thesis can be divided into three parts: (1) designing nonparametric Bayesian
latent factor models for high-dimensional data, (2) designing nonparametric Bayesian mod-
els for capturing and leveraging the latent relatedness structure for jointly solving multiple
learning tasks, and (3) designing efficient inference methods for nonparametric Bayesian

latent feature models.

1.1.1 Nonparametric Bayesian Latent Factor Models

The first contribution of this thesis is a nonparametric Bayesian Factor Analysis model
with the following key properties: (1) the number of latent factors need not be known, (2)
the latent factors are not assumed to be independent of each other, and (3) not all observed
features in the data are considered relevant for the Factor Analysis task. In particular,
(2) is of particular interest in many problems. For example, in gene-expression analysis
where the factors correspond to biological pathways, the pathways are known to be related
with each other. In topic-modeling-based text analysis, factors correspond to topics and
the topics tend to be related with each other (by varying degrees); see Figure 1.1 for
a pictorial illustration. Having a Factor Analysis model that captures the dependencies
among the factors is therefore desirable. Our model also naturally extends for the task of
factor regressior{West, 2003), which involves simultaneous learning of latent factors and
predicting the responses associated with each sample, given a set of training samples with
their responses.

The nonparametric latent factor model (Ghahramani et al., 2007) has a limitation that
it can only learn latent factors underlying a single feature representation of the objects.
Often, however, objects are associated with multiple feature representations. For example,
a given collection of webpages can be represented using different types of features such as
the page-text, the anchor-text on hyperlinks pointed towards them, the images appearing in
them, the social tags associated with them, and so on. For such cases, the thesis presents a

nonparametric Bayesian Canonical Correlation Analysis (CCA) model that allows learning



Figure 1.1. Factor Analysis with relationship among latent factafs, is a high dimen-
sional observationf, are the low-dimensional latent factors, aAds the factor-loading
matrix.

latent factors shared across multiple feature representations (or modalities). Another useful
application of such a model is for the problem of multilabel prediction using CCA where

one modality is the features in each example and the other modality is the responses/labels
associated with each example, and the role of CCA is to perform a response/label-guided

latent feature extraction. These latent features can then be used with a supervised learner.

1.1.2 Nonparametric Bayesian Learning of Latent Task Structures

The second contribution of this thesis is designing efficient inference methods for the
nonparametric latent feature model (Ghahramani et al., 2007), a general, nonparametric
Bayesian framework for inferring how a set of learning problems relate to each other, and
leveraging this knowledge fointly solve these problems. This problem setting is com-
monly known as Multitask Learning (Caruana, 1997). Multitask Learning critically relies
on the assumption of how different tasks relate with each other. An incorrect assumption
not supported by the dataset can end up hurting the performance. It is therefore desirable
to have a Multitask Learning model that, instead of having gmiori fixed notion of task
relatedness, caadaptits assumption based on the data. With this motivation in mind,
the thesis presents a generative model of the task parameters (e.g., the weight vectors of a
linear classification/regression model) assuming that the task parameters of multiple tasks
are drawn from asharedMixture of Factor Analyzers (MFA) model (Ghahramani and

Hinton, 1997). By giving a nonparametric Bayesian treatment, the resulting model achieves
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considerable modeling flexibility and is shown to subsume several previously proposed
Multitask Learning models as its special cases, while being more flexible and robust than

these models.

1.1.3 Efficient Inference for the Nonparametric Latent Feature Models

The third contribution of this thesis is designing efficient inference methods for non-
parametric Bayesian methods, in particular, for the Indian Buffet Process (IBP), which is a
nonparametric latent feature model (Ghahramani et al., 2007).

To this end, the thesis develops two approximate inference methods

e The first method is a beam-search-based approximatemum-a-posterioiiMAP)
inference method for the IBP. This method is motivated by the fact that in many prac-
tical cases, we do not require the full posterior distribution of the latent feature as-
signment matrix but only seek the best, highest probability sample from the posterior
distribution. In such cases, a fast method that can provide the MAP estimate may be
more desirable than sampling-based methods such as MCMC, or optimization-based
methods such as variational inference that explore the full posterior distribution, and

are therefore usually slow.

e The second method is a Sequential-Monte-Carlo-based inference method which pro-
vides samples from the full posterior distribution and has the appealing property that
it can process the observations in an online manner (i.e., one observation at a time).
This is desirable both for scalability as well as for many practical scenarios where
observations arrive one at a time. Moreover, our proposed method is an improvement
over the existing SMC-based method for the IBP as it allows incorporating the most
recent observation in the inference. The earlier proposed SMC method for the IBP
ignores the most recent observation. We show that our proposed method leads to
improved inference quality as well as considerably more succinct representation of
the posterior distribution as compared to the standard SMC-based inference for the
IBP (Wood and Griffiths, 2007).



1.1.4 Thesis Statement

Nonparametric Bayesian methods, combined with efficient inference strategies, can
provide flexible ways to design models that can (a) learn low-dimensional latent features
from high-dimensional data, (b) infeelatednesf these latent features, and (c) solve

multiple related learning problems by inferring latshired predictive structures.

1.2 Thesis Organization

The rest of the chapters of the thesis are organized as follows:

Chapter 2 provides a brief background on the models and concepts on which the sub-
sequent chapters are based. In particular, it talks about nonparametric Bayesian methods
such as the Dirichlet Process, the Indian Buffet Process, and the Kingman’s Coalescent.
In addition, the chapter provides a brief background on Factor Analysis and Multitask
Learning.

Chapter 3 describes the nonparametric Bayesian Factor Analysis model. We discuss
how the model learns the correct number of latent factors, allows the factors to be related
via ana priori unknown hierarchy, and filters away noisy features in the data for more
robust Factor Analysis.

Chapter 4 describes the multiview generalization of the nonparametric latent factor
model. In particular, we describe how we can use the Indian Buffet Process to design a
nonparametric Bayesian version of the Canonical Correlation Analysis model.

Chapter 5 describes a nonparametric Bayesian model we propose for Multitask Learn-
ing. The model is based on the assumption that the weight vectors of a collection of
potentially related tasks live on a low-dimensional subspace. This is equivalent to the
weight vectors being generated as a linear combination of a betsts tasks. We describe
how taking a Factor Analysis model on the weight vector, Multitask Learning can be
accomplished and how using the Indian Buffet Process allows us to circumvent model
selection issues in such a model.

Chapter 6 builds on the model described in Chapter 5. We show how replacing the
single factor analyzer by a mixture of factor analyzers allows us to capture considerably
richer notions of task relatedness and can provide a general framework for modeling task

relatedness.



Chapter 7 describes our proposed beam-search algorithm for doing approximate MAP
inference for the IBP. By experimental comparisons with other state-of-the-art methods,
we show that this method can be a viable alternative to methods based on sampling or
variational inference.

Chapter 8 describes our proposed Sequential-Monte-Carlo-based (SMC) inference method
for the IBP, and discusses its differences with the standard SMC-based inference method
for the IBP proposed in (Wood and Griffiths, 2007).

Chapter 9 presents a discussion and concludes with some possible directions for future

work.



CHAPTER 2

BACKGROUND

This chapter provides a brief background on nonparametric Bayesian methods, in par-
ticular the Dirichlet Process, the Indian Buffet Process, and the Kingman’'s Coalescent,
which would be used as building blocks for the models developed in this thesis. The chapter
also provides a brief background on Latent Factor Analysis, Mixture of Factor Analyzers,

and Multitask Learning for which the proposed models in the thesis have been developed.

2.1 Nonparametric Bayesian Methods

In any data analysis task, choosing the appropriate model complexity is a critical issue.
For example, in data clustering, one needs to specify the number of clusters; in dimension-
ality reduction, one needs to specify the dimensionality of the lower-dimensional space;
in regression or classification, one needs to specify the functional form of the input-output
relationship, which is typically a parametric model defined by a fixed set of parameters. In
all these cases, the number of parameters (number of clusters, dimensionality of the lower-
dimensional space, or the number of parameters in the regression/classification model) do
not depend on the data and need to be spedifiediori.

Nonparametric Bayesian methods take an entirely different approach to this problem
of model selection. Instead of prespecifying the model complexfyiori, these methods
assume the model to have an unbounded complexity to begin with and the eventual com-
plexity to be determined by the amount of data. Essentially, these methods can adapt the
model complexity by creating parameters as and when dictated by the data. Note that the
namenonparametrichere is somewhat a misnomer. It does not mean that the model does
not have any parameters. It means that the number of parameters is potentially infinite but

limited by the data. What is important here is that it does not need to be specpieati.



2.2 Dirichlet Process

The Dirichlet Process (DP) is a prior distribution over discrete distributions (Ferguson,
1973). Discreteness implies that if one draws samples from a distribution drawn from the
DP, the samples will cluster: new samples take the same value as older samples with some
positive probability. A DP is defined by two parameters: a concentration paramatet
a base measur€,. The sampling process defining the DP draws the first sample from
the base measur&,. Each subsequent sample would take on a new value drawndgom
with a probability proportional tay, or reuse a previously drawn value with probability
proportional to the number of samples having that value. This property makes it suitable
as a prior for effectively infinite mixture models, where the number of mixtures can grow
as new samples are observed. Our mixture of factor analyzers-based MTL model uses the

DP to model the mixture components so we do not need to specify their nanpioerri.

2.3 Indian Buffet Process

The Indian Buffet Process (IBP) (Ghahramani et al., 2007) is a nonparametric Bayesian
prior that defines a distribution over infinite binary matrices. The IBP was originally
motivated by the need to model the latent feature structure of a given set of observations.
The IBP, due to its flexibility, has been a model of choice in variety of nonparametric
Bayesian applications, such as for factorial structure learning, learning causal structures,
modeling dyadic data, modeling overlapping clusters, and others (Ghahramani et al., 2007).

In the latent feature model, each observation can be thought of as consisting of a set of
latent features. Given aN x D matrix X of V observations having features each, we
can consider a decomposition of the fokm= ZA + E whereZis anN x K binary feature-
assignment matrix describing which features are present in each obsenfipis 1 if
featurek is present in observatiom, and is otherwise OA is a K x D matrix of feature
scores, and the matrik consists of observation-specific noise. A crucial issue in such
models is the choosing the numbirof latent features. The standard formulation of IBP
lets us define a prior over the binary mat#xsuch that it can have an unbounded number
of columns and thus can be a suitable prior in problems dealing with such structures.

The IBP derivation starts by defining a finite model f6rmany columns of &V x K

binary matrix.
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P (my, + LT(N — my, — 1)
I(N+1+4%)

P(z)=1]]

k=1
Herem;, = >, Zy. In the limiting case, ag{ — oo, it as was shown in (Ghahramani

et al., 2007) that the binary matrik generated by IBP is equivalent to one produced by a
sequential stochastic process. This process can be best understood by a culinary analogy
of customers coming to an Indian restaurant and selecting dishes from an infinite array of
dishes. In this analogy, customers represent observations (rafjsaofd dishes represent

latent features (columns &j). Customer 1 selectBoisson(«) dishes to begin with. There-

after, each incoming customerselects an existing dishwith a probabilitym, /N, where

m;, denotes how many previous customers chose that particular dish. The custtraer

goes on further to additionally seleBbisson(a/n) new dishes. This process generates a
binary matrixZ with rows representing customer and columns representing dishes. Many
real-world datasets have a sparseness property, which means that each observation depends
only on a subset of all thé latent features. This means that the binary ma#ixs
expected to be reasonably sparse for many datasets. This makes IBP a suitable choice
for capturing the underlying sparsity in addition to automatically discovering the number

of latent features. Figure 2.1 shows a pictorial illustration of the IBP.

e

f

7 1

e ¥ = i .
EE

==

Corresponds to the
<:| latent feature assignment matrix
Z

Customer = data points
Dishes = latent features

Figure 2.1. Pictorial illustration of the IBP withV = 4 and eventualkl’ = 4 unique latent
features. In the IBP, customers correspond to datapoints and dishes correspond to latent
features.
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2.4 Kingman’s Coalescent

Our model makes use of a latent hierarchical structure over factors; we use Kingman’s
Coalescent (Kingman, 1982) as a convenient prior distribution over hierarchies. King-
man’s Coalescent originated in the study of population genetics for a set of single-parent
organisms. The Coalescent is a nonparametric model over a countable set of organisms. It
is most easily understood in terms of its finite dimensional marginal distributionsnover
individuals, in which case it is called ancoalescent. We then take the limit— oco. In
our case, the individuals afactors.

Then-coalescent considers a populationmobrganisms at timeé = 0. We follow the
ancestry of these individuals backward in time, where each organism has exactly one parent
at timet < 0. Then-coalescent is a continuous-time, partition-valued Markov process,
which starts withn singleton clusters at timé = 0 and evolvesackward, coalescing
lineages until there is only one left. We denotetbyhe time at which theith coalescent
event occurs (note < 0), andd; = t;_, — t; the time between events (nate> 0). Under
the n-coalescent, each pair of lineages merges independently with exponentié] sate
6; ~ &Exp(("5F")). With probability one, a random draw from thecoalescent is a binary
tree with a single root at = —oo andn individuals at timet = 0. We denote the tree
structure byr. The marginal distribution over tree topologies is uniform and independent
of coalescent times; and the model is infinitely exchangeable. We therefore consider the
limit asn — oo, calledthe coalescentSee Figure 2.2 for a pictorial illustration.

Once the tree structure is obtained, one can define an additional Markov process to
evolve over the tree. One common choice is a Brownian diffusion process. In Brownian
diffusion in D dimensions, we assume an underlying diffusion covarianck ef RP*?

p.s.d. The root is &-dimensional vector draws. Each nonroot node in the tree is drawn
Gaussian with mean equal to the value of the parent, and varafhcehered; is the time
that has passed.

Recently, Teh et al. (Teh et al., 2008) proposed efficient bottom-up agglomerative
inference algorithms for the coalescent. These (approximately) maximize the probability
of 7 andds, marginalizing out internal nodes by Belief Propagation. If we associate with
each node in the treeraeany andvariancev message, we update messages as Eq (2.1),

wheres is the current node and andr: are its children.
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Figure 2.2. Pictorial illustration of am-coalescent witlh = 15 individuals

v; = [(vi + (b — t)A) ™ + (Vs + (b — t)A) Y] (2.1)

Yi = [Yu(vi + (i — t)A) ™ +y, (v + (s — 6)A) '] v

2.5 Factor Analysis
Factor Analysis (Bartholomew and Knott, 1999) is the task of explaining data by means
of a small set of latent factors. One of the first applications of Factor Analysis can be found
in the psychology community in an attempt to explain intelligence using a small set of
latent traits or factors. More formally, given a set of observatifons ..., xx}, Factor
Analysis attempts to explain each observatigne R using a smaller number of latent

factorsf, € RX (K < D) as follows:
x,=Af, +¢e,

where A denotes théactor loading matrixof size D x K ande,, denotes the observation-
specific noise (typically assumed to be Gaussian) not explained by the latent factors. Fig-

ure 2.3 shows a pictorial illustration of a standard Factor Analysis model.

2.6 Mixture of Factor Analyzers
A mixture of factor analyzers (MFA) model generalizes the standard Factor Analysis
model by assuming that for each observation, first we select a factor analyzer from a

collection of factor analyzers and then generate the observation thsitfgctor analyzer.
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Figure 2.3. A basic Factor Analysis modei,, is a high-dimensional observatiofi, are
the low-dimensional latent factord is the factor-loading matrix.

Suppose:(n) denotes the index of the chosen factor analyzer fontiie observatione,,.

The generative story for this observation under the MFA can be written as:

LTy = I’l’z(n) + Az(n)fn +&p

Note that, unlike the standard Factor Analysis, in an MFA, we also have a meafi”
associated with each factor analyzer. Therefore, each factor analyzer is parameterized by a
pair {u, A} of mean and a factor loading matrix.

An MFA model can also be seen as a local dimensionality reduction method with
different local factor analyzers performing dimensionality reduction in different regions
of space. Seen another way, an MFA model performs data clustering, while simultaneously
performing dimensionality reduction within each cluster. This can be especially useful
in clustering high-dimensional data when the number of datapoints is small. Standard
clustering methods such as a mixture of Gaussian would be prone to overfitting in such
high-dimensional, small sample-size cases because it fits a mixttuk-Enk Gaussians.

On the other hand, an MFA can be seen as fitting a mixture of low-rank Gaussians (note

that a factor analyzer is akin to a low-rank Gaussian), thereby preventing overfitting.

2.7 Multitask Learning
Learning problems do not exist in a vacuum. Often, one is tasked with developing
not one, but many classifiers for different tasks. In these cases, there is often not enough

data to learn a good model for each task individually—real-world examples are prioritizing
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email messages across many users’ inboxes (Aberdeen et al., 2011) and recommending
items to users on web sites (Ning and Karypis, 2010). In these settings it is advantageous
to transfer or share information across tasks. Multitask Learning (MTL) (Caruana, 1997)
encompasses a range of techniques to share statistical strength across models for various
tasks and allows learning even when the amount of labeled data for each individual task
is very small. Most MTL methods achieve this improved performance by assuming some

notion of similarity across tasks. For example:

e Parameters of all the tasks are close to a sharednparameter. Probabilistically,
this is equivalent to the parameters of all the tasks being drawn from a shared Gaus-
sian distribution (Chelba and Acero, 2006).

e Parameters of all the tasks exhibit a clustering structure (Jacob and Bach, 2008, Xue
et al., 2007b). Probabilistically, this is equivalent to the parameters of all the tasks

being drawn from a mixture of Gaussian distributions.

e Parameters of all the tasks live on a low-dimensional subspace (Rai andeDHum

2010), or all the tasks have a common set of relevant features (Argyriou et al., 2007).

e Task relationships can be captured by modeling the task covariance matrix (Bonilla
et al., 2007, Zhang and Yeung, 2010).

Choosing the model whose task similarity assumptions are consistent for the given Mul-
titask Learning problem is critical. Incorrect assumptions, however, can end up degrading

the performance.



CHAPTER 3

NONPARAMETRIC BAYESIAN SPARSE LATENT
FACTOR MODEL

In this chapter, we describe our proposed nonparametric Bayesian Factor Analysis
model that simultaneously learns the number of factors as well as the relationships among
the factors. Moreover, our method also allows simultaneously doing feature selection so

that only relevant features in the data participate in Factor Analysis.

3.1 Introduction

Factor Analysis is the task of explaining data by means of a sdateht factors.
Factorregressioncouples this analysis with a prediction task, where the predictions are
made solely on the basis of the factor representation. The latent factor representation
achieves two-fold benefits: (1) discovering the latprdacessunderlying the data; (2)
simpler predictive modeling through a compact data representation. In particular, (2) is
motivated by the problem of prediction in thiarge P small N” paradigm (West, 2003),
where the number of featurd3d greatly exceeds the number of exampléspotentially
resulting in overfitting.

We address three fundamental shortcomings of standard Factor Analysis approaches
(Beal et al., 2005, Sabatti and James, 2005, Sanguinetti et al., 2006, West, 2003): (1) we
do not assume a known number of factors; (2) we do not assume factors are independent;
(3) we do not assume all features are relevant to the Factor Analysis. Our motivation for
this work stems from the task of reconstructing regulatory structure from gene-expression
data. In this context, factors correspond to regulatory pathways. Our contributions thus
parallel the needs of gene pathway modeling. In addition, we couple predictive modeling

(for factor regression) within the Factor Analysis framework itself, instead of having to
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model it separately.

Our factor regression model is fundamentally nonparametric. In particular, we treat the
gene-to-factor relationship nonparametrically by proposing a sparse variant of the Indian
Buffet Process (IBP) (Ghahramani et al., 2007), designed to account for the sparsity of
relevant genes (features). Weuplethis IBP with a hierarchical prior over the factors.
This prior explains the fact that pathways are fundamentally related: some are involved
in transcription, some in signaling, some in synthesis. The nonparametric nature of our
sparse IBP requires that the hierarchical patso be nonparametric. A natural choice is
Kingman’s coalescent (Kingman, 1982), a popular distribution over infinite binary trees.

Since our motivation is an application in bioinformatics, our notation and terminology
will be drawn from that area. In particulagenesarefeatures samplesareexamples, and
pathwaysare factors. However, our model is more general. An alternative application
might be to a collaborative filtering problem, in which case our genes might correspond
to movies, our samples might correspond to users, and our pathways might correspond
to genres. In this context, all three contributions of our model still make sense: we do
not know how many movie genres there are; some genres are closely related (romance to
comedy versus to action); many movies may be spurious.

Our model uses a variant of the Indian Buffet Process (Section 2.3) to model the
feature-factor (i.e., gene-pathway) relationships. We further use Kingman’s Coalescent

(Section 2.4) to model latent pathway hierarchies.

3.2 Nonparametric Bayesian Factor Regression

Recall the standard Factor Analysis problexn= AF + E, for standardized daf¥. X
isaP x N matrix consisting ofV samples [, ..., z ] of P features eachA is the factor
loading matrix of sizeP? x K andF =[f, ..., f y] is the factor matrix of sizé x N. E =
[eq, ..., en] is the matrix of idiosyncratic variationg(, the number of factors, is known.

Recall that our goal is to treat the Factor Analysis problem nonparametrically, to model
feature relevance, and to model hierarchical factors. For expository purposes, it is simplest
to deal with each of these issues in turn. In our context, we begin by modeling the
gene-factor relationship nonparametrically (using the IBP). Next, we propose a variant of

IBP to model gene relevance. We then present the hierarchical model for inferring factor
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hierarchies. We conclude with a presentation of the full model and our mechanism for

modifying the FactoAnalysisproblem to factoregression.

3.2.1 Nonparametric Gene-Factor Model

We begin by directly using the IBP to infer the number of factors. Although IBP has
been applied to nonparametric Factor Analysis in the past (Ghahramani et al., 2007), the
standard IBP formulation places IBP prior on the factor matrix (F), associaaniples
(i.e., a set of features) with factors. Such a model assumes that the sample-factor relation-
ship is sparse. However, this assumption is inappropriate in the gene-expression context
where it is not the factors themselves but #ssociationsamong genes and factors (i.e.,
the factor loading matriXA) that are sparse. In such a context, each sample depends on
all the factors, but each gene within a sample usually depends only on a small number of
factors.

Thus, it is more appropriate to model the factor loading matrix (A) with the IBP prior.
Note that sinceA andF are related with each other via the number of factorsnodeling
A nonparametrically allows our model to also have an unbounded number of factors.

For most gene-expression problems (West, 2003), a binary factor loadings matrix (A) is
inappropriate. Therefore, we instead use the Hadamard (element-wise) product of a binary
matrix Z and a matrixV of reals.Z andV are of the same size & The Factor Analysis
model, for each samplgthus becomest; = (Z © V) f, + e;. We haveZ ~ ZBP(«, ).

« andg are IBP hyperparameters and have vague gamma priors on them. Our initial model
assumes no factor hierarchies and hence the prior ¥wepuld simply be a Gaussian:

V ~ Nor(0,02T) with an inverse-gamma prior on,. F has a zero mean, unit variance
Gaussian prior, as used in standard Factor Analysis. Firally Nor(0, ) models the
idiosyncratic variations of genes wheteis a P x P diagonal matrix (diag¥V, ..., ¥ p)).

Each entryl » has an inverse-gamma prior on it.

3.2.2 Feature Selection Prior

Typical gene-expression datasets are of the order of several thousands of genes, most of
which arenot associated with any pathway (factor). In the above, these are accounted for
only by the idiosyncratic noise term. A more realistic model is that certain genes simply do

not participate in the Factor Analysis. In the culinary analogy, some of the genes that enter
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the restaurant leave before selecting any dishes. We will refer to such genes as “spurious”.
We add an additional prior term to account for such spurious genes; effectively leading to
a sparse solution (over the rows of the IBP matrix). It is important to note that this notion
of sparsity is fundamentallglifferentfrom the conventional notion of sparsity in the IBP.
The sparsity in IBP is ovecolumns, notows. To see the difference, recall that the IBP
contains a “rich get richer” phenomenon: frequently selected factors are more likely to get
reselected. Consider a truly spurious gene and ask whether it is likely to select any factors.
If some factork is already frequently used, tharpriori, this gene is more likely to select
it. The only downside to selecting it is the data likelihood. By setting the corresponding
value inV to zero, there is no penalty.

Our sparse-IBP prior is identical to the standard IBP prior with one exception. Each
customer (gene) is associated with Bernoulli random varialflg that indicates whether
it samplesanydishes. Thél' vector is given a parametgr which, in turn, is given a Beta

prior with parameters, b.

3.2.3 Hierarchical Factor Model

In our basic model, each column of the matéx(and the corresponding column in
V') is associated with a factor. These factors are considered unrelated. To model the fact
that factors are, in fact, related, we introduce a factor hierarchy. Kingman’s coalescent
(Kingman, 1982) is an attractive prior for integration with IBP for several reasons. It is
nonparametric and describes exchangeable distributions. This means that it can model a

varying number of factors. Moreover, efficient inference algorithms exist (Teh et al., 2008).

3.2.4 Full Model and Extension to Factor Regression

Our proposed graphical model is depicted in Figure 3.1. The key aspects of this model
are the IBP prior oveZ, the sparse binary vect@t, and the coalescent prior ovEr.

In standard Bayesian factor regression (West, 2003), Factor Analysis is followed by the
regression task. The regression is performed only on the bagis @ther than the full
dataX. For example, a simple linear regression problem would involve estimatiig a
dimensional parameter vect@mwith regression valué " F. Our model, on the other hand,
integrates the factor regression component in the nonparametric Factor Analysis framework

itself. We do so by prepending the responget® the expression vectar; and joining the
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1G(g,h) N(0,I)

IBP

Beta(a,b)

Gaussian | Coalescent ]

Figure 3.1. The graphical model for nonparametric Bayesian Factor Regressioonsists
of response variables as well.

training and test data (see Figure 3.2). The unknown responses in the test data are treated
as missing variables to be iteratively imputed in our MCMC inference procedure. It is
straightforward to see that it is equivalent to fitting another sparse model relating factors to
responses. Our model thus allows the Factor Analysis to take into account the regression
task as well. In case of binary responses, we add an extra probit regression step to predict

binary outcomes from real-valued responses.

3.3 Inference
Exact inference is intractable in our model and, therefore, we use Gibbs sampling with

a few Metropolis-Hastings steps to perform approximate inference.

3.3.1 Sampling the IBP Matrix Z

SamplingZ consists of sampling existing dishes, proposing new dishes and accepting
or rejecting them based on the acceptance ratio in the associated M-H step. For sampling
existing dishes, an entry il is set as 1 according to(Z;, = 1|1X,Z_4,V,F,¥)
%p(xm, V,F,¥) whereas it is set as 0 accordingi?Z;, = 0|1X, Z_;x, V, F, ¥)
%p(xm,w F. W) m_;;, = Z#,— Zj. 1s how many other customers chose dish

k.

For sampling new dishes, we use an M-H step where we simultaneously propose
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tr te

tr te

Figure 3.2. Training and test data are combined together and test responses are treated as
missing values to be imputed.

(Kmew ymew [rewy where K™V ~ Poisson(af/(8 + P — 1)). We accept the proposal
with an acceptance probability (following (Meeds et al., 2007)) givem bymin{1, %}.
Here,p(rest|n) is the likelihood of the data given parametersWe proposé/"<* from
its prior (either Gaussian or Coalescent) but, for faster mixing, we propdsefrom its
posterior.

Samplingl’** from the coalescent is slightly involved. As shown pictorially in Figure
3.3, proposing a new column &f corresponds to adding a new leaf node to the existing
coalescent tree. In particular, we need to find a sibling (s) to the new gicaled need to
find an insertion point on the branch joining the siblint its parenp (the grandparent of
y'). Since the marginal distribution over trees under the coalescent is uniform, the sibling
is chosen uniformly over nodes in the tree. We then use importance sampling to select
an insertion time for the new nod¢ betweent, andt,, according to the exponential
distribution given by the coalescent prior (our proposal distribution is uniform). This gives
an insertion point in the tree, which corresponds to the new pareyit &f/e denote this
new parent by’ and the time of insertion &s The predictive density of the newly inserted

nodey’ can be obtained by marginalizing the pargntThis yieldsNor(y,, vo), given by:

vo = [(vs+ (ts —t)A) "+ (v, + (t —t,)A) 1]

Yo = [Ys/(vs + (ts =)A) +y,/(vp + (8, = 1)A)]wo
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Figure 3.3. Adding a new node to the tree

Here, y, and v, are the messages passgalthrough the tree, whilg, andv, are the

messages passddwnthrough the tree (compare to Eq (2.1)).

3.3.2 Sampling the Sparse IBP Vector T

In the sparse IBP prior, recall that we have an additiodamany variabled,, indi-
cating whether geng “eats” any dishes.T}, is drawn from Bernoulli with parameter,
which, in turn, is given @et(a, b) prior. For inference, we collapgseand¥ and get Gibbs
posterior overl;, of the formp(7, = 1|.) < (a + >_ ., T,)StU(x,|(Z, © V,)F, g/h, g))
andp(T, = 0[.) o< (b+ P =% . T,)S(z,|0,9/h, g), whereStu is the nonstandard
Student’s t-distributiong, h are hyperparameters of the inverse-gamma prior on the entries
of .

3.3.3 Sampling the Real-valued Matrix V

For the case wheW has a Gaussian prior on it, we samplérom its posterior

p(‘/gv]‘X7 Z7 F’ m) X Nor(‘/g’]‘ugvj’ Egvj)

2 :
wherey,; = (3N, i}g + 0—13)‘1 and iy, = %,,(3°N, Fii Xy vl We defineX, =

Xgi— Z{;,Z#(Agﬂ/g,l)ﬁ},i, andA = Z V. The hyperparameter, on'V has an inverse-

gamma prior and posterior also has the same form. For the case with coalescent prior on
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N FZ, _ N " N
we haveXy; = (3,1 \ﬁg + %) " and Hag = Tgi(2 il Fjvng,j)OI]g + yETgJJ) ', where

Yy, andv, are the Gaussian posteriors of the leaf node added in the coalescent tree (see
Eq (2.1)), which corresponds to the columnVobeing sampled.

3.3.4 Sampling the Factor Matrix F
We sample fof from a normal distribution with mean = AT(AAT + ¥)~1X and
covariance® =1 — AT(AAT + &)"'A, whereA=Z 0oV

3.3.5 Sampling the Idiosyncratic Noise Term
We place an inverse-gamma prior on the diagonal entriels ahd the posterior too is

inverse-gammap(¥,|.) o« ZG(g + & , whereE = X — (Z ® V)F.

#)
27 1124 (ETE)

3.3.6 Sampling IBP Hyperparameters

We sample the IBP hyperparameteirom its posteriorp(a|.) ~ Gam( K +a, #P(m),
whereK , is the number of active features at any momentHpd5) = Z; 1/(B+i—1).

B is sampled from a prior proposal using an M-H step.

3.3.7 Sampling the Factor Tree
We use thésreedy-Ratel algorithm (Teh et al., 2008).

3.4 Related Work

A number of probabilistic approaches have been proposed in the past for the problem
of gene-regulatory network reconstruction (Beal et al., 2005, Sabatti and James, 2005,
Sanguinetti et al., 2006, West, 2003). Some take into account the information on the prior
network topology (Sabatti and James, 2005), which is not always available. Most assume
the number of factors is known. To get around this, one can perform model selection via
Reversible Jump MCMC (Green, 1995) or evolutionary stochastic model search (Carvalho
et al., 2008). Unfortunately, these methods are often difficult to design and may take
quite long to converge. Moreover, they are difficult to integrate with other forms of prior
knowledge (e.g., factor hierarchies). A somewhat similar approach to ours is the infinite
independent component analysis (ilCA) model of (Knowles and Ghahramani, 2007), which
treats Factor Analysis as a special case of ICA. However, their model is limited to Factor

Analysis and does not take into account feature selection, factor hierarchy, and factor
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regression. As a generalization to the standard ICA model, (Bach and Jordan, 2003)
proposed a model in which the components can be related via a tree-structured graphical
model. It, however, assumes a fixed number of components.

Structurally, our model with Gaussian{Ve., no hierarchy over factors) is most similar
to the Bayesian Factor Regression Model (BFRM) of (West, 2003). BFRM assumes a
sparsity inducing mixture prior on the factor loading matix Specifically,A,, ~ (1 —
Tk )00 (Apr) + o NOr (A, |0, 71) Wheredy () is a point mass centered at zero. To complete
the model specification, they defimg, ~ (1 — py)do(mpk) + prBet(my|sr, s(1 —r)) and
pr ~ Bet(pg|lav,a(1l — v)). Now, integrating outr,,. gives: A, ~ (1 — vpg)do(Apk) +
vprNor(A,:|0, 71,). Itis interesting to note that the nonparametric prior of our model (factor
loading matrix defined aA = Z ©® V) is actually equivalent to the (parametric) sparse
mixture prior of the BFRM a$( — oco. To see this, note that our prior on the factor loading
matrix A (composed o having an IBP prior, an@d/ having a Gaussian prior), can be
written asA,, ~ (1 — pr)do(Apr) + pNOr(A,|0,02), if we definep;, ~ Bet(1, af/K).
It is easy to see that, for BFRM whepg ~ Bet(av, a(1 — v)), settinga = 1 + o/ K and

v=1-— af/(aK) recovers our model in the limiting case wh&n— co.

3.5 Experiments

In this section, we report our results on synthetic and real datasets. We compare our
nonparametric approach with the evolutionary-search-based approach proposed in (Car-
valho et al., 2008), which is the nonparametric extension to BFRM.

We used the gene-factor connectivity matrixeafoli network (described in (Pournara
and Wernisch, 2007)) to generate a synthetic dataset having 100 samples of 50 genes and
8 underlying factors. Since we knew the ground truth for factor loadings in this case,
this dataset was ideal to test for efficacy in recovering the factor loadings (binding sites
and number of factors). We also experimented with a real gene-expression, breast-cancer
dataset having 251 samples of 226 genes and 5 prominent underlying factors (we know this

from domain knowledge).

3.5.1 Nonparametric Gene-Factor Modeling and Variable Selection
For the synthetic dataset generated bydhmli network, the results are shown com-

paring the actual network used to generate the data (Figure 3.4), the inferred factor loading
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True Factor Loadings

Genes

1 2 3 4 5 6 7 8
Factors

Figure 3.4. True factor loadings for the synthetic data with P=50, K=8 generated using
connectivity matrix ofe-coli data. White rectangles represent active sites. The data also
have added noise with signal-to-noise-ratio of 10.

matrix by our method (Figure 3.5), and by BFRM (Figure 3.6). As shown in Figure 3.5,
our method recovered exactly the same number (8) of factors, and almost exactly the same
factor loadings (binding sites and number of factors) as the ground truth. In comparison,
the BFRM based on evolutionary search overestimated the number of factors and the
inferred loadings clearly seem to be off from the actual loadings (even modulo column
permutations).

Our results on real data are shown in Figure 3.7, Figure 3.8, and Figure 3.9. To
see the effect of variable selection for these data, we also introduced spurious genes by
adding 50 random features in each sample. We observe the following: (1) Without variable
selection being on, spurious genes result in an overestimated number of factors and falsely

discovered factor loadings for spurious genes (see Figure 3.7), (2) Variable selection, when
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Inferred Factor Loadings
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1 2 3 4 5 6 7 8
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Figure 3.5. Inferred factor loadings (with our approach) for the synthetic data with P=50,
K=8 generated using connectivity matrix @coli data.
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Factor Loadings Inferred by BFRM

Genes

Factors

Figure 3.6. Inferred factor loadings with the evolutionary-search-based approach.
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Figure 3.7. IBP based sparse Factor Analysis without feature selection
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Figure 3.8. IBP based sparse Factor Analysis with variable selection
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on, effectively filters out spurious genes, without overestimating the number of factors
(see Figure 3.8). We also investigated the effect of noise on the evolutionary-search-based
approach and it resulted in an overestimated number of factor, plus false discovered factor
loadings for spurious genes (see Figure 3.9). To conserve space, we do not show here the
cases when there are no spurious genes in the data, but it turns out that variable selection

does not filter out any of 226 relevant genes in such a case.

3.5.2 Hierarchical Factor Modeling

Our results with hierarchical factor modeling are shown in Figure 3.10 and Figure
3.11 for synthetic and real data. As shown, the model correctly infers the gene-factor
associations, the number of factors, and the factor hierarchy. There are several ways to
interpret the hierarchy. From the factor hierarchy éscoli data (Figure 3.10 (b)), we
see that column-2 (corresponding to factor-2) of ¥henatrix is the most prominent one
(it regulates the highest number of genes), and is closest to the tree-root, followed by
column-2, to which it looks most similar. Columns corresponding to lesser prominent
factors are located further down in the hierarchy (with appropriate relatedness). Figure
3.11 (b) can be interpreted in a similar manner for breast-cancer data. The hierarchy can
be used to find factors in order of their prominence. The higher we chop off the tree
along the hierarchy, the more prominent the factors, we discover, are. For instance, if
we are only interested in the top 2 factorseircoli data, we can chop off the tree above
the sixth coalescent point. This is akin to the agglomerative clustering sense, which is
usually donepost-hoc. In contrast, our model discovers the factor hierarchies as part of the
inference procedure itself. At the same time, there is no degradation of data reconstruction
(in the mean-squared-error sense) and the log-likelihood, when compared to the case with
Gaussian prior otV (see Figure 3.12 - they actualijmprove). We also show in Section
3.5.3 that hierarchical modeling results in better predictive performance for the factor
regression task. Empirical evidences also suggest that the factor hierarchy leads to faster
convergence since most of the unlikely configurations will never be visited as they are

constrained by the hierarchy.
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Figure 3.10. Hierarchical factor modeling results. (a) Factor loadingsefaoli data. (b)
Inferred hierarchy foe-colidata.
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Figure 3.11. Hierarchical factor modeling results. (a) Factor loadings for breast-cancer
data. (b) Inferred hierarchy for breast-cancer data.
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Figure 3.12. Convergence plots: (a) MSE on the breast-cancer data for BFRM (horizontal
line), our model with Gaussian (top red curved line) and Coalescent (bottom blue curved
line) priors. (b) Log-likelihoods for our model with Gaussian (bottom red curved line) and
Coalescent (top blue curved line) priors.
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3.5.3 Factor Regression

We report factor regression results for binary and real-valued responses and compare
both variants of our model (Gaussi®nand CoalescerX) against 3 different approaches:
logistic regression, BFRM, and fitting a separate predictive model on the discovered factors
(see Table 3.1 and Figure 3.12). The breast-cancer dataset had two binary response vari-
ables (phenotypes) associated with each sample. For this binary prediction task, we split
the data into a training-set of 151 samples and test-set of 100 samples. This is essentially a
transduction setting, as described in Section 3.2.4 and shown in Figure 3.2. For real-valued
prediction task, we treated a 30x20 block of the data matrix as our held-out data and
predicted it based on the rest of the entries in the matrix. This method of evaluation is
akin to the task of image reconstruction (Verbeek et al., 2004). The results are averaged
over 20 random initializations and the low error variances suggest that our method is fairly

robust w.r.t. initializations.

3.6 Conclusions and Discussion
We have presented a fully nonparametric Bayesian approach to sparse factor regression,

modeling the gene-factor relationship using a sparse variant of the IBP. However, the true
power of nonparametric priors is evidenced by the ease of integration of task-specific
models into the framework. Both gene selection and hierarchical factor modeling are
straightforward extensions in our model that do not significantly complicate the inference
procedure, but lead to improved model performaanod more understandable outputs.

We applied Kingman’s coalescent as a hierarhical mod&¥ atve matrix modulating the

expression levels of genes in factors.

Table 3.1. Factor regression results

Model Binary Real
(%error,std dev) | (MSE)
LogReg 17.5 (1.6) -
BFRM 19.8 (1.4) 0.48
Nor-V 15.8 (0.56) 0.45
Coal-V 14.6 (0.48) 0.43
PredModel 18.1 (2.1) -




CHAPTER 4

NONPARAMETRIC BAYESIAN FACTOR
ANALYSIS WITH MULTIPLE
MODALITIES

In this chapter, we present a generalization of the nonparametric Bayesian latent factor
model and show how we can extract latent factors shared between two or more modalities.
In this chapter, we consider a special case of supervised dimensionality reduction for the
multilabel prediction setting using Canonical Correlation Analysis (CCA) where the first
modality is the features in the data and the second modality is the label matrix. However,
our model is more general and can be applied for latent factor learning from multimodal
data such as a collection of webpages that can be represented using different types of
features such as the page-text, the anchor-text on hyperlinks pointed towards them, the

images appearing in them, the social tags associated with them, and so on.

4.1 Introduction

Learning with examples having multiple labels is an important problem in machine
learning and data mining. Such problems are encountered in a variety of application
domains. For example, in text classification, a document (e.g., a newswire story) can
be associated with multiple categories. Likewise, in bio-informatics, a gene or protein
usually performs several functions. All these settings suggest a common underlying prob-
lem: predicting multivariate responses. When the responses come from a discrete set, the
problem is termed as multilabel classification. The aforementioned setting is a special case
of Multitask Learning (Caruana, 1997) when predicting each label is a task and all the tasks
share a common source of input. An important characteristics of these problems is that the

labels are not independent of each other but actually often have significant correlations
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with each other. A ri@e approach to learn in such settings is to train a separate classifier
for each label. However, such an approach ignores the label correlations and leads to
suboptimal performance (Ueda and Saito, 2003).

In this chapter, we show how Canonical Correlation Analysis (CCA) (Hotelling, 1936)
can be used to exploit label relatedness, learning multiple prediction problems simultane-
ously. CCA is a useful technique for modeling dependencies between two (or more) sets
of variables. One important application of CCA issapervisedlimensionality reduction,
albeit in the more general setting where each example has several labels. In this setting,
CCA on input-output paifX,Y) can be used to project inpud to a low-dimensional
space directed by label informatidh This makes CCA an ideal candidate for extracting
useful predictive features from data in the context of multilabel prediction problems.

The classical CCA formulation, however, has certain inherent limitations. It is non-
probabilistic, which means that it cannot deal with missing data, and precludes a Bayesian
treatment, which can be important if the dataset size is small. An even more crucial issue is
choosing the number of correlation components, which is traditionally dealt with by using
cross-validation, or model-selection (Wang, 2007). Another issue is the potential sparsity
(Sriperumbudur et al., 2009) of the underlying projections that is ignored by the standard
CCA formulation.

Building upon the recently suggested probabilistic interpretation of CCA (Bach and
Jordan, 2005), we propose a nonparametric, fully Bayesian framework that can deal with
each of these issues. In particular, the proposed model can automatically select the number
of correlation components, and effectively capture the sparsity underlying the projections.
Our framework is based on the Indian Buffet Process (Ghahramani et al., 2007), a nonpara-
metric Bayesian model to discover latent feature representation of a set of observations. In
addition, our probabilistic model allows dealing with missing data and, in the supervised
dimensionality reduction case, can incorporatilitional unlabeled data one may have
access to, making our CCA algorithm work in a semisupervised setting. Thus, apart
from being a general, nonparametric, fully Bayesian solution to the CCA problem, our
framework can be readily applied for learning useful predictive features from labeled (or
partially labeled) data in the context of learning a set of related tasks.

This chapter is organized as follows. Section 4.2 introduces the CCA problem and
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its recently proposed probabilistic interpretation. In Section 4.3, we describe our general
framework forinfinite CCA. Section 4.4 gives a concrete example of an application (mul-
tilabel learning) where the proposed approach can be applied. In particular, we describe a
fully supervised setting (when the test data are not available at the time of training), and a
semisupervised setting with partial labels (when we have access to test data at the time of
training). We describe our experiments in Section 4.5, and discuss related work in Section
8.5, drawing connections of the proposed method with previously proposed ones for this

problem.

4.2 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a useful technique for modeling the relation-
ships among a set of variables. CCA computes a low-dimensstraaédembedding of a
set of variables such that the correlation among the variables is maximized in the embedded
space.

More formally, given a pair of variables € RPt andy € R”2, CCA seeks to find linear
projectionsu, andu, such that the variables are maximally correlated in the projected
space. The correlation coefficient between the two variables in the embedded space is

given by

. ul'xy’u,
/(e u,) (] yy™u,)

Since the correlation is not affected by rescaling of the projectigrendu,, CCA is

posed as a constrained optimization problem.

T, T ; Y A — T T —
1132?155 u, Xy’ u,, subject to : uyxx' u, = Lu,yy u, =1

It can be shown that the above formulation is equivalent to solving the following general-

ized eigen-value problem:

0 Exy ux o Exx 0 ux
Yox 0 u, ) P 0 Xy uy

where X denotes the covariance matrix of sizex D (whereD = D; + D,) obtained

from the data sampleX = [x;,...,x,] andY = [y1,...,¥a]-
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4.2.1 Probabilistic CCA
Bach and Jordan (Bach and Jordan, 2005) gave a probabilistic interpretation of CCA
by posing it as a latent variable model. To see thisxlandy be two random vectors of

size D, andD,. Let us now consider the following latent variable model

z ~ Nor(0,Ig), min{Dy, Dy} > K
x ~ Nor(T,+W,z,¥,), W, cRP*E ¥, >0

y ~ Nor(T,+W,z,¥,), W, e R ¥, -0
Equivalently, we can also write the above as
[x;y] ~ Nor(p + Wz, ¥)

wherep = [u,; 1], W = [W,; W, ], and ¥ is a block-diagonal matrix consisting &f,
and ¥, on its diagonals.[.; .| denotes row-wise concatenation. The latent variahie
shared betweexr andy.

Bach and Jordan (Bach and Jordan, 2005) showed that, given the maximum likelihood
solution for the model parameters, the expectatitizsx) andE(z|y) of the latent variable
z lie in the same subspace that classical CCA finds, thereby establishing the equivalence
between the above probabilistic model and CCA.

The probabilistic interpretation opens doors to several extension of the basic setup
proposed in (Bach and Jordan, 2005) which suggested a maximum likelihood approach
for parameter estimation. However, it still assumesamiori fixed number of canonical
correlation components. In addition, another important issue is the sparsity of the underly-

ing projection matrix, which is usually ignored.

4.3 The Infinite Canonical Correlation Analysis Model
Recall that the CCA problem can be defined[asy] ~ Nor(Wz, ¥) (assuming
centered data). A crucial issue in the CCA model is choosing the number of canonical
correlation components, which is set to a fixed value in classical CCA (and even in the
probabilistic extensions of CCA). In the Bayesian formulation of CCA, one can use the
Automatic Relevance Determination (ARD) prior (Bishop, 1999) on the projection matrix
W that gives a way to select this number. However, it would be more appropriate to have a

principled way to automatically figure out this number based on the data.
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We propose a nonparametric Bayesian model that selects the number of canonical
correlation components automatically. More specifically, we use the Indian Buffet Process
(Ghahramani et al., 2007) (Section 2.3) as a nonparametric prior on the projection matrix
W. The IBP prior allowsW to have an unbounded number of columns which gives a way

to automatically determine the dimensionalityof the latent space associated with

4.3.1 The Infinite CCA Model

In our proposed framework, the mati¥ consisting of canonical correlation vectors
is modeled using an IBP prior. However, sifdecan be real-valued and the IBP prior is
defined only for binary matrices, we representthd + D2) x K matrixW as(B © V),
whereB = [B,;B,| is a(D; + Dy) x K binary matrix,V = [V,;V,]isa(D; + D) x K
real-valued matrix, and denotes their element-wise (Hadamard) product. We place an
IBP prior onB that automatically determinds, and a Gaussian prior dvi. Note thatB
andV have the same number of columns. Under this model, two random veactomdy
can be modeled as = (B, ® V,)z + E, andy = (B, ® V,)z + E,. Here,z is shared
betweerx andy, andE, andE, are observation-specific noise.

In the full model X = [x,...,xx] isaD; x N matrix consisting ofV samples ofD,
dimensions each, and = [y,,...,yy] is another matrix consisting d¥ samples oD,

dimensions each. Here is the generative story for our basic model (see Figure 4.1):

B ~ IBP(a)
V ~ Nor(0,6°1), o,~ IG(a,b)
Z ~ Nor(0,1)

[X:Y] ~ Nor(Bo®V)Z, ¥),

whereW is a block-diagonal matrix of siz® x D whereD = (D; + D,), with ¥, and
¥, on its diagonal. Both, andW¥, have an inverse-Wishart prior on them.

Since our model is probabilistic, it can also deal with the problem wem Y have
missing entries. This is particularly important in the case of supervised dimensionality
reduction (i.e.X consisting of inputs an¥ associated responses) when the labels for some
of the inputs are unknown, making it a model gmmisupervisedimensionality reduction

with partially labeled data. In addition, placing the IBP prior on the projection m&&rix
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Figure 4.1. The graphical model depicts the fully supervised case when all variables X and
Y are observed. The semisupervised case can have X and/or Y consisting of missing values
as well. The graphical model structure remains the same

(via the binary matrixB) also helps in capturing the sparsityW (see Results section for

evidence).

4.3.2 Inference

We take a fully Bayesian approach by treating everything at latent variables and com-
puting the posterior distributions over them. We use Gibbs sampling with a few Metropolis-
Hastings steps to do inference in this model.

In what follows,D denotes the datX; Y|, B = [B,;B,|, andV = [V; V]

4.3.3 Sampling B

Sampling the binary IBP matriB consists of sampling existing dishes, proposing new
dishes and accepting or rejecting them based on the acceptance ratio in the associated
M-H step. For sampling existing dishes, an entryBris set as 1 according to(B;;, =
1D, B_,V,Z, %) x =5*p(DB,V,F, ¥) whereas it is set as 0 accordingptoB;, =
0D, B_i,V,Z,¥) Wp(MB,V, Z,%). m_; = Y ; Bjx is how many other
customers chose digh

For sampling new dishes, we use an M-H step where we simultaneously ppopose

(Knew ymew znew) where K™% ~ Poisson(a/D). We accept the proposal with an
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p(rest|y*)

acceptance probability given ly= min{1, trestl)

} Here,p(rest|n) is the probability
of the data given parameterys We proposd/ ™ from its prior (Gaussian) but, for faster

mixing, we propose&Z™" from its posterior.

4.3.4 Sampling V

We sample the real-valued matikfrom its posterior, which is a normal distribution
N Zi,

with covariances, , = (3, +Ui%)‘1 and meanu; , = zi,k(zjj:l Ak,nDZk)\If;l. We

deflneD*k =D, — Zl’ilvl#(Bi,M,l)Zl,n. The hyperparameter, on'V has an inverse-
gamma prior and the posterior also has the same form. Note that the number of columns in

V is the same as the number of columns in the IBP m#&rix

4.3.5 Sampling Z

We sample forZ from its posterior, which is a normal distribution with mean=
WT(WWT+¥)-1D and covarianc® = I-WT(WWT4+¥)"1W, whereW = BOV.

Note that, in our sampling scheme, we considered the matB¢cesdB, as simply
parts of the big IBP matriB, and sampled them together using a single IBP draw. However,
one could also sample them separately as two separate IBP matri@&sdodB,. This
would require different IBP draws for samplil), andB, with some modification of the
existing Gibbs sampler. Different IBP draws could result in a different number of nonzero
columnsinB, andB,,. To deal with this issue, one could samBlg(say havingiK, nonzero
columns) and, (say havingk,, nonzero columns) first, introduce extra dummy columns
(| K, — K,| in number) in the matrix having a smaller number of nonzero columns, and then
set all such columns to zero. The effectivefor each iteration of the Gibbs sampler would
be max{K,, K,}. A similar scheme could also be followed for the corresponding real-

valued matrice®y, andV,,, sampling them in conjunction witB, andB,;, respectively.

4.4 Multitask Learning Using Infinite CCA
Having set up the framework for infinite CCA, we now describe its applicability for the
problem of Multitask Learning. In particular, we consider the setting when each example
is associated with multiple labels. Here, predicting each individual label becomes a task
to be learned. Although one can individually learn a separate model for each task, doing

this would ignore the label correlations. This makes borrowing the information across
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tasks crucial, making it imperative to share the statistical strength across all the task. With
this motivation, we apply our infinite CCA model to capture the label correlations and
to learn better predictive features from the data by projecting it to a subspace directed
by label information. It has been empirically and theoretically (Yu et al., 2006) shown
that incorporating label information in dimensionality reduction indeed leads to better
projections if the final goal is prediction.

More concretely, leK = [x;,...,xy] be anD x N matrix of predictor variables, and
Y = [y1,...,yn| be anM x N matrix of the responses variables (i.e., the labels) with
eachy, being anM x 1 vector of responses for input. The labels can take real (for
regression) or categorical (for classification) values. The infinite CCA model is applied on
the pairX andY, which is akin to doing supervised dimensionality reduction for the inputs
X. Note that the generalized eigenvalue problem posed in such a supervised setting of CCA
consists of cross-covariance matkixy and label covariance matriyy. Therefore, the
projection takes into account both the input-output correlations and the label correlations.
Such a subspace therefore is expected to consist of much better predictive features than
one obtained by a iine feature extraction approach such as simple PCA that completely
ignores the label information, or approaches like Linear Discriminant Analysis (LDA) that
do take into account label information but ignore label correlations.

Multitask learning using the infinite CCA model can be done in two settings: supervised
and semisupervised, depending on whether or not the inputs of test data are involved in

learning the shared subspate

4.4.1 Fully Supervised Setting

In the supervised setting, CCA is done on labeled @xt&) to give a single shared
subspac& ¢ RX¥*" thatis good across all tasks. A model is then learned iZthigbspace
to learnM task parameter§d,, } € RE*! wherem € {1,..., M}. Each of the parameters
0., is then used to predict the labels for the test data oftasklowever, since the test data
are still D dimensional, we need to either separately project it down onta'tignensional
subspace and do predictions in this subspace, or “inflate” each task parameter Back to
dimensions by applying the projection mat¥W, and do predictions in the origindD
dimensional space. The first option requires using the facRfi&fX;.) «x P(X;.|Z)P(Z),
which is a GaussiaWor(1iz x, Sz x) With yizx = (WL®, W, +1)7'WIX,. andXy x =
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(WIw, W, 4+ 1)~1. With the second option, we can inflate each learned task parameter
back toD dimensions by applying the projection mati,. We choose the second option

for the experiments. We call this fully supervised setting as model-1.

4.4.2 A Semisupervised Setting

In the semisupervised setting, we combine training data and test data (with unknown
labels) aX = [X;,, X;.] andY = [Y4,, Y] where the label¥,. are unknown. The infinite
CCA modelis then applied on the p@X, Y) and the parts of consisting ofY,. are treated
as latent variables to be imputed. With this model, we get the embeddings also for the test
data and thus training and testing both take place inifhdimensional subspace, unlike
model-1 in which training is done iR” dimensional subspace and predictions are made in

the original D dimensional subspace. We call this semisupervised setting as model-2.

4.5 Experiments
Here, we report our experimental results on several synthetic and real-world datasets.
We first show our results with the infinite CCA as a stand-alone algorithm for CCA by
using it on a synthetic dataset, demonstrating its effectiveness in capturing the canonical
correlations. We then also report our experiments on applying the infinite CCA model to

the problem of Multitask Learning on two real-world datasets.

4.5.1 Infinite CCA Results on Synthetic Data

In the first experiment, we demonstrate the effectiveness of our proposed infinite CCA
model in discovering the correct number of canonical correlation components, and in
capturing the sparsity pattern underlying the projection matrix. For this, we generated
two datasets of dimensions 25 and 10, respectively, with each having 100 samples. For
this synthetic dataset, we knew the ground truth (i.e., the number of components, and
the underlying sparsity of projection matrix). In particular, the dataset had 4 correlation
components with a 63% sparsity in the true projection matrix. We then ran both the classical
CCA and the infinite CCA algorithm on this dataset. Lookingaditthe correlations
discovered by classical CCA, we found that it discovered 8 components having significant
correlations, whereas our model correctly discovered exactly 4 components in the first place

(we extract the MAP samples f&W andZ output by our Gibbs sampler). Thus, on this
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small dataset, standard CCA indeed seems to be finding spurious correlations, indicating a
case of overfitting (the overfitting problem of classical CCA was also observed in (Klami
and Kaski, 2007) when comparing Bayesian versus classical CCA). Furthermore, as ex-
pected, the projection matrix inferred by the classical CCA had no exact zero entries and
even after thresholding significantly small absolute values to zero, the uncovered sparsity
was only about 25%. On the other hand, the projection matrix inferred by the infinite
CCA model had 57% exact zero entries and 62% zero entries after thresholding very small

values, thereby demonstrating its effectiveness in also capturing the sparsity patterns.

4.5.2 Infinite CCA Applied to Multilabel Prediction

In the second experiment, we use the infinite CCA model to learn a set of related task in
the context of multilabel prediction. For our experiments, we use two real-world multilabel
datasets (Yeast and Scene) from the UCI repository. The Yeast dataset consists of 1500
training and 917 test examples, each having 103 features. The number of labels (or tasks)
per example is 14. The Scene dataset consists of 1211 training and 1196 test examples,
each having 294 features. The number of labels per example for this dataset is 6. We

compare the following models for our experiments.
e Full: Train separate classifiers (SVM) on the full feature set for each task.

e PCA: Apply PCA on training and test data and then train separate classifiers for each
task in the low-dimensional subspace. This baseline ignores the label information

while learning the low-dimensional subspace.

e CCA: Apply classical CCA on training data to extract the shared subspace, learn
separate model (i.e., task parameters) for each task in this subspace, project the
task parameters back to the originaldimensional feature space by applying the

projectionW,,, and do predictions on the test data in this feature pace.

e Model-1: Use our supervised infinite CCA model to learn the shared subspace using

only the training data (see Section 4.4.1).

e Model-2: Use our semisupervised infinite CCA modebktmultaneouslyearn the

shared subspace for both training and test data (see Section 4.4.2).
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The performance metrics used are overall accuracy, F1-Macro, F1-Micro, and AUC
(Area Under ROC Curve). For PCA and CCA, we chésthat gives the best performance,
whereas this parameter was learned automatically for both of our proposed models. The
results are shown in Table-4.1. As we can see, both the proposed models do better than the
other baselines. Of the two proposed model, we see that model-2 does better in most cases,
suggesting that it is useful to incorporate the test data while learning the projections. This
is possible in our probabilistic model since we could treat the unknpgvof the test data
as latent variables to be imputed while doing the Gibbs sampling.

We note here that our results are with cases where we only had access to a small number
of related task (Yeast has 14, Scene has 6). We expect the performance improvements to

be even more significant when the number of (related) tasks is high.

4.6 Related Work

A number of approaches have been proposed in the recent past for the problem of super-
vised dimensionality reduction ohultilabeldata. The few approaches that exist include
Partial Least Squares (Arenas-Garet al., 2006), multilabel informed latent semantic
indexing (Yu et al., 2005), and multilabel dimensionality reduction using dependence max-
imization (MDDM) (Zhou, 2008). None of these, however, deal with the case when the
data are only partially labeled. Somewhat similar in spirit to our approach is the work on
supervised probabilistic PCA (Yu et al., 2006) that extends probabilistic PCA to the setting
when we also have access to labels. However, it assumes a fixed number of components
and does not take into account sparsity of the projections.

The CCA-based approach to supervised dimensionality reduction is more closely re-
lated to the notion of dimension reduction for regression (DRR), which is formally defined
as finding a low-dimensional representatiore R* of inputsx € R” (K < D) for
predicting multivariate outputg € R. An important notion in DRR is that of sufficient
dimensionality reduction (SDR) (Fukumizu et al., 2004, Globerson and Tishby, 2003),
which states that givem, x andy are conditionally independent, i.e, Il y|z. As we
can see in the graphical model shown in Figure 4.1, the probabilistic interpretation of CCA
yields the same condition witk andY being conditionally independent givéh

Among the DRR-based approaches to dimensionality reduction for real-valued multi-
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Table 4.1. Results on the multilabel classification task. Bold face indicates the best
performance. Model-1 and Model-2 scores are averaged over 10 runs with different
initializations.
Model Yeast Scene
Acc | Fl-macro| F1-micro| AUC Acc | Fl-macro| F1-micro| AUC
Full 0.5583| 0.3132 0.3929 | 0.5054| 0.7565| 0.3445 0.3527 | 0.6339
PCA 0.5612| 0.3144 0.4648 | 0.5026| 0.7233| 0.2857 0.2734 | 0.6103
CCA 0.5441| 0.2888 0.3923 | 0.5135| 0.7496| 0.3342 0.3406 | 0.6346
Model-1 | 0.5842| 0.3327 0.4402 | 0.5232| 0.7533| 0.3630 0.3732 | 0.6517
Model-2 | 0.6156 0.3463 0.4954 | 0.5386 | 0.7664 0.3742 0.3825 | 0.6686

label data, Covariance Operator Inverse Regression (COIR)iexfie covariance struc-
tures of both the inputs and outputs (Kim and Pavlovic, 2009). Please see (Kim and
Pavlovic, 2009) for more details on the connection between COIR and CCA. Besides
the DRR-based approaches, the problem of extracting useful features from data, partic-
ularly with the goal of making predictions, has also been considered in other settings.
The information bottleneck (IB) method (Tishby, Pereira, and Bialek, Tishby et al.) is
one such example. Given input-output pai& Y), the information bottleneck method
aims to obtain a compressed representalioof X that can account fo¥. IB achieves
this using a single tradeoff parameter to represent the tradeoff betweeartimexityof
the representation aX, measured by (X; T), and theaccuracyof this representation,
measured by(T;Y), wherel(.;.) denotes the mutual information between two variables.
In another recent work (Ji and Ye, 2009), a joint learning framework is proposed, which
performs dimensionality reduction and multilabel classification simultaneously.

In the context of CCA as a stand-alone problem, sparsity is another important issue.
In particular, sparsity improves model interpretation and has been gaining lots of attention
recently. Existing works on sparsity in CCA include the double barrelled lasso, which
is based on a convex least squares approach (Shawe-Taylor, 2008), and CCA as a sparse
solution to the generalized eigenvalue problem (Sriperumbudur et al., 2009), which is based
on constraining the cardinality of the solution to the generalized eigenvalue problem to
obtain a sparse solution. Another recent solution is based on a direct greedy approach,
which bounds the correlation at each stage (Wiesel et al., 2008).

The probabilistic approaches to CCA include the works of (Klami and Kaski, 2007) and

(Archambeau and Bach, 2008), both of which use an automatic relevance determination
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(ARD) prior (Bishop, 1999) to determine the number of relevant components, which is a
rather ad-hoc way of doing this. In contrast, a nonparametric Bayesian alternative proposed
here is a more principled method to determine the number of components.

We note that the sparse Factor Analysis model proposed in (Rai andéDidu2008)
actually falls out as a special case of our proposed infinite CCA model if one of the
datasets (dr Y) is absent and the noise covariance matixs diagonal. Besides, the
sparse Factor Analysis model is limited to Factor Analysis whereas the proposed model
can be seen as an infinite generalization of both an unsupervised problem (sparse CCA),
and (semi)supervised problem (dimensionality reduction using CCA with full or partial
label information), with the latter being especially relevant for Multitask Learning in the
presence of multiple labels.

Finally, Multitask Learning has been tackled using a variety of different approaches,
primarily depending on what notion of task relatedness is assumed. Some of the examples
include tasks generated from an 11D space (Baxter, 2000), and learning multiple tasks using
a hierarchical prior over the task space (D&uih 2009, Xue et al., 2007b), among others.

In this work, we consider multilabel prediction in particular, based on the premise that a
set of such related tasks share an underlying low-dimensional feature space (Ji et al., 2008)

that captures the task relatedness.

4.7 Conclusion

We have presented a nonparametric Bayesian model for the Canonical Correlation
Analysis problem to discover the dependencies between a set of variables. In particular,
our model does not assume a fixed number of correlation components and this number is
determined automatically based only on the data. In addition, our model enjoys sparsity,
making the model more interpretable. The probabilistic nature of our model also allows
dealing with missing data. Finally, we also demonstrate the model’s applicability to the
problem of multilabel learning where our model, directed by label information, can be

used to automatically extract useful predictive features from the data.



CHAPTER 5

MULTITASK LEARNING USING
NONPARAMETRIC BAYESIAN
PREDICTOR SUBSPACES

In this chapter, we present a nonparametric Bayesian model for the problem of Mul-
titask Learning. Our model is based on the assumption that the task parameters (e.g.,
the weight vectors of regression or classification tasks) of the multiple tasks live on a
low-dimensional linear subspace. This model will form the building block of a more

general model for Multitask Learning that will be presented in the next chapter.

5.1 Introduction

Many learning settings consist of multiple prediction problems that are related with
each other in some way. A common instance is multivariate regression or multilabel
classification where each example is associated with several response variables (real-valued
for regression, and discrete-valued for classification). For example, given a document,
one may be interested in predicting its topic category as well as its author. Clearly, such
tasks are expected to be related. A simple way to learn such multiple prediction problems
would be to simply treat them as separate problems and learn separate models for each of
them, essentially ignoring any correlation that might exist among them. Such an approach,
however, fails to exploit any correlations there may be among these tasks, and it is desirable
to share information across tasks if they are related.

Motivated by this idea, a number of techniqgues have been proposed to exploit task
relatedness in order to better learn a set of related tasks, rather than learning them indi-
vidually. This is commonly known as Multitask Learning (Caruana, 1997), “learning to

learn” (Heskes, 2000), inductive bias (Baxter, 2000), or predicting multivariate responses
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(Breiman and Friedman, 1997), where multiple tasks are pooled together with the goal of
improving the generalization performance of all the tasks. The idea is to use some aspect
that can be shared across all the tasks in order to share their individual statistical strengths,
compensating for the paucity of labeled examples.

In this chapter, we consider one such aspect, namshaedpredictor subspace. The
assumption here is that all the task parameters share an unddobsng space, which
accounts for the task relatedness. Each individual task can then be represented as a linear
combination of the set of basis tasks. Our predictor subspace model is similar in spirit
to (Zhang et al., 2006, 2008). In this work, we propose a nonparametric, fully Bayesian
framework that can learn this subspace without making any parametric assumptions (e.g.,
the framework does not assume the intrinsic dimensionality of the subspace to be known
a priori). We present two models to learn such a subspace, with a special emphasis on
cases when the number of tasks and/or the number of examples per task is small. In
this chapter, we concentrate on Bayesian linear regression (for regression) and Bayesian
logistic regression (for classification). The framework, however, is general enough and can
accommodate a variety of different probabilistic discriminative models. In addition, being
a hierarchical Bayesian model, the model can easily be extendeditdwaeof subspaces
setting (described in the next chapter) which allows the task parameters to sloatmaar
manifold.

In Section 5.2, we describe the problem setup and our basic framework to model task
relatedness. Section 5.3 describes both our models. Section 5.4 talks about inference in our
model, Section 8.4 reports experimental results, and Section 8.5 discusses related work.

We finally discuss the mixture extension of our work and conclude with Section 5.9.

5.2 Latent Subspace Model for Task Parameters
To model task relatedness, we assume that the tasks have an underlying basis space and
each actual task is a linear combination of the basis vectors (which act as “source” tasks).
More specifically, suppose we havé tasks (regression/classification) represented by task
parameter$,, ..., 0, whered,, € R” is the task parameter for the-th task. We assume

the following generative model for each task parameter:

0,, = ZA,, + ¢,
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Here,Z € RP*K is a matrix in which each column is & dimensional basis vector,
A,, € RE*!is the the set of coefficients for the'” task parameter, angl, is task-specific
noise. The matriXZ under this model defines the latent space underlying the set of pre-
dictors, and is shared across all tasks, justifying the task relatedness. The same generative
model, with all task parameters grouped together in a méxrix [0, . . . 6,,] € RP*M can
be written in a matrix form a® = ZA, + E, whereAy = [A; ... Ay].

Together, the matriZ of basis tasks, and the coefficienits, ... A,,] give the task
parameters a parsimonious representation where #ach1 task parameter vector is
represented by a vector of siZé x 1, with K <« D. Finally, each rowe,, of the
D x M matrix E explains the task-specific idiosyncrasies and is assumed to be drawn
from a multivariate Gaussian with a diagonal covariance matrix diag(¢11, .. .,%pp).

At first blush, such a setup may seem like Factor Analysis (Bartholomew and Knott,
1999, Rai and Daumnlll, 2008). However, unlike Factor Analysis, e §.—= ZA + E type
of set-up where the dad is observed, in this case, the matéxof task parameters isot
observed. So the “data®® itself is a latent variable in this model (others beligA, E,
and the associated hyperparameters). The goal is to &atang with all the other latent
variables, harnessing the data available from all the tasks. Also note thatsiipeavised
setting unlike standard Factor Analysis.

A crucial issue in the model is determining the intrinsic dimensionality and sparsity
of the underlying predictor subspace definedZbye propose a nonparametric Bayesian
model based on the recently proposed Indian Buffet Process (Section 2.3) (Ghahramani
et al., 2007) to deal with both these issues. The dimensionalitf the latent space and
the degree of sparsity of the basis space defined s/automatically determined by the
IBP prior. Note that the sparsity & is akin to imposing art;-type regularization on
Z as in the Lasso framework, or assuming a Laplace prior on the colum#s 4f, ~

15, LAPLACE(0, 7).

5.3 Infinite Latent Subspace Models for
Multitask Learning
Our goal is to simultaneously learn several prediction tasks. In the rest of the exposition

and our experiments, we consider the special case of multilabel prediction where each
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input x is associated with multiple labels. Therefore, predicting each label is a task.
Our framework is, however, more general and can also be applied for cases where each
prediction problem has its own source of input.

In the multilabel setting, learning the prediction task for#hé label amounts to learn-
ing the task parametér,. Formally, given training dat® = {(xi, "), ..., (xn,yRN)} for
taskm wherex; € R” andy!™ is a real (for regression) or a binary valued (for classification)

response, a learning task parameterized, bhycan be defined as:

Regressiony™ ~ Nor (0% x;, p*)
Classificationy” ~ Bin(1/(1 + e—%m—))

To follow a more compact notation, we shall denote the inputs . , x| by anN x D
matrix X, the responses for all th&/ tasks by anV x M matrix Y, and theM task
parameters asA x M matrix© = [0, ... 0] € RP*M_ With this notation, we can define
the prediction setting as a probabilistic modeB, X ~ Nor(Y|X'©, p?I) for regression
(Bayesian linear regression), ait®, X ~ Bin(1/(1+e X" ©)) for classification (Bayesian
logistic regression).

Recall our original setu® = ZA, + E. We wish to model the matri¥ using the
Indian Buffet Process (IBP), thereby automatically choosing the intrinsic dimensionality
of the task basis space definedzyHowever, since IBP defines a distribution over binary
matrices and. needs to be a real-valued matrix, we modedsB © V, the element-wise
product of a binary matriB and a real-valued matriX, both of sizeD x K. We place an
IBP prior over the binary matriB and a Gaussian prior over the real-valued mariOur
complete hierarchical model is the following (the corresponding graphical model shown in

Figure 5.1: Top; error term not shown for the sake of brevity):

~ Nor(X'e, p*I)(regression)

~ Bn(1/(1+ e X ®)(classification)
(B®V)Ag+E

~ IBP(a)

< Ww O =< =
Il

~ Nor(0,621), o, ~ IG(a,b)
Ay ~ Nor(O,UgI), UQN[G(C,d)
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IBP(0) | |N(0,0°T)

Figure 5.1. Predictor subspace model. Top: our basic model. Bottom: the augmented
model using both task parametarsd input data.X in the augmented model can addition-

ally also consist of unlabeled data. Noise hyperparameters not shown for the sake of brevity.
In both the models, the shaded nodes are observed, and the remaining ones (including the
matrix © consisting of task parameters, and the noise hyperparameters) are latent variables
to be learned.
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E ~ Nor(0,0), Up~ IG(e,f)

Here©, which is itself a latent variable, acts as the “data” in the model and depends
on other latent variables in the model, and the data from actual tasks (BEVXAY). Our
proposed model learrt3 (along with learning the latent subspace underly@)dy sharing

information across all the tasks.

5.3.1 An Augmented Model for Learning Task Basis

Learning the task subspaZe(= B © V) reliably would require a reasonable amount
of data. In the basic model, the only available “data” for learri#hg © (which, under
our probabilistic model, is actually itself a latent variable to be learned). Given related but
only a small number of task®/, the D x M matrix© may not be enough to reliably learn
the basisZ. This motivates our second model that allows also using the ifgdtem
each task to improve the learning &f Under this model (shown in Figure 5.1: Bottom),
it is assumed that the task paramet@rand the inputX both share the same basis space
Z., with different mixing matrice\, and A, respectively. This model can be thought of
as simultaneously discovering both the task parameter basis, as well as the latent features
underlying the datX. Furthermore, under this model, the data maXixieed not only
consist of examples for which labels are known. So, the mairshown in Figure 5.1
(bottom) caradditionallyalso consist of unlabeled examples, which are relatively easier to
obtain.

The reason for having the input share the same subspace as the task parameters can
be explained using a Representer theorem @&olpf et al., 2001) argument: write the
solution of a regularized loss function a&:= » . «;x; (assume a linear kernel). Now,
if we write each input vectox; as a combination of basis vectors (Za ¢;), then (after
rearranging the coefficients) one can also write the task parathetera combination of
the same basis vectors definedzyTherefore, it makes sense to have bstand© share

the same subspace.

5.4 Inference
We take a fully Bayesian approach for inference in this model. Inference is akin to the

Gibbs sampler for the IBP (Ghahramani et al., 2007), except for the following differences:
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e The matrixZ is no longer a binary matrix but is expressed as an element-wise product
of the binary matrixB and the real-valued matriX. So bothB andV need to be

sampled in conjunction in our model.

e The latent variabl® acts as the “data” and therefore needs to be sampled from its
posteriorP(0|D, B, V, Ay) whereD = {(x1,y7"),..., (X~ y3)}, (m=[1,..., M])

denotes the actual data the model has access to.

Inference in our model is done using Gibbs sampling with a few Metropolis-Hastings
steps. The sampler draws posterior sampleB,d¥, Ay, ©, and the remaining hyperpa-
rameters of the model. Here, we describe the sampling equations for all latent variables
in our basic model. Sampling the hyperparametersr(qetc.) is straightforward and we

skip it due to the space limitation.

5.4.1 Sampling B

Sampling the binary IBP matriB consists of sampling existing dishes, proposing new
dishes and accepting or rejecting them based on the acceptance ratio in the associated
M-H step. For sampling existing dishes, an entryBris set as 1 according to(B;;, =
116, B_i;, V,Ag, ¥) xx =5~ (@|B V, Ay, ¥) whereas it is set as 0 accordingt@3;, =
0(©, B_ix,V, Ay, ¥) x D k(OB V, Ay, W), m_;y = >, Bjr is how many other
customers chose digh

For sampling new dishes, we use an M-H step where we simultaneously ppopose
(K™ Vrew Ap®Y) where K™ ~ Poisson(a/D). We accept the proposal with an
acceptance probability given ly= min{1, ’; ’"fjgt }. Here,p(rest|n) is the probability

of the data given parameteys We propose&v™” from its prior (Gaussian) but, for faster

mixing, we propose\;“” from its posterior (a Gaussian).

5.4.2 Sampling V
We sample the real-valued mati¥xfrom its posterior:

p(‘/z,k’@7 BJ A@? lI’) ~ Nor(‘/;,k|uz,k7 Ez,k)

2
wherey,;, = (32N, Af;j" + %)t and pyy = SN Apr 075, ¥, 1. We define
Oy =Oin— Zﬁlvl#(Bi,lV;J)Am,n. The hyperparametet, on'V has an inverse-gamma

prior and the posterior also has the same form.
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5.4.3 Sampling Ay
We sample forA, from its posteriorp(Ay|©,B,V, ¥) ~ Nor(Ay|~,X) where™ =
ZY(2ZT + ) '@ andX =1 - ZT(ZZT + ) 'Z,whereZ=B OV

5.4.4 Sampling ©

The posterior fo© can be written a®(0|D, B, V, Ay) o P(Y|X?'©)P(0). The prior
on O is a GaussiatVor((B @ V)Ay, V). For the likelihood term, there are 2 cases. For
regression, the likelihood(Y|X*©) is Gaussian, so the posterior is available in closed
form and is easy to sample from. Specifically, the poste?fi@|D, B, V, Ay) is a Gaussian

Nor(ug, X)) where

e = Yo(UH(B O V)Ay + BXTY)
¥yt = U4 pXTX

whereg is the precision (inverse variance) of the Gaussian likelihood ffi X’ ©).

For classification however, the likelihood is no longer Gaussian, so we lose conjugacy.
There are several ways to deal with this. One way is to use Laplace approximation to the
posterior (Bishop, 2006). Another possibility is to use the variational method proposed
in (Jaakkola and Jordan, 1996) to approximate a non-Gaussian likelihood by a Gaussian
one. We instead use another approach based on the auxiliary-variable-based Gibbs sampler
for logistic regression (Holmes and Held, 2006), which is more appropriate in the Gibbs
sampling scheme we employ.

The auxiliary variable sampler (Holmes and Held, 2006) for logistic regression as-
sociates with each responge € {0,1} an auxiliary variablej; = x76 + ¢; with ¢ ~
Nor(0, \;), such thaty; = 1if g, > 0, and O otherwise.\; is assigned a Kolmogorov-
Smirnov distribution. With a normal prialor(b,v) on 6, the posterior ord is still a

Gaussian:

9|5/',/\ ~ NOF(/L@,E@)
po = No(vT'b+ BXTWY)
¥t = (v pXTWX) !

W = diag()\l,...,)\N), S’I[gl,...,yN]/
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where the posterior over the auxiliary variablgsis a truncated normal, which can be

sampled from using standard techniques.

N Nor(x] 0, \)I(g; > 0) if y; =0
Bl iy g D { Nor(x] 0, \)I(5; <0) ify; #0

and in our case, the mean and covariance on the normal priorceee given byb =

(B® V)Ay andv = W, respectively.

5.4.5 Sampling in the Augmented Model

The sampling steps in our augmented model are essentially the same as in the basic
model, except that we replace thex M matrix © by theD x (M + N) matrix [© X]. As
in the basic model® still needs to be sampled as above, wheatays fixed and does
not have to be sampled.

We note here that although a fully Bayesian solution can be slow with data having a
large number of features (since each feature corresponds to a customer in the IBP model),
one may address this by using a number of recently proposed alternatives to Gibbs sampling

(Doshi and Ghahramani, 2009a) for IBP that can be as much as an order of magnitude faster.

5.5 Prediction
Having learned the task paramet&swe use these to make predictions on the test

data. For the test dasaof them!" task, the prediction can be written as

plylx) = / P13, 00 (O s S )00,

which is essentially averaging over the predictions made by each of the posterior samples
of 0,,,, wherey,,, andy,, are the mean and covariance parameters aofiligask. Since the
posterior averaging can be computationally expensive, it can also be replaéed the

MAP estimate of),,. Prediction forx then simply requires plugging in the MAP estimate:

p(y|x) = p(ylx, ,n).

5.6 Experiments
We present our experimental results on two real-world multilabel classification datasets
(Yeast and Scene) from the UCI repository, comparing our models against independently

trained Bayesian logistic regression, the pooling-based approach, and another state-of-the-
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art Multitask Learning baseline. The Yeast dataset consists of 1500 training and 917 test
examples, each having 103 features. The number of labels (or tasks) per example is 14. The
Scene dataset consists of 1211 training and 1196 test examples, each having 294 features.

The number of labels per example for this dataset is 6. We use the following baselines:

¢ LR: Independent Bayesian logistic regression
¢ pool: Pooling all data and learning a single model

e yaxue: The matrix stick-breaking-process-based Multitask Learning model proposed
in (Xue et al., 2007a)

In the experimental results (Figure 5.2 and Table 5.1) , we refer to our basic model as
model-1, and the augmented model with input datmadel-2. Note that all the multitask
approaches compared here use Logistic Regression as the base classifier. We use overall
accuracy, F1-Macro and F1-Micro (Yang, 1997), and AUC (Area Under ROC Curve) as the
performance metrics. The Gibbs samplers used in Bayesian logistic regression, the method
of (Xue et al., 2007a), and both of our models were run for 1000 iterations. Results on both
datasets, with full training dataset used, are shown in Table 5.1.

As the results show, both our models perform better than independently trained Bayesian
logistic regression, which completely ignores the task relatedness. When compared across
all the baselines, we obtain consistent improvements for almost all of the scores. Also, the
pooling-based approach, surprisingly, ends up hurting the overall performance here, sug-
gesting that a simple pooling may not always be a good idea. Furthermore, our augmented
model (model-2) does best overall, suggesting that incorporating the input data in learning
the predictor subspace definedbindeed helps in learning the task parameters even better,
especially when the number of tasks is small (which is indeed the case with Yeast and Scene
datasets). We also investigated the effect of varying the dataset size starting with a small
number of training examples and incrementing slowly. The results on the Scene data are
shown in Figure 5.2. We see that both our models do considerably better than Bayesian
logistic regression learned separately for each task, especially when the training set size
is small. Moreover, the augmented model does best, implying that the including the input

data while learning the predictor subspace indeed helps. We also observe that even with a
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Figure 5.2. Performance comparison between both our Multitask Learning models, and
Bayesian logistic regression trained separately for each task. Top: Accuracy with varying
training data size. Bottom: AUC score with varying training data size.
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Table 5.1. Comparison of Bayesian logistic regression, pooling approach, kernel stick-
-breaking approach (yaxue), our basic model (model-1), and our augmented model (mod-
el-2), for two multilabel datasets. Bold face implies the best performance. Results are
averaged over 10 runs with different initializations.
Model Yeast Scene
Acc | Fl-macro| F1-micro| AUC Acc | Fl-macro| F1-micro| AUC
LR 0.5047| 0.3415 0.3828 | 0.5049| 0.7362| 0.3132 0.3173 | 0.6153
pool 0.4983| 0.3497 0.3910 | 0.5112| 0.7862| 0.2842 0.3012 | 0.5433
yaxue | 0.5106| 0.3897 0.4022 | 0.5105| 0.7765| 0.2669 0.2816 | 0.5603
Model-1 | 0.5212| 0.3631 0.3901 | 0.5244| 0.7756| 0.3153 0.3242 | 0.6325
Model-2 | 0.5424 | 0.3946 0.4112 | 0.5406 | 0.7911 0.3214 0.3226 | 0.6416

very small training dataset, performance of both our modelsasonably close to optimal,
suggesting that it is possible to learn reliably even with a small amount of data. Logistic
regression, on the other hand, falls behind by quite a lot when the amount of training data
is small. It begins to catch up with our models but they still do better, even with the full
data. This evidence supports the model assumption that an underlying task space is shared
across all tasks and learning the task parameters with this assumption indeed improves

performance of all the tasks.

5.7 Related Work

The recent interest in learning a set of related tasks has spurred a range of work in
Multitask Learning with different notions of task relatedness being proposed with varying
degrees of success. One of the earliest works on Multitask Learning includes sharing of
the hidden layers in neural networks to share information across tasks (Caruana, 1997).
Other prominent approaches include tasks based on the assumption of being generated
from an 1ID space (Baxter, 2000), learning multiple tasks in a Bayesian setting using
a hierarchical prior over the task space (D&uifl, 2009, Xue et al., 2007b), sharing
parameters of Gaussian processes (Lawrence and Platt, 2004), sharing a common structure
on the predictor space (Ando and Zhang, 2005), and structured regularization in kernel
methods (Evgeniou et al., 2006), among others. Extending the task-clustering model of
(Xue et al., 2007b), the matrix stick-breaking process (MSBP) model proposed in (Xue
et al., 2007a) (thgaxue model used as one of our baselines) allows separate clustering and

borrowing of information for the different feature components. This can be important if we
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expect the tasks to be more closely related for some features than for others.

Another notion of task relatedness assumes thatéta from related tasks share an
underlying low-dimensional feature space (Ji et al., 2008) that essentially captures the task
relatedness. This is in contrast with our proposed approach where we assume that the
task-parameters share a latent low-dimensional subspace. Note, however, that our model-2
additionally also performs dimensionality reduction of the input data, sharing information
across tasks. Thus, one may as well use this alternate feature representation of data to learn
the multiple tasks

Structurally, our basic model (model-1) is most similar to the one proposed in (Zhang
et al., 2006). Their model, however, fixes the number of task basis vectors to the number
of tasks, whereas our model automatically infers this. In addition to automatically deter-
mining the intrinsic task dimensionality, an IBP prior @n(via the binary matrixB) also
allows us to discover any underlying sparsity of the task basis space. Furthermore, the
model proposed in (Zhang et al., 2006) uses EM for inference whereas we propose a fully
Bayesian solution for our proposed models.

Another closely related work similar in spirit to our model is #smiparametridatent
factor model (Teh et al., 2005) for regression. This model makes use of a set of Gaussian
Processes (GP), linearly mixed to capture the possible dependencies among the response
variables. The difference between this model and ours is that the former assumes a linear
mixing process in the instance space whereas we assume it to hold in the predictor space.

Finally, the idea of encouraging sparsity of the task basis space is also in line with recent
work on taking advantage of sparsity in Multitask Learning. (Lounici et al., 2009) recently
proposed a model based on grouped LASSO, which enforces sparsity directly on regression
vectors. Our proposed model addresses the issue of sparsity in a somewhat different but

complementary manner as our model assumes that the task basis vectors are sparse.

5.8 A Mixture of Subspaces Model for Multitask Learning
Our Factor-Analysis-based predictor subspace model also admits natural extensions
to more complex settings. In this section, we briefly outline how a nonlinear manifold
underlying the task parameters can be learned by extending our basic linear subspace

model. Note that asingle sharedlinear subspace can be somewhat restrictive due to
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two reasons: a) when there are outlier tasks for which it is unreasonable to assume the
same shared subspace as the other relevant tasks, and b) when underlying task parameter
subspace is aonlinearmanifold. Our predictor subspace model can be easily generalized

to deal with such issues by assuming a mixture of subspaces model. We describe this

generalization in more detail in the next chapter.

5.9 Conclusion

In this chapter, we proposed a nonparametric, fully Bayesian, probabilistic framework
to learn the latent shared subspace of a set of related tasks. The shared subspace captures
the task relatedness in a manner that each task parameter (i.e., the weight vector of a
classification/regression model) can be treated as a linear combination of a set of basis tasks
constituting this subspace. More importantly, we do not restrict the intrinsic dimensionality
of this subspace to aa priori fixed number, but discover it automatically. An additional
advantage of our proposed model is that our prior promotes sparsity of the basis space,
leading to LASSO style notion of model sparsity. Furthermore, we also propose an exten-
sion to the model, which can incorporate inputs from labeled data (and, potentially, also
inputs fromadditionalunlabeled data), to more reliably learn the model when the number
of tasks is small. Our model is also easily extendable to a mixture of subspaces setting as
described in Section 5.8, which can be appropriate for cases where the task parameters lie
on a nonlinear manifold, and/or if there are outlier tasks. We believe that similar flexible
models lead to effective capturing of task relatedness, and can result in improved model

performance in Multitask Learning problems.



CHAPTER 6

NONPARAMETRIC MIXTURE OF SUBSPACES
FOR MULTITASK LEARNING

In this chapter, we generalize the model presented in the previous chapter and show
that this generalization leads to a very flexible Multitask Learning model that can adapt
its task relatedness assumptions on-the-fly based on the data. This is especially desirable
because an incorrect assumption of how the tasks relate may even hurt Multitask Learning
performance. We propose a probabilistic framework for grouping tasks based on their
similarities. We further assume that, within each group, a task can be expressed as a sparse
linear combination of a set dfasis taskéi.e., we have a sparse-coding-based representation

of tasks within each group).

6.1 Introduction

Motivated by the desire of flexible modeling of task relatedness, we propose a non-
parametric Bayesian MTL model by representing the task parameters (e.g., the weight
vectors for logistic regression models) as being generated from a nonparametric mixture
of nonparametric factor analyzers. Parameters are shared only between tasks in the same
cluster and, within each cluster, across a linear subspace that regularizes what is shared.
Moreover, by virtue of this being a nonparametric model, various existing MTL models
result as special cases of our model; for example, the weight vectors are drawn from
a single shared Gaussian prior, or form clusters (equivalently, generated from a mixture
of Gaussians), or live close to a subspace, etc. Our model can automatically interpolate
between these assumptions as needed, providing the best fit to the given MTL problem.

In addition to offering a general framework for Multitask Learning, our proposed model

also addresses several shortcomings of commonly used MTL models. For example, task
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clustering (Xue et al., 2007b), which fits a full-covariance Gaussian mixture model over
the weight vectors, is prone to overfitting on high-dimensional problems as the number
of learning tasks is usually much smaller than the dimensionality, making it difficult to
estimate the covariance matrix. A model based on mixtures of factor analyzers, like ours,
can deal with this issue by adaptively estimating the dimensionality of each component,
using less parameters than in the full rank case. Likewise, models based on task sub-
spaces (Agarwal et al., 2010, Rai and Da&uith, 2010, Zhang et al., 2006) assume that the
weight vectors of all the tasks live on or close teiagleshared subspace, which is known

to lead to negative transfer in the presence of outlier tasks. Our model, based on a mixture
of subspaces, circumvents these issues by allowing different groups of weight vectors to
live in different subspaces when grouping all together them would not fit the data well. One
can also view our model as allowing the sharing of statistical strengths at two levels: (1)
by exploiting the cluster structure, and (2) by additionally exploiting the subspace structure
within each cluster.

In the context of MTL, since the task relatedness structure is usually unknown, the
standard solution is to try many different models, covering many similarity assumptions,
with many settings of complexity for each model, and choose the one according to some
model selection criteria. In this work, we take a nonparametric Bayesian approach to this
problem (using the Dirichlet Process and the Indian Buffet Process as building blocks)
such that the appropriate MTL model capturing the correct task relatedness structure and
the model complexity fothat model will be learned in a data-driven manner side-stepping

the model selection issues.

6.2 Mixture of Factor Analyzers-based
Generative Model for MTL
Our proposed model assumes that the parameters (i.e., the weight vector) of each task
are sampled from a mixture of factor analyzers (Ghahramani and Beal, 2000). Note that
our model is defined ovdatent weight vectors whereas the standard mixture of factor
analyzers is commonly defined to modélserved data.
We assume that we are learnifigrelated tasks, where each task is represented by a

weight vecto, € R that is assumed to be sampled from a mixturé'dfictor analyzers
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where each factor analyzer consistsfof < min{7, D} factors (note: our model also
allows each factor analyzer to have a different number of factors). Hegnotes the
number of features in the data. Each task is a sat ahdY values, and eachi is assumed

to be generated from the correspondiXigzalue and task weight vector. In our model, the
weight vectord, for taskt is generated by first sampling a factor analyzer (defined by a
mean task parameter, ¢ R” and a factor loading matrid, ¢ R?*X) using the DP,
and then generating, using that factor analyzer. In equations, this can be written as
0y = py + A fi + &4

The weight vectop, is asparselinear combination of< basis vectorsepresented by
the columns ofA; (each column is a “basis task”). The combination weights are given
by f, € RX, which we represent as © b;, wheres, is a real-valued vector ang is a
binary valued vector, both of siz&€. Our model uses a Beta-Bernoulli/IBP prior gno
determineK, the number of factors in each factor analyzer. Thg A;} pair for each
task is drawn from a DP, also giving the tasks a clustering property, and there will be a
finite numberF < T of distinct factor analyzers. Finally;; ~ Nor(0, 51) represents
task-specific noise.

Figure 6.1 shows a graphical depiction of our model and Figure 6.2 shows the gener-
ative story for the linear regression case . The DP base me&gusea product of two
Gaussian priors for;, A;. In our nonparametric Bayesian modél,and K need not be
knowna priori; these are inferred from the data.

For classification, the only change is that the first line in the generative model becomes
Y, ~ Ber(sig(6; - Xi,)), wheresig(z) =

Bernoulli distribution.

m is the logistic function andber is the
A number of existing Multitask Learning models arise as special cases of our model as
it nicely interpolates between some different and useful scenarios, depending on the actual
inferred values of’ and K, for a given Multitask Learning dataset:
e Shared Gaussian Prior (F'=1, K=0): (Chelba and Acero, 2006). This corresponds
to a single factor analyzer modeling either a diagonal or full-rank Gaussian as the
prior.
e Cluster-based Assumption (F' > 1, K=0): (Jacob and Bach, 2008, Xue et al.,

2007b). This corresponds to a mixture of identity-covariance or full-rank Gaussians
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ik

Figure 6.1. A graphical depiction of our model. The task paramefiesise sampled from a
DP-IBP mixture and used to generate thealues.

Yii ~ Nor(0FX;; 1)
1
Qt ~ Nor([,bt + At : (St ® bt>7 ;I))

Lty At ~ G St ~~ NOI‘(O, I) bk‘t ~ Ber(ﬂ'k)
G ~ DP(OQ, Go) T ~~ Bet(Oég/K, 1)

Figure 6.2. The hierarchical model. The cluster indicator variable implicit in the draw
from the DP. The Beta-Bernoulli draw fog; approximates the IBP for largk€ (actual K
will be inferred from the data).
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as the prior.
e Linear Subspace Assumption (F'=1, K < D): (Rai and Daura lIll, 2010, Zhang

et al., 2006). This corresponds to a single factor analyzer with less than full rank.

Note that this is also equivalent to the matéix = {6,,...,0r} being a rank-K

matrix (Argyriou et al., 2007).

¢ Nonlinear Manifold Assumption: A mixture of linear subspaces allows modeling

a nonlinear subspace (Chen et al., 2010) and can capture the case when the weight

vectors live on a nonlinear manifold (Agarwal et al., 2010, Ghosn and Bengio, 2003).

Moreover, in our model, the manifold’s intrinsic dimensionality can be different in

different parts of the ambient space (since we do not redifitd be the same for

each factor analyzer).
Our nonparametric Bayesian model can interpolate between these cases as appropriate
for a given dataset, without changing the model structure or hyperparameters. From a
nonprobabilistic analogy, our model can be seen as doing dictionary learning/sparse cod-
ing (Aharon et al., 2010) over thatent weight vectors (albeit, using amdercomplete
dictionary setting since we assumie< min{7’, D}). The model learnd/ dictionaries of
basis tasks (one dictionary per group/cluster of tasks,dndferred from the data) and
tasks within each cluster are expressed as a sparse linear combination of elements from
that dictionary. Our model can also be generalized further; e.g., by replacing the Gaussian
prior on the low-dimensional latent task representatigns R”* by a prior of the form
P(si41]8¢), one can even relax the exchangeability assumption of tasks within each group,

and have tasks that are evolving with time.

6.2.1 Variational Inference

As this model is infinite and combinatorial in nature, exact inference is intractable and
sampling-based inference may take too long to converge (Blei and Jordan, 2006, Doshi-
Velez et al., 2009b). Hence, we employ a variational mean-field algorithm to perform
inference in this model. To do so, we lower-bound the marginal log-probabilify of
given X using a fully factored approximating distributi@p over the model parameters
0,1, A\, 2,0, s:
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log P(Y|X) = log Ep[P(Y[X,0,1,A, 2,b,5)]
> Egllog P(Y[X)]
—Eqllog Q(Y]X)].

To do so, we approximate the DP and the IBP with a tractable distrib@tidtor the DP, we

use a finite stick-breaking distribution, based on the infinite stick-breaking representation
of the DP (Blei and Jordan, 2006). In this representation, we introduce, fortéeaah
multinomial random variable, that indexes the infinite set of possible mixture parameters
i and A. The z, vector is nonzero on itsth component with probability; Hm(l —

®;), where¢ is an infinite set of independeffet(1, a;) random variables @ is the Beta
distribution). A finite approximation to the DP is obtained by setting a giweto 1,
which sets the probability of; for j > i necessarily to 0. While there is a similar stick-
breaking construction to the IBP (Teh et al., 2007a), it is not in the exponential family and
requires complicated approximations, so we represent the IBP by its finite Beta-Bernoulli
approximation (Doshi-Velez et al., 2009b).

The distribution we are approximating then (for the linear regression case) is shown in
Figure 6.3 (top). The stick-breaking distributi®iB P, which is the prior forz;, is such
that P(z;=14) = ¢; [[;.,(1 — ¢).

In our variational distribution, we set the number of factor analyzers in the truncated
stick-breaking representation to a hyperparamgtand the number of factors in each such
analyzer to a truncation level hyperparameéter After inference, if the truncation levels
are set high enough, most factor analyzers (and factors within each factor analyzer) will
not be used, effectively approximating the property of the infinite model that only a small
finite number of components is ever used to model a finite data set. It is worthwhile to
note that while the solution found by the variational approximation is necessarily finite
and with complexity bounded by the truncation parameters, it will still implicitly perform
model selection. Therefore, more often than not, it will concentrate most of its posterior
mass on models with less complexity than the truncation parameters suggest. (Ishwaran
and James, 2001) present two theorems to help choose these truncation levels, as using
smaller values of’ and K (particularly K, as the update equations are quadrati&jrcan
lead to significant savings of computing time (in our experiments, we simply set these to

min{ D, T}, which we found to be sufficient).
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QTtha )

Nor(
1
et ~ r(:uzt + AZt<St 2t © bt Zt) ;I)
(0,

py ~ Nor(0,T), Agp~ Nor(0,1)
St7f ~ ./\/OI’( s ), bt7f7kNBer<ﬁf7k)
o~ SBP(), By ~ Betlay/K. 1)

o ~ Bet(l,m)
Q(0;) = Nor(vy,,1)
Quy) = Nor(v,,,I), Q(Ay) = Nor(vy,,I)
Q(sty) = Nor(vs,,,I), Q(b) = Ber(vs)
Qlze=1) = vs,, Q(B)=DBetlpi,p2)
Qo) = Betly,72)

Figure 6.3. Variational approximation. Top: the distribution being approximated. Bottom:
Our approximatingy distribution (note:P(Y'|¢) is lower-bounded directly)

Our approximating® distribution is shown in Figure 6.3 (bottom). For the linear
regression case, we tre&(Y'|¢) by lower-bounding it directly, without introducing an
approximating distribution foY". In the case of logistic regression, we use the lower bound
by (Jaakkola and Jordan, 1996) that allows us to integrate out the logistic function.

Apart from approximating the DP with the truncated stick-breaking prior, approx-
imating the IBP with a set of symmetric, finite Beta distributed variables, and lower-
bounding the logistic function with a quadratic, all the computations involved in deriving
the variational lower bound are straightforward exponential-family computations. Note
that for (), we could use more general covariances instead of the identity matrices. In
practice, we found that this did not improve classification performance, and it would imply
a significantly higher computational cost. Another less expensive option, however, would
be to use the same hyperparameter for each feature, i.e., a spherical (instead of diagonal)
covariancer?I, which would require optimizing w.r.t. a single hyperparameterThe

variational parameter updates ‘are

The complete derivations are provided in the Appendix.
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In the above,;f denotes the digamma function. While it is possible to update

analytically, the update requires inverting a matrix, and in our experiment, this matrix was

often ill-conditioned, so we updateg, by optimizing the lower bound with the L-BFGS-B

optimizer (Zhu et al., 1997). The optimizer is run until convergence at each iteration,

warm-started with the previous value. We note that it could be replaced by any other

optimizer, including gradient methods, with no changes in the above equations.

For regression, the gradient of the lower bound with respeg tis

N

VL(vy,) = O'Z Ve s (l/@t — Vuy, — VA, (Vs © Vbt’f)) + Z (Yt,iXt,i — Xt,ngiygt) .
f i
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For classification, the gradient is similar, the main difference being that there is an extra
factor in theXmXEiuet term involving the variational parameter for the lower bound of the
logistic function.

We also optimize the lower bound w.r.t the precision parameterobtain an empirical

Bayes estimate fof:

ZZV (HVGt — Uy = Vo Wiy © )P n > Vbt,f,i(ygt,f,z' +llvagll®) + l) _
5 “.f KDF KF K

The hyperparameters, anda, are held fixed and can be optimized by cross-validation.
We initialize the inference process with set to the maximum likelihood solution to each
task’s regression or classification problem. Then, we alternate updating all other parameters
to convergence and updating given the other parameters. The valuegf and hence the
regression or classification accuracy, usually stabilizes after the first couple of iterations,
and the only changes observed are further improvements to the lower bound. This matches
behavior observed in (Ando and Zhang, 2005). All our experiments were run on three

iterations.

6.3 Experiments

We present results on both synthetic and real-world datasets, and on linear regression
and classification settings. As a sanity check to show that our model can learn the under-
lying latent task structures correctly, we generated a synthetic data consisting of 5 clusters
of tasks. Each cluster consists of 10 binary classification tasks, having 100 examples each.
We used a 50/50 split for train/test data. Each task is represented by a weight vector of
length D = 20. Figure 6.4 (top) shows the true correlation structure of the tasks and
Figure 6.4 (bottom) shows the recovered structure by our model: it correctly infers the
correct number (5) of clusters. Our model resulted in a classification accuracy of 83.2%,
whereas independently learned tasks resulted in an accuracy of 79.2%.

Our next set of experiments compare our model with a number of baseline methods on
several synthetic and real-world multitask regression and multitask classification problems.

Our baselines include:

¢ Independently Learned TaskSTL: assumes the tasks are independent (no informa-

tion sharing).
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Figure 6.4. Synthetic Data. Top: Plot of the correlation matrix of the ground-truth weight
vectors of the 50 tasks. Bottom: Inferred correlation matrix
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e Multitask Feature Learning MTFL: assumes the tasks share a common set of

features (Argyriou et al., 2007).

e Shared Gaussian prior over the weight vectdPRIOR (Chelba and Acero, 2006):
assumes the tasks are drawn from a shared Gaussian prior with a unknown but fixed

mean and covariance.

e Single shared subspaceRANK (Rai and Daura Ill, 2010, Zhang et al., 2006):
assumes the tasks live close to a linear subspace (also equivalent to the matrix of the

weight vector being low-rank).

e DP mixture model-based task clusterin®P-MTL (Xue et al., 2007b): assumes
the weight vectors are generated from a mixture model, each component being a

full-rank Gaussian.

e Learning withWhom toShare -LWS (Kang et al., 2011). Itis an integer-programming-
based method that learn the task grouping structure (with prespecified number of

groups) and encourages the tasks within each group to share features.

Of these baselines, MTFL and LWS were used for regression problems only since the
publicly available implementations are for regression. In the experiments, we would refer
to our model aMFA-MTL (Mixture of FactorAnalyzers foMultiTaskLearning). In all
our experiments, we set the hyperparameigrs: 1 anda, = 5, as these values performed
reasonably in preliminary experiments. The truncation level for the DP can be chosen to be
equal to the number of tasg and for the IBP, to be the minimum @fand the number of
featuresD in the data. This is often more than necessary and in most of our experiments,
much smaller truncation levels were found to be sufficient.

For our multitask regression experiments, we compared MFA-MTL with STL, MTFL,
and LWS (we skip the other baselines as they performed comparably or worse than MTFL
and LWS). For this experiment, we used three datasets - one synthetic dataset used in (Kang
et al., 2011), and two real-world datasets used commonly in the Multitask Learning lit-
erature: (1)School: This dataset consists of the examination scores of 15362 students
from 139 schools in London. Each school is a task so there are a total of 139 tasks for

this dataset. (2Computer: This dataset consists of a survey of 190 students about the
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chances of purchasing 20 different personal computers. There are a total of 190 tasks,
20 examples per task, and 13 features per example. For the synthetic data, we followed
the similar procedure for train/test split as used by (Kang et al., 2011). For School and
Computer datasets, we split the data equally into training and test set and further only
used 20% of the training data (training set deliberately kept small as is often the case with
Multitask Learning problems in practice). The average mean squared errors (i.e., across
tasks) in predicting the responses by each method are shown in Table 6.1. As shown in
Table 6.1, MFA-MTL outperforms the other baselines on all the datasets. Moreover, for
the synthetic data, we found that it also inferred the number of task groups (3) correctly
(the LWS baseline needs this number to be specified - we ran it with the ground truth). On
the school and computer datasets, MFA-MTL outperforms STL and LWS and does slightly
better than MTFL. For LWS on these two datasets, we report the best results as obtained
by varying the number of groups from 1 to 20.

We next experiment with the classification setting. For this, we chose two datasets: (1)
Landmine: The landmine detection dataset is a subset of the dataset used in the symmetric
Multitask Learning experiment by (Xue et al., 2007b). It contains 19 classification tasks and
the tasks are known to be clustered for this data2¢ag: We did the standard training/test
split of 20 Newsgroups for Multitask Learning, following (Raina et al., 2006), and used a
50/50 split for the landmine data. The classification accuracies reported by our model and
the various baselines on landmine and 20 Newsgroups datasets are shown in Table 6.2. As
shown in Table 6.2, our method outperforms the various baselines. We note that 3 of them
(PRIOR, RANK, and DP-MTL), which are methods proposed in prior work, are special
cases of our model (as discussed in Section 6.2). In particular, RANK performs worse than
our method, potentially because all weight vectors share the same subspace, which may not
be desirable if not all the tasks are related with each other. DP-MTL performs worse than

our method, potentially because it fithul-rank Gaussian for each mixture component and

Table 6.1. Mean squared error (MSE) of various methods on multitask regression problems
Synthetic | School | Computer

STL 1.35 468.7 153.3
MTFL 0.36 376.1 30.4
LWS 0.37 430.9 30.2

MFA-MTL 0.18 374.5 29.8
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Table 6.2. Multitask classification accuracies of various methods onltimdmine and
20ng datasets
Landmine | 20ng

STL 52.9% | 69.3%
PRIOR 52.9% | 75.8%
RANK 53.8% | 75.8%

DP-MTL 53.8% | 75.7%
MFA-MTL 62.4% 76.9%

is especially prone to overfit if the number of tasks is smaller than the number of features.
Finally, we investigated the behavior of different algorithms in the small training data
regimes. For this, we varied the amount of training examples per task (for landmine data,
we varied the fraction from 20% to 100%; for 20 Newsgroup, we varied the number of
examples from 20 to 100). Results are shown in Figure 6.5. To uncrowd the figure, we
compare only with STL and DP-MTL (the best performing baseline). In the small data
regimes, our algorithm performs better as compared to both STL and DP-MTL. Another
important aspect of an MTL algorithm is its asymptotic behavior in the limit of large
training data per task. For this experiment, we compared MFA-MTL with STL on the
school multitask regression dataset by providing each algorithm the complete training data.
MFA-MTL resulted in an MSE of 261.4 as compared to STL, which gave an MSE of
271.1. Therefore, our algorithm tends to do comparably (in fact, marginally better) to
independently learned tasks even when the amount of training data per task is sufficiently

large.

6.4 Related Work

Apart from the prior work on Multitask Learning discussed in Section 8.1, our model is
based on a somewhat similar motivation as the model proposed in (Argyriou et al., 2008).
Their model assumes that tasks can be partitioned into groups and tasks within each group
share a kernel. Their assumption is an extension of the earlier work on Multitask Feature
Learning (Argyriou et al., 2007) (one of the baselines we used in our experiments) that
assumes all tasks share the common kernel. In (Kumar and ®Hdyrd012), the authors
assume that there issingleset of taskbasis vectorgi.e., a task dictionary) and each task

is asparsecombination of these basis vectors. In their model, the number of basis vectors
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Landmine: Accuracy vs amount of training data
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shared between two tasks can be seen as the pairwise task similarity. In (Kang et al., 2011),
the authors proposed a model based on the assumption that the tasks exist in groups and
the tasks within each group share features, which is again similar in spirit to our work
(this model was one of our baselines in the experiments). In contrast, the generative model
we presented in this chapter offers a number of advantages over these models, such as the
ability to deal with missing data in a principled manner, doing automatic model complexity
control in a nonparametric Bayesian setting, and being flexible enough to subsume these
and many other notions as task relatedness used in Multitask Learning.

Among other related work, (Canini et al., 2010) propose Hierarchical Dirichlet Process
models as good models for human categorical learning. The idea is that one can model
transfer learning by assuming that people unsupervisedly learn subgroups of known classes
and use these groups to refine the knowledge of new classes by sharing subgroups via
a Hierarchical Dirichlet Process. Our model can be seen as a discriminative analog of
their generative model, where aspects of the task parameter—instead of the distribution of
the test examples—are shared among similar tasks and the sharing structure is discovered

automatically.

6.5 Future Work and Discussion

We proposed and evaluated a nonparametric Bayesian Multitask Learning model that
usefully interpolates between many different previously proposed models for estimating
task parameters of multiple related learning problems, such as a shared Gaussian prior
(Chelba and Acero, 2006), a clustering structure (Xue et al., 2007b), reduced dimen-
sionality (Argyriou et al., 2007, Zhang et al., 2006), manifold structure (Agarwal et al.,
2010, Ghosn and Bengio, 2003), etc. We presented a variational mean-field algorithm
for this model that exhibits competitive results on a set of synthetic as well as real-world
Multitask Learning datasets. The proposed model, by using the flexibility afforded by
nonparametric Bayesian techniques, requires only minimal assumptions to be applied to
any given Multitask Learning problem. A possible future work is studying a Hierarchical
Dirichlet Process variant of this model where different tasks are allowed to share exactly
thesame) parameters, which might be beneficial in cases where training data are especially

sparse or the tasks are more strongly clustered.



CHAPTER 7

BEAM SEARCH-BASED MAP INFERENCE FOR
THE INDIAN BUFFET PROCESS

This chapter describes our beam-search algorithm for the Indian Buffet Process.

7.1 Introduction

Although the Indian Buffet Process offers a flexible way to learn the correct num-
ber of latent features in the data, this flexibility comes at a price (as is true for most
interesting/useful Bayesian models!). The combinatorially complex nature of the IBP
(search over all possible binary feature assignment matrices) poses significant challenges
during inference in the IBP-based models. MCMC-based approaches such as Gibbs sam-
pling (Ghahramani et al., 2007) are traditionally used in these models, which tend to be
computationally expensive and may take long to converge. Another alternative is to use
variational methods (Doshi-Velez et al., 2009c). Although faster than the sampling-based
methods, these can be difficult to design and implement, and can potentially run into local
optima issues.

Sampling-based methods such as MCMC produce samples from the posterior distribu-
tion. However, in many applications, we only require thaximum a posteriorfMAP)
sample, discarding all other samples. This naturally leads to the following quedtion:
all we care about is a single MAP assignment, why not find one diredtiy?hermore,
note that although sampling and variational methaidsto explore the full posterior over
the latent feature matrix, they may not be well-suited for searching a posterior mode:
Sampling may take too long to mix and get close to the maxima; variational methods may
not be able to find the true maxima due to their inherent local maxima problem. In this

chapter, we propose search algorithms suc’aand beam search (Russell and Norvig,
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2003) for finding arapproximateMAP estimate of the latent feature assignment matrix.
Our approach can be a viable and more efficient alternative to sampling or variational
approaches if only the MAP estimate is required. If samples from the true posterior are
desired, then the search-based MAP estimate can serve as a sensible initializer for MCMC,

resulting in faster convergence.

7.2 Infinite Latent Feature Model

Given anN x D matrix X of N observations having dimensions each, the latent
feature model represend§ asZ A + E. Here,Z is anN x K binary matrix (withK' <
D) denoting which latent features are present in each observatieha X' x D matrix
consisting of feature scores, ahAtconsists of observation specific noise. A crucial issue in
these models is the choice &f, the number of latent features. The Indian Buffet Process
(Section 2.3) (Ghahramani et al., 2007) defines a prior distribution on the binary atrix
such that it can have a potentially unbounded (i.e., infinite) number of columns, and offers
a principled way to seledt” automatically from the data.

The IBP defines the following probability distribution over tleg-ordered-formof Z

(invariant to latent feature ordering; see (Ghahramani et al., 2007) for details):

P2 = — et T Y =)L e = 1)

2N 1 |
P K, N

where Hy is the N** harmonic numberf, is the number of columns i@ with binary
representatioh, andm;, = >, Z;;. K is the number of nonzero columnsih

In this chapter, we consider models of the fakm= Z A + E (e.g., the linear-Gaussian
model (Ghahramani et al., 2007)) whefecan be integrated out and thi¥ X|2) =
| P(X|Z,A)P(A)dA can be represented in closed form, or can be approximated effi-
ciently. Here, we do not describe computidgbut, givenZ, it is easy to compute in

these models.

7.3 Search-based MAP Estimate for IBP
Our beam-search algorithm (Figure 7.1) for IBP takes as input the set of observations,
a scoring functiory, and a maximum beam size The algorithm maintains a max-queue

of candidate latent feature assignment matrices. Each of these matrices on the queue is
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function IBPSearch
input: a scoring functiory, beam sizé, dataX;.y
output: IBP matrix 2
1: initialize max-queue@) <+ [(}]
2: while @) is not emptydo
3: remove the best scoring candidatdérom ()
4. if |Z] = N thenreturn Z
5.  for all possible assignmentgyo for the next (sayN°-th) customer (i.e., eagh
of the 2X possibilities from existing dishes, and for each possibility 0 |and
max{1, [a/N"] — 1} new dishesjlo
let Z° = [Z; Zno]
compute the score= g(Z°, X)
update queue?) <+ Enqueue(QZ°, s)
end for
10:  if b < oo and|@| > b then
11 Shrink queuer) < Q1.
12: (drop lowest-scoring elements)
13:  end if
14: end while

Figure 7.1. The generic IBP search algorithm (takes the scoring function as input).

associated with a score on the basis of how likely it is to maximize the posterior probability
of thecompleteZ given X. This essentially means how likely it is to being the eventual
MAP estimate once we have seen all the observations. The maximum beam size specifies
the maximum number of candidates allowed on the queue at any time. At each iteration,
the highest scoring candidateis removed from the queue, and is expanded with the set
of all possible feature assignments for the next (34yth) observation. For the possible
expansions, we consider® possibilities for assigning the existing dishes and, for each
such possibility, 0 anghax{1, [a/N°] — 1} new dishes (notefa/N°] — 1 is themode

of the number of new dishes chosen by fkig-th customer in the IBP culinary analogy).

Our algorithm therefore explores matricgf sizesup to N x - max{1, [a/N°] —

1}, but this is a reasonable approximation since the number of latent features is typically
much smaller thamV or D. Scores are computed for each of the new candidates and these
candidates are placed in the queue. If the beam size is not infinite, then we also drop the
lowest scoring elements so as to maintain the maximum queue size. We stop at the point

when the number of rows in the matrix removed from the queue equals the total number of
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observations.

Scoring of the candidate latent feature assignment matrices constitutes an important
aspect of our search algorithms. Recall that finding the MAP estimate requires fiiding
that maximizes the posterior probability #fgiven X', P(Z|X), which is proportional to
the joint probabilityP(Z, X'). However, since our algorithm processes one observation at
a time (in an online fashion), at any point having sééhobservations, we can only have
an upper bound on the joint probability of &l observations. Since the joint probability
P(Z, X) can be again factored &4 7)) P(X|Z), an upper bound of(Z, X) can thus be
obtained by independently upper-bounding the prior probability:

P@):II%

k=1

C(my + ) (N —my, — 1)
I(N+1+2)

wherem,, = Y. Z;,, and the likelihoodP(X|Z), both given the firstV® observations.

In fact, as we shall show (Section 7.4), it is possible to even explicitly upper bound the

prior term. Unfortunately, the same is not true for the likelihood term (as it also involves

the future observations and their latent feature assignments), and we therefore propose

several heuristics for upper bounding the likelihood term (Section 7.5). The sum (assuming

probabilities are expressed on log scale) of these two terms is the scoring function.

The search algorithm is guaranteed to find the optimal MAP feature assignment matrix
if the beam size is infinite and the scoring functipis admissible. Being admissible means
that it shouldover-estimatehe posterior probability dbest possibléeature assignmerit
that agrees witlZ® on the firstN° observations. Denoting the condition 2gV° = Z° as
therestrictionof Z to the firstN? elements, admissibility can be written formally as:

g(Z2°, X) > Z:Z%V%iZOP(Z’X)

Although the admissible scoring functions provably lead to optimal MAP estimates,
the NP-hardness of the MAP problem implies that these can be inefficient (in terms of
engqueue/dequeue operations on the queue; a large gap between these two numbers would
mean that it takes too long to search for the optimal candidate). For efficiency reasons, it
is often useful to have scoring functions that occasionatigler-estimate¢he true poste-
rior probability, and are therefori@admissible. In fact, as described in Section 7.5, our

proposed scoring functions are not guaranteed to be admissible in general, but they lead
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to efficient approximate MAP estimates for tHematrix (see the Experiments section for
evidence supporting this).

Our search algorithm is akin to th&" search (Russell and Norvig, 2003) where we
optimize apath-cost-so-fafunction plus acost-to-goalfunction. In our case, we rank a
candidate feature assignment matrix by computing its score that is a summation of the joint
probability P(X, Z) up to first N° observations (similar to the path-cost-so-far), and an
upper boundon the joint probability corresponding to the remaining observations (similar
to the cost-to-goal). Since the joint probability can be factored into the prior and the
likelihood terms, we next show in Section 7.4 and Section 7.5 how each of these can be
upper bounded. In keeping with the culinary metaphor of IBP, in the rest of the exposition,

we will occasionally refer to observations as customers, and features as dishes.

7.4 Upper Bounding the Prior
Given the customer-dish assignmefft for the first N° customers, it is possible to
explicitly compute the dish assignment for the remaining customers that maximizes the
probability P(Z). For this maximization, we need to consider two cases for the remaining
customers: (a) maximization w.r.t. the already selected dishes, and (b) maximization w.r.t.

the new dishes.

7.4.1 Upper Bounding w.r.t. Already Selected Dishes

Given anN" x K matrix Z° for the firstN? customers, if one were to maximize the IBP
prior P(Z), then the(N° + 1) customer would choose an already selected Hishly if
it was chosen previously by more than half the customers (i.em#jerity). Let us denote
this event by a random variablg = I, » no/2), Wherel is the indicator function angh;,
is the number of previous customers who choseithalish. Now, to maximize?(Z), all
subsequent customers would also make the same choice @€%hel)" customer (since
the customers making that choice will continue to remain in the majority). To derive the
probability of this event happening, we appeal to the exchangeability of the IBP and can
assume that theV° + 1) customer comes at the end after the remairiiNg— N° — 1)
customers (who either all select or all skip the digh Therefore the probability that the
(N9 + 1)" customesselectddish & is p;, = (my + (N — N° — 1))/N, and the probability

that this dish is skippetl— p,.. Since all thg N — N°) customers make the identical choice
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in selecting/skipping this dish, the random variabjec {0,1} andp, take on the same

values for each customer. This leads to a score w.r.t. /dish
T —x —NO©
sk = [Pt (1 — py) o))V

which is a product of N — N°) binomials. The total score for the maximization w.r.t.
the existing dishes is given by thpoduct (or the log sum if using log probabilities) of

individual scores for each of the existing dishes.

7.4.2 Upper Bounding w.r.t. the New Dishes

In the IBP culinary metaphor, thé” customer select®oisson(a/n) number of new
dishes so the prior would be maximized if customegelects a number of dishes equal to
the modeof this number, which i§a/n|. The score contribution of this part fét(7) is

given by: o
(/)2 exp(—a/n)
B! S 7]

The part of the above product involving thep terms just requires computing a harmonic

mean of(N — N°) numbers. For the terms involvingy/» |, we only need to care about
those for which|a/n| > 0. This computation is inexpensive sineds usually small and

therefore| «/n | quickly goes to zero .

7.5 Upper Bounding the Likelihood
Unlike the prior term, an explicit maximization is not possible for the likelihood be-
cause the future observations would not have been assigned any latent features yet, pre-
cluding the associated likelihood computation. We propose here several heuristics for

approximating the likelihood of future observations.

7.5.1 A Trivial Function
Given the matrixZ° having N° many rows, a possible trivial upper bound B(X | 2)
can be obtained by only considering the likelihood over the fifétobservations. This
function is given by:
gTrivial(X|ZO) = P(X1:N0|ZO)
For discrete likelihood distributions (e.g., multinomial likelihood), thee likelihood

of each future observation is upper bounded by 1. Therefore, the above function would
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be a trivial upper bound o (X|Z), since it assigns a probability one to the likelihood
term of each future observation. With an infinite beam size, this admissible function is
guaranteed to find the optimal MAP estimate. Note that this would however not be true for
continuous likelihood distributions, e.g., Gaussian likelihood, which is actually a density
(not a probability) upper bounded Kgro%)~'/2. Unless the data varianeey is such

that (2ro% )~/ < 1, admissibility is not guaranteed in such cases, and the search would
not be guaranteed to find the global optimal solution. Moreover, as discussed earlier in
Section 7.3, even though the trivial function is admissible in certain cases and may find the
optimal solution, the bound tends to be quite loose, which can make the search inefficient

(see empirical evidence in the Experiments section).

7.5.2 An Inadmissible Function

Another possibility is to use a function which is significantly tighter (i.e., better approx-
imation to the true likelihood), but not admissible in any of the cases. Therefore, the search
is no longer guaranteed to find the global optimal solution. However, since it is tighter, it
is much more efficient to run, and can find approximate solutions much more quickly. This

inadmissiblgunction is given by:
9inad(X|2°) = P(X|[Z°% Znos1.:n])

where Zyo 1.y is a matrix of size(N — N°) x (K + N — N?) such that each future
customern € [N° + 1,..., N| gets assigned a single (owned by himself) new dish.
Here,[Z°; Zyo,1.5] denotes row-wise concatenation with appropriate padding’adnd
Zno41.x With zeros. This is an inadmissible heuristic since it is always preferable to instead
assign the same set of dishes to two customers if both are identical, a fact which this

function does not take into account.

7.5.3 A Clustering-Based Function

Even though the trivial function discussed above is admissible in certain cases (i.e.,
discrete likelihood distributions), the upper bound is very loose since it does not take into
account the feature assignments of any of the future observations, and the search would
therefore be inefficient. The inadmissible function, on the other hand, assigns a single new

dish to each future customer which may not mirror the likelihood of future observations
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that closely. Our next proposal aims to find a middle ground by trying to account for the
probable dish selection by the remaining customers.

One way to incorporate the dish assignment of future customers in the likelihood term
is to first do acoarse levelof feature assignment. Given the set of observati&ns-
[X1,..., Xn], we first run a clustering algorithm with a small number of clusters. Having
obtained a clustered representation of the data, we pick one representative point from each
cluster and run the IBP search algorithm (using the trivial scoring function described above)
on these cluster representative observations. This givesoaraefeature assignment for
the representative points. We then run the IBP search on the full data and, while computing
the likelihood (heuristic) of a future observatianwe use the same set of latent features
for this observation as assigned to the representative data point of the cluster to which it

belongs.

7.6 Experiments

We report experimental results on a variety of datasets (both synthetic and real), and
compare the search-based approaches against a number of baselines. Our results are on
two types of tasks: (1) latent Factor Analysis (Rai and Daut 2008), and (2) factor
regression (Rai and Dawanll, 2008, West, 2003), which uses the factors for making pre-
dictions in classification or regression settings (we experiment with classification setting).
For the Factor Analysis task, we report the joint log probability scores and the time taken,
and for the factor regression task, we report the predictive accuracies on a held-out test

data.

7.6.1 Baselines and Experimental Setup

The baselines we compare against are uncollapsed Gibbs sampling (Ghahramani et al.,
2007), infinite variational inference (Doshi-Velez et al., 2009c¢), and patrticle filtering (Wood
and Griffiths, 2007) for the IBP. In addition, we also briefly discuss a comparison with
a greedy search-based approach (Section 7.6.6). The variational inference was given 5
random restarts to avoid the issue of local optima (the reported time is the average time
taken for asingle run). The particle filter was run with a varying number of particles
(500-5000) and the reported results are the best achieved with a minimum possible number

of particles. We would like to note here that we also compared with the semicollapsed
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Gibbs sampler for IBP (Doshi-Velez and Ghahramani, 2009), but the results and the running
times were very similar to the uncollapsed Gibbs, so we included only the uncollapsed
version in our experiments. The uncollapsed version has the same time complexity as the
semicollapsed version (linear in the number of observations). Although the uncollapsed
version is sometimes known to mix slowly, we did not observe this in our experiments.
For our search-based approaches, we used small beam sizes (10-20), which seemed to
be enough for our experiments. In our first experiment, we applied our search-based
approach to the block-image dataset with known ground truth, generated in a manner akin
to (Ghahramani et al., 2007) using a linear-Gaussian model of the data: ZA + E.

The feature score matriX has a zero mean Gaussian priot: ~ Nor(0,0%), and the

noise as well is Gaussia®: ~ Aor(0, 0% ). Our dataset consists of twentyd4 synthetic
block-images generated by combining four different 4 latent images. The latent feature
assignment matriXZ is 20 x 4. More importantly, we note that was not generated

from an IBP prior. Each generated image had Gaussian noiseowitk= 0.1 added

to it. We then ran our search-based approaches and various baseline approaches on this
dataset. The trivial, cluster-based, and the inadmissible approaches finish reasonably fast,
taking a time of 1.02 seconds, 0.86 seconds, and 0.45 seconds, respectively, suggesting
that the inadmissible search is the fastest among all (the number of enqueued/dequeued
elements, though not reported to conserve space, were also the smallest for this method). In
comparison, Gibbs sampling took 3.30 seconds, particle filter 0.98 seconds, and the infinite
variational inference (Doshi-Velez et al., 2009c) took 3.73 seconds to finish (truncation

level was set to 12). All approaches recovered the ground truth latent features.

7.6.2 E-Coli Data

The E-Coli dataset is a gene-expression dataset with known gene-pathway loadings,
which is a sparse 5& 8 binary matrix (K = 8) (Rai and Daura lll, 2008). This is a
semireal dataset; the gene-factor connectivity network (bidamatrix) is taken from a
real dataset and the observations are simulated using this network using a linear-Gaussian
model. We generated 50 observations with 100 dimensions each. The number of latent
features, time taken, and log-joint probabilities reported by our search-based approaches

and the other baselines are given in Table 7.1. As we see, our search-based approaches
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Table 7.1. Results on the E-coli data

K | Time (sec)| logP(X,Z)
Gibbs Sampling | 6 49.8 -4681
Particle Filter 7 17.8 -5369
Infinite Variational | 3 12.1 -6875
Trivial 8 72.5 -5887
Cluster-Based 8 15.5 -5759
Inadmissible 8 10.3 -5865

successfully recover the correct number of latent feat@gs the data, and are reasonably
faster (with the inadmissible approach being the fastest) than the other baselines. The
variational inference, although comparable to search in terms of speed, severely underesti-
mates the number of latent features, possibly due to getting trapped in a local optima. In
our experiment, we set the beam size to 10 in all the search-based approaches. The IBP
parameter was set to 3 and the hyperparameters (the noise varignemd latent feature
variancer 4) were set based on the data variance, for all the algorithms, akin to the method
in (Doshi-Velez and Ghahramani, 2009, Doshi-Velez et al., 2009c).

7.6.3 Scalability

Next, we demonstrate the scalability of the search-based algorithms with the number
of observations. We report experiments on one synthetic and one real-world dataset. The
synthetic dataset was generated using the IBP Prioravithl and linear Gaussian model
of the data with noise varianeey = 0.1. The generated dataset consists of 1000 data
points, each with 100 dimensions, and the number of latent feaftriss4. We varied
the number of observations from 200 to 1000 with increments of 200. For the real-world
dataset, we take the 50 100 E-coli data and vary the number of observations from 10 to
50. The timings and log-joint probabilities for the synthetic and E-coli datasets are shown
in Figure 7.2 and 7.3. As the figures show, the search-based approaches are the fastest on
both the datasets (except for the trivial heuristic on E-Coli data). On the synthetic data, all
the search approaches actually recover the ground truth (the log-joint probabilities of all
search-based approaches therefore look the same). Also, although the timings are roughly
the same for all search-based approaches, the inadmissible search did the fewest number

of enqueue/dequeue operations, and was therefore the fastest. Among the other baselines,
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the variational inference is the fastest one but it fails to recover good solutions most of

the time (as measured by the log-joint probability, and also the number of latent features
discovered). The particle filter, although scaled well on small data regimes (E-Coli data),

scaled poorly for large datasets, as can be seen by its (lack of) scalability on the synthetic
data.

7.6.4 Factor Regression

Next, we apply the various methods on real-world binary classification datasets to
extract latent factors and use them to train a classification model (akin to (Rai anceDaum
[1l, 2008, West, 2003)). We use two real-world datasets for the classification tasks: the
aspect-angle dependent sonar signals dataset and the scene classification dataset from the
UCI Machine Learning Repository. The sonar signal dataset consists of 208 examples
having 60 features each. The scene classification dataset is actually a multilabel dataset
with 2407 examples having 294 features each; we chosd&'thiabel as a prediction
task. Since the feature assignment matrix is binary and the latent factors we care about
are real-valued, we applied all the algorithms on the transposedN data matrix. The
matrix Z is D x K in this case, and we treat tié x N real-valued, feature score matrix
A as the factor matrix (Nexamples withK real-valued features each) used to train the
classification model. For the search-based algorithms, we comployedrawing a sample
from its posterior givery.

After the feature extraction stage, we split the data into two equal parts (training and
test), train an SVM classifier (with linear kernel), and then apply the learned classifier on
the test data. We experiment with 200 random splits of training and test data and report
the average and standard deviation of the accuracies achieved by various methods. As
the results in Table 7.2 show, the search-based approaches achieve prediction performance
that, in most cases, is competitive (or better) than Gibbs sampling. At the same time, search

finished much faster than sampling in the latent Factor Analysis step of the task.

7.6.5 (Approximate) MAP as an Initializer
The search-based approach yields a MAP estimate. In many cases, however, we care
about the full posterior. In such cases, the approximate MAP estimate found by our search-

based algorithms can serve as a sensible initializer to the sampling-based approaches. As
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Table 7.2. Latent factor-based classification results

Sonar Scene
Acc K Acc K
Gibbs 709(H48)| 6 | 77.6(40.9)| 6
Particle Filter 524 (#4.2) | 6 | 77.8(#+1..3) | 10
Infinite Variational | 68.5 (45.6) | 10 | 74.3 (£2.1) | 9
Trivial 72.4(4£3.9)| 7 | 76.2(H.7)| 7
Cluster Based 71.5(#36)| 7 | 77.8(+21)| 6
Inadmissible 67.1(#49)| 5 | 76.9(43.2) | 6

an illustration, we ran an uncollapsed Gibbs sampler by usangom initialization and

the search-based MAP initialization, and monitored the joint likelihood over time. As we
see in Figure 7.4, the MAP-initialized Gibbs sampler localizes itself in the high-probability
region quite early on, as compared to the randomly initialized sampler, which takes much
longer to attain similar values of the joint likelihood. The overhead of doing the search to

get the MAP estimate is much smaller than the overall time taken by the Gibbs sampler.

7.6.6 Comparison with Greedy Search

We also compared our beam search-based approach with a greedy search heuristic,
which works by selecting, for theV°+ 1) observation, the feature assignm&nt . ; that
maximizes the posterior probability up to this observation, F&[Z%; Zyo ]| X1.nv041)-
Note that this heuristic is similar to the one proposed in (Wang and Dunson, 2011) for
the Dirichlet Process Mixture Model. Also, the greedy search approach is akin to beam
search with the trivial heuristic, but without the explicit prior term maximization as we do
in Section 7.4 (it only considers the prié¥([Z°; Zxyo,1]) up to theN° + 1 observations)
and a beam size of 1. Due to space limit, we do not report the full experimental results here,
but we found that, on the block-images dataset, greedy search ran much slower than our
inadmissible approach, ran almost as fast as the trivial heuristic, but inferred a much larger
value of K than the ground truth (and lower log-likelihood scores). Moreover, the greedy
search that only considers the posterior probability up to the current observation (ignoring
the future observations) is not expected to do well if the number of observations is very
large.
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7.7 Related Work

In this section, we review previous work on inference in IBP-based models, some of
which were used as baselines in our experiments. One of the first attempts to scale inference
in IBP-based models to large datasets was the particle filter (Wood and Griffiths, 2007) for
IBP. Particle filters are somewhat similar in spirit to our approach since a patrticle filter
can be considered as doing a stochastic beam search. The particle filter can process one
observation at a time. However, the patrticle filter samples each roffadm the prior
and the né&ve sequential importance resampling scheme does not perform very well on
datasets having a large number of observations (which is perhaps the reason behind the

poor performance of particle filter in our experiments). Besides, particle filters are known
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to suffer from the sample impoverishment problem and need to make multiple passes over
the data to deal with this issue. Among the sampling-based approaches, (Doshi-Velez and
Ghahramani, 2009) proposed a fast collapsed Gibbs sampler to address the slow mixing
issue of the uncollapsed Gibbs sampler. Other sampling-based approaches include the
Metropolis split-merge proposals (Meeds et al., 2006), and slice sampling (Teh et al.,
2007b). Parallelization of the sampling-based inference for the IBP has also been at-
tempted (Doshi-Velez et al., 2009a).

Deterministic variational inference can be an efficient alternative to sampling in IBP-
based models. One such approach was proposed in (Doshi-Velez et al., 2009c), who
proposed a variational inference algorithm for IBP which is based on the truncated stick-
breaking approximation. Our search-based approach for inference is also deterministic
and is similar in spirit to (Dau lll, 2007), who applied beam search algorithms for
finding MAP estimates in Dirichlet Process mixture models. However, we note that the
combinatorial problem posed by the IBP is even more challenging than the DP since the
former looks at the space ¢1(2VX) possible feature assignments as opposed to the latter

where this space i©(K") possible clusterings of the data.

7.8 Discussion and Conclusion

In this chapter, we have presented a general, search-based framework for MAP esti-
mates in the nonparametric latent feature models. There are several aspects of the proposed
algorithm that can be improved even further. Note that when a candidate is removed from
the queue and expanded with the possible feature assignments for the next observation, we
need to consider all® possible candidates, compute their scores, and place them on the
gueue. This can be expensive for cases wlieéns expected to be large. An alternative
to this would be to modify the proposed beam search by expanding aloraplinans
of the Z matrix for a given row, considering one dish at a time (this would amount to
a search-within-searclprocedure). Such a modification is expected to make search even
faster. Besides, the heuristics used for likelihood maximization are critical to getting tighter
bounds for the posterior and it would be interesting to consider other possible heuristics that
result in even tighter even bounds. Another possibility is to estimate the hyperparameters

(IBP hyperparameter and the variance hyperparametessando 4, which are currently
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set of a fixed value), for examples, as is done in (Wang and Dunson, 2011). Finally,
although in the chapter we showed the conjugate case as an example (where we do not
care aboutA4), conjugacy is not necessary for our approach to be applicable. IfAthe
matrix cannot be integrated out due to the nonconjugate prior, we can explicitly represent
it at each step of the search algorithm by also computing the MAP assignmehtdien

Z (for example, by running a few steps of some gradient-based optimizer), or by running a

few Metropolis-Hastings steps fat, givenZ.



CHAPTER 8

SPACE-EFFICIENT SEQUENTIAL INFERENCE
FOR THE INDIAN BUFFET PROCESS

The previous chapter presented a search-based inference algorithm to obtain an ap-
proximate MAP solution for the latent feature assignment matrix in the Indian Buffet
Process-based models. This chapter presents an online inference algorithm for the IBP,
which is capable of processing one observation at a time. This is desirable both for
scalability purposes as well as for the cases where the data naturally arrive in a sequential
manner and batch methods such as Gibbs sampling and standard variational inference are

no longer an option.

8.1 Introduction

Gibbs sampling (Doshi-Velez and Ghahramani, 2009, Ghahramani et al., 2007) and
variational inference (Doshi-Velez et al., 2009c) are typically employed for doing inference
in the Indian Buffet Process-based models (please refer to Section 8.5 for other related
work). Both are, howevehatchinference methods requiring all the observations at each
step of the inference. This can make inference slow when dealing with datasets with large
number of observations and/or high data dimensionality. Moreover, in an online setting
where observations arrive one-at-a-time, batch methods are no longer an option. Besides,
even in the batch setting, if new observations become available at a later point of time,
inference needs to be re-run on the entire data. Sequential Monte Carlo (SMC) meth-
ods (Doucet et al., 2001) such as the particle filter offer an alternative by naturally allowing
observations to be processed one-at-a-time. At the same time, the inherently sequential
nature of inference also makes them amenable to be applied for large datasets. The SMC

methods approximate the target posterior distribution using a discrete distribution defined
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by a weighted set of “particles”. Each particle is a sample from some (problem-specific)
proposal distribution, and the associated weight denotes how much this patrticle is supported
by the observations seen thus far.

For the IBP, in (Wood and Griffiths, 2007) the authors designed a sequential impor-
tance resampling (SIR) based particle filter and demonstrated better scalability than Gibbs
sampling. However, as the number of observations grows, the particle filters are known to
suffer from issues such as sample impoverishment, also known as the weight degeneracy
problem (Doucet et al., 2001). This is the case when a small number of particles dominate
the entire ensembile (i.e., their weights dominate the overall set of weights). Therefore, as
the number of observations grow, the inference quality tends to deteriorate. In this chapter,
we present a particle filtering method for the IBP designed to address these problems. We
accomplish this by using an improved proposal distribution that takes into account the cur-
rent observation, and additionally representing the particle filtering distribution as a mixture
distribution with its mixture weights being exact (in the sense that we marginalize over the
latent feature assignments of the current observation). Our method is in contrast with the
particle filter for the IBP proposed in (Wood and Griffiths, 2007) in which the importance
sampling proposal distribution ignores the current observation, and the importance weights
depend on the “proposed” latent features of the current observation. These improvements
lead to our method achieving better or comparable inference quality as compared to the
standard particle filter for the IBP while requiring far fewer number of particles (giving
the posterior a parsimonious representation (Snelson and Ghahramani, 2005)), and being
comparable in terms of computational efficiency.

Just like the previous chapter, we consider the linear-Gaussian model (Griffiths and
Ghahramani, 2011) for the dafé with an IBP prior on theZ matrix. The model can be
written as: X = ZA + E. Here,A is aK x D matrix consisting of latent feature scores,
and E consists of observation-specific noise. In the linear-Gaussian model, the feature
scores are Gaussian distributed with varian¢@nd the noise is Gaussian with variance
o2. Given these, the distribution of is given by:p(X|Z, A) = Nor(X|Z A, s2). For
the rest of the exposition, we would be interested with cases where we want to infer only
the latent feature matriZ, and not theA matrix. For the linear-Gaussian model, we
would be using the collapsed likelihodd X |Z) = [ P(X|Z, A)P(A)dA, which can
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be represented in closed form by a Gaussian (Griffiths and Ghahramani, 201 1Awtaen

a conjugate prior and can be integrated out. However, the particle filtering algorithms we
describe in this chapter are applicable even in the nonconjugate settings A/lvarenot

be integrated out. In such cases, we can explicitly also maintain a particle representation
for A (note that if we want to additionally also infet in the conjugate case, we can do

the same).

8.2 Particle Filtering for IBP

We first introduce some notations. In what follows, small-casalenotes the*
observation and large-cas€; denotes the data matrix consisting of all the observations
up to and including thé’" observation. Likewise, small-case denotes the latent feature
assignment of the’* observation and large-cas& denotes the matrix consisting of the
latent feature assignments of all the observations up to and includir thieservation.

Having processed the firsbbservations, in the next step of the patrticle filtering algo-
rithm, the target posterior distribution for the latent feature assignment of up to-thg'"

observations is expressed as:

P(Z 11| X ig1) X (X141 Z 11, Xo)p(Z 11| Xy) (8.1)
where
P(Zia|X0) = p(Ze|Z0)p(Z,| X)) (8.2)
Zy

The particle filter approximates( Z;| X ;) as a discrete distribution, which is defined by
a particle representation based on a weighted séY qtfarticles{wf), Zﬁ")}f\;l as fol-
lows: pN(Z,|X,) = SN, wEi)6Z§i>. The particle approximatiofiw'”, Z"}Y | can be
turned into an equally weighted random sample frof&,| X ;) by sampling with re-
placement from the discrete distributi@wt(i), fo)}fil. This produces a new sample with
uniform weightsu'” = 1/N. Using this uniformly distributed sample, we can approximate
the combinatorial summation ove#; in Equation 8.2 by a more tractable summation:
(Zia| X)) = 25N p(Z41]Z), which in turn can be used to approximate Equa-
tion 8.1:
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N
1 i
pN<Zt+1|Xt+1) (8 N E P(xei1]|Z i1, Xt)p(Zt+1’ZzE )) (8.3)
i=1

The above equation shows how the particle approximation“¢fZ;| X ;) can be up-
dated to a particle approximation#d (Z,,,|X;.1). Note that Equation 8.3 expresses the
target posterior in form of enixture distribution. The mixture components are given by the
distributions{p(ZtH|Z§i) N, and the weights are given by the corresponding likelihood
termp(xi 1| Ze1, Xy).

The following algorithm produces the particle approximation of the target distribution

P(Z 11| X 141) given samples from™ (Z,| X ,):
1. DrawZz'), ~ p(Z,1|ZP) fori=1,...,N
2. Compute particle weights (and normalize)

wt(i) X p(mt+1|Z§21, X) (8.4)

3. Resampl@,ﬁfﬁ1 ~ Mult({w?}Y Y fori=1,...,N

This summarizes the particle filtering algorithm for the IBP proposed in (Wood and
Griffiths, 2007). This is basically a sequential importance resampling (SIR) algorithm
where the proposal distribution used in step-1 (in the context of the IBP) is given by the
transition prior forZ, ., given the latent feature assignments of the previously seen obser-
vations, and each sampi”), is weighted by the theonditionalprobabilityp(x;,1| Z\",, X )
of the most recent observatiat),; given all the previous observatiods; and the latent

feature assignment matri, ;.

8.3 Improved Particle Filtering for IBP
Although the SIR-based particle filtering approach for the IBP described in Section 8.2
offers a nice way to sequentially update the target posterior distribution as new observations
arrive, it has some inherent limitations. The method uses the transitiony4or | Z;)
as the proposal distribution, and therefore ignores the current obserwation This is
problematic because the drawn samﬁlﬁézl may not lie in the important, high-likelihood
region. Although SIR weights each particle, the weight computation involves the likelihood

conditioned on the “proposalz'”,.
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To circumvent these issues, we present an improved particle filtering algorithm for
doing inference in the IBP-based models. Our algorithm makes use of a proposal distribu-
tion that takes into account the current observation, and can compute the mixture weights
without having them depend on the propoﬁf@1 (by marginalizing ouizgl). We note
that similar ideas have been proposed recently for doing particle filtering in models such as
mixture regression models, conditional dynamic linear models, and nonparametric mixture
models (Lopes et al., 2011).

We now describe the idea more formally. The idea is based on expressing the target

distribution as:

P(Z 11| X 41) /p<mt+1|ztaXt)p(ZH-l‘ZhXt+1>p(Zt|Xt>dZt (8.5)

This representation gf(Z,. 1| X 1) is different from Equation 8.1. In Equation 8.5,
p(xi11|Z, X,;) denotes the predictive likelihood andZ,.,|Z;, X,.1) is the updated
state posterior. Using this alternate representatigr{ 8f 1| X, 1), we obtain the follow-
ing mixture representation for its particle approximatigh(Z,,,|X,1) given samples

from the particle approximation of¥ (Z,| X ,):

N
PY(Zia| X)) o Y plxea 2 X)p(Zea| 2], Xoi)
=1

N
= Z wzgz)p(zt+1|Z£Z)a Xi11) (8.6)
=1
The particle weights” are given by:

S p(@enlZ, X))
Note that, unlike the SIR-based particle filtering for the IBP (Wood and Griffiths, 2007),

the weight computation marginalizes out the “proposed” latent featjref the current
observatione,,; (cf, Equation 8.4).
Given the mixture representation of the posterior as in Equation 8.6, here are the sam-

pling equations:

1. Resamplez!” ~ Mult({w!¥ Yfori=1,...,N
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2. Drawz\"), ~ p(Z, 1|2, X 1) fori=1,...,N

To actually apply this algorithm in practice, we need to be able to compute the weights

wt(i) o p(wt+1|Z£i), X ;) which requires evaluating the predictive likelihood given by

p(@e1]Z, Xy) = Zp($t+1|Zt+17Xt)P(ZtH’Zt) (8.8)

Zi1
and sampling the latent feature assignméfits, from the proposal distribution (step 2)
given by
P(Z|Zy, Xi1) < p(xig1|Zigr, Xo)p(Z 41| Zy) (8.9)

8.3.1 Computing the Mixture Weights

To evaluate the expression in Equation 8.8, we can perform an explicit summation
over all possibilities of the latent feature assignmentsXqf ;. This can, however, be
expensive due to the combinatorially many possibilitiesZef; (both for existing and
newly proposed dishes). To avoid that, we use Monte-Carlo sampling to generate a set of
S samples{ Z;,,}5_, from the distributiorp(Z,,1|Z,), which is easy to sample from for
the IBP (following the culinary analogy described in Section 2.3). Given these samples, we

can approximate the integral in Equation 8.8 by an empirical average:

S
1
p(xe1|Zs, Xy) =~ 5 ;p("ntJrl‘ZerhXt) (8.10)
and use these empirical averages in Equation 8.7 for computing the mixture weights.

8.3.2 Sampling from the Proposal

To sample from the proposal distribution given in Equation 8.9, we first select the
highest probablity sample fro§Z;. , }5_, given by:
+1 = argrggaXp(th’ZfﬂaXt)p(Zf-i-l‘Zt)

t+1

and then run a Gibbs sampling step initialized with that sample.

Note thatp(x,.1]|Z7,,, X;) need not be computed again since it was already com-
puted while computing the mixture weights. Also, given the Monte-Carlo sanifiles
computing the probability(Z;, ,|Z;) is simple for the IBP prior - it is just a product

of probabilities of each cell o, ;. For a cell corresponding to an existing dishthe
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Algorithm 1 IBP-PF-CP

Input: DataX,.r, «, 0., 0., N : number of particles$ : number of Monte-Carlo samples
to be used for computing the particle weights and sampling from the proposal

Output: Particle representation of the IBP mat{ig?} fori =1,..., N

1: fort=0to7 — 1do
2:  ift = 0 then

3: for: =1to N do

4: Try k = 0to k,.,, dishes forz; (k,.., = a, or some fixed number)

5: Computep(z|x1) x p(x1]z1) x Poisson(k; «) for each possibility ok,

6: Setz!" to z, that maximizes(z,|z;)

7 2 20

8: end for

9: else '

10: Compute weightv!” for i = 1,..., N (using Equation 8.7, Equation 8.10, and
Equation 8.11)

11: ResampleZ\” ~ Mult({w"}¥ ) fori=1,...,N

12: Draw Zﬁﬁl ~ p(Zp1| 29, X,1q) for i = 1,...,N (as described in Sec-
tion 8.3.2)

13:  end if

14: end for

probability is computed using the Bernoulli distribution kvgarametem,. /(¢ + 1) where

my, IS the sum of thé:-th column of the matrixZ;. For the cells corresponding to the newly
sampled dishes, probabilities are evaluated using the Poisson distribution with parameter
a/(t+1)..

8.3.3 Computing the Conditional Probabilities

Note that both computing the mixture weights using Equation 8.10 and sampling from
the proposal involve computing tlenditional probability p(x;,.1| Z7,,, X) of the most
recent observatior,,; given all the previous observatiods, and the latent feature as-
signment matrixZ; . For the linear-Gaussian observation model with an IBP prior on the
latent feature matriZ, p(X,.1|Z+1) is Gaussian. Therefore, using the conditioning rule
for Gaussians, the conditional probabilitye; 1| Z; .1, X ;) will be a Gaussian as well. In
the linear-Gaussian model, the distributipiiX;,,|Z;,,) has its covariance matrix !
gvenby: X' = I — Z,(Z[,,Z1 + Z—%I)”Z,Irl, whereo, is the noise variance
ando, is the feature score variance. The covariance makrix can be partitioned as:

>l = [ (CJTl EQ } whereC, is a matrix,c, is a vector, and:; is a scalar. With this
2 3
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decomposition structure & !, theconditionaldistribution is given by:

®i 41| Z1s1, Xt ~ Nor(eg CT Xy, 3 — cg C1lea) (8.11)

Evaluation of this probability can be made more efficient by exploiting the structure of

C', which can make the matrix inversion faster (Barnett, 1979).

8.3.4 The Full Algorithm

The complete algorithm for the linear-Gaussian model is given in Algorithm 1. We
call our algorithm IBP-PF-CP (for IBP Particle Filtering with Compact Posterior). The
algorithm processes one observation at a time. Note that the weight calculation for the very
first observation is not required. For this observation, we enumerate the number of latent
features to assign (up to a fixed number), and for each possibility, compute the posterior
p(z1|x1). The vectorz, corresponding to the largest value of the posterior is chosen as the
assignment for the first observation. For each subsequent observatiome follow the 3
steps of weight computation, resampling particles using these weights, and finally drawing

the latent feature assignment from the proposal distribution.

8.4 Experiments

We provide experimental results on both synthetic and real datasets. In our experi-
ments, we first compare our method IBP-PF-CP with the particle filtering method pro-
posed in (Wood and Griffiths, 2007) (referred to as IBP-PF) on all the datasets. Then,
in Section 8.4.5, we also compare our method with batch inference methods for the IBP
based on standard Gibbs sampling (Griffiths and Ghahramani, 2011) and infinite variational
inference method proposed in (Doshi-Velez et al., 2009c¢) on all the datasets.

For the synthetic datasets with ground tritfkknown, we use the difference between the
trueZZ " andthe inferre®[Z Z "] (i.e., averaged over all particles, or samples) to measure
the quality of inference. Note th& Z " represents the pair-wise similarities between the
observations in terms of the latent features they possess. This error metric (referred to as
ERROR) is computed following (Wood and Griffiths, 2007) by taking the expectation of
the matrixZZ "' over the posterior samples/particles produced by each method, followed
by computing the summedbsolutedifference between the upper triangular portion of

E[Z Z"] computed over the samples/particles and the upper triangular portion éi¢he
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ZZ" (including the diagonal). On other datasets, where the ground Zugmot known,

we report the log-joint probabilities achieved by each method.

8.4.1 Synthetic Data
The first dataset is a synthetic dataset generated using the linear-Gaussian model (Grif-
fiths and Ghahramani, 2011). The dataset consists of 150 observations, each of dimen-
sionality 150. The latent feature matr#& was generated using the IBP prior with= 2,
which resulted inZ being150 x 5. Using thisZ, noise variance, = 0.1, and feature score
variancer, = 1, we generated the50 x 150 data matrixX . We then ran both particle filter
methods IBP-PF-CP and IBP-PF on this data by varying the number of particles from 50
to 250 with increments of 50. The number of Monte-Carlo samples in our method is set to
10 in all cases. For both methods, we average the results over 10 different initializations.
On synthetic data, as Figure 8.1 (top) shows, our method achieves considerably lower
error as compared to the standard particle filter for the IBP. Moreover, even with very
small number of particles, our method results in very small error (and with the number of
particles set to 200 or 250, the error goes to zero - so we recover the grounexaatly).
It shows that the particle representation of our method is more parsimonious as compared
to the standard particle filter. For IBP-PF, although the error goes down with increasing
number of particles, it always stays higher than IBP-PF-CP. Another remarkable thing is
the stability of IBP-PF-CP as measured by the standard deviation of the error across the

multiple runs. In contrast, the standard deviations of the IBP-PF are much larger.

8.4.2 Block-Images Data

The second dataset is the block-images dataset also used in (Wood and Griffiths, 2007).
This dataset consists of a set of 100 images with each consisting of a subset of four shared
latent images of sizé x 6. A 100 x 4 binary matrixZ is used to generate the 100 images
from these four latent images, using a noise variance 0.1. On this dataset, we compare
both IBP-PF-EACT and IBP-PF by varying the number of particles from 50 to 500 with
increments of 50. As Figure 8.1 (middle) shows, even with as few as 50 or 100 particles, the
mean accuracy of IBP-PF-CP is close to the mean accuracy of IBP-PF with 500 particles.
This shows that the particle-based posterior representation learned by our method is more

accurate and at the same time more succinct. Moreover, as was the case with the synthetic
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data experiment in Section 8.4.1, the accuracy of our method is fairly stable across multiple
runs as is evident by the extremely small standard deviations. In contrast, for the standard
particle filter, although the mean accuracies improve as the number of particles increase,

the standard deviations still remain quite high.

8.4.3 Breast-Cancer Data

The third dataset is a breast-cancer dataset consisting of the 226 gene-expression values
from 251 samples (Knowles and Ghahramani, 2011, Rai and Balin2008). For this
dataset, the ground truth is not known and, therefore, we compare the log-joint probabilities
P(X,Z)of IBP-PF-CP and IBP-PF. As Figure 8.1 (bottom) shows, our method achieves
better log-joint probabilities as compared to the standard particle filter for the IBP, as was

the case with the previous two datasets.

8.4.4 Computation vs Storage Trade-off

We would like to mention here that although our method would require more compu-
tation per particle as compared to the standard particle filter, the individual particles in our
method are much better representatives of the target posterior (because of the improved
proposal distribution and improved particle weights). Therefore, our method needs far
fewer particles as compared to the standard particle filter to achieve better (or comparable)
inference quality, as our experiments suggest. Parsimonius representations of the posterior
distribution (Snelson and Ghahramani, 2005) are appealing since they require small stor-
age cost and can be faster when evaluating predictive quantities or doing averaging over

samples.

8.4.5 Comparison with Batch Methods

Finally, we compare our sequential inference method with Gibbs sampling (Griffiths
and Ghahramani, 2011) and and infinite variational inference (Doshi-Velez et al., 2009c)
for the IBP. Note that these are batch methods and make use of all the data at each step of
the inference. The Gibbs sampler was run until there was no improvement in the log-joint
probabilities. The variational inference was given 5 random restarts to avoid the issue of
local optima (the reported time is the average time taken $ongle run). We also averaged

the results over 10 such runs of the variational inference method. The truncation level for
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Figure 8.1. Inference quality vs number of particles. (Top) Error vs number of particles on

synthetic data. (Middle) Error vs number of particles on block-images data. (Bottom)
Log-joint-probability vs number of particles on breast-cancer data. Results for each
sampler are averaged over 10 runs with random initializations.
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variational inference was set at twice the number of latent features in cases where this
number is known. For the breast-cancer data, we set it to 30. Our method was run using 50
particles (with 10 Monte-Carlo samples) and results are averaged across 10 runs.

The results on the block-images dataset and the breast-cancer dataset are shown in
Table 8.1 . As the results show, our method runs much faster than the uncollapsed Gibbs
sampler while achieving comparable inference quality. Our method also achieves better
inference quality than variational inference.

Finally, we would like to mention that since the batch methods have access to all
the data at each step of the inference, the better inference quality of Gibbs sampling as

compared to our method is to be expected.

8.5 Related Work

In this section, we review prior work on inference in the IBP-based models. Since
MCMC methods are widely used, a lot of effort has gone into improving the standard Gibbs
sampling used for the IBP (Griffiths and Ghahramani, 2011). Among the sampling-based
approaches, (Doshi-Velez and Ghahramani, 2009) proposed a fast collapsed Gibbs sampler
to address the slow mixing issue of the uncollapsed Gibbs sampler. Other sampling-based
approaches include the Metropolis split-merge proposals (Meeds et al., 2006), slice sam-
pling (Teh et al., 2007b), and sampling based on the stick-breaking representation of the
Beta process (Paisley et al., 2010). Parallelization of the sampling-based inference for the
IBP has also been attempted (Doshi-Velez et al., 2009a).

Deterministic variational inference can be an efficient alternative to sampling in IBP-
based models. One such approach was proposed in (Doshi-Velez et al., 2009c), who
proposed a variational inference algorithm for IBP, which is based on the truncated stick-
breaking approximation. In subsequent work (Paisley et al., 2011a), a variational inference
algorithm was proposed in using the stick-breaking construction of the Beta Process. Ex-
pectation Propagation (Minka, 2001) combined with variational inference was used in (D.
et al., 2010) for IBP-based nonnegative matrix factorization. Among other deterministic
inference methods for the IBP, beam-search was proposed in (Rai anceDia2011) for
the special case when onlynaaximum-a-posteriorffMAP) estimate of the latent feature

assignment is needed.
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Table 8.1. Comparison with batch methods (first and second column: block-images data;
third and fourth column: breast-cancer data)

Error Avg. time | log P(X, Z) | Avg. time
Uncoll. Gibbs 0(£0) 124 —6.12 x 10* 2236
Infinite Variational | 2542(4-246) 96 —7.32 x 104 384
IBP-PF-CP | 814(+54)) 92 —6.46 x 107 | 462

In the context of nonparametric Bayesian methods, SMC inéeréas been applied in
the past for doing inference in Dirichlet Process mixture models (Fearnhead, 2004, Lopes
et al., 2011, MacEachern et al., 1999, Ulker et al., 2010), and has shown to achieve better
scalability than batch inference methods such as Gibbs sampling. For the Indian Buffet
Process, the only known patrticle filtering algorithm is by (Wood and Griffiths, 2007), which

we have compared against in this chapter.

8.6 Future Work and Extensions

There are several directions along which our proposed method can be improved. Note
that although our proposal distribution is exact by construction, computing the weights
requires evaluating the predictive likelihop@,, | Z;) of the next observatio®,. ; given
the latent feature assignments of all the observations up to the previous step. This required
a combinatorial summation over the possible latent feature assignmemnts;ofTo cir-
cumvent this issue, we used Monte-Carlo simulation (Section 8.3.1) and it tends to work
well in practice. Coming up with better (and more efficient) ways of doing this remains an
open question. Moreover, computing the weights also involves computing the conditional
probabilities given by the collapsed likelihood expression;.,|Z;.,, X ), for which the
cost of evaluation grows with the number of observations. If we additionally maintain
a particle representation of the feature score ma#jxXhen we can use the uncollapsed
likelihood p(x|z, A), which will be much more efficient. Moreover, using tricks such as
rank-1 updates for Gibbs sampling in the IBP-based models (Doshi-Velez and Ghahramani,
2009) could potentially lead to further speed-ups.

Another possible extension would be to also sample the hyperparameters and
o.. This can be accomplished by following the similar framework as used in (Lopes et al.,

2011) by also maintaining a particle representation of the hyperparameters.
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8.7 Discussion and Conclusion

In this chapter, we have presented a sequential Monte Carlo (SMC) method for infer-
ence in the infinite latent feature models based on the Indian Buffet Process. Our method
improves upon the previously proposed particle filter for the IBP by making use of a better,
mixture representation-based proposal distribution, which can be sampled from exactly,
and does away with importance sampling-based methods traditionally used in particle
filtering. Our results demonstrate that our method significantly improves the quality of
inference over the standard patrticle filter while still being computationally efficient. In
particular, our results showed that, even with a very small number of particles, the method
can learn reasonably well approximations of the target posterior distribution. In contrast,
the standard patrticle filter requires considerably higher number of particles to achieve the
similar inference quality. This was evident from the final inference accuracies, and also
from the variance of the particles at each step of our inference method.

We believe that the potential of SMC methods for doing inference in nonparametric
Bayesian models has remained largely unexplored. One of the main reasons for this has
been the problems that plague these methods, especially with large data sizes and high data
dimensionality, which leads to issues such as poor representation of the target posterior
(e.g., due to the sample impoverishment problem). However, as we have shown in this
chapter, with carefully constructed SMC samplers, such problems can be alleviated and
SMC methods can be successfully applied in real-world settings requiring online inference
for nonparametric Bayesian models. At the same time, the computational efficiency of
these methods also makes them viable alternative to batch inference methods such as

MCMC and variational inference.



CHAPTER9

CONCLUSIONS AND FUTURE WORK

The primary contributions of this thesis lie in designing flexible models for discovering
latent structures from data. The types of latent structures considered in this thesis include
latent features underlying high-dimensional data, latent relationships (i.e., dependency
structures) among the latent features, and latask structuresamong a set of related
learning tasks. The thesis accomplishes these by leveraging the flexibility of nonparametric
Bayesian models, and by designing efficient approximate inference methods for such mod-
els (in particular, the nonparametric latent feature model). To summarize, the contributions

of the thesis include:

¢ Designing nonparametric Bayesian latent feature models for high-dimensional data,
while allowing the latent features to be have relatioships thatimeltaneouslyvant

to infer.

¢ Designing nonparametric Bayesian models for learsimgred predictive structures
to better solve multiple related prediction tasks jointly (the problem of Multitask

Learning).

¢ Designing efficient approximate inference algorithm for nonparametric Bayesian mod-
els, particularly for the nonparametric latent feature model - the Indian Buffet Pro-

cess.

9.1 Future Directions
The work in this thesis can be extended along several directions. Some of the possible

future works include:
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e New methods for latent feature modeling: In the model we proposed in Chapter
3, we used a combination of the IBP and the Kingman’s Coalescent to introduce
interdependencies along the latent features. It would be interesting to design ways of
accomplishing this in a more direct manner. Some recent works have explored this
direction (Doshi and Ghahramani, 2009b, Paisley et al., 2011b, Zhang et al., 2011)

and we consider this to be a promising direction to go forward with.

e Richer models for capturing task relatedness in Multitask Learning: Our model
proposed in Chapter 6 provides considerable flexibility in terms of the latent task
structures that can be exploited in Multitask Learning. It would be interesting to

extend this work to allow more general structures such as time-varying tasks.

e Efficient inference for nonparametric latent feature models: Another interesting
future direction would be to design new online inference methods for the nonpara-
metric latent feature models, along the lines of recently proposed online variational
inference methods for the Dirichlet Process and Hierarchical Dirichlet Process (Wang
et al., 2011). In addition, it would also be interesting and useful to have the ability to
perform hyperparameter estimation in the beam-search and the SMC-based inference
for the IBP.

Another interesting direction that is currently emerging is about designing nonproba-
bilistic counterparts of nonparametric Bayesian models, which can be useful for scaling up
nonparametric Bayesian methods to larger datasets. Some recent work has explored this
direction for the Dirichlet Process mixture models (Kulis and Jordan, 2012) and we believe
that similar developments for other nonparametric Bayesian models would be of interest

for the general machine learning community.



APPENDIX

APPENDIX: NONPARAMETRIC MIXTURE OF
SUBSPACES FOR MULTITASK LEARNING:
INFERENCE

In this supplementary material, we derive the variational lower bound for our model

presented in Chapter 8 and derive the update equation for all the parameters of our model.

A.1  The Model
The model for the nonparametric mixture of nonparametric factor analyzers over the
latent weight vectors in our multitask learning framework is as described in the paper. For

the variational approximation, we work with the following distribution:

¢f ~ Bet(l, Ckl)

2t

Mult(g; T (1 — o))

i<f
Bk Bet(ay /K, 1)
et Ber(8y)
[y Nor(0,1)
Asg Nor(0,T)
St.f Nor(0,1)
Oy ~ NOF(us, + A, (s, © bis,), %I)
Yii Nor(0F X, ;,1)

We approximate this distribution the usual way with an approximating distrib@ion

Since we are only interested in the predictive performance of the model, we do not model
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the covariances of the gaussian variables of the approximating distribution explicitly.

A.2 The Variational Lower Bound
The variational lower bound, following (Jordan et al., 1999), is the following sum:

log P(Y|X) > Egflog P(¢)] — Ey[log Q(¢)]
+Eqy[log P(u)] — Eyflog Q(u)]
+E,[log P(A)] — E,[log Q(A)]
+E,[log P(z)] — E,[log Q(2)]
)] — Eqllog Q(s)]
b)] — Ey[log Q(b)]
+E,[log P(B)] — E,[log Q(5)]
+E,[log P(0)] — E,[log Q(0)]
+Ey[log P(Y)]

(
(
(
+E,[log P(s
+E,[log P(
(
(
(

Computing each term is a simple exponential family calculation, which we do in the
following sections explicitly for the sake of clarity. Unless stated otherwise, the mean field
parameter for the variabkeis v,, so, for example, the mean of the variational distribution
for 0, is vy, . Note that, as we do not approximate the distributioi pthere is no term for

the entropy of9(Y).

A.2.1 The Bound for ¢
¢ are beta stick-breaking priors for the DP.

E,[log Beta(1, )] — E[log Beta(vi1,%vi2)] = logl'(1+4+ aq) —log'(ay)
+(ar = D(F (vi2) = F (i1 +7i2)
—log I'(vi1 + 7i2)
+1og I'(7i,1) + log I'(7i2)
—(via = DF (i) = F (via +7i2)
—(vi2 = D(F (i2) = F (a1 + 7i2))

' Thisis a shortcut to the truncatead stick-breaking distribution, where the probabilityoefng equal to
f is proportional to that value
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A.2.2 The Bound for
G are the symmetric dirichlet priors for the finite IBP variational inference; hence, there
is one for each component of each factor, and edgh ~ Beta(as, 1). As we use a beta

distribution as a mean-field f@t, ¢(5;,) = Beta(psiq, prr2). The bound then is

= logl'(ag + 1) —log'(az)
+(ae — 1)(F (prra) — F (pix + pri2))
—logT(psra + piz) +1ogT(prea) +log T (prr2)
=Py = V(F (prn) = F (oo + priz))
—(prr2 = V(F (prar2) = F(Prus + pri2))

= logas
(a2 = 1)(F (pg) = F (prus + prr2))
—logT'(ps 1 + pi2) +10gT(prr,1) +10g T(pyr,2)
=(prar = VF (praen) = F (oo + priz))

—(prre — D(F (prr2) = F (Prea + prez2))

A.2.3 The Bound for b
The b variables are the binary decision variables for the IBP-based latent factor ana-
lyzer; hence, we havelafor each task for each mixture component. The bound fobthe

variables is:

Vbt,f,k<F(pf,k,1) - F(pf,k,l + pf,k,Z))
+(1 - Vbt,f,k)(F(pf,k,Z) - F(pf,k,l + pf,kz))

Vb ¢k log Vb g — (1 - Vbt,f,k) 10g<1 - Vbt,f,k)

A.2.4 The Bound for p

Eqllog P(p)] — Eyllog Q(u)]
= 5 (famsotuon Py~ [ansatigion @)

f
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Hence, we can work with eagly separately,

/deQ<Nf) log P(juf) — /deQ(uf) log Q(fiy)

9 D
— —ElogQW— §||1/W|| -3 + 510g27re

A.2.5 The Bound for Ay,

Eyllog P(Ay )] — Egllog Q(Ay )]

D 1 D
= ——log2m + —=(||va,,|]> + D) + — log 2me
2 2 ’ 2
A.2.6 The Bound for z

E,[log P(z)] — E,[log Q(=)]

> << > Vzt,j> (F(vr2) = F(vra +952) + Ve (F (vp0) = F g + %”,2)))

f=1 \ \j=f+1

— Z Ve s log Vzy s
f

A.2.7 The Bound for s

Eqllog P(st,5)] — Eqllog Q(st.z)]
= /dst,fQ(St,f) log P(st,r) — /dst,fQ(St,f)log Q(st.r)

Dl ) 1|| |2 D+D1 2
= ——log2m — —||vs — — + —log2me
9 8 g 1Vsts 7 "9 %8

A.2.8 The Bound for 0

Ey[log P(0:)] — Eq[log Q(6:)]
Z Vs s (/d@t dA dpds q(0,, A, b, s) log P(@t)) + glog e
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( Dl 2 +D10
= g v, (——=log2m + —logo
: S AN g 5 g

g
—3 /d9td/\duds GO0, A, g1, )10 — pp — Ag(sep © beg)ll*)

D
+§ log 2me

The main problem then is computing the expectatiofif— 1y — Af(s; @ di f)|[*

This can be split in the following terms:

Egl|l6: — 11y = Ny (s0p © b p)|[P] = By[16:]]7]
—2B,[0/ y]
—2B,[07 Af(s1,5 © by g)]
F2E g Ay (sty © big)]
+ Byl 1]
+Eg[(Ag (5,5 © bip)) " Ap(st5 © by g)]

and all terms except for the last one are trivial as they are either linear or the expectation of

the norm of a normally distributed variable. The last term can be solved as follows,
Ey[(Ap(se,s © b)) Ap(sig @ b)) = Eyl(siy © bup)ApAp(sey © b))l

then we can split this expectation into two sums,

Eyl(sts @ bep)AfAp(s0p O big)] = B> s7p:b7 1A Ayl
B stpibigi Y Supibupihfidgg)
i i

Now with the linearity of expectation, we can solve the second expectation, which is

T
§ : Vst 1,iVbe1,i § : Vst 5,iVbes, VN5 VA
i

J#

and the first expectation, after summing ov@nds is

%



and after solving the last expectation, we get
Z(Vgt,f,i + 1)Vbt,f,i(y;1\—‘f’iy/\f,i + D)

which we can expand to

2 T 2 T
Z Vs 1.iVu s iVAg i VA5 + Z Vst,f,i’/bt,f,iD + Z Yoo 1iVAg i VA + Vbt,.ﬂiDF

The full lower bound fo¥ then is

Ellog P(8)) = E/flog Q(0)] = —0.5log27 +0.5Dlog2me + 0.5 logo
—0.50(
Vg Vo, + D
- 2Vg;I/Mf
— 2w 5, (Vs , O W, ;)
+ QVnyAf(VSt’f ® Vbt,f)
ol

2 T
+ 2 :Vst,f,iybtquiVAf,iVAfyi
%
—|—E V2 w, ..D
St,fyi Ot fii
7

T
+ § : VoipiVAs VA
i

—|— Vbt,f,iDF

T
+ E :VSt,f.,z'Vbt,f,z‘ § :VStA,f,J'Vbt,f,jVAf,iVAf,j)
i i

Vyy + D

A.2.9 The Lower Bound for YV

We compute
E,[log P(Y)] = / d0,q(6,) log P(Y'| X, 6,)

D 1 1 1
= —ylog2m — SYP 4+ Yy X — o XTX — o X v X
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A.2.10 The Complete Lower Bound

which we can simplify to (omitting constant terms)

log P(Y|X) >

logT'(1 4 ) — log T'(ay)

+(ar = D(F (vi2) = F (ia + 7i2)

—log I'(vi1 + 7i2) +log I'(7i1) + log I'(i.2)
=1 = D (via) = F (ig +7%2))

—(yi2 = DF (vi2) = F (ig +7%2))

1 2
~3 zf: |19,
+Y () (logT(ag + 1) — logT'(ax)
f k

+(aa = 1)(F (prra) — F (pig + prr2))

—log T'(pyr1 + pi2) +1ogl(psr1) +1ogT(psr,2)

= (1 = DF (o) = F (prra =+ pra2))

—(prw2 = V)(F (pra2) = F (prua + pra2))

—5 (a1 + D))

+ Z Z Z(Vbt,f,k(lf(ﬂf,k,l) — F(prra + Prrz2))
t ok

+ (1 = vy )(F (prr2) = F (praa + prr2))

- Vbt’fyk log Vbt,fyk - (1 - Vbuf,k) log(]' - Vbt’f,k))
F

A3 O > v ) () = F (v +772)

Iog=f+1
= 05|, ,|I*

+ 1z, ,(
F(vpa) = F(dra+52)
—logv,, , —0.5Dlogo
—0.50(
l/glugt +D — 21/(3:1/M — 2Vg:1/Af(Vst’f O W, ;)

T T
+ 2VW1/Af(1/styf © Vy, ;) + Vi Vg + D
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2 T
+ Z Vst r.i7be.piVAg Vs
i

2 T
+ § :Vst,f,i’/bz,f,iD + § :VbtﬂfaiVAfﬁiVAfyi
i i

—+ Vbt,f,iDF
T
+ § : Vst 5,Vbe 1.0 § : Vst 5,iVbr .5 VAf,iVAf,j)
i i
+ (—1Y2 + Yyl X
2 Yo
i

1 1
— 5XTX — §XTy9t1/g; X))

To optimize the lower bound with respect to the variational parameters, we can take
the gradients of the lower bound w.r.t. each parameter and set it to zero. Alternating this
for every parameter, we have the usual variational mean field optimization algorithm. We
also compute empirical bayes estimatesdan the same fashion. Foy,, however, we
found numerical instabilities in inverting the matrices required to compute the update, so

we resorted to numerical maximization by the L-BFGS algorithm (Zhu et al., 1997).

A.3 Update Equations for Specific Parameters
A.3.1 Updates for v
The updates fot, following (Blei and Jordan, 2006), are

Yin = 1+ Z Vi s
t
Vi2 = o0q -+ Z Z Vi s
t

J>t
A.3.2 Updates for v,
Also following (Blei and Jordan, 2006), the update for, is

log v, o< F (i1) = F (i1 +7%i2) + Egllog P(6,]z = i)+ Y (F (vj2) — F (31 + 752)) -
7<i
A.3.3 Updates for p
Following (Doshi-Velez et al., 2009b), the update fds

o
Prel = I + Z Vby 1k
t
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Prk2 = 1+Z Vbsz

A.3.4 Updates for v,
Also following (Doshi-Velez et al., 2009b), the update fgr, , is

Vb, ¢,
log 1t—f = F(psr1) = F (prr2)
= Vbt

+0.5v,, ,0(2(ve, — vy, — (Vs,;, + Dva,,

T
- Z Vsi,pVbirVAss) VAgVsip.
f

—v> D — DF)

St,fyi

A.3.5 Updates for v, ,

Taking the gradient of the lower bound with respect to a simgle and setting it to

zero, we find that

0 - _Vst,f,i + Vztyf (O-(<V0t - V,U«f)TVAf,iVbt,f,i

T
Vs Vb s (D + VAN VAf,i)

T
—0.5v, ,; § :VSt,f,ijt,f,j VasiVAs,;

J#
(14 ovey b, . (D + |va,, 2))1/8”71. = v, ,0((ve, — Vuf)TI/Af’iVbt’fﬂ.
—0.5u, Z Vs Ve s VKNI/AJIJ ).
J#i
A.3.6  Updates for v,
Doing similarly forv, , we find that
0 = —v, + Zl/zt’f(O'(l/gt —vp; Vs OV, ,) = Vyy))
t

(1+ JZ Ve Wiy = Z Ve 10 (Vo, —vn; (Vs © Vb, ()
t

t

A.3.7 Updates for vy,

Taking the gradient of the lower bound with respect to a single we find that

0 = —way, +§:Vth (Vs g Vou V00 = Voo g.iVug.: Vg
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2
TV iV iVApa T Vb piVAg

=05V, ; Vb5, § :VSt,f,ijt,f,j Vay;)
J#i

E 2 _ E
(1"_0- Vszl/bt,f,i(l+Vst7f’¢>>VAf,i = 0 Vzt,fyst,f,iybt,f,i<l/0t — Vg
t t

—0.5 § : Vst 5,iVor 1.5 VAf,j)'
JF#i

A.3.8 Updates for vy,

The analytical update faf,, would be
0 = Zyzt,f(_a<y9t — Vyuy — VAf(V5t,f © Vbt,f)))
f
1
+ Z(wx — 5 XX )
(o Z Ve 1+ 05XXy, = o Z Vap s Wy +0a, (Vs O 1, ) + Z Y, X;.
f ! i

However, as mentioned above, we use a numerical maximization of the lower bound due

to numerical instability when inverting the matrix

o> v I+ 05XXT.
f

The gradient of the lower bound with respectjpis

V L(vy,) = O’Z Vi s (I/gt — UV, — yAf(yst’f ® Vbt‘f)) + Z (Yt,iXt,,- — Xt’ith’;Vgt) .
f i

A.4 Logistic Regression
All that changes in the model when we switch from squared loss regression to logistic
regression is the conditional distributiét{Y'| X, ). In logistic regression, this is normally
a logistic distribution:

1

P(Y|X,0) =
(Y1X.6) 1 4 exp(—Y0TX)

= sig(YO"' X)

Unfortunately, it is not easy to compute the expectation of this distribution w.r.t. the

mean-field of theta, since the logistic distribution is not conjugate to the normal distribution.
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Here, we follow Jaakkola and Jordan (Jaakkola and Jordan, 1996) and use the following

variational lower-bound of the logistic function:

PYIx.0) 2 sig(e e (L5 - [t - 5| (07 xp - ).

As this is a quatratic in terms @f we can compute the last integral in the lower bound

as
[N 600, D ogsigle)exp (”% o [statar - 3] e - )
= ogsiale) + a1 (TS0 - gt - 3 (077 - )
= logsig(e) + % — % {sig(e) - %} (XX + (15, X)* =€)

The bound is exact whenevér= (5 X)? + X” X. To optimizevy,, the term involved
in the gradient is thed- — A\(e)2Xvf X, whereX(e) = o- [5 — sig(e)].
The gradient of the lower bound with respect in the case of logistic regression

then is

V L(vy,) = O'Z Ve s (I/gt — Vyuy — VAf(I/St}f ® ybt‘f)) + Z (Y;,Z-Xt,i — )\(E)Xt,ng;Vgt) .
f i

A.5 Optimizing the 0 Hyperparameter
We can also optimize an empirical bayes estimate obthgperparameter by optimiz-
ing the lower bound with respect to it. Setting the gradient of the lower bound w.id.
zero gives the following expression fér

(Zt Zf VZt,f(||V9t — Vyuy — VAf(VSt,f © Vbt,f)|’2 + Zi(’j‘?ﬁ’f’iybt,f,iD + Vbt,fHVAf,iH2) + Vbt,f,iDF))
KDF
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