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ABSTRACT

Latent structures play a vital role in many data analysis tasks. By providing compact

yet expressive representations, such structures can offer useful insights into the complex

and high-dimensional datasets encountered in domains such as computational biology,

computer vision, natural language processing, etc. Specifying the right complexity of

these latent structures for a given problem is an important modeling decision. Instead

of using models with ana priori fixed complexity, it is desirable to have models that can

adapt their complexityas the data warrant. Nonparametric Bayesian models are motivated

precisely based on this desideratum by offering a flexible modeling paradigm for data

without limiting the model-complexitya priori. The flexibility comes from the model’s

ability to adjust its complexity adaptively with data.

This dissertation is about nonparametric Bayesian learning of two specific types of la-

tent structures: (1) low-dimensionallatent featuresunderlying high-dimensional observed

data where the latent features could exhibit interdependencies, and (2)latent task structures

that capture how a set of learning tasks relate with each other, a notion critical in the

paradigm of Multitask Learning where the goal is to solve multiple learning tasks jointly

in order to borrow information across similar tasks.

Another focus of this dissertation is on designing efficient approximate inference algo-

rithms for nonparametric Bayesian models. Specifically, for the nonparametric Bayesian

latent feature modelwhere the goal is to infer the binary-valued latent feature assignment

matrix for a given set of observations, the dissertation proposes two approximate inference

methods. The first one is a search-based algorithm to find themaximum-a-posteriori

(MAP) solution for the latent feature assignment matrix. The second one is a sequential

Monte-Carlo-based approximate inference algorithm that allows processing the data one-

example-at-a-time while being space-efficient in terms of the storage required to represent

the posterior distribution of the latent feature assignment matrix.
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CHAPTER 1

INTRODUCTION

The ubiquity of complex and high-dimensional datasets is presenting ever-increasing

challenges in modern-day data analysis problems. More and more application domains are

nowadays witnessing the phenomena of data-deluge: advances in microarray technology

have made it feasible to acquire high-throughput gene-expression measurements; the explo-

sion of the world-wide-web has led to the creation of text and other multimedia collections

of enormous scales; prevalence of networks of various types (social networks, coauthorship

networks, etc.) has generated huge amounts of data about the social-personal preferences

of people; and so on.

Translating this wealth of information into useful knowledge is not always easy and

often requires uncovering and understanding the latent structures that underlie these data.

A natural but principled way of accomplishing this is to come up with a statistical model of

the data generation process in terms of these underlying latent structures, and explaining the

data in terms of these structure. Such an explanation of the data can help in uncovering the

complex relationships underlying the data and, by providing a succinct and rich representa-

tion, can also help in dealing with problems resulting from the noisy and high-dimensional

nature of the data.

A key question is how to model these latent structures. Probabilistic modeling (Bishop,

2006), by its virtue of providing a flexible and natural generative model of the data, is

an appealing way of modeling the data. In particular, taking a Bayesian approach to

probabilistic modeling allows incorporating prior knowledge about these structures and

gives a principled and coherent way of performing inference in the model. This is done

by specifying aprior distribution on the model parameters and using the Bayes rule to

compute theposterior distributionof the model parameters given data.
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Complexity control is an important issue while specifying any model. Bayesian meth-

ods provide an elegant way of accomplishing this by endowing each model parameter with

a prior distribution which (implicitly) acts as a regularizer. However, specifying the right

level of complexity remains a challenge. Parametric prior distributions assume a fixed

model complexity that is independent of the data. This is undesirable since fixing the model

complexitya priori before even seeing the data seems unnatural. Ideally, it is desirable to

have models that are flexible enough to adjust their complexity as warranted by the data.

Nonparametric Bayesian methods (Gershman and Blei, 2012) are designed precisely

with this motivation. These methods provide a flexible modeling paradigm for data without

restricting the model complexitya priori. This flexibility is desired as it avoids the need for

doing model-selection, which is both a time-consuming and error-prone process. Moreover,

nonparametric methods allow the model complexity to adapt itself as more and more data

are observed. This flexibility is desired as the model can “create parameters” to explain the

data as and when the data warrant it. This is more appropriate than having a model with a

predefined model with afixedcomplexity that does not depend on data.

This thesis focuses on developing new nonparametric Bayesian models for learning

latent structures, and designing efficient inference methods for these models. Specifically,

two types of latent structures are considered in this thesis: (1) low-dimensional latent

factors underlying high-dimensional data, with the additional property that the latent factors

are not independent of each other but are related via ana priori unknown structure, and (2)

latent task structures capturing how a set of multiple learning tasks (e.g., classification or

regression) relate to each other, and leveraging this task structure for sharing information

across multiple tasks in order to improve learning. This paradigm is commonly known as

learning to learn (Heskes, 2000) or Multitask Learning (Caruana, 1997).

Efficient inference in nonparametric Bayesian models remains an open problem. To

this end, this thesis presents two efficient inference methods for the Indian Buffet Pro-

cess (Ghahramani et al., 2007), which is a nonparametric Bayesianlatent feature model.

In particular, for the nonparametric Bayesian latent feature model, which posits each ob-

servation as being generated by a small (anda priori unknown) number of latent fea-

tures, the thesis presents two inference methods: (1) a search-basedmaximum-a-posteriori

(MAP) inference method, and (2) a Sequential-Monte-Carlo-based fully Bayesian infer-
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ence method that allows processing one observation at a time, while maintaining a compact

approximation of the posterior distribution.

1.1 Overview of Methods and Contributions
Here, we give a brief overview of the methods developed as part of this thesis. In

particular, the thesis can be divided into three parts: (1) designing nonparametric Bayesian

latent factor models for high-dimensional data, (2) designing nonparametric Bayesian mod-

els for capturing and leveraging the latent relatedness structure for jointly solving multiple

learning tasks, and (3) designing efficient inference methods for nonparametric Bayesian

latent feature models.

1.1.1 Nonparametric Bayesian Latent Factor Models

The first contribution of this thesis is a nonparametric Bayesian Factor Analysis model

with the following key properties: (1) the number of latent factors need not be known, (2)

the latent factors are not assumed to be independent of each other, and (3) not all observed

features in the data are considered relevant for the Factor Analysis task. In particular,

(2) is of particular interest in many problems. For example, in gene-expression analysis

where the factors correspond to biological pathways, the pathways are known to be related

with each other. In topic-modeling-based text analysis, factors correspond to topics and

the topics tend to be related with each other (by varying degrees); see Figure 1.1 for

a pictorial illustration. Having a Factor Analysis model that captures the dependencies

among the factors is therefore desirable. Our model also naturally extends for the task of

factor regression(West, 2003), which involves simultaneous learning of latent factors and

predicting the responses associated with each sample, given a set of training samples with

their responses.

The nonparametric latent factor model (Ghahramani et al., 2007) has a limitation that

it can only learn latent factors underlying a single feature representation of the objects.

Often, however, objects are associated with multiple feature representations. For example,

a given collection of webpages can be represented using different types of features such as

the page-text, the anchor-text on hyperlinks pointed towards them, the images appearing in

them, the social tags associated with them, and so on. For such cases, the thesis presents a

nonparametric Bayesian Canonical Correlation Analysis (CCA) model that allows learning
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Figure 1.1. Factor Analysis with relationship among latent factors.xn is a high dimen-
sional observation,fn are the low-dimensional latent factors, andA is the factor-loading
matrix.

latent factors shared across multiple feature representations (or modalities). Another useful

application of such a model is for the problem of multilabel prediction using CCA where

one modality is the features in each example and the other modality is the responses/labels

associated with each example, and the role of CCA is to perform a response/label-guided

latent feature extraction. These latent features can then be used with a supervised learner.

1.1.2 Nonparametric Bayesian Learning of Latent Task Structures

The second contribution of this thesis is designing efficient inference methods for the

nonparametric latent feature model (Ghahramani et al., 2007), a general, nonparametric

Bayesian framework for inferring how a set of learning problems relate to each other, and

leveraging this knowledge tojointly solve these problems. This problem setting is com-

monly known as Multitask Learning (Caruana, 1997). Multitask Learning critically relies

on the assumption of how different tasks relate with each other. An incorrect assumption

not supported by the dataset can end up hurting the performance. It is therefore desirable

to have a Multitask Learning model that, instead of having ana priori fixed notion of task

relatedness, canadapt its assumption based on the data. With this motivation in mind,

the thesis presents a generative model of the task parameters (e.g., the weight vectors of a

linear classification/regression model) assuming that the task parameters of multiple tasks

are drawn from asharedMixture of Factor Analyzers (MFA) model (Ghahramani and

Hinton, 1997). By giving a nonparametric Bayesian treatment, the resulting model achieves
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considerable modeling flexibility and is shown to subsume several previously proposed

Multitask Learning models as its special cases, while being more flexible and robust than

these models.

1.1.3 Efficient Inference for the Nonparametric Latent Feature Models

The third contribution of this thesis is designing efficient inference methods for non-

parametric Bayesian methods, in particular, for the Indian Buffet Process (IBP), which is a

nonparametric latent feature model (Ghahramani et al., 2007).

To this end, the thesis develops two approximate inference methods

• The first method is a beam-search-based approximatemaximum-a-posteriori(MAP)

inference method for the IBP. This method is motivated by the fact that in many prac-

tical cases, we do not require the full posterior distribution of the latent feature as-

signment matrix but only seek the best, highest probability sample from the posterior

distribution. In such cases, a fast method that can provide the MAP estimate may be

more desirable than sampling-based methods such as MCMC, or optimization-based

methods such as variational inference that explore the full posterior distribution, and

are therefore usually slow.

• The second method is a Sequential-Monte-Carlo-based inference method which pro-

vides samples from the full posterior distribution and has the appealing property that

it can process the observations in an online manner (i.e., one observation at a time).

This is desirable both for scalability as well as for many practical scenarios where

observations arrive one at a time. Moreover, our proposed method is an improvement

over the existing SMC-based method for the IBP as it allows incorporating the most

recent observation in the inference. The earlier proposed SMC method for the IBP

ignores the most recent observation. We show that our proposed method leads to

improved inference quality as well as considerably more succinct representation of

the posterior distribution as compared to the standard SMC-based inference for the

IBP (Wood and Griffiths, 2007).
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1.1.4 Thesis Statement

Nonparametric Bayesian methods, combined with efficient inference strategies, can

provide flexible ways to design models that can (a) learn low-dimensional latent features

from high-dimensional data, (b) inferrelatednessof these latent features, and (c) solve

multiple related learning problems by inferring latentshared predictive structures.

1.2 Thesis Organization
The rest of the chapters of the thesis are organized as follows:

Chapter 2 provides a brief background on the models and concepts on which the sub-

sequent chapters are based. In particular, it talks about nonparametric Bayesian methods

such as the Dirichlet Process, the Indian Buffet Process, and the Kingman’s Coalescent.

In addition, the chapter provides a brief background on Factor Analysis and Multitask

Learning.

Chapter 3 describes the nonparametric Bayesian Factor Analysis model. We discuss

how the model learns the correct number of latent factors, allows the factors to be related

via ana priori unknown hierarchy, and filters away noisy features in the data for more

robust Factor Analysis.

Chapter 4 describes the multiview generalization of the nonparametric latent factor

model. In particular, we describe how we can use the Indian Buffet Process to design a

nonparametric Bayesian version of the Canonical Correlation Analysis model.

Chapter 5 describes a nonparametric Bayesian model we propose for Multitask Learn-

ing. The model is based on the assumption that the weight vectors of a collection of

potentially related tasks live on a low-dimensional subspace. This is equivalent to the

weight vectors being generated as a linear combination of a set ofbasis tasks. We describe

how taking a Factor Analysis model on the weight vector, Multitask Learning can be

accomplished and how using the Indian Buffet Process allows us to circumvent model

selection issues in such a model.

Chapter 6 builds on the model described in Chapter 5. We show how replacing the

single factor analyzer by a mixture of factor analyzers allows us to capture considerably

richer notions of task relatedness and can provide a general framework for modeling task

relatedness.
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Chapter 7 describes our proposed beam-search algorithm for doing approximate MAP

inference for the IBP. By experimental comparisons with other state-of-the-art methods,

we show that this method can be a viable alternative to methods based on sampling or

variational inference.

Chapter 8 describes our proposed Sequential-Monte-Carlo-based (SMC) inference method

for the IBP, and discusses its differences with the standard SMC-based inference method

for the IBP proposed in (Wood and Griffiths, 2007).

Chapter 9 presents a discussion and concludes with some possible directions for future

work.



CHAPTER 2

BACKGROUND

This chapter provides a brief background on nonparametric Bayesian methods, in par-

ticular the Dirichlet Process, the Indian Buffet Process, and the Kingman’s Coalescent,

which would be used as building blocks for the models developed in this thesis. The chapter

also provides a brief background on Latent Factor Analysis, Mixture of Factor Analyzers,

and Multitask Learning for which the proposed models in the thesis have been developed.

2.1 Nonparametric Bayesian Methods
In any data analysis task, choosing the appropriate model complexity is a critical issue.

For example, in data clustering, one needs to specify the number of clusters; in dimension-

ality reduction, one needs to specify the dimensionality of the lower-dimensional space;

in regression or classification, one needs to specify the functional form of the input-output

relationship, which is typically a parametric model defined by a fixed set of parameters. In

all these cases, the number of parameters (number of clusters, dimensionality of the lower-

dimensional space, or the number of parameters in the regression/classification model) do

not depend on the data and need to be specifieda priori.

Nonparametric Bayesian methods take an entirely different approach to this problem

of model selection. Instead of prespecifying the model complexitya priori, these methods

assume the model to have an unbounded complexity to begin with and the eventual com-

plexity to be determined by the amount of data. Essentially, these methods can adapt the

model complexity by creating parameters as and when dictated by the data. Note that the

namenonparametrichere is somewhat a misnomer. It does not mean that the model does

not have any parameters. It means that the number of parameters is potentially infinite but

limited by the data. What is important here is that it does not need to be specifieda priori.



9

2.2 Dirichlet Process
The Dirichlet Process (DP) is a prior distribution over discrete distributions (Ferguson,

1973). Discreteness implies that if one draws samples from a distribution drawn from the

DP, the samples will cluster: new samples take the same value as older samples with some

positive probability. A DP is defined by two parameters: a concentration parameterα and

a base measureG0. The sampling process defining the DP draws the first sample from

the base measureG0. Each subsequent sample would take on a new value drawn fromG0

with a probability proportional toα, or reuse a previously drawn value with probability

proportional to the number of samples having that value. This property makes it suitable

as a prior for effectively infinite mixture models, where the number of mixtures can grow

as new samples are observed. Our mixture of factor analyzers-based MTL model uses the

DP to model the mixture components so we do not need to specify their numbera priori.

2.3 Indian Buffet Process
The Indian Buffet Process (IBP) (Ghahramani et al., 2007) is a nonparametric Bayesian

prior that defines a distribution over infinite binary matrices. The IBP was originally

motivated by the need to model the latent feature structure of a given set of observations.

The IBP, due to its flexibility, has been a model of choice in variety of nonparametric

Bayesian applications, such as for factorial structure learning, learning causal structures,

modeling dyadic data, modeling overlapping clusters, and others (Ghahramani et al., 2007).

In the latent feature model, each observation can be thought of as consisting of a set of

latent features. Given anN × D matrix X of N observations havingD features each, we

can consider a decomposition of the formX = ZA+E whereZ is anN×K binary feature-

assignment matrix describing which features are present in each observation.Zn,k is 1 if

featurek is present in observationn, and is otherwise 0.A is aK × D matrix of feature

scores, and the matrixE consists of observation-specific noise. A crucial issue in such

models is the choosing the numberK of latent features. The standard formulation of IBP

lets us define a prior over the binary matrixZ such that it can have an unbounded number

of columns and thus can be a suitable prior in problems dealing with such structures.

The IBP derivation starts by defining a finite model forK many columns of aN ×K

binary matrix.
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P (Z) =
K
∏

k=1

α
K
Γ(mk +

α
K
)Γ(N −mk − 1)

Γ(N + 1 + α
K
)

Heremk =
∑

i Zik. In the limiting case, asK → ∞, it as was shown in (Ghahramani

et al., 2007) that the binary matrixZ generated by IBP is equivalent to one produced by a

sequential stochastic process. This process can be best understood by a culinary analogy

of customers coming to an Indian restaurant and selecting dishes from an infinite array of

dishes. In this analogy, customers represent observations (rows ofX) and dishes represent

latent features (columns ofZ). Customer 1 selectsPoisson(α) dishes to begin with. There-

after, each incoming customern selects an existing dishk with a probabilitymk/N , where

mk denotes how many previous customers chose that particular dish. The customern then

goes on further to additionally selectPoisson(α/n) new dishes. This process generates a

binary matrixZ with rows representing customer and columns representing dishes. Many

real-world datasets have a sparseness property, which means that each observation depends

only on a subset of all theK latent features. This means that the binary matrixZ is

expected to be reasonably sparse for many datasets. This makes IBP a suitable choice

for capturing the underlying sparsity in addition to automatically discovering the number

of latent features. Figure 2.1 shows a pictorial illustration of the IBP.

Figure 2.1. Pictorial illustration of the IBP withN = 4 and eventualK = 4 unique latent
features. In the IBP, customers correspond to datapoints and dishes correspond to latent
features.
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2.4 Kingman’s Coalescent
Our model makes use of a latent hierarchical structure over factors; we use Kingman’s

Coalescent (Kingman, 1982) as a convenient prior distribution over hierarchies. King-

man’s Coalescent originated in the study of population genetics for a set of single-parent

organisms. The Coalescent is a nonparametric model over a countable set of organisms. It

is most easily understood in terms of its finite dimensional marginal distributions overn

individuals, in which case it is called ann-coalescent. We then take the limitn → ∞. In

our case, the individuals arefactors.

Then-coalescent considers a population ofn organisms at timet = 0. We follow the

ancestry of these individuals backward in time, where each organism has exactly one parent

at time t < 0. Then-coalescent is a continuous-time, partition-valued Markov process,

which starts withn singleton clusters at timet = 0 and evolvesbackward, coalescing

lineages until there is only one left. We denote byti the timeat which theith coalescent

event occurs (noteti ≤ 0), andδi = ti−1 − ti the time between events (noteδi > 0). Under

then-coalescent, each pair of lineages merges independently with exponential rate1; so

δi ∼ Exp
((

n−i+1
2

))

. With probability one, a random draw from then-coalescent is a binary

tree with a single root att = −∞ andn individuals at timet = 0. We denote the tree

structure byπ. The marginal distribution over tree topologies is uniform and independent

of coalescent times; and the model is infinitely exchangeable. We therefore consider the

limit asn→∞, calledthe coalescent.See Figure 2.2 for a pictorial illustration.

Once the tree structure is obtained, one can define an additional Markov process to

evolve over the tree. One common choice is a Brownian diffusion process. In Brownian

diffusion inD dimensions, we assume an underlying diffusion covariance ofΛ ∈ RD×D

p.s.d. The root is aD-dimensional vector drawnz. Each nonroot node in the tree is drawn

Gaussian with mean equal to the value of the parent, and varianceδiΛ, whereδi is the time

that has passed.

Recently, Teh et al. (Teh et al., 2008) proposed efficient bottom-up agglomerative

inference algorithms for the coalescent. These (approximately) maximize the probability

of π andδs, marginalizing out internal nodes by Belief Propagation. If we associate with

each node in the tree ameany andvariancev message, we update messages as Eq (2.1),

wherei is the current node andli andri are its children.
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Figure 2.2. Pictorial illustration of ann-coalescent withn = 15 individuals

vi =
[

(vli + (tli − ti)Λ)−1 + (vri + (tri − ti)Λ)−1
]−1

(2.1)

yi =
[

yli(vli + (tli − ti)Λ)−1 + yri(vri + (tri − ti)Λ)−1
]−1

vi

2.5 Factor Analysis
Factor Analysis (Bartholomew and Knott, 1999) is the task of explaining data by means

of a small set of latent factors. One of the first applications of Factor Analysis can be found

in the psychology community in an attempt to explain intelligence using a small set of

latent traits or factors. More formally, given a set of observations{x1, . . . ,xN}, Factor

Analysis attempts to explain each observationxn ∈ RD using a smaller number of latent

factorsfn ∈ RK (K ≪ D) as follows:

xn = Afn + εn

whereA denotes thefactor loading matrixof sizeD ×K andεn denotes the observation-

specific noise (typically assumed to be Gaussian) not explained by the latent factors. Fig-

ure 2.3 shows a pictorial illustration of a standard Factor Analysis model.

2.6 Mixture of Factor Analyzers
A mixture of factor analyzers (MFA) model generalizes the standard Factor Analysis

model by assuming that for each observation, first we select a factor analyzer from a

collection of factor analyzers and then generate the observation usingthat factor analyzer.
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Figure 2.3. A basic Factor Analysis model.xn is a high-dimensional observation,fn are
the low-dimensional latent factors,A is the factor-loading matrix.

Supposez(n) denotes the index of the chosen factor analyzer for then-th observationxn.

The generative story for this observation under the MFA can be written as:

xn = µz(n) +Az(n)fn + εn

Note that, unlike the standard Factor Analysis, in an MFA, we also have a meanµ ∈ RD

associated with each factor analyzer. Therefore, each factor analyzer is parameterized by a

pair{µ,A} of mean and a factor loading matrix.

An MFA model can also be seen as a local dimensionality reduction method with

different local factor analyzers performing dimensionality reduction in different regions

of space. Seen another way, an MFA model performs data clustering, while simultaneously

performing dimensionality reduction within each cluster. This can be especially useful

in clustering high-dimensional data when the number of datapoints is small. Standard

clustering methods such as a mixture of Gaussian would be prone to overfitting in such

high-dimensional, small sample-size cases because it fits a mixture offull-rank Gaussians.

On the other hand, an MFA can be seen as fitting a mixture of low-rank Gaussians (note

that a factor analyzer is akin to a low-rank Gaussian), thereby preventing overfitting.

2.7 Multitask Learning
Learning problems do not exist in a vacuum. Often, one is tasked with developing

not one, but many classifiers for different tasks. In these cases, there is often not enough

data to learn a good model for each task individually—real-world examples are prioritizing
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email messages across many users’ inboxes (Aberdeen et al., 2011) and recommending

items to users on web sites (Ning and Karypis, 2010). In these settings it is advantageous

to transfer or share information across tasks. Multitask Learning (MTL) (Caruana, 1997)

encompasses a range of techniques to share statistical strength across models for various

tasks and allows learning even when the amount of labeled data for each individual task

is very small. Most MTL methods achieve this improved performance by assuming some

notion of similarity across tasks. For example:

• Parameters of all the tasks are close to a sharedmeanparameter. Probabilistically,

this is equivalent to the parameters of all the tasks being drawn from a shared Gaus-

sian distribution (Chelba and Acero, 2006).

• Parameters of all the tasks exhibit a clustering structure (Jacob and Bach, 2008, Xue

et al., 2007b). Probabilistically, this is equivalent to the parameters of all the tasks

being drawn from a mixture of Gaussian distributions.

• Parameters of all the tasks live on a low-dimensional subspace (Rai and Daumé III,

2010), or all the tasks have a common set of relevant features (Argyriou et al., 2007).

• Task relationships can be captured by modeling the task covariance matrix (Bonilla

et al., 2007, Zhang and Yeung, 2010).

Choosing the model whose task similarity assumptions are consistent for the given Mul-

titask Learning problem is critical. Incorrect assumptions, however, can end up degrading

the performance.



CHAPTER 3

NONPARAMETRIC BAYESIAN SPARSE LATENT

FACTOR MODEL

In this chapter, we describe our proposed nonparametric Bayesian Factor Analysis

model that simultaneously learns the number of factors as well as the relationships among

the factors. Moreover, our method also allows simultaneously doing feature selection so

that only relevant features in the data participate in Factor Analysis.

3.1 Introduction
Factor Analysis is the task of explaining data by means of a set oflatent factors.

Factorregressioncouples this analysis with a prediction task, where the predictions are

made solely on the basis of the factor representation. The latent factor representation

achieves two-fold benefits: (1) discovering the latentprocessunderlying the data; (2)

simpler predictive modeling through a compact data representation. In particular, (2) is

motivated by the problem of prediction in the“large P small N” paradigm (West, 2003),

where the number of featuresP greatly exceeds the number of examplesN , potentially

resulting in overfitting.

We address three fundamental shortcomings of standard Factor Analysis approaches

(Beal et al., 2005, Sabatti and James, 2005, Sanguinetti et al., 2006, West, 2003): (1) we

do not assume a known number of factors; (2) we do not assume factors are independent;

(3) we do not assume all features are relevant to the Factor Analysis. Our motivation for

this work stems from the task of reconstructing regulatory structure from gene-expression

data. In this context, factors correspond to regulatory pathways. Our contributions thus

parallel the needs of gene pathway modeling. In addition, we couple predictive modeling

(for factor regression) within the Factor Analysis framework itself, instead of having to
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model it separately.

Our factor regression model is fundamentally nonparametric. In particular, we treat the

gene-to-factor relationship nonparametrically by proposing a sparse variant of the Indian

Buffet Process (IBP) (Ghahramani et al., 2007), designed to account for the sparsity of

relevant genes (features). Wecouplethis IBP with a hierarchical prior over the factors.

This prior explains the fact that pathways are fundamentally related: some are involved

in transcription, some in signaling, some in synthesis. The nonparametric nature of our

sparse IBP requires that the hierarchical prioralsobe nonparametric. A natural choice is

Kingman’s coalescent (Kingman, 1982), a popular distribution over infinite binary trees.

Since our motivation is an application in bioinformatics, our notation and terminology

will be drawn from that area. In particular,genesarefeatures,samplesareexamples, and

pathwaysare factors. However, our model is more general. An alternative application

might be to a collaborative filtering problem, in which case our genes might correspond

to movies, our samples might correspond to users, and our pathways might correspond

to genres. In this context, all three contributions of our model still make sense: we do

not know how many movie genres there are; some genres are closely related (romance to

comedy versus to action); many movies may be spurious.

Our model uses a variant of the Indian Buffet Process (Section 2.3) to model the

feature-factor (i.e., gene-pathway) relationships. We further use Kingman’s Coalescent

(Section 2.4) to model latent pathway hierarchies.

3.2 Nonparametric Bayesian Factor Regression
Recall the standard Factor Analysis problem:X = AF + E, for standardized dataX. X

is aP ×N matrix consisting ofN samples [x1, ...,xN ] of P features each.A is the factor

loading matrix of sizeP ×K andF = [f 1, ...,fN ] is the factor matrix of sizeK ×N . E =

[e1, ..., eN ] is the matrix of idiosyncratic variations.K, the number of factors, is known.

Recall that our goal is to treat the Factor Analysis problem nonparametrically, to model

feature relevance, and to model hierarchical factors. For expository purposes, it is simplest

to deal with each of these issues in turn. In our context, we begin by modeling the

gene-factor relationship nonparametrically (using the IBP). Next, we propose a variant of

IBP to model gene relevance. We then present the hierarchical model for inferring factor
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hierarchies. We conclude with a presentation of the full model and our mechanism for

modifying the FactorAnalysisproblem to factorregression.

3.2.1 Nonparametric Gene-Factor Model

We begin by directly using the IBP to infer the number of factors. Although IBP has

been applied to nonparametric Factor Analysis in the past (Ghahramani et al., 2007), the

standard IBP formulation places IBP prior on the factor matrix (F), associatingsamples

(i.e., a set of features) with factors. Such a model assumes that the sample-factor relation-

ship is sparse. However, this assumption is inappropriate in the gene-expression context

where it is not the factors themselves but theassociationsamong genes and factors (i.e.,

the factor loading matrixA) that are sparse. In such a context, each sample depends on

all the factors, but each gene within a sample usually depends only on a small number of

factors.

Thus, it is more appropriate to model the factor loading matrix (A) with the IBP prior.

Note that sinceA andF are related with each other via the number of factorsK, modeling

A nonparametrically allows our model to also have an unbounded number of factors.

For most gene-expression problems (West, 2003), a binary factor loadings matrix (A) is

inappropriate. Therefore, we instead use the Hadamard (element-wise) product of a binary

matrix Z and a matrixV of reals.Z andV are of the same size asA. The Factor Analysis

model, for each samplei, thus becomes:xi = (Z ⊙V )f i + ei. We haveZ ∼ IBP(α, β).

α andβ are IBP hyperparameters and have vague gamma priors on them. Our initial model

assumes no factor hierarchies and hence the prior overV would simply be a Gaussian:

V ∼ Nor(0, σ2
vI) with an inverse-gamma prior onσv. F has a zero mean, unit variance

Gaussian prior, as used in standard Factor Analysis. Finally,ei = Nor(0,Ψ) models the

idiosyncratic variations of genes whereΨ is aP × P diagonal matrix (diag(Ψ1, ...,ΨP )).

Each entryΨP has an inverse-gamma prior on it.

3.2.2 Feature Selection Prior

Typical gene-expression datasets are of the order of several thousands of genes, most of

which arenot associated with any pathway (factor). In the above, these are accounted for

only by the idiosyncratic noise term. A more realistic model is that certain genes simply do

not participate in the Factor Analysis. In the culinary analogy, some of the genes that enter
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the restaurant leave before selecting any dishes. We will refer to such genes as “spurious”.

We add an additional prior term to account for such spurious genes; effectively leading to

a sparse solution (over the rows of the IBP matrix). It is important to note that this notion

of sparsity is fundamentallydifferent from the conventional notion of sparsity in the IBP.

The sparsity in IBP is overcolumns, notrows. To see the difference, recall that the IBP

contains a “rich get richer” phenomenon: frequently selected factors are more likely to get

reselected. Consider a truly spurious gene and ask whether it is likely to select any factors.

If some factork is already frequently used, thena priori, this gene is more likely to select

it. The only downside to selecting it is the data likelihood. By setting the corresponding

value inV to zero, there is no penalty.

Our sparse-IBP prior is identical to the standard IBP prior with one exception. Each

customer (gene)p is associated with Bernoulli random variableTp that indicates whether

it samplesanydishes. TheT vector is given a parameterρ, which, in turn, is given a Beta

prior with parametersa, b.

3.2.3 Hierarchical Factor Model

In our basic model, each column of the matrixZ (and the corresponding column in

V ) is associated with a factor. These factors are considered unrelated. To model the fact

that factors are, in fact, related, we introduce a factor hierarchy. Kingman’s coalescent

(Kingman, 1982) is an attractive prior for integration with IBP for several reasons. It is

nonparametric and describes exchangeable distributions. This means that it can model a

varying number of factors. Moreover, efficient inference algorithms exist (Teh et al., 2008).

3.2.4 Full Model and Extension to Factor Regression

Our proposed graphical model is depicted in Figure 3.1. The key aspects of this model

are the IBP prior overZ, the sparse binary vectorT, and the coalescent prior overV.

In standard Bayesian factor regression (West, 2003), Factor Analysis is followed by the

regression task. The regression is performed only on the basis ofF, rather than the full

dataX. For example, a simple linear regression problem would involve estimating aK-

dimensional parameter vectorθ with regression valueθ⊤F. Our model, on the other hand,

integrates the factor regression component in the nonparametric Factor Analysis framework

itself. We do so by prepending the responsesyi to the expression vectorxi and joining the



19

Figure 3.1. The graphical model for nonparametric Bayesian Factor Regression.X consists
of response variables as well.

training and test data (see Figure 3.2). The unknown responses in the test data are treated

as missing variables to be iteratively imputed in our MCMC inference procedure. It is

straightforward to see that it is equivalent to fitting another sparse model relating factors to

responses. Our model thus allows the Factor Analysis to take into account the regression

task as well. In case of binary responses, we add an extra probit regression step to predict

binary outcomes from real-valued responses.

3.3 Inference
Exact inference is intractable in our model and, therefore, we use Gibbs sampling with

a few Metropolis-Hastings steps to perform approximate inference.

3.3.1 Sampling the IBP Matrix Z

SamplingZ consists of sampling existing dishes, proposing new dishes and accepting

or rejecting them based on the acceptance ratio in the associated M-H step. For sampling

existing dishes, an entry inZ is set as 1 according top(Zik = 1|X, Z−ik,V,F,Ψ) ∝
m

−i,k

(P+β−1)
p(X|Z,V,F,Ψ) whereas it is set as 0 according top(Zik = 0|X, Z−ik,V,F,Ψ) ∝

P+β−1−m
−i,k

(P+β−1)
p(X|Z,V,F,Ψ). m−i,k =

∑

j 6=i Zjk is how many other customers chose dish

k.

For sampling new dishes, we use an M-H step where we simultaneously propose =



20

Figure 3.2. Training and test data are combined together and test responses are treated as
missing values to be imputed.

(Knew, V new, F new) whereKnew ∼ Poisson(αβ/(β + P − 1)). We accept the proposal

with an acceptance probability (following (Meeds et al., 2007)) given bya = min{1, p(rest|
∗)

p(rest|)
}.

Here,p(rest|η) is the likelihood of the data given parametersη. We proposeV new from

its prior (either Gaussian or Coalescent) but, for faster mixing, we proposeF new from its

posterior.

SamplingV new from the coalescent is slightly involved. As shown pictorially in Figure

3.3, proposing a new column ofV corresponds to adding a new leaf node to the existing

coalescent tree. In particular, we need to find a sibling (s) to the new nodey′ and need to

find an insertion point on the branch joining the siblings to its parentp (the grandparent of

y′). Since the marginal distribution over trees under the coalescent is uniform, the siblings

is chosen uniformly over nodes in the tree. We then use importance sampling to select

an insertion time for the new nodey′ betweents and tp, according to the exponential

distribution given by the coalescent prior (our proposal distribution is uniform). This gives

an insertion point in the tree, which corresponds to the new parent ofy′. We denote this

new parent byp′ and the time of insertion ast. The predictive density of the newly inserted

nodey′ can be obtained by marginalizing the parentp′. This yieldsNor(y0,v0), given by:

v0 = [(vs + (ts − t)Λ)−1 + (vp + (t− tp)Λ)−1]−1

y0 = [ys/(vs + (ts − t)Λ) + yp/(vp + (tp − t)Λ)]v0
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Figure 3.3. Adding a new node to the tree

Here, ys and vs are the messages passedup through the tree, whileyp and vp are the

messages passeddownthrough the tree (compare to Eq (2.1)).

3.3.2 Sampling the Sparse IBP Vector T

In the sparse IBP prior, recall that we have an additionalP -many variablesTp, indi-

cating whether genep “eats” any dishes.Tp is drawn from Bernoulli with parameterρ,

which, in turn, is given aBet(a, b) prior. For inference, we collapseρ andΨ and get Gibbs

posterior overTp of the formp(Tp = 1|.) ∝ (a +
∑

q 6=p Tp)Stu(xp|(Zp ⊙ Vp)F , g/h, g))

andp(Tp = 0|.) ∝ (b + P −
∑

q 6=p Tq)Stu(xp|0, g/h, g), whereStu is the nonstandard

Student’s t-distribution.g, h are hyperparameters of the inverse-gamma prior on the entries

of Ψ.

3.3.3 Sampling the Real-valued Matrix V

For the case whenV has a Gaussian prior on it, we sampleV from its posterior

p(Vg,j|X,Z,F,Ψ) ∝ Nor(Vg,j|µg,j,Σg,j)

whereΣg,j = (
∑N

i=1

F 2
j,i

Ψg
+ 1

σ2
v
)−1 and µg,j = Σg,j(

∑N
i=1 Fj,iX

∗
g,j)Ψ

−1
g . We defineX∗

g,j =

Xg,i−
∑K

l=1,l 6=j(Ag,lVg,l)Fl,i, andA = Z⊙V. The hyperparameterσv onV has an inverse-

gamma prior and posterior also has the same form. For the case with coalescent prior onV,
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we haveΣg,j = (
∑N

i=1

F 2
j,i

Ψg
+ 1

v0j
)−1 andµg,j = Σg,j(

∑N
i=1 Fj,iX

∗
g,j)(Ψg +

y0g,j
v0j

)−1, where

y0 andv0 are the Gaussian posteriors of the leaf node added in the coalescent tree (see

Eq (2.1)), which corresponds to the column ofV being sampled.

3.3.4 Sampling the Factor Matrix F

We sample forF from a normal distribution with mean̄ = AT(AAT +Ψ)−1X and

covarianceΣ = I−AT(AAT +Ψ)−1A, whereA = Z⊙ V

3.3.5 Sampling the Idiosyncratic Noise Term

We place an inverse-gamma prior on the diagonal entries ofΨ and the posterior too is

inverse-gamma:p(Ψp|.) ∝ IG(g +
N
2
, h

1+h
2
tr(ETE)

), whereE = X− (Z⊙V)F.

3.3.6 Sampling IBP Hyperparameters

We sample the IBP hyperparameterα from its posterior:p(α|.) ∼ Gam(K++a,
b

1+bHP (β)
),

whereK+ is the number of active features at any moment andHP (β) =
∑P

i=1 1/(β+i−1).

β is sampled from a prior proposal using an M-H step.

3.3.7 Sampling the Factor Tree

We use theGreedy-Rate1 algorithm (Teh et al., 2008).

3.4 Related Work
A number of probabilistic approaches have been proposed in the past for the problem

of gene-regulatory network reconstruction (Beal et al., 2005, Sabatti and James, 2005,

Sanguinetti et al., 2006, West, 2003). Some take into account the information on the prior

network topology (Sabatti and James, 2005), which is not always available. Most assume

the number of factors is known. To get around this, one can perform model selection via

Reversible Jump MCMC (Green, 1995) or evolutionary stochastic model search (Carvalho

et al., 2008). Unfortunately, these methods are often difficult to design and may take

quite long to converge. Moreover, they are difficult to integrate with other forms of prior

knowledge (e.g., factor hierarchies). A somewhat similar approach to ours is the infinite

independent component analysis (iICA) model of (Knowles and Ghahramani, 2007), which

treats Factor Analysis as a special case of ICA. However, their model is limited to Factor

Analysis and does not take into account feature selection, factor hierarchy, and factor
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regression. As a generalization to the standard ICA model, (Bach and Jordan, 2003)

proposed a model in which the components can be related via a tree-structured graphical

model. It, however, assumes a fixed number of components.

Structurally, our model with Gaussian-V(i.e., no hierarchy over factors) is most similar

to the Bayesian Factor Regression Model (BFRM) of (West, 2003). BFRM assumes a

sparsity inducing mixture prior on the factor loading matrixA. Specifically,Apk ∼ (1 −

πpk)δ0(Apk) + πpkNor(Apk|0, τk) whereδ0() is a point mass centered at zero. To complete

the model specification, they defineπpk ∼ (1 − ρk)δ0(πpk) + ρkBet(πpk|sr, s(1 − r)) and

ρk ∼ Bet(ρk|av, a(1 − v)). Now, integrating outπpk gives: Apk ∼ (1 − vρk)δ0(Apk) +

vρkNor(Apk|0, τk). It is interesting to note that the nonparametric prior of our model (factor

loading matrix defined asA = Z⊙V) is actually equivalent to the (parametric) sparse

mixture prior of the BFRM asK→∞. To see this, note that our prior on the factor loading

matrix A (composed ofZ having an IBP prior, andV having a Gaussian prior), can be

written asApk ∼ (1 − ρk)δ0(Apk) + ρkNor(Apk|0, σ
2
v), if we defineρk ∼ Bet(1, αβ/K).

It is easy to see that, for BFRM whereρk ∼ Bet(av, a(1− v)), settinga = 1 + αβ/K and

v = 1− αβ/(aK) recovers our model in the limiting case whenK→∞.

3.5 Experiments
In this section, we report our results on synthetic and real datasets. We compare our

nonparametric approach with the evolutionary-search-based approach proposed in (Car-

valho et al., 2008), which is the nonparametric extension to BFRM.

We used the gene-factor connectivity matrix ofe-coli network (described in (Pournara

and Wernisch, 2007)) to generate a synthetic dataset having 100 samples of 50 genes and

8 underlying factors. Since we knew the ground truth for factor loadings in this case,

this dataset was ideal to test for efficacy in recovering the factor loadings (binding sites

and number of factors). We also experimented with a real gene-expression, breast-cancer

dataset having 251 samples of 226 genes and 5 prominent underlying factors (we know this

from domain knowledge).

3.5.1 Nonparametric Gene-Factor Modeling and Variable Selection

For the synthetic dataset generated by thee-coli network, the results are shown com-

paring the actual network used to generate the data (Figure 3.4), the inferred factor loading
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Figure 3.4. True factor loadings for the synthetic data with P=50, K=8 generated using
connectivity matrix ofe-coli data. White rectangles represent active sites. The data also
have added noise with signal-to-noise-ratio of 10.

matrix by our method (Figure 3.5), and by BFRM (Figure 3.6). As shown in Figure 3.5,

our method recovered exactly the same number (8) of factors, and almost exactly the same

factor loadings (binding sites and number of factors) as the ground truth. In comparison,

the BFRM based on evolutionary search overestimated the number of factors and the

inferred loadings clearly seem to be off from the actual loadings (even modulo column

permutations).

Our results on real data are shown in Figure 3.7, Figure 3.8, and Figure 3.9. To

see the effect of variable selection for these data, we also introduced spurious genes by

adding 50 random features in each sample. We observe the following: (1) Without variable

selection being on, spurious genes result in an overestimated number of factors and falsely

discovered factor loadings for spurious genes (see Figure 3.7), (2) Variable selection, when
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Figure 3.5. Inferred factor loadings (with our approach) for the synthetic data with P=50,
K=8 generated using connectivity matrix ofe-colidata.



26

Factors

G
en

es

Factor Loadings Inferred by BFRM

 

 

1 2 3 4 5 6 7 8 9 10

5

10

15

20

25

30

35

40

45

Figure 3.6. Inferred factor loadings with the evolutionary-search-based approach.
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Figure 3.7. IBP based sparse Factor Analysis without feature selection
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Figure 3.8. IBP based sparse Factor Analysis with variable selection
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Figure 3.9. Bayesian factor regression model
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on, effectively filters out spurious genes, without overestimating the number of factors

(see Figure 3.8). We also investigated the effect of noise on the evolutionary-search-based

approach and it resulted in an overestimated number of factor, plus false discovered factor

loadings for spurious genes (see Figure 3.9). To conserve space, we do not show here the

cases when there are no spurious genes in the data, but it turns out that variable selection

does not filter out any of 226 relevant genes in such a case.

3.5.2 Hierarchical Factor Modeling

Our results with hierarchical factor modeling are shown in Figure 3.10 and Figure

3.11 for synthetic and real data. As shown, the model correctly infers the gene-factor

associations, the number of factors, and the factor hierarchy. There are several ways to

interpret the hierarchy. From the factor hierarchy fore-coli data (Figure 3.10 (b)), we

see that column-2 (corresponding to factor-2) of theV matrix is the most prominent one

(it regulates the highest number of genes), and is closest to the tree-root, followed by

column-2, to which it looks most similar. Columns corresponding to lesser prominent

factors are located further down in the hierarchy (with appropriate relatedness). Figure

3.11 (b) can be interpreted in a similar manner for breast-cancer data. The hierarchy can

be used to find factors in order of their prominence. The higher we chop off the tree

along the hierarchy, the more prominent the factors, we discover, are. For instance, if

we are only interested in the top 2 factors ine-coli data, we can chop off the tree above

the sixth coalescent point. This is akin to the agglomerative clustering sense, which is

usually donepost-hoc. In contrast, our model discovers the factor hierarchies as part of the

inference procedure itself. At the same time, there is no degradation of data reconstruction

(in the mean-squared-error sense) and the log-likelihood, when compared to the case with

Gaussian prior onV (see Figure 3.12 - they actuallyimprove). We also show in Section

3.5.3 that hierarchical modeling results in better predictive performance for the factor

regression task. Empirical evidences also suggest that the factor hierarchy leads to faster

convergence since most of the unlikely configurations will never be visited as they are

constrained by the hierarchy.



31

 

 

1 2 3 4 5 6 7 8

5

10

15

20

25

30

35

40

45

50

(a)

3 5 8 7 4 6 1 2

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

(b)

Figure 3.10. Hierarchical factor modeling results. (a) Factor loadings fore-coli data. (b)
Inferred hierarchy fore-colidata.
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Figure 3.11. Hierarchical factor modeling results. (a) Factor loadings for breast-cancer
data. (b) Inferred hierarchy for breast-cancer data.



33

0 100 200 300 400 500 600 700 800 900 1000
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Iterations

M
S

E

 

 

Coalescent V

Gaussian V

Post Convergence
MSE of BFRM

0 100 200 300 400 500 600 700 800 900 1000
−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5
x 10

4

lo
g 

lik
el

ih
oo

d

Iterations

 

 

Gaussian V

Coalescent V

Figure 3.12. Convergence plots: (a) MSE on the breast-cancer data for BFRM (horizontal
line), our model with Gaussian (top red curved line) and Coalescent (bottom blue curved
line) priors. (b) Log-likelihoods for our model with Gaussian (bottom red curved line) and
Coalescent (top blue curved line) priors.
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3.5.3 Factor Regression

We report factor regression results for binary and real-valued responses and compare

both variants of our model (GaussianV and CoalescentV) against 3 different approaches:

logistic regression, BFRM, and fitting a separate predictive model on the discovered factors

(see Table 3.1 and Figure 3.12). The breast-cancer dataset had two binary response vari-

ables (phenotypes) associated with each sample. For this binary prediction task, we split

the data into a training-set of 151 samples and test-set of 100 samples. This is essentially a

transduction setting, as described in Section 3.2.4 and shown in Figure 3.2. For real-valued

prediction task, we treated a 30x20 block of the data matrix as our held-out data and

predicted it based on the rest of the entries in the matrix. This method of evaluation is

akin to the task of image reconstruction (Verbeek et al., 2004). The results are averaged

over 20 random initializations and the low error variances suggest that our method is fairly

robust w.r.t. initializations.

3.6 Conclusions and Discussion
We have presented a fully nonparametric Bayesian approach to sparse factor regression,

modeling the gene-factor relationship using a sparse variant of the IBP. However, the true

power of nonparametric priors is evidenced by the ease of integration of task-specific

models into the framework. Both gene selection and hierarchical factor modeling are

straightforward extensions in our model that do not significantly complicate the inference

procedure, but lead to improved model performanceand more understandable outputs.

We applied Kingman’s coalescent as a hierarhical model onV, the matrix modulating the

expression levels of genes in factors.

Table 3.1. Factor regression results
Model Binary Real

(%error,std dev) (MSE)
LogReg 17.5 (1.6) -
BFRM 19.8 (1.4) 0.48
Nor-V 15.8 (0.56) 0.45
Coal-V 14.6 (0.48) 0.43
PredModel 18.1 (2.1) -



CHAPTER 4

NONPARAMETRIC BAYESIAN FACTOR

ANALYSIS WITH MULTIPLE

MODALITIES

In this chapter, we present a generalization of the nonparametric Bayesian latent factor

model and show how we can extract latent factors shared between two or more modalities.

In this chapter, we consider a special case of supervised dimensionality reduction for the

multilabel prediction setting using Canonical Correlation Analysis (CCA) where the first

modality is the features in the data and the second modality is the label matrix. However,

our model is more general and can be applied for latent factor learning from multimodal

data such as a collection of webpages that can be represented using different types of

features such as the page-text, the anchor-text on hyperlinks pointed towards them, the

images appearing in them, the social tags associated with them, and so on.

4.1 Introduction
Learning with examples having multiple labels is an important problem in machine

learning and data mining. Such problems are encountered in a variety of application

domains. For example, in text classification, a document (e.g., a newswire story) can

be associated with multiple categories. Likewise, in bio-informatics, a gene or protein

usually performs several functions. All these settings suggest a common underlying prob-

lem: predicting multivariate responses. When the responses come from a discrete set, the

problem is termed as multilabel classification. The aforementioned setting is a special case

of Multitask Learning (Caruana, 1997) when predicting each label is a task and all the tasks

share a common source of input. An important characteristics of these problems is that the

labels are not independent of each other but actually often have significant correlations
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with each other. A näıve approach to learn in such settings is to train a separate classifier

for each label. However, such an approach ignores the label correlations and leads to

suboptimal performance (Ueda and Saito, 2003).

In this chapter, we show how Canonical Correlation Analysis (CCA) (Hotelling, 1936)

can be used to exploit label relatedness, learning multiple prediction problems simultane-

ously. CCA is a useful technique for modeling dependencies between two (or more) sets

of variables. One important application of CCA is insuperviseddimensionality reduction,

albeit in the more general setting where each example has several labels. In this setting,

CCA on input-output pair(X,Y) can be used to project inputsX to a low-dimensional

space directed by label informationY. This makes CCA an ideal candidate for extracting

useful predictive features from data in the context of multilabel prediction problems.

The classical CCA formulation, however, has certain inherent limitations. It is non-

probabilistic, which means that it cannot deal with missing data, and precludes a Bayesian

treatment, which can be important if the dataset size is small. An even more crucial issue is

choosing the number of correlation components, which is traditionally dealt with by using

cross-validation, or model-selection (Wang, 2007). Another issue is the potential sparsity

(Sriperumbudur et al., 2009) of the underlying projections that is ignored by the standard

CCA formulation.

Building upon the recently suggested probabilistic interpretation of CCA (Bach and

Jordan, 2005), we propose a nonparametric, fully Bayesian framework that can deal with

each of these issues. In particular, the proposed model can automatically select the number

of correlation components, and effectively capture the sparsity underlying the projections.

Our framework is based on the Indian Buffet Process (Ghahramani et al., 2007), a nonpara-

metric Bayesian model to discover latent feature representation of a set of observations. In

addition, our probabilistic model allows dealing with missing data and, in the supervised

dimensionality reduction case, can incorporateadditional unlabeled data one may have

access to, making our CCA algorithm work in a semisupervised setting. Thus, apart

from being a general, nonparametric, fully Bayesian solution to the CCA problem, our

framework can be readily applied for learning useful predictive features from labeled (or

partially labeled) data in the context of learning a set of related tasks.

This chapter is organized as follows. Section 4.2 introduces the CCA problem and
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its recently proposed probabilistic interpretation. In Section 4.3, we describe our general

framework forinfinite CCA. Section 4.4 gives a concrete example of an application (mul-

tilabel learning) where the proposed approach can be applied. In particular, we describe a

fully supervised setting (when the test data are not available at the time of training), and a

semisupervised setting with partial labels (when we have access to test data at the time of

training). We describe our experiments in Section 4.5, and discuss related work in Section

8.5, drawing connections of the proposed method with previously proposed ones for this

problem.

4.2 Canonical Correlation Analysis
Canonical Correlation Analysis (CCA) is a useful technique for modeling the relation-

ships among a set of variables. CCA computes a low-dimensionalsharedembedding of a

set of variables such that the correlation among the variables is maximized in the embedded

space.

More formally, given a pair of variablesx ∈ RD1 andy ∈ RD2 , CCA seeks to find linear

projectionsux anduy such that the variables are maximally correlated in the projected

space. The correlation coefficient between the two variables in the embedded space is

given by

ρ =
uT
xxy

Tuy
√

(uT
xxx

Tux)(uT
y yy

Tuy)

Since the correlation is not affected by rescaling of the projectionsux anduy, CCA is

posed as a constrained optimization problem.

max
ux,uy

uT
xxy

Tuy, subject to : u
T
xxx

Tux = 1,uT
y yy

Tuy = 1

It can be shown that the above formulation is equivalent to solving the following general-

ized eigen-value problem:
(

0 Σxy

Σyx 0

)(

ux

uy

)

= ρ

(

Σxx 0
0 Σyy

)(

ux

uy

)

whereΣ denotes the covariance matrix of sizeD × D (whereD = D1 + D2) obtained

from the data samplesX = [x1, . . . ,xn] andY = [y1, . . . ,yn].
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4.2.1 Probabilistic CCA

Bach and Jordan (Bach and Jordan, 2005) gave a probabilistic interpretation of CCA

by posing it as a latent variable model. To see this, letx andy be two random vectors of

sizeD1 andD2. Let us now consider the following latent variable model

z ∼ Nor(0, IK), min{D1, D2} ≥ K

x ∼ Nor(¯x + Wxz,Ψx), Wx ∈ R
D1×K ,Ψx � 0

y ∼ Nor(¯y + Wyz,Ψy), Wy ∈ R
D2×K ,Ψy � 0

Equivalently, we can also write the above as

[x;y] ∼ Nor(µ+ Wz,Ψ)

whereµ = [µx;µy], W = [Wx;Wy], andΨ is a block-diagonal matrix consisting ofΨx

andΨy on its diagonals.[.; .] denotes row-wise concatenation. The latent variablez is

shared betweenx andy.

Bach and Jordan (Bach and Jordan, 2005) showed that, given the maximum likelihood

solution for the model parameters, the expectationsE(z|x) andE(z|y) of the latent variable

z lie in the same subspace that classical CCA finds, thereby establishing the equivalence

between the above probabilistic model and CCA.

The probabilistic interpretation opens doors to several extension of the basic setup

proposed in (Bach and Jordan, 2005) which suggested a maximum likelihood approach

for parameter estimation. However, it still assumes ana priori fixed number of canonical

correlation components. In addition, another important issue is the sparsity of the underly-

ing projection matrix, which is usually ignored.

4.3 The Infinite Canonical Correlation Analysis Model
Recall that the CCA problem can be defined as[x;y] ∼ Nor(Wz,Ψ) (assuming

centered data). A crucial issue in the CCA model is choosing the number of canonical

correlation components, which is set to a fixed value in classical CCA (and even in the

probabilistic extensions of CCA). In the Bayesian formulation of CCA, one can use the

Automatic Relevance Determination (ARD) prior (Bishop, 1999) on the projection matrix

W that gives a way to select this number. However, it would be more appropriate to have a

principled way to automatically figure out this number based on the data.
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We propose a nonparametric Bayesian model that selects the number of canonical

correlation components automatically. More specifically, we use the Indian Buffet Process

(Ghahramani et al., 2007) (Section 2.3) as a nonparametric prior on the projection matrix

W. The IBP prior allowsW to have an unbounded number of columns which gives a way

to automatically determine the dimensionalityK of the latent space associated withZ.

4.3.1 The Infinite CCA Model

In our proposed framework, the matrixW consisting of canonical correlation vectors

is modeled using an IBP prior. However, sinceW can be real-valued and the IBP prior is

defined only for binary matrices, we represent the(D1 +D2)×K matrix W as(B⊙ V),

whereB = [Bx;By] is a(D1 +D2)×K binary matrix,V = [Vx;Vy] is a(D1 +D2)×K

real-valued matrix, and⊙ denotes their element-wise (Hadamard) product. We place an

IBP prior onB that automatically determinesK, and a Gaussian prior onV. Note thatB

andV have the same number of columns. Under this model, two random vectorsx andy

can be modeled asx = (Bx ⊙ Vx)z + Ex andy = (By ⊙ Vy)z + Ey. Here,z is shared

betweenx andy, andEx andEy are observation-specific noise.

In the full model,X = [x1, . . . , xN ] is aD1 ×N matrix consisting ofN samples ofD1

dimensions each, andY = [y1, . . . , yN ] is another matrix consisting ofN samples ofD2

dimensions each. Here is the generative story for our basic model (see Figure 4.1):

B ∼ IBP(α)

V ∼ Nor(0, σ2
vI), σv ∼ IG(a, b)

Z ∼ Nor(0, I)

[X;Y] ∼ Nor(B⊙ V)Z,Ψ),

whereΨ is a block-diagonal matrix of sizeD × D whereD = (D1 + D2), with Ψx and

Ψy on its diagonal. BothΨx andΨy have an inverse-Wishart prior on them.

Since our model is probabilistic, it can also deal with the problem whenX or Y have

missing entries. This is particularly important in the case of supervised dimensionality

reduction (i.e.,X consisting of inputs andY associated responses) when the labels for some

of the inputs are unknown, making it a model forsemisuperviseddimensionality reduction

with partially labeled data. In addition, placing the IBP prior on the projection matrixW
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Figure 4.1. The graphical model depicts the fully supervised case when all variables X and
Y are observed. The semisupervised case can have X and/or Y consisting of missing values
as well. The graphical model structure remains the same

(via the binary matrixB) also helps in capturing the sparsity inW (see Results section for

evidence).

4.3.2 Inference

We take a fully Bayesian approach by treating everything at latent variables and com-

puting the posterior distributions over them. We use Gibbs sampling with a few Metropolis-

Hastings steps to do inference in this model.

In what follows,D denotes the data[X;Y], B = [Bx;By], andV = [Vx;Vy]

4.3.3 Sampling B

Sampling the binary IBP matrixB consists of sampling existing dishes, proposing new

dishes and accepting or rejecting them based on the acceptance ratio in the associated

M-H step. For sampling existing dishes, an entry inB is set as 1 according top(Bik =

1|D, B−ik,V,Z,Ψ) ∝
m

−i,k

D
p(D|B,V,F,Ψ) whereas it is set as 0 according top(Bik =

0|D, B−ik,V,Z,Ψ) ∝
D−m

−i,k

D
p(D|B,V,Z,Ψ). m−i,k =

∑

j 6=iBjk is how many other

customers chose dishk.

For sampling new dishes, we use an M-H step where we simultaneously propose =

(Knew, V new, Znew) whereKnew ∼ Poisson(α/D). We accept the proposal with an
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acceptance probability given bya = min{1, p(rest|
∗)

p(rest|)
}. Here,p(rest|η) is the probability

of the data given parametersη. We proposeV new from its prior (Gaussian) but, for faster

mixing, we proposeZnew from its posterior.

4.3.4 Sampling V

We sample the real-valued matrixV from its posterior, which is a normal distribution

with covarianceΣi,k = (
∑N

n=1

Z2
k,n

Ψi
+ 1

σ2
v
)−1 and meanµi,k = Σi,k(

∑N
n=1Ak,nD

∗
i,k)Ψ

−1
i . We

defineD∗
i,k = Di,n −

∑K
l=1,l 6=k(Bi,lVi,l)Zl,n. The hyperparameterσv on V has an inverse-

gamma prior and the posterior also has the same form. Note that the number of columns in

V is the same as the number of columns in the IBP matrixB.

4.3.5 Sampling Z

We sample forZ from its posterior, which is a normal distribution with mean¯ =

WT(WWT+Ψ)−1D and covarianceΣ = I−WT(WWT+Ψ)−1W, whereW = B⊙V.

Note that, in our sampling scheme, we considered the matricesBx andBy as simply

parts of the big IBP matrixB, and sampled them together using a single IBP draw. However,

one could also sample them separately as two separate IBP matrices forBx andBy. This

would require different IBP draws for samplingBx andBy with some modification of the

existing Gibbs sampler. Different IBP draws could result in a different number of nonzero

columns inBx andBy. To deal with this issue, one could sampleBx (say havingKx nonzero

columns) andBy (say havingKy nonzero columns) first, introduce extra dummy columns

(|Kx−Ky| in number) in the matrix having a smaller number of nonzero columns, and then

set all such columns to zero. The effectiveK for each iteration of the Gibbs sampler would

bemax{Kx, Ky}. A similar scheme could also be followed for the corresponding real-

valued matricesVx andVy, sampling them in conjunction withBx andBy, respectively.

4.4 Multitask Learning Using Infinite CCA
Having set up the framework for infinite CCA, we now describe its applicability for the

problem of Multitask Learning. In particular, we consider the setting when each example

is associated with multiple labels. Here, predicting each individual label becomes a task

to be learned. Although one can individually learn a separate model for each task, doing

this would ignore the label correlations. This makes borrowing the information across
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tasks crucial, making it imperative to share the statistical strength across all the task. With

this motivation, we apply our infinite CCA model to capture the label correlations and

to learn better predictive features from the data by projecting it to a subspace directed

by label information. It has been empirically and theoretically (Yu et al., 2006) shown

that incorporating label information in dimensionality reduction indeed leads to better

projections if the final goal is prediction.

More concretely, letX = [x1, . . . ,xN ] be anD ×N matrix of predictor variables, and

Y = [y1, . . . ,yN ] be anM × N matrix of the responses variables (i.e., the labels) with

eachyi being anM × 1 vector of responses for inputxi. The labels can take real (for

regression) or categorical (for classification) values. The infinite CCA model is applied on

the pairX andY, which is akin to doing supervised dimensionality reduction for the inputs

X. Note that the generalized eigenvalue problem posed in such a supervised setting of CCA

consists of cross-covariance matrixΣXY and label covariance matrixΣY Y . Therefore, the

projection takes into account both the input-output correlations and the label correlations.

Such a subspace therefore is expected to consist of much better predictive features than

one obtained by a naı̈ve feature extraction approach such as simple PCA that completely

ignores the label information, or approaches like Linear Discriminant Analysis (LDA) that

do take into account label information but ignore label correlations.

Multitask learning using the infinite CCA model can be done in two settings: supervised

and semisupervised, depending on whether or not the inputs of test data are involved in

learning the shared subspaceZ.

4.4.1 Fully Supervised Setting

In the supervised setting, CCA is done on labeled data(X,Y) to give a single shared

subspaceZ ∈ RK×N that is good across all tasks. A model is then learned in theZ subspace

to learnM task parameters{θm} ∈ RK×1 wherem ∈ {1, . . . ,M}. Each of the parameters

θm is then used to predict the labels for the test data of taskm. However, since the test data

are stillD dimensional, we need to either separately project it down onto theK dimensional

subspace and do predictions in this subspace, or “inflate” each task parameter back toD

dimensions by applying the projection matrixWx and do predictions in the originalD

dimensional space. The first option requires using the fact thatP (Z|Xte) ∝ P (Xte|Z)P (Z),

which is a GaussianNor(µZ|X ,ΣZ|X) with µZ|X = (WT
xΨxWx+ I)−1WT

x Xte andΣZ|X =
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(WT
xΨxWx + I)−1. With the second option, we can inflate each learned task parameter

back toD dimensions by applying the projection matrixWx. We choose the second option

for the experiments. We call this fully supervised setting as model-1.

4.4.2 A Semisupervised Setting

In the semisupervised setting, we combine training data and test data (with unknown

labels) asX = [Xtr,Xte] andY = [Ytr,Yte] where the labelsYte are unknown. The infinite

CCA model is then applied on the pair(X,Y) and the parts ofY consisting ofYte are treated

as latent variables to be imputed. With this model, we get the embeddings also for the test

data and thus training and testing both take place in theK dimensional subspace, unlike

model-1 in which training is done inK dimensional subspace and predictions are made in

the originalD dimensional subspace. We call this semisupervised setting as model-2.

4.5 Experiments
Here, we report our experimental results on several synthetic and real-world datasets.

We first show our results with the infinite CCA as a stand-alone algorithm for CCA by

using it on a synthetic dataset, demonstrating its effectiveness in capturing the canonical

correlations. We then also report our experiments on applying the infinite CCA model to

the problem of Multitask Learning on two real-world datasets.

4.5.1 Infinite CCA Results on Synthetic Data

In the first experiment, we demonstrate the effectiveness of our proposed infinite CCA

model in discovering the correct number of canonical correlation components, and in

capturing the sparsity pattern underlying the projection matrix. For this, we generated

two datasets of dimensions 25 and 10, respectively, with each having 100 samples. For

this synthetic dataset, we knew the ground truth (i.e., the number of components, and

the underlying sparsity of projection matrix). In particular, the dataset had 4 correlation

components with a 63% sparsity in the true projection matrix. We then ran both the classical

CCA and the infinite CCA algorithm on this dataset. Looking atall the correlations

discovered by classical CCA, we found that it discovered 8 components having significant

correlations, whereas our model correctly discovered exactly 4 components in the first place

(we extract the MAP samples forW andZ output by our Gibbs sampler). Thus, on this
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small dataset, standard CCA indeed seems to be finding spurious correlations, indicating a

case of overfitting (the overfitting problem of classical CCA was also observed in (Klami

and Kaski, 2007) when comparing Bayesian versus classical CCA). Furthermore, as ex-

pected, the projection matrix inferred by the classical CCA had no exact zero entries and

even after thresholding significantly small absolute values to zero, the uncovered sparsity

was only about 25%. On the other hand, the projection matrix inferred by the infinite

CCA model had 57% exact zero entries and 62% zero entries after thresholding very small

values, thereby demonstrating its effectiveness in also capturing the sparsity patterns.

4.5.2 Infinite CCA Applied to Multilabel Prediction

In the second experiment, we use the infinite CCA model to learn a set of related task in

the context of multilabel prediction. For our experiments, we use two real-world multilabel

datasets (Yeast and Scene) from the UCI repository. The Yeast dataset consists of 1500

training and 917 test examples, each having 103 features. The number of labels (or tasks)

per example is 14. The Scene dataset consists of 1211 training and 1196 test examples,

each having 294 features. The number of labels per example for this dataset is 6. We

compare the following models for our experiments.

• Full: Train separate classifiers (SVM) on the full feature set for each task.

• PCA: Apply PCA on training and test data and then train separate classifiers for each

task in the low-dimensional subspace. This baseline ignores the label information

while learning the low-dimensional subspace.

• CCA: Apply classical CCA on training data to extract the shared subspace, learn

separate model (i.e., task parameters) for each task in this subspace, project the

task parameters back to the originalD dimensional feature space by applying the

projectionWx, and do predictions on the test data in this feature pace.

• Model-1: Use our supervised infinite CCA model to learn the shared subspace using

only the training data (see Section 4.4.1).

• Model-2: Use our semisupervised infinite CCA model tosimultaneouslylearn the

shared subspace for both training and test data (see Section 4.4.2).
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The performance metrics used are overall accuracy, F1-Macro, F1-Micro, and AUC

(Area Under ROC Curve). For PCA and CCA, we choseK that gives the best performance,

whereas this parameter was learned automatically for both of our proposed models. The

results are shown in Table-4.1. As we can see, both the proposed models do better than the

other baselines. Of the two proposed model, we see that model-2 does better in most cases,

suggesting that it is useful to incorporate the test data while learning the projections. This

is possible in our probabilistic model since we could treat the unknownYs of the test data

as latent variables to be imputed while doing the Gibbs sampling.

We note here that our results are with cases where we only had access to a small number

of related task (Yeast has 14, Scene has 6). We expect the performance improvements to

be even more significant when the number of (related) tasks is high.

4.6 Related Work
A number of approaches have been proposed in the recent past for the problem of super-

vised dimensionality reduction ofmultilabel data. The few approaches that exist include

Partial Least Squares (Arenas-Garcı́a et al., 2006), multilabel informed latent semantic

indexing (Yu et al., 2005), and multilabel dimensionality reduction using dependence max-

imization (MDDM) (Zhou, 2008). None of these, however, deal with the case when the

data are only partially labeled. Somewhat similar in spirit to our approach is the work on

supervised probabilistic PCA (Yu et al., 2006) that extends probabilistic PCA to the setting

when we also have access to labels. However, it assumes a fixed number of components

and does not take into account sparsity of the projections.

The CCA-based approach to supervised dimensionality reduction is more closely re-

lated to the notion of dimension reduction for regression (DRR), which is formally defined

as finding a low-dimensional representationz ∈ RK of inputs x ∈ RD (K ≪ D) for

predicting multivariate outputsy ∈ RM . An important notion in DRR is that of sufficient

dimensionality reduction (SDR) (Fukumizu et al., 2004, Globerson and Tishby, 2003),

which states that givenz, x andy are conditionally independent, i.e.,x ⊥⊥ y|z. As we

can see in the graphical model shown in Figure 4.1, the probabilistic interpretation of CCA

yields the same condition withX andY being conditionally independent givenZ.

Among the DRR-based approaches to dimensionality reduction for real-valued multi-
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Table 4.1. Results on the multilabel classification task. Bold face indicates the best
performance. Model-1 and Model-2 scores are averaged over 10 runs with different
initializations.

Model Yeast Scene
Acc F1-macro F1-micro AUC Acc F1-macro F1-micro AUC

Full 0.5583 0.3132 0.3929 0.5054 0.7565 0.3445 0.3527 0.6339
PCA 0.5612 0.3144 0.4648 0.5026 0.7233 0.2857 0.2734 0.6103
CCA 0.5441 0.2888 0.3923 0.5135 0.7496 0.3342 0.3406 0.6346

Model-1 0.5842 0.3327 0.4402 0.5232 0.7533 0.3630 0.3732 0.6517
Model-2 0.6156 0.3463 0.4954 0.5386 0.7664 0.3742 0.3825 0.6686

label data, Covariance Operator Inverse Regression (COIR) exploits the covariance struc-

tures of both the inputs and outputs (Kim and Pavlovic, 2009). Please see (Kim and

Pavlovic, 2009) for more details on the connection between COIR and CCA. Besides

the DRR-based approaches, the problem of extracting useful features from data, partic-

ularly with the goal of making predictions, has also been considered in other settings.

The information bottleneck (IB) method (Tishby, Pereira, and Bialek, Tishby et al.) is

one such example. Given input-output pairs(X,Y), the information bottleneck method

aims to obtain a compressed representationT of X that can account forY. IB achieves

this using a single tradeoff parameter to represent the tradeoff between thecomplexityof

the representation ofX, measured byI(X;T), and theaccuracyof this representation,

measured byI(T;Y), whereI(.; .) denotes the mutual information between two variables.

In another recent work (Ji and Ye, 2009), a joint learning framework is proposed, which

performs dimensionality reduction and multilabel classification simultaneously.

In the context of CCA as a stand-alone problem, sparsity is another important issue.

In particular, sparsity improves model interpretation and has been gaining lots of attention

recently. Existing works on sparsity in CCA include the double barrelled lasso, which

is based on a convex least squares approach (Shawe-Taylor, 2008), and CCA as a sparse

solution to the generalized eigenvalue problem (Sriperumbudur et al., 2009), which is based

on constraining the cardinality of the solution to the generalized eigenvalue problem to

obtain a sparse solution. Another recent solution is based on a direct greedy approach,

which bounds the correlation at each stage (Wiesel et al., 2008).

The probabilistic approaches to CCA include the works of (Klami and Kaski, 2007) and

(Archambeau and Bach, 2008), both of which use an automatic relevance determination
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(ARD) prior (Bishop, 1999) to determine the number of relevant components, which is a

rather ad-hoc way of doing this. In contrast, a nonparametric Bayesian alternative proposed

here is a more principled method to determine the number of components.

We note that the sparse Factor Analysis model proposed in (Rai and Daumé III, 2008)

actually falls out as a special case of our proposed infinite CCA model if one of the

datasets (Xor Y) is absent and the noise covariance matrixΨ is diagonal. Besides, the

sparse Factor Analysis model is limited to Factor Analysis whereas the proposed model

can be seen as an infinite generalization of both an unsupervised problem (sparse CCA),

and (semi)supervised problem (dimensionality reduction using CCA with full or partial

label information), with the latter being especially relevant for Multitask Learning in the

presence of multiple labels.

Finally, Multitask Learning has been tackled using a variety of different approaches,

primarily depending on what notion of task relatedness is assumed. Some of the examples

include tasks generated from an IID space (Baxter, 2000), and learning multiple tasks using

a hierarchical prior over the task space (Daumé III, 2009, Xue et al., 2007b), among others.

In this work, we consider multilabel prediction in particular, based on the premise that a

set of such related tasks share an underlying low-dimensional feature space (Ji et al., 2008)

that captures the task relatedness.

4.7 Conclusion
We have presented a nonparametric Bayesian model for the Canonical Correlation

Analysis problem to discover the dependencies between a set of variables. In particular,

our model does not assume a fixed number of correlation components and this number is

determined automatically based only on the data. In addition, our model enjoys sparsity,

making the model more interpretable. The probabilistic nature of our model also allows

dealing with missing data. Finally, we also demonstrate the model’s applicability to the

problem of multilabel learning where our model, directed by label information, can be

used to automatically extract useful predictive features from the data.



CHAPTER 5

MULTITASK LEARNING USING

NONPARAMETRIC BAYESIAN

PREDICTOR SUBSPACES

In this chapter, we present a nonparametric Bayesian model for the problem of Mul-

titask Learning. Our model is based on the assumption that the task parameters (e.g.,

the weight vectors of regression or classification tasks) of the multiple tasks live on a

low-dimensional linear subspace. This model will form the building block of a more

general model for Multitask Learning that will be presented in the next chapter.

5.1 Introduction
Many learning settings consist of multiple prediction problems that are related with

each other in some way. A common instance is multivariate regression or multilabel

classification where each example is associated with several response variables (real-valued

for regression, and discrete-valued for classification). For example, given a document,

one may be interested in predicting its topic category as well as its author. Clearly, such

tasks are expected to be related. A simple way to learn such multiple prediction problems

would be to simply treat them as separate problems and learn separate models for each of

them, essentially ignoring any correlation that might exist among them. Such an approach,

however, fails to exploit any correlations there may be among these tasks, and it is desirable

to share information across tasks if they are related.

Motivated by this idea, a number of techniques have been proposed to exploit task

relatedness in order to better learn a set of related tasks, rather than learning them indi-

vidually. This is commonly known as Multitask Learning (Caruana, 1997), “learning to

learn” (Heskes, 2000), inductive bias (Baxter, 2000), or predicting multivariate responses
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(Breiman and Friedman, 1997), where multiple tasks are pooled together with the goal of

improving the generalization performance of all the tasks. The idea is to use some aspect

that can be shared across all the tasks in order to share their individual statistical strengths,

compensating for the paucity of labeled examples.

In this chapter, we consider one such aspect, namely asharedpredictor subspace. The

assumption here is that all the task parameters share an underlyingbasis space, which

accounts for the task relatedness. Each individual task can then be represented as a linear

combination of the set of basis tasks. Our predictor subspace model is similar in spirit

to (Zhang et al., 2006, 2008). In this work, we propose a nonparametric, fully Bayesian

framework that can learn this subspace without making any parametric assumptions (e.g.,

the framework does not assume the intrinsic dimensionality of the subspace to be known

a priori). We present two models to learn such a subspace, with a special emphasis on

cases when the number of tasks and/or the number of examples per task is small. In

this chapter, we concentrate on Bayesian linear regression (for regression) and Bayesian

logistic regression (for classification). The framework, however, is general enough and can

accommodate a variety of different probabilistic discriminative models. In addition, being

a hierarchical Bayesian model, the model can easily be extended to amixtureof subspaces

setting (described in the next chapter) which allows the task parameters to share anonlinear

manifold.

In Section 5.2, we describe the problem setup and our basic framework to model task

relatedness. Section 5.3 describes both our models. Section 5.4 talks about inference in our

model, Section 8.4 reports experimental results, and Section 8.5 discusses related work.

We finally discuss the mixture extension of our work and conclude with Section 5.9.

5.2 Latent Subspace Model for Task Parameters
To model task relatedness, we assume that the tasks have an underlying basis space and

each actual task is a linear combination of the basis vectors (which act as “source” tasks).

More specifically, suppose we haveM tasks (regression/classification) represented by task

parametersθ1, . . . , θM whereθm ∈ RD is the task parameter for them-th task. We assume

the following generative model for each task parameter:

θm = ZAm + ǫm
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Here,Z ∈ RD×K is a matrix in which each column is aD dimensional basis vector,

Am ∈ RK×1 is the the set of coefficients for themth task parameter, andǫm is task-specific

noise. The matrixZ under this model defines the latent space underlying the set of pre-

dictors, and is shared across all tasks, justifying the task relatedness. The same generative

model, with all task parameters grouped together in a matrixΘ = [θ1 . . . θM ] ∈ RD×M , can

be written in a matrix form asΘ = ZAθ + E, whereAθ = [A1 . . .AM ].

Together, the matrixZ of basis tasks, and the coefficients[A1 . . .AM ] give the task

parameters a parsimonious representation where eachD × 1 task parameter vector is

represented by a vector of sizeK × 1, with K ≪ D. Finally, each rowem of the

D × M matrix E explains the task-specific idiosyncrasies and is assumed to be drawn

from a multivariate Gaussian with a diagonal covariance matrixΨ = diag(ψ11, . . . , ψDD).

At first blush, such a setup may seem like Factor Analysis (Bartholomew and Knott,

1999, Rai and Dauḿe III, 2008). However, unlike Factor Analysis, e.g.,X = ZA + E type

of set-up where the dataX is observed, in this case, the matrixΘ of task parameters isnot

observed. So the “data”Θ itself is a latent variable in this model (others beingZ,A,E,

and the associated hyperparameters). The goal is to learnΘ along with all the other latent

variables, harnessing the data available from all the tasks. Also note that it is asupervised

setting unlike standard Factor Analysis.

A crucial issue in the model is determining the intrinsic dimensionality and sparsity

of the underlying predictor subspace defined byZ. We propose a nonparametric Bayesian

model based on the recently proposed Indian Buffet Process (Section 2.3) (Ghahramani

et al., 2007) to deal with both these issues. The dimensionalityK of the latent space and

the degree of sparsity of the basis space defined byZ is automatically determined by the

IBP prior. Note that the sparsity ofZ is akin to imposing anℓ1-type regularization on

Z as in the Lasso framework, or assuming a Laplace prior on the columns ofZ: Zk ∼
∏D

d=1 LAPLACE(0, η).

5.3 Infinite Latent Subspace Models for
Multitask Learning

Our goal is to simultaneously learn several prediction tasks. In the rest of the exposition

and our experiments, we consider the special case of multilabel prediction where each
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input x is associated with multiple labels. Therefore, predicting each label is a task.

Our framework is, however, more general and can also be applied for cases where each

prediction problem has its own source of input.

In the multilabel setting, learning the prediction task for themth label amounts to learn-

ing the task parameterθm. Formally, given training dataD = {(x1, y
m
1 ), . . . , (xN , y

m
N )} for

taskmwherexi ∈ RD andymi is a real (for regression) or a binary valued (for classification)

response, a learning task parameterized byθm, can be defined as:

Regression:ymi ∼ Nor(θTmxi, ρ
2)

Classification:ymi ∼ Bin(1/(1 + e−θTmxi))

To follow a more compact notation, we shall denote the inputs[x, . . . , xN ] by anN×D

matrix X, the responses for all theM tasks by anN × M matrix Y, and theM task

parameters as aD×M matrixΘ = [θ1 . . . θM ] ∈ RD×M . With this notation, we can define

the prediction setting as a probabilistic modelY|Θ,X ∼ Nor(Y|XTΘ, ρ2I) for regression

(Bayesian linear regression), andY|Θ,X ∼ Bin(1/(1+e−XTΘ)) for classification (Bayesian

logistic regression).

Recall our original setupΘ = ZAθ + E. We wish to model the matrixZ using the

Indian Buffet Process (IBP), thereby automatically choosing the intrinsic dimensionality

of the task basis space defined byZ. However, since IBP defines a distribution over binary

matrices andZ needs to be a real-valued matrix, we modelZ asB ⊙ V, the element-wise

product of a binary matrixB and a real-valued matrixV, both of sizeD ×K. We place an

IBP prior over the binary matrixB and a Gaussian prior over the real-valued matrixV. Our

complete hierarchical model is the following (the corresponding graphical model shown in

Figure 5.1: Top; error term not shown for the sake of brevity):

Y ∼ Nor(XTΘ, ρ2I)(regression)

Y ∼ Bin(1/(1 + e−XTΘ)(classification)

Θ = (B⊙ V)Aθ + E

B ∼ IBP(α)

V ∼ Nor(0, σ2
vI), σv ∼ IG(a, b)

Aθ ∼ Nor(0, σ2
θI), σθ ∼ IG(c, d)
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Figure 5.1. Predictor subspace model. Top: our basic model. Bottom: the augmented
model using both task parametersand input data.X in the augmented model can addition-
ally also consist of unlabeled data. Noise hyperparameters not shown for the sake of brevity.
In both the models, the shaded nodes are observed, and the remaining ones (including the
matrixΘ consisting of task parameters, and the noise hyperparameters) are latent variables
to be learned.
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E ∼ Nor(0,Ψ), ΨD ∼ IG(e, f)

HereΘ, which is itself a latent variable, acts as the “data” in the model and depends

on other latent variables in the model, and the data from actual tasks (B,V,Aθ,E,X,Y). Our

proposed model learnsΘ (along with learning the latent subspace underlyingΘ) by sharing

information across all the tasks.

5.3.1 An Augmented Model for Learning Task Basis

Learning the task subspaceZ (= B ⊙ V) reliably would require a reasonable amount

of data. In the basic model, the only available “data” for learningZ is Θ (which, under

our probabilistic model, is actually itself a latent variable to be learned). Given related but

only a small number of tasksM , theD×M matrixΘ may not be enough to reliably learn

the basisZ. This motivates our second model that allows also using the inputsX from

each task to improve the learning ofZ. Under this model (shown in Figure 5.1: Bottom),

it is assumed that the task parametersΘ and the inputsX both share the same basis space

Z, with different mixing matricesAθ andAx, respectively. This model can be thought of

as simultaneously discovering both the task parameter basis, as well as the latent features

underlying the dataX. Furthermore, under this model, the data matrixX need not only

consist of examples for which labels are known. So, the matrixX shown in Figure 5.1

(bottom) canadditionallyalso consist of unlabeled examples, which are relatively easier to

obtain.

The reason for having the input share the same subspace as the task parameters can

be explained using a Representer theorem (Schölkopf et al., 2001) argument: write the

solution of a regularized loss function as:θ =
∑

i αixi (assume a linear kernel). Now,

if we write each input vectorxi as a combination of basis vectors (Zai + ǫi), then (after

rearranging the coefficients) one can also write the task parameterθ as a combination of

the same basis vectors defined byZ. Therefore, it makes sense to have bothX andΘ share

the same subspace.

5.4 Inference
We take a fully Bayesian approach for inference in this model. Inference is akin to the

Gibbs sampler for the IBP (Ghahramani et al., 2007), except for the following differences:
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• The matrixZ is no longer a binary matrix but is expressed as an element-wise product

of the binary matrixB and the real-valued matrixV. So bothB andV need to be

sampled in conjunction in our model.

• The latent variableΘ acts as the “data” and therefore needs to be sampled from its

posteriorP (Θ|D,B,V,Aθ)whereD = {(x1, y
m
1 ), . . . , (xN , y

m
N )}, (m = [1, . . . ,M ])

denotes the actual data the model has access to.

Inference in our model is done using Gibbs sampling with a few Metropolis-Hastings

steps. The sampler draws posterior samples ofB, V, Aθ, Θ, and the remaining hyperpa-

rameters of the model. Here, we describe the sampling equations for all latent variables

in our basic model. Sampling the hyperparameters (α, σv, etc.) is straightforward and we

skip it due to the space limitation.

5.4.1 Sampling B

Sampling the binary IBP matrixB consists of sampling existing dishes, proposing new

dishes and accepting or rejecting them based on the acceptance ratio in the associated

M-H step. For sampling existing dishes, an entry inB is set as 1 according top(Bik =

1|Θ, B−ik,V,Aθ,Ψ) ∝
m

−i,k

D
p(Θ|B,V,Aθ,Ψ) whereas it is set as 0 according top(Bik =

0|Θ, B−ik,V,Aθ,Ψ) ∝
D−m

−i,k

D
p(Θ|B,V,Aθ,Ψ). m−i,k =

∑

j 6=iBjk is how many other

customers chose dishk.

For sampling new dishes, we use an M-H step where we simultaneously propose =

(Knew,Vnew,Anew
θ ) whereKnew ∼ Poisson(α/D). We accept the proposal with an

acceptance probability given bya = min{1, p(rest|
∗)

p(rest|)
}. Here,p(rest|η) is the probability

of the data given parametersη. We proposeVnew from its prior (Gaussian) but, for faster

mixing, we proposeAnew
θ from its posterior (a Gaussian).

5.4.2 Sampling V

We sample the real-valued matrixV from its posterior:

p(Vi,k|Θ,B,Aθ,Ψ) ∼ Nor(Vi,k|µi,k,Σi,k)

whereΣi,k = (
∑N

n=1

Aθ
2
k,n

Ψi
+ 1

σ2
v
)−1 and µi,k = Σi,k(

∑N
n=1Aθk,nΘ

∗
i,k)Ψ

−1
g . We define

Θ∗
i,k = Θi,n −

∑K
l=1,l 6=k(Bi,lVi,l)Aθl,n. The hyperparameterσv on V has an inverse-gamma

prior and the posterior also has the same form.
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5.4.3 Sampling Aθ

We sample forAθ from its posteriorp(Aθ|Θ,B,V,Ψ) ∼ Nor(Aθ|¯,Σ) where¯ =

ZT(ZZT +Ψ)−1Θ andΣ = I− ZT(ZZT +Ψ)−1Z, whereZ = B⊙ V

5.4.4 Sampling Θ

The posterior forΘ can be written asP (Θ|D,B,V,Aθ) ∝ P (Y|XTΘ)P (Θ). The prior

on Θ is a GaussianNor((B ⊙ V)Aθ,Ψ). For the likelihood term, there are 2 cases. For

regression, the likelihoodP (Y |XTΘ) is Gaussian, so the posterior is available in closed

form and is easy to sample from. Specifically, the posteriorP (Θ|D,B,V,Aθ) is a Gaussian

Nor(µθ,Σθ) where

µθ = Σθ(Ψ
−1(B⊙ V)Aθ + βXTY)

Σ−1
θ = Ψ−1 + βXTX

whereβ is the precision (inverse variance) of the Gaussian likelihood termP (Y |XTΘ).

For classification however, the likelihood is no longer Gaussian, so we lose conjugacy.

There are several ways to deal with this. One way is to use Laplace approximation to the

posterior (Bishop, 2006). Another possibility is to use the variational method proposed

in (Jaakkola and Jordan, 1996) to approximate a non-Gaussian likelihood by a Gaussian

one. We instead use another approach based on the auxiliary-variable-based Gibbs sampler

for logistic regression (Holmes and Held, 2006), which is more appropriate in the Gibbs

sampling scheme we employ.

The auxiliary variable sampler (Holmes and Held, 2006) for logistic regression as-

sociates with each responseyi ∈ {0, 1} an auxiliary variablẽyi = xT
i θ + ǫi with ǫ ∼

Nor(0, λi), such thatyi = 1 if ỹi > 0, and 0 otherwise.λi is assigned a Kolmogorov-

Smirnov distribution. With a normal priorNor(b, v) on θ, the posterior onθ is still a

Gaussian:

θ|ỹ, λ ∼ Nor(µθ,Σθ)

µθ = Σθ(v
−1b+ βXTWỹ)

Σ−1
θ = (v−1 + βXTWX)−1

W = diag(λ1, . . . , λN), ỹ = [ỹ1, . . . , ỹN ]
′
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where the posterior over the auxiliary variablesỹi is a truncated normal, which can be

sampled from using standard techniques.

ỹi|θ, xi, yi, λi ∼

{

Nor(xT
i θ, λi)I(ỹi > 0) if yi = 0

Nor(xT
i θ, λi)I(ỹi ≤ 0) if yi 6= 0

and in our case, the mean and covariance on the normal prior overΘ are given byb =

(B⊙ V)Aθ andv = Ψ, respectively.

5.4.5 Sampling in the Augmented Model

The sampling steps in our augmented model are essentially the same as in the basic

model, except that we replace theD×M matrixΘ by theD× (M +N) matrix [Θ X]. As

in the basic model,Θ still needs to be sampled as above, whereasX stays fixed and does

not have to be sampled.

We note here that although a fully Bayesian solution can be slow with data having a

large number of features (since each feature corresponds to a customer in the IBP model),

one may address this by using a number of recently proposed alternatives to Gibbs sampling

(Doshi and Ghahramani, 2009a) for IBP that can be as much as an order of magnitude faster.

5.5 Prediction
Having learned the task parametersΘ, we use these to make predictions on the test

data. For the test datax of themth task, the prediction can be written as

p(y|x) =
∫

p(y|x, θm)p(θm|µm,Σm)dθm

which is essentially averaging over the predictions made by each of the posterior samples

of θm, whereµm andΣm are the mean and covariance parameters of themth task. Since the

posterior averaging can be computationally expensive, it can also be replaced byθ̂m, the

MAP estimate ofθm. Prediction forx then simply requires plugging in the MAP estimate:

p(y|x) = p(y|x, θ̂m).

5.6 Experiments
We present our experimental results on two real-world multilabel classification datasets

(Yeast and Scene) from the UCI repository, comparing our models against independently

trained Bayesian logistic regression, the pooling-based approach, and another state-of-the-
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art Multitask Learning baseline. The Yeast dataset consists of 1500 training and 917 test

examples, each having 103 features. The number of labels (or tasks) per example is 14. The

Scene dataset consists of 1211 training and 1196 test examples, each having 294 features.

The number of labels per example for this dataset is 6. We use the following baselines:

• LR: Independent Bayesian logistic regression

• pool: Pooling all data and learning a single model

• yaxue: The matrix stick-breaking-process-based Multitask Learning model proposed

in (Xue et al., 2007a)

In the experimental results (Figure 5.2 and Table 5.1) , we refer to our basic model as

model-1, and the augmented model with input data asmodel-2. Note that all the multitask

approaches compared here use Logistic Regression as the base classifier. We use overall

accuracy, F1-Macro and F1-Micro (Yang, 1997), and AUC (Area Under ROC Curve) as the

performance metrics. The Gibbs samplers used in Bayesian logistic regression, the method

of (Xue et al., 2007a), and both of our models were run for 1000 iterations. Results on both

datasets, with full training dataset used, are shown in Table 5.1.

As the results show, both our models perform better than independently trained Bayesian

logistic regression, which completely ignores the task relatedness. When compared across

all the baselines, we obtain consistent improvements for almost all of the scores. Also, the

pooling-based approach, surprisingly, ends up hurting the overall performance here, sug-

gesting that a simple pooling may not always be a good idea. Furthermore, our augmented

model (model-2) does best overall, suggesting that incorporating the input data in learning

the predictor subspace defined byZ indeed helps in learning the task parameters even better,

especially when the number of tasks is small (which is indeed the case with Yeast and Scene

datasets). We also investigated the effect of varying the dataset size starting with a small

number of training examples and incrementing slowly. The results on the Scene data are

shown in Figure 5.2. We see that both our models do considerably better than Bayesian

logistic regression learned separately for each task, especially when the training set size

is small. Moreover, the augmented model does best, implying that the including the input

data while learning the predictor subspace indeed helps. We also observe that even with a
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Figure 5.2. Performance comparison between both our Multitask Learning models, and
Bayesian logistic regression trained separately for each task. Top: Accuracy with varying
training data size. Bottom: AUC score with varying training data size.
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Table 5.1. Comparison of Bayesian logistic regression, pooling approach, kernel stick-
-breaking approach (yaxue), our basic model (model-1), and our augmented model (mod-
el-2), for two multilabel datasets. Bold face implies the best performance. Results are
averaged over 10 runs with different initializations.

Model Yeast Scene
Acc F1-macro F1-micro AUC Acc F1-macro F1-micro AUC

LR 0.5047 0.3415 0.3828 0.5049 0.7362 0.3132 0.3173 0.6153
pool 0.4983 0.3497 0.3910 0.5112 0.7862 0.2842 0.3012 0.5433

yaxue 0.5106 0.3897 0.4022 0.5105 0.7765 0.2669 0.2816 0.5603
Model-1 0.5212 0.3631 0.3901 0.5244 0.7756 0.3153 0.3242 0.6325
Model-2 0.5424 0.3946 0.4112 0.5406 0.7911 0.3214 0.3226 0.6416

very small training dataset, performance of both our models is reasonably close to optimal,

suggesting that it is possible to learn reliably even with a small amount of data. Logistic

regression, on the other hand, falls behind by quite a lot when the amount of training data

is small. It begins to catch up with our models but they still do better, even with the full

data. This evidence supports the model assumption that an underlying task space is shared

across all tasks and learning the task parameters with this assumption indeed improves

performance of all the tasks.

5.7 Related Work
The recent interest in learning a set of related tasks has spurred a range of work in

Multitask Learning with different notions of task relatedness being proposed with varying

degrees of success. One of the earliest works on Multitask Learning includes sharing of

the hidden layers in neural networks to share information across tasks (Caruana, 1997).

Other prominent approaches include tasks based on the assumption of being generated

from an IID space (Baxter, 2000), learning multiple tasks in a Bayesian setting using

a hierarchical prior over the task space (Daumé III, 2009, Xue et al., 2007b), sharing

parameters of Gaussian processes (Lawrence and Platt, 2004), sharing a common structure

on the predictor space (Ando and Zhang, 2005), and structured regularization in kernel

methods (Evgeniou et al., 2006), among others. Extending the task-clustering model of

(Xue et al., 2007b), the matrix stick-breaking process (MSBP) model proposed in (Xue

et al., 2007a) (theyaxue model used as one of our baselines) allows separate clustering and

borrowing of information for the different feature components. This can be important if we
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expect the tasks to be more closely related for some features than for others.

Another notion of task relatedness assumes that thedata from related tasks share an

underlying low-dimensional feature space (Ji et al., 2008) that essentially captures the task

relatedness. This is in contrast with our proposed approach where we assume that the

task-parameters share a latent low-dimensional subspace. Note, however, that our model-2

additionally also performs dimensionality reduction of the input data, sharing information

across tasks. Thus, one may as well use this alternate feature representation of data to learn

the multiple tasks

Structurally, our basic model (model-1) is most similar to the one proposed in (Zhang

et al., 2006). Their model, however, fixes the number of task basis vectors to the number

of tasks, whereas our model automatically infers this. In addition to automatically deter-

mining the intrinsic task dimensionality, an IBP prior onZ (via the binary matrixB) also

allows us to discover any underlying sparsity of the task basis space. Furthermore, the

model proposed in (Zhang et al., 2006) uses EM for inference whereas we propose a fully

Bayesian solution for our proposed models.

Another closely related work similar in spirit to our model is thesemiparametriclatent

factor model (Teh et al., 2005) for regression. This model makes use of a set of Gaussian

Processes (GP), linearly mixed to capture the possible dependencies among the response

variables. The difference between this model and ours is that the former assumes a linear

mixing process in the instance space whereas we assume it to hold in the predictor space.

Finally, the idea of encouraging sparsity of the task basis space is also in line with recent

work on taking advantage of sparsity in Multitask Learning. (Lounici et al., 2009) recently

proposed a model based on grouped LASSO, which enforces sparsity directly on regression

vectors. Our proposed model addresses the issue of sparsity in a somewhat different but

complementary manner as our model assumes that the task basis vectors are sparse.

5.8 A Mixture of Subspaces Model for Multitask Learning
Our Factor-Analysis-based predictor subspace model also admits natural extensions

to more complex settings. In this section, we briefly outline how a nonlinear manifold

underlying the task parameters can be learned by extending our basic linear subspace

model. Note that asingle sharedlinear subspace can be somewhat restrictive due to
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two reasons: a) when there are outlier tasks for which it is unreasonable to assume the

same shared subspace as the other relevant tasks, and b) when underlying task parameter

subspace is anonlinearmanifold. Our predictor subspace model can be easily generalized

to deal with such issues by assuming a mixture of subspaces model. We describe this

generalization in more detail in the next chapter.

5.9 Conclusion
In this chapter, we proposed a nonparametric, fully Bayesian, probabilistic framework

to learn the latent shared subspace of a set of related tasks. The shared subspace captures

the task relatedness in a manner that each task parameter (i.e., the weight vector of a

classification/regression model) can be treated as a linear combination of a set of basis tasks

constituting this subspace. More importantly, we do not restrict the intrinsic dimensionality

of this subspace to ana priori fixed number, but discover it automatically. An additional

advantage of our proposed model is that our prior promotes sparsity of the basis space,

leading to LASSO style notion of model sparsity. Furthermore, we also propose an exten-

sion to the model, which can incorporate inputs from labeled data (and, potentially, also

inputs fromadditionalunlabeled data), to more reliably learn the model when the number

of tasks is small. Our model is also easily extendable to a mixture of subspaces setting as

described in Section 5.8, which can be appropriate for cases where the task parameters lie

on a nonlinear manifold, and/or if there are outlier tasks. We believe that similar flexible

models lead to effective capturing of task relatedness, and can result in improved model

performance in Multitask Learning problems.



CHAPTER 6

NONPARAMETRIC MIXTURE OF SUBSPACES

FOR MULTITASK LEARNING

In this chapter, we generalize the model presented in the previous chapter and show

that this generalization leads to a very flexible Multitask Learning model that can adapt

its task relatedness assumptions on-the-fly based on the data. This is especially desirable

because an incorrect assumption of how the tasks relate may even hurt Multitask Learning

performance. We propose a probabilistic framework for grouping tasks based on their

similarities. We further assume that, within each group, a task can be expressed as a sparse

linear combination of a set ofbasis tasks(i.e., we have a sparse-coding-based representation

of tasks within each group).

6.1 Introduction
Motivated by the desire of flexible modeling of task relatedness, we propose a non-

parametric Bayesian MTL model by representing the task parameters (e.g., the weight

vectors for logistic regression models) as being generated from a nonparametric mixture

of nonparametric factor analyzers. Parameters are shared only between tasks in the same

cluster and, within each cluster, across a linear subspace that regularizes what is shared.

Moreover, by virtue of this being a nonparametric model, various existing MTL models

result as special cases of our model; for example, the weight vectors are drawn from

a single shared Gaussian prior, or form clusters (equivalently, generated from a mixture

of Gaussians), or live close to a subspace, etc. Our model can automatically interpolate

between these assumptions as needed, providing the best fit to the given MTL problem.

In addition to offering a general framework for Multitask Learning, our proposed model

also addresses several shortcomings of commonly used MTL models. For example, task
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clustering (Xue et al., 2007b), which fits a full-covariance Gaussian mixture model over

the weight vectors, is prone to overfitting on high-dimensional problems as the number

of learning tasks is usually much smaller than the dimensionality, making it difficult to

estimate the covariance matrix. A model based on mixtures of factor analyzers, like ours,

can deal with this issue by adaptively estimating the dimensionality of each component,

using less parameters than in the full rank case. Likewise, models based on task sub-

spaces (Agarwal et al., 2010, Rai and Daumé III, 2010, Zhang et al., 2006) assume that the

weight vectors of all the tasks live on or close to asingleshared subspace, which is known

to lead to negative transfer in the presence of outlier tasks. Our model, based on a mixture

of subspaces, circumvents these issues by allowing different groups of weight vectors to

live in different subspaces when grouping all together them would not fit the data well. One

can also view our model as allowing the sharing of statistical strengths at two levels: (1)

by exploiting the cluster structure, and (2) by additionally exploiting the subspace structure

within each cluster.

In the context of MTL, since the task relatedness structure is usually unknown, the

standard solution is to try many different models, covering many similarity assumptions,

with many settings of complexity for each model, and choose the one according to some

model selection criteria. In this work, we take a nonparametric Bayesian approach to this

problem (using the Dirichlet Process and the Indian Buffet Process as building blocks)

such that the appropriate MTL model capturing the correct task relatedness structure and

the model complexity forthat model will be learned in a data-driven manner side-stepping

the model selection issues.

6.2 Mixture of Factor Analyzers-based
Generative Model for MTL

Our proposed model assumes that the parameters (i.e., the weight vector) of each task

are sampled from a mixture of factor analyzers (Ghahramani and Beal, 2000). Note that

our model is defined overlatent weight vectors whereas the standard mixture of factor

analyzers is commonly defined to modelobserved data.

We assume that we are learningT related tasks, where each task is represented by a

weight vectorθt ∈ RD that is assumed to be sampled from a mixture ofF factor analyzers
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where each factor analyzer consists ofK ≤ min{T,D} factors (note: our model also

allows each factor analyzer to have a different number of factors). Here,D denotes the

number of features in the data. Each task is a set ofX andY values, and eachY is assumed

to be generated from the correspondingX value and task weight vector. In our model, the

weight vectorθt for task t is generated by first sampling a factor analyzer (defined by a

mean task parameterµt ∈ RD and a factor loading matrixΛt ∈ RD×K) using the DP,

and then generatingθt using that factor analyzer. In equations, this can be written as

θt = µt + Λtft + εt.

The weight vectorθt is asparselinear combination ofK basis vectorsrepresented by

the columns ofΛt (each column is a “basis task”). The combination weights are given

by ft ∈ RK , which we represent asst ⊙ bt, wherest is a real-valued vector andbt is a

binary valued vector, both of sizeK. Our model uses a Beta-Bernoulli/IBP prior onbt to

determineK, the number of factors in each factor analyzer. The{µt,Λt} pair for each

task is drawn from a DP, also giving the tasks a clustering property, and there will be a

finite numberF ≤ T of distinct factor analyzers. Finally,εt ∼ Nor(0, 1
σ2 I) represents

task-specific noise.

Figure 6.1 shows a graphical depiction of our model and Figure 6.2 shows the gener-

ative story for the linear regression case . The DP base measureG0 is a product of two

Gaussian priors forµt,Λt. In our nonparametric Bayesian model,F andK need not be

knowna priori; these are inferred from the data.

For classification, the only change is that the first line in the generative model becomes

Yt,i ∼ Ber(sig(θt ·Xt,i)), wheresig(x) = 1
1+exp(−x)

is the logistic function andBer is the

Bernoulli distribution.

A number of existing Multitask Learning models arise as special cases of our model as

it nicely interpolates between some different and useful scenarios, depending on the actual

inferred values ofF andK, for a given Multitask Learning dataset:

• Shared Gaussian Prior (F=1, K=0): (Chelba and Acero, 2006). This corresponds

to a single factor analyzer modeling either a diagonal or full-rank Gaussian as the

prior.

• Cluster-based Assumption (F > 1, K=0): (Jacob and Bach, 2008, Xue et al.,

2007b). This corresponds to a mixture of identity-covariance or full-rank Gaussians
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Figure 6.1. A graphical depiction of our model. The task parametersθ are sampled from a
DP-IBP mixture and used to generate theY values.

Yt,i ∼ Nor(θTt Xt,i, I)

θt ∼ Nor(µt + Λt · (st ⊙ bt),
1

σ2
I))

µt,Λt ∼ G st ∼ Nor(0, I) bkt ∼ Ber(πk)

G ∼ DP(α1, G0) πk ∼ Bet(α2/K, 1)

Figure 6.2. The hierarchical model. The cluster indicator variablez is implicit in the draw
from the DP. The Beta-Bernoulli draw forbkt approximates the IBP for largeK (actualK
will be inferred from the data).
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as the prior.

• Linear Subspace Assumption (F=1, K < D): (Rai and Dauḿe III, 2010, Zhang

et al., 2006). This corresponds to a single factor analyzer with less than full rank.

Note that this is also equivalent to the matrixΘ = {θ1, . . . , θT} being a rank-K

matrix (Argyriou et al., 2007).

• Nonlinear Manifold Assumption: A mixture of linear subspaces allows modeling

a nonlinear subspace (Chen et al., 2010) and can capture the case when the weight

vectors live on a nonlinear manifold (Agarwal et al., 2010, Ghosn and Bengio, 2003).

Moreover, in our model, the manifold’s intrinsic dimensionality can be different in

different parts of the ambient space (since we do not restrictK to be the same for

each factor analyzer).

Our nonparametric Bayesian model can interpolate between these cases as appropriate

for a given dataset, without changing the model structure or hyperparameters. From a

nonprobabilistic analogy, our model can be seen as doing dictionary learning/sparse cod-

ing (Aharon et al., 2010) over thelatent weight vectors (albeit, using anundercomplete

dictionary setting since we assumeK ≤ min{T,D}). The model learnsM dictionaries of

basis tasks (one dictionary per group/cluster of tasks, andM inferred from the data) and

tasks within each cluster are expressed as a sparse linear combination of elements from

that dictionary. Our model can also be generalized further; e.g., by replacing the Gaussian

prior on the low-dimensional latent task representationsst ∈ RK by a prior of the form

P (st+1|st), one can even relax the exchangeability assumption of tasks within each group,

and have tasks that are evolving with time.

6.2.1 Variational Inference

As this model is infinite and combinatorial in nature, exact inference is intractable and

sampling-based inference may take too long to converge (Blei and Jordan, 2006, Doshi-

Velez et al., 2009b). Hence, we employ a variational mean-field algorithm to perform

inference in this model. To do so, we lower-bound the marginal log-probability ofY

givenX using a fully factored approximating distributionQ over the model parameters

θ, µ,Λ, z, b, s:
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logP (Y |X) = logEP [P (Y |X, θ, µ,Λ, z, b, s)]

≥ EQ[logP (Y |X)]

−EQ[logQ(Y |X)].

To do so, we approximate the DP and the IBP with a tractable distributionQ. For the DP, we

use a finite stick-breaking distribution, based on the infinite stick-breaking representation

of the DP (Blei and Jordan, 2006). In this representation, we introduce, for eachθt, a

multinomial random variablezt that indexes the infinite set of possible mixture parameters

µ andΛ. The zt vector is nonzero on itsi-th component with probabilityφi

∏

j<i(1 −

φj), whereφ is an infinite set of independentBet(1, α1) random variables (Bet is the Beta

distribution). A finite approximation to the DP is obtained by setting a givenφi to 1,

which sets the probability ofzj for j > i necessarily to 0. While there is a similar stick-

breaking construction to the IBP (Teh et al., 2007a), it is not in the exponential family and

requires complicated approximations, so we represent the IBP by its finite Beta-Bernoulli

approximation (Doshi-Velez et al., 2009b).

The distribution we are approximating then (for the linear regression case) is shown in

Figure 6.3 (top). The stick-breaking distributionSBP , which is the prior forzt, is such

thatP (zt= i) = φi

∏

j<i(1− φj).

In our variational distribution, we set the number of factor analyzers in the truncated

stick-breaking representation to a hyperparameterF and the number of factors in each such

analyzer to a truncation level hyperparameterK. After inference, if the truncation levels

are set high enough, most factor analyzers (and factors within each factor analyzer) will

not be used, effectively approximating the property of the infinite model that only a small

finite number of components is ever used to model a finite data set. It is worthwhile to

note that while the solution found by the variational approximation is necessarily finite

and with complexity bounded by the truncation parameters, it will still implicitly perform

model selection. Therefore, more often than not, it will concentrate most of its posterior

mass on models with less complexity than the truncation parameters suggest. (Ishwaran

and James, 2001) present two theorems to help choose these truncation levels, as using

smaller values ofF andK (particularlyK, as the update equations are quadratic inK) can

lead to significant savings of computing time (in our experiments, we simply set these to

min{D,T}, which we found to be sufficient).
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Yt,i ∼ Nor(θTt Xt,i, I).

θt ∼ Nor(µzt + Λzt(st,zt ⊙ bt,zt),
1

σ2
I)

µf ∼ Nor(0, I), Λf,k ∼ Nor(0, I)

st,f ∼ Nor(0, I), bt,f,k ∼ Ber(βf,k)

zt ∼ SBP (φ), βf,k ∼ Bet(α2/K, 1)

φf ∼ Bet(1, α1)

Q(θt) = Nor(νθt , I)

Q(µf ) = Nor(νµf
, I), Q(Λf ) = Nor(νΛf

, I)

Q(st,f ) = Nor(νst,f , I), Q(b) = Ber(νb)

Q(zt = i) = νzt,i , Q(β) = Bet(ρ1, ρ2)

Q(φ) = Bet(γ1, γ2)

Figure 6.3. Variational approximation. Top: the distribution being approximated. Bottom:
Our approximatingQ distribution (note:P (Y |θ) is lower-bounded directly)

Our approximatingQ distribution is shown in Figure 6.3 (bottom). For the linear

regression case, we treatP (Y |θ) by lower-bounding it directly, without introducing an

approximating distribution forY . In the case of logistic regression, we use the lower bound

by (Jaakkola and Jordan, 1996) that allows us to integrate out the logistic function.

Apart from approximating the DP with the truncated stick-breaking prior, approx-

imating the IBP with a set of symmetric, finite Beta distributed variables, and lower-

bounding the logistic function with a quadratic, all the computations involved in deriving

the variational lower bound are straightforward exponential-family computations. Note

that forQ, we could use more general covariances instead of the identity matrices. In

practice, we found that this did not improve classification performance, and it would imply

a significantly higher computational cost. Another less expensive option, however, would

be to use the same hyperparameter for each feature, i.e., a spherical (instead of diagonal)

covarianceτ 2I, which would require optimizing w.r.t. a single hyperparameterτ . The

variational parameter updates are1:

1The complete derivations are provided in the Appendix.
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γf,1 = 1 +
∑

t

νzt,f

γf,2 = α1 +
∑

t

∑

j>f

νzt,j

νzt,f ∝ exp
(

̥(γf,1)−̥(γf,1 + γf,2)

+
∑

j<f

(̥(γj,2)−̥(γj,1 + γj,2))

+EQ[logP (θt|zt = f)]
)

ρf,k,1 =
α2

K
+
∑

t

νbt,f,k , ρf,k,2 = 1 +
∑

t

(1− νbt,f,k)

νbt,f,k = sig
(

̥(ρf,k,1)−̥(ρf,k,2)

+ σνzt,f

([

νθt − νµf
− (νst,i + 1)νΛf,i

−
∑

j 6=i

νst,jνbt,f,jνΛf,j

]T

νΛf,i
νst,i −

D

2
ν2st,i −

DF

2

))

νst,i = (1 + σνzt,fνbt,f,i(D + ||νΛf,i
||2))−1

νzt,fσ
((

νθt − νµf
0.5
∑

j 6=i

νst,f,jνbt,f,jνΛf,j
)TνΛf,i

νbt,f,i

)

νµf
=

∑

t νzt,fσ(νθt − νΛf
(νst,f ⊙ νbt,f ))

1 + σ
∑

t νzt,f

νΛf,i
=

(

1 + σ
∑

t

νzt,fνbt,f,i(1 + ν2st,f,i)
)−1

σ
∑

t

νzt,fνst,f,iνbt,f,i

(

νθt − νµf
−

1

2

∑

j 6=i

νst,f,jνbt,f,jνΛf,j

)

In the above,̥ denotes the digamma function. While it is possible to updateνθt

analytically, the update requires inverting a matrix, and in our experiment, this matrix was

often ill-conditioned, so we updatedνθt by optimizing the lower bound with the L-BFGS-B

optimizer (Zhu et al., 1997). The optimizer is run until convergence at each iteration,

warm-started with the previous value. We note that it could be replaced by any other

optimizer, including gradient methods, with no changes in the above equations.

For regression, the gradient of the lower bound with respect toνθt is

∇L(νθt) = σ
∑

f

νzt,f
(

νθt − νµf
− νΛf

(νst,f ⊙ νbt,f )
)

+
Nt
∑

i

(

Yt,iXt,i −Xt,iX
T
t,iνθt

)

.
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For classification, the gradient is similar, the main difference being that there is an extra

factor in theXt,iX
T
t,iνθt term involving the variational parameter for the lower bound of the

logistic function.

We also optimize the lower bound w.r.t the precision parameterσ to obtain an empirical

Bayes estimate for1
σ
:

∑

t

∑

f

νzt,f

(

||νθt − νµf
− νΛf

(νst,f ⊙ νbt,f )||
2

KDF
+

∑

i νbt,f,i(ν
2
st,f,i

+ ||νΛf,i
||2)

KF
+

1

K

)

.

The hyperparametersα1 andα2 are held fixed and can be optimized by cross-validation.

We initialize the inference process withνθt set to the maximum likelihood solution to each

task’s regression or classification problem. Then, we alternate updating all other parameters

to convergence and updatingνθt given the other parameters. The value ofνθt , and hence the

regression or classification accuracy, usually stabilizes after the first couple of iterations,

and the only changes observed are further improvements to the lower bound. This matches

behavior observed in (Ando and Zhang, 2005). All our experiments were run on three

iterations.

6.3 Experiments
We present results on both synthetic and real-world datasets, and on linear regression

and classification settings. As a sanity check to show that our model can learn the under-

lying latent task structures correctly, we generated a synthetic data consisting of 5 clusters

of tasks. Each cluster consists of 10 binary classification tasks, having 100 examples each.

We used a 50/50 split for train/test data. Each task is represented by a weight vector of

lengthD = 20. Figure 6.4 (top) shows the true correlation structure of the tasks and

Figure 6.4 (bottom) shows the recovered structure by our model: it correctly infers the

correct number (5) of clusters. Our model resulted in a classification accuracy of 83.2%,

whereas independently learned tasks resulted in an accuracy of 79.2%.

Our next set of experiments compare our model with a number of baseline methods on

several synthetic and real-world multitask regression and multitask classification problems.

Our baselines include:

• Independently Learned Tasks -STL: assumes the tasks are independent (no informa-

tion sharing).
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Figure 6.4. Synthetic Data. Top: Plot of the correlation matrix of the ground-truth weight
vectors of the 50 tasks. Bottom: Inferred correlation matrix
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• Multitask Feature Learning -MTFL: assumes the tasks share a common set of

features (Argyriou et al., 2007).

• Shared Gaussian prior over the weight vectors -PRIOR (Chelba and Acero, 2006):

assumes the tasks are drawn from a shared Gaussian prior with a unknown but fixed

mean and covariance.

• Single shared subspace -RANK (Rai and Dauḿe III, 2010, Zhang et al., 2006):

assumes the tasks live close to a linear subspace (also equivalent to the matrix of the

weight vector being low-rank).

• DP mixture model-based task clustering -DP-MTL (Xue et al., 2007b): assumes

the weight vectors are generated from a mixture model, each component being a

full-rank Gaussian.

• Learning withWhom toShare -LWS (Kang et al., 2011). It is an integer-programming-

based method that learn the task grouping structure (with prespecified number of

groups) and encourages the tasks within each group to share features.

Of these baselines, MTFL and LWS were used for regression problems only since the

publicly available implementations are for regression. In the experiments, we would refer

to our model asMFA-MTL (Mixture ofFactorAnalyzers forMultiTaskLearning). In all

our experiments, we set the hyperparametersα1 = 1 andα2 = 5, as these values performed

reasonably in preliminary experiments. The truncation level for the DP can be chosen to be

equal to the number of tasksT , and for the IBP, to be the minimum ofT and the number of

featuresD in the data. This is often more than necessary and in most of our experiments,

much smaller truncation levels were found to be sufficient.

For our multitask regression experiments, we compared MFA-MTL with STL, MTFL,

and LWS (we skip the other baselines as they performed comparably or worse than MTFL

and LWS). For this experiment, we used three datasets - one synthetic dataset used in (Kang

et al., 2011), and two real-world datasets used commonly in the Multitask Learning lit-

erature: (1)School: This dataset consists of the examination scores of 15362 students

from 139 schools in London. Each school is a task so there are a total of 139 tasks for

this dataset. (2)Computer: This dataset consists of a survey of 190 students about the
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chances of purchasing 20 different personal computers. There are a total of 190 tasks,

20 examples per task, and 13 features per example. For the synthetic data, we followed

the similar procedure for train/test split as used by (Kang et al., 2011). For School and

Computer datasets, we split the data equally into training and test set and further only

used 20% of the training data (training set deliberately kept small as is often the case with

Multitask Learning problems in practice). The average mean squared errors (i.e., across

tasks) in predicting the responses by each method are shown in Table 6.1. As shown in

Table 6.1, MFA-MTL outperforms the other baselines on all the datasets. Moreover, for

the synthetic data, we found that it also inferred the number of task groups (3) correctly

(the LWS baseline needs this number to be specified - we ran it with the ground truth). On

the school and computer datasets, MFA-MTL outperforms STL and LWS and does slightly

better than MTFL. For LWS on these two datasets, we report the best results as obtained

by varying the number of groups from 1 to 20.

We next experiment with the classification setting. For this, we chose two datasets: (1)

Landmine: The landmine detection dataset is a subset of the dataset used in the symmetric

Multitask Learning experiment by (Xue et al., 2007b). It contains 19 classification tasks and

the tasks are known to be clustered for this data. (2)20ng: We did the standard training/test

split of 20 Newsgroups for Multitask Learning, following (Raina et al., 2006), and used a

50/50 split for the landmine data. The classification accuracies reported by our model and

the various baselines on landmine and 20 Newsgroups datasets are shown in Table 6.2. As

shown in Table 6.2, our method outperforms the various baselines. We note that 3 of them

(PRIOR, RANK, and DP-MTL), which are methods proposed in prior work, are special

cases of our model (as discussed in Section 6.2). In particular, RANK performs worse than

our method, potentially because all weight vectors share the same subspace, which may not

be desirable if not all the tasks are related with each other. DP-MTL performs worse than

our method, potentially because it fits afull-rank Gaussian for each mixture component and

Table 6.1. Mean squared error (MSE) of various methods on multitask regression problems
Synthetic School Computer

STL 1.35 468.7 153.3
MTFL 0.36 376.1 30.4
LWS 0.37 430.9 30.2

MFA-MTL 0.18 374.5 29.8
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Table 6.2. Multitask classification accuracies of various methods on theLandmine and
20ng datasets

Landmine 20ng
STL 52.9% 69.3%

PRIOR 52.9% 75.8%
RANK 53.8% 75.8%

DP-MTL 53.8% 75.7%
MFA-MTL 62.4% 76.9%

is especially prone to overfit if the number of tasks is smaller than the number of features.

Finally, we investigated the behavior of different algorithms in the small training data

regimes. For this, we varied the amount of training examples per task (for landmine data,

we varied the fraction from 20% to 100%; for 20 Newsgroup, we varied the number of

examples from 20 to 100). Results are shown in Figure 6.5. To uncrowd the figure, we

compare only with STL and DP-MTL (the best performing baseline). In the small data

regimes, our algorithm performs better as compared to both STL and DP-MTL. Another

important aspect of an MTL algorithm is its asymptotic behavior in the limit of large

training data per task. For this experiment, we compared MFA-MTL with STL on the

school multitask regression dataset by providing each algorithm the complete training data.

MFA-MTL resulted in an MSE of 261.4 as compared to STL, which gave an MSE of

271.1. Therefore, our algorithm tends to do comparably (in fact, marginally better) to

independently learned tasks even when the amount of training data per task is sufficiently

large.

6.4 Related Work
Apart from the prior work on Multitask Learning discussed in Section 8.1, our model is

based on a somewhat similar motivation as the model proposed in (Argyriou et al., 2008).

Their model assumes that tasks can be partitioned into groups and tasks within each group

share a kernel. Their assumption is an extension of the earlier work on Multitask Feature

Learning (Argyriou et al., 2007) (one of the baselines we used in our experiments) that

assumes all tasks share the common kernel. In (Kumar and Daumé III, 2012), the authors

assume that there is asingleset of taskbasis vectors(i.e., a task dictionary) and each task

is asparsecombination of these basis vectors. In their model, the number of basis vectors
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shared between two tasks can be seen as the pairwise task similarity. In (Kang et al., 2011),

the authors proposed a model based on the assumption that the tasks exist in groups and

the tasks within each group share features, which is again similar in spirit to our work

(this model was one of our baselines in the experiments). In contrast, the generative model

we presented in this chapter offers a number of advantages over these models, such as the

ability to deal with missing data in a principled manner, doing automatic model complexity

control in a nonparametric Bayesian setting, and being flexible enough to subsume these

and many other notions as task relatedness used in Multitask Learning.

Among other related work, (Canini et al., 2010) propose Hierarchical Dirichlet Process

models as good models for human categorical learning. The idea is that one can model

transfer learning by assuming that people unsupervisedly learn subgroups of known classes

and use these groups to refine the knowledge of new classes by sharing subgroups via

a Hierarchical Dirichlet Process. Our model can be seen as a discriminative analog of

their generative model, where aspects of the task parameter—instead of the distribution of

the test examples—are shared among similar tasks and the sharing structure is discovered

automatically.

6.5 Future Work and Discussion
We proposed and evaluated a nonparametric Bayesian Multitask Learning model that

usefully interpolates between many different previously proposed models for estimating

task parameters of multiple related learning problems, such as a shared Gaussian prior

(Chelba and Acero, 2006), a clustering structure (Xue et al., 2007b), reduced dimen-

sionality (Argyriou et al., 2007, Zhang et al., 2006), manifold structure (Agarwal et al.,

2010, Ghosn and Bengio, 2003), etc. We presented a variational mean-field algorithm

for this model that exhibits competitive results on a set of synthetic as well as real-world

Multitask Learning datasets. The proposed model, by using the flexibility afforded by

nonparametric Bayesian techniques, requires only minimal assumptions to be applied to

any given Multitask Learning problem. A possible future work is studying a Hierarchical

Dirichlet Process variant of this model where different tasks are allowed to share exactly

thesameθ parameters, which might be beneficial in cases where training data are especially

sparse or the tasks are more strongly clustered.



CHAPTER 7

BEAM SEARCH-BASED MAP INFERENCE FOR

THE INDIAN BUFFET PROCESS

This chapter describes our beam-search algorithm for the Indian Buffet Process.

7.1 Introduction
Although the Indian Buffet Process offers a flexible way to learn the correct num-

ber of latent features in the data, this flexibility comes at a price (as is true for most

interesting/useful Bayesian models!). The combinatorially complex nature of the IBP

(search over all possible binary feature assignment matrices) poses significant challenges

during inference in the IBP-based models. MCMC-based approaches such as Gibbs sam-

pling (Ghahramani et al., 2007) are traditionally used in these models, which tend to be

computationally expensive and may take long to converge. Another alternative is to use

variational methods (Doshi-Velez et al., 2009c). Although faster than the sampling-based

methods, these can be difficult to design and implement, and can potentially run into local

optima issues.

Sampling-based methods such as MCMC produce samples from the posterior distribu-

tion. However, in many applications, we only require themaximum a posteriori(MAP)

sample, discarding all other samples. This naturally leads to the following question:If

all we care about is a single MAP assignment, why not find one directly?Furthermore,

note that although sampling and variational methodsaim to explore the full posterior over

the latent feature matrix, they may not be well-suited for searching a posterior mode:

Sampling may take too long to mix and get close to the maxima; variational methods may

not be able to find the true maxima due to their inherent local maxima problem. In this

chapter, we propose search algorithms such asA∗ and beam search (Russell and Norvig,
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2003) for finding anapproximateMAP estimate of the latent feature assignment matrix.

Our approach can be a viable and more efficient alternative to sampling or variational

approaches if only the MAP estimate is required. If samples from the true posterior are

desired, then the search-based MAP estimate can serve as a sensible initializer for MCMC,

resulting in faster convergence.

7.2 Infinite Latent Feature Model
Given anN × D matrixX of N observations havingD dimensions each, the latent

feature model representsX asZA + E. Here,Z is anN × K binary matrix (withK ≪

D) denoting which latent features are present in each observation,A is aK × D matrix

consisting of feature scores, andE consists of observation specific noise. A crucial issue in

these models is the choice ofK, the number of latent features. The Indian Buffet Process

(Section 2.3) (Ghahramani et al., 2007) defines a prior distribution on the binary matrixZ

such that it can have a potentially unbounded (i.e., infinite) number of columns, and offers

a principled way to selectK automatically from the data.

The IBP defines the following probability distribution over theleft-ordered-formof Z

(invariant to latent feature ordering; see (Ghahramani et al., 2007) for details):

P ([Z]) =
αK

∏2N−1
h=1 Kh!

e(−αHN )

K
∏

k=1

(N −mk)! (mk − 1)!

N !

whereHN is theN th harmonic number,Kh is the number of columns inZ with binary

representationh, andmk =
∑

i Zik. K is the number of nonzero columns inZ.

In this chapter, we consider models of the formX = ZA+E (e.g., the linear-Gaussian

model (Ghahramani et al., 2007)) whereA can be integrated out and thusP (X|Z) =
∫

P (X|Z,A)P (A)dA can be represented in closed form, or can be approximated effi-

ciently. Here, we do not describe computingA but, givenZ, it is easy to compute in

these models.

7.3 Search-based MAP Estimate for IBP
Our beam-search algorithm (Figure 7.1) for IBP takes as input the set of observations,

a scoring functiong, and a maximum beam sizeb. The algorithm maintains a max-queue

of candidate latent feature assignment matrices. Each of these matrices on the queue is
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function IBPSearch
input: a scoring functiong, beam sizeb, dataX1:N

output: IBP matrixZ

1: initialize max-queue:Q← [〈〉]
2: while Q is not emptydo
3: remove the best scoring candidateZ fromQ
4: if |Z| = N then return Z
5: for all possible assignmentsZN0 for the next (sayN0-th) customer (i.e., each

of the 2K possibilities from existing dishes, and for each possibility 0 and
max{1, ⌈α/N0⌉ − 1} new dishes)do

6: letZ0 = [Z;ZN0 ]
7: compute the scores = g(Z0, X)
8: update queue:Q← Enqueue(Q,Z0, s)
9: end for

10: if b <∞ and|Q| > b then
11: Shrink queue:Q← Q1:b

12: (drop lowest-scoring elements)
13: end if
14: end while

Figure 7.1. The generic IBP search algorithm (takes the scoring function as input).

associated with a score on the basis of how likely it is to maximize the posterior probability

of thecompleteZ givenX. This essentially means how likely it is to being the eventual

MAP estimate once we have seen all the observations. The maximum beam size specifies

the maximum number of candidates allowed on the queue at any time. At each iteration,

the highest scoring candidateZ is removed from the queue, and is expanded with the set

of all possible feature assignments for the next (sayN0-th) observation. For the possible

expansions, we consider2K possibilities for assigning the existing dishes and, for each

such possibility, 0 andmax{1, ⌈α/N0⌉ − 1} new dishes (note:⌈α/N0⌉ − 1 is themode

of the number of new dishes chosen by theN0-th customer in the IBP culinary analogy).

Our algorithm therefore explores matricesZ of sizesup toN ×
∑N

n=1max{1, ⌈α/N0⌉ −

1}, but this is a reasonable approximation since the number of latent features is typically

much smaller thanN orD. Scores are computed for each of the new candidates and these

candidates are placed in the queue. If the beam size is not infinite, then we also drop the

lowest scoring elements so as to maintain the maximum queue size. We stop at the point

when the number of rows in the matrix removed from the queue equals the total number of
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observations.

Scoring of the candidate latent feature assignment matrices constitutes an important

aspect of our search algorithms. Recall that finding the MAP estimate requires findingZ

that maximizes the posterior probability ofZ givenX, P (Z|X), which is proportional to

the joint probabilityP (Z,X). However, since our algorithm processes one observation at

a time (in an online fashion), at any point having seenN0 observations, we can only have

an upper bound on the joint probability of allN observations. Since the joint probability

P (Z,X) can be again factored asP (Z)P (X|Z), an upper bound onP (Z,X) can thus be

obtained by independently upper-bounding the prior probability:

P (Z) =
K
∏

k=1

α
K
Γ(mk +

α
K
)Γ(N −mk − 1)

Γ(N + 1 + α
K
)

wheremk =
∑

i Zik, and the likelihoodP (X|Z), both given the firstN0 observations.

In fact, as we shall show (Section 7.4), it is possible to even explicitly upper bound the

prior term. Unfortunately, the same is not true for the likelihood term (as it also involves

the future observations and their latent feature assignments), and we therefore propose

several heuristics for upper bounding the likelihood term (Section 7.5). The sum (assuming

probabilities are expressed on log scale) of these two terms is the scoring function.

The search algorithm is guaranteed to find the optimal MAP feature assignment matrix

if the beam size is infinite and the scoring functiong is admissible. Being admissible means

that it shouldover-estimatethe posterior probability ofbest possiblefeature assignmentZ

that agrees withZ0 on the firstN0 observations. Denoting the condition asZ|N0 = Z0 as

therestrictionof Z to the firstN0 elements, admissibility can be written formally as:

g(Z0, X) ≥ max
Z:Z|N0=Z0

P (Z,X)

Although the admissible scoring functions provably lead to optimal MAP estimates,

the NP-hardness of the MAP problem implies that these can be inefficient (in terms of

enqueue/dequeue operations on the queue; a large gap between these two numbers would

mean that it takes too long to search for the optimal candidate). For efficiency reasons, it

is often useful to have scoring functions that occasionallyunder-estimatethe true poste-

rior probability, and are thereforeinadmissible. In fact, as described in Section 7.5, our

proposed scoring functions are not guaranteed to be admissible in general, but they lead
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to efficient approximate MAP estimates for theZ matrix (see the Experiments section for

evidence supporting this).

Our search algorithm is akin to theA∗ search (Russell and Norvig, 2003) where we

optimize apath-cost-so-farfunction plus acost-to-goalfunction. In our case, we rank a

candidate feature assignment matrix by computing its score that is a summation of the joint

probabilityP (X,Z) up to firstN0 observations (similar to the path-cost-so-far), and an

upper boundon the joint probability corresponding to the remaining observations (similar

to the cost-to-goal). Since the joint probability can be factored into the prior and the

likelihood terms, we next show in Section 7.4 and Section 7.5 how each of these can be

upper bounded. In keeping with the culinary metaphor of IBP, in the rest of the exposition,

we will occasionally refer to observations as customers, and features as dishes.

7.4 Upper Bounding the Prior
Given the customer-dish assignmentZ0 for the firstN0 customers, it is possible to

explicitly compute the dish assignment for the remaining customers that maximizes the

probabilityP (Z). For this maximization, we need to consider two cases for the remaining

customers: (a) maximization w.r.t. the already selected dishes, and (b) maximization w.r.t.

the new dishes.

7.4.1 Upper Bounding w.r.t. Already Selected Dishes

Given anN0×K matrixZ0 for the firstN0 customers, if one were to maximize the IBP

prior P (Z), then the(N0 + 1)th customer would choose an already selected dishk only if

it was chosen previously by more than half the customers (i.e., themajority). Let us denote

this event by a random variablexk = I(mk>N0/2), whereI is the indicator function andmk

is the number of previous customers who chose thekth dish. Now, to maximizeP (Z), all

subsequent customers would also make the same choice as the(N0 + 1)th customer (since

the customers making that choice will continue to remain in the majority). To derive the

probability of this event happening, we appeal to the exchangeability of the IBP and can

assume that the(N0 + 1)th customer comes at the end after the remaining(N − N0 − 1)

customers (who either all select or all skip the dishk). Therefore the probability that the

(N0 + 1)th customerselectsdishk is pk = (mk + (N −N0 − 1))/N , and the probability

that this dish is skipped1−pk. Since all the(N−N0) customers make the identical choice
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in selecting/skipping this dish, the random variablexk ∈ {0, 1} andpk take on the same

values for each customer. This leads to a score w.r.t. dishk:

sk = [pxk

k (1− pk)
(1−xk)](N−N0)

which is a product of(N − N0) binomials. The total score for the maximization w.r.t.

the existing dishes is given by theproduct (or the log sum if using log probabilities) of

individual scores for each of the existing dishes.

7.4.2 Upper Bounding w.r.t. the New Dishes

In the IBP culinary metaphor, thenth customer selectsPoisson(α/n) number of new

dishes so the prior would be maximized if customern selects a number of dishes equal to

themodeof this number, which is⌊α/n⌋. The score contribution of this part forP (Z) is

given by:
∏

n=N0+1:N

(α/n)⌊α/n⌋! exp(−α/n)

⌊α/n⌋!

The part of the above product involving theexp terms just requires computing a harmonic

mean of(N − N0) numbers. For the terms involving⌊α/n⌋, we only need to care about

those for which⌊α/n⌋ > 0. This computation is inexpensive sinceα is usually small and

therefore⌊α/n⌋ quickly goes to zero .

7.5 Upper Bounding the Likelihood
Unlike the prior term, an explicit maximization is not possible for the likelihood be-

cause the future observations would not have been assigned any latent features yet, pre-

cluding the associated likelihood computation. We propose here several heuristics for

approximating the likelihood of future observations.

7.5.1 A Trivial Function

Given the matrixZ0 havingN0 many rows, a possible trivial upper bound onP (X|Z)

can be obtained by only considering the likelihood over the firstN0 observations. This

function is given by:

gTrivial(X|Z
0) = P (X1:N0 |Z0)

For discrete likelihood distributions (e.g., multinomial likelihood), thetrue likelihood

of each future observation is upper bounded by 1. Therefore, the above function would
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be a trivial upper bound onP (X|Z), since it assigns a probability one to the likelihood

term of each future observation. With an infinite beam size, this admissible function is

guaranteed to find the optimal MAP estimate. Note that this would however not be true for

continuous likelihood distributions, e.g., Gaussian likelihood, which is actually a density

(not a probability) upper bounded by(2πσ2
X)

−1/2. Unless the data varianceσX is such

that (2πσ2
X)

−1/2 ≤ 1, admissibility is not guaranteed in such cases, and the search would

not be guaranteed to find the global optimal solution. Moreover, as discussed earlier in

Section 7.3, even though the trivial function is admissible in certain cases and may find the

optimal solution, the bound tends to be quite loose, which can make the search inefficient

(see empirical evidence in the Experiments section).

7.5.2 An Inadmissible Function

Another possibility is to use a function which is significantly tighter (i.e., better approx-

imation to the true likelihood), but not admissible in any of the cases. Therefore, the search

is no longer guaranteed to find the global optimal solution. However, since it is tighter, it

is much more efficient to run, and can find approximate solutions much more quickly. This

inadmissiblefunction is given by:

gInad(X|Z
0) = P (X|[Z0;ZN0+1:N ])

whereZN0+1:N is a matrix of size(N − N0) × (K + N − N0) such that each future

customern ∈ [N0 + 1, . . . , N ] gets assigned a single (owned by himself) new dish.

Here,[Z0;ZN0+1:N ] denotes row-wise concatenation with appropriate padding ofZ0 and

ZN0+1:N with zeros. This is an inadmissible heuristic since it is always preferable to instead

assign the same set of dishes to two customers if both are identical, a fact which this

function does not take into account.

7.5.3 A Clustering-Based Function

Even though the trivial function discussed above is admissible in certain cases (i.e.,

discrete likelihood distributions), the upper bound is very loose since it does not take into

account the feature assignments of any of the future observations, and the search would

therefore be inefficient. The inadmissible function, on the other hand, assigns a single new

dish to each future customer which may not mirror the likelihood of future observations
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that closely. Our next proposal aims to find a middle ground by trying to account for the

probable dish selection by the remaining customers.

One way to incorporate the dish assignment of future customers in the likelihood term

is to first do acoarse levelof feature assignment. Given the set of observationsX =

[X1, . . . , XN ], we first run a clustering algorithm with a small number of clusters. Having

obtained a clustered representation of the data, we pick one representative point from each

cluster and run the IBP search algorithm (using the trivial scoring function described above)

on these cluster representative observations. This gives us acoarsefeature assignment for

the representative points. We then run the IBP search on the full data and, while computing

the likelihood (heuristic) of a future observationn, we use the same set of latent features

for this observation as assigned to the representative data point of the cluster to which it

belongs.

7.6 Experiments
We report experimental results on a variety of datasets (both synthetic and real), and

compare the search-based approaches against a number of baselines. Our results are on

two types of tasks: (1) latent Factor Analysis (Rai and Daumé III, 2008), and (2) factor

regression (Rai and Daumé III, 2008, West, 2003), which uses the factors for making pre-

dictions in classification or regression settings (we experiment with classification setting).

For the Factor Analysis task, we report the joint log probability scores and the time taken,

and for the factor regression task, we report the predictive accuracies on a held-out test

data.

7.6.1 Baselines and Experimental Setup

The baselines we compare against are uncollapsed Gibbs sampling (Ghahramani et al.,

2007), infinite variational inference (Doshi-Velez et al., 2009c), and particle filtering (Wood

and Griffiths, 2007) for the IBP. In addition, we also briefly discuss a comparison with

a greedy search-based approach (Section 7.6.6). The variational inference was given 5

random restarts to avoid the issue of local optima (the reported time is the average time

taken for asingle run). The particle filter was run with a varying number of particles

(500-5000) and the reported results are the best achieved with a minimum possible number

of particles. We would like to note here that we also compared with the semicollapsed
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Gibbs sampler for IBP (Doshi-Velez and Ghahramani, 2009), but the results and the running

times were very similar to the uncollapsed Gibbs, so we included only the uncollapsed

version in our experiments. The uncollapsed version has the same time complexity as the

semicollapsed version (linear in the number of observations). Although the uncollapsed

version is sometimes known to mix slowly, we did not observe this in our experiments.

For our search-based approaches, we used small beam sizes (10-20), which seemed to

be enough for our experiments. In our first experiment, we applied our search-based

approach to the block-image dataset with known ground truth, generated in a manner akin

to (Ghahramani et al., 2007) using a linear-Gaussian model of the data:X = ZA + E.

The feature score matrixA has a zero mean Gaussian prior:A ∼ Nor(0, σ2
A), and the

noise as well is Gaussian:E ∼ Nor(0, σ2
X). Our dataset consists of twenty 4× 4 synthetic

block-images generated by combining four different 4× 4 latent images. The latent feature

assignment matrixZ is 20× 4. More importantly, we note thatZ was not generated

from an IBP prior. Each generated image had Gaussian noise withσX = 0.1 added

to it. We then ran our search-based approaches and various baseline approaches on this

dataset. The trivial, cluster-based, and the inadmissible approaches finish reasonably fast,

taking a time of 1.02 seconds, 0.86 seconds, and 0.45 seconds, respectively, suggesting

that the inadmissible search is the fastest among all (the number of enqueued/dequeued

elements, though not reported to conserve space, were also the smallest for this method). In

comparison, Gibbs sampling took 3.30 seconds, particle filter 0.98 seconds, and the infinite

variational inference (Doshi-Velez et al., 2009c) took 3.73 seconds to finish (truncation

level was set to 12). All approaches recovered the ground truth latent features.

7.6.2 E-Coli Data

The E-Coli dataset is a gene-expression dataset with known gene-pathway loadings,

which is a sparse 50× 8 binary matrix (K= 8) (Rai and Dauḿe III, 2008). This is a

semireal dataset; the gene-factor connectivity network (binaryZ matrix) is taken from a

real dataset and the observations are simulated using this network using a linear-Gaussian

model. We generated 50 observations with 100 dimensions each. The number of latent

features, time taken, and log-joint probabilities reported by our search-based approaches

and the other baselines are given in Table 7.1. As we see, our search-based approaches
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Table 7.1. Results on the E-coli data
K Time (sec) logP(X,Z)

Gibbs Sampling 6 49.8 -4681
Particle Filter 7 17.8 -5369

Infinite Variational 3 12.1 -6875
Trivial 8 72.5 -5887

Cluster-Based 8 15.5 -5759
Inadmissible 8 10.3 -5865

successfully recover the correct number of latent features (8) in the data, and are reasonably

faster (with the inadmissible approach being the fastest) than the other baselines. The

variational inference, although comparable to search in terms of speed, severely underesti-

mates the number of latent features, possibly due to getting trapped in a local optima. In

our experiment, we set the beam size to 10 in all the search-based approaches. The IBP

parameterα was set to 3 and the hyperparameters (the noise varianceσX and latent feature

varianceσA) were set based on the data variance, for all the algorithms, akin to the method

in (Doshi-Velez and Ghahramani, 2009, Doshi-Velez et al., 2009c).

7.6.3 Scalability

Next, we demonstrate the scalability of the search-based algorithms with the number

of observations. We report experiments on one synthetic and one real-world dataset. The

synthetic dataset was generated using the IBP Prior withα = 1 and linear Gaussian model

of the data with noise varianceσX = 0.1. The generated dataset consists of 1000 data

points, each with 100 dimensions, and the number of latent featuresK is 4. We varied

the number of observations from 200 to 1000 with increments of 200. For the real-world

dataset, we take the 50× 100 E-coli data and vary the number of observations from 10 to

50. The timings and log-joint probabilities for the synthetic and E-coli datasets are shown

in Figure 7.2 and 7.3. As the figures show, the search-based approaches are the fastest on

both the datasets (except for the trivial heuristic on E-Coli data). On the synthetic data, all

the search approaches actually recover the ground truth (the log-joint probabilities of all

search-based approaches therefore look the same). Also, although the timings are roughly

the same for all search-based approaches, the inadmissible search did the fewest number

of enqueue/dequeue operations, and was therefore the fastest. Among the other baselines,
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the variational inference is the fastest one but it fails to recover good solutions most of

the time (as measured by the log-joint probability, and also the number of latent features

discovered). The particle filter, although scaled well on small data regimes (E-Coli data),

scaled poorly for large datasets, as can be seen by its (lack of) scalability on the synthetic

data.

7.6.4 Factor Regression

Next, we apply the various methods on real-world binary classification datasets to

extract latent factors and use them to train a classification model (akin to (Rai and Daumé

III, 2008, West, 2003)). We use two real-world datasets for the classification tasks: the

aspect-angle dependent sonar signals dataset and the scene classification dataset from the

UCI Machine Learning Repository. The sonar signal dataset consists of 208 examples

having 60 features each. The scene classification dataset is actually a multilabel dataset

with 2407 examples having 294 features each; we chose the7th label as a prediction

task. Since the feature assignment matrix is binary and the latent factors we care about

are real-valued, we applied all the algorithms on the transposedD × N data matrix. The

matrixZ isD ×K in this case, and we treat theK × N real-valued, feature score matrix

A as the factor matrix (Nexamples withK real-valued features each) used to train the

classification model. For the search-based algorithms, we computeA by drawing a sample

from its posterior givenZ.

After the feature extraction stage, we split the data into two equal parts (training and

test), train an SVM classifier (with linear kernel), and then apply the learned classifier on

the test data. We experiment with 200 random splits of training and test data and report

the average and standard deviation of the accuracies achieved by various methods. As

the results in Table 7.2 show, the search-based approaches achieve prediction performance

that, in most cases, is competitive (or better) than Gibbs sampling. At the same time, search

finished much faster than sampling in the latent Factor Analysis step of the task.

7.6.5 (Approximate) MAP as an Initializer

The search-based approach yields a MAP estimate. In many cases, however, we care

about the full posterior. In such cases, the approximate MAP estimate found by our search-

based algorithms can serve as a sensible initializer to the sampling-based approaches. As
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Table 7.2. Latent factor-based classification results

Sonar Scene
Acc K Acc K

Gibbs 70.9 (±4.8) 6 77.6 (±0.9) 6
Particle Filter 52.4 (±4.2) 6 77.8 (±1.3) 10

Infinite Variational 68.5 (±5.6) 10 74.3 (±2.1) 9
Trivial 72.4 (±3.9) 7 76.2 (±1.7) 7

Cluster Based 71.5 (±3.6) 7 77.8 (±2.1) 6
Inadmissible 67.1 (±4.9) 5 76.9 (±3.2) 6

an illustration, we ran an uncollapsed Gibbs sampler by usingrandom initialization and

the search-based MAP initialization, and monitored the joint likelihood over time. As we

see in Figure 7.4, the MAP-initialized Gibbs sampler localizes itself in the high-probability

region quite early on, as compared to the randomly initialized sampler, which takes much

longer to attain similar values of the joint likelihood. The overhead of doing the search to

get the MAP estimate is much smaller than the overall time taken by the Gibbs sampler.

7.6.6 Comparison with Greedy Search

We also compared our beam search-based approach with a greedy search heuristic,

which works by selecting, for the(N0+1)th observation, the feature assignmentZN0+1 that

maximizes the posterior probability up to this observation, i.e.,P ([Z0;ZN0+1]|X1:N0+1).

Note that this heuristic is similar to the one proposed in (Wang and Dunson, 2011) for

the Dirichlet Process Mixture Model. Also, the greedy search approach is akin to beam

search with the trivial heuristic, but without the explicit prior term maximization as we do

in Section 7.4 (it only considers the priorP ([Z0;ZN0+1]) up to theN0 + 1 observations)

and a beam size of 1. Due to space limit, we do not report the full experimental results here,

but we found that, on the block-images dataset, greedy search ran much slower than our

inadmissible approach, ran almost as fast as the trivial heuristic, but inferred a much larger

value ofK than the ground truth (and lower log-likelihood scores). Moreover, the greedy

search that only considers the posterior probability up to the current observation (ignoring

the future observations) is not expected to do well if the number of observations is very

large.



91

Figure 7.4. Log-likelihood scores for random vs search-based MAP initialized Gibbs
Sampler

7.7 Related Work
In this section, we review previous work on inference in IBP-based models, some of

which were used as baselines in our experiments. One of the first attempts to scale inference

in IBP-based models to large datasets was the particle filter (Wood and Griffiths, 2007) for

IBP. Particle filters are somewhat similar in spirit to our approach since a particle filter

can be considered as doing a stochastic beam search. The particle filter can process one

observation at a time. However, the particle filter samples each row ofZ from the prior

and the näıve sequential importance resampling scheme does not perform very well on

datasets having a large number of observations (which is perhaps the reason behind the

poor performance of particle filter in our experiments). Besides, particle filters are known
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to suffer from the sample impoverishment problem and need to make multiple passes over

the data to deal with this issue. Among the sampling-based approaches, (Doshi-Velez and

Ghahramani, 2009) proposed a fast collapsed Gibbs sampler to address the slow mixing

issue of the uncollapsed Gibbs sampler. Other sampling-based approaches include the

Metropolis split-merge proposals (Meeds et al., 2006), and slice sampling (Teh et al.,

2007b). Parallelization of the sampling-based inference for the IBP has also been at-

tempted (Doshi-Velez et al., 2009a).

Deterministic variational inference can be an efficient alternative to sampling in IBP-

based models. One such approach was proposed in (Doshi-Velez et al., 2009c), who

proposed a variational inference algorithm for IBP which is based on the truncated stick-

breaking approximation. Our search-based approach for inference is also deterministic

and is similar in spirit to (Dauḿe III, 2007), who applied beam search algorithms for

finding MAP estimates in Dirichlet Process mixture models. However, we note that the

combinatorial problem posed by the IBP is even more challenging than the DP since the

former looks at the space ofO(2NK) possible feature assignments as opposed to the latter

where this space isO(KN) possible clusterings of the data.

7.8 Discussion and Conclusion
In this chapter, we have presented a general, search-based framework for MAP esti-

mates in the nonparametric latent feature models. There are several aspects of the proposed

algorithm that can be improved even further. Note that when a candidate is removed from

the queue and expanded with the possible feature assignments for the next observation, we

need to consider all2K possible candidates, compute their scores, and place them on the

queue. This can be expensive for cases whereK is expected to be large. An alternative

to this would be to modify the proposed beam search by expanding along thecolumns

of the Z matrix for a given row, considering one dish at a time (this would amount to

a search-within-searchprocedure). Such a modification is expected to make search even

faster. Besides, the heuristics used for likelihood maximization are critical to getting tighter

bounds for the posterior and it would be interesting to consider other possible heuristics that

result in even tighter even bounds. Another possibility is to estimate the hyperparameters

(IBP hyperparameterα and the variance hyperparametersσX andσA, which are currently
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set of a fixed value), for examples, as is done in (Wang and Dunson, 2011). Finally,

although in the chapter we showed the conjugate case as an example (where we do not

care aboutA), conjugacy is not necessary for our approach to be applicable. If theA

matrix cannot be integrated out due to the nonconjugate prior, we can explicitly represent

it at each step of the search algorithm by also computing the MAP assignment forA, given

Z (for example, by running a few steps of some gradient-based optimizer), or by running a

few Metropolis-Hastings steps forA, givenZ.



CHAPTER 8

SPACE-EFFICIENT SEQUENTIAL INFERENCE

FOR THE INDIAN BUFFET PROCESS

The previous chapter presented a search-based inference algorithm to obtain an ap-

proximate MAP solution for the latent feature assignment matrix in the Indian Buffet

Process-based models. This chapter presents an online inference algorithm for the IBP,

which is capable of processing one observation at a time. This is desirable both for

scalability purposes as well as for the cases where the data naturally arrive in a sequential

manner and batch methods such as Gibbs sampling and standard variational inference are

no longer an option.

8.1 Introduction
Gibbs sampling (Doshi-Velez and Ghahramani, 2009, Ghahramani et al., 2007) and

variational inference (Doshi-Velez et al., 2009c) are typically employed for doing inference

in the Indian Buffet Process-based models (please refer to Section 8.5 for other related

work). Both are, however,batch inference methods requiring all the observations at each

step of the inference. This can make inference slow when dealing with datasets with large

number of observations and/or high data dimensionality. Moreover, in an online setting

where observations arrive one-at-a-time, batch methods are no longer an option. Besides,

even in the batch setting, if new observations become available at a later point of time,

inference needs to be re-run on the entire data. Sequential Monte Carlo (SMC) meth-

ods (Doucet et al., 2001) such as the particle filter offer an alternative by naturally allowing

observations to be processed one-at-a-time. At the same time, the inherently sequential

nature of inference also makes them amenable to be applied for large datasets. The SMC

methods approximate the target posterior distribution using a discrete distribution defined
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by a weighted set of “particles”. Each particle is a sample from some (problem-specific)

proposal distribution, and the associated weight denotes how much this particle is supported

by the observations seen thus far.

For the IBP, in (Wood and Griffiths, 2007) the authors designed a sequential impor-

tance resampling (SIR) based particle filter and demonstrated better scalability than Gibbs

sampling. However, as the number of observations grows, the particle filters are known to

suffer from issues such as sample impoverishment, also known as the weight degeneracy

problem (Doucet et al., 2001). This is the case when a small number of particles dominate

the entire ensemble (i.e., their weights dominate the overall set of weights). Therefore, as

the number of observations grow, the inference quality tends to deteriorate. In this chapter,

we present a particle filtering method for the IBP designed to address these problems. We

accomplish this by using an improved proposal distribution that takes into account the cur-

rent observation, and additionally representing the particle filtering distribution as a mixture

distribution with its mixture weights being exact (in the sense that we marginalize over the

latent feature assignments of the current observation). Our method is in contrast with the

particle filter for the IBP proposed in (Wood and Griffiths, 2007) in which the importance

sampling proposal distribution ignores the current observation, and the importance weights

depend on the “proposed” latent features of the current observation. These improvements

lead to our method achieving better or comparable inference quality as compared to the

standard particle filter for the IBP while requiring far fewer number of particles (giving

the posterior a parsimonious representation (Snelson and Ghahramani, 2005)), and being

comparable in terms of computational efficiency.

Just like the previous chapter, we consider the linear-Gaussian model (Griffiths and

Ghahramani, 2011) for the dataX with an IBP prior on theZ matrix. The model can be

written as:X = ZA+E. Here,A is aK ×D matrix consisting of latent feature scores,

andE consists of observation-specific noise. In the linear-Gaussian model, the feature

scores are Gaussian distributed with varianceσ2
a and the noise is Gaussian with variance

σ2
x. Given these, the distribution ofX is given by:p(X|Z,A) = Nor(X|ZA, σ2

x). For

the rest of the exposition, we would be interested with cases where we want to infer only

the latent feature matrixZ, and not theA matrix. For the linear-Gaussian model, we

would be using the collapsed likelihoodP (X|Z) =
∫

P (X|Z,A)P (A)dA, which can
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be represented in closed form by a Gaussian (Griffiths and Ghahramani, 2011) whenA has

a conjugate prior and can be integrated out. However, the particle filtering algorithms we

describe in this chapter are applicable even in the nonconjugate settings whereA cannot

be integrated out. In such cases, we can explicitly also maintain a particle representation

for A (note that if we want to additionally also inferA in the conjugate case, we can do

the same).

8.2 Particle Filtering for IBP
We first introduce some notations. In what follows, small-casext denotes thetth

observation and large-caseX t denotes the data matrix consisting of all the observations

up to and including thetth observation. Likewise, small-casezt denotes the latent feature

assignment of thetth observation and large-caseZt denotes the matrix consisting of the

latent feature assignments of all the observations up to and including thetth observation.

Having processed the firstt observations, in the next step of the particle filtering algo-

rithm, the target posterior distribution for the latent feature assignment of up to the(t+1)th

observations is expressed as:

p(Zt+1|X t+1) ∝ p(xt+1|Zt+1,X t)p(Zt+1|X t) (8.1)

where

p(Zt+1|X t) =
∑

Zt

p(Zt+1|Zt)p(Zt|X t) (8.2)

The particle filter approximatesp(Zt|X t) as a discrete distribution, which is defined by

a particle representation based on a weighted set ofN particles{w(i)
t ,Z

(i)
t }

N
i=1 as fol-

lows: pN(Zt|X t) =
∑N

i=1w
(i)
t δZ(i)

t

. The particle approximation{w(i)
t ,Z

(i)
t }

N
i=1 can be

turned into an equally weighted random sample fromp(Zt|X t) by sampling with re-

placement from the discrete distribution{w(i)
t ,Z

(i)
t }

N
i=1. This produces a new sample with

uniform weightsw(i)
t = 1/N . Using this uniformly distributed sample, we can approximate

the combinatorial summation overZt in Equation 8.2 by a more tractable summation:

p(Zt+1|X t) ≈
1
N

∑N
i=1 p(Zt+1|Z

(i)
t ), which in turn can be used to approximate Equa-

tion 8.1:
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pN(Zt+1|X t+1) ∝
1

N

N
∑

i=1

p(xt+1|Zt+1,X t)p(Zt+1|Z
(i)
t ) (8.3)

The above equation shows how the particle approximation ofpN(Zt|X t) can be up-

dated to a particle approximation topN(Zt+1|X t+1). Note that Equation 8.3 expresses the

target posterior in form of amixture distribution. The mixture components are given by the

distributions{p(Zt+1|Z
(i)
t }

N
i=1 and the weights are given by the corresponding likelihood

termp(xt+1|Zt+1,X t).

The following algorithm produces the particle approximation of the target distribution

p(Zt+1|X t+1) given samples frompN(Zt|X t):

1. DrawZ
(i)
t+1 ∼ p(Zt+1|Z

(i)
t ) for i = 1, . . . , N

2. Compute particle weights (and normalize)

w
(i)
t ∝ p(xt+1|Z

(i)
t+1,X t) (8.4)

3. ResampleZ(i)
t+1 ∼Mult({w(i)

t }
N
i=1) for i = 1, . . . , N

This summarizes the particle filtering algorithm for the IBP proposed in (Wood and

Griffiths, 2007). This is basically a sequential importance resampling (SIR) algorithm

where the proposal distribution used in step-1 (in the context of the IBP) is given by the

transition prior forZt+1 given the latent feature assignments of the previously seen obser-

vations, and each sampleZ(i)
t+1 is weighted by the theconditionalprobabilityp(xt+1|Z

(i)
t+1,X t)

of the most recent observationxt+1 given all the previous observationsX t and the latent

feature assignment matrixZt+1.

8.3 Improved Particle Filtering for IBP
Although the SIR-based particle filtering approach for the IBP described in Section 8.2

offers a nice way to sequentially update the target posterior distribution as new observations

arrive, it has some inherent limitations. The method uses the transition priorp(Zt+1|Zt)

as the proposal distribution, and therefore ignores the current observationxt+1. This is

problematic because the drawn sampleZ
(i)
t+1 may not lie in the important, high-likelihood

region. Although SIR weights each particle, the weight computation involves the likelihood

conditioned on the “proposal”Z(i)
t+1.
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To circumvent these issues, we present an improved particle filtering algorithm for

doing inference in the IBP-based models. Our algorithm makes use of a proposal distribu-

tion that takes into account the current observation, and can compute the mixture weights

without having them depend on the proposalZ
(i)
t+1 (by marginalizing outZ(i)

t+1). We note

that similar ideas have been proposed recently for doing particle filtering in models such as

mixture regression models, conditional dynamic linear models, and nonparametric mixture

models (Lopes et al., 2011).

We now describe the idea more formally. The idea is based on expressing the target

distribution as:

p(Zt+1|X t+1) ∝

∫

p(xt+1|Zt,X t)p(Zt+1|Zt,X t+1)p(Zt|X t)dZt (8.5)

This representation ofp(Zt+1|X t+1) is different from Equation 8.1. In Equation 8.5,

p(xt+1|Zt,X t) denotes the predictive likelihood andp(Zt+1|Zt,X t+1) is the updated

state posterior. Using this alternate representation ofp(Zt+1|X t+1), we obtain the follow-

ing mixture representation for its particle approximationpN(Zt+1|X t+1) given samples

from the particle approximation ofpN(Zt|X t):

pN (Zt+1|Xt+1) ∝
N
∑

i=1

p(xt+1|Z
(i)
t ,Xt)p(Zt+1|Z

(i)
t ,Xt+1)

=
N
∑

i=1

w
(i)
t p(Zt+1|Z

(i)
t ,X t+1) (8.6)

The particle weightsw(i)
t are given by:

w
(i)
t =

p(xt+1|Z
(i)
t ,X t)

∑N
i=1 p(xt+1|Z

(i)
t ,X t)

(8.7)

Note that, unlike the SIR-based particle filtering for the IBP (Wood and Griffiths, 2007),

the weight computation marginalizes out the “proposed” latent featureszt+1 of the current

observationxt+1 (cf, Equation 8.4).

Given the mixture representation of the posterior as in Equation 8.6, here are the sam-

pling equations:

1. ResampleZ(i)
t ∼Mult({w(i)

t }
N
i=1) for i = 1, . . . , N
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2. DrawZ
(i)
t+1 ∼ p(Zt+1|Z

(i)
t ,X t+1) for i = 1, . . . , N

To actually apply this algorithm in practice, we need to be able to compute the weights

w
(i)
t ∝ p(xt+1|Z

(i)
t ,X t) which requires evaluating the predictive likelihood given by

p(xt+1|Zt,X t) =
∑

Zt+1

p(xt+1|Zt+1,X t)p(Zt+1|Zt) (8.8)

and sampling the latent feature assignmentsZt+1 from the proposal distribution (step 2)

given by

p(Zt+1|Zt,X t+1) ∝ p(xt+1|Zt+1,X t)p(Zt+1|Zt) (8.9)

8.3.1 Computing the Mixture Weights

To evaluate the expression in Equation 8.8, we can perform an explicit summation

over all possibilities of the latent feature assignments ofX t+1. This can, however, be

expensive due to the combinatorially many possibilities ofZt+1 (both for existing and

newly proposed dishes). To avoid that, we use Monte-Carlo sampling to generate a set of

S samples{Zs
t+1}

S
s=1 from the distributionp(Zt+1|Zt), which is easy to sample from for

the IBP (following the culinary analogy described in Section 2.3). Given these samples, we

can approximate the integral in Equation 8.8 by an empirical average:

p(xt+1|Zt,X t) ≈
1

S

S
∑

s=1

p(xt+1|Z
s
t+1,X t) (8.10)

and use these empirical averages in Equation 8.7 for computing the mixture weights.

8.3.2 Sampling from the Proposal

To sample from the proposal distribution given in Equation 8.9, we first select the

highest probablity sample from{Zs
t+1}

S
s=1 given by:

Ẑ
(i)

t+1 = argmax
Z

s
t+1

p(xt+1|Z
s
t+1,X t)p(Z

s
t+1|Zt)

and then run a Gibbs sampling step initialized with that sample.

Note thatp(xt+1|Z
s
t+1,X t) need not be computed again since it was already com-

puted while computing the mixture weights. Also, given the Monte-Carlo samplesZs
t+1,

computing the probabilityp(Zs
t+1|Zt) is simple for the IBP prior - it is just a product

of probabilities of each cell ofzt+1. For a cell corresponding to an existing dishk, the



100

Algorithm 1 IBP-PF-CP
Input: DataX1:T , α, σx, σa,N : number of particles,S : number of Monte-Carlo samples

to be used for computing the particle weights and sampling from the proposal
Output: Particle representation of the IBP matrix{Z(i)} for i = 1, . . . , N

1: for t = 0 to T − 1 do
2: if t = 0 then
3: for i = 1 toN do
4: Try k = 0 to knew dishes forz1 (knew = α, or some fixed number)
5: Computep(z1|x1) ∝ p(x1|z1)× Poisson(k;α) for each possibility ofz1

6: Setz(i)
1 to z1 that maximizesp(z1|x1)

7: Z
(i)
1 ← z

(i)
1

8: end for
9: else

10: Compute weightw(i)
t for i = 1, . . . , N (using Equation 8.7, Equation 8.10, and

Equation 8.11)
11: ResampleZ(i)

t ∼Mult({w(i)
t }

N
i=1) for i = 1, . . . , N

12: Draw Z
(i)
t+1 ∼ p(Zt+1|Z

(i)
t ,X t+1) for i = 1, . . . , N (as described in Sec-

tion 8.3.2)
13: end if
14: end for

probability is computed using the Bernoulli distribution with parametermk/(t+ 1) where

mk is the sum of thek-th column of the matrixZt. For the cells corresponding to the newly

sampled dishes, probabilities are evaluated using the Poisson distribution with parameter

α/(t+ 1)..

8.3.3 Computing the Conditional Probabilities

Note that both computing the mixture weights using Equation 8.10 and sampling from

the proposal involve computing theconditionalprobabilityp(xt+1|Z
s
t+1,X t) of the most

recent observationxt+1 given all the previous observationsX t and the latent feature as-

signment matrixZs
t+1. For the linear-Gaussian observation model with an IBP prior on the

latent feature matrixZ, p(X t+1|Zt+1) is Gaussian. Therefore, using the conditioning rule

for Gaussians, the conditional probabilityp(xt+1|Zt+1,X t) will be a Gaussian as well. In

the linear-Gaussian model, the distributionp(X t+1|Zt+1) has its covariance matrixΣ−1

given by: Σ−1 = I − Zt+1(Z
⊤
t+1Zt+1 + σ2

x

σ2
a
I)−1Z⊤

t+1, whereσx is the noise variance

andσa is the feature score variance. The covariance matrixΣ−1 can be partitioned as:

Σ−1 =

[

C1 c2
cT2 c3

]

whereC1 is a matrix,c2 is a vector, andc3 is a scalar. With this
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decomposition structure ofΣ−1, theconditionaldistribution is given by:

xt+1|Zt+1,Xt ∼ Nor(c⊤2 C
−1
1 Xt, c3 − c⊤2 C

−1
1 c2) (8.11)

Evaluation of this probability can be made more efficient by exploiting the structure of

C1, which can make the matrix inversion faster (Barnett, 1979).

8.3.4 The Full Algorithm

The complete algorithm for the linear-Gaussian model is given in Algorithm 1. We

call our algorithm IBP-PF-CP (for IBP Particle Filtering with Compact Posterior). The

algorithm processes one observation at a time. Note that the weight calculation for the very

first observation is not required. For this observation, we enumerate the number of latent

features to assign (up to a fixed number), and for each possibility, compute the posterior

p(z1|x1). The vectorz1 corresponding to the largest value of the posterior is chosen as the

assignment for the first observation. For each subsequent observationxt+1, we follow the 3

steps of weight computation, resampling particles using these weights, and finally drawing

the latent feature assignment from the proposal distribution.

8.4 Experiments
We provide experimental results on both synthetic and real datasets. In our experi-

ments, we first compare our method IBP-PF-CP with the particle filtering method pro-

posed in (Wood and Griffiths, 2007) (referred to as IBP-PF) on all the datasets. Then,

in Section 8.4.5, we also compare our method with batch inference methods for the IBP

based on standard Gibbs sampling (Griffiths and Ghahramani, 2011) and infinite variational

inference method proposed in (Doshi-Velez et al., 2009c) on all the datasets.

For the synthetic datasets with ground truthZ known, we use the difference between the

trueZZ⊤ and the inferredE[ZZ⊤] (i.e., averaged over all particles, or samples) to measure

the quality of inference. Note thatZZ⊤ represents the pair-wise similarities between the

observations in terms of the latent features they possess. This error metric (referred to as

ERROR) is computed following (Wood and Griffiths, 2007) by taking the expectation of

the matrixZZ⊤ over the posterior samples/particles produced by each method, followed

by computing the summedabsolutedifference between the upper triangular portion of

E[ZZ⊤] computed over the samples/particles and the upper triangular portion of thetrue
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ZZ⊤ (including the diagonal). On other datasets, where the ground truthZ is not known,

we report the log-joint probabilities achieved by each method.

8.4.1 Synthetic Data

The first dataset is a synthetic dataset generated using the linear-Gaussian model (Grif-

fiths and Ghahramani, 2011). The dataset consists of 150 observations, each of dimen-

sionality 150. The latent feature matrixZ was generated using the IBP prior withα = 2,

which resulted inZ being150×5. Using thisZ, noise varianceσx = 0.1, and feature score

varianceσa = 1, we generated the150×150 data matrixX. We then ran both particle filter

methods IBP-PF-CP and IBP-PF on this data by varying the number of particles from 50

to 250 with increments of 50. The number of Monte-Carlo samples in our method is set to

10 in all cases. For both methods, we average the results over 10 different initializations.

On synthetic data, as Figure 8.1 (top) shows, our method achieves considerably lower

error as compared to the standard particle filter for the IBP. Moreover, even with very

small number of particles, our method results in very small error (and with the number of

particles set to 200 or 250, the error goes to zero - so we recover the ground truthexactly).

It shows that the particle representation of our method is more parsimonious as compared

to the standard particle filter. For IBP-PF, although the error goes down with increasing

number of particles, it always stays higher than IBP-PF-CP. Another remarkable thing is

the stability of IBP-PF-CP as measured by the standard deviation of the error across the

multiple runs. In contrast, the standard deviations of the IBP-PF are much larger.

8.4.2 Block-Images Data

The second dataset is the block-images dataset also used in (Wood and Griffiths, 2007).

This dataset consists of a set of 100 images with each consisting of a subset of four shared

latent images of size6× 6. A 100× 4 binary matrixZ is used to generate the 100 images

from these four latent images, using a noise varianceσx = 0.1. On this dataset, we compare

both IBP-PF-EXACT and IBP-PF by varying the number of particles from 50 to 500 with

increments of 50. As Figure 8.1 (middle) shows, even with as few as 50 or 100 particles, the

mean accuracy of IBP-PF-CP is close to the mean accuracy of IBP-PF with 500 particles.

This shows that the particle-based posterior representation learned by our method is more

accurate and at the same time more succinct. Moreover, as was the case with the synthetic
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data experiment in Section 8.4.1, the accuracy of our method is fairly stable across multiple

runs as is evident by the extremely small standard deviations. In contrast, for the standard

particle filter, although the mean accuracies improve as the number of particles increase,

the standard deviations still remain quite high.

8.4.3 Breast-Cancer Data

The third dataset is a breast-cancer dataset consisting of the 226 gene-expression values

from 251 samples (Knowles and Ghahramani, 2011, Rai and Daumé III, 2008). For this

dataset, the ground truth is not known and, therefore, we compare the log-joint probabilities

P (X,Z) of IBP-PF-CP and IBP-PF. As Figure 8.1 (bottom) shows, our method achieves

better log-joint probabilities as compared to the standard particle filter for the IBP, as was

the case with the previous two datasets.

8.4.4 Computation vs Storage Trade-off

We would like to mention here that although our method would require more compu-

tation per particle as compared to the standard particle filter, the individual particles in our

method are much better representatives of the target posterior (because of the improved

proposal distribution and improved particle weights). Therefore, our method needs far

fewer particles as compared to the standard particle filter to achieve better (or comparable)

inference quality, as our experiments suggest. Parsimonius representations of the posterior

distribution (Snelson and Ghahramani, 2005) are appealing since they require small stor-

age cost and can be faster when evaluating predictive quantities or doing averaging over

samples.

8.4.5 Comparison with Batch Methods

Finally, we compare our sequential inference method with Gibbs sampling (Griffiths

and Ghahramani, 2011) and and infinite variational inference (Doshi-Velez et al., 2009c)

for the IBP. Note that these are batch methods and make use of all the data at each step of

the inference. The Gibbs sampler was run until there was no improvement in the log-joint

probabilities. The variational inference was given 5 random restarts to avoid the issue of

local optima (the reported time is the average time taken for asingle run). We also averaged

the results over 10 such runs of the variational inference method. The truncation level for
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Figure 8.1. Inference quality vs number of particles. (Top) Error vs number of particles on
synthetic data. (Middle) Error vs number of particles on block-images data. (Bottom)
Log-joint-probability vs number of particles on breast-cancer data. Results for each
sampler are averaged over 10 runs with random initializations.
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variational inference was set at twice the number of latent features in cases where this

number is known. For the breast-cancer data, we set it to 30. Our method was run using 50

particles (with 10 Monte-Carlo samples) and results are averaged across 10 runs.

The results on the block-images dataset and the breast-cancer dataset are shown in

Table 8.1 . As the results show, our method runs much faster than the uncollapsed Gibbs

sampler while achieving comparable inference quality. Our method also achieves better

inference quality than variational inference.

Finally, we would like to mention that since the batch methods have access to all

the data at each step of the inference, the better inference quality of Gibbs sampling as

compared to our method is to be expected.

8.5 Related Work
In this section, we review prior work on inference in the IBP-based models. Since

MCMC methods are widely used, a lot of effort has gone into improving the standard Gibbs

sampling used for the IBP (Griffiths and Ghahramani, 2011). Among the sampling-based

approaches, (Doshi-Velez and Ghahramani, 2009) proposed a fast collapsed Gibbs sampler

to address the slow mixing issue of the uncollapsed Gibbs sampler. Other sampling-based

approaches include the Metropolis split-merge proposals (Meeds et al., 2006), slice sam-

pling (Teh et al., 2007b), and sampling based on the stick-breaking representation of the

Beta process (Paisley et al., 2010). Parallelization of the sampling-based inference for the

IBP has also been attempted (Doshi-Velez et al., 2009a).

Deterministic variational inference can be an efficient alternative to sampling in IBP-

based models. One such approach was proposed in (Doshi-Velez et al., 2009c), who

proposed a variational inference algorithm for IBP, which is based on the truncated stick-

breaking approximation. In subsequent work (Paisley et al., 2011a), a variational inference

algorithm was proposed in using the stick-breaking construction of the Beta Process. Ex-

pectation Propagation (Minka, 2001) combined with variational inference was used in (D.

et al., 2010) for IBP-based nonnegative matrix factorization. Among other deterministic

inference methods for the IBP, beam-search was proposed in (Rai and Daumé III, 2011) for

the special case when only amaximum-a-posteriori(MAP) estimate of the latent feature

assignment is needed.
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Table 8.1. Comparison with batch methods (first and second column: block-images data;
third and fourth column: breast-cancer data)

Error Avg. time logP (X,Z) Avg. time
Uncoll. Gibbs 0(± 0) 124 −6.12× 104 2236

Infinite Variational 2542(±246) 96 −7.32× 104 384
IBP-PF-CP 814(±54)) 92 −6.46× 104 462

In the context of nonparametric Bayesian methods, SMC inference has been applied in

the past for doing inference in Dirichlet Process mixture models (Fearnhead, 2004, Lopes

et al., 2011, MacEachern et al., 1999, Ulker et al., 2010), and has shown to achieve better

scalability than batch inference methods such as Gibbs sampling. For the Indian Buffet

Process, the only known particle filtering algorithm is by (Wood and Griffiths, 2007), which

we have compared against in this chapter.

8.6 Future Work and Extensions
There are several directions along which our proposed method can be improved. Note

that although our proposal distribution is exact by construction, computing the weights

requires evaluating the predictive likelihoodp(xt+1|Zt) of the next observationxt+1 given

the latent feature assignments of all the observations up to the previous step. This required

a combinatorial summation over the possible latent feature assignments ofxt+1. To cir-

cumvent this issue, we used Monte-Carlo simulation (Section 8.3.1) and it tends to work

well in practice. Coming up with better (and more efficient) ways of doing this remains an

open question. Moreover, computing the weights also involves computing the conditional

probabilities given by the collapsed likelihood expressionp(xt+1|Zt+1,X), for which the

cost of evaluation grows with the number of observations. If we additionally maintain

a particle representation of the feature score matrixA, then we can use the uncollapsed

likelihood p(x|z,A), which will be much more efficient. Moreover, using tricks such as

rank-1 updates for Gibbs sampling in the IBP-based models (Doshi-Velez and Ghahramani,

2009) could potentially lead to further speed-ups.

Another possible extension would be to also sample the hyperparametersα, σx, and

σa. This can be accomplished by following the similar framework as used in (Lopes et al.,

2011) by also maintaining a particle representation of the hyperparameters.
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8.7 Discussion and Conclusion
In this chapter, we have presented a sequential Monte Carlo (SMC) method for infer-

ence in the infinite latent feature models based on the Indian Buffet Process. Our method

improves upon the previously proposed particle filter for the IBP by making use of a better,

mixture representation-based proposal distribution, which can be sampled from exactly,

and does away with importance sampling-based methods traditionally used in particle

filtering. Our results demonstrate that our method significantly improves the quality of

inference over the standard particle filter while still being computationally efficient. In

particular, our results showed that, even with a very small number of particles, the method

can learn reasonably well approximations of the target posterior distribution. In contrast,

the standard particle filter requires considerably higher number of particles to achieve the

similar inference quality. This was evident from the final inference accuracies, and also

from the variance of the particles at each step of our inference method.

We believe that the potential of SMC methods for doing inference in nonparametric

Bayesian models has remained largely unexplored. One of the main reasons for this has

been the problems that plague these methods, especially with large data sizes and high data

dimensionality, which leads to issues such as poor representation of the target posterior

(e.g., due to the sample impoverishment problem). However, as we have shown in this

chapter, with carefully constructed SMC samplers, such problems can be alleviated and

SMC methods can be successfully applied in real-world settings requiring online inference

for nonparametric Bayesian models. At the same time, the computational efficiency of

these methods also makes them viable alternative to batch inference methods such as

MCMC and variational inference.



CHAPTER 9

CONCLUSIONS AND FUTURE WORK

The primary contributions of this thesis lie in designing flexible models for discovering

latent structures from data. The types of latent structures considered in this thesis include

latent features underlying high-dimensional data, latent relationships (i.e., dependency

structures) among the latent features, and latenttask structuresamong a set of related

learning tasks. The thesis accomplishes these by leveraging the flexibility of nonparametric

Bayesian models, and by designing efficient approximate inference methods for such mod-

els (in particular, the nonparametric latent feature model). To summarize, the contributions

of the thesis include:

• Designing nonparametric Bayesian latent feature models for high-dimensional data,

while allowing the latent features to be have relatioships that wesimultaneouslywant

to infer.

• Designing nonparametric Bayesian models for learningshared predictive structures

to better solve multiple related prediction tasks jointly (the problem of Multitask

Learning).

• Designing efficient approximate inference algorithm for nonparametric Bayesian mod-

els, particularly for the nonparametric latent feature model - the Indian Buffet Pro-

cess.

9.1 Future Directions
The work in this thesis can be extended along several directions. Some of the possible

future works include:
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• New methods for latent feature modeling: In the model we proposed in Chapter

3, we used a combination of the IBP and the Kingman’s Coalescent to introduce

interdependencies along the latent features. It would be interesting to design ways of

accomplishing this in a more direct manner. Some recent works have explored this

direction (Doshi and Ghahramani, 2009b, Paisley et al., 2011b, Zhang et al., 2011)

and we consider this to be a promising direction to go forward with.

• Richer models for capturing task relatedness in Multitask Learning: Our model

proposed in Chapter 6 provides considerable flexibility in terms of the latent task

structures that can be exploited in Multitask Learning. It would be interesting to

extend this work to allow more general structures such as time-varying tasks.

• Efficient inference for nonparametric latent feature models: Another interesting

future direction would be to design new online inference methods for the nonpara-

metric latent feature models, along the lines of recently proposed online variational

inference methods for the Dirichlet Process and Hierarchical Dirichlet Process (Wang

et al., 2011). In addition, it would also be interesting and useful to have the ability to

perform hyperparameter estimation in the beam-search and the SMC-based inference

for the IBP.

Another interesting direction that is currently emerging is about designing nonproba-

bilistic counterparts of nonparametric Bayesian models, which can be useful for scaling up

nonparametric Bayesian methods to larger datasets. Some recent work has explored this

direction for the Dirichlet Process mixture models (Kulis and Jordan, 2012) and we believe

that similar developments for other nonparametric Bayesian models would be of interest

for the general machine learning community.



APPENDIX

APPENDIX: NONPARAMETRIC MIXTURE OF

SUBSPACES FOR MULTITASK LEARNING:

INFERENCE

In this supplementary material, we derive the variational lower bound for our model

presented in Chapter 8 and derive the update equation for all the parameters of our model.

A.1 The Model
The model for the nonparametric mixture of nonparametric factor analyzers over the

latent weight vectors in our multitask learning framework is as described in the paper. For

the variational approximation, we work with the following distribution:

φf ∼ Bet(1, α1)

zt ∼ Mult(φf

∏

i<f

(1− φi))
1

βf,k ∼ Bet(α2/K, 1)

bt,f,k ∼ Ber(βf,k)

µf ∼ Nor(0, I)

Λf,k ∼ Nor(0, I)

st,f ∼ Nor(0, I)

θt ∼ Nor(µzt + Λzt(st,zt ⊙ bt,zt),
1

σ2
I)

Yt,i ∼ Nor(θTt Xt,i, I).

We approximate this distribution the usual way with an approximating distributionQ.

Since we are only interested in the predictive performance of the model, we do not model
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the covariances of the gaussian variables of the approximating distribution explicitly.

A.2 The Variational Lower Bound
The variational lower bound, following (Jordan et al., 1999), is the following sum:

logP (Y |X) ≥ Eq[logP (φ)]− Eq[logQ(φ)]

+Eq[logP (µ)]− Eq[logQ(µ)]

+Eq[logP (Λ)]− Eq[logQ(Λ)]

+Eq[logP (z)]− Eq[logQ(z)]

+Eq[logP (s)]− Eq[logQ(s)]

+Eq[logP (b)]− Eq[logQ(b)]

+Eq[logP (β)]− Eq[logQ(β)]

+Eq[logP (θ)]− Eq[logQ(θ)]

+Eq[logP (Y )]

Computing each term is a simple exponential family calculation, which we do in the

following sections explicitly for the sake of clarity. Unless stated otherwise, the mean field

parameter for the variablev is νv, so, for example, the mean of the variational distribution

for θt is νθt . Note that, as we do not approximate the distribution ofY , there is no term for

the entropy ofQ(Y ).

A.2.1 The Bound for φ

φ are beta stick-breaking priors for the DP.

Eq[logBeta(1, α1)]− E[logBeta(γi,1, γi,2)] = log Γ(1 + α1)− log Γ(α1)

+(α1 − 1)(̥(γi,2)−̥(γi,1 + γi,2))

− log Γ(γi,1 + γi,2)

+ log Γ(γi,1) + log Γ(γi,2)

−(γi,1 − 1)(̥(γi,1)−̥(γi,1 + γi,2))

−(γi,2 − 1)(̥(γi,2)−̥(γi,1 + γi,2))

1This is a shortcut to the truncatead stick-breaking distribution, where the probability ofzt being equal to
f is proportional to that value
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A.2.2 The Bound for β

β are the symmetric dirichlet priors for the finite IBP variational inference; hence, there

is oneβ for each component of each factor, and eachβf,k ∼ Beta(α2, 1). As we use a beta

distribution as a mean-field forβ, q(βf,k) = Beta(ρf,k,1, ρf,k,2). The bound then is

= log Γ(α2 + 1)− log Γ(α2)

+(α2 − 1)(̥(ρf,k,1)−̥(ρi,1 + ρf,k,2))

− log Γ(ρf,k,1 + ρi,2) + log Γ(ρf,k,1) + log Γ(ρf,k,2)

−(ρf,k,1 − 1)(̥(ρf,k,1)−̥(ρf,k,1 + ρf,k,2))

−(ρf,k,2 − 1)(̥(ρf,k,2)−̥(ρf,k,1 + ρf,k,2))

= logα2

+(α2 − 1)(̥(ρf,k,1)−̥(ρf,k,1 + ρf,k,2))

− log Γ(ρf,k,1 + ρi,2) + log Γ(ρf,k,1) + log Γ(ρf,k,2)

−(ρf,k,1 − 1)(̥(ρf,k,1)−̥(ρf,k,1 + ρf,k,2))

−(ρf,k,2 − 1)(̥(ρf,k,2)−̥(ρf,k,1 + ρf,k,2))

A.2.3 The Bound for b

The b variables are the binary decision variables for the IBP-based latent factor ana-

lyzer; hence, we have ab for each task for each mixture component. The bound for theb

variables is:

νbt,f,k(̥(ρf,k,1)−̥(ρf,k,1 + ρf,k,2))

+(1− νbt,f,k)(̥(ρf,k,2)−̥(ρf,k,1 + ρf,k,2))

−νbt,f,k log νbt,f,k − (1− νbt,f,k) log(1− νbt,f,k)

A.2.4 The Bound for µ

Eq[logP (µ)]− Eq[logQ(µ)]

=
∑

f

(
∫

dµfq(µf ) logP (µf )−

∫

dµfq(µf) logQ(µf )

)
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Hence, we can work with eachµf separately,
∫

dµfq(µf ) logP (µf )−

∫

dµfq(µf) logQ(µf )

= −
D

2
log 2π −

1

2
||νµf
||2 −

D

2
+
D

2
log 2πe

A.2.5 The Bound for Λf,k

Eq[logP (Λf,k)]− Eq[logQ(Λf,k)]

= −
D

2
log 2π +−

1

2
(||νΛf,k

||2 +D) +
D

2
log 2πe

A.2.6 The Bound for z

Eq[logP (z)]− Eq[logQ(z)]

=
F
∑

f=1

((

F
∑

j=f+1

νzt,j

)

(̥(γf,2)−̥(γf,1 + γf,2)) + νzt,f (̥(γf,1)−̥(φf,1 + γf,2))

)

−
∑

f

νzt,f log νzt,f

A.2.7 The Bound for s

Eq[logP (st,f )]− Eq[logQ(st,f )]

=

∫

dst,fq(st,f ) logP (st,f )−

∫

dst,fq(st,f ) logQ(st,f )

= −
D

2
log 2π −

1

2
||νst,f ||

2 −
D

2
+
D

2
log 2πe

A.2.8 The Bound for θ

Eq[logP (θt)]− Eq[logQ(θt)]

=
∑

f

νzt,f

(
∫

dθt dΛ dµ ds q(θt,Λ, µ, s) logP (θt)

)

+
D

2
log 2πe



114

=
∑

f

νzt,f (−
D

2
log 2π +

D

2
log σ

−
σ

2

∫

dθtdΛdµds q(θt,Λ, µ, s)||θt − µf − Λf (st,f ⊙ bt,f )||
2)

+
D

2
log 2πe

The main problem then is computing the expectation of||θt − µf − Λf (st,f ⊙ dt,f )||
2.

This can be split in the following terms:

Eq[||θt − µf − Λf (st,f ⊙ bt,f )||
2] = Eq[||θt||

2]

−2Eq[θ
T
t µf ]

−2Eq[θ
T
t Λf (st,f ⊙ bt,f )]

+2Eq[µ
T
f Λf (st,f ⊙ bt,f )]

+Eq[µ
T
f µf ]

+Eq[(Λf (st,f ⊙ bt,f ))
TΛf (st,f ⊙ bt,f )]

and all terms except for the last one are trivial as they are either linear or the expectation of

the norm of a normally distributed variable. The last term can be solved as follows,

Eq[(Λf (st,f ⊙ bt,f ))
TΛf (st,f ⊙ bt,f )] = Eq[(st,f ⊙ bt,f )Λ

T
f Λf (st,f ⊙ bt,f )]

then we can split this expectation into two sums,

Eq[(st,f ⊙ bt,f )Λ
T
f Λf (st,f ⊙ bt,f )] = Eq[

∑

i

s2t,f,ib
2
t,f,iΛ

T
f,iΛf,i]

+Eq[
∑

i

st,f,ibt,f,i
∑

j 6=i

st,f,jbt,f,jΛ
T
f,iΛf,j ]

Now with the linearity of expectation, we can solve the second expectation, which is

∑

i

νst,f,iνbt,f,i
∑

j 6=i

νst,f,jνbt,f,jν
T
Λf,i

νΛf,j

and the first expectation, after summing overb ands is

∑

i

(ν2st,f,i + 1)νbt,f,iEq[Λ
T
f,iΛf,i]
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and after solving the last expectation, we get

∑

i

(ν2st,f,i + 1)νbt,f,i(ν
T
Λf,i

νΛf,i
+D)

which we can expand to

∑

i

ν2st,f,iνbt,f,iν
T
Λf,i

νΛf,i
+
∑

i

ν2st,f,iνbt,f,iD +
∑

i

νbt,f,iν
T
Λf,i

νΛf,i
+ νbt,f,iDF

The full lower bound forθ then is

Eq[logP (θ)]− Eq[logQ(θ)] = −0.5 log 2π + 0.5D log 2πe+ 0.5D log σ

−0.5σ(

νTθtνθt +D

− 2νTθtνµf

− 2νTθtνΛf
(νst,f ⊙ νbt,f )

+ 2νTµf
νΛf

(νst,f ⊙ νbt,f )

+ νTµf
νµf

+D

+
∑

i

ν2st,f,iνbt,f,iν
T
Λf,i

νΛf,i

+
∑

i

ν2st,f,iνbt,f,iD

+
∑

i

νbt,f,iν
T
Λf,i

νΛf,i

+ νbt,f,iDF

+
∑

i

νst,f,iνbt,f,i
∑

j 6=i

νst,f,jνbt,f,jν
T
Λf,i

νΛf,j
)

A.2.9 The Lower Bound for Y

We compute

Eq[logP (Y )] =

∫

dθtq(θt) logP (Y |X, θt)

= −
D

2
log 2π −

1

2
Y 2 + Y νTθtX −

1

2
XTX −

1

2
XTνθtν

T
θtX
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A.2.10 The Complete Lower Bound

which we can simplify to (omitting constant terms)

logP (Y |X) ≥ log Γ(1 + α1)− log Γ(α1)

+(α1 − 1)(̥(γi,2)−̥(γi,1 + γi,2))

− log Γ(γi,1 + γi,2) + log Γ(γi,1) + log Γ(γi,2)

−(γi,1 − 1)(̥(γi,1)−̥(γi,1 + γi,2))

−(γi,2 − 1)(̥(γi,2)−̥(γi,1 + γi,2))

−
1

2

∑

f

||νµf
||2

+
∑

f

(
∑

k

(log Γ(α2 + 1)− log Γ(α2)

+(α2 − 1)(̥(ρf,k,1)−̥(ρi,1 + ρf,k,2))

− log Γ(ρf,k,1 + ρi,2) + log Γ(ρf,k,1) + log Γ(ρf,k,2)

−(ρf,k,1 − 1)(̥(ρf,k,1)−̥(ρf,k,1 + ρf,k,2))

−(ρf,k,2 − 1)(̥(ρf,k,2)−̥(ρf,k,1 + ρf,k,2))

−
1

2
(||νΛf,k

||2 +D))

+
∑

t

∑

f

∑

k

(νbt,f,k(̥(ρf,k,1)−̥(ρf,k,1 + ρf,k,2))

+ (1− νbt,f,k)(̥(ρf,k,2)−̥(ρf,k,1 + ρf,k,2))

− νbt,f,k log νbt,f,k − (1− νbt,f,k) log(1− νbt,f,k))

+
∑

t

(
∑

f

(
F
∑

j=f+1

νzt,j)(̥(γf,2)−̥(γf,1 + γf,2))

− 0.5||νst,f ||
2

+ νzt,f (

̥(γf,1)−̥(φf,1 + γf,2)

− log νzt,f − 0.5D log σ

− 0.5σ(

νTθtνθt +D − 2νTθtνµf
− 2νTθtνΛf

(νst,f ⊙ νbt,f )

+ 2νTµf
νΛf

(νst,f ⊙ νbt,f ) + νTµf
νµf

+D
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+
∑

i

ν2st,f,iνbt,f,iν
T
Λf,i

νΛf,i

+
∑

i

ν2st,f,iνbt,f,iD +
∑

i

νbt,f,iν
T
Λf,i

νΛf,i

+ νbt,f,iDF

+
∑

i

νst,f,iνbt,f,i
∑

j 6=i

νst,f,jνbt,f,jν
T
Λf,i

νΛf,j
)

+
∑

i

(−
1

2
Y 2 + Y νTθtX

−
1

2
XTX −

1

2
XTνθtν

T
θtX))

To optimize the lower bound with respect to the variational parameters, we can take

the gradients of the lower bound w.r.t. each parameter and set it to zero. Alternating this

for every parameter, we have the usual variational mean field optimization algorithm. We

also compute empirical bayes estimates forσ in the same fashion. Forνθt , however, we

found numerical instabilities in inverting the matrices required to compute the update, so

we resorted to numerical maximization by the L-BFGS algorithm (Zhu et al., 1997).

A.3 Update Equations for Specific Parameters
A.3.1 Updates for γ

The updates forγ, following (Blei and Jordan, 2006), are

γi,1 = 1 +
∑

t

νzt,f

γi,2 = α1 +
∑

t

∑

j>i

νzt,j .

A.3.2 Updates for νzt
Also following (Blei and Jordan, 2006), the update forνzt,i is

log νzt,i ∝ ̥(γi,1)−̥(γi,1+γi,2)+EQ[logP (θt|zt = i)]+
∑

j<i

(̥(γj,2)−̥(γj,1 + γj,2)) .

A.3.3 Updates for ρ

Following (Doshi-Velez et al., 2009b), the update forρ is

ρf,k,1 =
α

K
+
∑

t

νbt,f,k
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ρf,k,2 = 1 +
∑

t

(1− νbt,f,k).

A.3.4 Updates for νbt,f,k
Also following (Doshi-Velez et al., 2009b), the update forνbt,f,k is

log
νbt,f,i

1− νbt,f,i
= ̥(ρf,k,1)−̥(ρf,k,2)

+0.5νzt,fσ(2(νθt − νµf
− (νst,f,i + 1)νΛf,i

−
∑

f

νst,f,jνbt,f,jνΛf,j
)TνΛf,i

νst,f,i

−ν2st,f,iD −DF )

A.3.5 Updates for νst,f
Taking the gradient of the lower bound with respect to a singleνst,i and setting it to

zero, we find that

0 = −νst,f,i + νzt,f (σ((νθt − νµf
)TνΛf,i

νbt,f,i

−νst,f,iνbt,f,i(D + νTΛf,i
νΛf,i

)

−0.5νbt,f,i
∑

j 6=i

νst,f,jνbt,f,jν
T
Λf,i

νΛf,j

(1 + σνzt,fνbt,f,i(D + ||νΛf,i
||2))νst,f,i = νzt,fσ((νθt − νµf

)TνΛf,i
νbt,f,i

−0.5νbt,f,i
∑

j 6=i

νst,f,jνbt,f,jν
T
Λf,i

νΛf,j
).

A.3.6 Updates for νµf

Doing similarly forνµf
, we find that

0 = −νµf
+
∑

t

νzt,f (σ(νθt − νΛf
(νst,f ⊙ νbt,f )− νµf

))

(1 + σ
∑

t

νzt,f )νµf
=

∑

t

νzt,fσ(νθt − νΛf
(νst,f ⊙ νbt,f )).

A.3.7 Updates for νΛf

Taking the gradient of the lower bound with respect to a singleνΛf,i
we find that

0 = −νΛf,i
+
∑

t

(νzt,f (σ(+νst,f,iνbt,f,iνθt − νst,f,iνbt,f,iνµf
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−ν2st,f,iνbt,f,iνΛf,i
− νbt,f,iνΛf,i

−0.5νst,f,iνbt,f,i
∑

j 6=i

νst,f,jνbt,f,jνΛf,j
)

(1 + σ
∑

t

νzt,fνbt,f,i(1 + ν2st,f,i))νΛf,i
= σ

∑

t

νzt,fνst,f,iνbt,f,i(νθt − νµf

−0.5
∑

j 6=i

νst,f,jνbt,f,jνΛf,j
).

A.3.8 Updates for νθt
The analytical update forνθt would be

0 =
∑

f

νzt,f (−σ(νθt − νµf
− νΛf

(νst,f ⊙ νbt,f )))

+
∑

i

(+Y X −
1

2
XXTνθt)

(σ
∑

f

νzt,f I + 0.5XXT )νθt = σ
∑

f

νzt,f (νµf
+ νΛf

(νst,f ⊙ νbt,f )) +
∑

i

YiXi.

However, as mentioned above, we use a numerical maximization of the lower bound due

to numerical instability when inverting the matrix

σ
∑

f

νzt,f I + 0.5XXT .

The gradient of the lower bound with respect toνθt is

∇L(νθt) = σ
∑

f

νzt,f
(

νθt − νµf
− νΛf

(νst,f ⊙ νbt,f )
)

+
∑

i

(

Yt,iXt,i −Xt,iX
T
t,iνθt

)

.

A.4 Logistic Regression
All that changes in the model when we switch from squared loss regression to logistic

regression is the conditional distributionP (Y |X, θ). In logistic regression, this is normally

a logistic distribution:

P (Y |X, θ) =
1

1 + exp(−Y θTX)
= sig(Y θTX)

Unfortunately, it is not easy to compute the expectation of this distribution w.r.t. the

mean-field of theta, since the logistic distribution is not conjugate to the normal distribution.
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Here, we follow Jaakkola and Jordan (Jaakkola and Jordan, 1996) and use the following

variational lower-bound of the logistic function:

P (Y |X, θ) ≥ sig(ǫ) exp

(

Y θTX − ǫ

2
−

1

2ǫ

[

sig(ǫ)−
1

2

]

((θTX)2 − ǫ2)

)

.

As this is a quatratic in terms ofθ, we can compute the last integral in the lower bound

as
∫

dθN(θ; νθt , I) log sig(ǫ) exp

(

Y θTX − ǫ

2
−

1

2ǫ

[

sig(ǫ)−
1

2

]

((θTX)2 − ǫ2)

)

= log sig(ǫ) +

∫

dθN(θ; νθt , I)

(

Y θTX − ǫ

2
−

1

2ǫ

[

sig(ǫ)−
1

2

]

((θTX)2 − ǫ2)

)

= log sig(ǫ) +
νTθtX − ǫ

2
−

1

2ǫ

[

sig(ǫ)−
1

2

]

(

XTX + (νTθtX)2 − ǫ2
)

The bound is exact wheneverǫ2 = (νTθtX)2+XTX. To optimizeνθt , the term involved

in the gradient is thenX
2
− λ(ǫ)2XνTθtX, whereλ(ǫ) = 1

2ǫ

[

1
2
− sig(ǫ)

]

.

The gradient of the lower bound with respect toνθt in the case of logistic regression

then is

∇L(νθt) = σ
∑

f

νzt,f
(

νθt − νµf
− νΛf

(νst,f ⊙ νbt,f )
)

+
∑

i

(

Yt,iXt,i − λ(ǫ)Xt,iX
T
t,iνθt

)

.

A.5 Optimizing the σ Hyperparameter
We can also optimize an empirical bayes estimate of theσ hyperparameter by optimiz-

ing the lower bound with respect to it. Setting the gradient of the lower bound w.r.t.σ to

zero gives the following expression for1
σ

(
∑

t

∑

f νzt,f (||νθt − νµf
− νΛf

(νst,f ⊙ νbt,f )||
2 +

∑

i(ν
2
st,f,i

νbt,f,iD + νbt,f ||νΛf,i
||2) + νbt,f,iDF ))

KDF
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RAI , P. AND DAUM É III, H. 2010. Infinite predictor subspace models for multitask
learning. InAISTATS.
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