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ABSTRACT

Magnetic fields are permeable to the biological tissues and can induce electric field in the 

conductive structures. Some medical devices take advantage of this ability to transfer energy from 

the source to the receiving site without direct contact. Prosthetic devices such as retinal implants 

use time-varying magnetic field to achieve wireless power transfer to the implanted magnetic coil. 

However, devices such as magnetic stimulators use the induction principle to create an electric 

field at the stimulation site. Efficiency of these devices is primarily dependent on the design of 

the magnetic coils. Therefore, in this work, we designed and validated efficient magnetic coils for 

wireless power transfer to implanted devices and magnetic stimulation of the peripheral nerves.

Typical wireless power transfer (WPT) systems uses two-coil based design to achieve con

tactless power transfer to the implanted electronics. These systems achieve low power transfer 

efficiency (<  30%) and frequency bandwidth. Moreover, efficient wireless system requires high 

coupling and load variation tolerance during device operation. To design an electromagnetic safe 

WPT system, the power absorbed by the tissue and radiated field due to the proximal magnetic coils 

needs to be minimized. In this work, we proposed a multi-coil power transfer system which solves 

some of the current challenges. The proposed multi-coil WPT system achieves more than twice the 

power transfer efficiency, controllable voltage gain, wider frequency bandwidth, higher tolerance to 

coupling and load variations, lower absorbed power in the tissue and lower radiated field from the 

magnetic coil than a comparable two-coil system. In this work, we have developed analytic models 

of the multi-coil WPT system and validated the accuracy of the solutions using experiments.

Magnetic coils play an important role in controlling the distribution of induced electric field 

inside the nerve during magnetic stimulation. In the past, homogeneous models were used to 

estimate the field profile inside conductive tissue due to the time varying current in the magnetic coil. 

Moreover, the effect of the surrounding media and stimulation mechanisms was understudied, which 

limits the optimization accuracy of the magnetic coils. In this work, we developed anatomically 

correct tissue models to study the effect of tissue heterogeneity and the surrounding media on the 

induced electric field. We also developed an optimization algorithm for designing energy efficient 

cm-size magnetic coils, that were then used for ex-vivo magnetic stimulation of the frog's sciatic 

nerve.
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CHAPTER 1

INTRODUCTION

1.1 Abstract
Applications of time-varying magnetic field for biomedical systems, such as wireless power 

transfer and magnetic neural stimulation, are studied in the work. This work is motivated by the 

need of efficient magnetic coils to achieve high efficiency and efficacy for two leading biomedical 

applications. The first design includes the design and applications of multi-coil telemetry system 

to improve the power transfer efficiency and reduce electromagnetic energy. The second design 

focuses on the design and usage of magnetic coils for the magnetic neural stimulation.

Over the last three decades, magnetic field-based actuators/sensors have been used extensively 

in the domain of biomedical instrumentation [1-4]. Depending on the underlying applications, the 

operating conditions of these devices may require static (e.g., magnetic sensor) or time-varying 

magnetic field (e.g., transcranial magnetic stimulators or wireless power transfer). Two key features 

have increased interest in studying the use of magnetic field for biomedical applications. First, 

biological tissue has nearly unitary relative magnetic permeability. Second, it has the capability to 

induce electric field from time-varying magnetic field. Wireless power transfer for medical implants 

and magnetic neural stimulation utilizes the induced electric field in the implanted coil and tissue 

to cause energy transfer and neural activity, respectively. They both work on Faraday‘s principle of 

induction, which states that a time-varying magnetic field can induce electric field E  in a conductive 

medium. Based on electromagnetic theory, the magnetic field density B can be written in terms of 

the magnetic vector potential A as Equation 1.1 and 1.2

1.2 Introduction

(1.1)

(1.2)

where VV(r, t ) is the electric field contribution by the surface charge.
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A popular technique for wireless power transfer, particularly in biomedical implants, is inductive 

coupling, which was used to power an artificial heart in 1961 [3,4]. Since then it has been commonly 

used in implantable devices [3, 4, 12-19]. For short range wireless power transfer systems, power 

transfer efficiency, voltage gain, and data bandwidth are the key performance parameters that need 

to be optimized to design an efficient system [5, 6]. These parameters are strong functions of 

the quality factor (Q) of the magnetic coils and the coupling between the external and implant 

coils [5]. Traditionally, a two-coil based inductive link is used for wireless power/data transfer 

systems. However, due to the moderate Q-factor of the coils and low coupling between the coils, 

these inductive coupled power/data transfer systems have limited power transfer efficiency (<  30%) 

and limited data bandwidth (<  10% of carrier frequency) [17, 18, 25]. Moreover, to design a 

reliable and efficient telemetry system, additional design goals need to be included. Performance 

variation during the operation of the device is one of the main challenges for a two-coil based 

system. An implanted coil may undergo relative motion with respect to the external coil during the 

operation of the device [24] and cause variation in mutual coupling between the coils. Based on the 

operation mode of the implanted device, the effective load resistance varies and causes changes in 

the Q-factor of the load coil [25]. Thus, all the typical two-coil based wireless power transfer (WPT) 

systems suffer from unstable link performance due to variation caused by the change in operating 

distance, coil misalignment, device operation mode, and change in driver resistance. Moreover, 

current implanted coils are designed with metallic wire (gold) and are difficult to deform during 

implantation [24-25]. Therefore, to ensure reliable operation of the telemetry system, the implant 

coil should be flexible and conformal. In situations requiring relatively large power transfer, such as 

those encountered in high data rate neurostimulators with high electrode counts, induced Specific 

Absorption Rates (SARs) or radiated fields need to be considered among the design parameters and 

minimized.

In this work, we proposed a multi-coil based wireless telemetry system to improve the wireless 

power transfer efficiency between external and implant electronics, which is the key focus of Chap

ter 2. We published this work in IEEE Transaction of Biomedical Circuits and System, vol. 7, Feb. 

2013 [6]. A novel multi-coil technique (using more than two coils) for wireless power and data 

transfer was considered, which overcame the moderate Q-factor limitation for the two-coil WPT 

system. The proposed multi-coil system was formulated using both network theory and a two-port 

model. Using three or four coils for the wireless link allows for the source and load resistances 

to be decoupled from the Q-factor of the coils, resulting in a higher Q-factor and a corresponding 

improved power transfer efficiency (PTE). The proposed multi-coil telemetry system includes a 

novel three-coil topology for improving the efficiency and data bandwidth of currently implanted
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systems compared to [5]. Moreover, in this work, the multi-coil WPT system is extensively studied 

for use in data communication. It is also commonly believed that high Q -factor external and implant 

coils reduce the frequency bandwidth of the inductive link [5]. It is shown here that due to the 

strong coupling between the driver and the transmitter coil (and/or between the receiver and the 

load coil), the multi-coil system achieves higher tunable frequency bandwidth as compared to its 

same-sized two-coil equivalent. Because of the wider range of reflected impedance in the multi-coil 

system case, it is easier to tune the output power to the load and achieve the maximum power 

transfer condition for a given source voltage than in a configuration with two coils. Chapter 2 

includes the experimental results showing a three-coil system achieving twice the efficiency and a 

higher gain-bandwidth product compared to its two-coil counterpart. In addition, a figure of merit 

for telemetry systems was defined to quantify the overall telemetry system performance. We also 

discuss the selection of operating frequency in Appendix A. Appendix B discusses the impact of 

component (e.g., resonating capacitor) tolerance on the multi-coil WPT system performance and 

compares with the two-coil WPT system.

The proposed multi-coil WPT system is beneficial due to the multiple control parameters, which 

includes the coupling between individual coils and their inductances. Current work extensively 

demonstrates the use of a multi-coil approach to reduce the absorbed electromagnetic energy in 

tissue and achieve high tolerance wireless power transfer systems. Chapter 3 discusses the need 

for high tolerance WPT systems for implants for which implanted coils can undergo relative mo

tion during device operation. This causes variation in the magnetic coupling observed while in a 

stationary position. Therefore, to ensure stable power transfer efficiency and frequency bandwidth, 

a multi-coil based WPT system was utilized to achieve high tolerance for system power transfer 

efficiency and data bandwidth. It was demonstrated that for the coupling variation, a multi-coil 

WPT system can reduce variation by half in power transfer efficiency (PTE) and by one third in 

frequency bandwidth compared to a two-coil WPT system with the same dimensions and operating 

conditions. Moreover, the multi-coil WPT system shows lower variation in PTE with the variation 

of driver (source) and load (implant) impedance. The work is published in part in IEEE Antenna 

and Wireless Propagation Letters, Vol. 11, 2012 [31], and IEEE ICWITS Conference, Nov, 2012, 

Hawaii, USA [32].

Chapter 4 focuses on the lowering specific absorption rate (SAR), which is a measure of ab

sorbed electromagnetic energy in the tissue. Due to the close proximity of the implant coil(s) with 

the tissue (~  1 mm) and high current (~  100-300 mA) in the magnetic coil(s), a significant induced 

electric field can be generated for the operating frequency (1-20 MHz). Therefore, a multi-coil based 

WPT technique was proposed to selectively control the currents in the external and implant coils
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to reduce the Specific Absorption Rate. A three-coil WPT system that can achieve 26% reduction 

in peak 1-gram SAR and 15% reduction in peak 10-gram SAR, as compared to a two-coil WPT 

system with the same dimensions, was implemented and used to demonstrate the effectiveness of 

the proposed approach. The multi-coil system achieves the same voltage gain and bandwidth as the 

two-coil design equivalent with 46% improvement in the power transfer efficiency (PTE). The work 

was accepted for publication in IET Healthcare Technology Letters [33].

Even though inductive coupling based WPT systems are nonradiating systems, the external 

and the implant coils can cause sufficient radiated electric field to exceed the federal standards for 

communication. Thus, a multi-coil based wireless power transfer (WPT) technique was developed 

as discussed in Chapter 5, to selectively control the currents in the external and implant coils to 

reduce radiated electric field. A four-coil WPT system that can achieve more than 37% reduction in 

radiated electric field as compared to a two-coil WPT system with the same dimensions and design 

constraints was implemented and used to demonstrate the effectiveness of the proposed approach. 

We have submitted this work to IET Electronics Letters [35].

Chapter 6 describes the realization of a soft, flexible coil fabricated by means of a liquid metal 

alloy encased in a biocompatible elastomeric substrate for operation in a telemetry system, primarily 

for application to biomedical implantable devices. Fluidic conductors are, in fact, well suited 

for applications that require significant flexibility as well as conformable and stretchable devices, 

such as implantable coils for wireless telemetry. Therefore, the goal of the present work is to 

demonstrate that, despite the lower conductivity of liquid metal alloys such as EGaIn compared to 

materials such as copper or gold, it is still possible to realize an efficient biomedical telemetry 

system employing liquid metal coils on the implant side. A wireless telemetry system for an 

artificial retina to restore partial vision to the blind is used as a testbed for the proposed liquid 

metal coils. Simulated and measured results show that power transfer efficiencies of 43% and 21% 

are obtained at operating distances between coils of 5 mm and 12 mm, respectively. Further, liquid 

metal-based coil retains more than 72% of its performance (voltage gain, frequency bandwidth, and 

power transfer efficiency) when physically deformed over a curved surface such as the surface of the 

human eye. This study demonstrates that liquid metal-based coils for biomedical implant provide 

an alternative to stiff and uncomfortable traditional coils used in biomedical implants. The work is 

published in IEEE Sensors Journal, vol.14, April 2014 [30].

Magnetic stimulation, on the other hand, is a relatively new technique. The first demonstration 

of transcranial magnetic stimulation was conducted in 1984 by Barker et al. [1]. As compared to 

other noninvasive techniques, such as Electroconvulsive Therapy (ECT), magnetic stimulation is a 

painless method for stimulation of central and peripheral nervous systems [26]. Due to its noninva-
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sive nature, magnetic stimulation has been used in a variety of clinical applications, which include 

brain mapping, treatment of mood disorders, treatment of epilepsy, and treatment of chronic pain. 

Deep penetration of magnetic field generally requires high current. Therefore, current applications 

are limited to transcranial magnetic stimulation, requiring a magnetic coil with a diameter of about 8 

cm [8]. Since 1994, there have been several attempts to miniaturize the magnetic stimulator [9-11]. 

Studies on coil design have reported improvement in the localization and efficiency when using the 

magnetic stimulation [27-28]. The effectiveness of a magnetic stimulator primarily depends on the 

design of the magnetic coil. Therefore, the key focus of our work was to design an efficient magnetic 

coil. For the current-carrying air-core coil, spatial and temporal variation of the vector potential 

(and therefore induced electric field) can be calculated by integrating the effect of individual current 

segments dl at location r0 (Equation 1.3).

A (r,l ) = ^  f  (1.3)
4n  J \r  — d0 |

where ^ 0 is the permeability of free space, I (l ) is the time-dependent current, dl is a vector oriented 

according to the direction of each current element, and \ d — d0 \ is the distance from each point (r) 

to the current element (d0). The tissue heterogeneity affects the surface charge distribution.

Neural stimulation using an external stimulator (electrical or magnetic) requires electric field 

(applied or induced) at the stimulation site. To simulate the nerve response due to an applied electric 

field, a passive cable model of nerve is commonly used. Neuronal structures are modeled in the 

form of transmission line and the membrane response can be computed by solving the equations 

describing the transmembrane potential of the cable in the presence of induced electric fields [11]. 

For infinitely long nerve fibers, the stimulation equation is,

A 2 dEr(d l) A 2 d2Vm(d l) + T dVm(d l) , V (r t) (1
m dr  =  m dd2 + dt + (1.4)

where the length and time constants of the neural membrane (Xm and Tm, respectively) are defined 

as
rm

Am — \ j Tm — cmrm (1.5)
V ri

Vm is the transmembrane voltage, defined as the voltage difference between the intracellular and 

extracellular fluid (Vm =  Vintraceiiuiar — Vextraceiiuiar), rm is membrane resistance times unit length 

(kQ axon length), ri is intracellular resistance (Q.cm-1) and cm is membrane capacitance per unit 

length (F.cm- 1). The “ activating function ” d is the gradient of the applied electric field in 

the direction of nerve (r), which is useful for determining the initial change in Vm. We developed 

a low-resistance magnetic stimulator based on a pulse discharge circuit to induce high electric field 

at the nerve site. For an accurate prediction of magnetic coils’ electric properties (inductance and
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resistance) and their generated induced field, we developed an analytical formulation and finite- 

difference models of the different magnetic coils.

Equation 1.4 shows that the efficacy of the magnetic stimulation of central or peripheral nervous 

systems depends on the spatial and temporal distribution of the induced electric field generated by 

the magnetic coil. Therefore, field estimation is a key step in designing and optimizing an efficient 

small magnetic coil. Magnetic materials serve an important role in the design of small dimension 

(diameter 4-12 mm) magnetic coils. Thus, to design an optimal implantable magnetic stimulator, 

material properties, such as the nonlinearity in the core’s permeability, need to be incorporated. 

Chapter 7 presents a generalized finite-difference (FD) field solver for the solenoid coils with 

nonlinear magnetic core. To study the temporal distribution of the induced electric field, a pulse 

discharge circuit was simulated in the time domain for the implemented nonlinear magnetic coil 

(inductor). Five coils were fabricated with different dimensions and stimulated with the magnetic 

stimulation circuit. Induced electric field was measured and compared with the simulation result. 

Results show that the presented algorithm and numerical model can accurately predict the key 

performance parameters of the designed magnetic coils with less than 10% error between simulation 

and experiment. The work was submitted to IET Healthcare Technology Letters [34]. We also 

studied the different core structures (e.g., toroid, E-shape, U-shape). Appendix C discuss the 

experimental analysis of the effect of core shape on the induced electric field.

Due to the fast saturation of the magnetic core, air-core based magnetic coils are a commonly 

used topology for magnetic neural stimulation. As compared to magnetic-core-based coils, which 

are prone to saturation, air-core-based coils provide constant inductance over time. In Chapter 8, 

design and optimization for a solenoid coil is presented. Some of these coils (solenoid and figure-8) 

are used for the ex-vivo magnetic stimulation of frogs’ sciatic nerve. It is demonstrated that solenoid 

coils with outer diameter as small as 23.5 mm can elicit muscle activity for a threshold charging 

voltage of ~  115 V in a charging capacitor of 2.2 mF [39]. A detailed analysis of the individual 

experiment is presented to establish the understanding of magnetic stimulation.

Generation of action potentials depends on the spatial and temporal distribution of the induced 

electric field. To establish the threshold value for stimulation, an animal model is required. How

ever, to reduce the number of experiments for coil miniaturization, an accurate nerve model needs 

to be developed. Therefore, in Chapter 9, we propose a computational model of frog‘s sciatic nerve 

using the impedance method [29]. The effect of supporting media and location of stimulation is 

discussed for the ex-vivo experiment [38]. Using a numerical model, it was shown that the axon 

density and location of the myelination and node of Ranvier play an important role in the distribution 

of induced electric field and resultant membrane current. To simulate the transmembrane current



7

due to cm-sized magnetic coils, a multi-resolution impedance method was developed and the effect 

of axon distribution inside the nerve was studied. It was shown that due to the axon distribution, 

proximal axons with ~20^m  separation can differ more than 8% in induced electric field [37].

To design the magnetic neural stimulator for mammals (human, cat), we study the heterogeneous 

animal model. As discussed in Chapter 10, we developed a numerical model of a multifascicular 

sciatic nerve to study the effect of tissue heterogeneity on the induced electric field. Using a 

multi-resolution electric field solver, we can resolve feature sizes as small as 1jU.m, allowing in

clusion of the nerve membrane and the myelination layer. Preliminary results indicate that fascicle 

distribution and axons’ proximity to each other significantly affect the magnitude and distribution of 

the induced electric field as compared to traditional homogeneous tissue models for field simulation. 

We submitted this study in IEEE conference on Medicine and Biology (EMBC), August, 2014 [36].

The efficacy of magnetic stimulation of the central or peripheral nervous system depends on 

the spatial and temporal distribution of the induced electric field generated by the magnetic coil. 

Therefore, accurate estimation of the induced electric field is crucial to the design and optimization 

of magnetic coils, particularly as the coil dimensions are reduced.

1.3 Significance of Work
Biomedical implants are popular in health and medical applications due to their ability to locally 

stimulate internal tissues and/or monitor and communicate the internal vital signs to the outer 

world. Implanted sensors, drug delivery devices, neural stimulation devices, and endoscopes are 

some of the devices currently in use for medical applications. Some implants use (rechargeable) 

batteries; however, wireless power transfer schemes are often used in implantable devices to avoid 

transcutaneous wiring and the need to recharge or replace device batteries. Work focused on 

improving the power transfer efficiency and supported data rate is found in literature [6, 16]. How

ever, current designs do not mitigate the effect of coil misalignments, and can generate significant 

electromagnetic energy. Thus, using our proposed telemetry system, which can achieve a high 

tolerance with magnetic coupling variation, low electromagnetic energy, and a flexible implant, a 

reliable and safe wireless power and data system can be achieved for biomedical implants. Due 

to its generalized design approach, our proposed multi-coil technique is easily adaptable to other 

practical applications that include wireless power transfer to electric cars and consumer electronics 

(e.g., television, mobile phone).

Most current neural stimulation requires direct contact of electrodes with the stimulated tissue. 

In electrical stimulation, a biphasic pulse of electric charges is transferred to the surrounding tissue 

to generate neural activity. Despite the tremendous success of electrical stimulation, accurate charge 

balance during a biphasic pulse and tissue encapsulation over electrodes can limit the longevity of
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the stimulating electrode. The contactless feature of magnetic stimulation seems to make it an ideal 

choice for long term applications. Current magnetic stimulator requires 109 higher energy than the 

equivalent electrical stimulator. Therefore, our proposed research investigates the theoretical and 

practical aspects of magnetic coils and stimulation mechanisms to design a miniaturized and energy 

efficient magnetic stimulator. With the successful design of an optimum magnetic stimulator, a 

tissue-independent neurostimulator can be implemented that can surpass the current limitations of 

electrical electrodes.
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EFFICIENT MULTI-COIL TELEMETRY SYSTEM 

FOR BIOMEDICAL IMPLANTS
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Design of Efficient Multi-coil Telemetry System for Biomedical Implants”, IEEE Transactions on 

Biomedical Circuits and Systems, vol. 7, no. 1, pp. 11-23, 2013.

2.1 Abstract
Two-coil based inductive coupling is a commonly used technique for wireless power and data 

transfer for biomedical implants. Because the source and load resistances are finite, two-coil 

systems generally achieve a relatively low power transfer efficiency. A novel multi-coil technique 

(using more than two coils) for wireless power and data transfer is considered to help overcome this 

limitation. The proposed multi-coil system is formulated using both network theory and a two-port 

model. Using three or four coils for the wireless link allows for the source and load resistances 

to be decoupled from the Q-factor of the coils, resulting in a higher Q-factor and a corresponding 

improved power transfer efficiency (PTE). Moreover, due to the strong coupling between the driver 

and the transmitter coil (and/or between the receiver and the load coil), the multi-coil system 

achieves higher tunable frequency bandwidth as compared to its same sized two-coil equivalent. 

Because of the wider range of reflected impedance in the multi-coil system case, it is easier to 

tune the output power to the load and achieve the maximum power transfer condition for given 

source voltage than in a configuration with two coils. Experimental results showing a three-coil 

system achieving twice the efficiency and higher gain-bandwidth product compared to its two-coil 

counterpart are presented. In addition, a figure of merit for telemetry systems is defined to quantify 

the overall telemetry system performance.

2.2 Introduction
The use of biomedical implants for stimulation and monitoring of internal vital signs has grown 

dramatically over the last decade. Implanted sensors, drug delivery devices [1], neural stimulation
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devices [2], and endoscopes [3] are just some of the devices currently in use for medical appli

cations. For telemetry applications, performance is usually assessed in terms of power transfer 

efficiency (PTE) and frequency bandwidth over the wireless link [4-9]. Using inductive coupling 

between the external power source and the implanted device is a sensible choice when considering 

wireless power and data transfer [1, 10, 11]. Due to limited frequency bandwidth over the inductive 

link, some telemetry systems use separate transmitters (and receivers) for data and power transfer 

[4, 7], which increases the complexity of the design. Traditional inductive coupled power/data 

transfer systems use two paired coils and achieve a PTE upto 40% and a frequency bandwidth of 

about 10% of the carrier frequency [5].

Recently, a multi-coil based power transfer system using four resonating coils was proposed, 

and a high PTE of 82 % was achieved [12]. In comparison to two-coil based systems, four-coil 

systems consist of a driver coil (connected to the power source), a high Q-factor transmitter coil 

(in close proximity to the driver coil), a load coil (connected to the implant electronics) and a high 

Q-factor receiver coil (in close proximity to the load coil). A three-coil system to achieve high 

power delivered to the load [13] employing only a driver, a receiver and a load coil has also been 

proposed. In both configurations [12, 13], the implant coil must be modified, which is not feasible 

for powering implanted devices that are in clinical use [14]. Moreover, the multi-coil approach has 

been used for wireless power transfer only. To the best of the authors’ knowledge, the multi-coil 

approach has never been used before to improve the frequency bandwidth of the inductive link.

In this work, a multi-coil system (which we define as a system with more than two coils) for 

power and data transfer using an inductive link is proposed for telemetry applications. Power and 

data transfer models for a multi-coil system with three coils (for systems that cannot accommodate 

more than a single implanted coil for compatibility with previously developed electronics) and four 

coils are formulated. A new three-coil configuration to improve the PTE of existing implants and 

improve the frequency bandwidth of the inductive link are the main contributions of this work. 

Moreover, a detail analysis of the proposed multi-coil system highlights a distinct trade-off between 

PTE, voltage gain and bandwidth, thus providing design guidelines for the new power transfer sys

tem. The use of a multi-coil system is proposed to achieve higher PTE, tunable voltage gain, higher 

bandwidth and maximum power transfer condition than a similarly sized two-coil system. The 

design focuses on the PTE and frequency bandwidth of the inductive link; thus, the design of input 

power source (power amplifier) and the data modulator/demodulator is not considered in the present 

work. However, the effect of the power amplifier impedance on the link efficiency is emulated and 

downlink Frequency-Shift Keying (FSK) data transmission is simulated to demonstrate the increase 

in the inductive link frequency bandwidth.
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For biomedical applications, wireless telemetry system must generally be compact in size. 

The two-coil and multi-coil systems are considered equivalent if  they share the same physical 

dimensions. For example, the sum of turns of the driver and transmitter in the three-coil system is 

the same as the number of turns of the driver in the two-coil system. This results in the same physical 

dimension of the system (Figure 2.1) and provides a fair comparison between two-coil and multi-coil 

system. Two experiments are conducted to compare a three-coil and its two-coil equivalent design. 

In all experiments and simulations, both the multi-coil and the two-coil system share the same 

physical dimensions. Section 2.3 presents two different methods to model the multi-coil based 

system. Section 2.4 presents the PTE analysis for both the two-coil and the multi-coil case. The 

voltage gain for power links is calculated in Section 2.5. Section 2.6 studies the improvement in 

frequency bandwidth achieved by using a multi-coil system. Section 2.7 formulates the conditions 

for maximum power transfer to the load. Experimental results are shown in Section 2.8. Finally, 

Section 2.9 discusses the experimental results and proposes a figure of merit for comparing different 

designs.

2.3 Multi-coil Model: Theory
The multi-coil structure for wireless power transfer consists of three (or four) coils. Figure 2.1 

shows the block diagram of the two-coil and the multi-coil systems. A three-coil based system 

is considered to upgrade the currently used two-coil system by modifying only the external coil 

and its components. The coils connected to the power source and implant circuit are named driver 

coil and load coil, respectively. For the two-coil system, coupling between the driver and the load 

coil is defined as k. In the three-coil system, the driver and transmitter coils are coupled with 

coupling k1, while the transmitter coil is coupled with the load coil with coupling k2. In the case of 

a four-coil system, coupling coefficients k1, k2 and k3 are used to define the coupling between driver 

and transmitter, between transmitter and receiver, and between receiver and load coils respectively. 

In a multi-coil system, k4, k5, and k6 are the coupling between driver and load coil, driver and 

receiver coil, and transmitter and load coil, respectively. At resonant frequency f res, the Q-factor of 

the coil (Q = 2 n fresL /R ) is denoted using Qd, Qt , Qr, and Qi for driver, transmitter, receiver and 

load coils, respectively. In the rest of the paper, the above convention will be used.

The PTE of an inductive link strongly depends on the magnetic coupling between the coils 

and their electrical properties (e.g., inductance and resistance). In an inductive link, the power 

is dissipated in source and coil resistances. In a traditional two-coil inductive telemetry link, the 

maximum achievable coupling is limited by the size, geometrical structure, physical spacing, and 

relative location of both coils. The Q-factor can be increased using low-resistance Litz wires, thus
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Figure 2.1. Block diagram for (a) two-coil, (b) three-coil, and (c) four-coil based telemetry system. 
Load and receiver coil (if present) are implanted. Driver and transmitter coil (if present) are part of 
the external device.

reducing the resistance of the coils; however, in the loaded condition, this increase is countered 

by the finite source resistance of the driver and high impedance of the load [15, 16], thus limiting 

the PTE. In a multi-coil system, thanks mainly to the strong coupling between driver and high-Q 

factor transmitter coils, less current needs to be fed from the driver to generate higher current in the 

transmitter coil. Thus, a multi-coil approach is characterized by low resistive losses in the driver. 

Similarly, resistive losses can be reduced in the implanted coil by using high Q-factor receiver coil 

and strongly coupled load coil.

To model the performance of the multi-coil system, two approaches are considered, based on 

network theory and circuit theory, respectively.

2.3.1 Network Model
The network model is formulated using Kirchoffs voltage law for each coil and using a voltage 

source V1 as the forcing function. The current (In,n  £ {1,2,3,4}) in each coil is calculated as a 

function of self (Zmn, m = n) and mutual impedances (Zmn, m = n). Based on the network model,
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Equations 2.1, 2.2, and 2.3 can be used to calculate the current flow in each coil for the two-coil, 

the three-coil, and the four-coil system, respectively.

2.3.1.1 Two-coil

■ h  ■ ■ Z11 Z12
-1

'  V1 '

I2 . Z21 Z22 0 (2.1)

2.3.1.2 Three-coil

h  ' '  Zn Z12 Z13
-1

V1
h = Z21 Z22 Z23 0
h Z31 Z32 Z33 0

(2.2)

2.3.1.3 Four-coil

h  ' '  Z11 Z12 Z13 Z14
-1

V1
12 Z21 Z22 Z23 Z24 0
3̂ Z31 Z32 Z33 Z34 0

I4 Z41 Z42 Z43 Z44 0

(2.3)

For coil’s inductance Ln, series resistance Rn and resonant capacitance Cn, the self-impedance 

(Zmn, m = n) and mutual-impedance (Zmn, m = n) of the coils are expressed by Equation 2.4:

1
Rn +  j ®Ln +  7 

j  Mmn

^  fo r  m = n
jWCn '

j ®kmnVLmLn f o r  m =  n (2.4)

where kmn is the magnetic coupling between the coil ‘m ’ and the coil ‘n’.

After solving the network model for n-coil system (where n is 2, 3 or 4) using Equations 2.1, 

2.2, and 2.3, the RMS (root mean square) input power Pin, the RMS output power Pout |n and the 

output voltage Vout |n can be calculated.

mn nm

Pin =  (1/2)|V1||I1| (2.5)

Pout|n = (1 /2 )|/„ |2R„; n e  {2,3,4} (2.6)

Vout\n = InRn (2.7)

PTE n and the voltage gain can be expressed as in Equation 2.8 and Equation 2.9, respectively.

n =  Pout \n/Pin (2.8)

|Gain| =  Vout ̂ /W ^  =  (|/„|R„)/|V1 | (2.9)
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2.3.2 Two-port Model
To measure the system performance, the two-port equivalent model can be defined as in Figure 

2.2(a). Using a two-port model, voltages at port 1 and 2 (V1 and V2) can be calculated from the port 

currents I1 and I2 and the two-port impedance matrix Zef f  (Equation 2.10).

V1 =  Z11(eff)h +  Z12(eff)h

V2 = Z21(eff)I1 +  Z22(eff)I2 (2.10)

In Equation 2.10, Z j f )  is the entry of ith row and j th column of the two-port model of the system 

impedance matrix.

To simulate the transient response of the system, the internal components of the two-port model 

for the two-coil, the three-coil and the four-coil configurations can be represented as in Figure 2.2 

(b), (c) and (d), respectively. In general, the driver coil has smaller inductance than the transmitter 

coil of the three-coil system, which causes smaller mutual inductance between driver and load coil 

as compared to mutual inductance between the transmitter and load coil. Thus the effect of coupling 

k4 can be neglected during the representation of the lumped element equivalent in Figure 2.2 (c). 

Similarly, in the four-coil case, using small value of driver and load coils’ inductance, the effect of 

k4, k5 , and k6 can be neglected.

For an n-coil system (where n is 2, 3 or 4), the output voltage V2 is measured across the load 

resistance Rn and no current flows through the port 2 (I2 =  0). For an applied input voltage V1, 

Equation 2.10 can be simplified to calculate the input current I1 and the output voltage V2. The 

RMS input power Pin and the RMS output power Pout \n of the system can be expressed as a function 

of V1 and Zef f  (Equations 2.12 and 2.13).

Vout\n = V2 = Z21(eff)I1 (2.11)

Pin = (1/2)\V1\\I1\ =(1/2)V12 /\Z11(eff)\ (2.12)

Pout\n = -2R-  = 2R21Zf f ^ ; n e { 2  ,3 ,4} (2.13)2Rn 2Rn\Z 11(eff)\

The PTE n and the voltage gain of the n-coil system are expressed as in Equations 2.14 and 

2.15.

„  =  Pout \n = \Z21(eff ) \ (2  1 4 )
1 = Pm = Rn\(ZU(eff)\ ^  )

\n  ■ I \ V2 \ \Z21(eff)\
\Gain \ = w i  = ^ --------1 (2.15)\ V1 \ \ (Z11( .̂ff) \
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(a)

(b)

(c)

(d)

Figure 2.2. Lumped element model. (a) Two-port circuit model of a wireless power transfer system. 
Lumped circuit model of (b) two-coil, (c) three-coil, and (d) four-coil systems, based on self and 
mutual impedance of the coil and external components (Equation 2.4). For the n-coil system, the 
output voltage (V2) is measured across the load resistance Rn.
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While both the network model and the two-port model can be used to calculate the basic 

performance of the system (efficiency, voltage gain, and bandwidth), the network model makes 

it simpler to include the coupling effects between each of the coils and calculates the currents 

through them. Experimental measurements of the system are straightforward using the two-port 

model. Using a network analyzer, the S-parameters of the two-port equivalent model can be directly 

measured and later converted to the Z-parameters in order to calculate the system efficiency and 

gain.

Using T- or pi- matching networks at the source side of the two-coil system, a schematic 

equivalent to the multi-coil architecture can be obtained (Figures 2.2(c) and 2.2(d)). However, such 

matching network implementation requires an ideal inductor and capacitors to keep the resistive 

losses small in the matching network. Conversely, the multi-coil method creates a nonphysical 

mutual inductance due to the interaction of the resonating coils. Such mutual inductance does not 

have any resistive losses and is not constrained over the current carrying capability.

2.4 Power Transfer Efficiency
In our previous work [12, 17], a four-coil system was used for the purpose of wireless power 

transfer application only. Using a similar approach, at the resonant frequency the PTE is formulated 

for the three-coil system for the existing implanted system. In similar work [13], a three-coil based 

system, consisting of driver, receiver and load coil, and requiring a modification of the implant coil, 

was proposed.

In the following section, the PTE of a multi-coil system is formulated by solving the network 

model equations at the resonant frequency.

2.4.1 Two-coil System

In general, for two-coil systems with a given load condition and source resistance, the loaded 

Q-factors of the driver and the load coil are smaller than 30 and 10, respectively [4, 16]. For a 

nominal distance k ~  0.05, this limits the PTE to values lower than 40%. Using Equations 2.1 and 

2.8, at the resonant frequency, the PTE of a two-coil system is derived and expressed in Equation

2.16 [15].

k2QdQi
n = T + H Q = ( 21«

2.4.2 Three-coil System
To build an equivalent three-coil system, the driver coil is divided in two coils, namely the driver 

coil and the transmitter coil. This effectively decouples the source resistance from the Q-factor of



19

the transmitter coil. The transmitter coil has higher inductance than the driver coil, and at the 

resonant frequency, it can achieve a high Q -factor. The driver coil has a low Q -factor because of 

its low inductance and moderate source resistance (~  5Q). The driver and the transmitter coils are 

strongly coupled (k1 ~0.5), and this increases the efficiency of the power transfer between them. 

Overall, for a given operating distance, the PTE between the transmitter coil and the load coil is 

improved because of the high Q-factor of the transmitter coil. By solving Equations 2.2 and 2.8 at 

the resonant frequency, the PTE of the three-coil system can be expressed as in Equation 2.17. In 

general, using a low-inductance driver coil, the effect of the mutual inductance between the driver 

and the load coil can be made much smaller than the mutual inductance between the transmitter and 

the load coil. Because of this, the effect of coupling k4 is neglected in the derivation of Equation

2.17.

n =  k1QdQt k2QQl (217)
1 +  k\QdQt +  k2i QtQl 1 +  ki QtQl ( . )

For high k1 and Qt, (1 +  k^QdQt) > >  k2QtQl, Equation 2.17 can be approximated as in Equation

2.18.

kjQdQt k^QtQlA____ tn ~  1 2
1 +  kfQdQt 1 +  k^QtQl 

= ndt ntl (2.18)

Equation 2.18 shows a two-step power transfer from the driver coil to the transmitter coil and from 

the transmitter coil to the load coil with the PTE of ndt and ntl, respectively. Due to the high 

coupling k1, ndt can easily be made higher than 0.9, while ntl is improved by 2 times or more 

compared to the two-coil PTE (ndl, Equation 2.16) because of the high value of Qt .

2.4.3 Four-coil System
The four-coil power transfer system is an extension of the three-coil system in which the load 

coil is split into two coils, namely the receiver coil and the load coil. This decouples the Q-factor 

of the receiver coil from the high load resistance. Due to the strong coupling k3, energy can be 

efficiently transferred between the receiver and the load coil. A four-coil system can achieve higher 

PTE compared to its two-coil and three-coil equivalent due to high Q-factor of both the transmitter 

and the receiver coil. Due to the small size of the driver and the load coils, the mutual inductances 

between driver and load coils, between driver and receiver coils, and between transmitter and load 

coils, are small and can be neglected. Using a network model of the four-coil system (Equations 2.3 

and 2.8), at the resonant frequency, PTE can be expressed as Equation 2.19 [12].
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=  (*? QdQt )(kjQrQi)____________ k2QtQr
n (1 + k \Q dQt )(1 + k2 QrQl)+  ksQtQr 1 + ̂ 2 Qt Qr + i^QrQi 9

With high coupling k1 and k3, and high Q-factor for transmitter and receiver coils, (1 +  k\Q dQt)(1 +  

k^QrQi) »  k2QtQr and (1 +  k^QtQr) »  k^QrQl , Equation 2.19 can be approximated as Equation 

2.20.

k^QdQt k2QtQr k^QrQiU  Cv1 ____ i________________ ±________________~__________

_  1 +  k\QdQt 1 +  kjQtQr 1 +  klQrQi
= ndt VtrVrl (2.20)

The approximated efficiency model of the four-coil system (Equation 2.18) shows a three-step 

power transfer from the driver coil to the transmitter coil, from the transmitter coil to the receiver 

coil, and from the receiver coil to the load coil with the PTE of tfdt, tftr and nrl, respectively. Using 

high Qt and Qr, ntr can be 3 to 4 times higher than the two-coil PTE (ndl, Equation 2.16).

The approximated power transfer equations (Equations 2.18 and 2.20) provide insight in the 

PTE improvement due to multi-coil system and are useful while defining the coil specifications 

under design constraints.

2.5 Voltage Gain
For the telemetry system, voltage gain is an important design parameter to consider when calcu

lating the required voltage level for the operation of the implanted device. This section provides the 

voltage gain (Gain = Vout/V in) of the two-coil and the multi-coil system at the resonant frequency.

2.5.1 Two-coil System
Using the network model of a two-coil system (Equations 2.1 and 2.9), the voltage gain can be 

formulated as shown in Equation 2.21.

• | • /R2 k VQdQl 
Ga<n h = (2-21)

For nominal coupling k ~  0.05 for implanted devices and moderate Q-factor of driver and load 

coils [4, 5, 15, 16], k2QdQl ^  1. Therefore the gain of a two-coil system can be approximated as 

Equation 2.22.

Gain 12 ~  -  7 \ / k ^  QdQl (2.22)
V R1
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2.5.2 Three-coil System
Similarly, voltage gain of a three-coil system is formulated in Equation 2.23 by solving Equation

2.2 and 2.9 at the resonant frequency (for a small inductance value driver coil).

Gainh = -  / R3 (k' ^ P  > (2.23)
13 V R1 1 +  klQ iQ , +  4 Q ,Q , ’

For high coupling k1 and Qt , k2QdQt ^  1 +  k^QtQi, the gain can be approximated as Equation

2.24.

f~R 1
Gain\3 — — 4 R3 k2%/ QtQi---- , (2.24)

V R1 k1 v  QdQt

2.5.3 Four-coil System
From Equations 2.3 and 2.9, the expression for the voltage gain for a four-coil system can be 

expressed as Equation 2.25 (for small size driver and load coils).

G . i  =  . /R4 (k1 VQdQt>(k2VQtQr>(k3VQQi>  (2 25)
ain|4 J y  R1 (1 +  kjQdQt>(1 +  k]QrQl>+ k^QtQr ( . )

Considering high couplings k1 and k3, and high Q-factor for transmitter (Qt) and receiver coils 

(Qr), (1 +  k1 QdQt)(1 +  k |QrQi> +  kjQtQr — (k1 QdQt>(k3QrQi>, the voltage gain can be approxi

mated as in Equation 2.26.

GainU -  V f (2'26)

An approximated model (Equations 2.22, 2.24 and 2.26) of the voltage gain is useful to char

acterize the effect of dominant parameters, as well as to compare the voltage gain of two-coil, 

three-coil, and four-coil systems. Figure 2.3 shows the tuning of the voltage gain of a three-coil 

system with respect to the coupling k1 for Design 2 (Table 2.1).

In general, as coupling k1 increases, the PTE of the three-coil system increases and voltage gain 

decreases. However, it can be seen from Figure 2.3 that there exists a region (0.125 <  k1 <  0.2) in 

which both PTE and voltage gain of the multi-coil system are higher than its two-coil equivalent. 

By varying the coupling between the driver and transmitter coils, the inductive link voltage gain 

can be tuned to the desired value. The supply voltage of the implanted electronics changes with 

different integrated circuit (IC) technology. With the freedom of tunable voltage gain, a desired 

output voltage can be generated without using a specific source voltage value. Selection of required
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Figure 2.3. Voltage gain and efficiency (PTE) variation of the two-coil and its equivalent three-coil 
system with change in coupling k1 for Design 2 (Table 2.1). Both systems use the same operating 
distance between the external and the implanted coils (k = 0.074 , k2 = 0.065 for Design 2 (Table 
2.1)

voltage gain primarily depends on the implant input voltage and the external device supply voltage. 

For example, with the use of 12 V external source, a voltage gain of approximately 0.5 will be 

sufficient to generate 5 V DC supply after diode full wave rectification (assuming 0.5 V diode 

forward voltage drop). While using a battery voltage of 3 V, voltage gain of 2 will be required 

to generate the same output voltage of 5 V. Thus, by tuning the voltage gain of multi-coil system, 

adequate voltage can be generated at the implant terminals.

2.6 Frequency Bandwidth
In telemetry applications, most designs focus on a high data rate communication link to reduce 

the system response time and allow real-time data transfer. However, the available data rate strongly 

depends on the carrier frequency, inductive link frequency bandwidth and data modulation scheme. 

Due to simplicity of the design, ASK (amplitude shift keying) and OOK (ON-OFF keying) based 

modulation schemes are popular for low data rate communication. To achieve relatively higher data 

rate, FSK or BPSK (Binary Phase Shift Keying) based modulation is used [18]. Other than these 

standard schemes, for uplink communication over inductive link, an attractive modulation method 

known as LSK (Load Shift Keying) can be used [18]. In this scheme, the effective load of the data 

is modulated with the data signal and its effects are monitored at the driver side to retrieve the data.
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Table 2.1. System Specifications
Design 1 Design 2

Coils two-coil three-coil two-coil three-coil
Driver
DoutD(cm) 3.8 3.8 4 4
DinD(cm) 1.3 3.6 2 3.6
Nd 30 3 12 2
Ld (m H ) 22.41 0.906 5.059 0.391
Rself (&) 3.73 0.507 0.491 0.164
Qunloaded 90.6 26.9 192.6 44.56
Rdriver (^ ) 5.3 5.3 5.1 5.1
Qloaded (Qd ) 37.53 2.36 16.9 1.39
Cd (nF ) 0.196 4.853 0.538 7.132
Wire (AWG) 28 28 44/1001 44/100
Transmitter
DoutT (cm) 3.6 3.6
DinT (cm) 1.3 2
Nt 27 10
Lt (m H ) 19.01 3.96
Rself (^ ) 3.527 0.4
Qunloaded 81.3 187
Rdriver (^ ) - -
Qloaded (Qt) 81.3 187
CT (nF ) 0.228 0.706
Wire (AWG) 28 44/100
Load
DoutL(cm) 0.5 0.5 1.5 1.5
DinL(cm) 0.13 0.13 0.5 0.5
Nl 102 102 8 8
Ll (m H ) 24 24 0.687 0.687
Rself (&) 16.9 16.9 0.113 0.113
Qunloaded 21.4 21.4 115 115
Rload 50.3 50.3 100 100
Qloaded (Ql) 5.38 5.38 7.24 7.24
Cl (nF) 0.183 0.183 4 4
Wire Type (AWG) 45 45 44/100 44/100
d (mm) 15 15 12 12
k1 (or k) 0.016 0.47 0.074 0.5
k2 0.015 0.065
k4 0.012 0.05
fres (MHz) 2.4 2.4 3 3
Load Type Series Series Parallel Parallel
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For low coupling between the external and implant coils (k ~  0.05), frequency bandwidth of uplink 

and downlink is limited by the Q-factor of the coils [18, 19]. Thus, a typical frequency bandwidth 

of about 10% of the carrier frequency is achieved to communicate between the external and the 

implanted device [4-7].

For two resonating oscillators, the frequency bandwidth is directly proportional to the coupling 

between the oscillators. Couple mode theory [20] can be used to explain the phenomenon of pole 

splitting due to the coupling between the resonating objects. Higher coupling causes higher pole 

splitting. Therefore using strongly coupled resonators, higher frequency bandwidth of the system 

can be obtained. The inductive link acts as a bandpass filter around its resonance frequency and its 

transfer function can be represented by Vout/V in. Figure 2.4 shows that, by increasing the coupling 

between the two magnetically coupled resonators, the bandwidth of the inductive link increases. 

Similar observation was seen in [21]; however, the underlying phenomenon was not explained. In 

typical biomedical applications, the coupling between external and implant coil lies in the range of 

0.01 to 0.07 [4,5] and, for a given operating distance, the frequency bandwidth of a two-coil system 

is fixed due to fixed coupling between the driver and load coils. Compared to a two-coil system, 

a multi-coil system provides the possibility to achieve high coupling between the coils. Multi-coil 

systems use a high coupling k1 between the driver coil and the transmitter coil (and in the case 

of a four-coil system, a high coupling k3 between the receiver coil and the load coil) to improve 

the frequency bandwidth compared to two-coil systems of similar size for a given fixed operating 

distance.

Figure 2.5 shows that, for different operating distances (thus different coupling k = k2 = {0.055, 

0.065,0.075}), the frequency bandwidth increases with increase in coupling. For Design 2 (Table 

2.1), a three-coil system achieves higher frequency bandwidth compared to that of an equivalent 

sized two-coil system for all coupling k1 >  0.2. The bandwidth of the three-coil system increases 

linearly with increase in k1 as depicted by the coupled mode theory.

Increasing the coupling k1 also reduces the voltage gain. Figure 2.6 shows the gain-bandwidth 

product (GBP) of the two-coil and three-coil systems with different coupling k = k2 = {0.055, 0.065,

0.075}. The GBP of the three-coils system is higher than the equivalent two-coil system’s GBP and 

provides a design trade-off to tune the gain and the frequency bandwidth of a multi-coil system.

To demonstrate the data transfer for two-coil and multi-coil inductive link, FSK-based mod

ulated data is used and the downlink data transfer is shown. As the inductive link is a linear 

and invertible system, the frequency bandwidth will be the same for both uplink and downlink 

communication. Figure 2.7 shows the schematics of the two-coil and three-coil systems based on 

the parameters Design 2 (Table 2.1).
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Figure 2.4. Voltage gain between two magnetically coupled resonators with the variation of fre
quency and coupling. (a) Schematics of two magnetically coupled resonators with same resonance 
frequency (3 MHz) (b) Bandpass response of the inductive link with the variation in coupling 
between the resonators.
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Coupling (k1)

Figure 2.5. Channel bandwidth (BW ) variation of the two-coil and its equivalent three-coil system 
with change in coupling k1, and k2 =  k. The design parameters are based on Design 2 (Table 2.1). 
For unity input voltage source V1 =  1V, the 3-dB frequency bandwidth is calculated from the voltage 
gain versus frequency plot.

Coupling (k1)

Figure 2.6. Gain-Bandwidth product (GBP) of a two-coil and its equivalent three-coil system with 
change in coupling k1, and k2 =  k. The design parameters are based on Design 2 (Table 2.1).
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Figure 2.7. FSK modulation based data transfer system over (a) two-coil and (b) three-coil inductive 
link for Design 2 (Table 2.1).
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The modulation frequency is chosen based on the 3-dB frequency of the two-coil and three-coil 

system. In the example presented (Design 2, Table 2.1), the 3-dB points of the two-coil system are 

at 2.913 MHz and 3.17 MHz. Thus, for bit ’1’, the modulator generates the frequency of 2.913 MHz 

and, for bit ’0 ’, the modulator outputs frequency of 3.17 MHz. Similarity, the 3-dB points of the 

three-coil system are at 2.673 MHz and 3.194 MHz. For bit ’1’, the modulator of the three-coil 

system generates the frequency of 2.673 MHz and, for bit ’0 ’, the modulator outputs the frequency 

of 3.194 MHz. A data stream of 200 kbps is sent and received over the inductive link. Figure 2.8 

shows the input data stream and the received modulated signals at the load (Rload) terminals.

To demonstrate the effectiveness of the multi-coil system to improve the frequency bandwidth, 

Fast Fourier Transforms (FFTs) of the received signals are shown in Figure 2.9. Due to higher 

channel spacing in the multi-coil system (3-dB bandwidth ~  521 kHz) to represent bit ’1’ and ’0’, 

the multi-coil approach shows lower channel interference for high data rate of 200 kbps. Conversely, 

the channel spacing in the two-coil system is low (3-dB bandwidth ~  257 kHz) and shows a 

significant interference between two data channels for 200 kbps data rate. From the spectrum of 

the received signal, due to the increase in frequency bandwidth using a three-coil system compared 

to its two-coil equivalent, multi-coil inductive link can therefore support higher data rate.

2.7 Maximum Power Transfer
For some devices, the input voltage of the driver coil is restricted by the supply voltage of the 

power source (e.g., power amplifier source voltage). In a wireless power transfer system, the load 

impedance can be seen as a reflected resistance on the input source. For a constant source voltage, 

the reflected impedance should be matched to the source resistance in order to deliver the maximum 

possible power to the load. Maximum power transfer condition limits the maximum PTE to 50%, 

as in the best case scenario half of the available power is dissipated at the source resistance. This 

section formulates the reflected impedance and resulting PTE for a two-coil and a multi-coil system.

2.7.1 Effective Resistance
Using the network model of the two-coil and the multi-coil system (Equations 2.1, 2.2, and 2.3), 

the reflected load impedance Ref f  at the source can be calculated by V1/ I 1 and can be expressed as 

in Equations 2.27, 2.28 and 2.29. These equations show the total resistance seen by the source due 

to self impedance and input reflected load resistance as a function of the coil parameters.

For a two-coil system,

Reff  = R1(1 +  k2QdQl) (2.27)

For a three-coil system,
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Figure 2.8. Transient response of (a) input data stream and received signal at two-coil load terminal 
(b) input data stream and received signal at three-coil load terminal. The design parameters are 
based on Design 2 (Table 2.1).
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(a)

(b)

Figure 2.9. Frequency spectrum plot of received signal at (a) two-coil load terminal (b) three-coil 
load terminal. The design parameters are based on Design 2 (Table 2.1).
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R ' f = R i 1+ T T S m )  (228)

R R ( . .  m o , ( i + k2a ,Q ln  ,22A,
R e f f = r t + 1 + m , Qr + QrQl)  (229)

v2v

For a four-coil system,

klQ
1 +  k2 QtQr + k3 QrQl ,

To quantify the loading effect of the load resistance and its matching to the source resistance, two 

terms namely “loading factor N ” and “matching factor p ” are introduced. The effective resistance 

Ref f  can be written as a function of the loading factor N , which is used to define the matching factor 

p  as in Equation 2.30. For all values of Q-factor and coupling, the loading factor N  is a positive 

real number. For the two-coil, the three-coil and the four-coil systems, N  is defined in Equations 

2.31, 2.32, and 2.33, respectively. The matching factor p  denotes the ratio of power delivered and 

the maximum deliverable power for a constant source voltage. For all values of N, matching factor 

p  lies between 0 and 1. For perfect impedance matching to R 1 , the loading factor N  will be 1 and 

maximum power will be delivered to the load (p  = 1).

For a two-coil system:

For a three-coil system:

For a four-coil system:

Reff

Pin

Pout

p

R1(1 +  N )
V2

2Reff
n Pin

4N _
(1 +  N  )2;

0 <  p  <  1

N  = kQ dQ l

N

N

klQdQt 
1 +  fyQtQt

k\ QdQt (1 +  k3 QrQi)
1 +  k^QtQr + k 3 QrQl

(2.30)

(2.31)

(2.32)

(2.33)

2.7.2 Impedance Matching
The PTE of the two-coil, three-coil, and four-coil systems (Equations 2.16, 2.17, and 2.19) can 

be rewritten in terms of the loading factor N  and the matching factor p  as in Equations 2.34, 2.35 

and 2.36, respectively.
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For a two-coil system, the loading factor N  (Equation 2.31) is in the range 0.2 to 0.5 for all 

practical values [4, 5,16] making it impossible to achieve the matching condition.

n

n

n  -  P
1

n  -  P

2 1 +  v T - p  
1

2 1  -  v /1 - P

]; f o r  N  >  1 

]; f o r  N  < 1 (2.34)

In three-coil systems, for a given operating distance, the loading factor N  can be controlled by 

varying k1 and Qd. This makes achieving the matching condition relatively easy. For example, given 

k1 =  0.25, Qd = 0.44, Qt = 160, Ql = 7 ,k2 =  0.055, the loading factor and the matching factor are

1, resulting in a PTE n of 38.6%.

n

n

[1 -  P
1

[1 -  P

21  +  v /1 - P  
1

21  -  v /1 - P

]n23 ; f o r  n  >  1 

]n23 ; f o r  n  < 1 (2.35)

where n23 Q! Ql
1+kk2QtQl

Similarly, a four-coil system is also capable of achieving maximum power transfer condition by 

tuning Qd, k1 and k3. For example, given k1 =  0.2, Qd = 0.7, Qt = 200, Qr = 100,Ql = 2 .5 ,k2 =  

0.05, k3 =  0.2, the loading factor and the matching factor are 1, resulting in a PTE n of 37.4%.

P 1
n =  [1 - o i , n— = ]n23n34; f or n > 12 1 +  V 1 -  P

n = [1 -  ]n23n34; f o r  n  < 1 (2 .3 6 )2 1 -  1 -  P

whPrP noQ = kk2QtQr n = kiQrQl 
n23 1+k2QtQr+k2QrQl and n34 1+k2QrQl .

For a constant source voltage and a given operating distance, the output power to the load can be 

varied. The formulation of output power and its trade-off with the PTE provides an important tool 

to the designer to generate adequate output power in the load. As compared to the two-coil system, 

the multi-coil system offer higher number of tunable design parameters (Q factor and coupling) and 

thus it can easily achieve maximum power transfer condition to the load.

2.8 Experimental Results
To demonstrate the PTE and the frequency bandwidth improvement using a multi-coil telemetry 

system, two experiments were performed. The performance of a three- and a two-coil equivalent
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system were compared; in this, for the same type of wire, the equivalency is defined by the total 

number of turns of driver and transmitter coils in the the three-coil system being equal to the number 

of turns of the driver coil in the two-coil system. A small implant (load) coil, with dimensions 

published in [22], is chosen for Experiment 1. For the second experiment, a different small implant 

coil was built with dimensions listed in column Design 2 of Table 2.1. Assuming that these coils 

were already implanted and could not be modified, two setups were considered using external single 

and double coils to create and compare a two-coil and a three-coil system. Two sets of experiments 

were performed to assess the efficiency improvement for different coil types, as well as the effect of 

the Q-factor on the overall system efficiency and bandwidth.

2.8.1 Experimental Setup
A 50 Q sinusoidal source was used to generate a signal at the operating frequency. The PTE 

was calculated from the output terminal of the signal source to negate the effect of the source 

resistance. Instead, a resistance of 5.1 Q was used in series with the driver coil in order to emulate 

the typical source resistance of a power amplifier used for telemetry applications [15, 16] and to 

measure the input current in the driver coil to calculate the input power. The source resistance of the 

power amplifier is mainly governed by the ON-resistance of switching transistor and ESR (effective 

series resistance) of the lumped components (capacitances and RF choke) [13, 15, 16, 23]. Even 

if  few MOSFETs provide much smaller ON-resistance (~  0.05Q), due to their size they can cause 

much higher input and output capacitance (~  1000pF ) [24]. High input capacitance results in slow 

switching in input signal and high MOSFET output capacitance can restricts the optimum design 

parameters of the class-E amplifier [23]. Thus, selection of the switching transistor depends on the 

maximum drain-to-source voltage rating (Vds(maix)), ON-resistance, input and output capacitance of 

the switching transistor [25]. To use a wide range of supply voltage, low switching delays and low 

parasitic capacitances, MOSFETs with comparatively higher ESR (~  1Q) might be required [26]. 

For biomedical applications, moderate Ron and ESR of resonating capacitances can lead to a driver 

impedance of a few ohms [16].

Table 2.1 reports the measured electrical and mechanical parameters for the two designs consid

ered here. The schematics of the two- and three-coil systems are similar to that shown in Figure 2.7. 

To demonstrate the wireless power and data transfer, the external and implant coils are separated by 

distance d  as shown in Figure 2.10. Figure 2.11 shows the concentric transmitter and driver coil for 

Design 1 and Design 2. Input power is calculated using measured input voltage and input current. 

Output power at the load resistance is calculated from the measured output voltage across load.



Figure 2.10. Experimental setup for the telemetry system for Design 2 (Table 2.1) showing the 
relative positioning and distance d between the external and implant (load) coils.

2.8.1.1 Experiment 1
The first experiment compares the PTE, voltage gain and frequency bandwidth of a two-coil 

system and its three-coil equivalent. The external coils are coaxially aligned and positioned at 

a distance d from the implant (load) coil. Table 2.1 (column Design 1) provides the electrical, 

mechanical, and operating conditions of the two-coil and the three-coil systems. To achieve a fair 

comparison, the overall mechanical dimensions of both systems are equal. A small implant coil of 

diameter 0.5 cm is used for both cases. Figure 2.12 (a) shows the implanted coil for Design 1.

2.8.1.2 Experiment 2
Experiment 2 shows the effect of a high Q-factor transmitter coil on the system PTE when 

comparing the two-coil and the three-coil cases. The design parameters are detailed in Table 2.1 

under the Design 2 column. The coil is built using low resistance multi-strands Litz wire to improve 

the Q-factor [27]. Figure 2.12 (b) shows the implanted coil for this experiment.
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Figure 2.11. Co-centric, co-planar transmitter and driver coil for three-coil system used for (a) 
Design 1 and (b) Design 2 (Table 2.1), showing the relative positions of driver and transmitter coils.

2.8.2 Experimental Results

2.8.2.1 Experiment 1
Figure 2.13 shows the simulated and measured PTE for the two-coil and the three-coil systems 

for Design 1. The simulation is done with and without the consideration of k4 on voltage gain and 

PTE which shows that, due to the small inductance value of driver coil, k4 does not have a significant 

effect on the voltage gain and PTE. The three-coil system shows more than twice the PTE compared 

to the two-coil equivalent setup for the same operating conditions and system dimensions. The shift 

in the peak value of the PTE is only 10 kHz, which is caused by the difference in the value of the 

resonating capacitors from their ideal value (within 5 % tolerance limit).

Figure 2.14 shows the simulated and measured voltage gains of a two-coil and a three-coil 

system. The three-coil system shows higher frequency bandwidth than the two-coil system due to 

high coupling between the driver and the transmitter coil (k1 =  0.47). As expected, due to high 

coupling k1, the voltage gain of the three-coil system is smaller than the voltage gain of the two-coil 

system.

2.8.2.2 Experiment 2

Figure 2.15 shows the simulated and measured efficiency for a two-coil system and a three-coil 

system with high Q-factor transmitter coil. The simulation is done with and without the effect of k4
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(b)

Figure 2.12. Implant (load) Coils used for (a) Design 1 and (b) Design 2 (Table 2.1) showing the 
relative dimensions of the coils with respect to 1-cent coin (USA)
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Frequency (MHz)

Figure 2.13. Simulated (Sim) and experimental (Exp) PTE of a two-coil and its three-coil equivalent 
system with respect to frequency for D esign 1 (Table 2.1). Simulation is done with (w k4) and 
without (w/o k4) the consideration of coupling between driver and load coils (k4).

Frequency (MHz)

Figure 2.14. Simulated (Sim) and experimental (Exp) voltage gain of a two-coil and its three-coil 
equivalent system with respect to frequency for D esign 1 (Table 2.1). For unity input voltage 
source V1 =  1V , the 3-dB frequency bandwidth is calculated from the voltage gain (Vgain) versus 
frequency plot. Simulation is done with (w k4) and without (w/o k4) the consideration of coupling 
between driver and load coils (k4).
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Frequency (MHz)

Figure 2.15. Simulated (Sim) and experimental (Exp) PTE of a two-coil and its three-coil equivalent 
system with respect to frequency for D esign 2 (Table 2.1). Simulation is done with (w k4) and 
without (w/o k4) the consideration of coupling between driver and load coils (k4).

on voltage gain and PTE. From Figure 2.15, it can be seen that, due to the small inductance value of 

the driver coil, k4 does not have appreciable effect on the voltage gain and PTE. Using Litz wire for 

all the external coils, the resistive loss in the coils is reduced. The three-coil system achieves a high 

PTE (65%) and approximately two times the efficiency of the equivalent two-coil system. The shift 

in the peak value of PTE is only 20 kHz which is also caused by the drift in resonating capacitors 

from their ideal value (within 5 % tolerance limit).

Figure 2.16 shows simulated and measured voltage gains of a two-coil and a three-coil system. 

The three-coil system shows higher frequency bandwidth compared to the two-coil system due to 

the high value of the coupling k1 (~  0.5).

2.9 Comparison
Catrysse et al. [5] defined a performance metric as a function of PTE, frequency bandwidth, 

and system dimensions (Equation 2.37). This metric allows simple comparison between different 

telemetry systems performance.

F O M  =  lOLogio
d 2 BW

(2.37)
D1 x D2 fres

In Equation 2.37, d  is the distance between the external and the implant coil with D1 and D2 

denoting as the diameter of the external and the implant coils, respectively. BW  denotes the 3-dB
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Frequency (MHz)

Figure 2.16. Simulated (Sim) and experimental (Exp) voltage gain of a two-coil and its three-coil 
equivalent system with respect to frequency for D esign 2 (Table 2.1). For unity input voltage source 
V1 =  1V , the 3-dB frequency bandwidth is calculated from the voltage gain (Vgain) versus frequency 
plot. Simulation is done with (w k4) and without (w/o k4) the consideration of coupling between 
driver and load coils (k4).
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frequency bandwidth at resonant frequency f res. n is the PTE of the system.

Due to the limited range of the input power source voltage, the voltage gain is also an important 

design parameter for the telemetry system. High voltage gain reduces the requirement of high source 

voltage. Therefore Equation 2.37 was modified to include the voltage gain factor Gain  as shown in 

Equation 3.14.

FOMn =  10Log10
d 2 BW

X n X Gain (2.38)
D1 X D2 fres

Table 2.2 summarizes the performance metric of the two-coil and its three-coil equivalent sys

tems for both the designs specified in Table 2.1. It can be seen that for all the designs the multi-coil 

system outperforms the two-coil system for both power and data transfer.

2.10 Conclusion
We have introduced a novel multi-coil based telemetry system for power and data transfer over 

an inductive link, and compared it with an equivalent system employing two coils. The network 

model and the two-port model for both the two-coil and the multi-coil system were described, 

analyzed and compared to provide insights about their performance in terms of power and data 

transfer. The analysis for the two-coil and the multi-coil (three-coil and four-coil) system shows 

that the multi-coil configuration can be used effectively to improve the PTE and gain-bandwidth 

product of the system. A multi-coil system provides additional tuning parameters to the designer. 

It is simpler to adjust a particular configuration for achieving the maximum power transfer in the 

multi-coil case than in the two-coil system.

In addition to the theoretical modeling, two experiments were conducted with two implant coils. 

For all considered designs, the experimental data show that the multi-coil (three-coil) configurations 

achieved more than twice the efficiency and higher gain-bandwidth-product compared to the equiv

alent two-coil system. Further, it is noted that all the simulation results are in close agreement with 

the experimental results. One significant advantage of the three-coil configuration is that it can be

Table 2.2. Experimental Results
Design 1 Design 2
two-coil three-coil two-coil three-coil

n (%)
BW(kHz)
Gain
GBP
F O M n

3.12
60
0.42
25.2
-34.28

6.3
332
0.125
41.5
-28.8

35
240
1.9
456
-18.94

65
580
1.07
620.6
-14.91
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used to upgrade two-coil systems already implanted in patients without any requirement to mod

ify or replace the implanted coil, providing with a nonsurgical, cost-effective higher performance 

alternative.
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3.1 Abstract
Inductive coupling based wireless power transfer (WPT) is commonly used for near field power 

and data transfer to implanted electronics. Some implanted coils undergo relative motion during 

device operation causing variation in magnetic coupling from their normal position. To ensure 

stable power transfer efficiency and frequency bandwidth, these WPT systems should have high 

tolerance with coupling variation and operation mode. In this work, a multi-coil based WPT system 

is utilized to achieve high tolerance for system power transfer efficiency and data bandwidth. It 

is demonstrated that for the coupling variation, a multi-coil WPT system can reduce variation by 

half in power transfer efficiency (PTE) and by one third in frequency bandwidth compared to a 

two-coil WPT system with the same dimensions and operating conditions. Moreover, power transfer 

efficiency of the multi-coil WPT system shows lower variation with the variation of driver (source) 

and load (implant) impedance.

3.2 Introduction
Wireless power transfer (WPT) is currently used as a mechanism to transfer power to implanted 

electronics, such as implanted sensors and neuro-stimulators. Traditional WPT systems utilize two- 

coil based systems in which power and data are transferred from the external coil to the implant
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coil based on magnetic induction. Figure 3.1(a) shows the block diagram of a typical two-coil 

WPT system indicating the magnetic coupling k between the coils. Performance (Power Transfer 

Efficiency, voltage gain, and bandwidth) of the telemetry systems is strongly dependent on the 

coupling between external and implant coils. Thus, with the relative motion of the implant (or 

external) coil with respect to its normal position, Power Transfer Efficiency (PTE), voltage gain and 

frequency bandwidth can be greatly affected [1]. An example of this situation is encountered in 

wirelessly powered retinal implants [2]. The movement and rotation of the eye causes the primary 

and secondary coils to be nonparallel and offset with respect to each other. To insure continuous 

powering and data transmission despite these natural movements of the eye of the blind patient, the 

telemetry link must retain its performance characteristics over a relatively broad rotation angle and 

offset [2] and should achieve a high tolerance in PTE and frequency bandwidth with the coupling 

variation during the operation of the system. Moreover, to improve the lifetime of a body-worn 

battery to power an implant wirelessly, biomedical implants have multiple power-saving modes. 

With the variation of required power for different power modes, the effective load resistance (RL) 

varies causing variation in power transfer efficiency. Because efficiency is a strong function of 

driver resistance, the WPT system must also be more tolerable of driver (power amplifier) output 

resistance (Rd).

Recently, a multi-coil based WPT system was proposed to achieve higher efficiency and im

proved frequency bandwidth as compared to a two-coil WPT system with the same dimensions [3]. 

Figure 3.1(c) and (e) show block diagrams of multi-coil WPT systems with a three-coil and four-coil 

configuration, respectively [3]. In this work, a multi-coil based WPT approach is used to improve 

the tolerance in power transfer efficiency and link bandwidth of the WPT system without reducing 

the tolerance of voltage gain. A detailed analysis of the tolerance for the two-coil system and 

multi-coil system is presented, demonstrating that a multi-coil system can achieve a higher tolerance 

in efficiency and bandwidth. Similarly, tolerance analysis of a two-coil WPT system is done with 

the variation of driver and load resistance. To improve the tolerance and make the design more 

robust, a multi-coil WPT design approach is proposed. With the use of intermediate self-resonating 

passive coils, the multi-coil WPT system can reduce the dependence of Rd and RL on the power 

transfer efficiency of the system. To the best of author’s knowledge, such a study has not been done 

before.

3.3 Tolerance Analysis in Telemetry System with 
Coupling Variation

During device operation, the distance between external and implanted coils can vary from its 

nominal values and cause decay in the coupling between the coils. Therefore, the wireless power
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(b)

Implant driver 
Electronics

Driver Transmitter Load

(e)

Power
Amplifier

Driver
Transmitter Receiver

Figure 3.1. Block diagram of (a) two-coil and multi-coil ((c) three-coil (e) four-coil) wireless power 
transfer system. Electrical model of a (b) two-coil and (d) three-coil telemetry system
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link should have high tolerance with the change in coupling k (or k2 (Figure 3.1(c) and (e)). At 

any orientation (respective coupling k), the parametric tolerance of the telemetry system can be 

calculated by P where P  is the considered performance parameter. In the following section, 

tolerance is formulated for key performance parameters of a telemetry systems including PTE, 

voltage gain and frequency bandwidth. To demonstrate the difference in a practical telemetry 

system, such as that in a dual unit artificial retina system, the theoretical analysis is applied to a 

sample two-coil and three-coil telemetry link (Table 3.1).

Table 3.1. System Specifications
Coils Two-coil System Three-coil System
Driver Coil
DoutD(cm) 3.6 3.6
Nd 12 2
Ld (M H ) 5.23 0.354
Cd (nF ) 0.424 6.98
Rdl (Q ) 0.72 0.21
Rdriver(Q ') 4.7 4.6
Qd(unloaded) 154 35.86
Qd(loaded) 20.13 1.56
Transmitter Coil
DoutT (cm) 3.2
N t 10
Lt (M H ) 3.18
Ct (nF ) 0.702
Rt (Q) 0.621
Qunloaded 108.4
Qt (loaded) 108.4
Load Coil
Douth(cm) 1.5 1.5
Nl 8 8
Li (M H ) 0.6 0.6
Cl (nF ) 3.61 3.61
Rcl (Q) 0.09 0.09
Ql(unloaded) 141 141
Ql(loaded) 8.15 8.15
RLoad (Q ) 110 110
Wire (AWG) Litz 100/44 Litz 100/44
d (mm) (0 =  0) 10 10
k\ (or k) (0 =  0) 0.10 0.5
k2 (0 =  0) 0.10
k3 (0 =  0) 0.096
fres (MHz) 3.37 3.37
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3.3.1 Power Transfer Efficiency with Variation in Coupling
In our previous work [3, 4], resonating coils were used for efficient power transfer between 

external and implanted coils. To improve the power transfer efficiency, the Q-factor of the coils 

should to be maximized [3]. To formulate the variation in power transfer efficiency with respect to 

coupling k (or k2) variation, efficiency tolerance for a two-coil, three-coil, and four-coil system is 

given by Equations 3.2, 3.4 and 3.6, respectively. Due to the high quality factors of the transmitter 

and receiver coils, the multi-coil system efficiency n has a lower rate of change compared to the 

two-coil equivalent. Using expression for the efficiency n found in [3], for a two-coil WPT system 

we have:

k2Qd Qi

n  = T + l k  (31)
1 d n  2
n d  k k(1 +  k2 QdQ l) 

For a three-coil WPT system, we have instead:

(3.2)

1 +  kjQ dQ t 1 +  k2Qt Ql 

1 d n  2
V d k 2  ~  k2(1 +  k lQ tQ i) 

while for a four-coil WPT system, we can write:

n ^  k\Q dQ t k2QtQl (33)

(3.4)

n ^  kj QdQt k2Qt Qr k? QrQl (3 5)
' _  1 +  kjQ dQ t 1 +  k%QtQr 1 +  klQ rQ i ( . )

1 d n  2
(3.6)

n d  k2 k2(1 +  k lQ tQ r)

Figure 3.2 (a) shows the simulated change in efficiency n (normalized for k(or k2) = 0.1) with 

variation in coupling between the external and implant coils for coil parameters given in Table 3.1, 

which can be used for retinal implant systems. For the nominal operating range (k C [0.03,0.1]), 

the three-coil based system has lower variation in efficiency.

3.3.2 Voltage Gain with Variation in Coupling
For wireless power transfer, voltage gain is an important design parameter when considering 

what voltage level is sufficient for operating the implanted device reliably. Voltage gain (Vout/V in) 

is a function of coupling and coil quality factors. Equations 3.7, 3.9 and 3.11 give the voltage gain 

of two-coil, three-coil and four-coil based systems, respectively [3].

To ensure reliable device operation, the rate of change of voltage at the implant’s terminal should 

be small with coupling variation. Equations 3.8, 3.10 and 3.12 provide the voltage gain variation
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Coupling k (k2) Coupling k (k2)

(C) (d)

Figure 3.2. Simulated (a) efficiency (b) voltage gain (c) bandwidth and (d) FOM of the two-coil 
and its three-coil equivalent system normalized for coupling k(or k2) = 0.1 for the design example 
(Table 3.1). Efficiency tolerance can be calculated from the slope of the curve.
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for the two-coil, three-coil and four-coil WPT systems, respectively. For a two-coil WPT system, 

we have:

„ . [ R l  k^JQdQt
0 2  = j \ I r , T + t Q a ,  (37)

d G  =  . fRL Q 1 -  k2QdQt 
d k  V Rd (1 +  k2Qd Qi)2

(3.8)

For the three-coil WPT system, we have:

PR 1
03 ~  - s j (3 «  

dG 1 (3.10)
d k2 k1y/QddQt\ Rd 

and for the four-coil WPT system, we have instead

[R 1 1

g 4 - - ( 3 1 1 )

dG ■ 1 1 [R L  /7r 7V  
dk2 -  J k 1 V Q d Q tk 3 V Q T Q i\ R d QtQr

For moderate coupling in a two-coil WPT system (k2QdQ, ^  1), Equations 3.8, 3.10 and 3.12 

can be simplified to

1 1
— ^7- ^  i t ;n G {2,3,4} (3.13)
G n d  k2 k2

Figure 3.2(b) shows that, for the presented two-coil design, voltage gain variation is minimal 

while operating the system close to the critical coupling (k — 0.071). However for large distance 

between the external and implant coil (coupling k < 0.055), the two-coil and three-coil WPT sys

tems show a similar rate of change in voltage gain with coupling variation, which is expected from 

Equation 3.13.

3.3.3 Frequency Bandwidth with Variation in Coupling
In telemetry applications [5], moderate data bandwidth is essential for sending/controlling vital 

sign signals to/from the implanted device. Multi-coil systems use high coupling between the driver 

and transmitter coils (kT) (and/or receiver to load coil (k3)) to improve the data bandwidth compared 

to a two-coil equivalent system for a given operating distance. Bandwidth increases with the 

increase in coupling k1 [3].

For telemetry applications, to keep sufficient data bandwidth with coupling variation, bandwidth 

should be independent of coupling k (or k2). In a multi-coil system, due to high coupling between 

the driver and the transmitter coils (or between the receiver and the load coil), the bandwidth is
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dominated by k1 (or k3). With change in the coupling k (or k2), a multi-coil system shows small 

variation in bandwidth. Figure 3.2 (c) shows the bandwidth variation (normalized for k (or k2) = 

0.1) for the three-coil and two-coil system, which depicts that the three-coil system’s bandwidth 

remains almost constant with the change in coupling between external and implanted coils.

To compare different WPT systems, a figure of merit (FOM) was proposed to include PTE, volt

age gain, frequency bandwidth, system dimensions and operating conditions as shown in Equation 

3.14 [3]. Figure 3.2 (d) shows that, for all coupling values, the multi-coil WPT system has lower 

variation in FOM than the two-coil WPT system with the same dimensions.

F O M  =  10Log10 (3.14)
D1 x D2 fres

where d  is the operating distance of telemetry system, with D1 and D2 as the diameter of the external 

and the implant coils respectively. BW  denotes the 3-dB frequency bandwidth at resonant frequency

fres.

3.3.4 Design Example
As mentioned in the previous section, to demonstrate the system’s performance variation during 

the operation of the device, a retinal implant is considered. In this, the implant coil rotates with 

the movement of eye [1]. To minimize changes of the existing retinal implants, which are currently 

using two-coil systems, and to incorporate the multi-coil WPT design, its multi-coil equivalent must 

share the same implant coil specifications (Figure 3.1(b)). For fair comparison, three-coil and two- 

coil WPT systems share the same overall external coil’s dimensions. The following section provides 

the experimental setup and experimental results of the two-coil and three-coil WPT systems.

3.3.4.1 Experimental Setup
To compare the system tolerance improvement due to a multi-coil based approach, a typical 

implant coil size of ~  1.5 cm is chosen. Figure 3.3(a) shows the block diagram and 3.3(d) actual 

image of the experimental setup. Figures 3.3(b) and (c) show the image of hand wound coils used 

for two-coil and three-coil telemetry systems. To mimic the rotation of the eye, the implant coil is 

mounted on a sphere of diameter 36 mm. The eye model is rotated along its axis from —30o to 30o in 

steps of 5o. Due to symmetry of the implant and the external coil along its center axis, the vertical 

motion of the eye does not vary the coupling between external and implant coils, thus it is not 

considered in current setup. Under normal operating conditions, the implant and external coils are 

coaxial and are at the operating distance d  of 10 mm. Eye rotation causes the implant and external 

coils to be misaligned, resulting in lower coupling than under the normal operating conditions. 

Figure 3.1(b), (d) shows the electrical model of the two-coil and three-coil WPT systems.
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Load Coil

Viewing angle
Driver coil

« #
%% !  Implant Coil
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Driver
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to VNA Port 2 to VNA Port 1

Figure 3.3. Experimental setup. (a) Eye model for WPT performance’s variation in two-coil and 
three-coil system. Electrical model of the (b) two-coil and (c) three-coil WPT systems are based on 
the design example(Table 3.1)

To measure the efficiency, voltage gain and bandwidth, a two-port impedance model of the WPT 

system is incorporated based on [3]. A VNA is used to measure the efficiency and voltage gain as 

a function of frequency [3]. A resistance of ^  4 .7^ is used in series with the driver coil to emulate 

the typical source resistance( [3, 6]) of the power amplifier.

Table 3.1 provides the electrical and mechanical parameters for the two-coil WPT system and 

its three-coil equivalent. Total dimensions of the external coils of the three-coil system are the same 

as the two-coil system’s external coil. However, the transmitter coil of the three-coil design can 

achieve much higher loaded Q factor of Qt ~  108 due to source resistance decoupling, compared to 

Qd 20 for the two-coil equivalent.

3.3.4.2 Experimental Results
To compare the performance of the power transfer system with change in coil misalignment 

between the external and the implanted coil, Figure 3.4 shows the experimental results for efficiency, 

voltage gain, frequency bandwidth and FOM variation with respect to coil rotation angle.

To compare the two-coil and three-coil WPT system performance variation on the same scale, 

Figure 3.5 shows the normalized efficiency, voltage gain, bandwidth and FOM of the three-coil and 

two-coil system. For the three-coil WPT system, due to the high Q factor of the transmitter coil 

(Qt), the effect of coupling variation on PTE is compensated by Qt. It shows that with respect to the 

reference position (0 =  0o), variation in the three-coil system’s efficiency is much smaller than the
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(a) (b)

(c) (d)

Figure 3.4. Measured (a) efficiency (b) voltage gain (c) bandwidth and (d) FOM of the two-coil 
and its three-coil equivalent system for eye rotation from —30o to 30o in step of 5o (design example, 
Table 3.1)
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(a) (b)

(c) (d)

Figure 3.5. Measured (a) efficiency (b) voltage gain (c) bandwidth and (d) FOM of the two-coil and 
its three-coil equivalent system normalized with respect to 0o eye position for the design example 
(Table 3.1). For normalized parametric value P, tolerance for angle 0 =  0 can be calculated using
PO-P0 

0 .

two-coil equivalent (Figure 3.5 (a)).

In the presented design example, normal operating condition (0 =  0o) is close to the critical 

coupling condition (k2QdQl =  1). Due to critical coupling near k ~  0.71 the voltage gain variation of 

the two-coil is smaller. However, for higher misalignment |01 > 20o, rate of change in the two-coil’s 

voltage gain is similar to the rate for the three-coil system (Figure 3.5 (b)).

Multi-coil utilizes high coupling between driver and transmitter coils (ki ~  0.5) to improve 

the frequency bandwidth of the system which is unaffected from the eyeball rotation. Figure 

3.5 (c) shows that due to ki being a key parameter in controlling the bandwidth in the three-coil



55

system, frequency bandwidth of the three-coil system is almost constant with the misalignment of 

the external and implant coils.

3.4 Tolerance Analysis with Source and Load Variation
The efficiency of a WPT system depends on the driver resistance and the effective resistance of 

the implant. In different operation modes of implant electronics, the effective load resistance varies 

causing significant variation in efficiency. In the following sections, a multi-coil based WPT system 

is proposed to improve the tolerance of the power transfer efficiency due to the variation in source 

and implant resistance. For the same physical dimensions, the multi-coil system shows twice the 

better efficiency tolerance compared to a traditional two-coil based WPT system.

3.4.1 Efficiency with Respect to Source Resistance
Driver resistance of a WPT system depends on the ON-resistance of the switching transistor and 

the residual resistance of the parasitic components. It is desirable to use WPT systems seamlessly 

with a variety of different amplifiers. Thus, it is important to improve the tolerance of power transfer 

efficiency with respect to the different driver resistance. Equation 3.15, 3.16, and 3.17 show the 

analytical formulation for the rate of change in efficiency with driver resistance and tolerance 

of efficiency n iR .. For a multi-coil design (three-coil/ four-coil), the effect of the high-Q factor 

transmitter coil (~150) is in the denominator of these formulations which reduces the value of jR- 

and n dn significantly as compared to two-coil design.

For two-coil WPT system,

For three-coil WPT system,

For four-coil WPT system,

d n
dR1

d n  
dR1 

1 d n  

n d  R 1

d n  
dR1 

1 d n  

n d  R 1

d n

1 d n  

n d  R 1

d n  dQ1 Q1
d  Q1 d  R1 R1

k2QdQl
R 1 (1 +  k2QdQi )2
1 1

R1 1 +  k2 QdQi

_ _ L n
R1 d  R 1
1 1

R 1 1 +  k^Qd Qt

1 d^12 
R1n23 n341 R 1
1 1

R1 1 +  kjQ dQ t

(3.15)

(3.16)

(3.17)

1
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3.4.2 Efficiency with Respect to Load Resistance
In general, implant electronics is parallel configuration with the load coil [4]. With the variation 

in different power-saving modes in a biomedical implant, the Q-factor of the load coil (Q l) varies 

significantly and causes variation in the WPT systems power transfer efficiency. Analytical for

mulation for the rate of change jRL and tolerance n d n  with respect to change in load resistance is

done for the two-coil and multi-coil designs. Due to the large Q-factor transmitter coil Qt (three-coil 

system) and receiver coil Qr (four-coil system), the tolerance of efficiency can be reduced ( Equation 

3.18, 3.19, and 3.20).

For two-coil WPT system,

For three-coil WPT system,

For four-coil WPT system,

d n

dR2
i d n  

n dR-2

1 d n  

n d  R3

1 d n  
n d  r 4

1 k2QdQi
R i (1 +  k2QdQ i)2 
1 1 

R2 1 +  k2 QdQi

R3 1 +  k2QtQi

R4 1 +  k^QrQi

(3.18)

(3.19)

(3.20)

3.4.3 Design Example
To demonstrate an improvement in efficiency tolerance using the multi-coil approach, a three- 

coil WPT system and its equal sized two-coil WPT system are designed. Table 3.2 provides the key 

parameters of both systems. The implant coil remains the same for both the designs. For the same 

system dimensions and driver resistance of 5.1 Q, the three-coil system achieves much higher Qt of 

174 at 2.8 MHz operating frequency as compared to Qd of 15.9 for the two-coil design.

Figure 3.6 shows the variation of power transfer efficiency for the two-coil and three-coil WPT 

systems with change in driver resistance. As expected, the three-coil design’s efficiency has a slower 

rate of change (0.64 % per ohm) than its two-coil equivalent (1.47 % per ohm). Similarly, with 

the load resistance varying from 300 -1000 Q the three-coil system shows stable power transfer

Table 3.2. Design Specifications

1 1

1 1

D ext
(cm)

D imp
(cm)

Ld
(M H )

Lt
(M H )

Li
(M H )

Qd Qt Qt
(Rl =  650Q)

k1 k(k2)

two-coil 4.0 1.5 5.06 - 6 15.9 - 5.24 - 0.074
three-coil 4.0 1.5 0.39 3.96 6 15.9 - 5.24 - 0.065
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Figure 3.6. Variation of power transfer efficiency with variation in source resistance (@ RL = 650 
Q) based on Table 3.2.
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efficiency (variation 0.009% per ohm) as shown in Figure 3.7 which is desirable to ensure an 

efficient wireless power link for different operating modes of implanted electronics.

3.5 Conclusion
In this work, it is shown that a multi-coil WPT system can achieve high tolerance for the 

variation in magnetic coupling between an external and implant coil during WPT system operation. 

For the presented design example, with the same system dimensions and operating conditions, a 

three-coil system achieves more than 40 % improvement in efficiency and 62.5 % improvement 

in frequency bandwidth as compare to a two-coil WPT system. Due to the high Q-factor of the 

transmitter coil (Qt) three-coil systems showed lower variation (average -0.6 % per degree rotation) 

in efficiency with eye model rotation. Similarly, the three-coil design achieved a higher tolerance 

(average 2.2 khz per degree rotation) for frequency bandwidth as compared to variation of 7.5 khz 

per degree (averaged) rotation in the two-coil equivalent. However, variation in voltage gain of the 

two-coil (average -0.0264 per degree) and the three-coil (average -0.0217 per degree) WPT system 

are similar.

Moreover, a multi-coil based WPT system is proposed to improve the efficiency tolerance 

for the variation in driver and load resistance. It is demonstrated that due to the high Q-factor 

transmitter coil in the three-coil system, variation in driver and load resistance causes lesser variation

R.

Figure 3.7. Variation of power transfer efficiency with variation in load resistance (Rd = 5.1 Q) 
based on Table 3.2.
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in efficiency. Simulation of the presented two-coil and three-coil systems showed that the three-coil

system efficiency has less than half of the variation of the two-coil design.
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CHAPTER 4

MULTI-COIL APPROACH TO REDUCE ELECTROMAGNETIC 

ENERGY ABSORPTION FOR WIRELESSLY POWERED 

IMPLANTS

©  2014 IET. Reprinted, with permission, from: Anil Kumar RamRakhyani, Gianluca Lazzi, 

“Multi-Coil Approach to Reduce Electromagnetic Energy Absorption for Wireless Powered Im

plants,” in IET Healthcare Technology Letters, vol.1, no.1, pp.21-25, March 2014.

4.1 Abstract
Near-field inductive coupling is a commonly used technique for wireless power transfer (WPT) 

in biomedical implants. Due to the close proximity of the implant coil(s) with the tissue (~  1 mm) 

and high current (~  100-300 mA) in the magnetic coil(s), a significant induced electric field can be 

generated for the operating frequency (1-20 MHz). In this work, a multi-coil based WPT technique 

is proposed to selectively control the currents in the external and implant coils to reduce the Specific 

Absorption Rate (SAR). A three-coil WPT system that can achieve 26% reduction in peak 1-gram 

SAR and 15 % reduction in peak 10-gram SAR, as compared to a two-coil WPT system with 

the same dimensions, is implemented and used to demonstrate the effectiveness of the proposed 

approach. To achieve the seamless design for the external and implant electronics, the multi-coil 

system achieves the same voltage gain and bandwidth as the two-coil design with 46 % improvement 

in the power transfer efficiency (PTE).

4.2 Introduction
Wireless power transfer (WPT) has proven to be a viable and necessary technology to power 

implantable electronics [1-3]. To accommodate the advances in prostheic systems [2, 3], the power 

requirement of the implanted device can vary hundreds of milli-watts [2-5]. To ease the mobility 

of the patient, most of these devices use body-worn batteries as a power source. This requires 

an efficient wireless powered system to improve the battery life. Traditionally, a two-coil based 

inductive link is commonly used to design a wireless power system [2, 4, 5] . Such systems require
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a power amplifier to drive a resonating driver (external) coil and cause a time-varying magnetic 

field. The load (implant) coil is connected to the implant electronics. The power transfer efficiency 

(PTE) of the two-coil based WPT depends on the magnetic coupling and loaded Q-(quality) factor 

of the magnetic coils.

For many prosthesis devices such as an epiretinal prosthesis [4, 5], the driver coil (3-5 cm) is 

much larger than the implant coil (0.5-2 cm) to achieve sufficient magnetic coupling over a long 

operating distance (0.5-1.8 cm) between the coils. Moreover, the driver and implant coils are in 

close proximity to the tissue, which can cause a significant induced electric field and eddy currents 

in tissues. The induced electric field is directly proportional to the currents in the magnetic coils. 

Thus, to design a safe electromagnetic WPT system, currents in the magnetic coils may need to 

be reduced. Traditionally, a two-coil WPT system provides only few parameters (Q-factors and 

coupling k, Figure 4.1) to tune the currents in the magnetic coils, which need to be optimized to 

achieve sufficient PTE (>30 %) under design constraints and operating conditions [4, 5].

Figure 4.1. Two-coil WPT system. (a) Magnetically coupled two-coil WPT system with coupling k 
(b) Schematic of the WPT system with load coil (LL) in series with load resistance RL (c) Schematic 
of the WPT system with load coil (LL) in parallel with load resistance RL. (d) Effect of load coil 
inductance LL on the efficiency n and Q|| of the two-coil WPT system (Table 4.1).
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Recently, a multi-coil based wireless powered system was proposed to achieve high wireless 

power transfer efficiency between external and implant electronics [6, 7]. The multi-coil WPT 

system can achieve more than twice the power transfer efficiency as compared to the two-coil 

design under the same size restrictions and operating conditions [7]. Multi-coil WPT systems utilize 

intermediate coils to improve the PTE and result in a high number of design parameters (k1—3, Qd , 

Q t, Q l, Figure 4.2) that can be used to control the current in each magnetic coil. In this work, a 

multi-coil based WPT system is demonstrated to achieve the same system performance (voltage gain 

and bandwidth) as a two-coil WPT design under the same size restrictions and operating conditions. 

It is shown that without any change in the driver or implant electronics, this new multi-coil WPT 

system can replace the traditional two-coil system requiring the same dimensions. The current in 

each coil can be selectively tuned to reduce the induced electric field in tissue. Formulation and 

demonstration of a multi-coil WPT system, which can reduce the specific absorption rate (SAR) in 

telemetry systems, are the main contributions of this work.

(b) l_l

Figure 4.2. Three-coil WPT system. (a) Block diagram and (b) schematics of the three-coil 
(multi-coil) based WPT system showing the coupling k1—3 between each coil.
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4.3 Safety Aspects
Specific absorption rate (SAR) is a standard quantity used to provide a measure of the electro

magnetic energy deposited in the conductive tissue (Equation 4.1). Absorbed energy can be a key 

contributor of thermal [8] or nonthermal effect [9] in tissue. At low frequencies, induced electric 

field is linearly proportional to the current in the magnetic coil [8].

o  (r)\E rms(r) I2
SAR =  ( )| rm (  )| (4.1)

P (r)

where, at location r, o (r) is the tissue electrical conductivity of the tissue, Erms(r) is the RMS peak 

induced electric field, and p (r) is the tissue density in Kg/m3.

SAR increases with the conductivity of the tissue and current in the magnetic coils. Therefore, 

current of the coil near high conductivity tissue needs to be minimized to keep the absorbed power 

in tissue well within the safety standards. In the following sections, an analytical formulation is 

presented to identify the key parameters that can be utilized to tune the current in the individual 

coils for the traditional two-coil WPT system and multi-coil systems.

4.4 Currents in the Two-coil WPT System
Two-coil wireless power transfer system is a traditional technique for transferring energy from 

the external source to the implant coil. Figure 4.1(a) shows the basic block diagram of this system. 

Current in the driver coil (Equation 4.2) and load coil (Equation 4.3) can be calculated based on 

the coupling k, resistance Rd =  Rdriver +  RCD, (where RCD is self resistance of the driver coil), and 

Q -factors Qd (driver coil) and Qi (load coil). Rd and Ri are the effective series resistances connected 

to the driver and load coils, respectively.

Id =  Rd (1 +  k2QdQi ) V  (4.2)
T =  . k \ / QdQi V  (43) 
1 -  V R R i  (1 + k 2Qd Qi) 1 ( . )

The load resistance RL depends on the current and the voltage requirements of the implant 

electronics. Depending on the value of RL and load inductance LL, there are two popular topologies 

(series and parallel) to connect RL with the resonating load coil. In a series load configuration 

(Figure 4.1(b)), the Q-factor of the load coil is inversely proportional to Ri (Q i =  a>LL/R i, ® =  

2 n f res), where Ri =  RL +  RCL (RCL is self resistance of the load coil). From Equation 4.4, it can be 

seen that the required driver current increases with the reduction in coupling k . Due to the small 

inductance of the implant coil (below 10 mH), only a small load resistance (below 100 Q) can 

achieve a moderate Qi of 3 to 6 for f oper below 10 MHz.
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Id
Iload

Ri Ri
Iload

1 (4.4)
m M  m ky/LdLL

where M  is the mutual inductance between the driver and the load coil. Ld and Ll are the self

inductance of the driver coil and load coil, respectively.

For a large load resistance RL (200 Q -10kQ), a parallel load configuration utilizes an impedance 

transform mechanism to achieve smaller effective resistance Rl =  Rl /Q 2  +  RcL (where Q|| =  RL/m Ll ). 

The current of the load coil Il gets divided between the resonating capacitor (CL) and RL (Figure 

4.1(c), Equation 4.7). For a fixed RL, increasing the load coil inductance Ll reduces Q|| and increase 

R l, limiting the value of Q l. The power transfer efficiency for the two-coil WPT system increases 

monotonically with Q factors (Qd, Q l) and coupling k between the coils (Equation 4.5). Therefore, 

Ll needs to be adjusted to achieve a moderate Q|| (below 15) to reduce the current division and 

sufficient Ql to achieve PTE above 30% (Equation 4.5 and 4.6) (Figure 4.1(d)).

k2QdQl
n

Ql

1 +  k2QdQl 
m Ll

(m LL )2 /R L +  RCL

-  Q||
Id Q||Rl; h

Iload — m M  ’ Iload

(4.5)

(4.6)

(4.7)

where M  is the mutual inductance between the driver and the load coil; Ld and Ll are the self

inductance of the driver coil and load coil, respectively.

For most biomedical implants, RL lies in a higher value range (200 Q -10kQ) [1-3], making 

a parallel load configuration as a practical topology to achieve sufficient power transfer efficiency 

above 30% [4, 5]. However, care needs to be taken in designing a load coil to achieve trade-off 

between the efficiency and current division (Figure 4.1(d)). In the following sections, our focus is to 

reduce the current division without losing the power transfer efficiency of the wireless power link.

4.5 Currents in a Multi-coil WPT System
Recently, we proposed a multi-coil wireless power system for the biomedical applications [7]. 

The proposed design utilizes intermediate transmitter and(or) receiver coils to decouple the effect of 

the source and(or) load resistances and achieve high Q factor external and(or) implant coils. Figure 

4.2(a) shows the block diagram of three-coil system. At resonance, Equation 4.8 can be used to 

calculate the current in each coil.

Id ' Rd jm  Mdt jm M dl '

-1
'  V '

It = jm  Mdt Rt jm  Mtl 0
Il _ jm M dl jm  Mtl Rl 0
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where Mdt, Mtl and M dl are the mutual inductances between the driver and transmitter coil, the 

transmitter and load coil and the driver and load coil, respectively.

In multi-coil design, Mdl is many orders smaller than Mtl, allowing us to ignore Mdl in the 

current calculation [7]. To generate the unit current in the load resistance, the current ratio of the 

driver, transmitter, and load (implant) coils can be calculated as shown in Equations 4.9 and 4.10:

1 +  k2QtQlId
Iload

It
Rd h k 2 V Q d Q tV Q tQ i

Iload Iload -  Qll

(4.9)

(4.10)

where ki, k2, and k3 are the coupling between the driver coil and transmitter coil, the transmitter and 

load coil, and the driver and load coil, respectively. Qd, Qt and Ql are the Q-factors of the driver, 

transmitter and load coil, respectively.

Figure 4.2 (b) shows the schematic of the three-coil based wireless power transfer system. The 

load resistance is connected to the load coil in parallel to achieve sufficient Q factor and to sustain 

PTE above 30 %. However, multi-coil WPT can reduce Q|| significantly compared to its two-coil 

equivalent and the effect of the low Q-factor load coil Ql on the PTE is compensated using a high 

Q-factor transmitter coil [7].

4.6 Simulation Model and Methods
To model a practical wireless powered implant, an epiretinal prosthesis is taken as a design 

example [4, 8]. The traditional design uses two-coil based WPT system [3-5]. Thus, to improve the 

PTE and to reduce the absorbed energy in the tissue, a three-coil based WPT system is selected. 

Table 4.1 shows the electrical and mechanical properties of two-coil and three-coil equivalent 

systems. For both designs, the physical dimensions of the external coil and implant coil are identical 

to ensure fair comparison (Figure 4.3(c)). However, the inductance of the load coil in two-coil 

system is optimized to achieve n > 30% and Q|| < 15 (Figure 4.1(d)). For the three-coil WPT 

system, Q|| is reduced by 40% compared to its two-coil equivalent and its effect on the system’s 

PTE is compensated by high Q-transmitter coil (Qt ~  178). The driver coil is fed with a voltage 

source with amplitude 3 V and operating frequency of 2 MHz. Implant electronics is modeled 

as a resistive load of 450 Q, which requires a load current of 22.3 mA to generate 10 V across 

implant [2]. To achieve maximum coupling, the external coil is positioned parallel to the surface of 

the head (Figure 4.3 (c)) and wireless power is transferred over the operating distance of 15 mm. 

In both designs, a driver resistance Rdriver of 8 Q is used to emulate the practical power-amplifier 

output resistance [12].
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Table 4.1. System Specifications
Two-Coil Three-Coil

Parameters Driver Load Driver Tx Load
Dout (c m )

N coil

L coil (M H  ) 

R coil ( t y  

R driver 

R load 

Q(loaded)
Litz [13]

4.0
12
5.68
0.4
8

8.5
100/44

1.5
12
2.58
0.22

450
12.7
3/22/48

1.2
4
0.39
0.1
8

0.6
100/44

4.0
12
5.68
0.4

178
100/44

1.5
15
4.2
0.45

450
7.95
33/48

d (mm) 
fres (MHz) 
Load Type 
coupling

15
2
Parallel 
k = 0.072

15
2
Parallel
k1 = 0.33, k2 = 0.072, £3 = 0.04

For our simulation, we took the heterogeneous tissue model of the human head [14] with 1 mm 

x 1 mm x 1 mm resolution. For the frequency range of 1-10 MHz, the conductivity of most tissues 

(skin, sclera, retina, muscle) vary between 0.01-1.5 S/m [15]. Figure 4.3(d) shows the conductivity 

map for different tissues at the operating frequency of 2 MHz [15]. As the implant coil is in close 

proximity to the high conductive vitreous humor (1.5 S/m), the implant coil contributes highly to 

the absorbed energy.

Figures 4.3(a), (b) and (c) show the head model, 3-D simulation model and cross-section of the 

simulation model, showing the external and implant coils. Figure 4.3(c) shows the position of the 

external coil parallel to the head surface and implant coil next to the eye sclera. For both designs, 

an external coil with diameter 40 mm and an implant coil with diameter 15 mm are used (Table

4.1). The equivalent three-coil system consists of external coils (driver and transmitter coil) and an 

implant coil as shown in Figure 4.2(b). For the two-coil WPT system and its equivalent three-coil 

WPT system, the induced electric field is calculated using the impedance method [16] for current 

carrying coils to determine the absorbed power in the tissue.

4.7 Results and Comparison
For the two-coil system, Equations 4.2 and 4.3 can be used to calculate the currents in the driver 

coil, the load coil and the load resistance. Similarly, for the three-coil system, current in each coil 

can be calculated based on Equations 4.9 and 4.10. Table 4.2 shows the current in each coil and 

load resistance for the two-coil and three-coil WPT systems. Table 4.2 also shows that the current
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External Coil

(a) Head Model for the Epiretinal Prothesis (b) Simulation model (Head
Section)

(c) Cross-section of head model (d) Tissue type and its 
with position of magnetic coils conductivity @  2 MHz

Figure 4.3. Simulation model: (a) Head model for the Epiretinal prosthesis with external coil 
position (b) Simulation model with 1 mm x 1 mm x 1 mm resolution including tissue heterogeneity 
(c) Positions of the implant and the external coil with respect to eye (cross-section model) (d) 
Conductivities of different tissues types at 2 MHz [15].
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Table 4.2. Coil Current
Coil Driver 

Id (mA)
Transmitter 
It (mA)

Load 
Ii (mA)

R l

Tioad (mA)
Two-coil
Three-coil

229.5
156.2 282.35

310.6
190.9

22.32
22.24

in the implant coil is significantly reduced as compared to the two-coil design to generate the same 

load current of ~  22.3 mA.

Figure 4.4(a) and 4.4(b) show the cross section view of the induced electric field due to the two- 

coil and the three-coil WPT system, respectively. For the two-coil system, due to the large current in 

the implant coil (Table 4.2), the induced field near the implant coil is maximum (Figure 4.4(a)). For 

tissue density of 1000 kg/m3, the peak 1-gram SAR and peak 10-gram SAR are calculated based 

on the FCC (Federal Communications Commission) [10] and IEC (International Electrotechnical 

Commission) [11] standards for SAR, respectively. Figure 4.4(c) and (d) show the distribution of 

SAR due to two-coil and three-coil WPT system, respectively.

To evaluate the performance of the new three-coil WPT system, the system performance is 

characterized based on the power transfer efficiency (PTE), the voltage gain and the bandwidth

[7]. Figure 4.5(a) shows that the proposed three-coil WPT system can achieve significant PTE 

improvement over two-coil design as expected from the multi-coil design approach [7]. The new 

three-coil design achieves the same voltage gain over frequency as the initial two-coil design without 

change in driver electronics, implant electronics, or system dimensions (Figure 4.5(b)). Therefore 

it can be seamlessly incorporated into existing two-coil WPT systems.

Table 4.3 show the significant reduction in absorbed electromagnetic energy by using three-coil 

WPT over a traditional two-coil design.

4.8 Conclusion
Two-coil based WPT systems only have a few factors (k, Qd, QL) to control the current in each 

coil. However, multi-coil WPT systems utilize multiple coils to improve the PTE and result in a high 

number of design parameters (k1-3, Qd, Qt, Q i) that can be used to control current in each magnetic 

coil. For the proposed design example, a reduction of 26% in peak 1-gram SAR and a reduction of 

15 % in peak 10-gram peak are achieved with the improvement of 46 % in power transfer efficiency 

(PTE). A two-coil WPT system and its three-coil equivalent are demonstrated to achieve the same 

voltage gain and frequency bandwidth over the same operating distance. While the presented design 

example used the typical dimensions for biomedical WPT system, the design approach is valid for 

any near field WPT system to reduce the absorbed electromagnetic field in tissue.
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Figure 4.4. Cross section view of the induced electric field due to (a) two-coil and (b) three-coil 
WPT system. Distribution of the Specific absorption rate (SAR) due to (c) two-coil and (d) 
three-coil WPT system. Coil currents are based on Table 4.2.
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(a) Efficiency Comparison (2-coil, 3-coii)

(b) Voltage Gain (2-coil3-coil)

Figure 4.5. System performance: (a) Power transfer efficiency of two-coil and three-coil system (b) 
voltage-gain of two-coil and three-coil system.
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Table 4.3. System Performance
1-gram SAR 10-gram SAR Efficiency Voltage Bandwidth
( mW/Kg) (mW/Kg) (%) gain (khz)

Two-coil 48.2 15.1 32.5 3.348 209
Three-coil 35.7 12.8 47.5 3.336 207
Variation -26% -15.2% +46% <1 % <1%
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CHAPTER 5

INTERFERENCE FREE WIRELESS POWER TRANSFER 

SYSTEM FOR BIOMEDICAL IMPLANTS USING 

MULTI-COIL APPROACH

©  2014 IET, Reprinted, with permission from: Anil Kumar RamRakhyani, Gianluca Lazzi, 

“Interference Free Wireless Power Transfer System for Biomedical Implants using Multi-Coil Ap

proach,” in IET Electronics Letters, vol.50, no.12, pp.853-855, June 2014.

5.1 Abstract
Low frequency (1-20 MHz) inductive coupling is a leading technique to power biomedical 

implants wirelessly. Even though these are nonradiating systems, the external and the implant coils 

can cause sufficient radiated electric field to exceed the federal standards for communication. In 

this work, a multi-coil based wireless power transfer (WPT) technique is developed to selectively 

control the currents in the external and implant coils to reduce radiated electric field. A four-coil 

WPT system that can achieve more than 37% reduction in radiated electric field as compared to a 

two-coil WPT system with the same dimensions and design constraints is implemented and used to 

demonstrate the effectiveness of the proposed approach.

5.2 Introduction
Wireless power transfer (WPT) is commonly used to power implantable devices such as sensors, 

actuators, and neural stimulators [1]. Traditionally, two-coil based design is used to transfer power 

from the external (driver) coil to the implant coil using time varying magnetic field (Figure 5.1 

(a)). Using a large driver coil (3-5 cm), sufficient magnetic coupling (k ~  0.01-0.1) to the implant 

coil (0.5-2 cm) is achieved over a long operating distance (0.5-1.8 cm) between the coils [1, 4]. 

Due to the small size of the magnetic coils, as compared to operating frequency wavelength, WPT 

systems are poor radiators. To reduce the interference with other operating devices, the federal 

regulators, such as the Federal Communications Commission (FCC), restrict the total electric field 

generated by the nonradiating device to be less than 30 ^ V  measured at 30 meters (FCC 47 CFR
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(d)

Figure 5.1. Block diagram of (a) the two-coil and (c) the four-coil wireless power transfer system 
including the magnetic coupling between different coils. Circuit model of (b) the two-coil and (d) 
the four-coil wireless power transfer system [4].

Ch. I [2]). Depending on the design and application, transferring power of hundreds of milliwatts 

to the implanted device may require a large current ( 1-2 A) in the external coil. Far-field radiated 

field depends on the current in the driver and implant coils. Thus, few commercial biomedical 

implants violate these limits by using a midsized coil (4 cm diameter), carrying current of 1 A at 

3 MHz and require special waiver for commercialization [3]. Therefore, to comply with the federal 

regulation for future nonradiating devices, the WPT system should ensure no interference with other 

radiating/nonradiating devices. Recently, we proposed a multi-coil based wireless powered system 

to achieve high wireless power transfer efficiency [4]. In this work, a four-coil based WPT system 

is proposed to achieve the same system performance (voltage gain) as a two-coil WPT design under 

the same size restrictions and operating conditions. The current in each coil is selectively tuned 

to reduce the radiated electric field. Formulation and demonstration of a multi-coil WPT system, 

which can reduce the radiated field in telemetry systems, are the main contributions of this work.
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5.3 Radiated energy
In general, spiral coils are used for wireless power applications [1,4]. For a spiral coil, radiated 

E field is proportional to the current and area of the coil (Equation 5.1) [5].

where I0 is the current in the magnetic loop, N is the number of turns in spiral coil, Zair is the wave 

impedance of air (377 Q), A is the free space wavelength at operating frequency, Ai is the area of 

turn i, and r is the distance of observation point from the radiator. For low frequency of operation 

(below 10 MHz), conductive tissue with conductivity o  less than 1.5 S/m has negligible effect on 

the radiated field. To validate it, a 12-turn spiral coil with outer diameter 49 mm is simulated in 

FDTD (finite-difference time-domain) based numerical solver to calculate the radiated E-field at 30 

meters. The coil is placed 3 mm from the conductive tissue block (o  = 0.5 S/m) and driven by

1 A current at 3 MHz. Using Equation 5.1, radiated field is calculated to be 43.78 V/m which 

is very close to the simulated value of 44.4 V/m. Radiated power increases with the current in 

the magnetic coils. Therefore, currents need to be minimized to keep the radiated field well within 

interference standards. In the following sections, we propose a multi-coil WPT system to reduce 

current values in external coils to generate same load current into the load resistance.

For most biomedical implants, load resistance RL lies in a higher value range (200 Q -10kQ), 

making a parallel load configuration as practical topology to achieve sufficient power transfer 

efficiency [1] over 25% (Figure 5.1(b)). For RL (200 Q -10kQ), a parallel load configuration utilizes

Q  =  RL/fflLi). The current of the load coil I/ gets divided between the resonating capacitor (Ci) and 

RL (Figure 5.1(b), Equation 5.3). For a given RL, increasing the load coil inductance Li reduces Q  

and increases Ri, limiting the value of Q l. Therefore, Li needs to be adjusted to provide moderate 

Q  (below 5) to reduce the current division and sufficient Qi to achieve PTE above 25% (Equation

5.2). From Equation 5.4, it can be seen that as the coupling k decreases, the required driver current 

increases to generate the desired load current.

(5.1)

5.4 Currents in Two-coil based Wireless Power 
Transfer System

an impedance transform mechanism to achieve smaller effective resistance Ri =  RL/Q2 +  Rci (where
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Ql (—L  )2/R l +  Rd  (5.2)
hood ^  h /Q \\ (5.3)
Id

Iload

Q\\Rl , ) 1
'' r = (r l / q || +  m l ) — ^  (5-4)— ' +  Q 1 1 R d > —l-J U L l  

where M  is the mutual inductance between the driver and the load coil. Ld and Ll are the self

inductance of the driver coil and load coil, respectively. In the following sections, our focus is to 

achieve a series connected load coil to reduce the current division without losing the power transfer 

efficiency of the wireless power link.

5.5 Currents in Four-coil based Wireless Power 
Transfer System

Figure 5.1(c) and (d) show the typical block diagram and the schematics of a four-coil system 

consisting of a driver, transmitter, receiver and load coil [4]. At resonance, Equation 5.5 can be used 

to calculate the current in each coil.

Id ■ Rd j -  Mdt j — Mdr j —Mdl
-1

'  V1 '
It j — Mdt Rt j — Mtr j — Mtl 0
Ir j — Mdr j — Mtr Rr j — Mrl 0
Il _ j — Mdl j — Mtl j — Mrl Rl 0

where Mdt, Mtr and M rl the are mutual inductance between the driver and transmitter coil, the 

transmitter and receiver coil and the receiver and load coil, respectively. Generally for a four-coil 

WPT system, mutual inductance M dl (between driver and load coil), Mtl (between transmitter and 

load coil) and Mdr (between driver and receiver coil) are of small value as compared to Mdt, Mtr and 

M rl. This allows us to neglect Mdl, M tl and M dr for further calculation and simplifies the current 

equations.

Equation 5.6 can be used to approximately estimate the current in the external coil It (transmitter 

coil) to generate unit load current in the load resistance. As expected, the required current It is 

inversely proportional to coupling l 2 between the transmitter and receiver coil. From Equation 5.6, 

it can be seen that It is independent of RL and by reducing l 3 the current ratio can be reduced. To 

generate the same load current in a two-coil and its four-coil equivalent, the ratio of current in the 

transmitter coil (of four-coil design) and driver coil (of two-coil design) can be calculated using 

Equation 5.7. In general, Rl / Q\\ »  Q\\Rcl and Mtr(4-coil) & Mdl(2-coil) (for four-coil design and its 

equivalent two-coil system). This allows us to simplify the current ratio of the four-coil and two-coil 

design using Equation 5.8
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\Jt /  Jload| 4—coil _
|Jd I  ̂ load\l—coil __ 2—coil

1load 1
It__  . (5.6)

(5.7)

(5.8)

where k3 is the coupling between the receiver and load coil and is less than 1. For proper selection 

of Lr and Ll in a four-coil WPT system, transmitter coil current It can be significantly reduced as 

compared to two-coil equivalent.

based design is considered. According to the federal regulations, the emitted radiation needs to be 

tested for the extreme operation of the system. For retinal prosthesis, due to eye movement, the 

implant coil undergoes rotation, and magnetic coupling is minimum (k =  0.025) for the extreme 

rotation of the eye (0 =  300) (Figure 5.2(a)). Table 5.1 shows the electrical and mechanical proper

ties of the two-coil and four-coil equivalent chosen based on the specifications of retinal prosthesis 

design [1, 3]. The physical dimensions of the external coil and implant coil are the same for fair 

comparison (Figure 5.2(b) and (c)). Implant electronics is modeled as a resistive load of 450 Q and 

requires a load current of 23.11 mA, which results in a supply voltage of ~  10 V across the load [1]. 

Wireless power is transferred over an operating distance of 15 mm. Figure 5.1(b) and (d) show the 

schematics of the two-coil and four-coil, respectively. The two-coil system is optimized to achieve 

Q|| < 5 to achieve low current division (Equation 5.3) and PTE more than 25% for normal operating 

condition (0 =  00, k = 0.072).

Table 5.2 shows the current requirements for each coil in the two-coil and its four-coil equivalent 

(same dimension) WPT system to generate 23.1 mA current in the load resistance. Figure 5.3 shows 

that performance (efficiency, voltage gain and bandwidth) of the two-coil and its four-coil equivalent 

WPT system. It shows that using multi-coil approach the high power transfer efficiency can be 

achieved without changing the driver and load electronics for the system. Table 5.3 tabulates the 

system performance for both designs and shows two-coil WPT design exceed the federal limit of 

radiated field. However, four-coil WPT system reduces the radiated electric field by 37 % and can 

easily comply with the federal regulations.

5.6 Design Example
To validate the efficacy of the multi-coil approach for radiation reduction, a retinal prosthesis
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Figure 5.2. Simulation model: (a) Position of the external and implant coil for retinal prosthesis. 
The implant coil rotates with the movement of eye during the device operation (b) top view of 
external and implant coil for two-coil WPT system (c) top view of concentric external coils (driver 
and transmitter) and implant coils (receiver and load) for four-coil WPT system.
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Table 5.1. System Specifications
Two-Coil Four-Coil

Parameters Driver Load Driver Tx Rx Load
Dout (c m ) 4.0 1.5 4.0 3.8 1.5 1.2
N coil 12 20 2 10 14 17
L coil (MH0 5.29 4.09 0.38 3.82 4.27 5.03
R coil( A) 0.4 0.3 0.1 0.4 0.55 1.07

reivridRd 5.8 - 5.8
R load (A) - 450 450
Q  (loaded) 16.92 4.26 1.24 185 151 0.22
Wire (Litz) 100/44 3/22/48 100/44 100/44 26/48 12/48
d, 0 (15 mm, 30°) (15 mm, 30u)
fres (MHz) 3.1 3.1
Load Type Parallel Series
coupling k = 0.025 k \  = 0.37, k 2 = 0.0255, k 3 = 0.52

k 4 = 0.015, k5 = 0.018, k6 = 0.013

Table 5.2. Coil Current
Coil Driver 

Id (mA)
Transmitter 
It (mA)

Receiver 
I r (mA)

Load 
Il (mA)

R l

Iload (mA)
Two-coil
Four-coil

857
78.9 591 223

124
22.95

23.1
22.95
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Figure 5.3. System performance: (a) Power transfer efficiency and voltage gain of the two-coil and 
its four-coil equivalent WPT system (with and without effect of k4, k5 , k6).

Table 5.3. WPT System Performance
Efficiency Voltage Bandwidth E-field
(%) Gain (kHz) @30 m (u V/m)

Two-coil 4 1.855 196 31.3
Four-coil 53.5 1.835 209 19.66
Gain +1200% < 1% +6% -37.2 %

5.7 Conclusion
In this work, 37 % reduction in the radiated field is achieved using multi-coil wireless power 

transfer (WPT) system instead of traditional two-coil WPT design. The four-coil WPT design 

achieves higher power transfer efficiency and demonstrates the same voltage gain and frequency 

bandwidth with its two-coil equivalent WPT system over the same operating distance. This ensures 

the new WPT system can be seamlessly integrated with the existing electronics to reduce the time 

of design cycle and clinical trial of new design.
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ON THE DESIGN OF MICROFLUIDIC IMPLANT COIL 

FOR FLEXIBLE TELEMETRY SYSTEM

©  2014 IEEE. Reprinted, with permission, from: A. Qusba, A. K. RamRakhyani, J.-H. So, G. 

J. Hayes, M. D. Dickey, and G. Lazzi, “On the Design of Microfluidic Implant Coil for Flexible 

Telemetry System,” IEEE Sensors Journal, vol.14, no.4, pp.1074-1080, April 2014.

6.1 Abstract
This paper describes the realization of a soft, flexible, coil fabricated by means of a liquid metal 

alloy encased in a biocompatible elastomeric substrate for operation in a telemetry system, primarily 

for application to biomedical implantable devices. Fluidic conductors are in fact well suited for 

applications that require significant flexibility as well as conformable and stretchable devices, such 

as implantable coils for wireless telemetry. A coil with high conductivity, and therefore low losses 

and high unloaded Q factor, is required to realize an efficient wireless telemetry system. Unfor

tunately, the conductivity of the liquid metal alloy considered - eutectic gallium indium (EGaIn) 

- is approximately one order of magnitude lower than gold or copper. The goal of the present 

work is to demonstrate that, despite the lower conductivity of liquid metal alloys such as EGaIn 

compared to materials such as copper or gold, it is still possible to realize an efficient biomedical 

telemetry system employing liquid metal coils on the implant side. A wireless telemetry system for 

an artificial retina to restore partial vision to the blind is used as a testbed for the proposed liquid 

metal coils. Simulated and measured results show that power transfer efficiency of 43 % and 21 % 

are obtained at operating distances between coils of 5 mm and 12 mm, respectively. Further, liquid 

metal based coil retains more than 72 % of its performance (voltage gain, resonance bandwidth, and 

power transfer efficiency) when physically deformed over a curved surface, such as the surface of 

the human eye. This study demonstrate that liquid metal-based coils for biomedical implant provide 

an alternative to stiff and uncomfortable traditional coils used in biomedical implants.
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6.2 Introduction
Flexible coils are important for a number of applications that require wireless telemetry for 

power and/or data transmission, including implantable devices such as retinal prostheses [1-3]. 

Conventional implant coils are often fabricated using biocompatible metal (e.g., gold) and are 

characterized by their unloaded Q factor (quality factor), which is a measure of the resistive losses 

in the coil within the resonance bandwidth. Unfortunately, traditional wireless telemetry coils tend 

to be stiff and are not easily comformable to surfaces inside or outside the human body, such as the 

eye in the case of a retinal prosthesis. Further, their stiffness makes them difficult to handle and 

position well during surgery and could result in subsequent discomfort for the patient.

Our approach to the realization of soft and flexible coils for wireless biomedical telemetry, 

presented in this paper, relies on injecting a micromoldable liquid metal composed of an eutectic 

alloy of gallium and indium (EGaIn) into elastomeric microfluidic channels. In this work, we first 

show that it is possible to fabricate fluidic coils that have sufficiently low resistance, and therefore 

large unloaded Q factor, by varying the cross-sectional area of the microchannels that define the 

shape of the coil without altering the footprint of the coil. The potential of utilizing coils thus 

fabricated in biomedical implant systems is demonstrated by implementing a telemetry link for 

wireless power/data transfer between external units and biomedical implants. We selected a specific 

application - that of a retinal prosthesis to restore partial vision to the blind - to provide realistic 

parameters for a wireless telemetry test-bed. Specifically, we demonstrate that a wireless telemetry 

link whose secondary coil is made of liquid metal alloy can achieve comparable system-level 

performance (frequency bandwidth, voltage gain, and power transfer efficiency) as the metal based 

implant coil.

6.3 Background and Motivation
Typically, application requirements of the implant dictate the geometry of telemetry coils and 

the performance metrics like bandwidth and power transfer efficiency. In this paper, we focus on 

telemetry coils for implantable devices: in particular, we focus on a retinal prosthesis application 

described in [1, 2] as a case study. The motivation behind the development of a retinal prosthesis, 

which has been the focus of the work of some of the members of our research team for the past 

15 years, is that blind patients have been shown to regain some form of vision by means of a 

systematic electrical stimulation [1]. The primary goal of this work is to demonstrate that liquid 

metal alloy coils, when employed as receiving (implanted) coils, can achieve reasonable power 

transfer efficiency and, therefore, be used in an inductively coupled wireless telemetry system, such 

as that of a retinal prosthesis system, or any other biomedical implant or sensor requiring wireless
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power/data transmission.

Current prototypes of the retinal prosthesis system utilize a wearable camera which captures 

images that are subsequently transmitted wirelessly to a receiver coil (secondary coil) implanted 

inside the eye. This secondary coil receives both power and data signal via an inductively coupled 

wireless telemetry link and sends the signal to a processing chip, which in turn stimulates the retina 

by an electrode array placed against the retinal surface [4].

While the retinal prosthesis application provides an example of the design constraints (dimen

sions of the footprint, operating distance between the telemetry coils) for the coils considered in this 

work, the approach and conclusions extend to other coil geometries and different applications.

To maximize the power transfer efficiency over the operating range of implanted electronics, 

the secondary (or implant) coil can be the largest component of the prosthetic implant and often 

needs to be conformal to tissue or organ. As a result, highly-flexible coils (Figure 6.1) that can 

bend, stretch and reversibly deform without loss of function facilitate the surgical implantation and 

conform more readily to the surface of the organ - the eye in the particular case of a retinal implant.

When subjected to flexing, conventional solid metallic structures can crease, fatigue, or deform, 

which can disrupt electrical functionality. The liquid metal alloy encapsulated in an elastomeric 

substrate (e.g., silicones) flows in response to stress, and is therefore not prone to fatigue or perma

nent deformation [5]. Injecting liquid metal into microfluidic channels offers a simple approach to 

shaping them into useful structures, such as coils.

Figure 6.1 demonstrates the highly stretchable and flexible nature of these coils. Less informa

tion is known about the biocompatibility of the metals that compose the alloy (gallium and indium) 

and their long term behavior in the body, although they are believed to have low toxicity [6]. The 

implant coil could be simply composed of gallium since its melting point is below body temperature. 

Gallium has been used in dental fillings and gallium salts have been used for MRI imaging agents 

and pharmaceuticals [7, 8]. Further research into the toxicity of EGaIn needs to be undertaken 

before it could be considered for implantation in a human body; however, through this study we 

demonstrate that EGaIn based coils have all the characteristics desirable for prosthetic implants and 

these support the future in-vivo and in-vitro testing of the devices.

Traditionally liquid metal alloys, such as EGaIn, have been shown by our group and others 

to be useful in dipole antennas [5], [9-11], planar antennas [12], and patch antennas [13]. These 

antennas consist of radiating structures composed of liquid metal alloy injected into microfluidic 

channels of an elastomeric polydimethylsiloxane (PDMS) substrate. The performance metric of 

these radiating elements doesn’t significantly depend on the conductivity of the liquid metal alloy. 

Thus, a feasibility study need to be done to utilize the similar liquid metal for wireless power/data
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Figure 6.1. Soft and flexible coil antenna composed of liquid metal alloy encased in biocompatible 
elastomeric PDMS. Metal tweezers deform the coils. (a) Stretching the coils and (b) folding the 
coils.
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transfer. To estimate the resistive losses due to the coil, we measure the unloaded Qul factor of the 

coil which is inversely proportional to the resistance of the coil (Equation 6.1).

2n fL
Qui =  (6.1)

where f  is frequency of operation, L is the self-inductance of the coil and R is the effective se

ries resistance of the coil. The series resistance is proportional to the conductivity of the liquid 

metal alloy in the micro-channel; thus, the Q factor is an appropriate parameter to quantify the 

effects of introducing new materials into a coil. To compensate for the lower conductivity of 

EGaIn (o  =  3.4 x 104Scm —1) which is about one order of magnitude lower than that of gold 

(o  =  4.57 x 105Scm —1) and copper (o  =  5.96 x 104Scm —1), we hypothesized that increasing the 

cross-sectional area of the fluidic channels in the coil would decrease the wire resistance and thereby 

increase the unloaded Q factor of the coil. The cross-sectional area is varied primarily by altering 

the aspect ratio (height:width) of the microfluidic channel. Once the Q factor is optimized, we 

quantify the performance of the liquid metal alloy coil as a secondary coil in an inductively coupled 

telemetry link.

6.4 Liquid Metal Coil Design, Fabrication 
and Characterization

In the case of a retinal prosthesis, the anatomy of the eye limits the length of the secondary coil 

to approximately 15 mm and the position of the lateral rectus muscle of the eye favors smaller width

[14]. Thus, elliptical coils are geometrically favored shapes of secondary coil in this application. 

Figure 6.2 illustrates the footprint of the secondary coil in this example, relative to a US coin (cent).

While the length could be longer in principle, the endmost portions of the secondary coil (i.e., 

that beyond 15-16 mm) curl away from the primary coil due to the curvature of the eye ball and, 

therefore, do not contribute significantly to the mutual coupling. Furthermore, the use of larger coils 

could complicate the surgical implantation procedure.

We limited the secondary coil to have no more than 10 turns because additional turns would 

decrease the pitch (i.e., the spacing between adjacent turns), resulting in undesirable parasitic 

capacitance. The geometrical model of our slightly deformed elliptical secondary coil is formulated 

based on an expression presented in [15].

We fabricated the secondary coil by injecting EGaIn into microfluidic channels composed of 

PDMS [5, 9]. We controlled the cross-sectional dimensions using soft lithography (i.e., by replica 

molding photolithographic features using PDMS). An appeal of this approach is the simplicity 

of the fabrication and the ease by which the dimensions may be varied. We used PDMS for
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Figure 6.2. Photograph of the secondary coil of the RF telemetry link. EGaIn is injected into 
the microchannels of this coil using a syringe pump. The wire cross-section of this coil is 
200^ m x  640^ m and it is encased in PDMS.
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the microfluidic channels because it is commercially available, biocompatible, easy to process, 

elastomeric, and has low dielectric loss properties [16, 17].

Coils with a range of wire cross-sections were fabricated. An Agilent E5071B ENA series vector 

network analyzer measured the impedance properties of the fabricated secondary coils. The target 

operation frequency for our testbed was 4 MHz, even though it can be chosen to be anywhere in the 

range of 2-10 MHz [1]. Resistance and self-inductance of the liquid metal alloy coil are measured 

at operating frequency and Equation 6.1 is used to determine the unloaded Q factor at 4 MHz. Table 

6.1 summarizes the results of these experiments and compares the performance of liquid metal based 

implant coils with the metal (e.g., gold) based coils of the same physical footprint.

In Table 6.1, QL provides the loaded Q-factor of the coil due to effective resistance of the implant 

electronics, which can be calculated using Equation 6.1 and 6.3. It can be seen that, for a given load 

resistance Rioad , the QL of liquid metal and metal based coils do not differ significantly. In fact,

Reff =  Ql iRcoii \\Rioad (6.2)
Reff

Ql =  f  (6.3)2n f L s

where Rcoii and Ls are the self resistance and self inductance of the secondary (implant) coil, 

respectively.

As expected, increasing the cross-sectional area decreases the resistance of the coil while low

ering the inductance by about half. The results in Table 6.1 show that the unloaded Q factor of the 

secondary coil (Q ui) increases with larger cross sectional area, for a given footprint and number of 

turns. We limited the width of the conductors to 200 Um  to maintain the geometric requirements of 

the coil. We also limited the aspect ratio of the microfluidic channels to 3:1 (height to width) since 

the PDMS features can collapse at larger aspect ratios. The coils with the largest cross-sectional area

Table 6.1. Comparison: EGaIn and Metal Coils at 4 MHz (Rioad = 217 H)
EGaIn Gold

Secondary Coil 
Cross-section 
Width x Height

R coii
(H)

Q ui Q l R coii
(H)

Q ui Q l

40jUm  x  72jUm  

200um  x  100jUm  

200um  x  200um  

200jUm  x  640jUm

2.03
1.40
1.32
0.86

33.64
4.81
2.38
1.26

1.52
7.31
14.25
17.19

1.12
3.35
4.45
6.33

3
0.57
0.42
0.13

17
62
79
166

3.40
5.60
6.04
9.46
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(200^m x 640 ^m ) are used in this study to demonstrate the feasibility of an inductively coupled 

wireless link that employs a liquid metal alloy implantable coil.

6.5 Design of Inductively Coupled Telemetry Link
In an inductively coupled telemetry link, the modulation of current/voltage in the primary coil 

changes the current/voltage in the secondary coil. The effectiveness of the electromagnetic coupling 

between the primary and the secondary coil is characterized by three parameters: power transfer 

efficiency (n ), bandwidth, and voltage gain.

6.5.1 Power Transfer Efficiency (n)
The power transfer efficiency is the most important metric for a wireless telemetry link because 

it determines how much useful power the telemetry link delivers to the implant circuit per unit 

power supplied to the primary coil. The power transfer efficiency n of the telemetry link increases 

as the unloaded Q factor of the coils increases (by, for example, reducing the resistive losses of the 

coils). The power transfer efficiency is defined by the ratio of power at the secondary coil, Pout, to 

the power input to the primary coil, Pin:

n  _ Pout _ k Qp Qs Rload (6 4 )
Pin 1 +  k2QpQs Rload +  Rparasitic

where Rparasitic is the effective resistance due to the finite conductivity of the coil. Qp and Qs are 

the loaded Q factors of the primary (external) and secondary (implant) coil, respectively.

6.5.2 Voltage Gain
The voltage gain of the telemetry system is one of the key performance parameters to generate 

sufficient voltage across the implant electronics under the operating distance. In an application such 

as the retinal prosthesis, the output of the secondary coil feeds a rectifier and then to a voltage 

regulator to generate the voltage supply to the implant. As a result, voltage gain at the output of 

the secondary coil is desirable so that signal from secondary coil can be rectified to generate a 

higher average DC reference. Depending on the operating voltage and current in the implant, the 

electronics can be represented as an effective load resistance Rload (Figure 6.3(a)).

6.5.3 Bandwidth
A high Q factor results in lower frequency bandwidth. Thus, a trade-off exists between power 

transfer efficiency and resonance frequency bandwidth for a practical wireless telemetry link. Sig

nals transmitted through an inductive link are typically narrowband (with common bandwidths
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ranging from tens to few hundreds of kHz). It is desired that voltage gain is maximum or close to 

maximum over the entire bandwidth of the transmitted signals. Thus, the 3 dB resonance bandwidth 

is an important metric in a practical telemetry link as beyond this bandwidth induced voltage will 

be less than half of maximum voltage at resonance [18].

6.5.4 Wireless Power/Data Link
The power transfer efficiency of the telemetry link circuit can be computed using the circuit 

diagram and the two-port model shown in Figure 6.3 [19]. In Figure 6.3(a), the key variables are 

self-inductance (Lp) and capacitance (Cp) of the primary coil, self-inductance (Ls) and capacitance 

(Cs) of the secondary coil, the primary coil series resistance (Rp) and the secondary coil series 

resistance (Rs). Lp and Ls can be estimated using the partial inductance modeling method, described 

in [20,21].

The two-port model (Figure 6.3(b)) utilizes two-port measurements from a vector network 

analyzer to measure Z21(eff) and Z11(eff). Reference [19] shows that the power transfer efficiency 

n and voltage gain can be computed using Equations 6.5 and 6.6.

Port 2

(b)

Figure 6.3. System model: (a) Circuit model of wireless power transfer and telemetry system. (b) 
Two-port model of inductive link using Zeff [19] for efficiency and voltage gain measurement.
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Pout \Z21(eff)( f ) |2 ,,
^ = Pin =  R/oarf\Zn (ef/)C/)\ ( . )

G ain(f) =  ^  =  \Z21(eff ) ( f  ) \ (6 .6)
Vin \Z11(eff) v  ) \

6.6 Experimental Results
To demonstrate the liquid metal coil based wireless power and data link, we conducted mul

tiple experiments. The first experiment characterizes power transfer efficiency, voltage gain and 

frequency bandwidth of the inductive link for an axial separation of 12 mm between the coils. 

The second experiment characterizes the variation in power transfer efficiency and voltage gain as 

a function of coil separation and the third experiment identifies the effect of coil's curvature on 

the power transfer efficiency. Table 6.2 lists the specifications of the measurement setup. Figure 

6.3(a) shows the circuit model of the telemetry link. Cp is the capacitance required to resonate 

the inductance of the primary and the secondary coils at 4 MHz. Qioaded is the quality factor of 

the circuit when resistance from the driver (Rdriver) and the load (Rload) are taken into account to 

calculate losses in the primary and the secondary coil circuits, respectively [22-24]. The assumed 

distance between the coils for retinal prosthesis system considered here is 12 mm [14]. The goal of 

the telemetry system is to be able to deliver more than 100 mW power to the high density retinal 

implant electronics, which presents an effective load electronics resistance close to 220 Q [25]. To

Table 6.2. System Specifications
Primary Coil Secondary Coil

Coil Type Circular Elliptical
Outer Diameter D outD(m m ) 37 16 x 10
Inner diameter D inD(m m ) 19 8.5 x 3.5
Number of turns N D 12 10
Self inductance L d ( u H ) 4.98 0.862
Series resistance R self  (Q) 0.5 1.26
Q unloaded 250 17.19

eivridRd 5.3
R Load (Q ) 217
Qloaded 21.57 6.32
Cd (n F ) 0.319 1.82
Wire (AWG) Type 44/1001 EGaIn liquid coil

200u m  x  640u m
Load Type Parallel
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simulate the coil inductance and coupling, the partial inductance method is used. The simulation 

of the telemetry system is performed using a network model based on our previous work, found 

in [19].

6.6.1 Power Transfer Efficiency (n)
Figure 6.4 shows the measured and calculated power transfer efficiency of the telemetry link as a 

function of frequency. As expected, the maximum power transfer efficiency occurs at the resonance 

frequency of the system (4 MHz). Figure 6.4 also contains a plot of Equation 6.5. The parameters 

for Equation 6.5 were obtained by extracting mutual and self-inductances of the two coils using 

the partial inductance model of the two coils [15, 20]. The numerically calculated results obtained 

using Equation 6.5 agree well with the measured results. The link achieved 21 % power transfer 

efficiency at 12 mm separation between primary and secondary coils, which is in the higher range of 

acceptable efficiency values [24]. By using the same footprint and the same operating conditions, a 

power transfer efficiency of 39 % can be achieved by employing a traditional metal (Gold) implant 

coil (Figure 6.4).

Frequency (MHz)

Figure 6.4. Simulated and experimental power transfer efficiency of liquid coil based telemetry link 
as a function of frequency compared to telemetry link with metal based implant coil. The operating 
distance is set to 12 mm. The design parameters are based on Table 6.2.
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6.6.2 Bandwidth and Voltage Gain
Figure 6.5 shows the measured and numerically calculated voltage gain as a function of fre

quency. The design shows a 3 dB frequency bandwidth of 230 KHz (5.75 % fractional bandwidth), 

which is wide enough to support moderate data rate of 100 kbps to transmit narrowband signals such 

as control and data to/from the implant over the inductively coupled wireless telemetry systems. The 

numerical model matches the voltage gain of the experimental results. Due to higher resistive losses 

in EGaIn, liquid metal based telemetry link achieves voltage gain value 23 % below the voltage gain 

of metal (Gold) based telemetry link (Figure 6.5).

Figure 6.6 shows the power transfer efficiency variation as a function of coil separation. De

crease in separation between the coils only increases the coupling between the primary and the 

secondary coils. Calculated results and measurements of efficiency as a function of coil separation 

are in very close agreement. As expected, the power transfer efficiency increases as the primary and 

secondary coils approach each other (due to higher coupling coefficients).

Since liquid metal alloy coils can flex and conform to surfaces, we present in Figure 6.7 a 

comparison of power transfer efficiency for a planar secondary coil and a coil conformal to a sphere 

(radius of curvature of 36 mm). Figure 6.8 shows a picture of the experimental setup.

Figure 6.7, shows that power transfer efficiency decreases from 21 % to 15 % when flexible 

secondary coil is nonplanar. This reduction is due to reduction in coupling between coils when the

Frequency (MHz)

Figure 6.5. Simulated and experimental voltage gain of liquid coil based telemetry link as a function 
of frequency compared to telemetry link with metal based implant coil. The operating distance is 
set to 12 mm. The design parameters are based on Table 6.2.
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Distance (mm)

Figure 6 .6 . Simulated and experimental power transfer efficiency of liquid coil based telemetry link 
as a function of coil separation. The operating frequency is set to 4 MHz. The design parameters 
are based on Table 6.2.
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Frequency (MHz)

Figure 6.7. Comparison of power transfer efficiency when the flexible secondary coil is planar 
(solid blue) and curved (red dash dot) around a sphere of diameter 36 mm. The separation between 
the primary and the secondary coil centers was maintained as 12 mm in both cases.



Figure 6 .8 . Photographs of the telemetry coil setup. (a) Front view (b) side view and (c) perspective 
view of the curved liquid coil on the sphere of diameter 36 mm. (d) Telemetry link setup consists 
of primary and liquid metal based secondary coil.
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secondary coil curves away from the primary coil. Similar percentile reductions are observed with 

traditional metal-based coils.

6.7 Conclusions
Applications such as the retinal prosthesis often require biocompatible flexible coils for wireless 

telemetry links that can be deformed during implantation and conformed to the tissue. In this work, 

we reported the fabrication of soft and flexible telemetry coils for the wireless, near field, transfer 

of data and power. The coils described here are elastomeric (i.e., stretchable) and encased by a 

biocompatible polymer. Despite the relatively low conductivity of the liquid metal (relative to gold 

or copper), we achieved sufficient Q factor (for a given footprint) by varying the cross-sectional 

geometry of the wire. This liquid metal based coil can be successfully employed in a telemetry 

system used to deliver power to the implant coil efficiently, with the added benefit of being flexible, 

stretchable, and conformable. We demonstrated the use of a liquid metal coil in an inductively 

coupled wireless telemetry link with a power transfer efficiency of 21 % and a fractional bandwidth 

of 5.75 % which is at the higher end of acceptable efficiency range for a 12 mm separation between 

coils [1]. Under the same operating conditions and footprint, the proposed flexible coil results in an 

acceptable degrade in power transfer efficiency (PTE) (reduction by 46 %) compared to metal based 

implant coils, while achieving high flexibility and stretchability for implantation and operation.

While we focused in this work on the design of a wireless telemetry for a retinal prosthesis 

system, there are many other applications that use inductively coupled coils for wireless power and 

data transfer including wireless battery chargers, cardiac implants, glucose monitoring implants, 

near field communication coils in smart phones and RFIDs that could find this technology useful. 

In such applications the geometrical restrictions on the design of the telemetry coils are not as 

stringent and may utilize different number of turns, foot print size, and pitch. Our work suggests 

that the cross-section of the liquid metal alloy wire can be used to improve effective power transfer 

efficiency without varying other geometric parameters.
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CHAPTER 7

STUDY OF CORE’S NONLINEARITY FOR MAGNETIC 

NEURAL STIMULATION

Anil Kumar RamRakhyani, Gianluca Lazzi, “Numerical Modeling of Cores Nonlinearity for 

Magnetic Neural Stimulation,” submitted to IET Healthcare Technology Letters.

7.1 Abstract
This paper is motivated by the need to correctly predict the voltage across terminals of mm size 

coils, with ferrite core, to be employed for magnetic stimulation of the peripheral neural system. In 

such applications, which rely on a capacitive discharge on the coil to realize a transient voltage curve 

of duration and strength suitable for neural stimulation, the correct modeling of the nonlinearity of 

the ferrite core is critical. In this work, we demonstrate how a Finite-Difference model of the 

considered coils, which include a model of the current-controlled inductance in the coil, can be 

used to correctly predict the time-domain voltage waveforms across the terminals of a test coil. Five 

coils of different dimensions, loaded with ferrite cores, have been fabricated and tested; measured 

magnitude and width of the induced pulse are within 10 % of simulated values.

7.2 Introduction
Magnetic fields cover an important role in several biomedical devices and diagnostic equipment. 

From the point of view of neurostimulation, transcranial magnetic stimulation is one of the non- 

invasive techniques for the stimulation of the central nervous system. It uses time-varying magnetic 

fields to induce eddy currents in the tissue and elicit neural stimulation [1]. Compared to an electri

cal stimulator, a magnetic neurostimulator can provide reliable stimulation over a long period due to 

its contact-less stimulation mechanism. In the literature, several approaches have been considered 

to employ magnetic core based coils to generate high induced electric fields using small dimension 

coils (diameter 4-12 mm) [1,2]. Traditionally, these designs use expensive magnetic cores with high 

permeability (jir ~  20000) and high magnetic field saturation (~  2 Tesla). Despite the advances in 

the use and analysis of relative large coils for neurostimulation, external to the human body, the
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development of small coils for possible implantation still faces significant challenges. Among these 

challenges, the behavior of small ferrite loaded coils to be used in implants and, in particular, the 

effect of saturation on the waveform of these neurostimulators has not been well studied.

Most magnetic materials (iron, ferrite) are nonlinear and dispersive. Their relative magnetic 

permeability (ur) varies with the applied magnetic field intensity ( H ) and operating frequency. 

Due to changes in the Ur with respect to field intensity, inductors with a magnetic core show a 

nonlinear inductance as a function of applied current. In the case of small size, ferrite-loaded, 

coils for neurostimulation a linear inductor model is no longer valid [3], and the correct prediction 

of the nonlinear effect in the inductor is critical to determine the potential effectiveness of these 

coils for magnetic stimulation. In fact, for magnetic stimulation, the calculation of electric field 

distributions (spatial and temporal) in the proximal region of the stimulus coil is required to predict 

the stimulation site and to optimize the design under system constraints. Therefore, numerical 

modeling of the system is required to predict the field distribution of magnetic core based magnetic 

stimulator.

In this work, we demonstrate how a Finite-Difference model of the considered coils, which 

include a model of the current-controlled inductance in the coil, can be used to correctly predict 

the time-domain voltage waveforms across the terminals of a test coil. We employ a nonlinear 

ferromagnetic core [4] and the time domain numerical simulation incorporates the nonlinearity of 

Ur as the function of current in the coil. The correct knowledge of the voltages and fields associated 

with the small implantable coils is critical for the prediction of the effectiveness of these coils for 

neuromagnetic stimulation.

7.3 Magnetic Coils with Ferrite Core
Magnetic stimulation is based on the electromagnetic induction principle. The magnetic field 

intensity B can be written in terms of magnetic vector potential A  [5]. Induced eddy current J(r, t) 

at location r in the tissue can be calculated using conductivity a(r) and magnitude of the electric 

field E (r, t).

j  d B V x A
V x E = -  *  = -  —  (71) 

E ir’')  = -  - -^ d r  -  VV(r,t) (7.2)

J (r, t ) = a  (r)E (r, t ) (7.3)

where VV(r, t ) is the electric field contribution by the surface charge.

The neural stimulation threshold generally depends on the strength and the duration of the 

induced electric field pulse. In general, and within a certain operating window, the threshold is



102

inversely proportional to the pulse duration of the induced electric field. Therefore, to design an 

efficient magnetic stimulator, the induced electric fields should be maximized while maintaining a 

sufficient pulse width. For a fixed current in the coil, a magnetic material based coil is expected 

to increase the magnetic field generated in close proximity of the coil, as compared to an air-cored 

coil. However, due to high currents in the coil, these magnetic cores may saturate, deteriorating the 

performance of the system.

Figure 7.1 shows a typical configuration of the magnetic stimulator, which requires a charging 

capacitor. At the stimulation instant, the charge stored in the capacitor causes a time-varying current 

in the coil. For an inductor Li (constant or current dependent) and capacitor C, a pulse discharge 

circuit can be solved to compute the capacitor voltage Vc and current I  in the coil (Figure 7.1 (a)).

Figure 7.1. Magnetic stimulator model: (a) Simplified schematic of a pulse-discharged based 
magnetic stimulator. Variation of the core’s permeability with respect to (b) H-field and (c) operating 
frequency [6].
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7.4 Numerical Modeling
As compared to a toroid coil, solenoid coils provide more flexibility to position the magnetic 

coil near the stimulation site. For solenoid coils, the current-carrying wire is wrapped over a circular 

magnetic core. Figure 7.2 (a) shows the block diagram of a fabricated coil. The typical pulse width 

of the magnetic stimulator is on the order of 100-500 Ms, which restricts the frequency component 

of the current pulse into sub-kHz region. Thus, for small dimension magnetic coils at sub-kHz 

operating frequency, quasi-static approximation is reasonably valid for the field simulation.

For a solenoid coil, the current is in the direction resulting in a single component vector 

potential A ^. We developed a finite difference model and a Poisson equation solver to simulate the 

electric and magnetic field distribution near the magnetic coil (Equation 7.4, [7]). The B-field is 

calculated by taking the curl of A^ (Equation 7.5) [7].

from the manufacturer’s specification [6] (Figure 7.1 (b)). A 3-dimensional finite difference model 

of the solenoid coil is created to include the coil wires and magnetic core (Figure 7.2 (a)). Figure

7.5 for one of solenoid coil (A9, Table 7.1).

To model the effect of the current in the coil on the core’s saturation, the proposed electric field 

solver is used and the coil’s inductance is modeled as a function of the current in the magnetic coil 

(Lcoil = fn (I)) . For the time domain simulation, the pulse discharge circuit (Figure 7.1) is defined 

using the charging capacitance C, the current controlled coil inductance Lcoil(I), the coil’s resistance 

R and the DC voltage V . Time step is linearly varied until the maximum simulation time. For each 

time step K  +  1, the coil current and the capacitor voltage are calculated by solving the differential 

equation given by Equation 7.6. With the calculated value of the current, the new value of the 

magnetic coil’s inductance is calculated using the derived empirical formulation of the inductance 

of the coil (LCoil = fn (I)) .

(7.4)

(7.5)

An empirical model of the magnetic material’s permeability as a function of H -field is developed

7.2 shows the induced vector potential A^ (r,z) and B-field distribution by solving Equation 7.4 and
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Figure 7.2. Numerical modeling: (a) Block diagram of solid coil (Top and cross section view) 
(b) Magnetic vector potential and (c) B-field due to coil A9 for unity current and unity frequency. 
Vector potential is V.s/m and B-field is in Tesla.
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Table 7.1. Mechanical Dimensions
Coil
Number

(O.D.,I.D)
(mm)

Length
(mm)

Turns 
per layer

Core

A1 (12 ,6) 18 (15,15,14) Ferrite
A2 (12,7) 15 (15,15,15) Wood
A3 (14,6) 12 (12,11,10,9) Ferrite
A4 (9,6) 12 (12 ,11) Ferrite
A9 (16,6) 12 (12,12,11,12,9) Ferrite
Test (9,8) 4 (4) air

V (t) =

I(K  + 1) =

V (K  +  1) =

Using the developed hybrid solver for the spatial and temporal distribution of the induced 

electric field, the effect of the nonlinear inductor can be included in the optimization step to design 

a magnetic neural stimulator.

7.5 Experimental Validation
To validate the accuracy of the numerical models, five inductors were fabricated using different 

core types and with a different number of turns (Table 7.1). Using two techniques (inductance 

measurements and induced voltage in a test coil), the accuracy of the simulated spatial and temporal 

distributions of the induced electric field is validated.

7.5.1 Inductance Calculation
Four coils have been built using a ferrite magnetic core, while one coil is built using a non

magnetic material core. For the calculation of the inductance, a unity test current of 1 A at a 

frequency 1 Hz is used to calculate the coil’s inductance with vector potentials (L =  A.dl). Table 7.2

Table 7.2. Electrical Properties

d (L  I) 
dt +  IR = I dLcoî )) +  Lcoil (I) d I  +  IR

I (K ) 2

V (K) -

L(K  + 1) RAt 
L(K )

I(K  +  1)A 
C

L (K ) +
V (K )At 

L(K)

(7.6)

Coil
Number

Inductance (ji H) 
(calculated)

Inductance (jiH) 
(measured)

core Resistance
Q

A1 38.25 43 Ferrite 0.057
A2 8.91 9.2 Wood 0.065
A3 31.28 31.54 Ferrite 0.047
A4 10.479 11.19 Ferrite 0.028
A9 52.41 54.21 Ferrite 0.071
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shows that all measured values of the inductances are in close agreement with the simulated values, 

with a maximum error of 10%, which is primarily attributable to the uniformity of the coil winding.

7.5.2 Induced Electric Field Simulation
To design an optimum magnetic stimulator, the induced field strength needs to be maximized 

with a reasonably wide pulse width (~  100-500 Ms). Figure 7.3 shows the magnetic stimulator board 

(PCB) that utilizes an electrolytic capacitor (C =  2200 MF) with the timing and driver electronics. 

The PCB traces cause a stray impedance of 0.1 Q in the discharge path of the capacitor. The 

magnetic coil is attached to the stimulator board to create time-varying current and thus a time 

varying B field. To validate the simulated induced E-field values, a test coil (Table 7.1) is positioned 

in close proximity to the magnetic coil as shown in Figure 7.3. The induced voltage in the test coil, 

which is linearly proportional to the induced electric field, is recorded by an oscilloscope.

For a high power magnetic stimulator, the magnetic core is prone to saturate, affecting the 

induced electric field configuration. Thus, peak-induced voltage in the test coil, time of core 

saturation, and pulse width are considered the three key features of the stimulus pulse. Figures

Circuit

Figure 7.3. Magnetic stimulator test setup consisting of stimulator board, coil under test, and test 
coil.
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7.4 and 7.5 show the simulated and experimental induced voltages at the test coil terminal due to 

change in the current of the magnetic coil. A difference in the induced waveform after the saturation 

point, which is caused by the low-pass behavior of the permeability as a function of frequency, 

can be observed. It should be noted that, in the simulation, the permeability of the ferrite core is 

considered independent of the operating frequency, which is not realistic for the practical ferrite 

cores. Figure 7.1 (c) shows the variation of Ur as a function of the frequency. The permeability of 

the magnetic core shows a low pass-filter response as a function of frequency and, therefore, does 

not allow a fast change in its value. However, for the key features of the magnetic stimulation, 

such as the peak induced voltage, the time of saturation, and the zero crossing (pulse duration), the 

simulated and the measured waveform are in good agreement.

7.5.2.1 Effect of Charging Voltage
To identify the peak value of the induced voltage as a function of the capacitor charging voltage, 

the induced voltage in the test coil is simulated and measured for capacitor charging voltages of 

5 V, 10 V, 15 V, and 25 V (Figure 7.4 (a), (b)). It can be seen that the peak induced voltage varies 

linearly with the change in the capacitor’s initial voltage. Since the coil’s current is proportional to 

the initial voltage of the capacitor, increasing the voltage causes the magnetic core to saturate faster. 

Table 7.3 shows the simulated saturation time of coil-A9 as a function of input voltage and shows 

that the saturation time decreases linearly with increasing voltage. Due to fast saturation of the core 

with the increase in voltage, the pulse width (zero-crossing) also decreases. Table 7.3 shows the 

comparison between the simulation and experimental results: the simulation can accurately predict 

the key design parameters of the magnetic stimulator, including peak E-field, saturation point, and 

zero-crossing time.

7.5.2.2 Effect of Coil Configuration
Figure 7.5(a), (b) show the simulated and measured induced voltage across the test coil for 

different coils, and provides different peak induced voltage, saturation time, and zero crossing time. 

For the same capacitor, a low inductive magnetic coil shows a faster decay rate due to the faster 

change in the coil current. It can be seen that, before saturation, the rate of decay in the induced 

voltage reduces with the increase in the inductance of the coil. For example, coil A 9 shows slower 

decay with time in the induced voltage as compared to coil A4. After saturation of the core, ferrite- 

cored coils behave as air-cored coils and cause a faster decay in the induced voltage. Thus, coils 

with a lower number of turns show a faster decay rate after saturation.

Table 7.4 compares the performance of each coil on the basis of peak induced voltage, saturation 

time, and zero-crossing time. Coil A 9 shows the highest pulse width with moderate peak induced
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Figure 7.4. Effect of charging voltage: (a) Simulated and (b) measured induced voltage waveforms 
due to coil A9 across the test coil terminals with varying charging voltage.
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Figure 7.5. Effect of coil configuration: (a) Simulated and (b) measured induced voltage waveforms 
due to different coil configurations with charging voltage of 10 V.
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Table 7.3. Coil A9- Pulse Properties
Capacitor
Voltage

Peak Induced 
Voltage(sim,meas)

Saturation 
time (sim,meas)

Zero Crossing 
(sim,meas)

2 
11

 
5 V

V
V

V

(0.09 V, 0.09 V) 
(0.18 V, 0.19 V) 
(0.27 V, 0.28 V) 
(0.44 V, 0.45 V)

(68.2ms, 70ms) 
(31.8ms, 34ms) 
(20.8ms, 23.5ms) 
(12.2m s, 13m s)

(215ms, 216ms) 
(199m s, 195m s) 
(194m s, 190m s) 
(190m s, 186m s)

Table 7.4. Coil Pulse Properties @10 V
Coil Peak Induced Saturation Zero Crossing
Number Voltage(sim,meas) time (sim,meas) (sim,meas)
A1 (0.136 V, 0.16 V) (25.4ms, 24ms) (121.5m s, 128m s)
A2 (0.2 V, 0.21 V) (no saturation) (127m s, 120m s)
A3 (0.217 V, 0.218 V) (23.8ms, 26ms) (138m s, 140m s)
A4 (0.365 V, 0.39 V) (13.2m s, 16m s) (59.5ms, 68ms)
A9 (0.18 V, 0.19 V) (31.8ms, 34ms) (199m s, 195m s)

voltage, while coil A4 has highest induced voltage but decays faster and results in smaller pulse 

width.

7.6 Conclusion
In this work, the nonlinear effect of the magnetic core of small coils to be used for implantable 

magnetic neurostimulation is studied. Five ferrite-loaded coils, of different dimensions, are fabri

cated and tested. The implemented numerical solver demonstrates to be able to accurately predict 

the amplitude and waveform of the induced electric fields. For all magnetic coils, measurements 

show close agreement (<  10% difference) with the simulated values. The capability of these models 

to also correctly predict the effects of initial voltages of the capacitors on the induced field intensity 

and saturation time is instrumental in developing an effective magnetic neuostimulator. In fact, it is 

confirmed that due to the saturation of the core, the inductance of the coil changes drastically from 

its nonsaturated value, which causes faster decay in the induced voltage and, ultimately, negatively 

affects the neurostimulator.
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CHAPTER 8

USE OF AIR-CORE COILS FOR THE EX-VIVO 

MAGNETIC STIMULATION OF FROG’S SCIATIC 

NERVE 

8.1 Abstract
Air-core based magnetic coils are commonly used for magnetic neural stimulation. As compared 

to the magnetic-core based coil, which are prone to saturation, air-core based coils provide constant 

inductance over the pulse duration. In this chapter, design and optimization for the air-core solenoid 

coil are presented. Some of these coils (solenoid and figure-8) are used for ex-vivo magnetic 

stimulation of the sciatic nerve. In frogs, it is demonstrated that a solenoid coil with outer diameter 

as small as 23.5 mm can elicit muscle activity for the threshold voltage of ~  115 V in the charging 

capacitor of 2.2 mF. A detailed analysis of the individual experiment is presented to establish the 

understanding of magnetic stimulation.

8.2 Introduction
Due to high magnetic field density requirement (~  1-2 Tesla) [1-5] for magnetic stimulation, 

only closed magnetic structures, such as toroids, have been used to successfully demonstrate ex-vivo 

magnetic stimulation of the sciatic nerve of frog [6]. However, implantation of toroidal structure is 

a design challenge due to the requirement of nerve placement inside the toroid. Therefore, planar 

or solenoid type coils are better suited for the in-vivo magnetic stimulation [7-9]. In our previous 

work (Chapter 7), we demonstrated that, due to fast saturation of the magnetic core, a coil wrapped 

around a cylindrical magnetic core does not provide any advantage over a air-core coil. Therefore, 

we focus our work on the design and optimization of an air-core coil. Traditionally, magnetic coils 

have been designed for transcranial magnetic stimulation (TMS) applications [3, 4, 10, 11]. The 

design objectives for given coils include high penetration depth and focal stimulation. Therefore, 

round [8], figure-8 [2], slinky [12, 13], and clover leaf [14] topologies were proposed to improve 

the focalization of the induced field. Some special configurations, such as Crown/C coils, which 

utilizes the curvature of the head, were also proposed to increase the depth of the stimulation [15].
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Due to use of magnetic coils outside the body for TMS applications, dimensions of the coil were 

not considered a driving constraint in the design. However, to design an implantable magnetic 

stimulator for peripheral nerve stimulation, the volume of the magnetic coil and its projected area 

over the nerve need to be minimized. Figure-8 and slinky coils occupy larger volume and projected 

area on the stimulation site than solenoid coils. Therefore, we limited our design to a solenoid 

configuration for which system performance can be optimized as a function of the coil diameter 

(inner Din and outer Dout), number of layers (L), and turns per layer (N).

Stimulation threshold of the nerve fibers depends on the strength and duration of the induced 

electric field caused by the magnetic coil [16, 17]. Thus, magnetic coils are designed based on their 

ability to induce a high electric field magnitude and its pulse width at the stimulation site. In the 

following sections, the design algorithm for the magnetic coils is presented. Some coils are used 

for the ex-vivo magnetic stimulation of the frog’s sciatic (peripheral) nerve. Stimulation conditions 

and field simulations are also presented to establish the understanding of the underlying principles 

of magnetic stimulation.

8.3 Design of the Magnetic Coil
Selection for the magnetic coil depends on the ability to induce high electric field (~  40-50 

V/m) with sufficient pulse width (~  100-200 Us) [16]. Threshold requirements for induced field 

depend on the underlying animal model, pulse width of the induced field, coil position with respect 

to stimulation site, and its surrounding media. Traditionally, a strength-duration (S-D) curve is 

established for the nerve, which demonstrates the inverse relation of stimulation threshold with 

respect to pulse width (Equation 8.1) [16]. The S-D curve is modeled using two parameters Eth and 

time constant T, which depend on the coil configurations and the animal model.

Eth
Ethreshold — pw (8.1)

1 -  e- ~
Design and optimization of the magnetic coil for neural stimulation requires inclusion of infor

mation of the S-D curve, system constraints, and design limitations. Some of the constraints for the 

coil design include the maximum and minimum dimensions of the coil, current carrying capability 

of the coil and switches, and maximum temperature rise in the coil. Therefore, we propose an 

algorithm to select all the coil configurations based on the these parameters and constraints. Figure 

8.1 shows the flow of the proposed design algorithm for the solenoid-configuration-based magnetic 

coil.

The algorithm includes the design constraints of the coil dimensions and coil current for the 

solenoid-based magnetic coil. However, it can be easily extended to the different coil configurations
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Figure 8.1. Flow chart for the brute-force search algorithm to optimize the magnetic coil. The 
algorithm also includes the design goals, system paramaters, and its constraints.
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such as planar and curved coils. The algorithm uses a “brute-force” search to sequentially increment 

the number of layers, number of turns per layer, and inner radius of the coil. For the fixed charging 

capacitor, the pulse width of the induced field depends on the coil inductance and parasitic resistance 

due to the coil and circuit. The coil inductance can be calculated based on the analytical solution 

for the self inductance (Equation 8.2) and mutual inductance (Equation 8.3) of the circular coils.

The self inductance of a coil with loop radius a and wire radius R (assuming R ^  1) is approx

imated by Equation 8.2. Mutual inductance of the two parallel single turn coils with loop radius 

a and b can be approximated by Equation 8.3. In these, d  and p are relative distance and lateral 

misalignment, respectively, between the two coils. Thus:

L(a, R) = Moa ln { ~ R j  — 2 (8.2)

M(a, b, p , d) = nMo—ab J  J1 ^xW ^^ J1 | x ] ^0 b

d_
Vaby

where J0 and J 1 are zeroth and first-order Bessel functions .

For a solenoid coil with Nt turns per layer and Na coaxial layers, total self-inductance can be 

expressed by Equation 8.4.

Na
La = Nt £ L(ai, R) 

i=1
Na Na Nt Nt

+ mi M(aik, a jl, p =  0, d = dl\k — l1) 
i=1j=1k=11=1

x(1 — Sij)(1 — Skl) (8.4)

where Sij(orSkl) =  1 for i = j(o rk  = l) and Sij(orSkl) =  0 otherwise. dl is the minimum distance 

between two consecutive turns.

Traditionally, the current pulse generated by the magnetic stimulator contains low frequency 

components (500 Hz - 10 kHz). Therefore, the coil resistance is primarily contributed by the DC 

resistance of the coil. The coil resistance is calculated based on the length of the copper wire used 

for the coil and its cross sectional area. Due to the high current requirement (1 kA-4 kA) in the 

coil, a pulse discharge circuit is used to generate the time-varying magnetic field [18]. The switches 

control the flow of energy and store it in the charging capacitor. The discharge cycle is controlled 

through a thyristor-based switch, and current handling capability of the system depends on the 

current rating of wire and the thyristor. For the solenoid coil with Na layers and Nt turns per layer,



116

the induced electric field E  in <f direction can be calculated based on the analytical formulation of 

magnetic vector potential A  (Equation 8.5 and 8.6).

A (t) — £  £  U°I(t)aij f n/2 (2sin^  - 1  = d$a+ (8.5)
i—i j—i n J'0 y  (aij +  Pij )2 +  z2- -  4aij p -sin 20

e  (r, t) — -  (8 6 )

where Uo is the magnetic permeability of air. pi- and zij  are the radial and lateral distance of the 

turn i -  j (with radius ai) from the observation point r , respectively.

During the optimization step, the induced electric field and field gradient are calculated for the 

coil configuration and compared with the field threshold, which is computed based on the strength- 

duration curve and the pulse width. If the generated field value is higher than the threshold value, 

the coil’s configurations are stored. The trade-off between the different coil configurations is based 

on the dimensions, voltage, and energy requirements for the stimulation.

8.4 Optimization of Magnetic Coil
To design a practical magnetic coil for the magnetic stimulation, cm-sized dimensions are used 

as shown in Table 8.1. For the charging voltage of 300 V, the induced electric field is calculated at 

a distance z = 1.5 mm from the coil end as shown in Figure 8.2 (a).

Based on the optimization parameters, the pulse width and the peak of the induced electric 

field are computed. The coil current, based on the discharge capacitor and parasitic resistance, is 

compared with the current rating of the thyristor and coil wire. Out of 546 combinations of the coil

Table 8.1. Optimization Parameters
Parameters Values
Capacitor 2284 uF
DC (direct current) voltage 300 V
Number of Layers (range) 1:1:6
Number of Turns/layer (range) 1:1:13
Inner Diameter D in (range) 4:4:28 mm
E th 24.29 V/m
T 420 u Sec
Coil current (max) 3000 A
Pulse width (min) 100 u s
Parasitic resistance 50
Wire diameter 1.15 mm
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Figure 8.2. Solenoid coil structure: (a) Cross section view of the solenoid coil with coil windings. 
Flat surface of the coil is positioned parallel to the simulation plane. (b) Top view of the solenoid 
coil describing the inner and outer diameter.
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Figure 8.3. Effect of number of layers and turns per layer on the (a) pulse width, (b) coil current, 
and (c) induced electric field for the solenoid coil with inner diameter 8 mm. (d) Solenoid coil with 
inner diameter 12 mm shows a higher number of configurations to meet the threshold requirements.
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parameters, 286 configurations can induce electric field higher than the threshold value that results 

in neural stimulation. Figure 8.3 (a) and (b) show the pulse width and coil current as a function of 

the number of layers and number of turns per layer, respectively. It shows that, by increasing the 

number of turns and layers, the inductance increases, which results in increased pulse width and 

decreased coil current. Figure 8.3 (c) and (d) show the peak of of induced electric field for a coil 

diameter of 8 mm and 12 mm, respectively. Due to the larger inner diameter of the coil configuration 

in Figure 8.3 (d), more coil configurations can achieve the threshold value of the electric field value 

for the stimulation.

To validate the performance of the simulated magnetic coils in experiments, we fabricated coils 

based on our understanding of the optimization cycle. As the optimization depends on the animal 

model and stimulation conditions, we extended the scope of the coil selection. Table 8.2 shows 

the electrical and mechanical properties of the fabricated coils. Coil RC1-RC5 are fabricated with 

different inner diameters Din, height H , and turns Nt , while keeping the same number of layers 

(Na) and inductance. Similarly, coils C1-C5 are fabricated with varying coil dimensions, number of 

layers, and turns. As shown in Table 8.2, the simulated value of inductances and coil resistances are 

very similar to the experimental values, and can be used to estimate the pulse width of the induced 

electric field. Comparison between coil C5 and RC1 shows that even if both coils have a similar 

outer diameter, coil C5 can achieve stimulation with smaller coil volume and lower inductance. The 

proposed optimization includes few design constraints (e.g., dimensions, maximum coil current, 

and minimum pulse width). However, the algorithm can be easily extended to include further 

constraints, such as maximum energy requirement and maximum temperature rise in the coil.

8.5 Magnetic Stimulator Design
Our simulations show that for the inductance range between 4-25 H, coil current can exceed 

3500 A (Figure 8.3 (b)). Therefore, we designed a system that can operate on high pulsed current 

values. Figure 8.4 (a) shows the block diagram of the pulse discharge circuit, which is controlled by 

a timing circuit. During the charging cycle, the energy is stored through the IGBT-based switch to 

the charging capacitor. At the time of stimulation, the energy stored in the capacitor is discharged 

through the magnetic coil and thyristor, which results in a monophasic or biphasic current pulse 

based on the system parameters. Our in-house developed magnetic stimulator can be operated 

up to 420 V. Figure 8.4 (b) shows our current implementation of the stimulator design, which 

demonstrates the placement of different components and boards.

To characterize the temporal distribution of the induced electric field, a test wire is attached 

to a high impedance (10 MQ) probe to monitor the induced voltage. The test wire is placed in
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Table 8.2. Coil Configurations
Coil O.D

(mm)
I.D.
(mm)

H
(mm)

N t N a L exp

(M H)

exp 
Q) 

Rex 
(m

L sim

(M H)
im Q)

RC1 18.3 9 38.1 27 3 22.3 63 21.74 59
RC2 20.75 12.56 25.72 18 3 21.03 51 20.1 48
RC3 24.5 15.75 21.2 14 3 19.5 46 19.6 45
RC4 27.2 19.2 16.5 12 3 21.7 46 21.8 44
RC5 31.2 22.9 14.95 10 3 20.5 44 20.5 43
C1 23.5 9.35 8.75 6 5 10.32 30 9.83 26.1
C2 26.35 10 9.31 6 5 10.75 28.5 10.91 28.9
C3 20 9.58 8.96 7 3 4.45 17.28 4.38 16.4
C4 17.39 9.22 15.26 11 3 7.19 23 7.022 23.2
C5 16.4 8 13.3 9 3 4.28 17.28 4.32 19.4

close proximity to the magnetic coil to improve the coupling of the magnetic coil and test wire. 

Figure 8.5 shows the typical waveforms of the thyristor control signal and the induced voltage. As 

compared to the control signal, the induced voltage is delayed due to the on-time of the thyristor. As 

shown in Figure 8.5, the temporal distribution of the induced voltage can be subdivided into three 

components, the rise time, the pulse width, and the thyristor-off time. The rise time of the induced 

voltage is due to the nonlinearity of the thyristor during the turn-on cycle. Nerve depolarizes during 

the positive cycle of the induced electric field. Therefore, “pulse width” is the key component of the 

induced field (or voltage), and is the defined by the time to zero-crossing. The third component is 

the thyristor-off time which is due to the fall of coil current below the thyristor’s holding current.

8.6 Coil Characterization and Effect of Coil Orientation
The induced voltage across the test wire is linearly proportional to the induced electric field. 

Therefore, we can validate the efficacy of the field simulation by comparing the simulated and 

experimental induced voltage across the test wire. To study the effect of coil configurations on the 

induced electric field, some of the fabricated coils are driven with the magnetic stimulator. Figure 

8.6 (a) and (b) shows the positioning of the magnetic coil (RC1) and the test wire in perpendic

ular and parallel orientation, respectively. In our system, we define the “coil orientation” as the 

placement of the coil’s flat surface with respect to the plane carrying the test wire (or nerve). It 

should be noted from Table 8.2 that the coils RC1-RC5 are designed to achieve similar inductances 

by varying inner diameters and number of turns. This results in a different aspect ratio for each 

coil. Each coil is driven in two orientations as shown in Figure 8.6 (a) and (b). Figure 8.6 (c)
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Figure 8.4. Stimulator design: (a) Schematics of the pulse discharge circuit for magnetic neural 
stimulation. (b) Implementation of the magnetic stimulator using high voltage charging capacitor 
and control circuits.

and (d) show the spatial distribution of the induced electric field for perpendicular and parallel 

orientation, respectively. To validate the simulation, the magnitude and pulse parameters of the 

induced voltage in the test wire are recorded and compared with the simulated induced field (or 

voltage) and pulse width. The results are presented in Table 8.3, which shows a good agreement 

between the simulation and experimental results. It can be seen that, for high aspect ratio coils 

(e.g., RC1), the perpendicular orientation induces higher electric field (or voltage) compared to the 

parallel orientation. By reducing the aspect ratio of the coil (RC1 ^  RC5) while keeping the similar



122

Figure 8.5. Captured waveform of (a) the input control signal to the thyristor (blue), and (b) induced 
voltage (red) in the test wire due to the current pulse in magnetic coil. The induced electric field is 
directly proportional to the induced voltage in the test wire.
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Figure 8.6. Placement of the solenoid coil RC1 in (a) perpendicular and (b) parallel orientation with 
respect to the test wire. Induced electric field distribution along the test wire for (c) perpendicular 
and (d) parallel orientation. All electric fields are in V/m.

inductances, the parallel orientation increases the induced electric field. Thus, the higher axial ratio 

(height/radius) coils achieve higher ratio of the induced voltage for perpendicular versus parallel 

configuration.

Table 8.3 shows the temporal parameters of the induced electric field. Trise is the time required 

for the induced voltage to reach its maximum. Ideally, Trise = 0; however, due to the nonlinearity in 

the thyristor’s turn-on condition, the current in the coil has zero gradient at time t=0. Tpuise is the 

time from peak of the induced pulse (Vinduce= 0) to the zero crossing of the induced voltage. All 

magnetic coils RC1-RC5 have almost same pulse width (255 +/- 5 us) due to the similar inductances. 

Tthyristor is the time when thyristor turns off, which is observed when the coil current falls below the
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Table 8.3. Performance of the Magnetic Coil
Coil Height

radius Config. Trise 

(U  S e c )

Tpulse

(U  S e c )

Tthyristor

(U  S e c )

StimDelay
(U  S e c )

VExp

(mV)
Ratio

Vper
P W E xp  

(U  S e c )

Vsim

(mV)
P W sim  

(U  S e c )V'parallel

RC1 8.5 perpendicular 6.41 259 792 42 288 265 320 267
parallel 25 11.52 43

RC2 4.1 perpendicular 8 252 747 41 372 260 412 265
parallel 40 9.3 57

RC3 2.7 perpendicular 6.3 253 718 40 432 259 481 256
parallel 98 4.41 88

RC4 1.7 perpendicular 6 253 744 40 496 259 533 273
parallel 140 3.54 106

RC5 1.3 perpendicular 6 250 725 39 504 256 600 265
parallel 140 3.6 152

holding current of the thyristor.

8.7 Ex-vivo Experiments with Frog’s Sciatic Nerve
To design and optimize an in-vivo magnetic stimulator, the underlying principle of magnetic 

stimulation needs to be identified. In previous studies [7, 16, 20] of magnetic stimulation, different 

animal models (e.g., frog, rabbit, pig) were used. However, most of these studies used ex-vivo 

stimulation of frog’s sciatic nerve [6, 7, 19, 21-24]. One study included the in-vivo magnetic 

stimulation of the rabbit sciatic nerve [16], and stimulus threshold was identified as a function 

of stimulus voltage and electric field at the stimulation site. With change in the magnetic coil, the 

field distribution along the nerve varies and requires establishment of a new stimulation threshold. 

Traditionally, figure-8 coils have been used to improve the localization of the induced electric field. 

Therefore, we built a figure-8 coil using two 33 mm diameter solenoid coils. In our study, we 

performed multiple experiments using figure-8 (Figure 8.7 (a)) coils and solenoid (Figure 8.7 (c)) 

coils. Figure 8.7 (b) and (d) show the magnitude of the electric field induced by the figure-8 

and solenoid coil, respectively. To characterize the stimulation threshold, the Emax position of the 

magnetic coil is defined as the location in the nerve-carrying plane at which induced electric field is 

maximum along the nerve (x-direction). To reduce the mechanical vibration due to pulse discharge 

and to ensure stable positioning of the magnetic coil, a coil holder is used to place the coils in 

parallel orientation only.

To study the mechanism of magnetic stimulation and identify the key parameters that affect the 

stimulation threshold, we magnetically excited the sciatic nerve of euthanized bullfrogs (Rana cates- 

biana). The sciatic (and the tibial nerve branch) was extracted from the spinal cord to the innervation 

of the gastrocnemius muscle. The nerve was placed in a plastic Petri dish (thickness ~1.5 mm ) 

with saline (Frog Ringers Solution, FRS), and the Achilles tendon was suspended vertically to a 

force transducer. Additionally, we inserted two fine wire electrodes into the gastrocnemius muscle
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Figure 8.7. Block diagram of the (a) figure-8 and (c) solenoid coil. Distribution of the induced 
electric field magnitude by (b) figure-8 and (d) solenoid coil in the plane of nerve.

to record the electromyogram (EMG). Both figure-8 and solenoid magnetic coils were fabricated 

and were used to induce an electric field. Coils were driven with an in-house designed magnetic 

stimulator that can source up to 420 V across the coil. These coils were placed under the Petri dish 

to assure electrical isolation. It was previously identified that electric field along the nerve as well 

its spatial derivative contributes to the stimulation. Moreover, for most of the studies, stimulation 

thresholds are presented in terms of electric field without providing the effect of surrounding media
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and nerve conditions. Therefore, the focus of our research is to identify the location of stimulation, 

stimulation threshold, effect of surrounding media, and strength-duration curve for the frog’s sciatic 

nerve. In the following sections, five experiments are discussed to establish the key findings of the 

magnetic stimulation.

8.7.1 Experiment 1: Stimulation Using Figure-8 Coil
The first magnetic ex-vivo stimulation experiment was performed with the figure-8 coil. Figure

8.8 (a) shows the experimental setup for the magnetic stimulation. The magnetic stimulator uses a 

charging capacitor of 2.2 mF and can be operated up to 300 V. Figure 8.8 (b) shows the placement of 

the magnetic coil with respect to the nerve and muscle. The nerve is submerged in the FRS solution.

Figure 8.8. Experimental setup: (a) Experimental setup for the magnetic neural stimulation of the 
frog’s sciatic nerve. (b) Placement of magnetic (figure-8) coil with respect to the nerve. Block 
diagram of the (c) nerve position and (d) nerve orientation with respect to the figure-8 coil.
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In this experiment, the nerve end is sutured to create high impedance at the end point. The nerve 

end is located ~20 mm from the centroid (location of the peak electric field) of the figure 8-coil. 

Multiple sets of experiments were performed to identify the effect of nerve position d (Figure 8.8 

(c)) and orientation 0 (Figure 8.8 (d)) on the stimulation threshold.

Table 8.4 presents the stimulation thresholds for different positions and orientations of the nerve. 

The thresholds were identified based on the minimum charging voltage for which the stimulator 

caused visible muscle twitch. Table 8.4 shows that the minimum threshold is achieved when the 

nerve is submerged in the FRS solution and is placed at d = 0 and 0 = 0. As expected from 

the electric field simulation, the stimulation threshold increased with the increase in the separation 

from the center of the figure-8 coil. Similarly, increasing the angle 0 (Figure 8.8 (d)) between

00 — 900 requires higher threshold voltage. While placing the nerve at 0 = 0 , the induced electric 

field along the nerve approaches zero, producing a stimulation threshold greater than 300 V. Table

8.4 also provides the simulated value of induced electric field at the nerve end depicting the Ethreshold 

requirement of 20-25 V/m.

8.7.2 Experiment 2: Recruitment Curve and Effect of Coil Separation
The second experiment is focused on capturing the recruitment curve of the magnetic stimulation 

using a figure-8 coil. The sciatic nerve is placed in the petri dish (thickness ~1.5 mm). The nerve 

end is sutured and located at ~15 mm away from the peak electric field location of the magnetic coil. 

EMG electrodes and force transducers are attached to the muscle to capture the muscle activity and 

generated force in response to the magnetic pulse. Figure 8.9 shows the typical waveform for the 

generated force and EMG signal during magnetic stimulation. It can be seen that the generated force

Table 8.4. Experiment 1: Stimulation Threshold Versus Nerve Position
Test
No.

d
(mm)

0
(degree)

Conditions V'threshold
(V)

Ex @ N e r v e  — e n d  

(V/m)
1 0 0 Saline, Suture 190 19.85
2 1 0 Saline, Suture 190 19.8
3 3 0 Saline, Suture 225 23
4 5 0 Saline, Suture 300 29
5 0 180 Saline, Suture 190 19.85
6 0 10 Saline, Suture 200 -
7 0 45 Saline, Suture 250 -
8 0 90 Saline, Suture > 300 -
9 0 0 No saline, Suture > 300 -



128

Figure 8.9. Neural activity: (a) Generated force and (b) EMG signal in the muscle in response to 
magnetic pulse.

varies slowly (20-100 ms), while the EMG signal is generated within 5-10 ms after the stimulation 

pulse. These waveforms are very similar (e.g. latency and temporal distributions) to the generated 

force and EMG signal from electric stimulation.

For all neural stimulation techniques (e.g., magnetic, electrical), the generated force and EMG 

signal is a nonlinear function of the stimulation magnitude. Below threshold, no neural activity 

can be recorded. However, operating the stimulator above the stimulation threshold increases the 

number of axons that can be excited. This results in a graded response of the generated force and
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Figure 8.10. Recruitment curve of (a) the generated force and (b) EMG signals in the muscle due 
to the magnetic pulse.
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EMG signal as a function of the stimulation amplitude. By increasing the stimulation magnitude 

1.5-3 times the threshold, the force and EMG signals approach a stable value. Figure 8.10 shows 

the recruitment curve for the force and EMG signal with a magnetic coil placed just below the petri 

dish. It shows the graded response of the muscle activity as a function of capacitor voltage.

To identify the operating distance of the magnetic coil and its impact on the stimulation thresh

old, the magnetic coil was vertically displaced from the petri dish, and threshold voltages were 

recorded for each distance. Table 8.5 shows the stimulation threshold (voltage and induced electric 

field) as a function of magnetic coil vertical separation from the nerve-carrying petri dish (petri dish 

thickness = 1.5 mm).

8.7.3 Experiment 3: Effect of Coil Position to the Nerve End
The third experiment was performed to study the impact of distance between the nerve end and 

the Emax position of the magnetic coil. Figure 8.11 shows the relative position of the nerve end with 

the solenoid based magnetic coil. For solenoid coils, Emax is located at the midpoint of the inner and 

outer radius of the coil (Figure 8.11(a)). However, for the figure-8 coil, the Emax is positioned at the 

center point of the two coils. The magnetic coil was placed under the petri dish and repositioned 

along the nerve during the experiment. As shown in Figure 8.11 (b), the distance d  is characterized 

as the position of Emax with the nerve end. For this experiment, the nerve end was kept nonsutured 

to create a low-impedance end node.

Table 8.6 presents the threshold variation for the figure-8 and solenoid coil C1. It shows that the 

threshold voltage increases with the increase in the distance d . Electric field simulation depicts that, 

for the nerve placed in the x-direction, the threshold Ex (nerve end) reduces with the increase in d . 

The same trend is seen for the experiment with the solenoid coil C1. These data conclude that the 

magnetic stimulation not only depends on the induced E-field at the nerve end, but also the spatial

Table 8.5. Experiment 2: Threshold Variation with the Coil Separation
Test
No.

h
(mm)

0
(degree)

Conditions Vthreshold
(V)

Ex @ Nerve — end 
(V/m)

1 0 0 Saline, Suture 111 16.5
2 3 0 Saline, Suture 143 17.3
3 5 0 Saline, Suture 187 19.6
4 7 0 Saline, Suture 215 19.5
5 9 0 Saline, Suture 266 20.9
6 13 0 Saline, Suture 410 24.4
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(a) (b)

Figure 8.11. Position of the nerve end with respect to the Emax location of the magnetic coil. The 
coil is moved along the nerve (a) to align the coil’s Emax to the nerve end. (b) The coil is moved 
along the nerve to separate the coil’s Emax at distance d  from the nerve end.

Table 8.6. Experiment 3: Effect of Coil Position to the Nerve End
Test
No.

Coil
No.

d
(mm)

Conditions ^threshold
(V)

E x @ N e r v e  — e n d  

(V/m)
1 Figure-8 0 13 ml saline, No suture 95 26.8
2 Figure-8 15 13 ml saline, No suture 100 15.42
3 Figure-8 25 13 ml saline, No suture 185 13.66
4 C1 0 13 ml saline, No suture 115 43.4
5 C1 10 13 ml saline, No suture 170 31.6
6 C1 20 13 ml saline, No suture 295 14.5
7 C1 30 13 ml saline, No suture 315 5.47
8 C1 40 13 ml saline, No suture > 350 2.73
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distribution of the electric field along the nerve.

8.7.4 Experiment 4: Effect of Surrounding Media and 
Position of Nerve End

During our ex-vivo experiments (Experiment 1), we found that the amount of FRS (saline) 

solution can modify the stimulation threshold. Therefore, this experiment consisted of a study to 

identify the impact of the amount of FRS in the petri dish on the stimulation threshold. Figure 8.12

(a) shows the experimental setup of the magnetic stimulation.

During the experiment, we used a plastic petri dish with diameter 15 cm. The volume of 

FRS (saline) was controlled during the experiment using a syringe. Table 8.7 shows the variation

(C)

Figure 8.12. Experimental setup: (a) Placement of the magnetic coil with respect to the sciatic 
nerve. The petri dish is placed flat to insure uniformity of the saline. (b) zoomed version near the 
nerve end to show the height of saline with respect to the nerve (c) block diagram for the nerve end 
position with the Emax location.
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Table 8.7. Experiment 4: Effect of Saline Height
Test
No.

Coil
No.

Saline
Height (mm)

Conditions Vthreshold
(V)

E x @ N e rv e  — end  
(V/m)

1 Figure-8 0.392 7 ml saline, No suture 207 58.4
2 Figure-8 0.28 5 ml saline, No suture 307 86.6
3 Figure-8 0 0 ml saline, No suture > 420 > 118.5

of stimulation threshold for three different volumes. The stimulation threshold was at minimum 

when the sciatic nerve (diameter ~0.4-0.5 mm) was submerged in the uniformly distributed 7 ml 

FRS (Figure 8.12 (b)). For 0 ml FRS, we did not observe any neural response up to 420 V. This 

experiment suggests that the surrounding conductive media (height of FRS) affects the the stimulus 

threshold (induced electric field).

To validate whether the neural activity starts at the end-point of the nerve, the magnetic coil was 

moved equally in positive and negative directions (Figure 8.12 (c)). As the induced electric field 

is symmetrical with respect to Emax location along the nerve. Therefore, it was expected that in 

the case of end-point stimulation, the threshold would not vary while the coil is placed at varying 

distance along the nerve. Table 8.8 shows that for figure-8, as well solenoid coil C4, the stimulation 

threshold was not symmetric along the +ve and -ve value of d . We conclude that, for the nerve with 

no-suture, the stimulation threshold not only depends on the electric field at the end-point, but also 

its distribution along the nerve.

8.7.5 Experiment 5: Strength-duration Curve
As indicated in Section 8.3, to design and optimize the magnetic coils, the strength-duration 

(S-D) curve needs to be included in the optimization step. In this experiment, we intended to 

characterize the parameters of the strength-duration curve. To achieve different pulse widths for the 

same magnetic coil, we used a 3-capacitor based bank which can be connected in five configurations.

Table 8.8. Experiment 4: Effect of Nerve End Position
Test
No.

Coil
No.

d
(mm)

Conditions Vthreshold
(V)

Ex@ Nerve — end 
(V/m)

1 Figure-8 +5 (towards muscle) 7 ml saline, No suture 172 40.1
2 Figure-8 0 (end point) 7 ml saline, No suture 185 52
3 Figure-8 -5 (away from muscle) 7 ml saline, No suture 214 > 50
4 C4 +5 (towards muscle) 7 ml saline, No suture 206 66.64
5 C4 0 (end point) 7 ml saline, No suture 264 66.4
6 C4 -4 (away from muscle) 7 ml saline, No suture > 336 > 92.8
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By operating multiple equally sized capacitors in series and parallel, equivalent capacitance values 

of 760 iF , 1142 iF , 2284 iF , 4564 iF , and 6852 i F  are achieved. Ideally, for the fixed animal 

model, the S-D curve is independent of the electrode configuration. However, during our last ex-vivo 

experiments (1-4), we found that the stimulation threshold not only depends on the induced electric 

field at the nerve end, but also on its distribution along the nerve. Therefore, we characterized the 

S-D curve for the solenoid coil C1, which has smaller dimensions (outer diameter 23 mm) than the 

figure-8 coil.

For this experiment, a nerve with a nonsutured end was placed in the 10 ml FRS media. Table

8.9 shows the recorded threshold for different configurations of the capacitor bank. As expected, 

the stimulation threshold reduces with the increased effective capacitance (Cef f ) value.

Figure 8.13 (a) shows the experimental value of the threshold voltage for coil C1. Figure 8.13

(b) shows the simulated electric field while the nerve end is located ~  d = +3 mm away from the 

Emax position along the nerve. To identify the S-D curve parameters, the data are fitted using the

empirical formulation (threshold = 1—exp(—pulsewidth/T) and threshold =  1-exp(-pulsewidth / T)). For both
the curves, the fitted empirical models achieve R-square value above 0.97. Vth, Eth and t  are the 

coefficients of the empirical models and based on the fitted data, Vth = 62.23 V, Eth = 22.27 V/m and 

t  = 420 iSec.

8.8 Discussion
In the previous sections, design and optimization of magnetic coils were presented, including 

five ex-vivo experiments performed to cause neural stimulation of the frog’s sciatic nerve. All of 

the experiments were designed to identify the control parameters of the stimulation. Experiment

1 used a figure-8 magnetic coil and characterized the stimulation threshold for different positions 

and orientations. It was shown that minimum threshold is achieved when the nerve is placed over 

the centerline (midline of the two coils) of the figure-8 coil. Using a figure-8 magnetic coil (L =

18.5 iH , pulse width = 259 iS ec  @ charging capacitor = 2284 iF ) , stimulation was achieved for an

Table 8.9. Experiment 5: Stimulation Threshold Versus Pulse Width
Test
No.

Capacitor
Configuration

Ce f f
(mF)

Pulse Width 
( l  Sec)

Vthreshold
(V)

E x @ N e rv e  — end  
(V/m)

1 3-series 0.76 104 303 107
2 2-series 1.142 129 226 81
3 1-capacitor 2.284 185 164 59.5
4 2- parallel 4.584 238 137 49.6
5 3-parallel 6.852 273 129 46.7
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Figure 8.13. Strength-duration curves for the magnetic coil C1. The empirical models are created 
as a function of (a) voltage and (b) induced electric field at the nerve end.
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induced electric field of ̂ 20-25 V/m at the nerve end. Experiment 2 provided a systematic approach 

for capturing the recruitment curve for the frog sciatic nerve. The experiment also validated that the 

neural response (EMG and generated force) due to pulsed magnetic field is similar that of the electric 

simulation. In both experiments (1 and 2), the nerve end was sutured to create a high impedance 

termination. For Experiment 3, the nerve end was kept open, resulting in a low impedance node. 

Two magnetic coils (figure-8 and solenoid C1) were used for the experiment. The results show 

that when the coil is positioned close to the muscle, higher threshold voltage is required. For each 

configuration, the calculated electric field value at the nerve end shows that Ethreshold is different. It 

also concludes that by varying the coil's position along the nerve, stimulation can be started away 

from the nerve end. Therefore, the stimulus threshold depends on the induced electric field and its 

distribution along the nerve. For experiment 3, the threshold for the figure-8 coil was found higher 

than in experiment 2, which can be due to the low impedance (no-suture) versus high impedance 

(suture) nerve end and preparation of the nerve. Experiment 4 was designed to study the effect of 

surrounding media on the stimulation threshold. It is shown that stimulation threshold increases as 

the FRS level is decreased below the nerve height, which indicates that the induced electric field in 

the nerve depends on the surrounding conductive media. Experiment 5 was performed to estimate 

the parameters of the strength-duration curve of the frog's sciatic nerve for the solenoid coil C1. 

The stimulation threshold for experiment 5 was higher than the threshold value in experiment 4, 

which can be caused by the condition of the nerve during the experiment.

Based on the different ex-vivo experiments, some conclusions can be drawn:

1. The magnetic stimulation elicits similar neural responses (e.g., EMG and generated force) to 

electric stimulation (Experiment 2).

2. The stimulation threshold depends on the position of the nerve end with respect to the E ^  

location (position at which the induced field along the nerve is maximum) (Experiment 1 and 

3).

3. High impedance nodes can be created by placing sutures at the nerve end. The nerve termi

nation can alter the stimulation site and threshold (Experiment 1 and 3).

4. Distribution of the surrounding conductive media with respect to the nerve plays an important 

role in the generation of the induced electric field (Experiment 1 and 4).

5. Similar to electrical stimulation, magnetic stimulation can also be characterized based on the 

strength-duration curve (Experiment 5). The parameters of the S-D curve depend on the coil, 

the animal model, and the experimental setup.
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Our experiments show that the medium heterogeneity at the stimulation site and the impedance 

of the nerve termination can alter the stimulation threshold. All the neural structures are heteroge

neous medium and consist of different conductivity boundaries. They limit the accuracy of the 

analytical estimation of induced electric field [25-27]. Therefore, we intend to use numerical 

methods to estimate the distribution of induced electric field inside the nerve. In the following 

Chapter 9, we use the Impedance-Method based field simulator [28] to study the impact of tissue 

heterogeneity on the induced electric field.

8.9 Conclusion
In this work, design and optimization of air-core based magnetic coils was presented. The 

fabricated coils were used for ex-vivo experiments with the frog’s sciatic nerve. Using a 23.5 mm 

diameter solenoid coil, successful stimulation of the frog’s sciatic nerve was achieved at 115 V 

charging voltage. We also discussed the stimulation thresholds for five magnetic neural stimulation 

experiments to study different design parameters. It was shown that magnetic stimulation elicited 

similar neural activity as electrical stimulation, and its efficacy can be characterized by the recruit

ment curve of the recorded EMG and resultant muscle force. Similar to electrical stimulation, 

magnetic stimulation threshold also follows a strength-duration curve. Thus, for the derived S-D 

curve, the coils can be optimized under the limitation of dimensions, energy requirements, and 

system constraints. Moreover, it is shown that the stimulation threshold strongly depends on the 

surrounding conductive media and nerve position with respect to the magnetic coil.
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CHAPTER 9

NUMERICAL MODELING FOR THE MAGNETIC 

NEURAL STIMULATION OF THE PERIPHERAL NERVE 

9.1 Abstract
To deduce the effect of surrounding conditions and nerve anatomy on the stimulation threshold, 

accurate computational models are required. In this work, we report an impedance-method-based 

field solver to study the effect of conductive media around nerve, and the impact of nerve termination 

on stimulation. Using a m-resolution numerical model of the frog’s sciatic nerve, the effect of axon 

density and impact of myelination node are studied. To simulate the transmembrane current due to 

cm-sized magnetic coils, a multiresolution impedance method was developed and the effect of axon 

distribution inside the nerve was studied. It is shown, due to the axon distribution, axons with 

~20 /Im  separation can differ more than 8% in induced electric field.

9.2 Introduction
With advancements in computational algorithms, numerical methods have been proven as key 

design and optimization tools for studying the mechanics of magnetic neural stimulation [1]. Tran- 

scranial magnetic stimulation (TMS) has been studied to evaluate the distributions of induced 

current and electric field [2, 3] inside the human head model. To improve the accuracy of the 

study, some simulations used anatomical models, which were created based on MRI scanning of 

human [2, 3] and rat [4] head. To increase the localization of the induced electric field, some 

studies were performed to design and optimize the magnetic coil (e.g., figure-8, coil array) for TMS 

application [5, 6]. Moreover, simulation models were also created for peripheral nerve magnetic 

stimulation to study the effect of tissue heterogeneity on the induced electric field [7].

Traditionally, finite-element [2, 4, 7, 8] and impedance [3, 6, 10] methods are used to solve the 

induced electric field in conductive media. The finite-element (FEM) algorithm is a generalized 

numerical method to solve boundary value problems for differential equations. It is well adopted 

by commercial software (e.g., SEMCAD, CST microwave studio, HFSS), which discretizes the 

3-D simulation space into tetrahedral voxels and apply a governing equation to each element.
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Compared to the impedance method, FEM has higher implementation complexity, and generally 

requires longer development time. Impedance method is well suited [3, 10] for studying magnetic 

stimulation. It solves for the induced electric field E  by solving Faraday’s induction law. Due to 

reduced implementation complexity, an impedance method based numerical solver is implemented 

in the following sections to compute the induced electric field in biological tissue.

9.3 Impedance Method for Electric Field Simulation
The impedance method was proposed and implemented to compute the absorbed electromag

netic energy in response to the incident magnetic field [13]. It is a frequency-domain solver that 

solves for an induced electric field E  along a segment dl by solving Faraday’s induction law 

(§ E .d l = — ̂ ^  is the magnetic flux). To represent a complex structure, the impedance method 

divides the solution space into cuboid voxels. Figure 9.1 shows a typical voxel, which is built using 

impedances at individual branches. The value of each impedance depends on the voxel dimensions 

and its conductivity. To represent the voxel in terms of lumped elements, quasi-static conditions 

need to be satisfied, which require the dimensions of the voxel to be much smaller the operating 

wavelength of the magnetic field. Moreover, the effect of the induced electric field needs to be 

negligible on the magnetic field source in order to decouple Ampere’s law and Faraday’s law of 

induction.

To solve the induced electric field in the x-, y-, and z- directions, the impedance method requires 

the evaluation of magnetic field intensity Hx, Hy, and Hz perpendicular to the faces of individual 

voxels. To evaluate the branch currents for each voxel, loop currents at each face can be calculated, 

which is an intermediate step of the algorithm. Figure 9.1 shows the orientation of the loop currents 

iix(i, j ,  k), iiy(i, j ,  k), and iiz(i, j ,  k) at the voxel (i,j,k) face.

Branch currents of Ix (i,j,k), Iy(i,j,k), and Iz(i,j,k) flow in the branch impedances Zx (i, j ,  k), Zy(i, j ,  k) 

and Zz(i, j ,k )  in the x-, y- and z- directions, respectively. Equations 9.1, 9.2 and 9.3 formulate 

Faraday’s induction law for the current loop in response to the magnetic field intensity of Hx, Hy, 

and Hz perpendicular to face in x-, y-, and z- directions, respectively.
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Figure 9.1. 3-D voxel used for the impedance method. Loop current is calculated at each face of 
the cuboid in response to the time-varying magnetic field.
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—ly(i, j , k')Zy(i, j ,  k) — lz ̂ , j  + 1, lk) 'Z/y , j  + 1, k)

+ly(i, j ,  k + 1)Zy (i, j ,  k + 1 )+  lz(i, j ,  k)Zz(i, j ,  k) = —2jnfU0Hx(i, j ,  k)SySz (9.1) 

lx(i, j ,  k)Zx(i, j ,  k) + lz (i + 1, j ,  k)Zz(i + 1, j ,  k)

—lx(i, j ,  k + 1)Zx (i, j ,  k + 1) — lz(i, j ,  k)Zz(i, j ,  k) = —2 jnfi!0H y(i, j ,  k)SxSz (9.2)

—lx(i, j ,  k)ZA h  j ,  k) — ly(i + 1  j ,  k)Zy(i + 1, j ,  k)

+lx(i, j  + 1, k)Zx(i, j  + 1, k )+  ly(i, j ,  k)Zy(i, j ,  k) = —2jnfii0H z(i, j ,  k)SxSy (9.3)

where f  is the operating frequency. Sx, Sy and Sz are the length of each voxel in x-, y-, and z- 

directions, respectively.

Branch currents lx, ly, and lz can be formulated based on the loop currents iix(i, j ,  k), iiy(i, j ,  k), 

and iiz(i, j ,  k), respectively (Equations 9.4, 9.5, and 9.6).

lx(i, j ,  k) = iiy(i, j ,  k — 1) — iiy(i, j ,  k) + iiz(i, j ,  k) — iiz(i, j  — 1, k) (9.4)

ly(i, j ,  k) = iix(i, j ,  k) — iix(i, j ,  k — 1) +  iiz(i — 1, j ,  k) — iiz(i, j ,  k) (9.5)

lz(i, j ,  k) = iix(i, j  — 1, k) — iix(i, j ,  k) + iiy(i, j ,  k) — iiy(i — 1, j ,  k) (9.6)

Faraday’s induction law (Equations 9.1, 9.2 and 9.3 ) and the branch currents in Equations 

9.4, 9.5, and 9.6 show that loop currents are coupled to each other. Therefore, for the impedance 

network, loop analysis is performed by solving the coupled loop currents for each voxel. Loop 

currents, at the x-, y- and z- faces of the voxel (Figure 9.1), are solved using a successive over 

relaxation (SOR) method [13]. Branch currents are calculated for each voxel using loop currents. 

For the voxel conductivities (units S/m) of ax, oy and oz in x-, y- and z-directions, the induced 

electric field components (Ex, Ey, and Ez) are derived using Equations 9.7, 9.8, and 9.9, respectively.

Ex(i, j ,  k) = a  S (9.7)^x(i, J , k)SySz

E y(i,j,k) = „  lr  lJkk  S (9.8)Oy(l, j ,  k)SxSz

Ez(i, j ,k )  = n  s (9.9)^z (l, J , k)SxSy

9.4 Validation of the Impedance Method
To validate this implementation of the impedance method, two design examples were chosen. 

For the first design, a figure-8 configuration was used for the magnetic coil. For the second design, 

a circular coil was placed perpendicular to the air-tissue interface. For both the examples, numerical 

solutions are compared with analytical solutions.
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9.4.1 Example 1: Figure-8 Coil Parallel to Tissue
Due to wide use of figure-8 magnetic coils for magnetic stimulation, this configuration was 

modeled as an impedance network. The figure-8 coil was constructed using two four-turn spiral 

coils. Each coil had an outer and inner diameter of 33.5 mm and 25 mm, respectively. Figure 9.2 

shows the simulation model and induced electric field distributions. A tissue (conductivity 0.5 S/m) 

model with dimensions 80 mm x 80 mm x 80 mm was created (Figure 9.2 (a) and (b)), and the 3-D 

electric field was simulated using the impedance method. Figure 9.2 (d) and (f) show the induced 

electric field components Ex (x-direction) and Ey (y- direction) in the observation plane parallel 

(1.5 mm away) to the coil. Due to the parallel configuration, the electric field component in the z- 

direction is zero.

For the same coil configuration (spiral coils), the induced electric field can be calculated based 

on the analytical formulation of the magnetic vector potential represented in cylindrical coordinates 

(Equation 9.10 and 9.11). Due to the parallel placement of the coil to the observation plane, the 

induced field is in the observation plane only (0 — p plane).

^ Na ^ 0>I(t)aj rn/2 (2sin20 — 1)
A (p , z, t ) = Y ---- y r j d0a^  (9.10)

i=1 n  \J(ai +  pi)2 +  z2 — 4aiPisin20

E  (r, t ) = — (9.11)

where ai, pi and zi are the radii, radial distance location p , and vertical (z-direction) distance from 

the turn i.

Comparing the induced electric field in the x- (Figure 9.2 (c) and (d)) and y- (Figure 9.2 (e) 

and (f)) direction using the impedance method (finite boundaries) and analytical solution (infinite
boimHarips) a good agreemenf (Average difference between the numerical andanalytical modd < 3% ) bptwppn boundaries), a good agreement ( Peak E-field value over simulation model <  ) between the

two methods is clear. The difference reduces below 1% by increasing (more than four times) the 

simulation model of the impedance method to approach infinite boundary conditions. This example 

demonstrates that the impedance method is an effective simulation algorithm for calculating the 

induced electric field in the simple tissue structure (homogeneous model).

9.4.2 Example 2: Coil Perpendicular to Tissue
Nerve is a heterogeneous medium and causes discontinuity in the tissue conductivity perpendic

ular to the induced electric field. This results in surface charge at the interface [18]. For time-varying 

magnetic field, the surface current contributes to the induced electric field. Therefore, to validate 

the use of the impedance method for medium discontinuity, a coil in the perpendicular configuration 

is chosen. Figure 9.3 (a) shows the block diagram of the coil position to the conductive tissue. As
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80 mm 80 mm

(a) Top View (X-Y Plane) (b) Side View (Y-Z Plane)

(c) Ex - Analytical Solution (d) Ex - Impedance Method

(e) Ey - Analytical Solution (f) Ey - Impedance Method

Figure 9.2. Numerical modeling: (a) Top and (b) side view of the numerical model. Calculation of 
the electric field (magnitude) components (c) Ex and (e) Ey are done using analytical solution and 
compared with the impedance method solution (d), (e). All electric field values are in V/m.
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shown, a circular single turn coil with diameter 5 mm was placed 4.5 mm (center to the tissue) away 

from the surface. A numerical tissue model with dimensions 80 mm x 80 mm x 80 mm was created. 

Electric field was simulated for the coil current of 600 A at 2 kHz. Using the impedance method, the 

induced electric field was simulated in x-, y-, and z- directions. The results are compared with the 

analytical solutions for the simulation model, which was presented for the air-tissue (semi-infinite) 

interface located at z  =  0 [12]. Equations 9.12, 9.13 and 9.14 formulate the induced electric field in 

the conductive tissue (location (x,y, z)) due to the current segment d l (where d l =  d lxx  +  d lyyy +  d lzz) 

located at (x0, y0, z0). At the observation point, the fields from each current segment are integrated 

over the loop to calculate the total induced field due to the coil.

where I and i  are the current in the current segment and magnetic permeability of the free space, 

P =  V ( x  — x0)2 +  (y — y0)2 and R =  ^ ( x  — x0 )2 +  (y — y0)2 +  (z — z0)2.

Figures 9.3 (b) and (d) show the simulated electric field distribution using the impedance method 

in x- and y- directions. Figures 9.3 (c) and (e) show the calculated electric field using an analytical 

solution. As compared to the analytical value of Ez equal to zero, the peak Ez using the impedance 

method achieves a very small value (~  0.07 V/m). The results show a good agreement between 

the simulated and calculated field components. The small difference (~  8%) between the simulated 

(numerical model) and calculated (analytical) is primarily contributed by the finite length of the 

tissue model for the impedance method.

Using two examples it is shown that the impedance method can be used effectively to simulate 

the induced electric field in the presence of tissue boundaries. The good agreement between the 

simulation and analytical solutions validates the efficacy of the implemented impedance method to 

study the effect of conductivity discontinuity on the induced electric field.

As discussed in Chapter 8 during the ex-vivo experiment on the frog’s sciatic nerve, multiple 

phenomena were seen which are not predictable using homogeneous modeling of the induced 

electric field [11]. In the following sections, simulation models are developed to study the effect 

of saline volume in the petri dish. The second study is performed to analyze the effect of nerve 

termination on the stimulation site.

(9.13)

dEz =  0 d (9.14)

9.5 Numerical Models for Ex-vivo Experiments
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Figure 9.3. Induced electric field due to a figure-8 magnetic coil. Calculation of the electric field 
components Ex (b, d) and Ey (c, e) are done using analytical solution (Equations 9.12 and 9.13) and 
impedance method. Due to a finite simulation boundary, Ez (max) = 0.07 V/m. All electric field 
values are in V/m.
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9.5.1 Effect of Saline Volume on Stimulation Threshold
During Experiment 4 in Chapter 8, the stimulation threshold for different saline volumes was 

recorded. It was shown that for the saline height below the nerve diameter, the stimulation threshold 

increases with the reduction of saline height in the petri dish. Therefore, to study the effect of 

surrounding conductive medium (saline) on the induced electric field, a numerical model was 

created to include different conductive boundaries.

Figures 9.4 (a) and (b) show the side and top view of the simulation model. An impedance 

network was created to include the petri dish, saline and a cylindrical nerve. Figure 9.4 (c) shows 

the cross-section view of the nerve’s numerical model. For the simulation, a figure-8 coil with 

individual coil’s outer diameter 33 mm and inner diameter 25 mm was used. Each coil was fed with 

a sinusoidal current of 600 A at 2 kHz in reverse direction to maximize the induced electric field at 

the center of the figure-8 coil. The magnetic coil was placed 1.5 mm from the petri dish (dimension 

of 80 mm x 80 mm). A cylindrical nerve with an elliptical (1 mm x 0.9 mm) cross-section and length 

45 mm is used for the model creation and is placed along the x- direction. The numerical model 

uses the spatial resolution of 0.5 mm, 0.1 mm, and 0.1 mm in x-, y-, and z- directions, respectively, 

and achieves ~2.7 millions voxels for simulation.

Figure 9.4. Simulation model to characterize the effect of Ringers solution on the induced electric 
field. (a) Cross-section (Y-Z) and (b) Cross-section (X-Y) views of the simulation model. (c) 
Impedance network model of nerve bundle submerged in the ringer (saline) solution.
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To study the effect of surrounding conductive media (saline) on the induced electric field, 

multiple numerical models were created to include the individual saline height for the range of 

0 mm to 1.9 mm in steps of 0.1 mm. To include the heterogeneity of the nerve, the outer layer of the 

nerve bundle was considered as membrane with conductivity of 0.02 S/m. The interior part of the 

nerve was considered as the isotropic intracellular space with conductivity 0.91 S/m. Petri dish is 

modeled as an insulator with conductivity 1x10-11 S/m, and saline with conductivity 0.5 S/m was 

used for the model.

Figure 9.5(a) shows the average and standard deviation of the induced electric field (Ex) across 

the cross-section of the nerve end. The induced field is simulated as a function of saline height. 

For zero-mm saline in the petri dish, the average value of the induced field is zero. Therefore, it 

requires a high voltage threshold to cause the neural activity. Figure 9.5(a) indicates that the induced 

electric field in the nerve increases with the increase in saline height. For the saline height below 

the nerve diameter, the induced electric field increases faster than the induced field increment rate 

above nerve height. Figure 9.5(b) shows the cross-section view of the induced electric field along 

nerve (x- direction) for saline height of 0.5 mm.

Figure 9.5. Simulated electric field: (a) Average and variation of the induced electric field (Ex) at 
the nerve termination. Field values are averaged over the nerve cross-section (Y-Z). (b) Distribution 
of the induced electric field in nerve bundle and surrounding media due to the magnetic coil. All 
fields are in V/m.
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The proposed numerical models indicate that the induced electric field inside the nerve can be 

greatly affected by the amount of saline in the petri dish. Petri dish with low saline volume will 

require higher threshold voltage to evoke the neural activity. This phenomenon is validated during 

the ex-vivo experiment on the frog’s sciatic nerve (Experiment 4, Chapter 8), which shows that by 

reducing the saline height below the nerve diameter, the stimulation threshold increases.

9.5.2 Effect of Nerve Termination on the Stimulation Site
It was commonly believed that for the coil position close to the nerve termination (end-point 

stimulation), the action potential initiates at the nerve end [14]. Therefore, the stimulation threshold 

should be lowest for the positioning of coil Emax near the nerve end. Moreover, the threshold should 

be symmetric along the nerve for the +ve and -ve positioning of the Emax location to the nerve 

termination. In Experiment 4 (Chapter 8), the stimulation threshold was lowest for the d = +5 mm 

(Figure 9.6 (a) and (b)), which is contrary to the condition for the end-point stimulation. For the 

current system, d  is defined as the distance of the coil Emax to the nerve end. The value of d  will be 

+ve when the magnetic coil Emax location is moved towards the muscle (Figure 9.6 (a)).

To study the effect of nerve termination, a passive model of the nerve was created to estimate the 

variation of the transmembrane potential along the nerve in response to the induced electric field. 

Ranvier nodes of axon were represented by parallel R — C  networks, defining the transmembrane 

resistance rm and capacitance cm, and the nerve ends were represented by the termination impedance 

of rseal. Figure 9.7 shows the network model of the axon including the intracellular resistance ra, 

transmembrane resistance rm, and transmembrane capacitance cm. Due to the large dimension of 

the extracellular space, the extracellular impedance between the nodes is zero. To solve the change 

in the transmembrane voltage due to the magnetic stimulation, the passive model of the axon was 

solved as a function of intracellular induced electric field (Ex). For the n-node axon, Equation 9.15 

formulates the correlation between the transmembrane voltage Vm and the induced electric field Ex 

for intermediate nodes. For the nerve terminations node 1 and node n, Equations 9.16 and 9.15 can 

be used to solve for the V1 and Vn, respectively.

j*C „,V  (N ) +  V M  — V (N  -  1) — 2V(N) + V (N  + 1) +  V j m  =  i  E  (N) — Ex (N  +  1))dx(9.15)
rm ra rseal ra

jc c m V  (1) +  V O ! + V (2) — V (1> +  V<1> = -1 Et (1)dx(9.16)
rm ra rseal ra

. . V (n) V (n — 1) — V (n) V (n) 1 . . , _  _  
j®  CmV (n) +---------------------------------- 1--------=  — Ex(n)dx(9.17)

rm ra rseal ra

Value of the nerve termination impedance (rseal) varies based on the suture, no-suture, or self

sealing condition. Therefore, the equations were solved for the value of rseal/rm 0.1 and 1, which
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Figure 9.6. Effect of nerve position: (a) Position of nerve termination with respect to magnetic coil. 
d is the distance of nerve end from the figure-8 center. (b) Threshold variation due to nerves end 
location with the E^  of the magnetic coil during Experiment 4 (Chapter 8).

Intracellular Space Induced E-field

Extracellular Space

Figure 9.7. Passive model of the axon using lumped elements. The end points are terminated using 
sealing resistance.
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represents a leaky (low impedance) and sealed (high impedance) termination, respectively. Coil’s 

Emax location is varied for 3 locations (d = -5 mm, 0 mm and +5 mm) with respect to nerve end. 

For each condition, electric fields are calculated along the nerve. Simulation was performed for a 

figure-8 coil (coil outer diameter =33 mm) with a coil current of 600 A at 2 kHz. For the simulations, 

20 u m  diameter axon was used with an internodal distance of 0.5 mm. The axon has membrane 

conductance G na of 120 m S /cm 2, and node capacitance Cm of 1uF /c m 2. Figure 9.8 shows the 

variation of transmembrane potential along the axon as a function of d  and rseal. Figure 9.8(a) 

shows that for rseal = rm, the peak Vm is achieved at position x = 0. For the same stimulation current, 

Vm peaked for d = 0 mm. This condition initiates end-point stimulation. However, for the leaky 

termination (rseal = 0.1*rm), the membrane potential at the nerve end (x = 0 mm) is shorted and the 

peak membrane potential is reached at the point away from the end (midpoint stimulation).

For midpoint stimulation, Figure 9.8(b) shows that for the same stimulation current, Vm increases 

with d. A similar trend is seen in Experiment 4 (Chapter 8) as tabulated in Figure 9.6(b) which 

indicates the midpoint stimulation of the frog’s sciatic nerve. It also demonstrates that by using the 

passive axon model, the effect of the axon property and nerve termination (leaky or sealed) can be 

studied for the magnetic stimulation.

9.6 Numerical Model of Frog’s Sciatic nerve
The frog’s sciatic nerve is a heterogeneous tissue consisting of hundreds of axons with an axon 

diameter in the range of 15-20 u m  [16]. A nerve bundle with diameter 1 mm and length 3 mm is 

considered with 25 u m  thick nerve membrane. Figure 9.9 (a) shows the 3-D models of the nerve 

with hundreds of axons along the x-direction and Figure 9.9 (b) shows the cross -section view of the 

nerve bundle surrounded by the conductive tissue. The intracellular space of the axon is embedded 

either by a membrane or an insulating myelination layer (Figure 9.10). Therefore, using these 

models, we study the effect of myelination on the induced current distribution. A 3-D impedance 

network model was created for the nerve bundle and surrounding tissue as shown in Figure 9.8 (c). 

Figure 9.9(d) shows the random distributions of the axons inside the nerve bundle. The developed 

numerical model uses the spatial resolution of 0.1 mm, 4 um, 4 u m in x-, y- and z- direction, 

respectively. A figure-8 microcoil (outer diameter = 1 mm, inner diameter = 0.8 mm, 4 turns) is 

used for for the stimulation. Each coil of the figure-8 is driven with a sinusoidal current of 600 A 

at 2 kHz in the opposite directions to maximize the induced field at the center of the magnetic coil. 

The coil is placed 1 mm away from the nerve bundle.

Due to low operating frequency f  for the operation of the magnetic stimulation, o  »  2 n f£ , 

where o  and £ are the tissue conductivity and permittivity, respectively. Therefore, the branch
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Figure 9.8. Effect of termination impedance on the stimulation site. (a) End-point stimulation for 
rseai = rm. (b) Midpoint stimulation for rseai = 0.1*rm. d  is the distance of the nerve end from the 
figure-8 center.
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Figure 9.9. Impedance network model: (a) 3-D computational model of nerve bundle (1-mm 
diameter, 3-mm length). (b) Cross-section view of the numerical model consists of nerve bundle 
in saline. (c) Impedance model of the single fiber. (d) Computational model of the randomly 
distributed axons.

impedances of the network model are primarily composed of resistive elements. For the heteroge

neous tissue model, the impedances are calculated based on the conductivity parameters presented 

in Table 9.1.

To study the effect of tissue heterogeneity on the transmembrane potential Vm, two studies were 

performed. In the following sections, the first simulation model compares the effect of myelination 

node on the stimulation location. The second model studies the effect of axon density on the peak 

Vm value to measure the coupling between the axons.
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Figure 9.10. 3-D myelinated nerve fiber (axon) along x- direction. Transmembrane potential Vm is 
defined as the potential difference between intracellular to extracellular space.

Table 9.1. Tissue Property-Frog Sciatic Nerve
Tissue Type Conductivity (o x, oy , o z) 

(S/m) [17]
Surrounding tissue 
Nerve membrane 
Intracellular space 
Extracellular space 
Myelination (myelinated) 
Ranvier Node (myelinated)
Axon Membrane (unmyelinated)

(0.5, 0.5, 0.5)
(0.02, 0.02, 0.02) 
(0.91,0.91,0.91) 
(0.33,0.33,0.33)
10-9 ,10-9 ,10-9 
2.4x10-7, 2.4x10-7, 2.4x10-7 
2.4x10-7, 2.4x10-7, 2.4x10-7

9.6.1 Effect of Myelinated Nodes
Figure 9.10 shows the anatomy of the nerve fiber, consisting of a Ranvier node and high resistive 

myelination layer over the axon. For the unmyelinated nerve, the intracellular space is embedded 

inside a conductive membrane for which the conductivity depends on the conductance of the sodium 

and potassium channels. The nerve bundle is populated with 1000 randomly distributed axons to 

achieve a filling factor f> of 0.77, where f> =  ■

Figure 9.11(a) and (b) show the induced electric field (Ex along nerve) distribution in the cross

section of the unmyelinated and myelinated nerve bundle. The Ranvier node is located at position 

1.5 mm and the Emax position of the magnetic coil is placed at the location 1.5 mm. Figure 9.11(c) 

and (d) show the distribution of transmembrane potential along the nerve (x-direction). As expected 

from the passive nerve model of the unmyelinated axon, the peak Vm coincides with the peak 

location of , which is symmetric with respect to the midpoint (x = 1.5 mm). However, for the 

myelinated axon, the transmembrane current can only pass through the Ranvier node. Therefore, 

the peak of Vm is achieved at the location of node of Ranvier. Comparison between the peak
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Vm for unmyelinated (Figure 9.11(c)) and myelinated (Figure 9.11(d)) axon shows that for the 

same stimulation current in the magnetic coil, the Vm for the myelinated axon achieve 3 x higher 

magnitude than the unmyelinated axon. This study indicates that for the same Vm threshold, the 

myelinated axon requires lower voltage threshold to cause the neural activity.

9.6.2 Effect of Axon Density
Traditionally, Vm is calculated for a single axon placed inside an infinite and homogeneous 

extracellular space [11]. However, due to the high axon density (fi >  0.7) of the nerve bundle,

Figure 9.11. Effect of fiber myelination on the membrane potential. Induced electric field Ex dis
tribution for unmyelinated and myelinated axons. Myelinated fiber shows higher rise in membrane 
potential at the Ranvier node. All electric field values are in V/m.
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extracellular space is limited. This increases the interactions between axons. Therefore, to study 

the effect of the axon density, two models were created with fill factor fi of 0.45 (axon count = 600, 

Figure 9.12 (a)) and 0.77 (axon count = 1000, Figure 9.12 (b)). The 20-um diameter myelinated 

axons are randomly populated inside the nerve bundle. Figures 9.12 (c) and (d) show the distribution 

of induced electric field in the cross-section of the nerve for fi values of 0.45 and 0.77, respectively.

Figure 9.12 (e) shows the distribution of the transmembrane potential Vm along the axon for 

different axon densities. It compares the peak Vm value at the Ranvier node of the same axon in 

two conditions and reflects that higher density nerve achieves higher Vm (5% difference). It is seen 

that due to the high density inside the nerve, the induced current is steered by the heterogeneous 

boundaries to achieve higher Vm.

9.7 Multiresolution Impedance Method
We used cm-sized coils in our ex-vivo experiment with the frog’s sciatic nerve. To compare 

our simulations with the experiment results, we require an accurate model of the nerve and its 

surrounding tissue boundaries. For the nerve embedded inside the tissue, the model size needs 

to be 2-3 times bigger than the coil dimension to ensure the decay of the magnetic field at the 

model boundaries. Therefore, to resolve u m  structures such as axons and nerve boundaries inside 

a cm-size numerical model, multiresolution discretization is required. Commercial FEM (finite- 

element method) based field solvers provide an option of multiresolution tetrahedral voxels during 

the meshing step. However, resolving 1 um-sized features in a large cm-size ( 80 cm x-, y-, z- 

directions) simulation model results in a large simulation model (~20 million voxels), which limits 

the convergence of the solution.

Typically, impedance method is developed for fixed resolution simulation models [13]. To 

extend this approach, a 2-D impedance method is proposed which meshes the simulation model 

using multiple resolution voxels [15]. The meshing is performed by clustering the same material 

voxels into a single large voxel, reducing the number in the simulation model. Due to the com

plexity of the multiresolution meshing, the majority of the computational time is devoted to the 

network impedance calculation. Moreover, for the dense nerve bundle, the benefits of the proposed 

multiresolution meshing can not be achieved, which requires multiple voxels of the same tissue to 

create a a large dimension voxel.

In this section, we propose a multi-step impedance method to achieve a multiresolution impeda

nce method for a 3-D tissue model. To simulate cm-size models, a coarse simulation is performed, 

which uses high dimension voxels. For each voxel, the induced electric field and branch currents 

are calculated. To reduce the resolution of the simulation for the region of interest (nerve and 

surrounding tissue), the induced electric field at the boundaries of the model is extracted from the
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Figure 9.12. Effect of fiber density on the induced electric field Ex distribution for the myelinated 
axons. The simulations are performed for two fill factors (a) fi = 0.46 (600 axons) and (b) fi = 
0.77 (1000 axons). Electric field distribution inside nerve bundle for fill factors (c) fi = 0.46 (600 
axons) and (d) fi = 0.77 (1000 axons). For the same axon, the denser nerve ( fi = 0.77) shows higher 
transmembrane potential. All electric field values are in V/m. (e) Membrane potential along the 
axon.
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coarse model. The extracted boundary conditions are applied for the finer-resolution model to solve 

the induced electric field. The same procedure is applied until the target high resolution (e.g., m) 

is achieved.

For example, to stimulate the induced electric field for cm-size magnetic coil (33-mm diameter) 

and to resolve the features down to 1 m, initially coarse simulation is performed with 1 mm spatial 

resolution. The model includes the nerve (diameter 1 mm) embedded inside the 10 cm x 10 cm x 

10 cm conductive media. A multi-step impedance method is performed to achieve a multiresolution 

simulation model of the nerve. Table 9.2 provides the resolution of the simulation models, number 

of voxels in each model, convergence criteria, and number of iteration to achieve the solution.

To compare the effectiveness of the proposed multiresolution, simulated branch currents, each 

high resolution simulation is compared with the imposed low resolution boundary conditions. Fig

ure 9.13 shows the distribution of the branch currents (Ix, Iy and Iz) at the cross-section plane of the 

nerve for spatial resolution of 40 m x 40 m and 20 m x 20 m (in nerve cross-section). As 

seen in the figure, the current values at the boundaries are preserved and the features that cannot be 

resolved in the low-resolution model can be included in the high-resolution model. For example, 

for a nerve diameter of 1 mm, the nerve cross-section will occupy only one voxel in the 1-mm 

resolution model. However, high-resolution model such as 20 m can include the curvature of the 

nerve and its membrane. Moreover, to resolve the axon’s membrane and intracellular space, a 1 m 

resolution model is created for the individual axon.

The simulation accuracy can be improved by increasing the number of steps from the low 

resolution to high resolution (1 mm ^  200 m ^  40 m ^  20 m ^  1 m) and by reducing 

the convergence error threshold. Therefore, the proposed multiresolution impedance method is an 

efficient tool to resolve small features ( j im and below) in a large simulation model (cm-size) and 

can provide the trade-off between the computation time and simulation accuracy.

Table 9.2. Simulation Parameters
Resolution
(x-, y-, z-)

Voxels 
(x-, y-, z-)

Convergence
Threshold

Iteration

(2 mm, 1 mm, 1 mm)
(2 mm, 200 ;Um ,  200 ;Um )  

(2 mm, 40 ;Um ,  40 ;Um )

(2 mm, 20 ;Um ,  20 ;Um )

(2 mm, 1 ;U m ,  1 ;U m )

(52, 102, 102) 
(50, 14, 14) 
(48, 52, 52) 
(46, 100, 100) 
(44, 20, 20)

4 x10-4 
1 x10-5 
4 x10-4 
1 x 10-4 
2.2 x 10-5

10000
10000
20000
23000
19540
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Figure 9.13. Extracted induced currents (a) lx, (c) ly and (e) lz from (2-mm, 40-um, 40-um) 
resolution model that are imposed at the boundaries of the (2-mm, 20-um, 20-um) resolution model 
(Table 9.2). The nerve is represented as the square low-conductive structure. Simulated induced 
currents (b) lx, (d) ly and (f) lz in the (2-mm, 20-um, 20-um) (Table 9.2) resolution model including 
the exact nerve structure. All currents are in amperes.
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9.8 Multiresolution Numerical Model for 
Frog’s Sciatic Nerve

As discussed in Section 9.6, axon density can alter the induced electric field distribution inside 

the nerve bundle. Therefore, for a cm-size magnetic coil, a multiresolution impedance model was 

created to study the induced electric field in the nerve bundle and transmembrane current im for 

individual axons. Figure 9.14 (a) shows the cross-section view of the 1-mm diameter nerve bundle 

in 20 /I x 20 resolution (Y-Z plane). In the x-direction, a spatial resolution of 2 mm was used 

to represent internodal spacing between the Ranvier nodes. The spacing was defined based on the 

ratio d / d 0 = 100, where d  is internodal distance and d0 is the axon diameter [11]. Table 9.3 presents 

the conductivity of different tissues.

For the simulation, a cm-size figure-8 coil (33-mm outer diameter with 4 turns in each coil) was 

used and placed 1.5 mm away (z-direction) from the nerve. The coils were excited with a 600 A 

sinusoidal signal of frequency 2 kHz. The nerve was located along the x-direction and aligned with 

the Emax location of the coil. Figure 9.14(b), (c), and (d) show the distribution of induced electric 

field in x-, y-, and z- directions, which show the heterogeneous boundaries between extracellular 

and axons in y- and z- direction affects the field distribution.

To study the effect of axon proximity and finite size extracellular space, a numerical model was 

created with 600 axons (Figure 9.15 (a)). The model achieves the resolution of 1 m to resolve axon 

diameter of 18 m (Figure 9.15 (b)). To compare the induced electric field for different axons, 4 

axons were chosen. Axon-2 and axon-4 are proximal to each other (20-^m separation). Axon-1 and 

axon-3 are separated in z-direction by 0.5 mm. Figure 9.15 (c) and (d) show the induced intracellular 

electric field Ex for all four axons along the nerve (x-direction). Figure 9.15 (e) and (f) show the 

transmembrane current im for all four axons along the nerve (x-direction). As seen in Figure 9.15, 

im «  — . Therefore, magnetic pulse creates the depolarization (+ve im) and hyperpolarization sites 

(-ve im) along the axon. Based on the cable model of the axon, neural activity is initiated at location 

of peak im (depolarization site). Results indicate the induced electric field and transmemebrane 

current not only depend on the separation of the axon from the coil, but also on the positions of 

the surrounding axons. Comparing the Ex and im of the two proximal axons (axon-2 and axon-4), 

difference of ~  8% is seen which is primarily contributed by the axon distribution inside the nerve.

9.9 Discussion
Numerical modeling and simulation are a key design tool to study the effect of tissue and system 

heterogeneity on the induced electric field. Compared to commercial field solvers which are limited 

to moderate complexity of the simulation model, the impedance method is suitable for the analysis 

of magnetic simulation. It is commonly believed that surrounding tissue does not affect the induced
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Figure 9.14. Electric field distribution: (a) Cross-section view of the nerve bundle with 600 axons, 
nerve membrane, extracellular space and surround media. Cross-section view of the induced electric 
fields (b) Ex, (c) Ey and (d) Ez in x-, y- and z- directions, respectively. All fields are in V/m.

Table 9.3. Tissue Property
Tissue Type Conductivity (o x, a y , a z) 

(S/m)
Surrounding tissue 
Nerve membrane 
Intracellular space 
Extracellular space 
Node

(0.5, 0.5, 0.5) 
(0.02, 0.02, 0.02) 
(0.91,0.91,0.91) 
(0.33, 0.33, 0.33)
(10—3,10—6,10—6)
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Figure 9.15. Effect of axon position: (a) Cross-section view of the nerve bundle with 600 axons. 
(b) Cross-section view of the each axon consist of intracellular and extracellular space separated by 
membrane. (c) Induced electric field Ex along the nerve for four selected axons (1-4). (d) Zoomed 
Ex plot near the x = 0 mm. (e) Transmembrane current im along the nerve for four selected axons 
(1-4). (f) Zoomed im plot near the x = 7 mm.
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electric field. However, it is shown using the proposed numerical modeling of the saline embedded 

nerve that the field distribution and values vary in effect to the saline (conductive tissue) distribution 

across the nerve. Moreover, using a cable model of the nerve, the stimulation sites are studied 

as a function of nerve termination impedance. These simulations explain the trends seen in the 

stimulation threshold variation for Experiment 4 (Chapter 8).

Efficacy of the magnetic stimulation can be characterized by the change in transmembrane 

potential due to induced electric field. Therefore, simulations are performed with the heterogeneous 

model of the frog’s sciatic nerve to study the coupling effect between densely packed axons inside 

the nerve bundle. The study is performed for the myelinated axons and it is shown that peak 

transmembrane potential is achieved at the Ranvier node of the myelinated axon. However, for 

the unmyelinated axon, the peak transmembrane potential coincides with the peak of .

To simulate large simulation models (10 cm x 10 cm x 10 cm), the multiresolution impedance 

method is proposed and developed, which can achieve high resolution (um), including the axon 

membrane and intracellular space. It is seen that more than 8% difference in induced field and 

transmembrane current is achieved for the proximal axons.

9.10 Conclusion
In this work, the impedance method is proven an effective algorithm to simulate the effect of 

tissue inhomogeneity on the induced electric field in intracellular and extracellular space. Using 

numerical modeling of the frog’s sciatic nerve, it is shown that the fiber density, presence of the 

myelination layer, and location of the Ranvier node play an important role in determining the change 

in transmembrane potential due to magnetic stimulation.

For these simulations, single diameter axons are used. However, in the future, more realistic 

nerve models can be used to study the effect of statistically distributed Ranvier node location on the 

induced field. The frog’s sciatic nerve is a simple structure with no fascicle. Therefore, to design 

and optimize the magnetic coil for the mammalian animals (human, cat, rat), numerical models need 

to be created for multifascicular sciatic nerve, which is the key motivation for Chapter 10.
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10.1 Abstract
Efficacy of magnetic stimulation of the central or peripheral nervous system depends on the spa

tial and temporal distribution of the induced electric field generated by the magnetic coil. Therefore, 

accurate estimation of the induced electric field is crucial to the design and optimization of magnetic 

coils, particularly as the coil dimensions are reduced. In this work, we developed a numerical model 

of a multifascicular sciatic nerve to study the effect of tissue heterogeneity on the induced electric 

field. Using a multiresolution electric field solver, we can resolve feature sizes as small as 1u m, 

allowing inclusion of the nerve membrane and the myelination layer. Preliminary results indicate 

that fascicle distribution and axons’ proximity to each other significantly affect the magnitude and 

distribution of the induced electric field as compared to traditional homogeneous tissue models for 

field simulation.

10.2 Introduction
Neural stimulation of the central and peripheral nervous systems is an emerging stimulation 

technology for sensory and motor neuroprosthetic devices. Compared to electrical stimulation, 

which requires direct tissue contact, magnetic stimulation is noncontacting, which may result in 

improved longevity of the stimulating device. Magnetic stimulation, and particularly extracorporeal 

magnetic stimulation with large coils, has been found effective in clinical practice. Transcranial 

magnetic stimulation has been proposed as an alternative technique to electroconvulsive therapy for
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seizure and depression disorders [1]. Magnetic stimulation is also clinically studied for peripheral 

nerve stimulation [2] and has been commercialized to reduce neuropathic pain [3].

However, for magnetic stimulation to be effective for neuroprosthetic applications, the area 

stimulated must be much smaller than that possible with large, extracorporeal coils. Recently, 

we successfully demonstrated the magnetic stimulation of the feline’s sciatic nerve via solenoid 

coils [4], using the ability to generate graded neuronal and muscular action potentials to illustrate 

its efficacy. Our present research focuses on studying the underlying mechanisms of magnetic 

stimulation to identify the key coil and stimulator design parameters. There have been multiple 

studies to investigate the theoretical value of the induced electric field [5], the efficiency of the mag

netic stimulation [6], and localization of the excitation [7]. However, these studies have assumed a 

homogeneous tissue medium to predict the stimulation efficacy [8].

Despite these studies, we recognize that neuronal tissue is heterogeneous. Few studies have 

been performed to formulate the impact of the surface boundary between differing tissues on the 

induced electric field distribution. In particular, one study [9] expressed the analytical formula

tion of the induced field in three dimensions for the semi-infinite boundary between air and the 

tissue. However, the brain and peripheral nerves are finite-dimensional heterogeneous tissues with 

curved boundaries [10]. Thus, more accurate prediction of the induced electric field calls for an 

anatomically driven tissue model. Some studies have used finite element (FEM) based numerical 

models to study the tissue heterogeneity and anisotropy in peripheral nerves [11]. However, voxels 

with sizes on the order of 1 mm3 have been used, which limits the complexity of the model to 

cm-sized tissue structures. To characterize the effect of heterogeneity inside the peripheral nerve, 

feature sizes of 1 u m  need to be resolved. Therefore, the simulation model should include different 

conductive mediums such as the axon’s membrane, including the impact of myelination and Nodes 

of Ranvier, the intracellular space, and the extracellular space. To study the effect of the boundary 

between intracellular and extracellular regions of the axon, a modified cable model for the axon was 

presented [12]. The modified cable model is limited to simple geometry which has axial symmetry. 

To study the induced electric field for anatomically correct models [13], the numerical model needs 

to be created based on the histological data of the nerve.

In this work, we develop a u m -resolution numerical model of a multifascicular sciatic nerve 

based on a histological cross-section image [13]. The key motive for using this model is to preserve 

the information of fascicle distribution and to study the effect of the fascicle boundaries on the 

induced electric fields. We also studied the effect of densely packed, randomly distributed axons on 

the transmembrane current and induced field (both intracellular and extracellular) for each axon.
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10.3 Magnetic Neural Stimulation
Magnetic stimulation uses the induction principle to induce current at the stimulation site (Figure

to calculate the electric field in the homogeneous media (tissue) due to the magnetic coil [8]. 

However, in response to the change in tissue conductivity in the direction of induced electric field, 

significant surface charge can be generated at the heterogeneous interface [9]. Therefore, for the 

heterogeneous structure such as the multifascicular sciatic nerve, the electric field can be greatly 

affected by the surface charge density. In the following section, we developed the impedance 

network based numerical model to include the effect of interfaces between different tissues. To

10.1 (a)). Based on electromagnetic theory, the dependence of the induced electric field E on the 

time varying magnetic field B can be represented by Equation 10.1. The induced electric field can 

be solved in terms of the magnetic vector potential A using Equation 10.2.

(10.1)

(10.2)

where VV(r, t) represents the electric field generated by the surface charge due to the tissue hetero

geneity. For homogenous medium, VV(r, t) =  0 and analytical formulations have been presented

4
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(a) Experimental setup for 
Magnetic Stimulation
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(b) Current in the magnetic coil

Figure 10.1. Operation of magnetic stimulator: (a) Block diagram of the experimental magnetic 
stimulator system. (b) Generated time varying current in the magnetic coil for Lcou = 10.32^H , C 
= 450 ^ F , R = 80 m Q , and charging voltage = 700 V.
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generate the time-varying current in the magnetic coil, a pulse discharge circuit is commonly 

used [5, 8]. Traditionally, magnetic stimulation requires a high current pulse (~0.5-4 kA) for very 

short time (100 s to 2 ms) [4, 5]. The magnitude and shape of the current pulse can be controlled 

by the coil inductance L, the discharge capacitor C, and the coil resistance R (Figure 10.1(b)). The 

temporal distribution of the induced electric field is directly proportional to the time derivative of 

the current in the coil.

10.4 Impedance Method for Field Simulation
The impedance method is a frequency domain solver of the induced electric field E  by solving 

Faraday’s induction law (results from Equation 10.1). It discretizes the simulation domain into 

cuboid voxels (Figure 10.2) [14]. Each voxel is created using a network of lumped impedances and 

the value of each impedance is derived from the material properties (e.g., conductivity, permittivity), 

and the voxel’s dimensions. For the fixed frequency and coil current, an analytical expression is 

used to calculate the 3-dimensional magnetic field generated by the magnetic coil. For the voxel 

index (i,j,k), in response to the applied time-varying magnetic field intensity (Hx(i, j ,k ) ,  Hy (i, j ,k )  

or Hz(i, j ,  k)) at the voxel’s face, loop currents iix(i,j,k), iiy(i,j,k), and iiz(i,j,k) are calculated by the 

Kirchhoff voltage law. Branch currents (e.g., Ix(i,j,k), /y(i,j,k), Iz(i,j,k)) are calculated from the loop 

currents and the electric field for each voxel is calculated from the branch current, dimensions, and 

conductivities of the each voxel.

Figure 10.2. 3-dimensional voxel used for the impedance method. Loop current is calculated at 
each face of the cuboid in response to the time-varying magnetic field.
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10.5 Modeling of Multifascicular Sciatic Nerve
The sciatic nerve is a heterogeneous tissue which consists of multiple fascicles [10]. To create a 

numerical model of the nerve bundle, the fascicle boundaries and their distribution inside the nerve 

are extracted from the anatomical cross-sectional image of the sciatic nerve [13]. A 3-dimensional 

model of the nerve bundle is created by extruding the cross sectional image along the nerve and is 

shown in Figure 10.3 (a). The distributions and boundaries of different fascicles are shown in the 

cross sectional view (Y-Z plane) of the nerve model (Figure 10.3(b)). The nerve is placed along the 

x-axis and Table 10.1 shows the conductivities of different tissue types in different directions [10]. 

Individual fascicles can be populated using randomly distributed axons as shown Figure 10.3(c). 

Moreover, a impedance network model of each axon cane be created to include the intracellular,

Figure 10.3. Impedance network model: (a) 3-dimensional model of the multifascicular sciatic 
nerve (b) cross-section view of the nerve consists of different tissue interfaces (c) distribution of 
the axons inside the fascicle (d) network model of the individual axon consisting intracellular, 
extracellular space.
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Table 10.1. Tissue Property
Tissue Type Conductivity (o x, o y , o z) 

(S/m) [10]
Surrounding tissue 
Nerve membrane 
Epineurium 
Perineurium 
Intracellular space 
Extracellular space

(0.5, 0.5, 0.5) 
(0.02, 0.02, 0.02) 
(0.1, 0.1, 0.1) 
(0.01,0.01,0.01) 
(0.91,0.91,0.91) 
(0.33, 0.33, 0.33)

extracellular and axonal membrane (myelination layer) regions (Figure 10.3(d)).

10.6 Simulation Model and Induced Electric Field
To correlate our simulation with our in-vivo experimental data [4], a numerical model of the 

solenoid coil under the same operating conditions was created (Figure 10.4 (a)). A 30-turn, 22-mm 

outer diameter solenoid coil was placed adjacent to the nerve. The midpoint between the inner 

and outer diameters of one side of the coil was centered over the nerve. The distance between 

the coil and the nerve was 1.5 mm (measured at point of smallest separation). The modeled 

nerve was 80-mm long and had an elliptical cross section of 3.3 mm by 2.8 mm. The nerve was 

embedded in conductive surrounding tissue (e.g., muscle). To simulate the feature size down to 

1Um, a multiresolution impedance method was developed. To include the effect of surrounding 

tissue for the cm-size magnetic coil, coarse simulation was performed with a resolution of 1 mm 

over the simulation space of 100 mm (x-dir) x 80 mm (y-dir) x 40 mm (z-dir). To simulate the 

low resolution region, multistep field simulation was performed that reduces the resolution of each 

simulation (e.g., 1 mm ^  200 Um ^  40 Um ^  20 Um ^  1 Um) and reduces the region of interest 

similarly. Figure 10.3(b) shows the cross-section view of the model at a resolution of 20 Um (in 

Y-Z directions) that includes the fascicle distribution and their boundaries. Along the nerves long 

axis (x-dir), a coarse resolution (1 mm) was used based on the average distance between nodes of 

Ranvier for large myelinated axons.

To evoke neuronal activity, traditional magnetic simulators utilize a pulse current in the magnetic 

coil. The dominant frequency components of the pulse are in the range of 500 Hz to 20 kHz. The 

induced electric field is directly proportional to the current and the frequency of the current in the 

coil. Therefore, the impedance method based field solution, at a single frequency and current, can 

be used to calculate the induced electric field at all frequency components of the current pulse. For 

our simulations, we use a sinusoidal current of amplitude 600 A at 2 kHz (fundamental frequency 

component of the current pulse in Figure 10.1(b)). For the 20 Um resolution heterogeneous model,
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Figure 10.4. Electric field simulation: (a) Orientation and position of the solenoid magnetic coil 
with respect to nerve bundle. Induced electric field in direction of (b) x- (c) y- and (d) z- directions 
in effect of fascicle distribution. Induced electric field in (e) y- and (f) z-directions for uniform 
tissue model. All fields are in V/m. Y-axis and Z-axis are the voxel count in y- and z- direction, 
respectively (resolution 20um).
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Figure 10.4(b), (c) and (e) show the simulated value of electric field in x-, y-, and z- directions, 

respectively. As shown in Figure 10.4(b), due to the tissue homogeneity in the x-direction, fascicle 

boundaries do not affect Ex significantly. To study the impact of heterogeneity, the induced electric 

field was compared with the field generated in the uniform tissue model under the same operating 

conditions. As shown for the uniform model, the induced electric field in y- (Ey, Figure 10.4(d)) 

and z- (Ez, Figure 10.4(f)) directions are homogeneous. However, induced electric fields for the 

heterogeneous model in y- (Ey, Figure 10.4(c)) and z- (Ez, Figure 10.4(e)) directions demonstrate 

the field distributions featuring the effect of tissue boundaries.

10.7 The Effect of Axon Proximity
Most axons in the feline’s sciatic nerve have a diameter below 20 um  which requires finer 

resolution voxels (~  1 um) to represent the intracellular and extracellular space for each individual 

axon. Traditionally, 1-dimensional models are used to model transmembrane current im due to the 

induced electric field [5]. The steady-state passive model of the axon calculates im as a function of 

intracellular resistance and applied electric field distribution along the nerve (im =  — 1  , where ri 

is the intracellular resistance per unit length). However, these analytical expressions were derived 

with the assumption that the axon was placed in an infinite homogenous extracellular region, and 

thus there was no interaction between the axon and its surroundings. To study the impact of axon 

proximity, two test cases are taken. For the first case, a single axon (diameter 16-um) was placed 

in a large homogeneous extracellular medium (Figure 10.5 (a)). In the second case, the axon was 

surrounded by the neighboring axons (Figure 10.5 (b)) to create high fill factor of ~90%.

For both cases, simulation models of 94 mm x 100 um  x 100 um  are created with the spatial 

resolution of 1 um  in y and z directions and 1 mm in the x direction. For these simulations, the 

effective nodal impedance of ~40 MQ is estimated based on the membrane leakage conductance 

gL of 35 m S /cm 2. As shown in Figure 10.5 (c), the intracellular electric field (Ex) along the central 

axon in case 1 has a higher magnitude (~32%) than central axon in case 2. This was due to the close 

proximity of the other axons to the central axon for case 2. Figure 10.5 (d) shows the transmembrane 

current im (intracellular to extracellular) along the axon, which reflects the proportionality of the 

membrane current to the derivative of the induced electric field (im «  — ). In general, fascicles 

are populated with axons of different radii and can achieve high fill factor ~90% as shown in case

2. This increases the interaction and coupling between different axons. Therefore, electric field 

simulation for the homogeneous models cannot provide accurate estimation of the induced electric 

field and requires numerical simulation as shown in this work.
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Figure 10.5. Cross section view (Y-Z plane) of the numerical model for (a) a single axon model in 
case 1, and (b) a multi-axon model in case 2. (c) Intracellular (IC) and extracellular (EC) induced 
electric field (Ex) for case 1 and case 2. (d) Transmembrane current (im) along the axon for the 
selected axon in case 1 and case 2. Due to the axon proximity, intracellular induced electric field 
for case 2 has ~32% lower than the electric field for the case 2.

10.8 Conclusion
In this work, we created and simulated a multiresolution numerical model of a multifascicular 

sciatic nerve to study the effect of fascicle distributions and axon proximity on the magnetically- 

induced electric field. It was shown that heterogeneity in the different regions (membrane and 

axons) of the nerve can significantly alter the electric field. For the densely populated (fill factor 

~90%) axons inside fascicle, the transmembrane current and induced electric field was ~32% lower 

than the values for the axon placed in the homogeneous extracellular medium. In the future, we 

intend to increase the complexity of our numerical model by populating the fascicles with different
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radii axons based on their statistical distribution [10] to represent an even more realistic sciatic 

nerve. With this model, we can investigate if mm-size magnetic coils can achieve more selective 

stimulation and provide a more physiologically normal recruitment order. Further, we believe 

that through these stimulations we can design and optimize magnetic coils and will subsequently 

compare the simulated neuronal recruitment results.
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CHAPTER 11

CONCLUSION 

11.1 Summary of Results
In this work, we proposed and demonstrated efficient magnetic coils for biomedical applications. 

Wireless power transfer (WPT) and data telemetry, which have been proven essential for removing 

transcutaneous wiring from implantable devices, are considered the key applications to improve the 

capability of current designs. Our work is primarily motivated by the design challenges in wireless 

power and telemetry systems for an epiretinal prosthesis implant [1]. Recently, the implant was 

commercialized to provide partial vision to patients with retinitis pigmentosa (RP) or age-related 

macular degeneration. The commercialized system, which uses a two-coil-based wireless power 

transfer system, is limited to a power transfer efficiency of less than 30%. The design used a 

metallic implant coil and can cause significant electromagnetic energy deposition in the tissue [2]. 

Moreover, it can interfere with other communication devices [3]. The performance of the WPT 

system is sensitive to the operating conditions, such as eye rotation, during device operation. To 

resolve some of the current limitations, we proposed a multi-coil WPT system that can improve the 

system performance.

In Chapter 2, we introduced a novel multi-coil based telemetry system for power and data 

transfer over an inductive link, and compared it with an equivalent system employing two coils. 

The network model and the two-port model for both the two-coil and the multi-coil systems were 

described, analyzed, and compared to provide insights about their performance in terms of power 

and data transfer. The analysis for the two-coil and the multi-coil (three-coil and four-coil) systems 

showed that the multi-coil configuration can be used effectively to improve the PTE and gain- 

bandwidth product of the system. A multi-coil system provides additional tuning parameters for the 

designer. It is simpler to adjust a particular configuration for achieving the maximum power transfer 

in the multi-coil case than in the two-coil system. In addition to the theoretical modeling, two 

experiments were conducted with two implant coils. For all considered designs, the experimental 

data show that the multi-coil (three-coil) configurations achieved more than twice the efficiency 

and higher gain-bandwidth-product compared to the equivalent two-coil system. Further, it is noted
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that all the simulation results are in close agreement with the experimental results. One significant 

advantage of the three-coil configuration is that it can be used to upgrade two-coil systems already 

implanted in patients without any requirement to modify or replace the implanted coil, providing 

with a nonsurgical, cost-effective higher performance alternative.

Chapter 3, we showed that a multi-coil WPT system can achieve high tolerance for the variation 

in magnetic coupling between an external and implant coil during WPT system operation. For the 

presented design example, with the same system dimensions and operating conditions, a three-coil 

system achieves more than 40% improvement in efficiency and 62.5% improvement in frequency 

bandwidth as compared to a two-coil WPT system. Due to the high Q-factor of the transmitter coil 

(Q t), three-coil systems showed lower variation (average -0.6% per degree rotation) in efficiency 

with eye model rotation. Similarly, the three-coil design achieved a higher tolerance (average 2.2 

khz per degree rotation) for frequency bandwidth as compared to variation of 7.5 khz per degree 

(averaged) rotation in the two-coil equivalent. However, variation in voltage gain of the two-coil 

(average -0.0264 per degree) and the three-coil (average -0.0217 per degree) WPT systems are 

similar. Moreover, a multi-coil based WPT system was shown to improve the efficiency tolerance 

for the variation in the driver and load resistances. It is demonstrated that due to the high Q-factor 

transmitter coil in the three-coil system, variation in driver and load resistance causes lesser variation 

in efficiency. Simulation of the presented two-coil and three-coil systems showed that the three-coil 

system efficiency has less than half of the variation than the two-coil design.

In Chapter 4, we aimed to reduce the absorbed electromagnetic energy inside tissue. For the 

proposed design example, which is motivated by the retinal prosthesis design [1], a reduction of 

26% in peak 1-gram SAR and a reduction of 15% in peak 10-gram peak were achieved with the 

improvement of 46% in power transfer efficiency (PTE). The new three-coil design achieves the 

same voltage gain over frequency as the initial two-coil design without change in driver electronics, 

implant electronics, or system dimensions. Therefore, it can be seamlessly incorporated into exist

ing two-coil WPT systems. The presented design example used typical dimensions for biomedical 

WPT systems. However, the design approach is valid for any near field WPT system to reduce the 

absorbed electromagnetic field in tissue.

In Chapter 5, we proposed a four-coil WPT system to replace the current retinal prosthesis WPT 

design, which fails to meet the federal regulations for electric field generation [3]. In this work, 

37% reduction in the radiated field is achieved using a multi-coil wireless power transfer (WPT) 

system instead of traditional two-coil WPT design. The four-coil WPT design achieves higher 

power transfer efficiency and demonstrates the same voltage gain and frequency bandwidth with 

its two-coil equivalent WPT system over the same operating distance. This ensures the new WPT
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system can be seamlessly integrated with the existing electronics to reduce the time of design cycle 

and clinical trials of the new design.

To design a soft implantable coil to reduce mechanical stress on the surrounding tissue, we 

demonstrated a liquid metal coil based wireless power and data link in Chapter 5. Applications 

such as the retinal prosthesis often require biocompatible flexible coils for wireless telemetry links 

that can be deformed during implantation and conformed to the tissue. The coils described here 

are elastomeric (i.e., stretchable) and encased by a biocompatible polymer. Despite the relatively 

low conductivity of the liquid metal (relative to gold or copper), we achieved sufficient Q factor 

(for a given footprint) by varying the cross-sectional geometry of the wire. This liquid metal based 

coil can be successfully employed in a telemetry system used to deliver power to the implant coil 

efficiently, with the added benefit of being flexible, stretchable, and conformable. We demonstrated 

the use of a liquid metal coil in an inductively coupled wireless telemetry link with a power transfer 

efficiency of 21% and a fractional bandwidth of 5.75%, which is at the higher end of the acceptable 

efficiency range for a 12 mm separation between coils. Under the same operating conditions and 

footprint, the proposed flexible coil results in an acceptable degrade in power transfer efficiency 

(PTE) (reduction by 46%) compared to metal based implant coils, while achieving high flexibility 

and stretchability for implantation and operation.

Using the multi-coil WPT system, we have achieved an efficient, low tolerance design which 

causes low electromagnetic energy in the tissue and lower interference with other communication 

devices. Compared to traditional two-coil based WPT system, the proposed multi-coil WPT system 

achieves:

1. Higher power transfer efficiency (more than twice at large distances).

2. Higher data bandwidth compare to two-coil based system.

3. Lower power transfer efficiency and frequency bandwidth tolerance to coil misalignment 

during device operation.

4. Lower power transfer efficiency tolerance with source and load resistance during change in 

operating conditions.

5. Lower absorbed energy (SAR) in the tissue.

6. Lower radiated electric field from the magnetic coil to comply with the federal regulations for 

device commercialization.

The second application which requires efficient magnetic coil design is magnetic neural stim

ulation. Efficacy of the magnetic stimulation depends on the spatial and time distribution of the
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induced electric field. Therefore, the design of the efficient magnetic coils is essential to achieve 

a small dimension magnetic stimulator. With the enhancement of numerical methods to model 

the anatomically correct tissue model, the induced field distribution can be estimated inside the 

heterogeneous tissue. Threshold values (field distribution and pulse width) of the individual nerve 

depend on the animal model and nerve condition (in-vivo/ex-vivo). To estimate the threshold value 

of the nerve, we took a two-way approach in which experiments were performed on the frog‘s sciatic 

nerve and threshold voltage for magnetic stimulation was measured using different magnetic coils. 

The experiments provide us with an empirical model of the strength-duration curve of the nerve. 

In parallel, we developed numerical algorithms for the field simulation in the heterogeneous tissue 

model.

Chapter 7 is motivated by the need to correctly predict the voltage across terminals of mm 

size coils with ferrite core. The nonlinear effect of the magnetic core of small coils to be used 

for implantable magnetic neurostimulation was studied. Five ferrite-loaded coils, of different di

mensions, were fabricated and tested. The implemented numerical solver demonstrated the ability 

to accurately predict the amplitude and waveform of the induced electric fields. For all magnetic 

coils, measurements show close agreement (< 10% difference) with the simulated values. The 

capability of these models to also correctly predict the effects of initial voltages of the capacitors on 

the induced field intensity and saturation time is instrumental in developing an effective magnetic 

neuostimulator. In fact, it is confirmed that due to the saturation of the core, the inductance of 

the coil changes drastically from its nonsaturated value, which causes faster decay in the induced 

voltage, and ultimately negatively affects the neurostimulator.

In Chapter 8, we discuss the design and optimization of the air-core based magnetic coil. We 

used fabricated coils for ex-vivo experiments with the frog's sciatic nerve. Using a 23.5 mm 

diameter solenoid coil, successful stimulation of the frog’s sciatic nerve was achieved at the 115 V 

charging voltage. We also discussed the stimulation thresholds for the five magnetic neural stim

ulation experiments to study different design parameters. It is shown that magnetic stimulation 

elicits similar neural activity as the electrical stimulation and its efficacy can be characterized by the 

recruitment curve of the recorded EMG and resultant muscle force. Similar to electrical stimulation, 

magnetic stimulation thresholds also follow a strength-duration curve. Thus, for the derived S-D 

curve, the coils can be optimized under the limitation of dimensions, energy requirements, and 

system constraints. Moreover, it is shown that the stimulation threshold strongly depends on the 

surrounding conductive media and nerve position with respect to the magnetic coil.

Chapter 9 presents the numerical modeling of the nerve and surrounding media to study the 

effect of tissue heterogeneity and system boundaries. In this work, an impedance method was shown
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as an effective algorithm to simulate the effect of tissue inhomogeneity on the induced electric field 

in intracellular and extracellular space. Using numerical modeling of the frog’s sciatic nerve, it 

was shown that the fiber density, presence of the myelination layer, and location of the ranvier 

node play an important role in determining the change in transmembrane potential due to magnetic 

stimulation. For these simulations, single diameter axons are used. However, in the future, a more 

realistic nerve model can be used to study the effect of statistically distributed ranvier node locations 

on the induced field. The frog’s sciatic nerve is a simple structure with no fascicle. Therefore, to 

design and optimize the magnetic coil for the mammalian animals (human, cat, rat), numerical 

models need to be created for multifascicular sciatic nerve, which is the key motivation for Chapter 

10.

In Chapter 10, we created and simulated a multi-resolution numerical model of a multifascicular 

sciatic nerve to study the effect of fascicle distributions and axon proximity on the magnetically- 

induced electric field. It was shown that heterogeneity in the different regions (membrane and axons) 

of the nerve can significantly alter the electric field. For the densely populated (fill factor ~90%) 

axons inside fascicle, the transmembrane current and induced electric field were ~32% lower than 

the values for the axon placed in the homogeneous extracellular medium.

Using ex-vivo experiments with the frog’s sciatic nerve, we have developed a good understand

ing of stimulation mechanism. Our conclusions based on the different ex-vivo experiments are as 

follows:

1. Due to the saturation of the core, ferrite-core based magnetic coil demonstrate nonlinear in

ductance. This causes faster decay in the induced voltage, and ultimately has a negative effect 

on the neurostimulator. Therefore, we have not seen any stimulation using magnetic-core 

based solenoid magnetic coils.

2. The magnetic stimulation elicits similar responses (EMG and generated force) to electric 

stimulation, and the stimulation threshold depends on the position of the nerve end with 

respect to the E ^  location (position at which the induced field along the nerve is maximum).

3. High impedance nodes can be created by placing the suture at the nerve end. The nerve 

termination can alter the stimulation site and threshold.

4. Distribution of the surrounding conductive media with respect to the nerve plays an important 

role in the generation of the induced electric field (Experiment 1 and 4).

5. Similar to the electrical stimulation, magnetic stimulation can also be characterized based on 

the strength-duration curve (Experiment 5). The parameters of the S-D curve depend on the 

coil, the animal model, and the experimental setup (position of the coil).
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Similarly, we have demonstrated that the traditional approach of field calculation in a homoge

neous model does not reflect the magnetic coil’s performance. We have used numerical models of 

the heterogeneous tissue model to study the effect of tissue boundaries

1. Height of the Ringer solution with respect to nerve diameter, position of the nerve end, and 

termination impedance plays an important role in the stimulation threshold and site.

2. Fiber density, presence of the myelination layer, and location of the ranvier node play an 

important role in determining the change in transmembrane potential due to magnetic stimu

lation.

3. For the mammalian nerve, fascicle boundaries and fiber distribution alter the induced cur

rent distribution. They cause a significant difference in the simulated induced electric field 

compared to the analytical solution for homogeneous tissue model.

11.2 Future Work
In our current implementation of wireless powered systems, we have taken the equivalent model 

of the driver and implant electronics, and focused primarily on the design of efficient magnetic 

coils using derived analytical solutions. However, in the future we intend to replace the WPT 

system of existing commercial medical devices (e.g., retinal prosthesis, cochlear implant, spinal 

cord neurostimulator) using the proposed multi-coil WPT equivalent. We believe that by taking 

the step to commercialization, the proposed multi-coil approach can provide an efficient and safe 

WPT system for implantable medical devices. On the pathway to commercialization, we intend to 

perform the following tasks:

1. Design an efficient driver circuit (e.g., class E power amplifier) to deliver the energy from the 

DC battery to the driver coil.

2. Develop a data communication link to utilize high frequency bandwidth supported by the 

multi-coil link for the data transfer between external and implanted units.

3. Design and optimize a flexible implant coil for the multi-coil WPT system. The design will 

increase efficiency in WPT systems with flexible coils.

On the other hand, to design a low power mm-size magnetic stimulator for neuronal structures, 

accurate field estimation needs to be included in the optimization step. Therefore, our current 

models need to be extended to achieve the following goals:
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1. Study the effect of membrane capacitance in the heterogeneous model for its effect on the 

temporal distribution of the induced field. The dielectric constant of different tissues can be 

taken from a nerve model [4, 5].

2. Develop of the numerical models of feline’s sciatic nerve based on the histological data [6].

3. Utilize of numerical tool such as NEURON to include the nonlinear behavior of the axon, and 

estimate the stimulation threshold for the magnetic stimulation.

4. Estimate of the strength-duration curve for the heterogeneous sciatic nerve to optimize the 

magnetic coil for small dimensions and low energy stimulation.

Therefore, in the future, we intend to increase the complexity of our numerical model by 

populating the fascicles with different radii axons based on their statistical distributions [6] to 

represent an even more realistic sciatic nerve. With this model, we can investigate if mm-size 

magnetic coils can achieve more selective stimulation and provide a more physiologically normal 

recruitment order. Further, we believe that through these stimulations we can design and optimize 

magnetic coils and will subsequently compare the simulated neuronal recruitment results.
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APPENDIX A

OPTIMIZATION OF OPERATING FREQUENCY FOR 

WIRELESS TELEMETRY SYSTEM

Efficiency of the wireless power transfer increases with the Q-factors of the magnetic coils [1]. 

Typically, the Q-factor increases with the operating frequency. However, increasing the operating 

frequency increases the AC resistance of the wire and the proximity effect [1]. Therefore, for given 

coil dimensions, operating frequency needs to be optimized to maximize the Q-factor of the coil. In 

the following sections, a circuit model of the inductor (magnetic coil) is presented to optimize the 

coil’s Q-factor as a function of operating frequency.

Magnetic coils can be modeled as an inductor in parallel with a parasitic series resistance and 

capacitance. For a circular coil, the self inductance with loop radius a  and wire radius R (assuming

Typically, spiral coils are used for the external and implant coils for biomedical implants [1,3]. 

For a planar spiral coil with Na concentric circular loops with different radii ai (i =  1,2 ,.. . ,  Na) and 

wire radius R, self-inductance can be calculated as:

A.1 Magnetic Coil Model

R ^  1) can be approximated as in Equation A.1 [1].

(A.1)

Na Na
La =  £ L (a i,R) +  £  £ M (a i,a j , p  =  G,d =  0)(1 -  8ij) (A.2)

i=1 i=1 j=1

where 8ij  =  1 for i =  j  and 8ij  =  0 otherwise.

M (a, b, p , d ) =

where JG and J1 are the zeroth and first-order Bessel functions .
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A.1.1 Parasitic Capacitance
The parasitic capacitance of a spiral coil causes self-resonance and limits the operating fre

quency of the inductor. For a multilayer solenoid with Na layers and Nt turns per layer, stray 

capacitance is approximated by Equation A.4 [1].

Nt
Cself — -.-l

1
N2

Cb(Nt -  1)Na +  Cm £ ( 2 i  -  1)2(Na -  1)m 
i—1

(A.4)

where N  is total turns, Cb is parasitic capacitance between two nearby turns in the same layer and 

Cm is parasitic capacitance between different layers. For a tightly wound coil, parasitic capacitance 

between two nearby turns is

Cb — / 4 +  p n (Diro e , d e  (A.5)J0 g +  £rro(1 -  c o s e )

Cm =  W r f 4 g +  p (1 nD ir°e ) +  0 5c  h d e  (A.6)
J0 g +  &rr°(1 — c o s e ) +  0.5£rh

where D i, r0, g , £r , h are the average diameter of the coil, wire radius, thickness, relative permittivity 

of strand insulation and separation between two layers, respectively.

A.1.2 AC Resistance
To achieve high quality factors, inductors with low effective series resistance (ESR) are required. 

At high frequencies, skin and proximity effect increases the ESR. To reduce the AC resistance, 

multi-strand Litz wires are commonly used [1,4]. The AC resistance of coils made of multi-strand 

Litz wires including skin and proximity effect can be approximated as [1]:

Rac — Rdc( 1 +  f j )  (A.7)

where fh is the frequency at which power dissipation is twice the DC power dissipation and is given 

by

fh =  2 2 / L — « (A 8)n r2 NNsVaP

where Rdc, rs, Ns, ^o ,P  are the DC resistance of the coil, radius of each single strand, number of 

strands per bunch, permeability of free space and the area efficiency of the bunch, respectively. na 

is the area efficiency of the coil with width b  and thickness t and can be calculated using Figure 1 

cited in [1].
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DC resistance of the coil with Na coaxial layers and diameter D i can be calculated using

Na N n  D  Na
Rdc =  £  P =  £  nNtDiRul (A.9)

i=1 A i=1

where Rul is the DC resistance of the unit-length Litz wire with A, Rs, NB, NC, Ns as wire cross

section area, maximum DC resistance of each individual strand, number of bunching operation, 

number of cabling operation, and number of individual strands, respectively [1,2].

=  p  r ,(1.°15)Nb (1.<>25)Nc
ANs

A.1.3 Q-factor of the Magnetic Coil
Considering the effect of the parasitic capacitance and the AC resistance of an inductor, the 

Q-factor of an unloaded inductor at frequency f  can be written as:

2nfL seif (1 —f —
Leff  \  f self .

Qunloaded ( f )  =  ~ = f  =  ----------/  ^  ^  (A.11)
ESR Rdc ( '  + g )

where f self  is the self-resonating frequency of the coil. The effective series resistance (ESR) and 

effective inductance Lef f  can be written as:

R

ESR  = (1 — » 2R el fCself )2 (A12)

L‘f f = n —^ L L f c f  (A-13)

A.2 Q-factor versus Frequency
Under the dimension constraints (e.g., outer diameter) of the magnetic coil, the operating fre

quency can be optimized to maximize the Q-factor. To reduce the coil AC resistance, multi-strand 

Litz wire (44/100) is used (Table A.1). Figure A.1 shows the variation in Q-factor for different 

number of turns in the planar spiral coil. For the coil outer diameter of 4 cm, coil turns are varied 

from 8 to 20 in steps of 4. The coil’s inductance and ESR increases with the increase in coil turns. 

Therefore, Figure A.1 shows that the peak in the Q-factor is due to the trade-off between the coil 

inductance and coil’s resistance. As seen for a coil diameter of 4 cm, increasing coil turns from 12 

to 16 doesn’t increase the Qfactor significantly. Moreover, the value is Q-factor is stable (< 7% 

variation) within an operating frequency of 2-3 MHz. In our work, we kept the operating frequency 

at 2-3.2 MHz with 12 coil turns.
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Table A.1. Litz Wire Property [2]
Parameter symbol Value

Strand gauge - AWG44
Number of Strands Ns 100
Insulation thickness z 3 u m

Strand radius rs 22 u m
Operating Frequency - 350-850 KHz

Outer Diameter OD 0.71 mm

250

Frequency (in MHz)

Figure A.1. Variation of Q-factor for different turns (=n) in the magnetic coil. Outer diameter of the 
coil is fixed to 4 cm. For turns count = 12, the Qfactor is stable (< 7% variation) over the operating 
range of 2-3 MHz.
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APPENDIX B

EFFECT OF COMPONENT TOLERANCE

Multi-coil based wireless power transfer requires high Q -factor coils to achieve high power 

transfer efficiency. Therefore, magnetic coils are resonated at the operating frequency of the system 

using an external capacitor. Typically, the high Q -factor coils suffer from their high sensitivity to 

the resonating capacitor variation, which shifts the resonating frequency of the high-Q  coil from the 

operating frequency. Therefore, in this section we study the variation in power transfer efficiency 

for the two-coil and its multi-coil (three-coil) equivalent. The design example is chosen based on 

the specifications shown in Table B.1. For both designs, the outer dimensions are kept the same for 

fair comparison.

Figure B.1 shows the variation of power transfer efficiency for the two-coil and three-coil 

wireless power transfer (WPT) system. As shown, with the change in resonating capacitor of the 

high-Q coil (transmitter coil in the three-coil system), the PTE drops more drastically than with zero 

variation. For the moderate Q-factor driver coil of the two-coil WPT system, there is less variation 

in PTE. However, even with the variation of ±  5 % in the resonating capacitor, the power transfer 

efficiency for the multi-coil systems is higher than its two-coil equivalent. Therefore, by using the

Table B.1. System Specifications

Parameters
Two-Coil Three-Coil
Driver Load Driver Tx Load

D out (c m ) 4.0 1.5 4.0 3.6 1.5
N coil 12 8 2 10 8
L coil (MH) 5.06 0.687 0.39 3.96 0.687
R coil ( t y 0.49 0.113 0.16 0.4 0.113
R driver (^) 5.1 - 5.1
R load (^) - 100 100
Q(loaded) 16.9 7.24 1.39 187 7.24
Litz wire (AWG) 100/44 100/44 100/44 100/44 100/44
d (mm) 12 12
fre s (MHz) 3 3
Load Type Parallel Parallel
coupling k = 0.074 .50.=k1 k2 = 0.065, k3 = 0.05



192

Figure B.1. Variation in power transfer efficiency (PTE) due to the change in resonating capacitor 
value from its ideal value. Multi-coil WPT system shows higher sensitivity to the capacitance 
variation due to the use of high Q coil.

low tolerance resonating capacitors (±  1 %), high performance multi-coil systems can be achieved, 

showing less than a 5% drop in the PTE for the peak capacitance variation.



APPENDIX C

TOROID MAGNETIC COILS FOR MAGNETIC 

STIMULATION

In Chapter 7, we discussed numerical modeling and coil design with a cylindrical magnetic 

core. It was shown that due to the solenoid core, which is an open magnetic circuit, the effective 

permeability of the core is much less (p-ef f  ~4) than the core permeability (pr  ^2000). In this 

section, we discuss the impact of different core structure on the induced electric field. Four struc

tures are studied, including a toroid, a toroid with gap, an U-shape, and an E-shape magnetic core. 

To compare the effectiveness of different core shape, all coils are stimulated using pulse discharge 

circuits with an initial capacitor voltage of 5 V. The induced voltage in a test wire is recorded for 

different locations of the test wire with respect to the coil.

C.1 Toroid based Magnetic Coil
A toroid core is a closed magnetic circuit which confines the magnetic field to inside the core. 

Figure C.1 (a) shows the structure of the toroid coil with inductance 17.03 mH and resistance 900 

mQ. The coil has an outer diameter of 22 mm, inner diameter of 12 mm, and height of 8 mm. 

Figure C.1(b) shows the stimulation trigger and induced voltage across the test wire. Due to high 

inductance, the rate of decay of induced voltage is very low. However, due to the core saturation, 

the coil’s inductance decays significantly and the induced voltage drops with a much higher rate 

(Figure C.1(b)). The induced field depends on the current flowing in the wire and the magnetization 

current inside the core. Figure C.1(d) shows that due to the placement of the test wire near the coil 

wire, the induced voltage in the wire is higher after saturation.

Due to closed structure of the toroid, the toroid coil can’t be used for the in-vivo magnetic 

stimulation of the nerve. Therefore, to study the induced electric field at the circumference of the 

toroid coil, two new locations are selected as shown in Figure C.2. For case 3, the test wire is placed 

outside the toroid away from the coil turns. Due to the confinement of the magnetic field inside the 

core, the induced voltage in the test wire for case 3 and 4 is significantly smaller than case 1 and

2. Below saturation of the core, the induced voltage is negligible. However, after saturation, the
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Test wire

Figure C.1. Toroid coil with test wire (a) near the core (case 1) and (c) near the coil wires (case 2). 
Trigger and induced voltage in the test wire for (b) case 1 and (d) case 2, respectively. Due to close 
proximity of the coil wire near the test wire for case 2, the induced voltage after saturation is higher.

current in the coil increases significantly and coil wires can contribute to the induced electric field. 

For case 4, the induced voltage is higher than in case 3 due to the coil wire’s proximity to the test 

wire.

C.2 Toroid Core with Gap
To design a magnetic coil which can allow placement of the nerve at the location of the peak 

electric field, a toroid coil with a small gap is created (Figure C.3). The coil has an outer diameter 

of 23 mm, inner diameter of 13 mm, and height of 6 mm. The gap size is 3.5 mm, which can allow 

the nerve to pass through it. Due to high Mr for ferrite cores, the coils have an inductance of 36.8 

MH and resistance 26 mQ. The toroid coil with a gap achieves lower inductance due to the open
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.Test w ire

Toroid core
i Peak-Peak 
Peak-Peak

i50 .0m V
Value Mean 
5.04 V 2.00 
74.0mV 65.6m

Min
400m
32.0m

Trigger V oltage

Induced Voltage

C E n a O  A50. OmV ■ n s o
Value Mean Min

I O  Peak-Peak 5.12 V 2.28 400m
j O  Peak-Peak 66.0mV 66.0m 66.0m

Figure C.2. Toroid coil with test wire (a) near the core (case 3) and (c) near the coil wires (case 4). 
Trigger and induced voltage in the test wire for (b) case 3 and (d) case 4, respectively. Due to close 
proximity of the coil wire near the test wire for case 3, the induced voltage after saturation is higher.

magnetic circuit. Therefore, the induced voltage decays faster than the toroid coil in Section C.1.
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(d)

Figure C.3. Toroid coil with gap. The test wire is placed (a) outside the core (case 1) and (c) 
inside the core (case 2). Trigger and induced voltage in the test wire for (b) case 1 and (d) case 2, 
respectively. Due to placement of the test wire inside the toroid, the induced voltage for case 2 is 
higher compared to case 1.

C.3 U-Shape Core
To reduce the dimension of the magnetic coil and achieve high inductance using a close magnetic 

circuit, an U-shape core structure was chosen. As shown in Figure C.4 (a) and (c), the U-shape core 

can be extended to a close magnetic circuit using a second U-shape core. Using a closed structure, 

the inductance of the coil is increased from 1.68 u H  to 26 u H . The core is 8 mm in length with a 

gap size of 3.5 mm. As expected, due to the increased inductance for a closed structure (case 2), 

the rate of decay in the induced electric field is lower than the open structure (case 1). Due to the 

increase in the effective u ef f  for the closed structure, the generated magnetic field is higher which 

results in a higher induced electric field.
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Figure C.4. U-shape core with the test wire. The test wire is placed (a) next to the open core (case 
1) and (c) inside the clsoe core (case 2). Trigger and induced voltage in the test wire for (b) case 1 
and (d) case 2, respectively. Due to placement of the test wire inside the toroid, the induced voltage 
for case 2 is higher compared to case 1.

C.4 E-shape Core based Coil
To study the effect of the magnetic field distribution inside the magnetic core, an E-shape core 

is used. Figure C.5(a) shows the structure of the magnetic coil for which the wire was wrapped 

over one arm of the E-core. For case 1, the test wire was placed near the coil wire in the first arm. 

For case 2, the test wire measured the induced voltage with the placement of the wire in the second 

arm (Figure C.5(c)). Due to the short path taken by the magnetic field, most of the magnetic flux 

generated by the coil stayed in the first arm of the E-core, which resulted in the higher induced 

voltage observed in case 1.
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Figure C.5. E-shape core with the test wire. The test wire is placed in (a) the first arm (case 1) and 
(c) the second arm (case 2) of the E-core. Trigger and induced voltage in the test wire for (b) case 1 
and (d) case 2, respectively. Due to placement of the test wire inside the high fluxed arm (case 1), 
the induced voltage for case 1 is higher compared to case 2.

To study the impact of a closed magnetic circuit on induced voltage, a second E-core was placed 

over the magnetic coil as shown in Figure C.6(a). Case 3 and 4 study the effect of the test wire 

position inside a closed magnetic structure (Figure C.6(a) and (c)). The experiments showed that 

placement of the test wire does not affect the induced voltage, which indicates that nerve can be 

placed anywhere inside the closed magnetic structure to achieve high induced field. For the closed 

magnetic circuit, to compare the magnetic field distribution inside the first arm (case 4, Figure 

C.6(c)) and second arm (case 5, Figure C.6(e)), the test wire was placed in the first and second arm 

respectively. Similar to case 2, the magnetic flux generated by the coil took the shorter path (least 

resistance) and caused the higher induced voltage in case 4 compared to case 5.
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Figure C.6. E-shape core with the test wire. (a) The test wire is placed in the first arm and closed 
proximity of the coil (case 3). (c) The test wire is placed in arm 1 away from the coil wires (case 4). 
(e) The test wire is placed in the second arm (case 5) of the E-core. Trigger and induced voltage in 
the test wire for (b) case 3, (d) case 4, and (f) case 5, respectively. Due to placement of the test wire 
inside the high fluxed arm (case 4), the induced voltage for case 4 is higher compared to case 5.
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C.5 Conclusion
A magnetic core increases the amount of magnetic flux generated by the unit current in the coil 

wire. The closed core can achieve an effective permeability u ef f  close to the core’s permeability 

u r . However, the geometry of the closed magnetic circuits (e.g., closed toroid) does not allow the 

placement of the nerve inside the coil to achieve the highest induced electric field. Using a toroid 

core with a gap increases the possibility of nerve placement inside the coil at the expense of lowering 

the effective permeability u ef f . Using a U-shape core, the closed magnetic circuit can be created 

by sliding the nerve inside the core gap and placing the second U-core to close the magnetic loop. 

Experiments with the E-shape core demonstrate that it generates magnetic flux that follows the least 

resistive path (shorter length), which can be useful when designing a magnetic coil that requires 

controllable flux distribution.


