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A B S T R A C T

With the tremendous growth of data produced in the recent years, it is impossible to 

identify patterns or test hypotheses without reducing data size. Data mining is an area of 

science that extracts useful information from the data by discovering patterns and structures 

present in the data. In this dissertation, we will largely focus on clustering which is often 

the first step in any exploratory data mining task, where items that are similar to each other 

are grouped together, making downstream data analysis robust.

Different clustering techniques have different strengths, and the resulting groupings 

provide different perspectives on the data. Due to the unsupervised nature i.e., the lack of 

domain experts who can label the data, validation of results is very difficult. While there 

are measures that compute “goodness” scores for clustering solutions as a whole, there 

are few methods that validate the assignment of individual data items to their clusters. To 

address these challenges we focus on developing a framework that can generate, compare, 

combine, and evaluate different solutions to make more robust and significant statements 

about the data.

In the first part of this dissertation, we present fast and efficient techniques to generate 

and combine different clustering solutions. We build on some recent ideas on efficient 

representations of clusters of partitions to develop a well founded metric that is spatially 

aware to compare clusterings. With the ability to compare clusterings, we describe a 

heuristic to combine different solutions to produce a single high quality clustering. We 

also introduce a Markov chain Monte Carlo approach to sample different clusterings from 

the entire landscape to provide the users with a variety of choices. In the second part of 

this dissertation, we build certificates for individual data items and study their influence on 

effective data reduction. We present a geometric approach by defining regions of influence 

for data items and clusters and use this to develop adaptive sampling techniques to speedup 

machine learning algorithms. This dissertation is therefore a systematic approach to study 

the landscape of clusterings in an attempt to provide a better understanding of the data.
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CHAPTER 1

I N T R O D U C T I O N

The past decade has seen a tremendous growth in the internet and thus, data creation 

and consumption. A few quintillion bytes of data gets generated every day [IBM et al., 

2011]. Storage and processing of this data therefore becomes a big challenge. Data size 

explosion has become a huge challenge in data analysis. Even with advances in distributed 

and parallel processing and significant improvement in hardware, the “big data” clearly 

emerges the winner. The deluge of data, in terms of volume, velocity, and variety [Laney, 

2001], makes it very difficult to process and make the data useful. With the rapid increase 

in the number of researchers and businesses generating huge volumes of data, we need to 

be able to develop techniques that can manage and analyze them efficiently in order to get 

the maximum juice out of the data. From recommendations on Netflix to understanding 

complex brain functionalities, researchers and businesses need to understand and reason 

about big data. Unless we develop efficient methods to perform data squashing that will 

preserve statistical information, we might end up in a state of “data paralysis.”

Data reduction can be very useful in this context. Various data mining methods have 

been introduced to reduce the quantum of data to manageable sizes. In particular, cluster­

ing is a very common method of data analysis, where the goal is to group similar items 

together. It is unsupervised and so can be run automatically on large datasets. Due to 

the unsupervised nature, we do not require training data and therefore no labeling effort 

by a domain expert is necessary. It is therefore the most common choice for large scale 

exploratory data analysis [Aggarwal, 2009; Aggarwal et al., 2007; Asharaf and Murty, 

2003; Bandyopadhyay et al., 2006; Barbar and Chen, 2003; Bhaduri, 2008; Chang, 2003; 

Costa and Venturini, 2007; Datta et al., 2006; Dean and Ghemawat, 2008; Dhillon and 

Modha, 2000; Forman and Zhang, 2000; Goil et al., 1999; Guha et al., 2001; Huang, 

1998; Januzaj et al., 2004; Johnson and Kargupta, 2000; Kettenring, 2009; Lv et al., 2010;
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Murtagh, 1999; Nagesh et al., 2001, 2000; Olman et al., 2009; Otoo et al., 2001; Qian et al., 

2003; Sander et al., 1998; Sassi and Grissa, 2009; Wang et al., 2002; Zhang et al., 1996; 

Zhao et al., 2009; Zhou et al., 1999, 2010]. Many of these algorithms are quite adept at 

handling massive datasets. Since clustering creates homogeneous clusters of data, we can 

use more sophisticated learning tools on each of them for downstream data analysis.

The last few years have seen a number of clustering algorithms being developed and 

each method has its own advantages and disadvantages and provide different perspectives 

on the data [Arthur and Vassilvitskii, 2006, 2007; Berkhin, 2006; Bonner, 1964; Byun 

et al., 2007; Das et al., 2009; Dubes and Jain, 1976; Fraley and Raftery, 1998; Har-Peled 

and Sadri, 2005; Hartigan, 1975; Hartigan and Wong, 1979; Jain, 2010; Jain and Dubes, 

1988; Jain et al., 1999; Keim and Hinneburg, 1999; Ostrovsky et al., 2006; Tan et al., 2005; 

Tsangaris and Naughton, 1992; Xu and Wunsch, 2009]. Although each clustering method 

can be successful on data containing specific structures, no single clustering method has 

been good enough for all kinds of data.

Clustering is an area of research that is often considered to be “a mile wide and an 

inch deep.” Although many common clustering methods have been developed in the last 

few decades, no single clustering method works on all kinds of data. Data is often in 

high dimensions and it becomes very difficult to visualize the data and study the structures 

present in the data. It is impossible to pick the “best” clustering method unless we know 

the right patterns present in the data. Therefore, rather than trying to find a single good 

answer that explains a dataset, the goal of this dissertation is to explore the landscape of 

“good” partitions1, reconcile between a few good quality solutions and validate both the 

clustering solution and assignment of individual data points to clusters. The study of such 

problems is called metaclustering2 [Caruana et al., 2006].

This raises the following interesting questions:

1In what follows, we use the term partition instead of clustering (for both hard and soft cases) to represent 
a set of clusters decomposing a dataset. This avoids confusion between the terms “cluster,” “clustering,” and 
the procedure used to compute a partition, and will help us avoid phrases like, “We compute consensus 
clusterings by clustering clusters in clusterings!” We retain the use of the term “clustering” when we refer to 
the clustering method.

2Metaclustering is also referred to in the literature as generation of multiple clusterings.
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1. Can we obtain a better result by integrating a collection of solutions from various 

clustering methods?

2. Can we compare and contrast different partitions of data to gain a perspective about 

the performance of various clustering methods and the clustering landscape of the 

data in general?

3. Can we identify more than one “good” partition, if present, of the data?

4. Can we evaluate the quality of the clustering solutions in order to decide if we have 

partitioned the data in the right way?

5. Can we validate the cluster assignments of individual data points?

These are some of the many metaquestions that we can ask about clustering to ensure 

generation of robust partitions of data. We believe that the questions we ask and the meth­

ods we develop will strengthen clustering as the first choice for the first step in exploratory 

data analysis.

In this dissertation, we conduct a systematic study of various metaclustering prob­

lems and address issues in validating partitions with an eye towards accountability in data 

mining. We make use of a geometric representation [Berlinet and Thomas-Agnan, 2004; 

Gretton et al., 2008; Jegelka et al., 2009; Smola et al., 2007; Sriperumbudur et al., 2010] 

for partitions that lets us discuss many metaclustering questions in a common framework. 

We introduce efficient algorithms to solve various metaclustering problems. Our goal is to 

make the metaclustering solutions work on massive datasets while being easy to implement. 

Using this geometric framework, we study the landscape of all possible partitions of data. 

We also develop methods to evaluate partitions by validating data to cluster assignments in 

the absence of an oracle that can provide and verify the labeling. We hope that this will help 

us to obtain robust information about the data along with increased user interaction during 

the data mining process. We also discuss in detail a few applications of the methods we 

develop in validating partitions and cluster assignments in semisupervised learning where 

there is an abundance of unlabeled data like in the case of unsupervised learning.

1 .1  T h e s i s  S t a t e m e n t

This dissertation aims to explore a few metaaspects of clustering and stability of parti­

tions and its applications listed below.
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1. Comparing and reconciling between partitions.

2. Generating a diverse set of partitions.

3. Evaluating the stability of partitions and the assignment of data to clusters.

4. Adaptive sampling to speedup semisupervised learning techniques using cluster affin­

ity scores.

Towards this end, we build sound distance metrics to compare partitions and heuristics 

that compute a 1-median solution in the space of partitions, sample a diverse set of good 

quality partitions to explore the clustering landscape, construct measures to evaluate par­

titions and data assignment to individual clusters and build adaptive sampling strategies 

based on cluster affinity scores that reduce the amount of unlabeled data for speedup of 

semisupervised learning.

1 .2  O r g a n i z a t i o n  o f  t h i s  T h e s i s

We discuss related work relevant to this dissertation in the next section. The rest of the 

dissertation is organized into two parts. In Part I, we present methods to compare partitions, 

generate a variety of partitions and reconcile between them. In Part II, we develop measures 

to evaluate data assignments to clusters and the quality of the partitions themselves and we 

study their applications. These two parts comprise a total of four chapters. We conclude 

the dissertation with a chapter that summarizes the contributions. In the following, we give 

an overview of each of these chapters.

•  C h ap te r 2. This chapter surveys existing literature in various meta-aspects of clus­

tering. We begin by reviewing measures that compare partitions. We contrast the 

different comparison measures and study the importance of the right measure. Next, 

we discuss different existing strategies that produce a single partition by comparing 

and reconciling between a set of input partitions. We follow this up with a description 

of methods in the literature that generate more than a single interesting partition. We 

also discuss various existing measures to evaluate partitions both externally and in­

ternally. Lastly, we discuss some model selection methods and a few semisupervised 

techniques as applications to some of the algorithms we develop.

•  C h ap te r 3. This chapter introduces a new spatially aware metric to compare parti­

tions that is both well founded and fast to compute. Using this metric and prior work
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on representing partitions, we develop a simple heuristic to compute an ensemble 

solution given a variety of input partitions. This consensus procedure is very simple 

to implement. Since we reduce partitions to points in high dimensions, we can 

leverage all the advancements in clustering to compute the ensemble solution.

•  C h ap te r 4. This chapter discusses a new quality measure to evaluate partitions. 

Along with the distance metric that we discuss in the previous chapter, we use a 

Markov chain Monte Carlo approach to sample for good partitions that are non- 

redundant from the space of all partitions. We show that we discover many partitions 

with this technique that are not found by traditional clustering methods. This method 

lets us explore the landscape of all partitions of the data allowing us to see how 

clusterable the data is.

•  C h ap te r 5. We introduce local certificates for individual data points to make clus­

tering decisions accountable beginning at the data level. Due to the unsupervised 

nature of clustering, it is difficult to validate the assignment of data to clusters. We 

introduce a geometric approach by defining regions of influence of data points and 

clusters and looking at how they overlap as a way of doing this validation. This 

approach to validate partitions is different from the existing approaches where the 

validation is only done at the partition level giving a single goodness score for each 

partition.

•  C h ap te r 6 . Many semisupervised learning methods have been developed in the 

last decade where the unlabeled examples are often available along with the labeled 

examples at the time of learning. Typically the number of unlabeled examples is 

much larger than the labeled examples and this makes the semisupervised learning 

methods very slow because of the polynomial complexity in the number of unlabeled 

data points. In this chapter, we look at transductive support vector machines (T-SVM) 

which is a very common method to compute a classifier by taking into account the 

distribution of the unlabeled data. We use adaptively sampling strategies to reduce 

the large unlabeled set by using the fact that T-SVM looks for sparse regions in the 

entire data to draw the classifier.

•  C h ap te r 7. Finally, this chapter provides a summary of the all the contributions 

and future directions that spring from our foundational work. We discuss different
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approaches to speed up machine learning and data mining methods. We also discuss 

approaches to make data mining accountable and towards this end we look at two 

problems of recent interest, £-differential privacy and k-anonymity.



CHAPTER 2

R E L E V A N T  W O R K

Different clustering methods (partitional, hierarchical, density-based, grid-based and 

so on) are used as a preliminary data mining technique in a variety of applications in 

business, biology, city planning, geology, libraries, medicine, climate science, and any 

other large data generating entity including the ones found on the internet. However, we 

limit this chapter to survey the relevant work concerning the methodologies developed as 

a part of this dissertation and we do not cover the different types of clustering methods or 

its applications which are well documented at this time [Hartigan, 1975; Jain and Dubes, 

1988; Xu and Wunsch, 2009].

In this chapter, we present background material that serves as a short compendium 

of related prior work for the subsequent chapters of this dissertation. We start with a 

detailed description of the theory of reproducing kernel Hilbert spaces (RKHS) that is 

used to represent partitions succinctly. The understanding of this is critical since we use 

this method to represent partitions in our work (see in Part I of the dissertation). We 

then discuss various methods to compare partitions including combinatorial and spatial 

distances. We also discuss various state of the art methods in computing consensus of 

multiple partitions as well as generating multiple partitions. This covers a survey of existing 

methodologies that help us understanding the research in metaclustering. Next, we discuss 

different clustering evaluation strategies. M ost methods perform a global evaluation of any 

given partition while few methods look at how good a partition is beginning at the data 

point level. Finally, we describe a few semisupervised learning (SSL) methods that we will 

improve in Part II of the dissertation.

2 .1  R e p r o d u c i n g  K e r n e l  H i l b e r t  S p a c e s

The notion of reproducing kernel Hilbert spaces [Aronszajn, 1950; Wahba, 1990] has 

been well studied and is a crucial part of the theory of kernel machines.



8

2.1.1 H ilb e rt Space

A Hilbert space H  is a complete, finite (or infinite) dimensional linear space endowed 

with an inner product. The inner product of two elements u, v E H  is denoted by (u, v ) h . 

For all u, v, w E H  and for all a  E R, the inner product satisfies the following nice properties.

1. Associativity ((au , v)h  =  a (u , v)h ).

2. Commutativity ((u, v)h  =  (v, u)h ).

3. Distributivity ((u +  v, w)h  =  (u, w)h  +  (v, w)h ).

4. Positive definiteness ((u, u)h  >  0 and equal if and only if u =  0).

The norm of the element u is given by ||u|| =  (u, u)h . An example of an infinite­

dimensional Hilbert space is L2  with the set of functions f  : R d ^  R  such that f  is 

square integrable, i.e., | f  (x)|2dx  is finite. The inner product is given by ( f , g ) H  =  

f  (x)g(x)dx  and the norm is given by || f  || = f 2 (x)dx. The Hilbert space is a 

complete metric space with respect to the distance function induced by the inner product 

and this is one of the useful properties of the Hilbert space that makes it attractive.

To be able to use a function predictively, it is not just enough for the function to be 

square integrable. We need to be able to evaluate the function at any particular data value. 

This property will differentiate a reproducing kernel Hilbert space from ordinary Hilbert 

spaces.

2 .1 .2  RK H S

A Hilbert space H  is the L ^(X )  space of functions from X to R  where X is any 

measurable space. An evaluation functional over the Hilbert space of functions H  is defined 

as a linear functional 8x : H  ^  R  that evaluates each function f  E H  at point x E X, i.e., 

8x [f  ] =  f  (x).

A Hilbert space H  is a reproducing kernel Hilbert space if the evaluation functionals 

are bounded, i.e., V f E H , 3m > 0 such that |5x [f] | =  | f  (x) | <  m  || f  | | h .

The evaluation functionals 8  lie in a dual space of H . Lets call this H * . In fact H * is 

isomorphic to H  and each function in H  has its dual in H  itself. It is important to note that a 

Hilbert space H  admits a reproducing kernel if and only if point evaluation is a continuous 

and bounded functional. H  is a function space and can be infinite-dimensional. However, 

minimizing over the RKHS is equivalent to minimizing over a finite-dimensional space R n .
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The notion of boundedness allows us to evaluate each function in the space H  at every 

point in the domain X. To discuss the notion of a reproducing kernel, we first discuss the 

reproducing property that makes the RKHS interesting. We look at a particular theorem 

called the Riesz representation theorem that will help us define the reproducing property.

2.1.2.1 Riesz rep resen ta tion  theorem . If f  : H  ^  R  is a continuous linear func­

tional mapping from the Hilbert space H  to a scalar, then for all x e  H , there exists a unique 

g e  H  such that f  (x) =  (x, g).

2.1.3 R eproducing P roperty

The reproducing property makes the RKHS different from an ordinary Hilbert space. If 

H  is a RKHS, then for each x e  X, there exists a function Kx e  H  s.t., <5x [f] =  (Kx , f  ) h  =  

f  (x), V f e  H . This is called the reproducing property and for each point x there exists a Kx , 

called the representer of x. Intuitively, the dot product of a function with a representer for 

a particular x retrieves that corresponding component of f . Thus the dot product evaluated 

at all possible locations x e  X will give us components f  (x) that will let us set up the basis 

of f . f  can now be viewed as a linear combination of Kx .

The reproducing property helps us to represent the evaluation functional by comput­

ing an inner product with a function in H . Since Kx is a function in H  (in particular 

the representer of x), for another point y e  X  the reproducing property gives us, f  (y) =  

(Ky, f ) H . In particular, Kx (y) =  (Ky,Kx ) h .  Let us define K  : X x X ^  R  to be a kernel 

if K  is symmetric, i.e., for x,y e  X, K(x,y) =  K(y,x) and K  is positive semidefinite, i.e., 

Vx1 , x2 , ••• , xn e  X, the gram matrix K  defined by K j  =  k(x/, x j ) is positive semidefinite.

We can now define a reproducing kernel. The reproducing kernel of H  is a function K  : 

X x X ^  R  defined by K(x, y) =  Kx (y). Note that any positive semidefinite kernel K(x, t ) 

can be used to construct a RKHS H  associated with it. A RKHS defines a corresponding 

reproducing kernel and vice versa.

2.1.4 Im portance  of RK HS

The input domain X might not be linear and not have any nice properties, but the RKHS 

gives us a geometric understanding along with properties like linearity to play with. The 

RKHS induced by a kernel K  on a set X is unique.

Reproducing kernel Hilbert spaces offer a unified framework for model building. We
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can use appropriate kernels for modeling and learning different kinds of data. For example, 

for the metaclustering problems one of the primary goals is to create a robust representative 

for a cluster C. If we believe that the data was drawn from a Gaussian distribution, we 

can use a Gaussian kernel as a reproducing kernel to take the points in the cluster to a 

RKHS. Since the Gaussian centered at each point x e  C takes into account the location of 

all neighboring points, giving less importance to the points that are faraway (possibly in 

other clusters), the lifted point $ (x ) in H  corresponding to x contains more information 

than just about itself. This along with the property of linearity of the space allows us to 

define robust representatives by taking a linear sum of feature maps of each point in the 

cluster.

2.1.4.1 F eatu re  m ap  $ .  We can define a feature map $  between the input domain 

X and the feature space H . This takes a point x e  X and maps it to an element in H . 

For a RKHS, the feature map is given by $ (x )  =  K(x, ■) which satisfies ($ (x ) ,$ (y ))  =  

K(x, y). Computing the feature map is usually very expensive. It is therefore not tractable to 

compute the inner products in the feature space and therefore norms and distances between 

elements in the feature space. But we have the value of the kernel functions equal to that 

of the inner products in the feature space and we can make use of this kernel trick to avoid 

expensive computation in the feature space. We illustrate the feature mapping in Figure 2.1.

2.1.4.2 M ercer kernel m ap . If K  is a kernel satisfying a certain theorem due to 

Mercer, we can construct the mapping $  into a space where K  acts as a dot product,

i.e., ($ (x ) ,$ (y ))  =  K (x,y). Furthermore, for any £ >  0, there exists a map into a 

n-dimensional dot product space such that |K(x,y) — ( $ n (x), $ n (y))| <  £. This tells us 

that we can work in a finite-dimensional space without any concerns of tractability while 

only incurring a small amount of error in the dot product evaluations of the elements of 

the RKHS. Thus, in the metaclustering problems, that we learn in Part I embed into a 

finite-dimensional Euclidean space, we can make use of existing clustering methods in this 

space to solve metaclustering problems.

2 .2  C o m p a r i n g  P a r t i t i o n s

There are two aspects to the comparison of partitions: the combinatorial element asks, 

“are these two elements grouped together by both partitions, or do they disagree?” and
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$

Figure 2.1. Feature map from input domain X to a RKHS H . Also shown is a representer 
for a point x which defines the reproducing property of the feature space.

the geometric element asks, “how compact are the clusters in one partition, in comparison 

with the other.” Although numerous metrics (and similarity measures) have been proposed 

to compare partitions, for the most part they are based on comparing the combinatorial 

structure of the partitions. This is done either by examining pairs of points that are grouped 

together in one partition and separated in another [Ben-Hur et al., 2002; Fowlkes and 

Mallows, 1983; Mirkin and Cherny, 1970; Rand, 1971], or by information theoretic consid­

erations stemming from building a histogram of cluster sizes and normalizing it to form a 

distribution [Meila, 2007; Strehl and Ghosh, 2003]. These methods ignore the actual spatial 

description of the data, merely treating the data as atoms in a set and using set information 

to compare the partitions. As has been observed by many researchers [Bae et al., 2010; 

Coen et al., 2010; Zhou et al., 2005], ignoring the spatial relationships in the data can be 

problematic.

2.2.1 C lusters as D istributions

The core idea in doing a spatially aware comparison of partitions is to treat a cluster 

as a distribution over the data, for example, as a sum of 8 -functions at each point of the 

cluster [Coen et al., 2010] or as a spatial density over the data [Bae et al., 2010]. The 

distance between two clusters can then be defined as a distance between two distributions 

over a metric space (the underlying spatial domain). We will review a few spatially aware 

methods to compare partitions in what follows.



12

Zhou et al. [2005] define a distance metric CC by replacing each cluster by its centroid 

(this of course assumes the data does not lie in an abstract metric space) and computing 

a weighted transportation distance between the sets of cluster centroids. Technically, their 

method yields a pseudo metric, since two different clusters can have the same centroid. See 

Figure 2.2 where we illustrate this case with concentric ring clusters. It is also oblivious to 

the distribution of points within a cluster.

Coen et al. [2010] avoid the problem of selecting a cluster center by defining the 

distance between clusters as the transportation distance between the full sets of points 

comprising each cluster. This yields a metric on the set of all clusters in both partitions. In a 

second stage, they define the similarity distance CDISTANCE between two partitions as the 

ratio between the transportation distance between the two partitions (using the metric just 

constructed as the base metric) and a “noninformative” transportation distance in which 

each cluster center distributes its mass equally to all cluster centers in the other partition. 

W hile this measure is symmetric, it does not satisfy triangle inequality and is therefore not 

a metric.

2.2.1.1 Spatially aw are com parison of partitions. Bae et al. [2010] take a slightly 

different approach. They build a spatial histogram over the points in each cluster and use 

the counts as a vector signature for the cluster. Cluster similarity is then computed via a 

dot product and the similarity between two partitions is then defined as the sum of cluster 

similarities in an optimal matching between the clusters of the two partitions, normalized 

by the self similarity of the two partitions.

In general, such a spatial partitioning would require a number of histogram bins expo­

nential in the dimension; they get around this problem by only retaining information about 

the marginal distributions along each dimension. One weakness of this approach is that 

only points that fall into the same bin contribute to the overall similarity. This can lead 

dissimilar clusters to be viewed as similar; in Figure 2.3, the two A  (red) clusters will be 

considered as similar as the two O  (blue) clusters.

Their approach yields a similarity, but not a distance metric. In order to construct a 

metric, they have to do the usual transformation (distance =  1 — similarity) and then add 

one to each distance between nonidentical items, which yields the somewhat unnatural 

(and discontinuous) metric D a d C O . Their method also implicitly assumes (like Zhou
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Figure 2 .2 . Dataset with three concentric circles, each representing a cluster partitioning 
the data. The CC distance [Zhou et al., 2005] can not distinguish between these clusters.

F igure 2.3. Dataset with four clusters, each a set grouped in a single grid cell. The two 
clusters with blue open circles are as close as the two clusters with filled red triangles under 
the D a d CO distance.
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et al. [2005]) that the data lies in Euclidean space.

2.2.2 M etrizing  D istributions

There are standard constructions for defining such a distance; the most well known met­

rics are the transportation distance [Givens and Shortt, 1984] (also known as the Wasser- 

stein distance, the Kantorovich distance, the Mallows distance, or the Earth mover’s dis­

tance), and the metric introduced by Prokhorov [1956]. Another interesting approach was 

initiated by M uller [1997]. M uller developed a metric between general measures based 

on integrating test functions over the measure. W hen the test functions are chosen from 

a reproducing kernel Hilbert space [Aronszajn, 1950] (RKHS), the resulting metric on 

distributions has many nice properties [Berlinet and Thomas-Agnan, 2004; Gretton et al., 

2008; Smola et al., 2007; Sriperumbudur et al., 2010]. M ost importantly, it can be isomet- 

rically embedded into the Hilbert space, yielding a convenient (but infinite-dimensional) 

representation of a measure.

This measure has been applied to the problem of computing a single partition by Jegelka 

et al. [2009]. In their work, each cluster is treated as a distribution and the partition is 

found by maximizing the intercluster distance of the cluster representatives in the RKHS. 

They use the RKHS-based representation of clusters to formulate a new cost function for 

computing a single partition. In particular, they considered the optimization problem of 

finding the partition P  =  {Cj_, C2 } of two clusters to maximize

C ( P ) = |C 1 |-iC 2 |-B * (C 1) -  4>(C2)|lHK

+  * 1 ll* (C 1 )llH K +  ̂ 2  « C 2 ) llH K ■

for various choices of kernel K and regularization terms A1 and A2 . They mention that this 

could then be generalized to find an arbitrary k-partition by introducing more regularizing 

terms. Their paper focuses primarily on the generality of this approach and how it connects 

to other clustering frameworks. We modify this distance and its construction in our work.

A parallel line of development generalized this idea independently to measures over 

higher dimensional objects (lines, surfaces and so on). The resulting metric (the current 

distance) is exactly the above metric when applied to 0 -dimensional objects (scalar mea­

sures) and has been used extensively [Durrleman et al., 2008; Glaunes and Joshi, 2006;
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Joshi et al., 2011; Vaillant and Glaunes, 2005] to compare shapes. In fact, thinking of a 

cluster of points as a “shape” was a motivating factor in this work.

2 .3  C o n s e n s u s  C lu s t e r in g

Consensus clustering (also referred to in the literature as ensemble clustering) studies 

how to combine partitions has been studied extensively [Ansari et al., 2010; Ayad and 

Kamel, 2010; Bonizzoni et al., 2008; Boulis and Ostendorf, 2004; Coleman and Wirth, 

2010; Day, 1986; Fern and Brodley, 2003; Fred and Jain, 2005; Ghaemi et al., 2009; Gionis 

et al., 2007; Goder and Filkov, 2008; Murino et al., 2009; Neumann and Norton, 1986; 

Nguyen and Caruana, 2007; Strehl and Ghosh, 2003,?; Topchy et al., 2003; Wang et al., 

2010]. Consensus clustering is a common tool of choice in the biological realm, being 

especially common in the area of microarray analysis [Allison et al., 2006; Benedict et al., 

2006; Filkov and Skiena, 2003; Giancarlo et al., 2008; Grotkjaer et al., 2006; Laderas 

and McWeeney, 2007; Monti et al., 2003; Vinh and Epps, 2009]. In general, consensus 

methods attempt to find a partition whose sum of distances from all input partitions is 

minimized akin to a 1-median solution. Some of the common distances used are the 

Rand distance [Rand, 1971], the Jaccard distance [Ben-Hur et al., 2002], the variation of 

information [Meila, 2007], and normalized mutual information [Strehl and Ghosh, 2003]. 

M ost consensus methods are typically limited to using only combinatorial information 

about the partitions.

One of the most common methods for computing consensus between a collection of 

partitions is the majority rule: for each pair of points, each partition “votes” on whether the 

pair of points is in the same cluster or not, and the majority vote wins. While this method 

is simple, it is expensive and is spatially oblivious; two points might lie in separate clusters 

that are close to each other.

Alternatively, consensus can be defined via a 1-median formulation: given a distance 

between partitions, the consensus partition is the partition that minimizes the sum of dis­

tances to all partitions. If the distance function is a metric, then the best partition from 

among the input partitions is guaranteed to be within twice the cost of the optimal solution 

(via triangle inequality). In general, it is challenging to find an arbitrary partition that 

minimizes this function. For example, the above majority-based method can be viewed as
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a heuristic for computing the 1-median under the Rand distance. Algorithms with formal 

approximations exist for this problem [Gionis et al., 2007].

Recently Ansari et al. [2010] extended these above schemes to be spatially aware by 

inserting CDISTANCE in place of Rand distance above. This method is successful in 

grouping similar clusters from an ensemble of partitions, but it is quite slow on large 

datasets P  since it requires computing an expensive transportation distance on the full 

dataset. Alternatively, using representations of each cluster in the ambient space (such 

as its mean, as in CC [Zhou et al., 2005]) would produce another spatially aware ensemble 

clustering variant, but would be less effective because its representation causes unwanted 

simplification of the clusters (see Figure 2.2).

2 .4  A l t e r n a t iv e  C lu s t e r in g

The problem of generating alternative clustering [Bae and Bailey, 2006; Bae et al., 

2006, 2010; Dang and Bailey, 2010a,b; Davidson and Qi, 2008; Gondek and Hofmann, 

2004; Jain et al., 2008; Nguyen and Caruana, 2007; Nguyen and Epps, 2010; Qi and 

Davidson, 2009; Wurst et al., 2006] has received much less attention. M ost of the existing 

literature on alternative clustering focuses on generating one additional partition of high 

quality that should be far from a given set (typically of size one) of existing partitions.

Most algorithms for generating alternative partitions operate as follows. Generate a 

single partition using a clustering algorithm of choice. Next, find another partition that 

is both far from the first partition and of high quality. M ost methods stop here, but a few 

methods try to discover more alternative partitions; they repeatedly find new, still high qual­

ity, partitions that are far from all existing partitions. The alternative clustering methods 

usually account for diverse partitions by integrating the “diversity” criteria in the objective 

function. This ranges from constructing cannot-link and must-link constraints to learning a 

new distance function and transforming data into different space. This effectively produces 

a variety of partitions, but the quality of each successive partition degrades quickly.

Although there are a few other methods that try to discover alternative partitions simul­

taneously [Caruana et al., 2006; Jain et al., 2008; Niu et al., 2010], they are usually limited 

to discovering two partitions of the data. Other methods that generate more than just two 

partitions either randomly weigh the features or project the data onto different subspaces,
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but use the same clustering technique to get the alternative partitions in each round. Using 

the same clustering technique tends to generate partitions with clusters of similar shapes 

and might not be able to exploit all the structure in the data.

Another related problem is that of picking a diverse set of partitions from a large input 

set. This area of work does not focus on generating partitions but assumes a collection of 

input partitions is already available. Given as input a set of m »  k partitions of a single 

dataset, the goal here is to produce k distinct partitions. To obtain the input for this ap­

proach, either the output of several distinct clustering algorithms, or the output of multiple 

runs of the same randomized algorithm with different initial seeds are considered [Zhang 

and Li, 2011]. This problem can then be viewed as a clustering problem; that is, finding 

k clusters of partitions from the set of input partitions. Therefore, there are many possible 

optimization criteria or algorithms that could be explored for this problem as there are for 

clustering in general. Most formal optimization problems are intractable to solve exactly, 

making heuristics the only option. Furthermore, no matter the technique, the solution is 

only as good as the input set of partitions, independent of the optimization objective.

2 .5  E v a l u a t i n g  C lu s t e r in g s

A number of indirect approaches have been developed to validate a partition at a global 

level [Halkidi et al., 2001; Xu and Wunsch, 2009]. These include internal, external, and 

relative validation techniques, and methods based on clustering stability that assume a 

clustering (algorithm) is good if small perturbations in the input do not affect the output 

clustering significantly. There are supervised variants of clustering. However, these typi­

cally require domain knowledge and the immense popularity of clustering comes precisely 

from the fact that it can be applied as a first filter to acquire a deeper understanding of the 

data.

Clusterings can be validated globally in three different ways [Xu and Wunsch, 2009]. 

Internal validation mechanisms look at the structure of a clustering and attempt to deter­

mine its quality [Liu et al., 2010]. For example, the ratio of the minimum intercluster 

distance to the maximum intracluster distance is a measure of how well-separated clusters 

are, and thus how good the partition is. External validation measures can be employed when 

a reference partition exists. In this case, an appropriate distance between partitions must
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be defined. The given partition can then be compared to the reference partition [Halkidi 

et al., 2001]. Relative validation measures look at different runs of a clustering algorithm 

and compare the resulting partitions produced [Halkidi et al., 2001].

Cluster stability [Ben-David et al., 2006; Ben-Hur et al., 2002; Bezdek and Pal, 1998] 

is another way to validate partitions. The goal here is to determine how robust a clustering 

solution is to small perturbations in algorithm parameters. This idea was used to do model 

selection; for example, the “right” number of clusters is the one that exhibits the most stable 

partitions. Stability in general has been studied extensively in the statistics and machine 

learning communities, as a way to understand generalization properties of algorithms. 

The paper by Elisseeff et al. [2006] provides a good overview of this literature and the 

monograph by Luxburg [2009] focuses on clustering.

W here admissible (for example, when effective models of the data can be built), prob­

abilistic modeling yields posterior likelihoods for a cluster assignment in the form of 

conditional probabilities p (C  | x) for point x and cluster C. We view our approach as 

complementary to (and more general than) model-based validation. Our approach is purely 

data driven with no further assumptions, which is appropriate when initially exploring 

a dataset. We also show that the affinity scores produced by our method closely match 

the likelihoods produced by a standard clustering approach like Gaussian mixture models. 

Note that probabilistic modeling can be used to choose a particular way of clustering the 

data, but in the setting we consider, a clustering is already given to us (possibly even by 

consensus clustering or some other method), and the goal is to validate it.

Local validation bears a superficial resemblance to outlier detection: in both cases the 

goal is to evaluate individual points based on how well they “fit” into a clustering. There 

are important differences though. An outlier affects the cost of a partition by being faraway 

from any cluster, but it will usually be clear what cluster it might be assigned to. In contrast, 

a point whose labeling might be invalid is usually in the midst of the data. Assigning it to 

one cluster or another might not actually change the clustering cost, even though the label 

itself is now unreliable.
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2 .6  S e m is u p e r v i s e d  L e a r n i n g

We discuss applications of attaching cluster affinity scores, which are discussed in 

Chapter 3, to semisupervised learning. In particular, transductive support vector machines 

(T-SVM) in Chapter 6 . We review a few existing works here on fast semisupervised 

learning (SSL).

As dataset sizes grow, there is an increasing interest in scaling up semisupervised learn­

ing algorithms. We briefly review prior work on large scale SSL and in particular, recent 

approaches to scale up T-SVM. Especially in web applications, such as link prediction and 

link propagation, unlabeled data exists in abundance and several specialized algorithms 

were proposed to incorporate these large datasets into training [Kashima et al., 2009; 

Settles, 2011; Suzuki and Isozaki, 2008]. These publications introduce new algorithms 

that are highly specialized for specific learning tasks and typically do not generalize to 

common SSL classification.

Mann and McCallum [2007] achieve large scale SSL by constraining classifiers to 

match expectation constraints, made by domain experts. The authors successfully in­

corporate unlabeled data with the help of side information. Chen et al. [2011] adapt 

cotraining [Blum and Mitchell, 1998] to single-view data and subsample unlabeled data 

to obtain a subset on which the theoretical conditions for cotraining [Balcan et al., 2004] 

can be satisfied. In contrast to our work, they do not focus on speedup during training but 

instead assume that unlabeled data is noisy and aim to remove such noisy samples.

We also describe some work on fast T-SVM as our work explicitly focuses on T-SVM. 

We make no assumptions on the data or task and require no additional side information 

unlike e.g., Vural et al. [2008]. There is a significant amount of prior work on speeding 

up the T-SVM algorithm [Collobert et al., 2006a,b; Liao et al., 2007; Sindhwani and 

Keerthi, 2007; Vural et al., 2008]. Other researchers achieve their speedups through novel 

optimization algorithms, explicitly designed for the T-SVM algorithm [Collobert et al., 

2006a,b; Liao et al., 2007; Sindhwani and Keerthi, 2007]. For example, Sindhwani and 

Keerthi [2007] use Newton’s method to take advantage of second order information for 

accelerated convergence. Collobert et al. [2006b] relax the problem into a concave convex 

procedure (CCCP) [Yuille and Rangarajan, 2001] to speed up the optimization, which 

results in impressive speedups.
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M E T A C L U S T E R I N G



CHAPTER 3

C O N S E N S U S  C L U S T E R I N G 1

We study the problem of consensus or ensemble clustering [Ansari et al., 2010; Ayad 

and Kamel, 2010; Bonizzoni et al., 2008; Boulis and Ostendorf, 2004; Coleman and Wirth, 

2010; Day, 1986; Fern and Brodley, 2003; Fred and Jain, 2005; Ghaemi et al., 2009; Gionis 

et al., 2007; Goder and Filkov, 2008; Murino et al., 2009; Neumann and Norton, 1986; 

Nguyen and Caruana, 2007; Strehl and Ghosh, 2003; Topchy et al., 2003; Wang et al., 

2010], where the goal is to determine a high quality partition that is “close” to a given set 

of input partitions.

The problem of metaclustering has become important in recent years as researchers 

have tried to combine the strengths and weaknesses of different clustering algorithms to 

find patterns in data. A common metaclustering problem is that of finding a consensus (or 

ensemble) partition from among a set of candidate partitions. Ensemble-based clustering 

has been found to be very powerful when different clusters are connected in different ways, 

each detectable by different classes of clustering algorithms [Strehl and Ghosh, 2003]. For 

instance, no single clustering algorithm can detect clusters of symmetric Gaussian-like 

distributions of different density and clusters of long thinly connected paths; but these 

clusters can be correctly identified by combining multiple techniques (i.e., k-means and 

single-link) [Ghaemi et al., 2009]. Moreover, given an abstract dataset, a practitioner 

may not know what types of data patterns exist, and which specific clustering algorithm to 

use. Hence, consensus clustering is becoming a more robust and general way to approach 

clustering.

Other related and important metaclustering problems include finding a different and yet 

informative partition to a given one, or finding a set of partitions that are mutually diverse

1 Reprinted with permission of SIAM, 2011, Parasaran Raman, Jeff M. Phillips, and Suresh Venkata- 
subramanian, Spatially-Aware Comparison and Consensus for Clusterings. Eleventh SIAM International 
Conference on Data Mining, Pages 307-318.
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(and therefore informative). In all these problems, the key underlying step is comparing two 

partitions and quantifying the difference between them. Numerous metrics (and similarity 

measures) have been proposed to compare partitions, and for the most part they are based 

on comparing the combinatorial structure of the partitions. This is done either by examining 

pairs of points that are grouped together in one partition and separated in another [Ben-Hur 

et al., 2002; Fowlkes and Mallows, 1983; Mirkin and Cherny, 1970; Rand, 1971], or by 

information theoretic considerations stemming from building a histogram of cluster sizes 

and normalizing it to form a distribution [Meila, 2007; Strehl and Ghosh, 2003].

These methods ignore the actual spatial description of the data, merely treating the data 

as atoms in a set and using set information to compare the partitions. Ignoring the spatial 

relationships in the data can be problematic. Consider the three partitions in Figure 3.1. 

The first partition (FP) is obtained by a projection onto the y-axis, and the second (SP) is 

obtained via a projection onto the x-axis. Partitions (FP) and (SP) are both equidistant from 

partition (RP) under any of the above mentioned distances, and yet it is clear that (FP) is 

more similar to the reference partition, based on the spatial distribution of the data.

Some researchers have proposed spatially aware distances between partitions, but they 

all suffer from various deficiencies. They compromise the spatial information captured 

by the clusters [Bae et al., 2010; Zhou et al., 2005], they lack metric properties [Coen 

et al., 2010; Zhou et al., 2005] (or have discontinuous ranges of distances to obtain metric 

properties [Bae et al., 2010]), or they are expensive to compute, making them ineffective 

for large datasets [Coen et al., 2010].

3 .1  O v e r v ie w  o f  O u r  W o r k

We exploit a concise, linear reproducing kernel Hilbert space (RKHS) representation of 

clusters. We use this representation to construct an efficient spatially aware metric between 

partitions and an efficient spatially aware consensus clustering algorithm.

We use ideas from some recent work. We leverage the fact that a cluster can be viewed 

as a sample of data points from a distribution [Jegelka et al., 2009], and through a similarity 

kernel K, a distribution can be losslessly lifted to a single vector in a RKHS [Muller, 1997].
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F igure 3.1. Spatially aware distances are important: (b) first parition (FP) and (c) second 
partition (SP) are equidistant from (a) the reference partition (RP) under a set-based 
distance. However, FP is clearly more similar to RP than SP.

3.1.1 R epresentations

We adapt the representation of the clusters in the RKHS (which we discussed in Chap­

ter 2) in two ways: approximation and normalization. Typically, vectors in a RKHS are 

infinite-dimensional, but they can be approximated arbitrarily well in a finite-dimensional 

^2  space that retains the linear structure of the RKHS [Joshi et al., 2011; Rahimi and 

Recht, 2007]. This provides concise and easily manipulated representations for entire 

clusters. The resulting distance between the representative vectors of two distributions 

in the RKHS can be used as a metric on the distributions [Muller, 1997; Smola et al., 2007; 

Sriperumbudur et al., 2010]. The distance metric between the approximate normalized 

representation of clusters is fast to compute. Additionally, we normalize these vectors to
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focus on the spatial information of the clusters. This turns out to be important in consensus 

clustering, as explained in Section 3.3.2.

3.1.2 D istance C om putation

Using this convenient representation (an approximate normalized RKHS vector), we 

develop a metric between partitions. Since the clusters can now be viewed as points in 

(scaled) Euclidean space we can apply standard measures for comparing point sets in such 

spaces. In particular, we define a spatially aware metric L if t EM D  between partitions as 

the transportation distance [Givens and Shortt, 1984] between the representatives, weighted 

by the number of points they represent. While the transportation distance is a standard 

distance metric on probability distributions, it is expensive to compute (requiring O (n3) 

time for n points) [Kuhn, 1955]. However, since the points here are clusters, and the number 

of clusters (k) is typically significantly less than the data size (n), this is not a significant 

bottleneck as we will see in Section 3.6.

3.1.3 Consensus

We exploit the linearity of the RKHS representations of the clusters to design an ef­

ficient consensus clustering algorithm. Given several partitions, each represented as a 

set of vectors in a RKHS, we can find a partition of this data using standard Euclidean 

clustering algorithms. In particular, we can compute a consensus partition by simply 

running k-means (or hierarchical agglomerative clustering) on the lifted representations 

of each cluster from all input partitions. This reduction from consensus to Euclidean 

clustering is a key contribution: it allows us to utilize the extensive research and fast 

algorithms for Euclidean clustering, rather than designing complex hypergraph partitioning 

methods [Strehl and Ghosh, 2003].

3.1.3.1 Evaluation. All of these aspects of our technical contributions are carefully 

evaluated on real world and synthetic data. As a result of the convenient isometric repre­

sentation, the well founded metric, and reduction to many existing techniques, our methods 

perform well compared to previous approaches and are much more efficient.
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3.1.4 C om parison  to P rio r  W ork

In Chapter 2, we discussed in detail various methods and measures to compare par­

titions both combinatorially and in a spatially aware manner. We discussed the need for 

a spatially aware measure as it captures the properties that lead to the formation of the 

clusters in the first place. We also highlighted the shortcomings of the existing spatially 

aware measures to compare partitions (see Section 2.2). Our method, centered around 

the RKHS-based metric between distributions, addresses all of the above problems. It 

yields a true metric, incorporates the actual distribution of the data correctly, and avoids 

exponential dependency on the dimension. The price we pay is the requirement that the 

data lie in a space admitting a positive definite kernel. However, this actually enables us to 

apply our method to clustering objects like graphs and strings, for which similarity kernels 

exist [Gartner, 2002; Lodhi et al., 2002] but no convenient vector space representation is 

known.

In Section 2.3, we discussed various methods to compute the consensus solution given a 

set of input partitions. We discussed various common consensus procedures that are based 

on the majority rule: for each pair of points, each partition “votes” on whether the pair of 

points is in the same cluster or not, and the majority vote wins and ones that are spatially 

aware where the consensus is defined via a 1-median formulation. Our method is very ele­

gant in that we reduce the problem of computing consensus to a clustering problem and our 

method is very fast since we only use the succinct cluster representatives in the consensus 

procedure. Not only can we leverage and use any of the common clustering techniques of 

choice to compute the consensus solution, but we also retain succinct representations of the 

input partitions and the consensus solution that help reduce the storage size.

3 .2  P r e l i m i n a r i e s

3.2.1 Definitions

Let P  be the set of points being clustered, with |P| =  n. We use the term cluster to 

refer to a subset C of P  (i.e., an actual cluster of the data), and the term partitio n  to refer 

to a partitioning of P  into clusters (i.e., what one would usually refer to as a partition of 

P). Clusters will always be denoted by the capital letters A ,B ,C ,... ,  and partitions will be 

denoted by the symbols A, B, C ,.... We will also consider soft p artitions of P, which are
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fractional assignments {p(C |x)} of points x to clusters C such that for any x, the assignment 

weights p(C |x) sum to one.

We will assume that P  is drawn from a space X endowed with a reproducing kernel 

K : X x X ^  R  [Aronszajn, 1950]. The kernel K induces a Hilbert space H K  via the lifting 

map ^  : X ^  H K , with the property that K(x, y) =  (^ (x ),  ̂ ( y ) ) K, (■, -)K being the inner 

product that defines H K.

Let p , q be probability distributions defined over X . Let F  be a set of real valued 

bounded measurable functions defined over X . Let F K =  {f  e  F  | || f  ||K <  1} denote 

the unit ball in the Hilbert space H K. The integral probability metric [Muller, 1997] yK 

on distributions p , q is defined as yK(p, q) =  su p f g f k I Ix  f d p  — JX fd q |-  We will make 

extensive use of the following explicit formula for yK(p, q):

which can be derived (via the kernel trick) from the following formula for yK [Sriperum- 

budur et al., 2 0 1 0 ] : yK(p ,q) =  || / x  k (■,x)dp(x) — / x  k (■,x )dq(x )^H K • This formula also 

gives us the lifting map $ ,  since we can write ^ ( p )  =  / x  K(■,x)dp(x).

3.2.1.1 The tran sp o rta tio n  m etric. Let D : X x X ^  R  be a metric over X . The 

transportation distance between p  and q is then defined as

such that J x f  (x,y)dx =  q(y) and / x f  (x,y)dy =  p(x). Intuitively, f  (x,y)D(x,y) mea­

sures the work in transporting f  (x,y) mass from p(x) to q(y).

3.2.2 A n R K H S D istance Between C lusters

We use yK to construct a metric on clusters. Let C C P  be a cluster. We associate with C 

the distribution p(C) =  L x p(C |x)w (x)5x (-), where 5x (■) is the Kronecker 8 -function and 

w : P  ^  [0,1] is a weight function. Given two clusters C, C; C P, we define d(C, C;) =  

yK (p(C ), p (C ;)). It is important to note that we are not introducing a completely new dis­

tance. We introduce a wrapper that encapsulates existing distance metric between clusters 

in order to facilitate comparing partitions.

yK q) = f f X  K (^  y)dp (x)dp (y) (3.2.1)

(3.2.2)
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3.2.2.1 A n exam ple. A simple example illustrates how this distance generalizes 

pure partition-based distances between clusters. Suppose we fix the kernel K(x,y) to 

be the discrete kernel: K(x, x) =  1, K(x, y) =  0 Vx =  y. Then it is easy to verify that 

d (C ,C ') =  V  |CAC'| is the square root of the cardinality of the symmetric difference C A C , 

which is a well known set theoretic measure of dissimilarity between clusters. Since 

this kernel treats all distinct points as equidistant from each other, the only information 

remaining is the set theoretic difference between the clusters. As K acquires more spatial 

information, d(C, C;) incorporates this into the distance calculation.

3.2.2.2 R epresentations in  H K . There is an elegant way to represent points, clus­

ters and partitions in the RKHS H K . Define the lifting map $ (x ) =  K(■,x). This takes 

a point x G P  to a vector $ (x ) in H K . A cluster C C P  can now be expressed as a 

weighted sum of these vectors: ^ (C )  =  £ x e C w(x)$(x). Note that for clarity, in what 

follows we will assume without loss of generality that all partitions are hard; to construct 

the corresponding soft partition-based expression, we merely replace terms of the form 

{x G C} =  1x e C by the probability p(C |x).

^ (C ) is also a vector in H K, and we can now rewrite d(C, C ) as

d  (C, C ') =  ||$ (C ) -  * (C ')B h K ■ (3.2.3)

Finally, a partition P  =  {Cj_, C2 , . . .  C^} of P  can be represented by the set of vectors 

$ (P )  =  {$(C i)}  in H K. We note that as long as the kernel is chosen correctly [Sriperum- 

budur et al., 2 0 1 0 ], this mapping is isometric, which implies that the representation ^ (C ) 

is a lossless representation of C.

The linearity of representation is a crucial feature of how clusters are represented. 

The cluster in H K  is merely the weighted sum of the corresponding vectors ^ (x ) . As 

a consequence, it is easy to represent soft partitions as well. A cluster C can be represented 

by the vector

^ (C ) =  £  w(x) p (C |x )$ (x ). (3.2.4)
x

The lifting map [Aronszajn, 1950] ^  associated with K makes this construction different 

and more powerful than other approaches for comparing distributions. The major ad­

vantages of using this representation are as follows. We have a very defined structure. 

Euclidean space is very well studied, and we can utilize all the tools available to us for
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data analysis in this space. The linearity of the representation helps us to handle both hard 

partitions (a point assigned to exactly one cluster) and soft partitions (where points assign 

their weight fractionally to different clusters). This technique is agnostic to the underlying 

domain the data comes from. For example, it is possible to compare and combine partitions 

of images based on text attributes and based on image information. We have a Euclidean 

space representation and it allows us to leverage existing data structures and code bases.

3 .3  A p p r o x im a t e  N o r m a l i z e d  C l u s t e r  R e p r e s e n t a t i o n

We adapt the RKHS-based representation of clusters < (C ) in two ways to make it more 

amenable to our metaclustering goals. First, we approximate < (C ) to a finite-dimensional 

(p-dimensional) vector. This provides a finite representation of each cluster in R p  (as 

opposed to a vector in the infinite-dimensional H K), it retains linearity properties, and it 

allows for fast computation of distance between two clusters. Second, we normalize < (C ) 

to remove any information about the size of the cluster; retaining only spatial information. 

This property becomes critical for consensus clustering.

3.3.1 A pproxim ate L ifting M ap <

The lifted representation < (x) is the key to the representation of clusters and partitions, 

and its computation plays a critical role in the overall complexity of the distance computa­

tion. For kernels of interest (like the Gaussian kernel), < (x ) cannot be computed explicitly, 

since the induced RKHS is an infinite-dimensional function space.

However, we can take advantage of the shift invariance of commonly occurring ker- 

nels2. For these kernels a random projection technique in Euclidean space defines an 

approximate lifting map <3? : X x  X  ^  R p  with the property that for any x, y G P,

||<i>(x) -  < (y) | 2 -  ll< (x) - < O O IIhK

where £ >  0 is an arbitrary user defined parameter, and p  =  p  (£). Notice that the approx­

imate lifting map takes points to £P with the standard inner product, rather than a general 

Hilbert space. The specific construction is due to Rahimi and Recht [2007] and analyzed 

by Joshi et al. [2011], to yield the following result:

2A kernel k(x, y) defined on a vector space is shift invariant if it can be written as k(x, y) = g(x -  y).
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T heorem  3.3.1 (Joshi e t al. [2011]) Given a set o f  n points P  C X, shift invariant kernel 

K : X  x X  ^  R  and any e > 0, there exists a map <3?: X  x X  ^  R p , p  =  O ((1 /e 2 ) logn),

such that fo r  any x, y  E P, | |< (x) -  <  (y) | | 2 -  | |< (x) -  < (y ) \ \ H KK < e .

The actual construction is randomized and yields a <  as above with probability 1 — 8 , 
2

where p  =  O ((1 /e 2 ) lo g (n /8 )). For any x, constructing the vector < (x) takes O (p ) time.

3.3.2 N orm alizing < (C )

The lifting map < is linear with respect to the weights of the data points, while being 

nonlinear in its location. Since < (C ) =  I ^ c w (x)< (x), this means that any scaling of the 

vectors < (x) translates directly into an uniform scaling of the weights of the data, and does 

not affect the spatial positioning of the points. This implies that we are free to normalize the 

cluster vectors < (C ), so as to remove the scale information, retaining only, and exactly, the 

spatial information. In practice, we will normalize the cluster vectors to have unit length; 

let

<  ( C )=  < (C )/||< (C )H h k .

Figure 3.2 shows an example of why it is important to compare RKHS representations 

of vectors using only their spatial information. In particular, without normalizing, small 

clusters C will have small norms ||< (C ) \ h k , and the distance between two small vectors 

||< (C 1 ) — <(C2)  | | h k is at most | |< (C 2 ) ||h k +  ll<(C2 ) IIh k . Thus all small clusters will 

likely have similar unnormalized RKHS vectors, irrespective of spatial location.

3.3.3 C om puting  the D istance Between C lusters

For two clusters C, C , we defined the distance between them as

d  (C, C ') =  Yk  (p(C ), p (C ')) .

Since the two distributions p(C) and p(Cr) are discrete (defined over |C| and |C; | 

elements, respectively), we can use (3.2.1) to compute d(C,Cr) in time O(|C| ■ |C/ 1). While 

this may be suitable for small clusters, it rapidly becomes expensive as the cluster sizes 

increase.

If we are willing to approximate d(C, Cr), we can use Theorem 3.3.1 combined with

the implicit definition of d(C,Cr) as ||< (C ) — < (Cf) . Each cluster C is represented as
k
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Figure 3.2. Two partitions P 1 =  {A 1 , B 1 } and P 2  =  {A 2 , # 2 , C2  } of the same dataset, and 
a 2-d visualization of all of their representations in a RKHS. Note that the unnormalized 
vectors (on the left) have ^ ( # 1) far from ^ ( B ^ )  and ^ (C 2 ) even though the second two 
are subsets of the first. The normalized vectors (on the right) have <!>(#1) close to both 
i>(# 2 ) and i>(C2 ). In particular, ^ (C 2 ) is closer to ^ ( A ^  than ^ ( # 1), but (C2 ) is much 
closer to <!>(#1) than <!>(A1).

a sum of |C| p-dim ensional vectors and can be computed in O (|C |p ) time. The £2  distance 

between the resulting vectors can be computed in O (p ) time. The following approximation 

guarantee on d(C, C ') then follows from the triangle inequality and an appropriate choice 

of £. For any two clusters C, C ' and any £ >  0, d(C, C ') can be approximated to within an 

additive error £ in time O ((|C | +  |C '|)p ) time, where p  =  O ((1 /£ 2 )logn).

3 .4  N e w  D is ta n c e s  b e tw e e n  P a r t i t i o n s

Let P  =  {C1 ,C2 , . . .}  and P ' =  {C^,C2, . . .}  be two different partitions of P  with 

associated representations $ (P )  =  { ^ (C 1) ,^ (C 2 ) , . ..}  and $ ( P ')  =  { ^ (C ^ ), ^ (C 2 ) , . . .} .  

Similarly, 4>(P) =  {i>(C1),4>(C2) , . . .}  and <£(P ')  =  { i> (C ') , 4>(C2) ,. . .} .  Since the two
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representations are sets of points in a Hilbert space, we can draw on a number of techniques 

for comparing point sets from the world of shape matching and pattern analysis.

We can apply the transportation distance d ^  on these vectors to compare the partitions, 

treating the partitions as distributions. In particular, the partition P  is represented by the 

distribution

£  TP[ ■ %  (C), (3A 1)
4> (C)e4> (P) 1 1

where 8(j )(c )  is a Dirac delta function at <I>(C) e  H K and H K  is the underlying metric. We 

will refer to this metric on partitions as

L if t E M D (P, P ')  =  dT (4> (P), <£ (P ')) . (3.4.2)

3.4.1 A n Exam ple, C ontinued

Once again, we can simulate the loss of spatial information by using the discrete kernel 

as in Section 3.2.2. The transportation metric is computed (see Section 3.2.1) by mini­

mizing a functional over all partial assignments f  (x,y). If we set f  (C, C ') =  |C n  C '|/n  

to be the fraction of points overlapping between clusters, then the resulting transportation 

cost is precisely the Rand distance between the two partitions! This observation has two 

implications. First, that standard distance measures between partitions appear as special 

cases of this general framework. Second, L if t EM D (P, P ')  will always be at most the 

Rand distance between P  and P '.

We can also use other measures. Let

dH  (^ (P ) , $ (P ' ) ) =  max min ||v — w |H K  • (3A 3)
v e ^ ( P )  w e ^ ( P ')

Then the Hausdorff distance [Chew et al., 1997] is defined as

dH ( $ ( P ) ,$ ( P ') )  =  max (dH  ( $ ( P ) , ^ ( P '^  ,dH  ( ^ ( P ' ) , ^ ( P ^ )  • (3.4.4)

We refer to this application of the Hausdorff distance to partitions as

L if t H (P , P ')  =  dH  (<l> (P), <!> (P ')) . (3.4.5)

We could also use our lifting map again. Since we can view the collection of points 

$ (P )  as a spatial distribution in H K  (see (3.4.1)), we can define yK' in this space as well,
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with Kf again given by any appropriate kernel (for example, K (v, w) =  exp( - 1v -  w 11 ̂  ).
K

We refer to this metric as

L if tK D (P , P ')  =  j K, (<  (P), <  (P ')) . (3.4.6)

3.4.2 C om puting the D istance Between Partitions

The approximate lifting map <  is efficient in two ways. First, it is fast to generate 

a representation of a cluster C (O (|C |p ) time), and second, it is easy to estimate the 

distance between two clusters (O (p ) time). This implies that after a linear amount of 

processing, all distance computations between partitions depend only on the number of 

clusters in each partition, rather than the size of the input data. Since the number of 

clusters is usually orders of magnitude smaller than the size of the input, this allows us 

to use asymptotically inefficient algorithms on < (P) and < (P ')  that have small overhead, 

rather than requiring more expensive (but asymptotically cheaper in k) procedures. Assume 

that we are comparing two partitions P, P ' with k and k ' clusters, respectively. L if tE M D  

is computed in general using a min cost flow formulation of the problem, which is then 

solved using the Hungarian algorithm. This algorithm takes time O((k  +  k ')3 ). While 

various approximations of d j  exist [Indyk and Thaper, 2003; Shirdhonkar and Jacobs, 

2008], the exact method suffices for our setting for the reasons mentioned above.

It is immediately clear from the definition of L i f tH  that it can be computed in time 

O(k  ■ k ') by a brute force calculation. A similar bound holds for exact computation of 

L if tK D . W hile approximations exist for both of these distances, they incur overhead that 

makes them inefficient for small k.

3 .5  C o m p u t in g  C o n s e n s u s  P a r t i t i o n s

As an application of our proposed distance between partitions, we describe how to 

construct a spatially aware consensus from a collection of partitions. This method reduces 

the consensus problem to a standard clustering problem, allowing us to leverage the exten­

sive body of work on standard clustering techniques. Furthermore, the representations of 

clusters as vectors in R p  allows for very concise representation of the data, making our 

algorithms extremely fast and scalable.
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3.5.1 A R eduction from  Consensus F inding to C lustering

Our approach exploits the linearity of cluster representations in H K , and works as 

follows. Let P 1 , P 2 , . . .  P m be the input (hard or soft) partitions of P. Under the lifting map 

< , each partition can be represented by a set of points { < (P f)} in H K. Let Q =  |Jf < (P f)  

be the collection of these points.

A (soft) consensus k-partition of P 1 , P 2 ,--- P m is a partition P con of Uf Pf into k clus­

ters { C j , . . . ,  Cj } that minimizes the sum of squared distances from each <  (Cf , j ) G <  (P f) 

to its associated < (Cj ) G P con. Formally, for a set of k vectors V =  {v1 , . . . ,  Vk} C H K 

define
|C* * | 2

LIFT-SSD({P,}, V) =  £  - f j  m i n i ( C f , j ) -  v H
Ci,j-eUiP i n vgV H k

and then define Pcon as the minimum such set

Pcon =  argmin LlFT-SSD ({Pf }f, V *).
V * = { v*,...,v*}g H k

How do we interpret P con? Observe that each element in Q is the lifted representation 

of some cluster Ci, j  in some partition P i , and therefore corresponds to some subset of P. 

Consider now a single cluster in P con. Since H K is linear and P con minimizes distance 

to some set of cluster representatives, it must be in their linear combination. Hence it can 

be associated with a weighted subset of elements of ^ (P ) ,  and is hence a soft partition. It 

can be made hard by voting each point x G P  to the representative C j G P con for which it 

has the largest weight. Figure 3.3 shows an example of three partitions, their normalized 

RKHS representative vectors, and two clusters of those vectors.

3.5.2 A lgorithm

We will use the approximate lifting map <3? in our procedure. This allows us to operate 

in a p-dim ensional Euclidean space, in which there are many clustering procedures we 

can use. For our experiments, we will use both k-means and hierarchical agglomerative 

clustering (HAC). That is, let L ift -K m  be the algorithm of running k-means on IJf < (Pf), 

and let L if t -HAC be the algorithm of running HAC on (Jf < (Pf). For both algorithms, 

the output is the (soft) clusters represented by the vectors in < ( P con). Our results will 

show that the particular choice of clustering algorithm (e.g., L ift -K m  or L ift -HAC) is



34

♦  p

... P  V  V

2 c T t t «  
♦  V  v v

P

. % * * *  

•4 3 #  c v  ,  ^

p Cs)

\® (As) A  
^ x

----N
V  $(Bs) \

1 T I 
— $(B2) J

/ I  ---------- --/ f t // / / /
/v

Figure 3.3. Three partitions P i  =  [ A^ , B j} , P 2  =  {A2 , C 2 }, P 3 =  {A3 ,B3 ,C3 }, 
and a 2-d visualization of the RKHS vectors. These vectors are then clus­
tered into k =  2  consensus clusters consisting of {*>(A j) ,4 (A2 ) , * (A 3 )} and 
{ *  (Bj) ,  4  (B2 ), *  (C2 ), *  (B3 ), *  (C3 )}.

not crucial. There are multiple methods to choose the right number of clusters and we can 

employ one of them to fix k for our consensus technique. Algorithm 1 summarizes our 

consensus procedure.

3.5.2.1 C ost analysis. Computing Q takes O(mnp ) =  O(mn logn) time. Let |Q| =  s. 

Computing P con is a single call to any standard Euclidean algorithm like k-means that 

takes time O(skp ) per iteration, and computing the final soft partition takes time linear in 

n(p  +  k) +  s. Note that in general we expect that k, s ^  n. In particular, when s <  n and m 

is assumed constant, then the runtime is O(n(k  +  logn)).
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Algorithm 1 Consensus finding
Input: (soft) partitions Pm of P, kernel function K
Output: consensus (soft) partition Pcon

1: Set Q =  (Pi).
2: Compute V * =  {v^,. ..  v*} C H K to minimizes Lift-SSD(Q, V *).

(Via k-means for Lift-Km or HAC for Lift-HAC)
3: Assign each p  E P  to the cluster Ci E Pcon associated with the vector v* E V*

• for which (< (p), vi) is maximized for a hard partition, or
• with weight proportional to (< (p), vi) for a soft partition.

4: Output Pcon.

3 .6  E x p e r im e n ta l  E v a lu a t io n
In this section we empirically show the effectiveness of our distance between partitions, 

LiftEMD and LiftKD, and the consensus clustering algorithms that conceptually follow, 
Lift-Km and Lift-HAC.

3.6.1 Data
2We created two synthetic datasets in R , namely 2D2C for which data is drawn from

two Gaussians to produce two visibly separate clusters and 2D3C for which the points
are arbitrarily chosen to produce three visibly separate clusters. We also use five different
datasets from the University of California, Irvine (UCI) machine learning repository [Frank
and Asuncion, 2010] (Wine, Ionosphere, Glass, Iris, Soybean) with various numbers of
dimensions and labeled data classes. To show the ability of our consensus procedure and
the distance metric to handle large data, we use both the training and test data of the
mixed national institute of standards and technology (MNIST) database of handwritten

784digits which has 60,000 and 10,000 examples, respectively, in R /0 .

3.6.2 Methodology
We will compare our approach with the partition-based measures, namely Rand dis­

tance and Jaccard distance and information theoretic measures, namely normalized mutual 
information and normalized variation of information [Wagner and Wagner, 2007], as well 
as the spatially aware measures Da d c O [Bae et al., 2010] and CD istance [Coen et al., 
2010]. We ran k-means, single-linkage, average-linkage, complete-linkage and Ward’s 
method [Tan et al., 2005] on the datasets to generate input partitions to the consensus
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clustering methods. We use accuracy [Ding and Li, 2007] and Rand distance to measure the 
effectiveness of the consensus clustering algorithms by comparing the returned consensus 
partitions to the original class labeling. We compare our consensus technique against a few 
hypergraph partitioning based consensus methods: cluster-based similarity partitioning al­
gorithm (CSPA), hypergraph partitioning algorithm (HGPA) and metaclustering algorithm 
(MCLA) [Strehl and Ghosh, 2003]. For the MNIST data we also visualize the cluster 
centroids of each of the input and consensus partitions in a 28x28 grayscale image.

Accuracy studies the one-to-one relationship between clusters and classes; it measures 
the extent to which each cluster contains data points from the corresponding class. Given 
a set P of n elements, consider a set of k clusters P =  {Cj_,. . . , Ck} and m > k classes 
L =  {L1 , . . . ,  Lm} denoting the ground truth partition. Accuracy is expressed as

k |Cf n L y  ( f) 1
A(P, L) =  max £ -------- ,y  :[1:kH [1:m] ; =1  n

where y  assigns each cluster to a distinct class. The Rand distance counts the fraction 
of pairs, which are assigned consistently in both partitions, as in the same or in different 
classes. Let Rs (P, L) be the number of pairs of points that are in the same cluster in both 
P and L, and let Rd (P, L) be the number of pairs of points that are in different clusters in 
both P and L. Now we can define the Rand distance as

R(P,L) =  1 -  RS(P , L ) + RD (P , l )

3.6.3 Code
We implement <  as the random projection feature map [Joshi et al., 2011] in C to lift 

each data point into R p . We set p =  200 for the two synthetic datasets 2D2C and 2D3C 
and all the UCI datasets. We set p =  4000 for the larger datasets, MNIST training and 
MNIST test. The same lifting is applied to all data points, and thus all clusters.

The LiftEMD, LiftKD, and LiftH distances between two partitions P and P; are 
computed by invoking brute force transportation distance, kernel distance, and Hausdorff 
distance on < (P), < (P;) C Rp representing the lifted clusters.

To compute the consensus clustering in the lifted space, we apply k-means (for Lift- 
Km) or HAC (for Lift-HAC) (with the appropriate numbers of clusters) on the set Q C Rp
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of all lifted clusters from all partitions. The only parameters required by the procedure are 
the error term e (needed in our choice of p ) associated with < , and any clustering-related 
parameters.

We used the cluster analysis functions in MATLAB with the default settings to generate 
the input partitions to the consensus methods and the given number of classes as the number 
of clusters. We implemented the algorithm provided by the authors [Bae et al., 2010] in 
MATLAB to compute Da d c O. To compute CD istance, we used the code provided by 
the authors [Coen et al., 2010]. We used the ClusterPack MATLAB toolbox [Strehl, Strehl] 
to run the hypergraph partitioning based consensus methods CSPA, HGPA and MCLA.

3.6.4 Spatial Sensitivity
We start by evaluating the sensitivity of our method. We consider three partitions: the 

reference partition (RP), and manually constructed first and second partitions (FP and SP) 
for the datasets 2D2C (see Figure 3.1) and 2D3C (see Figure 3.4). For both the datasets, 
the reference partition is, by construction, spatially closer to the first partition than the 
second partition, but each of the two partitions are equidistant from the reference under any 
partition-based and information theoretic measures. Table 3.1 shows that in each example, 
our measures correctly conclude that RP is closer to FP than it is to SP.

3.6.5 Efficiency
We compare our distance computation procedure to C D istance . We do not compare 

against D ADCO and CC because they are not well founded.
Both L iftEM D  and C D istan ce  compute dT  between clusters after an initial step 

of either lifting to a feature space or computing dT  between all pairs of clusters. Thus 
the proper comparison, and runtime bottleneck, is the initial phase of the algorithms; 
L iftEM D  takes O(n log n) time, whereas C D istan ce  takes O(n3) time. Table 3.2 sum­
marizes our results. For instance, on the 2D3C dataset with n =  24, our initial phase takes
1.02 milliseconds, and CDlSTANCE’s initial phase takes 2.03 milliseconds. On the Wine 
dataset with n =  178, our initial phase takes 6.9 milliseconds, while CDlSTANCE’s initial 
phase takes 18.8 milliseconds. As the dataset size increases, the advantage of L iftEM D  
over C D is tan ce  becomes even larger. On the MNIST training data with n =  60,000, 
our initial phase takes a little less than 30 minutes, while CDlSTANCE’s initial phase takes
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Figure 3.4. Different partitions ((a) RP, (b) FP and (c) SP) of 2D3C dataset.

Table 3.1. Comparing partitions: each cell indicates the distance returned under the 
methods along the rows for the dataset in the column. Spatially, the left column of each 
dataset (2D2C or 2D3C) should be smaller than the right column; this holds for all five 
spatial measures/algorithms tested. In all cases, the two partition-based measures and the 
two information theoretic measures yield the same values for d(RP, FP) and d(RP, SP), but 
are not shown.

Technique
Dataset 2D2C Dataset 2D3C

d(RP,FP) d(RP,SP) d(RP,FP) d(RP,SP)
d a d c o 1.710 1.780 1.790 1.820
CD istance 0.240 0.350 0.092 0.407
LiftEMD 0.430 0.512 0.256 0.310
LiftKD 0.290 0.325 0.243 0.325
LiftH 0.410 0.490 1.227 1.291



39

Table 3.2. Comparison of runtimes: distance between true partition and partition generated 
by k-means)

Dataset Number of points Number of dimensions CDistance LiftEMD
2D3C 24 2 2.03 ms 1.02 ms
2D2C 45 2 4.10 ms 1.95 ms
Wine 178 13 18.80 ms 6.90 ms
MNIST test data 10,000 784 1360.20 s 303.90 s
MNIST training data 60,000 784 202681s 1774.20 s

more than 56 hours.

3.6.6 Consensus Clustering
We now evaluate our spatially aware consensus clustering method. We do this first by 

comparing our consensus partition to the reference solution based on using the Rand dis­
tance (i.e., a partition-based measure) in Table 3.3. Note that for all datasets, our consensus 
clustering methods (Lift-Km and Lift-HAC) return answers that are almost always as 
close as the best answer returned by any of the hypergraph partitioning based consensus 
methods, CSPA, HGPA, or MCLA. We get very similar results using the accuracy [Ding 
and Li, 2007] measure in place of Rand.

In Table 3.4, we then run the same comparisons, but this time using L iftEMD (i.e., 
a spatially aware measure). Here, it is interesting to note that in all cases (with the slight 
exception of Ionosphere) the distance we get is smaller than the distance reported by the 
hypergraph partitioning based consensus methods, indicating that our method is returning a 
consensus partition that is spatially closer to the true answer. The two tables also illustrate 
the flexibility of our framework, since the results using L ift-Km and Lift-HAC are 
mostly identical (with one exception being IRIS under LiftEMD).

To summarize, our method provides results that are comparable or better on partition- 
based measures of consensus, and are superior using spatially aware measures. The running 
time of our approach is comparable to the best hypergraph partitioning based approaches, 
so using our consensus procedure yields the best overall result.

We also run consensus experiments on the MNIST test data and compare against CSPA



40

Table 3.3. Comparison of Lift-Km and Lift-HAC with hypergraph partitioning based 
consensus methods under the Rand distance (with respect to ground truth). The numbers 
are comparable across each row corresponding to a different dataset, and smaller numbers 
indicate better accuracy. The top two methods for each dataset are highlighted.

Dataset CSPA HGPA m c l a Lift-Km Lift-HAC
IRIS 0.088 0.270 0.115 0.114 0.125
Glass 0.277 0.305 0.428 0.425 0.430
Ionosphere 0.422 0.502 0.410 0.420 0.410
Soybean 0.188 0.150 0.163 0.150 0.154
Wine 0.296 0.374 0.330 0.320 0.310
MNIST test data 0.149 - 0.163 0.091 0.110

Table 3.4. Comparison of Lift-Km and Lift-HAC with hypergraph partitioning based 
consensus methods under LiftEMD (with respect to ground truth). The numbers are 
comparable across each row corresponding to a different dataset, and smaller numbers 
indicate better accuracy. The top two methods for each dataset are highlighted.

Dataset CSPA HGPA m c l a Lift-Km L ift-HAC
IRIS 0.113 0.295 0.812 0.106 0.210
Glass 0.573 0.519 0.731 0.531 0.540
Ionosphere 0.729 0.767 0.993 0.731 0.720
Soybean 0.510 0.495 0.951 0.277 0.290
Wine 0.873 0.875 0.917 0.831 0.842
MNIST test data 0.182 - 0.344 0.106 0.112

and MCLA. We do not compare against HGPA since it runs very slow for the large MNIST 
datasets (n =  10,000); it has quadratic complexity in the input size, and in fact, the authors 
do not recommend this for large data.

Figure 3.5 provides a visualization of the cluster centroids of input partitions gener­
ated using k-means, complete linkage HAC and average linkage HAC and the consensus 
partitions generated by CSPA and L ift-Km .

From the k-means input, only five clusters can be easily associated with digits (“0”, 
“3”, “6”, “8”, “9”); from the complete linkage HAC input, only seven clusters can be easily 
associated with digits (“0”, “1”, “3”, “6”, “7”, “8”, “9”); and from the average linkage HAC 
output, only six clusters can be easily associated with digits (“0”, “1”, “2”, “3”, “7”, “9”). 
The partition that we obtain from running CSPA lets us identify up to six digits (“0”, “1”,
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Figure 3.5. 28x28 pixel representation of the cluster centroids for MNIST test input 
partitions generated using (a) k-means, (b) complete linkage HAC, and (c) average linkage 
HAC, and the consensus partitions generated by (d) CSPA and (e) Lift-Km .

“2”, “3”, “8”, “9”). In these cases, there occurs cases where two clusters seem to represent 
the same digit. In contrast, we can identify nine digits (“0”, “1”, “2”, “3”, “4”, “5”, “7”, 
“8”, “9”) with only the digit (“6”) being noisy from our Lift-K m  output.

3.6.7 E rror in 4>
There is a tradeoff between the desired error e in computing L iftEM D  and the number 

of dimensions p needed for 4>. Our empirical evaluations show that setting p between 100 
and 1000 suffices to bring the error in L iftEM D  down to e =  0.005 or less on a variety of 
datasets. Figure 3.6 shows the error as a function of p on the 2D2C dataset (n =  45). From 
the chart, we can see that p =  100 dimensions suffice to yield a very accurate approximation 
for the distances. Figure 3.7 shows the error as a function of p on the MNIST training 
dataset that has n =  60, 000 points. From the chart, we can see that p =  4, 000 dimensions 
suffice to yield a very accurate approximation for the distances.

3 .7  S u m m a ry
We provide a well founded spatially aware metric between partitions based on a RKHS 

representation of clusters that captures the true properties that lead to the formation of clus­
ters in the first place. We also introduce a spatially aware consensus clustering formulation 
using this representation that reduces to Euclidean clustering, thus allowing us to leverage 
all the research in clustering to run a consensus. We demonstrate that our algorithms are 
efficient and are comparable to or better than prior methods.
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Figure 3.6. Error in LiftEMD on 2D2C dataset (45 samples) as a function of p .

Figure 3.7. Error in LiftEMD on MNIST training data (60,000 samples) as a function of 
p.



CHAPTER 4
G E N E R A T IN G  T H E  L A N D S C A P E  O F  

P A R T IT IO N S 1

When one partition is not good enough to understand the structures present in the data, 
data miners look to uncover more partitions. We illustrate this idea with an illustration 
(see Figure 4.1) of different partitions on a subset of the multimedia information retrieval 
flickr (MIRFLICKR-25000) [Huiskes and Lew, 2008] dataset. Each clustering method 
identifies different kinds of structure in data, reflecting different desires of the end user. 
Thus, when used as an exploratory tool for data analysis, there is a need to identify a 
diverse and meaningful collection of partitions of a dataset, in the hope that these distinct 
partitions will yield different insights about the underlying data. A common metaclustering 
problem is alternative clustering [Caruana et al., 2006; Dang and Bailey, 2010a,b; Gondek 
and Hofmann, 2004; Jain et al., 2008; Qi and Davidson, 2009] where the goal is to generate 
many nonredundant partitions of good quality. In general, the alternative clustering meth­
ods employ one of the distances discussed above, as well as external notions of quality. 
Most algorithms for generating alternative partitions operate as follows. Generate a single 
partition using a clustering algorithm of choice. Next, find another partition that is both far 
from the first partition and of high quality. Most methods stop here, but a few methods try 
to discover more alternative partitions; they repeatedly find new, yet high quality, partitions 
that are far from all existing partitions.

The input to our problem is a single dataset X. The output is a set of k partitions of X . 
A partition of X is a set of subsets Xj =  (Xj 1 , Xj 2 , . . . ,  Xj s } where X =  ( J j _  Xj j  and 
for all j  , j r Xj j  n Xj j  =  0. Let P x  be the space of all partitions of X; since X is fixed 
throughout the discussions in this chapter, we just refer to this space as P.

1Reprinted with permission of CEUR-WS, 2011, Jeff M. Phillips, Parasaran Raman, and Suresh Venkata- 
subramanian, Generating a Diverse Set of High-Quality Clusterings. 2nd MultiClust Workshop: Discovering, 
Summarizing and Using Multiple Clusterings, Vol. 772, Pages 81-90.
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Figure 4.1. Three possible partitions based on (a) object contained, (b) dominant color, and 
(c) type of lens used on a subset of MIRFLICKR-25000 dataset. All images are offered 
under creative commons copyright licenses.
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There are two quantities that control the nature of the partitions generated. The quality 
of a partition, represented by a function Q : P ^  R + , measures the degree to which a par­
ticular partition captures intrinsic structure in data; in general, most clustering algorithms 
that identify a single partition attempt to optimize some notion of quality. The distance 
between partitions, represented by the function d : P x P ^  R, is a quantity measuring how 
dissimilar two partitions are. The partitions Xj G P that do a better job of capturing the 
structure of the dataset X will have a larger quality value Q(Xj). The partitions Xj , Xj/ G P 
that are more similar to each other will have a smaller distance value d(Xj , Xj/ ). A good 
set of diverse partitions all have large distances from each other and all have high quality 
scores.

Thus, the goal here is to generate a set of k partitions that best represent all high quality 
partitions as accurately as possible.

4.1 O v e rv iew  o f O u r  W o rk
To generate multiple good partitions, we present a new paradigm which decouples the 

notion of distance between partitions and the quality of partitions. Prior methods that 
generate multiple diverse partitions cannot explore the space of partitions entirely since 
the distance component in their objective functions biases against partitions close to the 
previously generated ones. These could be interesting partitions that might now be left out. 
Also, the methods which use both the quality and the distance term in the objective function 
suffer from the problem of tradingoff between two incomparable terms. To avoid this, we 
will first look at the space of all partitions more thoroughly and then pick nonredundant 
partitions from this set. Let k be the number of diverse partitions that we seek. Our 
approach works in two steps.

1. Generation step: we first sample from the space of all partitions proportional to 
their quality. Stirling numbers of the second kind, S(n,s) are the number of ways 
of partitioning a set of n elements into s nonempty subsets. Therefore, this is the size 
of the space that we sample from. We illustrate the sampling in Figure 4.2. This 
generates a set of size m »  k to ensure we get a large sample that represents the 
space of all partitions well. We generate a conservative number of samples to avoid 
“accidentally” missing some high quality region of P.
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Figure 4.2. Sampling partitions proportional to its quality from the space of all partitions 
with s clusters.

2. Grouping step: we cluster this set of m partitions into k sets, resulting in k clusters 
of partitions. We then return one representative from each of these k clusters as our 
output alternative partitions.

Note that because the generation step is decoupled from the grouping step, we treat all 
partitions fairly, independent of how far they are from the existing partitions. This allows 
us to explore the true density of high quality partitions in P without interference from 
the choice of initial partition. Thus, if there is a dense set of close interesting partitions 
our approach will recognize that. Apart from helping us to understand the landscape of 
the partitions of the given dataset, this can also provide different statistical insights like 
the number of modes present in the data and the “clusterability” of the data. Since the 
grouping step is run separate from the generation step, we can abstract this problem to a 
generic clustering problem and we can choose one of many approaches. This allows us 
to capture different properties of the diversity of partitions and understand the structure of 
the landscape of partitions. Also, this allows the user to pick a distance measure of choice 
either guided just by the spatial distance between partitions, or also by a density-based 
distance which only takes into account the number of high quality partitions assigned to a 
cluster.
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From our experimental evaluation, we note that decoupling the generation step from 
the grouping step helps as we are able to generate a lot of very high quality partitions. In 
fact, the quality of some of the generated partitions is better than the quality of the partition 
obtained by a consensus clustering technique called liftSSD [Raman et al., 2011]. The 
relative quality with respect to the reference partition of a few generated partitions even 
reach close to one. To our best knowledge, such partitions have not been uncovered by 
other previous metaclustering techniques. The grouping step also picks out representative 
partitions faraway from each other. We observe this by computing the closest-pair distance 
between representatives and comparing it against the distance values of the partitions to 
their closest representative.

4.1.1 Comparison to Prior Work
The existing literature in alternative clustering focuses on generating one additional 

partition of high quality that should be far from a given set (typically of size one) of existing 
partitions.

Most algorithms for generating alternative partitions operate as follows. Generate a 
single partition using a clustering algorithm of choice. Next, find another partition that is 
both far from the first partition and of high quality. Most methods stop here, but a few 
methods try to discover more alternative partitions; they repeatedly find new, still high 
quality, partitions that are far from all existing partitions. However, because of the way the 
objective function is formulated these procedures often suffer a loss in the quality of the 
partitions generated due to the constraints. Although there are a few other methods that try 
to discover alternative partitions simultaneously [Jain et al., 2008; Niu et al., 2010], they are 
usually limited to discovering two partitions of the data. In both cases, these subproblems 
avoid the full objective of constructing a diverse set of partitions that explore and represent 
the landscape of all high quality partitions.

The existing alternative clustering approaches are often too reliant on the initial partition 
and only have limited success in generalizing the initial step to generate k partitions. In the 
second approach to selecting diverse partitions from an input collection of partitions, there 
is no way to verify that the input represents the space of all high quality partitions, so a 
representative set of those input partitions is not necessarily a representative set of all high 
quality partitions.
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4.1.2 Outline
In Section 4.2, we discuss a sampling-based approach for generating many partitions 

proportional to their quality; i.e., the higher the quality of a partition, the more likely it 
is to be sampled. In Section 4.3, we describe how to choose k representative partitions 
from the large collection of partitions already generated. We will present the results of our 
approach in Section 4.4. We have tested our algorithms on a synthetic dataset, a standard 
clustering dataset from the UCI repository and a subset of images from the extended Yale 
face database B.

4 .2  G e n e ra t in g  M a n y  H ig h  Q u a li ty  P a r t i t io n s
In this section we describe how to generate many high quality partitions. This requires 

(1) a measure of quality and (2) an algorithm that generates a partition with probability 
proportional to its quality.

4.2.1 Quality of Partitions
Most work on clustering validity criteria looks at a combination of how compact clus­

ters are and how separated two clusters are. Some of the common measures that fol­
low this theme are SDbw, CDbw, SD validity index, maximum likelihood, and Dunn 
index [Aldrich, 1997; Dave, 1996; Dunn, 1974; Halkidi and Vazirgiannis, 2001; Halkidi 
et al., 2000; MacKay, 2002; Milligan and Cooper, 1985; Theodoridis and Koutroumbas, 
2006]. Ben-David and Ackerman [2008] also discuss similar notions of quality, namely 
VR (variance ratio) and WPR (worst pair ratio) in their study of clusterability. We briefly 
describe a few specific notions of quality below.

4.2.1.1 K-means quality. If the elements x e  X belong to a metric space with an 
underlying distance 8 : X x X ^  R and each cluster Xj j  in a partition Xj is represented 
by a single element Xj, then we can measure the inverse quality of a cluster by q(Xj j ) =  

2I x e X -  • 8 (x, Xj )2. The quality of the entire partition is then the inverse of the sum of the *>j •'
inverse qualities of the individual clusters,

Qkm(Xi) =  1/( E « ( X ; , j )). (4.K.1)
j = 1
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This corresponds to the quality optimized by s-means clustering2, which is quite common, 
but is susceptible to outliers. If all but one element of X fit neatly in s clusters, but the 
one remaining point is faraway, then this one point dominates the cost of the clustering, 
even if it is effectively noise. Specifically, the quality score of this measure is dominated 
by the points which fit least well in the clusters, as opposed to the points which are best 
representative of the true data. Hence, this quality measure may not paint an accurate 
picture about the partition.

4.2.1.2 Kernel distance quality. We introduce a method to compute quality of a 
partition, based on the kernel distance [Joshi et al., 2011]. Here we start with a similarity 
function between two elements of X, typically in the form of a (positive definite) kernel: K : 
X x X ^  R +. K(xu,xv) is smaller when xu, xv E X  are less similar, and takes a maximum 
value of 1 when xu =  xv . Then the overall (normalized) similarity score between two 
clusters X,- j , X- • / E X , is defined byhJ I, J 1

K(x‘. j ’ V ) =  IX, -MX ,1 E E K(x-x ')’ (4-2.2)X J |-|X«,j' 1 xEX,,-x'EX, ,

and the self similarity of a single cluster X, j  E X, is defined by K(X, j , X, j ). Finally, the 
overall quality of a partition is defined by the equation,

Qw(X,) =  E  K(X,,j*,X ,,j). (4.2.3)
J= 1

This captures the compactness (also called the width) of each cluster. We also define 
another quality measure that captures both the compactness and separation (also called the 
split) between the clusters. This is defined as the difference between the square of the self 
similarity term and the cross similarity term,

s s s
Gw-s(X,-) =  [ E K (X,j,X , j )]2 -  E E K( X l j ,X ,j ). (4.2.4)

j = 1  <=1  j = 1

We use the square of the self similarity term to account for the fact that there are only s
2normalized similarity scores in the self similarity term while there are s of them in the

2It is commonplace to use k in place of s, but we reserve k for other notions in this chapter
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cross similarity term. Here the cross similarity terms account for the similarity between 
clusters and we subtract this to achieve a good separation between the clusters. We define 
these two notions of quality to understand the effect of the “right” quality function on the 
clustering landscape generation procedure.

If X is a metric space, the highest quality partitions divide X into s Voronoi cells around 
s points -  similar to s-means clustering. However, its score is dominated by the points 
which are a good fit to a cluster, rather than outlier points which do not fit well in any cluster. 
This is a consequence of how kernels like the Gaussian kernel taper off with distance and is 
the reason we recommend this measure of cluster quality in our experiments. We illustrate 
this property in Figure 4.3. It is important to note that the choice of the measure to compute 
the quality of the partition is not tied to the process of generating the partitions. However, 
we observe that good quality measures generate better partitions.

4.2.2 Generation of Partitions Proportional to Quality
We now discuss how to generate a sample of partitions proportional to their quality. 

This procedure will be independent of the measure of quality used, so we will generically 
let Q(Xi) denote the quality of a partition. Now the problem becomes to generate a set 
Z C P of partitions where each X̂  E Z is drawn randomly proportional to Q(Xj).

The standard tool for this problem framework is a Metropolis-Hastings (M-H) random 
walk sampling procedure [Hastings, 1970; Hoff, 2009; Metropolis et al., 1953]. Given a 
domain X to be sampled and an energy function Q : X ^  R, we start with a point x E X and 
suggest a new point x1 that is typically “near” x. The point x1 is accepted unconditionally 
if Q(x1) > Q(x) and is accepted with probability Q(x1)/Q(x) if not. Otherwise, we say 
that x 1 was rejected and instead set x1 =  x as the current state. After some sufficiently large 
number of such steps t , the expected state of xt is a random draw from P with probability 
proportional to Q. To generate many random samples from P this procedure is repeated 
many times.

In general, M-H sampling suffers from high autocorrelation, where consecutive samples 
are too close to each other. This can happen when faraway samples are rejected with high 
probability. To counteract this problem, often Gibbs sampling is used [Davidson, 2000; 
Roberts et al., 1997]. Here, each proposed step is decomposed into several orthogonal 
suggested steps and each is individually accepted or rejected in order. This effectively
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Figure 4.3. The kernel distance quality with a Gaussian kernel penalizes the outliers with 
the black points given much more importance than the gray ones.

constructs one longer step with a much higher probability of acceptance since each indi­
vidual step is accepted or rejected independently. Furthermore, if each step is randomly 
made proportional to Q, then we can always accept the suggested step, which reduces the 
rejection rate.

4.2.2.1 Metropolis-Hastings-Gibbs sampling for partitions. The M-H procedure 
for partitions works as follows. Given a partition X f, we wish to select a random subset 
W C X and randomly reassign the elements of W to different clusters. If the size of W is 
large, this will have a high probability of rejection, but if W is small, then the consecutive 
clusters will be very similar. Thus, we use a special case of the M-H procedure called 
Gibbs sampling. Gibbs sampling is a common method when the joint distribution is either 
not known or is difficult to sample from, but the conditional distribution of each variable 
is known. The samples form a Markov chain and approximate the joint distribution of the 
variables. At each step we choose a random ordering o  of the elements of X. Instead 
of probabilistically picking the next state all at once in the random walk, Gibbs sampling 
makes a separate probabilistic choice for each variable. Our separate probabilistic choice



52

at each step is the reassignment of each data point.
We start with the current partition Xj and choose the first element xG (j) G X. We assign 

xG (j) to each of the s clusters generating s suggested partitions Xj and calculate s quality 
j jscores qj =  Q(Xi). Note that we can divide each q j by L jQ (X i) thereby making the 

ratio of acceptance probabilities into actual probabilities. Finally, we select index j  with 
probability qj and assign xQ (j) to cluster j. Rename the new partition as Xj. We illustrate 
this procedure in Figure 4.4 with a partition consisting of three clusters. We repeat this for 
all points in order. Finally, after all elements have been reassigned, we set X^+j to be the 
resulting partition.

Note that autocorrelation effects may still occur since we tend to have partitions with 
high quality, but this effect will be much reduced. We run this entire procedure each time 
we need a new random sample. It is common in practice to run this procedure for some 
number tg (typically tg =  !000) of burn in steps, and then use the next m steps as m random 
samples from P. The rationale is that after the burn in period, the induced Markov chain is 
expected to have mixed. Therefore, each new step would yield a random sample from the 
stationary distribution and the correlation of the consecutive samples will dissipate over the 
m steps.

4 .3  G ro u p in g  th e  P a r t i t io n s
Having generated a large collection Z of size m »  k high quality partitions from P 

by random sampling, we now describe a grouping procedure that returns k representative 
partitions from this collection. We will start by placing a metric structure on P. This allows 
us to view the problem of grouping as a metric clustering problem where each “point” is 
a partition. Our approach is independent of any particular choice of metric; obviously, 
the specific choice of distance metric and clustering algorithm will affect the properties of 
the output set we generate. There are many different approaches to comparing partitions. 
Since our approach is independent of the particular choice of distance measure used, we 
review the main classes to give the user an idea of the various kinds of choices available to 
compare partitions.

L Membership-based distances. The most commonly used class of distances used to 
compare partitions is membership-based. These distances compute statistics about
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(c)

Figure 4.4. Gibbs sampling by reconfiguring a partition proportional to quality. The intial 
configuration is shown in (a), the three possible moves are explained in (b), and the final 
configuration is shown in (c).

the number of pairs of points which are placed in the same or different cluster in 
both partitions and return a distance based on these statistics. Common examples 
include the Rand distance, the variation of information, and the normalized mutual 
information [Ben-Hur et al., 2002; Meila, 2007; Rand, 1971; Strehl and Ghosh, 
2003]. While these distances are quite common, they ignore information about 
the spatial distribution of points within clusters, and so are unable to differentiate 
between partitions that might be significantly different.

2. Spatially sensitive distances. In order to rectify this problem, a number of spatially 
aware measures have been proposed. In general, they work by computing a concise 
representation of each cluster and then use the earthmover’s distance (EMD) [Givens 
and Shortt, 1984] to compare these sets of representatives in a spatially aware man­
ner. These include CDistance [Coen et al., 2010], [Bae et al., 2010], CC
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distance [Zhou et al., 2005], and LiftEMD [Raman et al., 2011]. LiftEMD has 
the benefit of being both efficient as well as a well founded metric and is the method 
used here.

3. Density-based distances. The partitions we consider are generated via a sampling 
process that samples more densely in high quality regions of the space of partitions. 
In order to take into account dense samples in a small region, we use a density 
sensitive distance that intuitively spreads out regions of high density. Consider two 
partitions X . and X./. Let d : P x P ^  R + be any of the above natural distances on 
P. Then let dZ : P x P ^  R + be a density-based distance defined as dZ(X X ./) =  
|{XZ e Z | d(X Xj) < d(X j, X )}|.

4.3.1 Clusters of Partitions
Once we have specified a distance measure to compare partitions, we can cluster them. 

See Figure 4.5 for a 2-dimensional visualization of picking nonredundant partitions from 
the landscape generated. We will use the notation 0 (X .) to denote the representative par­
tition X. is assigned to. The goal is to pick k representative partitions which are “diverse” 
from Z. We use two common clustering methods described below after computing the 
LiftEMD distance between all pairs of partitions.

1. We run average-linkage hierarchical agglomerative clustering on the distance matrix. 
Hierarchical clustering methods are suited for our problem since we have the dis­
tances matrix rather than the points themselves (since the “points” are the partitions). 
The algorithm starts by putting two clusters (of partitions) together whose average 
distance between the partitions contained in them is minimum. After the merging is 
complete, we make a cut in the dendogram to obtain the clusters at level k to obtain 
k clusters of partitions.

2. A simple algorithm by Gonzalez [1985] provides a 2-approximation to the best 
partition that minimizes the maximum distance between a point and its assigned 
center. The algorithm maintains a set of centers k; < k in C. The algorithm chooses 
X j e  Z with maximum value d(X 0 (X .)). It adds this partition X . to C and repeats 
until C contains k partitions. We then assign each of the remaining partitions to the 
closest of the k e  C partitions.
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■ Sampled partition

Figure 4.5. A 2-d illustration of the space of partitions. Each square is a sampled partition 
and there are four groups of partitions from which we pick one representative each.

Once we have the clusters of partitions, we pick the best quality partition from each 
cluster as the representative partition to ensure better overall quality. We run both the 
hierarchical clustering and the Gonzalez method using LiftEMD as the distance between 
partitions. Since these methods are independent of the choice of the distance measure used 
to compare the partitions, we can substitute LiftEMD with any other choice of distance 
between partitions. Also, the clustering methods that we use are picked because they are 
easy to run on the distance matrix. Since the only goal is to pick k faraway partitions, we 
can replace these choices with any clustering method that can take as input an all pairs 
distance matrix.

4 .4  E x p e r im e n ta l  E v a lu a t io n
In this section, we show the effectiveness of our technique in generating partitions of 

good divergence and its power to find partitions with very high quality, well beyond usual 
consensus techniques.

4.4.1 Data
We created a synthetic dataset 2D5C, shown in Figure 4.6 with 100 points in 2-dimensions, 

for which the data is drawn from five Gaussians to produce five visibly separate clusters. 
We also test our methods on the Iris dataset containing 150 points in 4-dimensions and the
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Figure 4.6. 2D5C dataset with 100 points in 2-dimensions.

Adult data containing 48842 points in 14-dimensions, both from the UCI machine learning 
repository [Frank and Asuncion, 2010]. We also use the extended Yale face database 
B [Georghiades et al., 2001], which has 38 individuals with approximately 64 frontal poses 
under different illumination scenarios. The images are resized to 32x32 pixels. Thus, the 
face dataset contains 2414 points in 1024-dimensions.

4.4.2 Methodology
For each dataset, we first run k-means to get the first partition with the same number 

of clusters specified by the reference partition. Using this as a seed, we generate m =  
5000 partitions, after throwing away the first 1000 of them. We report the results of the 
experiments using the Qw —s quality function as this performed much better compared 
to the Qw quality function. We then select a few representative partitions by one of the 
following two methods.

1. Run average-linkage hierarchical agglomerative clustering on the distance matrix of 
the partitions generated and pick a partition from each group after making a cut on 
the dendogram to obtain k < <  m clusters.

2. Run the Gonzalez k-center method to find k ^  m representative partitions.
We associate each of the (m — k) remaining partitions with the closest representative parti­
tion.
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Typically, we pick k =  10 partitions. We compute and report the quality of each of 
these representative partitions. We use Qw—s (the quality measure used to generate the 
partitions) and Rand index as an independent measure to evaluate the partitions generated. 
We measure the L iftEMD distance to each of these partitions from the reference partition 
as well as the average pair wise distance between the partitions generated. We compare 
these numbers to the representative partitions picked to evaluate the diversity in the context 
of the given landscape. We also plot the quality of consensus partitions generated by 
LIFTSSD [Raman et al., 2011] using inputs from k-means, single-linkage, average-linkage, 
complete-linkage, and Ward’s method. Since consensus clustering tries to compute the best 
quality partition from the inputs, this gives us a good reference point on how clusterable 
the data is by the individual clustering methods.

4.4.3 Performance Evaluation
4.4.3.1 Evaluating partition diversity. The first aspect that we focus on is how 

“diverse” the generated partitions are. We can evaluate partition diversity by determining 
the LiftEMD and Rand distance between all pairs of representative partitions. We can 
look at this in the context of the all pairs distances between all the generated partitions. Low 
LiftEMD and Rand distance values between representatives will indicate redundancy and 
that the partition in consideration is similar to other representatives. If two representatives 
have high LiftEMD and Rand distance values, it indicates good diversity among partition 
representatives.

The resulting distribution of distances of (a) the partitions generated and (b) the rep­
resentative partitions is presented in Figure 4.7. We plot the LiftEMD distance in Fig­
ures 4.7(a), 4.7(c), 4.7(e) and 4.7(g) for Iris, Adult, Yale face B and the 2D5C datasets 
respectively. We plot the Rand distance in Figures 4.7(b), 4.7(d), 4.7(f) and 4.7(h) for Iris, 
Adult, Yale face B and the 2D5C datasets, respectively.The blue shaded region corresponds 
to the area plot of the distribution of the all pairs distances of all the partitions generated, 
while the orange region plots the all pairs distance distribution for only the ten represen­
tative partitions picked. We expect that the representative partitions will be far from each 
other. Since distance measures suffer from calibration issues, the blue region provides 
a baseline. For all datasets, a majority of the representative partitions are comparably
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Figure 4.7. Stacked area plot comparing the distributions of all pairs distances of all 
generated partitions and the all pairs distances of the representative partitions. (a), (c), 
(e), and (g) show the LiftEMD distance and (b), (d), (f), and (h) show the Rand distance.
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faraway from each other (this is indicated by the orange region lying well to the right 
of the blue region). This indicates nice clusters of partitions in the landscape that we 
generated. In Figure 4.8, we plot the heat map of the all pairs LiftEMD distance matrix 
to show the separation between the representative partitions. We notice that the heat map 
is predominantly hot showing that the representative partitions are diverse.

4.4.3.2 Evaluating partition quality. Secondly, we would like to inspect the qual­
ity of the partitions generated. Since we intend the generation process to sample from the 
space of all partitions proportional to the quality, we hope for a majority of the partitions to 
be of high quality. The ratio between the kernel distance quality Qw_ s of a partition to that 
of the reference partition gives us a fair idea of the relative quality of that partition, with 
values closer to one indicating partitions of higher quality. We also compute the relative 
Rand index between each partition and the ground truth as an independent measure. The 
distribution of quality is plotted in Figure 4.9. We plot the kernel distance quality (Qw_ s) 
in Figures 4.9(a), 4.9(c), 4.9(e) and 4.9(g) for Iris, Adult, Yale face B and the 2D5C 
datasets, respectively. We plot the Rand index in Figures 4.9(b), 4.9(d), 4.9(f) and 4.9(h) 
for Iris, Adult, Yale face B and the 2D5C datasets, respectively.

We observe that for all the datasets, we get a normally distributed quality distribution. In 
addition, we compare the quality of our generated partitions against the partition generated 
by the consensus technique LIFTSSD. We mark the quality of the representative partitions 
with red squares and that of the consensus partition with a green circle. For instance, on the 
Iris dataset (Figure 4.9(a)), we can see that the relative quality with respect to the ground 
truth partition of over half of the representative partitions is better than that of the consensus 
partition. This demonstrates the value of our alternative clustering method to explore the 
landscape since the consensus partition would be the best partition that is available to us 
without looking at the entire landscape. For the Yale face B data, note that we have two 
reference partitions, namely “by person” and “by illumination” and we chose the partition 
“by person” as the reference partition due to its superior quality.

4.4.3.3 Visual inspection of partitions. First, we do a visual inspection of two 
partitions picked at random from the representative partitions generated using each of 
Qw and Qw—s quality functions. In Figure 4.10, we can see that the Qw—s quality 
function that captures both the compactness and separation of clusters produces visually
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Figure 4.8. Yale face B: heat map of the all pairs LiftEMD distance matrix of the 
representative partitions. Red regions correspond to faraway partitions and blue regions 
are similar partitions.

good clusters, whereas the partition that was generated using the quality function 
has overlapping clusters and is thus probably inferior. The average Rand index of the 
representative partitions generated using as the quality function is 0.92, whereas it
drops to 0.83 when is used. We use this to reiterate the importance of choosing the 
“right” quality measure. Since our sampling procedure is agnostic to the choice of quality 
measure chosen, the user can take advantage of the prior work on evaluating partitions to 
pick the right quality measure.

We also visualize the partitions obtained on Yale face B to demonstrate the ability of our 
method to be used as an exploratory data analysis tool. Figure 4.11 shows two interesting 
representative partitions. We visualize the mean of the data points of ten clusters that 
are picked at random from each representative partition. The first representative partition 
shown in Figure 4.11(a) resembles a partition where each cluster corresponds to the face 
of a different person and each cluster is of a different illumination level in the second 
representative partition (Figure 4.11(b)). Both of these partitions are interesting and good 
quality partitions and are very difficult to generate without looking at the landscape of all 
interesting partitions.
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Figure 4.9. Stacked area plot of the distribution of quality of all generated partitions. (a),
(c), (e), and (g) show Qw—s and (b), (d), (f), and (h) show the Rand index.
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(a) (b)

Figure 4.10. Visual illustration of two representative partitions generated with different 
quality functions (a) Qw and (b) Qw_ s on 2D5C data.

(a)

(b)

Figure 4.11. Visual illustration of average points of ten clusters in two interesting 
representative partitions on Yale face B. In (a), each cluster is a different person and in
(b), each cluster represents a different illumination level.
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4.5 S u m m a ry
In this chapter we introduced a new framework to generate multiple nonredundant 

partitions of good quality. Our approach is a two stage process: in the generation step, we 
focus on sampling a large number of partitions from the space of all partitions proportional 
to the quality and in the grouping step, we identify k representative partitions that best 
summarizes the space of all partitions.
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CHAPTER 5

V A L ID A T IN G  DATA M E M B E R S H IP S 1

Clustering generates predictions in the form of implicit labels for points. These pre­
dictions are used for exploration, data compression, and other forms of downstream data 
analysis, and so it is important to verify the accuracy of these labels. However, because 
of the unsupervised nature of clustering, there is no direct way to validate the data assign­
ments. As a consequence, a number of indirect approaches have been developed to validate 
a clustering at a global level [Halkidi et al., 2001; Xu and Wunsch, 2009]. These include in­
ternal, external and relative validation techniques, and methods based on clustering stability 
that assume a clustering (algorithm) is good if small perturbations in the input do not affect 
the output partition significantly. There are supervised variants of clustering. However, 
these typically require domain knowledge, and the immense popularity of clustering comes 
precisely from the fact that it can be applied as a first filter to acquire a deeper understanding 
of the data.

All these approaches are global. They assign a single number to a partition and cannot 
capture the potentially wide variation in label quality within a partition. Consider, for 
example, a partition of the MNIST digits database (a few example images are displayed in 
Figure 5.1). By global measures of clusterability, the partition would be considered “good.” 
However, as we can see in the picture in the top row, there are a number of images for which 
the correct cluster is not as obvious. What we would like in this case is a way to quantify 
this lack of confidence for each image separately. Such a measure would give a lower 
confidence rating to the labels for images in the top row, and a downstream analysis task 
could incorporate this uncertainty into its reasoning. Note that a single number describing 
the quality of the partition would not suffice in this case, because the downstream analysis

1Reprinted with permission of IEEE, 2013, Parasaran Raman and Suresh Venkatasubramanian, Power to 
the Points: Validating Data Memberships in Clusterings. Thirteenth IEEE International Conference on Data Mining.
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Figure 5.1. MNIST handwritten digits. L-R are numbers {“0”, “6”, “4”, “9”}. The 
numbers on the top row are very hard to identify even for a human. The bottom row is 
unambiguous.

might only select a few points (cluster centers, or a representative sample) for further 
processing.

5.1 O u r  W o rk
In this chapter we present a scheme to assign local affinity scores to points that indicate 

the “strength” of their assignment to a cluster. Our approach has a number of attractive 
features.

1. It is very general. It takes a partition generated by any method and returns the local 
affinity scores without relying on probabilistic or other modeling assumptions. It 
does this by using the ideas of proximity and shared volume: intuitively, a point 
has strong affinity for a cluster if (when treated as a singleton cluster) its region of 
influence overlaps significantly with the region of influence of the cluster.

2. It is very efficient to compute. Computing the local affinity of a point depends solely 
on the number of clusters in the data and an error parameter: there is no dependence 
on the data size or dimensionality. We show that this can be improved further by 
progressive refinement, allowing us to avoid computing affinities for points that we 
are very confident about.

3. It lends itself to easy visualization, which is very useful for diagnostic purposes.
4. The local affinities we compute can also be used to validate the number of clusters in 

the data as well speeding up clustering computations by focusing attention on points 
that can affect decision boundaries (as with active learning techniques).
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5.1.1 Overview of Our Work
Clustering is about proximity: points are expected to have similar labels if they are 

close to each other and not to others. In other words, the regions of influence of points 
belonging to the same cluster must overlap [Houle et al., 2010]. Therefore, a point should 
be associated with a cluster if its region of influence significantly overlaps the region of 
influence of the cluster, and does not have such an overlap with other clusters. We can 
quantify the confidence of this association by measuring the degree of overlap.

The method we propose elaborates on this idea to incorporate a variety of more general 
notions of regions of influence that can incorporate cluster importance, density and even 
different cluster shapes. The key idea is to define regions of influence as elements of 
an appropriate weighted power diagram (a generalization of a Voronoi diagram) and use 
shared volume to quantify how different regions overlap.

At first glance, this idea is doomed to fail: computing Voronoi regions (and their vol­
umes) is extremely difficult in high dimensions. We show how the volumes of these regions 
can be estimated (a) without actually computing them and (b) with provable guarantees on 
the estimates via the use of e-net sampling and techniques for sampling from convex bodies 
in high dimensions efficiently. The resulting scheme is accurate and yields the affinity 
score of a point in time independent of the data size and dimensionality. It runs extremely 
fast in practice, taking only milliseconds to compute the scores. These scores can also be 
computed progressively using iterative refinement, so we can focus on the problem cases 
(points of low affinity) directly.

5.1.2 Applications
The local affinity scores we compute can be viewed as a general diagnostic tool for 

evaluating partitions and even computing partitions faster. We demonstrate this with a set 
of key applications.

5.1.2.1 Evaluating the clusterability of data. We have already explained how we 
expect local affinity scores to certify whether data labels are accurate or not. In addition, 
combining local affinity scores provides another measure for the global quality of a parti­
tion. We will show that this measure matches prior notions [Halkidi et al., 2001; Liu et al., 
2010] of global quality of a partition and thus is a more general tool for clustering quality. 
We will also show that this global measure can be used to solve the vexing problem of
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identifying the right number of clusters in a partition [Rousseeuw, 1987; Sugar and James, 
2003; Tibshirani et al., 2001], and has certain advantages over other approaches like the 
common “elbow method” [Tibshirani et al., 2001].

5.1.2.2 Active clustering. Clustering algorithms usually have a nonlinear time de­
pendence on the input size, and so as data sizes grow, the time to cluster grows even faster. 
This motivates “bootstrapping” strategies where the algorithm first clusters a small sample 
of the data, and uses this partial clustering to find points that lie on cluster boundaries 
(and would have greater influence on the resulting partition). The most important step in 
this “active” approach to clustering [Eriksson et al., 2011; Hofmann and Buhmann, 1998; 
Settles, 2012] is selecting the points to add to the process. We show that if we use points 
of low affinity as the active points used to seed the next round of clustering, we can obtain 
accuracy equal to that obtained from the entire dataset but with orders of magnitude faster 
running time.

5.2 P re lim in a r ie s
Let P be a set of n points in Rd . We assume a distance measure D on Rd , which for 

now we will take to be the Euclidean distance. A clustering is a partition of P into clusters 
C =  {C1 ,C2 , . . . , Ck}. We will assume that we can associate a representative Cf with a 
cluster Cf. For example, the representative could be the cluster centroid, or the median.

A Voronoi diagram [De Berg et al., 2008] on a set of sites S =  {s1 , s2 , . . . ,  sk} C Rd is 
a partition of Rd into regions Vj_,. . .  Vk such that for all points in Vf, the site s f is the closest 
neighbor. Formally, Vf =  {p G Rd I D(p, sf) < D(p,sj ), j  =  f}. When D is the Euclidean 
distance, the boundary between two regions is always a hyperplane, and therefore each cell 
Vf is a convex polyhedron with at most (k — 1) faces.

We will also make use of a generalization of the Voronoi diagram called the power 
diagram [Aurenhammer, 1987]. Suppose that we associate an importance score wf with 
each site sf. Then the power diagram on S (see Figure 5.2) is also a partition of R^ into 
k regions Vf, such that Vf =  {p G Rd | D2 (p,sf) — Wf < D2 (p ,s j) — Wj, j  =  f}. Power 
diagrams allow different sites to have different influence, but retain the property that all 
boundaries between regions are hyperplanes and all regions are polyhedra in Euclidean
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Figure 5.2. The power diagram of a set of points C1 . . . C4 . The sphere radius is 
proportional to the weights w ... W4 .

2space .
Finally, we will frequently refer to the volume Vol(S) of a region S C Rd . In general, 

this denotes the d-dimensional volume of S with respect to the standard Lebesgue measure 
on Rd . If S is not full-dimensional, this should be understood as referring to the lower­
dimensional volume, or the volume of the relative interior of S; for example, the “volume” 
of a triangle in 3-dimensions is its area, and the volume of a line segment is its length.

5 .3  D efin in g  A ffin ity  S co res
As we discussed in the beginning of this chapter, the region of influence of a point 

is how we define its affinity to clusters. Each cluster has a region of influence. If we 
now consider a particular point in the data and treat it as a singleton cluster, its region of 
influence will overlap neighboring clusters. We measure the affinity of a point to a cluster 
to be the proportion of influence it overlaps from that cluster. We now define these ideas 
formally.

Let C  =  C1 ,C2 , . . .  Ck be a partition of n points. A region of influence function is a
dfunction R : C  ^  2R on C  such that all R(Cj) (which are subsets of Rd) are disjoint.

The simplest region of influence function is a Voronoi cell. Specifically, consider a 
partition with k clusters, each cluster Cj having representative cj. Let C be the set of these

2The squared distance is crucial to making this happen; without it, arcs could be elliptical or hyperbolic.
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representatives. Consider any point x E C H (C) (the convex hull of C). Let V , V 2 V k  be 
the Voronoi partition of C, and let U 1 , U2 , . . . ,  Uk, Ux be the Voronoi partition of C U {x}, 
with Ux being the Voronoi cell of x. Then we define the region of influence, R(Cj) =  V , 
and Rx (Ci) =  Uf.

Let R be a region of influence function. Let C  =  C1 ,C2 ,...C k  be a partition. For 
any point x, let Cx denote the partition C1 \  {x},C2 \  { x } , C k  \  {x}, {x}, and let Rx (C) 
denote the region of influence of a cluster C E Cx. Then the affinity score of x is the vector 
(« 1 , « 2 > •••, a k), where

a i = Vol(R(Ci) n  Rx({x}))
Vol(Rx({x}))

In the above definition, Rx ({x}) is the region of influence x has carved out for itself, 
and «i merely captures the proportion of Rx({x}) that comes from the (original) cluster Cj.

Continuing our example of Voronoi regions of influence, the Voronoi cell Ux of x 
“steals” volume from Voronoi cells around it (Figure 5.3 illustrates this concept). We 
can compute the fraction of Ux that comes from any other cell. For any point pj E P,
let «i =  V( 1/77 ) . Then aj  represents the (relative) amount of volume that x “stole”=  Vol(Vi7Ux)

Vol(Ux)
from pi. Note that £  ai =  1, and if x =  pj, then ai =  1.

The affinity score captures the entire set of interactions of a point with the clusters. It 
is often convenient to reduce this to a single score value. For example, since at most, one 
ai  can be strictly greater than 0.5, we can define a point as stable if such an ai  exists, 
and say that it is assigned to cluster i. In general, we will define the stability of a point to 
be o (p) =  max ai. The stability of a point lies between zero and one and a larger value 
indicates greater stability.

It is important to note that the idea of area stealing was first defined in the context of 
natural neighbor interpolation (NNI) [Sibson, 1980, 1981], where the ai values were then 
used to compute an interpolation of function values at the p i. Widely used by researchers 
in the geosciences community, NNI is a powerful technique that has not yet appealed to 
the data mining community at large. NNI is a spatial interpolation method that works on 
Voronoi tessellation of a collection of sites. It is especially attractive since it provides a 
smooth approximation of the function that operates on the Voronoi sites, at any arbitrary 
point. The NNI function is also continuous everywhere within the convex hull of the data. 
NNI is a weighted average technique that uses the neighboring Voronoi cells of a selected
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£

• Voronoi Site 
□ New Point 

NNI region

Figure 5.3. In this example, the red point is “stealing” the shaded area from the Voronoi 
cells of Cb  C2, C3.

arbitrary point x. Upon picking the point x for which the NNI is to be calculated, the weight 
of each neighbor is proportional to the area that the Voronoi cell of x (from the new Voronoi 
tessellation with all the original sites and x) “steals” from the Voronoi cell of the neighbors 
in the absence of x. Therefore intuitively, if x is well within a particular Voronoi region, that 
cell will have a bigger weight. In this chapter we will use the af directly without computing 
any interpolants.

5.3.1 A Rationale for Affinity
The simplest way to define influence is by distance. For example, we could define 

the affinity of a point to a cluster as the (normalized) distance between the point and the 
cluster representative. Our definition of affinity generalizes distance ratios: in 1-dimension, 
affinity calculations yield the same result as distance ratios, since the “area” stolen from a 
cell is merely half the distance to that cell. But, affinity can capture stronger spatial effects, 
as our next example shows.

Consider the configuration shown in Figure 5.4. The point q 1 is equidistant from the 
cluster centers C2 and C3 and so would have the same distance-based influence with respect 
to these clusters. But, when we examine the configuration more closely, we see that the 
presence of C4 is reducing the influence of C3 on q 1, and this effect appears only when 
we look at a planar region of influence. We validate by using 100 runs of k-means with 
random seeds. We observe that q 1 was assigned to C2 in 15 runs and to C3 in only two runs. 
A distance-based affinity would have suggested an equal “affinity” for the two clusters,
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q2
0.03 C3

•  C4

Figure 5.4. Illustration of the difference between distance-based and area-based influence 
measures.

whereas a volume-based affinity incorporates the effects of other clusters.
Similarly, consider q2 . It is twice as close to c1 compared to c2 or c5 , which would 

result in the distance-based influence of c1 being equal to the influence of c2 and c5 
combined. When we validate this using k-means, we find that q2 is exclusively assigned to 
cluster center c1. Here, C1 has a “shielding” effect on q2 that prevents it from ever being 
assigned to those clusters: this shielding can only be detected with a truly spatial affinity 
measure.

5.3.2 Visualization
The affinity scores define a vector field over the space the data is drawn from. The 

stability o  (p) defines a scalar field and can be visualized (in low-dimensions). Consider 
the partition depicted in Figure 5.5(a). We can draw a contour map (see Figure 5.5(b)) 
where each level connects points with the same stability score (unlike in a topographical 
map, more deeply nested contours correspond to lower stability scores). We can also render 
this as a greyscale heat map (see Figure 5.5(c), where the lower the affinity, the brighter the 
color). These visualizations, while simple, provide a visual rendering of affinity scores that 
is useful as part of an exploratory analysis pipeline.
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(c)

Figure 5.5. Visualizing the affinity scores. We plot (a) the data with 5 clusters, (b) the 
contour plot, and (c) the heat map.

5.3.3 Extensions
Our definition of affinity is not limited to Euclidean spaces. It can be generalized 

to a variety of spaces merely by modifying the way in which we construct the Voronoi 
diagrams. In all cases, the resulting affinity scores will result from a volume computation 
over polyhedra.

5.3.3.1 Giving clusters varying importance: density-based methods. Consider a 
generalized clustering instance where each cluster Ci has an associated weight w , with a
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larger w f indicating greater importance. Instead of constructing the Voronoi diagram, we
will construct the power diagram defined in Section 5.2. Specifically, the region of influ-

2 2ence Rf for cluster Cf will be defined as the set R(Cf) =  {x|d2 (p f,x) — Wf < d2 (p j ,x) — Wj }. 
We compute the affinity vector as before, with the weight of a singleton x set appropriately 
depending on the weight function used. For example, if w(Cf) =  |Cf|/n, then w(x) =  1/n.

Consider the examples depicted in Figure 5.6. The left hand figure has 100 points in 
each of the five clusters, and the right hand figure has 500 points in each of the four outer 
clusters and 100 points in the center cluster. Notice that there is a lot more instability (as 
seen by the contours) in the sparser example, much of which is due to the presence of the 
central cluster. However, once the density of the outer clusters increases, the effect of the 
inner cluster is much weaker, and there are fewer unstable regions.

We can also extend our Voronoi-based definition of affinity to partitions in Bregman 
spaces [Bregman, 1967] and kernel spaces [Scholkopf and Smola, 2002]. In each case, 
the resulting affinity score reduces to volume computation on polyhedra, just as in the 
Euclidean space.

5 .4  E s tim a tin g  A ffin ity
The many different ways of defining affinity scores via regions of influence all reduce to 

the following: given a set of representatives C =  {c1 , . . . ,  Ck} and a query point x, estimate 
the volume of a single cell in the Voronoi diagram of C or C U{x}, and estimate the volume 
of the intersection of two such cells.

In 2-dimensions, the Voronoi (or weighted Voronoi) diagram of k points can be com­
puted in time O(klogk) [De Berg et al., 2008], and the intersection of two convex polygons 
can be computed in O(k) time [Toussaint, 1985]. Any polygon with k vertices can be 
triangulated in O(k) time using O(k) triangles, and then the area can be computed exactly 
in O(k) time (O(1) time per triangle). In 3-dimensions, computing the Voronoi diagram 

2takes O(k2) time, and computing the intersection of two convex polyhedra can be done in 
linear time [Chazelle, 1992]. Tetrahedralizing the convex polyhedron can also be done in 
linear time [Lennes, 1911].

This direct approach to volume computation does not scale. In general, a single cell in 
the Voronoi diagram of k points in Rd can have complexity O(kl~d / 2l ). We now propose
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(a) (b)

Figure 5.6. Visualizing the affinity scores for datasets with different densities. There are 
100 points in each cluster in (a) and 500 points in the clusters on the boundary in (b).

an alternate strategy that provably approximates the affinity scores to any desired degree of 
accuracy in polynomial time using random sampling.

Let Ux be the Voronoi cell of x in the Voronoi diagram of C U {x}. We say that the 
point y is stolen from s(y) =  Of if (i) y E Ux and (ii) y’s second nearest neighbor is cf. We 
can then write a f- =  Vol({x | s(x) =  cf-})/Vol(Ux). Note that given a point x and any point 
y, we can verify in O(k) time whether y E Ux and also compute s(y) by direct calculation 
of the appropriate distance measure.

Let ( a 1 , a 2 ?•••? a k) be the affinity scores for x. Suppose we now sample a point y 
uniformly at random from Ux. We can find s(y) in O(k) time and this provides one update 
to af . The number of such samples needed to get an accurate estimate of each a f- is given 
by the theory of £-samples. Let m be a measure defined over X and let R  be a collection 
of subsets of X. An £-sample with respect to (X, R ) and m is a subset S c  X such that for
any subset R E

£.
By standard results in VC-dimension theory [Har-Peled, 2011; Li et al., 2001; Talagrand, 
1994], a random subset of size O(£2 (n +  log 1 ) is an £-sample for a range space (X, 
of VC-dimension n , with probability at least 1-5.
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If we now consider the discrete space [1... k] with the measure ^(i) =  a-, then the set 
of ranges R  is the set of singleton queries {1... k}, and the VC-dimension of ([1... k], R )J 1is a constant. This means that if we sample a set S of O( log 1) points from Ux, and set 
a- =  |x e  S | s(x) =  i|/|S |, then la- — a-| < e for all i.

5.4.1 Sampling from Ux
We now have a strategy to estimate the affinity scores of x. Sample the number of points 

from Ux as prescribed above and then estimate a- by computing the owners of samples. 
Standard rejection sampling (sample from a ball enclosing Ux and reject points outside it) 
does not work in high dimensions as the number of rejected points grows exponentially 
with the dimension. For example, in 20-dimensions, over 1000 points are rejected for each 
good sample in experiments.

To solve this problem, we make use of the extensive literature on sampling from a 
convex polyhedron in time polynomial in d , following the groundbreaking randomized 
polynomial time algorithm of Dyer, Frieze and Kannan. At a high level, these are all 
Markov chain Monte Carlo (MCMC) methods: they use different random walks to extract a 
single uniform sample from the polyhedron efficiently. We describe the sampling procedure 
in Algorithm 2. One of the most effective strategies in practice for doing this is known as 
hit and run [Smith, 1984]. It works as follows. Starting with some point x in the desired 
polytope K, we pick a direction at random, and then pick a point uniformly on the line 
segment emanating from x in that direction and ending in the boundary of K. We refer to 
this step as hit and run. It has been shown [Lovasz, 1999] that this random walk mixes very 
well, making O(d3) calls to a membership oracle to produce a single sample (under some 
technical assumptions). Figure 5.7 illustrates the distribution of samples using hit and run 
for the Voronoi cell of the point q. Algorithm 3 (AFFINITY) summarizes the process for 
computing the affinity score of a single point.

5.4.1.1 Reducing dimensionality. The above sampling procedure runs in time O(d3) 
per point. However, d can be quite large. We make one final observation that replaces 
terms involving d by terms involving k ^  d for Euclidean distance measures (or Euclidean 
distances derived from a kernel).

The Voronoi diagram of k points in d-dimensions, where k < d , has a special structure. 
The k points together define a (k — 1)-dimensional subspace H  of Rd . This means that
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Algorithm 2 SamplePolytope
Input: Collection of halfplanes H  defining convex region K  =  h h ,  number of 
samples m. Output: m points uniformly sampled from K.

Construct affine transform T such that T K  is centered and isotropic.
Fix burn in parameter b
Run hit and run for d steps on TK, ending in z =  Z0 

for i =  1 ... m do
Set zi to be result of one hit and run move from Zi_ 1 

end for
Return (T 1Z1 , . . T - 1zm).

Figure 5.7. Illustration of hit and run for sampling from a Voronoi cell. Samples are shown 
in blue.

any vector p  E Rd can be written as p  =  u +  w where u E H  and w ±  u. The Euclidean 
distance 11p — p r \\2 can be written as ||u — uf \\2  +  ||w — wr\\2. In particular, this means that 
in any subspace of the form H  +  w for a fixed w ±  H , the distance between two points is 
merely their distance in H .

Therefore, each Voronoi cell V can be written as Vf +  H ^ ,  where Vf C H  and H ^  
is the orthogonal complement of H  consisting of all vectors orthogonal to H .  Thus, 
we can project all points onto H  while retaining the same volume ratios as in the original 
space. This effectively reduces the problem to a k-dimensional space. The actual projection 
is performed by doing a singular value decomposition on the k x d matrix of the cluster
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Algorithm 3 Affinity: computing the affinity score for a point
Input: A partition C  =  Cj_,C2 , . . . ,  Ck with representatives , . . . ,  Ck and a point x.
Output: Affinity vector ( a 1 , . . . ,  ak) for x

m ^  J ? log 1
Set all a  f ^  0 
for j  =  1 . . . k do

Set H j  as the halfplane supporting Ux with respect to c j  in the Voronoi diagram. 
end for
Call SamplePolytope({H1, . . . ,  }, m) to generate m samples 
Z1 ,Z2 , . . .zm G Ux =  n H j . 
for =  1 . . . m do

Compute s =  argminj= 1  k^(zf,Cj). 
as =  as +  1/m 

end for
Return ( a 1 , . . . ,  ak).

representatives. Once this transformation is done, we call Affinity as before. The
3 2resulting algorithm computes the affinity scores for a point in time O(k3 log(1/e ) /e 2).

5.4.1.2 Progressive refinement of affinity scores. In many applications, we care 
only about points with low stability since they define decision boundaries. But, most 
points are likely to have high stability scores, and computing the scores of all points is 
wasteful. We describe a progressive refinement strategy that “zooms in” on the unstable 
points quickly. We begin with a very coarse grid on the data. For each cell, we first compute 
the stability score of points at the corners of the cell. If the corners are highly stable, we 
skip this cell, else we subdivide it further and repeat. We seed the process with a grid that 
has n cells (and therefore is subdivided into n1/d segments in each dimension.

We show the effect of this progressive refinement method for 2-dimensional data in 
Figure 5.8. The heat map on the left only contains y/n cells and the one in the middle 
contains 10 y/n cells. Note that the middle heat map is very similar to the heat map on the 
right that uses no refinement strategies at all, and uses far fewer stability evaluations.

5 .5  E x p e r im e n ts
We demonstrate the following benefits of affinity scores in this section.
1. Affinity scores identify points on the true cluster boundary, which is useful in deter­

mining how a particular point affects the clustering of data.
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(a) (b)

(c)

Figure 5.8. Reducing computation through progressive refinement: (a) very coarse grid- 
ding, (b) moderate gridding, and (c) gridding with all points.

2. Affinity scores can be used to speed up clustering by actively selecting points that 
matter.

3. Aggregated stability scores help with determining clusterability and model selection.
4. Our method is practical and scales well with dimensionality and data size.

5.5.1 Data and Experimental Setup
In d =  2 and d =  3 dimensions, affinity scores can be calculated via direct volume 

computations. We use built in routines provided by the computational geometry and al­
gorithms library (CGAL) (http://www.cgal.org) to compute the scores exactly and validate

http://www.cgal.org
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our sampling-based algorithm. For higher dimensional data, we perform the initial data 
transformation (if needed) in C and use a native routine for hit and run in MATLAB. 
All experiments are run on a Intel Quad Core CPU 2.66GHz machine with 4GB RAM. 
Reported times represent the results of averaging over ten runs.

2We created a synthetic dataset in R , namely 2D5C for which data is drawn from five 
Gaussians to produce five visibly separate clusters with 100 points each. We also use a 
variety of datasets from the UCI repository. See Table 5.1 for details.

5.5.2 Using Affinity Scores to Identify Poorly Clustered Points
We start by evaluating how well affinity scores in general (and stability specifically) 

pick out points that are “well assigned” or “poorly assigned.” The MNIST digits dataset is 
a good test case because it contains ground truth (the actual labeling) and we can visually 
inspect the results to see how the method performed.

We run a k-means algorithm on the MNIST test data and compute affinity scores of the 
points. We sort each digit cluster by the stability score and then pick one element at random 
from the top ten and one from the bottom ten. Figure 5.9 shows the results for four digits 
The first row shows points that had high stability in the clustering (close to one in each 
case). We can see that the digits are unambiguous. The second row shows digits from the 
unstable region (the top affinity scores are 0.38, 0.46, 0.34 and 0.42, respectively). Notice 
that in this case the digits are far more blurred. In fact, the “4” and “9” look similar, as do 
the “0” and “6”. The second highest affinity scores for the ones in the bottom row are 0.21, 
0.19, 0.24 and 0.28 and they correspond to clusters {“4”, “0”, “9” and “7”}.

We also validate the affinity scores against the results produced by probabilistic model­
ing. We run an expectation maximization (EM) algorithm to estimate the data parameters 
for a Gaussian mixture model and use the final cluster centers obtained to run our volume 
stealing stability method. To get a holistic view of the label affinities, we compute the 
entropy of the affinity score for each point (note that the affinity scores sum to one for each 
point), and we also compute the entropy of the conditional probabilities obtained from the 
EM algorithm for each point. We now have two vectors of entropies, and we measure their 
correlation using Pearson’s linear correlation coefficient. For 2D5C, Soybean and the Iris 
datasets, we obtain a correlation of 0.922, 0.893 and 0.935, respectively.

This further shows that affinity scores capture the strength of assignment of a point to
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Table 5.1. Datasets.

Dataset #Points #Dimensions #Clusters
Soybean 47 35 4
Iris 150 4 3
Wine 178 13 3
MNIST (Training) 10000 784 10
Protein 17766 357 3
Adult 32561 123 2
MNIST (Test) 60000 784 10
CodRNA 488565 8 2
Covtype 581012 54 7

0 IE □
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Figure 5.9. Results of running k-means on MNIST training data. First row: high affinity. 
(L-R) 0.96, 1.0, 1.0, 0.92. Second row: low affinity: (L-R) 0.38, 0.46, 0.34, 0.42.

a cluster. We reiterate that our approach merely requires the user to present a partition 

obtained by any algorithm.

5.5.3 Using Affinity Scores to Accelerate Clustering

Most clustering algorithms take time that is nonlinear in the number of points. Intu­

itively, points at the core of a cluster are less useful in determining the cluster boundaries, 

but there are more of them. Ideally, we would like to subsample points in the core, and 

supersample points on the boundary to get a subset of points that can effectively recover 

the true partition. Since many clustering algorithms run in time quadratic in the number of
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points, a good heuristic to obtain a fast algorithm is to try and sample O(v/ft) such “good 

points.”

We will use stability scores to identify these points in a two stage iterative approach. 

Firstly, we run a k-means++ [Arthur and Vassilvitskii, 2007] seeding step to initialize k 

cluster centers. We then compute stability scores for all points and set the stability threshold 

at o(x) =  0.5. We fix a fraction 0 < a  < 1 (set by cross validation) and then select a sample 

of points of size 5a*sfn  from the pool of stable points, selecting the remaining 5(1 — a )^/n 

points at random from the unstable pool. In order to remove anomalies arising from 

any specific clustering method, we then run a spatially aware consensus procedure [Ra­

man et al., 2011] on this small set using k-means, hierarchical agglomerative clustering 

(single-linkage, average-linkage and complete-linkage variants) and density-based spatial 

clustering of applications with noise (DBSCAN) [Ester et al., 1996] as the seed partitions. 

We then assign all remaining points to their nearest cluster center. We compare this to 

running the same consensus procedure with all the points.

Table 5.2 summarizes the datasets used, and the sample sizes we used in each case. Fig­

ure 5.10 summarizes the results. In each case, the speedup over a full clustering approach is 

tremendous -  typically a 25x speedup. Moreover, the accuracy remains unimpaired: above 

each bar is the Rand index comparing the partition produced (active or full) to ground truth. 

In all datasets, the numbers are essentially the same, showing that our method produces as 

good a partition as one that uses all the data.

As a baseline to evaluate our method, we also compared our approach with a random 

baseline, where we merely picked a random sample of the same size. We also measured 

the Rand index of the resulting partitions, and the corresponding numbers were 0.49 for 

CovType, 0.55 for CodRNA, 0.81 for MNIST, and 0.48 for Protein. In all cases, our method 

improved over the random baseline, thus demonstrating its effectiveness at finding good 

partitions.

5.5.4 Using Affinity Scores for Model Selection and Clusterability

While affinity scores are local, we can compute an aggregate score for a partition by 

averaging the stability scores for each point. We now show that this aggregated score acts 

as a measure of clusterability and has useful properties that make it more effective in model 

selection.
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Table 5.2. Data setup for active clustering.

Dataset Points Samples # Stable # Unstable
Protein 17766 665 499 166
MNIST (all) 70000 1323 992 331
CodRNA 488565 3495 2621 874
Covtype 581012 3810 2858 952

Active Clustering (Runtime and Accuracy)

0.57 0.56
C ovtype

0.62 0.64
CodRNA

0.89 0.88

MNIST

0.51 0.49
Protein

0 0.2 0.4 0.6 0.8 1

Normalized Runtime

[| Consensus clustering on full data 
□  Active consensus clustering on 5 sqrt(n) samples

Figure 5.10. Performance of active sampling for consensus clustering. Rand index is 
displayed above the bar for each method and each dataset.

5.5.4.1 Choosing k. Determining the correct number of clusters for a given data 

is a difficult problem in clustering, especially in an unsupervised setting. The standard 

approach is to use some variant of the “elbow method” to analyze the trade off curve 

between number of clusters and clustering cost. Since splitting a cluster typically improves 

the clustering cost, these methods attempt to find locations where the gradient changes 

dramatically, or where a point of “diminishing returns” is reached in further splitting.

Aggregate stability is more sensitive to splits of “good clusters.” When we split a good 

cluster we actually decrease the average stability of the partition, because all points along
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the boundary of the new cluster used to be very stable and now will no longer be so. 

We demonstrate this behavior by plotting the cluster cost and average stability score for 

a variety of datasets from Table 5.1. To demostrate model selection capabilities of global 

and local methods, we plot the k-means algorithm cost in Figure 5.11(a) and the average 

stability in Figure 5.11(b). We see that for each dataset, the maximum stability is achieved 

at precisely the number of clusters prescribed by ground truth. In contrast, the k-means 

cost function strictly decreases, and it is more difficult to identify clear “elbows” at the 

right number of clusters.

We also compare aggregate stability to standard measures of global stability like the 

silhouette method, the Rand index, and the Davies-Bouldin index [Petrovic, 2006]. As 

we can see in Figure 5.12, all measures behave consistently on the datasets (note that the 

Davies-Bouldin index is smaller when the partition is better). This shows that aggregate 

stability acts like a global quality measure while still retaining local structure.

5.5.4.2 Data clusterability. Another use for aggregate stability is as measure of 

clusterability. We illustrate this by computing the aggregate stability for a clustering of five 

Gaussians with varying (but isotropic) covariance for each cluster. As we can see, the data 

becomes progressively less clustered as the variance increases, and therefore becomes less 

“clusterable.”

Figure 5.13 illustrates the aggregate stability scores for these partitions: as we can see, 

the scores drop similarly, and by the time we reach the fifth instance (which is essentially 

unclusterable), the stability numbers have dropped to nearly zero. We also annotate the 

graphs with the number of unstable points (with threshold o(x) =  0.5) to illustrate that the 

average stability is reducing consistently.

As another illustration of this, we plot in Figure 5.14 the aggregate stability of two 

different pairs of numbers in the MNIST dataset (“2” vs “6”) and (“4” vs “9”). As we have 

seen earlier, the (“2” vs “6”) set is easier to distinguish than the (“4” vs “9”) set, and this 

is reflected in the different stability scores for the clustering on these two pairs. We show 

what the different partitions look like in Figure 5.15.

5.5.5 Evaluating Performance

Finally, we present an evaluation of the performance of our method in terms of accuracy 

and running time. To validate the quality of the results, we can compare our sampling-based
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C ost o f K-M eans V s  N u m b e r o f C lu ste rs

N u m b er o f C lu ste rs Number of C lusters 

2D5C  ................ S o y b e a n ------------ Iris

(a) (b)

Figure 5.11. Choosing k: (a) global using k-means cost vs (b) local using average stability 
cost.

Global and  Local Validation

Average Stability — • — Rand Index — - ♦ — Silhouette 
..... ......... Davies-Bouldin index

Figure 5.12. Aggregate stability vs global stability.

C o v a r ia n c e

Figure 5.13. Clusterability of 2D5C data: average stability scores dip as variance 
increases.
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C lu s te ra b ility  o f Pairw ise MNIST D ig its

B ina ry  C lus te ring

Figure 5.14. Clusterability of two different pairs of digits in the MNIST data.

(d) (e)

Figure 5.15. Five Gaussians with varying variance: (a) very low, (b) low, (c) moderate, (d) 
high, and (e) very high.

method to the exact scores we can obtain in d =  2 and d =  3 dimensions as described earlier. 

Table 5.3 illustrates this for the 2D5C and 3D5C datasets. We note that these error reports 

come from choosing 1000 samples after a burn in of 1000 samples (this corresponds to an 

error £ =  0.04). As we can see, the reported error is well within the predicted range.

Table 5.3 also presents running times for the affinity score computation. We note that
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Table 5.3. Runtimes and empirical approximation to exact affinity.

Dataset n d k Time (sec) Error
2D5C 500 2 5 0.11 ±  0.005 ±  0.02
3D5C 500 3 5 0.19 ±  0.008 ±  0.035
IRIS 150 4 3 0.24 ±  0.012 -
Soybean 47 35 4 0.31 ±  0.08 -
MNIST (test) 10000 784 10 0.58 ±  0.5 -

the running times reported are the total for computing the affinity scores for all points. 

We only report the time taken by the sampler; the preprocessing affine transformation 

is dominated by the sampling time. In all cases, we used 1000 samples to generate the 

estimates. Note that the procedure is extremely fast, even for the very high dimensional 

MNIST data.

5 .6  S u m m a ry

We view this work as part of a larger effort to personalize validation mechanisms in data 

mining. In future work we plan on incorporating ideas from topological data mining to add 

more dimensions to the validation. We hope to develop better visualizations to accompany 

this method. More generally, we plan on studying other unsupervised learning tasks where 

local validation is important.



CHAPTER 6

L A R G E  S C A L E  T R A N S D U C T IV E  S V M

Recent years have witnessed an unprecedented explosion of automatically generated 

data, as collecting data becomes simpler and cheaper. Even as collecting data becomes 

simpler and cheaper, most of this data is unlabeled. The amount of data that can be labeled 

by experts is not increasing by the same rate—and the gap between available labeled and 

unlabeled data is widening rapidly.

In the presence of unlabeled data, semisupervised learning (SSL) [Zhu, 2005] can im­

prove classification accuracy by incorporating additional information from the underlying 

data distribution. The transductive support vector machine (T-SVM) [Joachims, 1999] is 

arguably amongst the most successful SSL algorithms. T-SVM extends the large margin 

principle of support vector machines (SVM) towards the unlabeled data. The separating 

hyperplane is repeatedly readjusted to stay clear of dense regions of the input space. This 

approach uses the unlabeled data to uncover cluster structure and naturally incorporates it 

into the decision boundary. However, incorporating such additional knowledge comes at 

the price of extra computational complexity. For example, T-SVM scales cubically with the 

size of the unlabeled dataset [Collobert et al., 2006a]. This means that as unlabeled data 

sizes increase, not all unlabeled data can be incorporated into training.

In this work we present a subsampling algorithm to make use of unlabeled data more 

effectively in classification. To understand our approach, it is helpful to understand how 

T-SVM incorporates unlabeled data. T-SVM uses unlabeled data to guide the decision 

boundary to have a balanced amount of positive and negative samples on either side. 

Further, by enforcing a large margin even for the unlabeled data, it avoids scenarios where 

the hyperplane cuts through dense regions (clusters) within the input space.

We claim that for most datasets only a small amount of unlabeled data can be sufficient 

to guide the hyperplane in the T-SVM fashion. In other words, our goal is to speed 

up training by subsampling the unlabeled data as aggressively as possible, while only
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minimally affecting T-SVM's decision boundary. Our approach is based on the insight that 

we only require high sample density in regions near the hyperplane—which are inherently 

sparse. All other regions of the input only need to be sampled sufficiently to be “avoided” 

by the classifier. Put another way, if we can identify the regions that are likely to contain 

support vectors we should oversample them and under sample everything else.

By definition, support vectors lie close to the decision boundary and they tend to be 

within sparse regions of the unlabeled data, due to the influence of T-SVM. We define 

efficient heuristics to identify both conditions. Firstly, we can predict which inputs are close 

to the decision boundary with the current estimate of the T-SVM separating hyperplane, 

which is refined in each iteration. Secondly, we can identify inputs between dense regions 

by clustering the data and measuring the instability of each input's cluster assignment. 

Before each iteration of T-SVM, we subsample a new batch of unlabeled inputs—thus 

refining our sample based on our current belief about the decision boundary and the data's 

cluster structure. Figure 6.1 illustrates this intuition on a 2-dimensional classification task 

with labeled and unlabeled data. The graph also indicates which unlabeled inputs were 

selected by our subsampling algorithm.

We confirm empirically that our sampling strategy rapidly “narrows in” on the region 

of actual support vectors—thus effectively managing to distill the important aspects of the 

unlabeled data. We further demonstrate that we can effectively sample data from these 

regions and guide T-SVM with only a tiny fraction of the original unlabeled data corpus. 

The resulting algorithm achieves orders of magnitude speedup during training, without 

significant impact on the classification accuracy.

Many fast T-SVM algorithms have been introduced in the last decade that are based on 

various novel optimization algorithms. We consider our work complementary to those of 

previous approaches. As our method is based on subsampling of the unlabeled data, it can 

effectively be combined with any one of these algorithms. In fact, we build upon the work 

by Collobert et al. [2006b], who published one of the fastest T-SVM solvers to date. We 

use their fast implementation throughout and further improve upon their result by providing 

several orders of magnitudes in additional speedup.
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Figure 6.1. Decision boundaries and margins of SVM (black) and T-SVM (green) on 
a binary classification problem in 2-dimensions. T-SVM uses unlabeled data and finds 
a better decision boundary through the sparse region. Unlabeled inputs selected by our 
subsampling algorithm are highlighted in green.

6.1 P re lim in a r ie s

Throughout this chapter we type vectors in bold (x^), scalars in regular (k or C), sets in 

cursive ( S ) and matrices in capital bold (K) font. Specific entries in vectors or matrices 

are scalars and follow the corresponding convention.

We assume that we are provided with a labeled dataset D l = {x1 x^} c R d with cor­

responding binary labels {y 1, . . . , y ^}G {-1, 1} and unlabeled data D u =  {x^+1, . . x^+M} c  

R d . Both labeled and unlabeled inputs are sampled i.i.d. from the same (unknown) data 

distribution. For convenience, let n = £+w denote the total number of labeled and unlabeled 

inputs.

In the following, we provide a brief overview of SVM [Scholkopf and Smola, 2002], 

T-SVM [Joachims, 1999] and softc-means clustering [Bezdek, 1981].

6.1.1 SVM

The objective of the original SVM classifier is to learn a function Hq : R d ^ { - 1, 1}, 

with Q =  (w, b), such that Hq (x^) > 0 if ŷ  =  1 and Hq (x )̂ < 0 if ŷ  =  -1 .  The function 

Hq defines a separating hyperplane Hq (x)=  w ^x  +  b. This hyperplane is learned with the
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following optimization
2 £

m inIw ^2 +  C £  H (yihe (xi) ) . (6.1.1)
6 i= 1

Here, H (yf ig (xi)) =  max[1 — y f i g  (xi), 0] denotes the hinge loss, which penalizes all pre­

dictions hg (xi) whose sign does not agree with the corresponding label yi and all predic­

tions of low magnitude, i.e., |h(xi) | < 1. In other words, the hinge loss penalizes inputs that 

are misclassified or that are too close to the decision boundary; the latter enforces a margin 

of empty space around the separating hyperplane, which has been shown to have particu­

larly strong generalization properties [Scholkopf and Smola, 2002]. The hyperparameter C 

regulates how much violations are penalized.

6.1.2 T-SVM

T-SVM [Joachims, 1999] extends this formulation and incorporates the unlabeled in­

puts D y . Although the labels for D y are unknown, we do know some things about 

them: first, as Dl  and D y are both sampled i.i.d. from the same distribution, their class 

ratios should approximately agree. Second, a SVM trained on the labeled data D l  should 

generalize to some degree to D y .

Joachims combines these two insights: a SVM is trained on the labeled data D l to 

obtain a classifier h g . Each input x j  E D y  is assigned a label y j  =  1 if h6  (x j ) > t and 

y j  =  — 1 otherwise. The threshold t is chosen such that the class proportions in D y match

those in d l  I  ££=  1 y i« 1  £ n= £+ 1 yj .
Once the “labels” y j  are assigned, T-SVM incorporates them into the hyperplane opti­

mization in a similar fashion as (6.1.1):

£ n
minllw ll2 +  C £  H(yih6 (xi)) +  C* £  H(yj hg (xj ))•

6 i=1  j = £ + 1

In other words, T-SVM enforces a margin around unlabeled inputs—thus guiding the 

hyperplane to avoid densely sampled regions of the space. The constant C* regulates to 

what degree the estimated “labels” for the unlabeled data y j  are trusted. Initially it is set 

to a very low value (e.g., C* =  10—5). T-SVM iterates between solving the optimization 

problem and reassigning the labels for the unlabeled set, while the constant C* is increased 

by a multiplicative factor in each iteration.
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An important fact to note is that by enforcing a margin on the unlabeled inputs, T-SVM 

guides the decision boundary through low density regions in the data space. It is this 

insight, that we make use of in subsequent sections.

Similar to the canonical SVM, there is a natural extension of T-SVM to nonlinear 

decision boundaries with the kernel trick, as described in Scholkopf and Smola [2002].

6.1.3 Ramp Loss T-SVM

Although the worst case complexity of T-SVM is O(n3), in practice its computation 

is dominated by operations with quadratic complexity for most datasets. Collobert et al. 

[2006b] introduce a faster variation of T-SVM, by substituting the hinge loss H with the 

ramp loss R(z) =  min(H(z),s). The ramp loss caps the loss suffered by any particular 

input x j  to at most s > 0. With this slight relaxation, the loss function can be decomposed 

into a convex concave function, which can be optimized more efficiently with the concave 

convex procedure (CCCP) [Yuille and Rangarajan, 2001]. Although this variation does not 

affect the asymptotic complexity, it does tend to speed up the training time significantly in 

practice. Throughout this chapter we use their implementation, which is the best scaling 

implementation of T-SVM that we are aware of. We describe the T-SVM algorithm in 

Algorithm 4.

6.1.4 Soft Clustering

To identify relevant unlabeled points for our sampling strategy, we will make use of a 

soft clustering subroutine that we describe here. A clustering algorithm takes a collection 

of inputs D and partitions them into a fixed number of groups C C c of “similar” 

objects by minimizing an appropriate cost measure. Please note that for purposes of soft 

partition, we only look at the unlabeled inputs D ^ . Therefore, the resulting partition can be 

represented by an assignment function f : D u ^  [1 ••• c] that maps each input to exactly one 

of c clusters. In a soft partition, inputs may be assigned to multiple clusters with different 

weights, as long as these weights sum to one. Specifically, a soft partition is represented as 

a membership probability function f  : D u ^  Ac—1, where Ac—1 =  {(P 1, . . . , p c) | P ' >

0, Li Pi =  1} is the standard simplex in c-dimensions. The ith component f'(x) is the 

probability that x is assigned to cluster C', and by definition L' f i (x )  =  1 for all x e  D U .

There are many algorithms that can produce a soft partition minimizing an appropriate
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Algorithm 4 T-SVM 
Input: x 1, . . . ,  xu, yg

Solve (6.1.1) to obtain hQ 

C* =  10- 5
T =  E f=! 5 (y i =  1)
while algorithm has not converged do

Let g <  j  <  u be the Tth largest prediction Hq 
Solve (6.1.2)
C* ^  2C* 

end while
Return M  j) =  w ij  /  L  j wij

cost measure [Xu et al., 2005]. For our purposes, we require an algorithm that scales 

well with the number of unlabeled inputs. Therefore, we use the fuzzy c-means algorithm 

developed by Bezdek [1981] and described in Algorithm 5. The parameter m controls 

the “hardness” of the clustering: setting m =  1 yields the standard “hard” k-means algo­

rithm [Trevor et al., 2001]. In practice, m =  2 is a good choice. Each iteration of the 

algorithm runs in time O(u ■ c) and the algorithm typically converges in only a few iterations

1. Since we will typically use a constant (c < 5) number of clusters for our algorithm, the 

algorithm runs effectively in linear time.

We use soft clustering as a fast way of computing clustering affinities. The sampling 

methods we discuss are agnostic to the choice of the method that computes these affinity 

scores. In particular, one could use the NNI-based stability scores that we introduced in 

Chapter 5. Although we discuss a few shortcomings of the affinity score generated by a 

soft clustering algorithm, we observe very similar affinity vectors to the NNI-based stability 

score for the case of two clusters, which is the case with binary classification. Hence, we 

prefer a quick run of fuzzy c-means to compute the affinity scores.

6.2 A d a p tiv e  S u b sa m p lin g  fo r  T -S V M

As previously mentioned, T-SVM makes two critical assumptions: (a) the true decision 

boundary does not pass through dense regions of the input space and (b) the class ratio 

of the predictions should match the class balance within the labeled data. It utilizes these

1For clarification, despite its name, the fuzzy c-means algorithm does not use fuzzy logic in any way.
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Algorithm 5 Fuzzy c-means [Bezdek, 1981]
Input: xi + 1, . . . ,  xn , #clusters c, hyperparameter m 

Initialize C1, . . . ,  cc randomly 
while algorithm has not converged do

for i =  £ +  1 ... n; k =  1
n

c do

w ik
( i c k x

k ' = r l|ck/ xil
end for
for k =  1 . . . c do

c , =  L iwik xi
ck LiWik 

end for
end while
Return fi (k) ==  wik

Lk/ wik'

2/ ( m - 1)
1

two assumptions and guides the classifier along corridors in the input space of low sample 

density between dense regions (clusters). The surrounding dense regions on either side of 

the hyperplane ensure the correct class ratio of the predictions—if there are more inputs 

sampled on one side of the hyperplane than on the other, the predictions are lopsided and 

T-SVM corrects the hyperplane accordingly.

In this section, we first identify a function o  : D u ^  [0,1], which assigns a weight to 

all unlabeled inputs that captures their likelihood of lying in such regions of interest. We 

then subsample our unlabeled data proportional to the o  scores and reduce it to a small 

fraction of its initial size. The function o  consists of two components: one part reflects 

cluster structure in the data by identifying regions of low density that are more likely to 

contribute to a decision boundary, and the other part reflects information provided by the 

current best guess for a separator to identify points that are likely to be informative.

6.2.1 Cluster Entropy

As a first step, we are interested in identifying corridors of low sample density between 

clusters. Inputs in sparse regions are by definition not near any cluster and therefore will 

not obtain a sharp cluster assignment from an algorithm like c-means. We can measure this 

uncertainty by performing c-means and computing the entropy of the resulting clustering 

distribution p =  [p1 , . . . ,p c] ^ :
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Hc(p) =  — £  P k log(Pk) . (6.2.1)
k=1

The cluster entropy is minimized if a single cluster is sharply assigned with probability 

Pk =  1, in which case Hc(p) =  0. In contrast, it is maximized in the setting of maximum 

uncertainty, i.e., if Pk =  1  for all clusters k. Note that the cluster assignment p is a function 

of the input x, and we therefore write Hc (p(x)) to denote the cluster entropy of input x. We 

visualize the cluster entropy scores in Figure 6.2.

6.2.2 Label Uncertainty-Based Scores

The cluster entropy identifies regions of low sample density between dense regions 

(clusters). There may be many such regions, not all of them near the decision boundary 

of the SVM. Each iteration of T-SVM refines the parameters of the hyperplane. As C* 

increases, the parameters slowly “freeze” in place and the changes to the decision boundary 

become smaller and smaller.

We can utilize the fact that with each iteration we obtain a better forecast of the final 

decision boundary and compute a label uncertainty score of the current T-SVM classifier. 

Inputs with high label uncertainty are those that lie right around the decision boundary—the 

region of interest for the T-SVM classifier.

We use Platt’s scaling technique [Platt, 1999] to turn the T-SVM predictions into prop­

erly scaled probabilities. More explicitly, once we obtain the decision rule hg (x), we 

define the posterior probability P(y =  1 |x) =  1 +  eah 6 (x)+ b with the constants a,b  

obtained via a straight-forward maximum likelihood optimization. This step is extremely 

fast, because only two free parameters are estimated. With this notation, we can define the 

label uncertainty score as

( x) =  P(y 6 (x)|x), (6 .2 .2)

where yg  (x) =  sign(hg (x)). We visualize the Platt’s scaling scores in Figure 6.3.

6.2.3 Adaptive Subsampling

Finally, we combine (6.2.1) and (6.2.2) and define our final weighting function as

a  (x) =  a l (x)Hc (p(x)). (6.2.3)

Given a (•) as defined in (6.2.3), we sample m inputs from D y , where the input x is 

picked without replacement in proportion to the score a (x). To do this, we use a standard
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Figure 6.2. Visualizing the cluster entropy scores, running fuzzy c-means.

Figure 6.3. Visualizing Platt’s scaling scores.

acceptance/rejection sampling algorithm summarized in Algorithm 6 . As discussed in the 

dissertation of Olken [1993], this algorithm is well suited for sampling when the weights 

are ad hoc and may be updated frequently, as is the case in our setting.

We repeat the subsampling before each iteration to obtain a new set of m unlabeled 

inputs. We visualize the decision boundaries and margins of running the full T-SVM in 

Figure 6.4 and the adaptive T-SVM in Figure 6.5. It is important to note that only the value 

of Oi (•) is updated after each iteration to incorporate the new decision boundary. The value
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Figure 6.4. Visualizing T-SVM decision boundary and margins on full data.

Figure 6.5. Visualizing T-SVM decision boundary and margins on adaptively sampled 
data.

Algorithm 6 Sampling m inputs without replacement proportional to a .
S ^  0
while |S| < m do

Pick an index i uniformly in [t +  1, n].
Pick a uniform random number r e [0,1] and add i to the sample S if r < a  (x )̂

end while
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of Hc (-) remains unchanged throughout, as the clustering is performed only once prior to 

learning. For the first iteration we set oj (x) =  1 for all inputs, as no classifier has been 

trained yet.

6.2.4 Complexity Analysis

The motivation behind our adaptive sampling is to reduce T-SVM’s input size. This

leads to speedups only if the subsampling algorithm itself scales significantly better than T-
3 2  SVM itself, which scales O(n3) in the worst case but often behaves like O(n2) in practice.

Each iteration of the fuzzy c-means algorithm takes linear time and we run it for a 

fixed number of iterations. Since we run the algorithm only on the unlabeled data D u , 

the running time is O(u). Each iteration of the Newton method used to estimate the Platt’s 

scaling scores also takes linear time. In practice, the process converges in a small (constant) 

number of iterations. Finally, the sampling algorithm will generate a new sample (the 

inside of the while loop in Algorithm 6) in expected time (E[o])- 1 by standard bounds 

on geometric distributions. The expression E [o] is the expected value of o  over a uniform 

sample of the points. It is typically a small constant. Thus sampling m elements takes O(m) 

time.

Thus, the overall complexity of the sampling procedure is O(n) time per iteration of 

T-SVM.

6.3 E x p e r im e n ts

We demonstrate the efficacy of our method on a variety of datasets in this section. We 

compare the adaptive subsampling for T-SVM with uniform subsampling, regular SVM 

and T-SVM on all unlabeled inputs. We observe that even at roughly 10% sample size, 

across all datasets, we achieve over 20x speedups with little impact on accuracy.

6.3.1 Experimental Setup

All the experiments were run on an Intel Quad Core CPU 2.66GHz machine with 4GB 

RAM. Our implementation is a modification of Collobert et al. [2006a]. We describe the 

data that we use in Table 6.1.
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Table 6.1. All five datasets (sorted by fraction of unlabeled data) and their statistics: 
number of labeled inputs (£), number of unlabeled inputs (u), fraction of unlabeled data 
(£ + u ), dimensionality (d).

Dataset £ u u/n d
a8a (Adult) 22696 9865 0.30 123
Gisette 1000 6000 0.56 5000
Svmguide1 3089 4000 0.86 4
CodRNA 59535 429030 0.88 8
a1a (Adult) 1605 30956 0.95 123

6.3.2 Datasets and Methodology

We evaluate our algorithm on five medium and large datasets Svmguide1, Gisette, 

Adult, and CodRNA downloaded from the LIBSVM data page2. All the datasets contain 

two classes and are feature scaled as a part of preprocessing. Table 6.1 summarizes their 

statistics in terms of labeled dataset size (£), unlabeled dataset size (u) and dimensionality 

(d). During the development of our algorithm, none of these datasets were ever used. 

Instead, we developed adaptive T-SVM with the help of six (smaller) datasets from the 

UCI machine learning repository [Bache and Lichman, 2013] (Iris, Ionoshpere, Sonar, 

Heart, Pima, and Mushrooms). We purposely chose datasets that are too small to require 

subsampling, in order to keep the interesting medium or large scale data “untouched” for 

evaluation. To enforce a strict separation between development and evaluation data, we 

omit results on these smaller datasets. (They tend to be comparable or slightly better in 

terms of accuracy convergence, however with smaller speedups due to their at times tiny 

sizes.).

We compare our method against a naive uniform subsampling, where in each iteration, 

we pick a random sample of the unlabeled inputs for consideration by the T-SVM algo­

rithm. We perform each experiment five times (with identical train/test splits) and report 

the average accuracies and standard deviations.

2http://www.csie.ntu.edu.tw/^cjlin/libsvmtools/datasets/

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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6.3.3 Hyperparameters

Throughout we use T-SVM and SVM with a radial basis function (RBF) kernel and 

set all hyperparameters, including the bandwidth of the RBF kernel and the regularization 

constant, by 5-fold cross validation on the labeled training data.

We run fuzzy c-means with c =  2 clusters to obtain the cluster entropy of the unlabeled 

inputs. This setting was chosen as it leads to the fastest clustering convergence and resulted 

in high accuracy on our development datasets. Figure 6.6 shows the sensitivity of adaptive 

subsampling with respect c on the Svmguide1 data. The graph supports that the algorithm 

is fairly insensitive to the number of cluster centers and c =  2 appears to be a good choice.

6.3.4 Performance

Figure 6.7 shows accuracy levels as a function of the size of the subsampled dataset 

on all five benchmark tasks. It compares T-SVM with adaptive (black line) and uniform 

subsampling (red line), as well as T-SVM on the full data (blue triangle) and supervised 

SVM (dashed green line).

6.3.4.1 Accuracy. Concerning the test accuracy, there are three clear trends that can 

be observed.

1. T-SVM with adaptive subsampling obtains strictly higher accuracies than uniform 

subsampling on all datasets, at all sampling rates.

2. Adaptive subsampling leads to strictly lower variance than uniform subsampling 

across all settings.

3. As the sampling size increases, the accuracy of T-SVM with adaptive subsampling 

rapidly approaches that of T-SVM on the full dataset typically reaching very similar 

levels of accuracy already well below a sampling rate of 10% (Note that the horizon­

tal axis in Figure 6.7 is in log scale).

Uniform subsampling suffers from high variance especially in the low sample regions— 

a sign that T-SVM puts too much emphasis on the few unlabeled inputs that are available. 

If these are positioned far from the hyperplane, large changes can be forced onto the 

SVM classifier, possibly based on sampling artifacts rather than true structure in the data 

distribution. Adaptive subsampling mitigates this effect by focusing consistently on inputs 

near the decision boundary and relevant regions. This observation is also consistent with 

results on dataset a8a (Adult), which has the lowest fraction of unlabeled data. Here, the
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Figure 6 .6 . Effect of using clustering with different cluster numbers on the different 
strategies for subsampling data for T-SVM, on the Svmguide1 dataset.
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amount of unlabeled data is insufficient and T-SVM reduces the test accuracy. Uniform 

subsampling magnifies this negative effect even further, whereas adaptive subsampling 

dampens it substantially.

6.3.4.2 Training speedup. The additional overhead of the adaptive subsampling 

(including the clustering) ranges from 1.1s for the smallest dataset (Svmguide1) to 66s 

for CodRNA (the largest dataset). Compared with the quadratic/cubic time complexity of 

the T-SVM training, see Table 6.2, this overhead is negligible for all five datasets.

Consequently speedup can be considered a function of purely the sample size rather 

than subsampling method. The speedup at each level of subsampling is superimposed on 

the top of each graph in Figure 6.7.

As expected, datasets with larger fractions of unlabeled inputs (and large number of 

unlabeled inputs in absolute terms) tend to have higher speedups (a1a, CodRNA). As 

we observed previously, at a sample size of about 10% the adaptive T-SVM tends to 

stabilize in terms of the standard deviation and is very close to the T-SVM accuracy without 

subsampling. Table 6.2 depicts the exact training times and test accuracies after 10% 

subsampling and on the full dataset. Although adaptive subsampling to 10% reduces the 

training time to a mere 5% of its original amount, it has surprisingly little impact on the 

test accuracies. Even higher speedups are possible by sampling fewer inputs and effectively 

trading off some accuracy for speed (see Figure 6.7).

The high speedups reported in Figure 6.7 and Table 6.2 are particularly impressive as 

our baseline is already the fastest and best scaling T-SVM implementation we are aware 

of Collobert et al. [2006a].

6.3.5 Further Analysis

In the following we provide some additional analysis of the individual components of 

our adaptive subsampling algorithm and its effect on the support vectors.

6.3.5.1 Subsampling. Figure 6.8 compares the various components of adaptive sub­

sampling on the Svmguide1 dataset. The figure shows four graphs that differ in the way 

unlabeled inputs are subsampled during the T-SVM iterations. The four lines represent 

adaptive subsampling i.e., subsampling proportional to Hc ( ) c l (•) (black line), sampling 

proportional to the cluster entropy Hc(-) (orange line), sampling proportional to the label
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Table 6.2. Accuracies and training times for the five datasets with a 10% subsampling rate 
and without subsampling (100%). The table shows that adaptive subsampling reduces the 
T-SVM training time to a small fraction of the original amount with very little impact on 
test accuracy.

training time test accuracy
Sampling rate 100% l 0% l 00% l 0%

Svmguidel lm 6s 70. l 69.3
ala lh 30m 33s 82.7 83.6
a8a lh l 2m 6m l7s 80.6 8 l .0

Gisette l 0m 27s 94.7 94 . 2
CodRNA 2d lh 37m 2h 29m 90.6 90.3

method: sam pling: 
T-SVM (adaptive subsampling) cc7i(x)Hc(p(x))

T-SVM (cluster entropy) c H c(p(x))

T-SVM (label uncertainty) c/7i(x')

T-SVM (uniform subsampling) c  1 

T-SVM(full data)

SVM

Number o f sampled unlabeled points

Figure 6 .8 . A comparison of the different strategies for subsampling data for T-SVM (on 
the Svmguidel dataset). Both, the label uncertainty and the cluster entropy, outperform 
uniform subsampling. Their combination (adaptive subsampling) leads to big additional 
gains in accuracy throughout, has the least variance and reaches comparable accuracies to 
T-SVM on the full data much sooner.

uncertainty Oj(■) (pink line), uniform subsampling (red line), T-SVM on the full data (blue 

dot), and canonical supervised SVM (dashed green horizontal line).

We observe a clear trend that both components of the adaptive subsampling (cluster 

entropy and label uncertainty) individually improve over uniform subsampling. Their 

combination, adaptive subsampling, improves even further. In fact, we observe that the 

gain in accuracy through adaptive subsampling (over uniform) is even higher than the 

sum of the two gains through cluster entropy and label uncertainty. This indicates that 

both components are necessary and contribute in complementary ways to the weighting 

function.

6.3.5.2 Support vectors. Figure 6.7 indicates that T-SVM with adaptive subsam­

pling converges much sooner to the results of the true T-SVM classifier than uniform
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subsampling. As the SVM decision boundary can be defined entirely in terms of support 

vectors [Scholkopf and Smola, 2002], it is interesting to see if the approximate support 

vectors (aSV) chosen under adaptive subsampling are close to the true support vectors (tSV) 

chosen without subsampling. To investigate how similar the two sets of support vectors are, 

we define two metrics in the spirit of precision and recall [Baeza-Yates and Ribeiro-Neto, 

1999]. For the two sets of support vectors to define similar decision boundaries it is not 

only desired to have each aSV close to an existing tSV (precision), but also each tSV close 

to an aSV (recall). Figure 6.9 shows the average normalized distances from each aSV to 

its nearest tSV (left) and from each tSV to its nearest aSV (right). The results are averages 

across five runs at 10% sampling rate with corresponding standard deviations. Note that in 

contrast to precision and recall, here lower values are better as we consider distances to and 

from support vectors.

Let the support vectors returned by the adaptive T-SVM be S n and the ones returned
b

by T-SVM with random samples be S u. We first compute the the average value of the

normalized nearest neighbor distances between the sets S n and S true and vice versa. We
b t L i d (S in , NN ( S n , S true)) 

repeat this for the sets S b and S true. --------- -----  n ---------------represents the average
| S a |

L j  d (NN ( S true, S n), S true) 
distance between the sets S n and S true an d ---------------^ t rue |---------------represents

the average distance between the sets S true and S n, where NN represents the normalized 

nearest neighbor distance. It is easy to see that these values lie between zero and one.

The graph highlights the drastic difference between uniform and adaptive subsam­

pling across all datasets. Support vectors obtained with adaptive subsampling tend to 

be consistently at about half the distance to/from original support vectors. Further, we 

observe that subsampling according to cluster entropy and label uncertainty also guide the 

decision boundary closer to its accurate location. Similar to Figure 6 .8, their combination 

(adaptive subsampling) leads to substantial additional improvements—indicating that both 

components act complementary and are necessary to identify regions of likely support 

vectors.



105

distance to true SVs distance from true SVs

Svmguidel

a1a (Adult) 

a8a (/Adult)

Gisette

CodRNA

0.4 0.3 0.2 0.1 0.0 0.0 0.1 0.2 0.3 0.4 0.5

■  T-SVM (adaptive subsam pling) □  T-SVM (cluster entropy)
□  T-SVM (label uncerta in ty) □  T-SVM (uniform  subsam pling)

Figure 6.9. Adaptive subsampling samples from regions in the input space that are likely 
to contain support vectors. This graph shows the average normalized distances between 
approximate support vectors to the closest true support vectors (obtained with T-SVM 
without subsampling) and vice versa (right). The graph shows that sampling proportionally 
to label uncertainty and cluster entropy each reduce the distances to and from true support 
vectors. The combination of the two (adaptive subsampling) guides the decision boundary 
most accurately.

6.4 S u m m a ry

SSL algorithms can improve classification accuracy because they assume and uncover 

hidden structure in the input distribution, which can not be extracted from the limited 

available labeled data. Different algorithms discover different signatures. For example, 

T-SVM discovers the dense regions in the input space and encourages the decision bound­

ary to circumvent them; Laplacian regularization ([Belkin and Niyogi, 2004]) uncovers the 

manifold that underlies the data distribution and encourages predictions to change smoothly 

along this manifold; cotraining (introduced by Blum and Mitchell [1998]) assumes that data 

can be represented in label-conditionally independent ways and makes classifiers for both 

views agree as Chen et al. [2011] discovered from the unlabeled data.

Our research is based on the insight that if unlabeled data is only used to discover certain 

signature properties, it may be possible to still perform this task on a small fraction of its
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original size. If this reduction is of smaller complexity than the SSL algorithm, massive 

speedups are obtainable. As future work we will investigate how to apply this insight on 

different families of SSL algorithms. For example, manifold data is often oversampled in 

regions with little curvature, where the manifold is easier to capture, and requires higher 

sample density in regions of high curvature.

For very large dataset sizes it may also be possible to perform the subsampling already 

during data collection. This could potentially reduce storage requirements and network 

traffic drastically. Our current algorithm is integrated into T-SVM, but one could imagine 

variations that already subsample (less aggressively) prior to learning.

In this chapter we introduced adaptive T-SVM, a novel large-scale SSL algorithm. Our 

approach subsamples the unlabeled dataset effectively, while preserving regions of interest 

for T-SVM’s decision boundary. This is achieved by incorporating two key components: 

label uncertainty and cluster entropy. We demonstrated that both components combined 

can successfully predict regions of interest to the T-SVM algorithm—a fact that can be 

exploited to drastically reduce the size of the unlabeled data. Adaptive subsampling can 

obtain orders of magnitude speedups, with negligent or no impact on T-SVM’s accuracy.

As datasets keep growing at a much faster rate than data can be labeled, SSL will 

continue to increase in importance. Our adaptive T-SVM algorithm is amongst the first to 

make SSL practical on large scale data. Although our approach is focused on T-SVM as 

a specific algorithm, it follows a paradigm that we hope will spawn interesting followup 

work across many relevant research areas.



CHAPTER 7

C O N C L U S IO N

Data is ever growing and there is an immediate need for developing robust techniques 

to analyze data and validate the results. There has been substantial research contributions 

in developing various clustering algorithms that help to preprocess data and separate data 

into meaningful groups. In fact, Lloyd’s algorithm to k-means, which is one of the top 

ten clustering methods chosen by IEEE International Conference on Data Mining (ICDM), 

still remains a good choice for any practitioner. But, there are more fundamental questions 

that have still not been answered in satisfying manner. These questions include

1. Have I clustered my data correctly?

2. Can I do any better on my data?

3. Do I have the correct number of clusters?

4. Are there different, yet useful partitions that can be mined from the data?

5. Are the data points that have been assigned incorrectly?

We ask these questions in this dissertation and provide solutions that both answer them and 

open up a few more questions.

While clustering can be immensely useful in exploratory data analysis, there is no oracle 

to label the data or verify the solutions. This dissertation therefore focused on exploring 

the landscape of clusterings data, providing the user with a robust variety of solutions and 

validating the results towards a larger goal of verifiable data mining. The applications that 

benefit from our methods and measures were introduced throughout the dissertation and 

support the foundational work done as part of this dissertation. We view our work as one 

that the practitioners could hugely benefit from, since many of them have the questions that 

we mentioned above.

Our focus in this dissertation was developing robust algorithms for metaclustering and 

computing stability of partitions and reduce the computational complexity involved in these 

methods. We analyze the error tradeoffs arising due to the use of various sampling proce-
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dures to make the runtimes faster and substantiate the choice of hyperparameters involved 

by a collection of experiments. We can now represent partitions succinctly, compare them 

in a well founded and efficient manner, compute a consensus solution to create an ensemble 

of the input partitions, generate a variety of partitions, validate data memberships and 

use them to speed up various data mining and machine learning applications. We now 

summarize the contributions of this dissertation briefly.

7.1 S u m m a ry  o f  C o n tr ib u tio n s

• Comparing partitions. Using prior work in representing point clouds in the pow­

erful reproducing kernel Hilbert space, we proposed a spatially aware metric to 

compare partitions that goes beyond the traditional combinatorial measures. We 

discussed efficient algorithms to compute this metric and we view this as an essential 

hammer for various metaclustering problems.

• Evaluating partitions. We also described a new quality measure to evaluate parti­

tions that we observe to be very good in determining the “goodness” of a partition. 

This measure along with the capability to compare partitions efficiently, allows us to 

analyze any given collection of partitions.

• Consensus clustering. We reduce the usually technically involved consensus clus­

tering problem to simple clustering in reproducing kernel Hilbert space. Armed with 

the well founded distance metric to compare partitions, we describe simple clustering 

methods to find the 1-median solution in the space of partitions that results in a 

consensus solution.

• Alternative clustering. We take the problem of generating alternative partitions to 

the next level. We describe a Markov chain Monte Carlo sampling procedure to 

explore the space of all possible partitions of the data, thereby allowing the user 

to both understand the clusterability of the data and provide him/her with multiple 

choices of partitions to work with.

• Validating partitions. We introduce new point level notions of stability by defining 

regions of influence of clusters and points and how they interact. These affinity 

scores are very useful especially in the absence of an oracle that can label the data. 

We also discuss various applications of such an affinity score in speeding up various
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data mining methods and modeling for clustering.

• Speeding up semisupervised learning. We describe fast and large scale semisuper­

vised techniques by using adaptive sampling strategies based on the insight gained 

from defining affinity scores. With the abundance of unlabeled data, our method 

becomes extremely relevant as we demonstrate significant speedups over existing 

methods.

We round up this dissertation by proposing a few immediate questions that arise from our 

line of work.

7 .2  F u tu re  C h a lle n g es

Each chapter in this dissertation provide solutions to various metaquestions on clus­

terings that aid exploratory data analysis. We are particularly interested in exploring the 

clustering stability work we discuss in Chapter 5. We believe that the methods that we 

propose could benefit from a good theoretical study to gain a deeper understanding of how 

and why they work. In the following, we highlight a few specific questions that we think 

could further the research in clustering.

• Speeding up different data mining and machine learning methods. Can we 

develop adaptive sampling strategies for other machine learning methods like SVM 

and regression to make them faster [Balcan et al., 2012; Balcan and Feldman, 2013; 

Dasgupta, 2010; Ho et al., 2011]? Can we develop distributed clustering methods 

by using our concise clustering representations and attached affinity scores to com­

municate efficiently? Can we develop sound theory to bound communication in this 

model?

• Heterogeneous clustering. Due to the lack of an appropriate distance measure be­

tween the data objects, many existing clustering methods only work on homogeneous 

data. Can we define the similarity between different feature set types to enable 

comparison of the data objects, which is essential for clustering? Can we leverage 

from the techniques and measures we describe in Chapter 3 to compare and cluster 

the objects that are in different feature spaces [Aerts et al., 2006; De Bie et al., 2007; 

Filkov and Skiena, 2004; Huang and Zhu, 2007; Liu et al., 2009; Ye et al., 2008; Yu 

etal., 2008]?



110

• Secondary level distances between partitions. Distances in high dimensions are 

unstable since the distribution of pairwise distances is highly skewed towards a single 

value. From the insights we gained in our work on generating partitions in Chapter 4, 

we realize that a majority of the partitions have a very narrow range of pairwise 

distances between them. Can we build a secondary level distance that is induced 

by LiftEMD, our primary distance between partitions? Shared nearest neighbors 

(SNN) [Ertoz et al., 2002; Houle et al., 2010; Houle, 2003; Jarvis and Patrick, 1973] 

are a common way to counter the effects of curse of dimensionality. Can we use the 

affinity scores to redefine SNN?

• Clustering to maximize affinity. Can we define a new clustering method that 

maximizes the local stability of the points? Can we define an objective function 

along the lines of k-means to compute this clustering? Given a partition, how can we 

find new centers that maximize affinity? Can we still use our Voronoi notions that 

we discuss in Chapter 5 to determine how the centers navigate? Can we bound the 

convergence of this method? Can we develop faster algorithms to find high and low 

stability points directly to make this clustering method faster?

• Dimensionality reduction and clustering. Dimensionality reduction and clustering 

go hand in hand. Due to the “curse of dimensionality” and computational reasons, 

data are often projected to a lower-dimensional subspace to then cluster in this new 

space. It will be immensely useful to gain a deeper understanding of how various 

dimensionality algorithms and clustering methods are related. For instance, can we 

use the affinity scores that we define in Chapter 5 to build a robust dimensionality 

reduction methods that can find the best subspace to work with for purposes of 

clustering?

• Defining different influence regions of points and clusters. Can we define other 

ways of capturing how a cluster influences a point and vice versa to make the no­

tion of affinity more robust? Can we use other interpolation techniques described 

by Bobach and Umlauf [2006] to understand other ways in which clusters interact? 

Can we compute this interpolation for kernels? Can we do it on manifolds? Can we 

work in other non Euclidean spaces?

• Accountability in data mining. As data mining results become more personalized,
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there is an increasing need for the data miner to explain the results to the user. Can 

we setup a proof of knowledge system via an interactive proof system that will allow 

the user acting as the verifier to validate the clustering results? What are the privacy 

concerns in doing this?

• Differential privacy and anonymity. Can we define an e-differential privacy [Dwork, 

2008; Inan et al., 2007; Vaidya and Clifton, 2003; Zhang et al., 2012] setting for 

clustering using the affinity scores? Can we also describe k-anonymity [Aggarwal 

et al., 2010; Byun et al., 2007; Lin and Wei, 2008] for clustering by computing 

column and row leverage scores [Drineas and Mahoney, 2010; Mahoney and Drineas, 

2009; Mahoney et al., 2012] using the affinity model described in Chapter 5?
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