
E X P L O R I N G T H E L A N D S C A P E O F C L U S T E R I N G S

by

Parasaran Raman

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

December 2013

Copyright © Parasaran Raman 2013

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Parasaran Raman

has been approved by the following supervisory committee members:

Suresh Venkatasubramanian

Thomas Fletcher

Feifei Li

Jeff Phillips

Thomas Seidl

, Chair

, Member

, Member

, Member

, Member

October 24, 2013

Date Approved

October 24, 2013

Date Approved

October 24, 2013

Date Approved

October 24, 2013

Date Approved

November 7, 2013

Date Approved

and by

the Department of

Alan L. Davis , Chair of

School of Computing

and by David B. Kieda , Dean of the Graduate School.

A B S T R A C T

With the tremendous growth of data produced in the recent years, it is impossible to

identify patterns or test hypotheses without reducing data size. Data mining is an area of

science that extracts useful information from the data by discovering patterns and structures

present in the data. In this dissertation, we will largely focus on clustering which is often

the first step in any exploratory data mining task, where items that are similar to each other

are grouped together, making downstream data analysis robust.

Different clustering techniques have different strengths, and the resulting groupings

provide different perspectives on the data. Due to the unsupervised nature i.e., the lack of

domain experts who can label the data, validation of results is very difficult. While there

are measures that compute “goodness” scores for clustering solutions as a whole, there

are few methods that validate the assignment of individual data items to their clusters. To

address these challenges we focus on developing a framework that can generate, compare,

combine, and evaluate different solutions to make more robust and significant statements

about the data.

In the first part of this dissertation, we present fast and efficient techniques to generate

and combine different clustering solutions. We build on some recent ideas on efficient

representations of clusters of partitions to develop a well founded metric that is spatially

aware to compare clusterings. With the ability to compare clusterings, we describe a

heuristic to combine different solutions to produce a single high quality clustering. We

also introduce a Markov chain Monte Carlo approach to sample different clusterings from

the entire landscape to provide the users with a variety of choices. In the second part of

this dissertation, we build certificates for individual data items and study their influence on

effective data reduction. We present a geometric approach by defining regions of influence

for data items and clusters and use this to develop adaptive sampling techniques to speedup

machine learning algorithms. This dissertation is therefore a systematic approach to study

the landscape of clusterings in an attempt to provide a better understanding of the data.

C O N T E N T S

A B S T R A C T .. iii

L IST O F F IG U R E S ... vii

L IST O F T A B L E S ... x

A C K N O W L E D G M E N T S... xi

C H A PTER S

1...... IN T R O D U C T IO N .. 1

1.1 Thesis S ta tem en t.. 3
1.2 Organization of this Thesis ... 4

2. RELEVANT W O R K ... 7

2.1 Reproducing Kernel Hilbert S p a c e s .. 7
2.1.1 Hilbert S p a c e ... 8
2.1.2 R K H S.. 8
2.1.3 Reproducing P roperty ... 9
2.1.4 Importance of RKHS ... 9

2.2 Comparing Partitions... 10
2.2.1 Clusters as Distributions .. 11
2.2.2 Metrizing Distributions ... 14

2.3 Consensus Clustering ... 15
2.4 Alternative C lu ste rin g ... 16
2.5 Evaluating C lusterings... 17
2.6 Semisupervised Learning.. 19

P A R T I M E T A C L U S T E R IN G ... 20

3.......CONSENSUS C L U S T E R IN G ... 21

3.1 Overview of Our W o r k .. 22
3.1.1 Representations ... 23
3.1.2 Distance Com putation... 24
3.1.3 Consensus .. 24
3.1.4 Comparison to Prior Work ... 25

3.2 Preliminaries .. 25
3.2.1 D efin itions.. 25
3.2.2 An RKHS Distance Between Clusters .. 26

3.3 Approximate Normalized Cluster Representation .. 28
3.3.1 Approximate Lifting Map <3>... 28

3.3.2 Normalizing ^ (C) ... 29
3.3.3 Computing the Distance Between Clusters29

3.4 New Distances between Partitions ...30
3.4.1 An Example, C o n tin u ed31
3.4.2 Computing the Distance Between Partitions ..32

3.5 Computing Consensus Partitions32
3.5.1 A Reduction from Consensus Finding to C lustering....................................33
3.5.2 Algorithm ...33

3.6 Experimental Evaluation ..35
3.6.1 Data35
3.6.2 Methodology35
3.6.3 C ode..36
3.6.4 Spatial Sensitivity37
3.6.5 E fficiency...37
3.6.6 Consensus Clustering39
3.6.7 Error in <3>...41

3.7 Sum m ary...41

4. GEN ERA TING TH E LANDSCAPE O F P A R T IT IO N S43

4.1 Overview of Our W o r k45
4.1.1 Comparison to Prior Work47
4.1.2 Outline ..48

4.2 Generating Many High Quality Partitions...48
4.2.1 Quality of P a rtitio n s48
4.2.2 Generation of Partitions Proportional to Q u a li ty50

4.3 Grouping the Partitions52
4.3.1 Clusters of Partitions...54

4.4 Experimental Evaluation ..55
4.4.1 D a ta55
4.4.2 Methodology56
4.4.3 Performance Evaluation57

4.5 Sum m ary...63

PART I I ST A B IL IT Y ...64

5.......VALIDATING DATA M E M B E R S H IP S65

5.1 Our Work66
5.1.1 Overview of Our W o rk ...67
5.1.2 Applications67

5.2 Preliminaries ..68
5.3 Defining Affinity Scores ..69

5.3.1 A Rationale for Affinity71
5.3.2 Visualization..72
5.3.3 Extensions73

5.4 Estimating Affinity74
5.4.1 Sampling from Ux ... 76

5.5 Experiments ..78
5.5.1 Data and Experimental Setup79

v

5.5.2 Using Affinity Scores to Identify Poorly Clustered P o in ts 80
5.5.3 Using Affinity Scores to Accelerate C lu s te rin g 81
5.5.4 Using Affinity Scores for Model Selection and Clusterability 82
5.5.5 Evaluating Performance .. 84

5.6 Sum m ary... 87

6 . L A R G E SCA LE TRA N SD U CTIV E S V M .. 8 8

6.1 Prelim inaries.. 90
6.1.1 SVM .. 90
6.1.2 T -S V M .. 91
6.1.3 Ramp Loss T -SV M .. 92
6.1.4 Soft C lu s te rin g ... 92

6.2 Adaptive Subsampling for T -S V M ... 93
6.2.1 Cluster Entropy... 94
6.2.2 Label Uncertainty-Based Scores .. 95
6.2.3 Adaptive Subsampling ... 95
6.2.4 Complexity Analysis ... 98

6.3 Experiments .. 98
6.3.1 Experimental Setup .. 98
6.3.2 Datasets and Methodology ... 99

6.3.3 Hyperparameters...100
6.3.4 Perform ance..100
6.3.5 Further A n alysis ...102

6.4 Sum m ary...105

7. C O N C L U S IO N ...107

7.1 Summary of Contributions... 108
7.2 Future C h allenges.. 109

R EFER EN C ES .. 112

DISSEM INATION O F TH IS W O R K ..127

vi

LIST OF FIGURES

2.1 Feature map from input domain X to a RKHS H . Also shown is a representer
for a point x which defines the reproducing property of the feature space. . . . 11

2.2 Dataset with three concentric circles, each representing a cluster partitioning
the data. The CC distance [Zhou et al., 2005] can not distinguish between
these clusters.. 13

2.3 Dataset with four clusters, each a set grouped in a single grid cell. The two
clusters with blue open circles are as close as the two clusters with filled red
triangles under the D a d CO distance.. 13

3.1 Spatially aware distances are important: (b) first parition (FP) and (c) second
partition (SP) are equidistant from (a) the reference partition (RP) under a
set-based distance. However, FP is clearly more similar to RP than SP............ 23

3.2 Two partitions P 1 = {A 1 , # 1 } and P 2 = 1^2, # 2 , C2 } of the same dataset,
and a 2-d visualization of all of their representations in a RKHS. Note that
the unnormalized vectors (on the left) have $ (# 1) far from $ (# 2) and
$ (C 2) even though the second two are subsets of the first. The normalized
vectors (on the right) have $ (# 1) close to both $ (# 2) and $ (C2). In
particular, $ (C 2) is closer to $ (A i) than $ (# i), but $ (C2) is much closer
to $ (B1) than $ (A1) ... 30

3.3 Three partitions P 1 = {A1 ,# 1 }, P 2 = {A2 ,# 2 ,C2 }, P 3 = {A3 ,B 3 ,C3 },
and a 2-d visualization of the RKHS vectors. These vectors are then clus­
tered into k = 2 consensus clusters consisting of { $ (A1) , $ (A2) ,CI)(A3)}
and { $ (# 1) , $ (# 2) ,$ (C2) , $ (# 3) ,$ (C3)} .. 34

3.4 Different partitions ((a) RP, (b) FP and (c) SP) of 2D3C dataset......................... 38

3.5 28x28 pixel representation of the cluster centroids for MNIST test input
partitions generated using (a) k-means, (b) complete linkage HAC, and (c)
average linkage HAC, and the consensus partitions generated by (d) CSPA
and (e) L ift -K m ... 41

3.6 Error in L if t EM D on 2D2C dataset (45 samples) as a function of p 42

3.7 Error in L if t EM D on MNIST training data (60,000 samples) as a function
of p ... 42

4.1 Three possible partitions based on (a) object contained, (b) dominant color,
and (c) type of lens used on a subset of MIRFLICKR-25000 dataset. All
images are offered under creative commons copyright licenses.......................... 44

4.2 Sampling partitions proportional to its quality from the space of all partitions
with s clusters... 46

4.3 The kernel distance quality with a Gaussian kernel penalizes the outliers
with the black points given much more importance than the gray ones............. 51

4.4 Gibbs sampling by reconfiguring a partition proportional to quality. The
intial configuration is shown in (a), the three possible moves are explained
in (b), and the final configuration is shown in (c).. 53

4.5 A 2-d illustration of the space of partitions. Each square is a sampled
partition and there are four groups of partitions from which we pick one
representative each.. 55

4.6 2D5C dataset with 100 points in 2-dimensions... 56

4.7 Stacked area plot comparing the distributions of all pairs distances of all gen­
erated partitions and the all pairs distances of the representative partitions.
(a), (c), (e), and (g) show the L if t EM D distance and (b), (d), (f), and (h)
show the Rand distance... 58

4.8 Yale face B: heat map of the all pairs L if t EM D distance matrix of the
representative partitions. Red regions correspond to faraway partitions and
blue regions are similar partitions... 60

4.9 Stacked area plot of the distribution of quality of all generated partitions.
(a), (c), (e), and (g) show Qw —s and (b), (d), (f), and (h) show the Rand index. 61

4.10 Visual illustration of two representative partitions generated with different
quality functions (a) Qw and (b) Qw —s on 2D5C data.. 62

4.11 Visual illustration of average points of ten clusters in two interesting repre­
sentative partitions on Yale face B. In (a), each cluster is a different person
and in (b), each cluster represents a different illumination level......................... 62

5.1 MNIST handwritten digits. L-R are numbers {“0”, “6” , “4” , “9” }. The
numbers on the top row are very hard to identify even for a human. The
bottom row is unambiguous... 66

5.2 The power diagram of a set of points C 1 . .. C4 . The sphere radius is propor­
tional to the weights W1 . . . w4 ... 69

5.3 In this example, the red point is “stealing” the shaded area from the Voronoi
cells of C1, C2 , C3 ... 71

5.4 Illustration of the difference between distance-based and area-based influ­
ence measures.. 72

5.5 Visualizing the affinity scores. We plot (a) the data with 5 clusters, (b) the
contour plot, and (c) the heat map... 73

5.6 Visualizing the affinity scores for datasets with different densities. There
are 100 points in each cluster in (a) and 500 points in the clusters on the
boundary in (b).. 75

5.7 Illustration of hit and run for sampling from a Voronoi cell. Samples are
shown in blue... 77

5.8 Reducing computation through progressive refinement: (a) very coarse grid-
ding, (b) moderate gridding, and (c) gridding with all points............................... 79

viii

5.9 Results of running k-means on MNIST training data. First row: high affinity.
(L-R) 0.96, 1.0, 1.0, 0.92. Second row: low affinity: (L-R) 0.38, 0.46, 0.34,
0.42... 81

5.10 Performance of active sampling for consensus clustering. Rand index is
displayed above the bar for each method and each dataset................................... 83

5.11 Choosing k: (a) global using k-means cost vs (b) local using average stability
cost... 85

5.12 Aggregate stability vs global stability. .. 85

5.13 Clusterability of 2D5C data: average stability scores dip as variance increases. 85

5.14 Clusterability of two different pairs of digits in the MNIST data........................ 86

5.15 Five Gaussians with varying variance: (a) very low, (b) low, (c) moderate,
(d) high, and (e) very high.. 86

6.1 Decision boundaries and margins of SVM (black) and T-SVM (green) on a
binary classification problem in 2-dimensions. T-SVM uses unlabeled data
and finds a better decision boundary through the sparse region. Unlabeled
inputs selected by our subsampling algorithm are highlighted in green............ 90

6.2 Visualizing the cluster entropy scores, running fuzzy c-means........................... 96

6.3 Visualizing Platt’s scaling scores.. 96

6.4 Visualizing T-SVM decision boundary and margins on full data........................ 97

6.5 Visualizing T-SVM decision boundary and margins on adaptively sampled
data... 97

6 .6 Effect of using clustering with different cluster numbers on the different
strategies for subsampling data for T-SVM, on the Svmguide1 dataset.............101

6.7 Comparing performances of T-SVM with adaptive and uniform subsampling
along with T-SVM and SVM on full data... 101

6 .8 A comparison of the different strategies for subsampling data for T-SVM
(on the Svmguide1 dataset). Both, the label uncertainty and the cluster
entropy, outperform uniform subsampling. Their combination (adaptive sub­
sampling) leads to big additional gains in accuracy throughout, has the least
variance and reaches comparable accuracies to T-SVM on the full data much
sooner. ..103

6.9 Adaptive subsampling samples from regions in the input space that are likely
to contain support vectors. This graph shows the average normalized dis­
tances between approximate support vectors to the closest true support vec­
tors (obtained with T-SVM without subsampling) and vice versa (right). The
graph shows that sampling proportionally to label uncertainty and cluster
entropy each reduce the distances to and from true support vectors. The
combination of the two (adaptive subsampling) guides the decision boundary
most accurately.. 105

ix

LIST OF TABLES

3.1 Comparing partitions: each cell indicates the distance returned under the
methods along the rows for the dataset in the column. Spatially, the left
column of each dataset (2D2C or 2D3C) should be smaller than the right
column; this holds for all five spatial measures/algorithms tested. In all
cases, the two partition-based measures and the two information theoretic
measures yield the same values for d(RP, FP) and d(RP, SP), but are not
shown... 38

3.2 Comparison of runtimes: distance between true partition and partition gen­
erated by k-means) .. 39

3.3 Comparison of L ift -K m and L ift -HAC with hypergraph partitioning based
consensus methods under the Rand distance (with respect to ground truth).
The numbers are comparable across each row corresponding to a different
dataset, and smaller numbers indicate better accuracy. The top two methods
for each dataset are highlighted... 40

3.4 Comparison of L ift -K m and L ift -HAC with hypergraph partitioning based
consensus methods under LIFTEMD (with respect to ground truth). The
numbers are comparable across each row corresponding to a different dataset,
and smaller numbers indicate better accuracy. The top two methods for each
dataset are highlighted... 40

5.1 Datasets... 81

5.2 Data setup for active clustering.. 83

5.3 Runtimes and empirical approximation to exact affin ity 87

6.1 All five datasets (sorted by fraction of unlabeled data) and their statistics:
number of labeled inputs (£), number of unlabeled inputs (u), fraction of
unlabeled data () , dimensionality (d)... 99

6.2 Accuracies and training times for the five datasets with a 10% subsampling
rate and without subsampling (100%). The table shows that adaptive sub­
sampling reduces the T-SVM training time to a small fraction of the original
amount with very little impact on test accuracy. ... 103

A C K N O W L E D G M E N T S

Graduate school has been a wonderful journey and I would like to thank many people

who have helped me along the way. My advisor, Suresh Venkatasubramanian, takes major

credits for keeping me motivated for five years. It has been an absolute privilege to

work with him and I could not have asked for a better advisor. He is a constant source

of encouragement and his deep insights have been extremely helpful in tackling all my

research problems. I am grateful to Suresh for giving me a free hand in choosing the

problems to work on and being a very friendly advisor in and out of academic life.

Jeff Phillips has been a wonderful mentor and I would like to thank him for having

a big impact on my ability to ask better questions in research as well as improving my

presentation skills. I would like to express my sincere gratitude to my committee members,

Tom Fletcher, Feifei Li, and Thomas Seidl for their active support during my proposal and

dissertation defense.

My colleagues in the theory lab, Avishek, John, and Samira have been wonderful

company for research and otherwise. My friends in Salt Lake, including Dhanashree,

Rahul, Rohit, Raj, Sanket, Shomit, and Sriram have been a wonderful relief from the stress

that graduate school offered. I am also grateful to my dear friend, Franziska for her love

and affection and primarily for bringing me food to the lab, late in the night. I also extend

many thanks to my first circle of friends, Afroz, Deepan, Dhileeban, Hari, Jagan, Nithya,

Priya, Senthil, Sowmya, and Vimal for shaping me socially.

A few people made a deep impact on me and I would like to thank those who particu­

larly inspired me to go to graduate school. They include, Vijay Triplicane and Aravindan

Raghuveer (my cousins), Selvarajan (my uncle), my best friend, Janani and her parents,

Indira and K.P.N. Murthy, and my high school teachers, Sherlin, Saravanan, and Ravisel-

van. Lastly, I owe everything to Raman and Radha (my parents), Sreeranjani (my sister),

Parthasarathy (my brother-in-law), and my grandparents and I would like to thank them for

all their love, support and motivation through the years.

CHAPTER 1

I N T R O D U C T I O N

The past decade has seen a tremendous growth in the internet and thus, data creation

and consumption. A few quintillion bytes of data gets generated every day [IBM et al.,

2011]. Storage and processing of this data therefore becomes a big challenge. Data size

explosion has become a huge challenge in data analysis. Even with advances in distributed

and parallel processing and significant improvement in hardware, the “big data” clearly

emerges the winner. The deluge of data, in terms of volume, velocity, and variety [Laney,

2001], makes it very difficult to process and make the data useful. With the rapid increase

in the number of researchers and businesses generating huge volumes of data, we need to

be able to develop techniques that can manage and analyze them efficiently in order to get

the maximum juice out of the data. From recommendations on Netflix to understanding

complex brain functionalities, researchers and businesses need to understand and reason

about big data. Unless we develop efficient methods to perform data squashing that will

preserve statistical information, we might end up in a state of “data paralysis.”

Data reduction can be very useful in this context. Various data mining methods have

been introduced to reduce the quantum of data to manageable sizes. In particular, cluster­

ing is a very common method of data analysis, where the goal is to group similar items

together. It is unsupervised and so can be run automatically on large datasets. Due to

the unsupervised nature, we do not require training data and therefore no labeling effort

by a domain expert is necessary. It is therefore the most common choice for large scale

exploratory data analysis [Aggarwal, 2009; Aggarwal et al., 2007; Asharaf and Murty,

2003; Bandyopadhyay et al., 2006; Barbar and Chen, 2003; Bhaduri, 2008; Chang, 2003;

Costa and Venturini, 2007; Datta et al., 2006; Dean and Ghemawat, 2008; Dhillon and

Modha, 2000; Forman and Zhang, 2000; Goil et al., 1999; Guha et al., 2001; Huang,

1998; Januzaj et al., 2004; Johnson and Kargupta, 2000; Kettenring, 2009; Lv et al., 2010;

2

Murtagh, 1999; Nagesh et al., 2001, 2000; Olman et al., 2009; Otoo et al., 2001; Qian et al.,

2003; Sander et al., 1998; Sassi and Grissa, 2009; Wang et al., 2002; Zhang et al., 1996;

Zhao et al., 2009; Zhou et al., 1999, 2010]. Many of these algorithms are quite adept at

handling massive datasets. Since clustering creates homogeneous clusters of data, we can

use more sophisticated learning tools on each of them for downstream data analysis.

The last few years have seen a number of clustering algorithms being developed and

each method has its own advantages and disadvantages and provide different perspectives

on the data [Arthur and Vassilvitskii, 2006, 2007; Berkhin, 2006; Bonner, 1964; Byun

et al., 2007; Das et al., 2009; Dubes and Jain, 1976; Fraley and Raftery, 1998; Har-Peled

and Sadri, 2005; Hartigan, 1975; Hartigan and Wong, 1979; Jain, 2010; Jain and Dubes,

1988; Jain et al., 1999; Keim and Hinneburg, 1999; Ostrovsky et al., 2006; Tan et al., 2005;

Tsangaris and Naughton, 1992; Xu and Wunsch, 2009]. Although each clustering method

can be successful on data containing specific structures, no single clustering method has

been good enough for all kinds of data.

Clustering is an area of research that is often considered to be “a mile wide and an

inch deep.” Although many common clustering methods have been developed in the last

few decades, no single clustering method works on all kinds of data. Data is often in

high dimensions and it becomes very difficult to visualize the data and study the structures

present in the data. It is impossible to pick the “best” clustering method unless we know

the right patterns present in the data. Therefore, rather than trying to find a single good

answer that explains a dataset, the goal of this dissertation is to explore the landscape of

“good” partitions1, reconcile between a few good quality solutions and validate both the

clustering solution and assignment of individual data points to clusters. The study of such

problems is called metaclustering2 [Caruana et al., 2006].

This raises the following interesting questions:

1In what follows, we use the term partition instead of clustering (for both hard and soft cases) to represent
a set of clusters decomposing a dataset. This avoids confusion between the terms “cluster,” “clustering,” and
the procedure used to compute a partition, and will help us avoid phrases like, “We compute consensus
clusterings by clustering clusters in clusterings!” We retain the use of the term “clustering” when we refer to
the clustering method.

2Metaclustering is also referred to in the literature as generation of multiple clusterings.

3

1. Can we obtain a better result by integrating a collection of solutions from various

clustering methods?

2. Can we compare and contrast different partitions of data to gain a perspective about

the performance of various clustering methods and the clustering landscape of the

data in general?

3. Can we identify more than one “good” partition, if present, of the data?

4. Can we evaluate the quality of the clustering solutions in order to decide if we have

partitioned the data in the right way?

5. Can we validate the cluster assignments of individual data points?

These are some of the many metaquestions that we can ask about clustering to ensure

generation of robust partitions of data. We believe that the questions we ask and the meth­

ods we develop will strengthen clustering as the first choice for the first step in exploratory

data analysis.

In this dissertation, we conduct a systematic study of various metaclustering prob­

lems and address issues in validating partitions with an eye towards accountability in data

mining. We make use of a geometric representation [Berlinet and Thomas-Agnan, 2004;

Gretton et al., 2008; Jegelka et al., 2009; Smola et al., 2007; Sriperumbudur et al., 2010]

for partitions that lets us discuss many metaclustering questions in a common framework.

We introduce efficient algorithms to solve various metaclustering problems. Our goal is to

make the metaclustering solutions work on massive datasets while being easy to implement.

Using this geometric framework, we study the landscape of all possible partitions of data.

We also develop methods to evaluate partitions by validating data to cluster assignments in

the absence of an oracle that can provide and verify the labeling. We hope that this will help

us to obtain robust information about the data along with increased user interaction during

the data mining process. We also discuss in detail a few applications of the methods we

develop in validating partitions and cluster assignments in semisupervised learning where

there is an abundance of unlabeled data like in the case of unsupervised learning.

1 .1 T h e s i s S t a t e m e n t

This dissertation aims to explore a few metaaspects of clustering and stability of parti­

tions and its applications listed below.

4

1. Comparing and reconciling between partitions.

2. Generating a diverse set of partitions.

3. Evaluating the stability of partitions and the assignment of data to clusters.

4. Adaptive sampling to speedup semisupervised learning techniques using cluster affin­

ity scores.

Towards this end, we build sound distance metrics to compare partitions and heuristics

that compute a 1-median solution in the space of partitions, sample a diverse set of good

quality partitions to explore the clustering landscape, construct measures to evaluate par­

titions and data assignment to individual clusters and build adaptive sampling strategies

based on cluster affinity scores that reduce the amount of unlabeled data for speedup of

semisupervised learning.

1 .2 O r g a n i z a t i o n o f t h i s T h e s i s

We discuss related work relevant to this dissertation in the next section. The rest of the

dissertation is organized into two parts. In Part I, we present methods to compare partitions,

generate a variety of partitions and reconcile between them. In Part II, we develop measures

to evaluate data assignments to clusters and the quality of the partitions themselves and we

study their applications. These two parts comprise a total of four chapters. We conclude

the dissertation with a chapter that summarizes the contributions. In the following, we give

an overview of each of these chapters.

• C h ap te r 2. This chapter surveys existing literature in various meta-aspects of clus­

tering. We begin by reviewing measures that compare partitions. We contrast the

different comparison measures and study the importance of the right measure. Next,

we discuss different existing strategies that produce a single partition by comparing

and reconciling between a set of input partitions. We follow this up with a description

of methods in the literature that generate more than a single interesting partition. We

also discuss various existing measures to evaluate partitions both externally and in­

ternally. Lastly, we discuss some model selection methods and a few semisupervised

techniques as applications to some of the algorithms we develop.

• C h ap te r 3. This chapter introduces a new spatially aware metric to compare parti­

tions that is both well founded and fast to compute. Using this metric and prior work

5

on representing partitions, we develop a simple heuristic to compute an ensemble

solution given a variety of input partitions. This consensus procedure is very simple

to implement. Since we reduce partitions to points in high dimensions, we can

leverage all the advancements in clustering to compute the ensemble solution.

• C h ap te r 4. This chapter discusses a new quality measure to evaluate partitions.

Along with the distance metric that we discuss in the previous chapter, we use a

Markov chain Monte Carlo approach to sample for good partitions that are non-

redundant from the space of all partitions. We show that we discover many partitions

with this technique that are not found by traditional clustering methods. This method

lets us explore the landscape of all partitions of the data allowing us to see how

clusterable the data is.

• C h ap te r 5. We introduce local certificates for individual data points to make clus­

tering decisions accountable beginning at the data level. Due to the unsupervised

nature of clustering, it is difficult to validate the assignment of data to clusters. We

introduce a geometric approach by defining regions of influence of data points and

clusters and looking at how they overlap as a way of doing this validation. This

approach to validate partitions is different from the existing approaches where the

validation is only done at the partition level giving a single goodness score for each

partition.

• C h ap te r 6 . Many semisupervised learning methods have been developed in the

last decade where the unlabeled examples are often available along with the labeled

examples at the time of learning. Typically the number of unlabeled examples is

much larger than the labeled examples and this makes the semisupervised learning

methods very slow because of the polynomial complexity in the number of unlabeled

data points. In this chapter, we look at transductive support vector machines (T-SVM)

which is a very common method to compute a classifier by taking into account the

distribution of the unlabeled data. We use adaptively sampling strategies to reduce

the large unlabeled set by using the fact that T-SVM looks for sparse regions in the

entire data to draw the classifier.

• C h ap te r 7. Finally, this chapter provides a summary of the all the contributions

and future directions that spring from our foundational work. We discuss different

6

approaches to speed up machine learning and data mining methods. We also discuss

approaches to make data mining accountable and towards this end we look at two

problems of recent interest, £-differential privacy and k-anonymity.

CHAPTER 2

R E L E V A N T W O R K

Different clustering methods (partitional, hierarchical, density-based, grid-based and

so on) are used as a preliminary data mining technique in a variety of applications in

business, biology, city planning, geology, libraries, medicine, climate science, and any

other large data generating entity including the ones found on the internet. However, we

limit this chapter to survey the relevant work concerning the methodologies developed as

a part of this dissertation and we do not cover the different types of clustering methods or

its applications which are well documented at this time [Hartigan, 1975; Jain and Dubes,

1988; Xu and Wunsch, 2009].

In this chapter, we present background material that serves as a short compendium

of related prior work for the subsequent chapters of this dissertation. We start with a

detailed description of the theory of reproducing kernel Hilbert spaces (RKHS) that is

used to represent partitions succinctly. The understanding of this is critical since we use

this method to represent partitions in our work (see in Part I of the dissertation). We

then discuss various methods to compare partitions including combinatorial and spatial

distances. We also discuss various state of the art methods in computing consensus of

multiple partitions as well as generating multiple partitions. This covers a survey of existing

methodologies that help us understanding the research in metaclustering. Next, we discuss

different clustering evaluation strategies. M ost methods perform a global evaluation of any

given partition while few methods look at how good a partition is beginning at the data

point level. Finally, we describe a few semisupervised learning (SSL) methods that we will

improve in Part II of the dissertation.

2 .1 R e p r o d u c i n g K e r n e l H i l b e r t S p a c e s

The notion of reproducing kernel Hilbert spaces [Aronszajn, 1950; Wahba, 1990] has

been well studied and is a crucial part of the theory of kernel machines.

8

2.1.1 H ilb e rt Space

A Hilbert space H is a complete, finite (or infinite) dimensional linear space endowed

with an inner product. The inner product of two elements u, v E H is denoted by (u, v) h .

For all u, v, w E H and for all a E R, the inner product satisfies the following nice properties.

1. Associativity ((au , v)h = a (u , v)h).

2. Commutativity ((u, v)h = (v, u)h).

3. Distributivity ((u + v, w)h = (u, w)h + (v, w)h).

4. Positive definiteness ((u, u)h > 0 and equal if and only if u = 0).

The norm of the element u is given by ||u|| = (u, u)h . An example of an infinite­

dimensional Hilbert space is L2 with the set of functions f : R d ^ R such that f is

square integrable, i.e., | f (x)|2dx is finite. The inner product is given by (f , g) H =

f (x)g(x)dx and the norm is given by || f || = f 2 (x)dx. The Hilbert space is a

complete metric space with respect to the distance function induced by the inner product

and this is one of the useful properties of the Hilbert space that makes it attractive.

To be able to use a function predictively, it is not just enough for the function to be

square integrable. We need to be able to evaluate the function at any particular data value.

This property will differentiate a reproducing kernel Hilbert space from ordinary Hilbert

spaces.

2 .1 .2 RK H S

A Hilbert space H is the L ^(X) space of functions from X to R where X is any

measurable space. An evaluation functional over the Hilbert space of functions H is defined

as a linear functional 8x : H ^ R that evaluates each function f E H at point x E X, i.e.,

8x [f] = f (x).

A Hilbert space H is a reproducing kernel Hilbert space if the evaluation functionals

are bounded, i.e., V f E H , 3m > 0 such that |5x [f] | = | f (x) | < m || f | | h .

The evaluation functionals 8 lie in a dual space of H . Lets call this H * . In fact H * is

isomorphic to H and each function in H has its dual in H itself. It is important to note that a

Hilbert space H admits a reproducing kernel if and only if point evaluation is a continuous

and bounded functional. H is a function space and can be infinite-dimensional. However,

minimizing over the RKHS is equivalent to minimizing over a finite-dimensional space R n .

9

The notion of boundedness allows us to evaluate each function in the space H at every

point in the domain X. To discuss the notion of a reproducing kernel, we first discuss the

reproducing property that makes the RKHS interesting. We look at a particular theorem

called the Riesz representation theorem that will help us define the reproducing property.

2.1.2.1 Riesz rep resen ta tion theorem . If f : H ^ R is a continuous linear func­

tional mapping from the Hilbert space H to a scalar, then for all x e H , there exists a unique

g e H such that f (x) = (x, g).

2.1.3 R eproducing P roperty

The reproducing property makes the RKHS different from an ordinary Hilbert space. If

H is a RKHS, then for each x e X, there exists a function Kx e H s.t., <5x [f] = (Kx , f) h =

f (x), V f e H . This is called the reproducing property and for each point x there exists a Kx ,

called the representer of x. Intuitively, the dot product of a function with a representer for

a particular x retrieves that corresponding component of f . Thus the dot product evaluated

at all possible locations x e X will give us components f (x) that will let us set up the basis

of f . f can now be viewed as a linear combination of Kx .

The reproducing property helps us to represent the evaluation functional by comput­

ing an inner product with a function in H . Since Kx is a function in H (in particular

the representer of x), for another point y e X the reproducing property gives us, f (y) =

(Ky, f) H . In particular, Kx (y) = (Ky,Kx) h . Let us define K : X x X ^ R to be a kernel

if K is symmetric, i.e., for x,y e X, K(x,y) = K(y,x) and K is positive semidefinite, i.e.,

Vx1 , x2 , ••• , xn e X, the gram matrix K defined by K j = k(x/, x j) is positive semidefinite.

We can now define a reproducing kernel. The reproducing kernel of H is a function K :

X x X ^ R defined by K(x, y) = Kx (y). Note that any positive semidefinite kernel K(x, t)

can be used to construct a RKHS H associated with it. A RKHS defines a corresponding

reproducing kernel and vice versa.

2.1.4 Im portance of RK HS

The input domain X might not be linear and not have any nice properties, but the RKHS

gives us a geometric understanding along with properties like linearity to play with. The

RKHS induced by a kernel K on a set X is unique.

Reproducing kernel Hilbert spaces offer a unified framework for model building. We

10

can use appropriate kernels for modeling and learning different kinds of data. For example,

for the metaclustering problems one of the primary goals is to create a robust representative

for a cluster C. If we believe that the data was drawn from a Gaussian distribution, we

can use a Gaussian kernel as a reproducing kernel to take the points in the cluster to a

RKHS. Since the Gaussian centered at each point x e C takes into account the location of

all neighboring points, giving less importance to the points that are faraway (possibly in

other clusters), the lifted point $ (x) in H corresponding to x contains more information

than just about itself. This along with the property of linearity of the space allows us to

define robust representatives by taking a linear sum of feature maps of each point in the

cluster.

2.1.4.1 F eatu re m ap $. We can define a feature map $ between the input domain

X and the feature space H . This takes a point x e X and maps it to an element in H .

For a RKHS, the feature map is given by $ (x) = K(x, ■) which satisfies ($ (x) ,$ (y)) =

K(x, y). Computing the feature map is usually very expensive. It is therefore not tractable to

compute the inner products in the feature space and therefore norms and distances between

elements in the feature space. But we have the value of the kernel functions equal to that

of the inner products in the feature space and we can make use of this kernel trick to avoid

expensive computation in the feature space. We illustrate the feature mapping in Figure 2.1.

2.1.4.2 M ercer kernel m ap . If K is a kernel satisfying a certain theorem due to

Mercer, we can construct the mapping $ into a space where K acts as a dot product,

i.e., ($ (x) ,$ (y)) = K (x,y). Furthermore, for any £ > 0, there exists a map into a

n-dimensional dot product space such that |K(x,y) — ($ n (x), $ n (y))| < £. This tells us

that we can work in a finite-dimensional space without any concerns of tractability while

only incurring a small amount of error in the dot product evaluations of the elements of

the RKHS. Thus, in the metaclustering problems, that we learn in Part I embed into a

finite-dimensional Euclidean space, we can make use of existing clustering methods in this

space to solve metaclustering problems.

2 .2 C o m p a r i n g P a r t i t i o n s

There are two aspects to the comparison of partitions: the combinatorial element asks,

“are these two elements grouped together by both partitions, or do they disagree?” and

11

$

Figure 2.1. Feature map from input domain X to a RKHS H . Also shown is a representer
for a point x which defines the reproducing property of the feature space.

the geometric element asks, “how compact are the clusters in one partition, in comparison

with the other.” Although numerous metrics (and similarity measures) have been proposed

to compare partitions, for the most part they are based on comparing the combinatorial

structure of the partitions. This is done either by examining pairs of points that are grouped

together in one partition and separated in another [Ben-Hur et al., 2002; Fowlkes and

Mallows, 1983; Mirkin and Cherny, 1970; Rand, 1971], or by information theoretic consid­

erations stemming from building a histogram of cluster sizes and normalizing it to form a

distribution [Meila, 2007; Strehl and Ghosh, 2003]. These methods ignore the actual spatial

description of the data, merely treating the data as atoms in a set and using set information

to compare the partitions. As has been observed by many researchers [Bae et al., 2010;

Coen et al., 2010; Zhou et al., 2005], ignoring the spatial relationships in the data can be

problematic.

2.2.1 C lusters as D istributions

The core idea in doing a spatially aware comparison of partitions is to treat a cluster

as a distribution over the data, for example, as a sum of 8 -functions at each point of the

cluster [Coen et al., 2010] or as a spatial density over the data [Bae et al., 2010]. The

distance between two clusters can then be defined as a distance between two distributions

over a metric space (the underlying spatial domain). We will review a few spatially aware

methods to compare partitions in what follows.

12

Zhou et al. [2005] define a distance metric CC by replacing each cluster by its centroid

(this of course assumes the data does not lie in an abstract metric space) and computing

a weighted transportation distance between the sets of cluster centroids. Technically, their

method yields a pseudo metric, since two different clusters can have the same centroid. See

Figure 2.2 where we illustrate this case with concentric ring clusters. It is also oblivious to

the distribution of points within a cluster.

Coen et al. [2010] avoid the problem of selecting a cluster center by defining the

distance between clusters as the transportation distance between the full sets of points

comprising each cluster. This yields a metric on the set of all clusters in both partitions. In a

second stage, they define the similarity distance CDISTANCE between two partitions as the

ratio between the transportation distance between the two partitions (using the metric just

constructed as the base metric) and a “noninformative” transportation distance in which

each cluster center distributes its mass equally to all cluster centers in the other partition.

W hile this measure is symmetric, it does not satisfy triangle inequality and is therefore not

a metric.

2.2.1.1 Spatially aw are com parison of partitions. Bae et al. [2010] take a slightly

different approach. They build a spatial histogram over the points in each cluster and use

the counts as a vector signature for the cluster. Cluster similarity is then computed via a

dot product and the similarity between two partitions is then defined as the sum of cluster

similarities in an optimal matching between the clusters of the two partitions, normalized

by the self similarity of the two partitions.

In general, such a spatial partitioning would require a number of histogram bins expo­

nential in the dimension; they get around this problem by only retaining information about

the marginal distributions along each dimension. One weakness of this approach is that

only points that fall into the same bin contribute to the overall similarity. This can lead

dissimilar clusters to be viewed as similar; in Figure 2.3, the two A (red) clusters will be

considered as similar as the two O (blue) clusters.

Their approach yields a similarity, but not a distance metric. In order to construct a

metric, they have to do the usual transformation (distance = 1 — similarity) and then add

one to each distance between nonidentical items, which yields the somewhat unnatural

(and discontinuous) metric D a d C O . Their method also implicitly assumes (like Zhou

13

1.5 -

0.5 -

- 0.5 -

- 1.5 -

-2 - 1.5 -1 - 0.5 0 0.5 1 1.5 2

2

0

Figure 2 .2 . Dataset with three concentric circles, each representing a cluster partitioning
the data. The CC distance [Zhou et al., 2005] can not distinguish between these clusters.

F igure 2.3. Dataset with four clusters, each a set grouped in a single grid cell. The two
clusters with blue open circles are as close as the two clusters with filled red triangles under
the D a d CO distance.

14

et al. [2005]) that the data lies in Euclidean space.

2.2.2 M etrizing D istributions

There are standard constructions for defining such a distance; the most well known met­

rics are the transportation distance [Givens and Shortt, 1984] (also known as the Wasser-

stein distance, the Kantorovich distance, the Mallows distance, or the Earth mover’s dis­

tance), and the metric introduced by Prokhorov [1956]. Another interesting approach was

initiated by M uller [1997]. M uller developed a metric between general measures based

on integrating test functions over the measure. W hen the test functions are chosen from

a reproducing kernel Hilbert space [Aronszajn, 1950] (RKHS), the resulting metric on

distributions has many nice properties [Berlinet and Thomas-Agnan, 2004; Gretton et al.,

2008; Smola et al., 2007; Sriperumbudur et al., 2010]. M ost importantly, it can be isomet-

rically embedded into the Hilbert space, yielding a convenient (but infinite-dimensional)

representation of a measure.

This measure has been applied to the problem of computing a single partition by Jegelka

et al. [2009]. In their work, each cluster is treated as a distribution and the partition is

found by maximizing the intercluster distance of the cluster representatives in the RKHS.

They use the RKHS-based representation of clusters to formulate a new cost function for

computing a single partition. In particular, they considered the optimization problem of

finding the partition P = {Cj_, C2 } of two clusters to maximize

C (P) = |C 1 |-iC 2 |-B * (C 1) - 4>(C2)|lHK

+ * 1 ll* (C 1)llH K + ̂ 2 « C 2) llH K ■

for various choices of kernel K and regularization terms A1 and A2 . They mention that this

could then be generalized to find an arbitrary k-partition by introducing more regularizing

terms. Their paper focuses primarily on the generality of this approach and how it connects

to other clustering frameworks. We modify this distance and its construction in our work.

A parallel line of development generalized this idea independently to measures over

higher dimensional objects (lines, surfaces and so on). The resulting metric (the current

distance) is exactly the above metric when applied to 0 -dimensional objects (scalar mea­

sures) and has been used extensively [Durrleman et al., 2008; Glaunes and Joshi, 2006;

15

Joshi et al., 2011; Vaillant and Glaunes, 2005] to compare shapes. In fact, thinking of a

cluster of points as a “shape” was a motivating factor in this work.

2 .3 C o n s e n s u s C lu s t e r in g

Consensus clustering (also referred to in the literature as ensemble clustering) studies

how to combine partitions has been studied extensively [Ansari et al., 2010; Ayad and

Kamel, 2010; Bonizzoni et al., 2008; Boulis and Ostendorf, 2004; Coleman and Wirth,

2010; Day, 1986; Fern and Brodley, 2003; Fred and Jain, 2005; Ghaemi et al., 2009; Gionis

et al., 2007; Goder and Filkov, 2008; Murino et al., 2009; Neumann and Norton, 1986;

Nguyen and Caruana, 2007; Strehl and Ghosh, 2003,?; Topchy et al., 2003; Wang et al.,

2010]. Consensus clustering is a common tool of choice in the biological realm, being

especially common in the area of microarray analysis [Allison et al., 2006; Benedict et al.,

2006; Filkov and Skiena, 2003; Giancarlo et al., 2008; Grotkjaer et al., 2006; Laderas

and McWeeney, 2007; Monti et al., 2003; Vinh and Epps, 2009]. In general, consensus

methods attempt to find a partition whose sum of distances from all input partitions is

minimized akin to a 1-median solution. Some of the common distances used are the

Rand distance [Rand, 1971], the Jaccard distance [Ben-Hur et al., 2002], the variation of

information [Meila, 2007], and normalized mutual information [Strehl and Ghosh, 2003].

M ost consensus methods are typically limited to using only combinatorial information

about the partitions.

One of the most common methods for computing consensus between a collection of

partitions is the majority rule: for each pair of points, each partition “votes” on whether the

pair of points is in the same cluster or not, and the majority vote wins. While this method

is simple, it is expensive and is spatially oblivious; two points might lie in separate clusters

that are close to each other.

Alternatively, consensus can be defined via a 1-median formulation: given a distance

between partitions, the consensus partition is the partition that minimizes the sum of dis­

tances to all partitions. If the distance function is a metric, then the best partition from

among the input partitions is guaranteed to be within twice the cost of the optimal solution

(via triangle inequality). In general, it is challenging to find an arbitrary partition that

minimizes this function. For example, the above majority-based method can be viewed as

16

a heuristic for computing the 1-median under the Rand distance. Algorithms with formal

approximations exist for this problem [Gionis et al., 2007].

Recently Ansari et al. [2010] extended these above schemes to be spatially aware by

inserting CDISTANCE in place of Rand distance above. This method is successful in

grouping similar clusters from an ensemble of partitions, but it is quite slow on large

datasets P since it requires computing an expensive transportation distance on the full

dataset. Alternatively, using representations of each cluster in the ambient space (such

as its mean, as in CC [Zhou et al., 2005]) would produce another spatially aware ensemble

clustering variant, but would be less effective because its representation causes unwanted

simplification of the clusters (see Figure 2.2).

2 .4 A l t e r n a t iv e C lu s t e r in g

The problem of generating alternative clustering [Bae and Bailey, 2006; Bae et al.,

2006, 2010; Dang and Bailey, 2010a,b; Davidson and Qi, 2008; Gondek and Hofmann,

2004; Jain et al., 2008; Nguyen and Caruana, 2007; Nguyen and Epps, 2010; Qi and

Davidson, 2009; Wurst et al., 2006] has received much less attention. M ost of the existing

literature on alternative clustering focuses on generating one additional partition of high

quality that should be far from a given set (typically of size one) of existing partitions.

Most algorithms for generating alternative partitions operate as follows. Generate a

single partition using a clustering algorithm of choice. Next, find another partition that

is both far from the first partition and of high quality. M ost methods stop here, but a few

methods try to discover more alternative partitions; they repeatedly find new, still high qual­

ity, partitions that are far from all existing partitions. The alternative clustering methods

usually account for diverse partitions by integrating the “diversity” criteria in the objective

function. This ranges from constructing cannot-link and must-link constraints to learning a

new distance function and transforming data into different space. This effectively produces

a variety of partitions, but the quality of each successive partition degrades quickly.

Although there are a few other methods that try to discover alternative partitions simul­

taneously [Caruana et al., 2006; Jain et al., 2008; Niu et al., 2010], they are usually limited

to discovering two partitions of the data. Other methods that generate more than just two

partitions either randomly weigh the features or project the data onto different subspaces,

17

but use the same clustering technique to get the alternative partitions in each round. Using

the same clustering technique tends to generate partitions with clusters of similar shapes

and might not be able to exploit all the structure in the data.

Another related problem is that of picking a diverse set of partitions from a large input

set. This area of work does not focus on generating partitions but assumes a collection of

input partitions is already available. Given as input a set of m » k partitions of a single

dataset, the goal here is to produce k distinct partitions. To obtain the input for this ap­

proach, either the output of several distinct clustering algorithms, or the output of multiple

runs of the same randomized algorithm with different initial seeds are considered [Zhang

and Li, 2011]. This problem can then be viewed as a clustering problem; that is, finding

k clusters of partitions from the set of input partitions. Therefore, there are many possible

optimization criteria or algorithms that could be explored for this problem as there are for

clustering in general. Most formal optimization problems are intractable to solve exactly,

making heuristics the only option. Furthermore, no matter the technique, the solution is

only as good as the input set of partitions, independent of the optimization objective.

2 .5 E v a l u a t i n g C lu s t e r in g s

A number of indirect approaches have been developed to validate a partition at a global

level [Halkidi et al., 2001; Xu and Wunsch, 2009]. These include internal, external, and

relative validation techniques, and methods based on clustering stability that assume a

clustering (algorithm) is good if small perturbations in the input do not affect the output

clustering significantly. There are supervised variants of clustering. However, these typi­

cally require domain knowledge and the immense popularity of clustering comes precisely

from the fact that it can be applied as a first filter to acquire a deeper understanding of the

data.

Clusterings can be validated globally in three different ways [Xu and Wunsch, 2009].

Internal validation mechanisms look at the structure of a clustering and attempt to deter­

mine its quality [Liu et al., 2010]. For example, the ratio of the minimum intercluster

distance to the maximum intracluster distance is a measure of how well-separated clusters

are, and thus how good the partition is. External validation measures can be employed when

a reference partition exists. In this case, an appropriate distance between partitions must

18

be defined. The given partition can then be compared to the reference partition [Halkidi

et al., 2001]. Relative validation measures look at different runs of a clustering algorithm

and compare the resulting partitions produced [Halkidi et al., 2001].

Cluster stability [Ben-David et al., 2006; Ben-Hur et al., 2002; Bezdek and Pal, 1998]

is another way to validate partitions. The goal here is to determine how robust a clustering

solution is to small perturbations in algorithm parameters. This idea was used to do model

selection; for example, the “right” number of clusters is the one that exhibits the most stable

partitions. Stability in general has been studied extensively in the statistics and machine

learning communities, as a way to understand generalization properties of algorithms.

The paper by Elisseeff et al. [2006] provides a good overview of this literature and the

monograph by Luxburg [2009] focuses on clustering.

W here admissible (for example, when effective models of the data can be built), prob­

abilistic modeling yields posterior likelihoods for a cluster assignment in the form of

conditional probabilities p (C | x) for point x and cluster C. We view our approach as

complementary to (and more general than) model-based validation. Our approach is purely

data driven with no further assumptions, which is appropriate when initially exploring

a dataset. We also show that the affinity scores produced by our method closely match

the likelihoods produced by a standard clustering approach like Gaussian mixture models.

Note that probabilistic modeling can be used to choose a particular way of clustering the

data, but in the setting we consider, a clustering is already given to us (possibly even by

consensus clustering or some other method), and the goal is to validate it.

Local validation bears a superficial resemblance to outlier detection: in both cases the

goal is to evaluate individual points based on how well they “fit” into a clustering. There

are important differences though. An outlier affects the cost of a partition by being faraway

from any cluster, but it will usually be clear what cluster it might be assigned to. In contrast,

a point whose labeling might be invalid is usually in the midst of the data. Assigning it to

one cluster or another might not actually change the clustering cost, even though the label

itself is now unreliable.

19

2 .6 S e m is u p e r v i s e d L e a r n i n g

We discuss applications of attaching cluster affinity scores, which are discussed in

Chapter 3, to semisupervised learning. In particular, transductive support vector machines

(T-SVM) in Chapter 6 . We review a few existing works here on fast semisupervised

learning (SSL).

As dataset sizes grow, there is an increasing interest in scaling up semisupervised learn­

ing algorithms. We briefly review prior work on large scale SSL and in particular, recent

approaches to scale up T-SVM. Especially in web applications, such as link prediction and

link propagation, unlabeled data exists in abundance and several specialized algorithms

were proposed to incorporate these large datasets into training [Kashima et al., 2009;

Settles, 2011; Suzuki and Isozaki, 2008]. These publications introduce new algorithms

that are highly specialized for specific learning tasks and typically do not generalize to

common SSL classification.

Mann and McCallum [2007] achieve large scale SSL by constraining classifiers to

match expectation constraints, made by domain experts. The authors successfully in­

corporate unlabeled data with the help of side information. Chen et al. [2011] adapt

cotraining [Blum and Mitchell, 1998] to single-view data and subsample unlabeled data

to obtain a subset on which the theoretical conditions for cotraining [Balcan et al., 2004]

can be satisfied. In contrast to our work, they do not focus on speedup during training but

instead assume that unlabeled data is noisy and aim to remove such noisy samples.

We also describe some work on fast T-SVM as our work explicitly focuses on T-SVM.

We make no assumptions on the data or task and require no additional side information

unlike e.g., Vural et al. [2008]. There is a significant amount of prior work on speeding

up the T-SVM algorithm [Collobert et al., 2006a,b; Liao et al., 2007; Sindhwani and

Keerthi, 2007; Vural et al., 2008]. Other researchers achieve their speedups through novel

optimization algorithms, explicitly designed for the T-SVM algorithm [Collobert et al.,

2006a,b; Liao et al., 2007; Sindhwani and Keerthi, 2007]. For example, Sindhwani and

Keerthi [2007] use Newton’s method to take advantage of second order information for

accelerated convergence. Collobert et al. [2006b] relax the problem into a concave convex

procedure (CCCP) [Yuille and Rangarajan, 2001] to speed up the optimization, which

results in impressive speedups.

P A R T I

M E T A C L U S T E R I N G

CHAPTER 3

C O N S E N S U S C L U S T E R I N G 1

We study the problem of consensus or ensemble clustering [Ansari et al., 2010; Ayad

and Kamel, 2010; Bonizzoni et al., 2008; Boulis and Ostendorf, 2004; Coleman and Wirth,

2010; Day, 1986; Fern and Brodley, 2003; Fred and Jain, 2005; Ghaemi et al., 2009; Gionis

et al., 2007; Goder and Filkov, 2008; Murino et al., 2009; Neumann and Norton, 1986;

Nguyen and Caruana, 2007; Strehl and Ghosh, 2003; Topchy et al., 2003; Wang et al.,

2010], where the goal is to determine a high quality partition that is “close” to a given set

of input partitions.

The problem of metaclustering has become important in recent years as researchers

have tried to combine the strengths and weaknesses of different clustering algorithms to

find patterns in data. A common metaclustering problem is that of finding a consensus (or

ensemble) partition from among a set of candidate partitions. Ensemble-based clustering

has been found to be very powerful when different clusters are connected in different ways,

each detectable by different classes of clustering algorithms [Strehl and Ghosh, 2003]. For

instance, no single clustering algorithm can detect clusters of symmetric Gaussian-like

distributions of different density and clusters of long thinly connected paths; but these

clusters can be correctly identified by combining multiple techniques (i.e., k-means and

single-link) [Ghaemi et al., 2009]. Moreover, given an abstract dataset, a practitioner

may not know what types of data patterns exist, and which specific clustering algorithm to

use. Hence, consensus clustering is becoming a more robust and general way to approach

clustering.

Other related and important metaclustering problems include finding a different and yet

informative partition to a given one, or finding a set of partitions that are mutually diverse

1 Reprinted with permission of SIAM, 2011, Parasaran Raman, Jeff M. Phillips, and Suresh Venkata-
subramanian, Spatially-Aware Comparison and Consensus for Clusterings. Eleventh SIAM International
Conference on Data Mining, Pages 307-318.

22

(and therefore informative). In all these problems, the key underlying step is comparing two

partitions and quantifying the difference between them. Numerous metrics (and similarity

measures) have been proposed to compare partitions, and for the most part they are based

on comparing the combinatorial structure of the partitions. This is done either by examining

pairs of points that are grouped together in one partition and separated in another [Ben-Hur

et al., 2002; Fowlkes and Mallows, 1983; Mirkin and Cherny, 1970; Rand, 1971], or by

information theoretic considerations stemming from building a histogram of cluster sizes

and normalizing it to form a distribution [Meila, 2007; Strehl and Ghosh, 2003].

These methods ignore the actual spatial description of the data, merely treating the data

as atoms in a set and using set information to compare the partitions. Ignoring the spatial

relationships in the data can be problematic. Consider the three partitions in Figure 3.1.

The first partition (FP) is obtained by a projection onto the y-axis, and the second (SP) is

obtained via a projection onto the x-axis. Partitions (FP) and (SP) are both equidistant from

partition (RP) under any of the above mentioned distances, and yet it is clear that (FP) is

more similar to the reference partition, based on the spatial distribution of the data.

Some researchers have proposed spatially aware distances between partitions, but they

all suffer from various deficiencies. They compromise the spatial information captured

by the clusters [Bae et al., 2010; Zhou et al., 2005], they lack metric properties [Coen

et al., 2010; Zhou et al., 2005] (or have discontinuous ranges of distances to obtain metric

properties [Bae et al., 2010]), or they are expensive to compute, making them ineffective

for large datasets [Coen et al., 2010].

3 .1 O v e r v ie w o f O u r W o r k

We exploit a concise, linear reproducing kernel Hilbert space (RKHS) representation of

clusters. We use this representation to construct an efficient spatially aware metric between

partitions and an efficient spatially aware consensus clustering algorithm.

We use ideas from some recent work. We leverage the fact that a cluster can be viewed

as a sample of data points from a distribution [Jegelka et al., 2009], and through a similarity

kernel K, a distribution can be losslessly lifted to a single vector in a RKHS [Muller, 1997].

23

□
□ □
□ □

A *

□ □ □

DDDDnDnD n n
D □ □ □

• •
□ □□

D ■ □D n u n □□□

□ □

(a) (b)

□ D n 0
n □ ■ ■ ® ■ ■□ □ u n u □ □

□ u □ □ □ □

• • • • •

•

(c)

F igure 3.1. Spatially aware distances are important: (b) first parition (FP) and (c) second
partition (SP) are equidistant from (a) the reference partition (RP) under a set-based
distance. However, FP is clearly more similar to RP than SP.

3.1.1 R epresentations

We adapt the representation of the clusters in the RKHS (which we discussed in Chap­

ter 2) in two ways: approximation and normalization. Typically, vectors in a RKHS are

infinite-dimensional, but they can be approximated arbitrarily well in a finite-dimensional

^2 space that retains the linear structure of the RKHS [Joshi et al., 2011; Rahimi and

Recht, 2007]. This provides concise and easily manipulated representations for entire

clusters. The resulting distance between the representative vectors of two distributions

in the RKHS can be used as a metric on the distributions [Muller, 1997; Smola et al., 2007;

Sriperumbudur et al., 2010]. The distance metric between the approximate normalized

representation of clusters is fast to compute. Additionally, we normalize these vectors to

24

focus on the spatial information of the clusters. This turns out to be important in consensus

clustering, as explained in Section 3.3.2.

3.1.2 D istance C om putation

Using this convenient representation (an approximate normalized RKHS vector), we

develop a metric between partitions. Since the clusters can now be viewed as points in

(scaled) Euclidean space we can apply standard measures for comparing point sets in such

spaces. In particular, we define a spatially aware metric L if t EM D between partitions as

the transportation distance [Givens and Shortt, 1984] between the representatives, weighted

by the number of points they represent. While the transportation distance is a standard

distance metric on probability distributions, it is expensive to compute (requiring O (n3)

time for n points) [Kuhn, 1955]. However, since the points here are clusters, and the number

of clusters (k) is typically significantly less than the data size (n), this is not a significant

bottleneck as we will see in Section 3.6.

3.1.3 Consensus

We exploit the linearity of the RKHS representations of the clusters to design an ef­

ficient consensus clustering algorithm. Given several partitions, each represented as a

set of vectors in a RKHS, we can find a partition of this data using standard Euclidean

clustering algorithms. In particular, we can compute a consensus partition by simply

running k-means (or hierarchical agglomerative clustering) on the lifted representations

of each cluster from all input partitions. This reduction from consensus to Euclidean

clustering is a key contribution: it allows us to utilize the extensive research and fast

algorithms for Euclidean clustering, rather than designing complex hypergraph partitioning

methods [Strehl and Ghosh, 2003].

3.1.3.1 Evaluation. All of these aspects of our technical contributions are carefully

evaluated on real world and synthetic data. As a result of the convenient isometric repre­

sentation, the well founded metric, and reduction to many existing techniques, our methods

perform well compared to previous approaches and are much more efficient.

25

3.1.4 C om parison to P rio r W ork

In Chapter 2, we discussed in detail various methods and measures to compare par­

titions both combinatorially and in a spatially aware manner. We discussed the need for

a spatially aware measure as it captures the properties that lead to the formation of the

clusters in the first place. We also highlighted the shortcomings of the existing spatially

aware measures to compare partitions (see Section 2.2). Our method, centered around

the RKHS-based metric between distributions, addresses all of the above problems. It

yields a true metric, incorporates the actual distribution of the data correctly, and avoids

exponential dependency on the dimension. The price we pay is the requirement that the

data lie in a space admitting a positive definite kernel. However, this actually enables us to

apply our method to clustering objects like graphs and strings, for which similarity kernels

exist [Gartner, 2002; Lodhi et al., 2002] but no convenient vector space representation is

known.

In Section 2.3, we discussed various methods to compute the consensus solution given a

set of input partitions. We discussed various common consensus procedures that are based

on the majority rule: for each pair of points, each partition “votes” on whether the pair of

points is in the same cluster or not, and the majority vote wins and ones that are spatially

aware where the consensus is defined via a 1-median formulation. Our method is very ele­

gant in that we reduce the problem of computing consensus to a clustering problem and our

method is very fast since we only use the succinct cluster representatives in the consensus

procedure. Not only can we leverage and use any of the common clustering techniques of

choice to compute the consensus solution, but we also retain succinct representations of the

input partitions and the consensus solution that help reduce the storage size.

3 .2 P r e l i m i n a r i e s

3.2.1 Definitions

Let P be the set of points being clustered, with |P| = n. We use the term cluster to

refer to a subset C of P (i.e., an actual cluster of the data), and the term partitio n to refer

to a partitioning of P into clusters (i.e., what one would usually refer to as a partition of

P). Clusters will always be denoted by the capital letters A ,B ,C ,... , and partitions will be

denoted by the symbols A, B, C ,.... We will also consider soft p artitions of P, which are

26

fractional assignments {p(C |x)} of points x to clusters C such that for any x, the assignment

weights p(C |x) sum to one.

We will assume that P is drawn from a space X endowed with a reproducing kernel

K : X x X ^ R [Aronszajn, 1950]. The kernel K induces a Hilbert space H K via the lifting

map ^ : X ^ H K , with the property that K(x, y) = (^ (x), ̂ (y)) K, (■, -)K being the inner

product that defines H K.

Let p , q be probability distributions defined over X . Let F be a set of real valued

bounded measurable functions defined over X . Let F K = {f e F | || f ||K < 1} denote

the unit ball in the Hilbert space H K. The integral probability metric [Muller, 1997] yK

on distributions p , q is defined as yK(p, q) = su p f g f k I Ix f d p — JX fd q |- We will make

extensive use of the following explicit formula for yK(p, q):

which can be derived (via the kernel trick) from the following formula for yK [Sriperum-

budur et al., 2 0 1 0] : yK(p ,q) = || / x k (■,x)dp(x) — / x k (■,x)dq(x)^H K • This formula also

gives us the lifting map $, since we can write ^ (p) = / x K(■,x)dp(x).

3.2.1.1 The tran sp o rta tio n m etric. Let D : X x X ^ R be a metric over X . The

transportation distance between p and q is then defined as

such that J x f (x,y)dx = q(y) and / x f (x,y)dy = p(x). Intuitively, f (x,y)D(x,y) mea­

sures the work in transporting f (x,y) mass from p(x) to q(y).

3.2.2 A n R K H S D istance Between C lusters

We use yK to construct a metric on clusters. Let C C P be a cluster. We associate with C

the distribution p(C) = L x p(C |x)w (x)5x (-), where 5x (■) is the Kronecker 8 -function and

w : P ^ [0,1] is a weight function. Given two clusters C, C; C P, we define d(C, C;) =

yK (p(C), p (C ;)). It is important to note that we are not introducing a completely new dis­

tance. We introduce a wrapper that encapsulates existing distance metric between clusters

in order to facilitate comparing partitions.

yK q) = f f X K (^ y)dp (x)dp (y) (3.2.1)

(3.2.2)

27

3.2.2.1 A n exam ple. A simple example illustrates how this distance generalizes

pure partition-based distances between clusters. Suppose we fix the kernel K(x,y) to

be the discrete kernel: K(x, x) = 1, K(x, y) = 0 Vx = y. Then it is easy to verify that

d (C ,C ') = V |CAC'| is the square root of the cardinality of the symmetric difference C A C ,

which is a well known set theoretic measure of dissimilarity between clusters. Since

this kernel treats all distinct points as equidistant from each other, the only information

remaining is the set theoretic difference between the clusters. As K acquires more spatial

information, d(C, C;) incorporates this into the distance calculation.

3.2.2.2 R epresentations in H K . There is an elegant way to represent points, clus­

ters and partitions in the RKHS H K . Define the lifting map $ (x) = K(■,x). This takes

a point x G P to a vector $ (x) in H K . A cluster C C P can now be expressed as a

weighted sum of these vectors: ^ (C) = £ x e C w(x)$(x). Note that for clarity, in what

follows we will assume without loss of generality that all partitions are hard; to construct

the corresponding soft partition-based expression, we merely replace terms of the form

{x G C} = 1x e C by the probability p(C |x).

^ (C) is also a vector in H K, and we can now rewrite d(C, C) as

d (C, C ') = ||$ (C) - * (C ')B h K ■ (3.2.3)

Finally, a partition P = {Cj_, C2 , . . . C^} of P can be represented by the set of vectors

$ (P) = {$(C i)} in H K. We note that as long as the kernel is chosen correctly [Sriperum-

budur et al., 2 0 1 0], this mapping is isometric, which implies that the representation ^ (C)

is a lossless representation of C.

The linearity of representation is a crucial feature of how clusters are represented.

The cluster in H K is merely the weighted sum of the corresponding vectors ^ (x) . As

a consequence, it is easy to represent soft partitions as well. A cluster C can be represented

by the vector

^ (C) = £ w(x) p (C |x)$ (x). (3.2.4)
x

The lifting map [Aronszajn, 1950] ^ associated with K makes this construction different

and more powerful than other approaches for comparing distributions. The major ad­

vantages of using this representation are as follows. We have a very defined structure.

Euclidean space is very well studied, and we can utilize all the tools available to us for

28

data analysis in this space. The linearity of the representation helps us to handle both hard

partitions (a point assigned to exactly one cluster) and soft partitions (where points assign

their weight fractionally to different clusters). This technique is agnostic to the underlying

domain the data comes from. For example, it is possible to compare and combine partitions

of images based on text attributes and based on image information. We have a Euclidean

space representation and it allows us to leverage existing data structures and code bases.

3 .3 A p p r o x im a t e N o r m a l i z e d C l u s t e r R e p r e s e n t a t i o n

We adapt the RKHS-based representation of clusters < (C) in two ways to make it more

amenable to our metaclustering goals. First, we approximate < (C) to a finite-dimensional

(p-dimensional) vector. This provides a finite representation of each cluster in R p (as

opposed to a vector in the infinite-dimensional H K), it retains linearity properties, and it

allows for fast computation of distance between two clusters. Second, we normalize < (C)

to remove any information about the size of the cluster; retaining only spatial information.

This property becomes critical for consensus clustering.

3.3.1 A pproxim ate L ifting M ap <

The lifted representation < (x) is the key to the representation of clusters and partitions,

and its computation plays a critical role in the overall complexity of the distance computa­

tion. For kernels of interest (like the Gaussian kernel), < (x) cannot be computed explicitly,

since the induced RKHS is an infinite-dimensional function space.

However, we can take advantage of the shift invariance of commonly occurring ker-

nels2. For these kernels a random projection technique in Euclidean space defines an

approximate lifting map <3? : X x X ^ R p with the property that for any x, y G P,

||<i>(x) - < (y) | 2 - ll< (x) - < O O IIhK

where £ > 0 is an arbitrary user defined parameter, and p = p (£). Notice that the approx­

imate lifting map takes points to £P with the standard inner product, rather than a general

Hilbert space. The specific construction is due to Rahimi and Recht [2007] and analyzed

by Joshi et al. [2011], to yield the following result:

2A kernel k(x, y) defined on a vector space is shift invariant if it can be written as k(x, y) = g(x - y).

29

T heorem 3.3.1 (Joshi e t al. [2011]) Given a set o f n points P C X, shift invariant kernel

K : X x X ^ R and any e > 0, there exists a map <3?: X x X ^ R p , p = O ((1 /e 2) logn),

such that fo r any x, y E P, | |< (x) - < (y) | | 2 - | |< (x) - < (y) \ \ H KK < e .

The actual construction is randomized and yields a < as above with probability 1 — 8 ,
2

where p = O ((1 /e 2) lo g (n /8)). For any x, constructing the vector < (x) takes O (p) time.

3.3.2 N orm alizing < (C)

The lifting map < is linear with respect to the weights of the data points, while being

nonlinear in its location. Since < (C) = I ^ c w (x)< (x), this means that any scaling of the

vectors < (x) translates directly into an uniform scaling of the weights of the data, and does

not affect the spatial positioning of the points. This implies that we are free to normalize the

cluster vectors < (C), so as to remove the scale information, retaining only, and exactly, the

spatial information. In practice, we will normalize the cluster vectors to have unit length;

let

< (C)= < (C)/||< (C)H h k .

Figure 3.2 shows an example of why it is important to compare RKHS representations

of vectors using only their spatial information. In particular, without normalizing, small

clusters C will have small norms ||< (C) \ h k , and the distance between two small vectors

||< (C 1) — <(C2) | | h k is at most | |< (C 2) ||h k + ll<(C2) IIh k . Thus all small clusters will

likely have similar unnormalized RKHS vectors, irrespective of spatial location.

3.3.3 C om puting the D istance Between C lusters

For two clusters C, C , we defined the distance between them as

d (C, C ') = Yk (p(C), p (C ')) .

Since the two distributions p(C) and p(Cr) are discrete (defined over |C| and |C; |

elements, respectively), we can use (3.2.1) to compute d(C,Cr) in time O(|C| ■ |C/ 1). While

this may be suitable for small clusters, it rapidly becomes expensive as the cluster sizes

increase.

If we are willing to approximate d(C, Cr), we can use Theorem 3.3.1 combined with

the implicit definition of d(C,Cr) as ||< (C) — < (Cf) . Each cluster C is represented as
k

30

Pi o°
♦ Bi

°°o°

* (B i \.

®(C2) /
®(Ai),_.

®(A2)

u n n o rm a liz e d

$ (£)

<£(C2)

<£(B)

n o rm a lize d

Figure 3.2. Two partitions P 1 = {A 1 , B 1 } and P 2 = {A 2 , # 2 , C2 } of the same dataset, and
a 2-d visualization of all of their representations in a RKHS. Note that the unnormalized
vectors (on the left) have ^ (# 1) far from ^ (B ^) and ^ (C 2) even though the second two
are subsets of the first. The normalized vectors (on the right) have <!>(#1) close to both
i>(# 2) and i>(C2). In particular, ^ (C 2) is closer to ^ (A ^ than ^ (# 1), but (C2) is much
closer to <!>(#1) than <!>(A1).

a sum of |C| p-dim ensional vectors and can be computed in O (|C |p) time. The £2 distance

between the resulting vectors can be computed in O (p) time. The following approximation

guarantee on d(C, C ') then follows from the triangle inequality and an appropriate choice

of £. For any two clusters C, C ' and any £ > 0, d(C, C ') can be approximated to within an

additive error £ in time O ((|C | + |C '|)p) time, where p = O ((1 /£ 2)logn).

3 .4 N e w D is ta n c e s b e tw e e n P a r t i t i o n s

Let P = {C1 ,C2 , . . .} and P ' = {C^,C2, . . .} be two different partitions of P with

associated representations $ (P) = { ^ (C 1) ,^ (C 2) , . ..} and $ (P ') = { ^ (C ^), ^ (C 2) , . . .} .

Similarly, 4>(P) = {i>(C1),4>(C2) , . . .} and <£(P ') = { i> (C ') , 4>(C2) ,. . .} . Since the two

31

representations are sets of points in a Hilbert space, we can draw on a number of techniques

for comparing point sets from the world of shape matching and pattern analysis.

We can apply the transportation distance d ^ on these vectors to compare the partitions,

treating the partitions as distributions. In particular, the partition P is represented by the

distribution

£ TP[■ % (C), (3A 1)
4> (C)e4> (P) 1 1

where 8(j)(c) is a Dirac delta function at <I>(C) e H K and H K is the underlying metric. We

will refer to this metric on partitions as

L if t E M D (P, P ') = dT (4> (P), <£ (P ')) . (3.4.2)

3.4.1 A n Exam ple, C ontinued

Once again, we can simulate the loss of spatial information by using the discrete kernel

as in Section 3.2.2. The transportation metric is computed (see Section 3.2.1) by mini­

mizing a functional over all partial assignments f (x,y). If we set f (C, C ') = |C n C '|/n

to be the fraction of points overlapping between clusters, then the resulting transportation

cost is precisely the Rand distance between the two partitions! This observation has two

implications. First, that standard distance measures between partitions appear as special

cases of this general framework. Second, L if t EM D (P, P ') will always be at most the

Rand distance between P and P '.

We can also use other measures. Let

dH (^ (P) , $ (P ')) = max min ||v — w |H K • (3A 3)
v e ^ (P) w e ^ (P ')

Then the Hausdorff distance [Chew et al., 1997] is defined as

dH ($ (P) ,$ (P ')) = max (dH ($ (P) , ^ (P '^ ,dH (^ (P ') , ^ (P ^) • (3.4.4)

We refer to this application of the Hausdorff distance to partitions as

L if t H (P , P ') = dH (<l> (P), <!> (P ')) . (3.4.5)

We could also use our lifting map again. Since we can view the collection of points

$ (P) as a spatial distribution in H K (see (3.4.1)), we can define yK' in this space as well,

32

with Kf again given by any appropriate kernel (for example, K (v, w) = exp(- 1v - w 11 ̂).
K

We refer to this metric as

L if tK D (P , P ') = j K, (< (P), < (P ')) . (3.4.6)

3.4.2 C om puting the D istance Between Partitions

The approximate lifting map < is efficient in two ways. First, it is fast to generate

a representation of a cluster C (O (|C |p) time), and second, it is easy to estimate the

distance between two clusters (O (p) time). This implies that after a linear amount of

processing, all distance computations between partitions depend only on the number of

clusters in each partition, rather than the size of the input data. Since the number of

clusters is usually orders of magnitude smaller than the size of the input, this allows us

to use asymptotically inefficient algorithms on < (P) and < (P ') that have small overhead,

rather than requiring more expensive (but asymptotically cheaper in k) procedures. Assume

that we are comparing two partitions P, P ' with k and k ' clusters, respectively. L if tE M D

is computed in general using a min cost flow formulation of the problem, which is then

solved using the Hungarian algorithm. This algorithm takes time O((k + k ')3). While

various approximations of d j exist [Indyk and Thaper, 2003; Shirdhonkar and Jacobs,

2008], the exact method suffices for our setting for the reasons mentioned above.

It is immediately clear from the definition of L i f tH that it can be computed in time

O(k ■ k ') by a brute force calculation. A similar bound holds for exact computation of

L if tK D . W hile approximations exist for both of these distances, they incur overhead that

makes them inefficient for small k.

3 .5 C o m p u t in g C o n s e n s u s P a r t i t i o n s

As an application of our proposed distance between partitions, we describe how to

construct a spatially aware consensus from a collection of partitions. This method reduces

the consensus problem to a standard clustering problem, allowing us to leverage the exten­

sive body of work on standard clustering techniques. Furthermore, the representations of

clusters as vectors in R p allows for very concise representation of the data, making our

algorithms extremely fast and scalable.

33

3.5.1 A R eduction from Consensus F inding to C lustering

Our approach exploits the linearity of cluster representations in H K , and works as

follows. Let P 1 , P 2 , . . . P m be the input (hard or soft) partitions of P. Under the lifting map

< , each partition can be represented by a set of points { < (P f)} in H K. Let Q = |Jf < (P f)

be the collection of these points.

A (soft) consensus k-partition of P 1 , P 2 ,--- P m is a partition P con of Uf Pf into k clus­

ters { C j , . . . , Cj } that minimizes the sum of squared distances from each < (Cf , j) G < (P f)

to its associated < (Cj) G P con. Formally, for a set of k vectors V = {v1 , . . . , Vk} C H K

define
|C* * | 2

LIFT-SSD({P,}, V) = £ - f j m i n i (C f , j) - v H
Ci,j-eUiP i n vgV H k

and then define Pcon as the minimum such set

Pcon = argmin LlFT-SSD ({Pf }f, V *).
V * = { v*,...,v*}g H k

How do we interpret P con? Observe that each element in Q is the lifted representation

of some cluster Ci, j in some partition P i , and therefore corresponds to some subset of P.

Consider now a single cluster in P con. Since H K is linear and P con minimizes distance

to some set of cluster representatives, it must be in their linear combination. Hence it can

be associated with a weighted subset of elements of ^ (P) , and is hence a soft partition. It

can be made hard by voting each point x G P to the representative C j G P con for which it

has the largest weight. Figure 3.3 shows an example of three partitions, their normalized

RKHS representative vectors, and two clusters of those vectors.

3.5.2 A lgorithm

We will use the approximate lifting map <3? in our procedure. This allows us to operate

in a p-dim ensional Euclidean space, in which there are many clustering procedures we

can use. For our experiments, we will use both k-means and hierarchical agglomerative

clustering (HAC). That is, let L ift -K m be the algorithm of running k-means on IJf < (Pf),

and let L if t -HAC be the algorithm of running HAC on (Jf < (Pf). For both algorithms,

the output is the (soft) clusters represented by the vectors in < (P con). Our results will

show that the particular choice of clustering algorithm (e.g., L ift -K m or L ift -HAC) is

34

♦ p

... P V V

2 c T t t «
♦ V v v

P

. % * * *

•4 3 # c v , ^

p Cs)

\® (As) A
^ x

----N
V $(Bs) \

1 T I
— $(B2) J

/ I ---------- --/ f t // / / /
/v

Figure 3.3. Three partitions P i = [A^ , B j} , P 2 = {A2 , C 2 }, P 3 = {A3 ,B3 ,C3 },
and a 2-d visualization of the RKHS vectors. These vectors are then clus­
tered into k = 2 consensus clusters consisting of {*>(A j) ,4 (A2) , * (A 3)} and
{ * (Bj) , 4 (B2), * (C2), * (B3), * (C3)}.

not crucial. There are multiple methods to choose the right number of clusters and we can

employ one of them to fix k for our consensus technique. Algorithm 1 summarizes our

consensus procedure.

3.5.2.1 C ost analysis. Computing Q takes O(mnp) = O(mn logn) time. Let |Q| = s.

Computing P con is a single call to any standard Euclidean algorithm like k-means that

takes time O(skp) per iteration, and computing the final soft partition takes time linear in

n(p + k) + s. Note that in general we expect that k, s ^ n. In particular, when s < n and m

is assumed constant, then the runtime is O(n(k + logn)).

35

Algorithm 1 Consensus finding
Input: (soft) partitions Pm of P, kernel function K
Output: consensus (soft) partition Pcon

1: Set Q = (Pi).
2: Compute V * = {v^,. .. v*} C H K to minimizes Lift-SSD(Q, V *).

(Via k-means for Lift-Km or HAC for Lift-HAC)
3: Assign each p E P to the cluster Ci E Pcon associated with the vector v* E V*

• for which (< (p), vi) is maximized for a hard partition, or
• with weight proportional to (< (p), vi) for a soft partition.

4: Output Pcon.

3 .6 E x p e r im e n ta l E v a lu a t io n
In this section we empirically show the effectiveness of our distance between partitions,

LiftEMD and LiftKD, and the consensus clustering algorithms that conceptually follow,
Lift-Km and Lift-HAC.

3.6.1 Data
2We created two synthetic datasets in R , namely 2D2C for which data is drawn from

two Gaussians to produce two visibly separate clusters and 2D3C for which the points
are arbitrarily chosen to produce three visibly separate clusters. We also use five different
datasets from the University of California, Irvine (UCI) machine learning repository [Frank
and Asuncion, 2010] (Wine, Ionosphere, Glass, Iris, Soybean) with various numbers of
dimensions and labeled data classes. To show the ability of our consensus procedure and
the distance metric to handle large data, we use both the training and test data of the
mixed national institute of standards and technology (MNIST) database of handwritten

784digits which has 60,000 and 10,000 examples, respectively, in R /0 .

3.6.2 Methodology
We will compare our approach with the partition-based measures, namely Rand dis­

tance and Jaccard distance and information theoretic measures, namely normalized mutual
information and normalized variation of information [Wagner and Wagner, 2007], as well
as the spatially aware measures Da d c O [Bae et al., 2010] and CD istance [Coen et al.,
2010]. We ran k-means, single-linkage, average-linkage, complete-linkage and Ward’s
method [Tan et al., 2005] on the datasets to generate input partitions to the consensus

36

clustering methods. We use accuracy [Ding and Li, 2007] and Rand distance to measure the
effectiveness of the consensus clustering algorithms by comparing the returned consensus
partitions to the original class labeling. We compare our consensus technique against a few
hypergraph partitioning based consensus methods: cluster-based similarity partitioning al­
gorithm (CSPA), hypergraph partitioning algorithm (HGPA) and metaclustering algorithm
(MCLA) [Strehl and Ghosh, 2003]. For the MNIST data we also visualize the cluster
centroids of each of the input and consensus partitions in a 28x28 grayscale image.

Accuracy studies the one-to-one relationship between clusters and classes; it measures
the extent to which each cluster contains data points from the corresponding class. Given
a set P of n elements, consider a set of k clusters P = {Cj_,. . . , Ck} and m > k classes
L = {L1 , . . . , Lm} denoting the ground truth partition. Accuracy is expressed as

k |Cf n L y (f) 1
A(P, L) = max £ -------- ,y :[1:kH [1:m] ; =1 n

where y assigns each cluster to a distinct class. The Rand distance counts the fraction
of pairs, which are assigned consistently in both partitions, as in the same or in different
classes. Let Rs (P, L) be the number of pairs of points that are in the same cluster in both
P and L, and let Rd (P, L) be the number of pairs of points that are in different clusters in
both P and L. Now we can define the Rand distance as

R(P,L) = 1 - RS(P , L) + RD (P , l)

3.6.3 Code
We implement < as the random projection feature map [Joshi et al., 2011] in C to lift

each data point into R p . We set p = 200 for the two synthetic datasets 2D2C and 2D3C
and all the UCI datasets. We set p = 4000 for the larger datasets, MNIST training and
MNIST test. The same lifting is applied to all data points, and thus all clusters.

The LiftEMD, LiftKD, and LiftH distances between two partitions P and P; are
computed by invoking brute force transportation distance, kernel distance, and Hausdorff
distance on < (P), < (P;) C Rp representing the lifted clusters.

To compute the consensus clustering in the lifted space, we apply k-means (for Lift-
Km) or HAC (for Lift-HAC) (with the appropriate numbers of clusters) on the set Q C Rp

37

of all lifted clusters from all partitions. The only parameters required by the procedure are
the error term e (needed in our choice of p) associated with < , and any clustering-related
parameters.

We used the cluster analysis functions in MATLAB with the default settings to generate
the input partitions to the consensus methods and the given number of classes as the number
of clusters. We implemented the algorithm provided by the authors [Bae et al., 2010] in
MATLAB to compute Da d c O. To compute CD istance, we used the code provided by
the authors [Coen et al., 2010]. We used the ClusterPack MATLAB toolbox [Strehl, Strehl]
to run the hypergraph partitioning based consensus methods CSPA, HGPA and MCLA.

3.6.4 Spatial Sensitivity
We start by evaluating the sensitivity of our method. We consider three partitions: the

reference partition (RP), and manually constructed first and second partitions (FP and SP)
for the datasets 2D2C (see Figure 3.1) and 2D3C (see Figure 3.4). For both the datasets,
the reference partition is, by construction, spatially closer to the first partition than the
second partition, but each of the two partitions are equidistant from the reference under any
partition-based and information theoretic measures. Table 3.1 shows that in each example,
our measures correctly conclude that RP is closer to FP than it is to SP.

3.6.5 Efficiency
We compare our distance computation procedure to C D istance . We do not compare

against D ADCO and CC because they are not well founded.
Both L iftEM D and C D istan ce compute dT between clusters after an initial step

of either lifting to a feature space or computing dT between all pairs of clusters. Thus
the proper comparison, and runtime bottleneck, is the initial phase of the algorithms;
L iftEM D takes O(n log n) time, whereas C D istan ce takes O(n3) time. Table 3.2 sum­
marizes our results. For instance, on the 2D3C dataset with n = 24, our initial phase takes
1.02 milliseconds, and CDlSTANCE’s initial phase takes 2.03 milliseconds. On the Wine
dataset with n = 178, our initial phase takes 6.9 milliseconds, while CDlSTANCE’s initial
phase takes 18.8 milliseconds. As the dataset size increases, the advantage of L iftEM D
over C D is tan ce becomes even larger. On the MNIST training data with n = 60,000,
our initial phase takes a little less than 30 minutes, while CDlSTANCE’s initial phase takes

38

1 2 3 4 5 6

(c)

Figure 3.4. Different partitions ((a) RP, (b) FP and (c) SP) of 2D3C dataset.

Table 3.1. Comparing partitions: each cell indicates the distance returned under the
methods along the rows for the dataset in the column. Spatially, the left column of each
dataset (2D2C or 2D3C) should be smaller than the right column; this holds for all five
spatial measures/algorithms tested. In all cases, the two partition-based measures and the
two information theoretic measures yield the same values for d(RP, FP) and d(RP, SP), but
are not shown.

Technique
Dataset 2D2C Dataset 2D3C

d(RP,FP) d(RP,SP) d(RP,FP) d(RP,SP)
d a d c o 1.710 1.780 1.790 1.820
CD istance 0.240 0.350 0.092 0.407
LiftEMD 0.430 0.512 0.256 0.310
LiftKD 0.290 0.325 0.243 0.325
LiftH 0.410 0.490 1.227 1.291

39

Table 3.2. Comparison of runtimes: distance between true partition and partition generated
by k-means)

Dataset Number of points Number of dimensions CDistance LiftEMD
2D3C 24 2 2.03 ms 1.02 ms
2D2C 45 2 4.10 ms 1.95 ms
Wine 178 13 18.80 ms 6.90 ms
MNIST test data 10,000 784 1360.20 s 303.90 s
MNIST training data 60,000 784 202681s 1774.20 s

more than 56 hours.

3.6.6 Consensus Clustering
We now evaluate our spatially aware consensus clustering method. We do this first by

comparing our consensus partition to the reference solution based on using the Rand dis­
tance (i.e., a partition-based measure) in Table 3.3. Note that for all datasets, our consensus
clustering methods (Lift-Km and Lift-HAC) return answers that are almost always as
close as the best answer returned by any of the hypergraph partitioning based consensus
methods, CSPA, HGPA, or MCLA. We get very similar results using the accuracy [Ding
and Li, 2007] measure in place of Rand.

In Table 3.4, we then run the same comparisons, but this time using L iftEMD (i.e.,
a spatially aware measure). Here, it is interesting to note that in all cases (with the slight
exception of Ionosphere) the distance we get is smaller than the distance reported by the
hypergraph partitioning based consensus methods, indicating that our method is returning a
consensus partition that is spatially closer to the true answer. The two tables also illustrate
the flexibility of our framework, since the results using L ift-Km and Lift-HAC are
mostly identical (with one exception being IRIS under LiftEMD).

To summarize, our method provides results that are comparable or better on partition-
based measures of consensus, and are superior using spatially aware measures. The running
time of our approach is comparable to the best hypergraph partitioning based approaches,
so using our consensus procedure yields the best overall result.

We also run consensus experiments on the MNIST test data and compare against CSPA

40

Table 3.3. Comparison of Lift-Km and Lift-HAC with hypergraph partitioning based
consensus methods under the Rand distance (with respect to ground truth). The numbers
are comparable across each row corresponding to a different dataset, and smaller numbers
indicate better accuracy. The top two methods for each dataset are highlighted.

Dataset CSPA HGPA m c l a Lift-Km Lift-HAC
IRIS 0.088 0.270 0.115 0.114 0.125
Glass 0.277 0.305 0.428 0.425 0.430
Ionosphere 0.422 0.502 0.410 0.420 0.410
Soybean 0.188 0.150 0.163 0.150 0.154
Wine 0.296 0.374 0.330 0.320 0.310
MNIST test data 0.149 - 0.163 0.091 0.110

Table 3.4. Comparison of Lift-Km and Lift-HAC with hypergraph partitioning based
consensus methods under LiftEMD (with respect to ground truth). The numbers are
comparable across each row corresponding to a different dataset, and smaller numbers
indicate better accuracy. The top two methods for each dataset are highlighted.

Dataset CSPA HGPA m c l a Lift-Km L ift-HAC
IRIS 0.113 0.295 0.812 0.106 0.210
Glass 0.573 0.519 0.731 0.531 0.540
Ionosphere 0.729 0.767 0.993 0.731 0.720
Soybean 0.510 0.495 0.951 0.277 0.290
Wine 0.873 0.875 0.917 0.831 0.842
MNIST test data 0.182 - 0.344 0.106 0.112

and MCLA. We do not compare against HGPA since it runs very slow for the large MNIST
datasets (n = 10,000); it has quadratic complexity in the input size, and in fact, the authors
do not recommend this for large data.

Figure 3.5 provides a visualization of the cluster centroids of input partitions gener­
ated using k-means, complete linkage HAC and average linkage HAC and the consensus
partitions generated by CSPA and L ift-Km .

From the k-means input, only five clusters can be easily associated with digits (“0”,
“3”, “6”, “8”, “9”); from the complete linkage HAC input, only seven clusters can be easily
associated with digits (“0”, “1”, “3”, “6”, “7”, “8”, “9”); and from the average linkage HAC
output, only six clusters can be easily associated with digits (“0”, “1”, “2”, “3”, “7”, “9”).
The partition that we obtain from running CSPA lets us identify up to six digits (“0”, “1”,

41

(ai i j u t i x i u r njbtT-j i f 11 if ir n-nnnnnnnnnnpcnnnncmnn(efnnnnmnnn
Figure 3.5. 28x28 pixel representation of the cluster centroids for MNIST test input
partitions generated using (a) k-means, (b) complete linkage HAC, and (c) average linkage
HAC, and the consensus partitions generated by (d) CSPA and (e) Lift-Km .

“2”, “3”, “8”, “9”). In these cases, there occurs cases where two clusters seem to represent
the same digit. In contrast, we can identify nine digits (“0”, “1”, “2”, “3”, “4”, “5”, “7”,
“8”, “9”) with only the digit (“6”) being noisy from our Lift-K m output.

3.6.7 E rror in 4>
There is a tradeoff between the desired error e in computing L iftEM D and the number

of dimensions p needed for 4>. Our empirical evaluations show that setting p between 100
and 1000 suffices to bring the error in L iftEM D down to e = 0.005 or less on a variety of
datasets. Figure 3.6 shows the error as a function of p on the 2D2C dataset (n = 45). From
the chart, we can see that p = 100 dimensions suffice to yield a very accurate approximation
for the distances. Figure 3.7 shows the error as a function of p on the MNIST training
dataset that has n = 60, 000 points. From the chart, we can see that p = 4, 000 dimensions
suffice to yield a very accurate approximation for the distances.

3 .7 S u m m a ry
We provide a well founded spatially aware metric between partitions based on a RKHS

representation of clusters that captures the true properties that lead to the formation of clus­
ters in the first place. We also introduce a spatially aware consensus clustering formulation
using this representation that reduces to Euclidean clustering, thus allowing us to leverage
all the research in clustering to run a consensus. We demonstrate that our algorithms are
efficient and are comparable to or better than prior methods.

42

Figure 3.6. Error in LiftEMD on 2D2C dataset (45 samples) as a function of p .

Figure 3.7. Error in LiftEMD on MNIST training data (60,000 samples) as a function of
p.

CHAPTER 4
G E N E R A T IN G T H E L A N D S C A P E O F

P A R T IT IO N S 1

When one partition is not good enough to understand the structures present in the data,
data miners look to uncover more partitions. We illustrate this idea with an illustration
(see Figure 4.1) of different partitions on a subset of the multimedia information retrieval
flickr (MIRFLICKR-25000) [Huiskes and Lew, 2008] dataset. Each clustering method
identifies different kinds of structure in data, reflecting different desires of the end user.
Thus, when used as an exploratory tool for data analysis, there is a need to identify a
diverse and meaningful collection of partitions of a dataset, in the hope that these distinct
partitions will yield different insights about the underlying data. A common metaclustering
problem is alternative clustering [Caruana et al., 2006; Dang and Bailey, 2010a,b; Gondek
and Hofmann, 2004; Jain et al., 2008; Qi and Davidson, 2009] where the goal is to generate
many nonredundant partitions of good quality. In general, the alternative clustering meth­
ods employ one of the distances discussed above, as well as external notions of quality.
Most algorithms for generating alternative partitions operate as follows. Generate a single
partition using a clustering algorithm of choice. Next, find another partition that is both far
from the first partition and of high quality. Most methods stop here, but a few methods try
to discover more alternative partitions; they repeatedly find new, yet high quality, partitions
that are far from all existing partitions.

The input to our problem is a single dataset X. The output is a set of k partitions of X .
A partition of X is a set of subsets Xj = (Xj 1 , Xj 2 , . . . , Xj s } where X = (J j _ Xj j and
for all j , j r Xj j n Xj j = 0. Let P x be the space of all partitions of X; since X is fixed
throughout the discussions in this chapter, we just refer to this space as P.

1Reprinted with permission of CEUR-WS, 2011, Jeff M. Phillips, Parasaran Raman, and Suresh Venkata-
subramanian, Generating a Diverse Set of High-Quality Clusterings. 2nd MultiClust Workshop: Discovering,
Summarizing and Using Multiple Clusterings, Vol. 772, Pages 81-90.

44

Figure 4.1. Three possible partitions based on (a) object contained, (b) dominant color, and
(c) type of lens used on a subset of MIRFLICKR-25000 dataset. All images are offered
under creative commons copyright licenses.

45

There are two quantities that control the nature of the partitions generated. The quality
of a partition, represented by a function Q : P ^ R + , measures the degree to which a par­
ticular partition captures intrinsic structure in data; in general, most clustering algorithms
that identify a single partition attempt to optimize some notion of quality. The distance
between partitions, represented by the function d : P x P ^ R, is a quantity measuring how
dissimilar two partitions are. The partitions Xj G P that do a better job of capturing the
structure of the dataset X will have a larger quality value Q(Xj). The partitions Xj , Xj/ G P
that are more similar to each other will have a smaller distance value d(Xj , Xj/). A good
set of diverse partitions all have large distances from each other and all have high quality
scores.

Thus, the goal here is to generate a set of k partitions that best represent all high quality
partitions as accurately as possible.

4.1 O v e rv iew o f O u r W o rk
To generate multiple good partitions, we present a new paradigm which decouples the

notion of distance between partitions and the quality of partitions. Prior methods that
generate multiple diverse partitions cannot explore the space of partitions entirely since
the distance component in their objective functions biases against partitions close to the
previously generated ones. These could be interesting partitions that might now be left out.
Also, the methods which use both the quality and the distance term in the objective function
suffer from the problem of tradingoff between two incomparable terms. To avoid this, we
will first look at the space of all partitions more thoroughly and then pick nonredundant
partitions from this set. Let k be the number of diverse partitions that we seek. Our
approach works in two steps.

1. Generation step: we first sample from the space of all partitions proportional to
their quality. Stirling numbers of the second kind, S(n,s) are the number of ways
of partitioning a set of n elements into s nonempty subsets. Therefore, this is the size
of the space that we sample from. We illustrate the sampling in Figure 4.2. This
generates a set of size m » k to ensure we get a large sample that represents the
space of all partitions well. We generate a conservative number of samples to avoid
“accidentally” missing some high quality region of P.

46

toCL
O>

1

0.9

0.8

0.7

0.6

ra 0.5
OT3CU_N"fOE

0.4

0.3

0.2

0.1

0

High-Quality High-Quality Region
■ . Region

/ V* k \ J

j Low-Quality
Region

X
k

1 Low-Quality
Region

P1
A : Sampled Partition

Space of Partitions Reference
Partition

m

Figure 4.2. Sampling partitions proportional to its quality from the space of all partitions
with s clusters.

2. Grouping step: we cluster this set of m partitions into k sets, resulting in k clusters
of partitions. We then return one representative from each of these k clusters as our
output alternative partitions.

Note that because the generation step is decoupled from the grouping step, we treat all
partitions fairly, independent of how far they are from the existing partitions. This allows
us to explore the true density of high quality partitions in P without interference from
the choice of initial partition. Thus, if there is a dense set of close interesting partitions
our approach will recognize that. Apart from helping us to understand the landscape of
the partitions of the given dataset, this can also provide different statistical insights like
the number of modes present in the data and the “clusterability” of the data. Since the
grouping step is run separate from the generation step, we can abstract this problem to a
generic clustering problem and we can choose one of many approaches. This allows us
to capture different properties of the diversity of partitions and understand the structure of
the landscape of partitions. Also, this allows the user to pick a distance measure of choice
either guided just by the spatial distance between partitions, or also by a density-based
distance which only takes into account the number of high quality partitions assigned to a
cluster.

47

From our experimental evaluation, we note that decoupling the generation step from
the grouping step helps as we are able to generate a lot of very high quality partitions. In
fact, the quality of some of the generated partitions is better than the quality of the partition
obtained by a consensus clustering technique called liftSSD [Raman et al., 2011]. The
relative quality with respect to the reference partition of a few generated partitions even
reach close to one. To our best knowledge, such partitions have not been uncovered by
other previous metaclustering techniques. The grouping step also picks out representative
partitions faraway from each other. We observe this by computing the closest-pair distance
between representatives and comparing it against the distance values of the partitions to
their closest representative.

4.1.1 Comparison to Prior Work
The existing literature in alternative clustering focuses on generating one additional

partition of high quality that should be far from a given set (typically of size one) of existing
partitions.

Most algorithms for generating alternative partitions operate as follows. Generate a
single partition using a clustering algorithm of choice. Next, find another partition that is
both far from the first partition and of high quality. Most methods stop here, but a few
methods try to discover more alternative partitions; they repeatedly find new, still high
quality, partitions that are far from all existing partitions. However, because of the way the
objective function is formulated these procedures often suffer a loss in the quality of the
partitions generated due to the constraints. Although there are a few other methods that try
to discover alternative partitions simultaneously [Jain et al., 2008; Niu et al., 2010], they are
usually limited to discovering two partitions of the data. In both cases, these subproblems
avoid the full objective of constructing a diverse set of partitions that explore and represent
the landscape of all high quality partitions.

The existing alternative clustering approaches are often too reliant on the initial partition
and only have limited success in generalizing the initial step to generate k partitions. In the
second approach to selecting diverse partitions from an input collection of partitions, there
is no way to verify that the input represents the space of all high quality partitions, so a
representative set of those input partitions is not necessarily a representative set of all high
quality partitions.

48

4.1.2 Outline
In Section 4.2, we discuss a sampling-based approach for generating many partitions

proportional to their quality; i.e., the higher the quality of a partition, the more likely it
is to be sampled. In Section 4.3, we describe how to choose k representative partitions
from the large collection of partitions already generated. We will present the results of our
approach in Section 4.4. We have tested our algorithms on a synthetic dataset, a standard
clustering dataset from the UCI repository and a subset of images from the extended Yale
face database B.

4 .2 G e n e ra t in g M a n y H ig h Q u a li ty P a r t i t io n s
In this section we describe how to generate many high quality partitions. This requires

(1) a measure of quality and (2) an algorithm that generates a partition with probability
proportional to its quality.

4.2.1 Quality of Partitions
Most work on clustering validity criteria looks at a combination of how compact clus­

ters are and how separated two clusters are. Some of the common measures that fol­
low this theme are SDbw, CDbw, SD validity index, maximum likelihood, and Dunn
index [Aldrich, 1997; Dave, 1996; Dunn, 1974; Halkidi and Vazirgiannis, 2001; Halkidi
et al., 2000; MacKay, 2002; Milligan and Cooper, 1985; Theodoridis and Koutroumbas,
2006]. Ben-David and Ackerman [2008] also discuss similar notions of quality, namely
VR (variance ratio) and WPR (worst pair ratio) in their study of clusterability. We briefly
describe a few specific notions of quality below.

4.2.1.1 K-means quality. If the elements x e X belong to a metric space with an
underlying distance 8 : X x X ^ R and each cluster Xj j in a partition Xj is represented
by a single element Xj, then we can measure the inverse quality of a cluster by q(Xj j) =

2I x e X - • 8 (x, Xj)2. The quality of the entire partition is then the inverse of the sum of the *>j •'
inverse qualities of the individual clusters,

Qkm(Xi) = 1/(E « (X ; , j)). (4.K.1)
j = 1

49

This corresponds to the quality optimized by s-means clustering2, which is quite common,
but is susceptible to outliers. If all but one element of X fit neatly in s clusters, but the
one remaining point is faraway, then this one point dominates the cost of the clustering,
even if it is effectively noise. Specifically, the quality score of this measure is dominated
by the points which fit least well in the clusters, as opposed to the points which are best
representative of the true data. Hence, this quality measure may not paint an accurate
picture about the partition.

4.2.1.2 Kernel distance quality. We introduce a method to compute quality of a
partition, based on the kernel distance [Joshi et al., 2011]. Here we start with a similarity
function between two elements of X, typically in the form of a (positive definite) kernel: K :
X x X ^ R +. K(xu,xv) is smaller when xu, xv E X are less similar, and takes a maximum
value of 1 when xu = xv . Then the overall (normalized) similarity score between two
clusters X,- j , X- • / E X , is defined byhJ I, J 1

K(x‘. j ’ V) = IX, -MX ,1 E E K(x-x ')’ (4-2.2)X J |-|X«,j' 1 xEX,,-x'EX, ,

and the self similarity of a single cluster X, j E X, is defined by K(X, j , X, j). Finally, the
overall quality of a partition is defined by the equation,

Qw(X,) = E K(X,,j*,X ,,j). (4.2.3)
J= 1

This captures the compactness (also called the width) of each cluster. We also define
another quality measure that captures both the compactness and separation (also called the
split) between the clusters. This is defined as the difference between the square of the self
similarity term and the cross similarity term,

s s s
Gw-s(X,-) = [E K (X,j,X , j)]2 - E E K(X l j ,X ,j). (4.2.4)

j = 1 <=1 j = 1

We use the square of the self similarity term to account for the fact that there are only s
2normalized similarity scores in the self similarity term while there are s of them in the

2It is commonplace to use k in place of s, but we reserve k for other notions in this chapter

50

cross similarity term. Here the cross similarity terms account for the similarity between
clusters and we subtract this to achieve a good separation between the clusters. We define
these two notions of quality to understand the effect of the “right” quality function on the
clustering landscape generation procedure.

If X is a metric space, the highest quality partitions divide X into s Voronoi cells around
s points - similar to s-means clustering. However, its score is dominated by the points
which are a good fit to a cluster, rather than outlier points which do not fit well in any cluster.
This is a consequence of how kernels like the Gaussian kernel taper off with distance and is
the reason we recommend this measure of cluster quality in our experiments. We illustrate
this property in Figure 4.3. It is important to note that the choice of the measure to compute
the quality of the partition is not tied to the process of generating the partitions. However,
we observe that good quality measures generate better partitions.

4.2.2 Generation of Partitions Proportional to Quality
We now discuss how to generate a sample of partitions proportional to their quality.

This procedure will be independent of the measure of quality used, so we will generically
let Q(Xi) denote the quality of a partition. Now the problem becomes to generate a set
Z C P of partitions where each X̂ E Z is drawn randomly proportional to Q(Xj).

The standard tool for this problem framework is a Metropolis-Hastings (M-H) random
walk sampling procedure [Hastings, 1970; Hoff, 2009; Metropolis et al., 1953]. Given a
domain X to be sampled and an energy function Q : X ^ R, we start with a point x E X and
suggest a new point x1 that is typically “near” x. The point x1 is accepted unconditionally
if Q(x1) > Q(x) and is accepted with probability Q(x1)/Q(x) if not. Otherwise, we say
that x 1 was rejected and instead set x1 = x as the current state. After some sufficiently large
number of such steps t , the expected state of xt is a random draw from P with probability
proportional to Q. To generate many random samples from P this procedure is repeated
many times.

In general, M-H sampling suffers from high autocorrelation, where consecutive samples
are too close to each other. This can happen when faraway samples are rejected with high
probability. To counteract this problem, often Gibbs sampling is used [Davidson, 2000;
Roberts et al., 1997]. Here, each proposed step is decomposed into several orthogonal
suggested steps and each is individually accepted or rejected in order. This effectively

51

✓ s
/ \

/ ^/ ^ ^ \
' • \ \

1 i ' ♦ • • » 7 • 1i ii» • * + / , »
» \ v ^ 7 i / 1\ \ t ' / /

\ ' / I
V\ " — " /

\ /N ✓N /

Figure 4.3. The kernel distance quality with a Gaussian kernel penalizes the outliers with
the black points given much more importance than the gray ones.

constructs one longer step with a much higher probability of acceptance since each indi­
vidual step is accepted or rejected independently. Furthermore, if each step is randomly
made proportional to Q, then we can always accept the suggested step, which reduces the
rejection rate.

4.2.2.1 Metropolis-Hastings-Gibbs sampling for partitions. The M-H procedure
for partitions works as follows. Given a partition X f, we wish to select a random subset
W C X and randomly reassign the elements of W to different clusters. If the size of W is
large, this will have a high probability of rejection, but if W is small, then the consecutive
clusters will be very similar. Thus, we use a special case of the M-H procedure called
Gibbs sampling. Gibbs sampling is a common method when the joint distribution is either
not known or is difficult to sample from, but the conditional distribution of each variable
is known. The samples form a Markov chain and approximate the joint distribution of the
variables. At each step we choose a random ordering o of the elements of X. Instead
of probabilistically picking the next state all at once in the random walk, Gibbs sampling
makes a separate probabilistic choice for each variable. Our separate probabilistic choice

52

at each step is the reassignment of each data point.
We start with the current partition Xj and choose the first element xG (j) G X. We assign

xG (j) to each of the s clusters generating s suggested partitions Xj and calculate s quality
j jscores qj = Q(Xi). Note that we can divide each q j by L jQ (X i) thereby making the

ratio of acceptance probabilities into actual probabilities. Finally, we select index j with
probability qj and assign xQ (j) to cluster j. Rename the new partition as Xj. We illustrate
this procedure in Figure 4.4 with a partition consisting of three clusters. We repeat this for
all points in order. Finally, after all elements have been reassigned, we set X^+j to be the
resulting partition.

Note that autocorrelation effects may still occur since we tend to have partitions with
high quality, but this effect will be much reduced. We run this entire procedure each time
we need a new random sample. It is common in practice to run this procedure for some
number tg (typically tg = !000) of burn in steps, and then use the next m steps as m random
samples from P. The rationale is that after the burn in period, the induced Markov chain is
expected to have mixed. Therefore, each new step would yield a random sample from the
stationary distribution and the correlation of the consecutive samples will dissipate over the
m steps.

4 .3 G ro u p in g th e P a r t i t io n s
Having generated a large collection Z of size m » k high quality partitions from P

by random sampling, we now describe a grouping procedure that returns k representative
partitions from this collection. We will start by placing a metric structure on P. This allows
us to view the problem of grouping as a metric clustering problem where each “point” is
a partition. Our approach is independent of any particular choice of metric; obviously,
the specific choice of distance metric and clustering algorithm will affect the properties of
the output set we generate. There are many different approaches to comparing partitions.
Since our approach is independent of the particular choice of distance measure used, we
review the main classes to give the user an idea of the various kinds of choices available to
compare partitions.

L Membership-based distances. The most commonly used class of distances used to
compare partitions is membership-based. These distances compute statistics about

53

(c)

Figure 4.4. Gibbs sampling by reconfiguring a partition proportional to quality. The intial
configuration is shown in (a), the three possible moves are explained in (b), and the final
configuration is shown in (c).

the number of pairs of points which are placed in the same or different cluster in
both partitions and return a distance based on these statistics. Common examples
include the Rand distance, the variation of information, and the normalized mutual
information [Ben-Hur et al., 2002; Meila, 2007; Rand, 1971; Strehl and Ghosh,
2003]. While these distances are quite common, they ignore information about
the spatial distribution of points within clusters, and so are unable to differentiate
between partitions that might be significantly different.

2. Spatially sensitive distances. In order to rectify this problem, a number of spatially
aware measures have been proposed. In general, they work by computing a concise
representation of each cluster and then use the earthmover’s distance (EMD) [Givens
and Shortt, 1984] to compare these sets of representatives in a spatially aware man­
ner. These include CDistance [Coen et al., 2010], [Bae et al., 2010], CC

54

distance [Zhou et al., 2005], and LiftEMD [Raman et al., 2011]. LiftEMD has
the benefit of being both efficient as well as a well founded metric and is the method
used here.

3. Density-based distances. The partitions we consider are generated via a sampling
process that samples more densely in high quality regions of the space of partitions.
In order to take into account dense samples in a small region, we use a density
sensitive distance that intuitively spreads out regions of high density. Consider two
partitions X . and X./. Let d : P x P ^ R + be any of the above natural distances on
P. Then let dZ : P x P ^ R + be a density-based distance defined as dZ(X X ./) =
|{XZ e Z | d(X Xj) < d(X j, X)}|.

4.3.1 Clusters of Partitions
Once we have specified a distance measure to compare partitions, we can cluster them.

See Figure 4.5 for a 2-dimensional visualization of picking nonredundant partitions from
the landscape generated. We will use the notation 0 (X .) to denote the representative par­
tition X. is assigned to. The goal is to pick k representative partitions which are “diverse”
from Z. We use two common clustering methods described below after computing the
LiftEMD distance between all pairs of partitions.

1. We run average-linkage hierarchical agglomerative clustering on the distance matrix.
Hierarchical clustering methods are suited for our problem since we have the dis­
tances matrix rather than the points themselves (since the “points” are the partitions).
The algorithm starts by putting two clusters (of partitions) together whose average
distance between the partitions contained in them is minimum. After the merging is
complete, we make a cut in the dendogram to obtain the clusters at level k to obtain
k clusters of partitions.

2. A simple algorithm by Gonzalez [1985] provides a 2-approximation to the best
partition that minimizes the maximum distance between a point and its assigned
center. The algorithm maintains a set of centers k; < k in C. The algorithm chooses
X j e Z with maximum value d(X 0 (X .)). It adds this partition X . to C and repeats
until C contains k partitions. We then assign each of the remaining partitions to the
closest of the k e C partitions.

55

■ Sampled partition

Figure 4.5. A 2-d illustration of the space of partitions. Each square is a sampled partition
and there are four groups of partitions from which we pick one representative each.

Once we have the clusters of partitions, we pick the best quality partition from each
cluster as the representative partition to ensure better overall quality. We run both the
hierarchical clustering and the Gonzalez method using LiftEMD as the distance between
partitions. Since these methods are independent of the choice of the distance measure used
to compare the partitions, we can substitute LiftEMD with any other choice of distance
between partitions. Also, the clustering methods that we use are picked because they are
easy to run on the distance matrix. Since the only goal is to pick k faraway partitions, we
can replace these choices with any clustering method that can take as input an all pairs
distance matrix.

4 .4 E x p e r im e n ta l E v a lu a t io n
In this section, we show the effectiveness of our technique in generating partitions of

good divergence and its power to find partitions with very high quality, well beyond usual
consensus techniques.

4.4.1 Data
We created a synthetic dataset 2D5C, shown in Figure 4.6 with 100 points in 2-dimensions,

for which the data is drawn from five Gaussians to produce five visibly separate clusters.
We also test our methods on the Iris dataset containing 150 points in 4-dimensions and the

56

■■■ ■

3>S
■ .
"ft

□ □

% a

□ □
□□

.■ ° g , a ° m °
q j t f ■

5 3 3.5 4 4.5 5 5.5 6 6.5 7

8

7

6

Figure 4.6. 2D5C dataset with 100 points in 2-dimensions.

Adult data containing 48842 points in 14-dimensions, both from the UCI machine learning
repository [Frank and Asuncion, 2010]. We also use the extended Yale face database
B [Georghiades et al., 2001], which has 38 individuals with approximately 64 frontal poses
under different illumination scenarios. The images are resized to 32x32 pixels. Thus, the
face dataset contains 2414 points in 1024-dimensions.

4.4.2 Methodology
For each dataset, we first run k-means to get the first partition with the same number

of clusters specified by the reference partition. Using this as a seed, we generate m =
5000 partitions, after throwing away the first 1000 of them. We report the results of the
experiments using the Qw —s quality function as this performed much better compared
to the Qw quality function. We then select a few representative partitions by one of the
following two methods.

1. Run average-linkage hierarchical agglomerative clustering on the distance matrix of
the partitions generated and pick a partition from each group after making a cut on
the dendogram to obtain k < < m clusters.

2. Run the Gonzalez k-center method to find k ^ m representative partitions.
We associate each of the (m — k) remaining partitions with the closest representative parti­
tion.

57

Typically, we pick k = 10 partitions. We compute and report the quality of each of
these representative partitions. We use Qw—s (the quality measure used to generate the
partitions) and Rand index as an independent measure to evaluate the partitions generated.
We measure the L iftEMD distance to each of these partitions from the reference partition
as well as the average pair wise distance between the partitions generated. We compare
these numbers to the representative partitions picked to evaluate the diversity in the context
of the given landscape. We also plot the quality of consensus partitions generated by
LIFTSSD [Raman et al., 2011] using inputs from k-means, single-linkage, average-linkage,
complete-linkage, and Ward’s method. Since consensus clustering tries to compute the best
quality partition from the inputs, this gives us a good reference point on how clusterable
the data is by the individual clustering methods.

4.4.3 Performance Evaluation
4.4.3.1 Evaluating partition diversity. The first aspect that we focus on is how

“diverse” the generated partitions are. We can evaluate partition diversity by determining
the LiftEMD and Rand distance between all pairs of representative partitions. We can
look at this in the context of the all pairs distances between all the generated partitions. Low
LiftEMD and Rand distance values between representatives will indicate redundancy and
that the partition in consideration is similar to other representatives. If two representatives
have high LiftEMD and Rand distance values, it indicates good diversity among partition
representatives.

The resulting distribution of distances of (a) the partitions generated and (b) the rep­
resentative partitions is presented in Figure 4.7. We plot the LiftEMD distance in Fig­
ures 4.7(a), 4.7(c), 4.7(e) and 4.7(g) for Iris, Adult, Yale face B and the 2D5C datasets
respectively. We plot the Rand distance in Figures 4.7(b), 4.7(d), 4.7(f) and 4.7(h) for Iris,
Adult, Yale face B and the 2D5C datasets, respectively.The blue shaded region corresponds
to the area plot of the distribution of the all pairs distances of all the partitions generated,
while the orange region plots the all pairs distance distribution for only the ten represen­
tative partitions picked. We expect that the representative partitions will be far from each
other. Since distance measures suffer from calibration issues, the blue region provides
a baseline. For all datasets, a majority of the representative partitions are comparably

58

Dataset: Iris A rea p lo t o f d istribution o f all-pa ir d istances

.
1 X
0 ------------^ --------1-----------1-----------1-----------1-----------1-----------1-----------1-----------1
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1

LiftEMD between partitions

|[~3 Representative partitions □ A ll generated partitions I

Dataset: Iris A rea p lo t o f d istribution o f all-pa ir d istances

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Rand distance between partitions

) □ Representative partitions □ A ll generated partitions I

(a) (b)
Dataset: A du lt A rea p lo t o f d istribution o f a ll-pa ir distances

I ..- " a J
0 ------ 1-----------1-----------1-----------1-----------1-----------1-----------1-----------1-----------1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LiftEMD between partitions
|[3 Representative partitions Q A ll generated partitions I

Dataset: A du lt A rea p lo t o f d is tribu tion o f a ll-pa ir distances

Rand distance between partitions
] Representative partitions Q A ll generated partitions

(c) (d)
Dataset: Yale Face B Area p lo t o f d istribution o f a ll-pa ir d istances

.2 0.4 -

«5 0 .3 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
LiftEMD between partitions

I[3 Representative partitions □ A ll generated partitions I

Dataset: Yale Face B
0.5

.1 0.4

S 0.3

Area p lo t o f d istribution o f a ll-pa ir d istances

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rand distance between partitions

|[~] Representative partitions □ A ll generated partitions I

(e) (f)
Dataset: 2D5C Area p lo t o f d is tribu tion o f a ll-pa ir distances

to 0.1 -

0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LiftEMD between partitions
] Representative partitions Q A ll generated partitions I

D a ta s e t 2D5C
0.6: 0.5

i 0.45 P
■ 0.3)
j 0.2

j 0.1

0

Area p lo t o f d is tr ib u tio n o f a ll-p a ir d istances

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rand d is tance be tw een pa rtition s

] R epresenta tive p a rtit io n s □ A ll gene ra ted pa rtit io n s I

0 0

(g) (h)
Figure 4.7. Stacked area plot comparing the distributions of all pairs distances of all
generated partitions and the all pairs distances of the representative partitions. (a), (c),
(e), and (g) show the LiftEMD distance and (b), (d), (f), and (h) show the Rand distance.

59

faraway from each other (this is indicated by the orange region lying well to the right
of the blue region). This indicates nice clusters of partitions in the landscape that we
generated. In Figure 4.8, we plot the heat map of the all pairs LiftEMD distance matrix
to show the separation between the representative partitions. We notice that the heat map
is predominantly hot showing that the representative partitions are diverse.

4.4.3.2 Evaluating partition quality. Secondly, we would like to inspect the qual­
ity of the partitions generated. Since we intend the generation process to sample from the
space of all partitions proportional to the quality, we hope for a majority of the partitions to
be of high quality. The ratio between the kernel distance quality Qw_ s of a partition to that
of the reference partition gives us a fair idea of the relative quality of that partition, with
values closer to one indicating partitions of higher quality. We also compute the relative
Rand index between each partition and the ground truth as an independent measure. The
distribution of quality is plotted in Figure 4.9. We plot the kernel distance quality (Qw_ s)
in Figures 4.9(a), 4.9(c), 4.9(e) and 4.9(g) for Iris, Adult, Yale face B and the 2D5C
datasets, respectively. We plot the Rand index in Figures 4.9(b), 4.9(d), 4.9(f) and 4.9(h)
for Iris, Adult, Yale face B and the 2D5C datasets, respectively.

We observe that for all the datasets, we get a normally distributed quality distribution. In
addition, we compare the quality of our generated partitions against the partition generated
by the consensus technique LIFTSSD. We mark the quality of the representative partitions
with red squares and that of the consensus partition with a green circle. For instance, on the
Iris dataset (Figure 4.9(a)), we can see that the relative quality with respect to the ground
truth partition of over half of the representative partitions is better than that of the consensus
partition. This demonstrates the value of our alternative clustering method to explore the
landscape since the consensus partition would be the best partition that is available to us
without looking at the entire landscape. For the Yale face B data, note that we have two
reference partitions, namely “by person” and “by illumination” and we chose the partition
“by person” as the reference partition due to its superior quality.

4.4.3.3 Visual inspection of partitions. First, we do a visual inspection of two
partitions picked at random from the representative partitions generated using each of
Qw and Qw—s quality functions. In Figure 4.10, we can see that the Qw—s quality
function that captures both the compactness and separation of clusters produces visually

60

RP1

RP2

RP3

RP4

RP5

RP6

RP7

RP8

RP9

RP10

RP1 RP2 RP3 RP4 RP5 RP6 RP7 RP8 RP9 RP10

Figure 4.8. Yale face B: heat map of the all pairs LiftEMD distance matrix of the
representative partitions. Red regions correspond to faraway partitions and blue regions
are similar partitions.

good clusters, whereas the partition that was generated using the quality function
has overlapping clusters and is thus probably inferior. The average Rand index of the
representative partitions generated using as the quality function is 0.92, whereas it
drops to 0.83 when is used. We use this to reiterate the importance of choosing the
“right” quality measure. Since our sampling procedure is agnostic to the choice of quality
measure chosen, the user can take advantage of the prior work on evaluating partitions to
pick the right quality measure.

We also visualize the partitions obtained on Yale face B to demonstrate the ability of our
method to be used as an exploratory data analysis tool. Figure 4.11 shows two interesting
representative partitions. We visualize the mean of the data points of ten clusters that
are picked at random from each representative partition. The first representative partition
shown in Figure 4.11(a) resembles a partition where each cluster corresponds to the face
of a different person and each cluster is of a different illumination level in the second
representative partition (Figure 4.11(b)). Both of these partitions are interesting and good
quality partitions and are very difficult to generate without looking at the landscape of all
interesting partitions.

61

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R elative q u a lity (Q {w -s }) o f p a r titio n s w .r.t g round tru th

□ R epresenta tive P artition O Consensus P artition I

(a)
D ataset: A d u lt A rea p lo t o f d is tr ib u tio n o f qu a lity o f pa rtit io n s

□ R epresenta tive P artition O Consensus P artition

(c)
D ataset: Yale Face B A rea p lo t o f d is tribu tion o f q u a lity o f p a rtitions

□ R epresenta tive P artition O Consensus P artition

(e)
D ataset: 2D5C Area p lo t o f d is tr ib u tio n o f qu a lity o f pa rtit io n s

□ R epresentative P artition O Consensus P artition

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Rand Index o f p a rtitio n s w.r.t g round tru th

□ R epresenta tive P artition O Consensus P artition I

(b)
D ataset: A d u lt A rea p lo t o f d is tr ib u tio n o f q u a lity o f p a rtit io n s

□ R epresenta tive P artition O Consensus P artition

(d)
D ataset: Yale Face B A rea p lo t o f d is tr ib u tio n o f q u a lity o f p a rtitions

□ R epresenta tive P artition O Consensus P artition

(f)
D ataset: 2D5C Area p lo t o f d is tr ib u tio n o f qu a lity o f p a rtit io n s

□ R epresenta tive P artition O Consensus P artition

(g) (h)
Figure 4.9. Stacked area plot of the distribution of quality of all generated partitions. (a),
(c), (e), and (g) show Qw—s and (b), (d), (f), and (h) show the Rand index.

62

(a) (b)

Figure 4.10. Visual illustration of two representative partitions generated with different
quality functions (a) Qw and (b) Qw_ s on 2D5C data.

(a)

(b)

Figure 4.11. Visual illustration of average points of ten clusters in two interesting
representative partitions on Yale face B. In (a), each cluster is a different person and in
(b), each cluster represents a different illumination level.

63

4.5 S u m m a ry
In this chapter we introduced a new framework to generate multiple nonredundant

partitions of good quality. Our approach is a two stage process: in the generation step, we
focus on sampling a large number of partitions from the space of all partitions proportional
to the quality and in the grouping step, we identify k representative partitions that best
summarizes the space of all partitions.

P A R T I I

S T A B IL IT Y

CHAPTER 5

V A L ID A T IN G DATA M E M B E R S H IP S 1

Clustering generates predictions in the form of implicit labels for points. These pre­
dictions are used for exploration, data compression, and other forms of downstream data
analysis, and so it is important to verify the accuracy of these labels. However, because
of the unsupervised nature of clustering, there is no direct way to validate the data assign­
ments. As a consequence, a number of indirect approaches have been developed to validate
a clustering at a global level [Halkidi et al., 2001; Xu and Wunsch, 2009]. These include in­
ternal, external and relative validation techniques, and methods based on clustering stability
that assume a clustering (algorithm) is good if small perturbations in the input do not affect
the output partition significantly. There are supervised variants of clustering. However,
these typically require domain knowledge, and the immense popularity of clustering comes
precisely from the fact that it can be applied as a first filter to acquire a deeper understanding
of the data.

All these approaches are global. They assign a single number to a partition and cannot
capture the potentially wide variation in label quality within a partition. Consider, for
example, a partition of the MNIST digits database (a few example images are displayed in
Figure 5.1). By global measures of clusterability, the partition would be considered “good.”
However, as we can see in the picture in the top row, there are a number of images for which
the correct cluster is not as obvious. What we would like in this case is a way to quantify
this lack of confidence for each image separately. Such a measure would give a lower
confidence rating to the labels for images in the top row, and a downstream analysis task
could incorporate this uncertainty into its reasoning. Note that a single number describing
the quality of the partition would not suffice in this case, because the downstream analysis

1Reprinted with permission of IEEE, 2013, Parasaran Raman and Suresh Venkatasubramanian, Power to
the Points: Validating Data Memberships in Clusterings. Thirteenth IEEE International Conference on Data Mining.

66

m[HIT
Figure 5.1. MNIST handwritten digits. L-R are numbers {“0”, “6”, “4”, “9”}. The
numbers on the top row are very hard to identify even for a human. The bottom row is
unambiguous.

might only select a few points (cluster centers, or a representative sample) for further
processing.

5.1 O u r W o rk
In this chapter we present a scheme to assign local affinity scores to points that indicate

the “strength” of their assignment to a cluster. Our approach has a number of attractive
features.

1. It is very general. It takes a partition generated by any method and returns the local
affinity scores without relying on probabilistic or other modeling assumptions. It
does this by using the ideas of proximity and shared volume: intuitively, a point
has strong affinity for a cluster if (when treated as a singleton cluster) its region of
influence overlaps significantly with the region of influence of the cluster.

2. It is very efficient to compute. Computing the local affinity of a point depends solely
on the number of clusters in the data and an error parameter: there is no dependence
on the data size or dimensionality. We show that this can be improved further by
progressive refinement, allowing us to avoid computing affinities for points that we
are very confident about.

3. It lends itself to easy visualization, which is very useful for diagnostic purposes.
4. The local affinities we compute can also be used to validate the number of clusters in

the data as well speeding up clustering computations by focusing attention on points
that can affect decision boundaries (as with active learning techniques).

67

5.1.1 Overview of Our Work
Clustering is about proximity: points are expected to have similar labels if they are

close to each other and not to others. In other words, the regions of influence of points
belonging to the same cluster must overlap [Houle et al., 2010]. Therefore, a point should
be associated with a cluster if its region of influence significantly overlaps the region of
influence of the cluster, and does not have such an overlap with other clusters. We can
quantify the confidence of this association by measuring the degree of overlap.

The method we propose elaborates on this idea to incorporate a variety of more general
notions of regions of influence that can incorporate cluster importance, density and even
different cluster shapes. The key idea is to define regions of influence as elements of
an appropriate weighted power diagram (a generalization of a Voronoi diagram) and use
shared volume to quantify how different regions overlap.

At first glance, this idea is doomed to fail: computing Voronoi regions (and their vol­
umes) is extremely difficult in high dimensions. We show how the volumes of these regions
can be estimated (a) without actually computing them and (b) with provable guarantees on
the estimates via the use of e-net sampling and techniques for sampling from convex bodies
in high dimensions efficiently. The resulting scheme is accurate and yields the affinity
score of a point in time independent of the data size and dimensionality. It runs extremely
fast in practice, taking only milliseconds to compute the scores. These scores can also be
computed progressively using iterative refinement, so we can focus on the problem cases
(points of low affinity) directly.

5.1.2 Applications
The local affinity scores we compute can be viewed as a general diagnostic tool for

evaluating partitions and even computing partitions faster. We demonstrate this with a set
of key applications.

5.1.2.1 Evaluating the clusterability of data. We have already explained how we
expect local affinity scores to certify whether data labels are accurate or not. In addition,
combining local affinity scores provides another measure for the global quality of a parti­
tion. We will show that this measure matches prior notions [Halkidi et al., 2001; Liu et al.,
2010] of global quality of a partition and thus is a more general tool for clustering quality.
We will also show that this global measure can be used to solve the vexing problem of

68

identifying the right number of clusters in a partition [Rousseeuw, 1987; Sugar and James,
2003; Tibshirani et al., 2001], and has certain advantages over other approaches like the
common “elbow method” [Tibshirani et al., 2001].

5.1.2.2 Active clustering. Clustering algorithms usually have a nonlinear time de­
pendence on the input size, and so as data sizes grow, the time to cluster grows even faster.
This motivates “bootstrapping” strategies where the algorithm first clusters a small sample
of the data, and uses this partial clustering to find points that lie on cluster boundaries
(and would have greater influence on the resulting partition). The most important step in
this “active” approach to clustering [Eriksson et al., 2011; Hofmann and Buhmann, 1998;
Settles, 2012] is selecting the points to add to the process. We show that if we use points
of low affinity as the active points used to seed the next round of clustering, we can obtain
accuracy equal to that obtained from the entire dataset but with orders of magnitude faster
running time.

5.2 P re lim in a r ie s
Let P be a set of n points in Rd . We assume a distance measure D on Rd , which for

now we will take to be the Euclidean distance. A clustering is a partition of P into clusters
C = {C1 ,C2 , . . . , Ck}. We will assume that we can associate a representative Cf with a
cluster Cf. For example, the representative could be the cluster centroid, or the median.

A Voronoi diagram [De Berg et al., 2008] on a set of sites S = {s1 , s2 , . . . , sk} C Rd is
a partition of Rd into regions Vj_,. . . Vk such that for all points in Vf, the site s f is the closest
neighbor. Formally, Vf = {p G Rd I D(p, sf) < D(p,sj), j = f}. When D is the Euclidean
distance, the boundary between two regions is always a hyperplane, and therefore each cell
Vf is a convex polyhedron with at most (k — 1) faces.

We will also make use of a generalization of the Voronoi diagram called the power
diagram [Aurenhammer, 1987]. Suppose that we associate an importance score wf with
each site sf. Then the power diagram on S (see Figure 5.2) is also a partition of R^ into
k regions Vf, such that Vf = {p G Rd | D2 (p,sf) — Wf < D2 (p ,s j) — Wj, j = f}. Power
diagrams allow different sites to have different influence, but retain the property that all
boundaries between regions are hyperplanes and all regions are polyhedra in Euclidean

69

Figure 5.2. The power diagram of a set of points C1 . . . C4 . The sphere radius is
proportional to the weights w ... W4 .

2space .
Finally, we will frequently refer to the volume Vol(S) of a region S C Rd . In general,

this denotes the d-dimensional volume of S with respect to the standard Lebesgue measure
on Rd . If S is not full-dimensional, this should be understood as referring to the lower­
dimensional volume, or the volume of the relative interior of S; for example, the “volume”
of a triangle in 3-dimensions is its area, and the volume of a line segment is its length.

5 .3 D efin in g A ffin ity S co res
As we discussed in the beginning of this chapter, the region of influence of a point

is how we define its affinity to clusters. Each cluster has a region of influence. If we
now consider a particular point in the data and treat it as a singleton cluster, its region of
influence will overlap neighboring clusters. We measure the affinity of a point to a cluster
to be the proportion of influence it overlaps from that cluster. We now define these ideas
formally.

Let C = C1 ,C2 , . . . Ck be a partition of n points. A region of influence function is a
dfunction R : C ^ 2R on C such that all R(Cj) (which are subsets of Rd) are disjoint.

The simplest region of influence function is a Voronoi cell. Specifically, consider a
partition with k clusters, each cluster Cj having representative cj. Let C be the set of these

2The squared distance is crucial to making this happen; without it, arcs could be elliptical or hyperbolic.

70

representatives. Consider any point x E C H (C) (the convex hull of C). Let V , V 2 V k be
the Voronoi partition of C, and let U 1 , U2 , . . . , Uk, Ux be the Voronoi partition of C U {x},
with Ux being the Voronoi cell of x. Then we define the region of influence, R(Cj) = V ,
and Rx (Ci) = Uf.

Let R be a region of influence function. Let C = C1 ,C2 ,...C k be a partition. For
any point x, let Cx denote the partition C1 \ {x},C2 \ { x } , C k \ {x}, {x}, and let Rx (C)
denote the region of influence of a cluster C E Cx. Then the affinity score of x is the vector
(« 1 , « 2 > •••, a k), where

a i = Vol(R(Ci) n Rx({x}))
Vol(Rx({x}))

In the above definition, Rx ({x}) is the region of influence x has carved out for itself,
and «i merely captures the proportion of Rx({x}) that comes from the (original) cluster Cj.

Continuing our example of Voronoi regions of influence, the Voronoi cell Ux of x
“steals” volume from Voronoi cells around it (Figure 5.3 illustrates this concept). We
can compute the fraction of Ux that comes from any other cell. For any point pj E P,
let «i = V(1/77) . Then aj represents the (relative) amount of volume that x “stole”= Vol(Vi7Ux)

Vol(Ux)
from pi. Note that £ ai = 1, and if x = pj, then ai = 1.

The affinity score captures the entire set of interactions of a point with the clusters. It
is often convenient to reduce this to a single score value. For example, since at most, one
ai can be strictly greater than 0.5, we can define a point as stable if such an ai exists,
and say that it is assigned to cluster i. In general, we will define the stability of a point to
be o (p) = max ai. The stability of a point lies between zero and one and a larger value
indicates greater stability.

It is important to note that the idea of area stealing was first defined in the context of
natural neighbor interpolation (NNI) [Sibson, 1980, 1981], where the ai values were then
used to compute an interpolation of function values at the p i. Widely used by researchers
in the geosciences community, NNI is a powerful technique that has not yet appealed to
the data mining community at large. NNI is a spatial interpolation method that works on
Voronoi tessellation of a collection of sites. It is especially attractive since it provides a
smooth approximation of the function that operates on the Voronoi sites, at any arbitrary
point. The NNI function is also continuous everywhere within the convex hull of the data.
NNI is a weighted average technique that uses the neighboring Voronoi cells of a selected

71

£

• Voronoi Site
□ New Point

NNI region

Figure 5.3. In this example, the red point is “stealing” the shaded area from the Voronoi
cells of Cb C2, C3.

arbitrary point x. Upon picking the point x for which the NNI is to be calculated, the weight
of each neighbor is proportional to the area that the Voronoi cell of x (from the new Voronoi
tessellation with all the original sites and x) “steals” from the Voronoi cell of the neighbors
in the absence of x. Therefore intuitively, if x is well within a particular Voronoi region, that
cell will have a bigger weight. In this chapter we will use the af directly without computing
any interpolants.

5.3.1 A Rationale for Affinity
The simplest way to define influence is by distance. For example, we could define

the affinity of a point to a cluster as the (normalized) distance between the point and the
cluster representative. Our definition of affinity generalizes distance ratios: in 1-dimension,
affinity calculations yield the same result as distance ratios, since the “area” stolen from a
cell is merely half the distance to that cell. But, affinity can capture stronger spatial effects,
as our next example shows.

Consider the configuration shown in Figure 5.4. The point q 1 is equidistant from the
cluster centers C2 and C3 and so would have the same distance-based influence with respect
to these clusters. But, when we examine the configuration more closely, we see that the
presence of C4 is reducing the influence of C3 on q 1, and this effect appears only when
we look at a planar region of influence. We validate by using 100 runs of k-means with
random seeds. We observe that q 1 was assigned to C2 in 15 runs and to C3 in only two runs.
A distance-based affinity would have suggested an equal “affinity” for the two clusters,

72

q2
0.03 C3

• C4

Figure 5.4. Illustration of the difference between distance-based and area-based influence
measures.

whereas a volume-based affinity incorporates the effects of other clusters.
Similarly, consider q2 . It is twice as close to c1 compared to c2 or c5 , which would

result in the distance-based influence of c1 being equal to the influence of c2 and c5
combined. When we validate this using k-means, we find that q2 is exclusively assigned to
cluster center c1. Here, C1 has a “shielding” effect on q2 that prevents it from ever being
assigned to those clusters: this shielding can only be detected with a truly spatial affinity
measure.

5.3.2 Visualization
The affinity scores define a vector field over the space the data is drawn from. The

stability o (p) defines a scalar field and can be visualized (in low-dimensions). Consider
the partition depicted in Figure 5.5(a). We can draw a contour map (see Figure 5.5(b))
where each level connects points with the same stability score (unlike in a topographical
map, more deeply nested contours correspond to lower stability scores). We can also render
this as a greyscale heat map (see Figure 5.5(c), where the lower the affinity, the brighter the
color). These visualizations, while simple, provide a visual rendering of affinity scores that
is useful as part of an exploratory analysis pipeline.

73

(c)

Figure 5.5. Visualizing the affinity scores. We plot (a) the data with 5 clusters, (b) the
contour plot, and (c) the heat map.

5.3.3 Extensions
Our definition of affinity is not limited to Euclidean spaces. It can be generalized

to a variety of spaces merely by modifying the way in which we construct the Voronoi
diagrams. In all cases, the resulting affinity scores will result from a volume computation
over polyhedra.

5.3.3.1 Giving clusters varying importance: density-based methods. Consider a
generalized clustering instance where each cluster Ci has an associated weight w , with a

74

larger w f indicating greater importance. Instead of constructing the Voronoi diagram, we
will construct the power diagram defined in Section 5.2. Specifically, the region of influ-

2 2ence Rf for cluster Cf will be defined as the set R(Cf) = {x|d2 (p f,x) — Wf < d2 (p j ,x) — Wj }.
We compute the affinity vector as before, with the weight of a singleton x set appropriately
depending on the weight function used. For example, if w(Cf) = |Cf|/n, then w(x) = 1/n.

Consider the examples depicted in Figure 5.6. The left hand figure has 100 points in
each of the five clusters, and the right hand figure has 500 points in each of the four outer
clusters and 100 points in the center cluster. Notice that there is a lot more instability (as
seen by the contours) in the sparser example, much of which is due to the presence of the
central cluster. However, once the density of the outer clusters increases, the effect of the
inner cluster is much weaker, and there are fewer unstable regions.

We can also extend our Voronoi-based definition of affinity to partitions in Bregman
spaces [Bregman, 1967] and kernel spaces [Scholkopf and Smola, 2002]. In each case,
the resulting affinity score reduces to volume computation on polyhedra, just as in the
Euclidean space.

5 .4 E s tim a tin g A ffin ity
The many different ways of defining affinity scores via regions of influence all reduce to

the following: given a set of representatives C = {c1 , . . . , Ck} and a query point x, estimate
the volume of a single cell in the Voronoi diagram of C or C U{x}, and estimate the volume
of the intersection of two such cells.

In 2-dimensions, the Voronoi (or weighted Voronoi) diagram of k points can be com­
puted in time O(klogk) [De Berg et al., 2008], and the intersection of two convex polygons
can be computed in O(k) time [Toussaint, 1985]. Any polygon with k vertices can be
triangulated in O(k) time using O(k) triangles, and then the area can be computed exactly
in O(k) time (O(1) time per triangle). In 3-dimensions, computing the Voronoi diagram

2takes O(k2) time, and computing the intersection of two convex polyhedra can be done in
linear time [Chazelle, 1992]. Tetrahedralizing the convex polyhedron can also be done in
linear time [Lennes, 1911].

This direct approach to volume computation does not scale. In general, a single cell in
the Voronoi diagram of k points in Rd can have complexity O(kl~d / 2l). We now propose

75

(a) (b)

Figure 5.6. Visualizing the affinity scores for datasets with different densities. There are
100 points in each cluster in (a) and 500 points in the clusters on the boundary in (b).

an alternate strategy that provably approximates the affinity scores to any desired degree of
accuracy in polynomial time using random sampling.

Let Ux be the Voronoi cell of x in the Voronoi diagram of C U {x}. We say that the
point y is stolen from s(y) = Of if (i) y E Ux and (ii) y’s second nearest neighbor is cf. We
can then write a f- = Vol({x | s(x) = cf-})/Vol(Ux). Note that given a point x and any point
y, we can verify in O(k) time whether y E Ux and also compute s(y) by direct calculation
of the appropriate distance measure.

Let (a 1 , a 2 ?•••? a k) be the affinity scores for x. Suppose we now sample a point y
uniformly at random from Ux. We can find s(y) in O(k) time and this provides one update
to af . The number of such samples needed to get an accurate estimate of each a f- is given
by the theory of £-samples. Let m be a measure defined over X and let R be a collection
of subsets of X. An £-sample with respect to (X, R) and m is a subset S c X such that for
any subset R E

£.
By standard results in VC-dimension theory [Har-Peled, 2011; Li et al., 2001; Talagrand,
1994], a random subset of size O(£2 (n + log 1) is an £-sample for a range space (X,
of VC-dimension n , with probability at least 1-5.

76

If we now consider the discrete space [1... k] with the measure ^(i) = a-, then the set
of ranges R is the set of singleton queries {1... k}, and the VC-dimension of ([1... k], R)J 1is a constant. This means that if we sample a set S of O(log 1) points from Ux, and set
a- = |x e S | s(x) = i|/|S |, then la- — a-| < e for all i.

5.4.1 Sampling from Ux
We now have a strategy to estimate the affinity scores of x. Sample the number of points

from Ux as prescribed above and then estimate a- by computing the owners of samples.
Standard rejection sampling (sample from a ball enclosing Ux and reject points outside it)
does not work in high dimensions as the number of rejected points grows exponentially
with the dimension. For example, in 20-dimensions, over 1000 points are rejected for each
good sample in experiments.

To solve this problem, we make use of the extensive literature on sampling from a
convex polyhedron in time polynomial in d , following the groundbreaking randomized
polynomial time algorithm of Dyer, Frieze and Kannan. At a high level, these are all
Markov chain Monte Carlo (MCMC) methods: they use different random walks to extract a
single uniform sample from the polyhedron efficiently. We describe the sampling procedure
in Algorithm 2. One of the most effective strategies in practice for doing this is known as
hit and run [Smith, 1984]. It works as follows. Starting with some point x in the desired
polytope K, we pick a direction at random, and then pick a point uniformly on the line
segment emanating from x in that direction and ending in the boundary of K. We refer to
this step as hit and run. It has been shown [Lovasz, 1999] that this random walk mixes very
well, making O(d3) calls to a membership oracle to produce a single sample (under some
technical assumptions). Figure 5.7 illustrates the distribution of samples using hit and run
for the Voronoi cell of the point q. Algorithm 3 (AFFINITY) summarizes the process for
computing the affinity score of a single point.

5.4.1.1 Reducing dimensionality. The above sampling procedure runs in time O(d3)
per point. However, d can be quite large. We make one final observation that replaces
terms involving d by terms involving k ^ d for Euclidean distance measures (or Euclidean
distances derived from a kernel).

The Voronoi diagram of k points in d-dimensions, where k < d , has a special structure.
The k points together define a (k — 1)-dimensional subspace H of Rd . This means that

77

Algorithm 2 SamplePolytope
Input: Collection of halfplanes H defining convex region K = h h , number of
samples m. Output: m points uniformly sampled from K.

Construct affine transform T such that T K is centered and isotropic.
Fix burn in parameter b
Run hit and run for d steps on TK, ending in z = Z0

for i = 1 ... m do
Set zi to be result of one hit and run move from Zi_ 1

end for
Return (T 1Z1 , . . T - 1zm).

Figure 5.7. Illustration of hit and run for sampling from a Voronoi cell. Samples are shown
in blue.

any vector p E Rd can be written as p = u + w where u E H and w ± u. The Euclidean
distance 11p — p r \\2 can be written as ||u — uf \\2 + ||w — wr\\2. In particular, this means that
in any subspace of the form H + w for a fixed w ± H , the distance between two points is
merely their distance in H .

Therefore, each Voronoi cell V can be written as Vf + H ^ , where Vf C H and H ^
is the orthogonal complement of H consisting of all vectors orthogonal to H . Thus,
we can project all points onto H while retaining the same volume ratios as in the original
space. This effectively reduces the problem to a k-dimensional space. The actual projection
is performed by doing a singular value decomposition on the k x d matrix of the cluster

78

Algorithm 3 Affinity: computing the affinity score for a point
Input: A partition C = Cj_,C2 , . . . , Ck with representatives , . . . , Ck and a point x.
Output: Affinity vector (a 1 , . . . , ak) for x

m ^ J ? log 1
Set all a f ^ 0
for j = 1 . . . k do

Set H j as the halfplane supporting Ux with respect to c j in the Voronoi diagram.
end for
Call SamplePolytope({H1, . . . , }, m) to generate m samples
Z1 ,Z2 , . . .zm G Ux = n H j .
for = 1 . . . m do

Compute s = argminj= 1 k^(zf,Cj).
as = as + 1/m

end for
Return (a 1 , . . . , ak).

representatives. Once this transformation is done, we call Affinity as before. The
3 2resulting algorithm computes the affinity scores for a point in time O(k3 log(1/e) /e 2).

5.4.1.2 Progressive refinement of affinity scores. In many applications, we care
only about points with low stability since they define decision boundaries. But, most
points are likely to have high stability scores, and computing the scores of all points is
wasteful. We describe a progressive refinement strategy that “zooms in” on the unstable
points quickly. We begin with a very coarse grid on the data. For each cell, we first compute
the stability score of points at the corners of the cell. If the corners are highly stable, we
skip this cell, else we subdivide it further and repeat. We seed the process with a grid that
has n cells (and therefore is subdivided into n1/d segments in each dimension.

We show the effect of this progressive refinement method for 2-dimensional data in
Figure 5.8. The heat map on the left only contains y/n cells and the one in the middle
contains 10 y/n cells. Note that the middle heat map is very similar to the heat map on the
right that uses no refinement strategies at all, and uses far fewer stability evaluations.

5 .5 E x p e r im e n ts
We demonstrate the following benefits of affinity scores in this section.
1. Affinity scores identify points on the true cluster boundary, which is useful in deter­

mining how a particular point affects the clustering of data.

79

(a) (b)

(c)

Figure 5.8. Reducing computation through progressive refinement: (a) very coarse grid-
ding, (b) moderate gridding, and (c) gridding with all points.

2. Affinity scores can be used to speed up clustering by actively selecting points that
matter.

3. Aggregated stability scores help with determining clusterability and model selection.
4. Our method is practical and scales well with dimensionality and data size.

5.5.1 Data and Experimental Setup
In d = 2 and d = 3 dimensions, affinity scores can be calculated via direct volume

computations. We use built in routines provided by the computational geometry and al­
gorithms library (CGAL) (http://www.cgal.org) to compute the scores exactly and validate

http://www.cgal.org

80

our sampling-based algorithm. For higher dimensional data, we perform the initial data
transformation (if needed) in C and use a native routine for hit and run in MATLAB.
All experiments are run on a Intel Quad Core CPU 2.66GHz machine with 4GB RAM.
Reported times represent the results of averaging over ten runs.

2We created a synthetic dataset in R , namely 2D5C for which data is drawn from five
Gaussians to produce five visibly separate clusters with 100 points each. We also use a
variety of datasets from the UCI repository. See Table 5.1 for details.

5.5.2 Using Affinity Scores to Identify Poorly Clustered Points
We start by evaluating how well affinity scores in general (and stability specifically)

pick out points that are “well assigned” or “poorly assigned.” The MNIST digits dataset is
a good test case because it contains ground truth (the actual labeling) and we can visually
inspect the results to see how the method performed.

We run a k-means algorithm on the MNIST test data and compute affinity scores of the
points. We sort each digit cluster by the stability score and then pick one element at random
from the top ten and one from the bottom ten. Figure 5.9 shows the results for four digits
The first row shows points that had high stability in the clustering (close to one in each
case). We can see that the digits are unambiguous. The second row shows digits from the
unstable region (the top affinity scores are 0.38, 0.46, 0.34 and 0.42, respectively). Notice
that in this case the digits are far more blurred. In fact, the “4” and “9” look similar, as do
the “0” and “6”. The second highest affinity scores for the ones in the bottom row are 0.21,
0.19, 0.24 and 0.28 and they correspond to clusters {“4”, “0”, “9” and “7”}.

We also validate the affinity scores against the results produced by probabilistic model­
ing. We run an expectation maximization (EM) algorithm to estimate the data parameters
for a Gaussian mixture model and use the final cluster centers obtained to run our volume
stealing stability method. To get a holistic view of the label affinities, we compute the
entropy of the affinity score for each point (note that the affinity scores sum to one for each
point), and we also compute the entropy of the conditional probabilities obtained from the
EM algorithm for each point. We now have two vectors of entropies, and we measure their
correlation using Pearson’s linear correlation coefficient. For 2D5C, Soybean and the Iris
datasets, we obtain a correlation of 0.922, 0.893 and 0.935, respectively.

This further shows that affinity scores capture the strength of assignment of a point to

81

Table 5.1. Datasets.

Dataset #Points #Dimensions #Clusters
Soybean 47 35 4
Iris 150 4 3
Wine 178 13 3
MNIST (Training) 10000 784 10
Protein 17766 357 3
Adult 32561 123 2
MNIST (Test) 60000 784 10
CodRNA 488565 8 2
Covtype 581012 54 7

0 IE □
o E EAB

S 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

Figure 5.9. Results of running k-means on MNIST training data. First row: high affinity.
(L-R) 0.96, 1.0, 1.0, 0.92. Second row: low affinity: (L-R) 0.38, 0.46, 0.34, 0.42.

a cluster. We reiterate that our approach merely requires the user to present a partition

obtained by any algorithm.

5.5.3 Using Affinity Scores to Accelerate Clustering

Most clustering algorithms take time that is nonlinear in the number of points. Intu­

itively, points at the core of a cluster are less useful in determining the cluster boundaries,

but there are more of them. Ideally, we would like to subsample points in the core, and

supersample points on the boundary to get a subset of points that can effectively recover

the true partition. Since many clustering algorithms run in time quadratic in the number of

82

points, a good heuristic to obtain a fast algorithm is to try and sample O(v/ft) such “good

points.”

We will use stability scores to identify these points in a two stage iterative approach.

Firstly, we run a k-means++ [Arthur and Vassilvitskii, 2007] seeding step to initialize k

cluster centers. We then compute stability scores for all points and set the stability threshold

at o(x) = 0.5. We fix a fraction 0 < a < 1 (set by cross validation) and then select a sample

of points of size 5a*sfn from the pool of stable points, selecting the remaining 5(1 — a)^/n

points at random from the unstable pool. In order to remove anomalies arising from

any specific clustering method, we then run a spatially aware consensus procedure [Ra­

man et al., 2011] on this small set using k-means, hierarchical agglomerative clustering

(single-linkage, average-linkage and complete-linkage variants) and density-based spatial

clustering of applications with noise (DBSCAN) [Ester et al., 1996] as the seed partitions.

We then assign all remaining points to their nearest cluster center. We compare this to

running the same consensus procedure with all the points.

Table 5.2 summarizes the datasets used, and the sample sizes we used in each case. Fig­

ure 5.10 summarizes the results. In each case, the speedup over a full clustering approach is

tremendous - typically a 25x speedup. Moreover, the accuracy remains unimpaired: above

each bar is the Rand index comparing the partition produced (active or full) to ground truth.

In all datasets, the numbers are essentially the same, showing that our method produces as

good a partition as one that uses all the data.

As a baseline to evaluate our method, we also compared our approach with a random

baseline, where we merely picked a random sample of the same size. We also measured

the Rand index of the resulting partitions, and the corresponding numbers were 0.49 for

CovType, 0.55 for CodRNA, 0.81 for MNIST, and 0.48 for Protein. In all cases, our method

improved over the random baseline, thus demonstrating its effectiveness at finding good

partitions.

5.5.4 Using Affinity Scores for Model Selection and Clusterability

While affinity scores are local, we can compute an aggregate score for a partition by

averaging the stability scores for each point. We now show that this aggregated score acts

as a measure of clusterability and has useful properties that make it more effective in model

selection.

83

Table 5.2. Data setup for active clustering.

Dataset Points Samples # Stable # Unstable
Protein 17766 665 499 166
MNIST (all) 70000 1323 992 331
CodRNA 488565 3495 2621 874
Covtype 581012 3810 2858 952

Active Clustering (Runtime and Accuracy)

0.57 0.56
C ovtype

0.62 0.64
CodRNA

0.89 0.88

MNIST

0.51 0.49
Protein

0 0.2 0.4 0.6 0.8 1

Normalized Runtime

[| Consensus clustering on full data
□ Active consensus clustering on 5 sqrt(n) samples

Figure 5.10. Performance of active sampling for consensus clustering. Rand index is
displayed above the bar for each method and each dataset.

5.5.4.1 Choosing k. Determining the correct number of clusters for a given data

is a difficult problem in clustering, especially in an unsupervised setting. The standard

approach is to use some variant of the “elbow method” to analyze the trade off curve

between number of clusters and clustering cost. Since splitting a cluster typically improves

the clustering cost, these methods attempt to find locations where the gradient changes

dramatically, or where a point of “diminishing returns” is reached in further splitting.

Aggregate stability is more sensitive to splits of “good clusters.” When we split a good

cluster we actually decrease the average stability of the partition, because all points along

84

the boundary of the new cluster used to be very stable and now will no longer be so.

We demonstrate this behavior by plotting the cluster cost and average stability score for

a variety of datasets from Table 5.1. To demostrate model selection capabilities of global

and local methods, we plot the k-means algorithm cost in Figure 5.11(a) and the average

stability in Figure 5.11(b). We see that for each dataset, the maximum stability is achieved

at precisely the number of clusters prescribed by ground truth. In contrast, the k-means

cost function strictly decreases, and it is more difficult to identify clear “elbows” at the

right number of clusters.

We also compare aggregate stability to standard measures of global stability like the

silhouette method, the Rand index, and the Davies-Bouldin index [Petrovic, 2006]. As

we can see in Figure 5.12, all measures behave consistently on the datasets (note that the

Davies-Bouldin index is smaller when the partition is better). This shows that aggregate

stability acts like a global quality measure while still retaining local structure.

5.5.4.2 Data clusterability. Another use for aggregate stability is as measure of

clusterability. We illustrate this by computing the aggregate stability for a clustering of five

Gaussians with varying (but isotropic) covariance for each cluster. As we can see, the data

becomes progressively less clustered as the variance increases, and therefore becomes less

“clusterable.”

Figure 5.13 illustrates the aggregate stability scores for these partitions: as we can see,

the scores drop similarly, and by the time we reach the fifth instance (which is essentially

unclusterable), the stability numbers have dropped to nearly zero. We also annotate the

graphs with the number of unstable points (with threshold o(x) = 0.5) to illustrate that the

average stability is reducing consistently.

As another illustration of this, we plot in Figure 5.14 the aggregate stability of two

different pairs of numbers in the MNIST dataset (“2” vs “6”) and (“4” vs “9”). As we have

seen earlier, the (“2” vs “6”) set is easier to distinguish than the (“4” vs “9”) set, and this

is reflected in the different stability scores for the clustering on these two pairs. We show

what the different partitions look like in Figure 5.15.

5.5.5 Evaluating Performance

Finally, we present an evaluation of the performance of our method in terms of accuracy

and running time. To validate the quality of the results, we can compare our sampling-based

85

C ost o f K-M eans V s N u m b e r o f C lu ste rs

N u m b er o f C lu ste rs Number of C lusters

2D5C S o y b e a n ------------ Iris

(a) (b)

Figure 5.11. Choosing k: (a) global using k-means cost vs (b) local using average stability
cost.

Global and Local Validation

Average Stability — • — Rand Index — - ♦ — Silhouette
..... Davies-Bouldin index

Figure 5.12. Aggregate stability vs global stability.

C o v a r ia n c e

Figure 5.13. Clusterability of 2D5C data: average stability scores dip as variance
increases.

86

C lu s te ra b ility o f Pairw ise MNIST D ig its

B ina ry C lus te ring

Figure 5.14. Clusterability of two different pairs of digits in the MNIST data.

(d) (e)

Figure 5.15. Five Gaussians with varying variance: (a) very low, (b) low, (c) moderate, (d)
high, and (e) very high.

method to the exact scores we can obtain in d = 2 and d = 3 dimensions as described earlier.

Table 5.3 illustrates this for the 2D5C and 3D5C datasets. We note that these error reports

come from choosing 1000 samples after a burn in of 1000 samples (this corresponds to an

error £ = 0.04). As we can see, the reported error is well within the predicted range.

Table 5.3 also presents running times for the affinity score computation. We note that

87

Table 5.3. Runtimes and empirical approximation to exact affinity.

Dataset n d k Time (sec) Error
2D5C 500 2 5 0.11 ± 0.005 ± 0.02
3D5C 500 3 5 0.19 ± 0.008 ± 0.035
IRIS 150 4 3 0.24 ± 0.012 -
Soybean 47 35 4 0.31 ± 0.08 -
MNIST (test) 10000 784 10 0.58 ± 0.5 -

the running times reported are the total for computing the affinity scores for all points.

We only report the time taken by the sampler; the preprocessing affine transformation

is dominated by the sampling time. In all cases, we used 1000 samples to generate the

estimates. Note that the procedure is extremely fast, even for the very high dimensional

MNIST data.

5 .6 S u m m a ry

We view this work as part of a larger effort to personalize validation mechanisms in data

mining. In future work we plan on incorporating ideas from topological data mining to add

more dimensions to the validation. We hope to develop better visualizations to accompany

this method. More generally, we plan on studying other unsupervised learning tasks where

local validation is important.

CHAPTER 6

L A R G E S C A L E T R A N S D U C T IV E S V M

Recent years have witnessed an unprecedented explosion of automatically generated

data, as collecting data becomes simpler and cheaper. Even as collecting data becomes

simpler and cheaper, most of this data is unlabeled. The amount of data that can be labeled

by experts is not increasing by the same rate—and the gap between available labeled and

unlabeled data is widening rapidly.

In the presence of unlabeled data, semisupervised learning (SSL) [Zhu, 2005] can im­

prove classification accuracy by incorporating additional information from the underlying

data distribution. The transductive support vector machine (T-SVM) [Joachims, 1999] is

arguably amongst the most successful SSL algorithms. T-SVM extends the large margin

principle of support vector machines (SVM) towards the unlabeled data. The separating

hyperplane is repeatedly readjusted to stay clear of dense regions of the input space. This

approach uses the unlabeled data to uncover cluster structure and naturally incorporates it

into the decision boundary. However, incorporating such additional knowledge comes at

the price of extra computational complexity. For example, T-SVM scales cubically with the

size of the unlabeled dataset [Collobert et al., 2006a]. This means that as unlabeled data

sizes increase, not all unlabeled data can be incorporated into training.

In this work we present a subsampling algorithm to make use of unlabeled data more

effectively in classification. To understand our approach, it is helpful to understand how

T-SVM incorporates unlabeled data. T-SVM uses unlabeled data to guide the decision

boundary to have a balanced amount of positive and negative samples on either side.

Further, by enforcing a large margin even for the unlabeled data, it avoids scenarios where

the hyperplane cuts through dense regions (clusters) within the input space.

We claim that for most datasets only a small amount of unlabeled data can be sufficient

to guide the hyperplane in the T-SVM fashion. In other words, our goal is to speed

up training by subsampling the unlabeled data as aggressively as possible, while only

89

minimally affecting T-SVM's decision boundary. Our approach is based on the insight that

we only require high sample density in regions near the hyperplane—which are inherently

sparse. All other regions of the input only need to be sampled sufficiently to be “avoided”

by the classifier. Put another way, if we can identify the regions that are likely to contain

support vectors we should oversample them and under sample everything else.

By definition, support vectors lie close to the decision boundary and they tend to be

within sparse regions of the unlabeled data, due to the influence of T-SVM. We define

efficient heuristics to identify both conditions. Firstly, we can predict which inputs are close

to the decision boundary with the current estimate of the T-SVM separating hyperplane,

which is refined in each iteration. Secondly, we can identify inputs between dense regions

by clustering the data and measuring the instability of each input's cluster assignment.

Before each iteration of T-SVM, we subsample a new batch of unlabeled inputs—thus

refining our sample based on our current belief about the decision boundary and the data's

cluster structure. Figure 6.1 illustrates this intuition on a 2-dimensional classification task

with labeled and unlabeled data. The graph also indicates which unlabeled inputs were

selected by our subsampling algorithm.

We confirm empirically that our sampling strategy rapidly “narrows in” on the region

of actual support vectors—thus effectively managing to distill the important aspects of the

unlabeled data. We further demonstrate that we can effectively sample data from these

regions and guide T-SVM with only a tiny fraction of the original unlabeled data corpus.

The resulting algorithm achieves orders of magnitude speedup during training, without

significant impact on the classification accuracy.

Many fast T-SVM algorithms have been introduced in the last decade that are based on

various novel optimization algorithms. We consider our work complementary to those of

previous approaches. As our method is based on subsampling of the unlabeled data, it can

effectively be combined with any one of these algorithms. In fact, we build upon the work

by Collobert et al. [2006b], who published one of the fastest T-SVM solvers to date. We

use their fast implementation throughout and further improve upon their result by providing

several orders of magnitudes in additional speedup.

90

Figure 6.1. Decision boundaries and margins of SVM (black) and T-SVM (green) on
a binary classification problem in 2-dimensions. T-SVM uses unlabeled data and finds
a better decision boundary through the sparse region. Unlabeled inputs selected by our
subsampling algorithm are highlighted in green.

6.1 P re lim in a r ie s

Throughout this chapter we type vectors in bold (x^), scalars in regular (k or C), sets in

cursive (S) and matrices in capital bold (K) font. Specific entries in vectors or matrices

are scalars and follow the corresponding convention.

We assume that we are provided with a labeled dataset D l = {x1 x^} c R d with cor­

responding binary labels {y 1, . . . , y ^}G {-1, 1} and unlabeled data D u = {x^+1, . . x^+M} c

R d . Both labeled and unlabeled inputs are sampled i.i.d. from the same (unknown) data

distribution. For convenience, let n = £+w denote the total number of labeled and unlabeled

inputs.

In the following, we provide a brief overview of SVM [Scholkopf and Smola, 2002],

T-SVM [Joachims, 1999] and softc-means clustering [Bezdek, 1981].

6.1.1 SVM

The objective of the original SVM classifier is to learn a function Hq : R d ^ { - 1, 1},

with Q = (w, b), such that Hq (x^) > 0 if ŷ = 1 and Hq (x)̂ < 0 if ŷ = -1 . The function

Hq defines a separating hyperplane Hq (x)= w ^x + b. This hyperplane is learned with the

91

following optimization
2 £

m inIw ^2 + C £ H (yihe (xi)) . (6.1.1)
6 i= 1

Here, H (yf ig (xi)) = max[1 — y f i g (xi), 0] denotes the hinge loss, which penalizes all pre­

dictions hg (xi) whose sign does not agree with the corresponding label yi and all predic­

tions of low magnitude, i.e., |h(xi) | < 1. In other words, the hinge loss penalizes inputs that

are misclassified or that are too close to the decision boundary; the latter enforces a margin

of empty space around the separating hyperplane, which has been shown to have particu­

larly strong generalization properties [Scholkopf and Smola, 2002]. The hyperparameter C

regulates how much violations are penalized.

6.1.2 T-SVM

T-SVM [Joachims, 1999] extends this formulation and incorporates the unlabeled in­

puts D y . Although the labels for D y are unknown, we do know some things about

them: first, as Dl and D y are both sampled i.i.d. from the same distribution, their class

ratios should approximately agree. Second, a SVM trained on the labeled data D l should

generalize to some degree to D y .

Joachims combines these two insights: a SVM is trained on the labeled data D l to

obtain a classifier h g . Each input x j E D y is assigned a label y j = 1 if h6 (x j) > t and

y j = — 1 otherwise. The threshold t is chosen such that the class proportions in D y match

those in d l I ££= 1 y i« 1 £ n= £+ 1 yj .
Once the “labels” y j are assigned, T-SVM incorporates them into the hyperplane opti­

mization in a similar fashion as (6.1.1):

£ n
minllw ll2 + C £ H(yih6 (xi)) + C* £ H(yj hg (xj))•

6 i=1 j = £ + 1

In other words, T-SVM enforces a margin around unlabeled inputs—thus guiding the

hyperplane to avoid densely sampled regions of the space. The constant C* regulates to

what degree the estimated “labels” for the unlabeled data y j are trusted. Initially it is set

to a very low value (e.g., C* = 10—5). T-SVM iterates between solving the optimization

problem and reassigning the labels for the unlabeled set, while the constant C* is increased

by a multiplicative factor in each iteration.

92

An important fact to note is that by enforcing a margin on the unlabeled inputs, T-SVM

guides the decision boundary through low density regions in the data space. It is this

insight, that we make use of in subsequent sections.

Similar to the canonical SVM, there is a natural extension of T-SVM to nonlinear

decision boundaries with the kernel trick, as described in Scholkopf and Smola [2002].

6.1.3 Ramp Loss T-SVM

Although the worst case complexity of T-SVM is O(n3), in practice its computation

is dominated by operations with quadratic complexity for most datasets. Collobert et al.

[2006b] introduce a faster variation of T-SVM, by substituting the hinge loss H with the

ramp loss R(z) = min(H(z),s). The ramp loss caps the loss suffered by any particular

input x j to at most s > 0. With this slight relaxation, the loss function can be decomposed

into a convex concave function, which can be optimized more efficiently with the concave

convex procedure (CCCP) [Yuille and Rangarajan, 2001]. Although this variation does not

affect the asymptotic complexity, it does tend to speed up the training time significantly in

practice. Throughout this chapter we use their implementation, which is the best scaling

implementation of T-SVM that we are aware of. We describe the T-SVM algorithm in

Algorithm 4.

6.1.4 Soft Clustering

To identify relevant unlabeled points for our sampling strategy, we will make use of a

soft clustering subroutine that we describe here. A clustering algorithm takes a collection

of inputs D and partitions them into a fixed number of groups C C c of “similar”

objects by minimizing an appropriate cost measure. Please note that for purposes of soft

partition, we only look at the unlabeled inputs D ^ . Therefore, the resulting partition can be

represented by an assignment function f : D u ^ [1 ••• c] that maps each input to exactly one

of c clusters. In a soft partition, inputs may be assigned to multiple clusters with different

weights, as long as these weights sum to one. Specifically, a soft partition is represented as

a membership probability function f : D u ^ Ac—1, where Ac—1 = {(P 1, . . . , p c) | P ' >

0, Li Pi = 1} is the standard simplex in c-dimensions. The ith component f'(x) is the

probability that x is assigned to cluster C', and by definition L' f i (x) = 1 for all x e D U .

There are many algorithms that can produce a soft partition minimizing an appropriate

93

Algorithm 4 T-SVM
Input: x 1, . . . , xu, yg

Solve (6.1.1) to obtain hQ

C* = 10- 5
T = E f=! 5 (y i = 1)
while algorithm has not converged do

Let g < j < u be the Tth largest prediction Hq
Solve (6.1.2)
C* ^ 2C*

end while
Return M j) = w ij / L j wij

cost measure [Xu et al., 2005]. For our purposes, we require an algorithm that scales

well with the number of unlabeled inputs. Therefore, we use the fuzzy c-means algorithm

developed by Bezdek [1981] and described in Algorithm 5. The parameter m controls

the “hardness” of the clustering: setting m = 1 yields the standard “hard” k-means algo­

rithm [Trevor et al., 2001]. In practice, m = 2 is a good choice. Each iteration of the

algorithm runs in time O(u ■ c) and the algorithm typically converges in only a few iterations

1. Since we will typically use a constant (c < 5) number of clusters for our algorithm, the

algorithm runs effectively in linear time.

We use soft clustering as a fast way of computing clustering affinities. The sampling

methods we discuss are agnostic to the choice of the method that computes these affinity

scores. In particular, one could use the NNI-based stability scores that we introduced in

Chapter 5. Although we discuss a few shortcomings of the affinity score generated by a

soft clustering algorithm, we observe very similar affinity vectors to the NNI-based stability

score for the case of two clusters, which is the case with binary classification. Hence, we

prefer a quick run of fuzzy c-means to compute the affinity scores.

6.2 A d a p tiv e S u b sa m p lin g fo r T -S V M

As previously mentioned, T-SVM makes two critical assumptions: (a) the true decision

boundary does not pass through dense regions of the input space and (b) the class ratio

of the predictions should match the class balance within the labeled data. It utilizes these

1For clarification, despite its name, the fuzzy c-means algorithm does not use fuzzy logic in any way.

94

Algorithm 5 Fuzzy c-means [Bezdek, 1981]
Input: xi + 1, . . . , xn , #clusters c, hyperparameter m

Initialize C1, . . . , cc randomly
while algorithm has not converged do

for i = £ + 1 ... n; k = 1
n

c do

w ik
(i c k x

k ' = r l|ck/ xil
end for
for k = 1 . . . c do

c , = L iwik xi
ck LiWik

end for
end while
Return fi (k) == wik

Lk/ wik'

2/ (m - 1)
1

two assumptions and guides the classifier along corridors in the input space of low sample

density between dense regions (clusters). The surrounding dense regions on either side of

the hyperplane ensure the correct class ratio of the predictions—if there are more inputs

sampled on one side of the hyperplane than on the other, the predictions are lopsided and

T-SVM corrects the hyperplane accordingly.

In this section, we first identify a function o : D u ^ [0,1], which assigns a weight to

all unlabeled inputs that captures their likelihood of lying in such regions of interest. We

then subsample our unlabeled data proportional to the o scores and reduce it to a small

fraction of its initial size. The function o consists of two components: one part reflects

cluster structure in the data by identifying regions of low density that are more likely to

contribute to a decision boundary, and the other part reflects information provided by the

current best guess for a separator to identify points that are likely to be informative.

6.2.1 Cluster Entropy

As a first step, we are interested in identifying corridors of low sample density between

clusters. Inputs in sparse regions are by definition not near any cluster and therefore will

not obtain a sharp cluster assignment from an algorithm like c-means. We can measure this

uncertainty by performing c-means and computing the entropy of the resulting clustering

distribution p = [p1 , . . . ,p c] ^ :

95

Hc(p) = — £ P k log(Pk) . (6.2.1)
k=1

The cluster entropy is minimized if a single cluster is sharply assigned with probability

Pk = 1, in which case Hc(p) = 0. In contrast, it is maximized in the setting of maximum

uncertainty, i.e., if Pk = 1 for all clusters k. Note that the cluster assignment p is a function

of the input x, and we therefore write Hc (p(x)) to denote the cluster entropy of input x. We

visualize the cluster entropy scores in Figure 6.2.

6.2.2 Label Uncertainty-Based Scores

The cluster entropy identifies regions of low sample density between dense regions

(clusters). There may be many such regions, not all of them near the decision boundary

of the SVM. Each iteration of T-SVM refines the parameters of the hyperplane. As C*

increases, the parameters slowly “freeze” in place and the changes to the decision boundary

become smaller and smaller.

We can utilize the fact that with each iteration we obtain a better forecast of the final

decision boundary and compute a label uncertainty score of the current T-SVM classifier.

Inputs with high label uncertainty are those that lie right around the decision boundary—the

region of interest for the T-SVM classifier.

We use Platt’s scaling technique [Platt, 1999] to turn the T-SVM predictions into prop­

erly scaled probabilities. More explicitly, once we obtain the decision rule hg (x), we

define the posterior probability P(y = 1 |x) = 1 + eah 6 (x)+ b with the constants a,b

obtained via a straight-forward maximum likelihood optimization. This step is extremely

fast, because only two free parameters are estimated. With this notation, we can define the

label uncertainty score as

(x) = P(y 6 (x)|x), (6 .2 .2)

where yg (x) = sign(hg (x)). We visualize the Platt’s scaling scores in Figure 6.3.

6.2.3 Adaptive Subsampling

Finally, we combine (6.2.1) and (6.2.2) and define our final weighting function as

a (x) = a l (x)Hc (p(x)). (6.2.3)

Given a (•) as defined in (6.2.3), we sample m inputs from D y , where the input x is

picked without replacement in proportion to the score a (x). To do this, we use a standard

96

Figure 6.2. Visualizing the cluster entropy scores, running fuzzy c-means.

Figure 6.3. Visualizing Platt’s scaling scores.

acceptance/rejection sampling algorithm summarized in Algorithm 6 . As discussed in the

dissertation of Olken [1993], this algorithm is well suited for sampling when the weights

are ad hoc and may be updated frequently, as is the case in our setting.

We repeat the subsampling before each iteration to obtain a new set of m unlabeled

inputs. We visualize the decision boundaries and margins of running the full T-SVM in

Figure 6.4 and the adaptive T-SVM in Figure 6.5. It is important to note that only the value

of Oi (•) is updated after each iteration to incorporate the new decision boundary. The value

97

Figure 6.4. Visualizing T-SVM decision boundary and margins on full data.

Figure 6.5. Visualizing T-SVM decision boundary and margins on adaptively sampled
data.

Algorithm 6 Sampling m inputs without replacement proportional to a .
S ^ 0
while |S| < m do

Pick an index i uniformly in [t + 1, n].
Pick a uniform random number r e [0,1] and add i to the sample S if r < a (x)̂

end while

98

of Hc (-) remains unchanged throughout, as the clustering is performed only once prior to

learning. For the first iteration we set oj (x) = 1 for all inputs, as no classifier has been

trained yet.

6.2.4 Complexity Analysis

The motivation behind our adaptive sampling is to reduce T-SVM’s input size. This

leads to speedups only if the subsampling algorithm itself scales significantly better than T-
3 2 SVM itself, which scales O(n3) in the worst case but often behaves like O(n2) in practice.

Each iteration of the fuzzy c-means algorithm takes linear time and we run it for a

fixed number of iterations. Since we run the algorithm only on the unlabeled data D u ,

the running time is O(u). Each iteration of the Newton method used to estimate the Platt’s

scaling scores also takes linear time. In practice, the process converges in a small (constant)

number of iterations. Finally, the sampling algorithm will generate a new sample (the

inside of the while loop in Algorithm 6) in expected time (E[o])- 1 by standard bounds

on geometric distributions. The expression E [o] is the expected value of o over a uniform

sample of the points. It is typically a small constant. Thus sampling m elements takes O(m)

time.

Thus, the overall complexity of the sampling procedure is O(n) time per iteration of

T-SVM.

6.3 E x p e r im e n ts

We demonstrate the efficacy of our method on a variety of datasets in this section. We

compare the adaptive subsampling for T-SVM with uniform subsampling, regular SVM

and T-SVM on all unlabeled inputs. We observe that even at roughly 10% sample size,

across all datasets, we achieve over 20x speedups with little impact on accuracy.

6.3.1 Experimental Setup

All the experiments were run on an Intel Quad Core CPU 2.66GHz machine with 4GB

RAM. Our implementation is a modification of Collobert et al. [2006a]. We describe the

data that we use in Table 6.1.

99

Table 6.1. All five datasets (sorted by fraction of unlabeled data) and their statistics:
number of labeled inputs (£), number of unlabeled inputs (u), fraction of unlabeled data
(£ + u), dimensionality (d).

Dataset £ u u/n d
a8a (Adult) 22696 9865 0.30 123
Gisette 1000 6000 0.56 5000
Svmguide1 3089 4000 0.86 4
CodRNA 59535 429030 0.88 8
a1a (Adult) 1605 30956 0.95 123

6.3.2 Datasets and Methodology

We evaluate our algorithm on five medium and large datasets Svmguide1, Gisette,

Adult, and CodRNA downloaded from the LIBSVM data page2. All the datasets contain

two classes and are feature scaled as a part of preprocessing. Table 6.1 summarizes their

statistics in terms of labeled dataset size (£), unlabeled dataset size (u) and dimensionality

(d). During the development of our algorithm, none of these datasets were ever used.

Instead, we developed adaptive T-SVM with the help of six (smaller) datasets from the

UCI machine learning repository [Bache and Lichman, 2013] (Iris, Ionoshpere, Sonar,

Heart, Pima, and Mushrooms). We purposely chose datasets that are too small to require

subsampling, in order to keep the interesting medium or large scale data “untouched” for

evaluation. To enforce a strict separation between development and evaluation data, we

omit results on these smaller datasets. (They tend to be comparable or slightly better in

terms of accuracy convergence, however with smaller speedups due to their at times tiny

sizes.).

We compare our method against a naive uniform subsampling, where in each iteration,

we pick a random sample of the unlabeled inputs for consideration by the T-SVM algo­

rithm. We perform each experiment five times (with identical train/test splits) and report

the average accuracies and standard deviations.

2http://www.csie.ntu.edu.tw/^cjlin/libsvmtools/datasets/

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

100

6.3.3 Hyperparameters

Throughout we use T-SVM and SVM with a radial basis function (RBF) kernel and

set all hyperparameters, including the bandwidth of the RBF kernel and the regularization

constant, by 5-fold cross validation on the labeled training data.

We run fuzzy c-means with c = 2 clusters to obtain the cluster entropy of the unlabeled

inputs. This setting was chosen as it leads to the fastest clustering convergence and resulted

in high accuracy on our development datasets. Figure 6.6 shows the sensitivity of adaptive

subsampling with respect c on the Svmguide1 data. The graph supports that the algorithm

is fairly insensitive to the number of cluster centers and c = 2 appears to be a good choice.

6.3.4 Performance

Figure 6.7 shows accuracy levels as a function of the size of the subsampled dataset

on all five benchmark tasks. It compares T-SVM with adaptive (black line) and uniform

subsampling (red line), as well as T-SVM on the full data (blue triangle) and supervised

SVM (dashed green line).

6.3.4.1 Accuracy. Concerning the test accuracy, there are three clear trends that can

be observed.

1. T-SVM with adaptive subsampling obtains strictly higher accuracies than uniform

subsampling on all datasets, at all sampling rates.

2. Adaptive subsampling leads to strictly lower variance than uniform subsampling

across all settings.

3. As the sampling size increases, the accuracy of T-SVM with adaptive subsampling

rapidly approaches that of T-SVM on the full dataset typically reaching very similar

levels of accuracy already well below a sampling rate of 10% (Note that the horizon­

tal axis in Figure 6.7 is in log scale).

Uniform subsampling suffers from high variance especially in the low sample regions—

a sign that T-SVM puts too much emphasis on the few unlabeled inputs that are available.

If these are positioned far from the hyperplane, large changes can be forced onto the

SVM classifier, possibly based on sampling artifacts rather than true structure in the data

distribution. Adaptive subsampling mitigates this effect by focusing consistently on inputs

near the decision boundary and relevant regions. This observation is also consistent with

results on dataset a8a (Adult), which has the lowest fraction of unlabeled data. Here, the

101

Dat aset : Svmgui de l T-SVM per f or mance wi t h changi ng cl ust er si zes
69. 5

69

j ? 68. 5
CU
■5 6 8 >

S 67. 5 r
67

66.5
c = 2 c= 3 c = 4 c=5

Number of clusters in fuzzy c-means
• ----- T-SVM (adaptive subsam pling) — X — T-SVM (c luster entropy)
♦ — T-SVM (label uncerta in ty) -----■----- T-SVM (uniform subsam pling)

Figure 6 .6 . Effect of using clustering with different cluster numbers on the different
strategies for subsampling data for T-SVM, on the Svmguide1 dataset.

i (Adult)

71

70

69
>,
re 68

§ 67 66
65

64

Svmguidel

(S> <&> (S> ® ® ®

100 1000

Num ber of sam pled unlabeled points

a1 a (Adult)

(^9065x^) (^442 (^2193x^)

<
K - , h -~ h L't..

96

95

& 9 * ro
!5 93
u
< 92

91

90 100 1 000

N um ber of sam pled unlabeled points

CodRNA

Number of sam pled unlabeled points

-------SVM

— •— T-SVM (adaptive subsampling)

-— — T-SVM (uniform subsampling)

a T-SVM (full data)

(63^) Speedup relative to T-SVM on the full data

1 0 0 1 0 0 0 1 0 0 0 0

Num ber of sam pled unlabeled points

10000

10 10000

10 100000

Figure 6.7. Comparing performances of T-SVM with adaptive and uniform subsampling
along with T-SVM and SVM on full data.

102

amount of unlabeled data is insufficient and T-SVM reduces the test accuracy. Uniform

subsampling magnifies this negative effect even further, whereas adaptive subsampling

dampens it substantially.

6.3.4.2 Training speedup. The additional overhead of the adaptive subsampling

(including the clustering) ranges from 1.1s for the smallest dataset (Svmguide1) to 66s

for CodRNA (the largest dataset). Compared with the quadratic/cubic time complexity of

the T-SVM training, see Table 6.2, this overhead is negligible for all five datasets.

Consequently speedup can be considered a function of purely the sample size rather

than subsampling method. The speedup at each level of subsampling is superimposed on

the top of each graph in Figure 6.7.

As expected, datasets with larger fractions of unlabeled inputs (and large number of

unlabeled inputs in absolute terms) tend to have higher speedups (a1a, CodRNA). As

we observed previously, at a sample size of about 10% the adaptive T-SVM tends to

stabilize in terms of the standard deviation and is very close to the T-SVM accuracy without

subsampling. Table 6.2 depicts the exact training times and test accuracies after 10%

subsampling and on the full dataset. Although adaptive subsampling to 10% reduces the

training time to a mere 5% of its original amount, it has surprisingly little impact on the

test accuracies. Even higher speedups are possible by sampling fewer inputs and effectively

trading off some accuracy for speed (see Figure 6.7).

The high speedups reported in Figure 6.7 and Table 6.2 are particularly impressive as

our baseline is already the fastest and best scaling T-SVM implementation we are aware

of Collobert et al. [2006a].

6.3.5 Further Analysis

In the following we provide some additional analysis of the individual components of

our adaptive subsampling algorithm and its effect on the support vectors.

6.3.5.1 Subsampling. Figure 6.8 compares the various components of adaptive sub­

sampling on the Svmguide1 dataset. The figure shows four graphs that differ in the way

unlabeled inputs are subsampled during the T-SVM iterations. The four lines represent

adaptive subsampling i.e., subsampling proportional to Hc () c l (•) (black line), sampling

proportional to the cluster entropy Hc(-) (orange line), sampling proportional to the label

103

Table 6.2. Accuracies and training times for the five datasets with a 10% subsampling rate
and without subsampling (100%). The table shows that adaptive subsampling reduces the
T-SVM training time to a small fraction of the original amount with very little impact on
test accuracy.

training time test accuracy
Sampling rate 100% l 0% l 00% l 0%

Svmguidel lm 6s 70. l 69.3
ala lh 30m 33s 82.7 83.6
a8a lh l 2m 6m l7s 80.6 8 l .0

Gisette l 0m 27s 94.7 94 . 2
CodRNA 2d lh 37m 2h 29m 90.6 90.3

method: sam pling:
T-SVM (adaptive subsampling) cc7i(x)Hc(p(x))

T-SVM (cluster entropy) c H c(p(x))

T-SVM (label uncertainty) c/7i(x')

T-SVM (uniform subsampling) c 1

T-SVM(full data)

SVM

Number o f sampled unlabeled points

Figure 6 .8 . A comparison of the different strategies for subsampling data for T-SVM (on
the Svmguidel dataset). Both, the label uncertainty and the cluster entropy, outperform
uniform subsampling. Their combination (adaptive subsampling) leads to big additional
gains in accuracy throughout, has the least variance and reaches comparable accuracies to
T-SVM on the full data much sooner.

uncertainty Oj(■) (pink line), uniform subsampling (red line), T-SVM on the full data (blue

dot), and canonical supervised SVM (dashed green horizontal line).

We observe a clear trend that both components of the adaptive subsampling (cluster

entropy and label uncertainty) individually improve over uniform subsampling. Their

combination, adaptive subsampling, improves even further. In fact, we observe that the

gain in accuracy through adaptive subsampling (over uniform) is even higher than the

sum of the two gains through cluster entropy and label uncertainty. This indicates that

both components are necessary and contribute in complementary ways to the weighting

function.

6.3.5.2 Support vectors. Figure 6.7 indicates that T-SVM with adaptive subsam­

pling converges much sooner to the results of the true T-SVM classifier than uniform

104

subsampling. As the SVM decision boundary can be defined entirely in terms of support

vectors [Scholkopf and Smola, 2002], it is interesting to see if the approximate support

vectors (aSV) chosen under adaptive subsampling are close to the true support vectors (tSV)

chosen without subsampling. To investigate how similar the two sets of support vectors are,

we define two metrics in the spirit of precision and recall [Baeza-Yates and Ribeiro-Neto,

1999]. For the two sets of support vectors to define similar decision boundaries it is not

only desired to have each aSV close to an existing tSV (precision), but also each tSV close

to an aSV (recall). Figure 6.9 shows the average normalized distances from each aSV to

its nearest tSV (left) and from each tSV to its nearest aSV (right). The results are averages

across five runs at 10% sampling rate with corresponding standard deviations. Note that in

contrast to precision and recall, here lower values are better as we consider distances to and

from support vectors.

Let the support vectors returned by the adaptive T-SVM be S n and the ones returned
b

by T-SVM with random samples be S u. We first compute the the average value of the

normalized nearest neighbor distances between the sets S n and S true and vice versa. We
b t L i d (S in , NN (S n , S true))

repeat this for the sets S b and S true. --------- ----- n ---------------represents the average
| S a |

L j d (NN (S true, S n), S true)
distance between the sets S n and S true an d ---------------^ t rue |---------------represents

the average distance between the sets S true and S n, where NN represents the normalized

nearest neighbor distance. It is easy to see that these values lie between zero and one.

The graph highlights the drastic difference between uniform and adaptive subsam­

pling across all datasets. Support vectors obtained with adaptive subsampling tend to

be consistently at about half the distance to/from original support vectors. Further, we

observe that subsampling according to cluster entropy and label uncertainty also guide the

decision boundary closer to its accurate location. Similar to Figure 6 .8, their combination

(adaptive subsampling) leads to substantial additional improvements—indicating that both

components act complementary and are necessary to identify regions of likely support

vectors.

105

distance to true SVs distance from true SVs

Svmguidel

a1a (Adult)

a8a (/Adult)

Gisette

CodRNA

0.4 0.3 0.2 0.1 0.0 0.0 0.1 0.2 0.3 0.4 0.5

■ T-SVM (adaptive subsam pling) □ T-SVM (cluster entropy)
□ T-SVM (label uncerta in ty) □ T-SVM (uniform subsam pling)

Figure 6.9. Adaptive subsampling samples from regions in the input space that are likely
to contain support vectors. This graph shows the average normalized distances between
approximate support vectors to the closest true support vectors (obtained with T-SVM
without subsampling) and vice versa (right). The graph shows that sampling proportionally
to label uncertainty and cluster entropy each reduce the distances to and from true support
vectors. The combination of the two (adaptive subsampling) guides the decision boundary
most accurately.

6.4 S u m m a ry

SSL algorithms can improve classification accuracy because they assume and uncover

hidden structure in the input distribution, which can not be extracted from the limited

available labeled data. Different algorithms discover different signatures. For example,

T-SVM discovers the dense regions in the input space and encourages the decision bound­

ary to circumvent them; Laplacian regularization ([Belkin and Niyogi, 2004]) uncovers the

manifold that underlies the data distribution and encourages predictions to change smoothly

along this manifold; cotraining (introduced by Blum and Mitchell [1998]) assumes that data

can be represented in label-conditionally independent ways and makes classifiers for both

views agree as Chen et al. [2011] discovered from the unlabeled data.

Our research is based on the insight that if unlabeled data is only used to discover certain

signature properties, it may be possible to still perform this task on a small fraction of its

106

original size. If this reduction is of smaller complexity than the SSL algorithm, massive

speedups are obtainable. As future work we will investigate how to apply this insight on

different families of SSL algorithms. For example, manifold data is often oversampled in

regions with little curvature, where the manifold is easier to capture, and requires higher

sample density in regions of high curvature.

For very large dataset sizes it may also be possible to perform the subsampling already

during data collection. This could potentially reduce storage requirements and network

traffic drastically. Our current algorithm is integrated into T-SVM, but one could imagine

variations that already subsample (less aggressively) prior to learning.

In this chapter we introduced adaptive T-SVM, a novel large-scale SSL algorithm. Our

approach subsamples the unlabeled dataset effectively, while preserving regions of interest

for T-SVM’s decision boundary. This is achieved by incorporating two key components:

label uncertainty and cluster entropy. We demonstrated that both components combined

can successfully predict regions of interest to the T-SVM algorithm—a fact that can be

exploited to drastically reduce the size of the unlabeled data. Adaptive subsampling can

obtain orders of magnitude speedups, with negligent or no impact on T-SVM’s accuracy.

As datasets keep growing at a much faster rate than data can be labeled, SSL will

continue to increase in importance. Our adaptive T-SVM algorithm is amongst the first to

make SSL practical on large scale data. Although our approach is focused on T-SVM as

a specific algorithm, it follows a paradigm that we hope will spawn interesting followup

work across many relevant research areas.

CHAPTER 7

C O N C L U S IO N

Data is ever growing and there is an immediate need for developing robust techniques

to analyze data and validate the results. There has been substantial research contributions

in developing various clustering algorithms that help to preprocess data and separate data

into meaningful groups. In fact, Lloyd’s algorithm to k-means, which is one of the top

ten clustering methods chosen by IEEE International Conference on Data Mining (ICDM),

still remains a good choice for any practitioner. But, there are more fundamental questions

that have still not been answered in satisfying manner. These questions include

1. Have I clustered my data correctly?

2. Can I do any better on my data?

3. Do I have the correct number of clusters?

4. Are there different, yet useful partitions that can be mined from the data?

5. Are the data points that have been assigned incorrectly?

We ask these questions in this dissertation and provide solutions that both answer them and

open up a few more questions.

While clustering can be immensely useful in exploratory data analysis, there is no oracle

to label the data or verify the solutions. This dissertation therefore focused on exploring

the landscape of clusterings data, providing the user with a robust variety of solutions and

validating the results towards a larger goal of verifiable data mining. The applications that

benefit from our methods and measures were introduced throughout the dissertation and

support the foundational work done as part of this dissertation. We view our work as one

that the practitioners could hugely benefit from, since many of them have the questions that

we mentioned above.

Our focus in this dissertation was developing robust algorithms for metaclustering and

computing stability of partitions and reduce the computational complexity involved in these

methods. We analyze the error tradeoffs arising due to the use of various sampling proce-

108

dures to make the runtimes faster and substantiate the choice of hyperparameters involved

by a collection of experiments. We can now represent partitions succinctly, compare them

in a well founded and efficient manner, compute a consensus solution to create an ensemble

of the input partitions, generate a variety of partitions, validate data memberships and

use them to speed up various data mining and machine learning applications. We now

summarize the contributions of this dissertation briefly.

7.1 S u m m a ry o f C o n tr ib u tio n s

• Comparing partitions. Using prior work in representing point clouds in the pow­

erful reproducing kernel Hilbert space, we proposed a spatially aware metric to

compare partitions that goes beyond the traditional combinatorial measures. We

discussed efficient algorithms to compute this metric and we view this as an essential

hammer for various metaclustering problems.

• Evaluating partitions. We also described a new quality measure to evaluate parti­

tions that we observe to be very good in determining the “goodness” of a partition.

This measure along with the capability to compare partitions efficiently, allows us to

analyze any given collection of partitions.

• Consensus clustering. We reduce the usually technically involved consensus clus­

tering problem to simple clustering in reproducing kernel Hilbert space. Armed with

the well founded distance metric to compare partitions, we describe simple clustering

methods to find the 1-median solution in the space of partitions that results in a

consensus solution.

• Alternative clustering. We take the problem of generating alternative partitions to

the next level. We describe a Markov chain Monte Carlo sampling procedure to

explore the space of all possible partitions of the data, thereby allowing the user

to both understand the clusterability of the data and provide him/her with multiple

choices of partitions to work with.

• Validating partitions. We introduce new point level notions of stability by defining

regions of influence of clusters and points and how they interact. These affinity

scores are very useful especially in the absence of an oracle that can label the data.

We also discuss various applications of such an affinity score in speeding up various

109

data mining methods and modeling for clustering.

• Speeding up semisupervised learning. We describe fast and large scale semisuper­

vised techniques by using adaptive sampling strategies based on the insight gained

from defining affinity scores. With the abundance of unlabeled data, our method

becomes extremely relevant as we demonstrate significant speedups over existing

methods.

We round up this dissertation by proposing a few immediate questions that arise from our

line of work.

7 .2 F u tu re C h a lle n g es

Each chapter in this dissertation provide solutions to various metaquestions on clus­

terings that aid exploratory data analysis. We are particularly interested in exploring the

clustering stability work we discuss in Chapter 5. We believe that the methods that we

propose could benefit from a good theoretical study to gain a deeper understanding of how

and why they work. In the following, we highlight a few specific questions that we think

could further the research in clustering.

• Speeding up different data mining and machine learning methods. Can we

develop adaptive sampling strategies for other machine learning methods like SVM

and regression to make them faster [Balcan et al., 2012; Balcan and Feldman, 2013;

Dasgupta, 2010; Ho et al., 2011]? Can we develop distributed clustering methods

by using our concise clustering representations and attached affinity scores to com­

municate efficiently? Can we develop sound theory to bound communication in this

model?

• Heterogeneous clustering. Due to the lack of an appropriate distance measure be­

tween the data objects, many existing clustering methods only work on homogeneous

data. Can we define the similarity between different feature set types to enable

comparison of the data objects, which is essential for clustering? Can we leverage

from the techniques and measures we describe in Chapter 3 to compare and cluster

the objects that are in different feature spaces [Aerts et al., 2006; De Bie et al., 2007;

Filkov and Skiena, 2004; Huang and Zhu, 2007; Liu et al., 2009; Ye et al., 2008; Yu

etal., 2008]?

110

• Secondary level distances between partitions. Distances in high dimensions are

unstable since the distribution of pairwise distances is highly skewed towards a single

value. From the insights we gained in our work on generating partitions in Chapter 4,

we realize that a majority of the partitions have a very narrow range of pairwise

distances between them. Can we build a secondary level distance that is induced

by LiftEMD, our primary distance between partitions? Shared nearest neighbors

(SNN) [Ertoz et al., 2002; Houle et al., 2010; Houle, 2003; Jarvis and Patrick, 1973]

are a common way to counter the effects of curse of dimensionality. Can we use the

affinity scores to redefine SNN?

• Clustering to maximize affinity. Can we define a new clustering method that

maximizes the local stability of the points? Can we define an objective function

along the lines of k-means to compute this clustering? Given a partition, how can we

find new centers that maximize affinity? Can we still use our Voronoi notions that

we discuss in Chapter 5 to determine how the centers navigate? Can we bound the

convergence of this method? Can we develop faster algorithms to find high and low

stability points directly to make this clustering method faster?

• Dimensionality reduction and clustering. Dimensionality reduction and clustering

go hand in hand. Due to the “curse of dimensionality” and computational reasons,

data are often projected to a lower-dimensional subspace to then cluster in this new

space. It will be immensely useful to gain a deeper understanding of how various

dimensionality algorithms and clustering methods are related. For instance, can we

use the affinity scores that we define in Chapter 5 to build a robust dimensionality

reduction methods that can find the best subspace to work with for purposes of

clustering?

• Defining different influence regions of points and clusters. Can we define other

ways of capturing how a cluster influences a point and vice versa to make the no­

tion of affinity more robust? Can we use other interpolation techniques described

by Bobach and Umlauf [2006] to understand other ways in which clusters interact?

Can we compute this interpolation for kernels? Can we do it on manifolds? Can we

work in other non Euclidean spaces?

• Accountability in data mining. As data mining results become more personalized,

111

there is an increasing need for the data miner to explain the results to the user. Can

we setup a proof of knowledge system via an interactive proof system that will allow

the user acting as the verifier to validate the clustering results? What are the privacy

concerns in doing this?

• Differential privacy and anonymity. Can we define an e-differential privacy [Dwork,

2008; Inan et al., 2007; Vaidya and Clifton, 2003; Zhang et al., 2012] setting for

clustering using the affinity scores? Can we also describe k-anonymity [Aggarwal

et al., 2010; Byun et al., 2007; Lin and Wei, 2008] for clustering by computing

column and row leverage scores [Drineas and Mahoney, 2010; Mahoney and Drineas,

2009; Mahoney et al., 2012] using the affinity model described in Chapter 5?

R E F E R E N C E S

A e r ts , S., L a m b re c h ts , D., M aity , S., Van Loo, P., C oessens, B., De Smet,
F., T ra n c h e v e n t, L.-C., De M o o r, B., M ary n en , P., H assan , B., C a rm e lie t,
P., AND M o reau , Y. 2006. Gene prioritization through genomic data fusion. Nature
Biotechnology 24; 5, 537-544.

A g g a rw a l, C. 2009. A framework for clustering massive-domain data streams. In Pro­
ceedings o f the 2009 IEEE International Conference on Data Engineering. IEEE Computer
Society, Washington, DC, USA, 102-113.

A g g a rw a l, C., H an, J., W ang, J., an d Yu, P. 2007. On clustering massive data
streams: a summarization paradigm. In Data Streams, A. K. Elmagarmid and C. C.
Aggarwal, Eds. Advances in Database Systems Series, vol. 31. Springer US, Boston, MA,
Chapter 2, 9-38.

A g g a rw a l, G., P an ig ra h y , R., F ed e r, T., Thom as, D., K en th ap ad i, K.,
K h u l le r , S., AND Zhu, A. 2010. Achieving anonymity via clustering. ACM Trans.
Algorithms 6; 3, 49:1-49:19.

A ld r ic h , J. 1997. R. A. Fisher and the making of maximum likelihood 1912-1922.
Statist. Sci. 12; 3, 162-176.

A ll is o n , D. B., Cui, X., Page, G. P., an d S a b rip o u r, M. 2006. Microarray data
analysis: from disarray to consolidation and consensus. Nature Reviews Genetics 7, 55-65.

A n sa ri, M. H., F il lm o re , N., a n d C oen, M. H. 2010. Incorporating spatial similarity
into ensemble clustering. Proc. 1st Intl. Workshop on Discovering, Summarizing, and Using
Multiple Clusterings (KDD Multiclust).

A ro n sz a jn , N. 1950. Theory of reproducing kernels. Trans. American Math. Society 6 8 ,
337 - 404.

A r th u r , D. an d V ass ilv itsk ii, S. 2006. Worst-case and smoothed analysis of the
ICP algorithm, with an application to the k-means method. In FOCS ’06: Proceedings o f
the 47th Annual IEEE Symposium on Foundations o f Computer Science. IEEE Computer
Society, Washington, DC, USA, 153-164.

A r th u r , D. a n d V a ss ilv itsk ii, S. 2007. k-means++: the advantages of careful
seeding. In SODA ’07: Proceedings o f the eighteenth annual ACM-SIAM symposium on
Discrete algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 1027-1035.

A s h a ra f , S. AND M u rty , M. N. 2003. An adaptive rough fuzzy single pass algorithm
for clustering large data sets. Pattern Recognition 36; 12, 3015-3018.

113

AURENHAMMER, F. 1987. Power diagrams: properties, algorithms and applications. SIAM
Journal on Computing 16; 1, 78-96.

Ayad, H. G. and Kam el , M. S. 2010. On voting-based consensus of cluster ensembles.
Pattern Recogn. 43, 1943-1953.

Bache, K. AND Lichm an , M. 2013. UCI machine learning repository
[http://archive.ics.uci.edu/ml]. University of California, Irvine, School of Information and
Computer Sciences.

Ba e , E. and Bailey, J. 2006. COALA: a novel approach for the extraction of an alternate
clustering of high quality and high dissimilarity. In Proceedings of the Sixth International
Conference on Data Mining. ICDM ’06. IEEE Computer Society, Washington, DC, USA,
53-62.

Ba e , E., Bailey, J., and Dong , G. 2006. Clustering similarity comparison using density
profiles. In Australian Conference on Artificial Intelligence, A. Sattar and B. H. Kang, Eds.
Lecture Notes in Computer Science Series, vol. 4304. Springer, 342-351.

Ba e , E., Bailey, J., and Dong , G. 2010. A clustering comparison measure using
density profiles and its application to the discovery of alternate clusterings. Data Min.
Knowl. Discov. 21; 3, 427-471.

Baeza-Yates, R. A. and Ribeiro-Neto , B. 1999. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Balcan , M.-F., Blum , A., Fin e , S., and Mansour, Y. 2012. Distributed learning,
communication complexity and privacy. Journal of Machine Learning Research - Proceed­
ings Track 23, 26.1-26.22.

Balcan , M.-F., Blum , A., and Yang , K. 2004. Co-training and expansion: towards
bridging theory and practice. In Advances in Neural Information Processing Systems 17.
MIT Press, Cambridge, MA, 89-96.

Balcan , M.-F. and Feldman , V. 2013. Statistical active learning algorithms.
CoRR abs/1307.3102.

Bandyopadhyay, S., G iannella , C., Maulik , U., Kargupta, H., L iu , K., and
Datta, S. 2006. Clustering distributed data streams in peer-to-peer environments. In/
Sci. 176; 14, 1952-1985.

Barbar , D. and Chen , P. 2003. Using self-similarity to cluster large data sets. Data
Mining and Knowledge Discovery 7, 123-152. 10.1023/A:1022493416690.

Belkin , M. and N iyogi, P. 2004. Semi-supervised learning on riemannian manifolds.
Machine learning 56; 1-3, 209-239.

Ben-David, S. and Ackerman , M. 2008. Measures of clustering quality: a working
set of axioms for clustering. In NIPS, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
Eds. MIT Press, 121-128.

http://archive.ics.uci.edu/ml

114

Ben-D avid, S., VON L u x b u rg , U., an d PAl, D. 2006. A sober look at clustering
stability. In Proceedings o f the 19th annual conference on Learning Theory. C0LT’06.
Springer-Verlag, Berlin, Heidelberg, 5-19.

B en-H ur, A., E lis se e ff , A., a n d G uyon, I. 2002. A stability based method for
discovering structure in clustered data. In Pacific Symposium on Biocomputing. 6-17.

B en ed ic t, C., G e is le r , M., T ry g g , J., H u n er, N., an d H u rry , V. 2006. Consensus
by democracy. Using meta-analyses of microarray and genomic data to model the cold
acclimation signaling pathway in Arabidopsis. Plant Physiol 141; 4, 1219-1232.

B erk h in , P. 2006. A survey of clustering data mining techniques. In Grouping Multidi­
mensional Data, J. Kogan, C. Nicholas, and M. Teboulle, Eds. Springer Berlin Heidelberg,
25-71.

B e r l in e t , A. a n d T hom as-A gnan, C. 2004. Reproducing Kernel Hilbert Spaces in
Probability and Statistics. Springer Netherlands.

B ezdek, J. a n d P a l, N. 1998. Some new indexes of cluster validity. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on 28; 3, 301 -315.

B ezdek, J. C. 1981. Pattern Recognition with Fuzzy Objective Function Algorithms.
Kluwer Academic Publishers.

BHADURI, K. 2008. Efficient local algorithms for distributed data mining in large scale
peer to peer environments: a deterministic approach. Ph.D. thesis, University of Maryland
at Baltimore County, Catonsville, MD, USA. Adviser-Kargupta, Hillol.

B lum , A. an d M itc h e l l , T. 1998. Combining labeled and unlabeled data with co­
training. In Proceedings o f the Eleventh Annual Conference on Computational Learning
Theory. ACM, 92-100.

B obach , T. AND U m lauf, G. 2006. Natural neighbor interpolation and order of continu­
ity. In GI Lecture Notes in Informatics, Visualization o f Large and Unstructured Data Sets,
H. Hagen, A. Kerren, and P. Dannenmann, Eds. 68- 86.

B onizzoni, P., D e l l a V edova, G., D ondi, R., a n d J iang , T. 2008. On the ap­
proximation of correlation clustering and consensus clustering. J. Comput. Syst. Sci. 74,
671-696.

B o n n e r , R. E. 1964. On some clustering techniques. IBM J. Res. Dev. 8 , 22-32.

B o u lis , C. AND O s te n d o rf , M. 2004. Combining multiple clustering systems. In
8 th European Conference on Principles and Practice o f Knowledge Discovery in Database
(PKDD), LNAI3202. 63-74.

B regm an , L. M. 1967. The relaxation method of finding the common point of convex
sets and its application to the solution of problems in convex programming. USSR Compu­
tational Mathematics and Mathematical Physics 7; 3, 200-217.

115

B yun, J.-W., K am ra , A., B e r tin o , E., a n d Li, N. 2007. Efficient k-anonymization
using clustering techniques. In Advances in Databases: Concepts, Systems and Applica­
tions, R. Kotagiri, P. Krishna, M. Mohania, and E. Nantajeewarawat, Eds. Lecture Notes in
Computer Science Series, vol. 4443. Springer Berlin Heidelberg, 188-200.

C a ru a n a , R., E lh aw ary , M. F., N guyen, N., a n d Sm ith, C. 2006. Meta clustering.
In ICDM. IEEE Computer Society, 107-118.

CHANG, J.-W. 2003. An efficient cell-based clustering method for handling large, high­
dimensional data. In Proceedings o f the 7th Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining. PAKDD’03. Springer-Verlag, Berlin, Heidelberg,
295-300.

C h a z e lle , B. 1992. An optimal algorithm for intersecting three-dimensional convex
polyhedra. SIAM Journal on Computing 21; 4, 671-696.

C hen, M., C hen, Y., an d W e in b e rg e r, K. Q. 2011. Automatic feature decomposition
for single view co-training. In Proceedings o f the 28th International Conference on
Machine Learning (ICML-11). 953-960.

Chew, L. P., G o o d rich , M. T., H u t te n lo c h e r , D. P., Kedem, K., a n d a nd
D ina K ra v e ts , J. M. K. 1997. Geometric pattern matching under Euclidian motion.
Comp. Geom.: The. andApp. 7, 113-124.

C oen, M., A n sa ri, H., a n d F il lm o re , N. 2010. Comparing clusterings in space. In
ICML.

C o lem an , T. an d W ir th , A. 2010. A polynomial time approximation scheme for k-
consensus clustering. In SODA. 729-740.

C o l lo b e r t , R., Sinz, F., W esto n , J., a n d B o tto u , L. 2006a. Trading convexity
for scalability. In Proceedings o f the 23rd International Conference on Machine Learning.
ACM, 201-208.

C o l lo b e r t , R., Sinz, F. H., W esto n , J., a n d B o tto u , L. 2006b. Large scale
transductive svms. Journal o f Machine Learning Research 7, 1687-1712.

C o s ta , D. a n d V e n tu r in i, G. 2007. A visual and interactive data exploration method
for large data sets and clustering. In Proceedings o f the 3rd International Conference on
Advanced Data Mining and Applications. ADMA ’07. Springer-Verlag, Berlin, Heidelberg,
553-561.

D ang, X. H. a n d B ailey , J. 2010a. Generation of alternative clusterings using the cami
approach. In SDM. SIAM, 118-129.

D ang, X. H. a n d B ailey , J. 2010b. A hierarchical information theoretic technique
for the discovery of non linear alternative clusterings. In Proceedings o f the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD ’10.
ACM, New York, NY, USA, 573-582.

D as, S., A b rah am , A., a n d K o n ar, A. 2009. Metaheuristic Clustering 1st Ed.
Springer Publishing Company, Incorporated.

116

D asg u p ta , S. 2010. Active learning theory. In Encyclopedia o f Machine Learning,
C. Sammut and G. I. Webb, Eds. Springer, 14-19.

D a tta , S., G ia n n e l la , C., a n d K a rg u p ta , H. 2006. K-means clustering over a large,
dynamic network. In Proceedings o f the Sixth SIAM International Conference on Data
Mining, Bethesda, MD, USA.

Dave, R. N. 1996. Validating fuzzy partitions obtained through c-shells clustering. Pattern
Recogn. Lett. 17, 613-623.

DAVIDSON, I. 2000. Minimum message length clustering using gibbs sampling. In
Proceedings o f the Sixteenth Conference Annual Conference on Uncertainty in Artificial
Intelligence (UAI-00). Morgan Kaufmann, San Francisco, CA, 160-167.

D avidson, I. a n d Qi, Z. 2008. Finding alternative clusterings using constraints. In
Proceedings o f the 2008 Eighth IEEE International Conference on Data Mining. IEEE
Computer Society, Washington, DC, USA, 773-778.

Day, W. 1986. Foreword: comparison and consensus of classifications. Journal o f
Classification 3; 2, 183-185.

De B erg , M., C heong , O., Van K re v e ld , M., an d O v erm ars , M. 2008. Compu­
tational Geometry: Algorithms and Applications. Springer.

De Bie, T., T ra n c h e v e n t, L.-C., van O e ffe le n , L. M. M., a n d M o reau , Y. 2007.
Kernel-based data fusion for gene prioritization. Bioinformatics 23; 13, i125-i132.

D ean, J. an d G hem aw at, S. 2008. Mapreduce: simplified data processing on large
clusters. Commun. ACM 51, 107-113.

DHILLON, I. AND M odha, D. 2000. A data-clustering algorithm on distributed memory
multiprocessors. In Large-Scale Parallel Data Mining, Lecture Notes in Artificial Intelli­
gence. 245-260.

DING, C. AND Li, T. 2007. Adaptive dimension reduction using discriminant analysis
and k-means clustering. In Proceedings o f the 24th International Conference on Machine
Learning. ICML ’07. ACM, New York, NY, USA, 521-528.

D rin e a s , P. a n d M ahoney, M. W. 2010. Effective resistances, statistical leverage, and
applications to linear equation solving. CoRR abs/1005.3097.

D ubes, R. C. a n d Jain, A. K. 1976. Clustering techniques: the user’s dilemma. Pattern
Recognition 8; 4, 247-260.

DUNN, J. C. 1974. Well separated clusters and optimal fuzzy-partitions. Journal o f
Cybernetics 4, 95-104.

D u rr le m a n , S., P ennec, X., TrouvE , A., a n d A yache, N. 2008. Sparse approxi­
mation of currents for statistics on curves and surfaces. In MICCAI. 390-398.

D w ork , C. 2008. Differential privacy: a survey of results. In Proceedings o f the 5th In­
ternational Conference on Theory and Applications o f Models o f Computation. TAMC’08.
Springer-Verlag, Berlin, Heidelberg, 1-19.

117

E lis se e ff , A., E vgen iou , T., a n d P o n t i l , M. 2006. Stability of randomized learning
algorithms. Journal ofMachine Learning Research 6; 1, 55.

Eriksson , B., Dasarathy, G., Singh , A., and Nowak, R. 2011. Active clustering:
robust and efficient hierarchical clustering using adaptively selected similarities. arXiv
preprint arXiv:1102.3887.

Ertoz, L., Steinbach, M., and Kum ar, V. 2002. A new shared nearest neighbor
clustering algorithm and its applications. In Workshop on Clustering High Dimensional
Data and its Applications at 2nd SIAM International Conference on Data Mining.

Ester , M., Kriegel , H.-P., Sander , J., and Xu , X. 1996. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD. 226-231.

Fern , X. Z. and Brodley, C. E. 2003. Random projection for high dimensional data
clustering: A cluster ensemble approach. In ICML. 186-193.

F ilkov, V. AND Skiena , S. 2003. Integrating microarray data by consensus clustering. In
Tools with Artificial Intelligence, 2003. Proceedings. 15th IEEE International Conference
on. 418 - 426.

F ilkov, V. and Skiena , S. 2004. Heterogeneous data integration with the consensus
clustering formalism. In Proceedings of Data Integration in the Life Sciences. Springer,
110-123.

Forman , G. and Zhang , B. 2000. Distributed data clustering can be efficient and exact.
SIGKDD Explor Newsl. 2, 34-38.

Fow lkes, E. and Mallow s, C. 1983. A method for comparing two hierarchical
clusterings. Journal of the American Statistical Association 78; 383, 553-569.

F ra le y , C. a n d R a f te ry , A. E. 1998. How many clusters? Which clustering method?
Answers via model-based cluster analysis. The Computer Journal 41; 8, 578-588.

Frank , A. and Asuncion , A. 2010. UCI machine learning repository
[http://archive.ics.uci.edu/ml]. University of California, Irvine, School of Information and
Computer Sciences.

F red , A. a n d Jain, A. 2005. Combining multiple clusterings using evidence accumula­
tion. Pattern Analysis and Machine Intelligence, IEEE Transactions on 27; 6 , 835 - 850.

GARTNER, T. 2002. Exponential and geometric kernels for graphs. In NIPS Workshop on
Unreal Data: Principles of Modeling Nonvectorial Data.

G e o rg h ia d e s , A. S., B e lh u m eu r, P. N., a n d K riegm an, D. J. 2001. From few
to many: illumination cone models for face recognition under variable lighting and pose.
IEEE Trans. Pattern Anal. Mach. Intell. 23; 6 , 643-660.

Ghaem i, R., bin Sulaim an , M. N., Ibrahim , H., and Mustapha, N. World
Academy of Science, Engineering and Technology 50, 2009. A survey: clustering en­
sembles techniques.

http://archive.ics.uci.edu/ml

118

G ia n c a r lo , R., S c a tu r ro , D., a n d U tro , F. 2008. Computational cluster validation
for microarray data analysis: experimental assessment of clest, consensus clustering, figure
of merit, gap statistics and model explorer. BMC Bioinformatics 9; 1, 462.

G ionis, A., M a n n ila , H., an d T sa p a ra s , P. 2007. Clustering aggregation. ACM
Trans. Knowl. Discov. Data 1; 1.

G ivens, C. R. a n d S h o r t t , R. M. 1984. A class of wasserstein metrics for probability
distributions. Michigan Math Journal 31, 231-240.

G launE s, J. a n d Joshi, S. 2006. Template estimation form unlabeled point set data
and surfaces for computational anatomy. In Proc. o f the International Workshop on
the Mathematical Foundations o f Computational Anatomy (MFCA-2006), X. Pennec and
S. Joshi, Eds. 29-39.

G o d er, A. a n d F ilkov , V. 2008. Consensus clustering algorithms: comparison and
refinement. In ALENEX. 109-117.

Go il , S., Go il , S., Nagesh , H., Nagesh , H., Choudhary, A., and Choudhary,
A. 1999. MAFIA: efficient and scalable subspace clustering for very large data sets. Tech.
rep., Center for Parallel and Distributed Computing, Northwestern University.

G ondek , D. a n d H ofm ann, T. 2004. Non-redundant data clustering. In ICDM. IEEE
Computer Society, 75-82.

G o n z a le z , T. F. 1985. Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293-306.

G r e t to n , A., B o rg w a rd t, K., R asch , M., S ch o lk o p f, B., a n d S m ola, A. 2008.
A kernel method for the two-sample-problem. JMLR 1, 1-10.

G ro tk ja e r , T., W in th e r , O., R eg en b erg , B., N ie lse n , J., a n d H ansen , L. K. K.
2006. Robust multi-scale clustering of large DNA microarray datasets with the consensus
algorithm. Bioinformatics (Oxford, England) 22; 1, 58-67.

G uha, S., R a s to g i, R., a n d Shim, K. 2001. Cure: an efficient clustering algorithm for
large databases* 1. Information Systems 26; 1,35-58.

H a lk id i, M., B a tis ta k is , Y., a n d V az irg ian n is , M. 2001. On clustering validation
techniques. J. Intell. Inf. Syst. 17; 2-3, 107-145.

H a lk id i, M. a n d V az irg ian n is , M. 2001. Clustering validity assessment: finding the
optimal partitioning of a data set. In ICDM, N. Cercone, T. Y. Lin, and X. Wu, Eds. IEEE
Computer Society, 187-194.

H a lk id i, M., V az irg ian n is , M., a n d B a tis ta k is , Y. 2000. Quality scheme as­
sessment in the clustering process. In Proceedings o f the 4th European Conference on
Principles o f Data Mining and Knowledge Discovery. PKDD ’00. Springer-Verlag, London,
uK , 265-276.

H a r-P e le d , S. 2011. Geometric Approximation Algorithms. Vol. 173. American Mathe­
matical Society.

119

H a r-P e le d , S. a n d S ad ri, B. 2005. How fast is the k-means method? Algorithmica41,
185-202.

H a r t ig a n , J. A. 1975. Clustering Algorithms 99th Ed. John Wiley & Sons, Inc., New
York, NY, USA.

H a r t ig a n , J. A. a n d W ong, M. A. 1979. Algorithm as136: a k-means clustering
algorithm. Applied Statistics 28 , 100-108.

H a s tin g s , W. K. 1970. Monte carlo sampling methods using markov chains and their
applications. Biometrika 57, 97-109.

Ho, C.-H., Tsai, M.-H., a n d Lin, C.-J. 2011. Active learning and experimental design
with svms. Journal o f Machine Learning Research - Proceedings Track 16, 71-84.

H off, P. D. 2009. A First Course in Bayesian Statistical Methods. Springer.

H ofm ann, T. a n d B uhm ann, J. M. 1998. Active data clustering. Advances in Neural
Information Processing Systems, 528-534.

H o u le , M., K rie g e l, H.-P., K ro g e r , P., S ch u b e rt, E., a n d Zimek, A. 2010. Can
shared-neighbor distances defeat the curse of dimensionality? In Scientific and Statistical
Database Management, M. Gertz and B. Ludascher, Eds. Lecture Notes in Computer
Science Series, vol. 6187. Springer Berlin / Heidelberg, Berlin, Heidelberg, Chapter 34,
482-500.

H o u le , M. E. 2003. Navigating massive data sets via local clustering. In Proceedings
o f the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’03. ACM, New York, NY, USA, 547-552.

H uang , M. a n d Zhu, X. 2007. Combining convolution kernels defined on heterogeneous
sub-structures. Advances in Knowledge Discovery and Data Mining, 539-546.

HUANG, Z. 1998. Extensions to the k-means algorithm for clustering large data
sets with categorical values. Data Mining and Knowledge Discovery 2 , 283-304.
10.1023/A:1009769707641.

H uiskes, M. J. AND Lew, M. S. 2008. The mir flickr retrieval evaluation. In MIR
’08: Proceedings o f the 2008 ACM International Conference on Multimedia Information
Retrieval. ACM, New York, NY, USA.

IBM, ZIKOPOULOS, P., AND E a to n , C. 2011. Understanding Big Data: Analytics fo r
Enterprise Class Hadoop and Streaming Data. 1st Ed. McGraw-Hill Osborne Media.

In an , A., Kaya, S. V., Saygin , Y., Savas, E., H in to g lu , A. A., a n d Levi, A. 2007.
Privacy preserving clustering on horizontally partitioned data. Data Knowl. Eng. 63; 3,
646-666.

Indyk , P. AND T h ap er, N. 2003. Fast image retrieval via embeddings. In Intr. Workshop
on Statistical and Computational Theories o f Vision (at ICCV).

Jain , A. K. 2010. Data clustering: 50 years beyond k-means. Pattern Recogn. Lett..

120

Ja in , A. K. and Du bes, R. C. 1988. Algorithms for Clustering Data. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA.

Ja in , A. K., Murty, M. N., and Flynn, P. J. 1999. Data clustering: a review. ACM
Comput. Surv. 31, 264-323.

Ja in , P., Meka , R., and Dhillon , I. S. 2008. Simultaneous unsupervised learning of
disparate clusterings. Stat. Anal. Data Min. 1, 195-210.

Januzaj, E., Kriegel , H.-P., and Pfeifle, M. 2004. Dbdc: density based distributed
clustering. In EDBT. 88-105.

Jarvis, R. and Patrick, E. 1973. Clustering using a similarity measure based on shared
near neighbors. Computers, IEEE Transactions on C-22; 11, 1025-1034.

Jegelka , S., Gretton , A., Scholkopf, B., Sriperumbudur, B. K., and von
Luxburg , U. 2009. Generalized clustering via kernel embeddings. In 32nd Annual
German Conference on AI (KI2009).

Joachims, T. 1999. Transductive inference for text classification using support vector ma­
chines. In International Conference on Machine Learning. Morgan Kaufmann Publishers,
Inc., 200-209.

JOHNSON, E. L. and Kargupta , H. 2000. Collective, hierarchical clustering from
distributed, heterogeneous data. In Revised Papers from Large-Scale Parallel Data Mining,
Workshop on Large-Scale Parallel KDD Systems, SIGKDD. Springer-Verlag, London, UK,
221-244.

Jo sh i, S., Komm araju , R. V., Ph illips , J. M., and Venkatasubramanian, S.
2011. Comparing distributions and shapes using the kernel distance. In Proceedings of the
27th Annual ACM Symposium on Computational Geometry. SoCG ’11. ACM, New York,
NY, USA, 47-56.

K ashim a, H., K a to , T., Y am anishi, Y., Sugiyam a, M., a n d T suda, K. 2009. Link
propagation: a fast semisupervised learning algorithm for link prediction. SDM09, 1099­
1110.

Keim , D. A. and Hinneburg , A. 1999. Clustering techniques for large data sets from
the past to the future. In Tutorial Notes of the Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’99. ACM, New York, NY, USA, 141­
181.

Kettenring , J. R. 2009. Massive datasets. Wiley Interdisciplinary Reviews: Computa­
tional Statistics 1; 1, 25-32.

Ku hn , H. W. 1955. The Hungarian method for the assignment problem. Naval Research
Logistic Quarterly 2, 83-97.

Laderas, T. and McW eeney, S. 2007. Consensus framework for exploring microarray
data using multiple clustering methods. OMICS: A Journal of Integrative Biology 11; 1,
116-128.

121

Laney, D. 2001. 3D data management: controlling data volume, velocity, and variety.
Tech. rep., META Group. February.

L ennes, N. J. 1911. Theorems on the simple finite polygon and polyhedron. American
Journal o f Mathematics 33; 1/4, 37-62.

Li, Y., L ong, P. M., a n d S rin iv asan , A. 2001. Improved bounds on the sample
complexity of learning. J. Comput. Syst. Sci. 62; 3, 516-527.

Liao, D.-p., J ian g , B., Wei, X.-z., LI, X., an d ZHUANG, Z.-w. 2007. Fast learning
algorithm with progressive transductive support vector machine. System Engineering and
Electronics 29; 1, 88-91.

Lin, J.-L. a n d Wei, M.-C. 2008. An efficient clustering method for k-anonymization. In
Proceedings o f the 2008 International Workshop on Privacy and Anonymity in Information
Society. PAIS ’08. ACM, New York, NY, USA, 46-50.

Liu, X., Yu, S., M o reau , Y., M o o r, B. D., G lA n ze l, W., a n d Jan ssen s , F.
A. L. 2009. Hybrid clustering of text mining and bibliometrics applied to journal sets.
In Proceedings o f the SIAM International Conference on Data Mining, SDM2009, April 30
- May 2, Sparks, Nevada, USA. 49-60.

Liu, Y., Li, Z., X iong, H., G ao, X., an d Wu, J. 2010. Understanding of internal
clustering validation measures. In Proceedings o f the 2010 IEEE International Conference
on Data Mining. ICDM ’10. 911-916.

L odhi, H., S au n d e rs , C., S h aw e-T ay lo r, J., C r is t ia n in i , N., a n d W atk ins, C.
2002. Text classification using string kernels. JMLR 2, 444.

LovAsz, L. 1999. Hit-and-run mixes fast. Mathematical Programming 86; 3, 443-461.

L u x b u rg , U. V. 2009. Clustering stability: an overview. Foundations and Trends in
Machine Learning 2; 3, 235-274.

Lv, Z., Hu, Y., Z hong , H., Wu, j., Li, B., an d Z hao, H. 2010. Parallel k-means
clustering of remote sensing images based on mapreduce. In Proceedings o f the 2010 Inter­
national Conference on Web Information Systems and Mining. WISM’10. Springer-Verlag,
Berlin, Heidelberg, 162-170.

M acKay, D. J. C. 2002. Information Theory, Inference & Learning Algorithms. Cam­
bridge University Press, New York, NY, USA.

M ahoney, M. W. a n d D rin e a s , P. 2009. Cur matrix decompositions for improved data
analysis. Proceedings o f the National Academy o f Sciences 106; 3, 697-702.

M ahoney, M. W., D rin e a s , P., M ag d o n -Ism ail, M., an d W o o d ru ff , D. P. 2012.
Fast approximation of matrix coherence and statistical leverage. In ICML. icml.cc /
omnipress.

M ann, G. S. a n d M cC allu m , A. 2007. Simple, robust, scalable semi-supervised learn­
ing via expectation regularization. In Proceedings o f the 24th International Conference on
Machine Learning. ACM, 593-600.

122

M eilA, M. 2007. Comparing clusterings-an information based distance. J. Multivar.
Anal. 98 , 873-895.

M e tro p o lis , N., R o s e n tb lu th , A. W., R o se n b lu th , M. N., T e l l e r , A. H., an d
T e l l e r , E. 1953. Equations of state calculations by fast computing machines. Journal o f
Chemical Physics.

M ill ig a n , G. a n d C ooper, M. 1985. An examination of procedures for determining
the number of clusters in a data set. Psychometrika 50, 159-179. 10.1007/BF02294245.

M irk in , B. G. a n d C herny , L. B. 1970. Measurement of the distance between distinct
partitions of a finite set of objects. Automation & Remote Control 31, 786.

M o n ti, S., Tamayo, P., M esirov, J., a n d G o lu b , T. 2003. Consensus clustering: a
resampling-based method for class discovery and visualization of gene expression microar­
ray data. Machine Learning 52,91-118. 10.1023/A:1023949509487.

M U lle r , A. 1997. Integral probability metrics and their generating classes of functions.
Advances in Applied Probability 29; 2, 429-443.

M u rin o , L., A n g e lin i, C., B ifu lc o , I., Feis, I. D., R aicon i, G., a n d T a g lia f e r r i ,
R. 2009. Multiple clustering solutions analysis through least-squares consensus algorithms.
In CIBB. 215-227.

M u rta g h , F. 1999. Clustering in massive data sets. In Handbook o f Massive Data Sets.
Kluwer Academic Publishers, 501-543.

N agesh , H., G o il, S., a n d C h o u d h ary , A. 2001. Adaptive grids for clustering
massive data sets. In 1st SIAM International Conference Proceedings on Data Mining.

N agesh , H. S., C h o u d h ary , A., a n d G o il, S. 2000. A scalable parallel subspace
clustering algorithm for massive data sets. In Proceedings o f the Proceedings o f the
2000 International Conference on Parallel Processing. ICPP ’00. IEEE Computer Society,
Washington, DC, USA, 477-.

N eum ann, D. a n d N o r to n , V. 1986. Clustering and isolation in the consensus problem
for partitions. Journal o f Classification 3; 2, 281-297.

N guyen , N. a n d C a ru a n a , R. 2007. Consensus clusterings. In Proceedings o f the
2007 Seventh IEEE International Conference on Data Mining. IEEE Computer Society,
Washington, DC, USA, 607-612.

N guyen , X. V. a n d Epps, J. 2010. Mincentropy: a novel information theoretic approach
for the generation of alternative clusterings. In ICDM, G. I. Webb, B. Liu, C. Zhang,
D. Gunopulos, and X. Wu, Eds. IEEE Computer Society, 521-530.

Niu, D., Dy, J. G., an d J o rd a n , M. I. 2010. Multiple non-redundant spectral clustering
views. In ICML’10. 831-838.

OLKEN, F. 1993. Random sampling from databases. Ph.D. thesis, University of California,
Berkeley.

123

O lm an, V., M ao, F., W u, H., a n d Xu, Y. 2009. Parallel clustering algorithm for
large data sets with applications in bioinformatics. 1EEE/ACM Trans. Comput. Biol.
Bioinformatics 6 , 344-352.

Ostrovsky, R., Rabani, Y., Schulman , L. J., and Swamy, C. 2006. The effec­
tiveness of Lloyd-type methods for the k-means problem. In FOCS ’06: Proceedings of
the 47th Annual IEEE Symposium on Foundations of Computer Science. IEEE Computer
Society, Washington, DC, USA, 165-176.

Otoo , E. J., Shoshani, A., and Hwang, S.-W. 2001. Clustering high dimensional
massive scientific datasets. J. Intell. In/ Syst. 17, 147-168.

PETROVIC, S. 2006. A comparison between the silhouette index and the davies-bouldin
index in labeling ids clusters. Proceedings of the 11th Nordic Workshop on Secure IT-
systems, NORDSEC 2006, 53-64.

PLATT, J. C. 1999. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In Advances in Large Margin Classifiers. MIT Press,
61-74.

Prokhorov, Y. V. 1956. Convergence of random processes and limit theorems in
probability theory. Theory of Probability and its Applications 1; 2, 157-214.

Qi , Z. and Davidson, I. 2009. A principled and flexible framework for finding alter­
native clusterings. In Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’09. ACM, New York, NY, USA, 717-726.

Qia n , W., Gong , X., and Zhou , A. 2003. Clustering in very large databases based on
distance and density. J. Comput. Sci. Technol. 18, 67-76.

Ra him i, A. and Recht, B. 2007. Random features for large-scale kernel machines.
In Proceedings of the 21st Annual Conference on Neural Information Processing Systems.
MIT Press.

Raman , P., Ph illips, J. M., and Venkatasubramanian, S. 2011. Spatially-aware
comparison and consensus for clusterings. In SDM. SIAM / Omnipress, 307-318.

R and , W. M. 1971. Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical Association 66; 336, 846-850.

Roberts, G. O., Gelm an , A., and G ilk s , W. R. 1997. Weak convergence and optimal
scaling of random walk metropolis algorithms. Annals of Applied Probability 7, 110-120.

ROUSSEEUW, P. 1987. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. J. Comput. Appl. Math. 20; 1, 53-65.

Sander , J., Ester , M., Kriegel , H.-P., and Xu , X. 1998. Density-based clustering in
spatial databases: the algorithm gdbscan and its applications. Data Min. Knowl. Discov. 2,
169-194.

Sa ssi, M. and Grissa , A. 2009. Clustering large data sets based on data compression
technique and weighted quality measures. In Fuzzy Systems, 2009. FUZZ-IEEE 2009. IEEE
International Conference on. 396 -402.

124

S ch o lk o p f, B. AND S m ola , A. J. 2002. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA.

S e t t l e s , B. 2011. Closing the loop: fast, interactive semi-supervised annotation with
queries on features and instances. In Proceedings o f the Conference on Empirical Methods
in Natural Language Processing. Association for Computational Linguistics, 1467-1478.

S e t t l e s , B. 2012. Active learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning 6; 1, 1-114.

S h ird h o n k a r , S. a n d Jacobs, D. 2008. Approximate Earth mover’s distance in linear
time. In CVPR.

Sibson, R. 1980. A vector identity for the dirichlet tessellation. Mathematical Proceed­
ings o f the Cambridge Philosophical Society 87; 1, 151-155.

SIBSON, R. 1981. A brief description of natural neighbour interpolation. In Interpolating
Multivariate Data. John Wiley & Sons, New York, USA, Chapter 2, 21-36.

SINDHWANI, V. AND K e e rth i, S. S. 2007. Newton methods for fast solution of semi­
supervised linear svms. Large Scale Kernel Machines, 155-174.

Sm ith, R. L. 1984. Efficient monte carlo procedures for generating points uniformly
distributed over bounded regions. Operations Research 32; 6, 1296-1308.

S m ola , A., G r e t to n , A., Song, L., a n d S ch o lk o p f, B. 2007. A Hilbert space
embedding for distributions. In Algorithmic Learning Theory. Springer, 13-31.

S rip e ru m b u d u r, B. K., G r e t to n , A., Fukum izu, K., S ch o lk o p f, B., an d
L a n c k r ie t , G. R. 2010. Hilbert space embeddings and metrics on probability measures.
JMLR 11, 1517-1561.

Strehl, A. Clusterpackmatlab toolbox. http://www.ideal.ece.utexas.edu/~strehl/soft.html.

S t r e h l , A. a n d G hosh, J. 2003. Cluster ensembles — a knowledge reuse framework
for combining multiple partitions. J. Mach. Learn. Res. 3, 583-617.

S u g a r , C. A. a n d James, G. M. 2003. Finding the number of clusters in a dataset: an
information-theoretic approach. Journal o f the American Statistical Association 98; 463,
pp. 750-763.

Suzuki, J. a n d Iso zak i, H. 2008. Semi-supervised sequential labeling and segmentation
using giga-word scale unlabeled data. Proceedings ofACL-08: HLT, 665-673.

T a la g ra n d , M. 1994. Sharper bounds for gaussian and empirical processes. The Annals
ofProbability 22; 1, pp. 28-76.

Tan, P.-N., S te in b ach , M., a n d K um ar, V. 2005. Introduction to Data Mining, (First
Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

T h e o d o rid is , S. a n d K o u tro u m b as, K. 2006. Pattern Recognition. Elsevier.

http://www.ideal.ece.utexas.edu/~strehl/soft.html

125

T ib sh iran i, R., W a lth e r , G., a n d H a s tie , T. 2001. Estimating the number of clusters
in a data set via the gap statistic. Journal o f the Royal Statistical Society: Series B
(Statistical Methodology) 63; 2, 411-423.

Topchy, A. P., Jain , A. K., a n d P unch , W. F. 2003. Combining multiple weak
clusterings. In ICDM. IEEE Computer Society, 331-338.

TOUSSAINT, G. T. 1985. A simple linear algorithm for intersecting convex polygons. The
Visual Computer 1; 2, 118-123.

T re v o r , H., R o b e rt, T., a n d Jerom e, F. 2001. The elements of statistical learning:
data mining, inference and prediction. New York: Springer-Verlag 1; 8, 371-406.

T sa n g a r is , M. M. an d N au g h to n , J. F. 1992. On the performance of object clustering
techniques. In Proceedings o f the 1992 ACM SIGMOD International Conference on
Management o f Data. SIGMOD ’92. ACM, New York, NY, USA, 144-153.

Vaidya, J. a n d C l if to n , C. 2003. Privacy-preserving k-means clustering over vertically
partitioned data. In Proceedings o f the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’03. ACM, New York, NY, USA, 206-215.

V a i l la n t , M. a n d G launE s, J. 2005. Surface matching via currents. In Proc.
Information Processing in Medical Imaging. Vol. 19. 381-92.

V inh, N. X. a n d Epps, J. 2009. A novel approach for automatic number of clusters
detection in microarray data based on consensus clustering. In Bioinformatics and Bio­
Engineering, 2009. BIBE ’09. Ninth IEEE International Conference on. 84-91.

VURAL, V., FUNG, G., Dy, J. G., AND Rao, B. 2008. Fast semi-supervised svm
classifiers using a priori metric information. Optimisation Methods and Software 23; 4,
521-532.

Wagner, S. and Wagner , D. 2007. Comparing clusterings - an overview. Tech. Rep.
2006-04, ITI Wagner, Informatics, Universitat Karlsruhe.

W ahba, G. 1990. Spline Models fo r Observational Data. Society for Industrial and
Applied Mathematics.

W ang, F., y a n g , C., Lin, Z., Li, Y., an d Y uan, Y. 2010. Hybrid sampling on mutual
information entropy-based clustering ensembles for optimizations. Neurocomputing 73; 7­
9, 1457- 1464.

W ang, H., W ang, W., y a n g , J., an d Yu, P. S. 2002. Clustering by pattern similarity
in large data sets. In Proceedings o f the 2002 ACM SIGMOD International Conference on
Management o f Data. SIGMOD ’02. ACM, New York, NY, USA, 394-405.

WURST, M., M orik , K., AND M iersw a, I. 2006. Localized alternative cluster ensembles
for collaborative structuring. In ECML. 485-496.

Xu, R. AND WUNSCH, D. 2009. Clustering. IEEE Press Series on Computational
Intelligence. Wiley-IEEE Press.

126

XU, R., WUNSCH, D., ET AL. 2005. Survey of clustering algorithms. Neural Networks,
IEEE Transactions on 16; 3, 645-678.

Ye, J., C hen, K., Wu, T., Li, J., Z hao, Z., P a te l , R., Bae, M., J a n a rd a n , R., Liu,
H., A le x a n d e r , G., a n d Reim an, E. 2008. Heterogeneous data fusion for alzheimer’s
disease study. In Proceeding o f the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’08. ACM, New York, NY, USA, 1025-1033.

Yu, S., de M o o r, B., a n d M o reau , Y. 2008. Clustering by heterogeneous data fusion:
framework and applications. In Learning from Multiple Sources Workshop (NIPS 2008).

Y u ille , A. L. a n d R a n g a ra ja n , A. 2001. The concave-convex procedure (cccp). In
Advances in Neural Information Processing Systems 14, T. G. Dietterich, S. Becker, and
Z. Ghahramani, Eds. 1033-1040.

Z h an g , J., Z h an g , Z., X iao, X., Y ang, Y., a n d W in s le t t , M. 2012. Functional
mechanism: regression analysis under differential privacy. PVLDB 5; 11, 1364-1375.

Z h an g , T., R a m ak rish n a n , R., a n d Livny, M. 1996. BIRCH: an efficient data
clustering method for very large databases. ACM SIGMOD Record 25; 2, 103-114.

Z h an g , Y. a n d Li, T. 2011. Consensus clustering + meta clustering = multiple consensus
clustering. In FLAIRS Conference, R. C. Murray and P. M. McCarthy, Eds. AAAI Press,
Palm Beach, USA.

Z hao , W., M a, H., a n d He, Q. 2009. Parallel k-means clustering based on mapreduce.
In Proceedings o f the 1st International Conference on Cloud Computing. CloudCom ’09.
Springer-Verlag, Berlin, Heidelberg, 674-679.

Z hou, B., C heung , D. W.-L., a n d K ao, B. 1999. A fast algorithm for density-based
clustering in large database. In Proceedings o f the Third Pacific-Asia Conference on
Methodologies fo r Knowledge Discovery and Data Mining. PAKDD ’99. Springer-Verlag,
London, UK, 338-349.

Z hou, D., Li, J., a n d Z ha, H. 2005. A new mallows distance based metric for comparing
clusterings. In Proceedings o f the 22nd International Conference on Machine Learning.
ICML ’05. ACM, New York, NY, USA, 1028-1035.

Z hou, D., RAO, W., AND Lv, F. 2010. A multi-agent distributed data mining model
based on algorithm analysis and task prediction. In Information Engineering and Computer
Science (ICIECS), 2010 2nd International Conference on. 1-4.

Zh u , X. 2005. Semi-Supervised Learning Literature Survey. Tech. rep., Computer
Sciences, university of Wisconsin-Madison.

D IS S E M IN A T IO N O F T H IS W O R K

• Spatially-Aware Comparison and Consensus for Clusterings.

Parasaran Raman, Jeff M. Phillips, Suresh Venkatasubramanian.

Proceedings of the Eleventh SIAM International Conference on Data Mining (SDM), April

2011.

• Generating a Diverse Set of High-Quality Clusterings.

Jeff M. Phillips, Parasaran Raman, Suresh Venkatasubramanian.

Proceedings of the Second MultiClust Workshop: Discovering, Summarizing and Using

Multiple Clusterings (held in conjunction with ECMLPKDD 2011), September 2011.

• Power to the Points: Validating Data Memberships in Clusterings.

Parasaran Raman, Suresh Venkatasubramanian.

Proceedings of the Thirteenth IEEE International Conference on Data Mining (ICDM),

December 2013 (To appear).

• Large Scale Transductive SVM via Adaptive Subsampling.

Parasaran Raman, Suresh Venkatasubramanian, Kilian Q. Weinberger.

Submitted to 31st International Conference on Machine Learning (ICML) 2014. Under

review.

• Generating a Diverse Set of High-Quality Clusterings.

Jeff M. Phillips, Parasaran Raman, Suresh Venkatasubramanian.

Submitted to ACM Transactions on Knowledge Discovery from Data (TKDD). Under

review.

