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ABSTRACT

The explosion in computing power and its application to complex multiphysics

problems has led to the emergence of computer simulation as a new way of extend-

ing the inductive methods of science. Many fields, particularly combustion, have been

greatly changed by the ability of simulation to explore in great detail the implications

of theories. But problems have also arisen; a philosophical foundation for establishing

belief in simulation predictions, particularly important for complex multiphysics systems

where experimental data are sparse, is sorely lacking. Toward the end of establishing

such a foundation, a comprehensive philosophical approach to model validation, called

instrumentalism, is proposed.

A framework for verification and validation/uncertainty quantification (V&V/UQ)

of codes is presented in detail, and is applied to a novel entrained flow coal gasification

model implemented in the massively parallel simulation tool Arches. The V&V/UQ

process begins at the mathematical model. The novel coal gasification model, which

utilizes the direct quadrature method of moments (DQMOM) for the solid phase and

large eddy simulation (LES) for the gas phase and accounts for coupling between the gas

and solid phases, is described in detail. A verification methodology is presented in the

larger context of validation and uncertainty quantification, and applied to the Arches

coal gasification model.

A six-step validation framework is adopted from the literature and applied to the

validation of the Arches gasification model. One important aspect of this framework

is model reduction, creating surrogate models for complex and expensive multiphysics

simulators. A procedure for constructing surrogate response surface models is applied

to the Arches gasification model, with several statistical analysis techniques used to

determine the goodness of fit of the coal gasification response surface.



This response surface is then analyzed using two methods: the Data Collabora-

tion methodology, an approach from the literature; and a Monte Carlo analysis of the

response surface. These analyses elucidate regions of parameter space where the simu-

lation tool makes valid predictions. The Monte Carlo analysis also yields probabilities

of simulation validity, given input parameter values. These probabilities are used to

construct a prediction interval, which can then be used to compute the probability of a

consistent simulation prediction.
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CHAPTER 1

INTRODUCTION

The basic tool for the manipulation of reality is the manipulation of words.

Philip K. Dick

1.1 Model Validation

The evolution of the field of simulation has been occurring at an exponential pace,

largely following Moore’s Law. The proliferation of simulation as a methodology for

exploring theories and their implications has been just as rapid. There is a great deal of

optimism among the scientific community about the potential of simulation to change

the face of science [1]. However, it has, like many fields of science at some point in their

history, reached a point where a crisis of faith is nearly inevitable: many concepts inher-

ent in constructing computational models and quantitatively determining levels of belief

in their results have yet to be firmly established. There are many epistemic problems

with computer simulations that are either ignored or are implicitly answered incorrectly,

and without addressing these questions, simulation cannot mature as a science.

Other fields, such as mathematics, have experienced a similar cycle: the advent of

a tool (e.g., the calculus); its widespread use and feeling that it is capable of providing

answers to almost any question; a crisis of faith precipitated by epistemic questions

(e.g., “Do we actually know what a differential is?” “How can this concept be applied

successfully if it isn’t even defined rigorously?”); and a subsequent improvement of the

tool through increased rigor and better definitions. While some are addressing the

epistemic questions of simulation [2–5], most are ignoring them and treating simulations
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as magic answer boxes (more magical than an ordinary black box). The rush to publish

often trumps the need to find answers to philosophical questions.

Validation is central to all of these epistemic questions. By addressing validation,

it will be possible to advance simulation science beyond its current capabilities, not just

by bringing more power to bear on problems, but by developing a consistent approach

to how one determines when a model is true and how much belief one should place in

model predictions.

1.2 Coal Gasification

Coal is an abundant and increasingly important source for domestic energy produc-

tion in the United States; the Energy Information Administration estimates that 28%

of the world’s coal is located in the United States, more coal than is found in Russia,

China, or India [6]. Electrical power from coal accounts for 42% of the world’s electric-

ity [6], and 51% of the United States’ electricity [7]. However, while coal is abundant

and ubiquitous, it is a major source of pollution; although 51% of electricity in the

U.S. comes from coal, CO2 emissions from coal accounted for 80% of CO2 emissions

from electrical utilities [8]. Coal is also a source of black carbon, another contributor to

global warming, as well as heavy metal compounds like mercury. Cleaner and more effi-

cient utilization of coal by utilities is critical. Many proposed ideas for CO2 separation

or mitigation exist, ranging from gasification to chemical looping, oxy-fuel combustion,

and underground thermal treatment of coal.

Gasification of coal offers a versatile and clean method for converting coal into

gaseous fuel. In gasification, the solid fuel (coal) is oxidized in a fuel-rich environment

at a high temperature and pressure. Under these conditions, the coal is broken apart into

a gaseous mixture of CO and H2, which compose syngas fuel, the primary product of coal

gasification, along with other products, such as CO2 and H2O. In addition to producing

combustible gaseous fuel, coal gasifiers are also more efficient than traditional coal-fired

boilers, both in thermal conversion of energy and in power cycle design. Additionally,
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gasification provides a method for converting fossil fuels to chemical feedstocks such as

ammonia or methanol.

However, coal gasification is still poorly understood. Coal is an extremely com-

plex fuel, and the physical processes occurring in a gasifier span enormous length and

time scales and involve large amounts of energy. Comprehensive models describing coal

gasification must account for a large number of coupled physical processes. In order

to attain better understanding of gasification for the design and retrofit of applied-scale

gasifiers, simulation tools that can handle these complex systems must be developed and

the accuracy of their predictions quantified. For this reason, computer simulation has

the potential to offer much-needed insight into coal gasification and offer a predictive

capability to industry. Development of large-scale computational models and assessment

of their predictive capabilities is a critical step in this process.

1.2.1 Coal Gasification and Combustion Models

Coal has been utilized as an energy source by humans for centuries. Despite this,

coal combustion and gasification are not well-understood problems, and it is likely coal

reserves will run out before they become well-understood problems. The common treat-

ment of coal combustion and gasification is through empiricism; descriptions of the

fundamental physical mechanisms driving coal processes have received attention only

recently.

The existing body of literature related to coal utilization is substantial, in part

because of the many facets of the problem. Anderson et al. [9] compiled an extensive

amount of information addressing characterization and utilization of coal, but did not

address modeling of coal systems. Smoot and Pratt [10] gave an overview of the major

physical processes governing coal combustion and gasification, and included some math-

ematical models describing these processes. Several researchers have compiled these

mathematical models into comprehensive computer models. Smoot and Smith [11] pro-

vided an extensive review of such modeling strategies, and implemented them to create

a computer model for coal combustion and gasification, PCGC-2 and -3 [12, 13]. All of
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these references are widely cited and have formed an established starting point for much

research in the coal community.

Comprehensive coal models must address a complex multiphysics problem by incor-

porating a multitude of submodels. Additionally, there are a large number of controlling

physical and chemical mechanisms in coal gasification [11, 14]. These varied physical

processes include gas-phase turbulent mixing [15–17], turbulent particle mixing [18–20],

convective and radiative heat transfer (both from the gas and from the particles) [19,21],

coal devolatilization [22–26], and heterogeneous char oxidation [27–30].

The primary emphasis in this work is on the implementation of a novel combination

of the direct quadrature method of moments (DQMOM) with large eddy simulation

(LES) to simulate coal gasification. This implementation was performed in a massively

parallel simulation tool called Arches and includes physical models for the dispersed

coal phase, gas phase turbulence and combustion models, and coupling between the two

phases. The mathematical formulation is covered in great detail in Chapter 2 and in the

Appendices.

1.3 A Need for Epistemology

Simulation science is one of the newest branches of science to emerge. This branch of

science applies computers to the numerical solution of mathematical models, composed

of systems of equations, to create representations of reality. Scientific understanding

of the world around us is bounding forward, leading to increasingly complex models

accounting for more physical phenomena and incorporating more mathematics. This

forward progress is matched by a tremendous increase in capability of computational

hardware, as well as a corresponding increase in the complexity and scale of scientific

software. While the numerical methods underlying computational implementations of

mathematical models have been around much longer than computers, the scale at which

these methods can be applied has increased by many orders of magnitude, opening up

entirely new domains of application.
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But despite the rapid growth and drastic changes to science that simulation has

brought, simulation science has not reached a stage of maturity enjoyed by other, more

established fields. The question of how to quantify how well a computer model matches

reality (or even how well a computer model matches its corresponding mathematical for-

mulation) is still being debated. While some progressive scientific journals have adopted

policies that take modest steps forward, and while some authors have made urgent and

long-standing calls for standards, a consistent epistemology for simulation is still lacking.

Loosely defined, epistemology is the study of knowledge. It poses the questions:

When do we consider simulation results true? Why do we believe simulation results?

How do we justify our belief in simulation results? For established fields, such as math-

ematics or scientific experimentation, a consistent epistemology has already been es-

tablished, and is well developed as a result of decades or centuries of debate. Mature

scientific fields like mathematics have experienced crises of faith that are precipitated by

epistemic questions. These lead to debate, proliferation of new methods, and a general

strengthening of the field’s foundations.

A debate of the epistemic foundations of mathematics has been ongoing for over a

century [31]. Bertrand Russel, who, along with A. Whitehead, attempted to construct

a consistent epistemology for mathematics, famously said that “mathematics may be

defined as the subject in which we never know what we are talking about, nor whether

what we are saying is true” [32]. Addressing such questions almost never results in

more certainty. But the result of confronting such difficult epistemic questions is the

strengthening of the scientific field in question and the development of new methods to

address or account for these uncertainties.

1.3.1 The Role of Probability

Scientific experimentation has also confronted epistemic questions, which has led

to the understanding of experimental error and bias, and has contributed immeasurably

to probability theory. Probability provides a language in which to couch experimen-

tal observations and their associated uncertainties, a significant acknowledgement that
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experimental measurements do not exactly measure truth, but rather make statements

or put conditions on truth. Concepts of probability underlying quantification of experi-

mental uncertainty can be traced as far back as Jacob Bernoulli in the 16th century, who

presented one of the first mathematical approaches to measurement of uncertainty [33].

The application of probability to astronomical measurements was the topic of a letter

from Thomas Simpson, read to the Royal Society, entitled “On the Advantage of Taking

the Mean of a Number of Observations, in Practical Astronomy,” which began:

My Lord,

It is well known to your Lordship, that the method practiced by astronomers, in
order to diminish the errors arising from the imperfections of instruments, and
of the organs of sense, by taking the Mean of several observations, has not been
so generally received, but that some persons, of considerable note, have been of
opinion, and even publicly maintained, that one single observation, taken with due
care, was as much to be relied on as the Mean of a great number. [34]

Probability theory provides the language and the tools needed to address epistemic

questions. Epistemology of simulation is clearly not black-and-white: simulations must

predict many quantities, some of which are field values, vectors, or tensors; different

simulations are expected to match experimental data to varying levels (i.e., the cheaper

the model, the less agreement is expected); there are varying levels of confidence in the

model predictions of experimental data; and the goal of simulations is typically to make

predictions about a real system for which there are no data. All of these challenges are

very unique, but probability theory provides mechanisms for dealing with all of these

challenges in a quantitative and objective way.

As an example of how probability can contribute to a consistent system of episte-

mology, Bayesian statistics can be used to formally incorporate evidence to determine

its impact on hypotheses. Bayes’ theorem is defined as:

P (A|B) =
P (B|A)P (A)

P (B)
(1.1)



7

where A and B are events (these can be thought of a hypotheses and data, respectively).

P (A) and P (B) are the prior probabilities of A and B, and P (A|B) is the conditional

probability of event A given event B, and vice-versa for P (B|A). This can be applied,

for example, to a case of confirming a hypothesis H1, given data observed from an

experiment E1. There are a set of alternative hypotheses Hi, i = 2 . . . N . Bayes’

theorem can be applied to determine P (H1|E1), the probability of hypothesis H1 being

correct conditioned on the experimental data E. Applying the theorem yields:

P (H1|E1) =
P (E1|H1)P (H1)

P (E1)
(1.2)

but P (E1) can be expressed as:

P (E1) =
N∑
i=1

P (E1|Hi) (1.3)

= P (E1|H1)P (H1) +
N∑
i=2

P (E1|Hi)P (Hi) (1.4)

(this assumes that all possible explanations, or hypotheses, for an explanation of the

experiment have been proposed). This makes P (H1|E1):

P (H1|E1) =
P (E1|H1)P (H1)

P (E1|H1)P (H1) +
∑N

i=2 P (E1|Hi)P (Hi)
(1.5)

Next, if new experimental data E2 are gathered that disprove a hypothesis H2, then

P (H2|E2) = 0. In this case, P (H1|E1) can be reexpressed as:

P
Ä
H1|E1

⋂
E2

ä
=

P (E1
⋂
E2|H1)P (H1)

P (E1
⋂
E2|H1)P (H1) +

∑N
i=3 P (E1

⋂
E2|Hi)P (Hi)

. (1.6)

This can be continued, with additional experimental data E3 gathered that disproves

hypothesis H3, and so on, until eventually all probabilities P (E1
⋂ · · ·⋂EN |Hi) i =

2 . . . N are zero. This makes the probability of the hypothesis:
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P
Ä
H1|E1

⋂
· · ·

⋂
EN

ä
=

P (E1
⋂ · · ·⋂EN |H1)P (H1)

P (E1
⋂ · · ·⋂EN |H1)P (H1) + δ

= 1 (1.7)

so that, for δ = 0, the hypothesis is proven. The condition of δ = 0 rests on the assump-

tion that all possible hypotheses explaining the experimental data have been proposed;

if there is an alternative hypothesis that explains the experimental data E1
⋂ · · ·⋂EN ,

then δ �= 0 and the probability of H1 is no longer 1. Thus, a Bayesian statistical

framework for epistemology allows for justification of inductive logic, and quantitative

adjustment of justification for beliefs based on new data.

Sherlock Holmes, a famous Bayesian, stated: “Most people, if you describe a train

of events to them, will tell you what the result would be. They can put those events

together in their minds, and argue from them that something will come to pass. There

are few people, however, who, if you told them a result, would be able to evolve from

their own inner consciousness what the steps were that led to that result. This power

is what I mean when I talk of reasoning backward, or analytically” [35]. Probability

provides a language for logical justification of such inductive logic. Induction allows

statements to be made about risky or uncertain outcomes, and as such, it is an entirely

appropriate language for uncertain systems and for making predictions under uncertain

conditions. As the famous theoretical physicist Wolfgang Pauli put it, “the inductive

inferences of the natural sciences are always probability inferences” [36].

1.3.2 The Validation Casino

Like gamblers at the roulette table, scientists are making decisions about the out-

come of uncertain systems, with some wager on the line (often this is human health, or

the safety or efficiency of a particular system). The difference, however, is that scientists

are continually forced to make such wagers, while the gambler can walk away from the

betting table at any time. This analogy can be used to demonstrate the importance
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of answering philosophical questions and using tools such as probability, as well as the

fallacy of ignoring them.

The initial wave of euphoria that has resulted from the advent and application

of simulation is much like the wave of euphoria of a first-time gambler who wins big.

Finally, he or she has found a magical way to double or triple their cash. With a

streak of successes, the euphoria becomes greater, and the gambler wagers more money.

But eventually, this ideal system comes crashing down around the gambler. Betting

more and more, he or she begins to lose big. This causes a loss of faith in the magical

money-making scheme. However, after some time, and much experience, the gambler

understands that the system poses rewards as well as pitfalls and traps, and begins to

understand these rewards and pitfalls. The gambler is then able to develop a betting

system to get around the pitfalls and collect the rewards.

Mother Nature runs a crooked game. But as gamblers know, a crooked game pro-

vides opportunities for betting systems. With enough observations, gamblers can begin

to develop models of the roulette wheel, starting with simple models (“The roulette

wheel lands on black 45% of the time and red 55% of the time”), and progressing to

more complex models (“The probability of the roulette wheel landing on the number N

is given by the following formula...”). Posing philosophical questions is an important

part of this process, too: how much does one trust the roulette wheel model? Such

questions address levels of belief in models. Implicit in this question is, how much is one

willing to bet that the model of the roulette wheel is correct? This question addresses

the values that are held by the decision-maker.

1.4 Parlance

The following sections address some concepts important to the entire work. These

concepts are defined in greater detail later, but it is important to establish nomenclature

first.
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1.4.1 What Is Truth?

When Pontius Pilate asked the question, “What is truth?,” he was looking for an

explanatory answer. However, the question will be answered here with a mere definition.

Truth can be divided into rational truth and empirical truth. Rational truth, which

may also be called mathematical truth, is logic-based, while empirical truth arises from

observations of physical reality. This distinction between rational and empirical truth has

been made by many philosophers, including Immanuel Kant (who referred to rational

truth statements as “analytic a priori ” statements and empirical truth statements as

“synthetic a posteriori ” statements) [37], David Hume (who referred to them as “relations

of ideas” and “matters of fact,” respectively) [38], and Alfred Ayer (who divided these

truths into analytic statements and empirically verifiable statements,1 respectively) [39].

This distinction between rational truth and empirical truth is of upmost importance

for the purpose of verification and validation/uncertainty quantification (V&V/UQ).

Verification operates in the realm of rational truth (also called mathematical truth),

while validation operates in the realm of empirical truth.

1.4.2 What Is Reality?

Empirical truth may be loosely defined as what is really “out there,” outside of

ourselves. Rationalism and realism are philosophies that presume that meaningful, ob-

jective statements can be made about this reality, independent of ourselves. This equates

reality to empirical truth. Phenomenalists and empiricists, on the other hand, hold that

statements about reality are statements about subjective reality, that the only “out

there” is “in here,” and that we cannot make meaningful objective statements indepen-

dent of ourselves because we cannot have knowledge beyond ourselves. Reality is what

we percieve, and nothing more: reality is not empirical truth, it is empirical observation;

empirical truth is unknowable. Such points may seem pedantic, but it will be shown in
1A potentially confusing entanglement of the computational engineering community’s use of the

term “verification” with the activity that the community calls “validation,” probably resulting from the
fact that “validatable” wasn’t as catchy a term.
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Chapter 4 and elsewhere that the answers to such questions have strong implications for

the validation process and how one judges a model.

1.4.3 What Is a Model?

There is a common perception, both in and outside of science, that the universe is

governed by certain “laws,” many of which have been “found” and can be expressed in

mathematical form (e.g., Newton’s Laws of Motion). However, such laws are not laws at

all; they are, in fact, models. Models are simplified descriptions of reality. Various levels

of detail in the model description are possible, ranging from mental rules of thumb to

multiscale, multiphase mathematical models. But models should never be mistaken for

empirical truth.

Let there be no misunderstanding: models must follow the laws of reality, not the

other way around. Even such fundamental equations as governing equations, e.g., the

continuity equation or the Navier-Stokes equation, are merely models. And, as George

Box stated, “Essentially, all models are wrong, but some are useful” [40].

1.4.4 Error vs. Uncertainty

It is important to distinguish between the use of the terms “error” and “uncertainty.”

Error refers to the deviation of a measured or calculated quantity from the truth, whether

mathematical or empirical truth. For an equation with an exact, analytical solution, this

is straightforward to calculate, because the true value of the solution can be evaluated

with arbitrary accuracy. Error can be defined as:

e = y − ŷ

where e is the error, y is the true value of a quantity (true in either the mathematical or

empirical sense), and ŷ is the approximation of y (measured or computed). Mathematical

error refers to an error e for which y is a mathematically true quantity and ŷ is a model, or
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computed, value, whereas empirical error refers to an error for which y is an empirically

true quantity and ŷ is an experimental measurement. The empirically true quantity

does not come from experiment, and is unknown; only the experimental measurement is

known.

Uncertainty, in contrast, is used when the truth cannot be calculated or measured,

and so the error must be approximated. Uncertainty is an interval which is believed to

bound the truth (or error, a quantity defined by truth), with some level of belief. In the

case of experimental measurements, this level of belief (also called a confidence level) is

used to construct information about reality. A full statement about the uncertainty U

thus consists of an uncertainty, which is an interval that bounds the truth:

U : l ≤ e ≤ u

and the level of belief in those bounds, denoted:

U |B (1.8)

where l and u are the lower and upper bounds on uncertainty, respectively, and B is the

level of belief about the error e being bounded by l and u. Like error, uncertainty can

be mathematical uncertainty2 (which is treated as analogous with numerical uncertainty

for the purposes of this work), which is a bounds on mathematical error, or empirical

uncertainty, which is a bounds on empirical error.
2Mathematical uncertainty may be easily conceived for complex nonlinear equations with no ana-

lytical solution, but uncertainty also exists for such simple mathematical statements as 2+2 = 4; while
it is very safe to say that 2 + 2 = 4, it is very cumbersome to prove it is true starting from purely
logical principles (see Russell and Whitehead’s Principia Mathematica [41] for one such attempt); no
proof satisfactory to the mathematics community has emerged. Indeed, in 1931 Kurt Gödel proved that
attempts to do so were futile (see On Formally Undecidable Propositions of Principia Mathematica and
Related Systems [42]). This type of uncertainty arises from the justification (or lack thereof) provided
for axiomatic principles, the basis for mathematical proofs. However, this particular form of mathe-
matical uncertainty is not at issue here, and is given a thorough treatment elsewhere [31]. It will be
assumed that the fundamental mathematics underlying the techniques used are logically sound.
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1.4.5 Reliability

As mentioned in the Validation Casino allegory, making risky decisions based on

model predictions involves two questions, one explicit and one implicit. The explicit

question is, “When can the model be trusted?” The implicit question is, “How much

should be wagered on the outcome of the model?” A level of belief or reliability in a

quantity may be established to help answer these questions about predictivity. This

important concept of level of belief is addressed in Chapter 6, where a quantitative level

of belief is given for the validity of a model.

1.5 Dissertation Roadmap

The dissertation consists of several pieces. Chapter 2 gives a detailed mathematical

description of the coal gasification model, including the large eddy simulation (LES) gas

phase turbulence model, the direct quadrature method of moments (DQMOM) dispersed

phase model used to model the coal particles, and the relevant physical models for the

coal particles. Several derivations relevant to equations given in Chapter 2 are covered

in Appendices C, D, E, and F.

Chapter 3 begins the coverage of the verification and validation/uncertainty quan-

tification (V&V/UQ) procedure by addressing the verification methodology used for the

Arches coal gasification model. The numerical error and uncertainty in the gasification

model are quantified, and a discussion of verification in the larger context of V&V/UQ

is given.

Chapter 4 covers the overall postverification validation process, whereby the agree-

ment of a model with experimental data are quantified. A framework is adopted from

the literature and applied to validation of the Arches coal gasification model.

Chapter 5 covers a particularly critical step in the validation of expensive compu-

tational models such as Arches, which is creation of surrogate models for use in the

validation procedure. Response surfaces for each coal gasification system response are
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constructed, and a detailed statistical analysis is performed to quantify goodness of fit

of the response surfaces.

Chapter 6 utilizes these response surfaces in the validation analysis. Two validation

methodologies are used, the Data Collaboration approach (a validation methodology

from the literature) and a Monte Carlo sampling approach. These methodologies are

used to explore the characteristics of the response surfaces and determine where in

parameter space the Arches gasification model makes valid predictions. The Monte

Carlo results are then used to construct a prediction interval, which is a prediction of

the probability of a model response being valid.



CHAPTER 2

COAL GASIFICATION MODEL FORMULATION

Our present analytical methods seem unsuitable for the solution of the important

problems arising in connection with nonlinear partial differential equations and, in fact,

with virtually all types of nonlinear problems in pure mathematics. The truth of this

statement is particularly striking in the field of fluid dynamics...

John von Neumann

2.1 Overview

This chapter establishes the mathematical bedrock in which the Arches coal gasi-

fication model is anchored. The chapter begins with a description of the governing

equations of the multiphase coal gasification system being modeled. This begins with

large eddy simulation (LES), which filters the governing equations to exclude small scale,

high frequency turbulent length scales. The LES governing equations implemented in

the Arches model are described (Section 2.2). Next, a detailed description of the coal

particle is given, starting with the single particle probability density function (PDF),

which describes the probability of a single particle having certain independent variable,

or internal coordinate, values, such as temperature or composition (Section 2.3.1). This

single particle PDF can be extended to describe all particles in a system, which is the

particle number density function (NDF). The NDF describes the number of particles

in a population having certain internal coordinate values. The transport equation for

the number density function is a central equation in the multiphase direct quadrature

method of moments (DQMOM) and its implementation in the LES coal gasification
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model (Sections 2.3.2, 2.3.3, and 2.3.4). The direct quadrature method of moments

provides a method for tracking the transport and evolution of the particle NDF. The

governing equations for quantities pertinent to coal systems (particularly the coal gas

mixture fraction) are also given. The equations describing the solid phase reactions,

physics, and chemistry are also described.

Next, the discretization of the equations describing the solid phase coal is described,

and the relevant DQMOM equations are given. This provides a solid phase flow descrip-

tion to supplement the solid phase physics description. These two descriptions of the

solid phase complement each other; this relationship is also described.

Finally, the Arches computational LES tool, which is the model that is extended to

simulate coal gasification using DQMOM-LES, is briefly described.

2.2 Large Eddy Simulation Equations

A dispersed phase model was implemented in a large eddy simulation turbulence

code. However, in order to cover the implementation of any dispersed-phase model, the

implementation of the gas phase turbulence model must first be covered, as different

turbulence modeling methodologies resolve and model flow field quantities very differ-

ently. Turbulence models can generally be classified into three groups: direct numerical

simulation (DNS) models, Reynolds-averaged Navier Stokes (RANS) equation models,

and large eddy simulation (LES) models [16].

DNS resolves all relevant length and time scales of turbulence, covering multiple

orders of magnitude in length scales, and thereby minimizes the dependence of the results

on the models used. DNS also utilizes high-order numerical methods to marginalize the

impact of numerical error and uncertainty on the simulation results. However, it is

severely limited in its range of applicability due to the extremely high cost of resolving

such a large range of length scales and including high-fidelity physical submodels.

RANS models, which solve a time-averaged governing equation, offer an alternative

that is computationally tractable for realistic large-scale problems with complex geome-
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tries. However, the tradeoff is that RANS does not resolve any length or time scales of

the flow; all effects of turbulence on the flow field are smeared out by a time-averaging

process, and are replaced with models. Because of its computational feasibility, it has

become ubiquitous in the computational fluid dynamics (CFD) community.

Large eddy simulation [43] provides a middle ground between RANS and DNS.

Given that only 0.02% of scales are large and energy-containing [16], LES resolves only

these large scales, and models small scales. This approach is based on the assumption

that the fluid is locally isotropic below a certain scale (the Kolmogorov hypothesis [44]).

This procedure is done using a low-pass filter kernel, where the smallest resolved scale

is the filter width. Models for scales smaller than the filter width are denoted subfilter

scale (SFS) models.

The large eddy simulation equations in the computational LES tool are implemented

in a finite volume formulation. First, the mass balance may be written:

ˆ
V

∂ρ

∂t
dV +

ˆ
V
∇ · (ρu) dV =

ˆ
V
SρdV (2.1)

where ρ is density, V is a control volume, u is the fluid velocity vector, and Sρ is a mass

source term (0 in most cases, but not when there is a phase change in the system).

Next, applying a box filter (following Pope’s definition [16]),

φ =
1

Δ3

˙
x

H

Å
1

2
Δ− r

ã
φ (x, t) dr, (2.2)

and a Favre filter following [45],

φ̃ =
ρφ

ρ
, (2.3)

the filtered continuity equation becomes
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ˆ
V

∂ρ

∂t
dV +

ˆ
V
∇ · (ρṽ) dV =

ˆ
V
S̃ρdV . (2.4)

(Note that because velocities are solved on a staggered mesh, the treatment of the

velocities is slightly more complex than presented here, because they are face-filtered

quantities; the reader is referred to [46] for further details.) No unclosed turbulent sub-

grid term appears in the filtered continuity equation due to the Favre filtering definition

(2.3).

The same operations may be performed on the momentum equation,

ˆ
V

∂ (ρv)

∂t
dV +

ˆ
V
∇ · ρvvdV =

ˆ
V
[∇ · τ −∇p+ ρg + Sρv] dV (2.5)

where the quantity τ is the deviatoric stress tensor, τij = 2μSij − 2

3
μ
∂vk
∂xk

δij , Sij is the

symmetric stress tensor Sij = 1
2

Ç
∂vi
∂xj

+
∂vj
∂xi

å
, and the second term in τij , the trace,

may be incorporated into the pressure term ∇p and computed as part of a pressure

projection algorithm, as is done in Arches [46]. The source term Sρv is a momentum

source term that accounts for momentum transfer from other phases. Applying filtering

yields the LES momentum equation,

ˆ
V

∂ρṽ

∂t
dV +

ˆ
V

∂

∂xi
(ρṽṽ) dV =

ˆ
V

î
∇ · τ +∇ · τSGS −∇pδij + ρgdV + S̃ρv

ó
dV .

(2.6)

The subgrid stress term τSGS may be modeled using a variety of different methods [43].

In Arches, the dynamic local model was used [47] (the reader is once again referred

to [46] for further details of the formulation for, and implementation in, Arches.)

The energy balance is given by:

ˆ
V

∂ (ρh)

∂t
dV +

ˆ
V
∇ · (ρvh) dV =

˛
S
k∇h · dS −

ˆ
V
∇ · q dV +

ˆ
V
ShdV (2.7)

where q is the heat flux, accounting for convection, diffusion, and radiation, and Sh is

an enthalpy source term from another phase; when filtered, this becomes:
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ˆ
V

∂
Ä
ρh̃
ä

∂t
dV +

ˆ
V
∇ ·
Ä
ρṽh̃
ä
dV =

˛
S
k∇h̃ · dS −

ˆ
V

î
∇ · q̃ + qSGS

h + S̃h

ó
dV (2.8)

where qSGS
h is the subgrid enthalpy dissipation containing the unresolved effects of tur-

bulence on the enthalpy.

Finally, the mixture fraction equation, given by

ˆ
V

∂ (ρf)

∂t
dV +

ˆ
V
∇ · ρvf dV =

ˆ
V
∇ · (D∇f) dV +

ˆ
V
SfdV , (2.9)

where D is the diffusivity and Sf is a mixture fraction source term, can be filtered,

yielding the filtered mixture fraction equation:

ˆ
V

∂ρf̃

∂t
dV +

ˆ
V
∇ ·
Ä
ρṽf̃
ä
dV =

ˆ
V

Ä
∇ ·
Ä
D∇f̃

ä
+∇ · qSGS

f + S̃f

ä
dV . (2.10)

2.3 Coal Particle Equations

To begin, a single coal particle description will be established. From this single

particle description, a description of a large population of coal particles will be derived.

Transport equations describing the evolution of this population will be presented, and

extra terms coming about due to the large eddy simulation filtering will be detailed.

Following Smoot and Smith [11], a single coal particle can be characterized using

several particle independent variables. These are denoted:

1. Raw coal, αcj

2. Char, αhj

3. Particle size, dpj

4. Ash (mineral matter), αaj

5. Particle temperature, Tpj

6. Particle velocity vector, upj

The above quantities use the subscript j to denote the jth particle. α indicates a mass

quantity, so αij represents the mass of quantity i in particle j. The variable r can be

used to denote reaction rates, so that rhj would be the net char reaction rate for the
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Fig. 2.1: Illustrative schematic of coal particle components and reactions.

jth particle. Using this nomenclature, physical processes important to coal particles can

be depicted using Figure 2.1. The raw coal can react to form gaseous volatile matter in

devolatilization reactions (subscript v) and solid char; the solid char can be oxidized to

form more gaseous products. Water contained in the particle will evaporate and form

steam. The ash mass is fixed, and ash is treated as inert.

2.3.1 Single-Particle Probability Density Function

(PDF)

The single particle PDF is a starting point from which an approach for treating the

entire solid phase can be formulated. At a particular location (x, t) = (x0, t), the particle

PDF is a joint velocity-scalar PDF (the velocity random variable vector u denoting the

particle velocity vector with the corresponding particle velocity sample space denoted v,

and the scalar random variable vector ζ denoting the internal coordinate vector with the

corresponding internal coordinate sample space denoted ξ). The Nξ-dimensional PDF

(3 dimensions from the velocity sample space v and Nξ−3 dimensions from the internal
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coordinate sample space ξ) is defined following Section A.3 and denoted as puζ . The

transport equation for puζ can be written (following Section A.3.1) as:

∂puζ (v, ξ;x, t)

∂t
+

∂

∂xi
(vipuζ (v, ξ;x, t)) = − ∂

∂vi
(〈Ai|v, ξ〉 puζ (v, ξ;x, t))

− ∂

∂ξi
(〈Gi|v, ξ〉 puζ (v, ξ;x, t))(2.11)

where the quantities 〈Ai|v, ξ〉 and 〈Gi|v, ξ〉 are conditional quantities that describe the

“velocity” of the PDF in the phase space (v, ξ). That is, Ai is defined by:

Ai =
dvi
dt

(2.12)

and because the right side will depend on v and ξ, the quantity is a distribution. The

particular value of Ai depends on v and ξ, and can be expressed as:

〈Ai|v, ξ〉 . (2.13)

Likewise, Gj is defined by:

Gi =
dξi
dt

(2.14)

and is also a distribution, with a particular value of Gi expressed as a conditional quan-

tity, depending on the value of v and ξ:

〈Gi|v, ξ〉 . (2.15)

These expressions are posed in the same form as most Lagrangian single particle models.

These models are composed of ordinary differential equations for internal coordinates of

individual particles, and a large number of representative particles are tracked in this
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way. Thus, Lagrangian models can also be utilized in Eulerian models, which use a fixed

frame of reference.

It should also be noted that because the variable vi represents the entire veloc-

ity sample space, the particular value of velocity in the transport equation (2.11) is

dependent on the value of pu,ζ (v, ξ;x, t) and is a full distribution.

2.3.2 Population PDF: Number Density Function

(NDF)

The single-particle PDF can be applied to a population of particles, and when

this is done, it is called the number density function (NDF). The NDF describes the

number of particles as a function of its spatial location and as a function of the particle

independent variables, called internal coordinates; these are independent variables for the

particles (for example, particle size, particle composition, etc.). This gives the NDF units

of
[
#/

(
m3 · units of internal coordinates

)]
. The vector of internal coordinate random

values is denoted by ζ, and the internal coordinate sample space is denoted by ξ. When

the particle velocities are considered as internal coordinates, the random values are

denoted by u, and the particle velocity sample space is denoted by v. In the case that

the particle velocities are not considered as internal coordinates, an ensemble average

velocity is used.

The full NDF as a function of internal coordinates, as well as space and time, is

denoted f (v, ξ;x, t). At a fixed location in space and time (x, t) = (x0, t), the number

of particles at that point in space and time is denoted np and is given by:

np (x0, t0) =

ˆ
. . .

ˆ +∞

−∞
f (v, ξ;x0, t0) dξ (2.16)

NDFs can be separated into two classes: univariate and multivariate. Univariate

NDFs are only functions of one internal coordinate, so the internal coordinate sample

space ξ is a single dimension:
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f (ξ;x, t) .

Multivariate NDFs, however, are functions of multiple internal coordinates, so the inter-

nal coordinate sample space has Nξ dimensions:

f (ξ;x, t) = f
Ä
ξ1, ξ2, . . . , ξNξ

; x, t
ä
, (2.17)

or, including the velocity as an internal coordinate,

f (v, ξ;x, t) = f
Ä
v1, v2, v3, ξ1, . . . , ξNξ−3;x, t

ä
(2.18)

(note that Nξ indicates the total number of internal coordinates including particle ve-

locity1).

As indicated, the NDF applies to a population of particles, and arises from applying

the single-particle PDF puζ to each particle in the population. The particle PDF denotes

the probability of the velocity-scalar vector taking on a particular value. At a fixed point

in space and time, (x0, t0), the PDF is related to the NDF:

f (v, ξ;x0, t0) = np (x0, t) puζ (v, ξ;x0, t0) . (2.19)

Relationship (2.16) can be used to reexpress this as:

puζ (v, ξ;x0, t0) =
f (v, ξ;x0, t0)´ +∞

−∞ f (v, ξ;x0, t0) dvdξ
. (2.20)

1While ξ denotes the internal coordinates excluding particle velocity, and so Nξ should likewise
denote the number of internal coordinates excluding particle velocity, this minor inconsistency is signif-
icantly more convenient.
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2.3.3 NDF Transport Equation

The PDF transport equation, given by

∂puζ (v, ξ;x, t)

∂t
+

∂

∂xi
(vipuζ (v, ξ;x, t)) = − ∂

∂vi
(〈Ai|v, ξ〉 puζ (v, ξ;x, t))

− ∂

∂ξi
(〈Gi|v, ξ〉 puζ (v, ξ;x, t)) ,(2.21)

can be multiplied by the function np (x, t), and combined with a number balance equation

so it commutes into each derivative, to yield an NDF transport equation:

∂f (v, ξ;x, t)

∂t
+

∂

∂xi
(vif (v, ξ;x, t)) = − ∂

∂vi
(〈Ai|v, ξ〉 f (v, ξ;x, t))

− ∂

∂ξi
(〈Gi|v, ξ〉 f (v, ξ;x, t))

+h (v, ξ;x, t) (2.22)

where h is a source term representing the birth and death of particles in the domain.

This is zero for coal systems and will be ignored.

The NDF transport equation velocity vi, like the PDF transport equation velocity,

represents the entire velocity variable sample space, so the particular value ui that it

takes on depends on the distribution f (v, ξ;x, t).

2.3.4 Filtered NDF Transport Equation

The operations described above can be performed on the filtered PDF transport

equation (A.40) to yield the filtered NDF transport equation:

∂f (v, ξ;x, t)

∂t
+

∂

∂xi

Ä‹vif (v, ξ;x, t)
ä

= − ∂

∂vi

Ä
〈Ai|v, ξ〉f (v, ξ;x, t)

ä
− ∂

∂ξi

Ä
〈Gi|v, ξ〉f (v, ξ;x, t)

ä
+
∂τsgs,k
∂xk

+
∂τsgs,uk

∂uk
+

∂τsgs,ζk
∂ζk

. (2.23)
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The subgrid scalar flux τsgs,k represents flux of the number density as a result of un-

resolved turbulent velocity fluctuations. Likewise, the subgrid scalar fluxes τsgs,uk
and

τsgs,ζk both represent the subgrid flux of the number density in phase space (v, ξ).

2.4 Method of Moments Discretization

In order to track a continuous distribution like the NDF using a scalar transport

equation framework, it is necessary to discretize the NDF using a set of scalars. One set

of statistically significant scalars that can be used to represent the NDF are moments.

Every distribution has a number of moments, with the kth moment of a univariate PDF

p (ξ) of a random variable x being defined as:

mk =

ˆ +∞

−∞
ξkp (ξ) dξ. (2.24)

This quantity can be interpreted physically as the expected value of ξk, given its distri-

bution p (ξ). This can also be extended to the NDF by using equation (2.19):

mk =

´ +∞
−∞ ξkf (ξ) dξ´ +∞
−∞ f (ξ) dξ

. (2.25)

Note that these definitions can also be extended to multivariate distributions, in which

case the moment is a multiple variable index, k =
¶
k1, k2, . . . , kNξ

©
; in this case, the kth

moment is defined in terms of the PDF as:

mk =

˙ Ñ
Nξ∏
j=1

ξ
kj
j

é
p (ξ) dξ (2.26)

and is defined in terms of the NDF as:

mk =

¯ +∞
−∞

(∏Nξ

j=1 ξ
kj
j

)
f (ξ) dξ¯ +∞

−∞ f (ξ) dξ
. (2.27)
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(where the velocity v is incorporated into the internal coordinate vector ξ for notational

convenience).

As discussed in Appendix B, the use of moments to represent distributions leads to

a closure problem, because any higher order moment must be expressed in terms of still

higher order moments. Thus, an expression for an arbitrary moment cannot be expressed

only in terms of lower order moments. There are several methods for circumventing the

closure problem, most of which require an assumed form of particle source terms or an

assumed NDF shape. However, the heart of the problem is that the moments consist of

an integral over the distribution, which is unknown. Gaussian quadrature provides an

efficient way to approximate this integral, providing closure for the moment transport

equations. Using Gaussian quadrature, the integrals can be expressed in terms of weights

and abscissas, which can be expressed in terms of a finite set of lower order moments.

2.4.1 Quadrature Approximation

Quadrature approximates the integral of an unknown function with tabulated known

values as a summation of a set of N weighted abscissas. It determines a polynomial of

degree 2N−1 whose zeros are the N weighted abscissas, and approximates the unknown

function using this polynomial [48]. There are several common quadrature formulations,

including the midpoint rule (the unknown function is assumed to be a constant, or zero-

order polynomial), the trapezoid rule (the unknown function is assumed to be a straight

line, or first order polynomial), and Simpson’s rule (the unknown function is assumed to

be a second-order polynomial). Note that while the unknown function does not have to

be a polynomial, the quadrature approximation becomes much better if it is (and exact

if the unknown function is a polynomial of degree 2N − 1 or less). The general N -point

quadrature formula can be written as:

ˆ b

a
w(r)g(r) dx ≈

N∑
α=1

wαg(rα) (2.28)
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where g(r) is an arbitrary function of the variable r. As N increases, the quadra-

ture approximation usually becomes more accurate. This equation can also be ex-

tended to a multivariate function g(r), an arbitrary function of the D-element vector

r = [r1, r2, . . . , rD] to yield:

ˆ b

a
w(r)g(r)dr ≈

N∑
α=1

[wαg(r1α)g(r2α) · · · g(rDα)]. (2.29)

The weights are common to all internal coordinates r because the weight function w(r)

is binned into N discrete weights, and this weight function is common to all internal

coordinates.

2.4.2 The Quadrature Method of Moments

The implementation of the method of moments using quadrature to provide closure

is called the quadrature method of moments (QMOM). QMOM breaks the moment

integrals (2.24) into a series of discrete weighted abscissas, and sums over all these

weighted abscissas in order to evaluate the integral. QMOM provides closure for the

method of moments because the weights and abscissas can be expressed in terms of

lower-order moments of the NDF, eliminating the need to introduce successively higher

order moments.

Applying equation (2.28), the NDF can be treated as a weighting function. Using

the quadrature formulation, the internal coordinate vector is binned into N discrete

values or phases (the abscissas of the quadrature approximation), and the NDF is binned

into N discrete weights. If the value of the NDF is small at a given quadrature node

α, the internal coordinate abscissa at that point in space and time 〈ξ〉α has a small

corresponding weight wα.

This section will focus only on univariate distributions, due to the fact that QMOM

can only treat univariate distributions (a feature discussed below). Mathematically, the

univariate NDF can be expressed as the weighted sum of a set of delta functions. The
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quadrature approximation of a univariate average number density function f(ξ;x, t) in

this form is:

f (ξ;x, t) ≈
N∑

α=1

wα (x, t) δ (ξ − 〈ξ〉α (x, t)) (2.30)

where wα is the weight of phase α. The moment transform of the quadrature approxi-

mation of this univariate NDF can then be taken (by multiplying by ξk and integrating

over all of ξ-space):

ˆ +∞

−∞
ξkf dξ ≈

N∑
α=1

¶
ξkwα(x, t) 〈ξ〉α (x, t)

©
(2.31)

Using QMOM, the equation for the kth moment of the pdf p (ξ;x, t), given by equation

(2.24), is approximated as:

mk ≈
N∑

α=1

¶
pα 〈ξ〉kα

©
(2.32)

where pα is the probability of environment α, and the corresponding equation for the

kth moment of the NDF f (ξ;x, t), given by equation (2.25), is approximated as:

mk ≈
∑N

α=1

¶
wα 〈ξ〉kα

©
∑N

α=1wα
(2.33)

and pα is related to the weights as:

pα =
wα∑N
i=1wi

. (2.34)

The quadrature approximation provides closure for the moments because the N weights

and N abscissas can be written in terms of 2N moments.
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The primary weakness of QMOM is that the transformation process of going from

moments to weights and abscissas relies on the product difference (PD) algorithm [49],

which utilizes properties of univariate distributions, and can only be applied to univariate

distributions. The QMOM cannot be arbitrarily extended to multivariate distributions.

Some authors have extended QMOM to bivariate distributions by combining the PD al-

gorithm with principal component analysis (PCA) [50], or by using a conjugate gradient

minimization algorithm for (Nξ + 1)N dimensions (which quickly becomes computa-

tionally intractable for large numbers of quadrature points or internal coordinates) [51].

However, these suffer from similar weaknesses as QMOM - they cannot be arbitrarily

applied to multivariate distributions without a great increase in algorithm complexity,

as well as computational cost.

2.4.3 The Direct Quadrature Method of Moments

Because QMOM cannot be easily applied to multivariate distributions, and because

the coal particle NDF is multivariate, an alternative method is needed that will apply to

an arbitrary number of internal coordinates. The direct quadrature method of moments

(DQMOM) is a more general approach than QMOM and will satisfy these requirements.

While QMOM tracks the moments themselves, and thus requires an inversion process to

go from the moments to the corresponding weights and abscissas, DQMOM tracks the

weights and abscissas directly, eliminating the inversion process that is so troublesome

for multivariate distributions.

2.4.3.1 DQMOM Equations

The direct quadrature method of moments involves several steps to go from the

multivariate coal particle NDF f (ξ;x, t) to the set of transport equations used to track

the NDF. First, the quadrature approximation is applied to the NDF, yielding a repre-

sentation of the NDF using weights and absicssas (Section 2.4.3.2). This is then used

to write the quadrature-approximated NDF transport equation. Next, the effect of the

quadrature approximation on the NDF velocity is described, and a system of notation
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for the quadrature-approximated NDF velocity is presented. Finally, the moment trans-

form of the quadrature approximated NDF is taken in order to yield a set of independent

moment transport equations. However, rather than solve these moment transport equa-

tions directly, they are reexpressed in the form of weight and weighted abscissa transport

equations and a linear system that provides the source terms for these transport equa-

tions. The process of going from the NDF to the weight and weighted abscissa transport

equations and the DQMOM linear system is demonstrated in its entirety in Appendix

C. The derivation of the moment-transformed quadrature-approximated NDF transport

equations are then covered in Appendix D. The construction of the linear system, which

results from the moment-transformed quadrature-approximated NDF transport equa-

tions, is described in detail in Appendix E.

2.4.3.2 Quadrature-Approximated NDF

To begin a derivation of the DQMOM equations, the quadrature approximation is

applied to a multivariate NDF, f (ξ;x, t), since the DQMOM can handle multivariate

distributions. The multivariate NDF quadrature approximation is given by:

f(ξ;x, t) ≈
N∑

α=1

(wα δ (ξ − 〈ξ〉α))

≈
N∑

α=1

Ñ
wα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é
(2.35)

where, in the first definition (as with the multivariate NDF moment definition (2.27)), the

velocity v is incorporated into the internal coordinate vector ξ for notational convenience,

and, as with the univariate NDF quadrature approximation (2.30), both wα and 〈ξ〉α
depend on space and time, but the dependence is omitted for clarity of notation. This

quadrature approximated NDF can be plugged into the NDF transport equation, but

first the proper approach and notation for the quadrature approximated NDF velocity

should be introduced.
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2.4.3.3 Quadrature-Approximated NDF Velocity

The quadrature-approximated NDF is composed of several environments, indexed

by α. Each environment consists of a number of particles, equivalent to the weight wα

of the environment, each with a unique set of properties; ξ for the univariate NDF, and

(v, ξ) for the multivariate NDF. The properties for the αth environment are denoted

〈ξ〉α or (〈v〉α , 〈ξ〉α), respectively. The environment-averaged velocity 〈vi〉α is:

〈vi〉α =
wα∑
q=1

aqui,q (2.36)

where aq is defined as an arbitrary weighting factor subject to the constraint
∑

q aq = 1,

and ui,q is the value of velocity for the qth particle of the αth environment. Likewise,

the environment-averaged internal coordinate values 〈ξj〉α are:

〈ξj〉α =
wα∑
q=1

aqζj,q. (2.37)

This averaging procedure can also be applied to find the environment-averaged velocities

Ai and Gi:

〈Ai〉α =
wα∑
q=1

aq
¨
Ai|v = uq, ξ = ζq

∂
(2.38)

〈Gi〉α =
wα∑
q=1

aq
¨
Gi|v = uq, ξ = ζq

∂
. (2.39)

Using these environment-averaged quantities leads to the convection terms being ex-

pressed somewhat differently; the spatial convection term for the NDF is expressed as:

∂

∂xi
(〈vi〉α f (v, ξ;x, t)) , (2.40)

while the velocity and phase space convection terms are expressed, respectively, as:
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∂

∂vi
(〈Ai〉α f (v, ξ;x, t)) (2.41)

∂

∂ξi
(〈Gi〉α f (v, ξ;x, t)) . (2.42)

These can be used to apply the quadrature approximation to the NDF transport equation

(2.22). Likewise, for the univariate case, the convection term becomes:

∂

∂ξ
(〈G〉α f (ξ;x, t)) . (2.43)

Each of these environment averages will also have an associated diffusive flux term to

account for fluxes due to velocities deviating from the environment-averaged velocities;

these are defined for an arbitrary quantity φ, for vi, Ai, and Gi, respectively:

Jφ,xi,α =
∑

aq
î
〈vi〉α −

¨
vi|v = uq, ξ = ζq

∂ó
φ (2.44)

Jφ,vi,α =
∑

aq
î
〈A〉α −

¨
Ai|v = uq, ξ = ζq

∂ó
φ (2.45)

Jφ,ξi,α =
∑

aq
î
〈Gi〉α −

¨
Gi|v = uq, ξ = ζq

∂ó
φ. (2.46)

These diffusive fluxes create additional diffusive terms,

Dφ,xi,α =
∂

∂xi
(Jφ,xi,α) (2.47)

Dφ,vi,α =
∂

∂vi
(Jφ,vi,α) (2.48)

Dφ,ξi,α =
∂

∂ξi
(Jφ,ξi,α) . (2.49)

These diffusive fluxes can be modeled with simple gradient diffusion models as,

Jφ,xi,α = Γxi,α
∂φ

∂xi
(2.50)

Jφ,vi,α = Γvi,α
∂φ

∂vi
(2.51)

Jφ,ξi,α = Γξi,α
∂φ

∂ξi
. (2.52)
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2.4.3.4 Quadrature-Approximated NDF Transport Equation

The quadrature approximated NDF transport equation can be derived for both the

univariate and multivariate case by combining the NDF transport equation (2.22) with

the univariate and multivariate quadrature approximations (2.25) and (2.27), to yield

the quadrature-approximated NDF transport equations. This procedure is performed in

Appendix C. The resulting univariate quadrature-approximated NDF transport equation

is given by a set of three equations:

∂

∂t
(wα) +

∂

∂xi
(〈vi〉αwα)− ∂

∂xi

Å
Γxi,α

∂wα

∂xi

ã
= aα (2.53)

∂

∂t
(ςα) +

∂

∂xi
(〈vi〉α ςα)−

∂

∂xi

Å
Γxi,α

∂ςα
∂xi

ã
= bα (2.54)

where Γx,α is the spatial diffusivity of the NDF, as in equation (2.50), and ςα = wα 〈ξ〉α
is the weighted abscissa for environment α. The third equation is given by:

N∑
α=1

[
δ (ξ − 〈ξ〉α) + δ′ (ξ − 〈ξ〉α) 〈ξ〉α

]
aα

−
N∑

α=1

[
δ′ (ξ − 〈ξ〉α)

]
bα =

N∑
α=1

δ′′ (ξ − 〈ξ〉α)wαCα + Sξ +Dξ(2.55)

where Cα is defined by

Cα = Γx,α
∂ 〈ξ〉α
∂xi

∂ 〈ξ〉α
∂xi

, (2.56)

Sξ is the sum of the environment-averaged phase space convection terms, given by:

Dξ =
N∑

α=1

∂

∂ξ

Å
Γξ,α

∂

∂ξ
(wαδ (ξ − 〈ξ〉α))

ã
. (2.57)

and Dξ the associated phase space diffusive terms, given by:

Sξ = −
N∑

α=1

∂

∂ξ
(〈G〉αwαδ (ξ − 〈ξ〉α)) (2.58)
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Similarly, the multivariate quadrature-approximated NDF transport equation is

given by a set of equations:

∂

∂t
(wα) +

∂

∂xi
(〈vi〉wα)− ∂

∂xi

Å
Γxi,α

∂wα

∂xi

ã
= aα (2.59)

∂

∂t
(ςnα) +

∂

∂xi
(〈vi〉α ςnα)−

∂

∂xi

Å
Γxi,α

∂ςnα
∂xi

ã
= bnα (2.60)

where ςnα = wα 〈ξn〉α is the weighted abscissa for the nth internal coordinate. The last

equation in the set is given by:

N∑
α=1

⎡⎣Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)
+

N∑
m=1

∂

∂〈ξm〉α

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é 〈ξm〉α
⎤⎦aα

−
N∑

α=1

N∑
n=1

⎡⎣ ∂

∂〈ξn〉α

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é⎤⎦ bnα =

N∑
α=1

Nξ∑
m=1

Nξ∑
n=1

⎡⎣ ∂2

∂〈ξm〉α∂〈ξn〉α

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é⎤⎦wαCmnα + Sξ +Dξ. (2.61)

where Cmnα = Γxiα
∂ 〈ξm〉α
∂xi

∂ 〈ξn〉α
∂xi

, and Sξ and Dξ are the sums of the phase space

convective and diffusive terms, respectively:

Sξ = −
N∑

α=1

∂

∂vi

⎡⎣〈Ai〉αwα

Ñ∏
j

δ
(
vj − 〈vj〉α

)éÑ∏
j

δ
(
ξj − 〈ξj〉α

)é⎤⎦
−

N∑
α=1

∂

∂ξi

⎡⎣〈Gi〉αwα

Ñ∏
j

δ
(
vj − 〈vj〉α

)éÑ∏
j

δ
(
ξj − 〈ξj〉α

)é⎤⎦ , (2.62)

and
Dξ =

N∑
α=1

∂

∂vi

⎡⎣Γvi,α
∂

∂vi

Ñ
wα

Ñ∏
j

δ
(
vj − 〈vj〉α

)éÑ∏
j

δ
(
ξj − 〈ξj〉α

)éé⎤⎦
+

N∑
α=1

∂

∂ξi

⎡⎣Γξi,α
∂

∂ξi

Ñ
wα

Ñ∏
j

δ
(
vj − 〈vj〉α

)éÑ∏
j

δ
(
ξj − 〈ξj〉α

)éé⎤⎦ . (2.63)
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2.4.3.5 Moment-Transformed Quadrature-Approximated

NDF Transport Equation

The quadrature-approximated NDF transport equation (equation (2.55) for the uni-

variate case, equation (2.61) for the multivariate case) is a single equation, but there

are multiple unknowns to be determined (weights and abscissas). In order to obtain

a number of independent equations equal to the number of weights and abscissas, a

set of independent moments is chosen, and the moment transform of the quadrature-

approximated NDF transport equation yields a set of independent equations, equal in

number to the number of independent moments. This procedure requires a number of

moments equal to 2N in the univariate case (N weights and N abscissas), and (Nξ + 1)N

in the multivariate case (N weights and Nξ ×N abscissas), where Nξ is the number of

internal coordinates and N the number of DQMOM environments.

The process of taking the moment transform of the quadrature-approximated NDF

is covered in detail in Appendix D. The results from this procedure are the univariate

moment-transformed quadrature-approximated NDF transport equation:

N∑
α=1

î
〈ξk〉α − k〈ξk〉α

ó
aα

+
N∑

α=1

î
k〈ξk−1〉α

ó
bα =

N∑
α=1

k (k − 1) 〈ξk−2〉αwαCα + Sk +Dk (2.64)

and the multivariate moment-transformed quadrature-approximated NDF transport equa-

tion:
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N∑
α=1

⎡⎣ÑNξ∏
j=1

〈ξkj

j 〉α
é
×

−
Nξ∑
m=1

km
Ä
〈ξkmm 〉α

äÑ Nξ∏
j �=m, j=1

〈ξkjj 〉α
é⎤⎦ aα

+
N∑

α=1

Nξ∑
n=1

î
kn
¨
ξkn−1
n

∂
α
×Ñ

Nξ∏
j �=n, j=1

〈ξkjj 〉α
é⎤⎦ bn,α =

N∑
α=1

Nξ∑
m=1

î
km (km − 1)

¨
ξkm−2
m

∂
α
×Ñ

Nξ∏
j �=m, j=1

〈ξkjj 〉α
é⎤⎦wαCmmα

+
N∑

α=1

Nξ∑
m=1

Nξ∑
n=1

î
kmkn

¨
ξkm−1
m

∂
α

¨
ξkn−1
n

∂
α
×Ñ

Nξ∏
j �=m, j=1

〈
ξ
kj
j

〉
α

é⎤⎦wαCmnα

+Sk +Dk (2.65)

Both of these systems of equations are linear due to the quadrature approximation, and

both can be rewritten as a matrix system,

Ax = B. (2.66)

This matrix can be solved for the weight and weighted abscissa transport equation source

terms, aα and bnα in the above equations. The procedure of constructing and solving

this linear system is covered in great detail in Appendix E. Some special cases lead to

simplified linear systems that are much simpler to solve; these special cases are covered

in Appendix F.

The DQMOM solution procedure is as follows:

1. For each internal coordinate i, the distribution is characterized by two sets of

values, the weights wα and the weighted abscissas wα〈ξi〉α. The starting values
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for these variables are obtained from the previous time step or from the initial

distribution (initial conditions for the weights and weighted abscissas).

2. Using the weights’ and weighted abscissas’ values, the matrix system Ax = B is

solved at each point in space to yield the source terms for the transport equations

for the weights and the weighted abscissas.

3. The weights and weighted abscissas are updated to their new values at the next

time step.

4. These new values are used in step 2.

2.4.3.6 DQMOM Equation Simplifications

While there are many terms in the DQMOM equations given above, many of them

may be safely neglected. First, the terms Cmmα and Cmnα, given by:

Cmnα = Dxi,αwα
∂ 〈ξm〉α
∂xi

∂ 〈ξn〉α
∂xi

(2.67)

Cmmα = Dxi,αwα
∂ 〈ξm〉α
∂xi

∂ 〈ξm〉α
∂xi

(2.68)

may be neglected. Physically, these terms may be interpreted as diffusion of weights

into different environments due to strong gradients in the abscissas. This term would

play a more significant role if there were spatial diffusion of internal coordinate quan-

tities among particles (e.g., heat or momentum transfer between particles), but this is

insignificant in the case of entrained flow gasifier systems, because the coal particles are

extremely dilute.

The phase space diffusion term Dξ, defined as:

Dξ =
N∑

α=1

∂

∂ξi

ï
Γξi,α

∂

∂ξi

(
wαδ

(
ξj −

〈
ξ
kj
j

〉
α

))ò
, (2.69)

represents the diffusion in phase space, due to the deviation from the environmental-

average phase space velocity 〈Gj〉α of the actual phase space velocities of the particles

composing environment α. This term becomes important when the particle distributions



38

become wider, meaning there will be larger deviations from the environment averages,

and when the number of environments N decreases. In most cases, the number of

environments used to simulate coal particle systems is no less than seven (to ensure

that N ≥ Nξ, following the recommendation of [52]). For this reason, the phase space

diffusion term is assumed to be insignificant.

2.5 Equations for Reacting Coal Systems

Given the NDF, the internal coordinate values for a given particle may be found;

given those, the heat transfer, devolatilization reactions, and char oxidation reactions

can be modeled. Specific submodels for heat transfer and particle reactions are described

below. However, a brief discussion of the general approach for treatment of the particle

and gas phases is warranted.

The particle reactions can be generally described using a simple reaction schematic.

The jth particle undergoes M devolatilization and L char oxidation reactions (only one

evaporation reaction is assumed),

(raw coal)j
kjm−−→ Yjm (volatile gas) + (1− Yjm) (char)

νoxidizer
νproduct

(char)j + (oxidizer)
kjl−−→ (volatile gas)l

(water) + (coal particle)j
kw−−→ (steam) + (coal particle)j ,

where νoxidizer and νproduct are the number of carbon atoms in each molecule of the

oxidizer and volatile gas product, respectively; m = 1 . . .M and l = 1 . . . L; kjmis the

reaction rate for the mth devolatilization reaction; and kjl is the reaction rate for the

lth char oxidation reaction. The net reaction rate for the coal particle, rj , can then be

written
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rhj =
∑
l

rhjl (2.70)

rvj =
∑
m

rvjm (2.71)

rj = rhj + rvj + rwj (2.72)

where rhjl is the char reaction rate for the jth particle and the lth char oxidation reaction,

rvjm is the devolatilization reaction rate for the jth particle and the mth devolatilization

reaction, rhj and rvj are the net char oxidation and devolatilization reactions (respec-

tively), rwj is the evaporation rate, and rj is the net reaction rate for the jth particle.

The gas-phase description of gaseous products from the coal can be described using

varying levels of complexity. One general approach is the solids progress variable ap-

proach [53], a model chosen for its generality. Using this approach, the volatile coal gas

and gas-phase reactions are tracked through the use of mixture fractions. Given N gas

streams, N −1 mixture fractions may be used to characterize the mixing of the streams.

Thus, a system with a single inlet would have two streams (one feed gas stream, and

one coal gas stream); a system with a primary and a secondary inlet would have three

streams (two feed gas streams, and one coal gas stream); and so on. Multiple streams

for coal off-gas (one for a given reaction or class of reactions) may also be used. The

mixture fraction for an N -stream system will be defined as:

ηi =
mj

N∑
k=1

mk

, i = 1 . . . N − 1, j = 1 . . . N. (2.73)

where mj is the mass originating in the jth stream. Note that for coal gasification, these

mixture fractions are not conserved quantities, as there is an introduction of mass into

the system via coal particles. The mixture fraction source term comes from the coal

particle reaction rates (the reaction rate from which the source originates depends on

the formulation of the solids progress variable model).
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2.5.1 Mixture Fraction Definitions

An entrained flow gasifier has three gas streams mixing: a primary inlet, a sec-

ondary inlet, and the volatile gas released from the coal particle. Three streams can be

characterized using two mixture fractions, and this characterization will describe the coal

particle model in Figure 2.1 due to the assumption that char oxidation and devolatiliza-

tion gases being released by the coal particle are identical in elemental composition.

Denoting mp as the mass of gas originating in the primary, ms as the mass of

gas originating in the secondary, and mc as the mass of gas originating from the coal,

definitions of the mixture fractions describing this system can be written:

• Primary-Secondary Mixture Fraction: fraction of primary gas to primary and sec-

ondary gas; this quantity is conserved, because no primary or secondary mass is

generated by coal particles:

ηp,gas =
mp

mp +ms
. (2.74)

• Coal Gas Mixture Fraction: fraction of coal gas to the total gas phase mass; this

quantity is not conserved, because the coal particles generate mass mc:

ηc =
mc

mc +mp +ms
. (2.75)

• Primary Mixture Fraction: mass of primary feed to total gas phase mass; this

quantity is not conserved because, like the coal gas mixture fraction 2.75, it con-

tains mass generated by coal particles:

ηp =
mp

mc +mp +ms
= ηpg(1− ηc). (2.76)
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Using a Schmidt number approach for the scalar diffusivity, or otherwise assuming a

constant diffusivity, the transport equation for ηc follows 2.10; the source term for the

ηc transport equation can be written:

Sηc =
∑
j

rvj (2.77)

and is equal to the net amount of volatiles released by the coal particles. The expressions

for the reaction rates rvj are given in the next section.

2.6 Coal Models

While DQMOM provides a model for the dispersed phase, tracking how the particles

are distributed, models are also needed for the dynamics of the problem: descriptions of

how the coal changes temperature, reacts, and changes shape or position. Coal particle

reaction models are described, and then the models for particle momentum and energy

are described.

2.6.1 Coal Reaction Rates

The coal particle is assumed to undergo several reaction processes. The first reaction

is a devolatilization reaction, in which the raw coal in the particle is converted to both

volatile gases and solid char. The second is char oxidation, in which the char in the coal

particle is oxidized by the gas phase. The third is coal moisture evaporation, in which

any water contained in the coal evaporates into the gas phase. The overall reaction rate

for the jth coal particle rj can be described by:

rj =

Nrxn,h∑
l=1

rhjl +

Nrxn,v∑
m=1

rvjm + rwj (2.78)

where l is reaction number l of the Nrxn,h total char reactions, making rhjl the reaction

rate for the lth char reaction for particle j; m is reaction number m of the Nrxn,v
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devolatilization reactions, making rvjm the reaction rate for the mth devolatilization

reaction for particle j; and rwj is the evaporation rate of water from particle j. These

correspond to the reaction network given in Section 2.5.

2.6.1.1 Net Raw Coal Reaction Rate

The net raw coal reaction rate is given by:

rcj = −
Nrxn,v∑
m=1

rcjm (2.79)

= −
Nrxn,v∑
m=1

(rhjm + rvjm) (2.80)

where equation 2.79 shows that the net raw coal reaction rate is the sum of the re-

action rates for each of the Nrxn,v devolatilization reactions, and equation 2.80 shows

the contribution of the raw coal reaction rate to the char and volatile production rates,

respectively. The relationship between these two quantities is given by:

rhjm = rvjm
1− Ymj

Ymj
. (2.81)

where Ym is the fraction of raw coal that reacts to volatiles.

The reaction rate for raw coal in a particle j is therefore given by:

dαc

dt
= rcj . (2.82)

2.6.1.2 Net Volatile Production Rate

The net volatile production rate due to devolatilization reactions is given by:

rvj =

Nrxn,v∑
m=1

rvjm. (2.83)
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2.6.1.3 Net Char Reaction Rate

The net char reaction rate is given by:

rhj =

Nrxn,v∑
m=1

rhjm −
Nrxn,h∑
l=1

rhjl (2.84)

where the first term represents the rate of generation of char due to devolatilizing raw

coal, with a contribution from each of the Nrxn,v devolatilization reactions (see equation

2.81); and the second term represents the consumption of char due to char oxidation

reactions, with a contribution from each of the Nrxn,h char reactions. This reaction rate

expression is given by Smoot and Smith as [11]:

rhjl =

A2
jMWhjMWgas

νoxidizer
νproduct

kcjlkjlξjColgCg

MWgasAjCg (ξjkjl + kcjl) + rj
(2.85)

On the right hand side, rj is the overall reaction rate for particle j. The char reaction

rate rhjl appears in this term, as well as on the left-hand side, meaning the equation

is implicit with respect to rhjl. The other variables are: Aj , particle surface area;

MWhj , the molecular weight of the compound being oxidized (i.e., carbon); νoxidizer

and νproduct are the number of oxygen atoms in the oxidizing agent and product gas of

the char oxidation, respectively (the more oxygen atoms available in the oxidizer, the

faster the oxidation rate; the more oxygen atoms required for the reaction, the slower

the reaction rate); kcjl is the mass transfer coefficient for particle j and reactants for

char reaction l; kjl is the reaction rate of char reaction l for particle j; ξj is the particle

surface area factor for particle j; Co,lg is the molar concentration of oxidizer (for reaction

l) in the bulk gas phase; and Cg is the molar concentration of the bulk gas phase. If the

bulk reaction term rj is ignored, this expression becomes:

rhjl =

AjMWhj
νoxidizer
νproduct

kcjlkjlξjColg

kcjl + ξjkjl
(2.86)
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Note that both equation 2.85 and equation 2.86 account for both diffusion (through

the mass transfer coefficient kcjl) and reaction (through the reaction rate kjl), but equa-

tion 2.85 accounts for the affect of the overall reaction rate (including devolatilization

reactions and moisture evaporation) on the mass transfer, and vice versa, whereas equa-

tion 2.86 ignores this effect.

The reaction rate of char for a particle j is given by:

dαh

dt
= rhj . (2.87)

2.6.2 Coal Devolatilization Model

Coal particle devolatilization is described using the two step devolatilization model

presented by Kobayashi et al. [23], hereafter referred to as the Kobayashi model.

The Kobayashi model addresses the need to describe the pyrolysis of coal as a

function of temperature in the early stages of the combustor. This model introduces a

set of two competing parallel first-order reactions that describe the conversion of raw

coal into gas phase volatiles and char. The reactions for the devolatilization of raw coal

for this model is expressed as,

(raw coal) k1−→ Y1 (volatiles) + (1− Y1) (char)

(raw coal) k2−→ Y2 (volatiles) + (1− Y2) (char) ,

where Y is a stoichiometric coefficient. The values for Y1 and Y2 are determined from

the volatile fraction of the proximate analysis (Y1) and the fraction devolatilized at high

temperatures (Y2, often near unity).

The rate expression for the depletion of raw coal in the solid phase for a particle is:

dαcj

dt
= rjv1 + rjv2 = − (k1 + k2)αc, (2.88)
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where, as specified in Section 2.3, αcj denotes the mass of raw coal in particle j; and

conversely the addition of coal gas to the gaseous phase is:

dηc
dt

= np (rjv1 + rjv2) = (Y1k1 + Y2k2)npαcj , (2.89)

where np is the local number of particles. The rate constants k1 and k2 are modeled

with an Ahrenius form as

ki = Aie
−Ei/RT , (2.90)

where E2 � E1. The values of these constants are given by Kobayashi et al. [23] as:

A1 = 2× 105 s−1

A2 = 1.3× 107 s−1

E1 = −25, 000
kcal
kmol

E2 = −40, 000
kcal
kmol

with R = 1.987 kcal
kmol·K , T in units of K, and k in units of s−1.

2.6.3 Char Oxidation Models

After the raw coal in a particle has devolatilized, it forms volatile gas and char.

The char has large amounts of carbon, and is oxidized by oxygen, steam, hydrogen, and

carbon dioxide. The physical process of char oxidation is influenced by many different

aspects. It is affected by the composition of the coal particle, the temperature of the

particle, the microstructure of the particle after devolatilization, the temperature history

of the particle, the size of the particle, etc. These effects cannot be modeled individually,

so a global reaction approach is taken, where many of these processes are lumped into
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a global reaction rate parameter. The global reaction rate, incorporating both diffusion

and reaction effects, is given by equation (2.85).

Again, following Smoot and Smith [11], the reaction rate can be expressed as:

rjl =
νoxidizer

νproduct
MWhjkjlξjApC

n
ox,surf , (2.91)

where rjl is the reaction rate for a particle for char reaction l, kjl is the global reaction

rate for char reaction l, Cox,surf is the concentration of oxidizer at the surface of the

particle, and n is the reaction order. This is combined with the expression for the

diffusion of oxidizer to the surface of the particle:

rdlo = kcjlMWolAp (Colg − Colp) + rdColg/Cg (2.92)

where MWol is the molecular weight of the oxidizer for char reaction l, Colg is the concen-

tration of the oxidizer for char reaction l in the bulk gas phase, Colp is the concentration

of oxidizer for char reaction l at the surface of the particle, and rd is the total diffusion

rate (which includes rdlo; thus, this equation is implicit in rdlo).

When equations (2.91) and (2.92) are combined, they yield equation (2.85).

A straightforward method for modeling the char oxidation reaction rate kjl is to

assume a reaction rate constant of the form:

kjl = AlT
n
j e

−El/RTj (2.93)

where the preexponential factor Al and activation energy El correspond to char reaction

l and are assumed to be the same for all particles.
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2.6.4 Particle Velocity Model

In a gas-solid flow, the particle motion is affected by the drag force, which can be

described by the Stokes drag law. For a mesoscale size particle, when the other additional

mass forces are omitted, the momentum equation for the particle can be expressed by

an ordinary differential equation for the particle velocity vp:

dvi,p
dt

=
∑
i

Ç
fdrag
τp

(vi,g − vi,p) +
gi (ρp − ρg)

ρp
+

Fi,v

mp

å
(2.94)

where i denotes the ith direction, g is the gravity force acting on the particle, Fv are

the other body forces acting on the particle, vp is the particle velocity, and fdrag is

the coefficient of the drag force, which has a close relationship with particle Reynolds

number:

fdrag =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 Rep < 1

1 + 0.15Re0.687p 1 < Rep < 1000

0.0183Rep Rep > 1000

and the particle Reynolds number Rep is defined as:

Rep =
ρpdp |vp − vg|

μg

where ρp is the particle density, dp the particle diameter, vp the particle velocity, vg

the gas velocity, and μg the gas dynamic viscosity. In equation (2.94), τp is the particle

relaxation time:

τp =
ρpd

2
p

18μg
. (2.95)
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2.6.5 Particle Heat Transfer

The particle heat transfer model describes the change in coal particle enthalpy due

to heat transfer with the surrounding gas. This heat transfer takes place via convection

and radition, and depends on several particle internal coordinates.

2.6.5.1 Particle Heatup Model

The particle heatup can be modeled as follows. The particle is heated by convection,

radiation, and reaction enthalpy changes:

d (αjhj)

dt
= Qrj +Qj + rjhjg, (2.96)

where αj follows the definition given in Section 2.3, Qrj represents the net radiation to

a particle, Qj represents energy transfer due to convection and conduction between the

gas and the particle, and rjhjg represents both the amount of energy lost by the particles

due to lost mass, and the enthalpy released when the coal is converted to volatile gas and

water vapor. 100% of the (negative) heat of reaction and vaporization is contributed to

the particle enthalpy, and 0% is contributed to the gas enthalpy.

2.6.5.2 Convection

The convection term can be expressed as:

Qconv = Nuπkg (Tg − Tp) dj · Bj

exp (Bj)− 1
(2.97)

where Tp is the particle temperature, Tg is the gas temperature, Nu is the Nusselt

number, kg is the gas thermal conductivity, and Bj is the heat transfer transpiration

parameter.

Kunii and Levenspiel [54] and Kreith [55] reported the following correlation for Nu:
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Nu = 2.0 + 0.65Re1/2p Pr1/3. (2.98)

Additionally, the heat transfer transpiration is given by the expression:

Bj =
rjCpg

2πdjkg
. (2.99)

where rj is the net reaction rate for the jth particle, Cp,g Values of the thermal conduc-

tivity of the gas are given up to 30, 000K by Yos [56].

Merrick [57] reported a function for the heat capacity of raw coal and char heat

capacity:

Cp,c = Cp,h =

Å
R

MW

ã ï
g1

Å
380

T

ã
+ 2g1

Å
1800

T

ãò
(2.100)

where MW is the molecular weight of raw coal or char, respectively, and g1 is defined

as:

g1(z) =
ezñ

(ez − 1)

z

ô2 . (2.101)

where z is a random variable. The heat capacity of ash is given by:

Cp,a = 593.93 + 0.586T. (2.102)

2.6.5.3 Radiation

The radiative flux is given by:

Qrj = Qincident −Qemitted (2.103)
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where Qincident is then incident radiative flux to the particle and Qemitted is the radiative

heat flux emitted by the particle. This equation can be rewritten as:

Qrj = Aparticle
Kabs,p

4
(Fsum − Eb) , (2.104)

where Aparticle is the absorption coefficient of the particle, defined as:

Aparticle =
Qabsπr

2

4
, (2.105)

Kabs,p is the absorption cross-section, Fsum is the sum of all fluxes entering a given

volume, and Eb is the blackbody emissive power, given by the Stefan-Boltzmann law:

Eb = σT 4. (2.106)

2.7 Arches Coal Gasification Model

While LES does not incur as high a computational expense as DNS, resolving even

a reduced range of time evolving length scales of the flow still carries a substantial

cost. For this reason, many LES codes are designed for high-performance computing

environments. The Arches LES code [46, 58] is one such massively parallel code, and is

built within the Uintah computational framework. The framework is written in C++

and uses Message-Passing Interface (MPI), both widely-used tools for parallel scientific

computing and software development [59]. These tools provide Arches and the Uintah

framework with the ability to scale to large numbers of processors.

Arches is able to handle complex multiphysics problems through scalability and the

use of sheer computational power. The design philosophy behind Arches is to remove

computational limitations that stand in the way of better resolution and more accurate

but more expensive models. Toward this end, several advanced multiphysics models are

implemented in Arches. The DQMOM method is also implemented in Arches, and is able
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to utilize the scalability of Arches through the use of the transport equation framework to

track the coal particle NDF. Extensive verification work has been performed on Arches,

both on the fundamental CFD level and on the DQMOM level, to confirm that the

algorithms are all implemented correctly and exhibit expected behavior.



CHAPTER 3

MODEL VERIFICATION

God forbid that Truth should be confined to Mathematical Demonstration!

William Blake

3.1 Overview

The activity of verification is one of ensuring mathematical rigor, of ensuring that

the process of translating a mathematical model into a discretized computer model was

performed correctly. The two approaches to verification, code verification and solu-

tion verification, will be described, and the verification activities related to the Arches

gasification code will be presented.

3.1.1 A Definition

It is beneficial to begin a discussion of verification by first defining it. The word

“verification” comes from the root words verificare (Latin, to make true) and facere

(Latin, to make or do). Indeed, verification is the act of making a code match truth,

but the “truth” that this etymology refers to is mathematical in nature, independent of

reality. Section 1.4.1 covered some terminology regarding truth; this terminology will be

used in what follows. For the process of verification, it is important to partition rational

and empirical truth, and to perform verification in a regime entirely free from physical

reality, i.e., entirely within the realm of rational truth. The terms “rational truth” and

“mathematical truth” will be treated as interchangeable in the discussion of verification.
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Verification, then, is the attempt to make a computational implementation of a

mathematical model match mathematical truth, and also to quantify how well it does

so. Verification is defined for the purposes of this work as “the assessment of accuracy

of the solution to a computational implementation of a mathematical model.” This def-

inition is based on that given by Oberkampf, Trucano, and Hirsch [60], but stipulating

that “accuracy” refers to accuracy with respect to mathematical truth, not empirical

truth. Verification seeks to answer the question of whether the equations that compose

the mathematical model are being solved correctly, and quantify or estimate the error

resulting from the computational implementation of that mathematical model; it does

not answer the question of whether the equations can be used to accurately describe

physical reality (the activity answering that question is validation). Thus it is concerned

with the mathematics, not the physics, of the model. Roache [61] states that code verifi-

cation “can and should be completed without appeal to physical experiments” (emphasis

in original).

Verification has two separate but equally important parts [61–63], code verification

and solution verification. Code verification is intended to accomplish two goals: first,

to ensure that the implementation of the mathematical model is free of mistakes; and

second, to use exact solutions to quantify the discretization error associated with the

implemented discrete operators, and verify that they exhibit expected behavior. An

important part of the first goal is implementing procedures and utilizing tools to control

source code changes; this is called software quality assurance (SQA, discussed in Section

3.2.1) [64]. SQA contributes several methodologies of finding user mistakes in code,

including regression tests. Other methods, such as the method of manufactured solutions

(MMS, discussed in Section 3.2.3.2), provide additional methods for identifying user

mistakes in code. The second aspect of code verification utilizes known solutions to

the implemented governing equations in order to quantify numerical error and ensure it

behaves as expected (specifically, that it shrinks as the discrete elements shrink, and at

the rate that is expected given the discrete operators implemented in the code). Solution
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verification has the goal of estimating numerical error in the intended use regime, leading

to results that are more directly applicable, but it also eliminates the availability of

exact solutions. Because exact solutions are unavailable, solution verification quantifies

numerical uncertainty, not numerical error.

Typically, code verification is carried out after major development on a code has

occurred, or when a release version of the code is being prepared; that is, it occurs only

once per development cycle. Solution verification, however, occurs for the application

of the code to each intended use. Several approaches for performing both parts of

verification will be presented.

3.1.2 Error vs. Uncertainty in Verification

As discussed in Section 1.4.4, the difference between error and uncertainty lies in

the availability of a true value y with which to compute y − ŷ. Code verification is in-

tended to quantify numerical error; the simulations being run as part of code verification

consist of cases with known solutions y. Therefore code verification consists entirely of

quantification of numerical error. In contrast, solution verification attempts to quantify

numerical error in the intended use regime, where known solutions y are unknown. For

this reason, solution verification quantifies numerical uncertainty. The quantification of

numerical uncertainty is fundamentally different from the uncertainty quantification that

is part of validation, due to the nature of the error being bounded by the uncertainty

analysis. Solution verification creates uncertainty bounds for numerical error using high

fidelity simulations as a surrogate for mathematical truth y, whereas validation creates

uncertainty bounds for empirical error, which utilizes empirical observations as y.

Numerical uncertainty does, however, play a role in the validation process; the role

of numerical uncertainty in validation is discussed in Section 3.3.5.
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3.1.3 Numerical Error Taxonomy

In order to assess the precision of a solution to a computational model, it is impor-

tant first to discuss the quantitative measure of precision: error. Verification error, as

defined above and in the introduction, is

e = y − ŷ (3.1)

where y is the mathematically true value of a quantity and ŷ is the calculated value of

the same quantity.

Many previous studies have recognized the importance of splitting the verification

error e into contributions from respective processes; Roache [61] presented justification

for creating an error taxonomy, or system by which various sources of verification error

are classified. It is important and useful to do this as a first step in the verification

process.

There are many references which have attributed verification error to different

sources, with some overlap among them [65–69]. However, all of the accounts given

are inadequate to taxonomically (systematically) describe various error sources in com-

putational fluid dynamics (CFD) simulations. Other systematic accounts of error have

attempted to include validation “errors” such as physical modeling errors “caused by in-

accuracies in the mathematical model of the physics, completely separate of numerical

issues” [70]. However, this is not an error: the task of determining whether a mathemat-

ical model for physics is inaccurate is the process of validation. To confound the activity

of validation with error is confusing and misleading. Another general taxonomy given by

Roache [61] classifies verification error based on order; that is, errors that are ordered in

the discretization element Δ, errors ordered in nondiscretization numerical parameters,

nonordered errors, etc. This is a significant improvement over existing taxonomies, as it

provides a categorical way of thinking about error.
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The primary problem with these taxonomies is that they are somewhat arbitrary.

This problem is common to many taxonomies. The solution is not just to classify

existing errors, but to create a consistent approach so that errors not included can be

systematically classified and approaches to quantifying those errors can be formulated.

To create a systematic approach, the procedure of computational implementation of the

mathematical model is partitioned into separate steps (Figure 3.1). Each step introduces

different errors, which are classified by the step in the procedure at which they are

introduced.

The steps involved include the starting point, the true mathematical model; the so-

lution to the mathematical model, y; the discrete formulation, that is, the mathematical

formulation of the discrete model; the discrete implementation, where the actual values

of the discretization elements Δx, Δt, Ncells, etc. are chosen; the numerical solution of

the discrete equations, which results in some set of mathematical operations, e.g., solv-

ing a linear system Ax = B; the implementation of these mathematical operations on a

finite-precision machine architecture; and a final step of postprocessing of the computed

solution to extract ŷ. Each type of error that is encountered can be examined to deter-

mine at which level in the process it is actually introduced, using Figure 3.1 as a guide.

Based on the level, different methodologies for error quantification can be applied. The

level of primary interest is that of discrete implementation, which quantifies the amount

of error introduced through the discrete representation of the mathematical model. This

can be quantified using a grid convergence study, in which the size of discrete elements

is decreased to examine whether and how the error decreases. This type of analysis

yields an order of convergence with respect to each numerical parameter. Knupp and

Salari [66] cover error quantification techniques for other types of verification error.

It is of critical importance to recognize that not all errors are independent; many

errors are tightly coupled or are subsets of other errors. It is also critical to recognize

the cost and the difficulty associated with quantifying all sources of error. The cost
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Known mathematical model

Discrete formula
- Representation of 
  mathematical model in discrete 
  framework

Discrete implementation
   - Error associated with discrete
     element sizes:
     - Grid resolution Δ
     - Domain size Ncells

     - Statistical sample size Nsamples

Numerical solution of
discrete equations

- Set of mathematical operations

Finite-precision 
machine implementation

Discrete boundary 
condition formulation 

error

Truncation error

Temporal discretization 
error

Spatial discretization error

Numerical boundary 
condition error

Domain size error

Statistical error
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Round-off error

Post-processing operators
- Error norm calculations
- Time-averaging procedures
- Sampling frequency, etc.

Incomplete iteration
convergence error

Linear system residual 
error

Sampling error

Operator window error

Solution obtained from computational 
implementation of mathematical 

model

Fig. 3.1: A proposed error taxonomy.
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of verification must be weighed against the need for increased accuracy in order to

determine how far verification must go.

3.1.4 Errors vs. Mistakes in Verification

A form of “error” conspicuously missing from the proposed error taxonomy proposed

in Section 3.1.3 and Figure 3.1 are coding mistakes made by developers. These, however,

are fundamentally different from the errors classified by the proposed error taxonomy.

The errors classified by the taxonomy are quantifiable deviations from a true mathemat-

ical value. Mistakes in coding, on the other hand, result from a lack of precision on the

developer’s part.

Because of this fundamental difference, these developer mistakes are not included

in the error taxonomy. The error taxonomy requires that the given procedure, covering

the process of transforming the mathematical model into the solution obtained from the

computational implementation of said model, is free of mistakes. This, however, does

not imply that it is free of error!

3.2 Code Verification

Code verification has two goals. First, it ensures that the computational implemen-

tation of the mathematical model is rigorous and free of mistakes. Second, it quantifies

and verifies the order of error convergence with respect to discrete elements by using

exact solutions to the governing equations combined with grid convergence studies. In re-

gards to the first goal, computational implementation of mathematical models describing

physical phenomena is nontrivial, especially in instances where high-level object-oriented

languages, computational frameworks, third-party libraries, complex coupled systems of

equations, and supplementary submodels are used. Thus, it is currently impossible for

developers to perform code verification by visual inspection of source code (if it ever

was). Methodologies have been developed to facilitate finding coding mistakes. Sev-

eral of these methodologies are addressed in the following sections, and applied to the
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intended-use computational model, Arches. The two goals of code verification are both

discussed. First, Section 3.2.1 covers aspects of software quality assurance and how it

can support verification activities by exerting a substantial degree of control over source

code and changes to it. Several aspects of the second goal of quantifying error are

then covered, starting with methodologies for obtaining exact solutions to the governing

equations (Section 3.2.3) and moving into grid convergence analysis (Section 3.2.4). Re-

sults from the code verification grid convergence analysis performed on the Arches coal

gasification model are then presented (Section 3.2.5).

3.2.1 Software Quality Assurance

Software quality assurance is the process by which source code and development

activities are conducted. While software quality assurance (SQA) is not a code verifica-

tion methodology, it provides a scaffolding for code development and code verification,

which is software-based. SQA can be divided into three categories, with various activities

discussed by Heroux [64] grouped into each category.

1. Coding Support - this covers source code management, which includes basic code

management, using version control software; advanced source code management,

using branches and tags, versioning releases, and bundling code; creating regression

tests to verify new code does not change output in unexpected ways; and mailing

lists for supporting code development, testing, and usage.

2. Coding Practices - this covers documentation, which should be source-centric and

easy to write; programming as a team or in pairs to address particularly difficult

or significant problems; and build or configuration tools, which greatly simplify

development, testing, and distribution of codes.

3. Coding Procedures - this covers creating checklists to standardize and improve the

procedure used for routine tasks, such as creating new regression tests, distributing

a new version release, or training new code developers; it also covers continual

process improvement, which is greatly facilitated using such checklists and which

leads to greater efficiency and productivity.
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4. Code Development and Repair - this covers tasks essential to debugging code,

namely issue- and bug-tracking software to ensure that all bugs are addressed, and

test-driven development, a style of code development that is centered on regression

testing.

3.2.1.1 Coding Support

Coding support activities utilize various tools in order to facilitate code develop-

ment. Having a version-tracking system is important for ensuring that bug fixes and

other corrected mistakes are proliferated through all developers’ code, rather than being

lost during the reconciliation of various versions of a code. However, beyond basic source

code management, advanced source code management and features like branches, tags,

and releases should also be used. Branches can be used for the development of significant

features or improvements independent of a main source tree. Tags can be used to mark

milestones in the code, essentially providing archived working snapshots of the code at

various significant points. In a similar vein, releases are specific major or minor versions

of the code released to the public.

Just as usage of version control software to control a code base makes changes

public, mailing lists make the process of code development a more transparent and,

to the degree it is desired, a more democratic process. Communication about code

is visible to all concerned, and mailing list archives can also serve as supplementary

documentation.

3.2.1.2 Coding Practices

One of the biggest weaknesses of projects is lack of documentation. Typically, docu-

mentation is abandoned or put off until later. If a documentation effort is not neglected,

projects will usually create standalone documentation that is entirely disconnected from

the code, and in a format that is awkward, unwieldy, or difficult to navigate or search,

such as plain text, info files, or LATEX. This leads to two potential problems, covered

below, and often the first of these problems leads to the second.
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Detailed documentation is often written in spurts, and represents documentation

for a snapshot of the code in time. While this documentation can be useful, it easily

becomes obsolete and requires periodic spurts to bring the documentation up to date.

These spurts must also be frequent, as the code is only as useful as the documentation

is correct and up-to-date. Maintaining useful documentation thus requires significant

effort. Because creation of documentation is secondary to the actual purpose of the code,

the costs of maintaining detailed documentation quickly grow to outweigh the perceived

benefits. This is the first problem.

The need to have documentation that requires less maintenance will usually lead

to documentation that is less specific. Vague documentation can cover an abstraction

or a concept whose specific interface may change drastically, but whose central idea

remains the same, without having to be updated. However, vague documentation is not

an improvement over detailed, out-of-date documentation. It is still marginally useful

because it is too vague to yield the specific information that users often need. This,

in turn, leads to underutilization of documentation, making all documentation effort

pointless.

Ideally, documentation should be simple to create (i.e., a transparent and easy-to-

use format) and modular. This allows for arbitrary content creation and content associ-

ation. Furthermore, there should be at least some portion of the documentation process

that is automated and drawn from the code directly. Several tools have emerged that

facilitate this style of documentation. First, wikis allow for arbitrary content creation

and content association. They also modularize content, and are editable by multiple

collaborators. Most wiki systems also record historical information (revisions), making

them useful tools for archiving discussions. If content on a wiki loses usefulness or rele-

vance, it does not disappear, the page containing the content simply becomes infecund,

with nothing linking into or out of the page. Second, documentation systems such as

Doxygen are able to directly parse the actual source code to generate documentation.

Even for code that is devoid of any comments, Doxygen still produces useful documenta-
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tion for classes, class members and methods, and create hierarchical diagrams for classes

related by inheritance. This alone makes it an invaluable tool even without effort on the

part of the users. Further, if comments with metadata are added to the source code,

Doxygen can parse this information and supplement the automatically-generated doc-

umentation with information written by the developer. This makes the documentation

source-centric, and adding documentation is as easy as adding comments in the code.

Finally, integration of Doxygen with wikis is possible with many wiki software packages.

3.2.1.3 Coding Procedures

Coding procedures are required to make coding activity fruitful. Coding procedures

help to establish standardized approaches for coding tasks. The tasks that can be covered

by these coding procedures include virtually anything, but their chief utility comes

from giving new developers a starting point for tasks essential to code development.

Particular checklists might cover tasks such as a pre-check-in procedure, updating gold

standards for regression tests, creating formal release versions, or resolving check-in

conflicts. Continual process improvement builds on this idea: these checklists are never

in a “final form,” but are improved each time they are used. The same philosophy

applies to these checklists as applies to documentation: checklists should be easy to

create, improve, and associate with other content.

3.2.1.4 Code Development and Repair

The heart of SQA’s role in code verification lies in these code development and

repair activities. First, tracking issues and bugs in an organized system greatly increases

efficiency in finding and fixing code mistakes. If a code bug is identified but not fixed,

it may be forgotten. With a tracking system, not only is the bug or issue identified,

but there is a space created specifically for that issue. This space can be used for

discussion, specific individuals can be assigned to fix a bug, timelines can be planned,

and ideas discussed. Many wiki systems can incorporate bug tracking systems, making
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documentation, checklists, and issue-tracking part of a common system and making

content association particularly useful.

The second primary activity of SQA is testing. Tests should be written in conjunc-

tion with, or even before, development of a new code feature begins. If written before the

code is developed, the test file is written and the code is developed in such a way that,

after some time, the code will pass the test as expected. This test-oriented approach

has many advantages. When tests are written before code is written, the test is usually

a clear perspective of what the end user expects to see; the new code can be designed

around these expected user inputs. Code development that is not test-centric can lead

to irrelevant algorithmic or other low level details being exposed to the tests.

Test-oriented development also ensures that there is a thorough suite of tests that

covers all capabilities of a code. Over the lifetime of a large computational model, many

new submodels will be added and linked together, many new approaches incorporated,

and possibly new library and framework objects used. Due to the increasingly high

probability of mistakes with increasing code complexity, it is important to test the

functionality of many parts of the code in order to ensure it is working as expected.

Last, but not least, is the advantage of self-documentation. By writing tests as (or

before) new code is developed, a library of example tests is written and added to the

code base. This is just as useful, if not more so, than documentation of the features

exercised by the tests. In this way the test-oriented approach to code development leads

to self-documenting input files; as was mentioned above (Section 3.2.1.2), this is an ideal

documentation methodology.

3.2.2 Code Verification Criteria

Knupp and Salari provide a list of evaluation criteria for when a code is verified

[63,71]:

• Expert judgement

• Error quantification

• Consistency and convergence



64

• Order of accuracy

Expert judgement (equivalent to an “eyeball norm”) is the process of checking whether

results look right. This is a strictly nonrigorous processes in that it involves a subjec-

tive judgement of the code results. It also covers the insufficiently stringent process of

verification by visual inspection. Care must be taken not to confound expert judgement

regarding verification with expert judgement regarding validation.

The remaining evaluation criteria all require an exact solution to assess the results of

code verification. Error quantification pins a quantitative number on the amount of error

in a computation, but this is only the first of several requirements for code verification

to be achieved. Consistency and convergence both look at how the error changes with

decreasing discrete element size. Consistency is a statement of the relationship between

the partial differential equation (PDE) Gu = F and its discrete representation GΔu = F

(where G and GΔ are the continuous and discrete operators, respectively, and u and F are

functions). Consistency is achieved for the PDE Gu = F and its discrete representation

GΔu = F if the quantity Gφ − GΔφ goes to zero for any smooth function φ [72]. In

other words, does the error shrink as the discrete element also shrinks? Convergence is

a statement about the behavior of the error as the discrete elements go to zero; that is,

how does the error shrink as the discrete element shrinks?

Order of accuracy is a measure of how quickly the error goes to zero, and is measured

by the order of magnitude in which the error shrinks with shrinking discrete element

size; for example, the temporal discretization operator has an order of magnitude of error

that is proportional to Δtn, where n is the order of the temporal scheme. However, just

as important is confirming that the observed behavior matches the expected theoretical

order of accuracy of the discrete operator used. Because order of accuracy is very

sensitive to code mistakes, confirming the order of accuracy (or not confirming it) is a

useful way to discover code mistakes.
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3.2.3 Exact Solution Methodologies

Following are a few of the most common methodologies for obtaining exact solu-

tions to the governing equations of the code being verified; each has unique advantages,

mentioned in the respective sections. Exact solutions can be used with grid convergence

analysis to identify errors at the level of the discrete implementation (see error taxonomy

in Figure 3.1 above). The three methodologies consist of analytical solutions, in which

the governing equations are often simplified in order to obtain a mathematical function

that satisfies them; the method of manufactured solutions, in which the mathematical

solution is “manufactured” and the difficulty of obtaining analytical solutions avoided;

and benchmark solutions, which utilize expensive and high quality solutions to a set of

the same or similar governing equations.

3.2.3.1 Analytical Solutions

One code verification methodology is to find an exact mathematical solution to

the set of model equations and boundary conditions. However, analytical solutions are

difficult to obtain for realistic problems, and often make gross modeling assumptions in

order to arrive at a simplified set of equations. Analytical solutions provide an exact

expression for the solution to the set of mathematical equations that are computationally

implemented, thus allowing the exact value of error (as exact as a computer evaluation

can get, at least) in the computational model to be calculated. As an example, an

analytical solution to the two-dimensional Navier Stokes equation

∂u

∂t
+ u · ∇u = −∇p+ ν∇2u (3.2)

and continuity equation

∇ · u = 0 (3.3)
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is [73]:

u = [u v ]T (3.4)

u (x, y, t) = 1−A cos (x− t) sin (y − t) e−2νt (3.5)

v (x, y, t) = 1−A sin (x− t) cos (y − t) e−2νt (3.6)

p (x, y, t) = −A2

4
[cos (2 (x− t)) + cos (2 (y − t))] e−4νt. (3.7)

3.2.3.2 Method of Manufactured Solutions

The method of manufactured solutions is a powerful approach to manufacturing

solutions to partial differential equations by adding source terms, first proposed by

Steinberg and Roache (Steinberg Roache 1985, symbolic manipulation and computa-

tional fluid dynamics). The approach is described as follows. For a governing equation

or other PDE,

Gu = F, (3.8)

a solution φ is manufactured:

u = φ (x, t) . (3.9)

This solution is an arbitrary function. Because φ is not a solution to the original gov-

erning equation (3.8), an additional source term is added:

Gφ = F +Q (3.10)

such that

Q = Gφ− F, (3.11)
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which is trivial to compute. The result is that the additional source term Q cancels out

the remaining terms in the governing equations,

This may be understood better with an example. Let the governing equation Gu =

F be a one dimensional inviscid convection equation with constant velocity V :

∂u

∂t
+ V

∂u

∂x
= 0. (3.12)

Now let the assumed solution φ be an arbitrary and simple function:

φ = sin (xt) . (3.13)

Then the source term Q is computed as:

Q =
∂

∂t
(sin (xt)) + V

∂

∂x
(sin (xt)) (3.14)

= x cos (xt) + V t cos (xt) . (3.15)

Then this source term is added to the governing equation, which is straightforward to

do in most computational fluid dynamics codes, so that the governing equation being

solved becomes:

∂φ

∂t
+ V

∂φ

∂x
= x cos (xt) + V t cos (xt) . (3.16)

The function φ = sin (xt) is an exact solution to this equation.

Boundary conditions can also be verified using the method of manufactured so-

lutions. For example, periodic boundary conditions can be exercised by selecting a

manufactured solution such that φ (x = Lx) = φ (x = 0). Similarly, Dirichlet boundary

conditions can be verified by setting the constant boundary condition equal to the value

of the function at the given boundary. Neumann boundary conditions of the form
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∂φ

∂xi
= c (3.17)

can be determined by analytically computing the derivative of φ and setting it equal

to c. This will typically yield a function, which is then implemented as the boundary

condition.

Different functions can be used to exercise different terms in the governing equations.

For example, if the above example were coded in a three-dimensional CFD code, it would

only exercise the time integrator and the computation of the x convection term. If a

function such as

φ = sin (xt) + cos (yt) + sin (zt) (3.18)

were chosen, it would exercise the computation of all convection terms. Likewise, if the

function did not contain t, the function would be invariant in time.

This is one of the most useful features of the method of manufactured solutions,

as it makes it possible not just to verify the overall order of convergence of error for

the entire code using a grid convergence study; it allows one to verify particular terms

of governing equations, and perform grid convergence studies that isolate individual

terms of the governing equation (and individual discretization schemes corresponding to

those terms). This provides a very powerful method for debugging codes to find errors

affecting the order of convergence. However, it is important to understand that MMS

cannot help to identify any type of coding error; it can only be used to identify those

errors affecting grid convergence. However, as Salari and Knupp [66] point out, most

bugs not identified by MMS are either straightforward to identify using other techniques,

or do not significantly affect the solution.

Salari and Knupp [71] give a detailed discussion of the use of manufactured solu-

tions, and give several considerations for selecting manufactured solutions, for example
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selecting functions that are infinitely differentiable (periodic functions) to exercise all

derivatives.

3.2.3.3 Benchmark Solutions

Verification of codes can also be performed using benchmark solutions, which are

very expensive, very high resolution solutions of sets of partial differential equations.

The model being verified attempts to solve either the same governing equations with

approximations introduced, or a reduced version of them. The verification process then

consists of comparing the resulting solutions to the benchmark. For example, an LES

computation solves the Navier Stokes equations only at large scales, and uses a model to

represent the unresolved small scales. This LES solution could be verified by comparing

it to a benchmark numerical solution, one which resolved the entire range of length scales,

utilized high order spatial discretization schemes, and implemented physical models as

good or better than the models used in the LES model, in order to determine the error

introduced through the approximations made in the LES model, including modeling the

unresolved small scales.

One example of benchmark solutions in the turbulence and CFD communities is di-

rect numerical simulation (DNS) simulations. These fit the description of the benchmark

solution just given; DNS simulations use high order numerical methods for discretiza-

tion, high resolution grids for resolving all relevant scales of the turbulence, and detailed

physical models to obtain solutions to coupled sets of equations. Many computational

models are then compared to the DNS results in order to investigate how well they can

reproduce these high quality solutions.

3.2.4 Code Verification Grid Convergence Analysis

Once the appropriate methodology for solution generation and error calculation has

been selected, this can be used to satisfy the “error quantification” criteria listed above

(Section 3.2.2). However, in order to satisfy the “consistency and convergence” and the

“order of accuracy” criteria, a grid convergence study must be performed.
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A grid convergence study is performed following the Richardson Extrapolation Es-

timation (REE) technique, which postulates a functional form for the numerical error

in a discretized model and its dependency on numerical parameters. First, an output

quantity of interest is chosen, which has an exact solution, denoted y (this quantity may

or may not be a vector). The model (or simulation) prediction of y is denoted yM , and

is a function of numerical parameters, denoted by x: thus, yM (x). The quantity x may

or may not be a vector, but is typically the single parameter h. In this case, a form for

the model solution can be postulated:

yM (x) = y + f (x) (3.19)

where f (x) is an error function. The error function is postulated to have the form

f (h) = αhp + ε, where α is a constant, p is the order of convergence, and ε is the error

resulting from the power function representation. This gives the model prediction the

form:

yM (x) = y + αhp + ε (3.20)

It is of interest to determine the order of convergence p. This can be done by

approximating the exact solution y with the highest-fidelity model prediction available,

denoted yM∞ , and defined as

yM (h∞) = yM∞ , (3.21)

where h∞is the smallest grid size used in the grid convergence study. The exact solution,

then, can be approximated as y ≈ yM∞ , which, upon substitution into (3.19), yields:

yM ≈ yM∞ + αhp. (3.22)
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Next, if this equation is written for two grid resolutions h1 and h2, and these are com-

bined, an expression for p, the order of convergence with respect to grid resolution h,

can be obtained:

p =

log

(
yMh1

− yM∞
yMh2

− yM∞

)

log

Å
h1
h2

ã (3.23)

where yMhi
= yM (hi). In order to determine the value of the exponent p, a minimum of

three simulations must be performed: one at h1, one at h2, and one at h∞.

3.2.5 Code Verification Grid Convergence Results

In order to perform code verification, a grid convergence analysis was performed for

several manufactured solutions. Each manufactured solution was intended to exercise a

different part of the code. Two such manufactured solutions and grid convergence study

results are presented here. For each grid convergence study, a set of 10 grids was used:

0.05, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.35, and 0.50 cm.

The first set of manufactured solutions exercised only a single convection term;

there were three, referred to as MMS X, MMS Y, and MMS Z. For each manufactured

solution, only the velocity in the direction of interest was nonzero (e.g., for MMS X,

uy = uz = 0). These three manufactured solutions are given by:

φMMS X = sin

Å
2π

x

Lx

ã
cos

Ç
2π

y

Ly

å
(3.24)

φMMS Y = sin

Å
2π

x

Lx

ã
cos

Ç
2π

y

Ly

å
(3.25)

φMMS Z = cos

Ç
2π

y

Ly

å
cos

Å
2π

z

Lz

ã
(3.26)

with corresponding source terms:
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QMMS X =
2π

Lx
ux cos

Å
2π

x

Lx

ã
cos

Ç
2π

y

Ly

å
(3.27)

QMMS Y = −2π

Ly
uy sin

Å
2π

x

Lx

ã
sin

Ç
2π

y

Ly

å
(3.28)

QMMS Z =
2π

Lz
uz cos

Ç
2π

y

Ly

å
cos

Å
2π

z

Lz

ã
(3.29)

Periodic boundary conditions were used for these equations.

Only results for MMS X are presented; the results for the other two convection

terms were identical. Figure 3.2 shows the observed order of convergence. The order of

convergence was better than the theoretical 2.0 for both the L2 and L∞ error norm. The

grid convergence plots confirm that the code is in the asymptotically convergent regime

for the grid sizes that were used in the study.

The second grid convergence study presented was performed for a manufactured so-

lution that exercised all three convective terms, denoted MMS XYZ. This manufactured

solution was given by:
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Fig. 3.2: Grid convergence results for the MMS X manufactured solution.
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φMMS XYZ = sin

Å
2π

x

Lx

ã
cos

Ç
2π

y

Ly

å
sin

Å
2π

z

Lz

ã
(3.30)

with a corresponding source term:

QMMS XYZ =
2π

Lx
ux cos

Å
2π

x

Lx

ã
cos

Ç
2π

y

Ly

å
sin

Å
2π

z

Lz

ã
−2π

Ly
uy sin

Å
2π

x

Lx

ã
sin

Ç
2π

y

Ly

å
sin

Å
2π

z

Lz

ã
+
2π

Lz
uz sin

Å
2π

x

Lx

ã
cos

Ç
2π

y

Ly

å
cos

Å
2π

z

Lz

ã
. (3.31)

Figure 3.3 shows the grid convergence study results for MMS XYZ. The grid convergence

study for MMS XYZ exhibits an order of convergence of 2, although the largest grid

resolutions deviate somewhat. Because the order of convergence is worse for the L∞

norm, this indicates that the discrepancy is possibly due to a local source of error growing

with the grid resolution at order 1 or 1.5. However, the discrepancy only occurs for the
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Fig. 3.3: Grid convergence results for the MMS XYZ manufactured solution.
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largest two grids; the majority of grid resolutions in the study are in the asymptotically

convergent regime.

The results of the code verification grid convergence study indicated that all but the

largest two grids (0.50 and 0.35 m) were in the asymptotically convergent regime, and

that these two grids were close to the asymptotically convergent regime. This conclusion

is based on the results from both the MMS X and MMS XYZ grid convergence studies.

Based on this result, the grid resolutions selected for use in the solution verification

grid convergence study (discussed below) were 0.14, 0.16, 0.18, and 0.20 cm. Smaller

resolutions were not used due to the anticipated prohibitive cost of grids finer than 0.14

cm once coal particle physics, gas phase chemistry, and large sets of transport equations

were added to the simulations.

3.3 Solution Verification

Solution verification applies to the regime of intended use. In this regime, no an-

alytical or exact solutions are available, making an exact quantitative assessment of

numerical error impossible. This means that solution verification yields numerical un-

certainty - that is, a set of bounds on the numerical error with some level of confidence

that the real numerical error is bounded - and not numerical error. The quantification

of numerical uncertainty in the intended use regime, while more difficult than an eval-

uation of numerical error for simpler analytical or manufactured solutions, is far more

useful, since statements about numerical error (or bounds on numerical error) can only

be safely applied in the regime in which the verification was performed.

Determining the numerical uncertainty is an important first step in uncertainty

quantification. The size of the numerical uncertainty may be shrunk, but the cost

of doing so is inversely proportional to the resulting size of the numerical uncertainty

bounds. The size of the numerical uncertainty bounds help to determine the level of

verification, which is the amount of numerical uncertainty in the model predictions.

This level of verification, in turn, dictates the highest level of validation that is possible.
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“Level of validation” refers to the narrowness of the experimental uncertainty bounds,

and therefore how difficult it is for the model to make a prediction that matches [74]. If

the numerical uncertainty is far larger than the experimental uncertainty bounds, then

the model results cannot be validated. In this way, verification ultimately controls the

level of validation that can be achieved. These concepts are developed further in Section

3.3.5.

3.3.1 Solution Verification Grid Convergence Analysis

While quantification of the numerical uncertainty in the intended use regime is

more challenging, there are methods that can be used to approximate the numerical

uncertainty, given the right assumptions and the right information. A very common

technique used in verification of a code in the regime of intended use is a grid convergence

analysis, discussed in Section 3.2.4, which postulates a functional form for numerical

error and determines the parameters in the postulated functional form. Grid convergence

analysis is typically applied to a single numerical parameter (grid resolution h), but this

section develops a grid convergence for two numerical parameters, grid resolution h and

number of DQMOM environments N .

First, an output quantity of interest is chosen, which has an exact solution y. The

simulation prediction of y is denoted yM . A form for the model solution can be postu-

lated:

yM (x) = y + f (x) (3.32)

where x is the vector of numerical parameters, and f (x) is the error function.

In the classical application of grid convergence analysis, in which x = h, the error

function is postulated to have the form f (h) = αhp + ε. However, in the DQMOM

method, there is an additional numerical parameter of interest, N , which is the number
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of environments used to represent the particle distribution. In this case, the postulated

error function is:

f (x) = f (h,N) (3.33)

= αhp + βN−q + γhrN−s + ε (3.34)

where α, β, γ, p, q, r, and s are constants. The first term represents the functional

dependence of convergence on the grid size, the second represents the functional depen-

dence of convergence on the number of quadrature nodes used to represent the particle

NDF (proportional to the inverse of N because error decreases with increasing N), and

the third represents the interaction effect of these two variables on solution convergence.

It is of interest to determine the order of convergence with respect to the numerical

parameters - that is, to find p, q, r, and s. This can be done by approximating the exact

solution y with the highest-fidelity model prediction available, denoted yM∞ , and defined

as

yM (x|h = h∞, N = N∞) = yM∞ , (3.35)

where h∞ is the smallest grid size used and N∞ is the largest number of environments

used. This makes equation (3.32):

yM (x) = y + f (x)

= y + αhp + βN−q + γhrN−s + ε

≈ yM∞ + f (x)

≈ yM∞ + αhp + βN−q + γhrN−s (3.36)

The next step is to approximate the exact solution using this highest-fidelity model yM∞ ,

but this depends on whether or not the interaction term γhrN−s is important. The two

cases are addressed here.
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3.3.1.1 Case A: Insignificant Interaction Effects

If the interaction effects are insignificant, then the interaction term can be lumped

into the error term, like so:

f (h,N) = αhp + βN−q + γhrN−s + ε

= αhp + βN−q + ε′. (3.37)

This is done for all cases. Next, each term is isolated by lumping all other terms into ε,

the order of the isolated term is determined, and the process is then repeated for each

term.

Starting with the determination of the order of the term αhp, the term βN−q can

be lumped into the error term:

f (h,N) ≈ αhp + ε′′ (3.38)

which, upon substitution into equation (3.36) (and dropping the error term), yields:

yM = yM∞ + αhp. (3.39)

Next, if this equation is written for two grid resolutions h1 and h2, and these are combined

via division, an expression for p can be obtained:

p =

log

(
yMh1

− yM∞
yMh2

− yM∞

)

log

Å
h1
h2

ã (3.40)

where yMhi
= yM (x|h = hi) and yM∞ is given by (3.35).

The order of the term βN−q can be determined next, by lumping the remaining

term αhp into the error term:
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f (h,N) ≈ βN−q + ε′′′ (3.41)

which, upon substitution into equation (3.36), yields:

yM = yM∞ + βN−q. (3.42)

Next, if this equation is written for two numbers of environments N1 and N2, and these

are combined via division, an expression for q can be obtained:

q =

log

(
yMN1

− yM∞
yMN2 − yM∞

)

log

Å
N1

N2

ã (3.43)

where yMNi
= yM (x|N = Ni).

In order to determine the values for exponents p and q, simulations must be per-

formed with at least 3 unique values of each numerical parameter. Performing more

than 3 simulations would ensure that the observed convergence behavior is consistent.

3.3.1.2 Case B: Significant Interaction Effects

In the case that interaction effects are significant, the expressions for p, q in equations

(3.40) and (3.43) do not hold, due to the nondistributive properties of the log operator.

In this case, principles of regression must be used in order to fit simulation results to a

function with a specified form. The function that is to be fit is the error function, which

is a function with 8 free parameters, yM∞ , α, β, γ, p, q, r, and s:

f (x) = yM − yM∞ = αhp + βN−q + γhrN−s. (3.44)

It is the error function yM − yM∞ , not the simulation output yM , being regressed.
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In order to regress the simulation results to the specified function, an experimental

design should be used to select optimal parameter values for simulation evaluations; be-

cause solution verification occurs near the intended use regime, simulation evaluations

are not cheap, and parameter combinations must be chosen with care. Once the param-

eter combinations are specified and the simulations are run, the results are regressed on

the function. The apparent orders of h and N are min (p, r) and min (q, s), respectively.

One method to determine the orders of convergence p, q, r, and s is to guess

their values, then regress the errors yM − yM∞ to the function (3.44) after substituting

the guessed values. The goodness of fit of the regression can then be assessed using

statistical quantities, with the final values of p, q, r, and s being those from the best

regression. While an in-depth discussion of goodness of fit and its metrics is given

in Section (5.1.4), two important statistical quantities used to determine the orders of

convergence are given here. The first statistical quantity used is the R2 coefficient,

which measures the correlation between the regressed model predictions and the points

on which the model was regressed. An R2 value of 1 means the function matches the

regression inputs perfectly. An R2 of 0 or less means that the fit is worse than a constant.

Using the p, q, r, and s that result in a maximum R2 value is equivalent to verification

method #3 given by Logan and Nitta [62], with the exception that the error function

(3.44) has multiple numerical parameters. Another statistical quantity that can be used

to judge goodness of fit of a regressed function is the mean squared error, MSE, which

describes the average deviation between the response surface approximation and the

actual simulation result. This is the same as the procedure described by Eca [65], and is

used in Logan and Nitta’s method #6, method #7, and method #8. Logan and Nitta

use the MSE but call it the “least squares error term.” For a grid convergence study

with D degrees of freedom and P unspecified numerical parameters, the MSE is defined

as:

MSE =

Ã
D∑
i=1

î
yMi −

Ä
yM∞ + αhp + βN−q + γhrN−s

äó
D − P

. (3.45)



80

It should be noted that the number of degrees of freedom can be increased by increasing

the number of responses gathered from the system (although these responses should all

be relevant to the intended use, see Section 3.3.1.4 below), and simultaneously enforcing

the assumption that the same presumed functional form, that is, the same values for the

parameters in equation (3.62), hold for all responses.

3.3.1.3 Determination of Interaction Effects

The interpretation of grid convergence results (and, more generally, factorial de-

sign results) to determine the significance of interaction effects utilizes concepts that are

used in later sections (specifically, in constructing surrogate models). Thus, important

concepts and calculation procedures related to interaction effects of variables on system

responses are described in Section 5.3.3. This material also provides detail about ex-

perimental design techniques used to optimize input parameter combinations in order

to best analyze these interaction effects. However, a brief explanation of the process

is given below, with enough information to interpret results from the grid convergence

study performed for the coal gasification simulation tool (Section 3.3.3). Emphasis is

placed on the results, however, with a more detailed treatment of interaction effects and

experimental design left to Section 5.3.3.

3.3.1.4 Picking a Response

The purpose of solution verification is to quantify the numerical uncertainty in

a simulation result. But in a transient simulation solving dozens of variables, what

quantities should be used to determine convergence criteria? When yM is a vector,

which yM should be used?

Determination of a system response for use in solution verification should follow

a simple convention. The variable used for solution verification should be the system

response of interest. That means, whatever quantity is being compared to experimental

data is the quantity whose order of convergence should be determined. The solution

verification is thus driven, ultimately, by the intended use. The reason for this, as covered
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in a later section (Section 3.3.5), is that the numerical uncertainty plays a role in the

validation process. In order to complete validation, in which the model prediction yM

of a quantity y is compared with data d, it is necessary to have the estimated numerical

uncertainty from the solution verification procedure for the quantity yM . This means

that computing the numerical uncertainty in, say, zM , an unrelated quantity predicted

by the computational model, is not ultimately useful for validation, although it may be

useful for better understanding model behavior.

3.3.1.5 Solution Verification Scenario

The solution verification scenario used was similar in all respects to the final gasi-

fication simulation cases used for validation, with the exception that the domain was

shortened substantially. The cylindrical gasifier had a diameter of d = 0.2 m. The

validation cases used a domain with an axial length of L = 1.2 m. However, for the pur-

poses of verification, the domain was shortened substantially so that it was a cube; the

axial length of the verification simulation domain was set to L = 0.2 m. Uncertainty in

input parameters was determined for the purposes of validation (Section 4.4.1), but for

verification, the average value of each input parameter was used. The only parameters

being modified were the two numerical parameters h and N .

The responses used were the same responses used in the final validation analysis:

time-averaged concentration profiles of three species, CO, CO2, and H2.

3.3.2 Solution Verification Grid Convergence Design

In order to determine the order of convergence with respect to the two numerical

parameters h (grid size) and N (number of DQMOM environments), a 4-level, 2-factor

full factorial experimental design was used. Basic information about fractional and full

factorial experimental designs is given in Section 5.3.5 and [75]. The important aspects

of the solution verification experimental design matrix are presented in Tables 3.1 and

3.2.
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In order to deal with each variable having 4 levels, each variable h and N was split

up into 2 variables, hA, hB, NA, and NB. These variables each have 2 levels. Combined,

this yields 4 levels for h and 4 levels for N . Table 3.1 shows the combinations of coded

values that make up the 4 levels. Next, because a fractional factorial design is being

run, the defining contrast for the fractional factorial is defined as:

I = hAhBNANB. (3.46)

This gives the design the characteristic of resolution IV, meaning the design can be

denoted 24−1
IV . A full factorial design would consist of 24 = 16 design points, yielding

the average effect, 4 main effects, 6 2-factor interactions, 4 3-factor interactions, and 1

4-factor interaction. However, the half factorial design with the defining contrast (3.46)

aliases the 4 factor interaction with a constant, and the three factor interaction effects

with the single factor main effects: for example, the relationship

hA = hBNANB (3.47)

means that the computed main effect for hA is confounded with the 3-way interaction

effect between hB, NA, and NB. This means that only the magnitude of the sum of hA

and hBNANB can be determined; these two individual effects cannot be separately deter-

mined without additional runs. Likewise, the design also aliases two factor interactions

with each other,

hAhB = NANB (3.48)

meaning that the computed interaction effect between hA and hB is confounded with the

interaction effect between NA and NB, so that only the magnitude of the sum of hAhB

and NANB can be determined. Table 3.2 shows the half factorial design, for which only
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Table 3.1: Coded values and corresponding variable values for the grid convergence
analysis experimental design.

hA hB Meaning
+1 +1 h = 0.0014

+1 -1 h = 0.0016

-1 +1 h = 0.0018

-1 -1 h = 0.0020

NA NB Meaning
+1 +1 N = 10 env
+1 -1 N = 9 env
-1 +1 N = 6 env
-1 -1 N = 3 env

Table 3.2: Coded and uncoded values for the half factorial design matrix for the grid
convergence analysis.

Case h [m] N hA hB NA NB hAhBNANB

A 0.0014 10 +1 +1 +1 +1 +1

B 0.0020 10 -1 -1 +1 +1 +1

C 0.0016 9 +1 -1 +1 -1 +1

D 0.0018 9 -1 +1 +1 -1 +1

E 0.0016 6 +1 -1 -1 +1 +1

F 0.0018 6 -1 +1 -1 +1 +1

G 0.0014 3 +1 +1 -1 -1 +1

H 0.0020 3 -1 -1 -1 -1 +1

the defining contrast of I = +1 is listed. For more details about the defining contrast,

see Section 5.3.5 and [75].

A half-factorial design was selected, first of all, because solution verification runs

are near the intended use regime, and are therefore expensive. Second, a full factorial

was judged to be unnecessary, since a half factorial would still yield information about

the importance of the interaction effect between h and N . This interaction effect was

necessary to quantify because it determined which of the two approaches above (Sections

3.3.1.1 and 3.3.1.2) would be used to determine the order of convergence. Furthermore,

in the case that the interaction effect was unimportant, it would yield four sample points

for each numerical parameter, more than the minimum three required to determine the

orders of convergence p and q.
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3.3.3 Significance of Interaction Effect

As mentioned, Sections 5.3.3 and 5.3.4 cover the procedure of calculating the signif-

icance of interaction effects, so only the results are presented here. In order to determine

the importance of the interaction between N and h and its impact on the grid conver-

gence error function, the effects of the main parameters N and h were computed, and

compared to the interaction effect. Main effects much larger than interaction effects

would lead to the order of grid convergence being determined using the procedure de-

scribed in Section 3.3.1.1, while main effects on the same order as interaction effects

would lead to the order of grid convergence being determined using the procedure de-

scribed in Section 3.3.1.2. The grid convergence study was investigating a 2-factor 4-level

1
2 fractional factorial design; the design matrix is given above, and the design procedure

for this type of experimental design is covered in detail in Section (5.3.5). Each variable

was split into two variables to make the design a 2-factor 4-level 1
2 fractional factorial

design with variables NA, NB, hA, and hB.

To determine the importance of the N × h interaction on the results of the grid

convergence, the main effects MNA
, MNB

, MhA
, MhB

had to be calculated, from which

the the four interaction terms INAhA
, INAhB

, INBhA
, and INBhB

were then calculated.

To determine the average effect of N and h, the quantities were averaged to yield MN ,

Mh, and INh.

The main effects can be calculated by finding the difference in the system response

at the two levels of the variable of interest, averaged over all variables except the variable

of interest; for the variable NA, the system response averaged over all variables of interest

except the variable of interest is denoted by yi���, defined by equation (5.56).

The main effect of variable NA can be calculated as follows:
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MNA
= y+��� − y−���

=
1

2
[y++�� + y+−��]− 1

2
[y−+�� + y−−��]

=
1

4
[y++++ + y++−− + y+−−+ + y+−+−]

−1

4
[y−+−+ + y−++− + y−−++ + y−−−−]

=
1

4
(yA + yC + yG + yE − yB − yD − yF − yH) (3.49)

where the letter codings come from Table 3.2; the remaining main effects can be calcu-

lated as:

MNB
=

1

4
(yA + yD + yF + yG − yB − yC − yE − yH) (3.50)

MhA
=

1

4
(yA + yB + yC + yD − yE − yF − yG − yH) (3.51)

MhB
=

1

4
(yA + yB + yE + yF − yC − yD − yG − yH) . (3.52)

The interaction terms are calculated for NA, NB, hA, and hB according to equation

(5.61), starting with the first interaction term INAhA
:

INAhA
=

M (NA)hA=+ −M (NA)hA=−
2

(3.53)

=
(y+�+� − y−�+�)− (y+�−� − y−�−�)

2
(3.54)

=
1

4
[y++++ + y+−+− + y−+−+ + y−−−−] (3.55)

−1

4
[y−++− + y−−++ + y+−−+ + y++−−] (3.56)

=
1

4
(yA + yC + yF + yH − yB − yD − yE − yG) . (3.57)

INAhA
(3.58)

Likewise, the other interaction effects can be determined:
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INAhB
=

1

4
(yA + yD + yE + yH − yB − yC − yF − yG) (3.59)

INBhA
=

1

4
(yA + yD + yE + yH − yB − yC − yF − yG) (3.60)

INBhB
=

1

4
(yA + yC + yF + yH − yB − yD − yE − yG) . (3.61)

Note that INAhB
= INBhA

and INAhA
= INBhB

due to the reason mentioned above.

Finally, in order to determine the effect of the variables of interest, N and h, rather

than the variables used in the factorial design (NA, NB, hA, and hB), the main effects

and two-way interaction effects were each averaged. The quantities defined by equations

(3.49) and (3.50) are averaged to yield the main effect of the variable N ; the quantities

defined by equations (3.51) and (3.52) are averaged to yield the main effect of variable

h; and the quantities defined by equations (3.58), (3.59), (3.60), and (3.61) are averaged

to yield the interaction effect between variables N and h. The resulting main and

interaction effects are shown in Figure 3.4.

The results were not surprising: the grid resolution exhibited the strongest effect

on the results. The number of environments also exhibited an effect on the response.

The interaction between N and h, while small for some responses, was overall of equal

importance to the main effects. For this reason, the interaction effects were not ignored;

the full form of the error function, equation (3.44), was regressed, using the procedures

described in Section 3.3.1.2.

3.3.4 Solution Verification Grid Convergence Results

From Figure 3.4 it is obvious that the error function is covered by Case B (Section

3.3.1.2), meaning the interaction between N and h is significant and cannot be ignored

when computing the order of convergence. The 8 points from the fractional factorial

design must be regressed to equation (3.44),

yM = yM∞ + αhp + βN−q + γhrN−s, (3.62)
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Fig. 3.4: Bar plot of the main effects of h and N and the interaction effect h × N ,
computed from the results of the solution verification grid convergence studies of all
three responses.



88

following one of the procedures mentioned in Section 3.3.1.2. In order to determine

the orders of convergence p, q, r, and s, both criteria from Logan and Nitta were used

(minimization of mean square error and maximization of R2 coefficient). The results of

the analysis are shown in Figures 3.5 through 3.10. Each plot has a fixed value of r and

s, indicated on the plot.

The procedure for the analysis was as follows. Values of p, q, r, and s were selected,

and the data resulting from the Arches verification simulations (Table 3.2) were regressed

to equation (3.62). Plots were then created of the R2 and mean square error for each

combination of different values of p, q, r, and s, shown in Figures 3.5 through 3.10,

with the maximum values of R2 and MSE indicated by the solid line, and the mean

values of R2 and MSE indicated by the dotted line. The results, presented in Table 3.3,

were consistent among all responses. They indicate, first of all, a consistent order of

convergence of p = 1 with respect to h, and r = 1 with respect to h and its interaction

with the number of DQMOM environments N , at all locations. They also indicate that

the grid convergence with respect to N is q = 1 at x = 10 cm, and q = 2 at x = 20 cm.

However, the value of s, the order of convergence with respect to N and its interaction

with the grid size h, exhibits the reverse trend: s = 2 at x = 10 cm and s = 1 at x = 20

cm. This indicates that while the observed order of convergence with respect to both h

and N is 1, the order of convergence with respect to N exhibits second-order behavior.

The solution verification reveals that the grid convergence does not match the the-

oretical order of convergence with respect to h; this is not surprising, however, given

the complexities introduced between the code verification case and the solution verifi-

cation case. These include coal gasification physics, particle tracking, various boundary

conditions, variable density, velocity, and pressure, time averaging, multiple responses,

derived quantities used as responses (that is, the responses were values tabulated on

the independent variables being tracked using scalar transport equations, rather than

independent variables themselves), etc.
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Fig. 3.5: R2 coefficients and mean squared error as a function of integer values of p and
q for the convergence study of response [CO2] at x = 10 cm. Values of r and s are
indicated on the plots. The solid lines indicate the maximum values, and the dotted
lines indicate the mean values.
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Fig. 3.6: R2 coefficients and mean squared error as a function of integer values of p and
q for the convergence study of response [CO2] at x = 20 cm. Values of r and s are
indicated on the plots. The solid lines indicate the maximum values, and the dotted
lines indicate the mean values.
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Fig. 3.7: R2 coefficients and mean squared error as a function of integer values of p and q
for the convergence study of response [CO] at x = 10 cm. Values of r and s are indicated
on the plots. The solid lines indicate the maximum values, and the dotted lines indicate
the mean values.
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Fig. 3.8: R2 coefficients and mean squared error as a function of integer values of p and q
for the convergence study of response [CO] at x = 20 cm. Values of r and s are indicated
on the plots. The solid lines indicate the maximum values, and the dotted lines indicate
the mean values.
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Fig. 3.9: R2 coefficients and mean squared error as a function of integer values of p and q
for the convergence study of response [H2] at x = 10 cm. Values of r and s are indicated
on the plots. The solid lines indicate the maximum values, and the dotted lines indicate
the mean values.
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Fig. 3.10: R2 coefficients and mean squared error as a function of integer values of p
and q for the convergence study of response [H2] at x = 20 cm. Values of r and s are
indicated on the plots. The solid lines indicate the maximum values, and the dotted
lines indicate the mean values.
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Table 3.3: Orders of convergence computed as part of the solution verification grid
convergence study for the Arches coal gasification model.

Location Species p q r s

x = 10 cm
[CO2] 1 1 1 2
[CO] 1 1 1 2
[H2] 1 1 1 2

x = 20 cm
[CO2] 1 2 1 1
[CO] 1 2 1 1
[H2] 1 2 1 1

One valuable piece of information still lacking from the solution verification is a

numerical uncertainty estimate and associated level of belief. Without this, it is im-

possible to determine the level of verification. It is, however, possible to obtain this

from the solution verification results, using the grid convergence index, described in the

section following. This was done, and a numerical uncertainty estimate was obtained.

The results from this procedure are described in the next section.

3.3.5 Numerical Uncertainty and Convergence

Indices

Numerical uncertainty plays a unique role in the validation process. Just as nu-

merical, or mathematical, truth is separate and distinct from empirical truth, so too is

numerical uncertainty separate and distinct from empirical uncertainty. Numerical un-

certainty is linked to numerical error; it bounds it. As a result, the sources of numerical

uncertainty are no different from the sources of numerical error (Figure 3.1). Numerical

uncertainty creates an interval that bounds the true numerical error εnumerical in the

simulation,

Unumerical : lε ≤ εnumerical ≤ uε

with some level of belief B in the uncertainty bounds Unumerical,
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Unumerical|B,

where the true numerical error is defined as:

εnumerical = yM − yMhi,Ni
(x|h = hi, N = Ni) (3.63)

and yM denotes the exact mathematical solution to the model equations. (Note that

empirical truth and reality play no role whatsoever in the verification process, nor in

defining numerical error and numerical uncertainty.)

Most general approaches to establishing a belief or confidence level B in a partially

known quantity utilize Student’s t-distribution, used to estimate the true mean of a

population using a small sample size; this leads to an estimate of the error. However,

this is impractical for estimating the numerical error, since this approach is based on an

estimate of the standard deviation, and this is zero for simulations run with the same

input parameters. Furthermore, the error is not normally distributed: it is a strong

function of numerical parameters. The error is part of a highly nonlinear system, and

the tasks of determining bounds on the numerical error at a high level of belief, and even

determining the magnitude of the numerical error, both part of solution verification,

are nontrivial. Indeed, as Roache says, “a well-founded probability statement of the

error estimate, such as a statistician would prefer (e.g., a 2σ limit) is not likely to be

forthcoming for practical PDE problems” [61].

3.3.5.1 Grid Convergence Index

Roache proposed an alternative method for establishing a level of belief in the un-

certainty bounds based on grid convergence studies conducted at several grid resolutions.

He called this the grid convergence index (GCI) [61, 76]. While less confident than the

typical confidence level of 95% often reported from confidence interval construction, and
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less precise, it provides an estimate, at least, of the uncertainty bounds of the numerical

error for a given grid size. To begin, the error between solutions on two grids (grid 1, a

fine grid, and grid 2, a coarse grid), computed from a grid convergence study, is given

by:

ε12 =
yMh2

− yMh1

yMh1

(3.64)

where yMhi
= yM (x|h = hi). The solution on the fine grid can be used to estimate the

exact solution:

yM ≈ yMh1
+

yMh1
− yMh2

Rp − 1
(3.65)

where R = h2/h1 is the grid refinement ratio, and h2 > h1. Given that the numerical

study contained two parameters, and that an order of convergence for h with respect

to its interaction effect with N was also computed, the quantity on the bottom could

alternatively be r
p+r
2 . However, in order to be more conservative, the value used should

be the apparent p, that is, min (p, r). Thus, because the results of the solution verification

showed p = r = 1, Rp − 1 is used in the denominator. From this, an estimated error for

the computation on the fine grid is:

E1 ≈
yMh1

− yMh2

Rp − 1
(3.66)

and a normalized error for the computation on the fine grid is:

E

1 ≈ ε12

Rp − 1
. (3.67)

This estimate of the error leads to a (normalized) GCI, which is the error estimate

multiplied by a safety factor Fs:
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GCI
 (fine grid) = FsE


1 = Fs

|ε12|
Rp − 1

. (3.68)

However, a more useful GCI is one that does not use a normalized error:

GCI (fine grid) = FsE1 = Fs

∣∣∣yMh1
− yMh2

∣∣∣
Rp − 1

. (3.69)

This is easier to interpret because it provides a direct estimate of the error in the fine

grid yMh1
. Different definitions make more sense in different situations, but in most cases

the nonnormalized GCI (3.69) is easier to apply.

The recommended safety factor for a study with 3 or more grids is Fs = 1.25, while

the recommended safety factor for a study with only 2 grids is Fs = 3.0. Likewise, based

on a similar approximation of the exact solution using the coarse grid solution:

yM ≈ yMh2
+

Ä
yMh1

− yMh2

ä
rp

Rp − 1
, (3.70)

the GCI can be defined for the coarse grid:

GCI (coarse grid) = Fs

Å
Rp

Rp − 1

ã ∣∣∣yMh1
− yMh2

∣∣∣ . (3.71)

The GCI is intended to indicate the value of |ε|that would result in the same E1 for a

grid convergence study of p = 2 and r = 2. That is, the GCI is equal to E1 for h1 = 2h2

and p = 2, and GCI = |ε| for the same case if the safety factor is 1.

The GCI can be used to determine numerical uncertainty bounds in order to sup-

plement the computation of the error function discussed above in Section 3.3.1.2,

f (h,N) = yMhi
− yM∞ = αhp + βN−q + γhrN−s. (3.72)
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What the GCI provides is a ceiling on this error function, so that:

− GCI (grid i) ≤ yM − yMhi
≤ GCI (grid i) . (3.73)

Thus, Tables 3.4, 3.5, and 3.6 provide estimates of the numerical uncertainty in each

simulation prediction with respect to the grid resolution.

3.3.5.2 Environment Convergence Index

In order to supplement Roache’s grid convergence index to also obtain an estimate of

the numerical uncertainty based on the number of DQMOM environments, an environ-

ment convergence index (ECI) was created. Following a similar procedure, the estimated

error between two computations with different numbers of environments N1 > N2 can

be expressed as:

ε12 =
yMN2

− yMN1

yMN1

(3.74)

and the solution with the highest number of environments can be used to estimate the

exact solution:

yM ≈ yMN1
+

yMN1
− yMN2

RQ − 1
(3.75)

where R = N1/N2 and N1 > N2. As before, in order to keep the ECI conservative, the

power of R is equal to the apparent order of convergence with respect to N , min (q, s).

Because the solution verification results showed that the apparent order of convergence

with respect to N was always 1, Q = 1. Next, the estimated error for the finely resolved

DQMOM computation is:

E1 ≈
yMN2

− yMN1

RQ − 1
(3.76)
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with the normalized error for the finely resolved computation given by:

E

1 ≈ ε12

RQ − 1
. (3.77)

This leads to a normalized ECI:

ECI
 (large N) = Fs
|ε12|

RQ − 1
(3.78)

and a (more useful) nonnormalized ECI, given by:

ECI (large N) = Fs

∣∣∣yMN1
− yMN2

∣∣∣
RQ − 1

. (3.79)

Likewise, the ECI for a smaller N may be computed using a solution with a larger N

as:

ECI (small N) = Fs

Ç
RQ

RQ − 1

å ∣∣∣yMN1
− yMN2

∣∣∣ . (3.80)

As with the nonnormalized GCI, this provides an indication of the numerical un-

certainty due to the number of environments selected,

− ECI (Ni) ≤ yM − yMNi
≤ ECI (Ni) . (3.81)

This quantity is computed for the solution verification results.

3.3.6 Convergence Index Results

Interpreting the GCI results reported in Tables 3.4, 3.5, and 3.6, the numerical

uncertainty is clearly spatially dependent. The numerical uncertainty closer to the inlet

(x = 10 cm) is higher by a factor of 2-5 for each response compared to the numerical
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Table 3.4: Grid convergence index at each grid resolution for the [CO2] response. The
response reported is for the highest value of N available at the given resolution. The
reported GCI is GCI (coarse grid) (compared to the h = 0.0014 m grid) for all grids
except h = 0.0014 m, and GCI (fine grid) (compared to the h = 0.0016 m grid) for the
h = 0.0014 m grid.

Grid Resolution Radial Profile, x = 10 cm Radial Profile, x = 20 cm
h [m] [CO2]

M
i εij GCI [GCI]

yMi
[CO2]

M
i εij GCI [GCI]

yMi

0.0020 0.283 0.079 0.086 33% 0.270 0.029 0.031 12%
0.0018 0.272 0.035 0.052 20% 0.266 0.012 0.018 7%
0.0016 0.265 0.010 0.025 10% 0.263 0.003 0.007 3%
0.0014 0.262 - 0.025 10% 0.262 - 0.007 3%

Table 3.5: Grid convergence index at each grid resolution for the [CO] response. The
response reported is for the highest value of N available at the given resolution. The
reported GCI is GCI (coarse grid) (compared to the h = 0.0014 m grid) for all grids
except h = 0.0014 m, and GCI (fine grid) (compared to the h = 0.0016 m grid) for the
h = 0.0014 m grid.

Grid Resolution Radial Profile, x = 10 cm Radial Profile, x = 20 cm
h [m] [CO]Mi εij GCI [GCI]

yMi
[CO]Mi εij GCI [GCI]

yMi

0.0020 0.408 0.086 0.159 36% 0.434 0.027 0.051 11%
0.0018 0.431 0.035 0.088 20% 0.442 0.010 0.026 6%
0.0016 0.442 0.010 0.044 10% 0.445 0.002 0.008 2%
0.0014 0.446 - 0.044 10% 0.446 - 0.008 2%

uncertainty at x = 20 cm. While a complete assessment of the experimental uncertainty

will be presented in a later section, the numerical uncertainty at x = 20 cm is lower

than the experimental uncertainty used in the validation analysis, while the numerical

uncertainty at x = 10 cm is comparable to or higher than the experimental uncertainty

used. This indicates that the numerical uncertainty in the anterior region is likely to

be higher than in the posterior region. However, given that the location of the first

experimental measurement in the gasifier was at x = 21 cm, the numerical uncertainty

due to h is not significant enough to make the level of verification lower than the level

of validation.
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Table 3.6: Grid convergence index at each grid resolution for the [H2] response. The
response reported is for the highest value of N available at the given resolution. The
reported GCI is GCI (coarse grid) (compared to the h = 0.0014 m grid) for all grids
except h = 0.0014 m, and GCI (fine grid) (compared to the h = 0.0016 m grid) for the
h = 0.0014 m grid.

Grid Resolution Radial Profile, x = 10 cm Radial Profile, x = 20 cm
h [m] [H2]

M
i εij GCI [GCI]

yMi
[H2]

M
i εij GCI [GCI]

yMi

0.0020 0.0071 0.0991 0.0032 41% 0.0076 0.0359 0.0012 15%
0.0018 0.0075 0.0424 0.0019 24% 0.0077 0.0077 0.0006 8%
0.0016 0.0078 0.0108 0.0008 11% 0.0078 0.0078 0.0002 2%
0.0014 0.0079 - 0.0008 11% 0.0079 - 0.0002 2%

Table 3.7: Environment convergence index at each grid resolution for the [CO2] response.
The response reported is for the highest value of h available for the given value of N .
The reported ECI is ECI (small N) (compared to the N = 10 solution) for all N except
N = 10, and ECI (large N) (compared to the N = 9 solution) for the N = 10 solution.

Environments Radial Profile, x = 10 cm Radial Profile, x = 20 cm
N [CO2]

M
i εij ECI [ECI]

yMi
[CO2]

M
i εij ECI [ECI]

yMi

3 0.285 0.085 0.040 15% 0.265 0.008 0.004 1%
6 0.270 0.029 0.024 9% 0.265 0.011 0.009 3%
9 0.265 0.010 0.031 12% 0.263 0.003 0.009 3%
10 0.262 - 0.031 12% 0.262 - 0.009 3%

The ECI results reported in Tables 3.7, 3.8, and 3.9 show similar results to the GCI,

namely, that the numerical uncertainty due to N is significant only near the inlet, x = 10

cm, and decreases to a negligible amount at x = 20 cm. As with the GCI, the much

larger numerical uncertainty at x = 10 cm is approximately equal to the experimental

uncertainty, and decreases to a small fraction of the experimental uncertainty used in the

validation analysis. For this reason, the numerical uncertainty due to N is not significant

enough to make the level of verification lower than the level of validation.
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Table 3.8: Environment convergence index at each grid resolution for the [CO] response.
The response reported is for the highest value of h available for the given value of N .
The reported ECI is ECI (small N) (compared to the N = 10 solution) for all N except
N = 10, and ECI (large N) (compared to the N = 9 solution) for the N = 10 solution.

Environments Radial Profile, x = 10 cm Radial Profile, x = 20 cm
N [CO]Mi εij ECI [ECI]

yMi
[CO]Mi εij ECI [ECI]

yMi

3 0.408 0.087 0.069 15% 0.444 0.006 0.004 1%
6 0.433 0.029 0.041 9% 0.443 0.008 0.011 2%
9 0.442 0.010 0.054 12% 0.445 0.002 0.011 2%
10 0.446 - 0.054 12% 0.446 - 0.011 2%

Table 3.9: Environment convergence index at each grid resolution for the [H2] response.
The response reported is for the highest value of h available for the given value of N .
The reported ECI is ECI (small N) (compared to the N = 10 solution) for all N except
N = 10, and ECI (large N) (compared to the N = 9 solution) for the N = 10 solution.

Environments Radial Profile, x = 10 cm Radial Profile, x = 20 cm
N [H2]

M
i εij ECI [ECI]

yMi
[H2]

M
i εij ECI [ECI]

yMi

3 0.0071 0.0974 0.0014 17% 0.0078 0.0072 0.0001 1%
6 0.0076 0.0329 0.0008 10% 0.0078 0.0098 0.0002 3%
9 0.0078 0.0108 0.0011 13% 0.0078 0.0025 0.0002 3%
10 0.0079 - 0.0011 13% 0.0079 - 0.0002 3%
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3.3.7 Numerical Uncertainty and Validation

One topic that has not yet been covered is the role of verification, particularly

solution verification and the numerical uncertainty obtained from it, in the validation

process. The numerical uncertainty provides an estimate of the numerical error: the

amount that the solution to a computational implementation of a mathematical model

deviates from the exact solution to that mathematical model. This numerical uncertainty

is referred to as a level of verification. This gets at the question, to what degree is a

model result truly due to the model, as opposed to numerical error?

A similar question may be posed for empirical uncertainty: how much of an empirical

observation is due to the observed quantity itself, as opposed to observational error?

These two questions are linked. Just as the amount of numerical uncertainty sets the

level of verification, so too does the amount of empirical uncertainty set the level of

validation, discussed further in Section 4.4.3. In order to perform validation at a certain

level, one must also perform verification at a corresponding level. It is thrilling to obtain

model results that compare well to high quality experimental data (that is, to have a

high level of validation), but if the model has not been verified, or has been poorly

verified, the mathematical model may be solving incorrect governing equations, or be

suffering from significant numerical bias, making the validation ineffectual.

The last step in the validation process is comparison of the numerical uncertainty

to the simulation uncertainty. Any validation procedure should determine valid values

(lower and upper bounds) for the simulation input parameters; it should also return an

estimate of the corresponding simulation output lower and upper bounds. In the case

of the data collaboration method (discussed in Chapter 6), the initial input parameter

uncertainty bounds are reduced to valid ranges, and simulation output lower and upper

bounds corresponding to these input uncertainty bounds are estimated. Once these

output “empirical” uncertainty bounds (empirical in the sense that they are valid for,

and correspond to, a set of empirical data) are estimated, they should be compared to

the numerical uncertainty bounds, and a determination should be made about whether
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the verification level corresponds to the validation level, or whether further numerical

refinement is needed. As already mentioned, if the level of verification is much lower

than the level of validation, no conclusions can be drawn about the validity of the model.

3.4 Conclusions

The material covered in this chapter began with an explanation of how the error

vs. uncertainty discussion in Section 1.4.4 applies to verification through numerical

error vs. numerical uncertainty. The distinction of verification activities is that they

deal entirely with rational, or mathematical, truth, and two verification activities are

intended to quantify numerical error and numerical uncertainty, namely code verification

and solution verification.

Before discussing code or solution verification, various sources of numerical error,

and a system for thinking about and categorizing them, were presented in Section 3.1.3,

and a novel error taxonomy useful for thinking fundamentally about error and its sources

was presented (Figure 3.1). This was a substantial improvement over existing error

taxonomy approaches due to its emphasis of tying each type of error to its associated

step in the process of implementing and solving a discrete computational version of a

mathematical model.

Two parts of verification were covered: code verification (Section 3.2) and solution

verification (Section 3.3). Code verification quantifies numerical error and examines the

behavior of numerical error as grid size is decreased using a grid convergence study. In

order to quantify numerical error, the mathematical model (that is, the principal equa-

tions that make up the mathematical model) are solved for simple problems with known

mathematical solutions. This can be done using analytical solutions, which are difficult

to obtain; manufactured solutions, which lend themselves well to computational fluid

dynamics frameworks; or benchmark solutions, high resolution numerical solutions of

the same or a similar set of governing equations. The method of manufactured solutions

was used for the code verification grid convergence study. The results of the code ver-
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ification grid convergence study demonstrated that the code converged with respect to

grid size h with the expected theoretical order of accuracy corresponding to the discrete

operator implemented.

Solution verification analyzed the numerical uncertainty, also using a grid conver-

gence study but for a problem closer to intended use, and varying two numerical pa-

rameters (Section 3.3.1). This grid convergence study was run with 4 grid resolutions

h and 4 different numbers of DQMOM environments N , with the combinations of each

parameter selected according to a half factorial design, for a total of 8 cases. The analy-

sis of the solution verification results revealed a significant interaction between the two

numerical parameters (Figure 3.4). The resulting orders of convergence p, q, r, and s as

expressed by equation (3.36) were computed by guessing values of each and regressing

the model solutions yMhi,Ni
to the functional form. The selected orders of convergence

were those that minimized the R2 coefficient and the mean squared error, equivalent to

methods #3 and #7 described by Logan and Nitta [62], described in Section 3.3.1.2. It

was found that in the intended use regime the apparent orders p and r, corresponding

to h, were both 1, and that q and s were alternately 2 and 1, so that the apparent order

with respect to N was always 1, but exhibited some second order behavior (the orders of

convergence for each response and each location are reported in Table 3.3). The solution

verification also provided a numerical uncertainty estimate in the form of the GCI (Sec-

tion 3.3.5). The numerical uncertainty was spatially dependent, but was small enough

near the axial location corresponding to the first experimental measurement that the

level of verification can be treated as much smaller than the level of validation.



CHAPTER 4

VALIDATION FRAMEWORK

The purpose of the experiment is not to verify a proposed theory but to replace a

computation from an unquestioned theory by direct measurement. . . Thus, wind tun-

nels are used. . . as computing devices. . . to integrate the nonlinear partial differential

equations of fluid dynamics. . .

John von Neumann

4.1 What Is Validation?

Oberkampf et al. [60] define validation as “the assessment of the accuracy of a com-

puter simulation by comparison to experimental data.” It is a test of whether and how

well a computer simulation can reproduce empirical observations. Validation should be

preceded by verification (see Chapter 3), as verification ensures that a code is mistake-

free and numerically convergent (and otherwise numerically well-behaved). Establish-

ment of a validation metric is an area of active research, but is a difficult task, not the

least because of fundamental conceptual mistakes and ambiguity. For this reason, a dis-

cussion of concepts underlying validation should precede a specification of the validation

approach used.

In order to validate a computer simulation, it is important to first specify what

computer simulation is, what it entails, where it fits into scientific methodology, and its

relation to experimental data. Misconceptions about simulation often lead to unrealistic

expectations or abuse of computer simulations, misinterpretation of results, and valida-
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tion procedures that are performed incorrectly. To avoid such misconceptions, a clear

description of simulation and its role in the scientific method follows.

4.1.1 Simulation as an Extension of Theory

Traditionally, the scientific method has been interpreted as a one-way communica-

tion of information: from data to theory. In his Logic of Scientific Discovery, Popper

presents his falsifiability view, which is essentially the same process: experiments are

performed and data are gathered; hypotheses are generated to explain the data; and

as new data are gathered, hypotheses are either falsified (that is, proven false through

contradiction of the observed data) and discarded or refined, or they are not falsified

because they do not contradict the observed data. This is the process of science most

often disseminated to the nonscientific public.

Unfortunately, however, this view of science is overly simplistic, idealistic, and seri-

ously flawed. While there is substantial information transfer from experiments to theory,

there is also substantial information transfer from theory to experiments, in order to in-

terpret experimental data. As an example, measured quantities often take on different

meanings depending on the paradigm of accepted scientific theory (as an example, the

quantity “mass” has differing meanings depending in the Newtonian and Einsteinian

paradigms [77]). Theories can be and are used to run verifiability tests on experimen-

tal data [78], or even to throw suspicion on particular experimental instrumentation or

techniques [79]. As Roache stated, “every observation is laden with theory” [61].

Simulation has recently elbowed its way onto this complicated scene and is now pro-

viding an additional approach to exploring scientific questions. But, like other branches

of science before it, simulation is being applied before fundamental questions about how

it works have been answered (or posed). What is the relationship between simulation

and experiment? Simulation and theory? How does simulation change the way experi-

ments are performed? How does it change the way theories are formulated? When can

a simulation result be trusted, and how is that trust established? Can a simulation be
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right “to a degree?” As stated in Section 1.3, at the heart of these questions is a need

for an epistemology of simulation.

Simulation is colloquially cited as a “third pillar of science” in online forums, YouTube

videos, and class syllabi. Claims that simulation is a third pillar of science have even been

made in the scientific literature [1, 60]. With this perspective, simulation is often used

in place of experimental data, with interpretations of simulation results often sounding

exactly the same as interpretation of physical results. Simulations of systems lacking

experimental data are run to gain insight (so-called in silico experiments). Indeed, this

approach is tempting, with many features of simulations being shared by experiments:

experimental data sets share common traits with extracted simulation results, simu-

lations are seen as virtual experimental facilities, and computational results are often

presented or visualized in such way that they bear a striking resemblance to real physical

phenomena. Questions of whether the simulation results are reliable and trustworthy

are often answered by resolving more scales and spending more computational power to

obtain higher resolution solutions.

However, much like the falsifiability view of the scientific method, viewing simulation

in this way is overly simplistic; it is also a gross overinflation of simulation’s capabilities.

In reality, computer simulations are simply an extension of scientific theory. Using a

computer simulation, it is possible to explore the implications of a mathematical model in

much greater depth than was possible a century ago, but computer simulations are never

real; they are merely extensions of scientific theory. Depending on the mathematical

model, the computer simulation may fall further from or closer to reality. For example,

direct numerical simulation (DNS) is a widely-used technique in fluid dynamics that

takes a first-principles approach to modeling, and may be considered closer to reality

than Reynolds-Averaged Navier Stokes (RANS) models that use ad-hoc closure methods

to make solutions more economically feasible. But no simulation ever falls in the realm

of reality. While simulations can be used to understand systems for which there is

a sparsity or lack of data, simulations should never be thought of as independent of
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theory; simulations are an extension of theory. It is also absurd to call simulation a

mature science [1] when such important aspects of simulation as its relationship with

theory are not addressed, discussed, or posed by most scientists utilizing simulations.

An important question to ask is, what is the source of this misinterpretation of

simulation as independent of theory? From what source does the eagerness to treat sim-

ulation as surrogate experimental data spring? The answer can be found by examining

the purpose of science as a whole. All of science is an attempt to understand the reasons

for things that happen. Understanding these reasons can inductively lead to principles

that can be utilized to deductively predict the behavior of systems, which in turn al-

low civilization to design useful things like skyscrapers and satellites, or create useful

processes like converting chemical or geological materials into electricity. The process

of science culminates in the practical application of scientific principles to make useful

predictions about reality, and improve society through these predictions.

Simulation is no exception: one significant goal of simulation is to extend theory

and predictivity beyond experimentation, and help understand systems for which little

or no experimental data are available. However, as stated above, fundamental questions,

routinely deferred by researchers, are the chief roadblocks to simulation’s development

into a more mature science. The process of validation is at the heart of each of these

questions. This is why validation is so important: it forms the critical step of establishing

trust in a model, which must occur between the construction of the model and the use

of the model to make predictions.

4.1.2 Validation Metric

In order to perform validation, a metric is required. Validation metrics should have

a number of characteristics, a subject discussed in Section 6.1.1; but the chiefest among

these should be use of the truth. The point belabored in Section 4.1.1 was that simulation

is not a substitute for empirical observation and empirical truth; in order to establish

any trust in a computational model, experimental data must be used. Simulations must

match the criteria placed on empirical truth by experiments in order to be considered
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valid; any appeal to alternative principles or emphasis on alternative metrics should

be rejected as a validation criterion. One recurring theme of validation is that, while

principles and metrics that appeal to something other than truth criteria (experimental

data) may be useful, they should not be considered validation.

One statement supporting the choice of such a metric comes from Ernst Mach.

Mach, a proponent of an extreme form of empiricism called phenomenalism, made the

following statement in his 1893 book Science of Mechanics:

The function of science, as we take it, is to replace experience. Thus, on the one
hand, science must remain in the province of experience, but, on the other, must has-
ten beyond it, constantly expecting confirmation, constantly expecting the reverse.
Where neither confirmation nor refutation is possible, science is not concerned. (p.
586, Science of Mechanics)

Mach’s statement embodies not just a proper philosophy of science, but also a proper

philosophy of validation: recognizing, on the one hand, that validation is inherently

limited to the experimental data available, but on the other hand, that validation is

ultimately aimed at establishing trust in a simulation in order to extend the model

beyond experience.

While the use of truth as the sole metric of validation may seem obvious straight

off, it is not always treated as such. Models are often rejected straight away on the basis

of the assumptions that have gone into the model, without regard to whether the model

matches reality or not. Further, models are sometimes accepted regardless of their in-

ability to match data; as an example, in [80], Oberkampf pointed out that, using the

validation metric of Coleman et al. [81,82], a simulation can be validated by “increasing

the experimental uncertainty” or by “increasing uncertainty in data used from previous

analyses.” He then stated, “as pointed out by Roache and Oberkampf and Trucano,

this makes no sense.” Roache, too, made the reverse argument [83]: that validation

becomes increasingly difficult as the experimental uncertainty bounds shrink. He ad-

vocated adding a tolerance to the experimental uncertainty in such cases to widen the

empirical uncertainty bounds and make validation easier to achieve, albeit at a different

level of validation. Such perspectives are misguided, because of the fact that the criteria
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used to judge models are not truth criteria. Roache’s suggestion, in particular, of adding

a tolerance is ill-considered; it is intentionally throwing away (or worse, contaminating)

information about reality, and is a complete departure from the activity of validation.

Roache’s point is well-intentioned: codes can still be useful even if they do not match

extremely rigorous truth criteria. However, it is dangerous to alias nonvalidation ac-

tivities, such as Roache’s tolerance test, with validation activities, namely comparing

simulation results to experimental data.

To illustrate this approach, a simple heat transfer problem is considered. If the

temperature profile of an object is being measured with a low grade thermocouple at

infrequent intervals, it is very easy for a predictive temperature model to be validated,

that is, to match what is known about the true temperature, which, in contrast to

Oberkampf’s claim, makes perfect sense. As the temperature measurements increase in

frequency and precision, it becomes increasingly difficult for the model to match what

is known about the true temperature. This is perfectly reasonable, despite Roache’s

protests; if the model cannot predict correct values, it should not be trusted. If Roache’s

approach of adding a tolerance to the experimental data are taken, this is equivalent to

stating: “The thermocouple I am using measures temperature with a certain degree of

accuracy; but I will fudge the instrument error, and pretend that I am using a lower

grade thermocouple, in order to validate my model.” This approach to validation is

disingenuous.

Experimental observations are the king in the chess game of model validation. The

importance of experimental observations stems from the fact that they are the only

source of quantitative information about empirical truth and about reality. They dictate

the cost of validation, and the level of validation that may be achieved. And validation,

like (most) chess games, results in either a win or a loss, a yes or a no: yes, the model

matches the truth criteria, and is therefore validated; or no, the model does not match

the truth criteria, and is therefore invalidated. Therefore, validation is a binary metric.
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4.1.3 Instrumentalism

The use of truth as the sole metric of validation was supported in part by citing

a quotation from Mach’s Science of Mechanics. Mach’s system of scientific philosophy

is best characterized as instrumentalism [84, 85]. Instrumentalism holds that theories

and models are merely instruments, through which scientists interpret empirical obser-

vations. Just as simulations are extensions of theory, so too are theories extensions of

mathematics, and mathematics extensions of our “rational sense.” Each of these tools

may be thought of as “rational instruments.” (So, too, are experimental instruments

extensions of our empirical senses, and therefore “empirical instruments.”) The quality

of each of these rational instruments is grounded entirely on its ability to match what

is known about the truth: truth criteria, or experimental data. Mach distilled a central

precept of instrumentalism into an excellent 1882 lecture to the Imperial Academy of

Sciences in Vienna, entitled “The Economic Nature of Physical Inquiry.” He said:

In reality, the [model] always contains less than the fact itself, because it does not
reproduce the fact as a whole but only in that aspect of it which is important for us,
the rest being intentionally or from necessity omitted. (p. 193, Popular Scientific
Lectures, [86])

In other words, to validate a model, data are chosen that reflect some aspect of the

system that is interesting or important, because it is only the instrument’s reflection of

this aspect of the system that is being validated, that is being made trustworthy.

Instrumentalism can be contrasted with two other dominant paradigms of philoso-

phy of science, namely realism and empiricism. Realism approaches models and theories

as logical systems composed of synthetic statements, based on principles of logic that are

so fundamental that the logical systems cannot be refuted by experimental data. The

challenge of realism lies in finding the correct synthetic statements [31,87–89]. Another

way to express realist views is that reality has an inherent mathematical structure or

order, that the universe follows rules, and that there exist physical “laws” that describe

the universe. The ability of mathematics to describe the universe is cited as evidence
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in support of realism. A realist would stipulate that “the principles of logic and mathe-

matics represent the only domain in which certainty is attainable” [89]. On the opposite

end of the spectrum from realism is empiricism, which is critical of any system grounded

in purely analytical or synthetic statements. Empiricism does not just reject analytical

statements in judging a model’s ability to match reality: it even goes so far as to reject

any assumptions underlying a model which are not based on empirical statements. In

fact, the empirical validity of the model output is based on the empirical validity of the

model’s underlying principles and assumptions.

Instrumentalism, in contrast to both, sees the value of models, not in its empirical

validity, or in its basis on logical, synthetic principles, but rather, its predictive capability.

Naylor, who calls instrumentalism “positive economics,” explains the driving philosophy

behind instrumentalism by quoting Milton Friedman; Friedman makes the point that

often the emphasis on details of the assumptions in a model makes validation more

complex than it should be:

The difficulty in the social sciences of getting new evidence for this class of phenom-
ena and of judging its conformity with the implications of the hypothesis makes it
tempting to suppose that other, more readily available, evidence is equally relevant
to the validity of the hypothesis - to suppose that hypotheses have not only “impli-
cations” but also “assumptions” and that the conformity of these “assumptions” to
“reality” is a test of the validity of the hypothesis different from or additional to the
test by implications. This widely held view is fundamentally wrong and productive
of much mischief. Far from providing an easier means for sifting valid from invalid
hypotheses, it only confuses the issue, promotes misunderstanding about the signif-
icance of empirical evidence for economic theory, produces a misdirection of much
intellectual effort devoted to the development of consensus on tentative hypotheses
in positive economics. (Essays in Positive Economics, [90])

In other words, comparison to empirical observation is the primary, and only, test of

validity. Friedman is claiming “that it makes no difference whatever to what extent the

assumptions falsify reality” [89].

To illustrate the approach of each philosophy, consider an analog clock whose gears

have stopped; this clock will tell the correct time of day twice a day. Each philosophy

will have a different approach to determining whether this clock is correct:
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• The realist would say: “The mechanism of this clock appears to be broken, ac-

cording to my schematics of the clock gears. Therefore, the clock will always tell

the incorrect time; it will be unconditionally wrong as long as the gears are not

functioning properly.”

• The empiricist would say: “Clocks are supposed to move their hands, but this

clock does not. Therefore, this clock will not tell the correct time; it will be

unconditionally wrong as long as it is not exhibiting normal clock behavior.”

• The instrumentalist would say: “We are interested in knowing what time it is.

Therefore, we shall compare the reading of the clock to a well-established stan-

dard time, and make a judgement about whether the clock is correct. The more

correct readings the clock gives, the more confidence may be placed in the clock.

Disassembling an invalidated clock reveals information about other clocks, but

disassembling a validated clock can reveal information about principles of time.”

Each philosophy has its obvious advantages and disadvantages. However, the advantage

of the instrumentalist approach is that it is less presumptive. While this example presents

obvious good and bad choices, it is because we already understand clocks and time very

well; real world problems are vastly more complex, and the real world equivalents of

normal clock behavior, the concept of time, and a well-established standard time are

almost never available.

Taking an instrumentalist perspective on validation does not preclude the use of

rationalism or empiricism in the various stages of model construction. Each philosophy

has its uses. However, for the process of model validation, instrumentalism is the only

tenable philosophical approach to validation. The instrumentalist philosophy provides

a consistent perspective for model validation. A consistent perspective is of particu-

lar importance given the many complexities and difficult scenarios encountered while

performing validation.
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4.2 What Is Empirical Uncertainty?

Any discussion of validation must also include a discussion of uncertainty. As de-

fined in the introduction (Section 1.4.4), uncertainty quantification provides a bounds

for the error based on a true value when the true value is unknown or unmeasurable.

Solution verification, covered in Section 3.3, is an activity that quantifies the numerical

uncertainty (a bounds on the mathematical or numerical error). Validation, on the other

hand, quantifies the uncertainty bounding the empirical error; this is referred to as the

empirical uncertainty.

This chapter will first categorize different sources of empirical uncertainty and de-

scribe the procedure of validation and uncertainty analysis. Like the error taxonomy

of Section 3.1.3, this is not intended to be comprehensive; rather, it is intended to

provide a cohesive framework for thinking about uncertainty, where it enters into the

validation process, and what effect it ultimately has. Then a variety of methods for

treating uncertainty mathematically will be reviewed to provide a perspective on the

unique mathematical problems posed by validation and some formulations for dealing

with these problems. Finally, the “level of belief,” or confidence, associated with the

uncertainty interval will be discussed.

4.2.1 Uncertainty Taxonomy

As mentioned, uncertainty quantification and analysis can focus on either empirical

uncertainty, which bounds empirical error when comparing a model to experimental

data, or numerical uncertainty, bounding numerical error resulting from a comparison

of a numerical implementation of a model with the corresponding exact mathematical

solution. The focus here will be on empirical uncertainty, since the quantification of

numerical uncertainty was already covered in the Solution Verification section (Section

3.3). Several of the uncertainties referred to here do not strictly follow the definition of

uncertainty given in Section 1.4.4; these in fact bound a true value y, rather than an

error y − ŷ; but the uncertainty concept is easily extendable to such cases.
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When analyzing uncertainty in a system, uncertainties can be classified as either in-

put uncertainty or output uncertainty. Input uncertainty refers to uncertainty that feeds

into a system, for example through imperfectly known boundary conditions. Empirical

input uncertainties can be classified as scenario uncertainties, which include uncertainty

in boundary conditions as well as uncertainty in material physical properties. Model

input uncertainties, on the other hand, consist of three types:

• Submodel uncertainty: uncertainty in what choice to make for submodel forms or

submodel parameters and what effect they will have on the empirical error.

• Numerical parameter uncertainty: uncertainty in what choice to make for numer-

ical parameters such as grid resolution h and what effect they will have on the

empirical error.

• Scenario parameter uncertainty: uncertainty in what values to use for boundary

conditions and other scenario parameters, and the effect they will have on the

empirical error.

Model input uncertainties can be thought of as fundamentally different from scenario pa-

rameter uncertainties: model input uncertainties are uncertainties of choice, rather than

uncertainties of imperfect knowledge. This difference alludes to a significant difference in

uncertainty analysis of models and uncertainty analysis of experiments, covered shortly.

Output uncertainty is a resulting uncertainty in an experimental observation de or a

model prediction yMe originating from a number of sources, including input uncertainty

propagated through the entire system.

Empirical uncertainty analysis is an attempt to answer the question: “How well

does one know what the true observation y is?” Empirical uncertainty expresses a

lack of information about the true observation. Model uncertainty analysis attempts to

answer the question: “How well does one know what the true model prediction yM is?” It

expresses lack of information about the model prediction. The goal of model validation

is not to reduce the level of experimental uncertainty; for the purposes of validation, the

experimental uncertainty is what it is. The purpose of model validation is to reduce the

level of model uncertainty until it matches the truth criteria.
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Questions of this form complicate the validation process. Validation answers the

question of whether a model can match data. But while validation is a binary measure, it

is an uncertain binary measure. This necessitates a probabilistic mathematical treatment

of uncertainty.

4.2.2 Mathematical Treatment of Uncertainty

The mathematical treatment of uncertainty has a storied history dating back to Leg-

endre and Gauss [91]. Approaches can be generally classified in two ways: set based, or

probability based. Set theory approaches to uncertainty describe specific sets of events,

which may or may not have particular properties. Depending on their properties, they

are placed in different sets, based on a logical variable: “this thing has this property”; or

“this thing does not have this property.” Further consideration can be given to proper-

ties that are graded (ordinal variables), or that have multiple possible unordered values

(nominal variables) (see [92]). This approach has been extended in many fields, and

includes such diverse approaches as fuzzy logic [93], which considers nondiscrete (fuzzy)

inclusion in sets of “this thing has this property;” interval analysis [94], which examines

the behavior of functions for sets (intervals) of values; and mathematical programming,

which involves selecting optimal elements of sets. The data collaboration method, the

validation methodology used for validation of the Arches coal gasification model in Chap-

ter 6, can be classified as a set-based approach to uncertainty.

Probabilistic approaches to uncertainty describe it from a statistical perspective;

given a population of i atoms Ai, the probability P (B) of an event B can be described

as the number of atoms Ai that confirm to, or follow, B, divided by the total number

of atoms in the population. This simple idea can be extended and generalized to create

probability systems (see, e.g., Jaynes [95]). There have been many useful extensions

of probabilistic approaches to uncertainty, just as with set theory. These include such

approaches as stochastic processes and stochastic calculus [96].

Some researchers argue that their chosen probability or set approach is superior to

other approaches, such as Lindley [97] with probabilistic methods (Bayesianism), or Klir
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[98] with set based methods (fuzzy set theory). However, ideas and methods from both

approaches provide valuable ways of thinking about uncertainty. In burgeoning fields

such as uncertainty quantification, it is self-defeating to argue over which approaches are

“better.” Much like the philosophy of instrumentalism, which takes the high road and

bypasses the conflict between the deeply entrenched rationalists and empiricists by using

both rationalism and empiricism to achieve the end goal of obtaining validated models,

so too should the high road be taken for a mathematical treatment of uncertainty, and

the best features of both approaches used to obtain an accurate and useful description

of reality.

4.3 Approaches to Validation

A review of various approaches to validation is critical to understanding the issues

related to validation and uncertainty quantification. It is, of course, acknowledged that

the field of model validation is large and difficult to cover comprehensively (see [99] and

[61] for two such attempts). This is not the goal. The focus in this overview of validation

approaches is to summarize papers whose conclusions or contributions are important to

highlight, or whose approach is novel. Once this is done, it will become clear that while

many authors have contributed ideas for validation metrics or introduced new validation

metrics, there is often no clear way to reconcile different models. For this reason, a

framework from the literature is adopted that will lead to a better understanding of the

relationship between various approaches.

4.3.1 Pre-1990s

The concept of validation appeared as early as 1967, one year after ARPANET was

created. Naylor et al. [89] discussed validation (which, during its early development, was

also called “verification,” with the two terms often used interchangeably) and presented

several validation measures to quantify goodness of fit. Even at this very early stage of

validation of computer simulations, it was recognized that empirical observations played
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a central role in validation: “Although the construction and analysis of a simulation

model, the validity of which has not been ascertained by empirical observation, may

prove to be of interest for expository or pedagogical purposes (e.g., to illustrate particular

simulation techniques), such a model contributes nothing to the understanding of the

system being simulated.” Naylor et al. also highlighted the central role of probability

theory in the process of validating models.

Much interest and early development in simulation validation emerged from op-

erations research, and in particular military operations research [100–105]. Military

operations applications share interesting parallels with the systems of interest in the

present study: expensive and sparse data; significant bias; large numbers of known and

unknown variables [101]. They also discuss precisely the same concerns that later came

up in discussions of validating engineering simulations. The fact that validation is in-

extricably linked to the intended use was addressed by Hodges [104]: “the appropriate

form of quality assurance for a model depends fundamentally on how the model is used,

so any attempt to define a single validation standard and procedure for all models in all

uses will surely fail.”

Another field of study that has made significant contributions to the validation

literature is nuclear reactor design. This field is particularly concerned, not just with

validation, but with degree of validation and predictivity. Griffin [102] discussed the

use of computer simulations to design nuclear reactors, formulated the idea of levels

of confidence in validation, rather than attempting to create a single metric for all

models: “it is apparent there is no such thing as absolute verification [and validation]

of a computer program... Rather than talking about verification [and validation], it

would seem more appropriate to talk about level of confidence.” This led in part to the

adoption of the terminology “level of validation,” which is now common in the model

validation field.

Several journals also began to adopt guidelines that required attention be given to

uncertainty quantification. In 1986, the Journal of Fluids Engineering (JFE) published
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guidelines for authors to give attention to quantification of numerical uncertainty, but

the guidelines did not make any statements regarding empirical uncertainty. In 1987, the

American Nuclear Society (ANS) adopted guidelines for validation and quantification of

uncertainty. Likewise, NASA researchers also published definitions of verification and

validation in the context of aerospace applications [106, 107]. Adoption of uncertainty

quantification guidelines by societies and journals raise the bar for peer reviewed pub-

lications and grants, and can help to institutionalize practices in their respective fields

by adopting such guidelines.

Perhaps the most pithy, if not rigorous, definitions of verification and validation were

given by Boehm [61, 108]: verification is “solving the equations right” and validation is

“solving the right equations.”

4.3.2 1990s

The decade of 1990-1999 saw a proliferation of validation into many new applica-

tions in systems modeled using partial differential equations, particularly in aerospace

engineering. The groundwork for validation and uncertainty quantification was laid by

researchers investigating verification, quantification of numerical error and numerical

uncertainty. Many of these questions and concepts were then extended to model val-

idation. Oberkampf [109] proposed a framework for thinking about verification and

validation of engineering codes, acknowledging the need for separate treatment of nu-

merical errors and modeling errors. The framework applied experimental, numerical,

and analytical approaches to all aspects. This framework was further detailed in [110].

However, as mentioned in Section 3.1.3, the work blurs the very important activities of

verification and validation - that is, assessment of numerical uncertainty and empirical

uncertainty - as well as the distinction between the concept of error and uncertainty (Sec-

tion 1.4.4). Karniadakis [67], in addressing numerical uncertainty, referred to modeling

error as stemming from lack of knowledge about “the precise constitutive laws and thus

the corresponding governing equations.” This presumes that there are “true” governing

equations for a system - this clearly cannot be the case, as the quantities appearing
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in these equations, such as velocity or pressure, are quantities of human invention, not

appearing in nature; they are integrated molecular properties (Sections 1.4.2 and 1.4.3).

Karniadakis additionally refers to boundary condition error as stemming from the use

of an incorrect boundary condition. However, this presumes that there is a correct

boundary condition; again, this cannot be the case, since the quantities whose bound-

aries are being set are entirely artificial human constructs. There is no such thing as a

“true” boundary condition (unless one were to prescribe the state of every molecule on

the boundary, in which case the governing equations whose boundary conditions were

being set would not apply and the very meaning of the word boundary would become

senseless); for this reason, one cannot speak of boundary condition error, only boundary

condition uncertainty.

Marvin [107] made important progress toward establishing (or, reestablishing) the

definitions of verification and validation in the field of engineering simulations such that

they correspond more closely to those in the field of operations research (the same mean-

ing they now carry). Marvin referred to two important aspects of comparisons between

simulations and experimental results: numerical and physical. He went on to compart-

mentalize the numerical aspects, verification, and the physical aspects, validation. Mar-

vin stated that “the accuracy of a computation depends on two principal considerations:

1) the physical realism of the governing equations and boundary conditions [validation]

and 2) the accuracy of the numerical solution of these equations [verification].” In addi-

tion, he made the important observation that numerical accuracy could be evaluated in

the absence of experiments, but validation could not. Furthermore, in a very important

step forward, Marvin recognized the importance of validation experiments, which are ex-

periments intended primarily to be used to validate experiments. Because the interests

of experimentalists and modelers diverge so much, most legacy experimental data cannot

be used for validation, as the systems are not well-characterized (e.g., measurements of

system input variables or boundary conditions do not have the level of accuracy or detail
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that is needed). He also recognized the potential for the internet to be used to create

large repositories of experimental data to help facilitate validation using the data.

Coleman et al. [74] proposed a validation methodology that was an excellent ex-

ample of a synergistic approach: the validation metric incorporated both numerical and

empirical uncertainties, both measurement and simulation errors, and confounded all of

them into a single uncertainty quantity, which the authors called the error, E, which

was the difference between the data measurement D and the simulation response S,

E = D − S. Various forms of uncertainty were accounted for, and validation was the

process of reducing the error E below the value of each of these uncertainties: in short,

getting the simulation predictions to fall within the error bounds of the data measure-

ments.

Kleijnen [111–113] advocates the use of mathematical statistics to compare simu-

lation results to experimental observations, and discusses application to both transient

and steady state computations. His approach is centered much more on statistics, and

the applications emphasized are in the field of operations research. However, he proposes

many unique and interesting approaches to validation and related questions. Additional

statistical approaches to validation utilized concepts from designs of experiment, and

applied them to designs of “computer experiments” [114–117].

Roache [61,76] combined much of the existing literature on verification and valida-

tion and synthesized it in a single cohesive way.

One notable paper dealing with verification and validation of simulation models is by

Oreskes et al. [118] in Science. The paper greatly befuddles many concepts in verification

and validation (for example, by confusing the terms “verification” and “validation,” using

nontechnical dictionary definitions for the terms, and ignoring definitions established in

the literature). The paper also comes to a somewhat absurd conclusion, that “any

scientist who is asked to use a model to verify or validate a predetermined result should

be suspicious” (even if the predetermined result is an analytical solution or a set of

experimental observations; this conclusion is untenable). Although the paper helped to
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bring verification and validation into the public eye, it was not the best paper to have

done so. Further criticism of [118] may be found in Roache [61].

4.3.3 2000s

The years after 2000 saw a great proliferation of validation throughout the literature,

with significant steps taken toward establishing validation as a more legitimate and

more mature science. Large leaps forward in computational power lead to the rapid

rise of simulation as a standard methodology for modeling, and correspondingly there

was a surge in papers dealing not just with validation issues but with issues validating

large and expensive computer models, including surrogate modeling [119–122], computer

experiment design [123], optimization [124], and efficient exploration of sample space

[125, 126]. There was also a greatly increased emphasis on uncertainty in the 2000s

[127–134], including many applications of new and existing mathematical methods to

deal with uncertainty [98,135–137].

Oberkampf published many interesting and useful papers that covered a wide range

of topics related to validation and uncertainty quantification. These topics included

validation experiments [138,139], comprehensive coverage of the validation field and its

associated terminology [60, 140], approaches for representation of uncertainty [126, 131,

141], and proposed validation metrics [139,142,143].

Coleman et al. [81] also continued to develop their approach described in the pre-

vious section, with lively discussion; Coleman and Stern incorporated many of these

ideas about model validation into Chapter 7 of an excellent reference on experiments

and experimental uncertainty [137].

Another interesting approach to model validation grew out of the process control

theory, mathematical programming, and optimization community. This approach orig-

inates from the need for a control system to be robust, that is, to be able to remain

stable for all possible values of a number of variables, each for a given range. Monte

Carlo methods are not powerful enough to determine extremes (or worst case scenarios)



125

of parameter combinations, so it is of interest to be able to compute lower and upper

bounds of a system response given lower and upper bounds of input parameters.

These ideas were developed into the data collaboration approach and applied to

problems such as the GRI Mechanism [144]. This approach synthesized many ideas, such

as surrogate modeling, set based treatment of uncertainty, and the need for quantitative

measures of model validation, while utilizing ideas from fields largely unexposed to the

validation and uncertainty quantification community (e.g., robust control theory). An

overview of this approach is given in [144], while an in-depth treatment is given in

Feeley’s thesis [145]. This approach is discussed in greater detail and applied to the

problem of coal gasification in Chapter 6.

4.3.4 The Need for a Framework

Nearly every method discussed above has the weakness of providing only a piece of

the validation process. However, this is not the fault of those introducing the methods,

and it does not imply that they did not perform validation correctly. To be fair, valida-

tion is extremely dependent on the problem, the experimental data, and the simulation

tool being validated: each case must proceed differently. Thus, each approach presented

in the literature must by necessity omit the details of the entire approach and focus only

on the piece of interest in the overall validation process.

There is, however, an evident lack of validation frameworks presented; that is, an

approach that comprehensively covers the often crucial first step of selecting variables,

all the way to the last step of what to do once the simulation is validated, as well as

important intermediate steps. While this is, as mentioned, entirely dependent on the

problem, the experimental data, and the simulation tool, frameworks must be flexible

by design in order to be industrious.

Additionally, a framework provides a way of synthesizing a system in which various

approaches and ideas can be combined; for example, the metamodeling approach to

validation of Kleijnen [122] with those of Oberkampf and Barone [142] or Coleman [74].
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One such framework was presented by Bayarri et al. [146]. This framework, which

will be referred to as the NISS framework, was intended for expensive computational

models, but less expensive than the Arches computer model (Section 2.7). Many of the

ideas apply to a very expensive model like Arches, as well as to very cheap models that

take on the order of seconds to run.

The NISS framework consists of six steps:

1. Specification of model input parameters and creation of input/uncertainty map

2. Determination of evaluation criteria

3. Data collection and design of experiments

4. Approximation of computer model output using metamodel

5. Analysis of model output and comparison to experimental data

6. Feedback and feed forward of information to present and future validation activities

A detailed description of each step will be omitted and left to the Bayarri paper. How-

ever, the application of each step to the intended problem, coal gasification, and the

Arches model is presented in the section that follows.

4.4 Application of NISS Framework to

Coal Gasification

The six steps of the NISS framework were applied to the problem of validating large

scale simulations of a pilot scale coal gasifier. The preceding material has related to the

model formulation and implementation, and all subsequent material was born of the

application of the six-step NISS framework to the Arches coal gasification simulator.

4.4.1 Step 1: Creation of Input Uncertainty Map

Following the framework of Bayarri et al. [146], the first step of validation is to

generate an input/uncertainty map, which lists all parameters that have a potential to

affect the model and their associated ranges of uncertainty. This combines modeling,

scenario, and numerical parameters into a single list. Because of the importance of this
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step, as well as the difficulty of making the right selections, this step is best performed

with a group of experts, both experimental and modeling. It should also utilize any and

all prior studies of the physical phenomena of interest, in order to utilize the most possible

information in selecting the potential active parameters. This is also revisited when

validation studies have been completed, in order to utilize the additional information

provided by the studies.

In order to construct an input uncertainty map, which is a listing of all potentially

active parameters in a system ranked in order of anticipated importance, several relevant

gasification studies were consulted [14, 147–154]. Smith [147] provided an extremely

useful digest of the results of his sensitivity studies of the RANS coal combustion code

PCGC. His conclusions regarding gasification included:

• Parameter coupling played a strong role in coal particle burnout

• Recirculation and devolatilization strongly affected local gas temperatures

• Coal gas mixture fraction was significantly affected by devolatilization, and was

also affected by recirculation and by strong multiparameter coupling

In addition, Smith offered the following recommendations:

• Future modeling efforts should focus on particle devolatilization and oxidation

mechanisms

• Sensitivity and other future studies should focus on furnaces at industrial or in-

dustrially relevant scales.

Many of the conclusions and recommendations of Smith were incorporated into the

formulation of the present validation study.

Additionally, several papers from the group operating the Brigham Young Univer-

sity (BYU) gasifier whose data were being used for validation were analyzed to obtain

information about experimental uncertainties, measurement techniques, and specific con-

clusions about the gasifier. For example, Brown provided several conclusions about the

effect of coal types on the experimental results; Soelberg [149] reported several uncer-

tainties for quantities of interest; Nichols [150] and Sowa [148] provided detailed infor-

mation about the gasifier facility, probes, injectors, sampling methods, and procedures;
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and Sowa [148] provided a very detailed experimental error analysis, including both

experimental verification (quantifying and reducing instrument bias error) and repeat

gasification experiments to provide greatly improved estimates of variance and exper-

imental error bounds. Each of these references were utilized to better understand the

gasifier, some of the issues associated with the operation of the gasifier, and hints of

potentially important scenario parameters.

After these conclusions were reviewed, an initial list of important parameters was

created, and a roundtable discussion with experimentalists and modelers to determine

useful parameters to investigate for the validation was held. The following variables were

decided upon as the primary variables of interest:

• Kobayashi devolatilization model activation energy E2

• Kobayashi devolatilization model Arrhenius factor A2

• Mass-mean particle diameter dp

• Gasifier wall temperature Twall

It was anticipated that these variables would have the largest effect on the flow.

In addition, this study utilized a “sequential experimentation” technique [155], in

which the effect of many parameters on the system response were investigated using a

low-order statistical model (a screening study, discussed further in Section 5.3.6), and the

effect of progressively important parameters on the system response were modeled using

progressively higher-order statistical models. This technique was used for determining

the functional form of the system responses, as well as for providing justification for the

constructed response surfaces for the simulation model (see Section 5.4). Because the

screening step allowed investigation of up to seven parameters, the following parameters

were also included as potentially important:

• Coal feed rate ṁcoal

• Char-CO2 oxidation reaction activation energy Echar−CO2

All of the above parameters were investigated using the sequential technique just de-

scribed. The results of this sequential assembly process are reported in Section 5.4. The
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mean values of each variable, along with the uncertainty range explored in the screening

design, are given in Table 4.1.

4.4.2 Step 2: Determination of Evaluation Criteria

The evaluation criteria provide the bookends for validation: where does one begin

validation? And where does one end? The evaluation criteria are intended to address

the question of what the validation is intended to accomplish. All validation activities

have a common goal: quantify how well a model matches experimental data. Thus, to

determine the evaluation criteria, one must first define the system response of interest:

the quantity that the model is expected to reproduce. In models of complex systems with

many inputs and outputs, particular inputs and particular outputs will be of interest,

since a model cannot be all things for all purposes; there will always be an intended use

for the model. This intended use will dictate which data are important to use for the

validation and which data are irrelevant.

Applying the instrumentalist approach to validation, the determination of evalu-

ation criteria is straightforward. The evaluation criteria must be comparison to the

information known about empirical truth: the data, all the data, and nothing but the

data. By “data” is meant experimental observations of the system of interest relevant to

the intended use of the simulation tool.

If data are not used as the evaluation criteria, what else may be used? No other goal.

If data are not related to the intended use of the simulation tool, those data should not

be used in the validation. However, although it is easy to settle on the type of evaluation

criteria, the data can be very different for each of two classes of experiments: traditional

experiments, and validation experiments.

4.4.2.1 Traditional Experiments

Traditional experiments are experiments run independent of any modeling activity,

and they are run in order to accomplish a variety of goals, including improvement of un-

derstanding of a physical process, construction or improvement of mathematical model
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parameters (e.g., transport properties), and quality or safety tests of systems [138].

When these types of experiments are run, there is no input from modelers about what

inputs are important, so these quantities are poorly quantified, if they are quantified

at all. There is also no determination of what system responses would be most useful

for a computer model to predict, so the system response that is measured is typically

useful only for the particular goal of the particular experimental campaign being run.

In addition, data are typically reported in journal articles, where length limitations pre-

vent reporting of detailed information about the experimental setup or the quantitative

results. Thus, modelers must resort to using tricks with rulers or magnifying glasses

to convert qualitative plots into quantitative data. They are also forced to make gross

assumptions about scenario parameters, which often turn out to be the input parameters

of principal importance.

4.4.2.2 Validation Experiments

In order to overcome the difficulties associated with validation using traditional

experimental data, a new type of experiment, called a validation experiment, was pro-

posed [107,138,142,156]. These experiments are designed by both experimentalists and

modelers with the primary goal of validating a computer model. All inputs to the com-

puter model are determined so that they can be quantified as part of the experimental

measurements. This type of experiment has the potential to greatly improve agree-

ment between models and experimental data through better characterization of input

values and associated uncertainties. Without such characterization, model responses

may vary wildly due, for example, to assumptions about scenario parameter values and

uncertainties. With good quantification of computer model inputs, there can be much

more confidence in attributing disagreement between the model and experimental data

to deficiencies in the model, rather than incorrect parameter values.

Obviously, there is a much greater preference to use validation experimental data

over traditional experimental data. These types of experiments are not always possible

due to various financial, institutional, and personnel challenges. It would be very useful
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(both for validation and for improved interpretation and understanding of results) if char-

acterization of scenario parameters, such as boundary and initial conditions, and their

uncertainties, received greater attention. Online databases and archives are excellent

ways to disseminate all relevant quantitative experimental results without the restric-

tions of a scientific journal’s page limitation, thereby addressing many of the deficiencies

of traditional experiments. The impetus for such changes in attitude and approach must

come from the community, but should be incorporated into the policies of scientific jour-

nals in order to provide motivation to apply such procedures. It also must take place on

a management and funding level; Paul Davis [157] stated that validation experiments

(what he calls verification, validation, and accreditation, VV&A) are “very important

and [have] long been inadequately funded by any measure. By explicitly budgeting for

serious VV&A, the Department of Defense would create incentives that do not now exist

for model developers. Without such incentives, VV&A may improve only marginally,

despite the suggestions and exhortations from this and other studies.”

4.4.3 Step 3: Design of Experiments and Data

Collection

This step consists of two portions, and it is a step of particular importance when

the model, the data, or both are expensive to evaluate. The two parts of this step,

experimental activities and modeling activities, will be discussed in turn.

The experimental activities that compose step 3 depend on the type of experiments

that are used: validation experiments, or traditional experiments. If validation experi-

ments are used, then the experimental campaign can be designed to support the model

validation activities (see discussion of validation experiments above, Section 4.4.2). Val-

idation experiments should, first of all, report a range of uncertainty in the observed

system responses, as part of an “uncertainty budget” that accounts for how much un-

certainty there is in each experimental observation, and determines the sources of that

uncertainty (for example, instrument error or input variable uncertainty that is prop-

agated through the system and impacts the response). Additional useful experimental
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activities involve exploring various regions of parameter space. This allows for a greater

level of validation, as the model must be more robust (match experimental data in a

larger regime of parameter space).

Traditional experiments will sometimes report uncertainty, although it is rarely

reported with a corresponding analysis indicating sources and corresponding quantities

of error. While they will almost always explore a range of parameter space, the modeler

has no input on the experiment design process, so the range of parameter space that

is explored may not be of interest for the simulation effort. Additionally, quantities

critical for the model, such as boundary or initial conditions, are often not reported, or

little effort is expended to control these quantities. (This is understandable, since these

quantities are often not of great interest to the experimentalist). Care must be taken

when selecting a traditional experiment type data set.

The second piece of step 3 is the modeling piece: design of experiments and data

collection for the computer simulation. The simulation data collection usually begins

with selecting a set of parameter combinations at which to sample the simulation, using

a space-filling design (e.g., Latin Hypercube) to cover a wide range of parameter space.

This is followed by supplemental simulations to explore more local and more interesting

regions of parameter space. The particular set of parameter combinations that are sam-

pled depends on the assumed functional form of the response, which may be determined

from the results of the space-filling design (see Chapter 5 for a broader overview of ex-

perimental design). If the simulation is extremely cheap to sample, a space-filling Monte

Carlo method may be adopted, where only the space-filling step is performed. On the

other extreme, if the simulation is extremely expensive to sample, the space-filling step

is skipped; a functional form is assumed and an experimental design for the simulation

samples is selected based on the assumed functional form. More details on the design

points for the simulation are provided in Section 5.3.2.
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4.4.3.1 Description of Brigham Young University Gasifier

Data and Uncertainty

The BYU gasifier data used to validate the Arches gasification model come from

Brown [153, 154, 158] and are data from a traditional experiment. The data were orig-

inally gathered to investigate the effect of coal type on gasification. The data consist

of time-averaged radial profiles of three species, CO, CO2, and H2, at 7 axial locations:

0.21 m, 0.36 m, 0.51 m, 0.67 m, 0.81 m, 1.21 m, and 1.73 m. A separate study, with

different operating conditions, reported carbon conversions and effluent concentrations

of CO and H2, but no radial concentration profiles were reported.

Sowa [148] discusses sources of experimental uncertainty in the BYU gasifier. Sowa

performed several experimental measurements: first, he performed experimental verifi-

cation experiments in order to quantify instrument error and identify systematic (bias)

error, and he reported the standard deviations. These measurements included species

mole fractions, carbon conversion, feed mass flowrates, and solids composition measure-

ments. Sowa also performed computations and used a Monte Carlo error propagation

technique to estimate the propagation of input uncertainty and its effect on the system

responses. Sowa also investigated the amount of uncertainty in the actual gasification

experiments by repeating measurements over the course of the same and different exper-

iments. He reports the pairwise differences for carbon conversion and CO concentration

for a subset of these measurements.

Sowa was primarily investigating the effect of the injector, and the pairwise differ-

ences that exhibit a sensitivity to the injector design. However, there were additional

factors that were known sources of uncertainty for these pairwise differences, including

the carbon conversion measurement location (near-wall vs. near-centerline), sample vol-

ume (too large a sample size would be sampling gas with sharp gradients that was not

yet well-mixed), difficulty with measuring and adjusting coal feed rate, difficulty with

reproducing coal feed rate conditions for different experiments, and difficulty diagnosing
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sampling bias, which were also impossible to rectify. However, Sowa did not specify

which of these sources of uncertainty corresponded to which specific measurements.

After analyzing the pairwise differences from the experimental repeats, Sowa cre-

ated an uncertainty budget, comparing them with the measurement uncertainties and

the computational estimates of input uncertainty propagation. The measurement un-

certainties and propagated input uncertainties were expected to balance experimental

error, but Sowa found they did not. Sowa concluded there were remaining sources of

uncertainty for which he had not accounted. Sowa listed several experimental uncer-

tainties beyond the control of the experimenters, but several were already accounted for

above. These included lack of control over the coal feed rate, lack of knowledge of the

effect of probe disturbances on the flow field, problems correcting for gas sampling bias,

and nonsteady state conditions in the reactor. The first uncertainty listed was addressed

by Brown [153], who stated that one type of coal had inconsistent moisture content due

to being pulverized far in advance of the experiments. The last uncertainty listed was

addressed by Whitty [159], who showed that the time to reach steady state in a fluidized

bed gasifier as determined by temperature and composition measurements was much

different from the time to reach steady state as determined by bed carbon content, and

that this was an important factor impacting the state of the gasifier. The implication is

that the reactor may have appeared to be at steady state when looking at one variable,

but not while looking at another.

Sowa also performed an interesting comparison for various instrument models -

that is, the model converting the experimentally observed quantity measured by the

instrument into something more physically useful (in this case, carbon conversion). Sig-

nificant differences were observed in all but one model comparison, meaning that all but

two models disagreed with each other.

Brown [153] showed that there was a 7% sensitivity to a coal feed rate range of

20.8 ≤ ṁ ≤ 27.3kg
hr . Sowa [148] also reported uncertainties for several coal feed rates

ranging from 27 to 34 kg
hr , with uncertainties ranging from 7% for the highest feed rate
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to 20% for the lowest feed rate. Additionally, Sowa provided standard deviations for

reactor pressures and O2-coal ratios, all determined from repeat tests.

Uncertainties in the system response measurements (CO, CO2, and H2) were also

quantified and reported [149,150].

4.4.4 Step 4: Surrogate Models

The fourth step in the validation framework is to construct a cheaper and simpler

surrogate model for the more complex model. This activity, sometimes called meta-

modeling, is one of the most critical steps in the validation procedure. An enormous

concentration of resources and effort is spent developing and running large scale and

expensive models like the Arches coal gasification model. The surrogate model distills

the results of these thousands of CPU hours into a simple polynomial that approximates

the output of the more complex model. However, this activity is fraught with problems.

Trying to represent the output of an enormously complex nonlinear model using a model

as simple as a quadratic polynomial is difficult to do, and even more difficult to justify.

This confluence of reasons makes a statistical analysis imperative for surrogate

model design. It provides justification for the selected response surface, it indicates

the variables of chief importance, and it makes analysis of the model results tractable.

For this reason, an extensive treatment of surrogate models is given in Chapter 5.

4.4.5 Step 5: Analysis of Model Results

Much like step four of the framework, the fifth step is very important. The surrogate

model generated in step four can be used in a number of different validation procedures,

some of which were covered in Section 4.3. However, the approach adopted is the

data collaboration (DC) method. This uses a set-based treatment of uncertainty, and

uses mathematical programming (optimization) techniques to address several questions

relevant to model validation. In addition to addressing the question of whether a model is

validated, the DC method also attempts to provide information about where additional
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runs should sample the input parameter space, provide a means for comparing models

objectively, and provide an uncertainty bounds on simulation results.

As with step four, the significance of step five is such that Chapter 6 covers it

exclusively.

4.4.6 Step 6: Feedback and Feed Forward

The last step in the validation procedure is not intended to be the last step. With

each preceding step, more information about the model is obtained. Even after a model

has been validated using a set of data, improvement of the model continues; the model is

validated against other data; weaknesses of the existing model are uncovered. This can

also be extended to multiscale and hierarchical approaches to multiphysics problems [46].

In these systems, validation performed at each scale can either provide information

for new validation activities at the same hierarchical level, or the information can be

transferred among scales in the hierarchy (either up or down scales). For example,

validation at low levels in the hierarchy may provide initial parameter sets for validation

activities at higher scales; likewise, validation activities at higher scales can provide

indication as to which submodels are controlling and need to be improved.

4.5 Conclusions

The approach to validation presented here began with a general discussion about

computer simulation. The question of whether simulation is a third branch of science

that has joined experimentation and theory as a “new” method was definitively answered

in the negative. Viewing simulation as an extension of theory is an important perspec-

tive for validation and for deciding on appropriate validation metrics. The choice of a

validation metric was discussed, and applying the instrumentalist philosophy of valida-

tion, the choice is clear: simulations must be validated using experimental data, and

only experimental data. The role of rationalism and empiricism in the development

of models in computational fluid dynamics and other fields is very important, but for
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model validation activities, they must not play a role. For model validation, the only

appropriate validation metric is agreement with experimental data.

Empirical uncertainty was then defined and discussed. Various approaches to treat-

ing empirical uncertainty in the context of validation were covered, from early literature

on validation of computer simulations dating from the infancy of computers [89] to the

plethora of recent papers on the subject, as the field has advanced rapidly to keep up

with the pace of computer hardware and the growing power of computer simulations.

However, it can be difficult to get a handle of the entire field, primarily because many

disjointed approaches seem to be trying to accomplish the same thing, or borrowing the

same ideas, but speaking different languages. To help rectify these difficulties, a six-step

validation framework proposed by Bayarri [146] was adopted as a way of systemati-

cally approaching validation and utilizing the many approaches to different aspects of

validation that are available in the literature.

The initial steps of this framework (Steps 1-3) were applied to coal gasification to

determine the active input variables and their range of uncertainty, as well as assessing

the uncertainty in the experimental data being used. All of this information feeds to the

latter steps of the framework, presented in later chapters. Step 4 is covered in Chapter

5, while Step 5 is covered in Chapter 6.



CHAPTER 5

SURROGATE MODELS FOR SIMULATIONS

With four parameters I can fit an elephant, and with five I can make him wiggle his

trunk.

John von Neumann

5.1 Surrogate Models: Filling a Need

The term “black box” has become widely used in statistical modeling and analysis.

The understanding of the black box model, from the statistical perspective, does not

come from understanding the governing equations or the mathematical model, but rather

from sampling the black box model for various combinations of input parameters, then

using statistical procedures to better understand the relationship between inputs and

outputs and, often, to construct a surrogate model to approximate the system output

as a function of the input parameters. These methods work very well for simple models,

which can usually be sampled using a “brute force” technique like Monte Carlo. However,

more care must be taken for sampling and approximating expensive black box models.

Expensive computer models for scientific computing consist of underlying mathe-

matical models, sometimes simple but more often complex, which are solved discretely

for a large number of discrete elements. The numerical solution process obfuscates the

effects of input parameters on system responses, and there are often large numbers of in-

put parameters. It also obfuscates the effects of input uncertainties on system responses

- if a given input variable has an associated range of uncertainty, that uncertainty will

be propagated through the system in a way that is nonlinear and difficult to predict.
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These models present a formidable challenge for understanding a physical system using

a simulation tool. It is also impossible to use optimization procedures, which are often

used to determine the effects of input variables and associated uncertainties on system

responses. Typically, optimization procedures require hundreds or thousands of function

evaluations, and this can be infeasible even for some moderately cheap computer codes

(those taking on the order of minutes to run).

In situations such as these, it is useful to have a simpler model, also called a “meta-

model” [120], that is much cheaper to evaluate and much simpler in form, such as a

polynomial. These can be constructed based on limited information about the larger

scale computer simulation model. Statisticians have developed many such models and

methods for constructing them. These methods sample functions using a very small

number of samples, or use limited information about a function, in order to maximize

the amount of information that can be extracted. Many such techniques fall under the

category of “design of experiments.” As the name indicates, many of the original appli-

cations consisted of determining the effect of input parameters (or operating conditions)

on a system response, with the intention of adjusting the operating conditions to opti-

mize the response. This has uses for industrial applications, in optimizing a process to

minimize material waste or maximize profit. However, the application for validation is

oriented more toward optimizing the input variables to have a corresponding response

that agrees with experimental data.

Box and Wilson [160] first proposed the response surface methodology (RSM) in

1951. RSM uses polynomial surfaces to represent the response y as a function of an

input variable vector x. Polynomials are very general and work well for many responses,

and as a result RSM has thrived as a widely used modeling technique for complex

systems. Other techniques have also emerged, each with their own sets of advantages

and disadvantages.

The design methodology used also depends on the cost of running a simulation; the

term “expensive” is extremely relative. Some models take only a few seconds to run (for
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example, integrating a simple ordinary differential equation (ODE) in time), but can be

considered “expensive” compared to a polynomial model, or if performed many times.

Other models may take up to an hour to perform, making them relatively more expensive,

but still allowing for several thousand function evaluations. The simulations discussed

in the present work take several days to perform, and are thus greatly restricted in the

number of function evaluations that can be obtained. While a general methodology that

applies to all ranges of simulations will be presented, the main focus will be on extremely

expensive function evaluations.

5.1.1 Terminology

Surrogate model design and assembly utilizes statistical terminology to describe the

elements of the process. The analyst is interested in coming to a better understanding

of a “true” function

y = f (θ) , (5.1)

where f (·) is some process of interest and θ is a vector of variables representing the state

of the system. This may be a real process, such as a chemical reactor or the behavior of

a group of test subjects, in which case θ is difficult to characterize. Alternatively, f (·)
may be a computer simulation, in which case θ may still be difficult to characterize, but

is more easily quantifiable. The quantity y is referred to as the response of the system

f (·).
The role of surrogate models is to create a new function

ŷ = g (ξ) (5.2)

that exhibits a subset of the characteristics of f (·), typically approximating the system

response ŷ (ξ) ≈ y (θ) for some set of system states θ ∈ Θ. Surrogate models g are also

typically intended to be cheaper or less complex than the system of interest f .
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In most cases, a subset of variables ξi is chosen such that they overlap with the

variables representing the state of the system, ξi = θi. These variables are called factors

and are shared between f and g. Each factor is assigned a range of possible values,

composing a parameter hypercube Θ = {θi : αi ≤ θi ≤ βi}. For each variable, discrete

values in the parameter hypercube are chosen at which to sample f . These values are

referred to as levels corresponding to each factor. A given experimental design requires

several evaluations of the system response at different parameter value combinations;

each of these evaluations is referred to as a run.

Depending on the functional form of the surrogate model, and depending on the

surrogate model assembly procedure, these terms may take on different meanings. An

overview of various classes of surrogate models is presented in the next section; the class

of surrogate model that is of primary interest is the response surface class. The use of

factors, levels, and the parameter hypercube for response surfaces will be discussed in

greater detail below.

5.1.2 Classes of Surrogate Models

Surrogate models (or, metamodels) come in all forms for many different uses. A

surrogate model is a model that attempts to duplicate the output of a more expensive

model or a more complex system (whose output is denoted y (x)) using a cheap, simple

model (whose output is denoted ŷ (x)). A few representative surrogate models will be

discussed here, but this is not intended as a comprehensive overview of surrogate models.

Surrogate model contributes to numerical uncertainty, covered in Section 3.3.5. The

surrogate model will always be inadequate to precisely describe the actual output of the

expensive model, and as a result it will introduce some amount of error. However, this

error cannot be quantified, except at the points in parameter space where the function

is sampled (error analysis is covered in Section 5.1.4 and error analysis examples are

given in the Section discussing surrogate model construction for the coal gasification

model, Section 5.4). A significant part of this error analysis is reducing the number of

degrees of freedom that the model requires, in order to better estimate the error (see
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Section 5.1.5). The fewer parameters in the model, the better the estimate of the error.

When the number of parameters is equal to the degrees of freedom, no estimate of the

surrogate model error is obtained.

Surrogate models can be extremely simple: for example, regressing a number of

data points to a line creates a surrogate model ŷ = ax+ b. This is a simple model that

approximately duplicates a more complex physical system (whatever system produced

the data points). These models are least squares models. Least squares models are

posed as a search for an unknown β that will minimize the sum of the squared error of

the linear equation:

yi = xiβ + εi (5.3)

or, in linear algebra form,

Y = Xβ + E. (5.4)

The general least squares regression solution utilizes the pseudoinverse of X, and is

expressed as:

β =
Ä
XTX

ä−1
XTY. (5.5)

These linear regression models are very widely used.

Generalized linear models (GLM) are a unifying (and therefore large) class of sur-

rogate models. GLM covers univariate (scalar y) and multivariate (vector y) models,

maximum likelihood methods, such as the Newton-Rhapson method for finding the least

squares value, Bayesian methods for linear model parameter estimation, and others.

GLMs can also be used in concert with analysis of variance (ANOVA) models [155,161].
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Splines provide an additional way of creating piecewise polynomials to connect knots

(sequences of points with known values) [162]. For N knots xi, a sequence of N−1 poly-

nomials with matching endpoints (typically cubic, but also linear functions, as well as

special polynomials such as Chebeyshev polynomials) are constructed for each interval

[xi, xi+1]. Splines have the advantage of being smooth and of being guaranteed to pass

through all of the knots. They can be applied to arbitrarily high dimensions, and to

problems with a multivariate y [163]. They are also common features of many scientific

software packages such as SciPy and the GNU Scientific Library. Some excellent refer-

ences for concepts behind splines are [162, 164]. A reference covering spline algorithms

is [165]. More advanced concepts in splines are covered by [163].

Response surfaces provide a less robust but more general approach to fitting data

with polynomials. Response surface methodology constructs a polynomial surface that

minimizes the surrogate modeling error y − ŷ. This can be expressed generally as

ŷ = g (x) + ε, (5.6)

where g (x) is a polynomial function. The error term ε is unnecessary for the applications

of interest, because the computer models being approximated are deterministic and do

not exhibit any variation when computer simulations are repeated with the same inputs;

thus E (y) = y (where E is the expectation operator).

Bayesian methods for regression can also be used to find models ŷ. The normal

Bayesian linear model predictor ŷ is assumed to be a normal process (for ordinary linear

regression), so it has the form:

ŷ|β, σ2, X = Xβ + σ2I (5.7)

where I is the identity matrix. A prior distribution for β and σ2, denoted p
(
β, σ2|X)

, is

constructed or presumed, from which a posterior distribution p
(
β, σ2|Y )

is determined
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by multiplying the prior by the likelihood function (5.7). This posterior distribution

can then be sampled to predict β, and can also be updated as additional information is

gathered. This can be viewed as a more general approach by posing traditional linear

regression models (5.4) as a “frequentist” or a posteriori approach that assumes there is

enough information available to determine β, whereas Bayesian models use an approach

that does not make any presumptions about completeness of data, but rather creates

a probabilistic framework in which models may be continuously improved using new

information. An excellent overview of Bayesian regression is provided by [166].

Neural networks are another surrogate modeling approach that have emerged re-

cently for applications such as machine learning. The idea behind a neural network

originates from the way the human brain works, and neural networks are essentially

creating a coarse model replicating the behavior of the human brain. A neuron can be

crudely modeled as a transistor with multiple connections in and out. When voltage

passes through the neuron, it acts as a gateway, either stopping the voltage if it is below

some threshold, or passing the voltage through if it is above the threshold. These are

then combined into networks, with multiple layers of parallel neurons and connections

between neurons at various layers, to transform input data into output data. The neural

network is trained by feeding large amounts of input data with known outputs into the

neural network, and randomly adjusting the thresholds of the neurons in the network

until they correctly predict the known outputs [167]. Using neural networks to represent

black box functions is somewhat precarious, as the neural network is itself a black-box

function, but the ultimate judge of the model should be its performance. However, the

biggest disadvantage of neural networks is the need for large amounts of training data.

While this provides an advantage in situations with huge amounts of data (as in many

applications in machine learning), this essentially rules out neural networks as surrogate

models for expensive black box simulations.

One does not have to choose between these methods; many can be combined. For ex-

ample, Bayesian methods can be combined with splines (see Chapter 3 of [168] or [169]);
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Gaussian estimation models can be combined with a response surface methodology [114];

Bayesian methods can be combined with Gaussian estimation models [170,171]; etc.

Simpson et al. [172] provided a survey of the response surface methodology and

compared it with kriging and neural network methods. They concluded, first, that

response surface methodology has a storied history of successes in modeling computer

simulations and has been used for a wide range of phenomena. For this reason, they

are well-understood and well-established. The authors recommended response surface

methodology for deterministic applications with a small number of well-behaved factors.

Second, they concluded that kriging was the best choice for highly nonlinear models

with a large number of factors (up to 50). Beyond 50 factors, the authors recommend

neural networks, despite the high cost of data.

5.1.3 Surrogate Model Training

The process of training a surrogate model differs among each family of surrogate

model. For example, it was mentioned that neural networks require a large amount of

training data. However, other surrogate models require only small amounts of training

data to fit a function (some are even designed to use minimal training data, e.g., Plackett

Burman or other screening designs for linear models [173]; see Section 5.3.6 below). The

response surface methodology utilizes statistical theory to optimize sampling points and

maximize information obtained about the behavior of the response of the expensive

function, part of the field of experimental design [75,120,121,155,174]. The underlying

principle for surrogate model training, however, is that without proper training there

can be little confidence in the model’s performance.

This presents a dilemma: a high quality surrogate model is absolutely necessary,

lest the expense in constructing the surrogate model goes to waste. But higher surrogate

model quality necessitates higher cost. There is a simple solution to the dilemma, which

is that the available resources determines the level of accuracy of the surrogate model,

just as the available resources determines the level of validation that can be achieved for

a model. Sections 5.1.4 and 5.1.5 below discuss ways of ensuring, first, that the selected
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model has an appropriate level of accuracy, and second, that the information gained

about expensive models is used to the maximum degree.

5.1.4 Goodness of Fit

Assessing goodness of fit of surrogate models is one of the most important questions

in the entire validation process. If a poor surrogate model is used, an enormous amount

of computational work is wasted. Particularly for the goal of developing predictive tools,

two questions are highly relevant:

1. How biased are the surrogate model parameters or coefficients if they accurately

represent the more complex model?

2. What are appropriate methods for checking the need for a more complex model?

Quantification of goodness of fit can provide the information needed to address both

of these questions, although the second question is addressed in greater detail by the

section on sequential assembly of response surfaces (Section 5.3.2).

5.1.4.1 Residuals

Residuals are perhaps the most obvious quantities to determine the goodness of fit

of a model. For a surrogate model prediction ŷ of a response y, the residual is defined

as:

r = y − ŷ. (5.8)

However, this simple metric can reveal much information. As an example, one way

of determining whether an appropriate functional form of a surrogate model has been

chosen is to plot the residuals y − ŷ against the system response y. If the selected

surrogate model is linear and the residuals exhibit a quadratic trend, this indicates that a

quadratic surrogate model will lead to a better fit of the data. Graphical representations

of the residuals can reveal complex relationships between the model and the data that

numerical quantities such as R2 coefficients cannot capture. The residuals can be plotted
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against several different quantities to reveal these relationships. In addition, residual

plots can help to identify trends in the data variance.

5.1.4.2 Variance

One fundamental quantity that can reveal information about the goodness of fit of a

model is the variance. Analysis of variance (ANOVA) models are often used to determine

goodness of fit by comparing the sources of variance in a set of system responses and a

corresponding set of predictions of those responses. The ANOVA tests the hypothesis

that the mean of the system responses is the same as the mean of the response predic-

tions. The approach involves computation of a number of quantities (some discussed

further below), such as the sum of squares of error and F-statistic, which can be used

to quantify the believability of the means hypothesis. The principle behind ANOVA

models is that the variance yields much useful information for determining goodness of

fit.

For an experimental system, the variance measures the deviation of experimental

observations from a mean (expected value) given a set of input parameters. That is,

given a set of input parameters x, the mean for a system with j = 1 . . . n observations

is defined as:

μy = E (yj) (5.9)

where E (·) is the expectation operator (interchangeable with a top bar, yj). The variance

measures the expected deviation from this value,

V ar (yj) = σ2 (5.10)

= E
î
(yj − μy)

2
ó

(5.11)

and can be thought of as a measure of width for a distribution, or scatter for a set of

values.
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Computer simulations, however, are deterministic, and so a simulation that is re-

peated for the same set of input parameters x will be the same each time (have zero

variance). In this case, the variance refers to the variance of the model fit, denoted

s2 [129,155]. For a system with n observations, s2 is defined as:

s2 = E
î
(y − ŷ)2

ó
=

1

n

n∑
i=1

(yi − y)2 . (5.12)

The variance of any system can be split into two parts, random error and bias error.

Several approaches can be taken to do this. For example, one may use an ANOVA

approach, which partitions the variance into contributions from various effects, to par-

tition part of the variance into a lack-of-fit sum of squares, which separates the variance

s2 into fit into the sum of squares due to random or pure error (that is, the deviation

of a given system response y (x) for the same parameter values x from a mean y (x)

corresponding to those parameter values), and sum of squares due to bias or lack of fit

error (the deviation of the model prediction ŷ (x) for a set of parameter values x from

the mean system response y (x) corresponding to those parameter values).

The separation of error into these two parts can be expressed symbolically for a

function of 1 variable y (x), with a corresponding surrogate model prediction ŷ (x), as:

εij =
∑
j

{yij − ŷi}

=
∑
j

{yij − ŷi − E (yij − ŷi) + E (yij − ŷi)}

=
∑
j

[(yij − ŷi)− (E (yij)− E (ŷi))] + [E (yij)− E (ŷi)]

=
∑
j

î
(yij − ŷi)−

Ä
yi� − ŷi

äó
+
î
yi� − ŷi

ó
=

∑
j

[yij − yi�]︸ ︷︷ ︸
random (pure) error

+ [yi� − ŷi]︸ ︷︷ ︸
bias (lack of fit) error

(5.13)

(the fifth step is possible due to the deterministic nature of the surrogate model, so that

ŷi = ŷi), where i indexes the discrete values of the variable of interest x, j indexes the
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measurements of each response at the corresponding value of x, yij is the jth measured

system response for the ith value of x, and yi� indicates the mean value for the ith value

of the variable x, i.e., averaged over the jth measurements of the response. This can

also be extended to multiple variables x by increasing the number of subscripts i to

account for the number of discrete values of each variable (for example, see [155]). From

this, it can be shown that the variance of the model fit s2 is an estimator of σ2, where

s2 = σ2 if the model is correct, and s2 = σ2 + bias if the model is incorrect (see [175]).

For computer simulations, the system response y is deterministic, so the random (pure)

error for the expensive function can also be eliminated, since

E (yij) = yij , (5.14)

which leaves only bias error. Thus the equation for s2 (5.12) quantifies the surrogate

model bias error.

5.1.4.3 Chi-Squared Statistic

The χ2 statistic is another standard measure of goodness of fit for parameters of

a model, originating from maximum likelihood estimate methods. The quantity χ2

characterizes the deviation of observed quantities’ frequency distribution from expected

quantities’ frequency distribution. For example, for a set of observations of a system y,

there is a “true” distribution P (x
) with parameter vector x
 describing the probability

of obtaining that set of observations y for that system given . Likewise, for the surrogate

model predictions of the same system ŷ (x), there is a distribution with the same form

(the form is assumed known, one of the weak points of the χ2 method) and estimated

parameter values x. To obtain the χ2 measure, the distribution of observations is as-

sumed to be Gaussian, such that the probability of a single system observation Pobs (x)

is given by
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Pobs (x) =

Ç
1

σ
√
2π

å
exp

(
−1

2

∑ ñ
y − ŷ (x)

σ

ô2)
(5.15)

and the probability of a set of observations is the product of individual probabilities of

each observation. The constant term in front does not depend on the parameter value

x, so the exponential sum must be minimized in order to maximize the probability of

P (x), which will make it most closely match the “true” distribution P (x
). This sum

is the goodness of fit parameter χ2:

χ2 =
n∑

i=1

[yi − ŷi (x)]
2

σ2
. (5.16)

This quantity can be minimized to find the optimal values of x, by creating a set of

equations based on the partial derivatives ∂χ
∂x . The corresponding numerical uncertainty

bounds for the estimated parameters can also be obtained using linear algebra (the result

is commonly referred to as the covariance matrix) or from the expression (for the ith

variable)

σ2
xi

=
∑ ñ

σ2
Å
∂xi
∂y

ã2ô
. (5.17)

Several quantities can affect the value of χ2, including random error (defined above),

values assigned to the response uncertainties σ, the ability of the functional form of the

surrogate model ŷ (x) to accurately describe the system response, and the approximated

parameter values x̂.

5.1.4.4 R-Squared

Additional measures of goodness of fit include correlation coefficients, or R-squared

values. These can be calculated as correlation coefficients for two variables, denoted rij ,
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or as multiple correlation coefficients (most common), called the R-squared coefficient

and denoted R2. Two-variable correlation coefficients can be defined as:

rij =
σ2
ij

σiσj
(5.18)

where σij is the covariance between variables i and j and σk is the variance for variable

k. For a model ŷ (x) that is a function of a set of input parameters, this quantity would

be useful to quantify the covariance between ŷ and a single input parameter xi, or to

quantify the covariance between two input parameters xi, xj . R-squared coefficients can

be computed using several quantities that have appeared already:

R2 = 1− SSerror

SStotal
(5.19)

= 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − y)
(5.20)

where SSk denotes the sum of squares for k, n is the number of system responses or

observations y (note, however, that y here is the overall average of the system responses,

y =
1

n

n∑
i=1

yi, (5.21)

which is different from the yi� average used above), yi is the ith system response, and ŷi is

the surrogate model approximation of the ith system response. For circumstances where

the number of degrees of freedom is on the same order as the number of parameters in

the regression model, an adjusted R-squared value, R2
a, adjusts for statistical bias and

is more appropriate:

R2
a = 1− SSerror

SStotal

dftotal
dferror

(5.22)
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where dftotal and dferror are the number of degrees of freedom of the system and of the

error, respectively. For a system with n observations being regressed to a model with p

parameters, this becomes:

R2
a =

Å
n− 1

n− p− 1

ã
R2. (5.23)

5.1.5 Budgeting and Spending Degrees of Freedom

When constructing a response surface for an expensive function or simulation, de-

grees of freedom are as precious as gold. When the number of function evaluations is

very small, each observed response contributes an additional degree of freedom. Each

degree of freedom, in turn, can be used to extract additional information from the sys-

tem. Thus, there is a balance to be struck between the number of degrees of freedom

and the number of parameters in the surrogate model - as the number of parameters

increases, the number of available degrees of freedom decreases. For a system with N

degrees of freedom and a surrogate model with p parameters, p degrees of freedom are

used to determine the parameters. The remaining degrees of freedom may be used to

determine the random (pure) error; the more degrees of freedom spent on this, the bet-

ter the estimate. Degrees of freedom may be used to remove blocking effects (that is,

effects of unintentional changes in things like operating conditions, important system

characteristics, or operators for different sets of runs in the same experimental design).

They may also be used to isolate and identify adequacy of fit to address particular sur-

rogate model inadequacies that are thought to be important; for example, to determine

the need for a cubic term x3i for a particular variable in a response surface; these can

be thought of as surrogate model bias errors, that is, the surrogate not accounting for

important characteristics of the system. Many examples of uses of additional degrees of

freedom are provided by (Box and Draper, RSM etc).
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5.2 Response Surface Methodology

The development of linear models and regression techniques go back several cen-

turies, to Laplace and Legendre [91]. A linear model can be expressed in a very general

way as a linear relationship between inputs and outputs:

y = Xβ + ε (5.24)

where y is a vector or matrix of observed data (responses), X is the matrix of input

variables, β is the matrix of coefficients for the model equation being regressed (implicitly

contained in X), and ε is the vector of residuals, equal to y − ŷ = y −Xβ.

Generalized linear models (GLM), a term first introduced by Nelder and Wedder-

burn [176], are a more general extension of linear models such as (5.24). GLMs for data

(yi, xi) , i = 1 . . . N have the form:

y = zβ + ε (5.25)

= η + ε (5.26)

where y is the vector of values yi, z is the design vector, which is a function of the

inputs xi, β is a vector of unknown parameters, and the error term ε is assumed to

be a normally distributed zero-mean error term with constant variance σ2, commonly

indicated using the notation:

ε ∼ N
Ä
0, σ2

ä
. (5.27)

The expected response is denoted μ,

E (y) = μ. (5.28)
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GLMs are also characterized by a response function and a link function, which create a

map between inputs η and the expected response:

μ = h (η) = h (zβ) (5.29)

η = g (μ) (5.30)

where h is the response function and g = h−1 is the link function. This can also be

extended to the multivariate case (where y is a matrix instead of a vector),

y = Zβ + ε (5.31)

where Z is the design matrix, a function of xi.

It follows from this that the form of linear model mentioned above (called a “linear

model” if x is a scalar and “linear multiple model” if x is a vector) is a special case of

the design matrix, where:

z =

⎡⎢⎢⎢⎢⎢⎣
1 x1,i=1 . . . xp,i=1

1
...

...

1 x1,i=N . . . xp,i=N

⎤⎥⎥⎥⎥⎥⎦ (5.32)

and the coefficient matrix β is given by:

β =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0

β1
...

βp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.33)
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Likewise, polynomial models (called “polynomial models” if x is a scalar and “polynomial

multiple models” if x is a vector) of the form (2-dimensional in this example):

y = β0 +
d∑

m=0

d∑
n=0,m<n

βmnx
m
1 xn2 (5.34)

have a design matrix of the form

z =

⎡⎢⎢⎢⎢⎢⎣
1 x1,i=1 x2,i=1 x1,1x2,1 . . . xm1,1x

n
2,1

1
...

...
...

...

1 x1,N x2,N x1,Nx2,N . . . xm1,Nxn2,N

⎤⎥⎥⎥⎥⎥⎦ . (5.35)

These can be further generalized to multivariate versions of each model, where y is a

matrix instead of a vector and the system has multiple response variables, all within the

framework of GLMs.

Response surfaces, then, are simply an extension of the GLM framework to multi-

variate polynomial multiple models, that is, polynomial models with multiple outputs

and multiple inputs. Stating the model in a general form, the basis functions (single

polynomial terms) are defined by:

Z0 = 1

Z1 = x1

. . .

Zn = xn

Zn+1 = x21

. . .

Z2n = x2n

. . .
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and so on, including all higher-order interaction effects. These basis functions form a

row, and one row is written for each observed response y. This can then be expressed

as part of a linear model:

ŷ = Zβ. (5.36)

5.2.1 RSM: For and Against

The adequacy and appropriateness of response surface methodology is a subject of

debate. RSM models have many positive qualities, but these are balanced by negative

qualities. RSM models utilize polynomials, which are ubiquitous in science and engi-

neering, and are easy to implement. The choice of polynomial models is also easy to

justify using a Taylor series; any function can be represented as an infinite polynomial

series, and often only a few terms are needed to obtain an accurate estimate. Polyno-

mial models can also easily handle many dimensions, and the elimination of variables

representing interaction effects is trivial.

However, RSM models have several disadvantages. Polynomial models often lead to

spurious fits of data, especially as the number of degrees of the polynomial approaches

the number of data points. Often, functions must have the right functional form to be

well-approximated with polynomials, and many functions, in reality, are nowhere near

these functional forms. In addition, the range of application is often limited quite strictly

to the domain in which they are applied; polynomials typically asymptote right next to

the boundaries of the range of applicability. Furthermore, the number of coefficients

grows exponentially with the number of degrees or the number of variables. While some

may see this as an advantage, this conclusion is certainly refutable; if the number of

coefficients grows exponentially, so too must the amount of data gathered. Polynomials

grow very expensive very fast.

Additional justification could be provided by use of low-dimensional models to ex-

plore the shape of the response, and assume that it is same between low-dimensional and
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high-dimensional model (see Section 5.3.1). However, this was not done for the present

study.

5.2.2 Construction, Regression

Matrix notation can be used to describe the construction and regression process

for response surfaces. Following the notation used in the previous section, the vector

of system responses to be fit is denoted y, and contains i rows, where i is the number

of observations of the system. For a multivariate system with j responses, y contains j

columns. The matrix X contains the input parameters, and for a model with k input

parameters, X contains k + 1 columns (one for each variable, plus one column of 1’s

representing the constant effect). It contains i rows, one set of input variable values for

each observation. The vector of model coefficients is β, and contains k columns, one

for each system response, and j rows, one for each input variable. As above, the linear

model is expressed as:

y = Xβ + ε, (5.37)

or

ŷ = Xβ. (5.38)

This can also be expressed in terms of the sizes of each component:

i× k = i× j � j × k. (5.39)

Note that the vector ε in (5.37) is ignored when computing β. While the solution seems

obvious,

β = X−1y, (5.40)
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X can only be inverted if it is square. Thus, equation (5.38) is first be multiplied by XT

to square X, which creates a square and invertible matrix:

XTy = XTXβ (5.41)

and the second step is to isolate β:

β =
Ä
XTX

ä−1
XTy (5.42)

which is the expression for the solution to the linear regression equation, (5.37). This

technique is used to construct response surfaces. More details can be found in [175].

5.2.3 Variable Normalization

Typically, before performing a regression on a set of input parameters, or factors,

the factors are normalized. If each factor falls in the range [−1, 1] or [0, 1], this makes the

regression procedure much easier. For any input parameter xI , with a range of values

αi ≤ xi ≤ βi, the variable can be transformed either linearly or logarithmically. The

first transformation of a linear variable xi to the variable x̂i ∈ [−1,+1] can be done

using the formula:

x̂i =
xi −

Å
βi − αi

2
+ αi

ã
βi − αi

2

, (5.43)

and the logarithmic variable xi can be transformed to the linear variable x̂i ∈ [−1,+1]

using the formula:

x̂i =

log (xi)−
Ç
log (βi)− log (αi)

2
+ log (αi)

å
log (βi)− log (αi)

2

. (5.44)
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If the variable should be transformed to a more general range ‹xi ∈ [−s,+s], this can be

accomplished by:

‹xi = x̂is. (5.45)

5.3 Response Surface Assembly

The process of response surface assembly for surrogate models depends entirely on

the cost of the system being represented by the surrogate model. In order to determine

how to sample the system being represented by the surrogate model, knowledge of the

underlying functional form of the system becomes essential. However, complex systems

are expensive to sample, and knowledge of the underlying functional form is therefore

unavailable. This is the information gap that is filled by the use of response surface

methodology to construct surrogate models.

However, even under the constraints of the assumptions underlying response surface

methodology, the goal is to minimize the amount of assumptions that must be made going

in, and gather information piecemeal in order to assemble the response surface piecemeal.

This allows assumptions to be checked at each successive order of the assembled response

surface. This goal is complemented by the goal of minimizing the number of functional

samples. By assembling response surfaces in pieces, results can be analyzed and choices

made to reduce the number of variables, terms, or orders of terms in the surrogate model.

5.3.1 “When I am weak, then am I strong.”

Expensive, complex models (also called expensive functions) are designed to model

physical systems. Likewise, surrogate models are designed to model expensive, complex

models. However, surrogate model design suffers from the curse of dimensionality: as

the number of input parameters increases linearly, the number of samples covering this

multidimensional space must increase exponentially. Furthermore, the very process of

selecting samples rests on such perilous assumptions as, “it is assumed that the response
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of this complex system can be modeled using a quadratic polynomial.” Assembling

response surfaces suffers from a catch-22: in order to know how to sample the expensive

function, a surrogate model must be picked (in other words, a functional form of the

system response must be guessed). But in order to pick a surrogate model appropriate

to the expensive function, the expensive function must be sampled many times. So the

question naturally arises: are we doomed to wander in the desert of ignorance?

In fact, some models of physical systems are designed to be accurate physical models

but with a very low cost. For such cheap models, or functions, space filling designs can

be used to determine a functional form for the system response, and can make choosing

a surrogate model for the function very easy. But if the physical model is cheap to

evaluate, why construct a surrogate model for it?

The answer lies not in the cheap physical model, but in the expensive physical model:

the two are connected, in that they both try to model the same physical phenomena.

By reducing the dimensions of an expensive physical model to yield a cheap (or low

dimensional) physical model, the system response can still be approximated, and the

assumption that it is the same between the two can be made. Then the choice of

surrogate model used to represent the response of a complex system can be informed

and justified by a low dimensional model of that system.

For example, one may use a Reynolds-Averaged Navier Stokes (RANS) code (which

eliminates the temporal dimension, possibly a spatial dimension if the simulation is two

dimensional, and all resolved turbulent scales, making the computation very cheap) to

investigate the functional form of a system response. The functional form for this system

response would then be used to decide how to sample a more expensive physical model

of the system, such as large eddy simulation (LES). While the RANS simulations will be

less reliable, they are far more economical for the initial exploration of parameter space

using space filling-designs such as Latin Hypercube or Monte Carlo. They can also lead

to a reduction in the range of each parameter explored by the expensive LES model,

which typically leads to a more accurate surrogate model.
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5.3.2 Sequential Assembly

Construction of response surfaces for very expensive computer simulations like

Arches must proceed in a piecemeal manner, with each piece informing the next piece.

This is particularly the case with response surface models, which lend themselves well to

piecemeal construction, also called sequential assembly. A polynomial can be thought of

as consisting of several “layers.” For example, a full quadratic polynomial in 3 variables,

given by

y = β0 + β1x1 + β2x2 + β3x3

+β12x1x2 + β23x2x3 + β13x1x3

+β11x
2
1 + β22x

2
2 + β33x

2
3, (5.46)

can be broken up into several layers:

• main effects, {β1x1, β2x2, β3x3};
• interaction effects, {β12x1x2, β23x2x3, β13x1x3}; and

• quadratic effects,
{
β11x

2
1, β22x

2
2, β33x

2
3

}
.

Various experimental design techniques for determining the values of polynomial model

coefficients are discussed below. Most of these experimental design techniques lend them-

selves to a straightforward but dangerous “TV dinner” approach to surrogate modeling:

“throw it in the microwave, wait for a while, and consume whatever comes out,” the

analogy being that an experimental design will be selected, the samples gathered, the

data regressed, and the resulting response surface consumed without regard to quality.

This typically happens when the wielder has no knowledge of, or does not make efficient

use of, statistical science.

A superior approach to response surface assembly is to make better use of statistical

science. This is the philosophy behind sequential assembly.

The first step in the sequential assembly process is to determine the main effects

using a screening design, such as a Plackett Burman or highly-fractionated factorial

design. These consist of sets of multiples of 8 runs, with the total number depending on
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the number of variables being screened. They are intended to provide estimates of the

main effect of a large number of variables on the system response, without the need for

large numbers of runs. Such screening designs are covered in Section 5.3.6. Next, the

higher order interaction effects are investigated using fractional and full factorial designs.

Fractional factorial designs reveal less information, but require fewer samples, and can be

used to assess whether a full factorial is necessary. Full factorial designs provide enough

function samples to determine main effects and interaction effects for linear models.

Factorial designs are covered in Section 5.3.5 (this section precedes the screening design

section because several concepts central to factorial design are required to understand

screening designs). Composite designs require additional function samples in order to

estimate quadratic effects, and are covered in Section 5.3.7. Additional higher-order

effects can be explored using extensions of the above methods.

In addition to providing a more solid justification for the variables being investigated

by higher order experimental designs, which are more expensive (requiring a justification

of the cost), sequential assembly also allows for incorporation of a pyramidal structure: a

large number of variables can be screened in the first step, with progressively fewer vari-

ables included in subsequent steps. This allows one to maximize information, minimize

function evaluations, and reuse existing information at each level. Also, as mentioned in

Section 5.1.5, each degree of freedom provides an additional piece of information about,

or an improvement upon, the surrogate model, so each of these steps’ samples can be

designed to yield desired information.

Box, Hunter, and Hunter phrase the need for a sequential approach particularly

well:

The “one-shot” philosophy of experimentation described in much statistical teaching
and many textbooks would be appropriate for situations where irrevocable decisions
must be made based on data from an individual [computer] experiment that cannot
be augmented. Particularly in the social sciences, many problems are of this kind
and one-shot experimentation is the only option. However, this is much less common
in industrial investigations. It is the goal of this book to emphasize the great
value of experimental design as a catalyst to the sequential process of scientific
learning. [emphasis in original] (Statistics for Experimenters: Design, Innovation,
and Discovery, [40])
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5.3.3 Computing Effects: Dot Method

The effect of variables on system outputs, or system responses, can be classified as

main and interaction effects, arising from effects of a single variable alone, and multiple

variables interacting (respectively). There are several ways to compute effects, one of

which is the dot method. Before presenting the dot method technique for computing

variable effects, some nomenclature should first be introduced. An alternate method for

computing effects, Yates’ Method, is also presented below.

5.3.3.1 Notation

In order to compute the effects of one or more variables on a system response,

some notation must be covered first. Let the response of a system that is a function of

input variables x be denoted y. This response may be supplemented with a number of

subscripts. For a system with p parameters, y will have p subscripts, or p+1 subscripts

if there are repeated observations of the response at a set combination of parameter

values (as in an experiment), where the last subscript indexes all experimental repeats.

Each subscript indicates the value of the pth parameter for the observed system response.

The number of values that a subscript can have is equal to the number of levels for that

factor, denoted np
levels for the pth variable.

Let i index the first input variable x1, j index the second input variable x2, and so

on. Then the response the combination of the ith, jth, etc. input variables is denoted:

yijklm...z. (5.47)

The average over a particular variable is indicated by replacing the index letter with a

dot; thus the average over the various values of x1 would be indicated by:

y�jklm...z. (5.48)
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For example, a 4-factor experimental design with parameters A, B, C, and D, each

with 2 levels, would have a system response

yijkl (5.49)

where i, j, k, and l are defined as:

i = 1 . . . ni
levels, (5.50)

j = 1 . . . nj
levels, (5.51)

k = 1 . . . nk
levels, (5.52)

l = 1 . . . nl
levels (5.53)

and the set of level values is most typically {−1,+1}, but may also be thought of as

{0, 1}, or any other preferred designation of upper and lower levels.

5.3.3.2 Main Effects

The average response for a level is denoted with a dot, so that the average response

over the variable indexed by i is denoted:

y·jkl, (5.54)

and the average response over all levels of all factors is designated y����, and it is computed

as:

y���� =

(
1

ni
levelsn

j
levelsn

k
levelsn

l
levels

)∑
ijkl

yijkl (5.55)

and the marginal response (that is, the average response for a particular level of a

particular variable), for example yi���, can also be calculated:
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yi��� =

(
1

nj
levelsn

k
levelsn

l
levels

)∑
jkl

yijkl. (5.56)

The marginal response may also be indicated in some situations as yi. Average responses

can also be calculated for fractional factorial designs. If a
Ä
1
2

äk
fractional factorial design

(discussed in Section 5.3.5 below) is performed, the average response formula (5.56) is

divided by
Ä
1
2

äk
:

yi��� =

(
2k

nj
levelsn

k
levelsn

l
levels

)∑
jkl

yijkl. (5.57)

For a two level design, the set of level values {+1,−1} may be denoted with {+,−}
to ease notation. In this case the main effect of a factor A may be computed as:

MA = M (A) = |y+��� − y−���| (5.58)

and a two-factor interaction between factors A,B may be computed as:

M (A)B=− = |y+−�� − y−−��| (5.59)

M (A)B=+ = |y++�� − y−+��| . (5.60)

Note that the shorthand y+ and y− may be used in some situations to indicate

the marginal response at a particular level, but only when it refers to the marginal

response for all variables at that level (for example, in Section 5.4.1); otherwise, the

less ambiguous dot notation will be used to specify which variable is held constant at a

particular level, and which variables are averaged.

5.3.3.3 Interaction Effects

Once the two-factor interactions are computed, these can be used to determine the

interaction effect between two variables:
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IAB = I (AB) =
M (A)B=+ −M (A)B=−

2
. (5.61)

This interaction effect IAB can then be compared to the main effects MA and MB to

determine the relative significance of the A − B interaction in the response, relative to

A or B alone.

Determining the significance of interaction effects is an important part of sequential

assembly of the experimental design. It is also important in other situations, such as the

experimental design done in Chapter 3, to determine the importance of cross-interaction

effects when determining the order of convergence of the error function (Section 3.3.1).

5.3.4 Computing Effects: Yates’ Method

Yates’ Method is a method for obtaining main and interaction effects for a full

factorial design that generalizes to n-way interaction effects. In order to use Yates’

Method for a 2n full factorial design, a table containing the factor levels and observations

is constructed (Table 5.1). Next, a set of n columns is constructed. Each column is

constructed in two parts, an additive part and a subtractive part. For the first column,

the ith entry for the 2n−1 additive rows are created according to the formula:

C1,i = y2i + y2i−1 ∀ i = 1 . . . 2n−1 (5.62)

and the jth entry for the 2n−1 subtractive rows created according to the formula:

C1,k = y2j − y2j−1 ∀ j = 1 . . . 2n−1, k = 2n−1 + 1 . . . 2n. (5.63)

Column C2 is constructed by performing the same operations, but on column C1:

C1,i = C1,(2i) + C1,(2i−1) ∀ i = 1 . . . 2n−1 (5.64)
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and

C2,k = C1,(2j) − C1,(2j−1) ∀ j = 1 . . . 2n−1, k = 2n−1 + 1 . . . 2n. (5.65)

Likewise, column C3 is constructed by performing the same operations on column C2,

and so on.

Finally, the last column in the set is divided by 2n if the row represents the interac-

tion effect, and 2n − 1 if the column represents a main or interaction effect. The effect

that a row represents is determined by which factors have a high level (indicated with

a + in the table). For this case, the first row represents the defining contrast, since no

factor has a high level. Row 2 has only x1 at a high level, so row 2 represents the main

effect of variable 1, M (x1). Row 4 contains two variables at high levels, so it represents

the interaction effect between variable x1 and x2, I (x1x2).

5.3.5 Fractional and Full Factorial Designs

Factorial designs are intended to sample a system response enough times to deter-

mine all coefficients in a linear surrogate model, in which the maximum degree of any

variable in any term is 1. For surrogate models with n variables, the number of terms

(and therefore number of undetermined coefficients) is 2n, so a full factorial design re-

quires 2n runs to fully specify the surrogate model (this is typical for a factorial designs

where each variable has 2 levels; factorial designs can, however, be extended to variables

with more than 2 levels, and this is discussed below). This number becomes prohibitively

expensive even for moderate n, which is the idea behind the curse of dimensionality: as

the variables increase linearly, the number of samples required increases exponentially.

The construction of a factorial design consists of assigning two discrete levels, or

possible values, to a set of n variables. One run is created for each unique combination

of these levels. Each variable is assigned two levels, a low level and a high level, typically

indicated by {−,+} or {−1,+1}. A table is created with one column for each variable,

and the first row is populated with alternating {−,+} values every 20 = 1st row. The
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second column is populated by alternating between {−,+} every 21 = 2nd row, the

third column populated by alternating between {−,+} every 22 = 4th row, and so on.

Eventually a table is generated that includes every possible combination of low and high

levels of every variable, for a total of 2n rows, corresponding to the 2n runs required by

a factorial design.

However, two variable interaction terms often have much smaller effects than main

effects; three variable interactions are often unimportant when compared to two variable

interactions; etc. Additionally, sometimes the system is understood well enough that

certain interaction terms are known to be unimportant. In reality, many of the 2n

samples are unnecessary. This is the idea behind fractional factorial designs: unnecessary

interaction terms are aliased with other terms or with constants. In this way, two terms

like:

β12345x1x2x3x4x5 + β12x1x2 (5.66)

are combined into one:

β′
12 (x1x2x3x4x5 + x1x2) (5.67)

and it is assumed that the interaction term coefficient β12345 ≈ 0.

To apply this to the factorial design table described above, which has one column

for each unique variable, the table is extended to also include columns for each variable

interaction. For a three-variable factorial design, with three columns, one each for x1,

x2, and x3, four columns are added: x1x2, x1x3, x2x3, and x1x2x3. The values of {−,+}
for each of these columns is equal to the product of the corresponding variables; thus

if for row i, x1 = +, x2 = −, and x3 = −, then x1x2 = −; x1x2x3 = +; and so on.

Fractional designs are equivalent to eliminating one column of values for an independent

variable, and instead using a column representing the values for an interaction effect. If
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a fractional factorial design were being run for the three-variable case, the variable x3

would be eliminated; the interaction columns (in this case, one, x1x2) would be created;

and rather than creating a new x3 column, the values of x3 would be taken from the

column x1x2. In this case, the main effect of the variable x3 would be aliased with the

interaction effect x1x2, meaning a statistical analysis will yield information about the

effect of x3 plus the effect of x1x2, but no information about each independent effect is

available. In this case, the defining contrast of the system can be found by starting with

the identity used for x3:

x3 = x1x2. (5.68)

Next, an identity may be used for 2 level designs: if an effect is squared, it is impossible

to identify it, so it becomes equal to 1: x23 = 1. Multiplying 5.68 by x3 gives:

x23 = x1x2x3 (5.69)

I = x1x2x3 (5.70)

where I is 1. I is called the defining contrast of the fractional factorial design, and is a

compact way of uniquely identifying the factorial design. The resolution of a fractional

factorial, denoted by Roman numerals, is defined by the number of variables appearing in

the defining contrast equation; equation 5.70 is a resolution III design. A fractional fac-

torial with a larger number of variables, say 5, with a defining contrast I = x1x2x3x4x5,

would be a resolution V fractional factorial design.

One way to think about each run of a factorial design is, each run is intended to

exercise a different level of a different variable. But by aliasing one term’s coefficient

(say, x1x2x3x4x5) with a constant, that term no longer needs to be run at each of its

different levels; the number of runs is cut in half, because every other run would keep all

conditions constant and only change x1x2x3x4x5 to determine what its effect is on the

response. By aliasing one term with a constant, the number of runs is reduced to 2n−1.
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Likewise, other terms can grouped with other terms; this idea can be generalized to k

variables, in which case the number of runs reduces to 2n−k, and this is a
Ä
1
2

äk
fractional

factorial design, since the number of runs is reduced by 2−k.

Factorial designs are most commonly applied to variables with two levels, but it is

possible to extend them to variables with more than two levels. This is easiest to do

when the number of levels is a power of 2. If a variable has L levels, it can be broken up

into
√
L variables with 2 levels each. For example, for a factorial design in two variables

A and B, each with four levels, the factorial design can be performed with 2 variables

representing the full effect of A, and 2 variables representing the full effect of B,

A = A1A2 (5.71)

B = B1B2. (5.72)

In this case, the interaction effects A1B1 or A1A2B1 do not represent the full interaction

effects of the original variables A and B; they represent only partial information about

the interaction effect. Only all four variables combined (A1A2B1B2) represent the full

interaction effect of the original variables (AB).

It is also possible to extend factorial designs to variables with numbers of levels that

are not powers of two, but this is not trivial. Additional details are given by Mason [155].

5.3.6 Screening Designs

Screening designs are designed to yield maximum information about main effects

with the smallest number of runs possible. This is done by aliasing high order effects with

low order effects, and assuming that the low order effects are dominant. By eliminating

the number of independent effects, the number of degrees of freedom required to specify

the system is likewise reduced. If enough effects are aliased, then a large number of

parameters may be screened. The utility of screening designs stems from the common

rule of thumb assumption that main effects are more significant than interaction effects;

that interaction effects become less significant as the number of factors involved in the
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interaction increases. For this reason, it is assumed that if a main factor is found to

be significant in a screening design, it is unlikely to be due to a large and important

interaction effect being aliased with the main effect.

In order to perform a screening design, the desired number of runs, which should

be a power of 2, is selected, typically 23 = 8. Once the number of runs is set, a full 23

factorial design is created for 3 factors, following the procedure detailed in Section 5.3.5

and given in Table 5.2. This is also called the L8 orthogonal array. There are 3 factors,

yielding 23 − 1 total main and interaction terms.

The screening design construction technique can be best explained by illustration.

For an experiment or computer simulation with four factors A, B, C, and D, a full

factorial design would require 24 = 16 runs to determine the average, the four main

effects, the six two-factor interactions, the four three-factor interactions, and the one

four-factor interaction. However, it is desirable to use a screening design so that only

24−1 = 8 runs are required. To do this, the variable D is aliased with one of the

interaction terms, so that the headings of the columns in the L8 orthogonal array become

A, B, C, and D. The remaining columns are ignored.

For example, if D is aliased with the interaction term ABC, then the L8 orthogonal

array becomes the array shown in Table 5.3. In this case, the defining relationship can

be derived from the relation D = ABC as follows:

Table 5.2: L8 orthogonal array, used for creation of 8-run screening designs.

Run A B C AB BC AC ABC

1 + + + + + + +
2 - + + - + - -
3 + - + - - + -
4 - - + + - - +
5 + + - + - - -
6 - + - - - + +
7 + - - - + - +
8 - - - + + + -
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Table 5.3: Example L8 orthogonal array for a four-factor screening design.

Run A B C D = ABC

1 + + + +
2 - + + -
3 + - + -
4 - - + +
5 + + - -
6 - + - +
7 + - - +
8 - - - -

D = ABC

D2 = ABCD

I = ABCD

This is the defining contrast of the screening design. Because there are four letters in the

defining contrast, this screening design is a resolution IV design. If D were aliased with

a different interaction term, such as AB, the result would be a resolution III design:

D = AB

D2 = ABD

I = ABD.

Using this defining contrast, one can also determine all aliased effects. For example,

starting with the defining contrast and multiplying by A shows that the main effect of

A is aliased with the interaction effect of BD:

I = ABD

A = A2BD

= BD.

Multiplying by B shows that B is aliased with the interaction effect AD:
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I = ABD

B = AB2D

= AD,

and so on. If the results of a screening study indicate that the main effect of A is

significant, one should interpret this as the main effect A plus the interaction effect BD

being important.

5.3.6.1 A Combinatoric Tie-In

Pascal’s Triangle gives a convenient way of thinking about polynomials of degree 2,

via the binomial coefficient, Ö
n

k

è
. (5.73)

Given the nth row of Pascal’s Triangle, containing n terms, the kth term gives the

number of interaction terms in the kth layer of the polynomial (that is, the number of

k-way interaction terms). The total number of terms in an n-variable polynomial of

degree 2, which is the sum of all terms on the nth row, is 2n (hence the number of design

points in a factorial design). Thus a 2n screening design can be used to screen up to

2n − 1 variables (all terms in the polynomial, excluding the constant, can be aliased to

a variable).

Pascal’s Triangle has also been generalized to higher dimensions; this provides sim-

ilar combinatoric rules for polynomials of corresponding degree.

In this way, the procedure described above for 8-run screening designs can be ex-

tended. Up to 7 variables can be screened using an L8 orthogonal array (there are 4 total

interaction terms with which other variables can be aliased, plus the main 3 variables).

But more variables can be screened by adding an additional 8 runs. If a 24 = 16 run
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screening design were used, up to 15 variables could be screened with 16 runs (compare

that to the 215 = 32, 768 runs that a full factorial design would require!).

5.3.7 Quadratic Designs: Central Composite and

Box-Behnken

The next step in complexity after a linear model is a quadratic model, which ac-

counts not just for the gross effect of a variable in binary terms (increasing x will increase

y, and so on) but also a measure of degree. There are several approaches to construct-

ing quadratic models, each based on different sets of assumptions. Several methods are

presented here, but ultimately the modeling philosophy of sequential design will dictate

whether such quadratic models are necessary to pursue.

5.3.7.1 Central Composite Designs

While factorial designs are intended to reveal information about first-order linear

models, composite designs provide information required to build second order (quadratic)

linear models. The design is created by picking a median value (e.g., 0) and, optionally,

two additional high and low levels (e.g., −a and +a) for each variable that will be

quadratic. The function samples are then arranged in a “star” formation in parameter

space: each variable is set to its (new) high and low levels while all other variables are

held at their median value. The two additional levels are optional because a minimum

of 3 points are required to fit a second degree polynomial, so a 3-level design works for

this purpose. This is easy to visualize in a three-parameter space: a factorial design

forms the edges of a cube (fractional factorial designs form various opposite edges of

the cube), and the composite design forms a six-point star, with one additional sample

point in the center. When a = 1, the composite design is referred to as a face centered

composite design, because the star sample points fall on the faces of the cube formed by

the factorial design. The number of runs required by a central composite design is:

2n + 2n+ 1.
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5.3.7.2 Box-Behnken Designs

A closely related quadratic experiment design technique is the Box-Behnken design

[177]. This also places sample points on a parameter hypercube, but no sample points

are located at edges of the hypercube. Each Box-Behnken design point is placed on the

middle of each edge. Box-Behnken designs sample each hypercube face with 4 sample

points: one in the middle of each edge. In contrast, central composite designs sample

each hypercube face with 5 sample points: one in the center of the face, and one in each

corner of the face. Thus Box-Behnken designs are more economical; for a design in three

variables, the Box-Behnken design uses 12 points, whereas the central composite design

uses 15.

There are advantages to either composite or Box-Behnken designs. Box-Behnken

designs are slightly more economical, but they do not provide information about param-

eter combinations at their extreme values (the corners of the hypercube). Box-Behnken

designs are rotatable (a desirable property) by design (more information on rotatability

and rotatable designs is given below), and therefore require only 3 levels. Composite

designs are not rotatable for a = 1, and so must use 5 levels to be rotatable. However,

this is primarily a disadvantage when running experiments at 5 conditions is more ex-

pensive than running experiments at 3 conditions, which is not an issue for computer

simulations.

More importantly, Box-Behnken designs are much more conducive to the “TV din-

ner” approach to experiment design (Section 5.3.2). Box-Behnken designs make sequen-

tial assembly of response surfaces impossible. Once a Box-Behnken design is selected,

the user must leap over all intermediate steps, including screening studies, fractional

factorial designs, and full factorial designs, and go straight to the quadratic surrogate

model. This may lead the user to be more conservative in the variables explored, miss

valuable information from screening study steps, and even make incorrect assumptions

about important effects. The reason the Box-Behnken design is rotatable is that it

does not include a factorial design as a subset; this should be viewed as a disadvantage.
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Except for cases where the response is known to be quadratic in form and the most

important factors have already been determined (which is rarely the case when creat-

ing surrogate models for expensive simulations), this design’s disadvantages significantly

outweigh its advantages, and sequential assembly should be used instead.

5.3.7.3 Rotatable Designs

For designs with 3 or more levels, one desirable property is for each sample to

contribute equal amounts of information about the surrogate model coefficients. In

order for this to be true, all of the sample points must lie on a hypersphere in parameter

space. In this way, each point is equidistant from the center, and thus contributes equal

information. Central composite designs are rotatable for certain values of a: those that

satisfy the equality

a = n
1
4
c

where nc = 2n−k is the number of hypercube points with parameter coordinates in

the form (±1,±1, · · · ± 1). 3n factorial designs, on the other hand, are not rotatable.

Additionally, central composite designs require 2n+1+n+1 runs, fewer than 3n, so they

are also cheaper than 3n factorial designs. Because Box-Behnken designs are rotatable

with a = 1 and therefore require only 3 levels, whereas central composite designs are

not and therefore require 5 levels, Box-Behnken designs can be advantageous for certain

situations (for example, if it is particularly difficult or expensive to run at extreme

combinations of parameters, but this is usually not the case for simulations).

It can be shown (see [155]) that central composite designs are in fact fractional

3n factorial designs, as are Box-Behnken designs, and that if the two are combined for

n = 3, they form a complete 33 factorial design.
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5.4 Response Surfaces for Coal Gasification

In order to accomplish Step 4 in the NISS validation framework (Section 4.4), com-

puter simulations of the coal gasifier of Brown [153,158] were performed with the Arches

model (Section 2.7) and a response surface surrogate model was constructed for use in

the Data Collaboration validation method (Chapter 6). The available gasification data

consisted of measured concentration data for 3 species (CO, CO2, and H2), consisting

of radial profiles composed of 5 radial measurements (0 cm, 2 cm, 4 cm, 6 cm, and 8 cm

from the centerline) at 6 axial locations (21 cm, 36 cm, 51 cm, 67 cm, 81 cm, and 121

cm from the injector). Each sample was gathered over a time period of approximately

30 minutes.

For each system response, one response surface was constructed; this resulted in 90

total response surfaces. For the sake of simplicity, clarity, and economy of space, many

results presented here are only a representative sample (one species, one spatial region,

or an ensemble average).

The process that was applied to construct the Arches coal gasification model re-

sponse surface was as follows:

1. Perform a screening study and investigate the main effects of 6 variables by gath-

ering 8 function samples. Obtain information about which variables are the most

important for constructing a response surface.

2. Reduce the number of variables from 6 to 4, and gather an additional 8 function

samples to perform a full 24 factorial design. Obtain a linear response surface, and

determine goodness of fit.

3. If linear model from Step 2 is insufficient, obtain supplementary function samples

to construct a quadratic response surface model. Obtain a quadratic response

surface, and determine goodness of fit.

This procedure was carried out, and results are presented below.
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5.4.1 Gasification Screening Study

The screening study that was run for the coal gasification case used the six variables

and ranges listed in the input/uncertainty (I/U) map (Section 4.4.1), and an 8 run

screening design was used to explore the main effects of these variables, as described in

the section describing sequential assembly (Section 5.3.2). This was a 26−3 = 8 fractional

factorial design with the defining contrasts:

I = ABD = BCE = ACF.

These result from letting the levels for D equal the levels for AB, letting the levels for

E equal the levels for BC, and letting the levels for F equal the levels for AC. When

these three defining contrasts are combined, they yield the full set of defining contrasts

for this screening study:

I = ABD = ACE = BCF = AEF

= BCDE = BDEF = ABEF = ACDF = ABCE. (5.74)

Following Section 5.3.6, the defining contrast can be used to determine which main

effects are aliased with which interactive effects. Table 5.4 shows the various parameter

levels used for each screening run.

Table 5.4: Screening study used for the first step of sequential assembly of the Arches
coal gasification model response surface.

Run E2 A2 Twall Eh−CO2 dp ṁcoal

(A) (B) (C) (D) (E) (F)
screen-1 + + + + + +
screen-2 - + + - + -
screen-3 + - + - - +
screen-4 - - + + - -
screen-5 + + - + - -
screen-6 - + - - - +
screen-7 + - - - + -
screen-8 - - - + + +
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5.4.1.1 Analysis of Arches Screening Study Results

A total of 8 Arches simulations were run. Time-averaged concentration profiles

were extracted from the temporally and spatially dependent concentration fields com-

puted by the gasification model in Arches. A visual assessment of the comparisons of

model predictions to experimental data, with plots comparing experimentally obtained

concentration fields with simulation results, are presented in Section 6.6. These results

show fair agreement. Many of the features of the experimental data are captured by the

Arches simulations. Furthermore, incorporating the experimental error into the compar-

ison would certainly improve the agreement. However, how well the model prediction

yMe matches the data de varies significantly with the parameter values. Clearly, a qual-

itative comparison is insufficient to determine which parameter values are “good” and

which ones are not. It is for this reason that a statistical analysis is used to investigate

the main effect of each of the six screening study factors.

The main effects for each factor were computed for the entire reactor, and are pre-

sented in Table 5.5. Determining the factors with the most significant main effects was

difficult, given that there were 90 total response surfaces (3 species concentrations, 5

radial location measurements, and 6 axial location measurements), represented by 90

polynomials, and each response surface having potentially different rankings of signifi-

cant effects for each response. For this reason, the gasifier was divided into two zones,

the near-injector region (Zone I) and the near-exit region (Zone II). In the first zone,

Table 5.5: Overall main effects for each variable on the three responses of interest,
computed from the screening study. The main effects are averaged over Zone I and Zone
II (all spatial locations) and ranked in order of most to least significant effect.

Main Effects
Variable [CO2] [CO] [H2] Mean Main Effect

E2 0.0698 0.0494 0.0133 0.0441
dp 0.0343 0.0276 0.0070 0.0230

Twall 0.0246 0.0128 0.0114 0.0163
ṁcoal 0.0278 0.0104 0.0085 0.0155

Eh−CO2 0.0135 0.0032 0.0025 0.0064
A2 0.0011 0.0008 0.0010 0.0010
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devolatilization was the dominant mechanism, so the factors with the strongest main

effects were likely to be those related to the devolatilization reaction. Char oxidation

reactions were the dominant mechanism in the second zone. There is no distinct cutoff

between the location of Zone I and Zone II, but it was approximated as being halfway

through the gasifier (60 cm; see Chapter 7 of [11]). The main effects were computed for

the entire reactor, as well as separately for Zone I (first three axial locations) and Zone

II (last three axial locations).

The contour plots given in Section 6.6 give a visual representation of the variation of

one response (CO) with all of the factors. The main effects of each factor were calculated

(see Table 5.5), and from this information, the number of factors was reduced from 6 to

4, with the the 2 factors determined to be least important from the statistical analysis

eliminated, and the 4 factors with the most significant main effects investigated in the

next step of the sequential response surface assembly process (the factorial design step).

A word of caution should be interjected here before an attempt is made to interpret

the results of the screening study, lest one read too much into these screening study

results: for screening studies, main effects are confounded with many interaction effects.

It is obvious that in a system as complex as a coal gasifier, each variable will interact

with several others and therefore the main effect of a variable may be coming primar-

ily from an interaction effect, or several interaction effects. A main effect may also be

moderate, but appear much more significant due to a number of other moderately im-

portant aliased interaction effects. As a response surface is assembled, each step reveals

additional information about its main and interaction effects. For this reason, any judge-

ments made during the first stage of sequential assembly about why a main effect was

important are stated hypothetically. However, because the rankings of each variable are

largely the same throughout the reactor, because interaction effects are typically weaker

in magnitude than main effects, and because experience with gasification systems has

indicated that the selected active factors will be important (this is, after all, the reason
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why they were chosen to be in the I/U map), it is justifiable to interpret the screening

results as indicating which variables are most important.

5.4.1.2 Zone I

The main effects in Zone I computed from the screening study are presented in

Table 5.6. The devolatilization process is likely a very strong influence, as the two

most significant main effects, E2 and dp, directly control the rate of the devolatilization

process. This, in turn, controls the rate of fuel release in the reactor. The devolatilization

process starts when cold particles enter the domain, heat up, and devolatilize, releasing

their volatile gaseous fuel. The first step, heating, is controlled by the particle size,

while the second, the devolatilization reaction, is controlled by E2, the high-temperature

devolatilization reaction activation energy. Note that the main effect for E2 is nearly

three times the main effect for dp. The mass flowrate and wall temperature main effects

are also significant, though about half as much as the particle size main effect. It is not

surprising that these factors are significant because they all contribute to the mechanism

of particle heating and devolatilization.

A graphical interpretation of the effects is presented in Figure 5.1. This is a quantile

plot, a type of plot used to compare data to distributions (in this case, comparing the

effects of each variable to a normal distribution). A quantile Q (f) is a quantity that

divides a population into two parts: a fraction f that have values less than or equal to

Table 5.6: Zone I main effects for each variable on the three responses of interest,
computed from the screening study. The main effects are averaged over Zone I and
ranked in order of most to least significant effect.

Zone I Main Effects
Variable [CO2] [CO] [H2] |Mean Main Effect|

E2 -0.0998 0.0472 0.0174 0.0548
dp 0.0343 0.0231 0.0033 0.0203

ṁcoal 0.0182 0.0126 0.0085 0.0131
Twall 0.0132 0.0022 0.0144 0.0099

Eh−CO2 0.0055 0.0031 0.0008 0.0032
A2 0.0021 0.0015 0.0019 0.0018
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Fig. 5.1: Quantile plot of the main effects for Zone I, computed from the screening
design.

Q (f), and a fraction 1 − f that have values greater than Q (f). In order to construct

the quantile plot, the main factor effects (denoted Mi and referred to as quantiles in this

context) are first computed; these quantiles are ordered; and each quantile divides the

population into two fractions, one fraction f whose main effect is less than or equal to

Mi and a second fraction 1 − f whose main effect is greater than Mi. Each quantile is

then plotted against the corresponding quantile for a standard normal distribution, and

this plot is the quantile plot.

In a quantile plot, if the quantiles from the presumed (normal) distribution (x axis)

match the quantiles from the actual distribution (y axis), the points for each main

effect will lie on a line. Points deviating significantly from the line indicate that the

main effect represented by that point deviates significantly from the assumed (normal)

behavior. From Figure 5.1, it can be seen that the main effect for each variable on CO

roughly follows the presumed normal distribution. However, interpretation of this plot

comes with a very strong caveat: it is critical to remain conscious of the aliasing of main

effects with interaction effects. What looks like a strong or weak main effect may in

fact be a strong or weak interaction effect that eclipses the main effect. This can also
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cause counterintuitive results: suppose, for example, Twall does not strongly effect the

H2 response. But the main effect of Twall, MTwall, is also aliased with the interaction

effect of E2 and ṁcoal, IE2ṁcoal
. If this interaction effect strongly affects the H2 response,

then it will appear as though Twall has a strong effect on the H2 response. All that can

really be said is that the sum of all effects aliased with the main effect is significant.

Beyond that, no differentiation can be made without gathering additional information

via additional runs.

Box contour plots of the model response yMe in parameter space are given in Figures

5.2, 5.3, and 5.4. The model predictions are plotted versus the two parameters with the

largest main effect for the given response. These plots indicate visually the effect that

various variables have on the model response. While this is a crude representation of the

surface, using only four points, it can provide some indication as to whether and how

much parameters affect the model response. Each plot shows consistently lower model

predictions for increasing E2 and lower model predictions for increasing dp. These were

the two most dominant variables for every point in Zone I. This result indicates that in

Zone I of the gasifier there is a single dominant physical mechanism or parameter. As

mentioned, it is highly likely this is the devolatilization mechanism. Both E2 and dp are

controlling parameters in the devolatilization model used. A higher value of E2 and a

higher value of dp will both suppress devolatilization, due to both increasing the energy

required for the devolatilization reaction to occur. Suppressed devolatilization will lead

to slower formation of fuel species like CO, as seen in the plots below. This qualitative

behavior matches what is expected.

5.4.1.3 Zone II

The main effects in Zone II, the char oxidation region in the latter half of the

gasifier, are presented in Table 5.7. The variables appear largely in the same order,

with only Twall and ṁcoal switching spots. This is largely due to Twall having a much

increased main effect in Zone II. The quantile plot shows much the same trend: Twall

had a strong effect on both fuels, CO and H2. E2 also had a significant effect on all
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Table 5.7: Zone II main effects for each variable on the three responses of interest,
computed from the screening study. The main effects are averaged over Zone II and
ranked in order of most to least significant effect.

Zone II Main Effects
Variable [CO2] [CO] [H2] Mean Main Effect

E2 0.0397 0.0516 0.0092 0.0335
dp 0.0343 0.0321 0.0105 0.0257

Twall 0.0359 0.0234 0.0084 0.0026
ṁcoal 0.0373 0.0082 0.0085 0.0180

Eh−CO2 0.0215 0.0032 0.0041 0.0096
A2 0.0002 0.0002 0.0002 0.0002

three variables, with the effect being negative for CO and H2 and positive for CO2. This

is due to the gas phase chemistry; slower devolatilization leads to fuel being released at

a different location in the reactor, which affects the temperature, local concentrations

of fuel, and the char oxidation process. Despite the fact that much less devolatilization

occurs in Zone II than in Zone I of the gasifier, the devolatilization activation energy

parameter still has a strong main effect due to its influence over all aspects of the gas

phase chemistry. This influence propagates through the entire gasifier.

Zone II main and interaction effects can also be visualized. A quantile plot (Figure

5.5) visualizes the main and interaction effects on the main system response, while the

box contour plots in Figure 5.6, 5.7, and 5.8 provide a visual representation of the

effect of the two variables with the largest main effect and their effect on the model

prediction, yMe . These show the trend of higher E2 leading to lower model predictions,

higher dp leading to lower model predictions, and higher ṁcoal leading to lower model

predictions. As mentioned in the Zone I discussion, the dominance of E2 at all but the

very furthest points from the injector in the gasifier indicate that it will play a strong

role in the validation process, and be an important part of the final surrogate model

that is constructed to reproduce the predictions of Arches.
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Fig. 5.5: Quantile plot of the main effects for Zone II, computed from the screening
design.

5.4.1.4 Conclusions

Keeping in mind the caveat that these “main effects” are in fact confounded with

multiple interaction effects, the variables with the strongest main effects appear to be the

wall temperature Twall, the devolatilization activation energy E2, the coal mass flowrate

ṁcoal, and the mean particle size dp. The variable A2 had a marginal effect in every

case. The variable Eh−CO2 had a more significant effect than A2, but was still marginal

in every case.

One intention of using sequential assembly is to enable the reduction of the number

of factors for each step. Selecting 4 factors is an economical choice, as it then takes

only 8 additional runs to complete a full 24 factorial design. Deciding which factors to

keep for the next step of the response surface assembly was straightforward: the same

four variables were the most significant in both Zone I and Zone II. In cases where

the decision is not as straightforward (when, perhaps, one variable is very significant

in Zone I and insignificant in Zone II, while another variable is very significant in Zone

II but not in Zone I), it is important to lay out decision criteria. It is important first

to select variables that will affect the system response where data are available. If the
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preponderance of data is in Zone I, then the variable with the strongest main effect in

Zone I should be chosen. In such cases, it may be particularly useful to look at main

effects for individual responses, rather than looking at an average over a spatial region.

For this, one may use tables like Table 5.5, as well as quantile plots like Figure 5.1 to

evaluate the main effects graphically.

5.4.2 Gasification Fractional and Full Factorial

The next step in the sequential assembly of the response surface was to perform

a fractional factorial design, then a full factorial design, both for a reduced number of

factors. It was desirable to reduce the number of design factors to 4 to keep the cost

of the response surface assembly economical. For this reason, the 4 most significant

main effects mentioned above (E2, ṁcoal, dp, and Twall) were kept as factors for the next

sequential assembly step. This decision was based on the significance of the main effect

of all four variables in both Zone I (the devolatilization region near the injector) and

Zone II (the char oxidation region near the exit) of the gasifier.

The screening study performed in Section 5.4.1 was a 26−3 fractional factorial design,

and for the reduced set of factors that translated into a 24−1 fractional factorial design.

To supplement it further required an additional 8 runs, listed in Table 5.8, which made

it a full factorial design. Had the number of starting variables been greater, for example

transforming a 7 variable 27−4 fractional factorial screening study into a 6 variable 26−3

(1/8) fractional factorial design, or if the original 6 variables were reduced in number

to 5 instead of 4, one could then complement the screening study with an additional

8 runs to create a fractional factorial design, and supplement the fractional factorial

design with additional runs (or reduce the number of factors) to form a full factorial

design. However, the implemented design (i.e., the reduction in the number of variables

from 6 to 4) was selected so that only one additional set of 8 complementary runs was

needed to form a full factorial design. The Arches model was run at each of these 8 sets

of conditions in order to complete the full factorial design.
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One outstanding question relates to the defining contrast and corresponding aliasing

identities for the new, reduced fractional factorial design. In other words, in the original

screening study, the main effect of variable dp was aliased with E2 × A2, meaning it

was not an independently varied factor. Likewise, the main effect of variable ṁcoal was

aliased with E2 × Twall, and was also not an independently varied vector. The question

is, how did this dependence change with the new fractional factorial design (that is, with

the change in the number of design variables)? For the new fractional factorial design,

which has only 4 variables, E2, Twall, dp, and ṁcoal, this question is answered by looking

at the new fractional factorial design cases in Table 5.4. From this, it is clear that

eliminating A2 as a design factor has made dp an independently varied factor. However,

because Twall was not eliminated as a design factor, ṁcoal is still not independently

varied. Note that the 8 supplementary design points in Table 5.8, compared to the

design points in Table 5.4, do not change with respect any variables except ṁcoal. This

causes ṁcoal to be independently varied. Note that for the full 24 factorial design, the

design is not fractional and consequently has no defining contrast.

5.4.2.1 Analysis of Arches Factorial Results

The calculated main effects averaged over the entire domain, given in Table 5.9,

were similar to those calculated for the 26−3 fractional factorial screening study. The

most significant main effect was still E2. However, interestingly, the wall temperature

become the second most important parameter. This is due to the fact that in the full

factorial design, no main effects were aliased with interaction effects. This indicates that

there was likely an interaction effect aliased with the main effect for Twall that canceled

it out or made it appear less significant than it was. Tables 5.10 and 5.11 show the

main effects averaged over Zone I and Zone II of the gasifier, respectively, and show

some variation in the value of the main effect, but no variation in the ranking of effect

significance.

Naturally, the question arises: what has been learned about the interaction effects?

Were any main effects considered significant that should not have, because they were
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Table 5.8: Full factorial design for the screening study variables with the 4 largest main
effects. An asterisk indicates a run at the specified conditions is already available; Table
5.4 contains the screening study design points, while this table contains the comple-
mentary design points, which compose a full factorial design when combined with the
screening study design points.

Run E2 Twall dp ṁcoal

fact-9 + + + -
fact-10 - + + +
fact-11 + + - -
fact-12 - + - +
fact-13 + - - +
fact-14 - - - -
fact-15 + - + +
fact-16 - - + -

Table 5.9: Main effects for each variable on the three responses of interest, as determined
by the factorial design. The main effects are averaged over all spatial points and ranked
in order of most to least significant effect.

Main Effects
Variable [CO2] [CO] [H2] Mean Main Effect

E2 0.0715 0.0498 0.0141 0.0451
Twall 0.0344 0.0224 0.0173 0.0247
dp 0.0309 0.0283 0.0080 0.0224

ṁcoal 0.0231 0.0101 0.0077 0.0136

Table 5.10: Zone I main effects for each variable on the three responses of interest, as
determined by the factorial design. The main effects are averaged over Zone I and ranked
in order of most to least significant effect.

Zone I Main Effects
Variable [CO2] [CO] [H2] Mean Main Effect

E2 0.1018 0.0475 0.0182 0.0558
Twall 0.0273 0.0147 0.0228 0.0216
dp 0.0333 0.0234 0.0038 0.0201

ṁcoal 0.0167 0.0121 0.0082 0.0123
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aliased with significant interaction effects, or vice versa? It is likely that, due to the fact

that the ranking of significant main effects did not change significantly from the screen-

ing study to the factorial design, none of the interaction effects were making unimportant

effects look important. But in fact, precisely the opposite happened for the only fac-

tor whose main effect changed significantly between the screening and factorial design

analyses, Twall.

The rankings of each interaction effects, given in Table 5.12 for the entire gasifier

and represented visually in Figure 5.9, indicate that the interaction E2 × ṁcoal is the

most significant. This interaction effect was alised with Twall for the screening study. In

fact, the increase in the main effect of Twall is approximately equal to the value of the

interaction effect of E2 × ṁcoal,

Mscreen (Twall) = Mfactorial (Twall)− Ifactorial (E2, ṁcoal)

0.0163 ≈ 0.0247− 0.0085.

In other words, the interaction effect of E2 × ṁcoal was canceling out the main effect of

Twall in the screening study. The reason that each interaction effect can be determined is

that the reduction in the number of variables reduces the number of degrees of freedom

required to completely specify a linear model from 64 to 16, and the 8 supplementary runs

listed in Table 5.8 provide the appropriate number of degrees of freedom to completely

Table 5.11: Zone II main effects for each variable on the three responses of interest,
as determined by the factorial design. The main effects are averaged over Zone II and
ranked in order of most to least significant effect.

Zone II Main Effects
Variable [CO2] [CO] [H2] Mean Main Effect

E2 0.0412 0.0522 0.0100 0.0345
Twall 0.0415 0.0301 0.0118 0.0278
dp 0.0284 0.0332 0.0122 0.0246

ṁcoal 0.0294 0.0081 0.0071 0.0149
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Table 5.12: Two-way interaction effects as determined by the full factorial design. The
interaction effects are averaged over all spatial points and ranked in order of most to
least significant effect.

i− j Interaction Effects
Variable [CO2] [CO] [H2] Mean Interaction Effect

E2 × ṁcoal 0.0091 0.0109 0.0055 0.0085
E2 × dp 0.0011 0.0223 0.0012 0.0082

dp × ṁcoal 0.0071 0.0029 0.0016 0.0039
Twall × ṁcoal 0.0002 0.0002 0.0002 0.0002
Twall × dp 0.0000 0.0000 0.0000 0.0000
E2 × Twall 0.0000 0.0000 0.0000 0.0000
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Fig. 5.9: Quantile plot of the main and interaction effects for the entire gasifier, computed
from the full factorial design.
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Fig. 5.10: Quantile plot of the main and interaction effects for Zone I, computed from
the full factorial design.

specify the coefficients of a linear model. As a result, all interaction effects can be

computed separately from main effects.

As before, the interaction effects are also reported for the Zone I and Zone II local

averages, in Tables 5.13 and 5.14, respectively. These are plotted using quantile plots

in Figures 5.10 and 5.11, respectively.

Figure 5.9 shows most of the interaction effects clustered near the point (0, 0),

meaning they are not significant. Most of the interaction effects are 1 order of magnitude

Table 5.13: Zone I two-way interaction effects, as determined by the factorial design.
The main effects are averaged over Zone I and ranked in order of most to least significant
effect.

Zone I i− j Interaction Effects
Variable [CO2] [CO] [H2] Mean Interaction Effect

E2 × ṁcoal 0.0127 0.0163 0.0082 0.0124
dp × ṁcoal 0.0036 0.0043 0.0016 0.0031
E2 × dp 0.0003 0.0067 0.0003 0.0024

Twall × ṁcoal 0.0001 0.0001 0.0001 0.0001
Twall × dp 0.0000 0.0000 0.0000 0.0000
E2 × Twall 0.0000 0.0000 0.0000 0.0000



200

Table 5.14: Zone II two-way interaction effects, as determined by the factorial design.
The main effects are averaged over Zone II and ranked in order of most to least significant
effect.

Zone II i− j Interaction Effects
Variable [CO2] [CO] [H2] Mean Interaction Effect
E2 × dp 0.0019 0.00379 0.0021 0.0140

E2 × ṁcoal 0.0055 0.0055 0.0029 0.0046
dp × ṁcoal 0.0106 0.0014 0.0017 0.0046

Twall × ṁcoal 0.0004 0.0004 0.0004 0.0004
Twall × dp 0.0000 0.0000 0.0000 0.0000
E2 × Twall 0.0000 0.0000 0.0000 0.0000
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Fig. 5.11: Quantile plot of the main and interaction effects for Zone II, computed from
the full factorial design.
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smaller than the main effects. However, the two most significant interaction effects,

E2 × ṁcoal and E2 × dp, visually deviate from this pattern. The Zone I quantile plot in

Figure 5.1 shows E2× ṁcoal separated from the cluster of interaction effects for the CO2

and H2 responses; the Zone II quantile plot in Figure 5.5 shows E2×dp clearly deviating

from this trend as well for the CO2 response.

The effect of variables on the comparison residuals, plotted in Figures 5.12 through

5.17, show similar trends in all but two locations (at x = 36 cm, r = 0 cm and r = 2

cm). This was also the case in the residual contour plots reported from the screening

study.

5.4.3 First-Order Gasification Response Surface

The 24 full factorial design detailed in Section 5.4.2 yields enough information to

completely specify a 16-term linear model containing only first-order terms. However,

here one runs into the same problem as with computing the main effects of variables:

with 90 total responses, it is somewhat unwieldy to present and discuss all relevant

results. Therefore, for reasons of style and economy, three representative points out of

the 90 total were chosen: two points in the same radial profile and two points on the same

axial profile. The relevant calculations are demonstrated only for these three responses.

The three points selected were x = 36 cm and r = 0 cm, x = 36 cm and r = 6 cm, and

x = 81 cm and r = 0 cm. Also, because nine responses is still an unwieldy number,

where appropriate only the CO response was examined. Unless otherwise mentioned,

conclusions about the CO response also apply to the other responses.

It is important to begin the discussion of the constructed first-order response surface

with a review of the terminology being used in order to provide clarity. For any system of

interest, there are data available, designated de (the subscript e indexes an experiment,

or an experimental measurement). A model is constructed to attempt to replicate those

data, and the model’s predictions are denoted yMe (x) (superscript M for model). These

predictions are a function of an input parameter vector x. Next, as part of the validation

process, a greatly simplified surrogate model is constructed to attempt to replicate the
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output of the more complex model. The surrogate model prediction is denoted ŷe (θ),

where θ is another input parameter vector; this may be a subset of x, contain a few

elements in common with x, or have no elements in common with x. The first situation

listed is the most common.

An overview of linear regression has already been presented in Section 5.2.2; details

will be relegated to this coverage. The first function onto which the simulation results

were regressed was:

yi (x, r) = β0 + β1E2 + β2Twall + β3dp + β4ṁcoal

+β12E2Twall + β13E2dp + β14E2ṁcoal

+β23Twalldp + β24Twallṁcoal + β34dpṁcoal

+β123E2Twalldp + β124E2Twallṁcoal

+β134E2dpṁcoal + β234Twalldpṁcoal

+β1234E2Twalldpṁcoal. (5.75)

Nine polynomials were computed, three for each response at the representative points.

For ease of use and ease of regression, the input variable vector x was normalized; the

normalized vector is denoted x̂. The set of level values was {0, 1}, so that the “low” level

of each variable was 0 and the “high” level of each variable was 1. One of the response

surface polynomials is given below and its characteristics analyzed.
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yCO (x = 0.36, r = 0) = (0.2976)− (0.095223)E2 + (0.026395)Twall

− (0.045384) dp − (0.016755)mcoal

+
Ä
4.9× 10−05

ä
E2Twall + (0.012408)E2dp

− (0.01812)E2mcoal +
Ä
9.8× 10−05

ä
Twalldp

+(0.0001296)Twallmcoal + (0.026371) dpmcoal

−
Ä
9.8× 10−05

ä
E2Twalldp

−
Ä
1.4164× 10−16

ä
E2Twallmcoal

− (0.025794)E2dpmcoal

−
Ä
3.3307× 10−16

ä
Twalldpmcoal

+
Ä
4.4409× 10−16

ä
E2Twalldpmcoal. (5.76)

This response surface has an R2 value of 1.0 at all spatial locations (as do the response

surfaces of other species). This, however, is obvious: if the number of constants is equal

to the number of degrees of freedom, the R2 value will always be 1.0 because the response

surface will always fit the data perfectly. (In fact, this is the reason for the adjusted

R2, defined in Section (5.1.4), which is ∞ when the number of points is equal to the

number of parameters.) The tradeoff is that one cannot make any statements about the

amount of error y− ŷ that may be associated with a prediction ŷ, nor can one make any

statements about a confidence interval for any of the coefficients.

It should be noted that in this response surface polynomial, several of these terms

have extremely small coefficients, primarily the third and fourth order interaction terms

(this is also true of the response surface polynomials for other species and at other

locations). In addition to the higher order interaction effects with very small coefficients,

several of the interaction terms are known to be insignificant from the effects analysis

(Tables 5.12-5.14). For example, the three interaction effects E2 × Twall, Twall × dp, and

Twall × ṁcoal are insignificant throughout the entire reactor. In the polynomials above,

the coefficients of each of these interaction terms are on the order of 10−4 to 10−5 (again,
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also true of the response surface polynomials for other species and at other locations).

It is prudent to utilize the results obtained from the analysis of effects when choosing a

regression function. The choice of function (5.75) is a poor choice because it does not

utilize any of this information.

Instead, a new regression function should be chosen, excluding several interaction

terms found to be insignificant through the effects analysis and via Yeates’ Method.

This was a model of the form:

y = β0 + β1E2 + β2Twall + β3dp + β4ṁcoal

+β13E2dp + β14E2ṁcoal + β34dpṁcoal

+β123E2Twalldp + β134E2dpṁcoal. (5.77)

When this was done, the following polynomials for the CO response at each spatial

location of interest were obtained:

yCO (x = 0.36, r = 0.0) = (0.29755)− (0.095197)E2 + (0.026509)Twall

− (0.045335) dp − (0.01669) ṁcoal + (0.011998)E2dp

− (0.01812)E2ṁcoal + (0.026371) dpṁcoal

+(0.00072253)E2Twalldp

− (0.025071)E2dpṁcoal (5.78)

yCO (x = 0.36, r = 0.6) = (0.15349)− (0.088104)E2 + (0.026509)Twall

− (0.035085) dp − (0.006414) ṁcoal + (0.0018837)E2dp

− (0.020509)E2ṁcoal + (0.0055708) dpṁcoal

+
Ä
4.5158× 10−05

ä
E2Twalldp

− (0.0048423)E2dpṁcoal (5.79)
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yCO (x = 0.81, r = 0.0) = (0.34107)− (0.036914)E2 + (0.033672)Twall

− (0.012188) dp − (0.016856) ṁcoal − (0.015124)E2dp

− (0.014362)E2ṁcoal − (0.023564) dpṁcoal

+(0.00015575)E2Twalldp

+(0.023907)E2dpṁcoal. (5.80)

Comparing the R2 values of these two approaches, one sees very little difference: for

CO and CO2, the value of R2 was 1.0 at all three points listed above. H2 was also

essentially the same, with R2 values ranging from 0.9992− 1.0. (No mean squared error

(MSE) values were reported for the 16-term response surface because none could be

estimated.) However, eliminating the unnecessary parameters provided an estimate of

the MSE, provided for each response and location of interest in Table 5.15.

5.4.4 First-Order Gasification Response Surface

With Curvature

In order to obtain a better idea of how linear the responses were, an additional

sample point was obtained at the center of the factorial design. A design point in the

center gave three points to be fitted in each dimension, which provided an estimate of

the curvature in the response surface. Furthermore, the additional degree of freedom

provided some basis for comparison of the 16-term polynomial response surface (5.75)

with the reduced 10-term polynomial response surfaces. The response surfaces were

recomputed for the additional sample point, and the R2, adjusted R2, and MSE values

are reported in Tables 5.16 and 5.17. The updated response surfaces are plotted in two

dimensions; the 16-term response surface (5.75) is plotted in Figures 5.18, 5.19, and 5.20,

and the 10-term response surface 5.77 is plotted in Figures 5.21, 5.22, and 5.23.

While the R2 values were nearly the same for the two responses, the 16-term re-

sponse surface had slightly worse adjusted R2 values (though still very good), and larger

errors, than the 10-term response surface. With the addition of the center point, the R2
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Fig. 5.18: Plot of the surrogate model response ŷMe (gray surface) for the 16-term re-
sponse surface (5.75), along with the Arches responses yMe being fit, for x = 36 cm and
r = 0 cm. The dimensions plotted are those of the three most active interaction effects.
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Fig. 5.19: Plot of the surrogate model response ŷMe (gray surface) for the 16-term re-
sponse surface (5.75), along with the Arches responses yMe being fit, for x = 36 cm and
r = 6 cm. The dimensions plotted are those of the three most active interaction effects.
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Fig. 5.20: Plot of the surrogate model response ŷMe (gray surface) for the 16-term re-
sponse surface (5.75), along with the Arches responses yMe being fit, for x = 81 cm and
r = 0 cm. The dimensions plotted are those of the three most active interaction effects.
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Fig. 5.21: Plot of the surrogate model response ŷMe (gray surface) for the 10-term re-
sponse surface (5.75), along with the Arches responses yMe being fit, for x = 36 cm and
r = 0 cm. The dimensions plotted are those of the three most active interaction effects.
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Fig. 5.22: Plot of the surrogate model response ŷMe (gray surface) for the 10-term re-
sponse surface (5.75), along with the Arches responses yMe being fit, for x = 36 cm and
r = 6 cm. The dimensions plotted are those of the three most active interaction effects.
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Fig. 5.23: Plot of the surrogate model response ŷMe (gray surface) for the 10-term re-
sponse surface (5.75), along with the Arches responses yMe being fit, for x = 81 cm and
r = 0 cm. The dimensions plotted are those of the three most active interaction effects.
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values of the two response surfaces were still very close to 1.0, indicating that there was

not a significant amount of curvature in the response. Additionally, the MSE values for

both response surfaces were extremely small. After an initial analysis of the results, it

appeared that a full composite design was not necessary. However, before making this

decision, additional statistical analysis was performed to determine whether this was a

justifiable hypothesis.

Two additional statistical analyses were performed. First, an analysis of variance

(ANOVA) table was created to establish confidence levels for each polynomial coefficient

in (5.77), as well as to perform an F -test of the quadratic versus linear model, which in-

dicated the importance or unimportance of quadratic terms for constructing an accurate

response surface. The quadratic model being tested was:

y = β0 + β1E2 + β2Twall + β3dp + β4ṁcoal

+β13E2dp + β14E2ṁcoal + β34dpṁcoal

+β123E2Twalldp + β134E2dpṁcoal

+β11E
2
2 + β22T

2
wall + β33dp

2
+ β44ṁ

2
coal. (5.81)

Second, an analysis of the residuals was performed to test whether there were underlying

quadratic effects that were missed by the analysis of variance hypothesis test. This

test was graphical, and compares the residuals to the system response. A trend in

residuals indicates that the polynomial model is missing important features and should

be improved or changed.

The ANOVA tables (Tables 5.18, 5.19, and 5.20) provide justification for the hy-

pothesis that a quadratic model is not needed to adequately model the system response.

The important columns in this table are the last two. The F value gives a measure of the

amount of explained variance to the amount of unexplained variance. It is essentially

a test of the null hypothesis; in the case of the first row, it is a test of the hypothesis

that the data variability can be explained by a linear model, and in the case of the

second row, it is a test of the hypothesis that the additional variability (remaining after
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the linear model) can be explained by the quadratic terms added to the linear model.

The corresponding p value is the probability of the data being explained without the

hypothesized model (that is, the probability of the null hypothesis being true). What

this means is, the probability that the linear terms included in the model are required to

explain the data is extremely high (99.99999999 . . .%). On the other hand, the proba-

bility that the quadratic terms included in the model are required to explain the data is

less than a coin flip (40%). Typically, the test of whether model terms are statistically

significant establish a significance level α, for which statistical significance requires a p

value that satisfies

p < 1− α. (5.82)

The ANOVA table clearly indicates that the 10-term response surface polynomial (5.77)

is statistically significant, and the 14-term quadratic response surface polynomial (5.81)

is not.

The second test performed was a graphical analysis of the residuals. The residuals

are defined here as the difference between the Arches computation yMe (the “data” the

surrogate model is intending to reproduce) and the surrogate model prediction ŷMe . The

residuals were plotted for both the 16-term response surface (5.75) (Figures 5.24, 5.25,

and 5.26) and the 10-term response surface (5.77) (Figures 5.27, 5.28, and 5.29). It

is clear from the residual plots that the center point is the primary outlying point, but

the magnitude of the residual, which is not very high, indicates that there is only slight

curvature in the surface; given these results, it would be difficult to justify running the

additional 8 runs required by a composite design.

5.4.5 Coal Gasification Response Surface Conclusions

In order to construct a surrogate model for the Arches coal gasification simulation

tool, concepts from statistics and experimental design were used to design sample points

of Arches in parameter space in order to construct a response surface. A multistage
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Fig. 5.24: Residuals from comparison of the 16-term response surface (5.75) to Arches
predictions, yMe − ŷMe , as a function of the response yMe , for x = 36 cm and r = 0 cm.
The residual from the design point at the center of the factorial design is indicated with
the “center” label.
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Fig. 5.25: Residuals from comparison of the 16-term response surface (5.75) to Arches
predictions, yMe − ŷMe , as a function of the response yMe , for x = 36 cm and r = 6 cm.
The residual from the design point at the center of the factorial design is indicated with
the “center” label.
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Fig. 5.26: Residuals from comparison of the 16-term response surface (5.75) to Arches
predictions, yMe − ŷMe , as a function of the response yMe , for x = 81 cm and r = 0 cm.
The residual from the design point at the center of the factorial design is indicated with
the “center” label.
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Fig. 5.27: Residuals from comparison of the 10-term response surface (5.77) to Arches
predictions, yMe − ŷMe , as a function of the response yMe , for x = 36 cm and r = 0 cm.
The residual from the design point at the center of the factorial design is indicated with
the “center” label.
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Fig. 5.28: Residuals from comparison of the 10-term response surface (5.77) to Arches
predictions, yMe − ŷMe , as a function of the response yMe , for x = 36 cm and r = 6 cm.
The residual from the design point at the center of the factorial design is indicated with
the “center” label.
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Fig. 5.29: Residuals from comparison of the 10-term response surface (5.77) to Arches
predictions, yMe − ŷMe , as a function of the response yMe , for x = 81 cm and r = 0 cm.
The residual from the design point at the center of the factorial design is indicated with
the “center” label.
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approach was adopted called sequential assembly. This utilizes information obtained

at each step in the validation process in order to optimize both the samples that are

gathered and the presumed form of the response surface. Initially, a screening study was

used to determine the main effects of six total parameters using a small number of runs

(8; see Section 5.4.1 and Table 5.4). The six parameters were devolatilization activation

energy E2 (from the Kobayashi devolatilization model), the devolatilization Arrhenius

factor A2, the wall temperature Twall, the CO2 char oxidation reaction activation energy

Eh−CO2 , the mass mean particle size dp, and the solids mass flowrate ṁcoal. This

information was analyzed, and of the six variables, four were retained for additional

analysis because they were determined to have the most significant effect on the responses

(see Table 5.5). It was found that the Arrhenius factor and the char oxidation activation

energy had insignificant effects in all regions of the gasifier. It was also found that

E2 was by far the most significant factor. Its main effect was propagated through the

gasifier. This confirms findings of earlier sensitivity studies [147], which indicate the

primary importance of the devolatilization process. In addition, the remaining three

factors all have strong influences on the devolatilization process, further confirmation

that the Arches model results match expectations. However, due to the fact that main

effects are aliased with interaction effects in small screening designs, further analysis was

required.

The next stage of the response surface construction was to complement the 8 runs

of the screening study with an additional number of runs (8) to complete a full 24

factorial design for four variables (see Section 5.4.2 and Table 5.8). The results from

the full factorial were analyzed to produce a list of important main effects (Tables 5.9,

5.10, and 5.11) and interaction effects (Table 5.12, 5.13, and 5.14). Because these were

determined from a full factorial design, they were not aliased with any other effects. From

these results, an initial first order response surface was constructed, of the form (5.75).

However, some of the downfalls of fitting a model with as many constants as degrees of
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freedom were pointed out, and an alternative model (5.77) with fewer parameters was

proposed.

From the results of the factorial design, it was found that the behavior of the

response was close to linear and well behaved. Several tests of this finding were performed

in order to determine whether further sampling was needed to extend the factorial design

to a composite design, which would provide enough information to construct a response

surface. The first test of the linearity of the response surface was a sample of the center

of the factorial design, which added an additional point and an additional level for each

factor. This point indicated that the curvature of the surface was small, and that the

linear response surface finding was likely true.

Further tests were performed, in the form of analysis of variance tables (Tables

5.18 through 5.20). These showed that the data were described very well by the linear

response surface model, and that the need for a quadratic model to fit the data was highly

improbable. The final test was in the form of a graphical analysis of residuals. There

were no detectable patterns in the residuals that indicated an underlying quadratic trend

missed by the regression or the analysis of variance; the residuals yMe − ŷMe exhibited no

dependence on the response yMe .

The results of the surrogate model construction were surprising; a highly nonlinear

system such as a coal gasifier would not normally be expected to behave in a man-

ner described well by a linear model. However, this surprising result made a thorough

statistical analysis all the more important. Multiple tests of this result all confirmed

that it was reasonable, given the set of samples from the full factorial design. It also

demonstrated the great advantage of the sequential assembly approach to surrogate

model design. Had a quadratic model been assumed from the start, and a Box-Behnken

or similar approach to quadratic experimental design been adopted, these would have

resulted in a substantially higher cost due to the fact that a larger number of simula-

tions would have been run (25 for the Box-Behnken design versus 17 for the sequential
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assembly approach), and with intermediate analysis being difficult or impossible, the

superfluousness of many of the runs would not have been known until afterwards.

The final conclusion of the Arches coal gasification response surface construction is

that the linear coal gasification response surface models given by these polynomials are

appropriate and have been justified through a detailed statistical analysis.

5.5 Conclusions

The validation procedure adopted in Section 4.4 consists of six steps in order to

perform validation of a model. Step 4 is creation of a surrogate model for expensive

computer simulations. This surrogate model is intended to be used in optimization and

other routines that require a large number of samples of the model. Because this is

entirely impractical for a simulation code as expensive as the Arches coal gasification

model, a surrogate model was constructed.

An overview of several varieties and families of surrogate models was given, and the

surrogate model family deemed most appropriate was the generalized linear model family,

specifically response surface models. Details were given on construction of response

surfaces using statistical design of experiment techniques, and a sequential assembly

approach was reviewed and adopted. This approach assembles the response surface in a

piecemeal fashion, with the construction process consisting of multiple steps. The first

step is a screening design intended to calculate main effects of a large number of variables

in order to determine which variables are of primary importance to the chosen system

response. A detailed statistical analysis is performed to reveal useful information about

the behavior of the system response. Subsequent steps sample the function in such a way

as to build up the degree of the surrogate model. At each subsequent step, a detailed

statistical analysis is performed to extract as much information as possible from each

round of function samples. This procedure was demonstrated as part of the construction

of a response surface for the Arches coal gasification model. It was determined that the
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most appropriate response surface was a linear response surface, and several statistical

tests were performed in order to confirm this surprising result.

It is worth questioning whether this approach is necessary. In many fields, emphasis

has been placed on solving problems with Monte Carlo techniques to solve problems that

were intractable only a short time ago. Given the nature of ever-increasing computing

power, the question is, why expend so much effort to save oneself the cost of 8 or 16

computations, rather than utilizing cheaper and lower dimensional models? Why not use

a “brute force” approach to lower dimensional models instead of an “intelligent design”

approach to very expensive models?

Twenty years ago, the field of computational fluid dynamics expressed hope that

the extremely expensive problems of that time would eventually be tractable, and cheap

enough for Monte Carlo approaches to exploring system responses. Indeed, problems

which kept supercomputers of 1980 busy for weeks can now be solved on desktop com-

puters in minutes, making a Monte Carlo approach tractable. However, computational

fluid dynamics is still grappling with extremely expensive problems, even with astronom-

ical increases in computing power, new software to parallelize to ever larger systems, and

specialty hardware. This is because, no matter how much computing power is available,

there will always be difficult and expensive problems. The challenge of constructing

accurate surrogate models for expensive computational models should not be avoided in

favor of the use of only low dimensional models; expensive models have great potential

and much to contribute to scientific understanding of complex systems.

The goal of constructing accurate response surfaces for expensive models is a dif-

ficult one. The question was posed earlier: is it impossible? Are we cursed? It seems

that the answer is, only if we curse ourselves. We cannot rely on blind faith as a legiti-

mate approach to building models or metamodels (see the discussion of the TV dinner

approach to metamodel construction in Section 5.3.2). However, we should also not

give up hope entirely and resign ourselves to the attitude that all modeling is in vain

and that creating accurate models, let alone surrogate models of accurate models, of
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physical systems is just “too hard” (this is the attitude adopted by the pessimistic paper

by Oreskes et al. [118]). Instead, one must utilize the groundwork that has been laid

in many scientific and engineering fields, including statistics; one must stand on the

shoulders of giants. It is only then that one may see a brighter future for modeling.



CHAPTER 6

DATA COLLABORATION METHOD

FOR VALIDATION

Essentially, all models are wrong, but some are useful.

George Box

The falseness of a judgement is for us not necessarily an objection to a judgement.

Friedrich Nietzsche

6.1 The Analysis of Model Results

The last step in the validation procedure is the analysis of simulation model results.

Several validation approaches discussed in Section 4.3 provide approaches for analyzing

simulation model results; the methodology selected here is the Data Collaboration (DC)

methodology [144,145,178–182]. This method provides a quantitative assessment of the

simulation model, along with additional information, such as insight into the weaknesses

of the model and sensitivity of simulation agreement with experimental data to the

reported experimental uncertainty.

6.1.1 Important Characteristics of Analysis Methods

In Chapter 4, an overview of several validation approaches was given, in particular

the approach of Coleman et al. [74, 81, 137]. This approach was particularly attractive

because of its consideration of both experimental and numerical uncertainties in the

validation process. They first define the difference between the data D and the simulation

S,
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E = D − S. (6.1)

They then define uncertainty in the comparison error UE , which combines simulation

and data uncertainties:

U2
E = U2

D + U2
S . (6.2)

They then state that “if the absolute value of E is less than its uncertainty UE , then

validation is achieved.” However, because US contains a quantity they call USMA, un-

certainty arising from simulation modeling assumptions, that cannot be quantified, they

define an alternative uncertainty metric consisting of all quantities that are quantifiable:

U2
V = U2

E − U2
SMA (6.3)

and validation is achieved when the value of E is less than this alternative uncertainty

UV ,

|E| < UV . (6.4)

This is referred to as a validation at the level of UV .

Several criticisms of this model have been put forth, by both Roache [74,80,81,83]

and Oberkampf [80, 81]. The most interesting and useful criticisms are twofold. First,

using the proposed validation method, validation becomes increasingly difficult as the

uncertainty UV shrinks; Roache proposes including a tolerance quantity to get around

this fact,

|E| < UV + TOLV . (6.5)
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However, the problem can also be posed in reverse: he states that it is a “paradox” that

increasing uncertainty in the experiments or the simulation can make validation easier,

with the resolution of the paradox being that the level of validation changes. The second

criticism is that the approach makes implicit assumptions about the distribution of the

experimental uncertainty. These criticisms can be dissected and analyzed to obtain

useful characteristics for any system that is to be used for step 5 of the NISS validation

framework, analysis of validation results.

The first criticism has two parts: the problem of validation difficulty with shrinking

UV , and the problem of validation ease with growing UV . A cursory critique of this

criticism was presented in Section 4.1.2, but the point is repeated and the critique

expanded due to the importance of the point. This criticism, and Roache’s proposal,

are not validation, but rather are something different. Using a tolerance, or trying

to artificially increase the uncertainty bounds to make validation easier, throws away

information about reality. The extra quantity TOLV cannot be lumped into to the

simulation uncertainty term, and must be treated as an addition to the experimental

uncertainty. This is equivalent to saying, “This thermocouple takes accurate, unbiased

readings that are within ±0.01 K of the actual temperature, but I will treat it as a

less accurate instrument whose readings are actually within ±0.15 K so that I can

validate my simulation results.” This approach is useful in some cases, such as when the

reported experimental uncertainty is clearly incorrect; however, in general this activity is

different from validation, in that it is not finding when the simulation matches empirical

observations of reality, but when the simulation is within an arbitrary range of said

empirical observations. It is the arbitrariness of the tolerance that distinguishes this

activity from validation.

The problem with validation being easier to achieve with growing UV , however,

does identify a problematic feature of Coleman’s approach, not addressed by either

Roache or Oberkampf: the uncertainty measure UV includes terms for both simulation

uncertainty and experimental uncertainty, meaning the final validation verdict is not only
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dependent on the experiment, but on the simulation as well. This obfuscates the central

role of experimental measurements and their associated uncertainties in the process of

validation. The validation process is intended to get to the truth, and it is only the

experimental measurements and uncertainties that give information about the truth.

For this reason, it is only the experimental data and associated uncertainties that are

relevant to determining the validity of a computational model.

The second criticism mentioned was that the approach makes implicit assumptions

about the distribution of experimental uncertainty. This is in fact a very revealing point:

Roache brings up the case of uncertainty distributions, and how conclusions made in the

paper about two models would change if the errors were treated as normally distributed

rather than uniformly distributed. In fact, treating the uncertainties as uniformly dis-

tributed is the least presumptive approach. Various assumptions about experimental

uncertainties are commonly made, for example that they are normally distributed, that

the mean is zero, and that they are distributed with a constant variance (implying the

uncertainty bounds are centered on the data and symmetric). However, these are as-

sumptions - and assuming normally distributed uncertainties is more presumptive than

treating uncertainties as uniformly distributed.

These criticisms reveal important characteristics that methods used to analyze val-

idation results should have:

• Experimental data and their associated uncertainties are the only source informa-

tion about reality and must not be contaminated.

• A simulation’s numerical uncertainty should not appear in the validation metric

being used to compare simulation results to experimental data.

• Assuming a uniform distribution for uncertainty is the safest and least presumptive

treatment of uncertainty.

It will be shown that the methodology selected for analyzing validation results, the DC

approach, satisfies these criteria.
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6.2 Data Collaboration Method

Because the concepts and the procedure of the DC method are closely related, the

nomenclature will be presented with the procedure description.

6.2.1 Procedure

The DC method begins with a set of experiments E. For a given experiment e ∈ E,

a quantity is measured; this quantity is called an observable and is denoted Ye. If

there are multiple observables, the set of observables is denoted Y e. The set of actual

values that the observables Y e take on is denoted by ye: this is the true value of the

observable that experiment attempts to obtain. For multiple observables, indexed by j,

the true value of the jth observable is denoted yje. In reality, ye cannot be measured

exactly; instrumental measurements are imperfect and always have a range of uncertainty

associated with them. The set of all values measured in the experiment compose the

quantity de. Each experimental measurement also has uncertainty associated with it.

The uncertainty may not be symmetric (as mentioned in Section 6.1.1), and may not

have a known distribution. Thus a given experimental measurement dje for a given

observable j and experiment e has a lower and upper bound on its uncertainty, denoted

by lje and uje, respectively. These are related to the quantities yje and dje as follows:

dje + lje ≤ yje ≤ dje + uje j = 1 . . . Nobservables (6.6)

or,

lje ≤ yje − dje ≤ uje j = 1 . . . Nobservables. (6.7)

For the reasons mentioned in Section 6.1.1, the probability distribution for these uncer-

tainty quantities is treated as uniform. Note that because uncertainty is never composed

of exact and hard bounds (extremely high deviations from the true value are improb-
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able but still possible), a decision must be made about where to set lje and uje. This

may be a standard quantity, such as 1σ or 2σ, a 95% confidence level, or an estimated

uncertainty multiplied by a safety factor (these are only some illustrative examples).

The DC approach extends beyond data and incorporates simulation model predic-

tions of the observable yje, in addition to the experimentally measured values of yje.

The approach is rooted in the concept of a data set unit, which consists of the exper-

imental data set (the experimental data of measurements of the observable dje and its

associated lower and upper bounds lje and uje), and an associated model prediction of

the observable yje, which will be denoted yMje . These four values form a data set unit,

Uje, defined by:

Uje =
¶
dje, lje, uje, y

M
je

©
(6.8)

or, to compose an entire data set unit for all observables for an experiment,

Ue =
¶
de, le, ue, y

M
e

©
. (6.9)

Also considered, but not explicitly included, are the model’s input parameters x that

are used by the model, yMje (x), and their associated range of values.

It was stated in Section 4.1.2 that the only appropriate validation metric for a

simulation model was the truth criteria. To make this more concrete, the truth criteria

is equation (6.7). This is the only information known about truth. For this reason, the

value of the true observable ye is replaced with the simulation model’s prediction of the

observable yMe , so that equation (6.7) becomes the validation or consistency criteria:

lje ≤ yMje (x)− dje ≤ uje j = 1 . . . Nobservables. (6.10)
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The data dje, associated uncertainties lje and uje, and model prediction yMje are treated

using an integrated approach, which is the reason for using the data set unit. The reason

for this integrated approach comes from the recognition of the fact that the measured

values of data de provide the best measure of the truth ye that we can attain, and

the focus is to determine when our model matches these data. The ultimate outcome

of the DC approach is a quantitative measure of how well the model can reproduce

the experimental data. This measure is called the consistency (defined below, equation

(6.13)).

A model typically consists of a set of coupled differential equations; in this case, the

model is the coupled DQMOM-LES code Arches (Section 2.7). Any model will require

a set of input parameters x to be specified for simulating a particular system. Each

parameter has a range of a priori uncertainty associated with it, which comprises the

initial parameter set, denoted H. It is of interest to find the subset of values of x ∈ H

that will satisfy the consistency criteria (6.10). This set of parameter values is called

the feasible set and is denoted F .

The DC approach treats the uncertainty values using a set-based representation of

uncertainty (Section , which assumes no prior information about the probability of dif-

ferent uncertainties. Other representations of uncertainty, such as Bayesian probability-

based representations, can be used to incorporate prior uncertainty probability distribu-

tions. To begin, an a priori range of uncertainty in each parameter must be determined.

This comprises the initial parameter set, which is a hypercube in parameter space. This

initial parameter set, or hypercube, can be written:

H = {x : αi ≤ xi ≤ βi, i = 1 . . . n} (6.11)

where n is the number of parameters. When applying the DC approach to complex and

expensive models such as Arches, the total number of parameters becomes very large.

Because the number of function evaluations grows geometrically with the number of
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parameters being investigated, the H and x actually used in the DC analysis are in fact

subsets of the full H and x. For simplicity, H will refer to the dimensionally-reduced

hypercube actually used in the analysis.

The feasible set consists of parameter values that satisfy criteria (6.10). Thus the

feasible set consists of the intersection of the initial parameter set with the set of pa-

rameters x that will satisfy the criteria (6.10) for each observable:

F =
⋂
j

¶
x ∈ H : lje ≤ yMje (x)− dje ≤ uje

©
j = 1 . . . Nobservables. (6.12)

There are two potential outcomes of searching for the feasible set F . The first outcome is

that F is an empty set. This implies that no possible input values will make the model

fall between the experimental uncertainty bounds lje, uje, and therefore the model is

said to be inconsistent with the experimental data provided. The second outcome is

that a feasible set is returned, and the model is validated for the given model operating

conditions, and for the feasible input parameter values x ∈ F .

In order to quantify the ability of the model to fit the data, a consistency measure

CD is also defined as the maximum amount by which the experimental uncertainty

bounds may be shrunk, subject to the constraints given above:

CD = max γ ;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−xj ≤ αi

xj ≤ βj

−yMe (x) + de ≤ le (1− γ)

yMe (x)− de ≤ ue (1− γ) .

(6.13)

The term “consistency” may be used to refer to CD, or it may mean γ if it refers to the

consistency for a single model prediction and its comparison to experimental data.

A final word should be said about the “collaboration” aspect of the Data collabora-

tion approach. Section 4.2.1 discussed the ambiguous nature of uncertainty. Some un-

certainties can be attributed to either a model or an experiment, but many uncertainties
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can be flexibly categorized as model input uncertainties in one form, and experimental

uncertainties in another form. It is for this reason that collaboration between experi-

mentalists and modelers is important, both for the specific activity of analysis of uncer-

tainty, and more generally for the entire process of model validation. The constraints

imposed on the initial parameter set H come from a variety of sources (experimental

observations; experimental verification, or calibration, measurements; numerical studies;

existing model validation studies; and sensitivity analyses, to name several). Each of

these sources may be complemented, and the usefulness extended, by the insight of both

experimentalists and modelers.

6.2.2 Fitting into the NISS Framework

It is also useful to discuss how the DC approach fits into the entire validation frame-

work introduced by Bayarri [146] and applied in 4.4. As mentioned in Section 4.3.4, many

validation methodologies in the literature provide only pieces of the process. The DC

approach is no exception, and most details related to the entire model validation process,

aside from the actual DC procedure, are omitted from explanations or presentations of

the model. However, it fits in well to Step 5 of the NISS framework, as it provides a

sophisticated method for comparing experimental data to simulation results. It is also

able to utilize information and results from prior steps in the framework.

The first step of the NISS framework is to generate an input/uncertainty map,

Table 4.1. The starting point is a large list of input variables, only some of which are

important; the variables are then ranked, and the list is reduced to the input parameters

thought to be most important. This reduced input list is x. Each input parameter

xi is then assigned lower and upper uncertainty bounds, αi and βi. This information

composes the hypercube H.

It is easy to pick an initial parameter set that is too small, or simply wrong. There

may be dimensions of the hypercube that are ignored in the analysis, but that are

dominant in the real-world application. For this reason, it is critical to establish sound

reasoning for the selection of the initial parameter set. This is the primary role of the
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gasification studies discussed in Section 4.4.1, and is performed as part of step 1 of the

framework (construction of the input/uncertainty map). Given the review of relevant

gasification literature, substantial confidence can be invested in the well-informed initial

parameter set H constructed for the validation of the Arches gasification model.

The second step is to determine the evaluation criteria. This determines what ex-

perimental data de are used for the validation procedure. Depending on the experiment

type (traditional experiment or validation experiment), this will make the determina-

tion of le and ue more or less difficult. The third step is the gathering of data and

determination of the experimental uncertainty bounds le and ue.

The fourth step is construction of a surrogate model for the expensive simulation.

This is an important and critical step for the DC method, because it uses a constrained

optimization technique to determine the optimal parameter values given the constraints

imposed by the specified input parameter and observable uncertainties.

6.3 An Instrumentalist Approach to Validation

One theme that has been reiterated several times is the centrality of experimental

data in the validation process. This is rooted in the adopted validation philosophy of

instrumentalism (Section 4.1.3). An emphasis on experimental data was one of the of the

attractive features of the validation procedure proposed by Coleman et al. [74, 81, 137].

As discussed in Sections 4.2.1 and 6.1.1, experimental uncertainty is the baseline for val-

idation. Only experimental observations and associated uncertainties reveal information

about empirical truth (numerical uncertainty plays a different role; see Section 3.3.5),

and so only the experimental uncertainty should be used when actually comparing the

simulation results to experimental data, a conclusion drawn in Section 6.1.1.

The philosophy of instrumentalism is reflected in the Data Collaboration approach.

First, a statement about truth was made:

lje ≤ yje − dje ≤ uje. (6.14)
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Next, the model is held to a high standard: the model must be judged by the same

criteria by which truth is judged:

lje ≤ yMje (x)− dje ≤ uje. (6.15)

And the only set of input parameter values that are feasible are the input parameter

values that make the model match experimental observations about the truth:

F =
⋂
j

¶
x ∈ H : lje ≤ yMje (x)− dje ≤ uje

©
(6.16)

j = 1 . . . Nobservables.

This validation methodology can be seen more generally as an inductive approach to

model construction, in which the data determine the final model; postulated models

are proposed, and the data determine which models are consistent with the data and

which are inconsistent. While many scientists have raised issues with the process of

inductively constructing models, notably Popper [85, 87], the fact is that induction is

the only practical way forward in many cases. (Indeed, some extreme phenomenalists

such as Mach would argue that it is the only way forward.) The DC method can be seen

as an inductive approach, in that it starts from the data and draws conclusions about

the model form based on the data. Instrumentalism is a deeply inductive approach, and

truly the DC method fits the instrumentalist philosophy of validation well.

To repeat a quote from Section 4.1.3, which provides a general discussion of instru-

mentalism, Ernst Mach said the following in his 1882 lecture “The Economical Nature

of Physical Inquiry:”

In reality, the [model] always contains less than the fact itself, because it does not
reproduce the fact as a whole but only in that aspect of it which is important for us,
the rest being intentionally or from necessity omitted. (p. 193, Popular Scientific
Lectures, [86].)

The DC method is, in many ways, an embodiment of this statement, applied to model

validation. First, the “aspect...which is important for us” can be thought of in several



245

different ways. The model is an economical representation of reality; it is trying to

make a prediction relevant to the evaluation criteria selected in the second step of the

framework (Section 4.4.2). Validation, too, is kept economical by reducing the model’s

hypercube to only those variables which are postulated to be important for the evaluation

criteria.

Second, these simplifications or omissions are made both “intentionally” and “from

necessity.” The Arches simulation model uses large eddy simulation to resolve turbulent

scales, to use DQMOM to track the full, multivariate distribution of coal particles, and

overall it attempts to omit less and less physics from the problem. On the other hand,

the intention in the surrogate model construction procedure is to move in the opposite

direction: to omit as much of the physics as possible by concocting a surrogate model

that economically reproduces the behavior of the full-scale Arches model: that aspect

of the Arches model that is most important to us.

6.4 An Overview of the Data Collaboration

Approach

The DC approach described by Feeley [145] utilizes a systems analysis approach to

uncertainty propagation and model validation. The intention of the data collaboration

approach is to address not just the question of how well the model matches data, but

to answer the question of how the model might be improved; what conditions would be

useful for further experimentation; and the impact that an additional experiment may

have on the accuracy of a model prediction. This is done by using a systems analysis

approach, which can be used to approximate the range of the output set,

Lje = min
x∈F

yMje (x) (6.17)

and

Rje = max
x∈F

yMje (x) , (6.18)
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called the left and right bounds on yMje , which both provide a quantitative measure of

the effect of input uncertainty propagated through the system. This is of great interest

due to the fact that yMje can be compared directly to dj , the data measurement, and

its uncertainties lje and uje. If a map is constructed between the input uncertainty

bounds αi and βi for parameter xi and the output uncertainty bounds Lje and Rje for

the outputs yMje , this map can be used to answer some of the questions mentioned above.

However, due to the nature of this problem, it is extremely computationally intensive,

making surrogate models necessary. These were covered extensively in Chapter 5. This

provides a way forward with the solution mapping technique. The actual problem being

solved is not to find Lje and Rje, but rather to find an inner and outer bound for both,

such that Lje ≤ Lje ≤ Lje and Rje ≤ Rje ≤ Rje. This optimization problem can

then be expressed as a quadratic program, that is, optimization of a quadratic function

under quadratic constraints. The outer bounds can be found using convex relaxation,

a topic covered well by Borichev [183], while the inner bounds, which are more difficult

to find, can be computed using constrained optimization techniques such as branch

and bound [184]. These tie in neatly with several set-based approaches to uncertainty

mentioned in Section 4.2.2, particularly interval analysis (see [94] and [185] ).

Approaches to problems of these type are referred to as mathematical programming;

programming is a synonym for optimization. For example, linear programming solves

linear constrained problems, posed as maximizing some objective function cTx subject

to a set of constraints,

Ax ≤ b. (6.19)

Similarly, quadratic programming, the technique utilized by the Data Collaboration

toolbox to find 6.17 and 6.18, is computing a minimum or maximum of xTQx subject

to the inequality constraints,
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Ax ≤ b, (6.20)

or equality constraints,

Ex = f (6.21)

(or both). A special case of this (also utilized by the Data Collaboration toolbox) is

quadratically constrained quadratic programming (QCQP). This solves the minimization

or maximization problem for xTQx subject to quadratic constraints of the form

xTPx+ qTx+ r ≤ 0,

Ex = f . (6.22)

This subject is covered in Chapter 4 of Boyd [184], which provides an excellent expla-

nation and several good examples.

Several alternative approaches to programming problems exist, such as the genetic

algorithm, which attempts to mimic the process of evolution in searching for optimal

solutions by selecting populations of samples and operating on them in stages (or “gener-

ations”) [186]; simulated annealing, which draws its inspiration from the physical process

of annealing, with two parameters (local gradient, or “heat,” and global “temperature”)

dictating the rapidity and randomness of changes (as the global “temperature” parame-

ter decreases, the changes become increasingly local) [187]; and neural networks, already

covered in the context of metamodeling for expensive functions, which can also be ap-

plied to optimization.

The technique ultimately utilized by the DC method combines a QCQP method

for determining Lje and Rje with a technique for approximating the output of general

models fed to the DC algorithm with piecewise polynomials; this allows an extension of

the QCQP method to general, nonquadratic models. The initial hypercube H is thus
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broken up into several regions, each described by a quadratic model, and the efficient

QCQP methods are used on each region of the hypercube. This is handled within the

framework of a branch and bound algorithm.

The optimization approach is implemented in the Data Collaboration Matlab tool-

box. This toolbox applies the Data Collaboration approach using the optimization pro-

cedures and algorithms described in order to determine the consistency measure CD for

the data and model predictions fed to the toolbox. The toolbox is described in greater

detail by Feeley [145] and Russi [188].

One question that springs from this approach is, why pose the problem in this way?

Why require complex algorithms such as branch and bound, instead of using a Monte

Carlo approach? This can be posed as a question about the worst case scenarios of the

system, Lj and Rj . The intention of robust control theory is to provide better (but

more conservative) estimates of the worst case scenarios; Ghaoui and Calafiore put it

this way: “the worst case analysis seems to be somewhat conservative, but the reader

should be aware that the actual worst-case behavior cannot be accurately predicted,

in general, by taking random samples” [189]. Similarly, in the Matlab Robust Control

Toolbox User’s Guide, Balas et al. state: “Monte Carlo method are inherently hit or

miss. With Monte Carlo methods, you might need to take an impossibly large number of

samples before you hit upon or near a worst-case parameter combination” [190]. Given

simple enough models, however, and given the right assumptions, Monte Carlo methods

may be a viable alternative to determining the worst case behavior of the system (see

e.g., [191]).

6.5 Data Collaboration for Coal Gasification

Ultimately the application of the data collaboration validation methodology was for

the validation of simulations of pilot scale coal gasification using the Arches code, using

data gathered from a gasifier at Brigham Young University (BYU). This section frames

the more specific gasification validation problem, the statistical methods used to deal
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with the expense of the Arches coal gasification code, and the technique for dealing with

uncertainties in Arches inputs.

6.5.1 A Statement of the Validation Problem

The data collaboration approach is intended to complete the validation process by

providing a method for Step 5 in the NISS framework (Section 4.4). For the particular

problem of validating very expensive computer simulations, Step 5 has several pieces of

information to integrate. First, and of primary importance, is the experimental data

and associated uncertainties. This provides the validation measure. The second piece of

information is the evaluation criteria, which is very closely linked to the experimental

data and uncertainty. Third, simulations of the system of interest are run using the

expensive model; while the experiments that are run require extensive attention to de-

tails, the step of running simulations requires equal consideration, due to the expense

of the model. For the validation presented here, the expensive model is the Arches coal

gasification model, which is described in Section 2.7.

The Arches model is an expensive function, yMe (x), which is a function of a set

of input parameters x that can be grouped into three categories: model parameters,

scenario parameters, and numerical parameters (Section 4.2.1). In the previous chapter,

several techniques for constructing surrogate models were covered, and response surfaces

for the responses of interest of the Arches coal gasification model were generated. These

pieces are integrated into dataset units in step 5, using the procedure described above.

6.5.2 The Expensive Model and the Cheap Model

The model that is being validated is the Arches coal gasification model, described in

Section 2.7. This model is extremely expensive, incorporating many coupled multiphysics

models, and solves the governing equations of the flow with very high temporal and

spatial resolution. For this reason, it cannot be used in optimization routines or as

part of a Monte Carlo sampling study. In order to obtain the best of both worlds (the

accuracy of an expensive model like Arches with the cheapness of a polynomial or other



250

function that would typically be used in optimization routines), a response surface was

constructed. This procedure was described in Chapter 5.

6.5.3 The Input Uncertainties and the Output

Uncertainties

The input uncertainty map, which lists all active parameters considered and their

associated uncertainties, is presented in Table 4.1, along with a discussion of experi-

mental error in the BYU gasifier (Section 4.4.3). There were several input uncertainties

reported for mass flowrates, by Brown [153, 154] and Sowa [148], ranging from 7% to

20%, with the percentage increasing as a function of mass flowrate. These uncertainties

were based on repeated observations, from which a standard deviation was computed

and a confidence interval was constructed. From this information, a mass flowrate un-

certainty of 10% was considered reasonable based on the mass flowrate of the simulated

gasification case (22.1 kg
hr ) and the reported uncertainties. Unlike mass flowrates, input

uncertainties for mass mean particle diameter are not reported in any studies, so deter-

mination of mass mean particle size (37 μm) and an associated uncertainty range (10%)

was based on the coal type used and the range of mass mean particle sizes reported for

this type of coal [10, 14]. The same approach was taken for wall temperature (1200 K

with ±200 K, or 16%, uncertainty), based on information provided in [14, 149]. The

model input parameters had larger uncertainties, primarily by accounting for the range

of model parameter values reported in the literature (see [23,24] for reported E2 and A2

values, and [11] for Echar−CO2 values).

The uncertainties in the system response measurements (CO, CO2, and H2) were

also reported [149, 150]. Both sources gave the uncertainty in measurements of [CO],

[CO2], and [H2] of ±1.7%. No information on the uncertainty quantification procedure

was given, but presumably these were confidence intervals constructed from standard

deviations from repeat runs. After several discussions regarding this value of uncertainty,

it was concluded that the reported value was dubious, and that it was likely to be much

higher in reality. The uncertainty analysis by Sowa [148] cast doubt on whether ±1.7%
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could truly account for all of the uncertainty reported and analyzed by Sowa. Addi-

tionally, as mentioned in Section 4.4.3, the reporting of traditional experiments often

introduces substantial uncertainty simply through the reporting of values using plots

rather than quantitative values. As stated in Section 4.1.2, it is in such cases, where

the reported experimental uncertainty is problematic or clearly incorrect, that the ex-

perimental uncertainties may be adjusted. However, to remain as close to validation

as possible, the approach of Roache [61] (making this adjustment of experimental un-

certainty into a nonphysical, i.e., arbitrary, tolerance) shoud be avoided. Adjustments

should incorporate as much information as possible about the experiment, and should

be justifiable. The uncertainty was expanded to ±10% based on a roundtable discussion

with experimentalists regarding the particular dataset, conditions, and equipment being

used at the BYU gasifier.

6.6 Qualitative Validation Analysis

A qualitative analysis can be performed by comparing the experimental and com-

putational gasifier concentration profiles (Figures 6.1 through 6.4 for the screening study

runs, covered in Section 5.4.1, and Figures 6.5 through 6.8 for the factorial design runs,

covered in Section 5.4.2). In addition, Figures 6.9 through 6.14 show a surface plot of

the residuals from the comparison between the experimental gasifier data and the Arches

model predictions.

Using a qualitative analysis, it is easy to pick out particular cases that look like they

match well. However, due to the fact that parameters are being changed simultaneously,

it is not easy to determine a pattern in which runs result in good results, and which runs

result in mediocre results. Were the number of parameters being changed one or two,

the process of identifying a pattern would be trivial. However, the importance of using

statistical analysis to determine patterns in the effect of variables on the responses is

easily demonstrated.
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Fig. 6.1: Contour plots comparing experimental data de to simulation results yMe for
runs screen-1 (a) and screen-2 (b).
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Fig. 6.2: Contour plots comparing CO experimental data de to simulation results yMe
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Fig. 6.3: Contour plots comparing CO experimental data de to simulation results yMe
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Fig. 6.4: Contour plots comparing CO experimental data de to simulation results yMe
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Fig. 6.5: Contour plots comparing experimental data to simulation results for runs fact-9
(a) and fact-10 (b).
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Fig. 6.6: Contour plots comparing CO experimental data to simulation results for runs
fact-11 (a) and fact-12 (b).
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Fig. 6.7: Contour plots comparing CO experimental data to simulation results for runs
fact-13 (a) and fact-14 (b).
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Fig. 6.8: Contour plots comparing CO experimental data to simulation results for runs
fact-15 (a) and fact-16 (b).
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Fig. 6.9: Plot of residuals de − yMe (black circles) from comparison of Arches results to
data for the [CO] response for the screening study runs (Section 5.4.1). Gray surface
represents mean residual value.
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Fig. 6.10: Plot of residuals de − yMe (black circles) from comparison of Arches results to
data for the [CO2] response for the screening study runs (Section 5.4.1). Gray surface
represents mean residual value.
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Fig. 6.11: Plot of residuals de − yMe (black circles) from comparison of Arches results
to data for the [H2] response for the screening study runs (Section 5.4.1). Gray surface
represents mean residual value.
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Fig. 6.12: Plot of residuals de − yMe (black circles) from comparison of Arches results to
the data for the [CO] response for the full factorial design (Section 5.4.2). Gray surface
represents mean residual value.
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Fig. 6.13: Plot of residuals de − yMe (black circles) from comparison of Arches results to
the data for the [CO2] response for the full factorial design (Section 5.4.2). Gray surface
represents mean residual value.
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Fig. 6.14: Plot of residuals de − yMe (black circles) from comparison of Arches results to
the data for the [H2] response for the full factorial design (Section 5.4.2). Gray surface
represents mean residual value.
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An analysis of the residual plots yields similar conclusions: while there are general

regions that can be identified as regions where the model prediction is particularly good

or particularly poor, there is no underlying pattern that can be identified due to the

number of variables. Even if the experimental uncertainty bounds were added to this

plot to illustrate the level of residual error versus the level of experimental error to show

how they compared, it would be difficult to draw conclusions about what effect the

parameter values had on these regions.

6.7 Data Collaboration Validation Analysis

The validation using the data collaboration method proceeded in several steps.

The data collaboration method started with an initial hypercube H containing the prior

bounds for each input parameter, defined in equation (6.11). It then proceeded to

reduce this hypercube to satisfy truth constraints (equation 6.7), resulting in a set of

feasible parameters F (equation 6.12). The validation process begins with an attempt

to validate the entire dataset, which is an attempt to find an F that will satisfy all

experimental observations. Based on the results of this validation, further validation

steps fragment the data into subsets, and validation is attempted on each of these subsets.

This procedure can reveal specific information about strengths and weaknesses of models,

based on how well particular subsets of data are matched, and whether they can be

validated.

As an example, it may be found that of the 90 possible responses, there is a single

feasible hypercube that leads to validation for 89 of the 90 points, but one point is an

extreme outlier, and consistency may be achieved by excluding that outlier (this was the

case for the GRI Mech application given by Feeley et al. [144]; upon further analysis,

the outlier data points were revised by the experimentalists who obtained it). Another

possibility is that consistency may be achieved for a particular spatial region of the

gasifier, or for a particular species. This may point, for example, to physical models

needing improvement.
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6.7.1 Validation for All Data

The first validation attempt was a validation using all data simultaneously. This

validation was unsuccessful; the data collaboration method returned the result that the

model was inconsistent with the data. This was the anticipated outcome of the validation

process. The next step was to fragment the data to attempt validation on subsets of the

data. The first subset attempted was the data grouped by species.

6.7.2 Validation for Data Grouped by Species

The next validation attempt was for each species separately; this consisted of three

validations, each with 30 data points. The validation resulted in inconsistency for all

three species. The experimental error was increased to a slightly larger value of 10% to

see if this would have an effect. When this was done, consistency was achieved for CO2.

The consistency measure CD computed was 0.01. H2 and CO were both inconsistent

with data. The lower and upper bounds for the feasible set for CO2, FCO2 , are presented

in Table 6.1 . One somewhat surprising result is that the feasible bounds on E2, denoted

αF
i and βF

i , are reduced from the prior bounds αi and βi more than they are reduced

for any other variable. This is likely an indication that the effect of uncertainty in E2

on the ability of the model to match data overwhelms the effect of uncertainty in other

parameters. Figures 6.15 and 6.16 plot the prior left and right bounds LH
j and RH

j ,

defined by

Table 6.1: The parameters in the feasible set resulting from the validation of the model’s
prediction of CO2, FCO2 , for the species-only comparison test.

CO2

αF
i βF

i

E2

î
J

kmol

ó
1.82× 108 2.3× 108

Twall [K] 1000 1390
dp [μm] 33.37 38.55

ṁcoal

î
kg
hr

ó
22.1 24.1
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Fig. 6.15: Plot of left and right bounds (Lj , Rj) of simulation response for prior pa-
rameter set H (gray line) and for feasible set F (black line) for CO2 system response.
Experimental data uncertainty range is demarcated with dotted lines.
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LH
je = min

x∈H
yMje (x) (6.23)

RH
je = max

x∈H
yMje (x) , (6.24)

in gray, and the feasible left and and right bounds Lje and Rje,

Lje = min
x∈F

yMje (x) (6.25)

Rje = max
x∈F

yMje (x) , (6.26)

in black. The experimental data uncertainty range is also plotted (dotted lines). These

plots illustrate the wide range of prior left and right bounds, compared with the very

narrow feasible left and right bounds. For the CO2 system response, a majority of this

feasibility space depends on E2.

6.7.3 Validation for Data Grouped Spatially

After determining that two of the species concentration profiles were inconsistent

even when analyzed separately, it was of interest to explore this inconsistency further.

The data were grouped by axial location, and each radial profile validated independently.

This revealed that CO was consistent at all axial locations except x = 36 cm, and H2

was inconsistent at all axial locations except x = 21 cm. Results from this consistency

analysis are presented in Tables 6.2 and 6.3 and Figures 6.17 and 6.18.

The location x = 36 cm was previously identified as bucking trends seen in other

spatial locations when box contour plots of residuals were presented for Zone I in Section

5.3.

6.7.4 Interpretation

The results do not lead to a clear, definitive interpretation. They suggest that the

prediction of CO and CO2 is adequate, while the prediction of H2 is poor except near

the inlet. The results also indicate that although all the surrogate model predictions of

CO could not be validated as a whole, the trend was that surrogate model predictions of
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Fig. 6.17: Plot of left and right bounds (Lj , Rj) of simulation response for prior param-
eter set H (gray line) and for feasible set F (black line) for CO system response, with
validation being grouped by x location into radial profiles. Experimental data uncer-
tainty range is demarcated with dotted lines. Inconsistent radial profiles are indicated.
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tainty range is demarcated with dotted lines. Inconsistent radial profiles are indicated.
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CO were consistent throughout nearly the entire reactor, and predictions of CO2 were

consistent throughout the entire reactor.

Another interesting trend that appeared for both CO and CO2 was that E2 varied

the most widely from location to location, more so than other parameters. This indicates

an important distinction between the statistical analysis of the factorial design results

(Section 5.4.2), which indicated strong main effects from Twall, and the validation proce-

dure, which indicated that Twall had nearly negligible effect on the ability of the model

to match data; that distinction is that the statistical analysis reveals only sensitivity

trends. Sensitivity trends indicate whether a variable has a strong effect on the system

response, and is purely a mathematical question, independent of data. In contrast, the

change in a variable’s range from H to F indicates its impact, not on the response, but

on how well the response matches the data. This is a critical difference, analogous to

the difference between verification and validation.

Although the Data Collaboration method provides a valuable way of approaching

validation, and provides a useful validation criteria, namely consistency, it yields mud-

dled conclusions about the valid parameter space, particularly when the data cannot be

validated as a whole and must be validated in fragments. For example, the Data Collab-

oration results show that the surrogate model predictions of CO and CO2 compare to the

data fairly well, but the H2 predictions do not, and valid parameter ranges were given

for each fragment of data. But it is unclear how to proceed with this information, given

that each range is disparate. Some valid parameter values (1.35×108 ≤ E2 ≤ 1.72×108

for CO at x = 21 cm) have no overlap with others (1.82 × 108 ≤ E2 ≤ 2.3 × 108 for

CO2 at all spatial locations). Further fragmentation, e.g., of axial profiles, would likely

further confound the interpretation of results. From these results, it is unclear how the

validation is to be judged, what the feasible hypercube looks like (or if there is a feasible

hypercube), or how to move forward and use these results to make predictions using the

model. Some illusory conclusions may be drawn from these results, but these illusions

of conclusions may fuel confusion.
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6.8 Monte Carlo Validation Analysis

An alternative to the Data Collaboration approach alluded to earlier is a Monte

Carlo sampling of the surrogate model to explore the consistency subspace. Due to the

low dimensionality of the surrogate model, a large enough number of samples is likely to

reveal outlying trends. Furthermore, due to the linear behavior of the surrogate model,

it is anticipated that Monte Carlo should be simple to perform.

A total of 9 million Monte Carlo samples were gathered: 100,000 samples for each of

the 90 response surfaces (one response surface for each combination of x, r, and species).

The computational time required for gathering all of these samples was approximately 2

hours in serial (using a single 2.8 GHz Intel Xeon dual-core processor) and approximately

20 minutes in parallel (using eight 2.8 GHz Intel Xeon dual-core processors). The Monte

Carlo algorithm is also embarassingly parallel. For each sample of the surrogate model,

the consistency metric γ, as defined in equation (6.13), was computed. This γ is analyzed

as a function of the input parameters, γ (x). It should be noted that input parameters,

as presented in this section, are scaled to be in the interval [0, 1], following the variable

normalization procedure described in Section 5.2.3.

Figure 6.19 shows plots of the consistency measure in each parameter subspace.

From these plots, one obvious trend appears, just as it appeared in the DC analysis:

the dominant influence of E2 on consistency. Figure 6.19a shows a clear trend of larger

inconsistencies with higher E2. The trend can also be observed in Figures 6.19c and

6.19b. Also of note is that consistency is achieved for all values. While this does

not contradict the Data Collaboration approach (which searched for a set of parameter

combinations that would achieve consistency for all locations simultaneously), it does

show that either (a) the surrogate model is able to make good predictions for a large

number of parameter combinations and locations, (b) the parameter ranges selected were

good choices, or (c) both.

More trends are also seen upon examining the consistency by species; only a subset

of plots of consistency for model predictions grouped by species as a function of input
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parameters x are presented in Figure 6.20. For example, a contradictory trend is seen

in the consistency of CO and CO2 with respect to parameter E2 (Figures 6.20a and

6.20b): the consistency for species CO increases as E2 decreases; for large E2, there are

more inconsistent (gray) points, and the consistent plots are less densely distributed. On

the other hand, at low E2, the consistent (black) points are more densely distributed,

with inconsistent points of larger magnitude at higher values of E2. The opposite trend

is observed for CO2, with inconsistencies of larger magnitude at lower values of E2.

Consistency of CO2 model predictions also exhibit a strong dependence on both Twall

and dp (Figure 6.20e), with the worst agreement between model predictions and data

occurring at high values of both. CO, in contrast, exhibits both good and bad agreement

with data regardless of the value of Twall (Figure 6.20d). Looking at H2, the most

densely-distributed consistent predictions occur at high values of E2, high values of

ṁcoal, and low values of Twall.

While conclusions drawn from these scatter plots do not in themselves lead to strong

or easy-to-implement conclusions, they are yet another step in the process of analyzing

model agreement with data, and plots such as those in Figure 6.20 reveal more about

the underlying trends of effects of input variables on the validity of model predictions

than the Data Collaboration toolbox approach.

In order to further explore the consistency measure and visualize it in a more easily

interpretable form, plots of the consistency probability, defined as:

Pr {γ (x) > 0|x = θ} , (6.27)

were computed. Plots of this probability function are easier to interpret than the scatter

plot. Figure 6.21 is an analogue to Figure 6.19, and shows the probability of consistency

or inconsistency as a function of the input parameters. While the patterns of effect

of the input variable value on consistency are visually easier to understand, the plots

demonstrate a similar conclusion to Figure 6.19: the consistency measure is roughly
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(a) Consistency probability as a function of
input parameter E2.
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(b) Consistency probability as a function of
input parameter Twall.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

d
p

C
on

si
st

en
cy

 P
ro

ba
bi

lit
y

(c) Consistency probability as a function of
input parameter dp.
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(d) Consistency probability as a function of
input parameter ṁcoal.

Fig. 6.21: Probability function for probability of consistency as a function of inputs;
consistency measure is for all responses.
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50% for each parameter. However, unlike the scatter plots, it is easier to explore con-

ditional probabilities. These can reveal trends that may be lost by showing all data

simultaneously.

Furthermore, it is also useful to visualize probability functions for particular species

or particular spatial locations. Visualization of the consistency probability for radial

profiles of individual species reveals very interesting results. CO shows a marked increase

in its consistency probability with axial distance from the injector (Figure 6.22), while

CO2 shows a sharp decrease in agreement with data near the gasifier exit (Figure 6.23).

It is interesting to note that Figure 6.23 shows feasible values of Twall that match those

found by the Data Collaboration toolbox (Table 6.1). Investigating these probabilities

further leads to visualization of the probability function in two dimensions, as shown in

Figures 6.24, 6.25, and 6.26. This analysis results in a large amount of data, with 90

four-dimensional probability functions, and these data lend themselves to being viewed

from many different perspectives. Depending on which perspective is taken, the code

may appear validated, or invalidated, or the validation verdict may be inconclusive. If

the intention is to find the region of parameter space resulting in the best probability of

certainty for a particular response or set of responses, this is possible, but if the intention

is to find the region of parameter space resulting in the best possible certainty for the

entire set of responses, this proves an unclear goal with an unclear answer, becoming less

clear as the number of responses increases. Looking at the probability of consistency for

the entire set of responses, the probability of consistency is around 50% (Figure 6.21).

Were this number 10%, or 90%, making a qualitative judgement about how well the

code performs overall would be easy. However, no such statement can be made from

Figure 6.21.

6.9 Prediction

The figures included here are intended to show that there are many patterns, peaks,

troughs, and regions of consistency or inconsistency among the four dimensions and 90
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(a) Probability function at x = 21 cm.
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(b) Probability function at x = 36 cm.
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(c) Probability function at x = 51 cm.
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(d) Probability function at x = 67 cm.
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(e) Probability function at x = 81 cm.
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(f) Probability function at x = 112 cm.

Fig. 6.22: Probability function for consistency and inconsistency with respect to Twall

for species CO at each radial position.
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(a) Probability function at x = 21 cm.
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(b) Probability function at x = 36 cm.
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(c) Probability function at x = 51 cm.
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(d) Probability function at x = 67 cm.
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(e) Probability function at x = 81 cm.
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(f) Probability function at x = 112 cm.

Fig. 6.23: Probability function for consistency and inconsistency with respect to Twall

for species CO2 at each radial position.
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(e) x = 81 cm.
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(f) x = 112 cm.

Fig. 6.24: Two-dimensional probability function for consistency for species CO at all
spatial locations in the E2 × dp parameter subspace.
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(e) x = 81 cm.
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(f) x = 112 cm.

Fig. 6.25: Two-dimensional probability function for consistency for species CO2 at all
spatial locations in the E2 × Twall parameter subspace.
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(e) x = 81 cm.
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(f) x = 112 cm.

Fig. 6.26: Two-dimensional probability function for consistency for species H2 at all
spatial locations in the E2 × ṁcoal parameter subspace.
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data points. The end goal is to use all of this information to construct a prediction

interval with some estimate of the error in that prediction: that is, a prediction with an

associated prediction uncertainty. The Data Collaboration method makes predictions by

evaluating the surrogate model using parameters from the feasible set, and determining

the bounds on the simulation responses from the feasible set. Results from this are

shown for CO2 in Figures 6.15 and 6.16, and for CO and H2 in Figures 6.17 and 6.18.

The Data Collaboration approach presumes that because the parameters are in the

feasible set, that predictions made using parameter values within the feasible set are

“valid” predictions, in the sense that they can be trusted. However, making predictions

with the Data Collaboration method does not provide a level of belief or confidence in

the predictions. This is in line with the general philosophy of the Data Collaboration

method, which is to use a set-based approach, rather than a probabilistic approach.

A probabilistic approach, in contrast, such as the approach exhibited with the Monte

Carlo method of evaluating consistency between the surrogate model and the experimen-

tal data, provides a system within which a prediction interval may be constructed. This

provides a way forward that resolves some of the difficulties mentioned in the close of

Section 6.8: the information about the consistency probability can be used in conjunc-

tion with the surrogate models at each spatial location to construct prediction intervals

for given values of parameters.

This also provides a way to reconcile both the Data Collaboration approach and

the Monte Carlo approach: the Data Collaboration method is valuable for extracting

a region of consistent parameter hyperspace that lead to consistency (this can also be

extracted from the Monte Carlo results). However, in the case of inconsistent Data

Collaboration results, the consistent parameter hyperspaces do not overlap; in this case,

drawing conclusions from the Data Collaboration results is difficult, and making pre-

dictions is not possible (as covered above). In this case, the Monte Carlo validation

analysis can be used as illustrated above to find a region of parameter space in which

the simulation tool will be used to make a prediction, by exploring only responses of
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interest. This set of parameter combinations is then used to compute the probability of

consistency for each response; these probabilities are then used to construct a prediction

interval.

In the following sections, the use of this approach is illustrated. First, concepts

underlying construction of prediction intervals are covered. These concepts are then

applied to the results from the Monte Carlo surrogate model evaluation to compute

parameter combinations of interest, and use the corresponding probability of consistency

to construct a prediction interval, with associated prediction uncertainty bounds.

6.9.1 Prediction Interval Construction

Following (loosely) the nomenclature of Young and Smith [192], let a denote a set

of observations with observed values of the random variable A, A1, . . . , An, for which

the goal is to predict the value of a random variable Z that will follow next in the set of

observations. The density of the random variables in a is given by f (a|θ), where θ is a

parameter or parameter vector that specifies the particular form of f . In this case, the

distribution of Z is given by g (z|θ
), where θ
 is an unknown parameter; it cannot be

assumed that θ
 = θ. A distribution or statistic that is a function of A1, . . . , An and Z

that is independent of θ, called a pivotal, would provide a way of defining a prediction

set for Z.

Let T = T (A1, . . . , An, Z) be pivotal, independent of θ. Then if Pr {T ∈ Rα} =

1 − α, where Rα is a set, then the set S = {Z : T (A1, . . . , An, Z) ∈ Rα} defines a

prediction set for Z, with an associated probability of 1 − α that Z will fall in S, that

is independent of θ and θ
. Now let a confidence interval for T be constructed as,

Pr {T ≤ t} ≥ G (t|θ) (6.28)

Pr {T ≥ −t} ≥ G (t|θ) (6.29)
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and let an approximation to G (t|θ), which is a pivotal estimate, be denoted ‹G (t) ≈
G (t|θ). Also let a specific t be denoted, tα, such that ‹G (tα) = 1 − α. Then equation

(6.29) becomes:

Pr {−tα ≤ T ≤ tα} ≥ 1− α. (6.30)

The choice of statistic T is highly dependent on the distribution type, and is generally

difficult to find [193]. For a normal distribution, a pivotal quantity can be found using

Cochran’s theorem [194], and is:

T =

…
n

n+ 1

Ä
Z −A

ä
(6.31)

where

A =
1

n

n∑
i=1

Ai. (6.32)

This results in:

Pr

{
−tα ≤

 
n+ 1

n

Ä
Z −A

ä
≤ tα

}
= 1− α (6.33)

Pr

{
A−

 
n+ 1

n
tα ≤ Z ≤ A+

 
n+ 1

n
tα

}
= 1− α. (6.34)

The value of tα can be determined from the normal distribution; and is:

tα = zασ (6.35)

where σ is the variance, and zα is the
(
1− α

2

)th quantile of the standard normal dis-

tribution. Because the variance is rarely known exactly, particularly for small sample

sizes, it is approximated withs, the sample standard deviation,
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s =

Ã
1

n− 1

n∑
i=1

Ä
Ai −A

ä2
(6.36)

which makes equation (6.34):

Pr

{
A−

 
n+ 1

n
zαs ≤ Z ≤ A+

 
n+ 1

n
zαs

}
< 1− α (6.37)

or,

Pr

{
A−

 
n+ 1

n
zαs ≤ Z ≤ A+

 
n+ 1

n
zαs

}
≈ 1− α. (6.38)

6.9.2 Prediction Intervals for Model Validation

When making predictions using a validation tool, the true quantity of interest is the

validation outcome: valid, or invalid? In other words, consistent, or inconsistent? For

this reason, the prediction interval, which is a bounds on a future prediction Z based

on previous observations Ai, should be a prediction about consistency. In this section,

the quantity Z is the probability of a valid model prediction, Pr {γ (x) > 0}. This can

be constructed based on prior information about whether model predictions are valid.

In order to construct a prediction interval for γ for the Arches gasification simula-

tion tool, it is necessary to obtain a variance s. Because of the fact that simulations are

“deterministic,” in the sense that repeating simulations with the same input variables

(and on the same computational system) results in identical simulation responses, there

is no variance in simulation predictions, so there is no deviation of the probability of con-

sistency Pr {γ (x) > 0} from the mean probability of consistency Pr {γ (x) > 0} due to

the simulation. For this reason, the variance must come from experimental observations.

But more is needed than simply more experimental observations: multiple experimental

observations only contribute to a single lower and upper bounds le and ue corresponding



288

to a single experiment de. What is needed is multiple experiments, each yielding a new

de and new le and ue.

Using this, a consistency measure γ for a given model prediction can be defined. It

is a function of the experimental observation de, as well as the lower and upper bounds

le and ue, and the simulation input parameters:

γ = γ (de, le, ue,x) (6.39)

so that the quantity for which a prediction interval is being constructed can be expressed

as:

Pr {γ (de, le, ue,x) > 0} (6.40)

or, more tersely,

Pr {γ (de,x) > 0} . (6.41)

The probability plots presented in Section 6.8 are plots of Pr {γ (de,x|xi = “xi) > 0}, that

is, the probability of consistency conditioned on particular values “xi of the parameter(s)

xi.

The quantity A in equation (6.38) can be expressed as:

A = Pr (γ > 0) =
1

n

n∑
e=1

[Pr (γ (de,x) > 0)] (6.42)

and the quantity s can be expressed as:

s =
1

n− 1

n∑
e=1

î
Pr (γ (de,x) > 0)− Pr (γ > 0)

ó2
. (6.43)
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Using this notation, a prediction interval, with a confidence level of 1 − α, can be

constructed for the probability of a valid prediction:{
Pr (γ (de,x) > 0)−

 
n+ 1

n
zαs ≤ Pr (γ (de,x) > 0) ≤ Pr (γ (de,x) > 0) +

 
n+ 1

n
zαs

}
.

(6.44)

The prediction interval for Pr (γ (de,x) > 0) can be constructed for γ conditional on all

parameters xi taking on particular values “xi, γ (de,x|x1 = x̂1, x2 = x̂2, . . . , xN = ”xN );

it can be constructed for γ conditional on particular values of a single parameter,

γ (de,x|x1 = x̂1); it can be constructed for γ conditional on ranges of values of pa-

rameters, γ
(
de,x|”x−i ≤ xi ≤”x+i )

; etc. This is done by computing the probabilities of

these γ values being greater than 0, using the Monte Carlo analysis described in Sec-

tion 6.8 above, for each experiment e; these are then used to construct the probability

prediction interval 6.44.

The experiments run in order to obtain a predictive interval should all cover the

physical regime of interest for the computational model (e.g., gasification, if developing a

gasification simulation tool; or combustion and gasification, if developing a combustion

and gasification simulation tool). The scenario parameters for the experiment being

explored as active parameters in the validation (in this case, Twall, dp, and ṁcoal) should

have an uncertainty range that either overlaps with, or ideally, is identical to, those of the

prior experiments being used for validation. If only a subset of these parameters is held

constant, it is still possible to construct a prediction interval, but only for γ conditioned

on particular values of those scenario parameters in the same range. Aside from these

scenario parameters, other experimental parameters do not need to remain fixed (with

the caveat that changing the experimental scenario too much may change the dominant

physical mechanisms, such that variables with significant effects for one scenario may

not have significant effects for another). Once these alternative experiments are run, a

set of experimental data de is gathered, with which a lower and upper bound, le and ue,

are constructed. Validation simulations are then run for this new experimental regime,

and a response surface constructed, as described in Chapter 5. Exploring this response
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surface using a Monte Carlo analysis provides probabilities for γ (de,x) > 0. Once these

probabilities have been obtained, the prediction interval given above by equation (6.44)

can be constructed. This provides a level of confidence, given the model’s ability to

make valid predictions in two experiments, that it will make valid predictions in new

experiments in a particular region of parameter space.

6.9.3 Coal Gasification Prediction Interval

The procedure for constructing a prediction interval is demonstrated using gasifica-

tion simulations of a similar gasification experiment. An additional gasification experi-

ment was run by Soelberg, with data and operating conditions reported by Soelberg [149]

and Rasband [158]. This experiment was run at conditions similar to those of Brown;

Soelberg reported a solids flowrate of ṁcoal = 0.0066 kg
s , comparable to the 0.0062 kg

s

of the Brown experiment. Twall was also in an identical range. The mass mean par-

ticle size reported by Soelberg was 42μm, slightly outside of the region of parameter

space explored with the Brown validation simulations (see Table 4.1). This results in

an overlap in the parameter interval [0.3, 1.0]. Validation simulations of the Soelberg

system were run as part of prior validation studies exploring the parameters E2 and

ṁcoal. These simulation results were used in combination with the Brown gasification

simulation results to construct a prediction interval.

Soelberg reported radial profile data for r = 0 cm, r = 2 cm, r = 4 cm, r = 6

cm, and r = 8 cm, and radial profiles given at x = 20 cm, x = 34 cm, x = 51 cm,

x = 81 cm, and x = 112 cm, although a few data points are missing (e.g., no data

are given at x = 20 cm and r = 0 or 2 cm). The radial profiles at x = 20 cm and

x = 34 cm from the Soelberg gasifier simulations were used in combination with radial

profiles obtained from the Brown gasifier simulations at x = 21 cm and x = 36 cm. The

Soelberg gasification validation simulations were used to construct response surfaces

for each response; all response surfaces were first order, due to the fact that only four

Soelberg simulations were run (a 22 full factorial experimental design). The conditions

for each of the Soelberg validation simulations are reported in Table 6.4. (While the
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simulation code base changed between the time of the Soelberg and Brown simulations,

the process of constructing a prediction interval can still be demonstrated. Changes in

the code base may be accounted as bias in the response surface model.)

Using these response surfaces, a Monte Carlo analysis was performed, analogous to

the analysis shown above. This was used to find probabilities for γ (de,x) > 0 for the

Soelberg experiment and the corresponding simulations. A prediction interval could only

be constructed for the E2 and ṁcoal parameter space, due to the fact that multiple error

bars, and therefore multiple consistency measures γ, were only obtained as a function

of those parameters.

Figures 6.27 through 6.40 show the consistency probability function with respect

to the high temperature devolatilization reaction activation energy model parameter

E2 for both the Soelberg and Brown response surfaces. These were computed using

the Monte Carlo analysis procedure. These were then used to construct a prediction

interval probability, which is also shown in the figures. The prediction intervals are 95%

prediction intervals, which means that based on past observations of the probability

of consistency (that is, the probability of consistency observed in the Soelberg and

Brown gasification simulations), 95% of the predicted probabilities of consistency will

fall between the lower and upper prediction interval bounds (both bounds are plotted).

The behavior of the prediction interval varies, but strongly depends on the behavior of

the probability of consistency of both simulations. One trend that clearly emerges is

that a lower E2 leads consistently to a prediction of higher consistency.

Table 6.4: Experimental observations for Brown II and Brown III experiments.

Case E2

î
J

kmol

ó
ṁcoal

î
kg
h

ó
A 1.0× 108 21.4

B 3.0× 108 21.4

C 1.0× 108 26.1

D 3.0× 108 26.1
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Fig. 6.27: Plots of the consistency probability function as a function of normalized pa-
rameter E2 for the Brown surrogate model (left) and Soelberg surrogate model (center),
and the corresponding constructed 95% prediction interval (right) for species CO and
spatial locations r = 0 cm and x = 112 cm (the only x location on the centerline for
which CO measurements were available).
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(a) Consistency probability prediction interval for r = 4 cm and x = 21 cm.
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(b) Consistency probability prediction interval for r = 4 cm and x = 36 cm.

Fig. 6.28: Plots of the consistency probability function as a function of normalized pa-
rameter E2 for the Brown surrogate model (left) and Soelberg surrogate model (center),
and the corresponding constructed 95% prediction interval (right) for species CO and
spatial locations r = 4 cm and x = 21 and 36 cm.
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(a) Consistency probability prediction interval for r = 4 cm and x = 51 cm.
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(b) Consistency probability prediction interval for r = 4 cm and x = 112 cm.

Fig. 6.29: Plots of the consistency probability function as a function of normalized pa-
rameter E2 for the Brown surrogate model (left) and Soelberg surrogate model (center),
and the corresponding constructed 95% prediction interval (right) for species CO and
spatial locations r = 4 cm and x = 51 and 112 cm.
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(a) Consistency probability prediction interval for r = 8 cm and x = 21 cm.
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(b) Consistency probability prediction interval for r = 4 cm and x = 36 cm.

Fig. 6.30: Plots of the consistency probability function as a function of normalized pa-
rameter E2 for the Brown surrogate model (left) and Soelberg surrogate model (center),
and the corresponding constructed 95% prediction interval (right) for species CO and
spatial locations r = 8 cm and x = 21 and 36 cm.



295

0.3 0.5 1.0
0

0.2

0.4

0.6

0.8

E
2

C
on

si
st

en
cy

 P
ro

ba
bi

lit
y

Brown Simulation

0.3 0.5 1.0
0

0.02

0.04

0.06

0.08

0.1

E
2

Soelberg Simulation

0.3 0.5 1.0
0

0.2

0.4

0.6

0.8

E
2

Consistency Probability
Prediction Interval

(a) Consistency probability prediction interval for r = 8 cm and x = 51 cm.
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(b) Consistency probability prediction interval for r = 8 cm and x = 112 cm.

Fig. 6.31: Plots of the consistency probability function as a function of normalized pa-
rameter E2 for the Brown surrogate model (left) and Soelberg surrogate model (center),
and the corresponding constructed 95% prediction interval (right) for species CO and
spatial locations r = 8 cm and x = 51 and 112 cm.
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(a) Consistency probability prediction interval for r = 0 cm and x = 51 cm.
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(b) Consistency probability prediction interval for r = 0 cm and x = 112 cm.

Fig. 6.32: Plots of the consistency probability function as a function of parameter E2

for the Brown surrogate model (left) and Soelberg surrogate model (center), and the
corresponding constructed 95% prediction interval (right) for species CO2 and spatial
locations r = 0 cm and x = 51 and 112 cm for subplots (a) and (b). CO2 data were not
reported at x = 20 and 34 cm.
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(a) Consistency probability prediction interval for r = 4 cm and x = 51 cm.
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(b) Consistency probability prediction interval for r = 4 cm and x = 112 cm.

Fig. 6.33: Plots of the consistency probability function as a function of parameter E2

for the Brown surrogate model (left) and Soelberg surrogate model (center), and the
corresponding constructed 95% prediction interval (right) for species CO2 and spatial
locations r = 4 cm and x = 51 and 112 cm.
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(a) Consistency probability prediction interval for r = 8 cm and x = 21 cm.
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(b) Consistency probability prediction interval for r = 8 cm and x = 36 cm.

Fig. 6.34: Plots of the consistency probability function as a function of parameter E2

for the Brown surrogate model (left) and Soelberg surrogate model (center), and the
corresponding constructed 95% prediction interval (right) for species CO2 and spatial
locations r = 8 cm and x = 21 and 36 cm.
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(a) Consistency probability prediction interval for r = 8 cm and x = 51 cm.
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(b) Consistency probability prediction interval for r = 8 cm and x = 112 cm.

Fig. 6.35: Plots of the consistency probability function as a function of parameter E2

for the Brown surrogate model (left) and Soelberg surrogate model (center), and the
corresponding constructed 95% prediction interval (right) for species CO2 and spatial
locations r = 8 cm and x = 51 and 112 cm.
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(a) Consistency probability prediction interval for r = 0 cm and x = 51 cm.
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(b) Consistency probability prediction interval for r = 0 cm and x = 112 cm.

Fig. 6.36: Plots of the consistency probability function as a function of parameter E2

for the Brown surrogate model (left) and Soelberg surrogate model (center), and the
corresponding constructed 95% prediction interval (right) for species H2 and spatial
locations r = 0 cm and x = 51 and 112 cm.
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(a) Consistency probability prediction interval for r = 4 cm and x = 21 cm.
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(b) Consistency probability prediction interval for r = 4 cm and x = 36 cm.

Fig. 6.37: Plots of the consistency probability function as a function of parameter E2

for the Brown surrogate model (left) and Soelberg surrogate model (center), and the
corresponding constructed 95% prediction interval (right) for species H2 and spatial
locations r = 4 cm and x = 21 and 36 cm.
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(a) Consistency probability prediction interval for r = 4 cm and x = 51 cm.
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(b) Consistency probability prediction interval for r = 4 cm and x = 112 cm.

Fig. 6.38: Plots of the consistency probability function as a function of parameter E2

for the Brown surrogate model (left) and Soelberg surrogate model (center), and the
corresponding constructed 95% prediction interval (right) for species H2 and spatial
locations r = 4 cm and x = 51 and 112 cm.



303

0.3 0.5 1.0
0

0.2

0.4

0.6

0.8

E
2

C
on

si
st

en
cy

 P
ro

ba
bi

lit
y

Brown Simulation

0.3 0.5 1.0
0

0.05

0.1

0.15

0.2

0.25

E
2

Soelberg Simulation

0.3 0.5 1.0
0

0.1

0.2

0.3

0.4

0.5

E
2

Consistency Probability
Prediction Interval

(a) Consistency probability prediction interval for r = 8 cm and x = 21 cm.
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(b) Consistency probability prediction interval for r = 8 cm and x = 36 cm.

Fig. 6.39: Plots of the consistency probability function as a function of parameter E2

for the Brown surrogate model (left) and Soelberg surrogate model (center), and the
corresponding constructed 95% prediction interval (right) for species H2 and spatial
locations r = 8 cm and x = 21 and 36 cm.
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(a) Consistency probability prediction interval for r = 8 cm and x = 51 cm.
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(b) Consistency probability prediction interval for r = 8 cm and x = 112 cm.

Fig. 6.40: Plots of the consistency probability function as a function of parameter E2

for the Brown surrogate model (left) and Soelberg surrogate model (center), and the
corresponding constructed 95% prediction interval (right) for species H2 and spatial
locations r = 8 cm and x = 51 and 112 cm.
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It was mentioned that code development had occurred between the Soelberg and

Brown simulations being run. It is very encouraging to see a much greater probability

of consistency in the Brown simulations, run with the improved code, than in the Soel-

berg code. Additional simulations of the Soelberg gasifier using the improved Arches

coal gasification tool would likely yield much better prediction intervals, in addition

to improvements in the Soelberg response surfaces that would result from additional

simulations. However, the construction of a prediction interval presents a significant

step forward for determining valid regions of parameter space and determining, not just

a valid region of parameter space, but a level of confidence in predictions made from

regions of parameter space.

An additional concept of importance is the application of the construction of the

prediction interval to multiscale simulations. While the construction of the prediction

intervals presented above used simulations of very similar systems, it is also possible, with

some consideration, to construct this prediction interval in regions of parameter space

using simulations of systems at different scales. For example, a single particle drop

tube experiment could be investigated using the Arches simulation tool, and response

surfaces generated that are functions of model parameters shared by simulations at

different scales (for example, the devolatilization activation energy E2). This would

provide valuable insight into the validity of various submodels, such as devolatilization,

across scales. Considering previous studies have found devolatilization models to be of

chief importance in simulating gasification systems, this would be a valuable next step.

6.10 Conclusions

The chapter began with a presentation of concepts used in validation of computa-

tional models taken from the literature, specifically the Data Collaboration method of

Frenklach et al. [144,178–181]. It was shown how these concepts align precisely with the

instrumentalist philosophy of validation adopted throughout this work. These concepts

were then applied to validating the Arches coal gasification tool.
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First, the Data Collaboration toolbox was applied. The approach used by this

toolbox was described in Section 6.4 as quadratically constrained rational quadratic

programming (optimization), which uses piecemeal quadratic functions to represent un-

derlying functions and determine global minima and maxima of these functions. The

toolbox yielded the feasible set of parameter values, and a left and right bounds on the

model predictions using parameters from this feasible set. It was found that there was

no feasible set that satisfied the experimental uncertainty bounds for all data points

(30 spatial locations and three species). For this reason, the data were fragmented and

grouped by species. The Data Collaboration toolbox found a feasible set for all 30 mea-

surements of CO2, but no feasible set was found for all CO or H2 measurements. The

data were further fragmented into radial profiles, and a feasible set was found for all but

one CO radial profile, while a feasible set was only found for a single H2 radial profile. It

was determined that E2 had by far the largest effect on the model’s consistency with the

data, nearly to the point of exclusion of other variables. The effect of E2 in the gasifier

was very clearly dominant, both from the sensitivity and factorial studies performed in

Chapter 5, as well as the validation consistency analysis, meaning it is both significant

to the mathematical model, and significant to the accuracy of the mathematical model’s

predictions. Unfortunately, it was awkward to explore the consistencies computed by

the toolbox, and a clear path forward was lacking due to the lack of global (or even, in

the case of H2, local) consistency. Perhaps the safest conclusion to draw from the Data

Collaboration results is that the devolatilization model is of principal importance in the

gasifier simulation, and that future modeling efforts should focus on it.

To explore the response surfaces further, the response surfaces were sampled using a

Monte Carlo sampling method. While a dense Monte Carlo sampling would be impossi-

ble for many of the problems to which the Data Collaboration toolbox has been applied,

such as the GRI Mech model, which has hundreds of parameters, it is computationally

easy to do with a small number of parameters. The Brown coal gasification response

surfaces meet these criteria, as they had only four parameters. This analysis yielded very
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insightful results, and the visual representation of the valid and invalid parameter spaces

was very insightful. The Monte Carlo results were then used to construct consistency

probability functions, which were defined as:

Pr {γ (x) > 0} , (6.45)

where γ is defined in Section 6.2 as the amount by which the experimental uncertainty

bounds may be shrunk while still bounding the model prediction. The inequality γ >

0 provides the desired binary validation measure, discussed in Chapter 4. Thus this

probability function is a measure of the probability of a model making a valid prediction.

This probability was then used in concert with simulations run on a second, sim-

ilar gasifier, and these probability functions were combined to construct a prediction

interval. This was defined as a region in which 1− α% of predictions of the probability

of consistency would actually fall. These prediction intervals are presented in Figures

6.27 through 6.40. These figures provide an extremely valuable way, not just to make

predictions using a set of parameter values, but to establish a level of confidence in

said predictions. As mentioned above, it would be particularly interesting to rerun the

Soelberg gasification simulations in order to obtain better predictions and construct an

improved response surface, and search for regions of the E2 × ṁcoal parameter space

which have a prediction interval that predicts 100% validity.



CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

Little by little we subtract

Faith and fallacy from fact,

The illusory from the true

And starve upon the residue.

Samuel Hoffenstein

7.1 Digest of Concepts and Conclusions

The following sections provide a digest of the most important concepts and conclu-

sions from each of the preceding chapters.

7.1.1 Verification

One of the most important contributions made in the verification chapter was the

elucidation of the concept of numerical error and numerical uncertainty, and the role that

both play in the validation procedure. Often, verification and validation are treated as

activities connected in name only: verification is performed, results of a grid convergence

are reported, and no further mind is paid to it. This detracts significantly from the big

picture effort; verification is the first step in validation. In addition to verifying that

the theoretical order of convergence is achieved, it is also a validation litmus test: if the

numerical uncertainty is so large that it overshadows, or is even approximately equal

to, the experimental uncertainty, there is no point in proceeding with validation. The
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importance of verification as a validation litmus test was embodied in the concept of

level of verification.

This is not an issue addressed in the literature: the results of the verification pro-

cedure very much dominate the choice of experimental data used to validate the com-

putational model. Validation with an experimental data set implies a certain level of

validation; but this level of validation must be larger than the level of verification; oth-

erwise the validation results are meaningless, due to the fact that the model’s ability or

inability to match experimental data may be due entirely to numerical error.

7.1.2 Validation

Of all of the conclusions of Chapter 4, the chiefest is the concept of simulation as

an extension of theory. While it is tempting to treat simulation results as surrogate

experimental data and analyze them as such, it is dangerous to do so. Simulations

are purely extensions of theory, capable of exploring in great detail the implications of

the hypotheses and assumptions bundled into mathematical models; as such, they are

extremely valuable tools. But they can never touch reality, and must always be treated

using the approach of Box and Draper: “essentially, all models are wrong, but some are

useful” [75]. The purpose of validation is, essentially, to determine when models are

useful.

Many validation approaches exist in the literature. Some of these approaches were

summarized in Section 4.3. Several conclusions emerge from this review of validation

approaches, with the most evident being experimental considerations. There is a signifi-

cant gap between the goals of experimentalists and the goals of modelers, as discussed in

the section covering validation experiments and traditional experiments (Section 4.4.2).

If the field of simulation science is to advance forward in any significant way, these differ-

ences must be reconciled. There are several ways to do this, some of which tie into other

conclusions from the validation literature review. First, the use of the internet to share

and discuss detailed experimental results in order to bypass length and content limi-

tations of scientific journals has great potential, and has been discussed for well over a
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decade [107], but there is a strange deficiency of such databases, and motivation seems to

be missing. Existence of such databases could transform many traditional experiments

into validation experiments, without a significant change in the goals of the experimen-

talist gathering the data. Furthermore, discussion of the experiments could lead to much

more accurate modeling of boundary conditions and other scenario parameters, which

are often neglected in scientific journal articles for the sake of brevity.

The impetus to change some of these characteristics of the scientific community is

unlikely to come from the community itself. Paul Davis, in a quote already presented

in Section 4.4.2 but well worth repeating, said that validation experiments are “very

important and [have] long been inadequately funded by any measure. By explicitly bud-

geting for ‘serious’ VV&A, the Department of Defense would create incentives that do

not now exist for model developers. Without such incentives, VV&A may improve only

marginally, despite the suggestions and exhortations from this and other studies.” Fund-

ing agencies exercise an undue leverage over the directions that science takes. Assuming

this leverage does not change, motivation to perform more validation experiments, or to

provide databases of experimental results, or to make the process of experimental data

analysis (or design of experimental campaigns) more of a collaborative effort achieving

goals of both experimentalists and modelers, must come from these agencies.

Likewise, scientific journals, which also exercise undue leverage over the direction of

scientific development, must also provide impetus for change through their policies. Such

moves have been made in the past, such as the 1986 editorial statement in the Journal

of Fluids Engineering on control and quantification of numerical error and numerical

uncertainty. Similar consideration should be given to policies mandating quantification

of experimental uncertainty, as well as disclosure of experimental results in database,

rather than solely plot, format. This would provide a significant step forward for simula-

tion validation, whilst simultaneously making the process of experimental measurements

more open, and the quantification of experimental uncertainty more honest.
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Another consideration is the so-called “open science” movement [195]; this more

democratic approach to science supplements or bypasses traditional forums in favor of

a more transparent and open approach. While there is still some debate about the

strengths and weaknesses of this approach, e.g., the peer review process of open-access

journals, the process need not be perfected to be useful. Open scientific collaboration

through the many media available today should be more widespread, and technology

used as a tool, not an obstacle. (The scientific community, from which the advances

making new media possible, has been far outpaced in adoption and use of new media by

political organizations and journalists; scientists have much to gain by catching up.)

The adopted validation framework provides an excellent and robust way of con-

solidating the many approaches to validation and connecting them together; sometimes

validation procedures in the literature provide opposing methods to accomplish the same

task, but more often, they provide complimentary techniques for dealing with different

steps in the large and involved process of validation. As covered in the section address-

ing the need for a framework (Section 4.3.4), adoption of a validation framework is a

very important part of creating a cohesive validation philosophy; being flexible enough

to handle validation of both very cheap and very expensive computational models (and

everything in-between) is an essential framework characteristic.

7.1.3 Surrogate Models

The primary conclusion with regard to surrogate models is the desperate need for

a good surrogate model: surrogate models are the lynchpin of the validation process for

expensive, complex computational models. If the surrogate model is bad, the validation

is bad. In fact, the level of error introduced by the surrogate model can be thought of as

a sort of additional level of verification; if the surrogate model is too bad to reproduce

the behavior of the complex model, the validation is useless.

To construct a good surrogate model, and quantitatively judge the goodness of fit

of said model, a thorough statistical analysis of the surrogate model was performed. A

statistical analysis was performed at each step in the sequential design, and the anal-
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ysis revealed underlying linear behavior in the responses of the highly nonlinear coal

gasification model, a somewhat surprising result that provides a boost of hope for any

modeler facing a daunting task. In order to verify that this was, in fact, a correct con-

clusion, several statistical tests, including a curvature check, a residuals test, an F-test

for statistical significance, and an ANOVA analysis, were performed.

These statistical analyses also revealed an underlying complication: the amount of

data generated by each statistical metric was enormous, with 30 spatial locations and

3 species, for a total of 90 data points, and with 4-6 input variables (dimensions of pa-

rameter space). It was cumbersome to digest all of the results of each statistical test.

However, this is a critical step: the surrogate model distills the dozens of terabytes and

thousands or millions of CPU hours worth of Arches computations into its most essential

characteristics; as such, the modeler must make absolutely sure that the surrogate model

provides a faithful representation of the Arches computations (that the “level of verifica-

tion of the surrogate model” is lower than the level of validation), else the computations

are all for naught.

Another conclusion from the surrogate models chapter was in regard to the explo-

ration of parameter space. There is a push and pull when selecting the ranges of each

parameter to explore: the desire to push the bounds out further, explore larger ranges,

based on both experience (large ranges for prior distributions of input parameters, par-

ticularly the case with model parameters); and the desire to pull the bounds narrower,

explore smaller ranges, due to the fact that surrogate models are frankly awful as the

range grows larger. The assumptions going into surrogate models assume certain things

about the response (that it is smooth, that it does not vary sharply, etc.), but these

assumptions are likely to erode as the parameter ranges grow larger.

There is a way to address this problem, proposed in Section 5.3.1, which originates

from the fact that wider parameter ranges are not inherently a bad idea, they just

increase the number of samples that must be gathered. Cheaper, reduced-dimensional

physical models (e.g., RANS, one-dimensional turbulence, ideal reactor network models,
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etc.) should be used to explore wide ranges of parameter space with space-filling designs

to reveal the interesting regions of parameter space, while also shedding light on the

functional form of the response. This would help to provide better parameter input

ranges to the much more expensive physical model (Arches) and provide justification

for selecting a particular functional form for the surrogate model, rather than assuming

that polynomials will work.

7.1.4 Validation Results Analysis

One of the important conclusions of Chapter 6 was that the Data Collaboration ap-

proach to validation provided metrics that fit the instrumentalist philosophy of validation

very well. However, the “black box” Data Collaboration toolbox hindered interpretation

of some of these validation metrics. In order to achieve consistency among data, frag-

mentation had to occur, and even when the data were fragmented, only some species or

some spatial locations had a feasible set that made them consistent. The interpretation

of these fragmented and disparate feasible sets was muddled by lack of experience with

the toolbox’s algorithms and the resulting lack of transparency. The importance of this

step in the validation process led to the need for a more open and easily understood

process of validation results analysis. A Monte Carlo analysis of the simple and low-

dimensional response surfaces was much easier to visualize and understand, and led to

more concrete conclusions about the impact of variables or combinations of variables

and their impacts on whether a code made consistent predictions. It also led to the

conclusion that the feasible set should not be treated as a crisp set, but as a fuzzy set,

and it provided a probabilistic way of looking at the Data Collaboration metrics. It is

recommended that validation results analyses utilize the Monte Carlo analysis approach,

when computationally feasible, to supplement the Data Collaboration results analysis.

A prediction interval was constructed for prediction of the probability of consis-

tency. This led to a more realistic approach to predictions than the Data Collaboration

method, which presumes that if a prediction is made using a parameter combination

from the feasible set, it is valid. The prediction interval quantifies the level of confi-
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dence in the prediction. One of the chief recommendations from Chapter 6 that could

be implemented in a short amount of time is to run the Soelberg gasification cases using

an updated version of the Arches code, perform a full statistical design and analysis of

surrogate model, and repeat the prediction interval construction. Another fruitful area

of research would be to utilize much of the existing work on Bayesian inference to recast

the construction of the prediction interval, which only utilized elements of frequentist

approaches, in terms of these approaches to improve the prediction interval.

7.2 The List

As the tedious old chatterbox Polonius says,

...to expostulate

What majesty should be, what duty is,

What day is day, night night, and time is time,

Were nothing but to waste night, day, and time;

Therefore, since brevity is the soul of wit,

And tediousness the limbs and outward flourishes,

I will be brief. (Hamlet, Act 2, Scene ii, 89-92)

The following are recommended for future work:

• Careful use of terminology, such as “uncertainty” and “error,” such that it follows

common technical use of the term (as opposed to a dictionary definition), and if

a common technical definition is insinuated or not given in the literature, one be

given;

• Treatment of simulation, not as a branch of science independent of theory, but as

a tool that greatly extends the capability of theory;

• For scientific journal editors, boards, and peer reviewers, adoption of more clear

attitudes toward reporting of experimental results and provision of results in

database, not just plot, format, to ease the use of traditional experimental re-

sults in model validation;

• Increased collaboration among scientists, outside of the “X pages or less” forum of

scientific journals;
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• A detailed and thorough statistical analysis of surrogate models, rather than a

“TV dinner” approach (Section 5.3.2), due to the magnitude of their importance

in the model validation process;

• Use of low-dimensional physical models to explore parameter space with space-

filling designs, determine optimal functional forms for surrogate models, and pro-

vide narrower input parameter ranges to explore with expensive physical models;

• Supplementation of a validation analysis using Data Collaboration toolbox with a

validation analysis using a Monte Carlo approach;

• Use of the prediction interval or similar method for establishing a level of belief in

model predictions; and

• Application of additional probabilistic ideas and concepts (e.g., Bayesian inference

or fuzzy sets) to the validation analysis process and construction of prediction

belief level.

It is with this list that the present work has reached its logical, and natural, end.



APPENDIX A

GOVERNING EQUATIONS

The primary governing equations for turbulent reacting flow are the species conti-

nuity equations, the momentum equation, and the energy equation. These equations are

written for a general single-phase formulation, then extended to apply to dilute particle

systems.

A.1 Reynolds Transport Theorem

The Reynolds Transport Theorem is the general starting point for deriving a partial

differential equation to describe changes in an intensive quantity ψ (x, t). The balance

equation over a differential control volume with volume δV can be written by expanding

the substantial derivative operator:

D

Dt

Çˆ
δV (t)

ρψ (x, t) dV

å
=

ˆ
V (t)

Ç
Dρψ (x, t)

Dt
+ ρψ (x, t) (∇ · u)

å
dV (A.1)

=

ˆ
V (t)

Å
∂ρψ

∂t
+ u∇ (ρψ) + (ρψ)∇ · u

ã
dV (A.2)

=

ˆ
V (t)

Å
∂ρψ

∂t
+∇ · (ρuψ)

ã
dV (A.3)

=

ˆ
V (t)

∂ρψ

∂t
dV +

ˆ
V (t)

∇ · (uψ) dV (A.4)

=

ˆ
V (t)

∂ρψ

∂t
dV +

˛

S

n · uρψdS (A.5)

=

ˆ
V (t)

ρSψdV (A.6)

where Sψ is a source term representing the net generation of ψ (and is intensive).
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Combining equations (A.3) and (A.6) leads to an instantaneous partial differential

equation:

∂ρψ

∂t
+∇ · (uρψ) = ρSψ. (A.7)

A.2 Continuity Equation

When the quantity ψ = 1, the Reynolds Transport Theorem yields continuity equa-

tions. A subset of these are the species continuity equations. These are obtained from

the continuity equation by letting ψ = ωi, the mass fraction of species i. For n species,

n− 1 species continuity equations are independent, since
∑

k ωk = 1.

A.2.1 Single Phase

The species continuity equations are:

∂ρi
∂t

+∇ · (uiρi) = ρiSi (A.8)

where the subscript i denotes the ith species, quantity ρi is the mass density of species

i, with units mass of i
volume , ui is the velocity of species i, and Si is a source or sink term for

the mass density of i due to chemical reactions. If the species continuity equations for

all species are added, the overall continuity equation is obtained, which is equal to:

∂ρ

∂t
+∇ · (uρ) = 0 (A.9)

where u is the mass-mean velocity vector [196]. The net (across all species) mass source

term for the gas phase ρS =

Nspecies∑
i=1

ρiSi =0, due to conservation of mass.
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A.2.2 Multiple Phases

For multiphase systems, a set of species continuity equations must be written for

each phase. In this case, the mass source term only sums to 0 across all species and

across all phases, ρS =

Nphases∑
p=1

Nspecies∑
i=1

ρpiSpi = 0. Denoting the volume fraction of phase

p by φp, the species continuity equation for a phase p and a species i is:

∂φpρpi
∂t

+∇ · (φpupiρpi) = φpρpiSpi (A.10)

making the overall continuity equation for phase p:

∂φpρp
∂t

+∇ · (φpupρp) = φpρpSp. (A.11)

For the case of dilute particle systems such as pulverized coal, the gas volume fraction

φgas ≈ 1. In this case, the continuity equation for the gas phase can be written:

∂ρ

∂t
+∇ · (uρ) = ρS (A.12)

where ρS is a net mass source term representing the mass entering the gas phase and

released by the solid phase (e.g., devolatilization or evaporation processes).

A.3 Probability Density Function

The probability density function (PDF) denotes the density of the probability of

a random variable having a particular value at a particular point in its corresponding

sample space. Statistical descriptions of turbulence make use of the PDF to describe

the probability of a random field (or fields) in a given domain. The PDF of a random

variable (say, φ) is given by:

pφ (ψ) dψ = P {ψ < φ < ψ + dψ} (A.13)
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where ψ is the sample space variable corresponding to the random variable φ. If the

random variable’s value is a function of space and time, the PDF is denoted by

pφ (ψ;x, t) . (A.14)

It is often desirable to describe the probability of several random variables, rather

than a single variable. In this case, the PDF describes the probability density of a vector

of random values φ, and is called a joint PDF. The joint PDF of a two-variable system

is given by:

pφ1,φ2 (ψ1, ψ2) dψ1dψ2 = P
¶
ψ1 < φ1 < ψ1 + dψ1

⋂
ψ2 < φ2 < ψ2 + dψ2

©
. (A.15)

Likewise, for the case of an arbitrary number of scalars, the joint PDF is given by:

pφ (ψ) dψ = P
¶
ψ1 < φ1 < ψ1 + dψ1

⋂
· · ·

⋂
ψn < φn < ψn + dψn

©
. (A.16)

And furthermore a joint PDF of scalars and velocity can be written for a random variable

u given a velocity sample space v,

puφ (v,ψ) dvdψ = P
¶
v1 < u1 < v1 + dv1

⋂
· · ·

⋂
ψn < φn < ψn + dψn

©
(A.17)

The PDF can be used to obtain various moments, including the mean, of a function;

for example, the expected value of an arbitrary function of a number of random variables

Q (φ), given the joint PDF of φ, pφ, is:

〈Q (φ)〉 =
+∞̇

−∞
Q (ψ) pφ (ψ) dψ. (A.18)

Generally, the kth moment of a function Q (φ) is given by:
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mk =

+∞̇

−∞
Q (ψ)k pφ (ψ) dψ. (A.19)

A.3.1 PDF Transport Equation

The transport equation for a PDF of an arbitrary number of random variables

(u,φ) can be derived in the manner of Pope [197, 198], by equating the time derivative

of an arbitrary function of all random variables (u,φ). In this section, the spatial

and temporal dependence of the probability distribution function will be excluded but

implied.

The expectation of the time derivative of an arbitrary function Q (u,φ), using A.18,

is written (assuming the gas density ρ is independent of the random variables, and where

the operator 〈〉 denotes the expectation operator) as:

〈DQ (u,φ)

Dt
〉 =

˙
D [Q (v,ψ) puφ (v,ψ)]

Dt
dvdψ

=

˙ Ç
∂ [Q (v,ψ) puφ (v,ψ)]

∂t
+

∂

∂xi
[Q (v,ψ) vipuφ]

å
dvdψ(A.20)

=

˙
Q (v,ψ)

Å
∂puφ
∂t

+
∂

∂xi
[vipuφ]

ã
dvdψ (A.21)

which is the expectation of Q (u,φ) given the joint PDF of (u,φ).

A second expression for the same quantity can be written using the chain rule:

〈DQ (u,φ)

Dt
〉 =

Æ
∂Q

∂uj

Duj
Dt

∏
+ 〈 ∂Q

∂φk

Dφk

Dt
〉 (A.22)

The transport equations for each random variable can be written as

Duj
Dt

= Aj , (A.23)

Dφk

Dt
= Gk, (A.24)

and A.22 becomes
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〈DQ

Dt
〉 =
Æ
∂Q

∂uj
Aj

∏
+

≠
∂Q

∂φk
Gk

∑
. (A.25)

These u-space and φ-space convection terms can be written conditioned on the value

of (v,ψ), and by integrating over the sample space (following equation (A.18)), they

become: Æ
∂Q

∂uj
Aj

∏
=

˙ Æ
∂Q

∂uj
Aj |v,ψ

∏
puφdvdψ (A.26)

=

˙
∂Q

∂vj
〈Aj |v,ψ〉 puφdvdψ (A.27)

where the time derivative can be taken out of the conditional, since the value of Q (u = v,φ = ψ)

is a known function and does not need to be written as conditional on the value of v.

Using the chain rule, the quantity inside the integral can be reexpressed as:Æ
∂Q

∂uj
Aj

∏
=

˙ ñ
∂

∂vj
(Q 〈Aj |v,ψ〉 puφ)−Q

∂

∂vj
(〈Aj |v,ψ〉 puφ)

ô
dvdψ (A.28)

It is shown in [198] that the first term is zero for functions that are monotonic at ∞
and for which 〈AjQ (u,φ)〉 exists. Assuming the arbitrary function Q satisfies these

conditions, this expression finally becomes:

〈 ∂Q
∂uj

Aj〉 = −
˙ ñ

Q
∂

∂uj
(〈Aj |v,ψ〉puφ)

ô
dvdψ. (A.29)

Doing the same for the scalar term:≠
∂Q

∂φk
Gk

∑
=

˙ ≠
∂Q

∂ψk
Gk|ψ

∑
puφdvdψ (A.30)

=

˙
∂Q

∂ψk
〈Gk|ψ〉 puφdvdψ (A.31)

and using the chain rule again,

〈 ∂Q
∂φk

Gk〉 =
˙ ï

∂

∂ψk
(Q 〈Gk|v,ψ〉 puφ)−Q

∂

∂ψk
(〈Gk|v,ψ〉puφ)

ò
dvdψ. (A.32)
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Using the same assumption about Q, the first term goes to zero, yielding:

〈 ∂Q
∂φk

Gk〉 = −
˙ ï

Q
∂

∂ψk
(〈Gk|v,ψ〉puφ)

ò
dvdψ. (A.33)

These expressions can now be used in equation A.25 to write 〈DQ

Dt
〉 as:

〈DQ

Dt
〉 = −

˙
Q

ñ
∂

∂vj
(〈Aj |v,ψ〉 puφ) + ∂

∂ψk
(〈Gk|v,ψ〉puφ)

ô
dvdψ. (A.34)

Finally, A.21 and A.34 can be combined:

˙
Q (v,ψ)

ñ
∂puφ (v,ψ)

∂t
+

∂

∂xj
(vjpuφ (v,ψ))

+
∂

∂uj
(〈Aj |v,ψ〉 puφ (v,ψ))

ô
dvdψ =

−
˙

Q (v,ψ)

ï
∂

∂ψk
(〈Gk|v,ψ〉 puφ (v,ψ))

ò
dvdψ (A.35)

which leads to the PDF transport equation:

∂puφ (v,ψ)

∂t
+

∂

∂xj
(vjpuφ (v,ψ)) = − ∂

∂uj
(〈Aj |v,ψ〉puφ (v,ψ))

− ∂

∂ψk
(〈Gk|v,ψ〉puφ (v,ψ)) . (A.36)

A.3.2 Filtered PDF Transport Equation

The large eddy simulation turbulence model is formulated by filtering governing

equations using a low-pass filter, so that the smallest scales of the flow are not resolved.

This operation gives rise to unclosed “subgrid” terms representing the effects of the

filtered scales, which must be modeled. Filtering the number density function similarly

leads to a loss of information about the NDF.

Applying the filtering operation to the PDF transport equation, and commuting

the filter inside derivatives, yields:
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∂Â�puφ (v,ψ)

∂t
+

∂

∂xj

Å Â�vjpuφ (v,ψ)

ã
= − ∂

∂uj

Å Â�〈Aj |v,ψ〉puφ (v,ψ)

ã
− ∂

∂ψk

Å Â�〈Gk|v,ψ〉puφ (v,ψ)

ã
. (A.37)

Next, splitting and rearranging terms yields:

∂fipuφ
∂t

+
∂

∂xj
(‹vjfipuφ)

+
∂

∂xj
(‡vjpuφ − ‹vjfipuφ) = − ∂

∂uj

(‰�〈Aj |v,ψ〉fipuφ) (A.38)

− ∂

∂uj

Å‰�〈Aj |v,ψ〉fipuφ − Â�〈Aj |v,ψ〉puφ
ã

− ∂

∂φk

(‰�〈Gk|v,ψ〉fipuφ)
− ∂

∂φk

Å‰�〈Gk|v,ψ〉fipuφ − Â�〈Gk|v,ψ〉puφ
ã
. (A.39)

∂fipuφ
∂t

+
∂

∂xj
(‹vjfipuφ)+ = − ∂

∂uj

(‰�〈Aj |v,ψ〉fipuφ)
− ∂

∂ψk

(‰�〈Gk|v,ψ〉fipuφ)
+
∂τsgs,j
∂xj

+
∂τsgs,uj

∂uj
+

∂τsgs,ψk

∂ψk
(A.40)

where the subgrid scalar fluxes, denoted with τ , are defined as:

τsgs,j = ‹vjfipuφ −‡vjpuφ (A.41)

τsgs,uj = Â�〈Aj |v,ψ〉puφ −‰�〈Aj |v,ψ〉fipuφ (A.42)

τsgs,ψk
= Â�〈Gk|v,ψ〉puφ −‰�〈Gk|v,ψ〉fipuφ. (A.43)

and can be modeled using a gradient diffusion model (superscript m denotes modeled):

τsgs,uj = Γsgs
uj

∂puφ
∂uj

(A.44)

τsgs,ψk
= Γsgs

ψk

∂puφ
∂ψk

(A.45)
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with the subgrid diffusivities usually modeled using a Prandtl number or Schmidt number

approach, that is,

Prsgsψk
=

μsgs

Γsgs
ψk

(A.46)

where μsgs is the subgrid scale viscosity.
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MOMENTS

Ultimately, the NDF must be tracked in a computational fluid dynamics (CFD)

code. Nearly every CFD code is designed to run in a scalar framework; all higher-

order vectors, tensors, etc. must ultimately be expressed as a set of scalars in order to

be tracked in existing CFD codes. Thus, the NDF must be decomposed into a set of

scalars that characterize it. One such set, the moments of the NDF, describe statistical

characteristics of the distribution; the distribution can ultimately be reconstructed from

its moments. The kth integer moment mk of a univariate NDF f(ξ;x, t) is defined

in terms of the probability density function Pξ� (ξ), then the number density function

f (ξ;x, t), as:

mk =

ˆ +∞

−∞
ξkPξ� (ξ) dξ (B.1)

=

´ +∞
−∞ ξkf (ξ;x, t) dξˆ +∞

−∞
f (ξ;x, t) dξ

(B.2)

Physically, this can be interpreted as the expectation of ξk. Thus, the first moment

is simply interpreted as the mean value of ξ; the second moment interpreted as the

standard deviation of ξ, the third moment the kurtosis, the fourth moment the skewness,

etc. If the internal coordinate is the particle diameter L, the 1st moment is physically

interpreted as the mean value of the particle diameter L; the 2nd moment is proportional

to the surface area, L2; and so on.

The moments mk of each internal coordinate of a multivariate NDF f(ξ;x, t) are

defined over all the internal coordinates as:
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mk =

+∞̇

∞
ξk11 . . . ξ

kNξ

Nξ
f(ξ1, . . . , ξNξ

;x, t) dξ1 . . . dξNξ

+∞̇

−∞
f
Ä
ξ1, . . . , ξNξ

;x, t
ä
dξ1 . . . dξNξ

=

+∞̇

−∞

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
f(ξ;x, t) dξ

⎤⎦
+∞̇

−∞
f(ξ;x, t) dξ

(B.3)

where the integer vector k is the moment index vector for the kth (multivariate) moment,

defined by k = [k1, k2, · · · , kNs ], ki is the ith index of the kth moment (corresponding to

the ith internal coordinate), and Nξis the number of internal coordinates.

B.1 Method of Moments for NDF Transport

The method of moments is a method of tracking the NDF of a system of particles.

Because the NDF is a full, continuous distribution, it is difficult to track without assum-

ing a functional form for it. Rather than assume a functional form, the moments of the

NDF, which are simply scalars, are tracked instead. This method requires tracking var-

ious scalars, which is computationally feasible in a scalar framework and which greatly

simplifies the process of tracking the NDF. However, the approach has a closure problem

that prevents it from being used in practice for any but the most simple systems.

The transport equation for each moment must be written in terms of higher order

moments, and the transport equations for these higher order moments must be written in

terms of successively higher order moments, etc. Simplifications (models) must be used

to express higher order moments only in terms of lower order moments being tracked

as a part of the method of moments. Once this is accomplished, the set of moment

transport equations becomes a closed set of equations.
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B.2 Moment Transport Equation Derivation

The moment transport equation can be derived by applying the moment definition

to the NDF transport equation (2.22). This is done by multiplying the entire NDF trans-

port equation by
∏Ns

j=1 ξ
kj
j and integrating over the domain Ω of all internal coordinate

values. First, multiplying by the product of the internal coordinates yields:Ñ
Nξ∏
m=1

ξkmm

é
∂f

∂t

+

Ñ
Nξ∏
m=1

ξkmm

é
3∑

i=1

∂

∂xi
(ui,f (ξ;x, t) f)

+

Ñ
Nξ∏
m=1

ξkmm

é
Nξ∑
j=1

∂

∂ξj
(Gi,f (ξ;x, t) f) =

Ñ
Nξ∏
m=1

ξkmm

é
h(ξ;x, t) (B.4)

Next, that product can be taken into the derivatives of the first two terms, be-

cause all of the coordinates involved (ξ,x, t) are orthogonal and independent. However,

bringing the product of internal coordinates into the derivative in front of the third

term involves derivatives of internal coordinates with respect to themselves, meaning

the product does not commute into the derivative in the same way.

∂

∂t

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
f

⎤⎦
+

3∑
i=1

∂

∂xi

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
ui,f (ξ;x, t) f

⎤⎦
+

Ñ
Nξ∏
m=1

ξkmm

é
Nξ∑
j=1

∂

∂ξj
[Gj,f (ξ;x, t) f ] =

Ñ
Nξ∏
m=1

ξkmm

é
h(ξ;x, t) (B.5)

Integrating over Ω (and dropping the dependencies on ξ, x, and t for simplicity):
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∂

∂t

Ñˆ
Ω

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
f dξ

⎤⎦é (B.6)

+
3∑

i=1

∂

∂xi

Ñˆ
Ω

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
ui,f f

⎤⎦dξ
é

+

ˆ
Ω

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
Nξ∑
j=1

∂

∂ξj
(Gj,f f)

⎤⎦ dξ =

ˆ
Ω

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
h dξ

⎤⎦
Now the third term must be broken up as:

ˆ
Ω

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
Nξ∑
j=1

∂

∂ξj
(Gj,f f)

⎤⎦ dξ =

Nξ∑
j=1

∂

∂ξj

Ñˆ
Ω

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
Gj,f f

⎤⎦ dξ

é
(B.7)

−
Nξ∑
j=1

Ñˆ
Ω

⎡⎣Gj,f f
∂ξ

kj
j

∂ξj

Ñ
Nξ∏

m=1,m �=j

ξkmm

é⎤⎦ dξ

é
where kj is the index corresponding to internal coordinate ξj for the multivariate mo-

ment mk. For a given moment, if there is no ξj (that is, if the index of the moment

corresponding to the jth internal coordinate kj = 0) then the second term in (B.7) will

be zero. Substituting this:

∂

∂t

Ñˆ
Ω

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
f dξ

⎤⎦é+

3∑
i=1

∂

∂xi

Ñˆ
Ω

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
ui(ξ;x, t) f

⎤⎦dξ
é

=

−
Nξ∑
j=1

∂

∂ξj

Ñˆ
Ω

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
Gj,f f

⎤⎦ dξ

é
+

∑
j

Ñˆ
Ω

⎡⎣Gj,f f
∂ξ

kj
j

∂ξj

Ñ
Nξ∏

m=1,m �=j

ξkmm

é⎤⎦ dξ

é
+

ˆ
Ω

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
h dξ

⎤⎦
Now, using the definition of the multivariate moment (B.3) yields:
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∂

∂t
(mk) +

3∑
i=1

∂

∂xi

Ñˆ
Ω

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
ui,f f dξ

⎤⎦é =

−
Nξ∑
j=1

∂

∂ξj

Ñˆ
Ω

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
Gj,f f

⎤⎦ dξ

é
+

Nξ∑
j=1

Ñˆ
Ω

⎡⎣Gj,f f
∂ξ

kj
j

∂ξj

Ñ
Nξ∏

m=1,m �=j

ξkmm

é⎤⎦ dξ

é
+

ˆ
Ω

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
h

⎤⎦ dξ (B.8)

The terms on the left-hand side are related to the spatial and temporal changes of each

moment, while the right-hand side is related to the changes in phase-space. This is the

general form of the multivariate moment transport equation.



APPENDIX C

QUADRATURE-APPROXIMATED NUMBER

DENSITY FUNCTION TRANSPORT

EQUATION

This appendix starts with the quadrature approximation and the univariate and

multivariate NDF transport equations. It then proceeds to derive the quadrature-

approximated NDF transport equations. These equations are an important piece of

the DQMOM formulation. In Appendix D, the moment transform of these quadrature-

approximated NDF transport equations is taken, which yields a set of independent linear

equations. In Appendix E, these independent linear equations are formulated in matrix

form, and this matrix is a key component of the DQMOM algorithm.

C.1 Univariate Quadrature-Approximated

NDF Transport Equation

This section presents a rigorous derivation of the univariate and multivariate weight

and weighted abscissa transport equations and univariate quadrature-approximated NDF

transport equation. The derivation starts with the univariate NDF transport equation,

given as:

∂f (ξ;x, t)

∂t
+

∂

∂xi
(vif (ξ;x, t)) = − ∂

∂ξ
(〈G|ξ〉 f (ξ;x, t)) . (C.1)
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Next, the univariate quadrature approximation (2.30) is substituted into this equation,

as are the environment-averaged physical space and phase space velocities 〈vi〉α (equation

2.36) and 〈G〉α (equation 2.39). Grouping spatial and temporal derivatives on the left

hand side, this yields:

N∑
α=1

∂

∂t
(wαδ (ξ − 〈ξ〉α)) (C.2)

+
N∑

α=1

∂

∂xi
(〈vi〉αwαδ (ξ − 〈ξ〉α))

−
N∑

α=1

3∑
i=1

∂

∂xi

Å
Γxi,α

∂

∂xi
(wαδ (ξ − 〈ξ〉α))

ã
= −

N∑
α=1

∂

∂ξ
(〈G〉αwαδ (ξ − 〈ξ〉α))

+
N∑

α=1

∂

∂ξ

Å
Γξ,α

∂

∂ξ
(wαδ (ξ − 〈ξ〉α))

ã
Because the right side of the equation does not contain derivatives or integrals with

respect to x or t, so those terms can be replaced with a source term representing phase-

space convection and phase-space diffusion, also defined in equations (2.58) and (2.57):

Sξ = Sξ = −
N∑

α=1

∂

∂ξ
(〈G〉αwαδ (ξ − 〈ξ〉α)) (C.3)

Dξ =
N∑

α=1

∂

∂ξ

Å
Γξ,α

∂

∂ξ
(wαδ (ξ − 〈ξ〉α))

ã
. (C.4)

This yields a simplified form of (C.2):

∑
α

∂

∂t
(wαδ (ξ − 〈ξ〉α)) (C.5)

+
∑
α

∂

∂xi
(〈ui〉αwαδ (ξ − 〈ξ〉α))

−
∑
α

∂

∂xi

Å
Γxi,α

∂

∂xi
(wαδ (ξ − 〈ξ〉α))

ã
= Sξ +Dξ

Next, each of these terms can be split up individually, starting with the first term

(the summation over α is implied from this point on; note that the equations that follow

are single equations, and are only valid when summed over all α’s, and are not valid for

individual α’s):
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∂

∂t
(wαδ (ξ − 〈ξ〉α)) = wα

∂

∂t
(δ (ξ − 〈ξ〉α)) + δ (ξ − 〈ξ〉α)

∂wα

∂t

and using implicit differentiation to evaluate the derivative of the delta function,

∂

∂t
(δ (ξ − 〈ξ〉α)) = −δ′ (ξ − 〈ξ〉α)

∂

∂t
(〈ξ〉α) ,

the time derivative in (C.5) simplifies to:

∂

∂t
(wαδ (ξ − 〈ξ〉α)) = δ (ξ − 〈ξ〉α)

ï
∂

∂t
(wα)

ò
−δ′ (ξ − 〈ξ〉α)

ï
wα

∂

∂t
(〈ξ〉α)

ò
. (C.6)

Now the spatial derivative term can be split up using the definition of the delta

function derivative and the chain rule:

∂

∂xi
(〈vi〉αwαδ (ξ − 〈ξ〉α)) = wα

ï
〈vi〉α

∂

∂xi
(δ (ξ − 〈ξ〉α)) + δ (ξ − 〈ξ〉α)

∂

∂xi
(〈vi〉α)

ò
+δ (ξ − 〈ξ〉α)

ï
〈vi〉α

∂

∂xi
(wα)

ò
= wα

ï
−〈vi〉α δ′ (ξ − 〈ξ〉α)

∂

∂xi
(〈ξ〉α) + δ (ξ − 〈ξ〉α)

∂

∂xi
(〈vi〉α)

ò
+δ (ξ − 〈ξ〉α)

ï
〈vi〉α

∂

∂xi
(wα)

ò
= δ (ξ − 〈ξ〉α)

ï
wα

∂

∂xi
(〈vi〉α) + 〈vi〉α

∂

∂xi
(wα)

ò
−δ′ (ξ − 〈ξ〉α)

ï
〈vi〉αwα

∂

∂xi
(〈ξ〉α)

ò
(C.7)

Finally, the diffusion term can be split up in a similar fashion:
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∂

∂xi

Å
Γxi,α

∂

∂xi
(wαδ (ξ − 〈ξ〉α))

ã
=

∂

∂xi

(
wαΓxi,α

∂

∂xi
(δ (ξ − 〈ξ〉α))

+δ (ξ − 〈ξ〉α) Γxi,α
∂

∂xi
(wα)

)

=
∂

∂xi

Å
wαΓxi,α

∂

∂xi
(δ (ξ − 〈ξ〉α))

ã
+

∂

∂xi

Å
δ (ξ − 〈ξ〉α) Γxi,α

∂

∂xi
(wα)

ã
= 2Γxi,α

∂

∂xi
(wα)

∂

∂xi
(δ (ξ − 〈ξ〉α))

+wα
∂

∂xi

Å
Γxi,α

∂

∂xi
(δ (ξ − 〈ξ〉α))

ã
+δ (ξ − 〈ξ〉α)

∂

∂xi

Å
Γxi,α

∂

∂xi
(wα)

ã
. (C.8)

Next, using properties of the delta function, the diffusion term becomes:

∂

∂xi

Å
Γxi,α

∂

∂xi
(wαδ (ξ − 〈ξ〉α))

ã
= δ′ (ξ − 〈ξ〉α)

ï
2Γxi,α

∂

∂xi
(wα)

∂

∂xi
(〈ξ〉α)

ò
+δ (ξ − 〈ξ〉α)

ï
∂

∂xi

Å
Γxi,α

∂wα

∂xi

ãò
+wα

∂

∂xi

Ç
Γxi,α

∂〈ξ〉α
∂xi

δ′ (ξ − 〈ξ〉α)
å

(C.9)

The last term can be split up as

wα
∂

∂xi

Ç
Γxi,α

∂ 〈ξ〉α
∂xi

δ′ (ξ − 〈ξ〉α)
å

= wαδ
′ (ξ − 〈ξ〉α)

∂

∂xi

Ç
Γxi,α

∂ 〈ξ〉α
∂xi

å
+wαΓxi,α

∂ 〈ξ〉α
∂xi

∂

∂xi

(
δ′ (ξ − 〈ξ〉α)

)
= wαδ

′ (ξ − 〈ξ〉α)
∂

∂xi

Ç
Γxi,α

∂ 〈ξ〉α
∂xi

å
+wαδ

′′ (ξ − 〈ξ〉α) Γxi,α
∂ 〈ξ〉α
∂xi

∂ 〈ξ〉α
∂xi

(C.10)

so that the diffusion term finally becomes:
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∂

∂xi

Å
Γxi,α

∂

∂xi
(wαδ (ξ − 〈ξ〉α))

ã
= δ (ξ − 〈ξ〉α)

ï
∂

∂xi

Å
Γxi,α

∂wα

∂xi

ãò
+δ′ (ξ − 〈ξ〉α)

ï
2Γxi,α

∂

∂xi
(wα)

∂

∂xi
(〈ξ〉α)

ò
+δ′ (ξ − 〈ξ〉α)

ñ
wα

∂

∂xi

Ç
Γxi,α

∂〈ξ〉α
∂xi

åô
+δ′′ (ξ − 〈ξ〉α)

ñ
wαΓxi,α

∂〈ξ〉α
∂xi

∂〈ξ〉α
∂xi

ô
(C.11)

Now, plugging (C.6), (C.7), and (C.11) into (C.5), the quadrature-approximated

NDF transport equation becomes:

δ (ξ − 〈ξ〉α)
ï
∂

∂t
(wα) +

∂

∂xi
(〈vi〉αwα)− ∂

∂xi

Å
Γxi,α

∂wα

∂xi

ãò
−δ′ (ξ − 〈ξ〉α)

ï
wα

∂

∂t
(〈ξ〉α) + 〈vi〉αwα

∂

∂xi
(〈ξ〉α)

−wα
∂

∂xi

Ç
Γxi,α

∂〈ξ〉α
∂xi

å
− 2Γxi,α

∂

∂xi
(wα)

∂

∂xi
(〈ξ〉α)

ô
δ′′ (ξ − 〈ξ〉α)

ñ
−wαΓxi,α

∂〈ξ〉α
∂xi

∂〈ξ〉α
∂xi

ô
=

+δ′′ (ξ − 〈ξ〉α)
ñ
wαΓxi,α

∂〈ξ〉α
∂xi

∂〈ξ〉α
∂xi

ô
+Sξ +Dξ (C.12)

This equation can be rewritten in terms of the weights wα and the weighted abscissas

ςα using two identities. The first identity is for the accumulation term for 〈ξ〉α:

∂

∂t
(wα〈ξ〉α) =

∂ςα
∂t

= wα
∂〈ξ〉α
∂t

+ 〈ξ〉α∂wα

∂t

or, rearranging for terms that appear in (C.12):

wα
∂〈ξ〉α
∂t

=
∂ςα
∂t

− 〈ξ〉α∂wα

∂t
(C.13)

The second identity is for the convection term for 〈ξ〉α:
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∂

∂xi
(〈vi〉α ςα) =

∂

∂xi
(〈vi〉αwα〈ξ〉α)

= 〈vi〉αwα
∂

∂xi
(〈ξ〉α) + 〈ξ〉α ∂

∂xi
(〈vi〉αwα)

which can be rearranged to give:

〈vi〉αwα
∂

∂xi
(〈ξ〉α) =

∂

∂xi
(〈vi〉α ςα)− 〈ξ〉α ∂

∂xi
(〈vi〉αwα) (C.14)

Finally, the last identity for the diffusion term of 〈ξ〉α is:

∂

∂xi

Å
Γxi,α

∂

∂xi
(ςα)

ã
= 2Γxi,α

∂wα

∂xi

∂〈ξ〉α
∂xi

+〈ξ〉α ∂

∂xi

Å
Γxi,α

∂wα

∂xi

ã
+wα

∂

∂xi

Å
Γxi,α

∂

∂xi
(〈ξ〉α)

ã
which can be rearranged to yield:

2Γxi,α
∂wα

∂xi

∂〈ξ〉α
∂xi

(C.15)

+wα
∂

∂xi

Ç
Γxi,α

∂〈ξ〉α
∂xi

å
=

∂

∂xi

Å
Γxi,α

∂ςα
∂xi

ã
+〈ξ〉α ∂

∂xi

Å
Γxi,α

∂wα

∂xi

ã
Plugging (C.13), (C.14), and (C.15) into (C.12) changes (C.5) into:

δ (ξ − 〈ξ〉α)
ï
∂

∂t
(wα) +

∂

∂xi
(〈vi〉αwα)− ∂

∂xi

Å
Γxi,α

∂

∂xi
(wα)

ãò
−δ′ (ξ − 〈ξ〉α)

ï
∂

∂t
(ςα) +

∂

∂xi
(〈vi〉α ςα)−

∂

∂xi

Å
Γxi,α

∂

∂xi
(ςα)

ãò
+δ′ (ξ − 〈ξ〉α) 〈ξ〉α

ï
∂

∂t
(wα) +

∂

∂xi
(〈vi〉αwα)− ∂

∂xi

Å
Γxi,α

∂

∂xi
(wα)

ãò
=

+δ′′ (ξ − 〈ξ〉α)wαCα

+Sξ +Dξ (C.16)

where Cα is a dissipation term, defined as Cα = Γxi,α
∂〈ξ〉α
∂xi

∂〈ξ〉α
∂xi

.



336

The source terms for the transport equations for the weights and weighted abscissas

appear in this equation. Upon substituting aα and bα from:

∂

∂t
(wα) +

∂

∂xi
(〈vi〉αwα)− ∂

∂xi

Å
Γxi,α

∂wα

∂xi

ã
= aα (C.17)

∂

∂t
(ςα) +

∂

∂xi
(〈vi〉α ςα)−

∂

∂xi

Å
Γxi,α

∂ςα
∂xi

ã
= bα (C.18)

into (C.16), a new form of the NDF transport equation is obtained:

N∑
α=1

[
δ (ξ − 〈ξ〉α) + δ′ (ξ − 〈ξ〉α) 〈ξ〉α

]
aα (C.19)

−
N∑

α=1

[
δ′ (ξ − 〈ξ〉α)

]
bα =

N∑
α=1

δ′′ (ξ − 〈ξ〉α)wαCα + Sξ +Dξ

C.2 Multivariate Quadrature-Approximated

NDF Transport Equation

The transport equations for the NDF weights and weighted abscissas can be derived

starting with the multivariate NDF transport equation,

∂f (ξ;x, t)

∂t
+

∂

∂xi
(vif (ξ;x, t)) = − ∂

∂ξj
(〈Gj |ξ〉f (ξ;x, t)) . (C.20)

The internal coordinate v has been incorporated into the internal coordinate ξ for sim-

plicity of notation. The quadrature approximation for the multivariate NDF (equation

2.35) is substituted into equation (C.20), the environment average velocities 〈vi〉α (equa-

tion 2.36) and 〈Gi〉α (equation 2.39) substituted, and spatial and temporal derivatives

grouped on the right side of the equation, yielding:
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N∑
α=1

∂

∂t

Ñ
wα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é
(C.21)

+
N∑

α=1

∂

∂xi

Ñ
〈vi〉αwα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é
+

N∑
α=1

∂

∂xi

Ñ
Γxi,α

∂

∂xi

Ñ
wα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)éé
=

−
N∑

α=1

∂

∂ξj

Ñ
〈Gj〉αwα

Nξ∏
m=1

δ (ξm − 〈ξm〉α)
é

+
N∑

α=1

∂

∂ξj

Ñ
Γξj ,α

∂

∂ξj

Ñ
wα

Nξ∏
m=1

δ (ξm − 〈ξm〉α)
éé

.

The terms on the right-hand side can be replaced with the terms:

Sξ = −
N∑

α=1

∂

∂ξj

Ñ
〈Gj〉αwα

Nξ∏
m=1

δ (ξm − 〈ξm〉α)
é

(C.22)

Dξ =
N∑

α=1

∂

∂ξj

Ñ
Γξj ,α

∂

∂ξj

Ñ
wα

Nξ∏
m=1

δ (ξm − 〈ξm〉α)
éé

. (C.23)

Plugging this into (C.21) gives:

N∑
α=1

∂

∂t

Ñ
wα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é
(C.24)

+
N∑

α=1

∂

∂xi

Ñ
〈vi〉αwα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é
+

N∑
α=1

∂

∂xi

Ñ
Γxi,α

∂

∂xi

Ñ
wα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)éé
= Sξ +Dξ.

The summation over α will be dropped and implied for all the following equations,

with the same caveat that each equation is only true for the sum over all α’s and is not

true for individual α’s. Each term can be split up, starting with the temporal derivative:

∂

∂t

Ñ
wα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é
= wα

∂

∂t

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é
+

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

) ∂

∂t
(wα)
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Implicit differentiation can be used to evaluate the derivative of the product of delta

functions. It is expressed as:

∂

∂t

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é
= −

Ns∑
m=1

⎡⎣Ñ Nξ∏
j �=m, j=1

δ
(
ξj − 〈ξj〉α

)é
(C.25)

∂

∂t

Ñ
Nξ∏
m=1

δ (ξm − 〈ξm〉α)
é⎤⎦

= −
Nξ∑
m=1

⎡⎣Ñ Nξ∏
j �=m, j=1

δ
(
ξj − 〈ξj〉α

)é×Å
δ′ (ξm − 〈ξm〉α)

∂

∂t
(〈ξm〉α)

ãò
Using this, the temporal derivative can be expressed as:

∂

∂t

Ñ
wα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é
= −

Nξ∑
m=1

[
wα

Ñ
Nξ∏

j �=m, j=1

δ
(
ξj − 〈ξj〉α

)é×

(
δ′ (ξm − 〈ξm〉α) 〈ξm〉α

)]

+

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é ∂

∂t
(wα) (C.26)

The spatial derivative can also be split up:

∂

∂xi

Ñ
〈vi〉αwα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é
= wα

∂

∂xi

Ñ
〈vi〉α

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é
+

Ñ
〈vi〉α

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

) ∂

∂xi
(wα)

é
Next, each term of the spatial derivative will be rearranged. Each term can be treated

individually. Starting with the first term:

wα
∂

∂xi

Ñ
〈vi〉α

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é
= wα

⎡⎣ÑNξ∏
j=1

δ
(
ξj − 〈ξj〉α

) ∂

∂xi
(〈vi〉α)

é
+ 〈vi〉α

∂

∂xi

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é⎤⎦
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(C.25) can be used to get:

wα
∂

∂xi

Ñ
〈vi〉α

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é
= (C.27)

wα

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é ∂

∂xi
(〈vi〉α)

−〈vi〉αwα

Nξ∑
m=1

[Ñ Nξ∏
j �=m, j=1

δ
(
ξj − 〈ξj〉α

)é×Å
δ′ (ξm − 〈ξm〉α)

∂

∂xi
(〈ξm〉α)

ã]
The second term is simpler, and only requires rearrangement:Ñ

〈vi〉α
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é ∂

∂xi
(wα) =

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é× (C.28)Å
〈vi〉α

∂

∂xi
(wα)

ã
Finally, combining (C.27) and (C.28), the spatial derivative term in (C.24) can be written

as:

∂

∂xi

Ñ
〈vi〉αwα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é
=Ñ

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)éÅ〈vi〉α ∂

∂xi
(wα)

ã
+wα

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é ∂

∂xi
(〈vi〉α)

−〈vi〉αwα

Nξ∑
m=1

[Ñ Nξ∏
j �=m, j=1

δ
(
ξj − 〈ξj〉α

)é×Å
δ′ (ξm − 〈ξm〉α)

∂

∂xi
(〈ξm〉α)

ã]
(C.29)

The diffusion term can also be broken up:
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∂

∂xi

Ñ
Γxi,α

∂

∂xi

Ñ
wα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)éé
=

∂

∂xi

Ñ
Γxi,αwα

∂

∂xi

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)éé
+

∂

∂xi

Ñ
Γxi,α

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

) ∂wα

∂xi

é
(C.30)

which becomes:

∂

∂xi

Å
Γxi,α

∂

∂xi
(wα×

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)éé
= 2Γxi,α

∂wα

∂xi

∂

∂xi

(
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)

+

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)×
∂

∂xi

Å
Γxi,α

∂wα

∂xi

ã
+wα

∂

∂xi

(
Γxiα

∂

∂xi

(
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)éé
which can be further reduced to:
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∂

∂xi

Å
Γxi,α

∂

∂xi
(wα×

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)éé
=

Nξ∑
m=1

ñ
2Γxi,α

∂wα

∂xi

∂〈ξm〉α
∂xi

×Ñ
Nξ∏

j �=m, j=1

δ
(
ξj − 〈ξj〉α

)é (
δ′ (ξm − 〈ξm〉α)

)]

+

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

) ∂

∂xi

Å
Γxi,α

∂wα

∂xi

ã
+

Nξ∑
m=1

ñ
wα

∂

∂xi

®
Γxi,α

∂ 〈ξm〉α
∂xi

×Ñ
Nξ∏

j �=m, j=1

δ
(
ξj − 〈ξj〉α

)é×
(
δ′ (ξm − 〈ξm〉α)

)}]
The very last term in this expression will become important later; it can be simplified

as:

Nξ∑
m=1

⎡⎣wα
∂

∂xi

®
Γxi,α

∂〈ξm〉α
∂xi

Ñ
Nξ∏

j=1, j �=m

δ
(
ξj − 〈ξj〉α

)é(
δ′ (ξm − 〈ξm〉α)

})⎤⎦ =

Nξ∑
m=1

⎡⎣wα
∂

∂xi

Ç
Γxi,α

∂〈ξm〉α
∂xi

åÑ Nξ∏
j=1, j �=m

δ
(
ξj − 〈ξj〉α

)é (
δ′ (ξm − 〈ξm〉α)

)⎤⎦+
Nξ∑
m=1

⎡⎣wαΓxi,α
∂〈ξm〉α
∂xi

∂

∂xi

{Ñ Nξ∏
j=1, j �=m

δ
(
ξj − 〈ξj〉α

)é(
δ′ (ξm − 〈ξm〉α)

})⎤⎦ (C.31)

and the last term in this expression can also be further simplified:
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Nξ∑
m=1

⎡⎣wαΓxi,α
∂ 〈ξm〉α
∂xi

∂

∂xi

⎧⎨⎩
Ñ

Nξ∏
j �=m, j=1

δ
(
ξj − 〈ξj〉α

)é (
δ′ (ξm − 〈ξm〉α)

)⎫⎬⎭
⎤⎦ =

Nξ∑
m=1

Nξ∑
n=1

{
wαΓxi,α

∂ 〈ξm〉α
∂xi

∂ 〈ξn〉α
∂xi

Ñ
Nξ∏

j �=m,n, j=1

δ
(
ξj − 〈ξj〉α

)é×

(
δ′ (ξm − 〈ξm〉α)

) (
δ′ (ξn − 〈ξn〉α)

)}

+

Nξ∑
m=1

{
wαΓxi,α

∂〈ξm〉α
∂xi

∂〈ξm〉α
∂xi

Ñ
Nξ∏

j �=m, j=1

δ (ξj − 〈ξj〉α)
é

×

(
δ′′ (ξm − 〈ξm〉α)

)}
(C.32)

Finally, the diffusion term becomes:

∂

∂xi

Ñ
Γxi,α

∂

∂xi

Ñ
wα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)éé
=

Nξ∑
m=1

ñ
2Γxi,α

∂wα

∂xi

∂〈ξm〉α
∂xiÑ

Nξ∏
j �=m, j=1

δ
(
ξj − 〈ξj〉α

)é (
δ′ (ξm − 〈ξm〉α)

)⎤⎦
+

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

) ∂

∂xi

Å
Γxi,α

∂wα

∂xi

ã
(C.33)

+

Nξ∑
m=1

ñ
wα

∂

∂xi

Ç
Γxi,α

∂〈ξm〉α
∂xi

å
×Ñ

Nξ∏
j �=m, j=1

δ
(
ξj − 〈ξj〉α

)é (
δ′ (ξm − 〈ξm〉α)

)⎤⎦
+

Nξ∑
m=1

Nξ∑
n=1

⎧⎨⎩wαΓxi,α
∂〈ξm〉α
∂xi

∂〈ξn〉α
∂xi

Ñ
Nξ∏

j �=m,n, j=1

δ (ξj − 〈ξj〉α)
é

(
δ′ (ξm − 〈ξm〉α)

) (
δ′ (ξn − 〈ξn〉α)

)}
+

Nξ∑
m=1

®
wαΓxi,α

∂〈ξm〉α
∂xi

∂〈ξm〉α
∂xiÑ

Nξ∏
j �=m, j=1

δ (ξj − 〈ξj〉α)
é (

δ′′ (ξm − 〈ξm〉α)
)⎫⎬⎭



343

Now, plugging (C.26), (C.29), and (C.33) into (C.24), the quadrature-approximated

multivariate NDF transport equation becomes:Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)éï ∂
∂t

(wα) +
∂

∂xi
(〈vi〉αwα)− ∂

∂xi

Å
Γxi,α

∂wα

∂xi

ãò
−
Ñ

Nξ∑
m=1

⎡⎣Ñ Nξ∏
j=1, j �=m

δ
(
ξj − 〈ξj〉α

)é (
δ′ (ξm − 〈ξm〉α)

)⎤⎦éïwα
∂

∂t
(〈ξm〉α)

+ 〈vi〉αwα
∂

∂xi
(〈ξm〉α)− wα

∂

∂xi

Ç
Γxi,α

∂〈ξ〉α
∂xi

å
+ 2Γxi,α

∂wα

∂xi

∂〈ξm〉α
∂xi

ô
=

Nξ∑
m=1

Nξ∑
n=1

⎧⎨⎩wαΓxi,α
∂〈ξm〉α
∂xi

∂〈ξn〉α
∂xi

Ñ
Nξ∏

j �=m,n, j=1

δ (ξj − 〈ξj〉α)
é

×

(
δ′ (ξm − 〈ξm〉α)

) (
δ′ (ξn − 〈ξn〉α)

)}

+

Nξ∑
m=1

⎧⎨⎩wαΓxi,α
∂〈ξm〉α
∂xi

∂〈ξm〉α
∂xi

Ñ
Nξ∏

j �=m, j=1

δ (ξj − 〈ξj〉α)
é (

δ′′ (ξm − 〈ξm〉α)
)⎫⎬⎭

+ Sξ +Dξ. (C.34)

As in Section C.1, this equation can be rewritten in terms of the weights wα and

the weighted abscissas ςmα = wα〈ξm〉α by using three identities. First, an identity for

the temporal derivative of the weighted abscissa,

∂

∂t
(ςmα) = wα

∂

∂t
(〈ξm〉α) + 〈ξm〉α ∂

∂t
(wα) , (C.35)

can be rearranged to isolate terms appearing in (C.34):

wα
∂〈ξm〉α

∂t
=

∂ςmα

∂t
− 〈ξm〉α∂wα

∂t
. (C.36)

The second identity is for the weighted abscissa convection term:

∂

∂xi
(〈vi〉α ςmα) =

∂

∂xi
(〈vi〉αwα〈ξm〉α)

= 〈vi〉αwα
∂

∂xi
(〈ξm〉α) + 〈ξm〉α ∂

∂xi
(〈vi〉αwα)
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which, isolating terms appearing in (C.34), yields:

〈vi〉αwα
∂

∂xi
(〈ξm〉α) =

∂

∂xi
(〈vi〉α ςmα)− 〈ξm〉α ∂

∂xi
(〈vi〉αwα) . (C.37)

The third and final identity is for the weighted abscissa diffusion term:

∂

∂xi

Å
Γxi,α

∂

∂xi
(ςm,α)

ã
=

∂

∂xi

Å
Γxi,α

∂

∂xi
(wα〈ξm〉α)

ã
=

∂

∂xi

Ç
wαΓxi,α

∂〈ξm〉α
∂xi

+ 〈ξm〉αΓxi,α
∂wα

∂xi

å
= wα

∂

∂xi

Ç
Γxi,α

∂〈ξm〉α
∂xi

å
+ 2Γxi,α

∂〈ξm〉α
∂xi

∂wα

∂xi

+〈ξm〉α ∂

∂xi

Å
Γxi,α

∂wα

∂xi

ã
,

and isolating terms appearing in (C.34):

2Γxi,α
∂〈ξm〉α
∂xi

∂wα

∂xi
+ wα

∂

∂xi

Ç
Γxi,α

∂〈ξm〉α
∂xi

å
=

∂

∂xi

Å
Γxi,α

∂

∂xi
(ςm,α)

ã
+ 〈ξm〉α ∂

∂xi

Å
Γxi,α

∂wα

∂xi

ã
. (C.38)

Next, (C.36), (C.37), and (C.38) can be plugged into the quadrature-approximated

NDF transport equation (C.34) to yield:

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

) ï ∂
∂t

(wα) +
∂

∂xi
(〈vi〉αwα)− ∂

∂xi

Å
Γxi,α

∂wα

∂xi

ãò
−

Nξ∑
m=1

⎡⎣Ñ Nξ∏
j=1, j �=m

δ
(
ξj − 〈ξj〉α

)é (
δ′ (ξm − 〈ξm〉α)

)⎤⎦ß ∂

∂t
(ςmα) +

∂

∂xi
(〈vi〉α ςmα)

− ∂

∂xi

Å
Γxi,α

∂

∂xi
(ςm,α)

ã
− 〈ξm〉α

Å
∂

∂t
(wα) +

∂

∂xi
(〈vi〉αwα)− ∂

∂xi

Å
Γxi,α

∂wα

∂xi

ãã™
=

Nξ∑
m=1

Nξ∑
n=1

⎧⎨⎩wαΓxi,α
∂〈ξm〉α
∂xi

∂〈ξn〉α
∂xi

Ñ
Nξ∏

j �=m,n, j=1

δ (ξj − 〈ξj〉α)
é

×
(
δ′ (ξm − 〈ξm〉α)

) (
δ′ (ξn − 〈ξn〉α)

)}
+

Nξ∑
m=1

⎧⎨⎩wαΓxi,α
∂〈ξm〉α
∂xi

∂〈ξm〉α
∂xi

Ñ
Nξ∏

j �=m, j=1

δ (ξj − 〈ξj〉α)
é (

δ′′ (ξm − 〈ξm〉α)
)⎫⎬⎭

+Sξ +Dξ (C.39)
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or, representing the dissipation terms using Cmnα = Dx,α
∂ 〈ξm〉α
∂xi

∂ 〈ξn〉α
∂xi

, this equation

becomes:

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

) ï ∂
∂t

(wα) +
∂

∂xi
(〈vi〉αwα)− ∂

∂xi

Å
Γxi,α

∂wα

∂xi

ãò
−

Nξ∑
m=1

⎡⎣Ñ Nξ∏
j=1, j �=m

δ
(
ξj − 〈ξj〉α

)é (
δ′ (ξm − 〈ξm〉α)

)⎤⎦ß ∂

∂t
(ςmα) +

∂

∂xi
(〈vi〉α ςmα)

− ∂

∂xi

Å
Γxi,α

∂

∂xi
(ςm,α)

ã
− 〈ξm〉α

Å
∂

∂t
(wα) +

∂

∂xi
(〈vi〉αwα)− ∂

∂xi

Å
Γxi,α

∂wα

∂xi

ãã™
=

Nξ∑
m=1

Nξ∑
n=1

⎧⎨⎩wαCmnα

Ñ
Nξ∏

j �=m,n, j=1

δ (ξj − 〈ξj〉α)
é (

δ′ (ξm − 〈ξm〉α)
) (

δ′ (ξn − 〈ξn〉α)
)⎫⎬⎭

+

Nξ∑
m=1

⎧⎨⎩wαCmmα

Ñ
Nξ∏

j �=m, j=1

δ (ξj − 〈ξj〉α)
é (

δ′′ (ξm − 〈ξm〉α)
)⎫⎬⎭

+Sξ +Dξ. (C.40)

In this equation, several terms can be isolated as transport equations for the weights

wα and weighted abscissa ςα:

∂

∂t
(wα) +

∂

∂xi
(〈vi〉αwα)− ∂

∂xi

Å
Γxi,α

∂

∂xi
(wα)

ã
= aα (C.41)

∂

∂t
(ςnα) +

∂

∂xi
(〈vi〉α ςnα)−

∂

∂xi

Å
Γxi,α

∂

∂xi
(ςn,α)

ã
= bnα (C.42)

Where aα and bmα are source terms. Upon substituting the terms on the right-hand

side for the terms on the left-hand side in (C.16), and re-expressing the delta function

derivatives, the final NDF transport equation (the form of interest) is obtained:
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N∑
α=1

⎡⎣Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)
+

Nξ∑
m=1

⎡⎣Ñ Nξ∏
j=1, j �=m

δ
(
ξj − 〈ξj〉α

)é (
δ′ (ξm − 〈ξm〉α)

)⎤⎦〈ξm〉α
⎤⎦aα

−
N∑

α=1

Nξ∑
m=1

⎡⎣Ñ Nξ∏
j=1, j �=m

δ
(
ξj − 〈ξj〉α

)é (
δ′ (ξm − 〈ξm〉α)

)⎤⎦bmα =

Nξ∑
m=1

Nξ∑
n=1

{
wαΓxi,α

∂〈ξm〉α
∂xi

∂〈ξn〉α
∂xi

Ñ
Nξ∏

j �=m,n, j=1

δ (ξj − 〈ξj〉α)
é

(
δ′ (ξm − 〈ξm〉α)

) (
δ′ (ξn − 〈ξn〉α)

)}

+

Nξ∑
m=1

{
wαΓxi,α

∂〈ξm〉α
∂xi

∂〈ξm〉α
∂xi

Ñ
Nξ∏

j �=m, j=1

δ (ξj − 〈ξj〉α)
é

+
(
δ′′ (ξm − 〈ξm〉α)

)}
+ Sξ +Dξ (C.43)

This can be expressed more concisely as:

N∑
α=1

⎡⎣Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)
+

N∑
m=1

∂

∂〈ξm〉α

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é 〈ξm〉α
⎤⎦aα

−
N∑

α=1

N∑
n=1

⎡⎣ ∂

∂〈ξn〉α

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é⎤⎦ bnα =

N∑
α=1

Nξ∑
m=1

Nξ∑
n=1

⎡⎣ ∂2

∂〈ξm〉α∂〈ξn〉α

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é⎤⎦wαCmnα + Sξ +Dξ (C.44)

where Cmnα is a “cross-coordinate” dissipation term, defined as Cmnα = Γxi,α
∂〈ξm〉α
∂xi

∂〈ξn〉α
∂xi

.

C.3 Summary

In summary, for the univariate and multivariate cases, there is a set of equations

that provide the starting point for the solution procedure, described in detail in Section

2.4.3. For the univariate case, this set of equations consists of the weight and weighted

abscissa transport equations:
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∂

∂t
(wα) +

∂

∂xi
(〈vi〉αwα)− ∂

∂xi

Å
Dx,α

∂wα

∂xi

ã
= aα (C.45)

∂

∂t
(ςα) +

∂

∂xi
(〈vi〉αςα)− ∂

∂xi

Å
Dx,α

∂ςα
∂xi

ã
= bα (C.46)

and the corresponding univariate quadrature approximated NDF transport equation is:

N∑
α=1

[
δ (ξ − 〈ξ〉α) + δ′ (ξ − 〈ξ〉α) 〈ξ〉α

]
aα

−
N∑

α=1

[
δ′ (ξ − 〈ξ〉α)

]
bα =

N∑
α=1

δ′′ (ξ − 〈ξ〉α)wαCα

+Sξ +Dξ. (C.47)

For the multivariate case, this set of equations consists of the multivariate weight

and weighted abscissa transport equations:

∂

∂t
(wα) +

∂

∂xi
(〈vi〉αwα)− ∂

∂xi

Å
Dx,α

∂

∂xi
(wα)

ã
= aα (C.48)

∂

∂t
(ςnα) +

∂

∂xi
(〈vi〉αςnα)− ∂

∂xi

Å
Dx,α

∂

∂xi
(ςn,α)

ã
= bnα (C.49)

and the multivariate quadrature approximated NDF transport equation:

N∑
α=1

⎡⎣Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)
+

N∑
m=1

∂

∂〈ξm〉α

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é 〈ξm〉α
⎤⎦aα

−
N∑

α=1

N∑
n=1

⎡⎣ ∂

∂〈ξn〉α

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é⎤⎦ bnα =

N∑
α=1

Nξ∑
m=1

Nξ∑
n=1

⎡⎣ ∂2

∂〈ξm〉α∂〈ξn〉α

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é⎤⎦wαCmnα + Sξ +Dξ. (C.50)



APPENDIX D

MOMENT-TRANSFORMED NUMBER DENSITY

FUNCTION TRANSPORT EQUATION

Upon derivation of the quadrature-approximated NDF transport equations, the

moment transform, which becomes linear when applied to the quadrature-approximated

NDF integral, can be applied to obtain the moment-transformed, quadrature-approximated

number density function transport equation. This is derived below for a univariate and

multivariate NDF.

D.1 Moment-Transformed Univariate NDF

Becuase the quadrature-approximated univariate NDF transport equation (C.47) is

only a single equation, but the number of moments, weights, and abscissas that need to

be tracked to maintain a high accuracy representation of the NDF is larger than one, a

set of independent linear equations must be derived from equation (C.47). This can be

done by selecting a set of linearly independent moments. The number of moments that

must be selected is 2N , since there are N unknown weights and N unknown abscissas.

The quadrature-approximated univariate NDF transport equation is written as:

N∑
α=1

[
δ (ξ − 〈ξ〉α) + δ′ (ξ − 〈ξ〉α) 〈ξ〉α

]
aα

−
N∑

α=1

[
δ′ (ξ − 〈ξ〉α)

]
bα =

N∑
α=1

δ′′ (ξ − 〈ξ〉α)wαCα

+Sξ +Dξ. (D.1)
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Next, the moment transform, defined by (2.25) can be taken. Using the properties of

the delta function [16,52],

ˆ ∞

−∞
ξkδ (ξ − 〈ξ〉α) dξ = 〈ξk〉α (D.2)

ˆ ∞

−∞
ξkδ′ (ξ − 〈ξ〉α) dξ = −k〈ξk−1〉α (D.3)

ˆ +∞

−∞
ξkδ′′ (ξ − 〈ξ〉α) dξ = k (k − 1) 〈ξk−2〉α, (D.4)

and multiplying by the denominator of (2.25), the moment-transformed NDF transport

equation becomes:

N∑
α=1

î
〈ξk〉α − k〈ξk〉α

ó
aα

+
N∑

α=1

î
k〈ξk−1〉α

ó
bα =

N∑
α=1

k (k − 1) 〈ξk−2〉αwαCα + Sk +Dk (D.5)

where Sk is the moment transform (for the kth moment) of the phase-space convection

source term Sξ (the quantity Sξ is defined in equation (2.58)), defined as:

Sk =

ˆ +∞

−∞
ξkSξdξ (D.6)

= −
ˆ +∞

−∞

[
N∑

α=1

ξk
∂

∂ξ
(〈G〉αwαδ (ξ − 〈ξ〉α))

]
dξ

which, using integration by parts, becomes:

Sk =
N∑

α=1

ñ
− ξk 〈G〉α (wαδ (ξ − 〈ξ〉α))

∣∣∣ξ=+∞
ξ=−∞ +

ˆ +∞

−∞
dξk

dξ
〈G〉αwαδ (ξ − 〈ξ〉α) dξ

ô
= 0 + k

ˆ +∞

−∞

[
N∑

α=1

ξk−1 〈G〉αwαδ (ξ − 〈ξ〉α)
]
dξ

= −
N∑

α=1

k
¨
ξk−1

∂
α
(wα 〈G〉α). (D.7)

Dk is the moment transform of the phase space diffusive term Dξ (the quantity Dξ is

defined in equation (2.57)), defined as:
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Dk =

ˆ +∞

−∞
ξkDξdξ (D.8)

=

ˆ +∞

−∞

[
N∑

α=1

ξk
∂

∂ξ

Å
Γξ,α

∂

∂ξ
(wαδ (ξ − 〈ξ〉α))

ã]
dξ

=
N∑

α=1

ñ
ξkΓξ,α

∂

∂ξ
(wαδ (ξ − 〈ξ〉α))

∣∣∣∣ξ=+∞

ξ=−∞
−
ˆ +∞

−∞
dξk

dξ
Γξ,α

∂

∂ξ
(wαδ (ξ − 〈ξ〉α)) dξ

ô
=

N∑
α=1

ñ
0− k

ˆ +∞

−∞
ξk−1Γξ,α

∂

∂ξ
(wαδ (ξ − 〈ξ〉α)) dξ

ô
=

N∑
α=1

ñ
0− ξk−1Γξ,αwαδ (ξ − 〈ξ〉α)

∣∣∣ξ=+∞
ξ=−∞ + k

ˆ +∞

−∞
dξk−1

dξ
Γξ,α

∂

∂ξ
(wαδ (ξ − 〈ξ〉α)) dξ

ô
=

N∑
α=1

ñ
0− 0 + k (k − 1)

ˆ +∞

−∞
ξk−2Γξ,αwαδ (ξ − 〈ξ〉α)

ô
=

N∑
α=1

k (k − 1)
¨
ξk−2

∂
α
(wαΓξ,α). (D.9)

Equation (D.5) contains unknowns for each of the N weights and N weighted abscis-

sas, for a total of 2N equations, and therefore requires 2N moment indices k. Another

way to express this is to say that the quadrature approximation has a degree of freedom

for each of the N weights and each of the N abscissa locations, leading to 2N degrees

of freedom. This set of equations can alternatively be expressed as a linear system,

Ax = B,

which is covered extensively in Appendix E.

D.2 Moment-Transformed Multivariate NDF

The same procedure can be done for the multivariate case, starting with the muti-

variate quadrature-approximated NDF transport equation:
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N∑
α=1

⎡⎣Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)
+

Nξ∑
m=1

∂

∂〈ξm〉α

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é 〈ξm〉α
⎤⎦aα

−
N∑

α=1

Nξ∑
n=1

⎡⎣ ∂

∂〈ξn〉α

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é⎤⎦ bn,α =

N∑
α=1

Nξ∑
m=1

Nξ∑
n=1

⎡⎣ ∂2

∂〈ξm〉α∂〈ξn〉α

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é⎤⎦Cmnα + Sξ +Dξ (D.10)

where Sξand Dξ are the multivariate phase space convection and diffusion terms, defined

by (2.62) and (2.63), respectively.

Next, using the corresponding properties of the multivariate delta function (sum-

mations over α are implied):

+∞̇

−∞

Ñ
Nξ∏
i=1

ξkii

éÑ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é
dξ =

Nξ∏
m=1

〈ξkmm 〉α (D.11)

Nξ∑
m=1

∞̇

−∞

Ñ
Nξ∏
i=1

ξkii

é
× (D.12)Ñ

∂

∂〈ξm〉α

Ñ
Nξ∏
j=1

δ (ξj − 〈ξj〉α)
éé

dξ =

Nξ∑
m=1

⎡⎣ÑNξ∏
i=1

ξkii

é
×Ñ

Nξ∏
j �=m, j=1

δ
(
ξj − 〈ξj〉α

)é×
(
δ′ (ξm − 〈ξm〉α)

)]
=

Nξ∑
m=1

Ñ
Nξ∏

j �=m, j=1

〈ξkjj 〉α
éÄ

−km〈ξkm−1
m 〉α

ä
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∞̇

−∞

Ñ
Nξ∏
i=1

ξkii

é
× (D.13)Ñ

∂2

∂〈ξm〉α∂〈ξn〉α

Ñ
Nξ∏
j=1

δ (ξj − 〈ξj〉α)
éé

dξ =

Nξ∑
m=1

Nξ∑
n=1

⎡⎣ÑNξ∏
i=1

ξkii

é
×Ñ

Nξ∏
j �=m,n j=1

δ
(
ξj − 〈ξj〉α

)é×

(
δ′ (ξm − 〈ξm〉α)

) (
δ′ (ξn − 〈ξn〉α)

)]

+

Nξ∑
m=1

⎡⎣ÑNξ∏
i=1

ξkii

é
Ñ

Nξ∏
j �=m, j=1

δ (ξj − 〈ξj〉α)
é (

δ′′ (ξm − 〈ξm〉α)
)⎤⎦

=

Nξ∑
m=1

Nξ∑
n=1

[
kmkn〈ξkm−1

m 〉α〈ξkn−1
n 〉α×Ñ

Nξ∏
j �=m,n j=1

〈ξkjj 〉
é⎤⎦

+

Nξ∑
m=1

[
km (km − 1)

¨
ξkm−1
m

∂
αÑ

Nξ∏
j �=m, j=1

〈ξkJj 〉α
é]

In this case, the moment transform of the multivariate NDF transport equation

becomes:
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N∑
α=1

⎡⎣ÑNξ∏
j=1

〈ξkj

j 〉α
é

−
Nξ∑
m=1

km
Ä
〈ξkmm 〉α

äÑ Nξ∏
j �=m, j=1

〈ξkjj 〉α
é⎤⎦ aα

+
N∑

α=1

Nξ∑
n=1

î
kn
¨
ξkn−1
n

∂
αÑ

Nξ∏
j �=n, j=1

〈ξkjj 〉α
é⎤⎦ bn,α =

N∑
α=1

Nξ∑
m=1

î
km (km − 1)

¨
ξkm−2
m

∂
α
×Ñ

Nξ∏
j �=m, j=1

〈ξkjj 〉α
é⎤⎦wαCmmα

+
N∑

α=1

Nξ∑
m=1

Nξ∑
n=1

î
kmkn

¨
ξkm−1
m

∂
α

¨
ξkn−1
n

∂
α
×Ñ

Nξ∏
j �=m, j=1

〈
ξ
kj
j

〉
α

é⎤⎦wαCmnα

+Sk +Dk (D.14)

where Cmmα = Dx,α
∂〈ξm〉α
∂xi

∂〈ξm〉α
∂xi

and Cmnα = Dx,α
∂〈ξm〉α
∂xi

∂〈ξn〉α
∂xi

. Because the

phase-space convection and diffusion terms contain the NDF, the quadarature approxi-

mation can be used to simplify the term Sk:

Sk =

Nξ∑
n=1

+∞̇

−∞

ÑÑ
Nξ∏
m=1

ξkmm

é
Sξn

é
dξ (D.15)

= −
Nξ∑
n=1

N∑
α=1

+∞̇

−∞

ÑÑ
Nξ∏
m=1

ξkmm

é
∂

∂ξn

Ñ
〈Gn〉α wα

Nξ∏
j=1

δ (ξj − 〈ξj〉α)
éé

dξ

and again using integration by parts, this becomes:
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Sk = −
Nξ∑
n=1

N∑
α=1

Ñ
Nξ∏
m=1

ξkmm

éÑ
Gnwα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é∣∣∣∣∣∣
ξ=+∞

ξ=−∞

+

Nξ∑
n=1

N∑
α=1

+∞̇

−∞

∂

∂ξn

Ñ
Nξ∏
m=1

ξkmm

é
Gnwα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)
dξ

= 0 +

Nξ∑
n=1

N∑
α=1

+∞̇

−∞

{Ñ Nξ∏
m �=n,m=1

ξkmm

éÄ
kn 〈ξn〉kn−1

α

ä
×Ñ

〈Gn〉α wα

Nξ∏
j �=n,j=1

δ (ξj − 〈ξj〉α)
é
dξ

}

=

Nξ∑
n=1

N∑
α=1

⎡⎣Ñ Nξ∏
m �=n,m=1

〈ξkmm 〉α
éÄ

kn〈ξkn−1
n 〉α

ä
(wα 〈Gn〉α)

⎤⎦ (D.16)

The term Dk can also be simplified by using the quadrature approximation:

Dk =

Nξ∑
n=1

+∞̇

−∞

ÑÑ
Nξ∏
m=1

ξkmm

é
Dξn

é
dξ (D.17)

=

Nξ∑
n=1

N∑
α=1

+∞̇

−∞

⎡⎣Ñ Nξ∏
m=1

ξkmm

é
∂

∂ξn

Ñ
Γξn,α

∂

∂ξn

Ñ
wα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)éé⎤⎦dξ
Next, using integration by parts twice, this can be simplified to:
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Dk =

Nξ∑
n=1

N∑
α=1

Ñ
Nξ∏
m=1

ξkmm

é
Γξn,α

∂

∂ξn

Ñ
wα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é∣∣∣∣∣∣
ξ=+∞

ξ=−∞

−
Nξ∑
n=1

N∑
α=1

+∞̇

−∞

∂

∂ξn

Ñ
Nξ∏
m=1

ξkmm

é
Γξn,α

∂

∂ξn

Ñ
wα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é

= 0−
Nξ∑
n=1

N∑
α=1

Ñ
Nξ∏

m �=n,m=1

ξkmm

éÄ
knξ

kn−1
n

ä
(Γξn,α)

Ñ
wα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é∣∣∣∣∣∣
ξ=+∞

ξ=−∞

+

Nξ∑
n=1

N∑
α=1

+∞̇

−∞

⎡⎣Ñwα

Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)é ∂

∂ξn

ÑÑ
Nξ∏

m �=n,m=1

ξkmm

éÄ
knξ

kn−1
n

äé⎤⎦
0− 0 +

Nξ∑
n=1

N∑
α=1

(wαΓξn,α)

Ñ
Nξ∏
j=1

δ
(
ξj − 〈ξj〉α

)éÑ Nξ∏
m �=n,m=1

ξkmm

éÄ
kn (kn − 1) ξkn−2

n

ä
=

Nξ∑
n=1

N∑
α=1

Ñ
Nξ∏

m �=n,m=1

¨
ξkmm
∂
α

éÄ
kn (kn − 1)

¨
ξkn−2
n

∂
α

ä
(wαΓξn,α) . (D.18)

As with the univariate moment-transformed quadrature-approximated NDF transport

equation, with all simplifications, these equations can be combined to form a linear

system,

Ax = B, (D.19)

whose construction is covered in great detail in Appendix E.



APPENDIX E

CONSTRUCTION OF LINEAR SYSTEM

FOR DQMOM

Because the moment transform applied to a quadrature-approximated integral is

linear, the moment-transformed quadrature-approximated NDF transport equation can

be expressed as a linear system. This linear system, when solved, provides the source

terms for the transport equations for the quadrature weights and abscissas. The form

of this linear system is detailed below for both a univariate and a multivariate NDF.

E.1 Univariate Linear System

Appendix D covered the derivation of the univariate moment-transformed quadrature-

approximated NDF transport equation D.5, which can be used to solve for N weights

and N abscissas, for a total of 2N equations, using a set of 2N independent moments.

The transport equations for the moments, originating from the moment transform of the

quadrature-approximated NDF transport equation, are independent equations that can

be cast in matrix form,

Ax = B

where x is the vector of unknowns aα and bα,

x = [a b ]T

= [ a1 . . . aN b1 . . . bN ]T .
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The matrix A contains the coefficients of the unknowns: one column for each ele-

ment of x at each quadrature node, and one row for each moment:

A = [A1 A2 ] (E.1)

A1 = 〈ξk〉α − k〈ξk〉α (E.2)

A2 = k〈ξk−1〉α. (E.3)

The matrices A1 and A2 correspond, respecitvely, to a and b; both are 2N×N matrices,

with one row for each moment and one column for each environment. This makes A a

2N × 2N matrix.

The right-hand side vector B contains vectors for each of the NDF source terms,

including diffusion in x space (Cdiff ), convection in phase space (S), and diffusion in

phase space (Ddiff ). B can be expressed as the sum of each of these. The diffusion

vector C can be rewritten as:

Cdiff = AcwC, (E.4)

where Ac is a 2N ×N matrix with entries:

Ac = k (k − 1)
¨
ξk−2

∂
α
; (E.5)

each row of Ac corresponds to a moment k, and each column of Ac corresponds to a

quadrature node α. w is an N ×N matrix, w = diag (w1, . . . , wN ), and C is an N × 1

vector, C = [Cα=1, . . . , Cα=N ], where Ci is defined by (2.56).

Next, the vector S can be rewritten as:

S = A2wG, (E.6)
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where G is an N × 1 vector containing the phase-space convection terms,
G = [Gα=1, . . . , Gα=N ] , (E.7)

and w and A2 are the same as above.

Finally, the vector Ddiff can be written as:

Ddiff = AcwΓ (E.8)

where Γ is an N × 1 vector of the diffusion coefficients for each environment, Γ =

[Γξ,α=1, . . . , Γξ,α=N ]. Now, the linear system being solved can also be rewritten:

Ax = B (E.9)

[A1 A2] [a b]T = Cdiff + S+Ddiff (E.10)

A1a+A2b = AcwC+A2wG+AcwΓ (E.11)

A1a+A2 (b−wG) = Acw (C+ Γ) (E.12)

A1a+A2b

 = Acw (C+ Γ) (E.13)

and the last equation can be written as

Ax
 = B
. (E.14)

E.2 Multivariate Linear System

As with the univariate case, the multivariate moment-transformed quadrature-

approximated NDF provides a set of independent equations with which to track the N

weights and the Nξ × N abscissas. The multivariate moment-transformed quadrature-

approximated NDF is given by equation (D.14), and is a set of N (Nξ + 1) independent

equations, requiring N (Nξ + 1) independent moments. These independent equations

are linear, due to the quadrature approximation, and can be expressed in the form:
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Ax = B. (E.15)

The x matrix is a combination of several smaller matrices. It is defined as:

x =
î
a b1 b2 . . . bNξ

óT
(E.16)

and the submatrices are defined as:

a = aα =

ï
a1 a2 · · · aN

òT
(E.17)

bi = bi,α =

ï
bi,1 bi,2 · · · bi,N

òT
(E.18)

where i = 1, 2, · · · , Nξ. All of the terms in the matrix x are unknown quantities. The

matrix A is, like the univariate case, composed of several submatrices:

A =
î
A0 . . . A1 . . . ANξ

ó
. (E.19)

The matrix A0 is composed of the elements:

A0 =

Ñ
Nξ∏
j=1

〈
ξ
kj
j

〉
α

é
−

Nξ∑
m=1

⎡⎣¨ξkmm ∂α
Ñ

Nξ∏
j �=m,m=1

〈
ξ
kj
j

〉
α

é⎤⎦ , (E.20)

with one column for each quadrature node and one row for each moment, making A0 a

matrix of size N (Nξ + 1)×N . This matrix contains coefficeints of a.

The remaining A submatrices are calculated in a similar fashion; the matrix Aj

(where j = 1, · · · , Nξ) contains terms of the form:
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Aj =
∂

∂〈ξj〉α

Ñ
Nξ∏
n=1

〈ξknn 〉α
é

(E.21)

= (kj)
(
〈ξkj−1

j 〉α
)Ñ Nξ∏

n �=j, n=1

〈ξknn 〉α
é

. (E.22)

These matrices each have size (Nξ + 1)N ×N , with one row for each moment and one

column for each environment. Using equations (E.20) and (E.22), the entire A matrix

can be determined.

The B matrix consists of the right-hand side source and sink terms for the number

density function. These include vectors for diffusion in x space (Cdiff ), convection in

phase space (S), and diffusion in phase space (Ddiff ). B can be expressed as a linear

combination of these vectors. Each of these matrices can be simplified, starting with

Cdiff :

Cdiff = AcWC. (E.23)

Ac is a coefficient matrix of size (Nξ + 1)N ×N2
ξ , defined as:

Ac = Ak
c (m,n) =

⎡⎢⎢⎢⎢⎢⎣
A

(1)
c(1,1) . . . A

(1)
c(1,Nξ)

. . . A
(1)
c(Nξ,1)

. . . A
(1)
c(Nξ,Nξ)

...
...

A
(NξN+N)

c(1,1) . . . . . . . . . A
(NξN+N)

c(Nξ,Nξ)

⎤⎥⎥⎥⎥⎥⎦
where each submatrix Ak

c (m,n) is a 1×N matrix with elements
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Ak
c (m,n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1− δmn)

⎧⎨⎩kmkn
¨
ξkmm
∂
α=1

¨
ξknn
∂
α=1

Ñ
Nξ∏

j �=m,n j=1

〈
ξ
kj
j

〉
α=1

é⎫⎬⎭
+δmn

⎧⎨⎩km (km − 1)
¨
ξki−2
m

∂
α=1

Ñ
Nξ∏

j �=m, j=1

〈
ξ
kj
j

〉
α=1

é⎫⎬⎭
...

(1− δmn)

⎧⎨⎩kmkn
¨
ξkmm
∂
α=N

¨
ξknn
∂
α=N

Ñ
Nξ∏

j �=m,n j=1

〈
ξ
kj
j

〉
α=N

é⎫⎬⎭
+δmn

⎧⎨⎩km (km − 1)
¨
ξki−2
m

∂
α=N

Ñ
Nξ∏

j �=m, j=1

¨
ξkmj
∂
α=N

é⎫⎬⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

with

δmn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if m = n

0 if m �= n

.

The matrix W is a diagonal matrix of size N2
ξ × N2

ξ , W = diag (w), where w is an

N × N diagonal matrix, w = diag (wα=1, . . . , wα=N ). Finally, the matrix C is of size

N2
ξ × 1 and contains the diffusion terms,

C = C(m,n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(1,1)

. . .

C(1,Nξ)

. . .

C(Nξ,1)

. . .

C(Nξ,Nξ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (E.24)

where the submatrices C(m,n) are N × 1 matrices with elements
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C(m,n) =

⎡⎢⎢⎢⎢⎢⎢⎣
Dx,α=1

∂ 〈ξm〉α=1

∂xi

∂ 〈ξn〉α=1

∂xi
...

Dx,α=N
∂ 〈ξm〉α=N

∂xi

∂ 〈ξn〉α=N

∂xi

⎤⎥⎥⎥⎥⎥⎥⎦ . (E.25)

This makes Cdiff a (Nξ + 1)N × 1 vector. It can be expressed more concisely as:

Cdiff =

Nξ∑
m=1

Nξ∑
n=1

N∑
α=1

Ñ
δmn

⎧⎨⎩km (km − 1)
¨
ξkm−2
m

∂
α

Ñ
Nξ∏

j �=m, j=1

〈
ξ
kj
j

〉
α

é
wαCmmα

⎫⎬⎭
+(1− δmn)

⎧⎨⎩kmkn
¨
ξkm−1
m

∂
α

¨
ξkn−1
n

∂
α

Ñ
Nξ∏

j �=m,n, j=1

〈
ξ
kj
j

〉
α

é
wαCmnα

⎫⎬⎭
é

with one row for each moment k.

The phase-space diffusion vector Ddiff can be written in a similar way:

Ddiff = AcwΓ (E.26)

where Γ =
î
Γξ=1,α=1, . . . , Γξ=1,α=N Γξ=2,α=1 . . . Γξ=Nξ,α=N

ó
.

Finally, the phase-space convection vector S can be rewritten as:

S = AsW
′G, (E.27)

where As =
î
A1 . . . ANξ

ó
contains all but one of the submatrices comprising the

coefficient matrix A, defined in equation defined above, equation E.1); W′ is an Nξ×Nξ

diagonal matrix, W′ = diag (w) (where w is an N ×N matrix defined above); and G is

an Nξ × 1 vector containing the phase-space convection terms; it is defined as:

G =

⎡⎢⎢⎢⎢⎢⎣
G1

. . .

GNξ

⎤⎥⎥⎥⎥⎥⎦ (E.28)
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and the submatrices comprising G are N × 1 matrices defined as

Gj =

⎡⎢⎢⎢⎢⎢⎣
〈Gj〉α=1

. . .

〈Gj〉α=N

⎤⎥⎥⎥⎥⎥⎦ . (E.29)

This makes S an (Nξ + 1)N × 1 vector containing source terms due to phase-space

convection. S can be expressed in compact notation using equation (D.16); this results

in:

S =

Nξ∑
n=1

N∑
α=1

⎡⎣Ñ Nξ∏
m �=n,m=1

〈ξkmm 〉α
éÄ

kn〈ξkn−1
n 〉α

ä
(wα 〈Gn〉α)

⎤⎦ (E.30)

with one row for each k. Likewise, Ddiff can be expressed in compact notation using

equation (D.18), which yields:

Ddiff =

Nξ∑
n=1

N∑
α=1

Ñ
Nξ∏

m �=n,m=1

¨
ξkmm
∂
α

é
(kn) (kn − 1)

Ä¨
ξkn−2
n

∂
α

ä
(wαΓξn,α) . (E.31)

The linear system for the multivariate system can also be rewritten:
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Ax = B (E.32)

î
A0A1 . . . ANξ

ó
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b1

...

bNξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Cdiff + S+Ddiff

A0a+A1b1 + · · ·+ANξ
bNξ

= AcWC+AcWΓ

+AsW
′G

A0a+A1b1 + · · ·+ANξ
bNξ

= AcWC+AcWΓ

+A1wG1 + . . .

+ANξ
wGNξ

A0a+A1 (b1 −wG1) + . . .

+ANξ

Ä
bNξ

−wGNξ

ä
= AcW (C+ Γ)

A0a+A1b


1 + · · ·+ANξ

b

Nξ

= AcW (C+ Γ)

Ax
 = B
. (E.33)

There are also several limiting cases in which the linear system can be further simplified;

these are covered in Appendix F.



APPENDIX F

SPECIAL CASES FOR DQMOM LINEAR SYSTEM

There are several special cases that simplify the form of the DQMOM linear system.

F.1 No Birth/Death

For inhomogeneous cases with no birth or death terms, h = 0, and an additional

constraint can be implemented: the source term for environment weights can be set

equal to zero. That is,

a = 0. (F.1)

This eliminates the variables in a as unknowns and makes the weight transport equations

∂wα

∂t
+

∂

∂xi
(〈ui〉αwα)− ∂

∂xi

Å
Dx,α

∂

∂xi
(wα)

ã
= 0. (F.2)

F.1.1 No Birth/Death Only

In the case of no birth or death of particles (and no additional simplifications),

the number of unknowns in the matrix system Ax
 = B
 is reduced from (Nξ + 1)N

to NξN (N weight source terms are eliminated as unknowns). This also reduces the

number of moments that msut be specified to NξN , and reduces the size of the matrices

given in Appendix E accordingly. The matrix system becomes:

A′x
′ = B
′ (F.3)
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where each matrix has changed slightly; A becomes (for the multivariate case):

A′ =
î
A1 . . . ANξ

ó
(F.4)

where the matrix A0, containing the prefixes for the variables in a, is gone. Likewise,

x′ becomes:

x′ =
î
b

1 . . . b


Nξ

óT
(F.5)

and each matrix composing the parts of B
 is changed because of the reduced number

of moments. B
′ becomes an NξN × 1 vector, rather than an (Nξ + 1)N × 1 vector.

F.1.2 No Birth/Death, No Dispersion/Diffusion

The lack of birth or death of particles causes h = 0 in B
. Coupled with a lack of

dispersion, which causes AcWC = 0 and AcWΓ = 0, this will make the entire right-

hand side equal to zero, so the system being solved is:

Ax
 = 0 (F.6)

(Note that, as above, a = 0, and the linear system being solved is a reduced linear

system). This case only applies in the absence of gradients for all environments’ internal

coordinate values.

Two types of solutions exist for this linear system; the first is the trivial solution,

x
 = 0, and the second is the nontrivial solution. Following [17], the trivial solution can

be found by setting x
 = 0, which makes b
i,α = 0. In this case,

b

i = 0 (F.7)
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or,

aα = 0 (F.8)

bi,α = wαGi,α (F.9)

and thus the expressions for the weighted abscissa transport equation source terms are

not coupled, and it is unnecessary to solve a linear system.

The second, nontrivial solution, as discussed in [199], arises when there are addi-

tional unknowns in the equation. The example covered in [199] is the case of evaporating

droplets, when the number density flux for droplets with zero volume is nonzero. This

necessitates an additional variable whose value is nonzero. For this reason, the trvial

solution is not satisfactory.

F.1.3 No Birth/Death, Unmixed Moments Only

To begin, the linear system being solved,

Ax
 = B
, (F.10)

can be reexpressed as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(0)
0 A

(0)
1 . . . A

(0)
Nξ

A
(1)
0 A

(1)
1 . . . A

(1)
Nξ

...
...

. . .
...

A
(Nξ)
0 A

(Nξ)
1 . . . A

(Nξ)
Nξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a


b

1

...

b

Nξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= B
 (F.11)

where A0, A1, etc. are all defined the same as in equation (E.22), but the rows (each

row of Aj corresponding to one moment) are now split up into Nξ +1 groups (indicated

by the superscripts), each group containing N moments. Each A
(n)
m is size N × N ,
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which gives the matrix A size (Nξ + 1)N × (Nξ + 1)N . Similarly, the matrix x
 is size

(Nξ + 1)N × 1, and B
 is size (Nξ + 1)N × 1.

As above, because there are no birth or death processes, the matrix A0 = 0, and

the matrix system being solved becomes

A′x
′ = B
′ (F.12)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(1)
1 A

(1)
2 . . . A

(1)
Nξ

A
(2)
1 A

(2)
2 . . . A

(2)
Nξ

...
...

. . .
...

A
(Nξ)
1 A

(Nξ)
2 . . . A

(Nξ)
Nξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b

1

b

2

...

b

Nξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= B
′ (F.13)

where one column, corresponding to the coefficients of a, and one row, corresponding

to an extra group of moments, have been eliminated from the matrix A; the element of

x
 containing a has been eliminated; and B
′ is (as above) a transformed B
, in which

a row has been removed, corresponding to the decreased number of unknown variables

(and corresponding decreased number of moments). Thus A′ is size NξN ×NξN , x
′ is

size NξN × 1, and B
′ is size NξN × 1.

Next, each moment in the set of moments used is unmixed, meaning only one

moment index is nonzero for any particular moment. In order to obtain the same amount

of information about each internal coordinate, the number of nonzero moment indices for

each internal coordinate is the same for each internal coordinate, namely, N moments.

For an unmixed moment, all but one of the matrices A
(n)
m in A′ are zero. This makes

the matrix system:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(1)
1 0 0 0

0 A
(2)
2 0 0

0 0
. . .

...

0 0 . . . A
(Nξ)
Nξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b

1

b

2

...

b

Nξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= B
′ (F.14)

which can be reduced to a set of Nξ matrix equations of the form
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Ajb


j = B


j (F.15)

where the matrix Aj is a Vandermode matrix of size N×N , b

j is a vector of N unknowns,

and B

j is a vector of N source terms.

F.2 Small N, Small Nξ

It should, of course, be mentioned that in the case of simplified physics, an ana-

lytical solution may be obtained that circumvents the need to invert the linear system.

Alternatively, for small numbers of quadrature nodes N or internal coordinates Nξ, the

linear systems are small, and can be inverted by hand for analytical solutions for a and

b.

F.3 Mixed Moment Choices

The chief difficulty that arises as the number of quadrature nodes N and internal

coordinates Nξ is increased is with finding sets of mixed moments that are linearly inde-

pendent. Marchisio [52] gives an example for two variables, showing how the covariance

is linearly dependent on the variances, so that only two of these three moments may

be selected. The origin of the problem lies in the quadrature algorithm; if two or more

moments are linearly dependent, the quadrature algorithm, which is attemping to find

orthogonal polynomials whose zeros are the abscissas, has too many constraints and not

enough information. While an a priori determination of whether two or more moments

are linearly dependent can be made for small Nξ, the problem grows exponentially in

difficulty with the number of internal coordinates. This problem is equivalent to deter-

mining if a multivariate polynomial is a factor of another multiviariate polynomial. Each

moment may be expressed as a polynomial with respect to the abscissas. Determining

if one multivariate polynomial is a factor of another multivariate polynomial is not, in

general, an easy problem to solve. For this reason, one must experiment with different
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moments to find a set that works. This, too, however, becomes difficult and cumber-

some for large numbers of internal coordinates and quadrature nodes. For this reason

(and others), it is recommended that the optimal linear system construction procedure,

detailed in [200], be used in the construction of the DQMOM linear system.
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