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ABSTRACT 
 
 

 Cigarette smoking is the leading cause of preventable death in the United 

States.  While there are more than 4,000 chemicals found in tobacco smoke, the 

polycyclic aromatic hydrocarbons (PAHs) have been clearly demonstrated to 

contribute to smoking-related cancers.  Of this group of compounds, benzo(a)pyrene 

(B(a)P) is concidered to be the most carcinogenic and its ability to cause lung 

tumors is well documented.   

Many conventional biomarker assays conducted today use the 

measurement of nicotine (and its metabolite cotinine) in blood, urine, or oral 

fluids for assessment of tobacco smoke exposure. However, these conventional 

assays do not measure exposure to carcinogenic compounds and are sensitive 

only to recent smoke exposures. Due to the ease of hair sampling and its 

extended detection window of substances incorporated into its matrix, this 

dissertational research proposes a promising new tool for the assessment of 

toxic tobacco smoke exposure. 

We investigated the disposition of B(a)P and its electrophilic reactive 

metabolite, trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydro-

benzo(a)pyrene (BPDE), in rat and human hair.  BPDE is one of the most potent 

mutagens and carcinogens known, and forms protein and DNA adducts in 
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multiple tissues. Our overarching hypothesis was that B(a)P and BPDE-protein 

adducts in hair can be used as biomarkers of toxic B(a)P exposure. 

The data presented in this dissertation demonstrate that B(a)P and BPDE-

protein adducts are incorporated into rat hair in a dose-dependent manner.  

While B(a)P incorporation into rat hair is not dependent upon pigment content, 

BPDE-protein adducts concentrations are significantly greater in pigmented vs. 

nonpigmented hair.   

 Gross histopathological changes in rat lung tissue, such as alveolar wall 

thickening, decreased air space, and macrophage hyperplasia were visually 

evident in rats 14 days after B(a)P administration. Immunohistochemistry staining 

for myeloperoxide content (a marker for neutrophils) in the lung tissue of B(a)P-

dosed rats was also significantly greater than vehicle control rats. 

B(a)P can be detected in human hair, but BPDE-protein adducts could not 

be detected, despite evidence of active smoking status via plasma cotinine 

concentrations.  

The results of this dissertational research demonstrate that hair may serve 

as an easily accessible surrogate tissue for the detection of a biomarker of toxic 

tobacco smoke exposure. 
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CHAPTER 1 
 
 

OVERVIEW 
 
 

Introduction 
 
 

 This chapter provides an introduction to the anatomy and physiology of 

hair, the history and science of hair testing, the role of biomarkers in toxicology, 

and a brief background on benzo(a)pyrene (B(a)P). This overview concludes with 

the objectives of this dissertational research and the experiments designed to 

test the overarching hypothesis. 

 
Anatomy and Physiology of Hair 

 
While hair may appear to be a simple structure, it is actually very complex, 

and to this day is only partially understood.  A great deal still remains to be 

learned about hair growth and its anatomy.  

Mammalian hair consists of proteins (65-95%), lipids (1-9%), pigment (0.1-

5%), minerals (0.25-0.95%), and small quantities of water [2-9] and grows from 

follicles found in the epidermal epithelium. Hair has two distinct structures: 1) the 

hair follicle (portion below the skin) and; 2) the hair shaft (portion above the 

skin).  

The only biologically active portion of hair is the hair follicle itself.  The 

follicle contains the cells responsible for the production of the hair shaft and lies 
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3-4 mm below the skin’s surface.  The follicle also contains oil-producing 

sebaceous glands (which lubricate the hair) and arrector pili muscles (which can 

erect the hair) (see Figure 1.1).  The follicle is the only organ in mammals that 

undergoes life-long cycles of rapid growth (anagen), regression and transition 

(catagen), and resting periods (telogen)(see Figure 1.2). The exact molecular 

mechanisms that drive this oscillating system remain unclear. However, it is 

recognized that the transformations in hair follicle cycling are controlled by the 

expression and activity of hormones, neurotransmitters, transcription factors, 

cytokines, enzymes, and cognate receptors [10]. These factors can also 

contribute to the typical growth rate of hair seen in mammals.  For scalp hair in 

humans, the average growth rate is generally assumed to be 1 cm/month (or 

0.45 mm/day for women / 0.44 mm/day for men) [11].  However, a wide range of 

growth rates from 0.6 cm/month (0.2 mm/day) to 3.36 cm/month (1.12 mm/day) 

have been reported [11-13].  Growth rates can also change with age, pregnancy, 

and nutritional status [9, 14].  Additionally, these rates are dependent upon 

anatomical location, gender, and race. In the rat, the average growth rate is 

faster (about 1 mm/day), however, the anagen phase is much shorter (about 16-

20 days) [15] compared to that of humans (2- 6 yrs)[1].  

 In contrast to the hair follicle, mature hair shafts are nonliving biological 

fibers, whose cells are void of nuclei. The cells that make up the hair shaft 

become cornified during the process of epithelial differentiation. This cornification  

occurs when keratin protein is incorporated into longer keratin-intermediate 

filaments.  Eventually the shaft looses water and cytoplasmic organelles and the 
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Figure 1.1  Follicle anatomy. A) Histologic longitudinal section of follicle on the 
left hand side; Schematic drawing of follicle with anatomical details on the right   
hand side. B, Hair bulb in detail (enlargement of schematic drawing in A). 

 
APM, arrector pili muscle; CTS, connective tissue sheath; DP, dermal papilla; 
IRS, inner root sheath; ORS, outer root sheath; SG, sebaceous gland (modified 
after [16]) 
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Figure 1.2 Hair cycle phases.  A) The hair cycle clock showing average length of 
each phase. B) Representative drawings showing each phase of the hair cycle 
[10].  

APM, arrector pili muscle; CTS, connective tissue sheath; DP, dermal papilla; 
IRS, inner root sheath; ORS, outer root sheath; SG, sebaceous gland (modified 
after [16]) 
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cell nucleus disappears.  Cell metabolism also ceases, and the cell undergoes 

apoptosis once completely keratinized. This feature of hair (i.e. non-living tissue) 

contributes to the stability of xenobiotics in hair; if metabolic activity ceases, then 

xenobiotics are not being metabolized or broken down and excreted. 

The hair shaft can be divided into three zones (see Figure 1.3): 1) The 

cuticle, or outer layer, consists of six to ten organized layers of thin flat cells that 

overlap like shingles; 2) The cortex, which contains keratin rod-like bundles and 

constitutes the bulk of the hair shaft. The cortex also contains melanin granules, 

which depending on the type, number, and distribution determines the hair 

shaft’s color; 3) And last, the medulla, an open unstructured region in the fiber’s 

center (gray hair can be void of a medulla where beard hair can possess a 

double medulla) [2, 17].  This region constitutes only a small percent of the 

overall mass of the hair fiber.  

 The predominant protein that makes up the hair shaft is keratin.  This 

protein assembles into monomers, then subsequently into bundles to form rope-

like intermediate filaments which provide strength and durability to the hair fiber.  

The biochemical feature that contributes to this physical strength of the fiber is 

disulfide bonding between keratin and other high sulfur proteins [18].  Some of 

the major amino acids that make up the keratin protein are glycine, threonine, 

aspartic acid, glutamic acid, lysine and very importantly cysteine [1].  Human hair 

is made up of approximately 14% cysteine, which contributes to the high sulfur 

content in hair [19].  The sulfhydryl group on cysteine is a potential binding site 

for xenobiotics in hair and other biological tissues [20, 21].  Other binding sites in 
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Figure 1.3 Cross-sectional drawing of hair showing cuticle, cortex and medulla 
zone in hair.  (Modified from Gray’s Anatomy [22].) 
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hair include the hydrocarbon side chains in glycine, the hydroxyl side chains in 

threonine, and the primary amide in aspartic and glutamic acid [23]. 

 
Hair Color and Its Importance in Drug Disposition  

Certain drugs have been demonstrated to bind to darker hair to a greater 

extent than lighter colored hair [24-36].  Hubbard et al. demonstrated that 

cocaine, a basic drug, was incorporated into pigmented rat hair two orders of 

magnitude greater than nonpigmented rat hair [37]. This observation can be 

explained, in part, by the greater quantity of melanin present in pigmented hair 

compared to nonpigmented hair.  

Melanin is a polyanionic polymer that can be found in hair, skin, the 

substantia nigra of the brain, the inner ear, and the uveal tract of the eye.  In hair, 

melanin is produced by melanocytes and transferred to melanosomes in 

differentiating cortical and medullar cells.  During the growth of a hair strand, 

these melanin-containing cells move upward from the hair follicle to the hair shaft 

and reside in the cortex and medulla layers (see Figure 1.1 B) [17].  The outer 

cuticle cell layer contains little to no melanin [38].  In addition, the quantity of 

melanin in hair can vary over one’s lifespan, and from follicle to follicle.   

Melanin is a derivative of the amino acid tyrosine (see Figure 1.4 A) and 

has multiple negatively charged carboxyl groups and o-semiquinones [39-41] 

binding sites for cationic xenobiotics (e.g., metals and compounds containing 

amine groups) [42] that are positively charged at physiological pH [41, 43]. B(a)P, 

an uncharged, lipophilic molecule, has also been demonstrated to bind melanin  

in in vitro settings [44, 45].  



8 
 

 

 

 

 
 
  
 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
Figure 1.4.  Chemical structures of L-tyrosine, eumelanin, and pheomelanin. A)   
L-Tyrosine structure, B)  Proposed chemical structure of eumelanin* C)  
Proposed chemical structure of pheomelanin* (-COOH can also be H or other 
substituents (rare).  Lines indicate where the polymer continues. (*with 

permission ©Clinuvel Pharmaceuticals Ltd 2011) 
 
 

A. 

B. C. 

http://upload.wikimedia.org/wikipedia/commons/b/b7/L-Tyrosin_phys.svg
http://upload.wikimedia.org/wikipedia/commons/3/3a/Eumelanine.svg
http://upload.wikimedia.org/wikipedia/commons/1/18/Pheomelanine.svg
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In general, the more melanin that is present in the hair shaft, the darker 

the hair color (e.g., brown and black hair).  If less melanin is present, the hair 

color will be lighter (e.g blond hair).  The specific color of the hair shaft results 

from two types of hair melanin: 1) eumelanin, the dominant pigment in brown and 

black hair (see Figure 1.4 B); 2) and pheomelanin, the dominant pigment in red 

hair (see Figure1. 4 C). Gray hair color results when melanin concentrations are 

extremely low to nonexistent.   

 
The History and Science of Hair Testing 

 Hair analysis was used in the 1960s and 1970s to evaluate exposure to 

toxic heavy metals by atomic absorption spectroscopy.  Starting in the early 

1980s, researchers in the U.S. and Germany determined the presence of various 

organic drugs in hair by means of radioimmunoassay (RIA). Gas chromatography 

coupled with mass spectrometry (GC/MS) is the current method of choice for hair 

analyses due to high selectivity, sensitivity and specificity.  However, other 

methods such as liquid chromatography coupled to tandem mass spectrometry 

(LC/MS-MS) are increasingly being used for hair testing. 

 Hair testing has been applied to a wide range of chemicals, and used in 

multiple settings from occupational to environmental to alternative medicine.   

Although controversial, hair mineral analyses have been used to diagnose and  

treat mineral deficiencies for over 20 years in alternative medicine practices.  

Although researchers have generally used hair testing as a way to monitor 

chronic environmental exposures to heavy metals [46-48] and pesticides  
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[49-51]), much of the focus has been directed towards the detection and 

quantification of drugs of abuse, particularly in forensic and clinical toxicology. 

There are many advantages in testing for analytes in hair compared to 

plasma, urine, or oral fluids.  First, there is a longer detection window with hair 

testing compared to the testing of blood, oral fluid, or urine [52].  In general, the 

detection window for urine and blood analyses is up to 3 days, while hair testing 

can be from weeks to months, or even years with certain chemicals [52].  

Furthermore, when segmental hair analysis is employed, it may be possible to 

provide a xenobiotic exposure history [53-55].  Second, analyses of biomarkers 

in hair can more accurately account for chronic exposure [1, 56, 57].  Third, 

concentrations of biomarkers measured in hair are cumulative, therefore are less 

affected by daily fluctuations in intake/exposure;  Specifically, in the case of 

tobacco use, concentrations of nicotine and cotinine measured can adjust for 

different tobacco products used over time and the different manners in which 

humans smoke cigarettes [1, 56, 57]. Fourth, hair samples are less susceptible to 

tampering than urine, and do not decompose like other body fluids or tissues. 

Fifth, using hair has the advantage of being easily collected with minimal 

discomfort, and does not require the specialized personnel that blood draws 

necessitate. Last, with regard to smoking, hair testing has been demonstrated to 

better correlate with self-reported tobacco exposures, compared to conventional 

testing [1, 56].  

While hair testing does provide some major advantages, it is not without  

its limitations.  Many of these limitations stem from gaps in our knowledge of  
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incorporation and stability of drugs/xenobiotics in hair, as well as general  

influences on hair growth (i.e. nutritional status, pharmaceuticals, ethnicity, 

gender, hormones, etc.).  There are still many important questions that remain 

concerning the mechanisms of drug/xenobiotic incorporation into hair, as well as 

the effects of external contamination and the stability of the xenobiotics in hair 

through daily hygiene and cosmetic procedures. Confounding these issues are 

possible individual factors, which still remain largely unidentified.  

 
Role of Biomarkers  

 Currently, intensive work is taking place on the discovery and 

development of innovative biomarkers of cancer risk. Optimally, these 

biomarkers would serve to determine if there is an increased risk of cancer for an 

individual, and therefore specific countermeasures could be put in place and the 

individual could be closely monitored. 

In the case of tobacco-related biomarkers, the main focus has been on 

nicotine specific metabolites. Yuan et al. (2009), conducted a nested case 

controlled study involving 246 cases of lung cancer in which they determined 

urinary levels of cotinine and  4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol 

(NNAL) a metabolite of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone  (NNK), a 

nicotine specific carcinogen. Their study suggested that urinary levels of cotinine 

and NNAL can be used as biomarkers of increased lung cancer risk [58]. 

To our knowledge, research to assess increased cancer risk via hair 

analysis of any tobacco-related chemical has not been performed. Several 

advantages of testing hair for biomarkers of tobacco smoke exposure over 



12 
 

 

 

conventional methods have been previously discussed, but whether testing hair 

for chemicals found in tobacco smoke can be used as a biomarker of cancer risk 

remains to be elucidated.  The detection of the carcinogen B(a)P in human hair 

has only been reported in one small study involving 20 subjects [59].  None of 

B(a)P’s metabolites, including benzo(a)pyrene diol epoxide (BPDE) or BPDE-

protein adducts, have been reported in human hair to our knowledge. BPDE 

adducts to hemoglobin and albumin, as well as BPDE-DNA adducts, have been 

studied extensively [60], but the collection of these samples is invasive, and often 

are not detected (>60% for DNA adducts and about 40% for protein adducts) 

[60]. It is important to identify individuals with higher cancer susceptibility, and 

determining individuals who metabolically activate B(a)P to BPDE more 

extensively, and/or detoxify BPDE less, are presumed to have a higher cancer 

risk. Therefore, the BPDE-protein adduct biomarker in hair could help to facilitate 

many ongoing studies regarding activity-affecting polymorphisms in high-risk 

individuals with variations in B(a)P metabolizing enzymes such specific 

cytochrome P450s isoforms, epoxide hydrolase, as well as B(a)P detoxifying 

enzymes such as glutathione S-transferase. These biomarkers could also be 

applied in the testing of chemoprevention agents in B(a)P exposed animals.  

Lastly, this research can facilitate and address exposure and risk reduction not 

only for tobacco smoke exposure in multiple settings, but also for occupational 

exposuress to B(a)P.   

 
B(a)P Background 

 
Benzo(a)pyrene is a member of the chemical class polycyclic aromatic  
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hydrocarbons (PAHs) (formerly called polynuclear aromatic hydrocarbons) 

and is found in virtually all PAH mixtures.  These compounds are formed by the 

incomplete combustion of organic matter and are commonly found in tobacco 

smoke, polluted air, water, and broiled/smoked foods [61-66].  B(a)P is also 

found in diesel exhaust  and certain occupational settings, such as coking plants 

and graphite electrode producing plants [67-69]. Many of the PAHs are 

carcinogens, but B(a)P is considered the most potent. 

B(a)P can enter the body through the lung, gastrointestinal tract, and skin. 

Conclusive evidence has demonstrated that B(a)P can readily induce tumors in 

laboratory animals in various tissues at relatively low doses [62, 70-73]. 

Independent of the route of exposure, one of the target tissues for B(a)P is 

considered to be the lung, and accumulation of B(a)P in the lungs of rats has 

been demonstrated [74, 75].  While, B(a)P is classified as a human carcinogen 

by the International Agency for Research on Cancer [73], animal studies have 

also suggested adverse developmental and reproductive outcomes with long-

term B(a)P exposure [76]. Moreover, B(a)P is known to be an endocrine disruptor 

and is arthrogenic, in addition to being genotoxic and carcinogenic [77-81].  

The U.S. Environmental Protection Agency (EPA) estimates the exposure 

to B(a)P is 1-3 ug/day for nonsmokers [76].  The amount of B(a)P exposure can 

vary widely in smokers (due to the different products on the market, and 

individual variations in smoking behavior), but are estimated at 1-30 ug/pack/day 

[63, 82-85].  B(a)P itself is considered a procarcinogen, and requires metabolism 

to elicit its toxic effects.  The metabolism of B(a)P is very complex and produces 
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multiple metabolites of varying toxicity.  The metabolism to the ultimate 

carcinogen BPDE is depicted in Figure 1.5.  BPDE has been thoroughly 

demonstrated to be the most mutagenic and carcinogenic of the B(a)P 

metabolites [86-90].  BPDE is electrophilic, and binds covalently to nucleophilic 

groups on DNA (predominately the amino group of deoxyguanosine by the trans 

addition to carbon 10 of BPDE) and vital proteins in a highly stereospecific 

manner [91-95]. The Bay Region (see Figure 1.5) of the B(a)P molecule forms an 

angular ring area of steric hinderance and impedes detoxification of BPDE by 

glutathione conjugation, glucuronidation, and sulfation [70, 78, 88, 96], which 

contributes to its toxicity.  

Rodent and human subcellular fractions have thoroughly demonstrated 

that the trans, anti- enantiomer of BPDE (B(a)P-r-7,t-8-dihydrodiol-t-9,10 

epoxide) is the major product of epoxidation of trans B(a)P 7,8 diol (B(a)P r-7,r-8-

diol) [70, 87, 97] (see Figure 1.5), although other minor enantiomers are also 

formed.  The majority of BDPE-induced adducts are produced by the reaction 

with this enantiomer [70, 94].  Analysis of BPDE-induced adducts from B(a)P-

treated animals and from humans exposed to B(a)P reveal that B(a)P-r-7,t-8,t- 

9,c-10-tetrahydrotetrol (BPT) is the predominant compound released upon 

hydrolysis of these adducts [70, 97, 98]. Like most research on BPDE-induced 

adducts, our research focuses on the detection of this major product from the 

hydrolysis of trans, anti-BPDE-induced adducts.  The measurement of BPT 

therefore serves as evidence of a BPDE-induced adduct.  Recently, Ragin et al.  

have reported the concentrations of the other enantiomers of benzo(a)pyrene 
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Figure 1.5.  Metabolic activation scheme of the activation of the B(a)P to the 
reactive electrophilic intermediate trans, anti-BPDE. This reaction is completed 
by specific CYP450s (predominately CYP1A1 and  CYP1A2 and CYP1B1 to a 
lesser extent) and epoxide hydrolase to eventually form the BPDE-protein adduct 
[88, 96, 99, 100].  During preparation of samples, the BPDE-protein adduct is 
hydrolyzed to BPT. 
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tetrahydrotetrol released from BPDE-Hb adducts in a small group of human 

participants [93].  Enzyme-linked immunosorbent assays (ELISA) have been 

used for whole protein adduct detection [101, 102], but require custom BPDE-

specific antibodies. These antibodies are expensive, may not always be 

available, and the potential exists for non-specific binding to other PAH adducts. 

 
Research Objectives 

The objective of this research was to investigate whether B(a)P and/or 

BPDE-protein adducts measured in hair can be used as novel biomarkers of 

toxic exposure to B(a)P.  The overarching hypothesis for this research was that 

B(a)P and BPDE-protein adducts in hair can be used as biomarkers of toxic 

exposures to B(a)P. To address this hypothesis the following specific aims were 

proposed: 

1. Develop sensitive and specific mass spectrometry methods to detect and 

quantify low concentrations of B(a)P and BPDE-protein adducts in biological 

matrices. 

2. Determine the concentrations of B(a)P and/or BPDE-protein adduct 

concentrations in hair and whether these concentrations are related to lung 

tissue damage in rats exposed to increasing amounts of B(a)P. 

 3. Determine the differences of B(a)P and BPDE-protein adducts in the hair of 

active smokers (those exposed to particulate tobacco smoke (PTS)) and  

nonsmokers (those with no exposure to PTS or environmental tobacco smoke  

(ETS)). 
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CHAPTER 2 
 

QUANTIFICATION OF THE BIOMARKERS B(A)P AND BPDE- 

ADDUCTS IN PIGMENTED AND NONPIGMENTED RAT HAIR 

 
Introduction 

 
 

Mechanisms of xenobiotic incorporation in hair 

B(a)P and BPDE-protein adduct concentrations, in an easily accessible 

surrogate tissue like hair, may reflect concentrations in a target tissue such as 

the lung. There have been a number of studies that show a positive correlation 

between the amount of drug found in hair and the dose administered [103-107]. 

However, this is not always the case [108]. There are several proposed models 

for the mechanisms of drug/ xenobiotic incorporation into hair [1, 52, 108, 109]. 

There are also many factors that influence drug/xenobiotic incorporation in hair, 

such as the physiochemical properties of the drug/xenobiotic (melanin affinity, 

basicity, lipophilicity, pKa, etc.) and its bioavailability, volume of distribution, and 

plasma elimination half-life [28, 110-115]. With these factors in mind, the 

following is a brief discussion of xenobiotic incorporation into hair. 

 The passive diffusion model is the simplest model proposed, and 

involves the passive diffusion of chemicals (from the vascular system that 

supplies the hair follicle) through the cell membranes of the keratinocytes at the 
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base of the hair follicle. These chemical then ultimately become tightly bound in 

the interior of the hair shaft following keratogenesis. 

Since not all the data from studies of drug incorporation into hair fits the 

passive diffusion model, a second, more complex multicompartment model has 

been proposed.  This model unites the theory of chemical incorporation via the 

blood during keratogenesis with additional incorporation of chemicals from sweat 

and sebum secretions after the hair has formed (but before the hair has emerged 

from the skin’s surface). This model also accounts for the transfer of chemicals to 

the growing hair from the other compartments that surround the hair follicle, and 

the contribution of chemicals incorporating from the external environment after 

the hair has emerged from the skin (i.e., from smoke or vapors). 

A third model, the deep compartment model, has been proposed as a 

way to explain the unusual elimination of drugs such as cocaine and its 

metabolites from hair, as well as for very lipophilic compounds such as 

tetrahydocannbinol (THC) [108]. This model accounts for chemicals entering the 

hair via intradermal transfer from the accumulation of certain drugs into skin 

layers and other compartments such as erocrine (or eccrine) and apocrine 

glands. 

The last model, the melanin-binding model, includes the binding of 

xenobiotics to melanin.  In this model, differences observed in xenobiotic 

incorporation into hair would be dependent on the amount of melanin present in 

hair, and the inter-individual differences of the types of melanin that are present 

in the hair shaft. Support for this model has been demonstrated for nitrogen 
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containing basic compounds, such as cocaine, nicotine, amphetamines, and 

morphine [28, 104, 112, 116, 117]. Several investigators have been able to 

demonstrate that these drugs are incorporated to the greatest extent in black hair 

compared to brown or blond hair [36, 118, 119]. Since melanin becomes 

incorporated into the hair shaft as the hair grows, the higher the melanin content 

(i.e. the darker the hair color), the higher the expected concentration of the 

drug/xenobiotic.  For example, black hair would represent the highest 

concentration of the drug/xenobiotic compared to lighter hair colors regardless of 

the same dose being given.  

Several different animal models have been used to study the incorporation 

of drugs/xenobiotics into hair, but the Long-Evans (LE) rat has a distinct 

advantage over the other models. This strain of rat has both pigmented and 

nonpigmented hair, thus eliminating the need to use two different strains to 

obtain both hair types.  This allows the investigator the ability to study the effects 

that pigmentation may have on the incorporation of xenobiotics into hair.  In 

addition, the use of only one strain of rat eliminates the need to consider the 

metabolic and pharmacokinetic differences of xenobiotic handling amongst 

different strains of rats. 

 The experiments presented in this chapter were designed to address the 

following objectives:  1) Develop sensitive and specific GC/MS methods 

(operated in electron ionization mode with selective ion monitoring, GC/MS-EI-

SIM) methods to detect B(a)P in hair, lung, and plasma.  2) Develop sensitive 

and specific GC/MS (operated in negative ionization mode with SIM, GC/MS-
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NCI-SIM) to detect BPT released from BPDE-protein adducts from hair and 

hemoglobin.  3) Using these developed methods, determine if B(a)P incorporates 

into rat hair in a dose-dependent manner.   4) Determine if B(a)P concentrations 

are greater in pigmented vs.nonpigmented rat hair. 5) Determine if BPT, released 

from BPDE-protein adducts, can be detected in rat hair, and whether 

concentrations are dose-dependent. 6) Determine whether concentrations of 

BPT released from BPDE-protein adducts in pigmented and nonpigmented hair 

statistically differ. 7) Determine if the concentration of B(a)P and/or BPT in hair 

correlate to formation of the BPDE-Hb adduct (the positive control).  8) 

Determine if B(a)P concentrations in hair reflect concentrations in a target tissue 

(lung) and plasma. 

 
Materials and Methods 

 
Chemicals and reagents 

 
 Benzo(a)pyrene (1 mg/mL) was purchased from SPEX Certiprep® Inc. 

(Metuchen, NJ), Restek (Austin, TX ), and AccuStandards®  (2 mg/mL)( New 

Haven, CT) for the preparation of calibration curves and quality control samples. 

The internal standard B(a)P-d12 (1 mg/mL), was purchased from SPEX 

Certiprep®, Inc.(Metuchen, NJ). For the dosing solutions, neat B(a)P (>96% 

purity) was purchased from Sigma-Aldrich® (St. Louis, MO). The vehicle for 

dosing solutions was corn oil (Mazola®, ACH Food Companies; Summit, IL).  

BPT (5 mg) was purchased from the National Cancer Institutes Chemical 

Repository (Midwest Research Institute, Kansas City, MO). The internal standard 
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[13C6]-BPT (1 mg), was purchased from Cambridge Isotopes Laboratories, Inc. 

(Andover, MA) by Dr. Stephen Hecht of Masonic Cancer Center (University of 

Minnesota), and a generous gift of a 1200 ng/mL [13C6]-BPT solution (1mL in 

DMSO) was provided for this dissertational research.  Hexane, dichloromethane 

(DCM), methanol, acetonitrile, ethyl acetate were all GC/MS or high performance 

liquid chromatography grade and purchased from Burdick & Jackson
®
 

(Muskegon, MI).  Acetone (GC/MS grade) was purchased from EMD (Gibbstown, 

NJ), and anhydrous tetrahydrofuran (THF) was purchased from Sigma-Aldrich®     

(Milwaukee, WI). The derivatization agent (N-Methyl-N-(trimethylsilyl) trifluoro-

acetamide activated II, MSFTA II) was purchased from Fluka (Castle Hill, New 

South Wales, Australia).  Proteinase K (from Tritirachium album, activity >30 

units/mg) was purchased from Sigma-Aldrich®.  Sep-Pak C18, 3cc solid phase 

extraction (SPE) cartridges were purchased from Waters Corporation (Milford, 

Massachusetts). All other reagent grade chemicals were purchased from Fisher 

Scientific (Pitsburg, PA), Sigma-Aldrich® and Fluka.  Water used was either 

house-prepared Milli-Q water or NANOpureTM water obtained from ARUP 

Laboratories (Salt Lake City, Utah). Helium and ammonia gases used for GC/MS 

analysis were purchased from Airgas, Inc.® (Salt Lake City, UT). Whole blood 

from LE rats was obtained from Innovative Research (Novi, MI) for preparation of 

plasma and hemoglobin standards and quality control samples.  RBC lysis buffer 

was purchased from Roche (Branford, CT) and phosphate buffered saline 

solution from Teknova (Hollister, CA). Sodium heparin Vacutainers®
 

 were purchased from BD (Franklin Lakes, NJ).  Sodium heparin (5000 USP 
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 units/mL) and sterile saline were purchased from the University of Utah’s 

Outpatient Pharmacy (50 North Medical Drive, Room 1400, Salt Lake City, UT. 

84132). Procter and Gambler Company’s (Cincinnati, OH) Herbal Essences® 

shampoo was obtained from local retail store. 

 
Stocks and solutions 

 
Intermediate stock solutions of B(a)P were prepared in 1:1 (v/v) 

acetone/DCM at a concentration of 500 and 5000 ng/mL. Intermediate stock 

solutions for BPT were prepared in fresh anhydrous THF at a concentration of 

100 ng/mL.  Since B(a)P and BPT are light and air sensitive, all solutions were 

made in amber vials with septum screw caps to avoid over exposure to light and 

air and stored at -20°C.  Matrix fortified calibration curves and quality control 

samples were prepared daily. The quality control samples for B(a)P (that were 

prepared with each batch of samples and for determination of assay imprecision 

and accuracy) were fortified with a reference material from a different 

manufacturer than the reference material used for the calibration curve.  Since no 

other commercial source was available for BPT, a separate stock and 

intermediate solution for fortification of quality control samples were prepared by 

the quality control officer or other Center for Human Toxicology personnel. 

 
Animals 

 
Male Long-Evans rats (200-225g) were individually housed in cages with  

wire mesh bottoms to eliminate the potential for external contamination of the 

hair from social grooming and/or bedding. Rats were maintained under controlled 
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temperature and lighting conditions (12 hr light/dark cycle) and provided with 

food and water ad libitum. All procedures were in compliance with the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals [120]. 

 
Multiple-dose hair experiments 

 
Prior to exposure, an approximate 2 inch medial dorsal square of 

pigmented and nonpigmented hair was shaved with an electric shaver (hair 

sample used for baseline measurements). The rats were then administered 

B(a)P (in corn oil) intraperitoneal (i.p.) at 40 mg/kg (n=10),  80 mg/kg (n=10), or 

160 mg/kg (n=10) once daily for seven days. (Solutions of B(a)P in corn oil were 

prepared at 25, 50, and 100 mg/mL for the 40, 80, and 160 mg/kg doses 

respectively. This was done in order to maintain a consistent volume of B(a)P in 

corn oil between the doses and groups). Control rats (n=10 total) were 

administered corn oil (i.p.), once per day for 7 days. Fourteen days after the first 

dose, the animals were anesthetized with chloral hydrate (450 mg/kg) and 

approximately a 1.5 inch medial dorsal square (inside the original 2 inch area) 

was shaved to collect newly grown pigmented and nonpigmented hair. These 

hair samples were then stored in air tight containers in the dark at 4°C (see 

dosing paradigm in Figure 2.1). While still under deep anesthesia, an abdominal 

aorta blood draw was performed with a sodium heparin-lined 10 mL syringe 

equipped with a 21 gauge needle. Blood was then transferred to a sodium  

heparin BD Vacutainer
® tube.  The animal’s diaphragm on each side was then 

carefully pierced to allow the lungs to collapse. The lungs were then carefully 
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7 daily i.p. doses of B(a)P (40 mg/kg,     

80 mg/kg, or 160 mg/kg)

Hair collected 

(Baseline)

Last day of 

dosing

Hair, blood, and 

lung tissue 

collected

147Day 0

 

Figure 2.1. Dosing paradigm for Long-Evans rats. A)  Picture of Long-Evans rat 
showing area of shaved hair.  B) Dosing paradigm for B(a)P and time points of 
hair collection.  Prior to exposure, a medial dorsal ~2 inch square of pigmented 
and nonpigmented hair was shaved (hair sample used for baseline 
measurements). Rats were then administered B(a)P (in corn oil) i.p. at 40 mg/kg 
(n=10),  80 mg/kg (n=10), or 160 mg/kg (n=10) daily  for seven days. Control rats 
(n=10) were dosed i.p. with corn oil for seven days. Fourteen days after the first 
dose, a ~1.5 inch medial dorsal (inside the original 2 inch square) area was 
shaved to collect newly grown hair. Hair samples were then stored in air tight 
containers in the dark at 4°C until analysis.  This dosing paradigm was based on 
literature searches for commonly used B(a)P dosing protocols, to ensure BPDE-
Hb adduct formation would be adequate for detection, and to allow for the growth 
of new hair. 

A. 

B. 
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extracted by the trachea avoiding actual contact with the lung at all times. The 

left lobe was placed in 10% formalin (for histology). The right lobe was placed on 

tin foil on top of dry ice, then stored at -80°C until preparation for B(a)P analysis. 

 
B(a)P assays 

 
B(a)P:  Hair preparation and extraction 

Ten milligrams of hair (+10%) were weighed (Mettler Toledo, AG104) and 

B(a)P-d12 internal standard (IS) added. Calibrators were concurrently prepared 

by fortification of B(a)P and IS to analyte-free (blank) rat hair.  After digestion of 

the hair (sonication in 1.5 mL of 2.5 N sodium hydroxide for 2 hrs) a liquid-liquid 

extraction was performed.   Hexane (1.5 mL) was added to each hair sample 

digest, thoroughly vortexed, and then centrifuged at 3500 rpm for 4 mins to 

minimize the emulsification layer. This was performed a total of three times, then 

combined organic fractions were dried under a constant stream of nitrogen in a 

Zymark Turbovap® LV evaporator at 55°C. Residues were then reconstituted in 

0.100 mL of 1:1(v/v) acetone/ dichloromethane and analyzed by GC/MS-EI-SIM 

(see GC/MS-EI-SIM analysis for B(a)P section for additional details). 

 
B(a)P:  Lung tissue preparation and extraction 
 
 A frozen 100 mg (+10%) posterior section of lung was weighed (Mettler 

Toledo, AG104) in a specimen vial.  Ice-cold Milli-Q water (0.500 mL) was added 

o the frozen tissue in a cold room (4°C), and immediately sonicated (Sonics 

Vibracell, VC505) at 30% amplitude for 12 secs, a total of six times.  
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B(a)P-d12 IS was then added to the samples. Calibrators were concurrently  

prepared by fortification of B(a)P and IS to 0.500 mL aliquots of analyte-free  

(blank) lung homogenates (aliquots were one part lung tissue to five parts  

water, w/v).  A liquid-liquid extraction was then performed.  Hexane (1.5 mL) 

was added to lung homogenate, then thoroughly vortexed, and centrifuged at 

3500 rpm for 4 mins.  This was performed a total of three times, then combined 

organic fractions were dried under a constant stream of nitrogen in a Zymark 

Turbovap® LV evaporator at 55°C. Residues were then reconstituted in 0.050 mL 

of 1:1 acetone/dichloromethane, transferred to an autosampler vial, and analyzed 

by GC/MS-EI- SIM (see GC/MS-NCI-SIM analysis for B(a)P section for additional 

details). 

 
B(a)P:  Plasma preparation and extraction 
 

To a 1 mL aliquot of plasma, B(a)P-d12 IS was added. Calibrators were 

concurrently prepared by fortification of B(a)P and IS to analyte-free (blank) rat 

plasma.  A liquid-liquid extraction was then performed according to the following 

procedure.  Hexane (1.5 mL) was added to each plasma sample, then thoroughly 

vortexed, and centrifuged at 3500 rpm for 4 mins.  This was performed a total of 

three times, then combined organic fractions were dried under a constant stream 

of nitrogen in a Zymark Turbovap® LV evaporator at 55°C. Residues were then 

reconstituted in 0.050 mL of 1:1 acetone/dichloromethane, transferred to an 

autosampler vial for analysis by GC/MS-EI- SIM (see GC/MS-EI-SIM analysis for 

B(a)P section for additional details). 
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Assays for BPT released from BPDE-protein adducts 
 

BPT:  Hair preparation and extraction 

Hair (100 mg (+10%)) was weighed out (Mettler Toledo, AG104) and 

[13C6]-BPT IS added. Calibrators were concurrently prepared by fortification of 

BPT and IS to analyte-free (blank) rat hair. To each hair sample, 2 mL of  200 

ug/mL Proteinase K in incubation buffer (50 mM Tris buffer, 5 mM calcium 

chloride, pH 8.5) was added to digest hair. Samples were then placed in a 

sonicator for 1 hr (~37°C), transferred to a 37°C water bath and allowed to 

incubate overnight (total time ~20 hrs). After cooling, approximately 0.25 g of 

sodium chloride (NaCl) was added to each sample, and a liquid-liquid extraction 

was then performed. Ethyl acetate (6 mL) was added to each hair digestion 

solution, which was then thoroughly vortex-mixed followed by centrifugation at 

3500 rpm for 4 mins. The liquid-liquid extraction was performed twice and then 

the combined organic fractions were placed in a Zymark Turbovap® LV 

evaporator at 55°C under a constant stream of N2 until dry. The residues were 

then derivatized by adding 50 uL of MSTFA and allowing for 15 mins reaction 

time in a hot block at 80°C. Samples, in MSTFA, were then transferred to 

autosampler vials for analysis by GC/MS-NCI-SIM (see GC/MS-NCI-SIM 

analysis for BPT section for additional details). 

 
BPT:  Hemoglobin preparation from whole blood and extraction 
 

Fresh whole blood from rats was centrifuged at 3500 rpm for 5 mins to 

separate plasma from red blood cells (RBCs).  The plasma was removed and 

stored at -80°C for B(a)P analysis. The RBC portion remaining in the tube was 
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then washed twice with equivalent volumes of 0.9% sodium chloride solution in 

Milli-Q water to remove any free, unbound BPT (from metabolism by epoxide 

hydrolase and/or water).  One volume of phosphate buffered saline (PBS) and 

two volumes of RBC lysis buffer were added to re-suspend the RBCs (e.g., 3 mL 

RBCs then 3 mL of PBS and 6 mL of RBC lysis buffer). This was done to keep 

volumes of reagents consistent between samples of differing volumes.  The 

samples were then gently shaken for 10 mins for lysis of RBCs, followed by 

centrifugation at 2000 rpm to pellet ghost membranes. The supernatant was 

removed from each sample, and six volumes of ice-cold acetone (with 0.015% 

hydrochloric acid) was slowly added, dropwise, to precipitate Hb. After 5 mins the 

samples were centrifuged to pellet the precipitated Hb, and the excess fluid was 

decanted.  The Hb pellet was then evaporated to dryness in a Zymark Turbovap® 

LV evaporator under a constant stream of nitrogen at 37°C and stored at -80°C 

until preparation for analysis. Hb (100 mg (+10%)) (prepared as described 

above) was weighed (Mettler Toledo, AG104) and IS added. Calibrators were 

concurrently prepared by fortification of BPT and IS to analyte-free (blank) rat Hb.  

After Hb isolation, hydrolysis of the Hb samples was performed as follows:  

Two milliliters of NANOpureTM water and 30 μL of 6 N hydrochloric acid to each 

Hb sample, tightly capped, and incubation in a water bath at 90°C for 3 hrs. 

Samples were allowed to cool, then approximately 0.25 g of sodium chloride was 

added to each sample. A liquid-liquid extraction was then performed. Ethyl 

acetate (6 mL) was added to each Hb hydrosylate, then thoroughly vortex-mixed, 

and centrifuged at 3500 rpm for 4 mins. This was performed twice, and the 
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combined organic fractions were placed in a Zymark Turbovap® LV evaporator at 

52°C under a constant stream of N2 until dry. Samples were capped and stored 

at -20°C overnight, and extracted by SPE the following morning. Solid phase 

extraction (SPE) was performed by conditioning Waters C18 3cc columns with 

2.5 mL of methanol followed by 2.5 mL of NANOpureTM water.  The sample 

(reconstituted in a total volume of 2.5 mL of 50% aqueous methanol) was slowly 

loaded onto the column, and allowed to incubate for 5 mins.  The column was 

washed with 2.5 mL of NANOpureTM water, then 50% aqueous methanol and 

then dried for 5 mins under a vacuum pressure around 5 psi.  The samples were 

eluted from the column using two volumes of 2.5 mL 50:50 acetonitrile/methanol. 

The eluents were completely dried at 55°C in a Zymark Turbovap® LV evaporator 

under a constant stream of nitrogen.  MSTFA (50 μL) was added to the residues 

and 15 min reaction time was allowed in a hot block at 80°C. Samples were then 

transferred to autosampler vials for analysis by GC/MS-NCI-SIM (see GC/MS-

NCI-SIM analysis for BPT section for additional details).  

 
Evaluation of wash procedure for rat hair 

 
 Two hundred mg of rat hair (from one individual 160 mg/kg B(a)P dosed 

rat) was separated into three groups: Group 1)  Unwashed hair (n=2), Group 2) 

Shampoo washed hair (n=2), and 3) Dichloromethane wash hair (n=2).   For 

Group one (unwashed hair), 10 mg +10% of hair were weighed (Mettler Toledo, 

AG104) for each sample, then digested and extracted as described in the “B(a)P:  

Hair preparation and extraction” section in Materials and Methods section.  For 

Group 2 (shampoo washed hair), 0.1 mL of a 10% (v/v) shampoo aqueous 
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solution was added to each sample, quickly vortex-mixed, and liquid portion 

decanted from hair.  Hair samples were then allowed to dry overnight at room 

temperature in the dark.  The following day, 10 mg +10% of hair were weighed 

for each sample, then digested and extracted as written above.  For Group 3 

(dichloromethane washed hair), 0.1 mL of dichlormethane was added to each 

sample, quickly vortex-mixed, and then decanted from hair.  Hair samples were 

then allowed to dry overnight at room temperature in the dark.  The following day, 

10 mg +10% of hair were weighed for each sample, then digested and extracted 

as previously described.   

 
GC/MS-EI-SIM analysis for B(a)P 

 
A Hewlett Packard  (HP) GC 6890 was fitted with a Agilent DB-5UI-MS 

capillary column (part no. 122-5535UI, 30.0 m x 250 μm x 0.25 μm nominal). The 

injector was operated in the pulsed splitless mode (injection pulse 40 psi until 0.2 

min, purge flow to split vent 30 mL/min at 0.75 min). The pressure of helium gas 

was programmed to 17.0 psi (total flow 33.8 mL/min). The inlet heater 

temperature was set at 300°C and the transfer line was set at 300°C.  The 

injection volume was 1 μL. The solvent delay was set at 3 mins. The initial oven 

temperature was set at 120°C for 1 min, then ramped to 250°C at 25°C/min A 2nd 

ramp to 320°C at 10°C /min followed, and then oven was held at 320°C for 3.5 

mins. The total run time equaled 16.7 mins.  An HP MS 5973 was used to 

perform selective ion monitoring (SIM) was used to detect B(a)P at m/z 252 and 

its fragment at m/z 126. B(a)P-d12 was detected at m/z 264. To quantitate the 

results, ChemStation software (version: D.02.00.275) was used to generate 
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calibration curves from peak area ratios of target analyte and the corresponding 

internal standard over the concentration range.  

 
GC/MS-NCI-SIM analysis for BPT 

 
The same GC/MS system and column was used as stated in the GC/MS-

EI-SIM analysis. The injector was operated in the pulsed splitless mode (injection 

pulse 17.6 psi until 1.33 min, purge flow to split vent 30 mL/min at 1.75 mins). 

The pressure of helium gas was programmed to 24.3 psi (flow 2.2 mL/min, total 

flow 34.5 mL/min).  Ammonia reagent gas pressure was set at 17.0 mL/min The 

inlet heater temperature was set at 280°C.  The transfer line was set at 300°C.  

The injection volume was 2 μL and the solvent delay was set at 9.0 mins. The 

initial oven temperature was set at 120°C for 1 min, then ramped to 250°C at 

20°C/min A 2nd ramp to 300°C at 8°C /min followed. The total run time equaled 

13.75 mins. SIM was used to detect the derivatized BPT at m/z 446. The 

derivatized (13C6)-BPT internal standard was detected at m/z 452. To quantitate 

the results, ChemStation software (version: D.02.00.275) was used to generate 

calibration graphs from peak area ratios of target analyte and the corresponding 

internal standard over the concentration range.  

 
Statistical analysis 

 
Graph Pad Prism® software (version 5.01) (La Jolla, CA) was used to 

compare results from 40, 80, and 160 mg/kg dosed rats using a one-way ANOVA 

and a Newman-Keuls posthoc test for:  1) B(a)P concentrations in hair of the 40, 

80, and 160 mg/kg dosed rats, 2)  BPT concentrations in hair of the 40, 80, and 
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160 mg/kg dosed rats, 3) BPT released from BPDE-Hb adducts in the 40, 80, 

and 160 mg/kg dosed rats, 4) B(a)P concentrations in rat lung of the 40, 80, and 

160 mg/kg dosed rats, and 5) B(a)P concentrations in rat plasma of the 40, 80, 

and 160 mg/kg dosed rats.  A Student’s t-test was used to compare B(a)P and 

BPT concentrations between pigmented and nonpigmented rat hair. Spearman 

nonparametric correlation tests were used to measure the strength of the 

association between the following: 1) B(a)P concentrations in rat hair and the 

positive control (BPDE-Hb adducts), 2) BPT concentrations in rat hair and the 

positive control (BPDE-Hb adducts), 3) B(a)P concentrations in plasma and lung 

tissue. Differences were considered significant α < 0.05. 

 
Results 

 

 

Validation of analytical methods for B(a)P 
 
 

Hair 
 
 Figure 2.2 shows representative chromatograms for an extracted 0.25  

ng/mg B(a)P calibration standard (lowest standard in curve) and an extracted 

blank rat hair sample.  The assay was determined to be linear from 0.25 to 100 

ng/mg. The lower limit of quantitation (LLOQ) and upper limit of quantitation 

(ULOQ) were 0.25 and 100 ng/mg, respectively. The coefficient of variation (CV) 

for the intra- and interassay accuracy and imprecision were less than or equal to 

10% (Table 2.1). 

 The intra- and interaccuracy and imprecision data were determined by  

analysis of samples that were prepared with a stock solution from a different  
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Figure 2.2 Representative ion chromatograms from (A) extracted analyte-free 
(blank) rat hair sample and (B) an extracted B(a)P-fortified (0.25 ng/mg, LLOQ) 
rat hair sample.  The small peak for B(a)P in extracted blank rat hair is due a 
small impurity present in the IS B(a)P-d12 (98.4% pure) (calculated concentration 
for this sample is below the LLOQ). There is no peak for B(a)P in blank rat hair 
without IS (data not shown).  Analyte retention time (RT) is on the x-axis and 
signal intensity on the y-axis. B(a)P = 252 m/z and B(a)P-d12 = 264 m/z 
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Table 2.1 

Accuracy, imprecision, LLOQ, and ULOQ of B(a)P-fortified rat hair 

 

            

 

Target 
Concentration na 

Mean 
Concentration % of Target %CVb 

  ng/mg   pg/mg     

Intraassay 
     

 
0.75 5 0.72 95.5 4.9 

 
40.00 5 42.14 105.4 1.2 

 
80.00 5 83.36 104.2 5.4 

Interassay 
     

 
0.75 15 0.71 95.2 10.2 

 
40.00 15 43.91 109.8 4.8 

 
80.00 15 88.32 110.4 6.8 

      
 

    

      

                  

 

Target 
Concentration na 

Mean 
Concentration % of Target %CVb 

  pg/mg   pg/mg     

LLOQ 
     

 
0.25 5 0.22 86.0 6.0 

      ULOQ 
     

 
100.00 5 96.40 96.4 3.5 

            

 

 
a Number of quality control replicate samples used 
b CV= coefficient of variation 
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manufacturer from that used to make the calibration curve standards.  Accuracy 

was calculated by dividing the observed concentration by the target 

concentration. This value was then multiplied by 100 to obtain a percentage. The 

percent CV was calculated by dividing the standard deviation of the group by the 

mean observed concentration of the group.  This value was then multiplied by 

100 to obtain a percentage. The percent CV calculated from the mean observed 

concentrations of samples tested is an estimate of imprecision of the assay.   

The intraassay accuracy and imprecision were determined by analyzing 

five replicate samples of analyte-free rat hair fortified with known amounts of 

B(a)P (0.75, 40, and 80 ng/mg) within a single analytical batch on the same day.  

The intraassay accuracy ranged from 95.5-105.4% of the theoretical target 

concentrations. The intraassay imprecision ranged from 1.2-5.4%. 

 The accuracy and imprecision for the interassay were determined by 

comparing calculated concentrations from replicates (n=5 for each concentration, 

total n=15) of B(a)P-fortified rat hair samples at 0.75, 40, 80 ng/mg for three  

separate analytical batches on three separate days.  The intraassay accuracy 

ranged from 95.2-110.4% of the theoretical target concentrations. The intraassay 

imprecision ranged from 4.8-10.2%. 

The LLOQ was evaluated by the analysis of five replicates of B(a)P  

fortified analyte-free rat hair at 0.25 ng/mg.  The average accuracy for these 

samples was 86.0%, and the imprecision was 6.0%. 

The ULOQ was evaluated by the analysis of five replicates of B(a)P- 

fortified analyte-free rat hair at 100 ng/mg.  The average accuracy for  
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these samples was 96.4%, and the imprecision was 3.5%. 

 
Lung 
 Figure 2.3 shows representative chromatograms for an extracted 12.5 

pg/mg B(a)P calibration standard (lowest standard in curve) and an extracted 

blank rat lung sample.  The assay was determined to be linear from 12.5 to 1000 

pg/mg. The LLOQ and ULOQ were 12.5 and 1000 pg/mg respectively. The 

coefficient of variation (CV) for the intra- and interassay accuracy and 

imprecision were less than or equal to 15% (Table 2.2). 

 The intra- and interaccuracy and imprecision data were determined by 

analysis of samples that were prepared with a stock solution from a different 

manufacturer from that used to make the calibration curve standards.  

The intraassay accuracy and imprecision were determined as previously 

described. Analyte-free lung samples were fortified with B(a)P at 37.5, 400, and 

750 pg/mg and analyzed within a single batch.  The intraassay accuracy ranged 

from 100.7-114.8% of the theoretical target concentrations. The intra- assay 

imprecision ranged from 2.6-14.8%. 

  The accuracy and imprecision for the interassay were also determined as  

previously described. Analyte-free lung samples were fortified with B(a)P 37.5,  

400, 750 pg/mg and analyzed in three separate analytical batches on three 

separate days.  The intraassay accuracy ranged from 103.2-115.6% of the 

theoretical target concentrations. The intraassay imprecision ranged from 2.8- 

14.1%. 

The LLOQ  and ULOQ were also evaluated as described previously. The  
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Figure 2.3 Representative ion chromatograms from (A) extracted analyte-free 
(blank) rat lung sample and (B) an extracted B(a)P-fortified (12.5 pg/mg, LLOQ) 
rat lung sample. The small peak for B(a)P in extracted blank rat hair is due a 
small impurity present in the IS B(a)P-d12 (98.4% pure) (calculated concentration 
for this sample is below the LLOQ). There is no peak for B(a)P in blank rat lung 
without IS (data not shown).   Analyte retention time (RT) is on the x-axis and 
signal intensity on the y-axis. B(a)P = 252 m/z  and B(a)P-d12 = 264 m/z 
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Table 2.2 

Accuracy and imprecision of B(a)P-fortified rat lung tissue. 

            

 

Target 
Concentration na 

Mean 
Concentration % of Target %CVb 

  pg/mg   pg/mg     

Intraassay 
     

 
37.5 5 43.1 114.8 4.2 

 
400.0 5 413.1 103.3 2.6 

 
750.0 5 805.8 100.7 14.8 

Interassay 
     

 
37.5 15 43.3 115.6 4.4 

 
400.0 15 412.6 103.2 2.8 

 
750.0 15 808.9 107.9 14.1 

            

      

                  

 

Target 
Concentration na 

Mean 
Concentration % of Target %CVb 

  pg/mg   pg/mg     

LLOQ 
     

 
12.5 5 14.6 117.0 1.9 

      ULOQ 
     

 
1000.0 5 1031.4 103.1 2.6 

            

 

 

a Number of quality control replicate samples used 
b CV= coefficient of variation 
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mean average accuracy for the LLOQ was 117.0% with an imprecision of 1.9%.  

The average accuracy for the ULOQ was 103.1% with an imprecision of 2.6%. 

 
Plasma 
 
 Figure 2.4 shows chromatograms for an extracted 25 ng/mL B(a)P 

calibration standard (lowest standard in curve) and an extracted blank rat plasma 

sample.  The assay was determined to be linear from 25 to 3200 ng/mL. The 

LLOQ and ULOQ were 25 and 3200 ng/mL, respectively. The coefficient of 

variation (CV) for intra- and interassay accuracy and imprecision were less than 

20% (Table 2.3). 

 The intra- and interaccuracy and imprecision data were determined by 

analysis of samples that were prepared with a stock solution from a different 

manufacturer from that used to make the calibration curve standards.   

The intraassay accuracy and imprecision were determined as previously 

described. Analyte-free plasma samples were fortified with B(a)P at 75, 1500, 

and 2750 ng/mL and analyzed within a single batch.  The intraassay accuracy 

ranged from  94.2-96.4% of the theoretical target concentrations. The intraassay 

imprecision ranged from 5.8-20.0%. 

 The accuracy and imprecision for the interassay were determined as 

previously described. Analyte-free plasma samples were fortified with B(a)P at 

75, 1500, 2750 ng/mL and analyzed in three separate analytical batches on three  

separate days.  The interassay accuracy ranged from 94.1 - 98.8% of the 

theoretical target concentrations. The intraassay imprecision ranged from 4.7 - 

18.0%. 
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Figure 2.4 Representative ion chromatograms from (A) extracted analyte-free 
(blank) rat plasma sample and (B) an extracted B(a)P-fortified (25 ng/mL, LLOQ) 
rat plasma sample. The small peak for B(a)P in extracted blank rat hair is due a 
small impurity present in the IS B(a)P-d12 (98.4% pure) (calculated concentration 
for this sample is below the LLOQ). There is no peak for B(a)P in blank rat 
plasma without IS (data not shown).  Analyte retention time (RT) is on the x-axis 
and signal intensity on the y-axis. B(a)P = 252 m/z  and B(a)P-d12 = 264 m/z 
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Table 2.3 

Accuracy and imprecision of B(a)P-fortified rat plasma. 

            

 

Target 
Concentration na 

Mean 
Concentration % of Target %CVb 

  ng/mL   ng/mL     

Intraassay 
     

 
75 5 70.7 94.2 5.8 

 
1500 5 1450 96.4 5.2 

 
2750 4* 2600 94.4 20.0 

Interassay 
     

 
75 15 74.1 98.8 12.7 

 
1500 15 1415.2 94.3 4.7 

 
2750 12* 2588.3 94.1 18.0 

      
 

    

      

                  

 

Target 
Concentration na 

Mean 
Concentration % of Target %CVb 

  ng/mL   ng/mL     

LLOQ 
     

 
25 5 27.4 109.5. 10.4 

      ULOQ 
     

 
3200 5 3184.3 99.5 3.0 

      
 

    

 

 

a Number of quality control replicate samples used 
b CV= coefficient of variation 
*Sample(s) in set was considered an outlier and therefore not used in 
calculations (sample inadvertently double fortified with B(a)P)  
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The LLOQ and ULOQ were evaluated as described previously. The mean 

accuracy the LLOQ was 109.5% with a imprecision of 10.4%. The mean  

accuracy for the ULOQ was 99.5% with a imprecision of 3.0%. 

 
Validation of analytical methods for BPT 

 
 

Hair 

 Figure 2.5 shows chromatograms for an extracted 5 pg/mg BPT 

calibration standard (lowest standard in curve) and an extracted blank rat hair 

sample.  The assay was determined to be linear from 5 to 40 pg/mg. The LLOQ 

and ULOQ were 5 and 40 pg/mg, respectively. The coefficient of variation (CV) 

for the intra- and interassay accuracy and imprecision were less than 10%  

(Table 2.4). 

The stock and intermediate solutions for accuracy and imprecision for 

intra- and interassay samples were made by the quality control officer, or other 

Center for Human Toxicology personnel (since only one supplier existed for BPT 

at the time of this research). The stock and intermediate solutions used to make  

the calibration standards were prepared by Sarah Campbell.  Accuracy and 

imprecision were calculated as previously described.  

The intraassay accuracy and imprecision were determined as previously 

described. Analyte-free rat hair samples were fortified with BPT at 15, 25, and 30 

pg/mg and analyzed within a single batch. The intraassay accuracy ranged from 

95.4 - 98.0% of the theoretical target concentrations. The intraassay imprecision 

ranged from 5.9 - 9.7%.  

 The accuracy and imprecision for the interassay were also determined as 
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Figure 2.5 Representative ion chromatograms from (A) extracted analyte-free 
(blank) rat hair sample and (B) an extracted BPT-fortified (5 pg/mg, LLOQ) rat 
hair sample. Samples shown were also fortified with the internal standard (13C6)-
BPT. Analyte retention time (RT) is on the x-axis and signal intensity on the y-
axis. Derivatized BPT = 446 m/z and derivatized [13C6]-BPT = 452 m/z 
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Table 2.4 

Accuracy and imprecision of BPT-fortified rat hair. 

            

 

Target 
Concentration na 

Mean 
Concentration 

% of 
Target %CVb 

  pg/mg   pg/mg     

Intraassay 
     

 
15 5 14.7 98.0 9.7 

 
25 5 24.3 97.2 6.3 

 
35 4* 33.4 95.4 5.9 

Interassay 
     

 
15 15 14.7 97.9 6.8 

 
25 15 24.0 95.9 5.2 

 
35 14* 34.0 97.3 4.7 

            

      

                  

 

Target 
Concentration na 

Mean 
Concentration 

% of 
Target %CVb 

  pg/mg   pg/mg     

LLOQ 
     

 
5 5 4.2 84.0 10.2 

      ULOQ 
     

 
40 5 39.0 97.5 9.7 

            

 

 
a Number of quality control replicate samples used 
b CV= coefficient of variation 
*Sample in set did not get injected 
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previously described. Analyte-free hair samples were fortified with BPT at 15, 25, 

35 pg/mg and analyzed in three separate analytical batches on three  

separate days.  The intraassay accuracy ranged from 95.9 - 97.9% of the 

theoretical target concentrations. The intraassay imprecision ranged from 4.7 - 

6.8%. 

The LLOQ and ULOQ were evaluated as described previously. The mean 

accuracy for the LLOQ was 84.0% with a imprecision of 10.2%. The mean 

accuracy for the ULOQ samples was 97.5% with a imprecision of 9.7%. 

 
Hemoglobin 
 
 Figure 2.6 shows chromatograms for an extracted 2.5 pg/mg BPT 

calibration standard and an extracted blank rat Hb sample.  The assay was  

determined to be linear from 2.5 to100 pg/mg. The LLOQ and ULOQ were 2.5 

and 100 pg/mg, respectively. The coefficient of variation (CV) for the intra- and 

interassay accuracy and imprecision were less than 10% (Table 2.5). 

The stock and intermediate solutions for accuracy and imprecision for 

intra- and interassay samples were made by the quality control, or other Center 

for Human Toxicology personnel (since only one supplier exists for BPT). The 

stock and intermediate solutions used to make the calibration standards were 

prepared by Sarah Campbell.   

The intraassay accuracy and imprecision were determined as previously 

described. Analyte-free Hb samples were fortified with BPT at 7.5, 37.5, and 80 

pg/mg and analyzed within a single batch.  The intraassay accuracy ranged  

from 95.0 - 97.3% of the theoretical target concentrations. The intraassay  
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Figure 2.6 Representative ion chromatograms from (A) extracted analyte-free 
(blank) rat Hb sample and (B) an extracted BPT-fortified (2.5 pg/mg, LLOQ) rat 
Hb sample. Samples shown were also fortified with the internal standard (13C6)-
BPT. Analyte retention time (RT) is on the x-axis and signal intensity on the y-
axis. Derivatized BPT = 446 m/z and derivatized [13C6]-BPT = 452 m/z 
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Table 2.5 

Accuracy and imprecision of BPT-fortified rat Hb. 

            

 

Target 
Concentration na 

Mean 
Concentration % of Target %CVb 

  pg/mg   pg/mg     

Intraassay 
     

 
7.5 5 7.3 97.3 6.1 

 
37.5 5 35.6 95.0 0.9 

 
80.0 5 76.7 95.9 0.5 

Interassay 
     

 
7.5 15 7.3 97.9 5.5 

 
37.5 15 35.5 94.6 1.5 

 
80.0 13* 76.9 96.1 1.0 

            

      

                  

 

Target 
Concentration na 

Mean 
Concentration % of Target %CVb 

  pg/mg   pg/mg     

LLOQ 
     

 
2.5 4** 3.0 121.2 20.0 

      ULOQ 
     

 
100.0 5 98.7 98.7 2.9 

  
 

  
    

 

a Number of quality control replicate samples used 
b CV= coefficient of variation 
*Two samples in group did not get injected 
**Sample in group was considered an outlier due to poor chromatography and 
not used in calculation 
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imprecision ranged from 0.5 - 6.1%. 

The accuracy and imprecision for the interassay were determined as 

previously described. Analyte-free Hb samples were fortified with BPT at 7.5, 

37.5, 80 pg/mg and analyzed in three separate analytical batches on three  

separate days.  The intraassay accuracy ranged from 94.6 - 97.9% of the 

theoretical target concentrations. The intraassay imprecision ranged from 1.0 - 

5.5%. 

The LLOQ and ULOQ were evaluated as described previously. The mean 

accuracy for the LLOQ was 121.2% with a imprecision of 20.0%. The mean 

accuracy for the ULOQ was 98.7% with a imprecision of 2.9%. 

 
Results from animal experiments 

 
 

Incorporation of B(a)P into rat hair 

 Baseline (Day 0) rat hair samples, as well as Day 14 hair samples from 

control rats, both analyzed using the developed methods, were below the LLOQ 

for B(a)P (data not shown).  Figure 2.7 shows the mean + SEM (standard error of  

the mean) concentrations for B(a)P detected in pigmented hair from rat 

administered 40 mg/kg, 80mg/kg, or 160 mg/kg B(a)P. 

 The concentration of B(a)P detected in rat hair at Day 14 increases in a 

dose-dependent manner,  ranging from nondetected to 3.3 ng/mg.  Specifically, 

hair concentrations of B(a)P were 0.10 + 0.06 ng/mg for 40 mg/kg dosed rats, 0.7 

+ 0.2 ng/mg for the 80 mg/kg dosed rats, and 1.1 + 0.3 ng/mg for 160 mg/kg 

dosed rats.  We found no significant difference in the concentration of B(a)P in  
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Figure 2.7 Concentrations of B(a)P in Rat Hair.  A)  Hair concentrations of B(a)P 
in the hair of B(a)P dosed rats. B(a)P concentrations in rat hair increase in a 
dose-dependent manner .  B)  B(a)P concentrations in pigmented and 
nonpigmented rat hair from 160 mg/kg dosed rats.  B(a)P concentrations in 
pigmented and nonpigmented rat hair do not statistically differ. Error bars 
represent the mean + SEM. 
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pigmented and nonpigmented rat hair from animals dosed at 160 mg/kg (Figure 

2.7). At this dose the mean (+ SEM) for B(a)P concentration for pigmented hair 

from 160 mg/kg dosed animals  was 1.0 + 0.3 ng/mg and 1.0 + 0.3 ng/mg in 

nonpigmented. 

 
Incorporation of BPT into rat hair 
 
 Baseline (Day 0) rat hair samples, as well as Day 14 hair samples from 

control rats, were all below the LLOQ for BPT (data not shown).  Figure 2.8 

shows the mean + SEM (standard error of the mean) concentrations for BPT 

released from pigmented rat hair after the administration of 40 mg/kg, 80mg/kg, 

and 160 mg/kg B(a)P. The concentration of BPT detected in rat hair increases in 

a dose- dependent manner;  The measured concentrations of BPT in the hair of  

B(a)P dosed rats at Day 14 ranged from 3.6 to 62.6 pg/mg.  Hair concentrations 

of BPT released were 7.3 + 0.6 pg/mg for 40 mg/kg dosed rats, 9.9 + 0.7 pg/mg 

for the 80 mg/kg dosed rats, and 42.1 + 4.1 pg/mg for 160 mg/kg dosed rats.  

There was a significant difference in the concentration of BPT released from 

pigmented and nonpigmented rat hair after administration of 160 mg/kg B(a)P 

(Figure 2.8). The mean (+ SEM) for BPT concentrations released from hair from 

160 mg/kg B(a)P-dosed animals was 41.5 + 0.3 pg/mg and 26.3 + 0.3 pg/mg in 

pigmented and nonpigmented hair, respectively. 

 
Positive control results  

 BPDE-Hb adducts were selected as the positive control for these 

experiments, since they have been extensively studied and previously  
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Figure 2.8 Concentrations of BPT in Rat Hair.  A)  BPT released from hair of 
B(a)P dosed rats. BPT concentrations released from rat hair increase in a dose-
dependent manner. However, results from 40 mg/kg and 80 mg/kg are not 
statistically different from each other, whereas results between 80 mg/kg and 160 
mg/kg, and 40 mg/kg and 160 mg/kg statistically differ.  B)  BPT released from 
pigmented and nonpigmented from 160mg/kg dosed rats.  BPT released from 
pigmented and nonpigmented are statistically different.  Error bars represent the 
mean + SEM. 
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characterized as a biomarker of B(a)P exposure.  These adducts are associated 

with toxicity, and account for cumulative exposures over the life-span of an  

erythrocyte (120 days). BPDE-protein adducts have been studied in blood 

proteins (e.g., Hb, albumin) [60, 121-124] and BPDE-DNA adducts in several 

different tissues [125-129].  While DNA adducts have provided useful information 

regarding carcinogenicity, major limitations exist: 1) BPDE-DNA adducts are 

subject to enzymatic repair by excision repair enzymes;  2) There is a high 

frequency (as much as 70%) of BPDE-DNA samples in which no adducts are 

found. To combat these issues, we chose the BPDE-Hb adduct, rather than the 

DNA adduct, as it is much more abundant and not subject to enzymatic repair. 

BPDE-Hb adducts are commonly used as surrogates for DNA adducts in order to  

assess diseases progression and cancer risk [60] . 

 As expected, we saw a dose-dependent increase in the BPDE-Hb adduct 

(measured by BPT released) (Figure 2.9) from the blood of B(a)P dosed rats.  Hb 

samples from control rats were at or below the LLOQ for BPT, with the exception 

of one rat at about three times the LLOQ. However, the result for this rat was still 

below the concentrations observed in our lowest B(a)P dosed group.  

 The major source for B(a)P in nonsmokers is via the ingestion and 

inhalation of B(a)P from foods (especially charbroiled foods), water, and air [76]. 

Rats from this study may also be exposed to B(a)P from similar sources.  We 

tested the corn oil used for making the dosing solutions and did not find 

detectable levels of B(a)P (data not shown).  BPDE-Hb adducts can be detected 

in humans who are nonsmokers, so our findings of BPDE-Hb adducts in  
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Figure 2.9 Positive control results for B(a)P dosed rats.  A)  BPDE-Hb adduct 
concentrations from B(a)P dosed rats.  BPDE-Hb adducts increase in a dose-
dependent manner.  B)  Spearman correlation test results for the comparison of 
B(a)P in rat hair and BPDE-Hb adducts.  Each dot represents a single rat. There 
is a significant correlation between concentrations of B(a)P detected in hair and 
our positive control. (Data from rats that were nondetected for B(a)P in hair are 
not included.)  C)  Spearman correlation test results for the comparison of BPT 
released from rat hair and BPDE-Hb adducts.  There is a significant correlation 
between BPT released from hair and our positive control.  D) Spearman 
correlation test results for the comparison of B(a)P and BPT released from rat 
hair.  There is a significant correlation between B(a)P and BPT released from rat 
hair.  (Data from rats that were nondetected for B(a)P in hair are not included.)  
Error bars represent + SEM. 
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unexposed control rats is not unusual.   Figure 2.9 A shows the mean + SEM 

concentrations for BPT released from the Hb of 40 mg/kg, 80mg/kg, and 160 

mg/kg dosed rats. The measured concentrations of BPDE-Hb adducts in the 

B(a)P dosed rats ranged from 11.9 to 79.4 pg/mg.  The mean + SEM BPDE-Hb 

adduct concentrations were 15.7. + 1.1 pg/mg for 40 mg/kg dosed rats, 33.4 + 

4.0 pg/mg for the 80 mg/kg dosed rats, and 55.4 + 4.0 pg/mg for 160 mg/kg 

dosed rats.   

 We compared the concentrations of B(a)P and BPT released from rat hair 

with the results from our positive control (BPDE-Hb adducts) to determine 

whether there was a positive association between the measures (Figure 2.9, 

panels B and C). There was a significant correlation between concentrations of 

B(a)P detected in hair and the presence of BPDE-Hb adducts from blood (our 

positive control, p<0.01).  There was a more robust significant correlation 

between BPT released from hair and our positive control (p<0.0001).  We also 

determined there was a significant correlation between concentrations of B(a)P in 

rat hair and BPT released from rat hair (Figure 2.9, panel D). 

 
B(a)P in lung tissues of dosed rats 
 
 The measured concentration of B(a)P in lung tissue from corn oil-treated 

control rats, were all below the LLOQ (data not shown).  Figure 2.10 shows the 

mean + SEM concentrations for B(a)P detected in lung tissue collected on Day 

14 from 40 mg/kg, 80mg/kg, and 160 mg/kg B(a)P dosed rats. The results 

represented in Figure 2.10 are therefore due to the retention of B(a)P in the lung 

(all dosing in these animals was discontinued seven days prior to the sacrifice 
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Figure 2.10  B(a)P remaining in rat lung tissues at Day14.  The concentration of 
B(a)P detected in rat lung tissues increases in a dose-dependent manner, with a 
sharp increase in the concentration between the 80 mg/kg and 160 mg/kg doses 
animals.  Solid horizontal bars represent the mean and the vertical error bars 
represent the + SEM. 
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increases in a dose-dependent manner, with a sharp increase in the 

day). The mean concentration of B(a)P detected in rat lung tissues at Day 14  

concentration between the 80 mg/kg and 160 mg/kg dosed animals.  Specifically, 

the measured concentrations of B(a)P remaining in the lung ranged from 

nondetected to 85.1 ng/mg. Then mean + SEM lung tissue concentrations of 

B(a)P were 0.1 + 0.1 ng/mg for 40 mg/kg dosed rats, 0.8 + 0.4 ng/mg for the 80 

mg/kg dosed rats, and 23.4. + 8.4 ng/mg for 160 mg/kg dosed rats, respectively.   

 
B(a)P in the plasma of dosed rats 
 
 The measured concentration of B(a)P in plasma from corn oil control 

treated rats, were all below the LLOQ (data not shown).  Figure 2.11 shows the  

mean + SEM concentrations for B(a)P detected in plasma from 40 mg/kg, 

80mg/kg, and 160 mg/kg dosed rats. The results in Figure 2.11 represent  

circulating B(a)P concentrations after dosing had been discontinued seven days 

earlier. The concentrations of circulating B(a)P at Day 14 increases in a dose-

dependent manner, with a sharp increase in the concentration between the 80  

mg/kg and 160 mg/kg dosed animals (as seen in B(a)P concentrations in the 

lung tissues, Figure 2.10).  The measured concentrations of B(a)P remaining in 

the plasma ranged from nondetected to 33.2 ug/mL.  The mean + SEM plasma 

concentrations of B(a)P were 7.0 + 5.3 ng/mL for 40 mg/kg dosed rats, 106.3 + 

53.1 ng/mL for the 80 mg/kg dosed rats, and 6926 + 3400 ng/mL for 160 mg/kg 

dosed rats. There was no correlation between concentrations of B(a)P circulating 

the plasma at Day 14 and hair concentrations of B(a)P or BPT (data not shown).  

 



70 
 

 

 

 

 

B(a)P in Plasma

40
 m

g/k
g (n

=10
)

80
 m

g/k
g (n

=10
)

16
0 

m
g/k

g (n
=10

)

0

10

20

30

100

200

300

400

500

10000

20000

30000

n
g

/m
L

 

 

 

Figure 2.11  B(a)P concentrations circulating in rat plasma at Day 14.  The 
circulating concentrations of B(a)P detected in rat plasma increases in a dose-
dependent manner, with a sharp increase in the concentration between the 80 
mg/kg and 160 mg/kg dosed animals (as seen in the rat lung tissue).  Solid 
horizontal bars represent the mean and the vertical error bars represent the + 
SEM. 
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There was a significant correlation between concentrations of B(a)P remaining in  

lung tissue and circulating B(a)P concentrations in the plasma (Figure 2.12).  
 
 
Wash experiment on rat hair 
 
 The results from an initial wash experiment with B(a)P incorporated in rat 

hair using a shampoo solution and an organic solvent (dicloromethane) are 

shown in Figure 2.13.  The mean + SEM concentration for B(a)P in the 

unwashed hair hair sample was 0.49 ng/mg.  In contrast, the mean + SEM 

concentration for B(a)P in the hair washed with either shampoo or 

dichlormethane were 0.10 pg/mg and 0.13 pg/mg, respectively.  Since 

performing a wash greatly reduced the concentration of B(a)P several fold from 

what had been incorporated into the rat hair shaft, we chose not to perform 

washes on any of the samples from this study. 

 
Discussion 

 
 The described GC/MS methods in this chapter are sensitive and specific, 

and were developed 1) to detect B(a)P in hair, lung, and plasma, 2) BPDE-

induced adducts from the hair, and 3) hemoglobin of B(a)P dosed rats.  Using 

these methods, we determined that B(a)P and BPDE-protein adducts can be 

detected in rat hair and are incorporated into hair in a dose-dependent manner. 

To our knowledge, the detection of these compounds in rat hair is a novel finding.  

Whereas B(a)P concentrations in rat hair do not statistically differ between 

pigmented vs. nonpigmented rat hair, BPDE-protein adduct concentrations in 

pigmented hair are about 1.6 times greater than nonpigmented hair.  Both B(a)P  
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Figure 2.12 Spearman correlation test results for the comparison of B(a)P in 
plasma and lung at Day 14. Each dot represents a single rat.  There is a 
significant correlation between concentrations of B(a)P in the plasma and lung. 
(Data from rats that were nondetected for B(a)P in plasma and lung were not 
included.)   
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Figure 2.13  Results from the washing of B(a)P incorporated rat hair. These 
results demonstrate that washing hair with a 10% aqueous shampoo wash 
solution and dichloromethane (DCM) greatly reduce the detectable amount of 
B(a)P in the hair of dosed rats. 
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and BPDE-protein adduct hair concentrations correlate to concentrations of the  

positive control (the extensively studied and well-characterized BPDE-Hb adduct) 

using a Spearman’s correlation test.  This demonstrates that these novel hair 

biomarkers may provide a useful tool to monitor B(a)P exposure in many different 

settings. The studies presented in this chapter were used to support our research 

on the incorporation of B(a)P and BPDE-protein adducts into human hair 

(Chapter 4), and their use as biomarkers of B(a)P exposure in smokers and 

nonsmokers. 

 
Possible mechanisms of B(a)P and BPDE-protein 

 
adduct incorporation in hair 

 
 No published data have previously been reported for the identification of 

B(a)P or BPDE-protein adducts in rat hair.  The actual mechanisms whereby 

these novel biomarkers incorporate into hair remains to be elucidated, and 

although it was not the focus of this dissertational research, the results from our 

rat studies support a passive diffusion model of incorporation (detailed in the 

Introduction of this chapter).  In conjunction this model, we hypothesize that 

B(a)P passively diffuses from the bloodstream at the base of the follicle to the 

hair forming cells, and then becomes incorporated into the growing hair shaft.  

Furthermore, we also hypothesized the electrophilic reactive intermediate BPDE 

is formed by the metabolism of B(a)P in the follicular cells of the hair bulb by 

CYP450’s and epoxide hydrolase enzymes. (The metabolism of B(a)P in hair 

follicles has been previously described [130-132]).  BPDE would then react to 

form adducts with surrounding proteins. Possible binding sites for BPDE could 
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involve the formation of a covalent bond between the epoxide of BPDE and the 

thiol group on the very abundant cysteine residue in hair. There is strong 

evidence that BPDE binds to cysteine residues in intracellular proteins, and thiol 

groups in general are known to covalently bind with epoxides [133].  Morrison et 

al. have demonstrated with in vitro studies that depletion of thiol groups in 

hepatocytes leads to an increase in BPDE-protein adduct concentrations [134].  

Several studies have also addressed that the nucleophile glutathione, which 

contains a cysteine and is known to detoxify BPDE, plays a critical role in 

preventing the carcinogenesis of BPDE [135]. Also, it has been demonstrated 

that N-acetyl cysteine reduces, or eliminates, BPDE-adducts in the lung [136]. 

BPDE and reaction with acidic amino acids by ester linkage is also supported 

since upon proteolysis of adducted proteins tetrols are released.  This has been 

previously described with BPDE’s reaction mainly by alkylation of the amino acid 

aspartate number 47 (on its α side chain) in human Hb [98].  Other possible 

amino acid side chains in hair proteins that may participate in BPDE binding 

include: amines, carboxyaminde, carboxyl guandidine, hydroxyl, imidazole, 

indole, phenol, and sulfhydryl groups.   

In the deep compartment and multicompartment models, other routes of 

entry contribute to xenobiotic incorporation into hair.  These routes include 

exposure through sweat and sebum excretions, as well as from external 

environmental contaminants.  However, since rats only have sweat glands on the 

digital, palmar, and plantar pads of their feet, sweat is not a likely route of B(a)P 

and BPDE-protein adduct incorporation in the hair from the back of the rat.  In 
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contrast, secretions of these compounds via sebum cannot be ruled out as a 

possible route of incorporation.  Like the hair follicle, sebaceous glands are 

nourished by a dense network of capillaries though which xenobiotic can diffuse. 

Due to its highly lipophilic nature, B(a)P would likely accumulate in the sebum 

excreted from these glands. Sebaceous glands in the rat have CYP450s and 

other enzymes that have also been demonstrated to metabolize B(a)P [137].  

Whether BPDE-protein adducts are formed in the sebaceous gland and then 

discharged through its canal in connection with the hair follicle, or whether BPDE 

itself is transferred via the canal to react with proteins of the growing hair shaft 

remains to be elucidated.  

For the melainin-binding model, pigment content is considered an 

important feature in the incorporation of xenobiotics into hair.  Since certain drugs 

and xenobiotics have high affinities for melanin, the amount of melanin present in  

hair would have effects on the concentration found in different colors of hair.  

Since B(a)P is known to bind to melanin in vitro (including melanin in hair 

follicles) [44, 45, 138], we hypothesized that B(a)P would be incorporated to a 

greater extent in pigmented vs. nonpigmented rat hair.  This, however, was not 

the case for the neutral B(a)P compound, but may be playing a role in the 

incorporation of  BPDE-protein adducts.  Concentrations of BPDE-protein 

adducts were about 1.6 times higher in pigmented vs. nonpigmented rat hair.  

The electrophilicity of BPDE and/or the functional groups present (i.e. epoxide 

and hydroxyl) on the BPDE molecule are most likely are contributing to the 

increased incorporation into pigmented hair. 
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As previously mentioned, there is general concern over hair analyses and 

confounding effects of external contamination, especially with smoked drugs. To 

limit potential sources of contamination in the present studies, rats were 

individually housed (to prevent social grooming) in hanging wire cages (to 

prevent contamination of the coat from bedding) and hair was only collected from 

areas where the animal would not be able to self-groom. Furthermore, since 

BPDE and BPT are metabolites of B(a)P and only synthesized in the body, 

contamination of hair with these compounds was unlikely to contribute to the 

findings in our studies.  We did perform an initial wash experiment with B(a)P 

incorporated rat hair using dichloromethane and a 10% aqueous shampoo 

solution (results shown in Figure 2.13).  Since performing a wash greatly reduced 

the concentration of B(a)P several fold from what had been incorporated into the 

rat hair shaft, we chose not to perform washes on any of the samples. 

 
Limitations of analysis for BPDE-protein  

 
adducts in hair 

 One caveat of measuring BPT released from hair, as evidence of a BPDE 

bound protein adduct, is that the analysis may also be measuring BPT as a 

metabolite from the further metabolism of BPDE by epoxide hydrolase and/or 

water.  Additionally, since enzymatic hydrolysis was used during the sample 

preparation, it is also possible that BPT may be released from BPDE conjugates 

such as BPDE-glutathione, BPDE-glucuronide and BPDE-sulfate conjugates.  

Given that hair is a solid structure comprised mostly of proteins, it would be 

difficult to isolate th intact protein (as done with Hb) without denaturing the 
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proteins themselves.  Further research is needed to elucidate the percentage of 

free BPT vs. BPT released directly from BPDE-protein adducts in hair.  

 
 

Positive correlation of hair biomarkers and  
BPDE-Hb adducts 

We compared the concentrations of B(a)P and BPDE-protein adducts 

from rat hair with the results from our positive control (BPDE-Hb adducts) to 

determine whether there was a positive association between these measures 

(Figure 2.9, panel B). There was a significant correlation between the 

concentrations of B(a)P detected in the hair and our positive control (p<0.0147).  

There was an even more robust correlation between BPT released from hair and 

our positive control (p<0.0001).  Since the BPDE-Hb adduct has been thoroughly 

investigated and characterized [121-123, 139-141], and demonstrates that known 

adduct formation has occurred, our novel hair biomarkers presented in this 

chapter show great promise for assessing toxic B(a)P exposure. 

 
Plasma and lung B(a)P concentrations 

 
These studies did not find a correlation between concentrations of B(a)P 

or BPDE-protein adducts in hair and the concentrations of B(a)P remaining in the 

lung or plasma at Day 14.  However, hair concentrations are considered a 

cumulative marker of exposure, whereas concentrations in the plasma or lung 

would represent an acute exposure, so the lack of correlation was not completely 

unexpected. The concentrations of B(a)P that remained in the lung, and that 

were still in the circulation at Day 14, were high. These data illustrate the rat 
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lung’s inability to clear the high doses of B(a)P that were given and the high 

volume of distribution of B(a)P itself. The accumulation of B(a)P in rat lung has 

been previously described even after lower doses [74, 75, 142], and may be due 

to the substantially lower abundance of CYP450s in the lung to metabolize B(a)P 

in comparison with the liver [142].  Lung-mediated elimination of xenobiotic 

compounds presents toxicological and pharmacological important aspects, and 

the accumulation of B(a)P we observed in the lungs may be closely related to its 

toxic effects.  A future goal would be to elucidate whether concentrations of 

BPDE-protein adducts in the hair have a relationship to concentrations of BPDE-

protein adducts formed in the lung of our B(a)P dosed rats. 

In conclusion, the results presented in this chapter show great promise for 

biomonitoring of B(a)P exposure by means of these novel hair biomarkers. While 

the incorporation of B(a)P and BPDE-protein adducts may occur through multiple 

different mechanisms, and at various periods during hair growth, more research 

is needed to elucidate the mechanisms surrounding B(a)P and  BPDE-protein 

adduct incorporation into hair.  

   

 

 

 

 



 

 

 

 
 
 
 
 

CHAPTER 3 
 
 

HISTOPATHOLOGY OF LUNG TISSUE FROM RATS EXPOSED TO  
 

BENZO(A)PYRENE 
 
 

Introduction 
 

Route of B(a)P administration 

The pattern of pulmonary injury varies for inhaled toxicants compared to 

systemically and i.p administered toxicants. We chose to administer B(a)P by i.p. 

injection because it is simple, easily controlled, and provides an exact known 

dosage. It has also been demonstrated that i.p. administration of B(a)P is 

effective at inducing lung toxicities such as tumors and inflammation [143-146].  

We did not use inhalation delivery for several reasons:  1)  Volatile and 

semivolatile compounds, such as B(a)P, are poor candidates for inhalation 

toxicological dose-response studies due to their loss during the exposure 

process and poor reproducibility, which is prohibitory in the validation of fume 

concentrations [64, 73];  2)  High doses of B(a)P are not achievable by inhalation; 

3) Rodents undergo avoidance reactions when exposed to an inhalant;  4)  Given 

that rodents are obligatory nose breathers, and do not inhale the way humans 

do, this has differential effects in the dynamics of particle deposition in the rat’s 

respiratory tract;  and 5)  Delivery by inhalation can cause irritation-induced  
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histological changes that are independent of the administered toxicant.   

 
B(a)P and pulmonary toxicity 

 
The mammalian lung consists of more than 40 distinctive cell types. In 

general however, pneumotoxins select only six of these cell types as targets: 

type I and type II alveolar epithelial cells, capillary endothelial cells, pulmonary 

alveolar macrophages, ciliated bronchiolar epithelial cells, and clara cells 

(nonciliated bronchiolar epithelial cells). It is thought that the patterns of toxicity 

seen in the lung after xenobiotic exposure reflect the differences in formation of 

toxic reactive intermediates from metabolism in these cell types.  The specific 

CYP450 isoforms (i.e., CYP1A1, CYP1A2, and CYP1B1) that are responsible for 

the metabolism of B(a)P to the reactive BPDE metabolite are present in high 

abundance in several lung cell types [147], yet the exact histopathological events 

and mechanisms that take place in the lung after acute and early chronic B(a)P 

exposure are not completely known. In our pilot experimental dose studies (80 

mg/kg), we set out to determine what histopathological events in the lung may be 

contributing to B(a)P’s mechanism of pulmonary toxicity. In these preliminary 

pilot studies, we observed an increase in alveolar wall thickness, as well as an 

increase in the numbers of neutrophils and activated macrophages in rat lung 

tissue from 80 mg/kg dosed rats compared to normal untreated control rats. 

Thus, this dissertational research sought to provide insight into the biological and 

biochemical factors underlying B(a)P-mediated toxicity such as hyperplasia, 

hypertrophy, and increased inflammation.  
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Hyperplasia and hypertrophy in lung tissues 

 Hyperplasia and hypertrophy frequently occur together and may contribute 

to an increase in alveolar wall thickness.  Where hypertrophy is an increase in 

the size of the cell (which can be seen in the skeletal muscle during weight 

training), hyperplasia is an increase in the number of cells.  Hyperplasia can be a 

normal response (as seen in the glandular tissue of the breast during 

pregnancy), or an abnormal (atypical) response.  Atypical hyperplasia can be a 

preneoplastic response to a stimulus or secondary to a pathological cause. It has 

even been demonstrated to be a precursor in some cancers [148]. The cause of 

atypical hyperplasia may also be due to a chronic inflammatory response. 

 
Neutrophils and macrophages in the lung 

 
 An association between chronic inflammation and cancer has been 

recognized for a long time [149-151].   Experimental studies with rats, as well as 

molecular epidemiological studies in humans, have provided evidence that the 

influx of neutrophils into the airways is an important process that may link 

inflammation with carcinogenesis. Neutrophils (or polymorphonuclear 

neutrophils, PMNs) are the most abundant type of white blood cells, and are a 

critical part of the innate immune system.  Neutrophils can be identified in tissues 

by their unique nucleus which is divided into two to five lobes.  Neutrophils are 

normally found in the blood stream, but during the acute phase of inflammation 

they migrate from the vessels towards the site of tissue inflammation.  

Neutrophils have been demonstrated to increase during some environmental 

exposures [152], and some cancers [153, 154].  Neutrophil attachment to the 

http://en.wikipedia.org/wiki/White_blood_cell
http://en.wikipedia.org/wiki/Blood
http://en.wikipedia.org/wiki/Acute_(medical)
http://en.wikipedia.org/wiki/Inflammation
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endothelium has been demonstrated to be related to an increase in endothelial 

injury [155, 156].  This damage is accomplished by the release of reactive 

oxygen and nitrogen species from an enzyme called myeloperoxidase (MPO). 

MPO enzymes are most abundant in neutrophils and are considered a 

marker of neutrophilic inflammation.  The reactive species produced by this 

enzyme are cytotoxic and intended to kill bacteria and pathogens.  However, 

MPO enzymes are nonselective in their targets, and therefore also induce 

cellular injury and necrosis in host tissue.  Neutrophil infiltration itself then 

becomes an offender in the pathogenesis of disease.  An association of MPO 

and the severity of coronary artery disease has been established [157].  

However, the role of MPO in lung injury and disease is still being ascertained.  

Like neutrophils, alveolar macrophages are white blood cells. Their role is 

to consume cellular debris and pathogens in the lungs to keep the lung’s 

environment sterile.  They also phagocytize neutrophils as they age [147]. They 

can stimulate lymphocytes and other immune cells, but unlike neutrophils, which 

are short-lived (about 2 days), macrophages can survive much longer in the body 

(up to several months) [158]. This may explain why the dominant inflammatory 

cells seen in chronic infections are macrophages [159]. Many agents that 

increase macrophage activity also increase the risk of inflammatory-related injury 

in the lung [160].  The disruption of the delicate balance of the macrophage 

population in the lung can have deleterious consequences [160].  Furthermore, 

macrophages have been demonstrated to promote cancer cell proliferation [161]. 

Macrophages are attracted to oxygen-starved tumor cells and promote tumor  

http://en.wikipedia.org/wiki/White_blood_cell
http://en.wikipedia.org/wiki/Pathogen
http://en.wikipedia.org/wiki/Lymphocyte
http://en.wikipedia.org/wiki/Neutrophil
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necrosis factor (TNF-α) release, which in turn activates nuclear factor-kappa B 

(NF-κB).  This arrests apoptosis and promotes cell proliferation and inflammation 

[162]. TNF-α release has also been demonstrated in a number of in vivo models 

of xenobiotic-induced lung injury [160]. 

Both the neutrophils and alveolar macrophages have been demonstrated 

to metabolize B(a)P, or B(a)P metabolites, to the ultimate carcinogen BPDE [163, 

164].  The resultant BPDE-protein and DNA adducts may contribute to the 

histopathological events in the lung after B(a)P exposure as well as mutagenesis.  

Figure 3.1 provides a simplified overview of the pathways by which these cells 

may impact pulmonary toxicology, and demonstrates the rationale behind our 

research objectives. 

 

Histopathology and staining techniques 

Histopathology is the study of microscopic anatomical changes that are 

characteristic of disease.  Since biological tissues have little inherent contrast 

using visible light microscopy, various staining techniques are employed to 

establish general relationships among cells in tissues.  Before biological tissues 

are processed for staining, chemical fixatives are used to preserve tissue from 

degradation.  The most common fixative for light microscopy is a 10% formalin  

solution. Permeation of tissues with this solution maintains the structure of the 

cell and sub-cellular components (mainly by irreversibly cross-linking proteins to  

formaldehyde), and prevents autolysis. The fixed tissue can then be sectioned 

and stained accordingly.  The hematoxylin and eosin (H&E) stain that was 

employed for this dissertational research is one of the most commonly used 

http://en.wikipedia.org/wiki/NF-%CE%BAB
http://en.wikipedia.org/wiki/Apoptosis
http://en.wikipedia.org/wiki/Eosin
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Figure 3.1  Simplified overview of the pathways by which neutrophils and 
macrophages may impact pulmonary toxicity. Neutrophils can cause not only 
oxidative DNA damage through generation of reactive species, but also are able 
to activate B(a)P metabolites to the ultimate carcinogen BPDE via metabolism by 
MPO [164-166]. Additionally, macrophages have been demonstrated to 
metabolize B(a)P to BPDE via P450-dependent and -independent pathways 
[163] (Figure adapted from [167]) 
 

 

 

 

 

Neutrophil Macrophage 
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stains used today.  Hematoxylin is a basic dye that stains basophilic structures 

blue (i.e. nuclei and endoplasmic reticulum) and eosin is an acidic dye that stains 

eosinophilic structures pink (i.e., cytoplasm and red blood cells).  H&E staining 

therefore allows for the general study and differentiation of cell nuclei and 

cytoplasms in all types of tissues.   

Immunohistochemistry (IHC) exploits the principle of antibodies binding 

specifically to antigens (i.e., proteins) in biological tissues.  IHC is widely used in 

basic research to determine the localization and distribution of biomarkers in  

biological tissue. For the visualization of the antibody-antigen interaction, an 

antibody is conjugated to an enzyme.  A commonly used enzyme such as 

peroxidase can catalyze a color-producing reaction or the antibody can be 

tagged to a fluorophore which then could be detected under the appropriate 

fluorescent light.  

The experiments presented in this chapter were designed to address the 

hypothesis that the severity of lung tissue toxicity will correlate to the 

concentration of BPDE-protein adducts in hair. To determine the severity of lung 

tissue toxicity we:  1)  Measured  alveolar wall thickness and counted neutrophils  

in the lung tissue of control rats and B(a)P dosed rats by subjective means;  2)  

Measured nuclear space, cellular space, and air space by objective means;  3)  

Employed IHC to determine if MPO increases in rat lung tissues from B(a)P 

treated rats. 

 
 
 
 

http://en.wikipedia.org/wiki/Base_(chemistry)
http://en.wikipedia.org/wiki/Acid_(chemistry)
http://en.wikipedia.org/wiki/Cytoplasm
http://en.wikipedia.org/wiki/Antibody
http://en.wikipedia.org/wiki/Antigen
http://en.wikipedia.org/wiki/Biological_tissue
http://en.wikipedia.org/wiki/Peroxidase
http://en.wikipedia.org/wiki/Fluorophore
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Materials and Methods 
 
 

Animals 

Male Long-Evans rats (200-225 g) were individually housed in cages with 

wire mesh bottoms and maintained under controlled temperature and lighting 

conditions (12 hr light/dark cycle) and provided with food and water ad libitum. All 

procedures were in compliance with the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals [120].  

 
Chemicals and reagents 

B(a)P used for dosing solutions was purchased from Sigma-Aldrich®     

(St. Louis, MO). Containers with formalin solution (10%) for tissue fixation were 

obtained from ARUP laboratories (Salt Lake City, UT).  All other chemicals, 

reagents were obtained by the laboratories of ARUP Laboratories (Salt Lake 

City, UT) for H&E staining and IHC Services (Smithville, TX) for MPO staining. 

For ICH preparations the protein blocking solution was obtained from Signet 

Pathology Systems (Dedham, MA); The avidin /biotin blocking kit was purchased 

from Zymed Labs (San Francisco, CA);  SuperBlock was purchased from Pierce 

Chemical Company (Rockford, IL); Antibodies were obtained from SignetTM 

Laboratories (Dedham, MA) and New Fuchsin substrate from Kirkegaard & Perry  

Labs (Gaithersburg, MD). 
 

 
Experimental protocol and lung tissue collection 

 
 Two experimental groups were evaluated for evidence of the described  

histopathological changes as outlined below. 
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Group 1:  Rats were administered 40 mg/kg of B(a)P (in corn oil) (n=10) i.p. once 

daily for 7 days.  Control rats (n=5) were dosed i.p. once daily with corn oil for 

seven days.  

Group 2:  Rats were administered 160 mg/kg of B(a)P (in corn oil) (n=10) i.p. 

once daily for 7 days. Saline control rats (n=5) were administered sterile saline 

solution i.p. once daily for 7 days.  Corn oil control rats (n=5) were dosed i.p. 

once daily with corn oil for 7 days. 

Solutions of B(a)P in corn oil were prepared at 25 and 100 mg/mL for the 

40 and 160 mg/kg doses, respectively. The volume of corn oil administered given 

i.p. to the corn oil control rats was based on the weight of the animal.  This was 

done in order to keep the dosed volume of corn oil consistent between all 

experimental groups.  The volume of saline was also based on the weight of the 

animal, therefore keeping the dosed volume equivalent to the other groups. For 

this study, the doses of B(a)P given are high and represent chronic lifetime doses 

of B(a)P in humans. In order to evaluate whether vehicle (corn oil) had any effect 

on inflammation or other events in the lung, an additional control group (saline 

dosed rats) was included with Group 2.   

Fourteen days after the first dose, the animals were anesthetized with  

chloral hydrate (450 mg/kg).  After hair and blood were collected (as described in 

Material and Methods section in Chapter 2), the animal’s diaphragm on each side 

was carefully pierced to allow the lungs to collapse. The lungs were then 

carefully extracted by the trachea, avoiding actual contact with the lung at all 

times. The left lobe was placed in 10% formalin for at least 72 hours before gross  
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sectioning of tissue was performed.  The location of the nickel-thick section of 

lung tissue used for sectioning and staining for H&E and IHC can be seen in 

Figure 3.2. 

 
H&E staining of lung tissue 

 
 All of the H&E procedures were performed at ARUP laboratories (Salt 

Lake City, UT).  The nickel-thick gross section of lung tissue was allowed to 

equilibrate in 10% formalin overnight.  The next day, the tissue was paraffin 

embedded, then 3-5 micron paraffin sections were placed on positive charged 

slides and allowed to air dry at room temperature. Using an automated staining 

system (Tissue-Tek® PrismaTM), the slides were first deparaffinized in a 65°C 

drying oven then taken through a series of  xylene, alcohol, water, Harris 

hematoxylin, acetic acid, and eosin washes.  After the final rinsing and drying 

steps were complete, slides were transferred to an automated Tissue-Tek® 

FilmTM for coverslipping. 

 
Immunohistochemistry staining of lung tissue for MPO 

 
 All of the MPO staining procedures were performed at IHC Laboratories 

(Smithville, TX).  Five micron paraffin sections were placed on positive charged 

slides and allowed to air dry at room temperature.  The slides were then 

deparaffinized with ProPar® and hydrated down though a series of alcohols to  

covered with a protein blocking solution for 30 mins, and subsequently rinsed in 

Tris buffer.  An avidin/biotin blocking procedure was then performed, streptavidin-

alkaline phosphatase linking reagent was applied and incubated for 30 mins   
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Figure 3.2  Rat lung indicating the gross section of lung tissue used for paraffin 
embedding, sectioning, and H&E and immunohistochemistry staining.  The 
nickel-thick section contains the pulmonary artery and main bronchus. 
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in water.  Slides were then placed into a 10 uM citrate buffer (pH 6.0) and heated 

in a microwave to boiling, then held at the boiling temperature for 6 mins. The 

slides were allowed to cool for 20 mins at room temperature.  Each tissue section 

was Slides were again rinsed in Tris buffer and New Fuchsin substrate applied.  

Color development was monitored microscopically, then slides were washed in 

distilled water and counterstained in Mayers’ hematoxylin. Slides then went 

through a brief rinse in an aqueous ammonia solution, then distilled water, then 

dehydrated though a series of alcohols.  Slides were dipped in ProPar®, then 

mounted. 

  
Subjective analysis of lung tissues 

 
An initial observation of the H&E stained lung tissue obtained from a pilot  

study in rats administered B(a)P (80 mg/kg, n=10) and  normal untreated rats  

(n=4) revealed that B(a)P appeared to cause alveolar wall thickening (possible 

hyperplasia or hypertrophy based), decreased air space, and an increase in 

neutrophils and activated macrophages.  Therefore, in our 40 mg/kg and 160 

mg/kg dosed rats groups, along with appropriate vehicle (corn oil) control rats 

and saline control rats, we subjectively measured the percentage of alveolar wall 

thickening and number of neutrophils evident in ten random 40X images taken 

around the pulmonary artery and main bronchus of each rat (analyst was blinded 

to treatment groups).   

The percentage of alveolar wall thickening was determined by observing 

the increase in the number of cells that made up the alveolar wall in ten 40X 

fields (rounded to the nearest 5%).  For the average neutrophil count 
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measurement, the exact number of neutrophils were recorded in 10 40X fields.  

The ten values obtained from each rat for percentage of alveolar wall thickening 

and neutrophil count were then averaged, yielding a mean value per rat. 

Statistical tests were then performed on these mean values between each of the 

groups tested.   Subjective measurements were done under the guidance of Dr. 

Lawrence McGill (a veterinarian and board certified veterinarian pathologist) at 

ARUP Laboratories.   

 
Objective analysis of lung tissue 

 
 ImageJ is a Java-based image processing program developed at the  

National Institutes of Health [168]. We employed this software as a second  

approach for assessing histopathological changes in lung tissues obtained from  

the control and B(a)P dosed rats.  Using this software, and digital images of the 

H&E stained lung tissue, we performed several densitometric measurements. 

First, the analyst was blinded to treatment group, then ten random fields 

(at 40X magnification) around the pulmonary artery and main bronchus were 

selected (examples shown in Figure 3.3).  Because densitometric measurements 

of cellular content were assessed, fields only containing alveolar epithelial cells 

were taken (to avoid offset of other lung parenchyma of differing cellular density). 

These images were all taken under the same camera and scope settings (i.e., 

exposure, contrast, etc.).  These images were then analyzed in Image J using 

pixel value statistics of user-defined selections of intensity thresholded objects. 

The threshold intensity was set for each measurement of interest, then held 

constant for all sequential image measurements.  The thresholded  
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Figure 3.3  Representative digital images of H&E stained lung tissues.  
Whole lung (10X) (top) and alveolar cells (40X) (bottom).  Red circles 
around the pulmonary artery and main bronchus are representative areas 
for obtaining 40X images for ImageJ measurements. 
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measurements included:  1)  Cell Count (measure of hematoxylin stained nuclear  

space), Cellular Space (measure of eosin stained cytoplasmic material plus 

hematoxylin stained nuclear space), Air Space (measure of space not stained 

with hematoxylin or eosin), and ratios of these measures.  (Images of these 

measurements are represented above their respective data in the Results 

section.)  The “Cell Count” measurement may be representative of hyperplasia.  

“Cellular Space” may be representative of hypertrophy.  Decreased “Air Space” 

may be indicative of hyperplasia, hypertrophy, and/or inflammation.  A smaller 

than control value for the ratio of nuclear space to air space could be 

representative of hypertrophy. Whereas, a larger value than control value for the 

ratio of cellular space to air space could be indicative of hyperplasia, 

hypertrophy, and/or inflammation.  Figure 3.3 represents a whole lung slice 

showing representative areas where 40X images were obtained, and an example 

of a 40X image of alveolar cells of which ImageJ densitometric measurements 

were taken. 

 

Statistics 
 

 Subjective measures of the percent of alveolar wall thickening and 

average neutrophil counts for the 40 mg/kg dosed rats and corresponding corn 

oil control rats were compared by a two-tailed Student’s t-test. Objective ImageJ 

results for Cell Count, Cellular Space, Air Space, and ratios were also compared 

by a two-tailed Student’s t-test between these two groups.  Subjective measures 

of the percent of alveolar wall thickening and average neutrophil counts for the 

160 mg/kg dosed rats and corresponding saline control and corn oil control rats 
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were compared by a one-way ANOVA. Objective ImageJ results for Cell Count, 

Cellular Space, Air Space, and ratios between these groups were also compared 

by a one-way ANOVA.  All statistics were performed using Graph Pad Prism® 

software (version 5.01) (La Jolla, CA).  Differences were considered significant at 

α < 0.05. 

 
Results 

 
 There was no statistical difference in the subjective measurement of 

alveolar wall thickening or average neutrophil counts between 40 mg/kg dosed 

rats and the corresponding corn oil control rats (Figure 3.4 A-B).  There was also 

no statistical difference in the subjective measurement of the alveolar wall 

thickening or average neutrophil count between 160 mg/kg dosed rats and the 

corresponding saline control and corn oil control rats (Figure 3.4 C-D). 

 The objective ImageJ measurements for Cell Count and Cellular Space 

can be seen in Figure 3.5.  There was no statistical difference between 40 mg/kg 

dosed rats and the corresponding corn oil controls for Cell Count or Cellular 

Space.  There was also no statistical difference between 160 mg/kg dosed rats 

and the corresponding saline control and corn oil control rats for Cell Count or 

Cellular Space (Figure 3.5).  

The objective ImageJ measurements for Air Space can be seen in Figure 

3.6.  There was no statistical difference between 40 mg/kg dosed rats and the 

corresponding corn oil controls for Air Space.  There was also no statistical  

difference between 160 mg/kg dosed rats and the corresponding saline control  

and corn oil control rats for Air Space (Figure 3.6). 
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Figure 3.4  Subjective measurements (mean + SEM) for alveolar wall thickening 
and neutrophil counts for 40 and 160 mg/kg doses rats.  Panels A&B)  There is 
no statistical difference between alveolar wall thickening or neutrophil count for 
40 mg/kg dosed rats and corresponding corn oil control rats (P values for 
Student’s t-tests shown). Panels C&D)  There is no statistical difference between 
alveolar wall thickening or neutrophil count for 160 mg/kg dosed rats and 
corresponding saline control and corn oil control rats (P values for ANOVA 
shown). 

P=0.85 P=0.75 

P=0.71 P=0.76 

A. 

C. 
D. 

B. 
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Figure 3.5  ImageJ results (mean + SEM) for Cell Count and Cellular Space.  
Thresholded area is shown in red above bar charts and corresponds to the 
percent area fraction shown on the y-axis. A&B)  Results for 40 mg/kg dosed rats 
and corresponding corn oil control rats. There is no statistical difference between 
40 mg/kg dosed rats and corresponding corn oil controls for Cell Count or 
Cellular Space. (P values for Student’s t-tests shown).  C&D)  Results for 160 
mg/kg dosed rats and corresponding saline and corn oil control rats. There is no 
statistical difference between 160 mg/kg dosed rats and corresponding saline 
control and corn oil control rats for Cell Count or Cellular Space. (P values for 
ANOVA tests shown) 
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Figure 3.6  ImageJ results (mean + SEM) for Air Space.  Thresholded area is 
shown in red above bar charts and corresponds to percent area fraction shown 
on the y-axis.  A)  Results for 40 mg/kg dosed rats and corresponding corn oil 
control rats. There is no statistical difference between 40 mg/kg dosed rats and 
corresponding corn oil controls for Air Space. (P values for Student’s t-tests 
shown).  B)  Results for 160 mg/kg dosed rats and corresponding saline control 
and corn oil control rats. There is no statistical difference between 160 mg/kg 
dosed rats and corresponding saline and corn oil controls for Air Space. (P 
values for ANOVA tests shown) 
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The measurements for the ratios of nuclear space to cellular space, and 

cellular space to air space, from ImageJ results can be seen in Figure 3.7.  There 

was no statistical difference between 40 mg/kg dosed rats and corresponding 

corn oil controls for either ratio. There was also no statistical difference between  

160 mg/kg dosed rats and corresponding saline and corn oil controls for either 

ratio.  

The results from MPO staining from 160 mg/kg dosed rats (n=3) and 

corresponding corn oil control rats (n=3) are shown in Figure 3.8.  There was a 

significant difference in the number of MPO stained cells between these two  

groups. The mean + SEM was 2.0 + 0.3 for the corn oil control rats 3.1 + 0.3 for  

the 160 mg/kg dosed rats. 
 
 

Discussion  
 

 We determined that there is a significant difference in the IHC staining for 

MPO content between B(a)P dosed rats and control rats (Figure 3.8). However, 

we were unable to determine a statistically significant difference the lung tissues 

between B(a)P dosed rats and control rats using the described subjective and  

objective measures within this chapter.  This lack of significant difference may be 

due to several reasons:  1) There may be a lack of sensitivity in methods used for 

both subjective and objective measurements;  2) The lung tissues from animals 

were not insufflated at a constant pressure prior to collection; 3) The dosing 

paradigm included only one time point (Day14), seven days after the last B(a)P  

dose;  4)  The route of administration by i.p. may not be appropriate for short- 

term studies of B(a)P-induced toxicities in the lung;  5)  Artifacts of H&E staining  
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Figure 3.7  Ratios of nuclear space to cellular space and cellular space to air 
space for ImageJ results (mean + SEM).  A&B)  Results for 40 mg/kg dosed rats 
and corresponding corn oil control rats. There is no statistical difference between 
40 mg/kg dosed rats and corresponding corn oil controls for either ratio. (P 
values for Student’s t-tests shown).  C&D)  Results for 160 mg/kg dosed rats and 
corresponding saline control and corn oil control rats. There is no statistical 
difference between 160 mg/kg dosed rats and corresponding saline and corn oil 
controls for either ratio. (P values for ANOVA tests shown) 
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Figure 3.8  Digital 100X image showing MPO stained cells (top) and results 
(mean + SEM) for MPO staining (bottom). There is a significant difference 
between the number of MPO stained cells between 160 mg/kg dosed rats and 
corresponding corn oil control rats (P value from Student’s t-test shown). 
 

P=0.015 

* 
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and residual nonuniform blood distribution in lung tissue may be contributing to 

discrepancies in the ImageJ measurements taken; 6) There are a multitude of 

cell types in the lung and we only performed measurements on one cell type 

(alveolar epithelial cells).  These topics will be expanded upon below. 

 
The use of deflated lung tissue 

 
Deflated lung tissue is commonly used to examine gross histopathological 

changes (i.e., hyperplasia, hypertrophy, metaplasia, neoplasia, necrosis, and 

tumors).  Insufflated lung tissues are commonly used for morphometric analyses 

of the numbers of bronchi, bronchioli and alveolar ducts, along with air space and 

space and pulmonary vascular bed measurements.  Additionally, using 

morphometric analyses, qualitative and quantitative measurements can be 

performed on lung tissues. We found that using deflated lung tissue resulted in 

inconsistent atelectasis (see top panel of Figure 3.9), which may have resulted in 

discrepancies in the densitometric measurements taken by ImageJ (i.e. higher 

cellular space percent area threshold values due to collapsed tissue and not 

because of an increase in cell numbers or size). 

 
Dosing paradigm 

 Recognizing that lung clearance and lung cell turnover is rapid, earlier 

time points for inflammatory responses may have resulted in a more pronounced 

difference between B(a)P dosed rats and control rats. However the current 

methods described in this chapter may still have not been sensitive enough to 

detect a significant difference.  Literature supports that with later time points 
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(several months to a year), metaplasia, neoplasia, and possible tumor formation 

is supported in rats dosed this high with B(a)P [71, 72, 169-171].   From H&E 

stained lung tissues from our pilot experiment (rats dosed at 80 mg/kg) and the 

40 mg/kg and 160 mg/kg dosed rats detailed in this chapter, we did observe 

increased in alveolar wall thickness, edema, and macrophage hyperplasia 

(representation shown in Figure 3.9 bottom panel).  We also noted there was 

decreased weight gain (from Day 0 to Day 14) in B(a)P dosed rats as 

compared to the control rats (Figure 3.10), which may also be contributing to the  

toxicity of B(a)P. 

 
Artifacts of H&E staining 

 
 Slight differences in the thickness of the lung tissue sectioned by a  

microtome cutting device can contribute to more, or less, H&E dye uptake.  This  

artifact of H&E staining may contribute to higher percent area thresholded 

measurement if the slice was thicker (thus more dye uptake), and conversely a 

trying to compare experimental groups.  The same microtome should be used for 

all samples, and the same technician should do all the paraffin blocked tissue 

sectioning.  Additionally, samples should all be processed together using the 

same batch of reagents and dyes.   

 
Cell type chosen 

 
 The lung contains over 40 different cell types and pneumotoxins are 

thought to only exert their toxic effects on six of these cell types.  Since it is  

known that there is more diversity in the cellular bioactivation and covalent 
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Figure 3.9  Images from H&E stained lung tissue showing: A) Atelectasis in 
tissue from Saline Control Rat. B)  Edema and macrophage hyperplasia in tissue 
from 160 mg/kg dosed rat.  A)  Yellow dashed line indicates one of the areas 
showing atelectasis.  B)  Red oval indicates an area of edema. Arrows indicate 
some activated macrophages. 
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Figure 3.10  Results for weight gain/loss from Day 1 to Day 14. The average 
weight gain/loss for all B(a)P dosed rats were significantly different than the 
vehicle control (corn oil) rats (Student’s t-test, p<0.05).  Saline control rats are 
shown for representative purposes only. 
 

 

 * 

  * 

 * 
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binding to proteins and DNA in the lung, as compared to hepatic cellular 

populations [147], this demonstrates the importance of the examination of 

ower percent area thresholded measurement if the slice was thinner (thus less 

dye uptake).  Also, different batches of H&E dyes could conceivably affect 

percent area thresholded measurements.  It is therefore important that protocols 

remain consistent between the lung tissues processed for H&E staining when  

specific cell types in the lung.  The heterogeneous distribution of drug-

metabolizing enzymes among lung cells [172] may greatly enhance the risk for 

cytotoxicity in certain cell types.  

 Clara cells have been demonstrated to be more susceptible to 

electrophilic intermediates (like the epoxide) than other lung cells [147], but the 

alveolar type II cells are considered to be at high risk for B(a)P-induced tumor 

formation [142].  A number of studies have also demonstrated that alveolar type 

II cells are important in the modulation inflammatory and immune events in the 

lung [173, 174].  These cells also have greater volume densities of mitochondria 

and endoplasmic reticulum than many of the other cell types, supporting that 

higher metabolic activities are present in these cells [175].  Unfortunately, the 

metabolic capacity of alveolar type I cell is unknown, due to the inability to isolate 

type I cells for in vitro studies. While there are greater numbers of alveolar type II 

cells, the alveolar type I cells covers >95% of the alveolar surface, and may mask 

effects in the less prominent alveolar type II cell population.  The alveolar 

epithelial cells, in general, are where we observed the most distinct gross 

histopathology differences between the B(a)P dosed rats and the control rats 
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(see images in Figure 3.11 and Figure 3.12).  The Clara cells however, contain 

the highest amounts of several CYP450 enzymes [147], and further examination 

of these cell types is warranted.   

 
Experiments not detailed in this chapter 

 The location around the pulmonary artery and main bronchus were 

chosen because we hypothesized that B(a)P given i.p. would be systemically  

introduced via the circulation, and thus the distribution of the resultant injury 

would be dependent on the pattern of blood flow to the lung.  While systemically 

introduced toxicant lung injury is thought to be quite uniform [175], the posterior 

sections of the lower lobes in rat lungs show increase toxicities with the PAH 

naphthalene [176].  We thus considered that different regions of the lung may 

have greater toxicities associated with B(a)P exposure based on blood pooling 

effects.  Based on this assumption, subjective and objective measurements 

described in this chapter, were performed on the posterior lobe and the anterior 

ventral portion of the lobe.  However, analysis of these distinct regions did not 

reveal a significant difference between B(a)P dosed animals and controls (data 

not shown). 

 In addition to evaluation of regional differences, Red O staining was 

employed to decipher whether the “spongy” appearance of macrophages in 

B(a)P dosed animals (Figure 3.9 bottom panel) was due to the presence of 

residual corn oil.  Red O staining indicates fat or lipids in fresh frozen tissue 

sections.  This type of staining allows for the detection of fat / lipids occurring in 
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Figure 3.11  Representative H&E images of corn oil control rat lung (top panel) 
and corresponding 40 mg/kg dosed rat lung (bottom panel). 
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Figure 3.12  Representative H&E images of saline control rat lung(top panel), 
corn oil control rat lung (middle panel) and corresponding 160 mg/kg dosed rat 
lung (bottom panel). 
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abnormal places (e.g., tumors arising from fat cells (liposarcomas)). Tissues 

(n=3, corn oil controls; n=3, 40 mg/kg) from this experiment indicated the 

“spongy” appearance in macrophages was not due to the presence of corn oil, 

and B(a)P dosed animals and corn oil controls had similar staining patterns 

(which was very little to no stain present) (data not shown).  

 
Extrapolation from animal to human studies 

 There may be unique differences in the genetic variation and regulation of 

specific proteins within the lung that should be considered when comparing lung 

toxicities in rats and humans.  Spontaneous lung tumors in murine strains have 

been demonstrated to have similar histopathology and molecular characteristics 

to human adenocarcinomas [177, 178] .  However, only rudimentary respiratory 

bronchioles are present in rodent lungs, and the populations of cells in rats vs. 

humans are different, as well as cellular metabolism and cellular defense 

mechanisms [175].  There are also known differences in the sensitivity of alveolar 

macrophages to xenobiotics in murine strains [179]. While there has been a great 

deal of information obtained on xenobiotic induced lung injury, more important 

questions still remain to be answered. Particularly, it is important to determine if 

the human lung is more sensitive to B(a)P-induced toxicities than the rat lung.   

  
Future directions 

 Whole-genome microarrays in normal human epithelial cells exposed to 

BPDE show induction of numerous inflammatory factors [180].  These include 

genes that encode for pro-inflammatory cytokines and enzymes related to 
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prostaglandin synthesis and signaling.  In addition, Podechard et al. have 

demonstrated that interleukin-8 (a pro-inflammatory cytokine) induction by B(a)P 

is aryl hydrocarbon receptor-dependent and leads to lung inflammation and to 

increased oxidative stress [145].  With this, and numerous other data stemming 

from research on B(a)P-induced inflammation, biochemical markers for 

inflammatory pathways in the lung tissue is warranted. Flow cytometry for 

specific inflammatory markers and specific inflammatory cell types could provide 

much higher sensitivity than our described methods, and may be able to better 

determine whether measureable differences are present in lung tissues from 

B(a)P dosed rats and control rats.  

 Experiments could be repeated with insulflated lung tissue and then 

morphometric measurements (or quantitative morphology) could be performed.  

Morphological abnormalities are the most reliable evidence we have to date for 

alveolar epithelial cells, since there are a lack of epithelial specific biochemical 

markers [175].   

 Electron photomicroscopy could provide better resolution of the cell types 

in lung tissue in order to examine any epithelial injuries or abnormalities in cell 

structure. Potential increases in the number of cells undergoing DNA synthesis 

can also be evaluated by this type of microscopy.  

Cellular necrosis can contribute to an increase in alveolar protein 

concentrations.  Injured cells release soluble enzymes from the cell’s cytosol into 

extracellular fluids.  These soluble enzymes can then be measured and used as 

indicators of cytotoxicity.   
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Very few studies have examined BPDE-protein adduct formation and 

specific tissue toxicities [181, 182].  The experiments detailed in this chapter 

aimed to understand whether or not B(a)P and/or BPDE-protein adduct 

concentrations in hair can serve as biomarkers, not only of exposure to B(a)P, 

but also as a predictor of increased lung toxicities.  Further research will be 

needed to elucidate if the presence of BPDE-protein adducts in biological 

matrices such as hair and specific lung toxicities are associated. 

 In conclusion, despite more than 80 years since B(a)P has been isolated, 

much still remains to be learned about the underlying mechanisms that contribute 

to B(a)P-induced lung toxicity.  A better understanding of the biochemical events 

that surround these toxicities would help us better recognize the relationship 

between functional alterations and structural changes in the lung.  The cellular 

fate of metabolic and inflammatory induced injury after B(a)P exposure are 

important factors to improving our current knowledge of  lung toxicology in B(a)P 

exposed animals. 

  

  

 

 
 
 
 



 

 

 

 
 
 
 
 

CHAPTER 4 
 
 

BIOMARKERS OF BENZO(A)PYRENE EXPOSURE IN THE HAIR AND  
 

BLOOD OF SMOKERS AND NONSMOKERS  
 
 

Introduction 
 
 

Smoking causes about 440,000 deaths and generates an estimated $157 

billion in health-related economic losses in the United States annually [183].  

Lung cancer is the leading cause of cancer death in the United States and is the 

most common type of tumor worldwide [184]. Since tobacco smoking is the 

single most important risk factor for development of lung cancer, it is strongly 

implicated as the causative agent [184].  It is also well established that active 

tobacco smoking can cause cardiovascular diseases, respiratory illnesses and 

other serious and often fatal health conditions.  Moreover, evidence is rapidly 

accumulating that both platelet and endothelial function, arterial stiffness, 

atherosclerosis, oxidative stress, inflammation, heart rate variability, energy 

metabolism, and increased infarct size are seen not only in the active smoker, 

but also in nonsmokers exposed to environmental tobacco smoke (ETS) [185].  

Although several studies have demonstrated the usefulness of biomarkers, such 

as cotinine, for ETS and particulate tobacco smoke (PTS) exposure, these 

biomarkers have limited utility because they do not directly address toxicity. 
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Therefore, more studies are needed to develop new and enhanced biomarkers 

that will address tobacco smoke exposure and the toxicity risks associated with 

smoking and exposure to ETS. Advantages of improved biomarkers include: 1) 

They can be used in epidemiological and health surveillance programs as well as 

new product and harm-reduction studies. 2) They can improve quantitative risk 

assessments and exposure reduction studies for tobacco smoke exposures. 3) 

They can provide a tool for assessing individual exposure for smoking 

intervention programs and chemoprevention studies. 4) They can provide data 

for studies regarding smoking cessation in special populations such as 

adolescents, pregnant women, or medical patients with smoking-related 

diseases. 5) They can be used to evaluate and improve upon the accuracy of 

self-reported status smoking in observational studies, as well as expand our 

knowledge on the utility of hair biomarkers for determining ETS and PTS 

exposures.  

The Environmental Protection Agency (EPA) estimates that the exposure 

to B(a)P is 1-3 ug/day for nonsmokers [76].  It has been determined that the 

predominant pathways of exposure to B(a)P for nonsmokers is through inhalation 

of polluted air and ingestion of food containing B(a)P [186]. The major route of 

exposure for smokers, however is through inhalation of PTS and ETS [186]. The 

amount of B(a)P exposure in smokers can vary widely, but has been 

approximated at 1-30 ug/pack/day [63, 82-85].  Polycyclic aromatic hydrocarbons 

(PAHs) have also been demonstrated to be 3-4 times higher in ETS [187], so 

indoor smoking can lead to even higher levels of B(a)P exposure [186].  Although 
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it is considered a minor route of exposure, B(a)P can also be absorbed through 

the skin [188].  

The metabolic activation and detoxification of B(a)P varies widely among  

humans and a large interindividual variation has been noted [73, 127, 189-193]. 

Higher metabolic activity to form the reactive metabolite BPDE, or lower 

detoxification of BPDE, would presumably be associated with a higher risk of 

cancer. Measurement of biomarkers that can reflect this higher cancer risk would 

be of great importance.  Using a biomarker in a surrogate tissue such as hair, 

whose collection is noninvasive and which serves as a marker for cumulative 

exposures, would have major advantages over tradition matrices. Additionally, 

hair biomarkers for nicotine and cotinine have been demonstrated to identify 

exposure for up to 10 weeks posttobacco use, thus providing a larger window of 

detection and a more accurate account of tobacco smoke exposure [194].  

 Protein adducts can serve as a measure of internal dose of a carcinogen. 

While DNA is the target in carcinogenesis, BPDE-DNA adducts levels are 

generally too low to detect in blood [60]. For this reason, protein adducts are 

employed as surrogates for DNA adducts because of their greater availability 

from blood.  Additionally, BPDE-protein adduct levels have been demonstrated to 

reflect genetic damage, and have a strong degree of correlation with BPDE-DNA 

adducts [60, 98, 127].  Previous methods have used BPDE adducts to Hb and 

serum albumin as surrogates for BPDE-DNA adducts [60, 98, 127]. These 

protein adducts are much easier to collect in large quantities, compared to DNA 

adducts, and they are not subject to enzymatic repair [127].  Since it is difficult to 
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obtain lung tissue from human subjects, the ability to establish a relationship 

between B(a)P and/or BPDE-protein adducts in hair to that found in the lung, 

would be an invaluable tool for assessing toxic ETS and PTS exposures. 

The experiments presented in this chapter were designed to address the 

following objectives:  1) Develop sensitive and specific GC/MS analytical 

methods to detect B(a)P and BPDE-protein adducts in human hair;  2)  

Determine the differences of B(a)P incorporation in smokers (those exposed to 

PTS) and nonsmokers (those with no exposure to PTS or ETS) hair;  3) 

Determine the differences in BPDE-protein adducts in the hair and Hb (from 

blood)  of smokers and nonsmokers; 3) Determine if the concentration of B(a)P 

and/or BPDE-protein adducts in hair correlate to the concentration of the well 

characterized BPDE-Hb adduct (the positive control);  4) Verify self-reported 

status of smokers and nonsmokers by determining nicotine and cotinine 

concentrations in plasma.  We hypothesized that we will be able to detect a 

significant difference in the concentration of B(a)P and BPDE-protein adducts 

measured in hair from heavy smokers vs. nonsmokers.   

 
Materials and Methods 

 
 

Chemicals and reagents 
 

 Benzo(a)pyrene (1 mg/mL) was purchased from SPEX Certiprep®, Inc. 

(Metuchen, NJ), Restek (Austin, TX ), and AccuStandards® (2 mg/mL) ( New 

Haven, CT) for the preparation of calibration curves and quality control samples. 

The internal standard B(a)P-d12 (1 mg/mL), was purchased from SPEX 
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Certiprep®, Inc. (Metuchen, NJ). BPT (5 mg) was purchased from the National 

Cancer Institutes Chemical Repository (Midwest Research Institute, Kansas City, 

MO). The internal standard [13C6]-BPT (1 mg), was purchased from Cambridge 

Isotopes Laboratories, Inc. (Andover, MA) by Dr. Stephen Hecht of Masonic 

Cancer Center (University of Minnesota), and generous gift of a 1200 ng/mL 

[13C6]-BPT solution (1mL in DMSO) was provided for this dissertational research.  

(−)-Nicotine hydrogen tartrate salt was obtained from Sigma-Aldrich® (St Louis, 

MO). (−)-Cotinine, (±)-cotinine-d3 and (±)-nicotine-d3 were obtained from 

Cerilliant (Austin, TX). Hexane, dichloromethane (DCM), methanol, acetonitrile, 

ethyl acetate were all GC/MS or high performance liquid chromatography grade 

and purchased from Burdick & Jackson
®
 (Morristown, NJ & Muskegon, MI).  

Acetone (GC/MS grade) was purchased from EMD (Gibbstown, NJ), and 

anhydrous tetrahydrofuran (THF) was purchased from Sigma-Aldrich® 

(Milwaukee, WI). Ammonium acetate and glacial acetic acid were obtained from 

Spectrum (Gardena, CA). Proteinase K (from Tritirachium album, activity >30 

units/mg) was purchased from Sigma-Aldrich®. The derivatization agent (N-

Methyl-N-(trimethylsilyl) trifluoro-acetamide activated II, MSFTA II) was 

purchased from Fluka (Castle Hill, New South Wales, Australia), Sep-Pak® C18, 

3cc solid phase extraction (SPE) cartridges were purchased from Waters 

Corporation (Milford, Massachusetts).  Oasis
® 

HLB and MCX (60 mg, 3mL) 

cartridges were purchased from Waters (Milford, MA).  Trichloroacetic acid, 

concentrated formic acid, concentrated ammonium hydroxide, and all other 

reagent grade chemicals were purchased from Fisher Scientific (Pitsburg, PA), 
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Sigma-Aldrich® and Fluka.  Water used was house-prepared Milli-Q water. 

Helium and ammonia gases used for GC/MS analysis were purchased from 

Airgas, Inc.
 ®

 (Salt Lake City, UT). Lyophilized human hemoglobin was obtained 

from Sigma-Aldrich®.  RBC lysis buffer was purchased from Roche (Branford, 

CT) and phosphate buffered saline solution from Teknova (Hollister, CA). Sodium 

heparin Vacutainers® were purchased from BD (Franklin Lakes, NJ).  Nicotine- 

and cotinine-free human plasma was obtained from BioChemed (Winchester, 

Virginia, USA).  Hair collection kits were obtained from AgriYork (York, England). 

 
Stocks and solutions 

 
Intermediate stock solutions of B(a)P and B(a)P-d12 were prepared in 1:1 

acetone/DCM at a concentration of 5000 and 500 ng/mL. Intermediate stock 

solutions of BPT were prepared in fresh anhydrous THF at a concentration of 

5000 and 100 ng/mL.  Intermediate stock solutions of [13C6]-BPT were prepared 

in fresh anhydrous THF at a concentration of 100 ng/mL.  Since B(a)P and BPT 

are light and air sensitive, all solutions were made in amber vials with septum 

screw caps to avoid over exposure to light and air and stored at -20°C in air-tight 

jars.  Matrix-fortified calibration curves and quality control samples were prepared 

daily. The quality control samples for B(a)P that were prepared with each batch 

of samples, and for determination of assay imprecision and accuracy, were 

fortified with a reference material from a different manufacturer than that used to 

prepare the calibration curve for B(a)P.  Since no other commercial source was 

available for BPT, a separate stock and intermediate solution for the quality  

Control samples were prepared by the Center for Human Toxicology personnel. 
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  For nicotine and cotinine assays, the deuterated internal standards were 

prepared in a single combined working solution in methanol at 1 μg/mL. This 

solution was stored in the freezer at -20°C until required for an analytical batch. 

For nicotine and cotinine, three combined calibrator working solutions were 

prepared in methanol at concentrations of 10 μg/mL,1 μg/mL and 0.1 μg/mL for 

nicotine and cotinine. Nicotine hydrogen tartrate salt (weight corrected for 

nicotine) was selected as it was determined to be more stable over time than 

nicotine free base. Separate methanolic working solutions were prepared for 

quality control samples at the same concentrations as the calibrator working 

solutions. All working solutions were stored in the freezer at −20 °C until required 

for an analytical batch. 

 
Human clinical trial participants 

 
To optimize the potential for detecting of B(a)P and/or BPDE-protein 

adducts (assuming incorporation may be dependent upon melanin content), only 

dark pigmented hair samples were obtained from subjects enrolled in human 

clinical trials approved by the Institutional Review Board at the University of Utah 

and the University at Buffalo, SUNY (Buffalo, NY).  The study participants were 

subdivided into two groups.  Group 1 consisted of male and female nonsmoking 

participants, and Group 2 consisted of male and female heavy-smoking 

participants (defined as smoking at least one pack of cigarettes per day).  

Group 1 participants (nonsmokers) were screened by telephone using a 

questionnaire to exclude participants with potentially higher levels of 

nonsmoking-related B(a)P exposure (See Appendix for Screening 
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Questionnaire). Any subject with higher than normal consumption of smoked or 

charbroiled foods were excluded, along with any subject with known occupational 

exposure to B(a)P. Hair samples from nonsmoking participants meeting inclusion 

criteria (n=20) were collected by personnel from the Center for Human 

Toxicology at the Center for Clinical and Translational Science at the University 

of Utah Hospital.  A “pencil-width” amount of hair (about 90-120 strands) was cut 

as close to the scalp as possible from each participant in the posterior vertex 

region of the scalp (see Figure 4.1).  Hair samples were then placed in a hair 

collection kit to mark the root end, and stored in the dark at 4°C in a Ziploc® bag 

until further sample preparation.  

Fresh whole blood was also obtained from the Group 1 participants by 

venipuncture at the Center for Clinical and Translational Science (University of 

Utah Hospitals, Salt Lake City, UT).  All blood samples were collected in sodium 

heparin BD Vacutainers®.  Whole blood samples were then centrifuged at 3000 

rpm for 10 mins to separate plasma from red blood cells (RBCs).  The plasma 

portion (collected for determination of nicotine and cotinine levels on all 

participants to verify nonsmoking status) was transferred to silanized glass 

culture tubes and stored at -20°C until preparation for nicotine and cotinine 

analysis.  The RBC portion remaining in the Vacutainer® was stored at 4°C until 

Hb preparaton. 

 Group 2 participants (heavy smokers), were screened by telephone  

by Dr. Stephen Tiffany’s laboratory at the University at Buffalo, SUNY (Buffalo, 

NY).  Heavy smokers (n=30) self-reported to have smoked at least one pack (20 
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Figure 4.1  Drawing illustrating the posterior vertex region where hair was 
collected. (Adapted from [195].)  Hair samples are collected from this region 
since approximately 85% of hairs in this region are in the active growth phase 
(anagen phase).   
 

 

 

 

Posterior 
vertex 
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(using questions 7-9 on Screening Questionnaire, see Appendix), and collected  

cigarettes) per day.  A “pencil-width” amount of hair (about 90-120 strands) was 

cut as close to the scalp as possible from each participant in the posterior vertex 

region of the scalp, then placed in a hair collection kit to mark the root end and 

shipped to the Center for Human Toxicology.  Upon arrival, hair collection kits 

were placed placed in Ziploc® bags and stored in the dark at 4°C until sample 

preparation.              

 Fresh whole blood was also obtained from the Group 2 participants by 

venipuncture by a registered nurse employed by the University at Buffalo, SUNY 

 (Buffalo, New York).  All blood samples were collected in sodium heparin BD 

Vacutainers®.  Whole blood samples were then centrifuged at 3000 rpm for 10 

mins to separate plasma from red blood cells (RBCs).  The plasma portion 

(collected for determination of nicotine and cotinine concentrations on all 

participants to verify self-reported current smoking status) was transferred to 

silanized glass culture tubes and stored at -20°C until shipped to the Center for 

Human Toxicology.  The RBC portion remaining in the Vacutainer® was stored at 

4°C until shipped.  Plasma and RBCs were kept cold during transport with ice 

packs.  Plasma samples were then stored at -20°C until preparation for nicotine 

and cotinine analysis.  The RBCs were stored at 4°C until Hb preparation. 

 
B(a)P Assay 

 
 

B(a)P:  Hair preparation and extraction 
 
 The first three centimeters of hair from the root end was removed from  
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each sample, then homogenized by cutting into 2-3 mm segments.  Hair (100 

mg, +10%) was then accurately weighed (Mettler Toledo, AG104). The hair 

samples analyzed therefore represent approximately the last 3 months of 

exposure based on an assumption of an average 1 cm/month growth rate [11].  

B(a)P-d12 internal standard (IS) (100 pg/mg) was then added to each sample. 

Calibrators (10-100 pg/mg) and QC’s (45, 60, 80 pg/mg) were concurrently 

prepared by fortification of B(a)P and IS to analyte-free (blank) human hair.  After 

digestion of the hair in 1.0 mL of 1 N sodium hydroxide for 1 hr in a shaker, a 

0.100 mL aliquot of concentrated hydrochloric acid was added to neutralize the 

sample.  Samples were then centrifuged at 3500 rpm for 4 mins and 

subsequently subjected to solid phase extraction (SPE). The SPE was performed 

as follows:  2.5 mL of methanol followed by 2.5 mL of Milli-Q water was used to 

condition the column.  The liquid portion from the centrifuged hair sample was 

then decanted into the SPE cartridge (to improve complete transfer, 1 mL of Mill-

Q water was added to each hair sample, centrifuged again at the specified 

conditions, and the liquid portion decanted into the SPE cartridge). The columns 

were then washed with 2.5 mL of water followed by 2.5 mL of 10% aqueous 

methanol (v/v).  Samples were eluted by the addition of two volumes of 2.5 mL 

1:1 acetone/ dichlormethane. Eluents from samples were dried under a constant 

stream of nitrogen in a Zymark Turbovap® LV evaporator at 55°C.  Residues 

were then reconstituted in 0.100 mL of 1:1 acetone/ dichloromethane and 

analyzed by GC/MS-EI- SIM (see GC/MS-EI-SIM analysis for B(a)P section for 

additional details). 
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BPT Assays 
 
 

BPT:  Hair preparation and extraction 
 

Multiple digestion and extraction methods were initially evaluated in order 

to detect BPT and IS fortified to analyte-free human hair.  First, the enzymatic 

extraction method for the release of BPT from BPDE-protein adducts in rat hair, 

which we previously validated (Chapter 2, Materials and Methods section), was 

evaluated for use with human hair.  Preparation and extraction were as follows:  

Analyte-free (blank) human hair (100 mg (+10%)) was weighed (Mettler Toledo, 

AG104) and BPT and  [13C6]-BPT IS (100 pg/mL) were added. To each hair 

sample, 2 mL of  200 ug/mL Proteinase K in incubation buffer (50 mM Tris buffer, 

5 mM calcium chloride, pH 8.5) was added to liberate any bound analyte from 

hair shaft constituents.  Samples were then placed in a sonicator for 1 hr (~37°C) 

and then transferred to a 37°C water bath and allowed to incubate overnight 

(total time ~20 hrs). After cooling, approximately 0.25 g of sodium chloride (NaCl) 

was added to each sample. A liquid-liquid extraction was then performed. Ethyl 

acetate (6 mL) was added to each hair digestion solution, which was then 

thoroughly vortex mixed followed by centrifugation at 3500 rpm for 4 mins. The 

liquid-liquid extraction was performed twice, and then the combined organic 

fractions were placed in a Zymark Turbovap® LV evaporator at 55°C under a 

constant stream of N2 until dry. The residues were then derivatized by adding 50 

uL of MSTFA and allowing for 15 mins reaction time in a heating block at 80°C. 

Samples, in MSTFA, were then transferred to autosampler vials for analysis by 
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GC/MS-NCI-SIM (see GC/MS-NCI-SIM analysis for BPT section for additional 

details). 

 In addition to the enzymatic digestion and extraction procedure outlined 

above, numerous other analytical digestions and extraction techniques were 

evaluated.  These included:  acidic (using varying concentrations of hydrochloric 

and sulfuric acid solutions), alkaline (using varying concentrations of sodium 

hydroxide and sodium sulfide solutions), and solvent digestions (using methanol) 

of BPT (and IS) fortified human hair samples. These hair sample digests were 

then coupled to either liquid-liquid (using hexane or ethyl acetate) and/or SPE 

(using various types of SPE cartridges) extraction techniques. 

 
BPT:  Hemoglobin preparation from whole blood and extraction 
 

The RBCs from whole blood were isolated using a modified procedure 

from Ragin et al. [93].  Upon arrival of Group 1 and/or Group 2 samples to the 

laboratory, the RBC portion from whole blood was washed twice with equivalent 

volumes of 0.9% sodium chloride solution in Milli-Q water to remove any free, 

unbound BPT (from metabolism by epoxide hydrolase or reaction with water). 

One volume of phosphate buffered saline (PBS) was then added, and two 

volumes of RBC lysis buffer to re-suspend the RBCs (e.g., 3 mL RBCs then 3 mL 

of PBS and 6 mL of RBC lysis buffer). This was done to keep volumes of 

reagents used consistent between samples of differing volumes.  The samples 

were then gently shaken for 10 mins for lysis of RBCs, followed by centrifugation 

at 2000 rpm to pellet ghost membranes. The supernatant was removed from 

each sample, and six volumes of ice-cold acetone (with 0.015% hydrochloric 
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acid) was slowly added dropwise to precipitate Hb.  After 5 mins, the samples 

were centrifuged to pellet the precipitated Hb, and the excess fluid was decanted.  

The Hb pellet was then taken to dryness in a Zymark Turbovap® LV evaporator 

under a constant stream of nitrogen at 37°C and stored at -80°C until preparation 

for analysis. A 200 mg (+ 10%) aliquot of Hb (prepared as described above) was 

weighed (Mettler Toledo, AG104) and IS (10 pg/mg) added. Calibrators (1.75-10 

pg/mg) were concurrently prepared by fortification of BPT and IS to analyte-free 

(blank) human Hb. Two milliliters of NANOpureTM water and 30 uL of 6 N 

hydrochloric acid were added to each Hb sample, tightly capped, and placed in a 

water bath for 3 hrs at 90°C. Samples were allowed to cool, then approximately 

0.25 g of sodium chloride was added to each sample. A liquid-liquid extraction 

was then performed.  Ethyl acetate (6 mL) was added to each Hb hydrosylate, 

then thoroughly vortex-mixed, and centrifuged at 3500 rpm for 4 mins. The liquid-

liquid extraction was performed twice, and the combined organic fractions were 

placed in a Zymark Turbovap® LV evaporator @ 52°C under a constant stream of 

N2 until dry.  MSTFA (50 uL) was added to the residues and a 15 min reaction 

time was allowed in a hot block at 80°C. Samples were then transferred to 

autosampler vials for analysis by GC/MS-NCI-SIM (see GC/MS-NCI-SIM 

analysis for BPT section for additional details).  

 
Nicotine and cotinine:  Plasma preparation and extraction 
 

Plasma samples for participants were analyzed according to the 

laboratory’s validated published method [196].  One mL of each participant’s 

plasma sample was fortified with internal standards (50 ng/mL).  Calibrators (1-
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50 ng/mL for nicotine and 1-100 ng/mL for cotinine) and QC’s (5, 25, 45 ng/mL 

for nicotine; 1, 10, 100 ng/mL for cotinine) were concurrently prepared by 

fortification of nicotine and cotinine plus respective internal standards to 1 mL of 

analyte-free plasma.  To aid in matrix clean-up, 1 mL of 10 % aqueous 

trichloroacetic acid was added to each of the plasma samples, vortexed, and 

then centrifuged for 10 mins at 1100x g. The acidified plasma supernatant was 

then subjected to SPE using a combination of Oasis® HLB and Oasis® MCX 

mixed mode cartridges. The SPE cartridges were conditioned with 2 mL 

methanol followed by 2 mL 10% aqueous trichloroacetic acid. The samples were 

loaded onto the cartridges and subsequently eluted with 2 mL methanol 

containing 5% concentrated aqueous ammonium hydroxide (v/v). One hundred 

μL of 1% concentrated aqueous hydrochloric acid in methanol (v/v) were then 

added prior to evaporation of the eluant. Extracts were evaporated to dryness 

under a stream of air at 40 °C using a Zymark Turbovap® LV evaporator. 

Extracted plasma residues were reconstituted in 150 μL of initial mobile phase 

(10 mM ammonium acetate with 0.001 % formic acid (A) (pH 5): methanol (B) 

(85:15 v/v)).  (See LC-MS/MS analysis of nicotine and cotinine section for 

additional details). 

 
GC/MS-EI-SIM analysis for B(a)P 

 
A Hewlett Packard (HP) GC 6890 was fitted with an Agilent DB-5UI-MS 

capillary column (part no. 122-5535UI, 30.0 m x 250 um x 0.25 um nominal). The 

injector was operated in the pulsed splitless mode (injection pulse 40 psi until 0.2 

min, purge flow to split vent 30 mL/min at 0.75 min). The pressure of helium gas 
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was programmed to 17.0 psi (total flow 33.8 mL/min). The inlet heater 

temperature was set at 300°C and the transfer line was set at 300°C.  The 

injection volume was 1 uL. The solvent delay was set at 7 mins. The initial oven 

temperature was set at 120°C for 1 min, then ramped to 250°C at 25°C/min A 2nd 

ramp to 320°C at 10°C /min followed, then oven was held at 320°C for 0.5 mins. 

The total run time equaled 16.7 mins. An HP MS 5973 was used to perform 

selective ion monitoring (SIM) to detect B(a)P at m/z 252 and its fragment at m/z 

126. B(a)P-d12 was detected at m/z 264. To quantitate the results, ChemStation 

software (version: D.02.00.275) was used to generate calibration curves from 

peak area ratios of target analyte to the corresponding deuterated internal 

standard across the concentration range of specified calibrators.  

 
GC/MS-NCI-SIM analysis for BPT 

 
The same GC/MS system and column was used as stated in the GC/MS-

EI-SIM analysis. The injector was operated in the pulsed splitless mode (injection 

pulse 17.6 psi until 1.33 min, purge flow to split vent 30 mL/min at 1.75 min). The 

pressure of helium gas was programmed to 24.3 psi (flow 2.2 mL/min, total flow 

34.5 mL/min).  Ammonia reagent gas pressure was set at 17.0 mL/min The inlet 

heater temperature was set at 280°C.  The transfer line was set at 300°C.  The 

injection volume was 2 uL and the solvent delay was set at 9.0 mins. The initial 

oven temperature was set at 120°C for 1 min, then ramped to 250°C at 20°C/min 

A 2nd ramp to 300°C at 8°C /min followed. The total run time equaled 13.75 mins. 

SIM was used to detect the derivatized BPT molecule at m/z 446 (no other 

fragment was present for inclusion in SIM).  The derivatized (13C6)-BPT molecule 
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was detected at m/z 452. To quantitate the results, ChemStation software 

(version: D.02.00.275) was used to generate calibration curves from peak area 

ratios of target analyte to the corresponding deuterated internal standard across 

the concentration range of specified calibrators. 

 
LC-MS/MS analysis of nicotine and cotinine 

 
An Acquity UPLC® system (Waters®, Milford, MA ) and  a Discovery® HS 

F5 HPLC column (100 mm × 4.6 mm, 3 μm, Supelco®, Bellefonte, PA) was used 

for analysis of nicotine and cotinine to verify nonsmoking and heavy smoking 

self-reported status of participants.  A gradient consisting of 10 mM ammonium 

acetate with 0.001 % formic acid (pH 4.97) (A), and methanol (B) was used at a 

flow rate of 0.6 mL/min The initial mobile phase condition was 15% B which was 

increased linearly to 76 % after 11 mins, then decreased back to the initial mobile 

phase condition of 15 % B after 11.6 mins and held for 3.4 mins to re-equilibrate 

the LC column.  The mass spectrometer was operated in positive ion 

electrospray mode using multiple reaction monitoring (MRM) data acquisition. 

Two MRM transitions were monitored for both nicotine (163.2 → 130.0 and 163.2 

→116.9) and cotinine (177.2 → 79.9 and 177.2→  97.9). The following ESI 

conditions were applied: capillary voltage 3.25 kV; source temperature 100°C; 

desolvation temperature 350°C; desolvation gas (nitrogen) 600 L/h; cone gas 

(nitrogen) 50 L/h; collision cell pressure (argon) 7.38e−3 mbar; and collision gas 

flow rate 0.35 mL/min  Mass spectrometric analysis was performed using a 

Quattro Premier XE™ triple quadrupole mass spectrometer (Waters® 

Corporation, Milford, MA) with MassLynx™ v 4.1 software. Calibration curves 
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generated from peak area ratios of target analyte quantification ions to their 

corresponding deuterated internal standard quantification ions, across the 

concentration ranges of the calibrators. The calibration graphs were generated 

using the TargetLynx™ feature of the MassLynx™ v 1.4 software and also using 

Microsoft®  Office Excel 2007. 

 
Results 

 
 

Analytical method for B(a)P in human hair 
 

 We originally planned to validate a quantitative method for detection of 

B(a)P in human hair with a sensitivity at or below 1 pg/mg.  However we were 

unable to achieve adequate reproducibility (CV<20%) at concentrations below 20 

pg/mg; therefore, the following qualitative method was developed. 

 Figure 4.2 shows representative ion chromatograms for an extracted 

B(a)P-fortified (75 pg/mg) human hair and an extracted blank human hair 

sample.  The assay was determined to be linear from 20 to 100 pg/mg. The limit  

concentration of analyte at which the qualifying secondary ion was present and 

the chromatograms for ions of interest showed Gaussian peak shape with S/N 

ratio > 3.  

 Samples for determination of assay accuracy and imprecision were 

prepared with a stock solution purchased from a different manufacturer from that 

used to make the calibration curve standards. The intraassay accuracy and 

imprecision of the method were determined by analyzing  replicate samples of 

multiplied by 100 to obtain a percentage. The percent CV calculated from the 
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Figure 4.2 Representative ion chromatograms from (A) extracted analyte-free 
(blank) human hair sample and (B) an extracted B(a)P-fortified (75 pg/mg) 
human hair sample.  Analyte retention time (RT) is on the x-axis and signal 
intensity on the y-axis. B(a)P = 252 m/z and B(a)P-d12 = 264 m/z 
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mean observed concentrations of samples tested is an estimated of imprecision.  

The percent CV was calculated by dividing the standard deviation of the samples 

tested by the mean observed concentration of the samples.  This value was then 

of detection (LOD) was 20 pg/mg. The LOD was defined as the lowest  

multiplied by 100 to obtain a percentage.  Acceptable accuracy (% difference 

compared to target concentration within ± 20 %) and imprecision (%CV<20)  

for low, medium and high concentrations of B(a)P-fortified human hair were  

demonstrated within an analytical batch (Table 4.1). 

 
Analytical Method for BPT in Human Hair 

 
 Figure 4.3 shows representative chromatograms from an extracted 10  

pg/mg BPT-fortified 100 mg human hair sample (same preparation and extraction  

as described in Chapter 2 for rat hair).  The chromatographic peaks indicated for  

BPT and IS in this figure illustrate the significantly reduced sensitivity and 

recovery of BPT in fortified human hair, as compared to that observed for rat hair 

(refer to Figure 2.6 in Chapter 2 for 5 pg/mg BPT-fortified rat hair 

chromatograms). The IS response is approximately 95% lower than what was 

observed for rat hair matrix. Therefore, the digestion and extraction procedure 

that was used for the rat hair was determined to be inadequate for determination 

of BPT in human hair. 

 Several other digestions and extractions of BPT and IS fortified human 

hair samples were attempted.  The details for these digestions and extractions 

are shown in Table 4.2.  For most digested and extracted samples, we were 

unable to detect the BPT that was fortified, with the exception of one procedure, 
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Table 4.1 

Accuracy and imprecision of B(a)P-fortified human hair 

 

            

 

Target 
Concentration na 

Mean 
Concentration % of Target %CVb 

  pg/mg   pg/mg     

Intraassay 
     

 
45.0 3* 40.9 90.8 2.9 

 
60.0 3* 63.2 105.3 12.6 

 
80.0  4 82.7 103.4 16.6 

            

 

Target 
Concentration na 

Mean 
Concentration % of Target %CVb 

  pg/mg   pg/mg     

LOD 
     

 
20.0 4 23.1 115.7 6.0 

      ULOD 
     

 
100.0 4 98.9 98.9 15.1 

  
 

  
    

 

a Number of quality control replicate samples used 
b CV= coefficient of variation 
* Replicate sample in set did not get injected 
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Figure 4.3 Ion chromatograms from an extracted BPT-fortified (10 pg/mg) human 
hair sample.  These chromatograms illustrate the reduced sensitivity for the 
detection of BPT in human hair (refer to Figure 2.6 in Chapter 2 for 5 pg/mg BPT-
fortified rat hair ion chromatograms).  Analyte retention time (RT) is on the x-axis 
and signal intensity on the y-axis. B(a)P = 252 m/z and B(a)P-d12 264 m/z 
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Table 4.2 

BPT-fortified human hair digestions and extractions 

     
  

Concentratio
n of BPT 

added 
(pg/mg) 

Amoun
t of 
hair 
used 
(mg) Digestion Extraction 

D
e

te
c

ti
o

n
 

R
e

fe
re

n
c

e
**

 

N
o

te
s
 

5 100 1 mL of 2.5 M NaOH 
and sonication for 2 hrs 

Liquid-liquid with 
hexane* 

ND [59] # 

5 100 1 mL of 1 N NaOH and 
sonication for 1 hr 

Liquid-liquid with 
ethyl acetate* 

ND n/a # 

5 100 1 mL of 2.5 M NaOH 
and sonication for 2 hrs 

SPE with Oasis® 
MAX cartridge* 

ND [197] # 

5 100 1 mL 1 M Na2S, 37°C 
overnight 

Liquid-liquid with 
ethyl acetate* 

ND [198] # 

5 50 2 mL 1 M Na2S, 37°C 
overnight 

Liquid-liquid with 
ethyl acetate* 

ND [198] # 

10 100 1 mL proteinase K 
solution, 1 hr sonication, 
and over-night 
incubation at 37C 

Liquid-liquid with 
ethyl acetate 

ND [199] # 

10 200 1 mL proteinase K 
solution, 1 hr sonication, 
and overnight incubation 
at 37C 

Liquid-liquid with 
ethyl acetate 

ND [199] # 

80 100 1 mL proteinase K 
solution, 1 hr sonication, 
and overnight incubation 
at 37°C 

SPE with C18 
cartridge 

<10% [199] # 

80 100 1 mL 1 M Na2S, 2 hrs 
sonication 

Liquid-liquid with 
ethyl acetate* 

ND [198] # 

80 100 2 mL of 1 N HCl 
overnight digestion at 
room temperature 

SPE with  C18 
cartridge 

ND [109] # 

100 100 30 uLof 6 N H2SO4, 3 
hrs incubation at 90°C 

Liquid-liquid with 
ethyl acetate 
followed by SPE 
with C18 cartridge 

ND [93] **
* 

100 100 60 uL of 6 N H2SO4, 3 
hrs incubation at 90°C 

Liquid-liquid with 
ethyl acetate 
followed by SPE 
with C18 cartridge 

ND [93] **
* 

100 100 120 uL of 6 N H2SO4, 3 
hrs incubation at 90°C 

Liquid-liquid with 
ethyl acetate 
followed by SPE 
with C18 cartridge 

ND [93] **
* 

100 100 Sonication in 3 mL of 
methanol 

n/a ND [109] # 

ND – not detected; * Sample was neutralized with hydrochloric acid before extraction; 
**Methods were modified slightly;  ***Peak for BPT may be shifted;  #Poor 
chromatography 
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in which we were able to recover approximately 10% of the BPT that was added. 

Varying the ionic strength of the digestion solutions used, and/or the temperature 

and length of the digestion, did not improve the detection of BPT in human hair. 

Furthermore, poor chromatography, as defined by lack of Gaussian peak shape, 

was observed for most of the samples.  In summary, we were unable to develop 

a GC/MS method for BPT in human hair with a sensitivity below 100 pg/mg BPT 

in fortified human hair. 

 
Analytical method for BPT:  Hemoglobin 

 
 Figure 4.4 shows representative chromatograms for an extracted 1.75 

pg/mg calibration standard and an extracted blank human Hb sample.  The 

assay was determined to be linear from 1.75 to 10 pg/mg. The LLOQ and ULOQ 

were 1.75 and 10 pg/mg, respectively. The coefficient of variations (CV) for intra- 

and interassay imprecision were less than 10% (Table 4.3). 

The stock and intermediate solutions for accuracy and imprecision for 

intra- and interassay samples were made by the quality control officer or other 

Center for Human Toxicology personnel (since only one commercial supplier 

exists for BPT). The stock and intermediate solutions used to make the 

calibration standards were prepared by Sarah Campbell.  

 Accuracy was calculated by first dividing the observed concentration by 

the target concentration then multiplying by 100 to obtain a percentage. The  

percent CV calculated from the mean observed concentrations of samples tested 

estimates imprecision. The percent CV was calculated by dividing the standard  
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Figure 4.4 Representative ion chromatograms from (A) extracted analyte-free 
(blank) human Hb sample and (B) an extracted BPT-fortified (1.75 pg/mg, LLOQ) 
human Hb sample. Samples shown were also fortified with the internal standard 
(13C6)-BPT. Analyte retention time (RT) is on the x-axis and signal intensity on 
the y-axis. Derivatized BPT = 446 m/z and derivatized [13C6]-BPT = 452 m/z 
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Table 4.3 

Accuracy and Imprecision of BPT-fortified Human Hb 

 

            

 

Target 
Concentration na 

Mean 
Concentration % of Target %CVb 

  pg/mg   pg/mg     

Intraassay 
     

 
3.75 5 3.56 94.8 6.3 

 
6.25 5 5.93 94.8 8.2 

 
8.75 5 9.05 103.5 5.5 

Interassay 
     

 
3.75 15 3.70 98.6 6.5 

 
6.25 15 6.19 99.1 5.9 

 
8.75 15 9.22 105.4 7.8 

            

      

                  

 

Target 
Concentration na 

Mean 
Concentration % of Target %CVb 

  pg/mg   pg/mg     

LLOQ 
     

 
1.75 4* 1.60 91.3 17.2 

      ULOQ 
     

 
10.00 5 10.05 100.5 8.4 

  
 

  
    

 

a Number of quality control replicate samples used 
b CV= coefficient of variation 
*Sample in group did not get injected 
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deviation of the samples tested by the mean observed concentration of the 

samples.  This value was then multiplied by 100 to obtain a percentage.  

The intraassay accuracy and imprecision were determined by analyzing 

five replicate samples of analyte-free human Hb fortified with known amounts of 

BPT at 3.75, 6.25, and 8.75 pg/mg, and analyzed within a single batch.  The 

intra- assay accuracy ranged from 94.8-103.5% of the theoretical target 

concentrations.  The intraassay imprecision ranged from 5.5- 8.2%. 

Interassay accuracy and imprecision were determined by comparing  

calculated concentrations from replicates (n=5 for each concentration, total n=15) 

of analyte-free human Hb samples fortified with BPT at 3.75, 6.25, 8.75 pg/mg 

and analyzed in three separate analytical batches on 3 separate days. The 

interassay accuracy ranged from 98.6 -105.4% of the theoretical target  

concentrations. The interassay imprecision ranged from 5.9-7.8%.  

The LLOQ was evaluated by the analysis of five replicates of BPT-fortified 

to analyte-free human Hb at 1.75 pg/mg. The average accuracy for these 

samples was 91.3%, and the imprecision was 17.2%. 

 The ULOQ was evaluated by the analysis of five replicates of BPT-fortified 

to analyte-free human Hb at 10 pg/mg. The average accuracy for these samples 

was 100.5%, and the imprecision was 8.4%. 

 
Results for clinical trial participants 

 The analytical results for heavy smoking and nonsmoking participants are 

presented in Table 4.4 along with the demographics for each participant.  

 First, the self-reported smoking status for 25 of 30 participants was  



 

 

 

 

Table 4.4 

Results for human clinical trial samples 
 

 
 

     
Hair Hair Hb Plasma Plasma 

SUBJECT G
E

N
D

E
R

 

AGE HAIR COLOR BRAND 

C
P

D
  

 
 

B(a)P
a
 

 
BPDE-
protein 

adducts
b
 

BPDE-Hb 
Adducts

c
 

(pg/mg) 
Nicotine

e
 

(ng/mL) 
Cotinine

f
 

(ng/mL) 

101 M 38 Brown Seneca 28 Negative QNS ND 29.3 351.2 

102 F 25 Black Newport Menthol 25 Negative QNS 9.1 20.7 488.0 

103 F 42 Brown Niagara Light 100's 30 Negative QNS ND NA NA 

104 F 32 Black Marlboro menthol 26 Negative QNS ND 7.1 148.3 

105 F 30 Light Brown Exact Lights 25 Positive QNS ND 13.9 137.1 

106 M 33 Brown Newport 20 Negative QNS ND ND 303.3 

107 F 19 Auburn Marlboro 22 Negative QNS ND 23.7 327.4 

109 F 29 Brown Seneca 23 Negative QNS ND 24.2 413.2 

111 F 38 Dark Brown Marlboro Lights 25 Negative QNS ND 12.8 243.0 

112 M 40 Black Marlboro 20 Negative QNS ND 11.4 202.7 

114 F 37 Brown Newport 30 Positive QNS ND 18.2 371.4 

115 M 45 Black Exact lights 25 Negative QNS ND 14.8 247.6 

116 F 28 Brown Newport 30 Positive QNS ND 23.6 353.8 

117 M 42 Dark Brown Newport 25 Negative QNS ND 13.4 148.5 

118 M 30 Brown Marlboro 20 Negative QNS ND 11.9 246.4 

120 M 21 Light Brown Marlboro Reds 25 Negative QNS ND 11.6 164.9 

122 M 27 Dark Brown Marlboro 30 Positive QNS ND NA NA 

123 M 39 Dark Brown Newport 100’s 20 Negative QNS 9.7 12.8 94.9 

124 M 23 Brown Signal 20 Negative QNS ND 14.5 294.8 

       
 

   
CPD – cigarettes per day; ND – not detected; QNS – quantity not sufficient; NA – not available 
a
 – LOD 20 pg/mg; 

b
 – LOD not established; 

c
 – LLOQ 1.75 pg/mg; 

d
 – LLOQ 1 ng/mL; 

e
 – LLOQ 1 ng/mL 
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Table 4.4 (continued) 
 

 
 

     
Hair Hair Hb Plasma Plasma 

SUBJECT G
E

N
D

E
R

 

AGE HAIR COLOR BRAND  C
P

D
 

 
 
 

B(a)P
a
 

 
BPDE-
protein 

adducts
b
 

BPDE-Hb 
Adducts

c
 

(pg/mg) 
Nicotine

e
 

(ng/mL) 
Cotinine

f
 

(ng/mL) 

125 M 28 Black any brand 40 Negative QNS ND 14.5 247.3 

126 M 43 Black any brand 40 Negative QNS ND NA NA 

127 M 28 Dark Brown Seneca 30 Negative QNS ND 42.7 340.5 

128 F 34 Dark Brown Newport 20 Negative QNS ND 22.4 221.7 

129 M 18 Dark Brown Marlboro 20 Negative QNS ND 16.8 148.2 

130 F 21 Dark Brown Marlboro Lights 22 Negative QNS ND 12.8 175.0 

131 F 30 Black Seneca menthol lights 25 Negative QNS ND 19.8 176.7 

132 F 36 Brown Newport 100s 20 Negative QNS ND NA NA 

134 F 28 Black Newport 30 Negative QNS ND NA NA 

135 M 24 Dark Brown Newport 20 Negative QNS ND NA NA 

136 F 22 Light Brown Camel 20 Negative QNS ND 20.9 267.5 

004 F 30 Brown Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

006 F 32 Light Brown Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

007 M 30 Brown Nonsmoker - Positive QNS ND <LLOQ <LLOQ 

008 F 37 Blonde Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

010 M 35 Light Brown Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

011 F 45 Brown Nonsmoker - Positive QNS ND <LLOQ <LLOQ 

012 F 33 Dark Brown Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

013 F 25 Light Brown Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

014 F 27 Brown Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

015 F 23 Brown Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

 
CPD – cigarettes per day; ND – not detected; QNS – quantity not sufficient; NA – not available 
a
 – LOD 20 pg/mg; 

b
 – LOD not established; 

c
 – LLOQ 1.75 pg/mg; 

d
 – LLOQ 1 ng/mL; 

e
 – LLOQ 1 ng/mL 
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Table 4.4 (continued) 

 

 
 

     
Hair Hair Hb Plasma Plasma 

SUBJECT G
E

N
D

E
R

 

AGE HAIR COLOR BRAND  C
P

D
 

 
 
 

B(a)P
a
 

 
BPDE-
protein 

adducts
b
 

BPDE-Hb 
Adducts

c
 

(pg/mg) 
Nicotine

e
 

(ng/mL) 
Cotinine

f
 

(ng/mL) 

016 F 21 Dark Brown Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

017 F 21 Dark Brown Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

018 M 34 Black Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

019 M 21 Brown Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

020 F 34 Black Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

021 M 33 Brown Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

022 M 20 Brown Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

027 F 24 Black Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

028 M 26 Black Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

029 F 32 Dark Brown Nonsmoker - Negative QNS ND <LLOQ <LLOQ 

 
CPD – cigarettes per day; ND – not detected; QNS – quantity not sufficient; NA – not available 
a
 – LOD 20 pg/mg; 

b
 – LOD not established; 

c
 – LLOQ 1.75 pg/mg; 

d
 – LLOQ 1 ng/mL; 

e
 – LLOQ 1 ng/mL 
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verified by the presence of measurable plasma concentrations of nicotine and 

cotinine. (A plasma sample was not available for five of the heavy smoking 

participants.)  Nicotine concentrations ranged from non- detected to 42.7 ng/mL, 

and cotinine concentrations ranged from 94.9 to 488.0 ng/mL for these 

participants. The presence of cotinine concentrations at these levels verified the 

self-reported current smoking status of the participants (typical cotinine 

concentrations for smokers range from 100 ng/mL to >300 ng/mL [200, 201]).  

The self-reported nonsmoking status of the nonsmoking participants was also 

verified by nicotine and cotinine plasma concentrations.  Plasma concentrations 

for both nicotine and cotinine were below their respective LLOQs for all 

nonsmoking participants, confirming their nonsmoking status at the time of 

sample collection. 

Second, hair samples from study participants were analyzed to determine 

whether B(a)P was present in the hair of known smokers and absent in the hair 

of nonsmokers.  Clinical hair samples were considered positive for B(a)P if the 

calculated concentrations were greater than 20 pg/mg, the secondary qualifying 

ion was present, and the chromatograms showed Gaussian peak shape with S/N 

ratio > 3.  Clinical hair samples were considered negative for B(a)P if the 

calculated concentrations were below 20 pg/mg and S/N ratio was <3. Applying 

these criteria, B(a)P was only detectable in four (three females, one male) of the 

30 heavy smoker hair samples, despite the verified current smoking status via 

plasma cotinine concentrations of the participant. Additionally, no abnormal non-

tobacco related B(a)P exposure was noted on screening questionnaire for any of  
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these participants.  For the nonsmoking participants, B(a)P was detectable in two 

(both males) of the 20 participants, despite nonsmoking status via plasma 

cotinine concentrations. No abnormal B(a)P exposed was noted on the screening 

questionnaire for these nonsmoking participants as well.   

 Third, we originally proposed to determine the differences in BPDE-protein 

adducts in the hair of smokers and nonsmokers, however, the quantity of hair 

received from each participant for analysis was between 34 and 200 mg 

(average weight collected was 95 mg). Therefore, given the sample amounts 

required for analysis after initial development and evaluation of analytical 

methods, we determined that the available quantity was not sufficient enough to 

perform both B(a)P and BPDE-protein adduct analyses for the study samples.  

The data for rat hair in Chapter 2, demonstrated that concentrations B(a)P 

concentrations in rat hair are much higher than concentrations of BPT. We also 

demonstrated that concentrations of BPT released from rat hair are about 50% 

lower in hair than released from Hb.  With these factors in mind, we thus 

predicted that there was a greater likelihood to detect B(a)P in human hair, rather 

than BPT in human hair.  Therefore, analysis for B(a)P, rather than BPDE-protein 

adducts, was performed due to the limited quantity of hair available for testing.  

 Despite the insufficient weight for the individual clinical hair samples, 

however, we were able to pool five heavy smoker participant’s hair samples to 

obtain a sufficient quantity of hair to attempt BPDE-protein adduct testing using 

the preparation and extraction detailed in Materials and Methods section of this 

chapter.  Since BPT was not detected in an extracted 100 mg of pooled heavy  
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smoker’s hair (data not shown), double the amount of hair was taken through the 

extraction procedure (200 mg vs. 100 mg) (Figure 4.5, panel A).  Despite 

doubling the amount of hair used in the analysis, BPT was still not detected.  

Panel B of Figure 4.5 shows a representative chromatogram from an extracted 

pooled heavy smoker’s hair sample using triple the amount of hair (300 mg).  The 

chromatograms from this sample further illustrate that even when tripling the 

amount of hair for analysis, BPT was still not detected, and this amount of hair  

greatly reduces the quality of the chromatography. Therefore, increasing the 

amount of hair analyzed did not improve the ability to detect BPT in human hair. 

 Fourth, with respect to the detection of BPDE-Hb adducts, only one heavy  

smoker (female) Hb sample had a concentration above the LLOQ.  The  

measured concentration for BPDE-Hb adducts for this individual was 9.1 pg/mg. 

This concentration is several fold higher than the average reported concentration 

for BPDE-Hb adducts in smokers [60, 93, 127].  This individual also had the 

highest plasma concentration of cotinine of the 30 heavy smoking participants.  

For the nonsmokers participants, all of the BPDE-Hb results were reported as not 

detected.  

 
Discussion 

 In the present study, we proposed to develop analytical methods for the 

purpose of determining the differences of B(a)P and BPDE-protein adduct 

incorporation in smokers (those exposed to PTS) and nonsmokers (those with no 

exposure to PTS or ETS) hair.  While no previous studies have examined BPDE-

protein adduct concentrations in hair, a single report has been published on a 
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Figure 4.5 Ion chromatograms from: A) an extracted 200 mg pooled heavy, and 
B) an extracted 300 mg pooled heavy smoker’s hair sample.  These 
chromatograms illustrate the reduced sensitivity in the detection of BPT and that 
increasing the amount of hair reduces the quality of the chromatography.  
Analyte retention time (RT) is on the x-axis and signal intensity on the y-axis. 
B(a)P = 252 m/z and B(a)P-d12 =264 m/z 
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panel of PAHs in human hair.  In 2003, Toriba et al. reported an average 

concentration of B(a)P in smokers hair of 1.1 + 0.7 pg/mg and 0.7 + 0.3 pg/mg 

for nonsmokers’ hair  [59].  Given these available data, we originally planned to 

validate a quantitative method for detection of B(a)P in human hair with a 

sensitivity at or below 1 pg/mg.  However, we were unable to achieve adequate 

reproducibility (CV<20%) at concentrations below 20 pg/mg and a qualitative 

evaluation (positive vs. negative at or above 20 pg/mg) was instead performed 

for each hair sample in our study. 

 Using the qualitative method developed for the detection of B(a)P in 

human hair, we detected B(a)P in four of the 30 heavy smoker hair samples, and 

two of the 20 nonsmokers hair samples. There are several possible explanations 

for these findings.  First, concentrations of B(a)P in human hair may be extremely 

low in the group of participants tested, and may be below the LOD of the assay 

and instrument.  Greater sensitivity in the analytical methodology may therefore 

be necessary in order to determine quantitative concentrations of B(a)P in human 

clinical hair samples.  Second, it is also possible that B(a)P is simply not present 

in many human hair samples. Third, as mentioned above, B(a)P concentrations 

in hair have only been reported in one small human study involving 20 

participants (6 smokers, 14 nonsmokers) using HPLC with fluorescence 

detection [59] more than 8 years ago.  Although using this HPLC-fluorescence 

method may have provided greater sensitivity for the detection of B(a)P, it has 

much lower specificity than GC/MS with selective ion monitoring.  In this small 

study, investigators reported an average hair concentration of B(a)P in smokers 
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of 1.1 + 0.7 pg/mg, but evaluation of their blank hair samples (n=4), used for the 

standard curve and quality control samples, revealed virtually the same 

concentrations of B(a)P (1.1 + 0.1 pg/mg) as detected in their smokers’ hair 

samples.  Also of note, no additional studies reporting B(a)P in hair have been 

published to date since this paper. This demonstrates that more research is need 

to evaluate concentrations of B(a)P in human hair, as well as and the factors that 

contribute to its incorporation and retention in hair.  Fourth, the extremely low 

concentrations of B(a)P in human hair may be due in part by daily hygiene 

practices.  We demonstrated that a 10% shampoo wash of B(a)P incorporated 

rat hair greatly reduces the detectable amount of B(a)P several fold (Chapter 2, 

Figure 2.13). Thus the incorporation of B(a)P in hair may not be strong enough to 

resist the typical hygiene practices of humans.  While we do note there are 

significant structural differences in hair of different species, these effects have yet 

to be determined experimentally with human hair.  Finally, B(a)P is 

photochemically reactive and it is unknown whether light penetrating the hair 

shaft reduces the detectable amounts of B(a)P in hair.  

 In addition to the determination of B(a)P content in human hair, numerous 

digestion and extraction experiments were performed on human hair that had 

been fortified with BPT (Table 4.2). These experiments were unsuccessful for the 

detection of BPT in digested and extracted human hair.  There are several 

possible explanations for these findings: 1) Significant ion suppression is present; 

2) There are matrix interferences that were not removed during the extraction of 

human hair; and 3) We do not have adequate sensitivity for the detection of BPT  
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in human hair using GC/MS. Given these findings, and the fact that there was an  

insufficient quantity of human clinical hair samples available for analysis, the 

development of a validated method for BPDE-protein adducts in human hair was 

not performed.  We were, however, able to evaluate pooled heavy smokers’ hair 

samples, to determine whether we could detect BPT using the method detailed in 

this chapter, and which we validated in Chapter 2 for rat hair. Despite using two 

and three times the amount of pooled heavy smokers’ hair for this method, we 

were unable to detect BPT (Figure 4.5). 

 BPDE-Hb adducts (from isolated Hb in blood) were selected as our 

positive control in our both our human studies and animal studies, since they 

have been well characterized [60, 98] and are known to form after B(a)P 

exposure, however, we were only able to detect BPDE-Hb adducts from one 

human participant (in contrast to our rat studies in which we were able to detect 

BPDE-Hb adducts from all B(a)P dosed rats, see Chapter 2). However, we do 

note that the doses of B(a)P administered to the rats over seven days was 1000 

fold higher than what the approximated human exposure would be in three 

months (based on the EPA’s estimate of 1-3 ug/day for nonsmokers) [202].  

Alternatively, the lack of detectable BPT released from Hb, may be due to the 

increased instrument noise present in human Hb samples that have only had a 

liquid-liquid extracted performed  on them (vs. the rat samples which went 

through both liquid-liquid and SPE), or that extremely low concentrations of these 

adducts are present in the current set of participants.  It is known that up to 40% 

of samples tested for BPDE-protein adducts are reported as not detected [60], so 
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our results were not entirely unexpected.  We were unable to determine if the 

concentration of these biomarkers correlate to the concentration of the positive 

control (the BPDE-Hb adduct), since virtually all of the samples did not have 

detectable concentrations of analyte. 

 The matrix effects/ion suppression observed with in human hair and Hb 

extracts were much more pronounced than what was seen in rat hair and rat Hb 

(Chapter 2), and may be due in part to the 10-fold increase in the amount of hair 

used in the B(a)P assay, and the 2-fold  increase in the amount of Hb used in the 

BPDE-Hb adduct assay. The BPDE-Hb extraction presented in this chapter was 

also reduced to just a liquid-liquid extraction in order to prevent further loss of 

BPT through SPE.  However, these sample extracts of were very crude (as 

apparent by the large background signal in the chromatograms, Figure 4.4), and 

greatly decreased the instrument’s signal for BPT over time.  Further clean-up of 

samples by SPE or other techniques will be needed in future studies.  In addition 

to analytical modifications for these extraction methods, different instrumentation 

may be necessary for determining extremely low concentrations of BPDE 

adducts in hair and Hb from humans, as discussed below.  

 GC tandem mass spectrometry (GC-MS/MS) may be able to provide 

greater sensitivity and improved ability to detect extremely low levels of B(a)P in 

human hair and BPT released from BPDE-protein adducts.  Recently, Simpson 

et al. published a method for the detection of BPT in the urine of smokers using 

GC/MS-MS) [203].  This instrumentation allowed for detection limits for BPT (“on 

column”) several orders of magnitude lower than our GC/MS.  Lower detection 
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limits for BPT have also been reported with stable isotope dilution high resolution 

GC [93], liquid chromatography-tandem mass spectrometry (LC-MS/MS) [94], as 

well as HPLC with laser-induced fluorescence detection [189].  Lower detection 

limits for B(a)P have also been reported with HPLC using fluorescence detection 

[204] and HPLC with ultraviolet detection [205], however these studies 

determined  B(a)P concentrations in matrices other than hair.   

 Some modifications that may prove advantageous for the detection of 

B(a)P and/or BPDE-protein adducts in hair are:  1) The use of more hair  (>100 

mg) in the assay if coupled to more stringent sample clean-up methods; 2) 

Collection of hair that has been plucked instead of cutting close to the scalp, to 

provide a hair sample that has not been exposed to typical hygiene practices 

and/or light; 3)  Adding a wash procedure before digestion and extraction of 

human hair to possibly reduce matrix interferences/ion suppression.  It is noted 

however, that washing hair as part of the analytical preparation is contentious 

and no general consensus has been reached on the topic. 4)  The analysis of 

more abundant PAHs, and their diol expoxide protein adduct forming 

metabolites, as surrogate analytes for the less abundant B(a)P.   Schummer et 

al. have recently demonstrated that mono-hydroxylated PAH metabolites such 

and hydroxy-napthalene and hydroxyl-phenanthrene can be detected in human 

hair by GC/MS [206]. 

In conclusion, B(a)P, but not BPDE-protein adducts can be detected in hair 

from at least some subjects.  Moreover, the data presented in this chapter 

demonstrate that extremely sensitive analytical methodology may be needed to 
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evaluate these novel hair biomarkers in humans, and more research involving 

human clinical samples will be necessary in order to determine if B(a)P and/or 

BPDE-protein adducts in hair can be a useful tool for assessing B(a)P exposure 

in humans, particularly smokers. 

 



 

 

 

 
 
 
 
 

CHAPTER 5 
 

 
SUMMARY AND SIGNIFICANCE 

 
 

Summary 
 

 
The objective of this research was to investigate whether B(a)P and BPDE-

protein adducts can be detected in hair and whether they can be used as novel 

biomarkers of toxic exposure to B(a)P.  The overarching hypothesis for this 

research was that B(a)P and BPDE-protein adducts in hair can be used as 

biomarkers of toxic exposures to B(a)P.  To address this hypothesis we 

conducted the following experiments: 

1.  Long-Evans rats were exposed to varying doses of B(a)P. Then using liquid-

liquid, solid phase, and enzymatic extraction techniques, coupled to our sensitive 

and specific GC/MS methods, we quantified B(a)P and BPT (released from 

BPDE- adducts) in biological matrices.  

 From these analyses we determined: 

1a.  B(a)P incorporates into rat hair in a dose-dependent manner. 

1b.  B(a)P concentrations in pigmented and nonpigmented rat hair do not               

statically differ. 

1c.  B(a)P concentrations in rat hair correlate with the concentrations of 

our positive control (the validated BPDE-Hb adduct).  



164 
 

 

 

1d.  BPT (released from BPDE-protein adducts) can be detected in rat 

hair, and its concentration is dose-dependent. 

1e.  BPT concentrations in hair are approximately 1.6 times greater in 

pigmented vs. nonpigmented hair. 

2.  A histological approach using a hematoxylin and eosin (H&E) staining was 

used to detect histopathological events the lung tissue from rats with varying 

B(a)P exposure.  This was completed in order to infer whether B(a)P and BPDE-

protein adducts concentrations in hair were associated with the severity 

ofhistopathologic evidence of lung toxicty.  We used subjective and objective 

measures in an attempt to score the severity of the histopathological events for 

B(a)P dosed rats.  We also employed immunohistochemistry staining directed 

towards identification of neutrophils.    

 From these experiments we determined: 

2a.  Rats exposed to B(a)P in the low, medium, and high dosed groups 

show alveolar wall thickening, decreased air space, macrophage 

hyperplasia, and an increased myloperoxidase enzymes. 

2b.  Subjective measurements of the percentage of alveolar wall 

thickening of the lung tissue and neutrophil counts did not statistically 

differ from control rats. 

2c.  Objective measurement of nuclear space, cellular space, air space 

and ratios of these items using Image J did not statistically differ from 

controls.  
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3.  Using samples collected from human clinical trials we sought to investigate 

the differences of B(a)P and BPDE-protein adducts in the hair of active smokers 

(those exposed to PTS) and nonsmokers (those with no exposure to PTS or  

ETS). 

 From these experiments we determined: 

3a.  B(a)P, but not BPDE-protein adducts can be detected in hair from at   

least some human clinical hair samples.   

3b.  More sensitive analytical methodology is be needed to evaluate 

concentrations of these novel hair biomarkers in humans, and further 

research involving human clinical samples will be necessary in order to 

determine if B(a)P and/or BPDE-protein adducts in hair can be a useful 

tool for assessing B(a)P exposure in humans, particularly smokers. 

 
Significance 

In conclusion, we have developed sensitive and specific quantitative 

analytical GC/MS methodology to investigate the disposition and concentrations 

of unique biomarkers in hair from experimental animals exposed to B(a)P and in 

human subjects enrolled in a smoking clinical trial.  To our knowledge, this is the 

first report of B(a)P and BPDE-protein adducts detection in rat hair, and is only 

the second report on the detection of B(a)P in human hair. We determined there 

is a dose-dependent increase of these novel hair biomarkers in rats exposed to 

B(a)P, as well as insights into the role pigment may be playing on their 

incorporation into hair. While further studies are needed to elucidate the 
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underlying mechanisms involving the incorporation of these compounds, the 

results from this dissertational research show promise for biomonitoring of B(a)P  

exposure in rats and humans by means of a noninvasive procedure.



 

 

 

 
 
 
 
 

APPENDIX 
 
 

SCREENING QUESTIONNAIRE FOR NONSMOKERS 
 

  

 Date: _________________  
 Study ID: _________________  
 Recorder’s Name: ________________________________  
 

1. How old are you? (Criterion: 18 or older) 
 

2. Have you ever smoked a cigarette or used tobacco in any form?  
 

 2 a. When did you smoke your last cigarette or use tobacco? 
- Within the past 12 months 
- More than a year ago (Criterion: More than a year ago) 

 
3. How often are you exposed to other people smoking in the same room as 

you? 
- Never 
- Once or twice in a month 
- Once or twice in a week 
- Almost every day (Criterion: Once or twice the last 3 months or less) 

 
4. Do you keep your hair cut an inch and a half or longer? (Criterion: Yes) 

 
5. Have you colored your hair with the past 3 months? (Criterion: No) 

 
6. What color is your hair? (Criterion:  Dark pigmented preferred, no gray or 

white) 
 

7. “Since some chemicals found in tobacco smoke can also be present in certain 
occupational settings, we would like to know – What is your occupation? 
 

8. “Since similar chemicals can also be found in food that has been barbecued 
or smoked we would like to know – How many times per week do you 
consume barbecued or smoked food products? 

 
 9.   Do you drink yerba mate tea (South American smoked tea)? 



 

 

 

 
 
 
 
 

REFERENCES 
 
 

1. Boumba, V.A., K.S. Ziavrou, and T. Vougiouklakis, Hair as a biological 
indicator of drug use, drug abuse or chronic exposure to environmental 
toxicants. Int J Toxicol, 2006. 25(3): p. 143-63. 

 
2. Harkey, M.R., Anatomy and physiology of hair. Forensic Sci Int, 1993. 

63(1-3): p. 9-18. 
 
3. Wix, M.A., P.W. Wertz, and D.T. Downing, Polar lipid composition of 

mammalian hair. Comp Biochem Physiol B, 1987. 86(4): p. 671-3. 
 
4. Nicolaides, N. and S. Rothman, Studies on the chemical composition of 

human hair fat. II. The overall composition with regard to age, sex and 
race. J Invest Dermatol, 1953. 21(1): p. 9-14. 

 
5. Nicolaides, N. and S. Rothman, Studies on the chemical composition of 

human hair fat. I. The squalene-cholesterol relationship in children and 
adults. J Invest Dermatol, 1952. 19(6): p. 389-91. 

 
6. Masukawa, Y., H. Narita, and G. Imokawa, Characterization of the lipid 

composition at the proximal root regions of human hair. J Cosmet Sci, 
2005. 56(1): p. 1-16. 

 
7. Wertz, P.W., Integral lipids of hair and stratum corneum. EXS, 1997. 78: p. 

227-37. 
 
8. Campbell, J.L., et al., Determination of trace element profiles and 

concentrations in human hair by proton-induced X-ray emission 
spectrometry. Anal Chem, 1981. 53(8): p. 1249-53. 

 
9. Harkey, M., Anatomy and physiology of hair. Forensic Sci. Int., 1993. 63: 

p. 9-18. 
 
10. Krause, K. and K. Foitzik, Biology of the hair follicle: the basics. Semin 

Cutan Med Surg, 2006. 25(1): p. 2-10. 
 
11. Nakahara, Y., Hair analysis for abused and therapeutic drugs. J 

Chromatogr B Biomed Sci Appl, 1999. 733(1-2): p. 161-80. 



169 
 

 

 

12. Hopps, H.C., The biologic bases for using hair and nail for analyses of 
trace elements. Sci Total Environ, 1977. 7(1): p. 71-89. 

 
13. Giovanoli-Jakubczak, T. and G.G. Berg, Measurement of mercury in 

human hair. Arch Environ Health, 1974. 28(3): p. 139-44. 
 
14. Montagna, W., The biology of hair growth,, ed. R. Ellis. 1958: New York, 

Academic Press. 
 
15. Priestley, G.C., Rates and duration of hair growth in the albino rat. J Anat, 

1966. 100(Pt 1): p. 147-57. 
 
16. Whiting, D.A., The Structure of the Human Hair Follicle:  Light Microscopy 

of Vertical and Horizontal Sections of Scalp Biopsies, in Canfield 
Publishing, Pfizer, Editor. 2004: Fairfield, NJ. 

 
17. Montagna, W.a.V.S., E.J., The Biology of Hair Growth. The anatomy of the 

hair follicle, ed. R.A. Ellis. 1958, New York: Acedemic Press. 
 
18. A.P. Bertolino, L.M.K., and I.M. Freedberg, Biology of Hair Follicles. 

Dermatology in General Medicine, ed. A.Z.E. T.B. Fitzpatrick, K Wolff, I.M 
Freedberg, K.F. Austen. 1994, New York City: McGraw-Hill, Inc. 289-293. 

 
19. Sanford, D.a.H., F.L., Determination of Cystine and Cysteine in Altered 

Human Hair Fibers. Anal. Chem., 1947. 19(6): p. 404-406. 
 
20. Pumford, N.R. and N.C. Halmes, Protein targets of xenobiotic reactive 

intermediates. Annu Rev Pharmacol Toxicol, 1997. 37: p. 91-117. 
 
21. Pumford, N.R., N.C. Halmes, and J.A. Hinson, Covalent binding of 

xenobiotics to specific proteins in the liver. Drug Metab Rev, 1997. 29(1-
2): p. 39-57. 

 
22. Gray, S., Gray's anatomy. 1st ed. 1994, New York: Vintage Books. 80 p. 
 
23. Ingold, C.K., Structure and Mechanism in Organic Chemistry. 2nd ed. 

1969, Ithaca, NY: Cornell University Press. 
 
24. Joseph, R.E., Jr., T.P. Su, and E.J. Cone, In vitro binding studies of drugs 

to hair: influence of melanin and lipids on cocaine binding to Caucasoid 
and Africoid hair. J Anal Toxicol, 1996. 20(6): p. 338-44. 

 
25. Wilkins, D.G., et al., Quantitative analysis of methadone and two major 

metabolites in hair by positive chemical ionization ion trap mass 
spectrometry. J Anal Toxicol, 1996. 20(6): p. 355-61. 



170 
 

 

 

26. Slawson, M.H., et al., Quantitative determination of phencyclidine in 
pigmented and nonpigmented hair by ion-trap mass spectrometry. J Anal 
Toxicol, 1996. 20(6): p. 350-4. 

 
27. Hold, K.M., et al., Detection of stanozolol in hair by negative ion chemical 

ionization mass spectrometry. J Anal Toxicol, 1996. 20(6): p. 345-49. 
 
28. Gygi, S.P., et al., Incorporation of codeine and metabolites into hair. Role 

of pigmentation. Drug Metab Dispos, 1996. 24(4): p. 495-501. 
 
29. Gygi, S.P., et al., Dose-related distribution of codeine and its metabolites 

into rat hair. Drug Metab Dispos, 1996. 24(3): p. 282-7. 
 
30. Rollins, D.E., D.G. Wilkins, and G.G. Krueger, Codeine disposition in 

human hair after single and multiple doses. Eur J Clin Pharmacol, 1996. 
50(5): p. 391-7. 

 
31. Wilkins, D.G., et al., Disposition of codeine in female human hair after 

multiple-dose administration. J Anal Toxicol, 1995. 19(6): p. 492-8. 
 
32. Wilkins, D., et al., Quantitative analysis of THC, 11-OH-THC, and 

THCCOOH in human hair by negative ion chemical ionization mass 
spectrometry. J Anal Toxicol, 1995. 19(6): p. 483-91. 

 
33. Gygi, S.P., D.G. Wilkins, and D.E. Rollins, Distribution of codeine and 

morphine into rat hair after long-term daily dosing with codeine. J Anal 
Toxicol, 1995. 19(6): p. 387-91. 

 
34. Wilkins, D., et al., Quantitative determination of codeine and its major 

metabolites in human hair by gas chromatography-positive ion chemical 
ionization mass spectrometry: a clinical application. J Anal Toxicol, 1995. 
19(5): p. 269-74. 

 
35. Rollins, D.E., D.G. Wilkins, and G. Krueger, Models for studying the 

cellular processes and barriers to the incorporation of drugs into hair. 
NIDA Res Monogr, 1995. 154: p. 235-44. 

 
36. Henderson, G.L., et al., Incorporation of isotopically labeled cocaine into 

human hair: race as a factor. J Anal Toxicol, 1998. 22(2): p. 156-65. 
 
37. Hubbard, D.L., D.G. Wilkins, and D.E. Rollins, The incorporation of 

cocaine and metabolites into hair: effects of dose and hair pigmentation. 
Drug Metab Dispos, 2000. 28(12): p. 1464-9. 

 



171 
 

 

 

38. Ortonne, J.P. and G. Prota, Hair melanins and hair color: ultrastructural 
and biochemical aspects. J Invest Dermatol, 1993. 101(1 Suppl): p. 82S-
89S. 

 
39. Larsson, B.S., Interaction between chemicals and melanin. Pigment Cell 

Res, 1993. 6(3): p. 127-33. 
 
40. Ito, S., Reexamination of the structure of eumelanin. Biochim Biophys 

Acta, 1986. 883(1): p. 155-61. 
 
41. Felix, C.C., et al., Melanin photoreactions in aerated media: electron spin 

resonance evidence for production of superoxide and hydrogen peroxide. 
Biochem Biophys Res Commun, 1978. 84(2): p. 335-41. 

 
42. Tjalve, H., M. Nilsson, and B. Larsson, Binding of 14C-spermidine to 

melanin in vivo and in vitro. Acta Physiol Scand, 1981. 112(2): p. 209-14. 
 
43. Ings, R.M., The melanin binding of drugs and its implications. Drug Metab 

Rev, 1984. 15(5-6): p. 1183-212. 
 
44. Potts, A.M., The Reaction of Uveal Pigment in Vitro with Polycyclic 

Compounds. Invest Ophthalmol, 1964. 3: p. 405-16. 
 
45. Roberto, A., B.S. Larsson, and H. Tjalve, Uptake of 7,12-

dimethylbenz(a)anthracene and benzo(a)pyrene in melanin-containing 
tissues. Pharmacol Toxicol, 1996. 79(2): p. 92-9. 

 
46. Dunn, J.E., et al., Scalp hair and urine mercury content of children in the 

Northeast United States: the New England Children's Amalgam Trial. 
Environ Res, 2008. 107(1): p. 79-88. 

 
47. Xue, F., et al., Maternal fish consumption, mercury levels, and risk of 

preterm delivery. Environ Health Perspect, 2007. 115(1): p. 42-7. 
 
48. Barbosa, F., Jr., et al., A critical review of biomarkers used for monitoring 

human exposure to lead: advantages, limitations, and future needs. 
Environ Health Perspect, 2005. 113(12): p. 1669-74. 

 
49. Tsatsakis, A.M., et al., Is hair analysis for dialkyl phosphate metabolites a 

suitable biomarker for assessing past acute exposure to organophosphate 
pesticides? Hum Exp Toxicol, 2011. 

 
50. Jaspers, V.L., et al., A screening of persistent organohalogenated 

contaminants in hair of East Greenland polar bears. Sci Total Environ, 
2010. 408(22): p. 5613-8. 



172 
 

 

 

51. Margariti, M.G. and A.M. Tsatsakis, Analysis of dialkyl phosphate 
metabolites in hair using gas chromatography-mass spectrometry: a 
biomarker of chronic exposure to organophosphate pesticides. 
Biomarkers, 2009. 14(3): p. 137-47. 

 
52. Kintz, P., M. Villain, and V. Cirimele, Hair analysis for drug detection. Ther 

Drug Monit, 2006. 28(3): p. 442-6. 
 
53. Strano-Rossi, S., A. Bermejo-Barrera, and M. Chiarotti, Segmental hair 

analysis for cocaine and heroin abuse determination. Forensic Sci Int, 
1995. 70(1-3): p. 211-6. 

 
54. Uematsu, T., et al., Human scalp hair as evidence of individual dosage 

history of haloperidol: a possible linkage of haloperidol excretion into hair 
with hair pigment. Arch Dermatol Res, 1990. 282(2): p. 120-5. 

 
55. Kintz, P., Segmental hair analysis can demonstrate external contamination 

in postmortem cases. Forensic Sci Int, 2011. 
 
56. Eliopoulos, C., J. Klein, and G. Koren, Validation of self-reported smoking 

by analysis of hair for nicotine and cotinine. Ther Drug Monit, 1996. 18(5): 
p. 532-6. 

 
57. Florescu, A., et al., Methods for quantification of exposure to cigarette 

smoking and environmental tobacco smoke: focus on developmental 
toxicology. Ther Drug Monit, 2009. 31(1): p. 14-30. 

 
58. Yuan, J.M., et al., Urinary levels of tobacco-specific nitrosamine 

metabolites in relation to lung cancer development in two prospective 
cohorts of cigarette smokers. Cancer Res, 2009. 69(7): p. 2990-5. 

 
59. Toriba, A., et al., Quantification of polycyclic aromatic hydrocarbons 

(PAHs) in human hair by HPLC with fluorescence detection: a biological 
monitoring method to evaluate the exposure to PAHs. Biomed 
Chromatogr, 2003. 17(2-3): p. 126-32. 

 
60. Skipper, P.L. and S.R. Tannenbaum, The role of protein adducts in the 

study of chemical carcinogenesis. Prog Clin Biol Res, 1990. 340C: p. 301-
10. 

 
61. Brandt, H.C. and W.P. Watson, Monitoring human occupational and 

environmental exposures to polycyclic aromatic compounds. Ann Occup 
Hyg, 2003. 47(5): p. 349-78. 

 
62. Report on Carcinogens, U.S.D.o.H.a.H. Services, Editor. 2004: Research 

Triangle Park, NC. p. 220-222. 



173 
 

 

 

63. Ding, Y.S., D.L. Ashley, and C.H. Watson, Determination of 10 
carcinogenic polycyclic aromatic hydrocarbons in mainstream cigarette 
smoke. J Agric Food Chem, 2007. 55(15): p. 5966-73. 

 
64. Tobacco Smoke and Involuntary Smoking:  Evaluation of Carcinogenic 

Risks to Humans, I.A.f.R.o. Cancer, Editor. 2004, Lyon, France. p. 53-
1187. 

 
65. Polynuclear Aromatic Compounds, Part 1, Chemical, Environmental and 

Experimental Data, W.H. Organization, Editor. 1983: Lyon, France. p. 211. 
 
66. Hecht, S.S., W. Grabowski, and K. Groth, Analysis of faeces for 

benzo[a]pyrene after consumption of charcoal-broiled beef by rats and 
humans. Food Cosmet Toxicol, 1979. 17(3): p. 223-7. 

 
67. Rihs, H.P., et al., Occupational exposure to polycyclic aromatic 

hydrocarbons in German industries: association between exogenous 
exposure and urinary metabolites and its modulation by enzyme 
polymorphisms. Toxicol Lett, 2005. 157(3): p. 241-55. 

 
68. Lu, P.L., M.L. Chen, and I.F. Mao, Urinary 1-hydroxypyrene levels in 

workers exposed to coke oven emissions at various locations in a coke 
oven plant. Arch Environ Health, 2002. 57(3): p. 255-61. 

 
69. Kang, D., et al., Association of exposure to polycyclic aromatic 

hydrocarbons (estimated from job category) with concentration of 1-
hydroxypyrene glucuronide in urine from workers at a steel plant. Occup 
Environ Med, 1995. 52(9): p. 593-9. 

 
70. Hecht, S.S., Tobacco smoke carcinogens and lung cancer. J Natl Cancer 

Inst, 1999. 91(14): p. 1194-210. 
 
71. Culp, S.J., et al., A comparison of the tumors induced by coal tar and 

benzo[a]pyrene in a 2-year bioassay. Carcinogenesis, 1998. 19(1): p. 117-
24. 

 
72. Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some 

Related Exposures, I.A.f.R.o. Cancer, Editor. 2010: Lyon, France. p. 35-
818. 

 
73. Polynuclear Aromatic Compounds, Part 1:  Chemical, Environmental, and 

Experimental Data, I.A.f.R.o. Cancer, Editor. 1983: Lyon, France. p. 31-
91. 

 



174 
 

 

 

74. Sun, J.D., et al., Lung retention and metabolic fate of inhaled 
benzo(a)pyrene associated with diesel exhaust particles. Toxicol Appl 
Pharmacol, 1984. 73(1): p. 48-59. 

 
75. Sun, J.D., R.K. Wolff, and G.M. Kanapilly, Deposition, retention, and 

biological fate of inhaled benzo(a)pyrene adsorbed onto ultrafine particles 
and as a pure aerosol. Toxicol Appl Pharmacol, 1982. 65(2): p. 231-44. 

 
76. Agency, U.S.E.P. Benzo(a)pyrene. Persistent Bioaccumulative and Toxic 

(PBT) Chemical Program [cited 2011 April, 24]; Available from: 
http://www.epa.gov/pbt/pubs/benzo.htm. 

 
77. Kummer, V., et al., Estrogenic activity of environmental polycyclic aromatic 

hydrocarbons in uterus of immature Wistar rats. Toxicol Lett, 2008. 180(3): 
p. 212-21. 

 
78. Miller, K.P. and K.S. Ramos, Impact of cellular metabolism on the 

biological effects of benzo[a]pyrene and related hydrocarbons. Drug 
Metab Rev, 2001. 33(1): p. 1-35. 

 
79. Dostalek, J., et al., Multichannel SPR biosensor for detection of endocrine-

disrupting compounds. Anal Bioanal Chem, 2007. 389(6): p. 1841-7. 
 
80. Lu, K.P. and K.S. Ramos, Identification of genes differentially expressed in 

vascular smooth muscle cells following benzo[a]pyrene challenge: 
implications for chemical atherogenesis. Biochem Biophys Res Commun, 
1998. 253(3): p. 828-33. 

 
81. Hough, J.L., et al., Benzo(a)pyrene enhances atherosclerosis in White 

Carneau and Show Racer pigeons. Arterioscler Thromb, 1993. 13(12): p. 
1721-7. 

 
82. Akpan, V., et al., High levels of carcinogenic polycyclic aromatic 

hydrocarbons (PAH) in 20 brands of Chinese cigarettes. J Appl Toxicol, 
2006. 26(6): p. 480-3. 

 
83. Davis, H.J., Gas chromatographic determination of benzo(a)pyrene in 

cigarette smoke. Anal Chem, 1968. 40(10): p. 1583-5. 
 
84. Jenkins, R.A. and M.R. Guerin, Analytical chemical methods for the 

detection of environmental tobacco smoke constituents. Eur J Respir Dis 
Suppl, 1984. 133: p. 33-46. 

 
 
 

http://www.epa.gov/pbt/pubs/benzo.htm


175 
 

 

 

85. Sinclair, N.M. and B.E. Frost, Rapid method for the determination of 
benzo[a]pyrene in the particulate phase of cigarette smoke by high-
performance liquid chromatography with fluorimetric detection. Analyst, 
1978. 103(1233): p. 1199-203. 

 
86. Pelkonen, O. and D.W. Nebert, Metabolism of polycyclic aromatic 

hydrocarbons: etiologic role in carcinogenesis. Pharmacol Rev, 1982. 
34(2): p. 189-222. 

 
87. Conney, A.H., et al., Studies on the metabolism of benzo[a]pyrene and 

dose-dependent differences in the mutagenic profile of its ultimate 
carcinogenic metabolite. Drug Metab Rev, 1994. 26(1-2): p. 125-63. 

 
88. Gelboin, H.V., Benzo[alpha]pyrene metabolism, activation and 

carcinogenesis: role and regulation of mixed-function oxidases and related 
enzymes. Physiol Rev, 1980. 60(4): p. 1107-66. 

 
89. Ross, J.A., et al., Adenomas induced by polycyclic aromatic hydrocarbons 

in strain A/J mouse lung correlate with time-integrated DNA adduct levels. 
Cancer Res, 1995. 55(5): p. 1039-44. 

 
90. Nesnow, S., et al., Mechanistic linkage between DNA adducts, mutations 

in oncogenes and tumorigenesis of carcinogenic environmental polycyclic 
aromatic hydrocarbons in strain A/J mice. Toxicology, 1995. 105(2-3): p. 
403-13. 

 
91. Hecht, S.S., Tobacco carcinogens, their biomarkers and tobacco-induced 

cancer. Nat Rev Cancer, 2003. 3(10): p. 733-44. 
 
92. Lakshman, M.K., et al., Highly diastereoselective synthesis of nucleoside 

adducts from the carcinogenic benzo[a]pyrene diol epoxide and a 
computational analysis. J Am Chem Soc, 2007. 129(1): p. 68-76. 

 
93. Ragin, A.D., et al., A gas chromatography-isotope dilution high-resolution 

mass spectrometry method for quantification of isomeric benzo[a]pyrene 
diol epoxide hemoglobin adducts in humans. J Anal Toxicol, 2008. 39(9): 
p. 728-36. 

 
94. Wang, C., et al., Synthesis and characterization of DNA fluorescent 

probes containing a single site-specific stereoisomer of anti-
benzo[a]pyrene diol epoxide-N2-dG. Chem Res Toxicol, 2009. 22(4): p. 
676-82. 

 
 
 



176 
 

 

 

95. Wang, C., et al., Quantitative study of stereospecific binding of monoclonal 
antibody to anti-benzo(a)pyrene diol epoxide-N(2)-dG adducts by capillary 
electrophoresis immunoassay. J Chromatogr A, 2010. 1217(15): p. 2254-
61. 

 
96. Luch, A., and Baird, W. M. , Detoxification of Polycyclic Aromatic 

Hydrocarbons. The Carcinogenic Effects of Polycyclic Aromatic 
Hydrocarbons 2005, London, UK: Imperial College Pres. 

 
97. Shimada, T., et al., Roles of individual human cytochrome P-450 enzymes 

in the bioactivation of benzo(a)pyrene, 7,8-dihydroxy-7,8-
dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic 
aromatic hydrocarbons. Cancer Res, 1989. 49(22): p. 6304-12. 

 
98. Tannenbaum, S.R., et al., Characterization of various classes of protein 

adducts. Environ Health Perspect, 1993. 99: p. 51-5. 
 
99. Huberman, E., et al., Identification of mutagenic metabolites of 

benzo(a)pyrene in mammalian cells. Proc Natl Acad Sci U S A, 1976. 
73(2): p. 607-11. 

 
100. Darwish, W., et al., Mutagenic activation and detoxification of 

benzo[a]pyrene in vitro by hepatic cytochrome P450 1A1 and phase II 
enzymes in three meat-producing animals. Food Chem Toxicol, 2010. 
48(8-9): p. 2526-31. 

 
101. Chung, M.K., et al., A sandwich enzyme-linked immunosorbent assay for 

adducts of polycyclic aromatic hydrocarbons with human serum albumin. 
Anal Biochem, 2010. 400(1): p. 123-9. 

 
102. Mumford, J.L., et al., A sensitive color ELISA for detecting polycyclic 

aromatic hydrocarbon-DNA adducts in human tissues. Mutat Res, 1996. 
359(3): p. 171-7. 

 
103. Baumgartner WA, H.V., Blahd WH, Hair Analysis for Drugs of Abuse 

Journal of Forensic Sciences, 1989. 34(6): p. 1433-1453. 
 
104. Gerstenberg, B., et al., Nicotine and cotinine accumulation in pigmented 

and unpigmented rat hair. Drug Metab Dispos, 1995. 23(1): p. 143-8. 
 
105. Cone, E.J., Testing human hair for drugs of abuse. I. Individual dose and 

time profiles of morphine and codeine in plasma, saliva, urine, and beard 
compared to drug-induced effects on pupils and behavior. J Anal Toxicol, 
1990. 14(1): p. 1-7. 

 



177 
 

 

 

106. Saisho, K., et al., Hair analysis for pharmaceutical drugs. II. Effective 
extraction and determination of sildenafil (Viagra) and its N-desmethyl 
metabolite in rat and human hair by GC-MS. Biol Pharm Bull, 2001. 
24(12): p. 1384-8. 

 
107. Uematsu, T., et al., Possible effect of pigment on the pharmacokinetics of 

ofloxacin and its excretion in hair. J Pharm Sci, 1992. 81(1): p. 45-8. 
108. Henderson, G.L., Mechanisms of drug incorporation into hair. Forensic Sci 

Int, 1993. 63(1-3): p. 19-29. 
 
109. Blank, D.A.K.a.D.L., Drug Testing in Hair. 1996, CRC: New York. 
110. Nakahara, Y., The effects of physiochemical factors on incorporation of 

drugs into hair and behaviour of drugs in hair root. Drug testing 
technology: assessment of field applications, ed. Mieczkowski. 1999, 
Florida: CRC Press. 

 
111. Lindquist, N.G., Accumulation of drugs on melanin. Acta Radiol Diagn 

(Stockh), 1973. 325: p. 1-92. 
 
112. Rollins, D.E., et al., The effect of hair color on the incorporation of codeine 

into human hair. J Anal Toxicol, 2003. 27(8): p. 545-51. 
 
113. Borges, C.R., D.G. Wilkins, and D.E. Rollins, Amphetamine and N-

acetylamphetamine incorporation into hair: an investigation of the potential 
role of drug basicity in hair color bias. J Anal Toxicol, 2001. 25(4): p. 221-
7. 

 
114. Gygi, S.P., D.G. Wilkins, and D.E. Rollins, A comparison of phenobarbital 

and codeine incorporation into pigmented and nonpigmented rat hair. J 
Pharm Sci, 1997. 86(2): p. 209-14. 

 
115. Nakahara, Y. and R. Hanajiri, Hair analysis for drugs of abuse XXI. Effect 

of para-substituents on benzene ring of methamphetamine on drug 
incorporation into rat hair. Life Sci, 2000. 66(7): p. 563-74. 

 
116. Han, E., et al., The dependence of the incorporation of methamphetamine 

into rat hair on dose, frequency of administration and hair pigmentation. J 
Chromatogr B Analyt Technol Biomed Life Sci, 2010. 878(28): p. 2845-51. 

 
117. Lee, S., et al., Simultaneous quantification of opiates and effect of 

pigmentation on its deposition in hair. Arch Pharm Res, 2010. 33(11): p. 
1805-11. 

 
118. Hold, K.M., et al., Detection of nandrolone, testosterone, and their esters 

in rat and human hair samples. J Anal Toxicol, 1999. 23(6): p. 416-23. 



178 
 

 

 

119. Mieczkowski, T. and M. Kruger, Interpreting the color effect of melanin on 
cocaine and benzoylecgonine assays for hair analysis: brown and black 
samples compared. J Forensic Leg Med, 2007. 14(1): p. 7-15. 

 
120. Guide for the Care and Use of Laboratory Animals, 8th ed. National 

Acedemies Press: Washington D.C. 
 
121. Melikian, A.A., et al., Gas chromatographic-mass spectrometric 

determination of benzo[a]pyrene and chrysene diol epoxide globin adducts 
in humans. Cancer Epidemiol Biomarkers Prev, 1997. 6(10): p. 833-9. 

 
122. Melikian, A.A., et al., Detection of DNA and globin adducts of polynuclear 

aromatic hydrocarbon diol epoxides by gas chromatography-mass 
spectrometry and -3H-CH3I postlabeling of released tetraols. Chem Res 
Toxicol, 1996. 9(2): p. 508-16. 

 
123. Naylor, S., et al., Benzo[a]pyrene diol epoxide adduct formation in mouse 

and human hemoglobin: physicochemical basis for dosimetry. Chem Res 
Toxicol, 1990. 3(2): p. 111-7. 

 
124. Day, B.W., et al., Enantiospecificity of covalent adduct formation by 

benzo[a]pyrene anti-diol epoxide with human serum albumin. Chem Res 
Toxicol, 1994. 7(6): p. 829-35. 

 
125. Lee, B.M., S.J. Kwack, and H.S. Kim, Age-related changes in oxidative 

DNA damage and benzo(a)pyrene diolepoxide-I (BPDE-I)-DNA adduct 
levels in human stomach. J Toxicol Environ Health A, 2005. 68(19): p. 
1599-610. 

 
126. Gyorffy, E., et al., DNA adducts in tumour, normal peripheral lung and 

bronchus, and peripheral blood lymphocytes from smoking and non-
smoking lung cancer patients: correlations between tissues and detection 
by 32P-postlabelling and immunoassay. Carcinogenesis, 2004. 25(7): p. 
1201-9. 

 
127. Boysen, G. and S.S. Hecht, Analysis of DNA and protein adducts of 

benzo[a]pyrene in human tissues using structure-specific methods. Mutat 
Res, 2003. 543(1): p. 17-30. 

 
128. Melikian, A.A., et al., Identification of benzo[a]pyrene metabolites in 

cervical mucus and DNA adducts in cervical tissues in humans by gas 
chromatography-mass spectrometry. Cancer Lett, 1999. 146(2): p. 127-
34. 

 



179 
 

 

 

129. Alexandrov, K., et al., Evidence of anti-benzo[a]pyrene diolepoxide-DNA 
adduct formation in human colon mucosa. Carcinogenesis, 1996. 17(9): p. 
2081-3. 

 
130. Alexandrov, K., et al., A new sensitive fluorometric assay for the 

metabolism of (--)-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by human 
hair follicles. Carcinogenesis, 1990. 11(12): p. 2157-61. 

 
131. Hukkelhoven, M.W., et al., Determination of phenolic benzo(a)pyrene 

metabolites formed by human hair follicles. Anal Biochem, 1982. 125(2): 
p. 370-5. 

 
132. Hukkelhoven, M.W., et al., Human hair follicles, a convenient tissue for 

genetic studies on carcinogen metabolism. Clin Genet, 1982. 21(1): p. 53-
8. 

 
133. Ingold, C.K., Structure and Mechanism in Organic Chemistry. 2 ed. 1969, 

Ithaca, NY: Cornell University Press. 1137-1142, 1157-1163. 
 
134. Morrison, H., V. Hammarskiold, and B. Jernstrom, Status of reduced 

glutathione in primary cultures of rat hepatocytes and the effect on 
conjugation of benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide. Chem Biol 
Interact, 1983. 45(2): p. 235-42. 

 
135. Ritchie, K.J., et al., Glutathione transferase pi plays a critical role in the 

development of lung carcinogenesis following exposure to tobacco-related 
carcinogens and urethane. Cancer Res, 2007. 67(19): p. 9248-57. 

 
136. Izzotti, A., et al., Chemoprevention of smoke-related DNA adduct 

formation in rat lung and heart. Carcinogenesis, 1992. 13(11): p. 2187-90. 
 
137. Pohl, R.J. and J.R. Fouts, Cytochrome P-450-dependent xenobiotic 

metabolizing activity in Zymbal's gland, a specialized sebaceous gland of 
rodents. Cancer Res, 1983. 43(8): p. 3660-2. 

 
138. Larsson, B.S., H. Tjiilve, P. Larsson, A. Roberto, I. Brandt, and K. 

Bergman, F. Retention of carcinogens in pigmented tissues due to 
melanin attinity. in 2nd Meeting of the ESPCR. 1989. Uppsala, Sweden. 

 
139. Bouchard, M. and C. Viau, Benzo(a)pyrenediolepoxide-hemoglobin 

adducts and 3-hydroxy-benzo(a)pyrene urinary excretion profiles in rats 
subchronically exposed to benzo(a)pyrene. Arch Toxicol, 1995. 69(8): p. 
540-6. 

 



180 
 

 

 

140. Skipper, P.L., et al., Origin of tetrahydrotetrols derived from human 
hemoglobin adducts of benzo[a]pyrene. Chem Res Toxicol, 1989. 2(5): p. 
280-1. 

 
141. Day, B.W., et al., Conversion of a hemoglobin alpha chain aspartate(47) 

ester to N-(2,3-dihydroxypropyl)asparagine as a method for identification 
of the principal binding site for benzo[a]pyrene anti-diol epoxide. Chem 
Res Toxicol, 1991. 4(3): p. 359-63. 

 
142. Foth, H., Role of the lung in accumulation and metabolism of xenobiotic 

compounds--implications for chemically induced toxicity. Crit Rev Toxicol, 
1995. 25(2): p. 165-205. 

 
143. Perera, F., Carcinogenicity of airborne fine particulate benzo(a)pyrene: an 

appraisal of the evidence and the need for control. Environ Health 
Perspect, 1981. 42: p. 163-85. 

 
144. Gram, T.E., Chemically reactive intermediates and pulmonary xenobiotic 

toxicity. Pharmacol Rev, 1997. 49(4): p. 297-341. 
 
145. Podechard, N., et al., Interleukin-8 induction by the environmental 

contaminant benzo(a)pyrene is aryl hydrocarbon receptor-dependent and 
leads to lung inflammation. Toxicol Lett, 2008. 177(2): p. 130-7. 

 
146. Yan, Y., et al., Efficacy of polyphenon E, red ginseng, and rapamycin on 

benzo(a)pyrene-induced lung tumorigenesis in A/J mice. Neoplasia, 2006. 
8(1): p. 52-8. 

 
147. A.M. Roland and G.S, Y., Comprehensive Toxicology. 2 ed. Respiratory 

Toxicology, ed. G.S. Yost. Vol. 8. 2010, Kidlington, UK: ELSEVIER. 
 
148. Baak, J.P., et al., The molecular genetics and morphometry-based 

endometrial intraepithelial neoplasia classification system predicts disease 
progression in endometrial hyperplasia more accurately than the 1994 
World Health Organization classification system. Cancer, 2005. 103(11): 
p. 2304-12. 

 
149. Weitzman, S.A. and L.I. Gordon, Inflammation and cancer: role of 

phagocyte-generated oxidants in carcinogenesis. Blood, 1990. 76(4): p. 
655-63. 

 
150. Cerutti, P.A. and B.F. Trump, Inflammation and oxidative stress in 

carcinogenesis. Cancer Cells, 1991. 3(1): p. 1-7. 
 



181 
 

 

 

151. Lonkar, P. and P.C. Dedon, Reactive species and DNA damage in chronic 
inflammation: reconciling chemical mechanisms and biological fates. Int J 
Cancer, 2011. 128(9): p. 1999-2009. 

 
152. Jacobs, L., et al., Subclinical responses in healthy cyclists briefly exposed 

to traffic-related air pollution: an intervention study. Environ Health, 2010. 
9: p. 64. 

 
153. De Larco, J.E., B.R. Wuertz, and L.T. Furcht, The potential role of 

neutrophils in promoting the metastatic phenotype of tumors releasing 
interleukin-8. Clin Cancer Res, 2004. 10(15): p. 4895-900. 

 
154. Waugh, D.J. and C. Wilson, The interleukin-8 pathway in cancer. Clin 

Cancer Res, 2008. 14(21): p. 6735-41. 
 
155. Seekamp, A., et al., Requirements for neutrophil products and L-arginine 

in ischemia-reperfusion injury. Am J Pathol, 1993. 142(4): p. 1217-26. 
 
156. Smith, C.W., et al., Recognition of an endothelial determinant for CD 18-

dependent human neutrophil adherence and transendothelial migration. J 
Clin Invest, 1988. 82(5): p. 1746-56. 

 
157. Zhang, R., et al., Association between myeloperoxidase levels and risk of 

coronary artery disease. JAMA, 2001. 286(17): p. 2136-42. 
 
158. Thomas, E.D., et al., Direct evidence for a bone marrow origin of the 

alveolar macrophage in man. Science, 1976. 192(4243): p. 1016-8. 
 
159. Driscoll, K.E. and J.K. Maurer, Cytokine and growth factor release by 

alveolar macrophages: potential biomarkers of pulmonary toxicity. Toxicol 
Pathol, 1991. 19(4 Pt 1): p. 398-405. 

 
160. Holian, C.T.M.a.A., Comprehensive Toxicology. 2 ed. Respiratory 

Toxicology, ed. G.S. Yost. Vol. 8. 2010, Kidlington, UK: ELSEVIER. 
 
161. Standiford, T.J., et al., TGF-beta-induced IRAK-M expression in tumor-

associated macrophages regulates lung tumor growth. Oncogene, 2011. 
 
162. Stix, G., A Malignant Flame. Scientific American, 2007: p. 46-49. 
 
163. Harris, C.C., et al., Human pulmonary alveolar macrophages metabolise 

benzo(a)pyrene to proximate and ultimate mutagens. Nature, 1978. 
272(5654): p. 633-4. 

 



182 
 

 

 

164. Borm, P.J., et al., Neutrophils amplify the formation of DNA adducts by 
benzo[a]pyrene in lung target cells. Environ Health Perspect, 1997. 105 
Suppl 5: p. 1089-93. 

 
165. Petruska, J.M., et al., Myeloperoxidase-enhanced formation of (+-)-trans-

7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene-DNA adducts in lung tissue in 
vitro: a role of pulmonary inflammation in the bioactivation of a 
procarcinogen. Carcinogenesis, 1992. 13(7): p. 1075-81. 

 
166. Mallet, W.G., D.R. Mosebrook, and M.A. Trush, Activation of (+-)-trans-

7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene to diolepoxides by human 
polymorphonuclear leukocytes or myeloperoxidase. Carcinogenesis, 
1991. 12(3): p. 521-4. 

 
167. Knaapen, A.M., et al., Neutrophils and respiratory tract DNA damage and 

mutagenesis: a review. Mutagenesis, 2006. 21(4): p. 225-36. 
 
168. Rasband, W. ImageJ.   [cited 2011 April, 25]; Available from: 

http://imagej.nih.gov/ij/docs/intro.html. 
 
169. Naveenkumar, C., et al., Potent antitumor and antineoplastic efficacy of 

baicalein on benzo(a)pyrene-induced experimental pulmonary 
tumorigenesis. Fundam Clin Pharmacol, 2011. 

 
170. Zarkovic, M., et al., Inhibitory effect of probucol on benzo[a]pyrene 

induced lung tumorigenesis. Carcinogenesis, 1995. 16(10): p. 2599-601. 
 
171. Kamaraj, S., et al., Modulatory effect of hesperidin on benzo(a)pyrene 

induced experimental lung carcinogenesis with reference to COX-2, MMP-
2 and MMP-9. Eur J Pharmacol, 2010. 649(1-3): p. 320-7. 

 
172. Hukkanen, J., O. Pelkonen, and H. Raunio, Expression of xenobiotic-

metabolizing enzymes in human pulmonary tissue: possible role in 
susceptibility for ILD. Eur Respir J Suppl, 2001. 32: p. 122s-126s. 

 
173. Simon, R.H. and R. Paine, 3rd, Participation of pulmonary alveolar 

epithelial cells in lung inflammation. J Lab Clin Med, 1995. 126(2): p. 108-
18. 

 
174. Smart, S.J. and T.B. Casale, Interleukin-8-induced transcellular neutrophil 

migration is facilitated by endothelial and pulmonary epithelial cells. Am J 
Respir Cell Mol Biol, 1993. 9(5): p. 489-95. 

 
175. L-Y Chang, J.D.C., P Gehr, B Rothen-Rutishauser, C Muhfeld, and F. 

Blank, Alveolar Epithelium in Lung Toxicology. 2 ed. Comprehensive 
Toxicology, ed. C.A. McQueen. Vol. 8. 2010: Elsevier Ldt. 

http://imagej.nih.gov/ij/docs/intro.html


183 
 

 

 

176. Buckpitt, A.  Personal Communications. Nov. 9, 2009: Salt Lake City, 
Utah. 

 
177. Meuwissen, R. and A. Berns, Mouse models for human lung cancer. 

Genes Dev, 2005. 19(6): p. 643-64. 
 
178. Calbo, J., et al., Genotype-phenotype relationships in a mouse model for 

human small-cell lung cancer. Cold Spring Harb Symp Quant Biol, 2005. 
70: p. 225-32. 

 
179. Li, L.H., R.F, Jr.; Kirichenko, A.; Holian, A., A. Toxicol. Appl. Pharmacol., 

1996. 139: p. 135-143. 
 
180. Lu, X., et al., Early whole-genome transcriptional response induced by 

benzo[a]pyrene diol epoxide in a normal human cell line. Genomics, 2009. 
93(4): p. 332-42. 

 
181. Tzekova, A., R. Thuot, and C. Viau, Correlation between biomarkers of 

polycyclic aromatic hydrocarbon exposure and electrophilic tissue burden 
in a rat model. Arch Toxicol, 2004. 78(6): p. 351-61. 

 
182. Tzekova, A., S. Leroux, and C. Viau, Electrophilic tissue burden in male 

Sprague-Dawley rats following repeated exposure to binary mixtures of 
polycyclic aromatic hydrocarbons. Arch Toxicol, 2004. 78(2): p. 106-13. 

 
183. Annual smoking-attributable mortality, years of potential life lost, and 

economic costs - United States, 1995-1999, in Mortality and Morbidity 
Weekly Report. 2002, Centers for Disease Control. 

 
184. Hecht, S.S., et al., Induction of respiratory tract tumors in Syrian golden 

hamsters by a single dose of 4-(methylnitrosamino)-1-(3-pyridyl)-1-
butanone (NNK) and the effect of smoke inhalation. Carcinogenesis, 1983. 
4(10): p. 1287-90. 

 
185. Raupach, T., et al., Secondhand smoke as an acute threat for the 

cardiovascular system: a change in paradigm. Eur Heart J, 2006. 27(4): p. 
386-92. 

 
186. Lioy, P.L., et al., The Total Human Environmental Exposure Study 

(THEES) to benzo(a)pyrene: comparison of the inhalation and food 
pathways. Arch Environ Health, 1988. 43(4): p. 304-12. 

 
187. Council, N.R., Environmental Tobacco Smoke:  Measuring Exposures and 

Assessing Health Effects, C.o.P.S. Board on Environmental Studies and 
Toxicology, Editor. 1986, National Academy Press: Washington, D.C. p. 
63-64. 



184 
 

 

 

188. Benzo(a)pyrene, I.A.f.R.o.C. IARC, Editor. 1973. p. 3, 91. 
 
189. Ozbal, C.C., et al., Quantification of (7S,8R)-dihydroxy-(9R,10S)-epoxy-

7,8,9,10-tetrahydrobenzo[a]pyrene adducts in human serum albumin by 
laser-induced fluorescence: implications for the in vivo metabolism of 
benzo[a]pyrene. Cancer Epidemiol Biomarkers Prev, 2000. 9(7): p. 733-9. 

 
190. Thum, T., et al., Expression of xenobiotic metabolizing enzymes in 

different lung compartments of smokers and nonsmokers. Environ Health 
Perspect, 2006. 114(11): p. 1655-61. 

 
191. Alexandrov, K., et al., CYP1A1 and GSTM1 genotypes affect 

benzo[a]pyrene DNA adducts in smokers' lung: comparison with 
aromatic/hydrophobic adduct formation. Carcinogenesis, 2002. 23(12): p. 
1969-77. 

 
192. Rojas, M., et al., High benzo[a]pyrene diol-epoxide DNA adduct levels in 

lung and blood cells from individuals with combined CYP1A1 MspI/Msp-
GSTM1*0/*0 genotypes. Pharmacogenetics, 1998. 8(2): p. 109-18. 

 
193. Rojas, M., et al., Modulation of benzo[a]pyrene diolepoxide-DNA adduct 

levels in human white blood cells by CYP1A1, GSTM1 and GSTT1 
polymorphism. Carcinogenesis, 2000. 21(1): p. 35-41. 

 
194. Al-Delaimy, W.K., J. Crane, and A. Woodward, Is the hair nicotine level a 

more accurate biomarker of environmental tobacco smoke exposure than 
urine cotinine? J Epidemiol Community Health, 2002. 56(1): p. 66-71. 

 
195. Lebeau, M.A., M.A. Montgomery, and J.D. Brewer, The role of variations 

in growth rate and sample collection on interpreting results of segmental 
analyses of hair. Forensic Sci Int, 2011. 

 
196. Miller, E.I., et al., A novel validated procedure for the determination of 

nicotine, eight nicotine metabolites and two minor tobacco alkaloids in 
human plasma or urine by solid-phase extraction coupled with liquid 
chromatography-electrospray ionization-tandem mass spectrometry. J 
Chromatogr B Analyt Technol Biomed Life Sci, 2010. 878(9-10): p. 725-
37. 

 
197. Tolgyesi, A., et al., Quantification of corticosteroids in bovine urine using 

selective solid phase extraction and reversed-phase liquid 
chromatography/tandem mass spectrometry. J Chromatogr B Analyt 
Technol Biomed Life Sci, 2010. 878(19): p. 1471-9. 

 
 



185 
 

 

 

198. Claffey, D.J., P.R. Stout, and J.A. Ruth, A comparison of sodium 
hydroxide and sodium sulfide digestion of mouse hair in the recovery of 
radioactivity following systemic administration of [3H]-nicotine and [3H]-
flunitrazepam. J Anal Toxicol, 2000. 24(1): p. 54-8. 

 
199. Harkey, M.R., G.L. Henderson, and C. Zhou, Simultaneous quantitation of 

cocaine and its major metabolites in human hair by gas 
chromatography/chemical ionization mass spectrometry. J Anal Toxicol, 
1991. 15(5): p. 260-5. 

 
200. Cotinine Testing - Frequently Asked Questions.   [cited 2011 May 13]; 

Foundation for Blood Research]. Available from: 
http://www.fbr.org/publications/pamphlets/cotininefaq.html. 

 
201. Benowitz, N.L., J. Hukkanen, and P. Jacob, 3rd, Nicotine chemistry, 

metabolism, kinetics and biomarkers. Handb Exp Pharmacol, 2009(192): 
p. 29-60. 

 
202. Benzo(a)pyrene. Persistent Bioaccumulative and Toxic (PBT) Chemical 

Program [cited 2011 April, 24]; Available from: 
http://www.epa.gov/pbt/pubs/benzo.htm. 

 
203. Zhong, Y., et al., Analysis of r-7,t-8,9,c-10-tetrahydroxy-7,8,9,10-

tetrahydrobenzo[a]pyrene in human urine: a biomarker for directly 
assessing carcinogenic polycyclic aromatic hydrocarbon exposure plus 
metabolic activation. Chem Res Toxicol, 2011. 24(1): p. 73-80. 

 
204. Lawrence, J.F. and B.S. Das, Determination of nanogram/kilogram levels 

of polycyclic aromatic hydrocarbons in foods by HPLC with fluorescence 
detection. Int J Environ Anal Chem, 1986. 24(2): p. 113-31. 

 
205. Karl, H. and M. Leinemann, Determination of polycyclic aromatic 

hydrocarbons in smoked fishery products from different smoking kilns. Z 
Lebensm Unters Forsch, 1996. 202(6): p. 458-64. 

 
206. Schummer, C., et al., Determination of hydroxylated metabolites of 

polycyclic aromatic hydrocarbons in human hair by gas chromatography-
negative chemical ionization mass spectrometry. J Chromatogr A, 2009. 
1216(32): p. 6012-9. 

 
 

http://www.fbr.org/publications/pamphlets/cotininefaq.html
http://www.epa.gov/pbt/pubs/benzo.htm

