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ABSTRACT

This dissertation aims to develop the theory and applications of functional time se-

ries analysis. Functional data analysis came into prominence in the 1990s when more

sophisticated data collection and storage systems became prevalent, and many of the early

developments focused on simple random samples of curves. However, a common source

of functional data is when long, continuous records are broken into segments of smaller

curves. An example of this is geologic and economic data that are presented as hourly or

daily curves. In these instances, successive curves may exhibit dependencies which invalidate

statistical procedures that assume a simple random sample.

The theory of functional time series analysis has grown tremendously in the last decade

to provide methodology for such data, and researchers have focused primarily on adapting

methods available in finite dimensional time series analysis to the function space setting. As

a first problem, we consider an invariance principle for the partial sum process of stationary

random functions. This theory is then applied to the problems of testing for stationarity

of a functional time series and the one-way functional analysis of variance problem under

dependence.
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fruitful conversations about mathematics, your advice, and your support.

My final acknowledgement goes to my thesis advisor Professor Lajos Horváth. Lajos
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CHAPTER 1

INTRODUCTION

In this chapter, we introduce functional data analysis and functional time series analysis.

Some examples of functional time series data are discussed. We then provide an outline of

the problems considered and their organization in this dissertation.

1.1 Functional data, functional time series, and examples

In classical statistics, it is typically assumed that the observations are elements of Rd,

and that the sample size N is larger than, or at least comparable in size to, d. Modern

data, though, often exhibits such high dimensionality (d >> N) that classical statistical

procedures are invalid, and this necessitates the development of new theory. One type

of such data is continuous time phenomena that are observed at a high frequency. For

example, the left panel of Figure 1.1 shows linearly interpolated measurements over time

of the horizontal intensity of the Earth’s magnetic field, a measure of the Earth’s magnetic

field strength, taken in 2001. At the weather station that provided this data, the horizontal

intensity was measured every minute, giving a total of 1440 measurements per day. These

measurements approximate up to a 1-minute resolution how the horizontal intensity is

changing over time. It is thus natural, in this case, to view the 1440 daily measurements

as a discrete sample of an underlying daily curve that represents the horizontal intensity

throughout the day. Similarly, even though the stock price of a company is only recorded

each time it is traded, which constitutes millions of irregularly spaced observations per day,

if one were to check the price of Disney stock at google.com/finance, it will be displayed as

a continuous curve such as in the right hand panel of Figure 1.1. It is quite common that

high-dimensional and high-frequency data can be interpreted as curves or functions.

Viewing data in this way is the basis of functional data analysis (FDA). What is gained

by trading finite dimensional observations, like the raw data in the above examples, for in

principle infinite dimensional curves is two fold. Firstly, when the data are generated by

an underlying continuous phenomena, a curve-based analysis is more appropriate since it

takes advantage of this structure. Secondly, passing the data to a curve provides a more

flexible framework for such data than multivariate techniques as it does not require that
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there be the same number of observations per curve, nor that the observations be obtained

at equally spaced time intervals.

A common way in which functional data are obtained is by breaking long, continuous

records into segments of shorter, for example hourly or daily, curves. The points at which

to segment raw data into individual curves are often clear in the context of the data.

For example, with magnetogram records, segmenting the raw data into daily curves is

natural due to the effect of the Earth’s rotation on the magnetic field. In these cases,

successive curves may exhibit dependencies, and functional time series analysis, which

combines concepts from FDA and classical time series analysis, provides a theory to model

and utilize these dependencies. This dissertation aims to develop the theory of functional

time series analysis and corresponding methodology.

1.2 Organization of the dissertation

This dissertation is organized into three remaining chapters. In Chapter 2, we consider

an invariance principle for the partial sum process of stationary random functions that

exhibit a Bernoulli shift structure. Chapter 3 develops an application of this result to

testing for the stationarity of a functional time series that may be considered as an analog

of the popular KPSS test. The dissertation concludes with Chapter 4 in which the one-way

functional analysis of variance problem under serial dependence within each population in

considered.
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Figure 1.1. The graph on the left displays over 10,000 horizontal intensity measurements
taken from March 1 to March 7, 2001. The green lines separate the data into daily functional
observations. The graph on the right displays 25 functional observations derived from the
intraday stock price of Disney; each curve represents one day of data.



CHAPTER 2

WEAK INVARIANCE PRINCIPLES FOR

SUMS OF DEPENDENT RANDOM

FUNCTIONS1

Motivated by problems in functional data analysis, in this chapter, we prove the weak

convergence of normalized partial sums of dependent random functions exhibiting a Bernoulli

shift structure.

2.1 Introduction

Functional data analysis in many cases requires central limit theorems and invariance

principles for partial sums of random functions. The case of independent summands is much

studied and well understood, but the theory for the dependent case is less complete. In

this chapter, we study the important class of Bernoulli shift processes which are often used

to model econometric and financial data. Let X = {Xi(t)}∞i=−∞ be a sequence of random

functions, square integrable on [0, 1], and let ||·|| denote the L2[0, 1] norm. To lighten the

notation, we use f for f(t) when it does not cause confusion. Throughout this chapter, we

assume that

X forms a sequence of Bernoulli shifts, i.e. Xj(t) = g(εj(t), εj−1(t), ...) for some (2.1)

nonrandom measurable function g : S∞ 7→ L2 and iid random functions εj(t),

−∞ < j <∞, with values in a measurable space S,

εj(t) = εj(t, ω) is jointly measurable in (t, ω) (−∞ < j <∞), (2.2)

EX0(t) = 0 for all t, and E||X0||2+δ<∞ for some 0 < δ < 1, (2.3)

and

1The content of this chapter is based on joint research with István Berkes and Lajos Horváth.
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the sequence {Xn}∞n=−∞ can be approximated by `–dependent sequences (2.4)

{Xn,`}∞n=−∞ in the sense that
∞∑
`=1

(E||Xn −Xn,`||2+δ)1/κ <∞ for some κ > 2 + δ,

where Xn,` is defined by Xn,` = g(εn, εn−1, ..., εn−`+1, ε
∗
n,`),

ε∗n,` = (ε∗n,`,n−`, ε
∗
n,`,n−`−1, . . .),where the ε∗n,`,k’s are independent copies of ε0,

independent of {εi,−∞ < i <∞}.

We note that assumption (2.1) implies that Xn is a stationary and ergodic sequence.

Hörmann and Kokoszka (2010) call the processes satisfying (2.1)–(2.4) L2 m–decomposable

processes. The idea of approximating a stationary sequence with random variables which

exhibit finite dependence first appeared in Ibragimov (1962) and is used frequently in

the literature (cf. Billingsley (1968)). Aue et al.(2012) provide several examples when

assumptions (2.1)–(2.4) hold which include autoregressive, moving average, and linear

processes in Hilbert spaces. Also, the nonlinear functional ARCH(1) model (cf. Hörmann

et al.(2012)) and bilinear models (cf. Hörmann and Kokoszka (2010)) satisfy (2.4).

We show in Section 2.2 (cf. Lemma 2.2.2) that the series in

C(t, s) = E[X0(t)X0(s)] +
∞∑
`=1

E[X0(t)X`(s)] +
∞∑
`=1

E[X0(s)X`(t)] (2.5)

are convergent in L2. The function C(t, s) is positive definite, and therefore, there exist

λ1 ≥ λ2 ≥ . . . ≥ 0 and orthonormal functions φi(t), 0 ≤ t ≤ 1 satisfying

λiφi(t) =

∫
C(t, s)φi(s)ds, 1 ≤ i <∞, (2.6)

where
∫

means
∫ 1

0 . We define

Γ(x, t) =
∞∑
i=1

λ
1/2
i Wi(x)φi(t),

where Wi are independent and identically distributed Wiener processes (standard Brownian

motions). Clearly, Γ(x, t) is Gaussian. We show in Lemma 2.2.2 that
∑∞

`=1 λ` < ∞, and

therefore,

sup
0≤x≤1

∫
Γ2(x, t)dt <∞ a.s.

Theorem 2.1.1. If assumptions (2.1)–(2.4) hold, then for every N we can define a Gaus-
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sian process ΓN (x, t) such that

{ΓN (x, t), 0 ≤ x, t ≤ 1} D= {Γ(x, t), 0 ≤ x, t ≤ 1}

and

sup
0≤x≤1

∫
(SN (x, t)− ΓN (x, t))2dt = oP (1),

where

SN (x, t) =
1

N1/2

bNxc∑
i=1

Xi(t).

The proof of Theorem 2.1.1 is given in Section 2.2. The proof is based on a maximal

inequality which is given in Section 2.3 and is of interest in its own right. There is a wide

literature on the central limit theorem for sums of random processes in abstract spaces. For

limit theorems for sums of independent Banach space valued random variables, we refer to

Ledoux and Talagrand (1991). For the central limit theory in the context of functional data

analysis, we refer to the books of Bosq (2000) and Horváth and Kokoszka (2012). In the

real valued case, the martingale approach to weak dependence was developed by Gordin

(1969) and Philipp and Stout (1975), and by using such techniques, Merlevède (1996) and

Dedecker and Merlevède (2003) obtained central limit theorems for a large class of dependent

variables in Hilbert spaces. For some early influential results on invariance for sums of

mixing variables in Banach spaces, we refer to Kuelbs and Philipp (1980), Dehling and

Philipp (1982), and Dehling (1983). These papers provide very sharp results, but verifying

mixing conditions is generally not easy and without additional continuity conditions, even

autoregressive (1) processes may fail to be strong mixing (cf. Bradley (2007)). The weak

dependence concept of Doukhan and Louhichi (1999) (cf. also Dedecker et al. (2007)) solves

this difficulty, but so far, this concept has not been extended to variables in Hilbert spaces.

Wu (2005, 2007) proved several limit theorems for one–dimensional stationary processes

having a Bernoulli shift representation. Compared to classical mixing conditions, Wu’s

physical dependence conditions are easier to verify in concrete cases. Condition (2.3) cannot

be directly compared to the approximating martingale conditions of Wu (2005, 2007). For

extensions to the Hilbert space case, we refer to Hörmann and Kokoszka (2010).

2.2 Proof of theorem 2.1.1

The proof is based on three steps. We recall the definition of Xi,m from (2.4). For every

fixed m, the sequence {Xi,m} is m–dependent. According to our first lemma, the sums of the

Xi’s can be approximated with the sums of m–dependent variables. The second step is the
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approximation of the infinite dimensional Xi,m’s with finite dimensional variables (Lemma

2.2.4). Then the result in Theorem 2.1.1 is established for finite dimensional m–dependent

random functions (Lemma 2.2.6).

Lemma 2.2.1. If (2.1)–(2.4) hold, then for all x > 0, we have

lim
m→∞

lim sup
N→∞

P

{
max

1≤k≤N

1√
N

∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

(Xi −Xi,m)

∣∣∣∣∣
∣∣∣∣∣ > x

}
= 0. (2.7)

Proof. The proof of this lemma requires the maximal inequality of Theorem 2.3.2. Section

2.3 is devoted to the proof of this result. Using Theorem 2.3.2, (2.7) is an immediate

consequence of Markov’s inequality.

Define

Cm(t, s) = E[X0,m(t)X0,m(s)] +
m∑
i=1

E[X0,m(t)Xi,m(s)] +
m∑
i=1

E[X0,m(s)Xi,m(t)]. (2.8)

We show in the following lemma that for every m, the function Cm is square–integrable.

Hence there are λ1,m ≥ λ2,m ≥ · · · ≥ 0 and corresponding orthonormal functions φi,m, i =

1, 2, . . . satisfying

λi,mφi,m(t) =

∫
Cm(t, s)φi,m(s)ds, i = 1, 2, . . .

Lemma 2.2.2. If (2.1)–(2.4) hold, then we have∫∫
C2(t, s)dtds <∞, (2.9)

∫∫
C2
m(t, s)dtds <∞ for all m ≥ 1, (2.10)

lim
m→∞

∫∫
(C(t, s)− Cm(t, s))2dtds = 0. (2.11)∫
C(t, t)dt =

∞∑
k=1

λk <∞, (2.12)

∫
Cm(t, t)dt =

∞∑
k=1

λk,m <∞ (2.13)

and

lim
m→∞

∫
Cm(t, t)dt =

∫
C(t, t)dt. (2.14)

Proof. Using the Cauchy-Schwarz inequality for expected values, we get



8∫∫
(E[X0(t)X0(s)])2dtds ≤

∫∫
((EX2

0 (t))1/2(EX2
0 (s))1/2)2dtds = (E||X0||2)2 <∞.

Recalling that X0 and Xi,i are independent and both have 0 mean, we conclude first using

the triangle inequality and then the Cauchy–Schwarz inequality for expected values that{∫∫ ( ∞∑
i=1

E[X0(t)Xi(s)]

)2

dtds

}
1/2 (2.15)

=


∫∫ ( ∞∑

i=1

E[X0(t)(Xi(s)−Xi,i(s))]

)2

dtds


1/2

≤

∫∫ ( ∞∑
i=1

E|X0(t)(Xi(s)−Xi,i(s))|

)2

dtds

1/2

≤
∞∑
i=1

(∫ ∫
{E|X0(t)(Xi(s)−Xi,i(s))|}2 dtds

)1/2

≤
∞∑
i=1

∫∫ {
(EX2

0 (t))1/2(E(Xi(s)−Xi,i(s))
2)1/2

}2
dtds

=

∫
EX2

0 (t)dt

∞∑
i=1

∫
E(Xi(s)−Xi,i(s))

2ds

= E||X0||2
∞∑
i=1

E||X0 −X0,i||2

<∞

on account of (2.4). This completes the proof of (2.9).
ch

Since EX0,m(t)X0,m(s) = EX0(t)X0(s), in order to establish (2.10), it is enough to show

that ∫∫ { m∑
i=1

E[X0,m(t)Xi,m(s)]

}2

dtds <∞.

It follows from the definition of Xi,m that the vectors (X0,m, Xi,m) and (X0, Xi,m) have

the same distribution for all 1 ≤ i ≤ m. Also, (Xi,m, Xi,i) has the same distribution as

(X0, X0,i), 1 ≤ i ≤ m. Hence following the arguments in (2.15), we get


∫∫ { m∑

i=1

|EX0,m(t)Xi,m(s)|

}2

dtds


1/2

=


∫ ∫ { m∑

i=1

|EX0(t)Xi,m(s)|

}2

dtds


1/2

≤ E||X0||2
m∑
i=1

∫
E(Xi,m(s)−Xi,i(s))

2ds
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≤ E||X0||2
∞∑
i=1

E||X0 −X0,i||2.

<∞.

The proof of (2.10) is now complete. The arguments used above also prove (2.11).

Repeating the previous arguments we have∫
C(t, t)dt ≤

∫
EX2

0 (t)dt+ 2

∞∑
i=1

∫
|E[X0(t)Xi(t)]|dt

=

∫
EX2

0 (t)dt+ 2

∞∑
i=1

∫
|E[X0(t)(Xi(t)−Xi,i(t))]|dt

=

∫
EX2

0 (t)dt+ 2

∞∑
i=1

∫
(EX2

0 (t))1/2(E[Xi(t)−Xi,i(t)]
2)1/2dt

≤ E||X0||2+2
∞∑
i=1

(∫
EX2

0 (t)dt

)1/2(∫
E[Xi(t)−Xi,i(t)]

2dt

)1/2

= E||X0||2+2(E||X0||2)1/2
∞∑
i=1

(E||X0 −X0,i||2)1/2

<∞.

Observing that ∫
C(t, t)dt =

∞∑
i=1

λi

∫
φ2
i (t)dt =

∞∑
i=1

λi,

the proof of (2.12) is complete. The same arguments can be used to establish (2.13). The

relation in (2.14) can be established along the lines of the proof of (2.11).

By the Karhunen–Loéve expansion, we have that

Xi,m(t) =
∞∑
`=1

〈Xi,m, φ`,m〉φ`,m(t). (2.16)

Define

Xi,m,K(t) =

K∑
`=1

〈Xi,m, φ`,m〉φ`,m(t) (2.17)

to be the partial sums of the series in (2.16), and

X̄i,m,K(t) = Xi,m(t)−Xi,m,K(t) =

∞∑
`=K+1

〈Xi,m, φ`,m〉φ`,m(t). (2.18)

Lemma 2.2.3. If {Zi}Ni=1 are independent L2 valued random variables such that
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EZ1(t) = 0 and E||Z1||2<∞, (2.19)

then for all x > 0, we have that

P

 max
1≤k≤N

∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2

> x

 ≤ 1

x
E

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2

. (2.20)

Proof. Let Fk be the sigma algebra generated by the random variables {Zj}kj=1. By

assumption (2.19) and the independence of the Z ′is, we have that

E

∣∣∣∣∣
∣∣∣∣∣
k+1∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2 ∣∣∣∣Fk

 =

∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2

+ E||Zk+1||2≥

∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2

.

Therefore,

{∣∣∣∣∣∣∑k
i=1 Zi

∣∣∣∣∣∣2}∞
k=1

is a non-negative submartingale with respect to the filtration

{Fk}∞k=1. If we define

A =

ω : max
1≤k≤N

∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2

> x

 ,

then it follows from Doob’s maximal inequality (Chow and Teicher, 1988 p. 247) that

xP

 max
1≤k≤N

∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2

> x

 ≤ E
∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2

IA


≤ E

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣
2

,

which completes the proof.

Lemma 2.2.4. If (2.1)–(2.4) hold, then for all x > 0,

lim
K→∞

lim sup
N→∞

P

{
max

1≤k≤N

∣∣∣∣∣
∣∣∣∣∣ 1√
N

k∑
i=1

X̄i,m,K

∣∣∣∣∣
∣∣∣∣∣ > x

}
= 0. (2.21)

Proof. Define Qk(j) = {i : 1 ≤ i ≤ k, i = j(mod m)} for j = 0, 1, ...,m− 1, and all positive

integers k. It is then clear that

k∑
i=1

X̄i,m,K =

m−1∑
j=0

∑
i∈Qk(j)

X̄i,m,K .

We thus obtain by the triangle inequality that
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P

{
max

1≤k≤N

∣∣∣∣∣
∣∣∣∣∣ 1√
N

k∑
i=1

X̄i,m,K

∣∣∣∣∣
∣∣∣∣∣ > x

}
≤ P


m−1∑
j=0

max
1≤k≤N

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√
N

∑
i∈Qk(j)

X̄i,m,K

∣∣∣∣∣∣
∣∣∣∣∣∣ > x

 .

It is therefore sufficient to show that for each fixed j,

lim
K→∞

lim sup
N→∞

P

 max
1≤k≤N

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√
N

∑
i∈Qk(j)

X̄i,m,K

∣∣∣∣∣∣
∣∣∣∣∣∣ > x

 = 0.

By the definition of Qk(j), {X̄i,m,K}i∈Qk(j) is an iid sequence of random variables. So, by

applications of Lemma 2.2.3 and the assumption (2.3), we have that

P

 max
1≤k≤N

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√
N

∑
i∈Qk(j)

X̄i,m,K

∣∣∣∣∣∣
∣∣∣∣∣∣
2

> x

 ≤ 1

x
E

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√
N

∑
i∈QN (j)

X̄i,m,K

∣∣∣∣∣∣
∣∣∣∣∣∣
2

(2.22)

≤ 1

x
E||X̄2

0,m,K ||

=
1

x

∞∑
`=K+1

λ`,m.

Since the right-hand side of (2.22) tends to zero as K tends to infinity independently of N ,

(2.21) follows.

Clearly, with k = bNxc we have

1√
N

k∑
i=1

Xi,m,K(t) =
K∑
j=1

 1√
N

bNxc∑
i=1

〈Xi,m, φj,m〉

φj,m(t). (2.23)

Lemma 2.2.5. If (2.1)–(2.4) hold, then the K dimensional random process 1√
N

bNxc∑
i=1

〈Xi,m, φ1,m〉, ...,
1√
N

bNxc∑
i=1

〈Xi,m, φK,m〉


converges, as N →∞, in D[0, 1] to(

λ
1/2
1,mW1(x), ..., λ

1/2
K,mWK(x)

)
, (2.24)

where {Wi}Ki=1 are independent, identically distributed Wiener processes.

Proof. A similar procedure as in Lemma 2.2.4 shows that for each j, 1√
N

∑bNxc
i=1 〈Xi,m, φj,m〉

can be written as a sum of sums of independent and identically distributed random variables,

and thus, by Billingsley (1968), it is tight. This implies that the K dimensional process
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N

bNxc∑
i=1

〈Xi,m, φ1,m〉, ...,
1√
N

bNxc∑
i=1

〈Xi,m, φK,m〉


is tight, since it is tight in each coordinate. Furthermore, the Cramér-Wold device and

the central limit theorem for m–dependent random variables (cf. DasGupta (2008) p. 119)

shows that the finite dimensional distributions of the vector process converge to the finite

dimensional distributions of the process in (2.24). The lemma follows.

In light of the Skorkohod–Dudley–Wichura theorem (cf. Shorack and Wellner (1986), p.

47), we may reformulate Lemma 2.2.5 as follows.

Corollary 2.2.1. If (2.1)–(2.4) hold, then for each positive integer N , there exists K

independent, identically distributed Wiener processes {Wi,N}Ki=1 such that for each j,

sup
0≤x≤1

∣∣∣∣∣∣ 1√
N

bNxc∑
i=1

〈Xi,m, φj,m〉 − λ1/2
j,mWj,N (x)

∣∣∣∣∣∣ P−→ 0,

as N →∞.

Lemma 2.2.6. If (2.1)–(2.4) hold, then for {Wi,N}Ki=1 defined in Corollary 2.2.1, we have

that

sup
0≤x≤1

∫  1√
N

bNxc∑
i=1

Xi,m,K(t)−
K∑
`=1

λ
1/2
`,mW`,N (x)φ`,m(t)

2

dt
P−→ 0, (2.25)

as N →∞.

Proof. By using (2.23), we get that

1√
N

bNxc∑
i=1

Xi,m,K(t)−
K∑
`=1

λ
1/2
`,mW`,N (x)φ`,m(t)

=

K∑
`=1

 1√
N

bNxc∑
i=1

〈Xi,m, φ`,m〉 − λ
1/2
`,mW`,N (x)

φ`,m(t).

The substitution of this into the expression in (2.25) along with a simple calculation shows

that
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sup
0≤x≤1

∫ (
1√
N

bNxc∑
i=1

Xi,m,K(t)−
K∑
`=1

λ
1/2
`,mW`,N (x)φ`,m(t)

)
2dt

= sup
0≤x≤1

K∑
`=1

(
1√
N

bNxc∑
i=1

〈Xi,m, φ`,m〉 − λ
1/2
`,mW`,N (x)

)
2

≤
K∑
`=1

sup
0≤x≤1

(
1√
N

bNxc∑
i=1

〈Xi,m, φ`,m〉 − λ
1/2
`,mW`,N (x)

)
2 P−→ 0,

as N →∞, by Corollary 2.2.1.

Lemma 2.2.7. If (2.1)–(2.4) hold,

sup
0≤x≤1

∫ ( ∞∑
`=K+1

λ
1/2
`,mW`(x)φ`,m(t)

)2

dt
P−→ 0, (2.26)

as K →∞, where W1,W2, . . . are independent and identically distributed Wiener processes.

Proof. Since the functions {φ`,m}∞`=1 are orthonormal, we have that

E sup
0≤x≤1

∫ ( ∞∑
`=K+1

λ
1/2
`,mW`(x)φ`,m(t)

)2

dt = E sup
0≤x≤1

∞∑
`=K+1

λ`,mW
2
` (x)

≤
∞∑

`=K+1

λ`,mE sup
0≤x≤1

W 2
` (x) −→ 0,

as K →∞. Therefore, (2.26) follows from the Markov inequality.

Lemma 2.2.8. If (2.1)–(2.4) hold, then for each N , we can define independent identically

distributed Wiener processes {Wi,N}Ki=1 such that

sup
0≤x≤1

∫  1√
N

bNxc∑
i=1

Xi,m(t)−
∞∑
`=1

λ
1/2
`,mW`,N (x)φ`,m(t)

2

dt
P−→ 0,

as N →∞.

Proof. It follows from Lemmas 2.2.4-2.2.7.

Since the distribution of W`,N , 1 ≤ ` <∞ does not depend on N , it is enough to consider

the asymptotics for
∑∞

`=1 λ
1/2
`,mW`(x)φ`,m(t), where W` are independent Wiener processes.

Lemma 2.2.9. If (2.1)–(2.4) hold, then for each m, we can define independent and iden-

tically distributed Wiener processes W̄`,m(x), 1 ≤ ` <∞ such that
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sup
0≤x≤1

∫ ( ∞∑
`=1

λ
1/2
`,mW`(x)φ`,m(t)−

∞∑
`=1

λ
1/2
` W̄`,m(x)φ`(t)

)2

dt
P−→ 0, (2.27)

as m→∞.

Proof. Let

∆m(x, t) =

∞∑
`=1

λ
1/2
`,mW`(x)φ`,m(t).

Let M be a positive integer and define xi = i/M, 0 ≤ i ≤M . It is easy to see that

E max
0≤i<M

sup
0≤h≤1/M

∫
(∆m(xi + h, t)−∆m(xi, t))

2dt

≤
∞∑
`=1

λ`,mE

{
max

0≤i<M
sup

0≤h≤1/M
(W`(xi + h)−W`(xi))

2

}

= E

{
max

0≤i<M
sup

0≤h≤1/M
(W1(xi + h)−W1(xi))

2

} ∞∑
`=1

λ`,m.

Using Lemma 2.2.2, we get that

∞∑
`=1

λ`,m =

∫
E∆2

m(1, t)dt =

∫
Cm(t, t)dt→

∫
C(t, t)dt =

∞∑
`=1

λ`.

So by the modulus of continuity of the Wiener process (cf. Garsia (1970)), we get that

lim
M→∞

lim sup
m→∞

E max
0≤i<M

sup
0≤h≤1/M

∫
(∆m(xi + h, t)−∆m(xi, t))

2dt = 0. (2.28)

By the Karhunen-Loéve expansion, we can also write ∆m as

∆m(x, t) =

∞∑
`=1

〈∆m(x, ·), φ`〉φ`(t)

and

E

∫
∆2
m(x, t)dt =

∞∑
`=1

E(〈∆m(x, ·), φ`〉)2.

So by Lemma 2.2.2, we have

∞∑
`=1

E(〈∆m(x, ·), φ`〉)2 → x

∞∑
`=1

λ`.

Also, for any positive integer `,

E(〈∆m(x, ·), φ`〉)2 =

∫∫
Cm(t, s)φ`(t)φ`(s)dtds→

∫∫
C(t, s)φ`(t)φ`(s)dtds = λ`,

as m→∞. Hence for every z > 0, we have
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lim sup
K→∞

lim sup
m→∞

P


∫ ( ∞∑

`=K+1

〈∆m(x, ·), φ`〉φ`(t)

)2

dt > z

 = 0. (2.29)

The joint distribution of 〈∆(xi, ·), φ`〉, 1 ≤ i ≤ M, 1 ≤ ` ≤ K is multivariate normal with

zero mean. Hence they converge jointly to a multivariate normal distribution. To show

their joint convergence in distribution, we need to show the convergence of the covariance

matrix. Using again Lemma 2.2.2, we get that

E〈∆(xi, ·), φ`〉〈∆(xj , ·), φk〉 = min(xi, xj)

∫∫
Cm(t, s)φ`(t)φk(s)dtds

→ min(xi, xj)

∫∫
C(t, s)φ`(t)φk(s)dtds = min(xi, xj)λ`I{k = `}.

Due to this covariance structure and the Skorkohod–Dudley–Wichura theorem (cf. Shorack

and Wellner (1986), p. 47), we can find independent Wiener processes W̄`,m(x), 1 ≤ ` <∞

such that

max
1≤i≤M

max
1≤`≤K

|〈∆(xi, ·), φ`〉 − λ
1/2
` W̄`,m(xi)|= oP (1), as m→∞.

Clearly, for all 0 ≤ x ≤ 1

E

∫ ( ∞∑
`=K+1

λ
1/2
` W̄`,m(x)φ`(t)

)2

dt = x

∞∑
`=K+1

λ` → 0, as m→∞,

and therefore similarly to (2.29)

lim sup
K→∞

lim sup
m→∞

P


∫ ( ∞∑

`=K+1

λ
1/2
` W̄`,m(x)φ`(t)

)2

dt > z

 = 0

for all z > 0. Similarly to (2.28) one can show that

E max
0≤i<M

sup
0≤h≤1/M

∫ ( ∞∑
`=1

(W̄`,m(xi + h)− W̄`,m(xi))φ`(t)

)2

dt

≤ E

{
max

0≤i<M
sup

0≤h≤1/M
(W(xi + h)−W(xi))

2

} ∞∑
`=1

λ` → 0, as M →∞,

where W is a Wiener process. This also completes the proof of Lemma 2.2.9.

Proof of Theorem 2.1.1 First we approximate SN (x, t) with m-dependent processes (Lemma

2.2.1). The second step of the proof is the approximation of the sums of m-dependent

processes with a Gaussian process with covariance function min(x, x′)Cm(t, s), where Cm is

defined in (2.8) (Lemma 2.2.8)). The last step of the proof is the convergence of Gaussian
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processes with covariance functions min(x, x′)Cm(t, s) to a Gaussian process with covariance

function min(x, x′)C(t, s) (Lemma 2.2.9).ch

2.3 Some moment and maximal inequalities

In this section, we give the proof of the maximal inequality in Lemma 2.2.1 which is a

crucial ingredient of the proof of Theorem 2.1.1. Actually, we will prove below some moment

and maximal inequalities for partial sums of function valued Bernoulli shift sequences which

have their own interest and can be used in various related problems.

Our first lemma is a Hilbert space version of Doob’s (1953 p. 226) inequality.

Lemma 2.3.1. If Z1 and Z2 are independent mean zero Hilbert space valued random

variables, and if 0 < δ ≤ 1, then

E||Z1 + Z2||2+δ≤ E||Z1||2+δ+E||Z2||2+δ+E||Z1||2(E||Z2||2)δ/2 + E||Z2||2(E||Z1||2)δ/2.

Proof. Since 0 < δ ≤ 1, for any A,B ≥ 0, we have that (A+ B)δ ≤ Aδ + Bδ (cf. Hardy et

al.(1969, p. 32)). An application of this inequality along with Minkowski’s inequality gives

that

||Z1 + Z2||δ≤ (||Z1||+||Z2||)δ ≤ ||Z1||δ+||Z2||δ.

We also have by Hölders inequality that

E||Z1||δ≤ (E||Z1||2)δ/2.

This yields that

E||Z1 + Z2||2+δ = E||Z1 + Z2||2||Z1 + Z2||δ

≤ E||Z1 + Z2||2(||Z1||δ+||Z2||δ)

= E[||Z1||2+||Z2||2+2〈Z1, Z2〉](||Z1||δ+||Z2||δ)

= E||Z1||2+δ+E||Z2||2+δ+E||Z1||2E||Z2||δ+E||Z2||2E||Z1||δ

≤ E||Z1||2+δ+E||Z2||2+δ+E||Z1||2(E||Z2||2)δ/2 + E||Z2||2(E||Z1||2)δ/2,

which proves the lemma.

Remark 2.3.1. If Z1 and Z2 are independent and identically distributed, then the result

of Lemma 2.3.1 can be written as

E||Z1 + Z2||2+δ≤ 2E||Z1||2+δ+2(E||Z1||2)1+δ/2.
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Let

I(r) =

∞∑
`=1

(E||X0 −X0,`||r)1/r. (2.30)

We note that by (2.4), I(r) <∞ for all 2 ≤ r ≤ 2 + δ.

Lemma 2.3.2. If (2.1)–(2.4) hold, then we have

E

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

(Xi −Xi,m)

∣∣∣∣∣
∣∣∣∣∣
2

≤ nA,

where

A =

∫
E(X0 −X0,m)2(t)dt+ 25/2

(∫
E(X0 −X0,m)2(t)dt

)1/2

I(2). (2.31)

Proof. Let Yi = Xi−Xi,m. By Fubini’s theorem and the fact that the random variables are

identically distributed, we conclude

E

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
∣∣∣∣∣
2

=

∫
E

(
n∑
i=1

Yi(t)

)2

dt (2.32)

= n

∫
EY 2

0 (t)dt+ 2

∫ n−1∑
i=1

(n− i)E[Y0(t)Yi(t)]dt

≤ n
∫
EY 2

0 (t)dt+ 2n

n−1∑
i=1

∫
|E[Y0(t)Yi(t)]|dt

≤ n
∫
EY 2

0 (t)dt+ 2n

∞∑
i=1

∫
|E[Y0(t)Yi(t)]|dt.

We recall Xi,i from (2.4). Under this definition, the random variables Y0 and Xi,i are

independent for all i ≥ 1. Let Zi = Xi,m, if i > m and Zi = g(εi, . . . , ε1, δi), if 1 ≤ i ≤ m,

where δi = (δi,0, δi,−1, . . .) and δi,j are iid copies of ε0, independent of the ε`’s and εk,`’s.

Clearly, Zi and Y0 are independent and thus with Yi,i = Xi,i − Zi we have

E[Y0(t)Yi(t)] = E[Y0(t)(Yi(t)− Yi,i(t))].

Furthermore, by first applying the Cauchy-Schwarz inequality for expected values and then

by the Cauchy–Schwarz inequality for functions in L2, we get that

∫
|E[Y0(t)(Yi(t)− Yi,i(t))]|dt ≤

∫ (
EY 2

0 (t)
)1/2 (

E [Yi(t)− Yi,i(t)]2
)1/2

dt

≤
(∫

EY 2
0 (t)dt

)1/2(∫
E [Yi(t)− Yi,i(t)]2 dt

)1/2

.
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Also,∫
E [Yi(t)− Yi,i(t)]2 dt ≤ 2

(∫
E [Xi(t)−Xi,i(t)]

2 dt+

∫
E [Xi,m(t)− Zi(t)]2 dt

)
The substitution of this expression into (2.32) gives that

E

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
∣∣∣∣∣
2

≤ n
∫
EY 2

0 (t)dt+ 23/2n

∞∑
i=1

(∫
EY 2

0 (t)dt

)1/2

×

{(∫
E [Xi(t)−Xi,i(t)]

2 dt

)1/2

+

(∫
E [Xi,m(t)− Zi(t)]2 dt

)1/2}
≤ n

[∫
EY 2

0 (t)dt+ 25/2

(∫
EY 2

0 (t)dt

)1/2

I(2)

]
,

which completes the proof.

Theorem 2.3.1. If (2.1)–(2.4) hold, then for all N ≥ 1

E

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

(Xi −Xi,m)

∣∣∣∣∣
∣∣∣∣∣
2+δ

≤ N1+δ/2B,

where

B = E||X0−X0,m||2+δ+c2+δ
δ [A1+δ/2 + J2+δ

m + JmA
(1+δ)/2 +A(1+δ/2)δJ2

m] (2.33)

+ (cδJ
2
m)1/(1−δ)

with A defined in (2.31),

cδ = 36

(
1− 1

2δ/2

)−1

(2.34)

and

Jm = 2(E||X0 −X0,m||2+δ)(κ−2−δ)/(κ(2+δ))
∞∑
`=1

(E||X0 −X0,`||2+δ)1/κ.

Proof. We prove Theorem 2.3.1 using mathematical induction. By the definition of B, the

inequality is obvious when N = 1. Assume that it holds for all k which are less than or

equal to N − 1. We assume that N is even, i.e. N = 2n. The case when N is odd can be

done in the same way with minor modifications. Let Yi = Xi − Xi,m. For all i satisfying

n+ 1 ≤ i ≤ 2n, we define

X∗i,n = g(εi, εi−1, ..., εn+1, ε
∗
n, ε
∗
n−1, ...)

where the ε∗j ’s denote iid copies of ε0, independent of {εi,−∞ < i < ∞} and {ε∗k,`,−∞ <

k, ` <∞}. We define Zi,n = Xi,m, if m+ n+ 1 ≤ i ≤ 2n and
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Zi,n = g(εi, . . . , εn+1, ε
∗
n, . . . ε

∗
i−m+1, δi) with δi = (δi,n, δi,n−1, . . .),

if n+ 1 ≤ i ≤ n+m, where the δk,`’s are iid copies of ε0, independent of the εk’s and ε∗k,`’s.

Let Y ∗i,n = X∗i,n−Zi,n, if n+1 ≤ i ≤ 2n. Under this definition, the sequences {Yi, 1 ≤ i ≤ n}

and {Y ∗i,n, n+ 1 ≤ i ≤ 2n} are independent and have the same distribution. Let

Θ =

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Yi +

2n∑
i=n+1

Y ∗i,n

∣∣∣∣∣
∣∣∣∣∣ and Ψ =

∣∣∣∣∣
∣∣∣∣∣

2n∑
i=n+1

(
Yi − Y ∗i,n

)∣∣∣∣∣
∣∣∣∣∣ .

By applying the triangle inequality for the L2 norm and for expected values, we get

E

∣∣∣∣∣
∣∣∣∣∣

2n∑
i=1

Yi

∣∣∣∣∣
∣∣∣∣∣
2+δ

= E

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Yi +
2n∑

i=n+1

Y ∗i,n +
2n∑

i=n+1

(
Yi − Y ∗i,n

)∣∣∣∣∣
∣∣∣∣∣
2+δ

(2.35)

≤ E (Θ + Ψ)2+δ

≤
(

(EΘ2+δ)1/(2+δ) + (EΨ2+δ)1/(2+δ)
)2+δ

.

A two term Taylor expansion gives for all a, b ≥ 0 and r > 2 that

(a+ b)r ≤ ar + rar−1b+
r(r − 1)

2
(a+ b)r−2b2. (2.36)

Since both of the expected values in the last line of the inequality in (2.35) are positive, we

obtain by (2.36) that

E

∣∣∣∣∣
∣∣∣∣∣

2n∑
i=1

Yi

∣∣∣∣∣
∣∣∣∣∣
2+δ

≤EΘ2+δ + (2 + δ)(EΘ2+δ)(1+δ)/(2+δ)(EΨ2+δ)1/(2+δ) (2.37)

+ (2 + δ)(1 + δ)[(EΘ2+δ)1/(2+δ)

+ (EΨ2+δ)1/(2+δ)]δ(EΨ2+δ)2/(2+δ).

We proceed by bounding the terms (EΨ2+δ)1/(2+δ), and EΘ2+δ individually. Applications

of both the triangle inequality for the L2 norm and for expected values yield that

(EΨ2+δ)1/(2+δ) =

E ∣∣∣∣∣
∣∣∣∣∣

2n∑
i=n+1

(
Yi − Y ∗i,n

)∣∣∣∣∣
∣∣∣∣∣
2+δ
1/(2+δ)

≤

E( 2n∑
i=n+1

||Yi − Y ∗i,n||

)2+δ
1/(2+δ)

≤
2n∑

i=n+1

(E||Yi − Y ∗i,n||2+δ)1/(2+δ).

By Hölder’s inequality, we have, with κ in (2.4),
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(E||Yi − Y ∗i,n||2+δ)1/(2+δ) = (E[||Yi − Y ∗i,n||(2+δ)2/κ||Yi − Y ∗i,n||(2+δ)−(2+δ)2/κ])1/(2+δ)

≤ (E||Yi − Y ∗i,n||2+δ)1/κ(E||Yi − Y ∗i,n||2+δ)(κ−2−δ)/(κ(2+δ)).

It follows from the definition of Yi, Y
∗
i,n and the convexity of x2+δ that

E||Yi − Y ∗i,n||2+δ≤ 21+δ(E||Xi −X∗i,n||2+δ+E||Xi,m − Zi,n||2+δ) ≤ 22+δE||X0 −X0,i−n||2+δ

and

E||Yi − Y ∗i,n||2+δ≤ 21+δ(E||Xi −Xi,m||2+δ+E||X∗i,n − Zi,n||2+δ) ≤ 22+δE||X0 −X0,m||2+δ.

Thus we get

(EΨ2+δ)1/(2+δ) ≤ 2(E||X0 −X0,m||2+δ)(κ−2−δ)/(κ(2+δ))
∞∑
`=1

(E||X0 −X0,`||2+δ)1/κ = Jm.

To bound EΘ2+δ, since
∑n

i=1 Yi and
∑2n

i=n+1 Y
∗
i,n are independent and have the same

distribution, we have by Lemma 2.3.2, Remark 2.3.1, and the inductive assumption that

EΘ2+δ = E

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Yi +

2n∑
i=n+1

Y ∗i,n

∣∣∣∣∣
∣∣∣∣∣
2+δ

≤ 2E

∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
∣∣∣∣∣
2+δ

+ 2

E ∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
∣∣∣∣∣
2
1+δ/2

≤ 2n1+δ/2B + 2(nA)1+δ/2.

The substitution of these two bounds into (2.37) give that

E

∣∣∣∣∣
∣∣∣∣∣

2n∑
i=1

Yi

∣∣∣∣∣
∣∣∣∣∣2+δ ≤ 2n1+δ/2B + 2(nA)1+δ/2 (2.38)

+ (2 + δ)[2n1+δ/2B + 2(nA)1+δ/2](1+δ)/(2+δ)Jm

+ (2 + δ)(1 + δ)
[
2n1+δ/2B + 2(nA)1+δ/2 + Jm

]δ
J2
m.

Furthermore, by the definition of B, we may further bound each summand on the

right-hand side of (2.38). We obtain for the first two terms that

2n1+δ/2B + 2(nA)1+δ/2 ≤ (2n)1+δ/2B

[
2−δ/2 +

A1+δ/2

B

]
≤ (2n)1+δ/2B

[
2−δ/2 + 6c−1

δ

]
.
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A similar factoring procedure applied to the expression in the second line of (2.38) yields

that

(2 + δ)
[
2n1+δ/2B + 2(nA)1+δ/2

](1+δ)/(2+δ)
Jm

≤ 6
[
(n1+δ/2B)(1+δ)/(2+δ) + (nA)(1+δ/2)[(1+δ)/(2+δ)]

]
Jm

≤ (2n)1+δ/2B

[
6Jm

B1/(2+δ)
+

6JmA
(1+δ/2)[(1+δ)/(2+δ)]

B

]
≤ (2n)1+δ/2B

[
12c−1

δ

]
.

Since 0 < δ < 1, the expression in the third line of (2.38) may be broken into three separate

terms:

(2 + δ)(1 + δ)
[
2n1+δ/2B + 2(nA)1+δ/2 + Jm

]δ
J2
m

≤ 6(2n1+δ/2B)δJ2
m + 6(2δ(nA)(1+δ/2)δJ2

m + 6J2+δ
m .

Furthermore, by again applying the definition of B, we have that

6(2n1+δ/2B)δJ2
m = (2n)1+δ/2B

[
6(2n1+δ/2B)δJ2

m

(2n)1+δ/2B

]

≤ (2n)1+δ/2B

[
6J2

m

B1−δ

]
≤ (2n)1+δ/2B[6c−1

δ ],

6(2(nA)(1+δ/2))δJ2
m = (2n)1+δ/2B

[
6(2(nA)(1+δ/2))δJ2

m

(2n)1+δ/2B

]

≤ (2n)1+δ/2B

[
6A(1+δ/2)δJ2

m

B

]
≤ (2n)1+δ/2B[6c−1

δ ],

and

6J2+δ
m = (2n)1+δ/2B

[
6J2+δ

m

(2n)1+δ/2B

]
≤ (2n)1+δ/2B

[
6J2+δ

m

B

]
≤ (2n)1+δ/2B[6c−1

δ ].

The application of these bounds to the right-hand side of (2.38) give that

E

∣∣∣∣∣
∣∣∣∣∣

2n∑
i=1

Yi

∣∣∣∣∣
∣∣∣∣∣
2+δ

≤ (2n)1+δ/2B
[
2−δ/2 + 36c−1

δ

]
= (2n)1+δ/2B,
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which concludes the induction step and thus the proof.

Theorem 2.3.2. If (2.1)–(2.4) hold, then we have

E

(
max

1≤k≤N

∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

(Xi −Xi,m)

∣∣∣∣∣
∣∣∣∣∣
)2+δ

≤ amN1+δ/2 (2.39)

with some sequence am satisfying am → 0 as m→∞.

Proof. By examining the proofs, it is evident that Theorem 3.1 in Móricz et al.(1982)

holds for L2 valued random variables. Furthermore, by the stationarity of the sequence

{Xi − Xi,m}∞i=1 and Theorem 2.3.1, the conditions of Theorem 3.1 in Móricz are satisfied

and therefore

E

(
max

1≤k≤N

∣∣∣∣∣
∣∣∣∣∣
k∑
i=1

(Xi −Xi,m)

∣∣∣∣∣
∣∣∣∣∣
)2+δ

≤ c∗δN1+δ/2B,

with some constant c∗δ , depending only on δ and B is defined in (2.33). Observing that

B = Bm → 0 as m→∞, the result is proven.

Theorem 2.3.1 provides inequality for the moments of the norm of partial sums of Xi −

Xi,m which are not Bernoulli shifts. However, checking the the proof of Theorem 2.3.1, we

get the following result for Bernoulli shifts.

Theorem 2.3.3. If (2.1), (2.3) are satisfied and X is a Bernoulli shift satisfying

I(2 + δ) =

∞∑
`=1

(E||X0 −X0,`||2+δ)1/(2+δ) <∞ with some 0 < δ < 1,

where X0,` is defined by (2.4), then for all N ≥ 1

E

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣
∣∣∣∣∣
2+δ

≤ N1+δ/2B∗,

where

B∗ = E||X0||2+δ+c2+δ
δ [A

1+δ/2
∗ + I2+δ(2 + δ)

+ I(2 + δ)A
(1+δ)/2
∗ +A

(1+δ/2)δ
∗ I2(2 + δ)] + (cδI

2(2))1/(1−δ),

A∗ =

∫
EX2

0 (t)dt+ 2

(∫
EX2

0 (t)dt

)1/2

I(2)

and cδ is defined in (2.34) and I(2) in (2.30).
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Remark 2.3.2. The inequality in Theorem 2.3.1 is an extension of Proposition 4 in Berkes

et al.(2011) to random variables in Hilbert spaces; we have computed how B∗ depends on

the distribution of X explicitly.
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CHAPTER 3

TESTING STATIONARITY OF

FUNCTIONAL TIME SERIES2

Economic and financial data often take the form of a collection of curves observed

consecutively over time. Examples include, intraday price curves, yield and term structure

curves, and intraday volatility curves. Such curves can be viewed as a time series of

functions. A fundamental issue that must be addressed, before an attempt is made to

statistically model such data, is whether these curves, perhaps suitably transformed, form

a stationary functional time series. This chapter formalizes the assumption of stationarity

in the context of functional time series and proposes several procedures to test the null

hypothesis of stationarity. The tests are nontrivial extensions of the broadly used tests in the

KPSS family. The properties of the tests under several alternatives, including change–point

and I(1), are studied, and new insights, present only in the functional setting, are uncovered.

The theory is illustrated by a small simulation study and an application to intraday price

curves.

3.1 Introduction

Over the last two decades, functional data analysis has become an important and steadily

growing area of statistics. Very early on, major applications and theoretical developments

pertained to functions observed consecutively over time, for example one function per day,

or one function per year, with many of these data sets arising in econometric research. The

main model employed for such series has been the functional autoregressive model of order

one, which has received a great deal of attention; see Bosq (9), Antoniadis and Sapatinas

(3), Antoniadis et al. (4), and Kargin and Onatski (30), among many others. More recent

research has considered functional time series which have nonlinear dependence structure;

see Hörmann and Kokoszka (21), Gabrys et al. (15), Horváth et al. (27), Hörmann et al.

(23), as well as the review of Hörmann and Kokoszka (22) and Chapter 16 of Horváth and

Kokoszka (25). As in traditional (scalar and vector) time series analysis, the underlying

2The content of this chapter is based on joint research with Piotr Kokoszka and Lajos Horváth.
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assumption for inference in such models is stationarity. Stationarity is also required for

functional dynamic regression models like those studied by Hays et al. (20) and Kokoszka

et al. (33); for bootstrap and resampling methods for functional time series, see McMurry

and Politis (37) and for the functional analysis of volatility, see Müller et al. (38).

Testing stationarity received due attention as soon as fundamental time series modeling

principles have emerged. Early work includes Grenander and Rosenblatt (19), Granger

and Hatanaka (18), and Priestley and Subba Rao (45). The methods considered by these

authors rest on the spectral analysis which dominated the field of time series analysis at

that time. While such approaches remain useful, see Dwivedi and Subba Rao (14), the

spectral analysis of nonstationary functional time series has not been developed to a point

where useable extensions could be readily derived. We note, however, the recent work of

Panaretos and Tavakoli (39), Panaretos and Tavakoli (40) and Hörmann et al. (24), who

advance the spectral analysis of stationary functional time series.

We follow a time domain approach introduced in the seminal paper of Kwiatkowski

et al. (34) which is now firmly established in econometric theory and practice, and has

been extended in many directions. The work of Kwiatkowski et al. (34) was motivated

by the fact that unit root tests developed by Dickey and Fuller (11), Dickey and Fuller

(12), and Said and Dickey (47) indicated that most aggregate economic series had a unit

root. In these tests, the null hypothesis is that the series has a unit root. Since such

tests have low power in samples of sizes occurring in many applications, Kwiatkowski et al.

(34) proposed that stationarity should be considered as the null hypothesis (they used a

broader definition which allowed for deterministic trends), and the unit root should be

the alternative. Rejection of the null of stationarity could then be viewed as a convincing

evidence in favor of a unit root. It was soon realized that the KPSS test of Kwiatkowski

et al. (34) has a much broader utility. For example, Lee and Schmidt (35) and Giraitis et al.

(17) used it to detect long memory, with short memory as the null hypothesis. At present,

both the augmented Dickey–Fuller test and the KPSS test, as well as its robust version of

de Jong et al. (10), are typically applied to the same series to get a fuller picture. They are

available in many packages, including R and Matlab implementations. The work of Lo (36)

is also very relevant to our approach. His contribution is crucial because he showed that to

obtain parameter free limit null distributions, statistics similar to the KPSS statistic must

be normalized by the long–run variance rather than by the sample variance, which leads to

these distributions only if the observations are independent.

This chapter seeks to develop a general methodology for testing the assumption that a
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functional time series to be modeled is indeed stationary and weakly dependent. Such a

test should be applied before fitting one of the known stationary models (all of them are

weakly dependent). In many cases, it will be applied to functions transformed to remove

seasonality or obvious trends, or to model residuals. At present, only CUSUM change point

tests are available for functional time series; see Berkes et al. (7), Horváth et al. (26), and

Zhang et al. (53). These tests have high power to detect abrupt changes in the stochastic

structure of a functional time series, either the mean or the covariance structure. Our

objective is to develop more general tests of stationarity which also have high power against

integrated and other alternatives.

It is difficult to explain the main contribution of this chapter without introducing the

required notation, but we wish to highlight in this paragraph the main difficulties which are

encountered in the transition from the scalar or vector to the functional case. A stationary

functional time series can be represented as

Xn(t) = µ(t) +

∞∑
j=1

√
λjξjnvj(t),

where n is the time index that counts the functions (referring e.g. to a day), and t is

the (theoretically continuous) argument of each function. The mean function µ and the

functional principal components vj are unknown deterministic functions which depend on

the stochastic structure of the series {Xn}, and which are estimated by random functions µ̂

and v̂j . If {Xn} is not stationary, one can still compute the estimators µ̂ and v̂j , but they

will not converge to µ or vj because these population quantities will not exist then. Thus

the use of a data–driven basis system vj represents an aspect which is not encountered in

the theory of scalar or vector valued tests. Therefore, after defining meaningful extensions

to the functional setting, we must develop a careful analysis of the behavior of the tests

under alternatives.

The chapter is organized as follows. Section 3.2 formalizes the null hypothesis of station-

arity and weak dependence of functional time series, introduces the tests, and explores their

asymptotic properties under the null hypothesis. In Section 3.3, we turn to the behavior of

the tests under several alternatives. Section 3.4 explains the details of the implementation,

and contains the results of a simulation study, while Section 3.5 illustrates the properties

of the tests by an application to intraday price curves. Appendices 3.6 and 3.7 contain,

respectively, the proofs of the results stated in Sections 3.2 and 3.3.
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3.2 Assumptions and test statistics

Linear functional time series, in particular functional AR(1) processes, have the form

Xn =
∑

j Ψj(εn−j), where the εi are iid error functions, and the Ψj are bounded linear

operators acting on the space of square integrable functions. In this chapter, we assume

merely that Xn = f(εn, εn−1, . . .), for some, possibly nonlinear, function f . The operators

Ψj or the function f arise as solutions to structural equations, very much like in the univari-

ate econometric modeling; see e.g. Teräsvirta et al. (50). For the functional autoregressive

process, the norms of the operators Ψj decay exponentially fast. For the more general

nonlinear moving averages, the rate at which the dependence of Xn on past errors εn−j

decays with j can be quantified by a condition known as Lp–m–approximability stated in

assumptions (3.1)–(3.4) below. In both cases, these functional models can be said to be in a

class which is customarily referred to as weakly dependent or short memory time series. It

is convenient to state the conditions for the error process, which we denote by β = {ηj}∞−∞,

and which will be used to formulate the null and alternative hypotheses.

Throughout the chapter, L2 denotes the Hilbert space of square integrable functions on

the unit interval [0, 1] with the usual inner product 〈·, ·〉 and the norm ||·|| it generates,
∫

means
∫ 1

0 .

β forms a sequence of Bernoulli shifts, i.e. ηj = g(εj , εj−1, . . .) (3.1)

for some measurable function g : S∞ 7→ L2 and iid functions εj ,

−∞ < j <∞,with values in a measurable space S,

εj(t) = εj(t, ω) is jointly measurable in (t, ω), −∞ < j <∞, (3.2)

Eη0(t) = 0 for all t, and E||η0||2+δ<∞, for some 0 < δ < 1, (3.3)

and

the sequence {ηn}∞n=−∞ can be approximated by `–dependent (3.4)

sequences {ηn,`}∞n=−∞ in the sense that
∞∑
`=1

(E||ηn − ηn,`||2+δ)1/κ <∞ for some κ > 2 + δ,

where ηn,` is defined by ηn,` = g(εn, εn−1, ..., εn−`+1, ε
∗
n,`),

ε∗n,` = (ε∗n,`,n−`, ε
∗
n,`,n−`−1, . . .),where the ε∗n,`,k’s are independent copies of ε0,
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independent of {εi,−∞ < i <∞}.

Assumptions similar to those stated above have been used extensively in recent theoreti-

cal work, as all stationary time series models in practical use can be represented as Bernoulli

shifts; see Wu (52), Shao and Wu (48), Aue et al. (5), Hörmann and Kokoszka (21), among

many other contributions. They have been used in econometric research even earlier, and

the work of Pötscher and Prucha (44) contributed to their popularity. Bernoulli shifts are

stationary by construction; weak dependence is quantified by the summability condition in

(3.4) which intuitively states that the function g decays so fast that the impact of shocks

far back in the past is so small that they can be replaced by their independent copies, with

only a small change in the distribution of the process.

We wish to test

H0 : Xi(t) = µ(t) + ηi(t), 1 ≤ i ≤ N, where µ ∈ L2.

The mean function µ is unknown. The null hypothesis is that the functional time series is

stationary and weakly dependent, with the structure of dependence quantified by conditions

(3.1)–(3.4).

The most general alternative is that H0 does not hold, but some profound insights into

the behavior of the tests can be obtained by considering some specific alternatives. We

focus on the following.

Change point alternative:

HA,1 : Xi(t) = µ(t) + δ(t)I{i > k∗}+ ηi(t), 1 ≤ i ≤ N,with some integer 1 ≤ k∗ < N.

The mean function µ(t), the size of the change δ(t), and the time of the change, k∗, are all

unknown parameters. We assume that the change occurs away from the end points, i.e.

k∗ = bNτc with some 0 < τ < 1. (3.5)

Integrated alternative:

HA,2 : Xi(t) = µ(t) +

i∑
`=1

η`(t), 1 ≤ i ≤ N.

Deterministic trend alternative:

HA,3 : Xi(t) = µ(t) + g(i/N)δ(t) + ηi(t), 1 ≤ i ≤ N (3.6)

where
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g(t) is a piecewise Lipschitz continuous function on [0, 1]. (3.7)

The trend alternative includes various change point alternatives, including HA,1, but also

those in which change can be gradual. It also includes the polynomial trend alternative, if

g(u) = uα.

We emphasize that both under the null hypothesis and all alternatives, the mean function

µ(t) is unknown.

The tests we propose can be shown to be consistent against any other sufficiently large

departures from stationarity and weak dependence. In particular, functional long memory

alternatives could be considered as well, as studied in the scalar case by Giraitis et al. (17).

Since long memory functional processes have not been considered in any applications yet,

we do not pursue this direction at this point.

In the remainder of this section, we consider two classes of tests, those based on the

curves themselves, and those based on the finite dimensional projections of the curves on

the functional principal components. As will become clear, the tests of the two types are

related.

3.2.1 Fully functional tests

Our approach is based on two tests statistics. The first is

TN =

∫∫
Z2
N (x, t)dtdx,

where

ZN (x, t) = SN (x, t)− xSN (1, t), 0 ≤ x, t ≤ 1,

with

SN (x, t) = N−1/2

bNxc∑
i=1

Xi(t), 0 ≤ x, t ≤ 1.

The second test statistic is

MN = TN −
∫ (∫

ZN (x, t)dx

)2

dt =

∫∫ (
ZN (x, t)−

∫
ZN (y, t)dy

)2

dxdt.

If Xi(t) = Xi, i.e. if the data are scalars (or constant functions on [0, 1]), the statistic TN is

the numerator of the KPSS statistic of Kwiatkowski et al. (34), and MN is the numerator of

the V/S statistic of Giraitis et al. (17), who introduced centering to reduce the variability

of the KPSS statistic and to increase power against “changes in variance” which are a

characteristic of long memory in volatility. As pointed out by Lo (36), to obtain parameter

free limits under the null, statistics of this type must be divided by the long–run variance.
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We now proceed with the suitable definitions in the functional case.

The null limit distributions of TN and MN depend on the eigenvalues of the long–run

covariance function of the errors:

C(t, s) = Eη0(t)η0(s) +

∞∑
`=1

Eη0(t)η`(s) +

∞∑
`=1

Eη0(s)η`(t). (3.8)

It is proven in Horváth et al. (27) that the series in (3.8) is convergent in L2. The function

C(t, s) is positive definite, and therefore, there exist λ1 ≥ λ2 ≥ . . . ≥ 0 and orthonormal

functions ϕi(t), 0 ≤ t ≤ 1, satisfying

λiϕi(t) =

∫
C(t, s)ϕi(s)ds, 1 ≤ i <∞. (3.9)

The following theorem specifies limit distributions of TN and MN under the stationarity

null hypothesis. Throughout the chapter, B1, B2, . . . are independent Brownian bridges.

Theorem 3.2.1. If assumptions (3.1)–(3.4) and H0 hold, then

TN
D−→

∞∑
i=1

λi

∫
B2
i (x)dx (3.10)

and

MN
D−→

∞∑
i=1

λi

∫ (
Bi(x)−

∫
Bi(y)dy

)2

dx. (3.11)

According to Theorem 3.6.1, under assumptions (3.1)–(3.4), the sum
∑∞

i=1 λi is finite,

and therefore, the variables T0 and M0 are finite with probability one.

Theorem 3.2.1 shows, in particular, that for functional time series, a simple normaliza-

tion with a long–run variance is not possible, and approaches involving the estimation of all

large eigenvalues must be employed. The eigenvalues λ1 ≥ λ2 ≥ . . . can be easily estimated

under the null hypothesis because then

C(t, s) = cov(X0(t), X0(s)) +
∞∑
i=1

[cov(X0(t), Xi(s)) + cov(X0(s), Xi(t))],

so we can use the kernel estimator ĈN of Horváth et al. (27) defined as

ĈN (t, s) = γ̂0(t, s) +
N−1∑
i=1

K

(
i

h

)
(γ̂i(t, s) + γ̂i(s, t)) , (3.12)

where

γ̂i(t, s) =
1

N

N∑
j=i+1

(
Xj(t)− X̄N (t)

) (
Xj−i(s)− X̄N (s)

)
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with

X̄N (t) =
1

N

N∑
i=1

Xi(t).

The kernel K in the definition of ĈN satisfies the following conditions:

K(0) = 1, (3.13)

K(u) = 0 if u > c with some c > 0, (3.14)

and

K is continuous on [0, c], where c is given in (3.14). (3.15)

The window (or smoothing bandwidth) h must satisfy only

h = h(N)→∞ and
h(N)

N
→ 0, as N →∞. (3.16)

Now the estimators for the eigenvalues and eigenfunctions are defined by

λ̂iϕ̂i(t) =

∫
ĈN (t, s)ϕ̂i(s)ds, 1 ≤ i ≤ N,

where λ̂1 ≥ λ̂2 ≥ . . . are the empirical eigenvalues and ϕ̂1, ϕ̂2, . . . are the corresponding

orthonormal eigenfunctions. We can thus approximate the limits in Theorem 3.2.1 with

d∑
i=1

λ̂i

∫
B2
i (x)dx and

d∑
i=1

λ̂i

∫ (
Bi(x)−

∫
Bi(y)dy

)2

dx,

where d is suitably large. The details are presented in Section 3.4. We note that the λ̂i

and the ϕ̂i are consistent estimators only under H0. Their behavior under the alternatives

is complex. It is studied in Section 3.3.

3.2.2 Tests based on projections

Theorem 3.2.1 leads to asymptotic distributions depending on the eigenvalues λi, which

can collectively be viewed as an analog of the long–run variance. In this section, we will see

that by projecting on the eigenfunctions ϕ̂i, it is possible to construct statistics whose limit

null distributions are parameter free. This procedure is a functional analog of dividing by

an estimator of a long–run variance.

To have uniquely defined (up to the sign) eigenfunctions, we assume

λ1 > λ2 > . . . λd > λd+1 > 0. (3.17)

Define
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T 0
N (d) =

d∑
i=1

1

λ̂i

∫
〈ZN (x, ·), ϕ̂i〉2dx,

T ∗N (d) =
d∑
i=1

∫
〈ZN (x, ·), ϕ̂i〉2dx,

M0
N (d) =

d∑
i=1

1

λ̂i

∫ (
〈ZN (x, ·), ϕ̂i〉 −

∫
〈ZN (u, ·), ϕ̂i〉du

)2

dx

and

M∗N (d) =
d∑
i=1

∫ (
〈ZN (x, ·), ϕ̂i〉 −

∫
〈ZN (u, ·), ϕ̂i〉du

)2

dx.

Theorem 3.2.2. If assumptions (3.1)–(3.4), (3.13)–(3.16), (3.17) and H0 hold, then

T 0
N (d)

D−→
d∑
i=1

∫
B2
i (x)dx, (3.18)

T ∗N (d)
D−→

d∑
i=1

λi

∫
B2
i (x)dx, (3.19)

M0
N (d)

D−→
d∑
i=1

∫ (
Bi(x)−

∫
Bi(u)du

)2

dx (3.20)

and

M∗N (d)
D−→

d∑
i=1

λi

∫ (
Bi(x)−

∫
Bi(u)du

)2

dx. (3.21)

It is clear that T ∗N and M∗N are just d–dimensional projections of TN and MN . The

distribution of the limit in (3.18) can be found in Kiefer (31). Critical values based on Monte

Carlo simulations are given in Table 6.1 of Horváth and Kokoszka (25). The distributions

of the limits both in (3.18) and (3.20) can also be expressed in terms of sums of squared

normals; see Shorack and Wellner (49) and Section 3.4. It is also easy to derive normal

approximations. By the central limit theorem, we have, as d→∞,(
45

d

)−1/2
[

d∑
i=1

∫
B2
i (x)dx− d

6

]
D→ N(0, 1),

where N(0, 1) stands for a standard normal random variable. Aue et al. (5) demonstrated

that the limit in (3.18) can be approximated well with normal random variables even for

moderate d. The limit in (3.20) can be approximated in a similar manner, namely, as

d→∞,
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(
360

d

)−1/2
[

d∑
i=1

{∫
B2
i (x)dx−

(∫
Bi(x)dx

)2
}
− d

12

]
D→ N(0, 1).

3.3 Asymptotic behavior under alternatives

The asymptotic behavior of the KPSS and related tests under alternatives is not com-

pletely understood, even for scalar data. This may be due to the fact that an asymptotic

analysis of power is generally much more difficult than the theory under a null hypothesis.

Giraitis et al. (17) studied the behavior of the KPSS test, the R/S test of Lo (36), and

their V/S test under the alternative of long memory. Pelagatti and Sen (41) established the

consistency of their nonparametric version of the KPSS test under the integrated alternative.

In this section, we present an asymptotic analysis, under alternatives, of the tests introduced

in Section 3.2. In the functional setting, there is a fundamentally new aspect: convergence

of a scalar estimator of the long–run variance must be replaced by the convergence of the

eigenvalues and the eigenfunctions of the long–run covariance function. We derive precise

rates of convergence and limits for this function, and use them to study the asymptotic

power of the tests introduced in Section 3.2. In Section 3.4, we will see how these asymptotic

insights manifest themselves in finite samples.

We expect that the tests introduced in Section 3.2 are also consistent against suitably

defined long memory alternatives. While scalar long memory models have received a lot

of attention in recent decades, long memory functional models have not been considered in

econometric literature yet. To keep this contribution within reasonable limits, we do not

pursue this direction here.

3.3.1 Change in the mean alternative

To state consistency results, we assume that the jump function is in L2, i.e.∫
δ2(t)dt <∞. (3.22)

We introduce the function

δτ (x, t) = δ(t)[(x− τ)I{x ≥ τ} − x(1− τ)] (3.23)

and the Gaussian process Γ0(x, t) with EΓ0(x, t) = 0 and

EΓ0(x, t)Γ0(y, s) = (min(x, y)− xy)C(t, s).

The existence of the process Γ0(x, t) will be established in Appendix 3.6.
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Theorem 3.3.1. If assumptions (3.1)–(3.4), (3.5), (3.22), and HA,1 hold, then

N−1/2

{
TN −

N

3
τ2(1− τ)2||δ||2

}
D−→ 2

∫∫
Γ0(x, t)δτ (x, t)dtdx (3.24)

and

N−1/2

{
MN −

N

12
τ2(1− τ)2||δ||2

}
(3.25)

D−→ 2

∫∫ (
Γ0(x, t)−

∫
Γ0(y, t)dy

)(
δτ (x, t)−

∫
δτ (y, t)dy

)
dtdx.

It is easy to see that the limits in Theorem 3.3.1 are zero mean normal random variables.

Their variances, computed in Appendix 3.7, are positive if C(t, s) is strictly positive definite.

In that case, TN and MN increase like N . However, as we prove in Lemma 3.7.2, ĈN (t, s)

does not converge to C(t, s) under HA,1, so it is not clear what the asymptotic behavior of

the critical values under HA,1 is. To show that the asymptotic power is 1, a more delicate

argument is needed, which we now outline.

Applying Lemma 3.7.2 with the result of Dunford and Schwartz (13), p. 1091, we

conclude that
λ̂1

h

P→ γA,1 = 2τ(1− τ)||δ||2
∫ c

0
K(u)du, (3.26)

and

∣∣∣∣∣∣∣∣ϕ̂1(t)− ĉ1
δ(t)

||δ||

∣∣∣∣∣∣∣∣ = oP (1). (3.27)

According to (3.26), when we compute c̄ = c̄(h,N), the critical value from simulated copies

of
∑d

i=1 λ̂i
∫
B2
i (t)dt, then c̄ increases at most linearly with h. Therefore, using (3.16) with

Theorem 3.3.1, we conclude that

lim
N→∞

P{TN ≥ c̄} = 1 under HA,1. (3.28)

This shows that the test based on TN is consistent. The same argument applies to MN .

We now turn to the tests based on projections, with the test statistics defined in

Section 3.2.2. As we have seen, under HA,1, the largest empirical eigenvalue λ̂1 increases to

∞, as N → ∞, and the corresponding empirical eigenfunction ϕ̂1 is asymptotically in the

direction of the change. This means that both T ∗N and M∗N are dominated by the first term

under HA,1. The precise asymptotic behavior of all statistics introduced in Section 3.2.2 is

described in the following theorem.

Theorem 3.3.2. If assumptions (3.1)–(3.4), (3.13)–(3.16), (3.22), and HA,1 hold, then
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N−1/2

{
T ∗N (1)− N

3
τ2(1− τ)2〈δ, ϕ̂1〉2

}
D−→ 2

∫∫
Γ0(x, t)δτ (x, t)dxdt, (3.29)

N−1/2

{
M∗N (1)− N

12
τ2(1− τ)2〈δ, ϕ̂1〉2

}
(3.30)

D−→ 2

∫∫ (
Γ0(x, t)−

∫
Γ0(y, t)dy

)(
δτ (x, t)−

∫
δτ (y, t)dy

)
dtdx,

h

N1/2
2τ(1− τ)||δ||2

∫ c

0
K(u)du

{
T 0
N (1)− N

3λ̂1

τ2(1− τ)2〈δ, ϕ̂1〉2
}

(3.31)

D−→ 2

∫∫
Γ0(x, t)δτ (x, t)dxdt,

and

h

N1/2
2τ(1− τ)||δ||2

∫ c

0
K(u)du

{
M0
N (1)− N

12λ̂1

τ2(1− τ)2〈δ, ϕ̂1〉2
}

(3.32)

D−→ 2

∫∫ (
Γ0(x, t)−

∫
Γ0(y, t)dy

)(
δτ (x, t)−

∫
δτ (y, t)dy

)
dtdx.

If in addition we assume that h/N1/2 → 0 as N →∞, then

T ∗N (d) =
N

3
τ2(1− τ)2||δ||2(1 + oP (1)), (3.33)

M∗N (d) =
N

12
τ2(1− τ)2||δ||2(1 + oP (1)), (3.34)

T 0
N (d) =

N

h

τ(1− τ)

6
∫ c

0 K(u)du
(1 + oP (1)), (3.35)

and

M0
N (d) =

N

h

τ(1− τ)

24
∫ c

0 K(u)du
(1 + oP (1)). (3.36)

Observe that according to Theorems 3.3.1 and 3.3.2, the statistics TN and T ∗N (1) (MN

and M∗N (1), respectively) exhibit the same asymptotic behavior under the change point

alternative. This is due to the fact that the projection in the direction of ϕ̂1 picks up all

information on the change available in the data, as, by (3.27), ϕ̂1 is asymptotically aligned

with the direction of the change.
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Remark 3.1. In the local alternative model

Xi(t) = µ(t) + δ∗N (t)I{i > k∗}+ ηi(t), 1 ≤ i ≤ N,with some integer 1 ≤ k∗ < N,

where ||δ∗N ||→ 0 as N → ∞. We discuss briefly how the statistic TN behaves under this

model. IfN1/2||δ∗N ||→ 0, then TN converges in distribution to
∫∫

(Γ0(x, t))2dtdx as is the case

under H0. On the other hand, if N1/2||δ∗N ||→ ∞, then TN
P−→∞ and therefore, consistency

is retained. Moreover, under the additional assumption N
∫∫
C(t, s)δ∗N (t)δ∗N (s)dtds → ∞

we show that
1

AN

{
TN −

1

N
||βN ||2

}
D−→ N(0, 1), (3.37)

where

A2
N = 4N

∫∫
C(t, s)δ∗N (t)δ∗N (s)dtds

∫∫
(min(x, y)− xy)δ̄τ (x)δ̄τ (y)dxdy.

In the critical case when N1/2||δ∗N ||→ δ∗ in L2, where δ∗ is some non zero function, then

we have

TN
D−→ ζ +

∞∑
`=1

{
λ`||B`||2+2λ

1/2
` 〈B`, δ̄τ 〉〈ϕ`, δ

∗〉
}
, (3.38)

where ζ = ||δ̄τ ||2||δ∗||2, B1, B2, . . . are independent Brownian bridges, the λi’s and ϕ’s are

defined in (3.9), and

δ̄τ (x) = (x− τ)I{x ≥ τ} − x(1− τ). (3.39)

The asymptotic behavior of MN can be studied analogously in the local alternative change

point model. The derivation of the asymptotic properties of T 0
N (d), T ∗N (d),M0

N (d), and

M∗N (d) is much more involved since it requires the study of ĈN (t, s) under this model. We

will not pursue this line of inquiry in the present chapter.

3.3.2 The integrated alternative

Let

∆(x, t) =

∫ x

0
Γ(u, t)du− x

∫
Γ(u, t)du, (3.40)

where Γ(x, t) is a Gaussian process with EΓ(x, t) = 0 and EΓ(x, t)Γ(y, s) = min(x, y)C(t, s).

The existence of Γ(x, t) is established in Theorem 3.6.1.

For the fully functional tests of Section 3.2.1, we have the following result.

Theorem 3.3.3. If assumptions (3.1)–(3.4) and HA,2 hold, then

1

N2
TN

D−→
∫∫

∆2(x, t)dtdx (3.41)
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and

1

N2
MN

D−→
∫∫ (

∆(x, t)−
∫

∆(u, t)du

)2

dtdx. (3.42)

To find the limit distributions of the statistics based on projections, we need the following

theorem.

Theorem 3.3.4. If assumptions (3.1)–(3.4), (3.13)–(3.16), and HA,2 hold, then{
1

N
ZN (x, t),

1

Nh
ĈN (t, s), 0 ≤ x, t, s ≤ 1

}
−→

{
∆(x, t), Q(t, s), 0 ≤ x, t, s ≤ 1

}
in D([0, 1]× L2), where

Q(t, s) = 2

(∫ c

0
K(w)dw

)∫
R(z, t)R(z, s)dz,

with

R(z, t) =

∫ z

0
Γ(u, t)du−

∫ {∫ v

0
Γ(u, t)du

}
dv.

We show in Lemma 3.7.5 that Q(t, s) is non–negative definite with probability one, so

there are random variables λ∗1 ≥ λ∗2 ≥ . . . and random functions ϕ∗1(t), ϕ∗2(t), . . . satisfying

λ∗iϕ
∗
i (t) =

∫
Q(t, s)ϕ∗i (s)ds, 1 ≤ i <∞. (3.43)

Combining Theorem 3.3.4 with Dunford and Schwartz (13), we get that(
λ̂1/(Nh), λ̂2/(Nh), . . . , . . . , λ̂d/(Nh), ϕ̂1(t), ϕ̂2(t), . . . , ϕ̂d(t)

)
D−→ (λ∗1, λ

∗
2, . . . , λ

∗
d, ϕ
∗
1(t), ϕ∗2(t), . . . , ϕ∗d(t)) .

Thus the behavior of T 0
N (d), T ∗N (d),M0

N (d) and M∗N (d) is an immediate consequence of

Theorem 3.3.4. An argument similar to that developed in Section 3.3.1 shows that the tests

are consistent.

Theorem 3.3.5. If assumptions (3.1)–(3.4), (3.13)–(3.16), and HA,2 hold, then

h

N
T 0
N (d)

D→
d∑
i=1

1

λ∗i

∫
〈∆(x, ·), ϕ∗i (·)〉2dx, (3.44)

1

N2
T ∗N (d)

D→
d∑
i=1

∫
〈∆(x, ·), ϕ∗i (·)〉2dx, (3.45)

h

N
M0
N (d)

D→
d∑
i=1

1

λ∗i

∫ (
〈∆(x, ·), ϕ∗i (·)〉 −

∫
〈∆(u, ·), ϕ∗i (·)〉du

)2

dx, (3.46)
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and

1

N2
M∗N (d)

D→
d∑
i=1

∫ (
〈∆(x, ·), ϕ∗i (·)〉 −

∫
〈∆(u, ·), ϕ∗i (·)〉du

)2

dx. (3.47)

3.3.3 Deterministic trend alternative

Let

ḡ(x) =

∫ x

0
g(u)du− x

∫
g(u)du, 0 ≤ x ≤ 1.

Theorem 3.3.6. If assumptions (3.1)–(3.4), (3.6), (3.22) and HA,3 hold, then

N−1/2

{
TN −N ||δ||2

∫
ḡ2(x)dx

}
D−→ 2

∫∫
Γ0(x, t)δ(t)ḡ(x)dtdx (3.48)

and

N−1/2

{
MN −N ||δ||2

∫ (
ḡ(x)−

∫
ḡ(y)dy

)2

dx

}
(3.49)

D−→ 2

∫∫ (
Γ0(x, t)−

∫
Γ0(y, t)dy

)(
ḡ(x)−

∫
ḡ(y)dy

)
δ(t)dtdx.

The limits in (3.48) and (3.49) are normal random variables with zero mean and variances

which can be expressed in terms of the long–run covariance kernel C(·, ·) and the functions

δ and ḡ. We do not display these complex formulas to conserve space. They extend the

formulas for the variances of the limits in Theorem 3.3.1 which are given in Appendix 3.7.

The consistency of the procedures based on projections can be established by extending the

arguments used to prove Theorem 3.3.2, however with more abstract notation. Again, to

keep this work within reasonable limits of space, we do not present the details.

3.4 Implementation and finite sample performance

In this section we discuss the implementation of the testing procedure developed in the

sections above. A simulation study is then presented in order to investigate the finite sample

properties of the test.

3.4.1 Details of the implementation

To implement the tests introduced in Section 3.2, several issues must be considered.

The choice of the kernel K(·) and the smoothing bandwidth h are the most obvious.

Beyond that, to implement Monte Carlo tests based on statistics whose limits depend

on the estimated eigenvalues, a fast method of calculating replications of these limits

must be employed. The issues of bandwidth and kernel selection have been extensively
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studied in the econometric literature for over three decades; we cannot cite dozens, if not

hundreds, of papers devoted to them. Perhaps the best known contributions are those

of Andrews (1) and Andrews and Monahan (2) who introduced data-driven bandwidth

selection and prewhitening. While these approaches possess optimality properties in general

regression models with heteroskedastic and correlated errors, they are not optimal in all

specific applications. In particular, Jönsson (28) found that the finite-sample distribution

of the (scalar) KPSS test statistic can be very unstable when the Quadratic Spectral

kernel (recommended by Andrews (1)) is used and/or a prewhitening filter is applied. He

recommends the Bartlett kernel. An elaboration on the finite sample properties of the KPSS

test with many relevant references can be found in Jönsson (29). This chapter focuses on the

derivation and large sample theory for the stationarity tests for functional time series; we

cannot present here a comprehensive and conclusive study of the finite sample properties,

which are still being investigated even for scalar time series. We however wish to offer

some practical guidance and report approaches which worked well for the data-generating

processes we considered.

Politis (2003, 2011) argues that the flat top kernel

K(t) =


1, 0 ≤ t < 0.1
1.1− |t|, 0.1 ≤ t < 1.1
0, |t|≥ 1.1

(3.50)

has better properties than the Bartlett or the Parzen kernels. In our empirical work, we

used kernel (3.50). Our simulations showed that h = N1/2 is satisfactory for our hypothesis

testing problem when the observations are independent or weakly dependent (functional

autoregressive processes). The empirical sizes and power functions change little if h is

taken ±5 lags smaller or larger. We note that the optimal rates derived in Andrews

(1) do not apply to kernel (3.50) because this piecewise function does not satisfy the

regularity conditions assumed by Andrews (1). It can be shown that the optimal rates for

Bartlett and Parzen kernels remain the same in the functional case, but the multiplicative

constants depend in a very complex way on the high-order moments of the functions, and

the arguments Andrews (1) used to approximate them cannot be readily extended.

Once the kernel and the bandwidth have been selected, the eigenvalues λ̂i can be

computed. This allows us to compute the normalized statistics T 0
N (d) and M0

N (d) and

use the tests based on the asymptotic distribution of their limits. The critical values

can be computed by using the expansions analogous to (3.51) or (3.52) (without the λ̂i).

Alternatively, since these limits do not depend on the distribution of the data, the critical
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values can be obtained by calculating a large number of replications of T 0
N (d) and M0

N (d)

for any specific functional time series. We used iid Brownian motions, and we refer to the

tests which use the critical values so obtained as T 0
N (d)(AM) and M0

N (d)(AM) (Alternative

method). This method is extremely computationally intensive, if its performance is to be

assessed by simulations; we needed almost two months of run time on the University of Utah

Supercomputer (as of June 2013) to obtain the empirical rejection rates for T 0
N (d)(AM) and

M0
N (d)(AM) for samples of size 100 and 250 and values of d between 1 and 10.

The limits of statistics TN and T ∗N must be approximated by the MC distribution

of
∑d

i=1 λ̂i
∫
B2
i (x)dx, and one must proceed analogously for MN and M∗N . Using the

expansions discussed in Shorack and Wellner (49), pp. 210–211, we use the approximations

T̂d,J =

d∑
i=1

λ̂i

J∑
j=1

Z2
j

j2π2
, (3.51)

and

M̂d,J =

d∑
i=1

λ̂i

J∑
j=1

Z2
2j−1 + Z2

2j

4j2π2
, (3.52)

where {Zj}∞j=1 are iid standard normal random variables. For large J , the sums over j

approximate the integrals of the functionals of the Brownian bridge and eliminate the need

to generate its trajectories and to perform numerical integration. In our work, we used

J = 100, and one thousand replications to obtain MC distributions.

To select d, we use the usual “cumulative variance” approach recommended by Ramsay

and Silverman (46) and Horváth and Kokoszka (25); d is chosen so that roughly v% of the

sample variance is explained by the first d principal components. In our implementation, we

estimated the total of 49 largest eigenvalues (the largest number under which the estimation

is numerically stable), and used d = dv such that

λ̂1 + · · ·+ λ̂dv

λ̂1 + · · ·+ λ̂49

≈ v.

A general recommendation is to use v equal to about 90%, but we report results for v =

.85, .90, .95, to see how the performance of the tests is affected by the choice of d. This is a

new aspect of the stationarity tests, which reflects the infinite dimensional structure of the

functional data, and which is absent in tests for scalar or vector time series.

3.4.2 Empirical size and power

We first compare the empirical size of the tests implemented as described above. We

consider two data-generating processes (DGPs): 1) iid copies of the Brownian motion (BM),
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2) the functional AR process of order 1 (FAR(1)). There are a large number of stationary

functional time series that could be considered. In our small simulation study, the focus

on the BM is motivated by the application to cumulative intraday returns considered in

Section 3.5; they approximately look like realizations of the BM; see Figure 3.1. The

FAR(1), with Brownian motion innovations, is used to generate temporal dependence: the

tests should have correct size for general stationary functional time series, not just for iid

functions. The FAR(1) process is defined by the equation

Xi(t) =

∫ 1

0
ψ(t, u)Xi−1(u)du+Wi(t), 0 ≤ t ≤ 1, (3.53)

where the Wi are independent Brownian motions on [0, 1], and ψ is a kernel whose operator

norm is not too large. The precise condition is somewhat technical; see Bosq (9) or Chapter

13 of Horváth and Kokoszka (25). A sufficient condition for a stationary solution to

equation (3.53) to exist is that the Hilbert–Schmidt norm of ψ be less than 1. We work

with the kernel

ψ(t, s) = c exp

(
t2 + s2

2

)
with c = .3416 so that the Hilbert–Schmidt norm of ψ is approximately 0.5.

We consider functional time series of length N = 100 and N = 250. Each DGP is

simulated one thousand times, and the percentage of rejections of the null hypothesis is

reported at the significance levels of 10 and 5%. The empirical sizes are reported in Table 3.1,

which leads to the following conclusions:

1. The tests T 0
N (AM) and T 0

N (AM) have reasonably good empirical size, which does not

depend on v. Note that we used the BM processes to obtain the critical values, so it

is not surprising that we observe good results when using BM as the DGP. However,

the observations of the FAR(1) series are no longer BMs.

2. If the limit distribution is used to calculate the critical values, the tests based on the

MC distributions (statistics TN ,MN , T
∗
N ,M

∗
N ) are less sensitive to the choice of the

cumulative variance v.

3. The tests based on MN and M∗N are generally too conservative at the 5% level.

4. Even though statistic T ∗N is too conservative at the 5% level in case of the FAR(1)

model, it achieves a reasonable balance of empirical size at the 10 and 5% levels.

5. If the temporal dependence is not too strong, we recommend statistics T ∗N with v =

90%.
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We now turn to the investigation of the empirical power. The number of DGPs that

could be considered under the alternative of nonstationarity is enormous. In our simulation

study, we consider merely two examples intended to illustrate the theory developed in

Section 3.3. Under the change point alternative, HA,1, the DGP is

Xi(t) =

{
Bi(t) if i < bN/2c
Bi(t) + δ(t) if i ≥ bN/2c,

where the Bi are iid Brownian bridges, and δ(t) = 2t(1 − t), so that the change in the

mean function is comparable to the typical size of the Brownian bridge. Under the I(1)

alternative, HA,2, we consider the integrated functional sequence defined by

Xi(t) = Xi−1(t) +Bi(t), 1 ≤ i ≤ N,

where X0(t) = B0(t), and {Bi(t)}∞i=0 are iid Brownian Bridges. Again, each data-generating

process is simulated 1000 times and the rejection rate of H0 is reported when the significance

level is 10% and 5%. Table 3.2 shows the results of these simulations. The following

conclusions can be reached:

1. Under the change point alternative, the T statistics have higher power than the M

statistics. This is in perfect agreement with Theorems 3.3.1 and 3.3.2, which show

that the leading terms of the T statistics are four times larger than those of the

corresponding M statistics.

2. The same observation remains true under the integrated alternative, and again it

agrees with the theoretical rates obtained in Theorems 3.3.3 and 3.3.4. The multi-

plicative constants of leading terms of the T statistics are equal to second moments

and those of the M statistics to corresponding variances.

3. As for empirical size, the T statistics are not sensitive to the choice of v.

4. The test based on T ∗N has slightly lower power than those based on T 0
N and TN , but this

is because the latter two tests have slightly inflated sizes. Our overall recommendation

remains to use T ∗N with v = 0.90. However, if very high power is of central importance,

and computational time not a big concern, the method T 0
N (AM) might be superior.

3.5 Application to intraday price curves

Some of the most natural and obvious functional data are intraday price curves; five such

functions are shown in Figure 3.2. Not much quantitative research has however focused on

the analysis of the information contained in the shapes of such curves, even though they
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very closely reflect the reactions and expectations of intraday investors. Extensive research

has focused on scalar or vector summary statistics derived from intraday data, including

realized volatility and noise variance estimation; see Barndorff-Nielsen and Shephard (6)

and Wang and Zou (51), among many others. Several papers have however considered the

shapes of suitably defined price or volatility curves; see Gabrys et al. (15), Müller et al. (38),

Gabrys et al. (16), Kokoszka and Reimherr (32), and Kokoszka et al. (33). This chapter

focuses on statistical methodology and the underlying theory, and we cannot include a

comprehensive empirical study of functional aspects of intraday price data. We merely

show that the application of our tests leads to meaningful and useful insights.

Suppose Pn(tj), n = 1, . . . , N, j = 1, . . . ,m, is the price of a financial asset at time tj

on day n. Figure 3.2 shows five functional data objects constructed from the 1-minute

average price of Disney stock interpolated by B-splines. In this case, the number of points

tj used to construct each object is m = 390. Each object is viewed as a continuous curve,

making these data an excellent candidate for functional data analysis. As daily closing

prices form a nonstationary scalar time series, we would expect the daily price curves to

form a nonstationary functional time series. When our tests are applied to sufficiently

long periods of time, they indeed always reject the null hypothesis of stationarity. For

shorter periods of time, H0 is sometimes rejected and sometimes is not, most likely due

to reduced power. To illustrate, Figure 3.3 displays the P–values for the test based on

TN applied to consecutive nonoverlapping segments of length N in the time period from

04/09/1997 to 04/02/2007, which comprises 2,510 trading days. This means that there are

50 segments of length N = 50, 25 segments of length N = 100, and 10 segments of length

N = 250. If N = 250, H0 is always rejected. We obtained very similar results for the other

T statistics. When the M statistics are used, the rejection rates are marginally lower, but

overall commensurate with those for the T statistics. We also applied the tests to several

other stocks over the same period, including Chevron, Bank of America, Microsoft, IBM,

McDonalds, and Walmart, and obtained nearly identical results. The results are also very

similar for gold futures. The price of gold increased five fold between 2001 and 2011, with

an almost linear trend. For segments of length N = 100, the null is sometimes not rejected

if the curves do not show a clear increasing tendency over that period, but otherwise we

obtained strong rejections.

In order to fit stationary functional time series models to intraday price curves; a suitable

transformation should be applied. Gabrys et al. (15) put forward the following definition.

Definition 3.5.1. Suppose Pn(tj), n = 1, . . . , N, j = 1, . . . ,m, is the price of a financial
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asset at time tj on day n. The functions

Rn(tj) = 100[lnPn(tj)− lnPn(t1)], j = 1, 2, . . . ,m, n = 1, . . . , N,

are called the cumulative intraday returns (CIDRs).

The idea behind Definition 3.5.1 is very simple. If the return from the start of a trading

day until its close remains within the 5% range, Rn(tj) is practically equal to the simple

return [Pn(tj)−Pn(t1)]/Pn(t1). Since Pn(t1) is fixed for every trading day, the Rn(tj) have

practically the same shape as the price curves; see Figure 3.1. However, since they always

start from zero, level stationarity is enforced. The division by Pn(t1) helps reduce the scale

inflation. It can thus be hoped that the CIDRs will form a stationary functional time series,

which will be amenable to the statistical analysis of the shapes of the intraday price curves.

We note that the CIDRs are not readily comparable to daily returns because they do not

include the overnight price change. They are designed to statistically analyze the evolution

of the intraday shapes of an asset.

We wish to verify our conjecture of the stationarity of the CIDRs by application of our

tests of stationarity. If the conjecture is true, the expectation is that the P-values will be

roughly uniformly distributed on (0, 1). Figure 3.4 shows results of the test using TN when

applied to sequential segments of the CIDR curves of the Disney stock. We see that the

P-values appear to be uniformly distributed, which is consistent with the stationarity of the

CIDRs. Again, the results for the other eight stocks are very similar.

3.6 Proofs of the results of Section 3.2

The proof of Theorem 3.2.1 is based on an approximation developed in Berkes et al. (8)

(Theorem 3.6.1 below). Define

Γ(x, t) =
∞∑
i=1

λ
1/2
i Wi(x)ϕi(t), (3.54)

where Wi are independent and identically distributed Wiener processes (standard Brownian

motions). Clearly, Γ(x, t) is Gaussian with zero mean and EΓ(x, t)Γ(y, s) = min(x, y)C(t, s).

Theorem 3.6.1. If assumptions (3.1)–(3.4) hold, then

∞∑
`=1

λ` <∞ (3.55)

and for every N we can define a sequence of Gaussian processes ΓN (x, t) such that
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{ΓN (x, t), 0 ≤ x, t ≤ 1} D= {Γ(x, t), 0 ≤ x, t ≤ 1}

and

sup
0≤x≤1

∫
(VN (x, t)− ΓN (x, t))2dt = oP (1),

where

VN (x, t) =
1

N1/2

bNxc∑
i=1

ηi(t).

(It follows immediately from (3.55) that sup0≤x≤1

∫
Γ2(x, t)dt <∞ a.s.)

Proof of Theorem 3.2.1 Let

V 0
N (x, t) = VN (x, t)− xVN (1, t).

Under H0

ZN (x, t) = V 0
N (x, t) + µ(t)

[
bNxc −Nx

N1/2

]
and since µ ∈ L2, we get

sup
0≤x≤1

||ZN (x, t)− V 0
N (x, t)||≤ 1

N1/2
||µ||.

Hence

TN =

∫∫
(V 0
N (x, t))2dtdx+ oP (1)

and

MN =

∫∫ (
V 0
N (x, t)−

∫
V 0
N (y, t)dy

)2

dxdt+ oP (1).

Applying Theorem 3.6.1, we get immediately that

TN
D−→

∫∫
(Γ0(x, t))2dxdt

and

MN
D−→

∫∫ (
Γ0(x, t)−

∫
Γ0(y, t)dy

)2

dxdt,

where

Γ0(x, t) = Γ(x, t)− xΓ(1, t).

We also note that by the definition of Γ(x, t) in (3.54), we have

Γ0(x, t) =
∞∑
i=1

λ
1/2
i Bi(x)ϕi(t), (3.56)

where Bi are independent and identically distributed Brownian bridges. Using the fact that
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{ϕi(t), 0 ≤ t ≤ 1}∞i=1 is an orthonormal system, one can easily verify that∫∫
(Γ0(x, t))2dxdt =

∞∑
i=1

λi

∫
B2
i (x)dx

and ∫∫ (
Γ0(x, t)−

∫
Γ0(y, t)dy

)2

dtdx =
∞∑
i=1

λi

∫ (
Bi(x)−

∫
Bi(y)dy

)2

dx.

The following lemma is an immediate consequence of the results in Section 2.7 of Horváth

et al. (27), or of Dunford and Schwartz (13).

Lemma 3.6.1. If assumptions (3.1)–(3.4), (3.13)–(3.16), (3.17), and H0 hold, then

max
1≤i≤d

|λ̂i − λi|= oP (1) and max
1≤i≤d

||ϕ̂i − ĉiϕi||= oP (1),

where ĉ1, ĉ2, . . . , ĉd are unobservable random signs defined as ĉi = sign(〈ϕ̂i, ϕi〉).

Proof of Theorem 3.2.2 It follows from Theorem 3.6.1 that

sup
0≤x≤1

|〈SN (x, ·)− Γ0
N (x, ·), ϕi〉|≤ sup

0≤x≤1
||SN (x, ·)− Γ0

N (x, ·)||= oP (1)

and by Lemma 3.6.1, we get

sup
0≤x≤1

|〈Γ0
N (x, ·), ϕ̂i − ĉiϕi〉|≤ sup

0≤x≤1
||Γ0

N (x, ·)||||ϕ̂i − ĉiϕi||= oP (1).

It is immediate from (3.56) that for all N

{
〈Γ0
N (x, ·), ϕi〉, 0 ≤ x ≤ 1, 1 ≤ i ≤ d

} D
=
{
λ

1/2
i Bi(x), 0 ≤ x ≤ 1, 1 ≤ i ≤ d

}
,

where B1, B2, . . . , Bd are independent Brownian bridges. Thus we obtain that

d∑
i=1

1

λ̂i
〈Γ0
N (x, ·), ĉiϕi〉2

D[0,1]−→
d∑
i=1

B2
i (x). (3.57)

The weak convergence in (3.57) now implies (3.18). The same arguments can be used to

prove (3.19)–(3.21).

3.7 Proofs of the results of Section 3.3

Proof of Theorem 3.3.1 First we introduce the function

δN (x, t) = µ(t){bNxc −Nx}+ δ(t){(bNxc − k∗)I{k∗ ≤ bNxc} − x(N − k∗)}.
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Under HA,1, we can write

ZN (x, t) = V 0
N (x, t) +N−1/2δN (x, t) (3.58)

and therefore,

TN =

∫∫
Z2
N (x, t)dtdx (3.59)

=

∫∫
(V 0
N (x, t))2dtdx+

2

N1/2

∫∫
V 0
N (x, t)δN (x, t)dxdt

+
1

N

∫∫
δ2
N (x, t)dtdx.

It follows from Theorem 3.6.1 that∫∫
(V 0
N (x, t))2dtdx = OP (1). (3.60)

It is easy to check that

sup
0≤x≤1

∣∣∣∣∣∣∣∣ 1

N
δN (x, t)− δτ (x, t)

∣∣∣∣∣∣∣∣ = O

(
1

N

)
, (3.61)

where δτ (x, t) is defined in (3.23). Thus applying Theorem 3.6.1, we conclude that

1

N

∫∫
V 0
N (x, t)δN (x, t)dxdt

D−→
∫∫

Γ0(x, t)δτ (x, t)dtdx. (3.62)

Also,

1

N

∫∫
δ2
N (x, t)dtdx (3.63)

= N

∫
δ2(t)dt

{∫ τ

0
x2(1− τ)2dx+

∫ 1

τ
(1− x)2τ2dx

}
+O(1).

Now (3.24) is an immediate consequence of (3.59)–(3.63).

The second part of Theorem 3.3.1 is proven analogously.

3.7.1 Variances of the limits in Theorem 3.3.1

The next lemma is used to show that the variances of the limits in Theorem 3.3.1 are

strictly positive.

Lemma 3.7.1. Let Θ be a L2 valued Gaussian process such that EΘ(t) = 0 and EΘ(t)Θ(s)

is a strictly positive definite function on [0, 1]2. Let g ∈ L2. Then var(
∫

Θ(t)g(t)dt) = 0 if

and only if g = 0 a.e.

Proof. By the Karhunen–Loéve expansion and the assumption that EΘ(t)Θ(s) is strictly
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positive definite, we may write

Θ(t) =
∞∑
`=1

ρ`N`φ`(t), 0 ≤ t ≤ 1,

where {Ni}∞i=1 are iid standard normal random variables, {φi(t)}∞i=1 form an orthonormal

basis, and ρi > 0 for all i ≥ 1. It follows by a simple calculation that∫
Θ(t)g(t)dt =

∞∑
`=1

ρ`N`〈φ`, g〉,

and hence

var

(∫
Θ(t)g(t)dt

)
=
∞∑
`=1

ρ2
` 〈φ`, g〉2.

Since
∑∞

`=1 ρ
2
` 〈φ`, g〉2 = 0 if and only if g = 0 a.e., the result follows.

It is easy to see that
∫∫

Γ0(x, t)δτ (x, t)dtdx is a normal random variable with zero mean.

Its variance is thus equal to

E

(∫∫
Γ0(x, t)δτ (x, t)dtdx

)2

(3.64)

=

∫∫∫∫
C(t, s)δτ (x, t)δτ (y, s)(min(x, y)− xy)dtdsdxdy

=

(∫∫
C(t, s)δ(t)δ(s)dtds

)(∫∫
δ̄τ (x)δ̄τ (y)(min(x, y)− xy)dxdy

)
,

where δ̄τ (x) is defined in (3.39). Similarly to (3.24), the limit in (3.25) is normally

distributed with zero mean and variance equal to

E

[∫∫ (
Γ0(x, t)−

∫
Γ0(y, t)dy

)(
δτ (x, t)−

∫
δτ (y, t)dy

)
dtdx

]2

=

(∫∫
C(t, s)δ(t)δ(s)dtds

)(∫∫
δ̄τ (x)δ̄τ (y)

[
min(x, y)− xy −

∫
(min(y, z)− yz)dz

−
∫

(min(x, z)− xz)dz +

∫∫
(min(z, z′)− zz′)dzdz′

]
dxdy

)
=

(∫∫
C(t, s)δ(t)δ(s)dtds

)(∫∫
δ̄τ (x)δ̄τ (y)

[
min(x, y)− xy − y(1− y)

2

− x(1− x)

2
+

1

12

]
dxdy

)
.

If the bivariate function C(t, s) is strictly positive definite, then
∫∫
C(t, s)δ(t)δ(s)dtds > 0

if δ(t) is not the 0 function in L2. Observing that
∫∫
δ̄τ (x)δ̄τ (y)(min(x, y) − xy)dxdy =
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var(
∫
B(x)δ̄τ (x)), where B is a Brownian bridge, the positivity of (3.64) follows by

Lemma 3.7.1 since δ̄τ (x) is not the zero function and the covariance function of the Brownian

bridge is strictly positive definite. A similar application of Lemma 3.7.1 yields that

∫∫
δ̄τ (x)δ̄τ (y)

[
min(x, y)− xy − y(1− y)

2
− x(1− x)

2
+

1

12

]
dxdy > 0.

Lemma 3.7.2. If assumptions (3.1)–(3.4), (3.13)–(3.16), (3.22), and HA,1 hold, then∣∣∣∣∣
∣∣∣∣∣ĈN (t, s)−

(
2τ(1− τ)δ(t)δ(s)

N∑
i=1

K(i/h) + C̄N (t, s)

)∣∣∣∣∣
∣∣∣∣∣ = OP (h/N1/2),

where

C̄N (t, s) = γ̄0(t, s) +

N−1∑
i=1

K

(
i

h

)
{γ̄i(t, s) + γ̄i(s, t)} (3.65)

with

γ̄i(t, s) =
1

N

N∑
j=i+1

(ηj(t)− η̄N (t)) (ηj−i(s)− η̄N (s)) , 0 ≤ i ≤ N − 1.

Proof. First we write with µi(t) = EXi(t) and observe that

γ̂i(t, s) =
1

N

N∑
j=i+1

(ηj(t)− η̄N (t)− [µ̄N (t)− µi(t)]) (ηj−i(s)− η̄N (s)− [µ̄N (s)− µj−i(s)])

=
1

N

N∑
j=i+1

(ηj(t)− η̄N (t)) (ηj−i(s)− η̄N (s))

+
1

N

N∑
j=i+1

(ηj(t)− η̄N (t))(µj−i(s)− µ̄N (s))

+
1

N

N∑
j=i+1

(µj(t)− µ̄N (t))(ηj−i(s)− η̄N (s))

+
1

N

N∑
j=i+1

(µj(t)− µ̄N (t))(µj−i(s)− µ̄N (s))

= γ̄i(t, s) + γ̂
(1)
i (t, s) + γ̂

(2)
i (t, s) + γ̂

(3)
i (t, s)

with

η̄N (t) =
1

N

N∑
`=1

η` and µ̄N (t) = µ(t) +
N − bNτc

N
δ(t).

By the triangle inequality, we have
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∣∣∣∣∣γ̂(1)

0 (t, s) +

N−1∑
i=1

K

(
i

h

)
(γ̂

(1)
i (t, s) + γ̂

(1)
i (s, t))

∣∣∣∣∣
∣∣∣∣∣

≤
∣∣∣∣∣∣γ̂(1)

0 (t, s)
∣∣∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣
N−1∑
i=1

K

(
i

h

)
γ̂

(1)
i (t, s)

∣∣∣∣∣
∣∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣
N−1∑
i=1

K

(
i

h

)
γ̂

(1)
i (s, t)

∣∣∣∣∣
∣∣∣∣∣ .

Using Theorem 3.6.1, we get ∣∣∣∣∣∣γ̂(1)
0 (t, s)

∣∣∣∣∣∣ = OP (N−1/2).

Using again the triangle inequality, we obtain that

E

∣∣∣∣∣
∣∣∣∣∣
N−1∑
i=1

K (i/h) γ̂
(1)
i (t, s)

∣∣∣∣∣
∣∣∣∣∣ ≤

N−1∑
i=1

K (i/h)E||γ̂(1)
i (t, s)||. (3.66)

Furthermore, by an application of the Cauchy–Schwarz inequality,

E||γ̂(1)
i (t, s)||≤

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

N

N∑
j=i+1

(µj−i(s)− µ̄N (s))

∣∣∣∣∣∣
∣∣∣∣∣∣E
∣∣∣∣∣∣
∣∣∣∣∣∣ 1

N

N∑
j=i+1

(ηj(t)− η̄N (t))

∣∣∣∣∣∣
∣∣∣∣∣∣ .

It is clear that

max
1≤i≤N

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

N

N∑
j=i+1

(µj−i(s)− µ̄N (s))

∣∣∣∣∣∣
∣∣∣∣∣∣ = O(1),

and by Berkes et al. (2013),

max
1≤i≤N

E

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

N

N∑
j=i+1

(ηj(t)− η̄N (t))

∣∣∣∣∣∣
∣∣∣∣∣∣ = O(N−1/2).

Combining these bounds with (3.66) and assumptions (3.13)–(3.15) gives

E

∣∣∣∣∣
∣∣∣∣∣
N−1∑
i=1

K(i/h)γ̂
(1)
i (t, s)

∣∣∣∣∣
∣∣∣∣∣ = O(h/N1/2),

and hence by Markov’s inequality,∣∣∣∣∣
∣∣∣∣∣
N−1∑
i=1

K(i/h)
ˆ
γ

(1)
i (t, s)

∣∣∣∣∣
∣∣∣∣∣ = OP (h/N1/2).

Thus we conclude∣∣∣∣∣
∣∣∣∣∣γ̂(1)

0 (t, s) +

N−1∑
i=1

K

(
i

h

)
(γ̂

(1)
i (t, s) + γ̂

(1)
i (s, t))

∣∣∣∣∣
∣∣∣∣∣ = OP (h/N1/2). (3.67)

Similarly to (3.67), we have
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∣∣∣∣∣γ̂(2)

0 (t, s) +

N−1∑
i=1

K

(
i

h

)
(γ̂

(2)
i (t, s) + γ̂

(2)
i (s, t))

∣∣∣∣∣
∣∣∣∣∣ = OP (h/N1/2). (3.68)

Using the definition of µ̄N (t) and HA,1, we obtain that

max
0≤i≤h

||γ̂(3)
0 (t, s)− τ(1− τ)δ(t)δ(s)||= O(h/N). (3.69)

The lemma now follows from (3.67)–(3.69).

Proof of Theorem 3.3.2 The proof of Theorem 3.3.2 is based on the asymptotic properties

of ĈN under HA,1. It follows from Lemma 3.7.2 that (3.26) and (3.27) hold assuming only

(3.16). We write by (3.58)

〈ZN (x, ·), ϕ̂1〉2 = 〈V 0
N (x, ·), ϕ̂1〉2 +N−1〈δN (x, ·), ϕ̂1〉2 + 2〈V 0

N (x, ·), ϕ̂1〉N−1/2〈δN (x, ·), ϕ̂1〉.

Combining Theorem 3.6.1 with the Cauchy–Schwarz inequality, we get

sup
0≤x≤1

|〈V 0
N (x, ·), ϕ̂1〉|≤ sup

0≤x≤1
||V 0

N (x, ·)||= OP (1).

Using (3.61), we conclude∫
N−1〈δN (x, ·), ϕ̂1〉2dx =

N

3
τ2(1− τ)2〈δ, ϕ̂1〉2(1 +OP (1/N)).

Theorem 3.6.1 and (3.27) yield

N1/2

∫
〈V 0
N (x, ·), ϕ̂1〉〈δN (x, ·), ϕ̂1〉dx

D→ 1

||δ||

∫
〈Γ0(x, ·), δ〉〈δτ (x, ·), δ〉dx

=

∫ {∫
Γ0(x, t)δ(t)dt

}
[(x− τ)I{x ≥ τ} − x(1− τ)]dx

=

∫∫
Γ0(x, t)δτ (x, t)dxdt.

This completes the proof of (3.29). It follows from (3.29) that

λ̂1

N1/2

{
T 0
N (1)− N

3λ̂1

τ2(1− τ)2〈δ, ϕ̂1〉2
}

D−→ 2

∫∫
Γ0(x, t)δτ (x, t)dxdt,

and therefore, (3.29) implies (3.31). Similar arguments prove (3.30) and (3.32).

If in addition we assume that h/N1/2 → 0 as N →∞, then by Lemma 3.7.2 and Dunford

and Schwartz (13), we have (3.26), (3.27), and for every fixed i ≥ 2,

λ̂i
P→ λ̄i, (3.70)



53

where λ̄2 ≥ λ̄3 ≥ . . . ≥ 0 (different from the λi, i ≥ 2),

||ϕ̂i(t)− ĉiϕ̄i||= oP (1), i ≥ 2, (3.71)

with some functions ϕ̄2, ϕ̄3, . . ., where ĉi = sign(〈ϕ̂i, ϕ̄i〉). (Of course, ϕ̄i is only defined if

λ̂i > 0.) Using again (3.58) with Theorem 3.6.1 and (3.71), we obtain that∫
〈ZN (x, ·), ϕ̂i〉2dx =

N

3
τ2(1− τ)2〈δ, ϕ̂i〉2 +OP (N1/2).

Since δ and ϕ̄i are orthogonal for all i ≥ 2, (3.71) implies 〈δ, ϕ̂i〉 = oP (1). Hence (3.33)

follows from (3.29). The results in (3.34)–(3.36) can be established similarly so the proofs

are omitted.

Proof of Remark 3.1. Let

βN (x, t) = µ(t){bNxc −Nx}+ δ∗N (t){(bNxc − k∗)I{k∗ ≤ bNxc} − x(N − k∗)}.

Using (3.59) with δN (x, t) replaced with βN (x, t) and Theorem 3.6.1, we get

TN −
1

N
||βN ||2=

∫∫
(Γ0
N (x, t))2dtdx(1 + oP (1)) (3.72)

+ 2N1/2

∫∫
Γ0
N (x, t)δ∗N (t)δ̄τ (x)dtdx(1 + oP (1)).

By the Cauchy–Schwarz inequality∫∫
Γ0
N (x, t)δ∗N (t)δ̄τ (x)dtdx = OP (||δ∗N ||). (3.73)

Elementary arguments show that

1

N
||βN ||2= ||δ̄τ ||2N ||δ∗N ||2(1 + o(1)), (3.74)

as N → ∞. If N1/2||δ∗N ||→ 0 as N → ∞ then by (3.72)–(3.74), we obtain immediately

that TN
D−→

∫∫
(Γ0(x, t))2dtdx. If N1/2||δ∗N ||→ ∞, then again by (3.72)–(3.74), we see

that TN
P−→ ∞. Since for every fixed N ,

∫∫
Γ0
N (x, t)δ∗N (t)δ̄τ (x)dtdx is normal with zero

mean and variance
∫∫

(min(x, y)−xy)δ̄τ (x)δ̄τ (y)dxdy
∫∫
δ∗N (t)δ∗N (s)C(t, s)dtds, hence (3.37)

follows. In the case when N1/2δ∗N
L2

−→ δ∗ , it follows from (3.74) that (1/N)||βN ||2→ ζ =

||δ̄τ ||2||δ∗||2> 0. Now by (3.72) and the representation of Γ0
N in (3.56), we conclude
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TN
D
= ζ(1 + o(1))

+
∞∑
`=1

λ
1/2
`

[
λ

1/2
`

∫
B2
` (x)dx+

∫
B`(x)δ̄τ (x)dx

∫
ϕ`(t)N

1/2δ∗N (t)dt

]
(1 + oP (1))

→ ζ +
∞∑
`=1

{
λ`||B`||2+2λ

1/2
` 〈B`, δ̄τ 〉〈ϕ`, δ

∗〉
}
,

which completes the proof of (3.38).

Lemma 3.7.3. If assumptions (3.1)–(3.4) hold, then

sup
0≤x≤1

∫ (
UN (x, t)−

∫ x

0
ΓN (u, t)du

)2

dt = oP (1), (3.75)

where

UN (x, t) =
1

N3/2

bNxc∑
k=1

k∑
i=1

ηi(t),

and the Gaussian processes ΓN (x, t) are defined in Theorem 3.6.1.

Proof. It is enough to verify that

sup
0≤x≤1

∫ (
UN (x, t)−

∫ x

0
VN (u, t)du

)2

dt = sup
0≤x≤1

∣∣∣∣∣∣∣∣UN (x, ·)−
∫ x

0
VN (u, ·)

∣∣∣∣∣∣∣∣2 = oP (1)

and

sup
0≤x≤1

∫ (∫ x

0
{VN (u, t)− ΓN (u, t)} du

)2

dt = oP (1).

Elementary arguments yield

∣∣∣∣UN (x, t)−
∫ x

0
VN (u, t)du

∣∣∣∣ ≤ 1

N3/2

∣∣∣∣∣∣
bNxc∑
i=1

ηi(t)

∣∣∣∣∣∣ .
It follows from Theorem 3.6.1 that

sup
0≤x≤1

∣∣∣∣∣∣
∣∣∣∣∣∣N−1/2

bNxc∑
i=1

ηi(·)

∣∣∣∣∣∣
∣∣∣∣∣∣ = OP (1),

and therefore,

sup
0≤x≤1

∣∣∣∣∣∣∣∣UN (x, ·)−
∫ x

0
VN (u, ·)du

∣∣∣∣∣∣∣∣ = OP

(
1

N

)
.

Using the Cauchy–Schwarz inequality with Theorem 3.6.1, we conclude∫ (∫ x

0
(VN (u, t)− ΓN (u, t)) du

)2

dt ≤
∫ ∫ x

0
(VN (u, t)− ΓN (u, t))2 dudt

≤
∫ ∫

(VN (u, t)− ΓN (u, t))2 dudt
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= oP (1).

Now the proof of Lemma 3.7.3 is complete.

Proof of Theorem 3.3.3 First we note that under HA,2 we have

1

N3/2

bNxc∑
k=1

Xk(t) = UN (x, t) +
bNxc
N3/2

µ(t). (3.76)

Therefore,
1

N
ZN (x, t) = UN (x, t)− xUN (1, t) +

bNxc − xN
N3/2

µ(t).

Using (3.76), we get via the Cauchy–Schwarz inequality∣∣∣∣∣
∫∫ (

1

N
ZN (x, t)

)2

dtdx−
∫∫

(UN (x, t)− xUN (1, t))2dtdx

∣∣∣∣∣
≤
∫∫ {

1

N
ZN (x, t)− [UN (x, t)− xUN (1, t)]

}2

dtdx

+ 2

∫∫ ∣∣∣∣ 1

N
ZN (x, t)− [UN (x, t)− xUN (1, t)]

∣∣∣∣ ∣∣∣∣UN (x, t)− xUN (1, t)

∣∣∣∣dtdx
≤ oP (1) + oP (1)

{∫∫
(UN (x, t)− xUN (1, t))2dtdx

}1/2

= oP (1),

since by Lemma 3.7.3 ∫∫
(UN (x, t)− xUN (1, t))2dtdx = OP (1).

It also follows from Lemma 3.7.3 that∫∫
(UN (x, t)− xUN (1, t))2dtdx

D−→
∫∫

∆2(x, t)dtdx,

which completes the proof of (3.41).

The proof of (3.42) is similar to that of (3.41) and therefore, the details are omitted.

Lemma 3.7.4. Define

IN (z, t) =

∫ z

0
ΓN (u, t)du−

∫ {∫ v

0
ΓN (u, t)du

}
dv,

where the Gaussian processes ΓN (x, t) are defined in Theorem 3.6.1. Let

QN (t, s) = 2

(∫ c

0
K(w)dw

)∫ 1

0
IN (z, t)IN (z, s)dz.
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If assumptions (3.1)–(3.4), (3.13)–(3.16), and HA,2 hold, then∣∣∣∣∣∣∣∣ 1

Nh
ĈN (t, s)−QN (t, s)

∣∣∣∣∣∣∣∣ = oP (1).

Proof. Since

X̄N (t) = µ(t) +
1

N

N∑
j=1

j∑
`=1

η`(t),

Theorem 3.6.1 yields

∣∣∣∣∣∣∣∣N−1/2(X̄N (t)− µ(t))−
∫ {∫ v

0
ΓN (u, t)du

}
dv

∣∣∣∣∣∣∣∣ = oP (1),

resulting in

max
1≤i≤N−1

∣∣∣∣∣
∣∣∣∣∣ 1

N
γ̂i(t, s)−

1

N

N∑
j=i+1

(∫ j/N

0
ΓN (u, t)du−

∫ {∫ v

0
ΓN (u, t)du

}
dv

)
(3.77)

×

(∫ (j−i)/N

0
ΓN (u, s)du−

∫ {∫ v

0
ΓN (u, s)du

}
dv

)∣∣∣∣∣
∣∣∣∣∣= oP (1).

Next we use the almost sure continuity with ΓN (0, t) = 0 to conclude

max
1≤i≤ch

∣∣∣∣∣
∣∣∣∣∣ 1

N

N∑
j=i+1

(∫ j/N

0
ΓN (u, t)du−

∫ {∫ v

0
ΓN (u, t)du

}
dv

)
(3.78)

×

(∫ (j−i)/N

0
ΓN (u, s)du−

∫ {∫ v

0
ΓN (u, s)du

}
dv

)

− 1

N

N∑
j=i+1

(∫ j/N

0
ΓN (u, t)du−

∫ {∫ v

0
ΓN (u, t)du

}
dv

)

×

(∫ j/N

0
ΓN (u, s)du−

∫ {∫ v

0
ΓN (u, s)du

}
dv

)∣∣∣∣∣
∣∣∣∣∣= oP (1).

Putting together (3.77) and (3.78), we get

max
1≤i≤ch

∣∣∣∣∣
∣∣∣∣∣ 1

N
γ̂i(t, s)−

∫ 1

i/N

[(∫ z

0
ΓN (u, t)du−

∫ {∫ v

0
ΓN (u, t)du

}
dv

)

×
(∫ z

0
ΓN (u, s)du−

∫ {∫ v

0
ΓN (u, s)du

}
dv

)]
dz

∣∣∣∣∣
∣∣∣∣∣= oP (1)

and
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max
1≤i≤ch

∣∣∣∣∣
∣∣∣∣∣
∫ 1

i/N

[(∫ z

0
ΓN (u, t)du−

∫ {∫ v

0
ΓN (u, t)du

}
dv

)

×
(∫ z

0
ΓN (u, s)du−

∫ {∫ v

0
ΓN (u, s)du

}
dv

)]
dz

−
∫ 1

0

[(∫ z

0
ΓN (u, t)du−

∫ {∫ v

0
ΓN (u, t)du

}
dv

)

×
(∫ z

0
ΓN (u, s)du−

∫ {∫ v

0
ΓN (u, s)du

}
dv

)]
dz

∣∣∣∣∣
∣∣∣∣∣= oP (1).

Since K satisfies conditions (3.14) and (3.15), the proof of Lemma 3.7.4 is complete.

Lemma 3.7.5. For every N ≥ 1 we have{
QN (t, s), 0 ≤ t, s ≤ 1

}
D
= 2

∫ c

0
K(w)dw

{ ∞∑
i,j=1

λ
1/2
i λ

1/2
j ϕi(t)ϕj(s)νi,j

}
, (3.79)

where λ1, λ2, . . . , ϕ1, ϕ2, . . . are defined (3.9) and for every i, j ≤ 1

νi,j
D
=

∫ [{∫ z

0
Wi(u)du−

∫ (∫ v

0
Wi(u)du

)
dv

}

×
{∫ z

0
Wj(u)du−

∫ (∫ v

0
Wj(u)du

)
dv

}]
dz,

where W1,W2, . . . are independent Wiener processes. Also, QN (t, s) is a non–negative

definite function for all N with probability one.

Proof. The representation in (3.79) is an immediate consequence of (3.54). It follows from

(3.79) that QN (t, s) is symmetric and QN ∈ L2 with probability one. Also for any g ∈ L2

we have∫∫
QN (t, s)g(t)g(s)dtds

=

∫ (∫ ∞∑
i=1

λ
1/2
i ϕi(t)

{∫ z

0
Wi(u)du−

∫ (∫ v

0
Wi(u)du

)
dv

}
g(t)dt

)2

dz

≥ 0,

completing the proof.

Proof of Theorem 3.3.4 The result follows immediately from the proofs of Lemmas 3.7.3

and 3.7.4.
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Proof of Theorem 3.3.5 The result in Theorem 3.3.4 and (3.43) yield that there are

processes ΓN (x, t),∆N (x, t), QN (t, s) such that

{ΓN (x, t),∆N (x, t), QN (t, s), 0 ≤ x, t, s ≤ 1} D= {Γ(x, t),∆(x, t), QN (t, s), 0 ≤ x, t, s ≤ 1}

and

max
0≤x≤1

∣∣∣∣∣∣∣∣ 1

N
ZN (x, t)−∆N (x, t)

∣∣∣∣∣∣∣∣ = oP (1) and

∣∣∣∣∣∣∣∣ 1

Nh
ĈN (t, s)−QN (t, s)

∣∣∣∣∣∣∣∣ = oP (1).

Similarly to (3.43) we define λ1,N∗ ≥ λ∗2,N ≥ . . . and random functions ϕ∗1,N (t), ϕ∗2(t), . . .

satisfying

λ∗i,Nϕ
∗
i,N (t) =

∫
QN (t, s)ϕ∗i,N (s)ds, 1 ≤ i <∞. (3.80)

Hence

max
1≤i≤d

|λ̂i − λ∗i,N |= oP (1)

and

max
1≤i≤d

||ϕ̂i − ĉiϕ∗i,N ||= oP (1),

where ĉ1, ĉ2, . . . are random signs. By construction,

{∆N (x, t),QN (t, s), λ∗1,N , . . . , λ
∗
d,N , (ϕ

∗
1,N (t))2, . . . , (ϕ∗d,N (t))2, 0 ≤ x, t, s ≤ 1}

D
= {∆(x, t), QN (t, s), λ∗1, . . . , λ

∗
d, (ϕ

∗
1(t))2, . . . , (ϕ∗d(t))

2, 0 ≤ x, t, s ≤ 1},

which completes the proof.
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[5] A. Aue, S. Hörmann, L. Horváth, and M. Reimherr. Break detection in the covariance
structure of multivariate time series models. The Annals of Statistics, 37:4046–4087,
2009.



59

[6] O. E. Barndorff-Nielsen and N. Shephard. Econometric analysis of realized covariance:
High frequency based covariance, regression and correlation in financial economics.
Econometrica, 72:885–925, 2004.
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Figure 3.1. Five cumulative intraday returns constructed from the intraday prices
displayed in Figure 3.2.
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Figure 3.2. Five functional data objects constructed from the 1-minute average price of
Disney stock. The vertical lines separate the days.
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Figure 3.3. P-values for consecutive segments of length N of the price curves Pn(t) of the
Disney stock computed using TN with v = .9. The horizontal line shows the 5% threshold.
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Table 3.1. Empirical sizes for the iid BM and FAR(1) DGPs. We used h = N1/2 and the
flat–top kernel (3.50). The standard error is approximately 0.9% for the 10% level and 0.4
% for the 5% level.

DGP BM FAR(1)
N 100 250 100 250

Nominal 10% 5% 10% 5% 10% 5% 10% 5%

Statistics TN
v .85 13.9 5.6 13.3 5.3 12.3 4.2 11.8 4.1

.90 12.6 5.4 12.5 5.2 11.8 3.7 11.0 4.1

.95 12.7 4.6 12.0 4.9 11.3 3.6 10.4 3.7

Statistics MN

v .85 9.7 2.2 11.4 3.6 11.4 2.3 11.8 4.2
.90 8.8 1.5 10.5 3.0 9.4 1.6 11.2 4.0
.95 8.2 0.9 9.9 2.9 8.5 1.2 10.1 3.4

Statistics T ∗N
v .85 11.3 4.9 10.8 4.6 10.2 3.4 10.3 3.7

.90 11.2 4.4 10.7 4.8 10.0 3.4 10.3 3.4

.95 11.8 4.4 11.1 4.5 10.6 3.2 10.0 3.6

Statistics M∗N
v .85 6.3 0.7 8.8 2.6 11.0 2.1 11.2 4.2

.90 7.0 0.8 8.9 2.3 8.9 1.3 10.7 4.0

.95 6.9 0.7 8.8 2.7 8.2 1.1 10.0 3.2

Statistics T 0
N

v .85 10.4 3.8 10.3 3.9 10.1 2.8 9.2 3.3
.90 9.2 2.3 9.0 2.8 7.7 1.5 8.6 2.9
.95 4.6 0.8 7.6 1.4 5.0 0.1 7.2 1.3

Statistics M0
N

v .85 6.1 0.5 6.7 2.1 6.7 1.5 7.7 2.8
.90 4.2 0.8 5.4 1.7 5.8 1.0 7.2 2.4
.95 2.9 0.3 5.6 1.4 3.3 0.0 5.1 0.9

Statistics T 0
N (AM)

v .85 11.9 5.4 10.2 5.1 12.1 7.1 11.7 6.1
.90 10.3 5.7 9.2 4.8 11.7 7.2 9.8 4.9
.95 9.9 4.3 9.0 4.7 11.2 6.9 9.7 5.3

Statistics M0
N (AM)

v .85 8.8 5.1 10.7 4.6 12.7 7.7 10.8 5.8
.90 8.6 5.3 10.0 4.5 12.1 7.3 10.5 5.4
.95 8.5 4.7 9.8 5.2 11.9 7.1 10.6 5.4
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Table 3.2. Empirical power for change point and I(1) alternatives. We used h = N1/2 and
the flat–top kernel (3.50).

DGP Change point I(1)
N 100 250 100 250

Nominal 10% 5% 10% 5% 10% 5% 10% 5%

Statistic TN
v .85 80.7 56.4 99.6 98.1 99.3 96.5 99.2 96.3

.90 80.1 56.6 99.5 97.6 99.4 95.8 99.2 96.1

.95 79.2 54.4 99.4 97.6 99.1 96.2 99.2 96.3

Statistic MN

v .85 50.6 14.7 95.2 84.1 93.8 68.3 97.7 92.5
.90 46.7 11.0 94.7 82.7 92.8 64.5 97.6 92.4
.95 79.2 54.4 99.4 97.6 90.9 61.4 99.2 96.3

Statistic T ∗N
v .85 77.2 52.1 99.3 97.6 98.9 95.7 98.0 94.2

.90 77.8 54.3 99.5 97.5 99.2 95.8 98.4 95.7

.95 77.5 53.7 99.4 97.6 99.1 96.0 99.1 96.1

Statistic M∗N
v .85 39.6 8.5 93.7 78.1 93.5 67.9 94.9 88.2

.90 39.9 7.7 93.9 79.6 92.7 63.9 96.2 89.3

.95 40.8 6.8 94.5 79.8 90.5 61.2 96.6 90.0

Statistic T 0
N

v .85 85.8 55.1 99.8 98.9 99.5 98.1 98.6 96.2
.90 86.6 52.0 100 99.6 99.7 98.8 99.3 98.7
.95 74.7 31.3 99.9 98.4 100 96.0 99.9 99.8

Statistic M0
N

v .85 35.0 7.8 97.2 77.7 86.1 75.2 97.9 92.7
.90 31.0 5.9 98.0 71.5 90.9 73.4 99.2 95.4
.95 21.1 4.8 93.0 63.0 96.8 75.9 100 98.5

Statistic T 0
N (AM)

v .85 96.6 91.6 100 100 99.6 99.3 99.8 99.7
.90 94.9 85.5 100 100 100 99.9 100 100
.95 82.5 70.0 100 100 100 100 100 100

Statistic M0
N (AM)

v .85 85.3 71.3 99.9 99.8 93.4 85.0 99.8 99.3
.90 68.7 52.3 99.7 98.8 96.3 90.3 99.9 99.9
.95 43.7 28.5 97.0 92.0 98.6 96.3 100 100



CHAPTER 4

TESTING EQUALITY OF MEANS WHEN

THE OBSERVATIONS ARE FROM

FUNCTIONAL TIME SERIES 3

There are numerous examples of functional data in areas ranging from earth science

to finance where the problem of interest is to compare several functional populations. In

many instances, the observations are obtained consecutively in time, and thus the classical

assumption of independence within each population may not be valid. In this chapter,

we derive a new, asymptotically justified method to test the hypothesis that the mean

curves of multiple functional populations are the same. The test statistic is constructed

from the coefficient vectors obtained by projecting the functional observations into a finite

dimensional space. Asymptotics are established when the observations are considered to be

from stationary functional time series. Although the limit results hold for projections into

arbitrary finite dimensional spaces, we show that higher power is achieved by projecting

onto the principle components of empirical covariance operators which diverge under the

alternative. Our method is further illustrated by a simulation study as well as an application

to electricity demand data.

4.1 Introduction

To this day, a frequently used tool to analyze multiple populations is the one–way

analysis of variance (ANOVA) in which the means of k populations are compared. For

scalar and vector valued data, this problem has been extensively studied under numerous

conditions, and we refer to Anderson (2003) for a review of the subject. The methods

developed therein are suitable to address a host of modern statistical questions; however, it

is of increasing interest to consider data which take the form of functions or curves for which

finite dimensional approaches are not appropriate. For this reason, the theory of functional

data analysis has been steadily growing in recent years and much effort has been put forth

to adapt classical statistical procedures, such as ANOVA, for functional data. In order to

3The content of this chapter is based on joint research with Lajos Horváth.
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formally state the one–way functional analysis of variance (FANOVA) problem, we assume

that we have observations from k functional populations which satisfy the one–way layout

design

Xi,j(t) = µi(t) + ηi,j(t), t ∈ [0, 1], 1 ≤ i ≤ k and 1 ≤ j ≤ Ni, (4.1)

where Xi,j is the jth observation from the ith population, µi is the common mean function

of the ith population, and ηi,j is a random error function satisfying

Eηi,j(t) = 0, t ∈ [0, 1], 1 ≤ i ≤ k, and 1 ≤ j ≤ Ni. (4.2)

The assumption that t ∈ [0, 1] is made without loss of generality. We also assume that

observations from separate populations are independent, namely

the error sequences {ηi,j , 1 ≤ j ≤ Ni} are independent. (4.3)

We wish to test the null hypothesis H0 : µ1(·) = µ2(·) = . . . = µk(·), where equality

holds in the L2 sense, versus the general alternative HA : H0 does not hold. Assuming two

independent populations based on independent random functions, Fan and Lin (1998) and

Hall and Keilegom (2007) developed testing procedures. Testing for differences between the

means of several populations, Laukaitis and Račkauskas (2005), Abramovich and Angelini

(2006), Antoniadis and Sapatinas (2007), and Mart́ınez–Camblor and Corral (2011) expand

the observations using wavelets and the tests are based on the wavelet coefficients. Due to

the complexity of the distribution of the test statistics used, the critical values are obtained

by resampling. Cuevas et al. (2004) developed a test statistic using the L2 norm of the

difference between the population means and the total mean, which was a direct analog of

the classical F–test. Again in this case, the critical values of the test statistic could not

be computed explicitly, and a Monte–Carlo method is proposed. Many of these results

are summarized in the recent book of Zhang (2013). For some applications of functional

analysis of variance, we refer to Hooker (2007) and Drignei (2010).

Outside of the difficulty to implement resampling and Monte–Carlo procedures involved

in many of the currently available tests, the assumption of independence within each

population is often not valid for functional data which are obtained sequentially over time,

i.e. as observations of a functional time series. This is frequently the case for econometric and

geological data where functional data objects are often obtained by dividing long, continuous

records into smaller hourly or daily observations. The problem of testing the homogeneity

of mean curves from dependent functional populations has received little attention other

than the two sample case (cf. Horváth, Kokoszka, and Reeder (2013)). The goal of the
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present chapter is to provide a new asymptotic test of H0 which is both easy to implement,

by not relying on resampling or Monte–Carlo methods to obtain critical values, and also

accommodates the case of weak dependence within each functional population.

The rest of the chapter is organized as follows. In Section 4.2, we introduce the

mathematical framework used to model the errors terms in (4.1) and develop test statistics

along with their Gaussian asymptotics under H0. In Section 4.3, we discuss the behavior

of the test statistics under the alternative. Section 4.4 contains a simulation study which

explains the implementation of the testing procedure and investigates the size and power in

case of finite sample sizes. Section 4.5 provides a detailed study of the electricity demand

in Adelaide, Australia. The proofs of the main results are given in Sections 4.6 and 4.7.

Some technical lemmas used in Sections 4.6 and 4.7 are in the appendices.

4.2 Main results

Throughout this chapter, the maximum norm of vectors and matrices will be denoted

by |·| and the L2 norm is given by ‖h‖= (〈h, h〉)1/2, where 〈f, h〉 =
∫
f(t)h(t)dt denotes

the inner product. We write
∫

for
∫ 1

0 . In order to lighten the notation, we write f for

f(t) when it does not cause confusion. To establish the asymptotic properties of the test

statistics proposed below, we will require that the error terms ηi,j of (4.1) be in the class of L2

m–decomposable Bernoulli shifts which are defined as follows: Let ηi = {ηi,j(t)}∞j=−∞, 1 ≤

i ≤ k. We assume that for all 1 ≤ i ≤ k

ηi forms a sequence of Bernoulli shifts, i.e. ηi,j(t) = gi(εi,j , εi,j−1, ...)(t) (4.1)

for some nonrandom measurable function gi : S∞ 7→ L2 and i.i.d. random

innovations εi,j , −∞ < j <∞, with values in a measurable space S,

ηi,j(t) = ηi,j(t, ω) is jointly measurable in (t, ω) (−∞ < j <∞), (4.2)

E‖ηi,0‖2<∞, (4.3)

the sequence {ηi} can be approximated by `–dependent sequences (4.4)

{ηi,j,`},−∞ < j <∞, 1 ≤ ` <∞ in the sense that
∞∑
`=1

(E‖ηi,j − ηi,j,`‖2)1/2 <∞

where ηi,j,` is defined by ηi,j,` = gi(εi,j , εi,j−1, ..., εi,j−`+1, ε
∗
i,j,`),

ε∗i,j,` = (ε∗i,j,`,j−`, ε
∗
i,j,`,j−`−1, . . .),where the ε∗i,j,`,k’s are independent copies of
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εi,0, independent of {εi,j , 1 ≤ i ≤ k,−∞ < j <∞}.

It follows from (4.1) that {Xi,j}∞j=−∞ is a stationary and ergodic sequence. The frame-

work outlined for the error terms in (4.1)–(4.4) is very flexible as long as the process is

thought to be driven by a sequence of underlying independent innovations. For example, we

may take the space S to be R and ηi,j(t) =
∑∞

k=0 εi,j−kfi,k(t), where the fi,k are deterministic

functions in L2 decaying in k sufficiently fast to make (4.4) hold. Also, we may take ηi,j to

be a standard linear process in L2 (cf. Bosq 2000) in which case it would be natural to take

S = L2.

Processes satisfying (4.1)–(4.4) are called L2 m–decomposable processes by Hörmann

and Kokoszka (2010). Aue et al. (2012) show that many stationary time series models

based on independent innovations satisfy assumptions (4.1)–(4.4). Their examples include

autoregressive, moving average and linear processes in Hilbert spaces, the nonlinear func-

tional ARCH(1) model (cf. Hörmann et al. (2012)), and bilinear models (cf. Hörmann and

Kokoszka (2010)). Scalar processes satisfying (4.4) were studied in Wu and Min (2005) and

the condition serves as an alternative to the classical mixingale assumption; see Hannan

(1973). One weakness of the model (4.1)–(4.4) is that it is in practice impossible to know

whether dependent errors are driven by underlying independent innovations. Since one

of the purposes of assuming (4.1)–(4.4) is to guarantee the central limit theorem for the

errors, one could conceive of trading out these assumptions for other weak dependence

models, like near epoch dependence or stationary β-mixing (cf. Pötscher and Prucha (1991)

and Doukhan et al. (1995), respectively), which allow for the central limit theorem without

relying on such structure. For our results, it is required that certain Bartlett type covariance

estimators be consistent in L2, which as of yet has only been established under (4.1)–(4.4).

The main idea behind our testing procedure is a dimension reduction technique in which the

infinite dimensional observations Xi,j(t) are projected onto a suitably chosen finite dimen-

sional space. Suppose this space is spanned by d orthonormal functions {ϕ1, ϕ2, . . . , ϕd}.

These functions should be chosen in such a way that both the finite dimensional projec-

tions of the Xi,js accurately represent the original observations, and the test statistics

based on these projections have high power to detect HA. The former requirement is

a familiar one from finite dimensional data analysis and it is typically addressed using

principle component analysis. A large amount of research has been done to extend the

ideas of principle component analysis to functional data; see Ramsay and Silvermann

(2005), Ferraty and Vieu (2006), and Horváth and Kokoszka (2012) for reviews of such

work. Following Horváth, Kokoszka and Reeder (2013), instead of working with covariance
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functions Cov(Xi,1(t), Xi,1(s)) to generate the principle component basis, our method uses

the long-run covariances

Di(t, s) = Cov(Xi,1(t), Xi,1(s)) +
∞∑
`=2

[Cov(Xi,1(t), Xi,`(s)) + Cov(Xi,1(s), Xi,`(t))],

1 ≤ i ≤ k. This choice is motivated by the fact that our test statistics are developed from

the projections of
∑Ni

j=1Xi,j(t) and so, since Di is the asymptotic covariance function of

this sum, projecting onto its eigenfunctions gives asymptotically optimal finite dimensional

representations. We do not wish to assume, however, that the long-run covariances are

homogenous across the populations, and thus we use a weighted sum of the Dis. Suppose

that

lim
N→∞

Ni

N
= ai > 0, where N = N1 +N2 + . . .+Nk, (4.5)

which means that the proportion of observations sampled from each population does not

degenerate as the sampling progresses. It follows that the function

D(t, s) =
k∑
i=1

aiDi(t, s) (4.6)

is non–negative definite so there are eigenvalues λ1 ≥ λ2 ≥ . . . ≥ 0 and corresponding

orthonormal functions {ϕ`}∞`=1 satisfying

λiϕi(t) =

∫
D(t, s)ϕi(s)ds (4.7)

(cf. Debnath and Mikusiński (2005), p. 186). In order to have uniquely defined eigenvalues

and one-dimensional eigenspaces, we assume

λ1 > λ2 > . . . > λd > λd+1 > 0, (4.8)

which is a widely used assumption in functional data analysis. We would then like to take

ϕ1, ϕ2, . . . , ϕd of (4.7) as the basis for the projections. Since these functions are defined by

the unknown D(t, s), they must be estimated from the sample.

In this chapter, we propose two Bartlett–type estimators forDi(t, s). Using the combined

sample mean X̄··(t) = 1
N

∑k
i=1

∑Ni
j=1Xi,j(t), we define the sample autocovariance functions

γ̃i,`(t, s) =
1

Ni

Ni∑
j=`+1

(
Xi,j(t)− X̄··(t)

) (
Xi,j−`(s)− X̄··(s)

)
.

and the corresponding long-run covariance function estimators
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D̃Ni,i(t, s) = γ̃i,0(t, s) +

Ni−1∑
`=1

K (`/h) (γ̃i,`(t, s) + γ̃i,`(s, t)) .

This gives the first estimator of D,

D̃N (t, s) =
k∑
i=1

Ni

N
D̃Ni,i(t, s). (4.9)

Similarly, using

X̄i·(t) =
1

Ni

Ni∑
j=1

Xi,j(t),

the sample means computed within each population, we define

γ̂i,`(t, s) =
1

Ni

Ni∑
j=`+1

(
Xi,j(t)− X̄i·(t)

) (
Xi,j−`(s)− X̄i·(s)

)
,

D̂Ni,i(t, s) = γ̂i,0(t, s) +

Ni−1∑
`=1

K (`/h) (γ̂i,`(t, s) + γ̂i,`(s, t))

and

D̂N,p(t, s) =

k∑
i=1

Ni

N
D̂Ni,i(t, s). (4.10)

In an analogy with the simple one–way ANOVA test for univariate data, the estimator D̂N,p

is a measure of the within-population covariation and will converge to D regardless of the

truth or falsity of H0. On the other hand, D̃N is a measure of overall covariation and will

converge to D only under H0. The kernel K satisfies

K(0) = 1, (4.11)

K(u) = 0 if u > c with some c > 0, (4.12)

and

K is continuous on [0, c], where c is given in (4.12). (4.13)

We require that the window (or smoothing parameter) h satisfy

h = h(N)→∞ and
h(N)

N
→ 0, as N →∞. (4.14)

To prove the consistency of Bartlett type kernel estimators, the condition

lim
`→∞

`(E‖ηi,j − ηi,j;`‖2)1/2 = 0 (4.15)
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must be assumed in addition to (4.4). Now to form the empirical score vectors, we use the

eigenfunctions associated with the first d largest eigenvalues of D̂N,p or D̃N defined as

λ̃iϕ̃i(t) =

∫
D̃N (t, s)ϕ̃i(s)ds (4.16)

and

λ̂iϕ̂i(t) =

∫
D̂N,p(t, s)ϕ̂i(s)ds. (4.17)

Let

ξ̃i,j = (〈Xi,j , ϕ̃1〉, 〈Xi,j , ϕ̃2〉, . . . , 〈Xi,j , ϕ̃d〉)T

denote the vector of scores which define the projection of Xi,j into the space spanned by

ϕ̃1, ϕ̃2, . . . , ϕ̃d. We define similarly

ξ̂i,j = (〈Xi,j , ϕ̂1〉, 〈Xi,j , ϕ̂2〉, . . . , 〈Xi,j , ϕ̂d〉)T .

The averages of the empirical score vectors within each population are defined as

ξ̃i· =
1

Ni

Ni∑
j=1

ξ̃i,j and ξ̂i· =
1

Ni

Ni∑
j=1

ξ̂i,j ,

1 ≤ i ≤ k. We may then estimate the common mean vector of the scores under H0 with

either

ξ̃·· =

(
k∑
i=1

NiΣ̃
−1
i

)−1 k∑
i=1

NiΣ̃
−1
i ξ̃i· or ξ̂·· =

(
k∑
i=1

NiΣ̂
−1
i

)−1 k∑
i=1

NiΣ̂
−1
i ξ̂i·,

where

Σ̃i =

{∫∫
D̃Ni,i(t, s)ϕ̃`(t)ϕ̃j(s)dtds, 1 ≤ j, ` ≤ d

}
and

Σ̂i =

{∫∫
D̂Ni,i(t, s)ϕ̂`(t)ϕ̂j(s)dtds, 1 ≤ j, ` ≤ d

}
,

1 ≤ i ≤ k. The definitions of ξ̃·· and ξ̂·· assume that Σ̃i and Σ̂i are nonsingular, which

holds asymptotically with probability tending to one if

for each 1 ≤ i ≤ k the function Di(t, s) is (strictly) positive definite. (4.18)

Our testing procedure may then be based on either

T̃N =
k∑
i=1

Ni

(
ξ̃i· − ξ̃··

)T
Σ̃
−1
i

(
ξ̃i· − ξ̃··

)
or T̂N =

k∑
i=1

Ni

(
ξ̂i· − ξ̂··

)T
Σ̂
−1
i

(
ξ̂i· − ξ̂··

)
.
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The first result of our chapter shows that both T̃N and T̂N satisfy the same limit theorem

under the null hypothesis.

Theorem 4.2.1. If H0, (4.1)–(4.5), (4.8), and (4.11)–(4.15) are satisfied, then we have

T̂N
D→ χ2(d(k − 1)) (4.19)

and

T̃N
D→ χ2(d(k − 1)), (4.20)

where χ2(d(k − 1)) stands for a χ2 random variable with d(k − 1) degrees of freedom.

The proof of Theorem 4.2.1 is postponed to Section 4.6.

4.3 Consistency of the test statistics

Let

µ̄(t) =

k∑
i=1

aiµi(t).

If the projections are defined via the eigenfunctions defined in (4.16), the condition for

consistency is simple.

Theorem 4.3.1. If HA, (4.1)–(4.5), (4.8), and (4.11)–(4.15) are satisfied and

〈µi − µ̄, ϕi〉 6= 0 for some 1 ≤ i ≤ d, (4.1)

then T̃N →∞ in probability.

No condition like (4.1) is needed, however, if the projection functions are the eigenfunc-

tions of D̃N,p. We show in Section 4.7 that D̃N (t, s) is close to

D∗N (t, s) =

(
2
∞∑
`=1

K(`/h)

)
k∑
i=1

Mi(t)Mi(s) +D(t, s), (4.2)

where

Mi(t) = µi(t)− µ̄(t). (4.3)

Since
∑k

i=1Mi(t)Mi(s) is a non-negative definite function, one can find orthonormal func-

tions κ1, κ2, . . . , κm,m ≤ k − 1 and positive numbers e1, e2, . . . , em such that

k∑
i=1

Mi(t)Mi(s) =

m∑
i=1

eiκi(t)κi(s).
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In order that the eigenfunctions of D∗N be identifiable up to a sign, we assume that

e1 > e2 > . . . > em. (4.4)

Since
∑∞

`=1K(`/h) → ∞, as h → ∞, the first m largest eigenvalues and eigenfunctions

of D∗N will be determined asymptotically by the term
∑m

i=1 eiκi(t)κi(s). Let A0 denote

the span of κ1, . . . , κm and B̄ be the orthogonal complement of the set B. We say that

D has regular maxima of order d − m with respect to A0 if there exist constants r1 >

r2 > . . . > rd−m > 0 and orthonormal functions g1, g2, . . . , gd−m such that with Ai =

span(κ1, . . . , κm, g1, . . . , gi), 1 ≤ i ≤ d−m,

ri = sup
g∈Āi−1:‖g‖=1

∫∫
g(t)D(t, s)g(s)dtds =

∫∫
gi(t)D(t, s)gi(s)dtds 1 ≤ i ≤ d−m.

We note that the functions g1, g2, . . . , gd−m are unique up to signs.

Theorem 4.3.2. If HA, (4.1)–(4.5), (4.11)–(4.15), and (4.4) are satisfied, D has regular

maxima of order d−m with respect to A0 and h/N1/2 → 0, then T̂N →∞ in probability.

If d ≤ m, i.e. the number of principle components used is less than the dimension of the

span of the population means, then there is no restriction on the covariance function D.

Notice that 1 ≤ m ≤ k − 1.

It is a standard assumption in functional principle component analysis that the eigen-

functions of a covariance operator are associated with unique eigenvalues. Therefore, the

assumption that D has regular maxima is along the lines of standard assumptions in the

literature. Also, under the assumptions of Theorem 4.3.2, we have that there are no ties

among the first d largest eigenvalues of D∗N .

4.4 Implementation of the test and a simulation study

The biggest obstacle in the implementation of Theorem 4.2.1 is the estimation of the

long-run covariance kernel in (4.9) and (4.10). Several issues must be considered. The

choice of the kernel K(·) and the smoothing bandwidth h are the most obvious. The issues

of bandwidth and kernel selection have been extensively studied in the statistical literature

over the last three decades. For scalar data, perhaps the best known contributions are

those of Andrews (1991) and Andrews and Monahan (1992) who introduced data-driven

bandwidth selection techniques. While these approaches possess optimality properties in

general regression models with heteroskedastic and correlated errors, they are not optimal

in all specific applications. This chapter focuses on the derivation and large sample theory
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for a functional analysis of variance test, and hence we cannot present here a comprehensive

study of the finite sample properties of the covariance function estimation, which are still

being investigated for scalar time series. We do wish to offer some practical guidance on this

aspect of the procedure and report approaches which worked well for the data-generating

processes we considered. It is argued in Politis (2003) that the flat top kernel

K(t) =


1, 0 ≤ t < 0.1
1.1− |t|, 0.1 ≤ t < 1.1
0, |t|≥ 1.1.

(4.1)

has better properties than the Bartlett or the Parzen kernels due to its smaller bias. In our

results, we used the flat top kernel of (4.1). Following the arguments in Andrews (1991), one

can show that the optimal bandwidth h in terms of minimizing the integrated mean squared

error has the form h∗ = cBN
1/3 for the Bartlett kernel and h∗ = cPN

1/5 for the Parzen

kernel. The constants cB and cP not only depend on the kernels but they are very difficult

functionals of the higher order covariance structure of {Xi,j , 1 ≤ j <∞}. Our simulations

showed that h = N1/4 proves satisfactory when the observations are independent or weakly

dependent (functional autoregressive processes) and the results (empirical sizes and power

functions) are stable for this choice of h, i.e. the results of the simulations change little

for small changes in h. Throughout this section, we used h = N1/4 whenever the flat top

kernel was used. Once the kernel and the bandwidth have been selected, the empirical

eigenvalues and eigenfunctions can be computed using (4.16) or (4.17). To select d, we

use the standard “cumulative variance” approach recommended by Ramsay and Silverman

(2005) and Horváth and Kokoszka (2012); d is computed so that roughly v% of the sample

variance is explained by the first d principal components. In the independent case, for

example, this amounts to taking d = dv such that

λ̂1 + · · ·+ λ̂dv∫
D̂N,p(t, t)dt

≈ v,

where the λ̂i’s are defined in (4.17) and D̂N,p is defined in (4.9). A general recommendation

is to use v equal to .90. This is the choice we have made for the analysis below. The results

of the simulations and applications below changed little for other values of v between .80

and .95. All simulations and the calculations for the applications were performed using the

R programming language (R development core team (2008)).
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4.4.1 Finite sample size

Using a simulation study, we first compare the empirical size of the test implemented

as described above. Under H0, we can assume without loss of generality that in (4.1)

µi(t) = 0, and hence we use Xi,j = ηi,j . We consider three data-generating processes

(DGPs) to generate the errors terms ηi,j . In the case IID we use the sequence

ηi,j(t) = Bi,j(t), t ∈ [0, 1], 1 ≤ i ≤ k, 1 ≤ j ≤ N, (4.2)

where {Bi,j}Nj=1, 1 ≤ i ≤ k are independent identically distributed Brownian bridges. To

study the size of the test when the populations exhibit temporal dependence, we consider

error sequences which follow the functional autoregressive process of order one defined by

the equation

ηi,j(t) =

∫
f(t, u)ηi,j−1(u)du+Bi,j(t), t ∈ [0, 1], 1 ≤ i ≤ k, 1 ≤ j ≤ N, (4.3)

which we refer to as FARf = FARf (1). In order to generate ηi,0, we use a burn in

sample of length 100 according to (4.3) which starts from an independent innovation. It

is shown in Bosq (2000) that if ||f ||< 1, then (4.3) has a unique stationary and ergodic

solution. In this section, we will consider two different kernels: ψ1(t, s) = min(t, s) and

ψ2(t, s) = c exp
(
(t2 + s2)/2

)
. The simulations are performed with c = .3416 so that

||ψ2||≈ 1/2. For comparison ||ψ1||≈ 1/3. To obtain the results below, we used the

empirical projection functions defined in (4.17), respectively. Each DGP was simulated

one thousand times independently for each value of N , and the percentage of rejections of

the null hypothesis is reported when the significance levels are 10%, 5% and 1% in Table

4.1. Based on these results, we reach the following conclusions:

(1) When the populations are comprised of independent observations, the test exhibits close

to nominal sizes even for small values of N . Also the value of k has little effect on the size

in this case.

(2) When the samples are comprised of dependent observations, the size of the test may

be inflated for small values of N or when k is large and/or the dependence within the

populations is strong. This problem is ameliorated by taking a larger sample and good size

can be achieved even for large k and fairly strong dependence.

(3) If it can be assumed that the population samples under study are comprised of inde-

pendent or weakly dependent observations, then we have no reservations about the use of

the test. If the temporal dependence within the samples is not too strong and k is small,

then the test may be applied to the data without reservations. However, if the dependence
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within the samples is suspected to be quite strong and/or the number of populations under

study is large, then we recommend that the test only be applied if a sufficiently large sample

may be obtained.

We also investigate the size of the test in finite samples when the underlying population

covariance functions are heterogeneous. A large number of possible DGPs could be con-

sidered here. We focus on two examples, one for each of the independent and dependent

cases, which illustrate the theory presented above and provide new insights relative to the

simulations we have already performed. In our own studies in the case of heterogeneous

covariances, we observed similar behavior as above when the number of populations k was

changed, and thus we hold k = 3 for this case. In the heterogenous independent case (HIID),

we will assume that k = 3, η1,j(t) = Wj(t), η2,j(t) = B1,j(t), and η3,j(t) = 2B2,j(t), where

t ∈ [0, 1], 1 ≤ j ≤ N , {Wj}Nj=1 are i.i.d. Wiener processes, and Bi,j are defined above. In the

heterogenous dependent case (HDEP), we take the sequences η1,j following a FARψ1 , η2,j

following a FARψ2 , and η3,j(t) = .5η3,j−1(t) + B3,j(t), where as before a burn in sample of

100 was used starting from an independent innovation. In each case, the covariances differ

significantly across the three populations. Again each DGP was simulated 1000 times and

the percentage of rejections of H0 is reported when the nominal levels were 10%, 5% and

1%. The results are given in Table 4.2, from which we can draw the following conclusions:

(1) If the observations form a simple random sample, then heterogeneous covariances may

inflate the size of the test slightly; however, the empirical rejection rate was close to the

nominal levels even for small values of N . Similar conclusions were drawn for other values

of k which we considered (4 ≤ k ≤ 10).

(2) If the observations exhibit temporal dependence, then good size is achieved in the case of

heterogeneous covariances as long as the sample size is sufficiently large and the dependence

within each population is not too strong. If either of these two conditions are not met, then

the size may be inflated.

4.4.2 Power study

We now turn to the study of the power of the test in finite samples. The number of

possible alternatives which could be considered to study the power of the FANOVA test is

enormous, since the variables for the experiment include the choices for the population mean

functions under HA, how much dependence is allowed within the populations, and how many

populations k which are used. Given the consideration of space, we cannot possibly pursue

even a fraction of these possible alternatives here, and thus we focus in this section on a

few examples which seem plausible for real data and highlight the most interesting results
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of our own more thorough simulations. It was confirmed by our simulations that in most

situations, the power of the test is increasing with k. In this section, we focus on the “worst

case” other than the well studied two sample problem of k = 3. We consider five different

regimes for the mean curves themselves which satisfy HA: (M1) µi(t) = t(1− t) if i = 1 and

0 if i = 2, 3; (M2) µi(t) = .1 sin(iπt), i = 1, 2, 3; (M3) µi(t) is t5(1− t), if i = 1, t3(1− t)3,

if i = 2, t(1 − t)5, if i = 3; (M4) µi(t) = i/10, if i = 1, 2, 3; (M5) µi(t) = i/20, i = 1, 2, 3

for t ∈ [0, 1]. Case (M1) corresponds to the situation where only one of the mean curves is

different from the others. In Case (M2), the mean curves each fluctuate around zero by the

same scale but exhibit different frequencies. In Case (M3), the mean curves exhibit small

deviations, however, they have vastly different shapes. In Cases (M4) and (M5), the mean

curves are simply different scalars, yet these represent the realistic data scenario when the

differences among observed curves across some functional populations are simply level shifts.

The observations are then constructed using expression (4.1) with ηi,j(t) following both (4.2)

and (4.3). In the interest of space, under (4.3), we only consider the kernel ψ2, since this is

the example with more dependence and gives more contrast with the i.i.d. example. We used

the empirical projection functions defined in (4.16). Again each data-generating process is

simulated 1000 times and the rejection rate of H0 is reported when the significance level

is 10%, 5%, and 1%. Table 4.3 shows the results of these simulations. We summarize the

results as follows. When the errors are independent, the test has good power to detect

even small deviations in the mean curves. When the magnitude of the deviations between

the mean curves were as small as 1/20, which is around 1/5th the size of the median of

sup0≤t≤1|B(t)|, the test exhibited good power to detect HA given a large enough sample size.

As expected, the power of the test was not as high in case of dependent errors. However,

when the magnitude of the deviations between the mean curves is moderate to large, the

test still performs well despite fairly strong dependence. If the magnitude of the deviations

between the means is small and the sequence exhibits strong dependence, then a large

sample is necessary to detect the difference. The power is improved when the dependence

in the error sequence is weakened.

4.5 Applications–electricity demand in Adelaide, Australia

In order to illuminate how our test may be used, we consider a real data example

of the daily electricity demand curves constructed from half–hourly measurements of the

electricity demand in Adelaide, Australia from 7/6/1997 to 3/31/2007. These data have

been made publicly available by Shang and Hyndman (2013) as part of the fds package in

R. Although each day is only comprised of 48 observations, it is easy to imagine that these
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observations are simply a sample from an underlying continuous curve which represents

the electricity demand throughout the day, and hence it is more appropriate to perform

functional data analysis on the continuous curves constructed by interpolating the data

points than using multivariate analysis. Multivariate analysis in this context ignores the fact

that the measurements are taken from an underlying curve. Five of such curves constructed

using linear interpolation are shown in Figure 4.1. It is argued by Magnano and Boland

(2007) that the cost of unserved energy can be valued at thousands of dollars per MWh,

and hence there is an incentive to develop accurate models of the daily demand in order

to reduce excess electricity generation. A cursory examination of the data set confirms

that there are many patterns to be found in the daily demand curves. For example, on

the weekdays (Monday through Friday) there seems to be a fairly stable pattern where the

lowest demand is observed around 3:30am to 4:30am and the peak demand occurs around

3:30pm. In contrast, on the weekends, the lowest demand seems to come a bit later at

around 5:00am on average and the peak demand is not quite as high as on the weekdays

and typically occurs later at around 4:30pm. Furthermore, there seem to be differing trends

in the demand according to the season. The functional analysis of variance test can be used

to shed some light on these data by providing a significance test to differentiate which

days and which seasons exhibit differing electricity demand curves on the average. Instead

of working with the demand curves themselves, we work with the log differenced demand

curves defined below.

Definition 4.5.1. Suppose Dn(t) is the electricity demand at time t on day n for t ∈

[0, 1], n = 1, . . . , N . The functions Rn(t) = lnDn(t) − lnDn(0), t ∈ [0, 1], n = 1, . . . , N,

are called the log differenced demand curves (LDDCs).

The LDDCs computed from the five curves in Figure 4.1 are shown in Figure 4.2. Since

the LDDCs have the same shape as the demand curves, they make suitable substitutes

for examining the patterns in the daily fluctuations of electricity demand. The reasons

for working with the LDDCs are as follows. Due to an overall linearly increasing trend in

the electricity demand over the observation period and the effects of seasonal and acute

changes in temperature, the demand curves themselves do not appear to be stationary. In

the LDDCs, level stationarity is enforced since each curve starts from zero. Furthermore,

taking the logarithm helps to control any scale inflation.

To begin, we consider the problem of testing if the mean of the LDDCs is homogeneous

across the four predominant seasons in Adelaide: Summer (December, January, February),
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Fall (March, April, May), Winter (June, July, August), and Spring (September, November,

December). Towards this end, we divided the data set consisting of 3556 daily curves into

these four seasonal groups depending on the month in which the observation was taken.

From this sample, the observations corresponding to the weekends were removed since the

demand behavior is vastly different on these days. After removing the weekends, in total,

there are 642 observations from the Spring months, 628 from Fall, 630 from Summer, and

640 from Winter. The mean functions from these samples are shown in Figure 4.3. To allow

for dependence within the samples, we implement the test outlined in Section 4.3. When the

FANOVA test is applied to these four populations, the test rejects the null hypothesis with

a p–value which is less than 10−6. By examining Figure 4.3, it appears that Spring and Fall

have similar mean LDDCs. The approximate p–value of the test when applied to just the

Spring and Fall samples is approximately .21, indicating that there is not sufficient evidence

present in the data to reject the notion that Spring and Fall have the same demand patterns.

These findings are consistent with the prevailing theory that the electricity demand is driven

mainly by the temperature (see Magnano et al. (2008)). By implementing a Bonferroni

type procedure, the global error rate of sequential tests of this nature could be controlled;

we however do not pursue such an implementation here.

In order to study whether the daily pattern in electricity demand is homogeneous across

each day of the week we divided the data set into seven groups each of size 508 corresponding

to the days of the week, Sunday through Saturday, and then computed their LDDCs. Due

to the prior analysis of the seasonal trend above, we further grouped the data into the

four seasonal groups of Summer, Fall, Winter, and Spring; each subsample for each day

contained at least 120 curves. The results of the dependent version of the FANOVA test

applied to these samples are displayed in Table 4.4.

We summarize the results as follows. Since in every sample which included Saturday

and Sunday, not withstanding the sample which contained just these days, the homogeneity

of the mean curves was rejected, we conclude that there is strong statistical evidence that

Saturday and Sunday have different demand patterns than any other day of the week. When

the test was applied to the samples including the middle weekdays Tuesday, Wednesday,

and Thursday, we did not reject the homogeneity of the mean curves, and hence the data

suggests that these days have the same demand patterns. When the test was applied to

the samples containing each of the weekdays, we emphatically reject the homogeneity of

the mean curves given the p–values which are very close to zero in each season. Further

insight is gained by examining the results of the test when applied to the samples of the
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weekdays excluding Monday and Friday. When Friday is excluded, we see that in three out

of the four seasons, the test cannot distinguish Monday’s mean curve from those of Tuesday,

Wednesday, and Thursday at the 5% level. In contrast, when Monday is excluded, the test

rejects the homogeneity of the mean curves at the 5% level in three out of four samples and

in the fourth sample, the p–value is approaching significance. In summary, the data suggest

that the mean electricity patterns on the first four weekdays Monday through Thursday are

indistinguishable, and that the patterns on Friday, Saturday, and Sunday are significantly

different. These results are expected of course, as social behavior is likely to change on the

weekend.

4.6 Proof of Theorem 4.2.1

This proof utilizes central limit theory for dependent sequences of random variables

that are Bernoulli shifts. The proof can be adapted to other dependent sequences for which

the central limit theorem holds. Let µ(·) denote the common mean under H0. Using the

central limit theorems for dependent functions in Berkes et al. (2013) and Jirak (2013), we

can define k independent Gaussian processes Γ1,N1(t),Γ2,N2(t), . . . ,Γk,Nk
(t) with covariance

functions Di such that

max
1≤i≤k

∥∥∥∥∥∥ 1

N
1/2
i

Ni∑
j=1

[Xi,j(t)− µ(t)]− Γi,Ni(t)

∥∥∥∥∥∥ = oP (1). (4.1)

Define µ = (〈µ, ϕ1〉, 〈µ, ϕ2〉, . . . , 〈µ, ϕd〉)T , µ̃ = (〈µ, ϕ̃1〉, 〈µ, ϕ̃2〉, . . . , 〈µ, ϕ̃d〉)T , and µ̂ =

(〈µ, ϕ̂1〉, 〈µ, ϕ̂2〉, . . . , 〈µ, ϕ̂d〉)T to be the d dimensional projections of µ(·) onto the theoretical

and empirical eigenfunctions, respectively. It follows from Horváth, Kokoszka, and Reeder

(2013) that under conditions (4.1)–(4.4) and (4.11)–(4.15)

‖D̂N,p −D‖= oP (1) and ‖D̃N −D‖= oP (1). (4.2)

Hence if the λi’s satsfy (4.8), then we have immediately

max
1≤i≤d

‖ϕ̃i − ĉiϕi‖
P→ 0 with c̃i = sign(〈ϕ̃i, ϕi〉) (4.3)

and similarly

max
1≤i≤d

‖ϕ̂i − ĉiϕi‖
P→ 0 with ĉi = sign(〈ϕ̂i, ϕi〉). (4.4)

Let Ĉ = diag(ĉ1, ĉ2, . . . , ĉd), ξi,j = (〈Xi,j , ϕ1〉, 〈Xi,j , ϕ2〉, . . . , 〈Xi,j , ϕd〉) denote the projec-

tions of the observations and ξi· = N−1
i

∑
1≤j≤Ni

Xi,j . The approximation in (4.1) with

(4.4) yields that under H0
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∣∣∣N1/2
i

(
ξ̂i· − µ̄− Ĉ(ξi· − µ)

)∣∣∣ ≤ max
1≤`≤d

N
−1/2
i

∣∣∣∣∣∣〈
Ni∑
j=1

(Xi,j − µ), ϕ̂` − ĉ`ϕ`〉

∣∣∣∣∣∣ (4.5)

≤ max
1≤`≤d

∥∥∥∥∥∥N−1/2
i

Ni∑
j=1

(Xi,j − µ)

∥∥∥∥∥∥ ‖ϕ̂` − ĉ`ϕ`‖
= oP (1).

It also follows from (4.1) that under H0, we have that

∣∣∣N1/2
i (ξi· − µ)−Si,Ni

∣∣∣ ≤ max
1≤`≤d

∣∣∣∣∣∣〈N−1/2
i

Ni∑
j=1

[Xi,j − µ]− Γi,Ni , ϕ`〉

∣∣∣∣∣∣ (4.6)

≤ max
1≤`≤d

∥∥∥∥∥∥N−1/2
i

Ni∑
j=1

[Xi,j − µ]− Γi,Ni

∥∥∥∥∥∥ ‖ϕ`‖
= oP (1),

where Si,Ni = (Si,Ni(1),Si,Ni(2), . . . ,Si,Ni(d))T with Si,Ni(`) = 〈Γi,Ni , ϕ`〉, 1 ≤ i ≤ k, 1 ≤

` ≤ d. Putting together (4.5) and (4.6), we conclude∣∣∣N1/2
i (ξ̂i· − µ̄)− ĈSi,Ni

∣∣∣ = oP (1). (4.7)

It is clear that the vectors Si,Ni , 1 ≤ i ≤ k are independent normal random vectors in Rd

with ESi,Ni = 0 and ESi,NiS
T
i,Ni

= Σi, 1 ≤ i ≤ k, where

Σi =

{∫∫
Di(t, s)ϕ`(t)ϕj(s)dtds, 1 ≤ j, ` ≤ d

}
1 ≤ i ≤ d.

Assumption (4.18) and Lemma 4.9.1 imply that Σi is nonsingular. It follows from (4.4) and

the ergodic theorem that for 1 ≤ `,m ≤ d,∣∣∣∣∣∣ 1

Ni

Ni∑
j=1

〈Xi,j , ϕ̂`〉〈Xi,j , ϕ̂m〉 − ĉ`ĉm
1

Ni

Ni∑
j=1

〈Xi,j , ϕ`〉〈Xi,j , ϕm〉

∣∣∣∣∣∣
≤ 1

Ni

Ni∑
j=1

|〈Xi,j , ϕ̂`〉〈Xi,j , ϕ̂m − ĉmϕm〉|+
1

Ni

Ni∑
j=1

|〈Xi,j , ϕ̂` − ĉ`ϕ`〉〈Xi,j , ĉmϕm〉|

≤ ‖ϕ̂m − ĉmϕm‖
1

Ni

Ni∑
j=1

‖Xi,j‖2+‖ϕ̂` − ĉ`ϕ`‖
1

Ni

Ni∑
j=1

‖Xi,j‖2

= oP (1),

and therefore, ∣∣∣Σ̂i − ĈiΣiĈi

∣∣∣ = oP (1). (4.8)
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Using (4.7) and (4.8), we get that∣∣∣(ξ̂·· − µ̄)− ĈS··

∣∣∣ = oP (1), (4.9)

where

S·· =

(
k∑
i=1

NiΣ
−1
i

)−1 k∑
i=1

NiΣ
−1
i N

−1/2
i Si,Ni

= Ĉ−1

(
k∑
i=1

NiĈΣ−1
i Ĉ

)−1 k∑
i=1

NiĈΣ−1
i ĈN

−1/2
i ĈSi,Ni .

Combining (4.7)–(4.9), we conclude

T̂N =

k∑
i=1

Ni

(
N
−1/2
i Si,Ni −S··

)T
Σ−1
i

(
N
−1/2
i Si,Ni −S··

)
+ oP (1),

and

N
1/2
i S·· =

(
Ni

N

)1/2
(

k∑
`=1

N`

N
Σ−1
i

)−1 k∑
`=1

(
N`

N

)1/2

Σ−1
i Si,Ni .

Now (4.19) follows from (4.5) and Lemma 4.8.1. The result in (4.19) can be established in

the same way, only (4.4) needs to be replaced with (4.3).

4.7 Proofs of the Theorems 4.3.1 and 4.3.2

Proof of Theorem 4.3.1. Theorem 2 of Horváth, Kokoszka, and Reeder (2013) yields that

under HA, we have that

‖D̂N,p −D‖= oP (1). (4.1)

Now (4.1) implies, along the lines of the arguments used in the proof of Theorem 4.2.1, that

even under HA

max
1≤i≤d

‖ϕ̃i − ĉiϕi‖
P→ 0 with c̃i = sign(〈ϕ̃i, ϕi〉)

and ∣∣∣Σ̃i − C̃ΣC̃
∣∣∣ = oP (1).

According to Lemma 4.9.1, the matrices Σi are nonsingular. So by the ergodic theorem in

Hilbert spaces (cf. Horváth, Hušková, and Rice (2013)), we conclude

(ξ̃`· − ξ̃··)
T Σ̃
−1
` (ξ̃`· − ξ̃··)

P→ (µ` − µ··)
TΣ−1

` (µ` − µ··), 1 ≤ ` ≤ k, (4.2)

where µ` = (〈µ`, ϕ1〉, 〈µ`, ϕ2〉, . . . , 〈µ`, ϕd〉)T , 1 ≤ ` ≤ k and
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µ·· =

(
k∑
i=1

aiΣ
−1
i

)−1 k∑
i=1

aiΣ
−1
i µi.

Assumption (4.1) implies that µi 6= µj for some 1 ≤ i, j ≤ k and therefore, for some

1 ≤ ` ≤ k, µ` 6= µ··. Now the result follows from (4.2).

Proof of Theorem 4.3.2. Elementary arguments give D̃N (t, s) = D∗N,p(t, s) + QN,1(t, s) +

QN,2(t, s), where

D∗N,p(t, s) =

k∑
i=1

Ni

N

(
γi,0(t, s) +

∞∑
`=1

K(`/h)(γi,`(t, s) + γi,`(s, t))

)

with γi,`(t, s) = 1
Ni

∑Ni−`
j=1 (Xi,j(t) − µi(t))(Xi,j+`(s) − µi(s)), QN,1(t, s) = QN,1,1(t, s) +

QN,1,1(s, t) with

QN,1,1(t, s) =

k∑
i=1

Ni

N
(µi(t)− X̄··(t))

∞∑
`=1

K(`/h)
1

Ni

Ni−`∑
j=1

(Xi,j+`(s)− µi(s))

and

QN,2(t, s) = 2

∞∑
`=1

K(`/h)

k∑
i=1

(µi(t)− X̄··(t))(µi(s)− X̄··(s)).

It follows from Horváth, Kokoszka, and Reeder (2013) that

‖D∗N,p −D‖= oP (1). (4.3)

By the ergodic theorem in Hilbert spaces, (cf. Horváth, Hušková, and Rice (2013)), we get

that max1≤i≤k‖µi − X̄··‖= OP (1), and therefore,

‖QN,1,1‖= OP (1) max
1≤i≤k

∞∑
`=1

K(`/h)

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

Ni

Ni−`∑
j=1

(Xi,j+`(s)− µi(s))

∣∣∣∣∣∣
∣∣∣∣∣∣ .

Assumptions (4.1)–(4.4) imply (cf. Hörmann and Kokoszka (2010)) that

max
1≤i≤k

max
1≤`≤ch

E

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

Ni

Ni−`∑
j=1

(Xi,j+`(s)− µi(s))

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= O

(
1

N

)
,

resulting in ‖QN,1,1‖= OP (h/N1/2). Thus we get

‖QN,1‖= OP (h/N1/2) = oP (1). (4.4)

Using again the central limit theorem in Hilbert spaces, we have that ‖X̄··−µ̄‖= OP (N−1/2)

and therefore, we conclude



86∥∥∥∥∥QN,2(t, s)− 2
∞∑
`=1

K(`/h)
k∑
i=1

Mi(t)Mi(s)

∥∥∥∥∥ = OP (hN−1/2) = oP (1), (4.5)

where Mi(t) is defined (4.3). Combining (4.3)–(4.5), we conclude∥∥∥∥∥D̃N (t, s)−

(
2

∞∑
`=1

K(`/h)

)
k∑
i=1

Mi(t)Mi(s) +D(t, s)

∥∥∥∥∥ = oP (1). (4.6)

By using Lemma 4.9.3 with M = 2
∑∞

`=1K(`/h), we obtain that

max
1≤i≤m

‖ϕ̂i − ĉiψi‖= OP (1/h) (4.7)

and

max
m+1≤i≤d

‖ϕ̂i − ĉigi−m‖= oP (1) (4.8)

which imply that

max
1≤i≤k

|Σ̂i − ĈH̄iĈ|= oP (1), (4.9)

where Ĉ = diag(ĉ1, . . . , ĉd) and H̄i =
{∫∫

Di(t, s)ϕ
∗
` (t)ϕ

∗
k(s)dtds, 1 ≤ `, k ≤ d

}
with ϕ∗i =

ψi, 1 ≤ i ≤ m and ϕ∗i = gi−m, m + 1 ≤ i ≤ d. By Lemma 4.9.1, the matrices H̄i

are nonsingular. By the law of large numbers in Hilbert spaces, (4.7)–(4.9) we get that

|ξ̄i· − ξ̄·· − Ĉ(µ∗i − µ∗··)|= oP (1), where µ∗` = (〈µ`, ϕ∗1〉, 〈µ`, ϕ∗2〉, . . . , 〈µ`, ϕ∗d〉)T , 1 ≤ ` ≤ k

and

µ∗·· =

(
k∑
i=1

aiH
−1
i

)−1 k∑
i=1

aiH
−1
i µ∗` .

We write µ∗i −µ∗·· = µ̄∗i + c, where µ̄∗` = (〈µ` − µ̄, ϕ∗1〉, 〈µ` − µ̄, ϕ∗2〉, . . . , 〈µ` − µ̄, ϕ∗d〉)T , 1 ≤

` ≤ k and c = (〈µ̄, ϕ∗1〉, 〈µ̄, ϕ∗2〉, . . . , 〈µ̄, ϕ∗d〉)T − µ∗··. If µ̄∗` + c 6= 0 for some 1 ≤ ` ≤ k, the

result follows since Hi is (strictly) positive definite for all 1 ≤ i ≤ k. If µ̄∗` + c = 0 for

all 1 ≤ ` ≤ k, then µ̄∗1 = µ̄∗2 = . . . = µ̄∗k. This yields that c = 0 and therefore, µ̄∗` = 0

for all 1 ≤ ` ≤ k. However, (4.5) with Lemma 4.9.2, there is i such that 〈Mi, ϕ
∗
1〉 6= 0 and

therefore, µ̄∗` 6= 0 for at least one `.

4.8 Distribution of a quadratic form of normal vectors

Suppose in this section that Z1, ...,Zk are independent normal random vectors in Rd so

that EZi = 0 for all 1 ≤ i ≤, and EZiZ
T
i = Σi, 1 ≤ i ≤ k. Define

ζ =

(
k∑
`=1

c`Σ
−1
`

)−1 k∑
`=1

c
1/2
` Σ−1

` Z`,
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where ci, 1 ≤ i ≤ k satisfy
∑k

i=1 ci = 1, and ci > 0 for all 1 ≤ i ≤ k. We recall that χ2(r)

stands for a χ2 random variable with r degrees of freedom.

Lemma 4.8.1. If T =
∑k

`=1(Zl − c
1/2
` ζ)TΣ−1

` (Z` − c
1/2
` ζ), then we have that

T
D
= χ2(d(k − 1)).

Proof. The result follows from Theorem 2.7 in Seber and Lee (2003, p. 28) (cf. also Gamage

et al.. (2004) and Krishnamoorthy and Lu (2010)).

4.9 Three technical lemmas

Lemma 4.9.1. Let Y (t) ∈ L2 with EY (t) = 0, E‖Y ‖2< ∞ and H(t, s) = EY (t)Y (s) be

a strictly positive function and {κi, 1 ≤ i < ∞} be orthonormal functions. Then for any

1 ≤ d <∞, the matrix C = {E〈Y, κi〉〈Y, κj〉, 1 ≤ i, j ≤ d} is nonsingular.

Proof. The matrix C is the covariance matrix of the random vector (〈Y, κ1〉, 〈Y, κ2〉, . . . ,

〈Y, κd〉)T . If C is singular, then one of the coordinates is a linear combination of the others

so that
∑d

i=1 di〈Y, κi〉 = 0 where at least one of the dis is different from 0. Now with

g(t) =
∑d

i=1 digi(t) we can write

0 = var

(
d∑
i=1

di〈Y, κi〉

)
= var(〈Y, g〉) =

∫∫
H(t, s)g(t)g(s)dtds. (4.1)

But g(t) is a linear combination of orthogonal functions where some of the coefficients

differ from 0, and therefore, g is not the zero function in L2. Hence (4.1) contradicts the

assumption that H is strictly positive definite.

Lemma 4.9.2. We assume m ≥ 1, g1, g2, . . . , gm ∈ L2, b1, b2, bm are non–negative num-

bers and U(t, s) is a symmetric positive definite function with eigenvalues γ1 > γ2 >

. . . > γ` > γ`+1 ≥ . . . 0 and corresponding orthonormal eigenfunctions κ1, κ2, . . . Let

U∗(t, s) =
∑m

i=1 bigi(t)gi(s) + U(t, s), with eigenvalues γ∗1 ≥ γ∗2 ≥ . . . ≥ 0 and corre-

sponding orthonormal eigenfunctions κ∗1, κ
∗
2, . . . . If max1≤i≤m bi‖gi‖2> λ`, then with some

j = 1, 2, . . . , ` and i = 1, 2, . . . ,m we have that

〈κ∗j , gi〉 6= 0. (4.2)
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Proof. Suppose by way of contradiction that 〈κ∗j , gi〉 = 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ `.

This assumption yields by simple calculations that κ∗1, . . . , κ
∗
` are also eigenfunctions of U

with eigenvalues γ∗1 ≥ γ∗2 ≥ . . . ≥ γ∗` and

γ∗j =

∫∫
U∗(t, s)κ∗j (t)κ

∗
j (s)dtds =

∫∫
U(t, s)κ∗j (t)κ

∗
j (s)dtds for all 1 ≤ j ≤ `.

Also,

γ1 =

∫∫
U(t, s)κ1(t)κ1(s)dtds

≤
∫∫

U(t, s)κ1(t)κ1(s)dtds+

∫∫ [ m∑
i=1

bigi(t)gi(s)

]
κ1(t)κ1(s)dtds

=

∫∫
U∗(t, s)κ1(t)κ1(s)dtds

≤ sup
‖κ‖=1

∫∫
U∗(t, s)κ(t)κ(s)dtds

= γ∗1 .

Since γ1, γ
∗
1 are both eigenvalues of U and γ1 is the unique largest, we conclude that γ1 = γ∗1 .

By the uniqueness of γ1, we also get that κ1(t) = ±κ∗1(t). Let Sj = span(κi, 1 ≤ i ≤ j),

S̄j = {κ : ‖κ‖= 1, 〈κ, ζ〉 = 0 for all ζ ∈ Sj} and S∗j = span(κ∗i , 1 ≤ i ≤ j), S̄∗j = {κ : ‖κ‖=

1, 〈κ, ζ〉 = 0 for all ζ ∈ S∗j }. Clearly, S̄1 = S̄∗1 and therefore, κ2 ∈ S̄∗1 . So by Debnath and

Mikusiński (2005, p. 197), we get

γ2 =

∫∫
U(t, s)κ2(t)κ2(s)dtds

≤
∫∫

U(t, s)κ2(t)κ2(s)dtds+

∫∫ [ m∑
i=1

bigi(t)gi(s)

]
κ2(t)κ2(s)dtds

=

∫∫
U∗(t, s)ϕ2(t)ϕ2(s)dtds

≤ sup
κ∈S̄∗1

∫∫
U∗(t, s)κ(t)κ(s)dtds

= λ∗2.

Now we conclude that γ2 = γ∗2 and κ2(t) = ±κ∗2(t). Repeating the arguments above, one

can easily verify that γj = γ∗j and κj(t) = ±κ∗j (t) for all 1 ≤ j ≤ `. Also, since

gi ∈ S̄∗`−1 = S̄`−1, we get that for all 1 ≤ i ≤ m
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γ` = γ∗` = sup
κ∈S̄`−1

∫∫
U∗(t, s)κ(t)κ(s)dtds

≥
∫∫

U∗(t, s)
[
gi(t)gi(s)/‖gi‖2

]
dtds

≥ bi‖gi‖2,

which contradicts (4.2).

We assume that

κ1, κ2, . . . , κm are orthonormal functions (4.3)

and

e1 > e2 > . . . > em > 0. (4.4)

Let A0 = span(κ1, κ2, . . . , κm). We recall that B̄ denotes the orthogonal complement of the

set B. Assume that

D is symmetric, square integrable on [0, 1]2, and non-negative definite. (4.5)

We say that D has regular maxima of order n with respect to A0 if there are r1 > r2 >

. . . > rn and orthonormal function g1, g2, . . . , gn such that

ri = sup
g∈Āi−1:‖g‖=1

∫∫
g(t)D(t, s)g(s)dtds =

∫∫
gi(t)D(t, s)gi(s)dtds, 1 ≤ i ≤ n,

with Ai = span(κ1, . . . , κm, g1, . . . , gi), 1 ≤ i ≤ n − 1. The functions g1, . . . , gn are unique

up to signs.

Let

DM (t, s) = M
m∑
i=1

eiκi(t)κi(s) +D(t, s), 0 ≤ t, s ≤ 1.

Since DM is symmetric, non-negative definite, there are λ1,M ≥ λ2,M ≥ . . . ≥ 0 and

orthonormal functions f1,M , f2,M , . . . such that λi,Mfi,M (t) =
∫
DM (t, s)fi,M (s)ds.

Lemma 4.9.3. If (4.3)–(4.5) hold and D has regular maxima of order n with respect to

A0, then, as M →∞ we have

max
1≤i≤m

‖fi,M − ciκi‖= o(1), (4.6)

max
1≤i≤m

|λi,M/M − ei|= o(1) (4.7)

and

max
m<i≤m+n

‖fi,M − cigi−m‖= o(1), (4.8)
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max
m<i≤n

|λi,M − ei−m|= o(1), (4.9)

where the values of c1 = c1,M , c2 = c2,M , . . . , cm+n = cm+n,M are 1 or −1.

Proof. Clearly, ∥∥∥∥∥ 1

M
DM (t, s)−

m∑
i=1

eiκi(t)κi(s)

∥∥∥∥∥ = O

(
1

M

)
, as M →∞

and therefore, (4.6) and (4.7) follow from Debnath and Mikusiński (2005). Let A0,M =

span(f1,M , f2,M , . . . , fm,M ). Also,

sup
f∈Ā0,M ,‖f‖=1

∫∫
DM (t, s)f(t)f(s)dtds =

∫∫
DM (t, s)fm+1,M (t)fm+1,M (s)dtds.

Every f ∈ Ā0,M can be written as

f(t) = ω(t) + f∗(t), where ω(t) =

m∑
i=1

αiκi(t) and f∗ ∈ Ā0.

It follows from the definition of DM that∫∫
DM (t, s)f(t)f(s)dtds−

∫∫
D(t, s)f∗(t)f∗(s)dtds

=

∫∫
DM (t, s)ω(t)ω(s)dtds+ 2

∫∫
DM (t, s)ω(t)f∗(s)dtds.

Since ‖f∗‖≤ 1, by the Cauchy–Schwarz inequality, we have∣∣∣∣∫∫ DM (t, s)ω(t)f∗(s)dtds

∣∣∣∣ =

∣∣∣∣∫∫ ω(t)D(t, s)f∗(s)dtds

∣∣∣∣ = O(1)‖ω‖,

we conclude∣∣∣∣∫∫ DM (t, s)f(t)f(s)dtds−
∫∫

D(t, s)f∗(t)f∗(s)dtds

∣∣∣∣ = O(1)(M‖ω‖2+‖ω‖). (4.10)

We note that 〈ω, ω〉 =
∑m

i=1 α
2
i . Since g is orthogonal for all fi,M , 1 ≤ i ≤ m, for each

1 ≤ i ≤ m, we get

0 = 〈
m∑
`=1

α`κ` + f∗, fi,M 〉

= 〈
m∑
`=1

α`κ` + f∗, fi,M − ciκi〉+ 〈
m∑
`=1

α`κ` + f∗, ciκi〉

= 〈
m∑
`=1

α`κ` + f∗, fi,M − ciκi〉+ ciαi

resulting in
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|αi|≤

∣∣∣∣∣〈
m∑
`=1

α`κ` + f∗, fi,M − ciκi〉

∣∣∣∣∣ ≤ ‖fi,M − ciκi‖= O(1/M).

Thus we get

‖ω‖2= O(1/M2)

and therefore, by (4.10)∣∣∣∣∫∫ DM (t, s)f(t)f(s)dtds−
∫∫

D(t, s)f∗(t)f∗(s)dtds

∣∣∣∣ = O

(
1

M

)
. (4.11)

This means that ∥∥∥∥∥ sup
f∈Ā0,M ,‖f‖=1

∫∫
DM (t, s)f(t)f(s)dtds− r1

∥∥∥∥∥ =

(
1

M

)
,

which yields |λm+1,M − e1|= o(1). We assumed that r1 is reached at only at ±g1 and thus

we conclude that

‖fm+1,M − cm+1,Mg1‖= o(1), as M →∞.

Any f ∈ Ā1,M can be written as

f(t) =
m∑
`=1

β`κ` + βm+1g1(t) + f∗1 , where f∗1 ∈ Ā1.

Following the arguments leading to (4.11)∣∣∣∣ ∫∫ DM (t, s)f(t)f(s)dtds (4.12)

−
∫∫

D(t, s)(βm+1,Mg1(t) + f∗1 (t)(βm+1,Mg1(s) + f∗1 (s))dtds

∣∣∣∣
= O

(
1

M

)
.

Since f ∈ Ā1,M , we obtain that |βm+1,M |= O(1)‖fm+1,M − cm+1,Mg1‖= o(1). Since r2 is

reached uniquely at ±g2, we conclude that |λm+2,M−e2|= o(1) and ‖fm+2,M−cm+2,Mg2‖=

o(1), as M →∞. Repeating the arguments above, (4.8) and (4.9) of Theorem 4.9.3 can be

established for i = m+ 3, . . . ,m+ n.
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Table 4.1. Empirical sizes in the i.i.d. case and the FAR cases with nominal levels of 10%,
5%, and 1%.

DGP IID FARψ1 FARψ2

N Nominal k = 3 k = 5 k = 10 k = 3 k = 5 k = 10 k = 3 k = 5 k = 10

50 10% 10.5 10.6 10.7 11.2 14.1 17.8 14.4 15.5 18.0
5% 5.8 5.6 5.7 5.4 7.0 9.6 7.4 9.3 10.1
1% 1.2 1.3 1.4 .6 1.0 2.2 .6 2.5 2.7

100 10% 10.5 10.1 10.4 12.4 14.0 14.1 11.6 13.2 17.5
5% 5.5 5.4 5.3 5.8 7.2 7.8 6.7 7.3 9.6
1% 1.2 1.1 1.1 1.4 1.2 2.1 1.2 1.6 2.7

200 10% 10.5 9.7 9.8 10.7 12.6 13.7 11.0 11.5 15.5
5% 5.2 4.8 4.9 4.1 6.8 6.5 5.7 6.1 8.9
1% 1.2 1.1 1.3 1.3 .8 1.7 .9 1.4 2.1

300 10% 12.2 10.4 9.2 9.5 11.5 12.1 10.9 11.1 13.8
5% 6.5 5.7 4.6 4.4 5.3 5.9 5.6 5.5 7.6
1% 1.7 .8 1.0 .7 1.4 1.6 1.2 1.4 1.9
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Table 4.2. Empirical sizes in with heterogeneous population covariances with nominal
levels of 10%, 5%, and 1% in both the independent and dependent cases.

N 50 100 200 300
DGP/Nominal 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

HIID 9.7 5.7 1.8 11.2 5.9 1.7 11.1 5.4 1.6 10.8 5.3 1.4
HDEP 14.7 6.8 1.3 13.2 5.9 2.1 12.7 5.7 1.6 11.7 5.5 1.7

Table 4.3. Empirical power using i.i.d. and the FAR(1) observations with nominal levels
of 10%, 5%, and 1%.

Case (M1) (M2) (M3) (M4) (M5)
N Level IID FARψ2 IID FARψ2 IID FARψ2 IID FARψ2 IID FARψ2

25 10% 78.2 65.5 93.0 88.1 82.6 75.2 98.6 88.1 78.6 46.4
5 % 70.3 54.9 89.5 82.7 73.6 68.0 97.6 83.6 70.0 36.4
1 % 54.2 36.2 76.9 69.6 55.0 50.1 94.7 68.3 52.8 23.5

50 10% 84.7 69.8 99.0 96.5 90.7 85.2 100 97.4 84.9 51.6
5 % 78.1 60.3 97.0 92.8 86.6 75.1 100 94.3 78.0 40.3
1 % 60.5 39.4 92.2 88.0 69.0 58.6 99.9 84.8 60.8 24.7

100 10% 97.1 87.7 99.9 99.9 99.3 96.0 100 99.9 97.8 63.6
5 % 94.2 79.2 99.7 99.8 98.6 93.5 100 99.8 95.7 54.6
1 % 85.9 60.6 99.0 99.0 97.0 83.9 100 99.1 88.6 39.2

200 10% 100 99.4 100 100 100 100 100 100 100 77.6
5 % 100 99.0 100 100 100 100 100 100 100 71.3
1 % 100 94.6 100 100 100 99.3 100 100 99.7 55.3

Table 4.4. p–values of the FANOVA test when applied to samples of daily LDDCs organized
according to the day of the week and season. Across the top of the table, the days included
in the sample are displayed. “All” denotes that all seven days were included (k = 7).

Days of the week for which the test is applied

Season All Weekdays Weekends TWTh MTWTh TWThF

Summer .000 .035 .006 .750 .647 .056

Fall .000 .003 .001 .886 .380 .023

Winter .000 .000 .000 .257 .001 .000

Spring .000 .002 .000 .582 .083 .001
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Figure 4.1. Five functional data objects constructed from half-hourly measurements of
the electricity demand in Adelaide, Australia. The vertical lines separate the days.
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Figure 4.2. Five LDDCs constructed from the curves in Figure 4.1.
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Figure 4.3. Mean Curves from each season constructed from the LDDCs taken from
7/6/1997 to 3/31/2007. The p-value of the FANOVA test applied to this sample was zero.
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Figure 4.4. Mean curves for each day computed from the Summer months between
7/7/1997 to 7/5/1998 (52 curves for each day). The p-value of the FANOVA test was
less than 10−4.




