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ABSTRACT

Modeling techniques are provided for accurate and efficient solution of near-field 

radiative heat transfer in complex, three-dimensional and multiscale geometries. These 

techniques are applied to investigate the physics of near-field thermal radiation in several 

configurations.

A closed-form expression based on fluctuational electrodynamics is derived and 

applied for modeling size effect on the emissivity of metallic and dielectric thin films. 

The emissivity of dielectric films increases with increasing film thickness, while metallic 

films show the inverse behavior. The critical thickness, above which no size effect is 

observed, is about a hundred nanometers for metals and a few centimeters for dielectrics.

A novel computational method, called the thermal discrete dipole approximation (T- 

DDA), for modeling near-field radiative heat transfer in arbitrary geometries is proposed 

and verified. The T-DDA is based on discretizing objects into cubical subvolumes 

behaving as electric point dipoles. The objects are submerged in an infinite lossless 

medium and can interact with an infinite surface. An extensive convergence analysis of 

the method is performed using the exact results for two spheres. The convergence of the 

T-DDA mostly depends on the dielectric function of the objects and the object size to gap 

ratio. An error less than 5% was achievable in the T-DDA using the available 

computational resources.

The T-DDA is applied to model near-field thermal radiation between a silica probe



and a silica surface separated by a gap of size d. When d  ^  0, the probe-surface heat rate 

is dominated by the contribution of surface phonon-polaritons and approaches a d  "2 

power law. In this limit, the total heat rate and the resonance location can be predicted 

using the proximity approximation. When the probe tip size is comparable to the gap 

thickness, localized surface phonons also contribute to heat transfer and induce a 

resonance splitting in the thermal spectrum. In this regime, the spheroidal dipole 

approximation predicts the resonant frequencies accurately, and it provides a rough 

estimate of the heat rate. Finally, the T-DDA analysis of probe-sample interactions 

demonstrates that the resonance redshift observed in near-field thermal spectroscopy is 

caused by the reflection interactions between the probe and the sample.
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CHAPTER 1

INTRODUCTION

1.1 Near-field radiative heat transfer 

Radiative heat transfer between bodies with characteristic lengths, i.e., size L and 

separation distance d, larger than the dominant thermal wavelength is referred to as the 

far-field regime of thermal radiation. The dominant thermal wavelength is predicted by 

Wien’s law (AmaxT = 2898 ^.mK [1]) and is approximately 10 ^m at room temperature. In 

the far-field regime, radiative heat transfer is described by Planck’s theory of heat 

radiation [2]. Two physical mechanisms are ignored in the Planck theory. First, thermal 

radiation is assumed to be incoherent such that wave interference is neglected. Second, 

the presence of evanescent waves is not accounted for. These mechanisms, which do not 

contribute in the far-field regime, become considerable when the characteristic lengths of 

the problem are comparable to or smaller than the thermal wavelength. In this case, the 

Planck theory ceases to be valid and radiative heat transfer is said to be in the near-field 

regime [1].

While thermal radiation in the far field is considered to be a surface phenomenon, 

near-field thermal radiation is a volumetric process. Thermal emission is due to the 

random motion of charged particles inside a body caused by thermal agitation at



a temperature greater than absolute zero. In the far-field regime where L >> Amax, 

thermally generated waves emitted far from the object interface are internally absorbed 

and cannot escape the body. Indeed, thermal emission from the object is due to the 

contribution of a small portion of the volume located below the interface such that 

thermal emission is approximated as a surface phenomenon. When the size of the objects 

is comparable to or smaller than the contributing thin layer located below the interface, 

near-field thermal emission must be modeled as a volumetric and size-dependent process. 

Additionally, near-field radiative heat transfer can exceed the blackbody limit by several 

orders of magnitude and can be quasi-monochromatic [3-17]. The enhancement beyond 

Planck’s distribution occurs when d  < Amax and is due to the extraneous contribution to 

heat transport by waves evanescently confined within a distance of about a wavelength 

normal to the surface of a thermal source. These modes, as depicted in Fig. 1.1(a), 

include evanescent waves generated by total internal reflection of propagating waves at 

the material-gap interface (frustrated modes) as well as resonant surface waves such as 

surface phonon-polaritons and surface plasmon-polaritons [6]. These surface polaritons, 

with evanescent fields exponentially decaying on both sides of the material-gap interface, 

can lead to quasi-monochromatic heat exchange [6,18-22]. For example, the spectral heat 

flux between two bulks of silicon carbide (SiC) separated by a vacuum gap of thickness d  

is shown in Fig. 1.1(b) as a function of d  and the angular frequency o. One of the bulks is 

kept at T1 = 300 K while the other one has a temperature of T2 = 0 K. As shown in Fig. 

1.1(b), the heat flux increases with decreasing gap size. While the increase in the near­

field heat flux at Ores is attributed to surface phonon-polaritons, the evanescent modes due 

to total internal reflection are responsible for the enhancement at other frequencies.

2
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Figure 1.1 Radiative heat transfer between two bulks. (a) Two SiC bulks separated by a 
gap size d exchanging thermal radiation in the vacuum. (b) Spectral radiative heat flux 
for the configuration shown in part (a) as a function of the angular frequency and gap
size.

Thermal radiation in the near field is modeled via fluctuational electrodynamics in 

which the Maxwell equations are augmented by stochastic current sources due to thermal 

agitation of charged particles [3]. The resulting equations are called the thermal 

stochastic Maxwell equations.

Near-field radiative heat transfer has recently attracted significant attention due to the 

advances in nanomanufacturing that allow fabrication of devices with sizes on the order 

of micro/nanometer. A clear understanding of near-field radiative heat transfer is 

necessary for thermal management of micro/nanoscale devices. Additionally, the unique 

properties of near-field radiative heat transfer can be exploited in many applications. 

Indeed, near-field thermal radiation may find application in imaging [23,24], 

spectroscopy [24-26], thermophotovoltaic power generation [27-32], tip-based 

nanomanufacturing [33-36], thermal management of electronic devices [37], thermal 

rectification through a vacuum gap [38,39], and radiative property control [40-42]. In
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these applications, it is often required to predict near-field radiative heat transfer in 

complex, three-dimensional (3D) and multiscale geometries.

1.2 Modeling of near-field radiative heat transfer

Near-field radiative heat transfer predictions have been mainly restricted to simple 

canonical geometries. This is due to the fact that the vast majority of near-field thermal 

radiation problems have been solved by deriving analytical expressions for the dyadic 

Green’s function (DGF) relating a source point r ' to a field observed at r; this approach 

is referred to as the DGF method. The DGF method provides exact solutions to near-field 

thermal radiation problems, but becomes intractable when dealing with 3D arbitrarily- 

shaped objects. Over the past years, the DGF approach has been applied to various cases: 

two bulks [4-6,43-47], two films [48-52], two structured surfaces [53], two nanoporous 

materials [54], one-dimensional (1D) layered media [55-57], a cylindrical cavity [58], 

two dipoles [59-61], two large spheres [62-64], dipole-surface [65-67], dipole-structured 

surface [68], sphere-surface [69,70], two long cylinders [71], two nanorods [72,73], two 

gratings [74] and N  nanoparticles modeled as electric point dipoles [75].

Potential engineering systems capitalizing on near-field thermal radiation involve 

nontrivial geometries for which analytical solutions of the thermal stochastic Maxwell 

equations do not exist. Numerical methods should be used for modeling near-field 

thermal radiation in complex geometries. Prior to this research, there were only two 

available numerical methods for modeling near-field thermal radiation problems. These 

approaches, namely the finite-difference frequency-domain (FDFD) method [76] and the 

finite-difference time-domain (FDTD) method [77], are based on discretizing the



differential form of the thermal stochastic Maxwell equations in space and frequency 

(FDFD) or time (FDTD). The FDFD and FDTD methods require that both the objects 

and the free space be discretized, which is computationally expensive. So far, the FDTD 

method has been applied for modeling near-field thermal radiation in a few 

nanostructures [78-83]. Concurrent with this research, the boundary element method 

(BEM) [84] and a volume-discretization based method [85] were also proposed for 

modeling near-field thermal radiation problems. The BEM is based on the discretization 

of the boundary integral form of the thermal stochastic Maxwell equations, and is thus 

difficult to apply to inhomogeneous materials.

Additionally, many potential near-field thermal radiation applications [23-26,33-37] 

involve interactions between micro/nanosized objects and a large surface. Modeling near­

field radiative heat transfer in this multiscale geometry is quite challenging. Analytical 

solutions do not exist except for a single sphere above an infinite surface [69,70]. 

Numerical methods [76,77,84,85] are also difficult to apply to this multiscale problem 

due to the prohibitive calculation time associated with discretizing a surface that is many 

orders of magnitude larger than the objects. The only formulation capable of handling 

nontrivial geometries and an infinite surface is based on a combination of the scattering- 

based approach and the boundary element method [86].

Modeling techniques are required to obtain an in-depth physical insight into near­

field thermal radiation and to accelerate the development of its many potential 

applications. The objective of this dissertation is to provide accurate, efficient, and 

versatile modeling techniques for the solution of near-field thermal radiation in 

micro/nano and multiscale systems. These techniques are applied to investigate the

5



physics of radiative heat transfer in several geometries. The objective of the dissertation 

is fulfilled by deriving a closed-form expression for describing thermal emission from a 

common type of nanostructures, i.e., thin films. The closed-form solution is used to 

investigate the size effect on the emissivity of thin films. Analytical solutions are not 

available for near-field thermal radiation in complex, 3D, and multiscale geometries. A 

computational framework is established for large-scale simulations of near-field radiative 

heat transfer between arbitrary-shaped objects. The modeling challenge in multiscale 

geometries is addressed by treating the interactions of the objects and a surface 

analytically. The implemented computational framework is applied for investigating 

thermal radiation exchange in several configurations including a probe and an infinite 

surface. The probe-surface interaction is of great interest in tip-based imaging, 

spectroscopy, and nanomanufacturing techniques.

1.3 Organization of the dissertation 

Thermal emission by nanostructures cannot be predicted via Planck’s theory, since 

these structures have characteristic lengths that are smaller than the dominant thermal 

wavelength. Fluctuational electrodynamics should be used for modeling thermal emission 

by nanostructures. One of the most common types of nanostructures is a thin film. Thin 

films have many engineering applications, in solar cells, optical filters, and antireflection 

coatings, to name only a few [87]. For applications involving thermal effects, it is crucial 

to quantify thermal emission from thin layers. Thin films have a simple geometry and 

their thermal emission can be modeled analytically. In Chapter 2, a closed-form 

expression is derived for calculating the thickness-dependent emissivity of thin films. The

6
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model is employed for predicting the spectral, hemispherical and total, hemispherical 

emissivities of a number of metals and dielectrics. The critical thickness above which no 

size effect is observed for metals and dielectrics is also studied.

Near-field radiative heat transfer between 3D complex-shaped objects, which cannot 

be treated analytically, is the topic of Chapter 3. This chapter describes a novel 

computational method called the thermal discrete dipole approximation (T-DDA) for 

simulating near-field radiative heat transfer between 3D arbitrarily-shaped objects. The 

T-DDA is inspired by the discrete dipole approximation (DDA) which is extensively used 

for predicting electromagnetic scattering by particles. The DDA is based on discretizing 

objects into cubical subvolumes behaving as electric point dipoles [88-92]. The T-DDA 

follows the same general procedure as the DDA, except that the dipole moments in the 

subvolumes are induced not only by an external illumination but also by thermally 

fluctuating dipoles arising from thermal agitation of charges. The T-DDA is verified 

against analytical results for two spheres separated by a subwavelength gap for various 

dielectric functions and separation distances.

In Chapter 4, the convergence of the T-DDA is investigated by comparison against 

the exact results for the two-sphere problem. The approximations associated with the T- 

DDA are discussed, and near-field radiative heat transfer between two spheres is studied 

for sphere sizes much smaller than, smaller than, and comparable to the wavelength. In 

each size regime, the T-DDA error is analyzed for various refractive indices and vacuum 

gap thicknesses. A nonuniform discretization scheme is proposed to reduce the 

computational requirement of the T-DDA.

The research presented in Chapter 5 is motivated by the fact that in many



applications, such as in near-field thermal microscopy [23-26], it is necessary to model 

the interactions between complex-shaped micro/nanosized objects and a surface. In this 

chapter, the presence of an infinite surface is integrated into the T-DDA formalism 

described in Chapter 3. The interactions between the objects and the surface are 

accounted for using the work of Sommerfeld who analyzed electric dipole radiation 

above an infinite surface [93]. The updated method is compared against the analytical 

solution of near-field radiative heat transfer between a sphere and a surface. The T-DDA 

with surface interaction is then employed to analyze radiative heat transfer between a 

probe and a surface in the near-field regime.

In Chapter 6, the T-DDA with surface interaction is applied to near-field thermal 

spectroscopy, which is a new technique for measuring the near-field thermal spectrum of 

a sample. In this technique, the near-field thermal spectrum from the sample is scattered 

in the far field using a subwavelength probing tip. The scattered thermal electromagnetic 

field is detected in the far field. Recently, two separate studies [25,26] reported that the 

resonant frequencies of the measured far-field signal are spectrally redshifted compared 

to the resonant frequencies of the near-field thermal spectrum of the sample. It is not 

clear if the resonance redshift is a physical phenomenon or an experimental artifact. The 

T-DDA, which does not neglect any physical aspect of the probe-sample interaction, is 

used for analyzing the potential resonance redshift. A further investigation of the 

resonance redshift is performed by analyzing the heat flux between the sample and a thin 

film.

A summary of the results obtained in this dissertation as well as the recommendations 

for future work are presented in Chapter 7.

8
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A B S T R A C T

The size effect on the emissivity of thin films is analyzed. There are three methods for 
calculating film emissivity: the indirect method, the direct method based on the division 
of amplitude and the direct method based on Maxwell's equations combined with 
fluctuational electrodynamics. Traditional indirect approaches involve computation of 
absorption, and the emissivity is then predicted by invoking Kirchhoffs law. The direct 
method employed in this work, based on Maxwell’s equations and fluctuational 
electrodynamics, does not require Kirchhoffs law. Instead, Kirchhoffs law emerges 
naturally from the mathematical model. A closed form expression for thickness- 
dependent emissivity of thin films is derived from the direct approach, and it is shown 
that the three existing methods lead to the same aforementioned expression. Simulation 
results reveal that the emissivity of metallic films increases above bulk values as the film 
thickness decreases. This counterintuitive behavior is due to the extraneous contribu­
tions of waves experiencing multiple reflections within the thin layer, which are usually 
internally absorbed for metallic bulks. Conversely, for dielectrics, the emissivity of films 
decreases as the film thickness decreases due to a loss of source volume. The critical 
thickness above which no size effect is observed for metals is about a hundred of 
nanometers, while it can be as large as a few centimeters for dielectrics. A simple 
approximate expression is finally suggested for evaluating the critical thickness; this 
criterion can be used as a quick reference to determine if the size effect on the emissivity 
of thin films should be considered.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Thin films are employed in num erous engineering 
devices such as solar cells, optical filters and antireflection 
coatings [1], In applications involving heat transfer and 
electrom agnetic wave propagation, knowledge of the 
radiative properties of thin layers is crucial. Emissivity is 
a surface radiative property defined as the  ratio of the 
emissive pow er of a surface to  that of a blackbody at the 
sam e condition [2,3]. The concept of emissivity thus 
implies that therm al emission is a surface phenomenon.

* Corresponding authors. Tel.: + 1  SOI 581 5721; 
fax: + 1  801 585 9825.

E-mail addresses: sheila.edalatpour@ utah.edu (S. Edalatpour), 
mfrancoeur@ mech.utah.edu (M. Francoeur).

0022^4073/$-see  front m a tte r©  2012 Elsevier Ltd. All rights reserved, 
h ttp  ://dx.doi.org/10.1016/j.jqsrt.2012.12.012

However, in reality, therm al radiation emission is a 
volumetric process th a t can often be approxim ated as a 
surface process. Waves leaving the surface of an em itting 
body are the result of various phenom ena such as emis­
sion, absorption, transmission, and reflection. These 
phenom ena occur throughout the  entire volume of the 
em itter. On the o ther hand, only a small portion of volume 
below  the em itting surface contributes significantly to 
the  em itted  spectrum ; this small portion is defined as the 
critical thickness. The emissivity of a film with a thickness 
equal or greater than  the  critical thickness is referred to as 
the bulk emissivity. If the em itting m edium  is thinner 
than  the critical thickness, the concept of emissivity, as 
defined in the  classical theory of therm al radiation, is 
not valid anym ore such that emissivity data reported in 
the literature may no t be applicable to such thin layers.

http://www.elsevier.com/looate/jqsrt
mailto:sheila.edalatpour@utah.edu
mailto:mfrancoeur@mech.utah.edu
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N om enclature ter critical thickness (m j
ffr approxim ate critical thickness (m)

c0 speed of light in vacuum ( =  2.998 x 10s m s ) % Fresnel’s transm ission coefficients a t interface
e electron charge ( =  1.6022 x 10 ~ 19J eV~’} i-j
E wave energy (—hco/e) (eV) 1 tem perature  (/()
E electric field (V/m) %■ transm ission coefficient of m edium  j
H m agnetic field (A/m)
h reduced Planck’s constant ( =  1.0546 x 10_34j  s) Greek symbols
i complex constant (= (  — 1

spectral intensity  of a blackbody (W m ~ 2 s r ^ 1 a total, hemispherical absorptivity
( ra d /s )-1) ^ e4 spectral, directional absorptivity
spectral intensity  (W m ^ ’ s r -1 (rad/s}- 1 } f t radiation penetration depth (m)

r stochastic current density vector (A m ~ 2) £ total, hemispherical emissivity
m agnitude of wavevector (— \~ik ") (rad fft ) high frequency dielectric constant

!<s Boltzmann constant i — l. Jbi.'V U. 'J  K e. dielectric function (
fy parallel com ponent of wavevector (rad m -1 ) spectral, hemispherical emissivity
fc* x-com ponent of wavevector (rad m - *} C spectral, directional emissivity
% norm al com ponent of w avevector (rad m _1) 6o vacuum perm ittivity (= 8 .8 5 4  x 1 0 'f i F m -1 )

m agnitude of wavevector in vacuum (rad m y polarization state
k wavevector (rad m~ r dam ping factor (s 1)
a" total, hemispherical emissive power (W m ;! : K imaginary part of refractive index
is total, hemispherical emissive power of a i wavelength (m)

blackbody (W m - 2 ) © mean energy of a Planck oscillator (J)
^ I’i.iM spectral, hemispherical emissive power of a p, 0, z polar coordinates

blackbody (W m ~ 2 it ad /s’ a Stefan-Boltzm ann constant ( =  5.67 x  10~a W
• f l spectral, hem ispherical emissive power n  ’

(W m ~ 2 (rad/s) } spectral, directional transm issivity
r.j Fresnel’s reflection Coefficients a t  interface i-j a> angular frequency (rad s -1 }

reflection coefficient of m edium  j a>w longitudinal optica] phonon frequency (rad s - 1 )
fc z-com ponent of Poynting vector (W m ~ 3) m p plasma frequency (rad s- 1 )
f tim e (s) COtQ; transverse optical phonon frequency ( ra d s - 1 )
f t film thickness (m}

In this case, a thickness-dependent film emissivity can be 
defined as the emissive power of the layer to that of a 
blackbody a t the  same condition-

indirect and direct m ethods have been proposed in the 
literature for predicting the  emissivity of thin films. In the 
indirect m ethod, the  spectral, directional absorptivity dL 
of the  layer is calculated via a conservation of energy: 
ce^=  1 In this expression, p*a  and ^  are the
spectral, directional reflectivity and spectral, directional 
transmissivity, respectively, calculated by considering 
that the layer is illum inated by an external wave with 
specific frequency and direction. The spectral, directional 
emissivity sL is then  determ ined by invoking Kirchhoffs 
law, w hich states that the spectral, directional emissivity 
equals the  spectral, directional absorptivity for a body in 
therm odynam ic equilibrium  [2,3]. W ang et al. [4] recently 
used this approach to predict the emissivity of a 
Fabry-Perot cavity resonator. McMahon [5] proposed 
a direct m ethod where the film is sub-divided into 
em itting elements:, Radiation em itted by each elem ent is 
traced w ithin the layer in order to determ ine the portion 
transm itted  outside the film. The emissive power is then  
com puted by integrating over the layer thickness the 
contribution of each elem ent. This approach, however,

treats therm al radiation as incoherent such that possible 
interference effects are not accounted for. Consequently, 
the m ethod cannot be applied to problem s w here the 
thickness of the film is of the  sam e order of m agnitude as 
the radiation wavelength, since interference effects play a 
non-negligible role in this case. Pigeat et al. [6] general­
ized McMahon's approach by considering wave interfer­
ences using the division of am plitude m ethod. The 
authors claim th a t the m ethod is applicable for estim ating 
the emissivity of m aterials w ith inhomogeneities of the 
sam e order of m agnitude as, or greater than, the radiation 
wavelength. However, the  m ethod has been tested  only 
for hom ogeneous media. Shih and Andrews [7] applied 
this m ethod to calculate the  emissivity of an oil layer on 
water. W ang et al. [8] employed a direct m ethod based on 
Maxwell’s equations and fluctuational electrodynamics to 
model therm al emission from a layered m edium  w ith 
nonuniform  tem perature, and they dem onstrated  num eri­
cally the  equivalence of indirect and direct approaches. 
O ther papers in the literature studied therm al radiation 
emission from complex nanostructures, such as photonic 
crystals [9-11].

The objective of this paper is to investigate the size effect 
on the emissivity of thin films using a direct approach.
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This direct model, based on Maxwell’s equations1 and 
fluctuational electrodynamics [12], leads to a simple 
closed-form expression for computing the thickness- 
dependent emissivity of films. It is shown that this equation 
can also be derived from the other methods, thus demon­
strating the equivalence of the three approaches proposed 
in the literature. The thickness-dependent emissivity equa­
tion is applied to investigate the size effect on the emissivity 
of a num ber of metals and dielectric^. For each material, the 
variation of emissivity against him thickness is calculated, 
and the critical thickness above which no size effect is 
observed is determined. Based on this analysis, an approx­
imate expression is proposed for determining the critical 
thickness without performing extensive computations.

This paper is organized as follows. The problem  under 
consideration, the underlying assum ptions and the m ath­
ematical description are provided in Sections 2 and 3. 
Thickness-dependent emissivities for various m etals and 
dielectrics are reported in Section 4  along w ith values of 
critical thicknesses. Finally, concluding remarks are pro­
vided. The equivalence betw een the direct approaches: is 
rigorously dem onstrated in Appendix A.

2. Description of the problem

Emissivity is calculated using a direct approach based on 
Maxwell’s equations combined w ith fluctuational electro­
dynamics [3,12-16], The specific problem under considera­
tion is shown in Fig. 1. A film, denoted as medium 1, of 
thickness of and described by a frequency-dependent 
dielectric function eri ( ^ ) ~ e ,r l(®)+j£''1( ^  is coated on a 
substrate referred to as medium 0. The layered medium, 
w ith perfectly smooth and parallel interfaces, is infinite 
along the p-direction and azimuthally symmetric. The 
emitting film at tem perature T is assumed to be in local 
thermodynamic equilibrium, homogenous, isotropic, and 
non-magnetic, Room tem perature emissivity is analyzed, 
such that T  is fixed at 293 K. The wavevector k  and its 
normal |fe) and parallel (kp) components with respect to the 
interfaces are shown in Fig. 1. The wavevector represents the 
periodicity of the wave in space and provides its direction of

|  V> P  

f i lm  | 1,

I

k ,  =  
4

su b s tra te  0

t c o s #

kp ~ k s in #

a pure real number and is the same in all media [1], 
However, since the wavevector varies with the dielectric: 
function of the medium, the normal component of the 
wavevector It, is different from one medium to another [17].

3. M athematical form ulation

Direct calculation of therm al em ission is based on the 
fluctuational electrodynam ics form alism  in troduced by 
Rytov [12], According to Rytov’S: description, therm al 
em ission is the result of random  fluctuations of charges 
within a m edium  due to therm al agitation. Fluctuational 
electrodynam ics is built on a macroscopic level, and the 
m icroscopic charge oscillations are m odeled macrosco- 
pically via a >'.:x has’.it current density  J'. Since fluctua­
tional electrodynam ics is a m acroscopic theory based on 
fluctuations around an equilibrium  tem perature, it is 
applicable to bodies in local therm odynam ic equili­
brium. Fluctuational electrodynam ics may also be 
applied to non-equilibrium  conditions provided th a t 
th e  energy em itted  by the body is m uch greater than 
the energy required  to m aintain steady-state  conditions
[12]. '

The propagation of therm ally generated  electrom ag­
netic  waves is described by Maxwell's equations supple­
m ented by the stochastic current Jr acting as a source 
term . Due to the fact that the current density  is a 
stochastic variable, the Maxwell equations com bined 
w ith fluctuational electrodynam ics a re  also stochastic. 
After solving the stochastic Maxwell equations, the 
electrom agnetic fields at the film surface are known, so 
that the em itted  radiative heat flux can be calculated via 
the tim e-averaged Poynting vector. Since the film is 
infinite along the p-direction and sym m etric w ith 
respect to the azim uthal angle tp, only the j-com ponent 
of the tim e-averaged Poynting vector needs to  be calcu­
lated  [IS]:

• •! Re ! 'v'C (3.1)

It should be noted th a t the Poynting vector is four 
tim es larger than its customary definition, since only 
positive frequencies are taken into account in the Fourier 
decom position of th e  tim e-dependent fields [1[.

In order to calculate the radiative heat flux, it is 
necessary to correlate the stochastic c u r re n t /  to the local 
tem perature of the medium. This link is provided by the 
fluctuation-dissipation theorem  (FDT). Under the assum p­
tions listed in Section 2, the  FDT can be w'ritten as [12]: 

f.'.’< if- -  ■ (3.2)

where the subscript a refers to orthogonal components, 
and £  f  indicates an ensemble average. The term  ©(co,T), 
w hich is the m ean energy of an electrom agnetic state  at 
frequency © and tem perature T, is the “driving force" for 
therm al emission and is given by [1[:

Fig. 1. Schematic representation o f the problem: A thin film (m edium  1: 
coated .on a iiibstrate  (m edium  0) is: em itting in air (m edium  2).

©(£0,7) =
fct)

e x p  iV».’I . - 1 §.f>i
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The spectral, hemispherical emissive power o f the film 
is determ ined by solving the  stochastic Maxwell equa­
tions using dyadic Green’s functions for layered m edia 
[18,19]. The resulting expression is given by [20]:

®(co,T)
■ fe 2

t  K i!k. V
J — TJ

( l  -  |-*|J ) a<—4Im(r)j.1 W

V _ Tr, TM
(3.4a)

(3.4c)

where

af «= i> ) -  ( l  - e ’

by e-21??1 Im f  1 ) j

w here fc„ is the m agnitude of wavevector in vacuum, 
f  represents the polarization state of the wave (TE: 
transverse electric and TM: transverse magnetic), and r j  
is the Fresnel reflection coefficient a t the interface i-j  in 
polarization state  7. ftesn el’s reflection coefficients are 
calculated as follows for non-m agnetic m aterials [21]:

r'fE =  D kz j +  kT:

-Srifej
Erjkn

(3.5a)

(3.5b)

The num erator 011 the right-hand side of Eq. (3.4a) 
represents emission by the film, while the denom inator 
accounts for m ultiple wave reflections and interference 
w ith in  the layer. The sum m ation in  the: integrand is 
perform ed over both TE and TM polarization states, while 
the  integration over kp can be interpreted physically as an 
integration over the polar angle 9 (fep=fe„sinft):

After some m anipulation, Eq. (3.4a) can be re-w ritten 
as [20]:

,  f § g |g  I *

where

ir? i2 =

!f

-I-P 1 1

f r ­
y -  TE, TM '

R:

: 1 Jv, *?»yi

(3.6a)

(3.6b)

coefficients for the film. The square of the magnitude of 
these coefficients, |M |? and |T j|2, represents the spectral, 
directional reflectivity and spectral, directional transmissiv­
ity of layer 1, respectively. Accordingly, in Eq. (3.6a)) the 
term  1 —|R jp L |t^ |2 can be interpreted as the spectral, 
directional absorptivity of the film. From Eqs. (3.6b)through 
(3.6d), it can be seen that for a bulk, where £1 goes to 
infinity, R] and T[ reduce to r\x and 0, respectively. There­
fore, the  spectral, directional absorptivity of a bulk material

(3,4b) in polarization state y is ccS — 1 • | f |

3.1. Spectral, directional emissivity

The spectral, directional emissivity of the  film is the 
ratio of its actual spectral, directional emissive power to 
that of a blackbody at the sam e condition [2]:

b, co
(3.8)

where and f j a r e  the spectral intensities of the film and 
a blackbody, respectively. In order to determine an equa­
tion for the radiative intensity from Eq. (3.6a), the following 
expression relating the spectral, hemispherical emissive 
power to the spectral intensity is employed [2[:

q’a>= 2 m  . 
J o -  0

iffl.eosSsin0 dB wm

where azimuthal symmetry is assum ed (i.e., the integration 
over <p from 0 to 271 has been performed). By comparing Eq. 
(3.9) with Eq. (3.6a), and noting that k ^ lc ^ in # , the 
spectra] intensity Im can be written as:

f c i W j j E  f t - P l f - l l f f  (3.1°)

The spectral blackbody intensity is given by Planck’s 
distribution [2]:

(3.11)

Rgyfezo/Srb) Efol
K \grz\

t-TM M  J g tm  
l 2\ f 10 e

Taking the ratio of Eqs. (3.10) and £3.11), the following 
(3 6c) expression for the spectral, directional emissivity is deter­

mined:

am
In Eqs. (3.6c) and (3.6d), j |  is the Fresnel transm ission 

coefficient a t the interface i-j in polarization sta te  y  
calculated as follows for non-magnetic m aterials [21]:

2
v k*4m (3.7a)

» | |  £rj
The terms R  ̂ and I j ,  given by Eqs. (3.6b) through (3.6d), 

are the field amplitude: reflection and transmission

:(3.12)

Eq. (3.12) shows that for bodies in local thermodynamic 
equilibrium, the spectral, directional emissivity is equal 
to the spectral, directional absorptivity. In other words, 
Eq. (3.12) is Kirchhoffs law that has been rigorously derived 
from Maxwell’s equations and fluctuational electrodynamics. 
This relation also implies that the direct and indirect methods 
are conceptually equivalent. Additionally, it is shown in 
Appendix A that the direct method based on the division of 
amplitude [6] also results in the same expression. Therefore, 
it can be concluded that all the three methods employed in 
the literature are equivalent, For a bulk material, Eq. (3.12)
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reduces to:

0 M. I *21 I m m

3.2. Spectral, hemispherical emissivity

The spectral, hemispherical emissivity of the film is the 
ratio of its actual spectral, hem ispherical emissive power 
to that of a blackbody at the same condition [2]:

p an

where gj, is calculated from Eq. (3,6a), and j|L ( =  Kjj,m) is 
the spectral, hemispherical emissive power of a blackbody. 
The spectral, hemispherical emissivity can thus be written as:

£ f f l =  |  f"  I2} cus)
0 lli tM

3,3, Total, hemispherical emissivity

The total, hemispherical emissivity of the film is defined 
as the ratio of its actual total, hemispherical emissive power 
to that of a blackbody at the same condition [2]:

e = K (3.16)

The total, hemispherical emissive power of a black­
body is given by the Stefan-Boltzm ann law tq,. 
where it2 is the refractive index of m edium  2), while the 
to ta l emissive pow er of the film, q", is. obtained by 
integrating Eq. (3.6a) over all frequencies:

: f r,
Jo

(3 1 7 )

Note that the integrals in Eqs. (3.6a) and (3.17) are solved 
numerically via a fifth order accurate Boole integration rule.

4. Results

4:1. Verification of the model

The method described in Section 3 is verified against 
results reported by Nayaranaswainy and Chen [9] and by 
Pigeat et al. [6]. The spectral, hemispherical emissivity of 
silver (Ag) is calculated for a 10-nm-thick film and for a bulk, 
in the spectral band of from 0.4 uni to 4  (ail. For these 
simulations, the dielectric function of Ag is assumed to be 
5.17 + i— 9.0132/(£(£^ i0.018)}, where E is the wave energy in 
electron volt (eV) and is equal to 27ic0ti[eX}~1. The results1 
from the current method and those from Ref. [9] are 
compared in Fig. 2(ajj where a good agreement between 
both sets of results is observed. Additionally, the spectral, 
normal emissivity of a diamond film deposited on a silicon 
substrate is calculated a t a wavelength of 2.3 |j,m for various 
film thicknesses. The film temperature is assumed to be 
1073 K. The refractive indices of diamond and silicon used in 
the model are 1.45-H0.13 and 2.65+i0.08, respectively. 
The results of the current method are compared against 
those from Ret [6] in Fig. 2(b), where, again, a good 
agreement is observed.

4.2. Analysis of spectral, hemispherical emissivity

The spectral, hemispherical emissivity of films is investi­
gated for various metals (gold (Au). silver (Ag), aluminum 
(Al), copper (Cu)) and dielectrics (silicon carbide (SiC), cubic 
boron nitride (cBN)}. From now on, the substrate is assumed 
to be a lossless medium with a frequency-independent unit 
dielectric function. The emissivity is calculated in the spectral 
band from 2.2 x 1013 rad/s to 6.9 x 1014 rad/s where more 
than 99% of the blackbody emissive power is contained at 
room temperature [2], The frequency-dependent dielectric 
function of metals is approximated via a Drude model [1,22]:

sf (cay.— 1 - (4.1)

where top is the plasma frequency and F  is  the damping 
factor. These parameters are reported in Fable 1 for Au, Ag, 
Al and Cu.

The frequency-dependent dielectric function of dielec­
tric m aterials is m odeled using a dam ped harmonic 
oscillator [22,23]:

<W2-ti>j;0.+ iraA
try.. I il l-;/

(4.2)

w here is the high frequency dielectric constant, and 
c.i,(, and C0j& are the frequencies of longitudinal and 
transverse optical phonons, respectively. These para­
m eters are listed in Table 1 for SiC and cBN.

The spectral, hemispherical emissivity and emissive 
power of Au are shown in Fig. 3(a) and (b), respectively, 
for various film thicknesses.; the  results are compared 
against bulk predictions.

As it can be seen from Fig. 3(a), the  emissivity does not 
vary significantly w ith frequency m. Flowever, the em is­
sivity decreases significantly w hen the  thickness of the 
film increases until i t  converges to the emissivity of 
the bulk. For a 81-nm -thick film, the difference betw een 
the emissivity of the film and the bulk is less than \% for 
all frequencies; this thickness above which the emissivity 
does not exhibit any size effect is called the critical 
thickness % . The counterintuitive behavior of the spec­
tral, hemispherical emissivity reported  for Au was also 
observed for Ag, Al and Cu (results not show n)„

The spectral, hemispherical emissivity and emissive 
power of SiC are show n in Fig. 4(a) and (b), respectively, 
for various film thicknesses; the results are again com­
pared against bulk predictions.

Conversely to the case of metals, the emissivity decreases: 
when decreasing the thickness Of the emitter. According to 
Wien's law i./...i — 289h [jm K} [2,3], the dominant emitted 
wavelength for a body at 293 K is about 10 (im (corresponds 
to a frequency of 1.8S x  1014 rad/s). Since wave interference 
becomes important when the film thickness is approximately 
equal to the wavelength [25], some oscillations of the 
emissivity are observed when the thickness of the film 
corresponds to  the dom inant em itted wavelength of 
10 Mm. The dip in emissivity betw een &>ig and is due 
to the fact that the real part of the dielectric constant is 
negative in that bandwidth, thus resulting in a region of 
high reflection. Note also th a t surface phonon-polaritons,
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slower than for metals. As a result, a film as thick as a few 
centimeters is required for the film emissivity to be 99% of 
the bulk emissivity. Note that the non-monotonic variations 
of emissivity observed for film thicknesses between 10 urn 
and 300 nm  are due to surface phonon-polariton coupling 
within the SiC and cBN layers [201. It can also be seen in 
Fig. 6 that the emissivity of a metal bulk is generally much 
smaller than the bulk emissivity of dielectrics. However, for 
thicknesses below approximately 500 nm. the emissivity of 
metals can exceed the emissivity of dielectrics.

4.4. Critical thickness

Table 2 show s critical thicknesses for Au, Ag, Al, Cu, SiC 
and cBN based on spectral, hemispherical and total, 
hem ispherical emissivities. The critical thicknesses are 
Calculated for two levels of accuracy: \% and 0.15k 
The S I accuracy m eans that the  critical thickness is 
reached if the difference betw een film and bulk emissiv­
ities is less than  Irjf the  sam e explanation holds for the 
I I I  accuracy. Note that the results provided in Table 2
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Table 2
Critical thicknesses of films.

M aterials Critical thickness t„  (nm)

1% accuracy 0.1% accuracy

£ Sea £

Metals
Au 31 80 129 104
Ag 31 81 149 107
Al 116 47 135 87
Cu 99 99 133 133

Dielectrics
SiC 6.0 x lO 7 9.1 * 1 0 B 9.2 x  lO7 3.0 x  107
cBN 11.3 x  107 !.• ■ 10’ 1 7.2 * ro 7 4.7 x  107

are valid at room tem perature, as the emission spectrum  
and dielectric function are tem perature-dependent.

As expected, the  critical thickness based on the  spec­
tral, hemispherical emissivity is larger than the critical 
thickness based on the total, hemispherical emissivity. 
Indeed, in the former case, the spectral emissivity should 
satisfy the accuracy condition at each frequency. As 
discussed previously, the critical thickness of m etals is 
about a hundred of nanometers, while it is as large as a 
few  centim eters for dielectrics. These results suggest that 
special care should be taken when dealing w ith dielectric 
films. Indeed, while a dielectric layer with a thickness of a 
few millim eters is considered as physically thick, it may 
exhibit size effect.

It is helpful to have a simple criterion for evaluating the 
critical thickness. In this way, one can determine quickly if 
the size effect on the emissivity of Film should be accounted 
for. Two approximations are often used in the literature for 
this purpose [1]. The first approximation assumes the 
critical thickness to be equal to the wavelength of radiation. 
Based on the calculated values of critical thickness, it is 
found that this approximation may be unreliable. Indeed, 
using the Wien wavelength, this method would suggest 
that a layer with thickness of 10 |im  does not exhibit size 
effect. The results of Table 2 show clearly that this is not the

case. Another criterion suggests that the critical thickness is 
approximately equal to the coherence length. This approx­
imation is difficult to apply in practice, because the coher­
ence length of a blackbody cannot be easily determined. 
As a first order approximation, it is possible to estimate the 
coherence length equal to the Wien wavelength (25], Again, 
this method is not in agreement w ith the rigorous approach 
proposed in this w ork

An approxim ated critical thickness, denoted by f*r, can 
be determined using the radiation penetration depth cu
[26], According to Beer’s law [2], the energy of a wave is 
exponentially attenuated  along its.path: f,7/o =  exp(-d/c>j}, 
w here ^= l/4Jw e, d is the distance traveled along the 
propagation direction, /, is the intensity of the wave after 
a travel path  d and I0 is the initial intensity. Therefore, 
the distance through which the intensity of th e  wave is 
absorbed by a specific ratio l.i'u can be calculated as:

d± = -ln (i„ ls) X  (4.3)

.Eq. (4.3) can be used to determ ine the location of the 
farthest em itting dipoles having non-negligible contribu­
tion to  far-field emission; this location thus corresponds 
to the critical thickness t*r  The contribution of an em it­
ting dipole can be ignored when the intensity of the 
radiated wave by that dipole at the film-air interface is 
a negligible fraction of its  initial intensity. This fraction 
can take different values based on the desired accuracy. 
In this paper, tn has been calculated for two accuracy 
levels (1% and 0.1*1. The same levels of accuracy are used 
for predicting t*.. Therefore, fj, can be expressed via the 
following general expression:

!?r =  -ln(Ac) Sx (4.4)

where Ac is the desired accuracy.
The values of t a  and m  for the materials investigated in 

this paper are presented and compared in Table 3, Since the 
critical thicknesses ta  based on spectral, hemispherical emis­
sivity are compared with t fr, the largest tg, in the thermal 
spectrum at room temperature is reported in Table 3.

It can be seen in Table 3 that tfr and rfr are of the same 
order of m agnitude for both accuracy levels. The m ax­
imum  relative difference betw een ^  and t*. is about 30%. 
Consequently, Eq. (4.4) provides a reasonable approxim a­
tion for the thickness above which no size effect on the 
emissivity of thin film is observed.

5. Conclusions

The objective of this paper was to study the size effect on 
the emissivity of thin films. This was accomplished via a 
direct model based on the solution of Maxwell's equations 
combined with fluctuational electrodynamics. The closed- 
form expression obtained for the thickness-dependent emis­
sivity demonstrated the validity of Kirchhoffs law from a 
mathematical standpoint. The model was employed for 
predicting the behavior of spectral, hemispherical and total, 
hemispherical emissivities of a number of metals and dielec­
trics. The results Showed that the emissivity of dielectrics 
decreases with decreasing the layer thickness, while the 
emissivity of metals increases with decreasing the film 
thickness. The counterintuitive behavior observed for metals
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T a b le  3
Comparison betw een  the  critical thickness calculated via M axwell's equations and fluctuational electrodynamics, t LTl against the approxim ate critical 
thickness, evaluated v ia  Eq. (4A). Critical thicknesses are .calculated a t room  tem perature.

M aterials

1% accuracy 0.1% accuracy

ter (nm) ecr (nm)
l^ rc ta^  x  100 (%)

t„ (nm) t*r (nm) 100 (%)

M etals
Au 81 85 4.9 129 127 1.6
Ag 81 71 12.3 149 106 28.9
Al 116 96 17.2 135 144 6.7
Cu 99 69 30.3 133 104 21.8

Dielectrics
SiC 6.0 x 107 6.5 x 107 8.3 9.2 x  107 9.7 x lO 7 5.4
cBN 11.3 x 107 12.2 x lO 7 8.0 17.2 x lO 7 18.3 x 107 6.4

is due to the extraneous contribution from waves experien­
cing multiple reflections within the thin film. For dielectrics, 
the size effect on the emissivity is a pure volumetric 
phenomenon, such that decreasing the source volume for 
thermal radiation emission decreases the emissivity. Simula­
tion results also revealed that the critical thickness above 
which no size effect is observed for metals and dielectrics 
have different orders of magnitude. In metals, the critical 
thickness is about a hundred of nanometers, while it is as 
large as a few centimeters in dielectrics. Finally, a simple 
expression based on the radiation penetration depth was 
suggested for estimating the critical thickness without per­
forming extensive numerical simulations. In a future 
research effort, the case of a film coated on a lossy substrate 
will be considered.

Fig. A.1. Schematic representation o f the division o f am plitude method. 
Solid and dashed lines show  the path  of upw ard and dow nw ard em itted  
waves; respectively.

A J ,  Poynting vector in TEpolarization

Appendix A. Equivalence of direct m ethods based on 
division of am plitude and  Maxwell’s equations combined 
w ith fluctuational electrodynam ics

The objective of this Appendix is to dem onstrate via a 
rigorous m athem atical derivation th a t the direct m ethod 
based on division of am plitude 16] is equivalent to  the 
direct m ethod based on Maxwell's equations, and fluctua­
tional electrodynam ics [ 12]. For this purpose, an expres­
sion for the  spectral, directional emissivity of the film is 
derived starting from the division of am plitude m ethod.

In the division of amplitude approach discussed in Ref. [6], 
the film is discretized into volume elements, considered as 
independent and incoherent radiative sources. Waves 
emitted by each volume element are then traced within the 
film in order to determine the portion transmitted in air 
(medium 2}. This transmitted energy is finally normalized by 
the blackbody radiation to obtain the film emissivity.

The traveling paths of two waves em itted by a volume 
elem ent (dV) located at a distance d along the z-axis are 
depicted in Fig. A. I. One of the waves is em itted  along the  
z-positive direction (upw ard wave), w hile the o ther wave 
is em itted along the z-negative direction (downw ard 
wave). The total field transm itted  in air due to emission 
by this volum e elem ent is the sum m ation of the con­
tributions from upward and dow nw ard waves. W ithout 
loss of generality, it is assum ed in the following derivation 
th a t the w aves are traveling in the x - z  plane.

By tracing the path of the upw ard wave, it is possible 
to find an expression for the electric field transm itted  in 
air in TE polarization:

E % = y$2 =  yE2e - iateik»x

„  f  t TEp i k -d ) , t TEpikzl (t, -d )r TEr TEp2ikI1t1 
x ^ l l 2 c  i l 2 / l£)e

+  ...) (A.l)

w here the superscript u refers to an upward em itted 
wave. The electric field Ey2 can be w ritten  as an  infinite 
geometric series:

r ;  , -  £2r1rfe -“ (e,'*veN % -«  g  
m — 0

(A.2)

The geom etric series on the right-hand side of Eq. (A.2) 
converges to:

CO -1

E  = T rr,rrW  (A3>
m -  0 1 12 10

Substitution of Eq. (A.3) into Eq. (A2) leads to the 
following TE-polarized electric field for the upward emitted
wave:

t-TE
E“2 =  ----- TF jg „  , (A.4)
y z  z  i r T£V TEp 2 rJ<:,1f 1 v '

12 10
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Similarly, the  electric field emerging in air due to a 
dow nw ard em itted wave is:

t TEr TE
A  -  ----  (A. 5)

w here the superscript d refers to dow nw ard em itted 
wave. The total electric field in air due to a volume 
elem ent dV  is the sum  of Eqs. (A.4) and (A.5);

eM = I l j. = t,
,.■■■■ , lit-'„-»i, iJ, jKaffiii iA 12

iSl* ) i _ r rerTEe2ikllt: tA til

The x- and z-com ponents of the magnetic field are 
related to the  y-com ponent of the electric field via 
Maxwell’s equations [17]:

(A. 7 a)

equations:

u “£r2 F
’ • _ IvT .A ITi

The Poynting vector in TM polarization due to em is­
sion by a volume elem ent dV  is calculated by substituting
Eq. (A. 13) into Eq. (AS)',.

cTM;lJV 
22 ■ 'A 14*

Using Eq. (A.12J; and performing th e  spatial integra­
tion of Eq. (A.14) over l.lM the Poynting vector due to  the 
emission by the entire film is given by:

cftf Ê cô 2kZ2

S

i  IV!?■> -- ' I 12 I
,m h™

+  (A. 15}

A3. Spectral, directional emissivity

Hz2 a  j | £ |  (A.7 b)

Note th a t it is assum ed in the above equations that the 
m aterials are non-m agnetic J|f<p= 1}.

In this paper, only the z-coinponent of the Poynting 
vector in m edium  2 (air) is of interest:

(A.S)

where th e  superscript * refers to complex conjugate. 
Substituting Eq. (A ?a) into Eq. (AS) provides the TE- 
polarized Poynting vector due to emission by a volume 
elem ent dV:

m
cTE’0  <‘z2 I c I 1%2| (A.9)

The Poynting vector due to emission by the entire film is 
calculated by integrating Eq. (A.9) over the film thickness:

H = Jo: dz=
CO Jof 1 [%rJO

dz m m
Substitution of Ey2 given by Eq. (A.6) into Eq. (A. 101 

leads to  the following expression for the Poynting vector 
in TE polarization after perform ing the integration:

— (A .ll)

w here the coefficients a and b are given by Eqs. {'5.4b) and 
(3.4c), respectively.

A2. Poynting vector in TM polarization

Using the sam e procedure as for the TE-polarized case, 
the electric field in TM polarization due to upw ard and 
dow nw ard em itted waves is given by:

E2 -  X I -
fTM 
<■12 (A 12)

The m agnetic field Hy2 can be calculated in term s of 
the x-com ponent of the electric field using Maxwell’s

The spectra], directional emissivity is calculated as the 
ratio of the actual spectral, directional emissive power of 
the film to that of a blackbody at the same condition. For a 
given polarization state  f ,  the spectral, directional em is­
sivity is calculated as follows [6]:P, = /
.. %

(A.16)

w herew  > indicates a time average. The spectral, directional 
emissivity of the film is determined by averaging spectral, 
directional emissivity over the two polarization states:

1
2 - (A. 17)

The Poynting vectors in TE and I'M polarizations due to 
blackbody radiation are [6]: 

i/'
(A.18a). v:

a-b ~ 2 SE

(A. 18 b)tfM _  £2 t0£r 1 f a

The spectral, directional emissivity in TE polarization 
is obtained by substituting Eqs. (A .ll)  and (A.18a) into 
Eq. (A.16):

a | E =  2f<'1Res(~S.|... _  IfS  + j (A.19)
I f e l  | l - 4 f 4 g e 2 i ^ t , |2 \2 k h

Eq. (A.19) can be re-arranged using R etk^/Fcnll^f]2 =  

l - | r i f |2 [221:

^  ( l - | r E | 2) :̂ + 2 k ; i /fe1( ; i - | r |  f ) h n  

Additionally, it is possible to show that:

^i#zi (H rilf) = 21111:1,;.':
The spectral, directional em issivity in TE polariza­

tion  is. finally de term ined  by substitu ting  Eq. (A.21) into

(A.20)

(A.21)
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Eq. (A.20):

>T£ ( l - | r { l f ) ^ - 4lm{rB}^
R eferences

(A.22)

Following the sam e procedure as for the TE-polarized 
case, an expression for the spectral, directional emissivity 
of the film in TM polarization is determ ined by substitu t­
ing Eqs. (A.15) and (A.18bj into Eq. (A.16):

f t  I2
Re f  8*2k a ) I f f  M l2 

12 p

1 W

where

R e l# 2)
I ̂ rl J

=  Re

and

tea I 
is® I

(A.23J:

(A.24a)

(A.24b)

Substituting Eqs. (A.24a) and (A.24b) into Eq. (A.23}: 
leads to:

= 2 K |£ri | 
I £r21ReJ i f f t M P

l 'rl J 1

■TM

2ir k71
(A.25)

Equation. (A.25) can be simplified via the identity

=HR? I2 i22lE

i r TMt.l’Mp2041t, 
12 ' 1 0  e

(A.26):

Using the identity given by Eq. (A.21), the spectral, 
directional emissivity in TM polarization has the exact 
sam e form as the  spectral, directional emissivity in TE 
polarization:

p S M H j n M l P
(A.27/

Finally, the spectral, directional emissivity of the film 
is determ ined by substituting Eqs. (A.22) and (A.27) into 
Eq. (A. 17):

(1—| r 1  )a>’-41m {rj2}f)1'
(A.28)

After som e m anipulations outlined in reference [20], 
Eq. (A.28) reduces to Eq* (3*12) derived from Maxwell’s 
equations and fluctuational electrodynamics. It is there­
fore possible to conclude that the direct m ethod of Ref. [6] 
is equivalent to the  direct approach employed in this 
work.
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A B S T R A C T

A novel numerical method called the Thermal Discrete Dipole Approximation (T-DDA) is 
proposed for modeling near-neld radiative heat transfer in three-dimensional arbitrary 
geometries. The T-DDA is conceptually similar to the Discrete Dipole Approximation, 
except that the incident field originates from thermal oscillations of dipoles. The T-DDA is 
described in details in the paper, and the method is tested against exact results of 
radiative conductance between two spheres separated by a sub-wavelength vacuum gap. 
For all cases considered, the results calculated from the T-DDA are in good agreement with 
those from the analytical solution. When considering frequency-independent dielectric 
functions, it is observed that the number of sub-volumes required for convergence 
increases as the sphere permittivity increases. Additionally, simulations performed for 
two silica spheres of 0.5 pm-diameter show that the resonant modes are predicted 
accurately via the T-DDA. For separation gaps of 0.5 pm and 0.2 pm. the relative 
differences between the T-DDA and the exact results are 0.35% and 6.4%. respectively, 
when 552 sub-volumes are used to discretize a sphere. Finally, simulations are performed 
for two cubes of silica separated by a sub-wavelength gap. The results revealed that faster 
convergence is obtained when considering cubical objects rather than curved geometries. 
This work suggests that the T-DDA is a robust numerical approach that can be employed 
for solving a wide variety of near-field thermal radiation problems in three-dimensional 
geometries.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Radiation heat transfer betw een bodies separated by 
distances greater than the dom inant therm al wavelength 
is limited by Planck's blackbody distribution. In this far- 
field regime, radiative heat exchange predictions in three­
dimensional (3D) complex geometries are tractable 
using well-established numerical techniques such as the 
discrete ordinates m ethod and Monte Carlo approaches

‘ Correspondingauthors.Tel.: +1 801 581 5721: fax: • 1 801 585 9825. 
E-mail addresses: sheila.edalalpour@ulah.edu (S. Edalatpour). 

mfrancoeur®inech.utah.cdu (M. Francoeur).

0022-4073/S-sec front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/jjqsrtJ20l3.08.02l

|1 ,2 |. In the near-field regime of thermal radiation, which 
refers to the case where bodies are separated by sub­
wavelength gaps, heat transfer can exceed by several 
orders of m agnitude the blackbody limit [ 1.3—14|. The 
enhancem ent beyond Planck's distribution is due to the 
extraneous contribution to energy transport by waves 
evanescently confined within a distance of about a wave­
length normal to the  surface of a therm al source. These 
modes include evanescent waves generated by total inter­
nal reflection of a propagating wave at the m aterial-gap 
interface as well as resonant surface waves such as surface 
phonon-polaritons and surface plasmon-polaritons.

To account for tunneling of evanescent modes and 
wave interference, near-field heat transfer problems are

http://www.elsevier.com/locate/jqsrt
mailto:sheila.edalalpour@ulah.edu
http://dx.doi.org/10.1016/jjqsrtJ20l3.08.02l
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modeled using fluctuational electrodynamics |1.3.15|. In 
this formalism, thermal emission is modeled in Maxwell’s 
equations by stochastic currents that are related to the 
local tem perature of the source via the fluctuation- 
dissipation theorem. So far, the vast majority of near­
field radiative heat transfer predictions have been 
restricted to simple canonical geometries. This is due to 
the fact that near-field therm al radiation problems have 
been mainly solved by deriving analytical expressions for 
dyadic Green’s functions (DCFs); this approach is referred 
to as the DGF method. The DGF method provides exact 
results, but becomes intractable when dealing with 3D 
arbitrarily-shaped objects. Over the past years, the DGF 
approach has been applied to various cases: two bulks |4 -  
6.15—191. two films [20-23|, two structured surfaces |24|, 
two nanoporous materials [25|, one-dimensional layered 
media |26-28 |, cylindrical cavity |29J, two dipoles [30-321. 
two large spheres |33,34|, dipole-surface |35 |, dipole- 
structured surface [36|, sphere-surface (34.37J. two long 
cylinders |38 |, two nanorods [39,40|, two gratings [411 and 
N small objects (compared to the wavelength) modeled as 
electric point dipoles |42 |.

W ith the rapid advances in nanofabrication, near-field 
thermal radiation is becoming an important part of heat 
transfer engineering. Indeed, near-field thermal radiation 
may find application in imaging |43 |, thermophotovoltaic 
power generation [44-48], nanomanufacturing [49.50), 
thermal management of electronic devices |51|, therm al 
rectification through a vacuum gap [52,53] and radiative 
property control |5 4 -5 6 | to name only a few. Due to these 
num erous potential applications, there is a need for pre­
dicting near-field heat exchange in 3D complex geome­
tries. Numerical procedures, namely the finite-difference 
time-domain (FDTD) m ethod [57—59[. the finite-difference 
frequency-domain (FDFD) method |6 0 | and the boundary 
elem ent method (BEM) |61 | have been applied recently to 
near-field therm al radiation calculations. Both FDTD and 
FDFD approaches suffer from large computational time, 
while the BEM is difficult to apply when dealing with 
heterogeneous materials. In this work, the Thermal 
Discrete Dipole Approximation (T-DDA) is proposed for 
simulating near-field heat transfer between 3D arbitrarily- 
shaped objects. The Discrete Dipole Approximation (DDA), 
extensively used for predicting electromagnetic wave 
scattering by particles, is based on discretizing objects 
into cubical sub-volumes behaving as electric point dipoles 
[62-66|. The T-DDA follows the same general procedure as 
the DDA. except that the incident field is induced by 
thermal fluctuations of dipoles instead of being produced 
by an external illumination.

The objective of this paper is to formulate the T-DDA 
and to test the m ethod against exact results obtained from 
the DGF approach. In Section 2. the physical and m athe­
matical formulation of the problem is provided. Next, the 
T-DDA is derived starting from the stochastic Maxwell 
equations and the associated solution procedure is 
detailed. In the fourth section, the T-DDA is verified against 
exact results for two spheres separated by a sub­
wavelength vacuum gap: a problem involving two cubes 
is presented afterwards. Concluding remarks are finally 
provided.

Absorbersij = 1.2.... Af.)

Vacuum
Emitters (/ = 1,2,..., M t ) «

Fig. 1. Schematic representation of the problem under consideration.

2. Physical and m athem atical form ulation of the 
problem

The problem under consideration is shown schemati­
cally in Fig. 1. A total of m = l ,  2 .....M objects at tem pera­
tures T,„ are submerged in vacuum (m edium  0) and are 
exchanging thermal radiation. The Me em itters are made 
up of source points r ' while the M„ absorbers are com­
posed of points r  where the fields are calculated. The 
bodies are assumed to be in local thermodynamic equili­
brium, isotropic, non-magnetic and their electromagnetic 
responses are described by frequency-dependent dielectric 
functions em = em+ie'm local in space. No assum ptions are 
made on the shape and size of the objects as well as on 
their separation distances.

Thermal emission is the result o f random fluctuations 
of charged particles inside a body caused by thermal 
agitation [3|. On a macroscopic level, this chaotic motion 
of charged particles is modeled via a stochastic current 
density Jr which is added in Maxwell’s equations to model 
thermal emission. The random nature of the thermal 
current thus makes the Maxwell equations stochastic. 
Assuming e *"f for the time harmonic fields, the stochastic 
Maxwell equations in the frequency domain are w ritten as 
follows [67]:

V x  E(r. o>) =  io)//0H(r. w)

V x  H (r .o j) =  — iW orE(r,<w)-t-Jr(r,a i)

(2.1a)

(2 .1 b )

where t 0 and /i0 arc the vacuum permittivity and perm e­
ability. respectively. E is the electric field and H denotes 
the magnetic field.

The first moment of the thermal current is zero (i.e., 
(Jr(r. o>» =  0). which implies that the mean radiated fields 
are also zero [3|. In heat transfer analysis, the quantities of 
interest are not the mean radiated fields, but the flux and 
the energy density which are proportional to the ensemble 
average of the spatial correlation function of currents. This 
correlation function is provided by the fluctuation- 
dissipation theorem  linking the therm al current to the 
local tem perature of the em itter (3|:

( Jr(r’. w) ® Jr(r*. m)) =  4" " 11' 0 (t». '/>■>(r' - r "  )l (2 .2 )
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The symbol ® represents the outer product defined as 
Jr(r',iu) ® Jc(r/V®)=Jc(r.',a>) ’ Gr(r",a>)^, where the super­
script f  indicates the Hermitian operator (conjugate trans­
pose). In Eq. (2.2), I  is the unit dyadic and © is the mean 
energy of an electromagnetic state given by 1681:

@(£u, 1*1 — h&
e,\ p . : A- ,  i j pjSj

w here ft is the reduced Planck's constant ( =  1.0546 x  
10"^4Js )  while kB i — l.'JtS‘.i7 ... 10 ' ’ J K '} is the Boltz­
m ann constant. Note that a factor four is included in the 
fluctuation-dissipation theorem  to account for the fact that 
only positive frequencies are considered when passing 
from the time to the frequency domain [68].

In the next section, a general formulation is proposed 
for modeling near-field radiative heat transfer via the 
T-DDA.

3. Descript ion of the  T-DDA

3:1. Volume integral equation fo r radiation problems

The starting point of the T-DDA formulation is to 
decompose the (total) electric field E as the sum  of an 
incident field, E:nc, and a scattered field, Elai:

E(r,;ffl) =.Eirlc(r, ra)+Es«i(i\ (>ji (3.1)

The incident field can be interpreted as the field thermally 
generated by point sources that is propagating in free 
space in the absence of scatterers. A volume integral 
equation for the  electric field E can be determ ined by first 
taking the curl of both sides of Eq. (2.1a):

V .. H ir  .*■! — — -—V Y h r  ,■:) ( 3 .2 ;
aifitj

The vector wave equation is determined by substituting 
Eq. (3.2) into Eq. (2.1b):

V x  V x  E(r, i»)—k 2E(r,tt>) =  (3..3)

w here k ( — etam) is the m agnitude of the wavevector. 
A free space form of the vector wave equation is obtained 
by subtracting fĉ E from both sides of Eq. (3.3):

S x  V *  E : r . A : . E < r . a > )  — (fc2 k:’ iE'T.,-;i t i./m .j' :r.

(3.4)

w here ko is the m agnitude of the wavevector in vacuum. In 
typical DDA formulations where particles are illuminated 
by an external source, the incident field satisfies
V I  v Iv;, k! I-;.,s — ll. In radiation heat transfer, the 
situation is different as the incident field is generated by 
therm ally fluctuating currentSi As such, the thermally 
generated incident field propagating in free space satisfies 
the following vector wave equation:

\  >: '• > S * H . #  M M i  a>) =  i t , V i (3.5)

The vector wave equation for the scattered field can then 
be obtained by subtracting Eq. (3.5) from Eq. (3.4):

(3:6)
The scattered field in Eq. (3.6) can be interpreted as the 
field generated by an equivalent source function, j)E,

propagating in free space. Solutions for Eqs. (3.5) and (3.6) 
are obtained using the free space DGF denoted by G [64]:

,c(r;. eoj — ia>fia G e r r .  I 'J r(r', ii>)dV' 
J v , '

E.vj.r.i-.i = / / - /<:. Gir r . ,-.i • Eir

(3.7a)

(3.7b)

w here is the volume of the emitting bodies*, while V 
. — V. i IV  is the total volume w here Va is the volume of 
the absorbing bodies. It can be seen in Eq. (3.7a) that the 
integration is performed over Ve only where the thermal 
source is non-zero, while the integration in Eq. (3.7b) is 
performed over the total volume V  to account for the 
interactions between all objects. The free space DGF is 
given by [69]:

G (r, tsj a>) = 1
4xR \

3 i
(k0K)2 ' k0R

) R

IS$)
w here i ? = |r - r ' and K >r r i. r r .

A volume integral equation for the electric field is 
obtained by substituting the scattered field given by Eq. 
(3.7b) into Eq. (3.1):

E(r,o)-J<fl J  [#')-l]G(r.r',i&)-E(rV:iB)dV; = £,*#, ib)
(3.9)

The DGF has a singularity at r — r ’, such that the principal 
value method is used to circumvent this problem. In this 
approach, an infinitesimal volume containing the singu­
larity point is excluded from the integral. For a spherical or 
cubic exclusion volume, the application of the principal 
value m ethod leads to [64,70]:

U :r't ! |G,r. r . • E ,r. vit/V"

,!<lP.V. I , . i t  ■ : |G .r . r \ . v t • E'r'.ivn'iV" „
Jv  a

-E(r, «§;

(3.10)

w here P.V. stands for principal value. The core equation 
underlying the T-DDA m ethod is finally obtained by sub­
stituting Eq. (3.10) into Eq. (3.9):

' lr ' 2 i:ir,....| kiF.V f l e i fI-Ijfffr,rV si) ■ E(r', ai)dV‘ =  Eiftc(r,raj
3 Jv

(3.11)

w here th e  incident electric field E,„c is specified by Eq. 
(3.7a). In the next section, Eq. (3.11) is discretized in order 
to derive a system  of linear equations.

3.2, Discretization o f the volume integral equation

The first step toward the  numerical solution of 
Eq. (3.11) is the discretization of the emitting and absorb­
ing objects into N  cubical sub-volumes on a cubical lattice. 
The first JVe sub-volumes are located in the emitters, while 
the Na [—N -N i)  remaining sub-volumes are allocated to 
the absorbers. The discretization should be fine enough 
such that the dimension of each sub-volume is small 
compared to the radiation wavelength (more details about 
the discretization are provided in Section 4) [63], If this
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condition is satisfied, it can be assumed that the electro­
magnetic properties and the electric field are uniform 
inside each sub-volume. Eq. (3.11) evaluated at the center 
r* of a sub-volume i can therefore be w ritten as:

m om ent pf representing thermal emission [69]:

,r -IQ) r (3.19)

i -  1,2,

(3.12)

where the subscripts i and j  refer to sub-volumes. In Eq. 
(3.12), when the DGF has no singularity, such that the 
principal value can be approximated as [64]:

■ L
P.V. G(Titi ,,oi)dV ^G ijAV} .: j (3.13)

P.V. [  G(t;,T’,0)dV ' - ~ ^ j \ e illa'l‘( l - i k 0ai)—1 IT, i —j
J&V ' *

where G;, is an abbreviation for G (r. r ) . For i—j, the 
principal value integral is given by [64]:

2
i m  3k:;

(3.14)

where a, is the effective radius of sub-volume i defined as 
(3AV,74jt)'®, The discretized version of the volume integral 
equation is obtained by substituting Eqs. (3.13) and (3.14) 
into Eq. (3.12):

'• 1 2  ;'1'1 ' . r ' i . V .  a. * 1, t.

- 4  S  ■ Ej -  E, „ i — 1, 2,.j=i 
#¥■ f

(3.15)

Eq. (3.15) is a system of N vector equations where the 
electric field in each sub-volume is the unknown. It is 
im portant to keep in m ind that E, is stochastic since the 
incident field is generated by random currents. The inci­
dent field, given by Eq. (3.7a), is approximated as follows 
after discretization into sub-volumes:

i — 1,2. ...Wj
16 = 
I  <k-i

(X16)

Eq. (3.16) stipulates that the thermally generated incident 
field is nil in the em itters ( i= l ,  2, .... (Ve), while the 
incident field w ithin the absorbers (£=Ne+ l ,  Ne+ 2 , .... 
N) is due to the k = l,  2, ..., Ne emitting dipoles.

From now on, it is assumed that each sub-volume is: 
behaving as an electric point dipole, such that Eq. (3.15) 
can be re-w ritten in terms of unknown equivalent dipole 
moments p, instead of unknown electric fields E, using the 
relation [64]:

(3.17)

where tiW 
as:

is the Clausius-Mossotti polarizability defined

4 » = « y f c | 2 %  (3.18)
" E j + 2

The random  current density in Eq. (3.16) can also be 
expressed in terms of a thermally fluctuating dipole

As for the random  current, the mean of the thermally 
fluctuating dipole m om ent is equal to zero. The random 
dipole m oments are related to the local tem perature of the 
medium via a modified version of the fluctuation- 
dissipation theorem  (see Eq. (2.2)) [71]:

<P|; *  Pit) -
4e0Im (4 « ) 7 (1 (3.20)

Using Eqs. (3.17)—(3.19), the system of equations given by 
Eq. (3.15) can be re-w ritten in terms of unknown dipole 
moments p,:

a j (3.21)

jVi

where

Emri — *w  m m 1 1  t , r P i  i - f i - A  l, I 2 ... , .\jt-i
(3 .2 2 )

The variable a, in Eq. (3.21) is referred to as the radiative 
polarizability of dipole i, and is defined as [64|:

<sp
_  1 - a f M/2iceaa f[e'% S(l-ifeoOi)-1] { i 2 ' ’

Eq. (3.21) can be interpreted as follows. The first term  on 
the left-hand side represents the interaction of dipole i 
with itself (i.e., self-interaction term), while the second 
term  accounts for the interactions of dipole i with all other 
dipoles except j —i. The right-hand side of Eq. (3.21) is the 
incident field in the absorbing dipoles (i=JVe+ l ,  Ne-i-2, ..., 
JV) due to thermal emission by the  emitting dipoles (i =  'l, 2, 
..., Ne). The system of 3N scalar equations with 3N 
unknowns (each dipole i has three orthogonal compo­
nents) can also be w ritten in a compact form using the 
following m atrix notation:

A • P — E,, (324)

w here P is the 3N stochastic column vector containing the 
unknown dipole moments p„ E,,!il: is the 3N stochastic 
column_vector containing the known incident fields E^t® 
while A is the 3N by 3N deterministic interaction matrix 
consisting of N2 3 by 3 sub-matrices: Each sub-m atrix Agg 
represents the interactions between dipoles i and j. For 
clarity, the expanded form of Eq. (3.24} is also given:

(3.25)

A n  A ij  Ai(< > 1 ' E;m,_ 1

A21 A j j  Ajrt P2 Erne,2

Am  Aj\j2 n m Pn
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For i ^ j ,  the  sub-m atrix A* is. derived from Eq. (3.21) 
combined w ith Eq. (3.8);

f t !  I

where

* 'V..wp=-r* a=x,y,z • ii

4jr£Q % 

, 1
(korijf ft®

(3.27a)

(3.27b>

(3.27c)

incident field at a given dipole i is:

fO 1.2.. . ■

p g r f  I  Gil. • <pj) — *1 «=Ms +  l ,  ."v... t 2 ... .?< 
6.-1

(3.32)

where the linear property of mean operator has been 
utilized. Eq. (3.32) shows that the mean incident field is 
zero regardless of i, since the first m om ent of the ther­
mally fluctuating dipoles is zero. As a result, the mean of 
the dipole m om ent vector, (P), is equal to zero.

Eq. (3.30) is also used to calculate the correlation 
matrix of P. The correlation matrix of the zero-mean 
dipole m om ent vector is defined as [72,73]:

=  (F P ; (3.33)

where Rpp is. a 3N by 3N  matrix consisting of N2 sub­
matrices:

1 = 7+731
■io.W ’'J;:

(3.27d)

Note that r.j is the magnitude of the distance vector r,j 
between dipoles i and j, while r;j is the unit vector along r,j.

For the self-interaction te n n (i= j) ,  the sub-matrix A j, is 
given by:

A fj = —Ta; IP-28)

In the next section, the  solution of the stochastic system of 
equations is discussed.

3.3. Heat transfer calculations

The main objective in heat transfer calculations is to 
compute the radiative power exchanged betw een objects. 
The mean energy dissipated in the absorbers (i=/Ve+ l,  
Ne+2, .... N) at a given frequency is calculated as [63,64]:

( < W )  = j  i  (3.29)

According to  Eq, (3.29), the unknown dipole moments p, 
do not need to be calculated directly. Instead, the trace of 
the dipole auto-correlation function, tr((p; ® pj», is 
needed in order to compute the power absorbed. The 
procedure for calculating the auto-correlations is 
described hereafter.

If the interaction matrix A is invertible, the dipole 
m oment vector P can be determ ined from  Eq. (3.24):

P - A  - Es» (3.30)

where A is the inverse of matrix A . The mean value of P 
can then be determ ined from Eq. (3.30): 

i
<P) — A -(E i!JC:).

where A is taken out of the mean operator since it is a 
deterministic matrix. Using Eq. (3.22),. the mean of the

Rpn =

R P1P1 RPiP, ■ R I

R P2Pl k P |l j  ‘ K,

R PnP i R PhP2 ' %

PiPn

PzPn 11*

A given 3 by 3 sub-matrix, RPfPj =(Pjjgi Pj), is the correla­
tion matrix of the dipole m oments p, and p,. For calculat­
ing the power absorbed, only the traces of the correlation 
matrices R P(Pf are needed, such that Eq. (3.29) can be 
re-w ritten as:

:.q - j  s  ( im[(«r‘f;
*  i - N e + 1

J' (  R P;d (3.35)

Substitution 1of Eq. (3.30) intt^Eq. (3.33), and using the 
identity (A ’ Etnc)"̂  — E[nc (A f ,  the correlation matrix 
of P can be w ritten as:

Rpp — A REe 1 ( a m m
where R EE is the 3JV by 3N correlation matrix of the 
incident field consisting of N2 sub-matrices. Using the fact 
that the mean value of the incident field is zero, Ree is 
calculated as:

l^EiEi REiE2

R b2Ei R e2e2

REjEm

Re2B«

R•ene2

(3.37)

w here the 3 by 3 sub-matrix, Rn,nt =  ® Etncj), is the 
correlation matrix of the incident fields in dipoles i and j. A 
given sub-m atrix is calculated by substituting E ^ j  and 
Eincj given by Eq. (3.22):

JVe Ne -
Rl|Sj =  ,“0® 2  Z  6 *  • (pff ® 'Pn) • Gjrr 1 )  ^  Ne+  1 k - 1 n - 1

(3.38)

w here (p£ ® is non-zero only for n — k, and is given by 
the fluctuation-dissipation theorem  (Eq. (3.20)). Substitu­
tion of Eq. (3.20) into Eq. (3.38) leads to the following
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correlation matrix for the incident field:

=  4^ 0 (m,r;i |  lm (£ s r)? it . ^ y  £jVs +  1 
71 1

(3.39)

The DGFs in Eq. (3.39) have already been calculated when 
determining the interaction m atrix (see Eqs. (3.21) and 
(3.25)). AS such, Jjiere  is no need Co re-compute these 
DGFs. The DGF Glt for IjBjc (i= i, j )  is related to the 
interaction sub-m atrix A® as follows:

K>
(3.40)

The incident field correlation sub-m atrix is thus expressed 
in terms of interaction sub-m atrices instead of DGFs by 
substituting Eq. (3.40) into Eq. (3.39):

f  E,Ej =  1 ' |  - s j t .  U  >  JVe + 1  (3.41)

Eq. (3.41) is employed to populate the correlation matrix 
given by Eq. (3.37). The correlation m atrix H u, is_in turn 
substituted into Eq. (3.36) in order to compute Rpp. The 
diagonal elements of RPp, corresponding to the auto­
correlation of the dipole moments, are finally used for 
calculating the power absorbed by the Ma objects via Eq. 
(3.35). From this result, the power absorbed by the JWe 
objects caused by therm al emission from the M a bodies 
can easily be obtained due to the reciprocity of the DGF. As 
such, the net radiative heat transfer between the emitters 
and the absorbers can be calculated.

The description of the T-DDA is completed. For clarity, 
the algorithm for near-fleld radiation heat transfer predic­
tions via the T-DDA is summarized below

1. Discretize the em itters and the  absorbers into Ne and Na 
cubical sub-volumes AV, conceptualized as electric 
point dipoles w ith effective radius a,.

2. Assign a dielectric function e, and a tem perature T, to 
each sub-volume.

3. Calculate the polarizability a, of each sub-volume using 
Eqs. (3.1S) and (3.23).

-1 Calculate the interaction m atrix A using Eqs. (3.25)- 
(3.28). =-1

5. Calculate the inverse of the interaction m atrix A .
6. Calculate the correlation m atrix of the incident field 

vector Rge using Eqs> (3.37) and (3.41).
7. Calculate the correlation matrix of the dipole m oment 

vector Rpp using Eq. (3.36).
8. Calculate the power absorbed ( i . usin;:, Eq. (3.35),

4. Results a n d  discussion

criterion providing the minim um  num ber of sub-volumes 
to maintain the shape error within an acceptable range has 
no t been established. Yurkin et al. [74] showed that shape 
error for a specific sub-volume size is bounded by a 
sum m ation of a, and a~t term s (a, is the effective dipole 
radius associated with a cubical sub-volume); but no 
information has been provided regarding the coefficients 
of these error terms. Draine [62] suggested a minimum 
num ber of sub-volumes for a sphere in the zero-frequency 
limit:

(4 1)

where n — is the complex refractive index of the 
material while A is the desired fractional accuracy. Eq. 
(4.1) shows that the minimum num ber of sub-volumes 
increases as the refractive index increases for a given 
A value.

According to the second criterion, the discretization 
should be small enough when compared to the wave­
length in the m aterial (2jr/n'ko) and w hen compared to the 
attenuation length of the wave inside the material 
(2if/n"ko} [62], The latter becomes more important for 
highly absorptive materials such as metals. A simple 
criterion for satisfying this condition has been suggested 
[62,63,75]:

Nm \n\3(k0am f (4.2)

where Wwr is the effective radius of the object defined as

The last condition is concerned w ith the fact that 
magnetic dipole effects are neglected w hen discretizing 
objects into sub-volumes behaving as electric point 
dipoles. Indeed, even for non-m agnetic materials, mag­
netic dipole absorption m ight be comparable, or even 
greater, than electric dipole absorption when dealing with 
conductive media such as metals [62,76]. The relative 
importance of magnetic dipole effects reduces with 
decreasing the size of the sub-volumes [62]. Therefore, 
the T-DDA can be applied to conductive media provided 
that the discretization is fine enough. Draine [62] sug­
gested a criterion that combines Eq. (4.2) with 
C jj/C jjs < A, w here and Ceabs are the magnetic dipole 
absorption cross-section and the electric dipole absorption 
cross-section, respectively. This criterion is given by:

4?r
0.1 36^0.1

3/2'
(4.3)

4.1. Accuracy o f  the T-DDA

The accuracy of the T-DDA is subjected to the same 
validity criteria as the DDA. According to Draine [62], there 
are three validity criteria associated with the DDA. The first 
condition stipulates that the num ber of sub-volumes 
should be large enough in order to describe the geometries 
of objects accurately [62]. The error introduced by this 
effect is known as the: shape error. A general quantitative

By comparing Eq. (4.3) against Eq. (4.2), it is clear that 
magnetic dipole effects should be considered in the dis­
cretization if the following condition is satisfied:

n.| -Cil),, i1 *
0,1

(4.4)

The T-DDA is evaluated next for different m aterial proper­
ties, separation gaps and object shapes.
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observed that for a fixed number of sub-volumes, the error 
increases as the separation gap decreases. Additionally, faster 
convergence was achieved when considering two cubes 
rather than two spheres.

This paper suggests that the T-DDA is a robust, rela­
tively simple simulation tool for predicting near-field 
radiative heat exchange. The convergence and the accu­
racy of the T-DDA need further investigation, and this is 
left as a future research effort.
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The thermal discrete dipole approximation (T-DDA) is a numerical approach for modeling near-field radiative 
heat transfer in complex three-dimensional geometries. In this work, the convergcncc of the T-DDA is investigated 
by comparison against the exact results for two spheres separated by a vacuum gap. The error associated with the 
T-DDA is reported for various sphere sizes, refractive indices, and vacuum gap thicknesses. The results reveal 
that fora fixed number of sub volumes, the accuracy of the T-DDA degrades as the refractive index and the sphere 
diameter to gap ratio increase. A converging trend is observed as the number of subvolumes increases. The large 
computational requirements associated with increasing the number of subvolumcs, and the shape error induced 
by large spliere diameter to gap ratios, are mitigated by using a nonuniform discretization scheme. Nonuni form 
discretization is shown to significantly accelerate the convergence of the T-DDA, and is thus recommended for 
near-field thermal radiation simulations. Errors less than 5% are obtained in 74% of the cases studied by using 
up to 82 712 subvolumes. Additionally, the convergence analysis demonstrates that the T-DDA is very accurate
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when dealing with surface polariton resonant modes d 
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I. INTRODUCTION

Ncar-ficid thermal radiation has recently attracted sig­
nificant interest due to potential applications in thermal 
management of nanoscale devices [ 1], imaging [2], nanoman­
ufacturing [3,4], thermal rectification [5,6], near-field thermal 
spectroscopy [7-9], and thermophotovoltaic power generation 
[10-12]. In the near-field regime, arising when the distance 
between bodies is smaller than W ien's wavelength, radiative 
heat transfer exceeds the far-ficld blackbody limit due to 
tunneling of evanescent modes [13-15]. As such, the classical 
theory based on Planck’s blackbody distribution cannot be 
applied to near-field thermal radiation predictions. Instead, 
near-field radiative heat transfer problems arc modeled using 
fluctuational electrodynamics w'hcrc stochastic current densi­
ties representing thermal radiation sources are added to the 
Maxwell equations [16]. A significant amount of research 
has been devoted to the analysis o f near-field radiative heat 
transfer in one-dimensional layered geometry for which an 
exact solution can be derived using dyadic Green's functions 
(DGFs) [17-21]. Exact solutions have also been derived 
for configurations such as near-field radiative heat transfer 
between nanoparticles [22], between two spheres [23-25], 
and between a sphere and a surface [26,27]. W hen dealing 
with three-dimensional complex geometries, it is necessary to 
employ numerical techniques. So far, a few numerical methods 
have been proposed for solving the thermal stochastic M ax well 
equations [28-34]. Edalatpour and Francoeur [35] presented 
a relatively simple approach called the thermal discrete dipole 
approximation (T-DDA). The T-DDA is based on the discrete 
dipole approximation (DDA), which is a well-known method 
for modeling light absorption and scattering by particles with 
size comparable to, or smaller than, the wavelength [36-38]. 
In both the T-DDA and the DDA, objects are discretized into
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cubical subvolumcs conceptualized as electric point dipoles. 
The main distinctive feature of the T-DDA is that the dipole 
moments in the subvolumes are induced not only by an external 
illumination but also by thermally fluctuating dipoles arising 
from thermal agitation of charges.

The accuracy and convergence of the DDA have been stud­
ied extensively in the literature, and a detailed, comprehensive 
discussion of this topic can be found in Ref. [38]. The accuracy 
of the DDA is a function of three main parameters, namely the 
shape, the size, and the refractive index of the objects [38,39], 
The convergence of the DDA has been empirically analyzed 
using analytical solutions for a single, isolated sphere (Mie 
theory) [37,39-411 and for two spheres in contact |37,42,43], 
In general, the accuracy of the DDA degrades as the refractive 
index and/or the size increase [37,39,40,44], while it improves 
as the number of subvolumcs increases [37,39,44-46]. The 
computational requirements associated with the DDA grow as 
the number of subvolumes increases, such that the maximum 
size and refractive index that can be modeled are I im ited by the 
available computational resources. Traditionally, tine DDA is 
said to be suitable for objects with rcfractivc index m  satisfying 
the relation \m — 1| <  2 [47,48]. Larger refractive indices 
can also be handled with the DDA by utilizing techniques 
such as the weighted discretization approach [49,50] and the 
filtered coupled-dipole method [50-52], Draine and Flatau
[47] recommend using the DDA for objects o f normalized 
size k« D,.fr less than 50, where ko is the magnitude of the 
wave vector in free space and Dca is the effective diameter 
of the object. However, this is an approximate criterion since 
the DDA has been applied to objects as large as =
640 for near unity refractive indices [48]. Additionally, the 
convergence of the DDA is much faster for cubically shaped 
objects that can be represented exactly by cubical subvolumes 
than for spheres due to the abscncc of shape error [44,45,53]. 
Based on an empirical analysis, Draine [39] proposed three 
criteria for determining the minimum number o f subvolumes 
required to achieve a desired fractional error. These criteria are 
concerned with the shape error, the variation of the electric field

7-1 ©2015 American Physical Society
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inside the objects, and the minimum subvolume size to ensure 
that the contribution of the magnetic dipoles to the absorption is 
negligible when compared to the contribution from the electric 
dipoles. Zubko et al. [54] pointed out that the second criterion 
ensuring negligible variation of the electric field overestimates 
the number o f subvolumcs required for modeling irregular 
objects with surface roughness. Yurkin et al. [44,451 analyzed 
theoretically the convergence o f the DDA. It was shown that the 
error associated with any quantity of interest (e.g., absorption 
and scattering cross sections) is delimited by a summation of a 
linear and a quadratic term in the discretization parameter. An 
extrapolation technique providing an estimation of the error as 
a function of the discretization parameter was proposed. The 
superposition of the estimated error and the DDA solution for 
a cube improved the accuracy of the results by two orders of 
magnitude. Using this approach, improvement o f the accuracy 
of the DDA was also observed for other shapes.

For thermal radiation problems treated by the T-DDA, 
the separation gap between the objects is a supplementary 
parameter that must be accounted for. Indeed, the gap to 
wavelength ratio and the object size to gap ratio determine the 
relative contributions of propagating and evanescent modes to 
radiative heat transfer, and thus the variation of the electric 
field within the objects. The shape error associated with the 
T-DDA is also a strong function of the object size to gap 
ratio. Additionally, Edalatpour and Francoeur [35] showed 
that Draine's criteria [39] discussed in the previous paragraph 
largely overestimate the number of subvolumes required to 
achieve a desired accuracy when applied to the T-DDA. There 
is therefore a strong motivation for analyzing the accuracy and 
the convergence o f the T-DDA, as near-field thermal radiation 
simulations differ significantly from traditional scattering and 
absorption calculations performed with the DDA.

In this work, the convergence of the T-DDA is studied by 
computing the relative error between the thermal conductance 
obtained using the exact solution for two spheres separated 
by a vacuum gap [23-25] and the thermal conductance from 
T-DDA simulations for the same configuration. The analysis is 
performed for three types o f sizes, namely IcqD  I , k<) D ~  1, 
and koD  »  1 (D  is the diameter of the sphere). For each 
size, the distance between the spheres is varied such that the 
performances o f the T-DDA are evaluated in all near-field 
radiative transfer regimes. As in the DDA, the refractive 
index of the spheres is expected to have a significant impact 
on the T-DDA performances. Therefore, various refractive 
indices, including large and small real and imaginary parts, 
and a refractive index corresponding to a resonant mode, 
are examined. A nonuniform discretization scheme is also 
proposed for accelerating the convergence of the T-DDA.

This paper is organized as follows. The T-DDA described 
in Ref. [35] has been slightly modified, such that the main 
steps and equations of the updated formulation are provided 
in Sec. II. The approximations made in the T-DDA are listed 
in Sec. III. The convergence analysis is afterwards presented 
and is followed by concluding remarks in Sec. V. Finally, 
the Appendix demonstrates that the T-DDA reduces to the 
previously published dipole approximation [55] in the limit 
that the sphere diameter is much smaller than the gap size and 
the wavelength.

II. DESCRIPTION OF THE T-DDA FORMALISM

The T-DDA framework is established by considering L 
bodies, with frequency-dependent dielectric functions local 
in space sj =  s[ + i s " and temperatures 7J, submerged in the 
free space. All bodies are assumed to be in local thermo­
dynamic equilibrium, isotropic, and nonmagnetic. L e bodies 
emit thermal radiation (7j >  0 K.J =  1 ,2 ,. . .  ,L e) while the 
remaining L a bodies are pure absorbers (7j =  0 K,/ = L e + 
1 ,L t +  2 , . . . ,L ). The objective is to calculate the radiative 
energy transferred to the absorbers. Thermal emission is 
due to random fluctuations o f charges inside the bodies 
and is modeled using fluctuational electrodynamics [16]. 
For nonmagnetic materials, as considered here, a fluctuating 
electric current J  ' l is added to Ampere’s law in the Maxwell 
equations. The ensemble average of the fluctuating current 
(first moment) is zero while the ensemble average of its 
spatial correlation function (second moment) is given by the 
fluctuation-dissipation theorem [16]:

<J/ , (r ',< u )® J/ l ( r 'V ) )

_  4o' s"s _Q(o^ T)S(r/  _  (1) 
71

where ® denotes the outer product defined as the multiplication 
of the first vector by the conjugate transpose of the second 
vector, I  is the unit dyadic and Q(oj,T )  is the mean energy 
of an electromagnetic state given by ft<w/[exp(JUo/ksT) — 
1]. Due to the random nature o f the fluctuating current 
near-field thermal radiation problems are stochastic and are 
mathematically described by the thermal stochastic Maxwell 
equations.

The total electric field at location r  and frequency to 
is the sum of contributions from fluctuating, scattered, and 
incident fields. The fluctuating field is generated by thermal 
excitation of charges in bodies with temperature larger than 
absolute zero, while the scattered field is due to multiple 
clcctromagnctic interactions between the bodies. The incident 
field is produced by an external source such as thermal 
emission by the surroundings (sometimes referred to as the 
bosonic field or the thermal bath) and/or illumination by a 
laser. The following free-space vector wave equation for the 
total electric field E  is derived from the thermal stochastic 
Maxwell equations:

V x V x E (r ,a>) — k^Kir.eo) = i ,a>). (2)

The current J  is an equivalent source function producing 
scattered and fluctuating fields:

J(r,<u) =  —i<oSo(e — l)E(r,<w) + J  (r,<w), (3)

where the first term on the right-hand side o f Eq. (3) is the 
sourcc function for the scattered fi eld [35]. The incident field is 
generated by an external source and satisfies the homogenous 
vector wave equation in free space V x V x E‘'li:(r,a>) — 
^ E " !C(r,a)) =  0. The total electric field at location r  and
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frequency u> can thus be written as follows:

E(r.a>) =  ia>no f  G(r.r'.aj) ■ J (r'.to )dV '+  E'”c(r.co\ (4) 
Jv

where V is the total volume of the emitting and absorbing 
bodies and G is the free-space DGF defined as [56]:

G(r,r',a>) = 0 (k o R f  1
/  3 3i \  „ -1

-  1 -----------s  + t s  .V ( k o R f  koR J_______ _ (5)
{IcoRY k > R '  1

The first term on the right-hand side of Eq. (4) is the sum of

the fluctuating field (ia>/4o Jv G (r,r',<u) • J  ,J(r\<o)dV'), due to 
thermal fluctuations everywhere in V where J' > 0  K.. and the 
scattered field (k~ f v to )(s  -  1 )E (r’,(o)dV'). In Eq. (5), 
R =  |r -  r'| and R =  (r -  r'VIr -  r'|.

Equation (4) is discretized by dividing the L  objects into 
N  cubical subvolumes on a cubical lattice. The electric field 
at the center point r, o f subvolume i (i =  1, 2, . . . , N ) can be 
written as:

E(r;,a>) =  ioj/AQ V  I G (r:,r\<o) ■ J(r ',<o)dV' 
i #  h v -

+ I a>no f  G (r„r'v
J  AV,

E; =  ico/Ao• X G‘r  (
j *  7 a ’

J ( r \<o)dV'

+  t - — -  ikodi) — 1) — 1] 
3(oso

- i -  (  J ( r » / V ' l  +  e ;"c,
A v, JAVi J (7)

where G,; is the free-space DGF between r, and r; , and 
a; [= (3A  V'./4jt)1/ ] is the effective radius of subvolume i. 
When evaluating the integration over AV, in Eq. (6), two 
assumptions are made. First, the current J  inside subvolume
i is approximated by its volumetric average. Second, when 
applying the principal value method, subvolume i is approx­
imated as a sphere o f equivalent volume. The validity o f this 
approximation has been verified by comparison against, an 
exact method [58]. A more rigorous approach for treating the 
singularity of the DGF can be found in Refs. [58,59].

Under the assumption that the subvolumes are small com­
pared to the wavelength, it is reasonable to model a subvolume 
as an electric point dipole. A given subvolume i is therefore 
characterized by a total dipole moment p, that is related to the

equivalent current via the relation p, =  i f AV J ( r \co)dV'/a>
[60]. After substitution of Eq. (3), the following expression 
for the total dipole moment is determined:

p, =  AVifoCf, -  1)E, + -  f y '(r ',co)dV '.
J AVi

(8)

The first term on the right-hand side o f Eq. (8) is the induced 
dipole moment p| while the second term is the thermally 
fluctuating dipole moment p . Since the fluctuating current 
is converted into a thermally fluctuating dipole moment, 
it is more appropriate to express the fluctuation-dissipation 
theorem as follows:

(p/ '( « )  © p/ V ') )  -  - A *’
na>

The main equation of the T-DDA is derived by writing 
Eq. (7) in terms of dipole moments:

-Pr + k c- (io)

The variables a r-M and or, are the Clausius Mossotti and 
radiative polarizabilities of dipole i given by:

(11a)

w) ■ J(r',co)alV" +  E '"c(r„co).

(6)
Ttie integration over A V, in Eq. (6) is treated separately 

since the DGF has a singularity at r ' =  rj. Next, it is 
assumed that the free-space DGF and the electric field are 
constant within each subvolume. The only exception arises 
for the integration of the DGF over AV,, where the principal 
value method is used [57]. Note that the validity of these 
approximations is discussed in Sec. III. Equation (6) then 
becomes:

ol, =
1 -  /2 ;rt'oflf)[e1 (1 -  ikoa,) -  1]

( l ib )

Note that the fluctuation-dissipation theorem for the fluc­
tuating dipole moment given by Eq. (9) is different from the 
expression previously reported in the literature [55]. This is 
explained by the fact that the induced dipole moment due 
to the interaction of subvolume i with itself is implicitly 
included in the fluctuation-dissipation theorem of Ref. [55]. 
In the current formulation, the induced dipole moment due 
to self-interaction of subvolume i is accounted for in the first 
term on the left-hand side o f Eq. (10). It is shown in the 
Appendix that the fluctuation-dissipation theorem given by 
Eq. (9) combined with Eq. (10) is equivalent to the formulation 
presented in Ref. [55],

Equation (10) is a system of 3N  scalar equations that can 
be written in a compact matrix form as follows:

A P =  E fd‘ + E" ( 1 2 )

where A is the 3N  by 3N  deterministic interaction matrix [35],
— fdt
E is a 3N  stochastic column vcctor containing the first term 
on the right-hand side of Eq. (10) and its correlation matrix 
is obtained using the fluctuation-dissipation theorem, F.1 ’ is a 
3 N  deterministic column vcctor containing the incident field 
and P  is a 3N  stochastic column vector containing the unknown 
total dipole moments.

The monochromatic power dissipated in the absorbers is 
given by [37,61]:

(Qabs.») =  t  Z !  ( M f o r 1)*] -  ^ ) tr(p!”rf ® p!’’1')-

(13)
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where the superscript * denotes complex conjugate while 
tr(p["£? ® is the tracc of the autocorrelation function of 
the induced dipole moment of subvolume i. The summation in 
Eq. (13) is performed strictly over the subvolumes contained 
within the absorbers. Since the absorbers are at a temperature 
of 0 K, p ,1 = 0 and (p; ®p, )  =  (p|',rf ®  p|"rf) such that 
Eq. (13) can be calculated directly from the system of equations
(12). The tracc o f the autocorrelation function of the total 
dipole moment is determined using the correlation matrix of 
P obtained from Eq. (12) [35,62]:

(P® P >  = X  1 ■ <(E"" ® E ,d' )  + (E”" ® E1"')) • (X  V ,
(14)

where the superscript f is the Hermitian operator. The fact 
that E and E' are uncorrelated (i.e., ( E ^ 1 ® E1̂ )  =  
0) has been used when deriving Eq. (14). The correlation

—fdl Tzld' . , . , , ,  . i o  •matrix (E ® E  ) is derived by applying the iluctuation- 
dissipation theorem given by Eq. (9).

The difference between the T-DDA framework described 
here and in Ref. [35] comes from the splitting of the fluctuating 
field and the incident field. In this paper, the incident field 
represents solely the field produced by external sources. 
Additionally, the system of equations (12) is written in terms 
of total dipole moments rather than in terms of induced dipole 
moments.

As a final remark, it is important to recognize that the 
system of equations (12) is stochastic and can be solved in 
different ways. Hereafter, the computations are performed 
in a deterministic manner by calculating directly the dipole 
autocorrelation function from Eq. (14). Alternatively, Eq. (12) 
can be solved directly by assuming that only one subvolumc 
is thermally emitting while all other subvolumes are at a 
temperature of 0 K. These calculations need to be repeated 
for each subvolume contained in the emitters, and the 
dipole autocorrelation function can thus be determined. The 
correlation matrix method is attractive as it does not involve 
multiple solutions of a system of equations. On the other hand, 
this methodology is computationally expensive due to large 
memory requirements when dealing with a large number of 
subvolumes. More details on this topic will be provided in 
Sec. IV.

III. APPROXIMATIONS ASSOCIATED WITH THE T-DDA

Following the derivation presented in Sec. II, the approx­
imations made in the T-DDA can be summarized into four 
points.

(i) Discretization o f  the objects into cubical subvolumes. 
The error introduced by this approximation is called the shape 
error [39,44]. The shape error is nonexistent for objects that can 
be represented exactly by a cubical lattice such as a  cube [44], 
while it can be large for curved objects such as a sphere. The 
shape error for multiple objects closely spaced from each other, 
or in contact, is larger than for a single object. As discussed 
later, this is related to the importance of representing accurately 
the gap size between discretized objects. The extent to which 
the shape error negatively affects the accuracy o f the results 
is a strong function of the refractive index of the object [39].

A large refractive index implies a high contrast between the 
object and the free space, which amplifies the shape error. 
Approximating objects by a cubical lattice is valid when the 
size of the subvolumes is small compared to the characteristic 
lengths o f the problem, namely the size of the objects and their 
separation distance.

(ii) Constant electricfield in each subvolume. Radiative heat 
transfer in the near field occurs via propagating and evanescent 
modes. W hen dealing with propagating modes, approximating 
the electric field as constant within a subvolume is acceptable 
when the size o f the subvolume is smaller than the free-space 
wavelength (A.), smaller than the material wavelength [km =  
A./Re(m)], and smaller than the decay length of the electric 
field [/./Im(m)]. For cvancsccnt modes, the approximation of 
constant electric field within a subvolume is acceptable when 
the size o f tlie subvolume is small compared to the radiation 
penetration depth. The penetration depth of cvancsccnt modes 
ranges from k m to the thickness of the gap separating the 
objects. Furthermore, for objects with sharp edges such as 
cubes, the size of the subvolumes must be small compared to 
the characteristic length of the object, even if the object is much 
smaller than the wavelength. This ensures that the large electric 
field gradients near the edges are accurately represented 
[53].

(iii) Constant free-space DGF inside each subvolume. The 
variations of the free-space DGF G (i\r\<o) inside the objects 
are proportional to k /  R, where R  is the distance between points 
r  and r ' [59]. When the size of the object is much smaller 
than the wavelength (Rayleigh regime), sharp variations of the 
free-space DGF arise inside the object As such, the validity of 
this assumption becomes questionable in the Rayleigh regime
[58]. In addition, the free-space DGF in Eq. (10) is multiplied 
by the dielectric function s, such that the accuracy of this 
approximation degrades with increasing the refractive index 
m  (m  =  y? ).

(iv) Integration o f  the free-space DGF. G (r,1r',&>), over 
the. subvolume. A Vi where, the singularity o f  the DGF is 
located [second term on the right-hand side o f  Eq. (6)1. To be 
able to perform the principal volume integral analytically, the 
cubical subvolume i is approximated by a sphere of equivalent 
volume [57,63]. The radiative polarizability discussed in 
Sec. II [Eq. (1 lb)] is a result of this assumption [35]. Rather 
than performing the principal volume integration, different 
polarizability models based on physical arguments have been 
proposed [39,64-69],

The impact of these approximations on the accuracy of the 
T-DDA depends on the specific parameters o f the problem. 
This is discussed in the next section.

IV. ACCURACY OF THE T-DDA

The accuracy of the T-DDA is assessed by comparison 
against exact results for two spheres [23-25], As shown in 
Fig. 1, two spheres o f same diameter D  and same refractive 
index m  are separated by a distance X (y ,z ) and arc exchanging 
thermal radiation in the free space. The minimum gap size 
between the spheres is denoted by d  [ = X (0 ,0 )|. For simplicity, 
it is assumed that there is no incident field. Sphere 1 is 
at a temperature T  +  ST, while sphere 2 is maintained
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Sphere  1 Sphere  2 TABLE I. Cases investigated in the convergence analysis.

D

FIG. 1. (Color online) Schematic of the problem under consider­
ation: two spheres of diameter O separated by a distance X(y.z) are 
exchanging thermal radiation. The minimum distance between the 
spheres is d [=X(0,0)J.

at a temperature T. The spectral thermal conductance at 
temperature T  and angular frequency to is given by:

{ Q  n e t , t o )C iJ T ) =  lim
S T — o s r

(15)

where {Q„e,.„) =  {Qabs.*.t2> -  (Qabs.a>.2\) is the net spectral 
heat rate. The power dissipated in sphere 2 due to thermal 
emission by sphere 1, {£?„>„,<„. 12). is calculated from Eq. (13). 
Due to reciprocity, the power dissipated in sphere 1 due to 
thermal emission by sphere 2 can be computed as {Qabs.a>.21) =  
(Q,ibs.a,,n)s u u tU t ) 4 Therefore, the spectral conductance at 
temperature T  is obtained solely from (£ ? a f« ,< » .i2 ) :

O j T )  = ( Q n b s . t u . 1 2 )  d @ ( o j . T )

&io>.T) a r  '
(16)

Hereafter, sphere 1 is referred to as the emitter while sphere
2 is called the absorber. The spectral thermal conductance 
is calculated at a temperature of 300 K and at an angular 
frequency o f 1.884 x  1014 rad/s. This corresponds to a 
vacuum wavelength of 10 iim, which is roughly the dominant 
wavelength emitted by a body at 300 K.

Approximate solutions for the two-sphcre problem have 
been proposed in the literature for two limiting cases. The 
proximity approximation is applicable when the size of the 
spheres is much larger than their separation gap ( D » r f )  
[25,27]. For this case, the conductance between the spheres 
is calculated as a summation o f local heat transfer coefficients 
between two semi-infinite media separated by different gap 
sizes. The second limiting case is the dipole approximation, 
which is valid when the size o f the spheres is much smaller 
than the wavelength while their separation gap is a few times 
larger than their diameter ( D « i  and ii D ) [55], In the 
dipole approximation, the contributions from the quadrupoles 
and higher order poles as well as multiple scattering between 
the spheres are neglected. The Appendix demonstrates that the 
T-DDA reduces to the dipole approximation when I) <K X and 
< / »  D.

The accuracy of the T-DDA is evaluated for three sizes, 
k„D <K 1, k0D «  1, and k0D  »  1. For each size, various 
gap distances in the near-field regime of thermal radiation 
(i.e., d  < X) are considered. Overall, a total o f seven cases, 
summarized in Table I, are investigated. For each case listed 
in Table I, the convergence of the T-DDA is analyzed for 
six different refractive indices (see Table II), including high 
and low real and imaginary parts, and a refractive index 
corresponding to surface phonon-polariton resonance of a 
silica sphere. The spectral thermal conductance between

*o0<0> d/X (d)

Case 1 0.00 628 (10 nm) 0.00 100 (10 nm)
Case 2 0.0943 (150 nm) 0.00 100 (10 11m)
Case 3 0.0943 (150 nm) 0.0150 ( 150 nm)
Case 4 1.01 (1.6 (iin) 0.00 100 (10 nm)
Case 5 1.01 (1.6 (im) 0.100(1 nm)
Case 6 5.03 (8 jim) 0.0100 (100 nm)
Case 7 5.03 (8 (im) 0.500 (5 (im)

the spheres is calculated with the T-DDA using various 
discretization sizes and is compared against exact results. All 
computations were performed with a hybrid OpenMP-MPI 
parallel T-DDA F o r t r a n  code utilizing the s c a la p a c k  library 
as implemented in the Intel Math kernel Library for the 
interaction matrix inversion. Hie computational time for the 
largest number of subvolumes used in case 1 (73824) is 
approximately 18.7 hours when run on 150 nodes each having 
two six-core Intel Xcon X5660 processors with a speed of 
2.80 GHz. This amounts in a total of 33660 service units 
(i.e., core hours). Note that 99.8% of the aforementioned time 
is devoted to the calculation of the inverse o f the interaction 
matrix.

A. Regime AnO «  1

Two sizes, namely k„D  = 0 .0 0 6 2 8  (D  =  10 nm) and 
kuD  =  0.0943 (D  =  150 nm), are investigated. A gap thick­
ness of d /X  =  0.001 (d  =  10 nm) is selected for k<i D  = 
0.00 628 (case 1 in Table I). Larger gaps correspond to the 
dipolar regime for which a closed-form expression exists 
(sec Appendix) [55], while the validity of the fluctuational 
electrodynamics framework is questionable at sub-10-nm 
gaps. Two gap sizes o f d /X  =  0.001 (d =  10 nm) and d /X  =  
0.015 (d =  150 nm) are tested forftoD =  0.0943 (cases 2 and
3 in Table I, respectively).

The absolute value o f the relative error o f the conductance 
as a function of the number of subvolumes per sphere and the 
refractive index is provided in Fig. 2 for case 1. The dashed 
line shows the 5% error threshold. It can be seen that for all 
refractive indices, describing a sphere by a single subvolume 
results in an error of approximately 30% even if  D  <K X. This 
is due to the shape error and the non-negligible variation o f the 
electric field inside the spheres. The shape error is caused by 
an inaccurate representation of the separation distance X (y .z)  
between the spheres that is fixed at 10 nm, while, in reality, it 
should vary from 10 to 20 nm. Clearly, the subvolume size to

TABLE II. Refractive indices investigated in the convergence 
analysis.

»i„ ie0) 1.33 +  0.01/ (1.77 +  0.02661)
Mb (Cfc) 1.33 +  If (0.769 +  2.66i)
mc (ec) 3 + 0 .0 1 /(9  +  0.06/)
md (ed) 3 +  If (8 +  6f)
"I, (£<) 3 +  3 / (0 +  18/)
iitf («/) 0.53+ 1 .28/(-1 .36+  1.36/)
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FIG. 2. (Color online) Absolute value of the relative error of the 
conductance as a function of the number of subvolumes and the 
refractive index for case 1 (k0D =  0.00 628. d/X  =0.001). Open 
and filled symbols denote the error for uniform and nonuniform 
discretizations, respectively.

gap ratio. A /d ,  should be much smaller than unity in order to 
minimize the shape error. Additionally, heat transfer in ease 
1 is dominated by exponentially decaying evanescent modes 
with minimum penetration depth approximately equal to die 
gap size d. This results in sharp variations o f the electric field 
within the spheres with diameter D  equals to d. Hie variation 
o f  the electric field is obviously not taken into account when 
modeling a sphere by a single subvolume. As for the shape 
error, the ratio A /d  must be much smaller than unity in 
order to represent accurately die variation of the electric field 
within the spheres. Physically, this error can be understood by 
recognizing that when d  D  is not satisfied, the multipoles 
inside the spheres are excited by the evanescent modes 170] 
such that the dipole approximation is inapplicable. When d /X  
is increased to 10 (d =  100 jim), which results in a ratio A /d  
o f  0.000 080 6. describing each sphere by a single subvolume 
leads to a small error o f 0.01% (result not shown). This is to 
be expected, since the 10 nm variations o f the distance X (y ,z)  
between die spheres along die y  and z axis are insignificant 
compared to the gap d  o f 100 nm. Additionally, the electric 
field within the spheres is nearly uniform as heat transfer 
occurs via propagating modes and D « X .

In Fig. 2, die error grows as the number o f subvolumes is 
increased from one to eight, and then decreases as the number 
o f subvolumes is furdier increased. This counterintuitive 
behavior has also been observed for a large gap size of 
d /X  =  10 and for DDA simulations o f a single sphere of 
size knD  =  0.00628 (results not shown). The shape error and 
the error associated with the assumption of constant electric 
field within the subvolumcs both decrease when increasing the 
number o f subvolumes. However, an additional error caused by 
the sharp variation of the l'ree-space DGF inside the spheres 
comes mio picture. The free-space DGF between points r,- 
and Tj, G ij, varies rapidly as r j approaches r, and becomes 
singular when r, =  r; . Since the spheres arc much smaller than

the wavelength, the points r, and t j  are always close to each 
other, which results in sharp variations of the DGF throughout 
the entire spheres. The variations o f the free-space DGF within 
small objects do not introduce any error in the T-DDA when 
a single subvolume per sphere is used, as the integration of 
the DGF over the subvolume is performed analytically [see 
Eq. (7)]. The variations of the free-space DGF induce an error 
when modeling the objects with more than one subvolume. 
Note that this error was also observed in Refs. [37,58] when 
applying the DDA to Rayleigh particles. Chaumct et al. [58] 
showed that performing the integration of the free-space DGF 
over the subvolumes, instead of assuming constant free-space 
DGF, improves the accuracy of the DDA for very small 
spherical particles. The assumption of constant free-space 
DGF inside the subvolumes, and therefore the T-DDA results, 
become more accurate as the number o f subvolumes increases.

As expected, the error strongly depends on the refractive 
index of the material. The error grows as both the real 
and the imaginary parts o f the refractive index increase. In 
general, increasing the refractive index negatively affects the 
accuracy of the T-DDA by amplifying the shape error [39], by 
amplifying the error associated with assuming the free-space 
DGF constant within the subvolumes, and by increasing the 
variation of the electric field inside the spheres. For case 1, 
the fact that the error increases with increasing the refractive 
index is mostly due to the amplification of the shape error 
and the variation of the DGF; the refractive index has only 
a small influence on the variation of the electric field within 
the spheres since this variation is caused by evanescent modes 
with minimum penetration depth approximately equal to the 
gap size d. The amplification of die shape and constant DGF 
errors widi increasing the refractive index can be mitigated by 
increasing the number o f subvolumcs, as shown in Fig. 2. The 
refractive index m /  corresponds to surface phonon-polariton 
resonance of a silica sphere. In the near field, the total 
thermal conductance is largely dominated by die contribution 
of surface phonon polaritons [23]. Here, the conductance 
for m f  is one to six orders o f magnitude larger than the 
conductance calculated for the refractive indices m„ to m e. 
As depicted in Fig. 2, the T-DDA converges rapidly for the 
resonant refractive index. Furthermore, the spectral locations 
o f the resonant modes arc predicted accurately via the T-DDA
[35]. This demonstrates that the T-DDA is an accurate tool 
for predicting surface phonon-polariton mediated near-field 
radiative heat transfer.

In case 1. errors of 1.2% and 1.8% are obtained using 
17256 subvolumes for ma and nib, respectively. Reducing 
the error to less than 5% for other refractive indices requires 
a larger number of subvolumes. The number of subvolumes 
used for the simulations is limited by the memory requirement
for storing the interaction matrix A. For N  subvolumes, 
144N2 bytes o f memory are needed to store 9N 2 complex 
elements o f the interaction matrix widi a double precision 
format. The size of the subvolumes A decreases with N  
as A tx This implies that the memory requirement is 
proportional to A 6. Additionally, the computational time, 
which is almost equal to the calculation time of the inverse of 

A, is approximately proportional to N '. A significant amount 
o f computational resources are therefore required when a large 
number of subvolumes are used. A solution to this bottleneck
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FIG. 6. (Color online) Absolute value of the relative error of the 
conductance as a function of the number of subvolumes and the 
refractive index for case 3 (IcqD =  0.0943, d /k =  0.015). Open 
and filled symbols denote the error for uniform and nonuniform 
discretizations, respectively.
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FIG. 7. (Color online) Absolute value of the relative error of 
the conductance as a function of the number of subvolumes and 
the refractive index for case 4 (koD =  1.01, d /k  =  0.001). Open 
and filled symbols denote the error for uniform and nonuniform 
discretizations, respectively.

uniform subvolumes per sphere. Nonuniform discretization is 
adopted for the other refractive indices. An error less than 5% 
is achieved for the refractive indices m„ to m j  when using up 
to 33 740 nonuniform subvolumes. For the largest refractive 
index m „  the error reduces from 64.9% with 33552 uniform 
subvolumes to 10.7% with 59408 nonuniform subvolumes. A 
better accuracy can be obtained for »/,• by increasing further the 
numbers o f subvolumes. For all refractive indices considered 
in case 2, more than 95% of the absorption occurs within 
the first half o f the sphere. This shows that as the ratio D /d  
increases, a smaller portion o f the absorber contributes to the 
overall heat exchange, since radiative transfer is dominated 
by evanescent modes with minimum penetration depth d  
that is much smaller than the sphere diameter D. As such, 
nonuniform discretization can effectively be utilized in this 
situation.

Next, the gap thickness is increased to d / k  =  0.015 while 
the size is kept constant at ko D  =  0.0943 (case 3). The absolute 
value of the relative error is shown in Fig. 6. It can be seen 
that the error obtained in case 3 is very similar to case 1. 
Indeed, in both cases 1 and 3, radiative transfer is dominated 
by evanescent modes ( d  <K k )  and the sphere diameter to gap 
ratio. D /d , is the same. This implies that the shape error and 
the error associated with the assumption o f constant electric 
field within the subvolumes introduce the same amount of 
inaccuracy in cases 1 and 3 as the ratios A /d  and A /D  are 
die same for a fixed number o f subvolumes. Additionally, the 
error associated with assuming the free-space DGF as constant 
inside the subvolumes is still important since D <&k. An 
error less than 5% is obtained for m„ and »/(, when 17 256 
uniform subvolumes arc used. For the other refractive indices, 
nonuniform discretization has been applied. The error reduces 
to less than 5% for refractive indices m r. in j. and m /  with 
up to 35256 nonuniform subvolumes. As in the previous 
cases, the most difficult refractive index to handle is m e for

which an error of 10.3% is achieved using 74180 nonunil'orm 
subvolumes.

B. Regime k l) '^ 1

The convergence o f the T-DDA is analyzed for koD =  1.01 
(D  =  1.6 (tm) and two gap sizes a id /k  =  0.001 (d  =  10 nm) 
and d /k  =  0.1 (d =  1 fun), corresponding to cases 4 and 5, 
respectively. The absolute value of the relative error for case
4 is shown in Fig. 7, where up to 33 552 uniform subvolumes 
per sphere arc used. For this number o f uniform subvolumes 
and for the refractive indices nij, and ///,., the error is 
extremely large; as such, these points arc not plotted in Fig. 7. 
This behavior can be explained by analyzing the discretized 
spheres shown in Fig. 8(a). Clearly, the size o f the subvolumes 
is too large for a 10-nm-thiek gap ( A /d  =  4.0), such that the 
shape error is significant. The discretization of the spheres 
should be fine enough compared to the gap size ( A /d  <K 1) in 
order to represent accurately the smooth variation o f X (y .z )  
with respect to the y and z  axis. A nonuniform discretization 
using smaller subvolumes at the front sides o f the spheres is 
thus beneficial. This is particularly helpful because the size 
o f the spheres is much larger than the gap size (D /d  =  160) 
such that only a small portion of the absorber contributes to 
the overall heat transfer (more than 95% of the absorption 
takes place within a distance smaller than 240 nm for all 
refractive indices). A nonunil'orm discretization with 43 324 
subvolumes is applied to case 4 and is shown in Fig. 8(b), where 
A /d  =  0.4 for d  =  10 nm. The variation of X (y.0) between 
the discretized spheres along the v axis for the uniform and 
nonuniform discretizations is shown in Fig. 8(c). The distance 
X (y,0) varies in a smoother manner with die nonunil'orm 
discretization scheme compared to the uniform discretization. 
Consequently, by decreasing the shape error, the accuracy 
of the T-DDA is drastically improved. With the nonuniform
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FIG. 8. (Color online) Two spheres of diameter D =  1.6 nm 
separated by a gap size d =  10 nrn are discretized using (a) 
33 552 uniform subvolumes, and (b) 43 324 nonuniform subvolumes, 
(c) Variation of the distance between the spheres. .Yfv.O). along the v 
axis for the uniform and nonunifonn discretizations shown in (a) and 
(b).

discretization, an error less than 3.1% is obtained for /«„, m*,, 
and inf .  Also, compared to the uniform discretization with 
33552 subvolumes, the error reduces from 310 to 15.2% for 
nic, from 333 to 17.5% for in,, and from 868 to 40.5% for hi,,. 
The error for m e is decreased further to 29.5% using 77 196 
nonunifonn subvolumes. It is worth noting that for die small 
refractive index m„. an error of 5.4% is achieved widi a simple 
uniform discretization of 33552 subvolumes ( A /d  =  4.0). 
Therefore, it can be concluded that the value of A /d  required 
for convergence depends strongly on the refractive index of 
the material. This is in agreement with the observation made 
in the DDA that the shape error is a function of the refractive 
index [39],

The absolute value o f the relative error for case 5 is 
presented in Fig. 9. Compared to case 4, the gap size is 
increased while the sphere size is the same ( D /d  is 1.6 instead 
of 160). 'Ihe error in case 5 is between 3.8 to 92 times smaller

PHYSICAL REVIEW E 91. 063307 (2015)
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FIG. 9. (Color online) Absolute value of the relative error of the 
conductance as a function of the number of subvolumes and the 
refractive index for case 5 Ur,/ )  — 1.01. d/X = 0 . 1 ) .  Open and filled 
symbols denote the error for uniform and nonunifonn discretizations, 
respectively.

than in case 4. depending on the refractive index, when 17 256 
uniform subvolumes are used { A /d  decreases from 5.0 to 
0.05 compared to case 4). This confirms that the shape error 
is dominant when dealing with large sphere diameter to gap 
ratio D /d  in the near-field regime of thermal radiation. An 
error less than 5% is achieved for m a to md when using up to 
39 024 uniform subvolumes. With a nonuniform discretization, 
the errors for m e and m t  are respectively 12.4% (72264 
subvolumes) and 5.0% (52 388 subvolumes).

C. Regime kaD »  I

A size of koD  =  5.03 (D  =  8 nm) and two gap thicknesses 
of d /X  =  0.01 (d =  100 nm) and d /X  =  0.5 (d  =  5 nm) arc 
considered (cases 6 and 7, respectively). Note that case 7 
corresponds to the transition between the near- and far-field 
regimes of thermal radiation. The spatial distribution of the 
power absorbed for cases 6 and 7 is quite different from the 
previous problems analyzed. Here, the absorption distribution 
depends strongly on the imaginary part of the refractive index. 
The normalized volumetric power absorbed in case 6 for the 
refractive indices m c and m j.  which have the same real part 
but have different imaginary pans, are compared in Fig. 10 
when 33 552 uniform subvolumes per sphere are used. It is 
important to note that even if  the gap d  is much smaller 
than the wavelength X in case 6, propagating modes have a 
non-ncgligible contribution to heat transfer since the distance 
X ( \ . z )between the spheres varies from 100 nm (near-field) to 
8.1 jtm (~  far-field). When the imaginary part of the refractive 
index is large, most o f the absorption occurs within the first half 
o f the sphere [Fig. 10(b)], However, the contributing portion of 
the absorber to the overall heal transfer is larger than for cases 
1 to 5 due to the important contribution o f propagating modes 
with larger penetration depth than the evanescent modes. For 
example, in case 4. where D /d  =  160 (£) =  1.6 um). more
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FIG. 12. (Color online) Absolute value of the relative error of 
the conductance as a function of the number of subvolumes and the 
refractive index for case 7 (IcqD =  5.03. d /k  =  0.5). Open and tilled 
symbols denote the error for uniform and nonuniform discretizations, 
respectively.

nonuniform subvolumes), and 27.8% (70544 nonuniform 
subvolumes) are obtained for m c, m j ,  and m e, respectively.

V. CONCLUSIONS

The accuracy and convergence o f the T-DDA was analyzed 
using the exact solution for two spheres separated by a vacuum 
gap. The study was performed as a function of the size, the 
gap size, and the refractive index. The key results o f die 
convergence analysis are summarized in Table III and the main 
conclusions are:

(i) An error less than 5% was obtained for 74% of the cases 
studied using up to 82 712 subvolumes.

(ii) Nonuniform discretization is particularly useful when 
the sphere diameter to gap ratio. D /d ,  is large, when d  k , 
and D  < k , such that significant absorption occurs within 
a small portion of the sphere. Additionally, nonuniform 
discretization mitigates the shape error by allowing a better 
representation of the variation of the gap size by decreasing 
A /d  at the front side o f the spheres without increasing 
drastically the number o f subvolumes. 'Hie value of A /d

leading to a convergent solution varies strongly with the 
refractive index. For the simulations performed in this study. 
A /d  «  1 can be satisfactory for the smallest refractive index 
(1.33 +  0.01/) while A /d  «  0 .0 1 is needed for the largest 
refractive index (3 +  3/).

(iii) For all sizes, the accuracy of the T-DDA decreases as 
both the real and the imaginary parts of the refractive index 
increase. A large refractive index affects the accuracy of the 
results by increasing the variation of the electric field and the 
free-space DGF inside the spheres and by amplifying the shape 
error. It was also shown that fast convergence is achieved when 
dealing with resonant modes. The T-DDA is therefore accurate 
for predicting surface phonon-polariton mediated near-field 
radiative heat transfer.

(iv) When the sphere diameter D  and the gap size d  have 
the same order of magnitude as the wavelength k , nonuniform 
discretization is not as efficient as for the other cases. For 
this situation, the whole sphere contributes to the overall heat 
transfer such that a line discretization is required throughout 
the entire volume of the absorber.

The conclusions of this paper are applicable to other geome­
tries, except that the error is likely to be smaller due to a weaker 
shape error. The T-DDA is currently suitable for particles 
with sizes smaller than, or o f the same order of magnitude 
as, the wavelength due to computational limitations. The 
accuracy of die T-DDA can potentially be improved further 
using die various techniques proposed in the DDA literature 
such as the weighted discretization approach [49,50] and the 
filtered eoupled-dipole mediod [50-52]. This is left for a future 
research effort.
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TABLE III. Smallest relative error of the conductance obtained for all cases considered in the convergence analysis 
(N: number of subvolumes per sphere; U: uniform discretization: NU: nonuniform discretization).

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

N Hrror

<%)

N Mrror

(%)

N Error

(%)

N Hrror

w

N HrTor

(%)

N Hrror

(%)

N Hrror

(%)

17 256 (U) 1.23 29 340 (NU) 0.318 17 256 (U) 1.22 43 324 (NU) 1.01 17 256 (U) 1.06 33 552 (U) 2.31 33 552 (U) 0.115
mb 17 256 (U) 1.79 32 572 (NU) 0.572 17 256 (U) 1.77 43 324 (NU) 3.08 17 256 (U) 1.04 48 368 (NU) 4.70 33 552 (U) 1.68
mc 36 168 (NU) 4.70 33 740 (NU) 0.405 19 064 (NU) 3.50 43 324 (NU) 15.2 17 256 (U) 4.14 60 200 (NU) 22.1 66 796 (NU) 3.83
titd 49 216 (NU) 3.80 23 080 (NU) 1.06 19 064 (NU) 4.62 43 324 (NU) 17.5 39 024 (U) 4.45 48 368 (NU) 3.03 67 472 (NU) 8.33
mt 59 360 (NU) 11.1 59 408 (NU) 10.7 74 180 (NU) 10.3 77 196 (NU) 29.5 72 264 (NU) 12.4 81 980 (NU) 17.0 70 544 (NU) 27.8

mf 56 500 (NU) 4.69 33 552 (U) 2.01 35 256 (NU) 4.10 43 324 (NU) 2.18 52 388 (NU) 4.99 33 552 (U) 2.75 33 552 (U) 0.931
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APPENDIX: DERIVATION OF THE DIPOLE 
APPROXIMATION FROM THE T-DDA

In this Appendix, it is shown that the T-DDA applied to 
the two-sphere problem described in Sec. IV rcduccs to the 
dipole approximation when D <  X and d ^> D  [55]. The first 
sphere is assumed to be at a temperature T  >  0 K (emitter), 
while the second sphere is maintained at 0 K (absorber). In the 
dipolar regime, each sphere is modeled by a single subvolume 
behaving as an electric point dipole. The first subvolume 
is assigned to the emitting sphere, while the second one is 
allocated to the absorbing sphere. The quantity of interest 
is the power absorbed in sphere 2 calculated from Eq. (13) 
using the correlation matrix of the induced dipole moment. 
The (total) dipole moment in subvolume 2 is related to the 
(total) dipole moment in subvolume 1 by applying Eq. (10) to 
subvolume 2:

<*2*07?P2 ----G2i pi,fo (Al)

where p2f =  0 since subvolume 2 is nonemitting. Equa­
tion (A l) implies that the dipole moment in subvolume 2 is 
induced by the dipole moment in subvolume 1. The dipole 
moment in subvolume 1 is also determined using Eq. (10):

3 <*i f t  a t i ^ =  

p , :  <„ , 2 ) 1 * ; + — Gi2 Pj- (A2)

According to Eq. (A2), the total dipole moment of subvol­
ume 1 is the summation of the contributions from the thermally 
fluctuating dipole moment and the dipole moment induced by 
subvolumc 2 (multiple scattering). In the dipolar regime, the 
second contribution is assumed to be negligible compared to 
the first one [55] such that the dipole moment of subvolume 1 
is approximated by:

Pi **------3 g | c u Pi'- (A3)1 (f,+ 2)afMF1
Substituting Eq. (A3) into Eq. (A l) and applying the 

fluctuation-dissipation theorem, the ensemble average of the

correlation matrix of the dipole moment o f subvolume 2 is 
given by:

<P2 S> P2> 3l<*i|*Im (cffM)@ (< a ,r^ 2 i • (E 2i ) ',  (A4)7T(0£q
where pi =  The trace of the correlation matrix of the 
induced dipole moment in subvolume 2 is obtained using 
Eq. (A4) and by substituting the free-space DGF:

tr((p^®p^))
C M \ \ „ C M p b i

27T3£0£q
I 1

[k«(d +  D)]6 [ko(d + D))a [ko(d +  D)]2

(A5)

Note that when deriving Eq. (A5), it is assumed that or, 
a f M (i =  1,2). It can be seen from Eqs. (1 la) and (1 lb) that as 
the size of a subvolume decreases, the radiative polarizability 
approaches the Clausius-Mossotti polarizability such that they 
are approximately equal in the dipolar regime. The power 
absorbed by sphere 2 is finally obtained by substituting 
Eq. (A5) into Eq. (13). Note that the term (2/3)1$ to  Eq. (13) 
has been ignored in some previous DDA formulations due to 
its small contribution [38,39]. Following the same procedure, 
the power absorbed in subvolume 2 is given by:

(Qabs.w)
I

4 jr ,£',
-&(<o,T )Im (a , ) Im ( < 4 ) l 4

1 1
[ko{d + D)] [*o(d + D)r lko(d + /))]

(A6)

which is the same as the power absorbed derived by Chapuis 
et al. [55] in the dipolar regime.
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CHAPTER 5

NEAR-FIELD RADIATIVE HEAT TRANSFER BETWEEN ARBITRARILY- 

SHAPED OBJECTS AND A SURFACE*

5.1 Abstract

A fluctuational electrodynamics-based formalism for calculating near-field radiative 

heat transfer between objects of arbitrary size and shape and an infinite surface is 

presented. The surface interactions are treated analytically via Sommerfeld’s theory of 

electric dipole radiation above an infinite plane. The volume integral equation for the 

electric field is discretized using the thermal discrete dipole approximation (T-DDA). The 

framework is verified against exact results in the sphere-surface configuration, and is 

applied to analyze near-field radiative heat transfer between a complex-shaped probe and 

an infinite plane both made of silica. It is found that when the probe tip size is 

approximately equal to or smaller than the gap d  separating the probe and the surface, 

coupled localized surface phonon (LSPh)-surface phonon-polariton (SPhP) mediated heat 

transfer occurs. In this regime, the net spectral heat rate exhibits four resonant modes due 

to LSPhs along the minor axis of the probe while the net total heat rate in the near 

fieldfollows a d  "03 power law. Conversely, when the probe tip size is much larger than

* The following sections have been submitted to be published in Physical Review B as a 
paper. As such, it is to be treated as a stand-alone paper with its own references, sections, and 
equations. Coauthors of this paper are Sheila Edalatpour and Mathieu Francoeur.
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the separation gap d, heat transfer is mediated by SPhPs resulting in two resonant modes 

in the net spectral heat rate corresponding to those of a single emitting silica surface 

while the net total heat rate follows a d  "2 power law. It is also demonstrated that a 

complex-shaped probe can be approximated by a prolate spheroidal electric dipole when 

the thermal wavelength is larger than the major axis of the spheroidal dipole and when 

the separation gap d  is much larger than the radius of curvature of the dipole tip facing 

the surface.

5.2 Introduction

Near-field radiative heat transfer between arbitrarily-shaped objects and a surface is 

of importance in many engineering applications such as near-field thermal spectroscopy 

and imaging [1-4], tip-based nanomanufacturing [5-7] and localized radiative cooling [8]. 

An analytical solution for this type of problem only exists for the case of a single sphere 

above an infinite plane [9,10]. Simplified formulations, namely the proximity and electric 

dipole approximations, have been used to model experiments involving a 

micro/nanosized object and a large surface exchanging thermal radiation [1,3,4,11-14]. 

The proximity approximation is valid when the object size is much larger than its 

distance relative to the surface and when the object is optically thick [15,16]. When these 

conditions are satisfied, the heat rate between the object and the surface can be modeled 

as a summation of local heat rates between two parallel planes [13]. The electric dipole 

approximation is valid when the size of the object is much smaller than the thermal 

wavelength and its distance relative to the surface. Various electric dipole formulations 

have been proposed for modeling near-field thermal interactions between a small object
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and a surface. These formulations include a spherical dipole above a flat [17] and a 

structured surface [18], a spherical dipole with dressed polarizability above a flat surface

[14], and a spheroidal dipole above a flat surface [19]. These simplified models are 

however valid under limiting conditions that are often not satisfied in actual experiments. 

Accurate modeling of near-field radiative heat transfer between arbitrarily-shaped objects 

and a surface that does not rely on simplified formulations and fitting parameters can be 

done via numerical methods [16,20-24]. Yet, numerical methods are difficult to apply to 

this multiscale problem due to the prohibitive calculation time associated with 

discretizing a surface that is many orders of magnitude larger than the micro/nanosized 

objects. The only numerical formulation capable of handling nontrivial geometries and an 

infinite surface is a combination of a scattering-based approach and the boundary element 

method [25].

In this paper, a framework for modeling near-field radiative heat transfer between 

objects and an infinite surface is provided. The formalism, based on fluctuational 

electrodynamics [26], is independent of the size, shape and number of objects. The 

volume integral equation for the electric field derived from fluctuational electrodynamics 

is discretized using the thermal discrete dipole approximation (T-DDA) [16,23,27]. The 

interactions between the objects and the surface are treated analytically using 

Sommerfeld’s theory of electric dipole radiation above an infinite plane [28]. This 

approach, also used in the discrete dipole approximation literature for predicting light 

scattering by particles on or near a surface [29-36], does not necessitate discretization of 

the surface. The T-DDA with surface interaction is afterwards applied to study near-field 

radiative heat transfer between a probe and a surface. Understanding the thermal



interactions in the probe-surface configuration is of interest in near-field thermal 

spectroscopy where two independent experimental studies reported resonance redshift of 

the scattered thermal near field [3,4]. McCauley et al. [25] analyzed the total heat rate 

between a conically-shaped probe and a surface as well as the spatial distribution of 

power absorbed within the surface. Kim et al. [37] investigated the validity of 

fluctuational electrodynamics in the extreme near field by measuring the heat rate 

between a dull probe and a surface. The probing tip was modeled as a hemisphere for 

which the heat rate could also be obtained via the proximity approximation. In this work, 

the spectral and total heat rate between a probe with a tip size smaller than, 

approximately equal to, and larger than the separation gap is studied for the first time. 

The validity of the spheroidal electric dipole approximation for predicting near-field 

radiative heat transfer between a probe and a surface is also discussed.

The paper is organized as follows. The framework for calculating near-field radiative 

heat transfer between arbitrarily-shaped objects and a surface is presented in Section 5.3. 

In Section 5.4, the T-DDA with surface interaction is applied to the analysis of near-field 

radiative heat transfer between a probe and a surface. Concluding remarks are then 

provided.

5.3 Description of the Framework

5.3.1 Volume integral equation for the electric field 

The formalism described hereafter is based on fluctuational electrodynamics, and is 

thus valid for heat sources in local thermodynamic equilibrium. The problem under 

consideration is shown in Fig. 5.1, where radiative heat transfer between objects

56
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E'"‘

Figure 5.1 Schematic representation of the problem under consideration. Objects 
(medium 2) are submerged in vacuum (medium 0) above an infinite surface (medium 1). 
The incident electric field Einc accounts for illumination by external sources, while the 
surface field Esur is the electric field due to thermal emission by the surface.

submerged in vacuum and an infinite surface is to be calculated. The vacuum, the surface 

and the objects are referred to as medium 0, 1 and 2, respectively. It is assumed that the 

objects of arbitrary number, shape and size occupy a total volume V2 and are isotropic, 

linear and nonmagnetic. Individual objects may have different, inhomogeneous 

temperatures Ti and frequency-dependent dielectric functions si local in space. The 

surface, of volume Vi and uniform temperature Ti, is assumed to be isotropic, linear, 

nonmagnetic and is characterized by a homogeneous dielectric function si local in space. 

Illumination by external sources such as laser irradiation or thermal emission by the 

surroundings (i.e., the thermal bath) is modeled via an incident electric field Einc. The 

incident electric field can originate from above or below the surface. The electric field 

thermally emitted by the surface into the vacuum of volume Vo is denoted by Esur.

The net radiative heat rate between the objects and the surface is derived from the



stochastic Maxwell equations, where a fluctuating current J  representing thermal 

emission is added to Ampere’s law [26]. The ensemble average of the fluctuating current 

is zero, while the ensemble average of the spatial correlation function of the fluctuating 

current is related to the local temperature of a heat source via the fluctuation-dissipation 

theorem [26]:

J  ( r > ) ®  J fl( r",&’)) = r r " ) ( m  - m ' ) I  (5.1)

where ® denotes the outer product, I  is the unit dyadic, so is the electric permittivity of 

vacuum, s" is the imaginary part of the dielectric function of the heat source and 0(m,T) 

is the mean energy of an electromagnetic state given by 

0(m, T) = hm /[exp(hm / kBT) -1].

The electric field everywhere above the surface satisfies the following vector wave 

equation derived from the stochastic Maxwell equations [16,27]:

V x V x E(r, m) -  k02E(r, m) = imJu0 J(r, m), r  e  V0 u V 2 (5.2)

where ko and uo are the magnitude of the wavevector and the magnetic permeability of 

vacuum, respectively, i is the complex constant and r  is the position vector where the 

fields are observed in Vou V2. The current J  in Eq. (5.2) is an equivalent source function 

generating fluctuating and scattered electric fields:

J(r,m) = Jf( r ,m) - ims0(s2( r ) -  1)E(r,m), r  e V2 (5.3)

where the subscript 2 in J f  specifies that the fluctuating current is in V2. Note that the

current J  vanishes in V0.

The solution of the inhomogeneous linear differential equation (5.2) is the sum of the 

solution of the homogeneous equation and a particular solution of the inhomogeneous

58



equation. The homogeneous vector wave equation is given by:

V x V x (E nc( r ,o ) + Esur( r ,» ))- k02(Emc(r ,o ) + Esur( r ,»)) = 0, r  eV0 u  V2 (5.4)

The solution of Eq. (5.4) provides the electric field that would exist above the surface in 

the absence of objects. This electric field is comprised of two components, namely the 

incident field E!nc and the surface field Esur. The surface field is generated by fluctuating

currents in Vi, J^ , and its expression is given by:

E sur( r »  = » 0 J G  ( r , r »  • J f  ( r » d V ,  r  e V0 u  V2 (5 5 )
Vi

where G is the transmission dyadic Green’s function (DGF) relating the field observed 

at r  in Vo u  V2 to a source point r ' located in Vi [38,39]. The expression for the incident 

field must satisfy Eq. (5.4) and depends on the external radiation source.

The particular solution of Eq. (5.2) is the sum of the fluctuating and scattered electric 

fields generated by the current J. The fluctuating and scattered fields are obtained using 

DGFs relating the electric field observed at r  to a source located at r ',  as shown in Fig.

5.2, when both r and r ' are located above the surface in Vo u  V2:

E sca( r ,»)  + Ef ( r ,o)  = ioju0 J G ( r , r ' , » ) • J ( r ',o )d 3r ', r  eV0 uV 2 (5 ^)
V 2

The DGF G is comprised of two components. The first component is the free space

DGF, G , that accounts for the electric field generated at r due to direct radiation by the 

source J  located at r ' in the absence of the surface. The second component is the

reflection DGF, G , representing the electric field generated at r  due to radiation by the
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Observation point

Source point , E( r ,a)) = i(o/J0 G(r, r',(o)j(r',a))

i
\

Tx

\

Figure 5.2 Dyadic Green’s function (DGF) relating the electric field at point r to a source 
located at point r ' in the presence of a surface.

source J  located at r ' after reflection by the surface.

The volume integral equation for the total electric field in Vo u  V2 is obtained by 

adding the incident and surface fields to Eq. (5.6):

The magnetic field in Vo u  V2 can be obtained from Eq. (5.7) using Faraday’s law.

The solution of Eq. (5.7) provides the electric field in V2 from which heat transfer is

infinite surface [9,10]. For arbitrarily-shaped objects, numerical approaches should be 

considered. Here, the T-DDA [16,23,27], which is a numerically exact method, is used 

for solving Eq. (5.7) and thus for computing radiation heat transfer.

(5.7)

+ E nc(r,©) + Esur(r,©), r eVQ u  V2

calculated. An analytical solution of Eq. (5.7) only exists for a single sphere above an



5.3.2 Radiative heat transfer calculations with the thermal discrete 

dipole approximation (T-DDA)

The T-DDA formulation is initiated by discretizing V2 into N  cubical subvolumes. 

The size of the subvolumes must be smaller than all characteristic lengths of the problem, 

namely the wavelength in V2 as well as the object-object and object-surface separation 

distances. In addition, the subvolume size must be small enough to represent accurately 

the object shape via a cubical lattice. When these conditions are fulfilled, the electric 

field, the DGFs and the electromagnetic properties can be assumed uniform inside a 

given subvolume. Under the approximation of uniform electric field, it is possible to 

conceptualize the subvolumes as electric point dipoles. The total dipole moment 

associated with a subvolume i of volume AVi is related to the equivalent current via

p. = (i / ®)JAV J ( r ' ,m)d 3r ' . The discretized volume integral equation for the electric field
AVi

(5.7) can thus written in terms of dipole moments as follows:

1 - 2 = 0  - 2 =R 3 1
— P-- — V Gij ■ p . -  V  Gij ■ p . = ------------- —  p^ + Emc + E“r (5 .8)
<*> s0 ^  j j j j (̂ 2„ + 2) a , '  ' ' *

where the DGFs G ij and G ij are evaluated between the center points of subvolumes i 

and j . The total dipole moment p i is the sum of two contributions, namely an induced 

dipole moment p'”d = AV£0(s2i - 1)E. and a thermally fluctuating dipole moment p f  =

(i / co')\ Jfl(r' co)d3r '. Using this last expression in combination with the fluctuation-
jav 2

dissipation theorem (1), the ensemble average of the spatial correlation function of 

fluctuating dipole moments can be expressed in terms of the local temperature of the

medium [16]. The terms a CM and a. are the Clausius-Mossotti and radiative

61



62

polarizabilities given by:

(5.9)

(5.10)

where ai is the radius of a sphere of volume AVi. The application of Eq. (5.8) to all N  

subvolumes in V2 results in a system of equations that can be written in a matrix form:

deterministic column vector containing the incident field. The term P is the 3N 

stochastic column vector containing the unknown total dipole moments of the

subvolumes. The matrix A is the 3N by 3N deterministic interaction matrix which is

composed of submatrices A ij representing the direct interaction between subvolumes i

and j  in the absence of the surface. A submatrix Ay, obtained from the free space DGF, 

is calculated using the following expressions when i ^  j  :

(5.11)

where E fdt and E w are 3N stochastic column vectors containing the first term on the 

right-hand side of Eq. (5.8) and the surface field, respectively, while E"c is the 3N

P + v r 2 v r r v r r

(5.12)

v r r v r r p  + v  r 2

where

(5.13)
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k02
C. ——

' 4 s  r0 .j
(5.14)

P j — 1 —  -

1

(k0r ) k rv 0 ij ’ 0 ' ,0 'J
(5.15)

y  J —J
1 — ■

3 3i
(k0r ) k r0 J  00 J

(5.16)

In Eqs. (13) to (16), rj is the magnitude of the distance vector between subvolumes i and 

j. When i = j ,  the submatrix An represents the self-interaction of subvolume i in the

absence of surface and its expression is given by (1 / a. ) I .

The term R in Eq. (5.11) is the 3N by 3N deterministic reflection-interaction matrix 

that contains submatrices R ij representing the interaction between subvolumes i and j

due to reflection by the surface. A submatrix R j  is obtained from the reflection DGF 

[31,40]:

R j — Ci s - 1,J Sj + 1

-  (fiiJj+ y iJ L x ) - y iA
y r r11 ,ij 1 ,ij,x 1 ,ij,y 
y1 ,ijr1 ,J ,xr1 ,J ,z

ij 1 ,J ,x 1 ,J, y 
2

iJ ’ / 1J  1 ,iJ,y'
,J 1 ,ij,x 1 ,ij,z

-  (p1 ij +y 1 J u ,y  ) y1,A
yi,jrij,yri,j,z

iJ 1 ,ij,y 1 ,J ,Z
(P1 ij +y1 ,jr1,J,z )

4ks0

* 2 tH *2 tH X X / jH i tH \ * tV 
Pij,x1 p -  Pij,y11 y p j,xp j,y (1 p H 1y ) p j,x1 p
X X / '  jH i jH \ *2 tH *2 tH * tV
p ,xp ij,y( p y ) p ij,y p Pij,x y Pij,y p

- p J J Vp - p J. y1Vp IzV

(5.17)

where the subscripts x, y, and z indicate vector components in Cartesian coordinates, 

while the subscripts p, ^, and z refer to vector components in cylindrical coordinates.

The parameters r  , Cij , fh,j, and yu  are defined in the same manner as in Eqs. (13) to

1

(16), except that rj is replaced by n,j, which is defined as the distance between
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subvolume i and the image of subvolume j  within the surface. In Eq. (5.17), p . a = P

(a  = x, y), where p. is the distance vector between subvolumes i and j  along the surface ( 

p . = (xt -  Xj )x + (y. -  y . )y ). The terms IP, I vz , lHp , and are defined as:

d 2

IP " Xdpdz
(5.18)

IV  =
( d 2

dz 2 0 -  2 V '1 00 (5.19)

d 2

p  -  2 - 0 V 00 ' - 0 U  00I P  =■ - vl + -lu: (5.20)

t h  = ___ 1___ - 2v ' -  - 2U '
_ /C0>/ 00 0 00

P j dP
(5.21)

where -1 is the magnitude of the wavevector in V1, while V ' and U'00 are the 

Sommerfeld integrals given by:

J 0 ( -  p . ) -  d -
0 V p  ̂  i y  p  p

(5.22)

U 0 =  2 i J

-  2 
- 0

-  0 +  -  1 - 0 ( - 12 +  -02) z0 z1 z0 v 1 0 7 .

J 0 ( -  p . ) -  d -
0 V P ^  P P (5.23)

In Eqs. (22) and (23), J0 is the zeroth-order Bessel function of the first kind, while -p and 

-zj are the wavevector components parallel and perpendicular to the surface, respectively. 

Note that the parallel component of the wavevector is a complex number, such that the 

Sommerfeld integrals are evaluated in the complex plane [40]. The z-components of the 

position vectors (i.e., z, and zj) are calculated relative to the surface. Evaluation of the 

Sommerfeld integrals involves complex integration of multivalued functions -zj (= (

P

1 1
e

1
e



kj -  k 2p)m). Multivalued functions are represented in the complex plane via Riemann

surfaces [41]. In order to perform the integration of a multivalued function, it is necessary 

to perform branch cuts such that the problem reduces to the integration of a single valued 

function on a single branch of the Riemann surface. Once branch cuts are performed, it is 

necessary to define the path of the integration. The integration path should avoid the 

poles of the function to be integrated and should not cross branch cuts in order to stay on 

a single branch of the Riemann surface. The integration path is not unique and is selected 

to ensure a fast convergence of the function to be integrated. In this work, the techniques 

and FORTRAN subroutines developed by Lager and Lytle [42,43] are used for 

calculating the Sommerfeld integrals.

The submatrix R j  given by Eq. (5.17) represents the electric field intercepted by 

subvolume i due to emission by subvolume j  after reflection at the surface. 

Mathematically, spherical waves emitted by subvolume j are expressed using Eqs. (22) 

and (23) as the product of cylindrical waves propagating parallel to the surface (Bessel 

function) and plane waves propagating along the z-direction (exponential term). Only the 

plane wave component interacts with the surface. In the static limit or when the surface is

a perfect electric conductor, R j  can be obtained from the image theory using the direct 

interaction between subvolume i and the image of subvolume j , with dipole moment

——j- (-  p jx x -  p jy y  + p  z  z ),within the surface [44]. The image contribution corresponds

to the first term on the right-hand side of Eq. (5.17). In this paper, the general case where 

R 1/ is calculated from Eq. (5.17) is considered.
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The net spectral heat rate between the surface and the objects is defined as {Qmt^  =

Q abs mlj  ̂  ̂Q abs m. ĵ, where (Qabs m1 J  is the spectral power absorbed by subvolume
i i

i due to thermal emission by the surface and vice-versa for {Qabsmi}/, while  ̂  ̂ denotes 

a time average. Using reciprocity, the net spectral heat rate can be expressed solely in

terms of {Qabs,m,1)  :

\̂Qnet ,m ) = £ (  Qb m ) (5.24)

where 72 is the temperature of subvolume i. The power absorbed {Qabsm1 J  is calculated 

from the induced dipole moments as follows:

m (T -i.», 2 , 3^
(Qabs,m,u} = — [ Im[(«i-1)*]- 3 | t^ p inJ ®pin̂  (5.25)3

. 3 0 .V 3 J

where ergodicity is assumed [45]. Note that when calculating the power absorbed, it is 

assumed that the objects described by V2 are nonemitting and purely absorbing (T2i = 0 

K). Yet, thermal emission by V2 is accounted for by capitalizing on reciprocity, as shown 

by Eq. (5.24). Therefore, p f  = 0 and pi = p^  for all subvolumes contained in V2. The

trace of the autocorrelation function of the induced dipole moments in Eq. (5.25) is 

obtained directly from the system of equations (5.11):

/— —\ /  — inc — inc — sur — sur \  I
(V ® p \ = (A + R)-1 •( (E ® E ) + (E ® E ) j -[(A + R)-1) (5.26)

where the superscript f indicates the Hermitian operator defined as the conjugate 

transpose. The ensemble average of the spatial correlation function of the surface fields in 

subvolumes i and j  is calculated as [46]:
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dgdk

p

where k" is the imaginary part of kzi, t,;2 and t,p2 are the Fresnel transmission

coefficients for transverse electric (TE) and transverse magnetic (TM) polarizations, and 

the azimuthal angle q> is measured between the parallel component of the wavevector and 

the x-axis. The terms s and p are unit vectors oriented along the TE and TM 

polarizations, respectively [38]. In Eq. (5.27), the parallel component of the wavevector 

kp is a real number since the electric field does not vary along the x- and ^-directions for 

an emitting infinite surface.

Once the dipole moment correlation matrix is computed with Eq. (5.26), the power

absorbed in subvolume i , {Qabs0lJ , and the net heat rate between the objects and the

surface, (Qnet0J, are respectively calculated with Eqs. (25) and (24). The T-DDA with

surface interaction is used next to analyze near-field radiative heat transfer between a 

complex-shaped probe and a surface.

2

5.4 Near-field radiative heat transfer between a probe and a surface 

The framework described in Section 5.3 has been verified in the sphere-surface 

configuration using the analytical solution of Otey and Fan [10]. An excellent agreement 

between the T-DDA and exact results has been found (see Section 5.6.1), such that the 

framework is used hereafter to analyze radiative heat transfer between a probe and a 

surface. The probe geometry consists of an assembly of a rectangular cuboid, a conical



frustum and a cylinder (see Fig. 5.3). The base and the height of the cuboid have 

dimensions of 57.8 nm and 288.9 nm, respectively. The conical frustum has a height of 

3.872 ^m, and the diameters of its lower and upper bases are 115.6 nm and 1.16 ^m, 

respectively. The cylinder has a height of 809.0 nm and a diameter of 1.16 ^m. The probe 

and the surface are both made of silica. The dielectric function of silica has been taken 

from Ref. [47]. In all cases, the surface is at a temperature T1 = 300 K while the probe is 

at T2 = 400 K. For simplicity, it is assumed that there is no incident electric field. For far- 

field simulations (d = 100 ^m), 11113 uniform subvolumes were used to discretize the 

probe while 13111 nonuniform subvolumes were employed for near-field simulations (d 

= 10 nm). Increasing the number of subvolumes beyond these values did not affect the 

results.
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Figure 5.3 Radiative heat transfer between a probe and a surface separated by a gap of 
thickness d . The probe is modeled as an assembly of a rectangular cuboid, a conical 
frustum and a cylinder.



5.4.1 Spectral distribution of heat rate and near-field regimes 

Figure 5.4(a) shows the net spectral heat rate for separation gaps d  between the probe 

and the surface of 10 nm, 100 nm and 100 .̂m. For purpose of comparison, the net 

spectral heat rate for a sphere of same material, volume (diameter of 1.6 ^m) and 

temperature as the probe is reported in Fig. 5.4(b). The heat rate profiles exhibit low- 

frequency (~ 0.06 eV) and high-frequency (~ 0.14 eV) resonances due to surface phonon- 

polaritons (SPhPs) and localized surface phonons (LSPhs). At separation gaps of 100 nm 

and 100 ^m, both the low- and high-frequency resonances of the probe-surface heat rate 

are split into two modes, while this splitting is not observed for a 10-nm-thick gap as well 

as in the sphere-surface configuration. The origin of these resonances can be explained by 

first considering the near-field thermal spectrum of the surface in the absence of object, 

characterized by the energy density, as shown in Section 5.6.2 for distances of 10 nm, 

100 nm and 100 ^m. In the near field (10 nm and 100 nm), low- and high-frequency 

resonances are observed at 0.0613 eV and 0.1435 eV due to thermal excitation of SPhPs. 

When losses are small ( 0 ) ,  SPhPs are resonantly excited at a flat material-vacuum

interface when the real part of the dielectric function s' equals -1 [39]. Here, the high-

frequency resonance occurs when s' = -1, while the low-frequency SPhP mode arises

when s' is equal to -0.83 due to nonnegligible losses. In the far field (100 ^m), SPhPs

lead to low thermal emission resulting in local minima in the energy density profile. Yet, 

when an object is located at a distance of 100 ^m above the surface, low- and high- 

frequency resonances arise due to LSPhs supported by the sphere and the probe. The 

electric dipole approximation can be used for estimating these LSPh modes. The
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Figure 5.4 Net spectral heat rate between (a) a probe and a surface, and (b) a sphere and a 
surface for separation gaps d  of 10 nm, 100 nm and 100 |u.m. The sphere and the probe are 
at T"2 = 400 K, while the surface is at Ti = 300 K.



power absorbed by an electric dipole is proportional to Im(aj), where aj (j = x, y, z) is the 

dipole polarizability tensor given by [48,49]:

4k  s 2 -1
a  i = — s 0axayaz -------------- r (5  28)

j 3 0 x y z  1 + L} (s2 -1) ( )

where ax, ay and az are the dimensions of the dipole along the x-, y- and z-directions. The 

geometrical factors Lj, determined solely from the dipole geometry, satisfy ^  Lj = 1
j =x, y ,z

and Lj > 0. For a spherical dipole, Lx = Ly = Lz = 1/3 such that Eq. (5.28) reduces to the 

Clausius-Mossotti polarizability with resonant enhancement when |s2 + 2| is minimum. In 

this limit, LSPh resonances are predicted at frequencies of 0.0605 eV and 0.1410 eV, 

which is in good agreement with the resonances of the heat rate for the case of a sphere 

located 100 ^m above the surface (0.0605 eV and 0.1400 eV). For the probe, LSPh 

resonances can be estimated by considering a prolate spheroidal dipole having a major 

axis az equal to the probe length of 4.97 ^m. The minor axes ax and ay are the same and 

are equal to 321 nm such that the spheroid and the probe have the same volume. For these 

dimensions, the geometrical factors needed to calculate the polarizability tensor are Lx = 

Ly = 0.495 and Lz = 0.010. Thus, resonant enhancement due to LSPhs for the case of a 

prolate spheroidal electric dipole occurs along the major axis and minor axes when |s2 + 

99| and |s2 + 1.02| are minimum, respectively. In this limit, four resonant modes along the 

minor axes are predicted at frequencies of 0.0575 eV, 0.0615 eV, 0.1325 eV and 0.1450 

eV. These predictions are in good agreement with the resonant modes of the heat rate 

profile for a probe located 100 ^m above the surface.

As the gap decreases to 100 nm and 10 nm, the heat rate for both the probe and 

sphere cases increases due to the additional contribution of evanescent modes, and
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particularly due to SPhPs supported by the surface. In the near field, the sphere is 

optically thick and its diameter is much larger than the gap distance, such that heat 

transfer can be approximated as a summation of local heat rates between two parallel 

surfaces with varying gap thicknesses (proximity approximation) [13,15]. Consequently, 

the resonant frequencies of the near-field heat rate profiles are essentially the same as the 

SPhP resonant frequencies of the surface. In the proximity approximation limit, the total 

near-field conductance, which is proportional to the net total heat rate, is calculated as:

G(T) = ^ ^ -  = lh(d,T)dA  (5.29)
A

where d  is the local distance between two parallel surfaces and h is the heat transfer

coefficient in the two-surface configuration that follows a a power law [39] . For a 

sphere and a surface, Eq. (5.29) results i n a  d  -1 power law for small gaps up to 

approximately 100 nm [13]. This is shown in Fig. 5.5, where the sphere-surface total heat 

rate is plotted as a function of the separation gap (10 nm to 100 nm).

The probe-surface spectral heat rate for a 100-nm-thick gap is similar to the far-field 

profile, where both low- and high-frequency resonance splitting mediated by LSPhs 

along the minor axis of the probe is observed. However, when the gap reduces to 10 nm, 

which is smaller than the probe tip size of 57.8 nm, resonance splitting does not occur. 

Instead, the resonances are aligned with those of the sphere-surface configuration in the 

near field, and thus essentially correspond to SPhP modes of the surface. Here, heat 

transfer is dominated by SPhPs with penetration depth approximately equal to the gap 

size and thus smaller than the probe tip size [50]. Consequently, the heat rate between the 

probe and the surface can also be estimated using the proximity approximation. For a
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Figure 5.5 Net total heat rate in the near field as a function of the separation gap d for the 
probe-surface and sphere-surface configurations.

probe with a flat tip, the total heat rate is expected to follow a d  -2 power law in the limit 

that d ^  0 since d  in Eq. (5.29) is independent of the surface area A. Near a 10-nm- 

thick gap, Fig. 5.5 shows that the heat rate varies as d -1.5 while a d -0.3 power law is 

observed around a gap size of 100 nm. It can be seen in the inset of Fig. 5.5 that the heat 

rate decays as d -177 near a gap size of 6 nm, such that the d -2 regime is expected to arise 

at an extremely small gap where the validity of fluctuational electrodynamics is 

questionable. From these results, it is concluded that the d -2 regime is reached when the 

probe tip size is larger than the gap by more than one order of magnitude. Note that for a 

spheroid and a cone above a surface, the integration of Eq. (5.29) leads to d -1 and log(d - 

*) power laws, such that these geometries do not represent well the heat rate between the 

probe and the surface in the framework of the proximity approximation.

To summarize, the decay rate of the probe-surface near-field heat transfer decreases



as the gap thickness increases. When the gap size is much smaller than the probe tip size, 

SPhP mediated heat transfer between the probe and the surface occurs such that the heat 

rate follows a power law approaching d  -2. For gap sizes of the same order of magnitude 

as or larger than the probe tip size, the near-field heat rate is mediated by coupled SPhP 

and LSPh (along the minor axis of the probe) modes, resulting in a decay rate of d  -03. In 

the far field, heat transfer between the probe and the surface is dominated by LSPhs. The 

spatial distribution of volumetric heat rate, normalized by its maximum value, at the low- 

frequency resonance is plotted for SPhP (10 nm), coupled SPhP-LSPh (100 nm) and 

LSPh (100 ^m) mediated heat transfer. For 100 nm and 100 ^m gaps, the first mode of 

the low-frequency resonance is considered. Note that the spatial distribution of 

volumetric heat rate is shown for a cross-section parallel to the y-z plane passing through 

the central axis of the probe. It is clear from Fig. 5.6 that as the contribution of SPhPs 

increases, the heat absorbed by the probe is essentially concentrated at its tip. As a final 

remark, note that the peak observed at 0.10 eV in Fig. 5.4 is due to a local maximum in 

the imaginary part of the dielectric function of silica leading to increased radiation 

absorption by the object and enhanced contribution of frustrated modes in the near field. 

As the distance between the object and the surface decreases, the contribution from this 

peak decreases and becomes essentially negligible at a gap distance of 10 nm where the 

heat rate is dominated by SPhPs.
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Figure 5.6 Spatial distribution of normalized volumetric heat rate within the probe at the 
low-frequency resonance for gap sizes d  of 10 nm, 100 nm and 100 ^m.

5.4.2 Validity of the spheroidal electric dipole approximation for modeling 

near-field radiative heat transfer between a probe and a surface 

The validity of the spheroidal electric dipole model for approximating near-field 

radiative heat transfer between a probe and a surface is analyzed. Note that the spherical 

electric dipole approximation is not considered, as it cannot predict the splitting of the 

low- and high-frequency resonances of the spectral heat rate profile (see Fig. 5.4(a)). The 

net spectral heat rate between an electric dipole and a surface is given by [17,19]:

r\ 4 2 ff f  ^
(Q „,-) = — ^ [ © ( - , 7 2 ) - © ( - , T ]  Im(a:) £  J |G i(r2, r > f d 3r - (5.30)

k=x, y, zyl

where aj is the polarizability tensor given by Eq. (5.28) and r 2 is the distance between the 

centroid of the dipole and the surface. Figure 5.7 shows the net spectral heat rate for the
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Figure 5.7 Net spectral heat rate between a probe and a surface for gap sizes d  of 10 nm 
and 100 nm. Results are compared against the spheroidal electric dipole model.

prolate spheroidal dipole and probe discussed in Section 5.4.1 at separation gaps d  of 10 

nm and 100 nm, while the net total heat rate is provided in Fig. 5.8 for gaps ranging from 

10 nm to 500 nm. The spheroidal electric dipole model predicts low- and high-frequency 

resonance splitting regardless of the gap size. As discussed previously, these four 

resonances are due to LSPhs associated with the minor axes of the prolate spheroidal 

dipole and are thus independent of the gap size. It can be seen in Fig. 5.8 that the total 

near-field heat rate in the spheroidal dipole approximation is a weak function of the gap 

size. This is due to the fact that the dipole centroid is located at a distance d  + az/2 (az = 

4.97 pm) above the surface, such that variations of d  by a few tens to a few hundreds of 

nanometers do not significantly affect heat transfer.
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Figure 5.8 Net total heat rate between a probe and a surface as a function of the 
separation gap d. Results are compared against the spheroidal electric dipole model.

According to Ref. [19], the spheroidal dipole model is expected to provide reliable 

results when the wavelength X and the gap d  is larger than amax = max{ax,ay,az}. Figure 

5.8 however suggests that starting at a gap size of approximately 70 nm, where the probe 

tip size is smaller than the gap size, the spheroidal dipole model approximates reasonably 

well the heat rate between a probe and a surface. In addition, as discussed in Section 

5.4.1, the resonant modes of the probe-surface heat rate are well predicted by the 

spheroidal dipole approximation when heat transfer is mediated by coupled SPhPs- 

LSPhs. For a spheroidal dipole, a more appropriate criterion should require that the gap 

thickness d  be much larger than the radius of curvature R of the spheroidal dipole tip 

facing the surface (R = 10.4 nm). When d  >> R, multiple reflections between the probe 

and the surface can be ignored. This new criterion assessing the applicability of the



spheroidal dipole approximation to model the heat rate between a probe and a surface is 

in line with the results observed in Figs. 5.7 and 5.8. Yet, the total heat rates obtained for 

the probe and the spheroidal dipole are not in perfect agreement, and some discrepancies 

can be observed between gaps of 100 nm and 500 nm. As seen in Fig. 5.7 at a gap size of 

100 nm, the spheroidal dipole model overestimates the heat rate associated with the first 

mode of the high-frequency resonance (0.1325 eV). This can be explained by the fact that 

the material wavelength corresponding to that frequency is 3.93 ^m, which is of the same 

order of magnitude as the major axis of the spheroid. In the SPhP regime, where the 

probe tip size is larger than the gap size, the spheroidal dipole model cannot be used for 

approximating heat transfer between a probe and a surface, both in terms of resonance 

and total heat rate predictions, since the criterion d  >> R is not respected. For this case, 

the proximity approximation can be employed to estimate the heat rate and resonant 

modes in the probe-surface configuration.

5.5 Conclusions

A general formalism for modeling near-field radiative heat transfer between 

arbitrarily-shaped objects and an infinite surface was proposed. The thermal discrete 

dipole approximation (T-DDA) was used to discretize the volume integral equation for 

the electric field derived from fluctuational electrodynamics, while the surface 

interactions were treated analytically using Sommerfeld’s theory of electric dipole 

radiation above an infinite plane. The framework was applied to near-field radiative heat 

transfer between a complex-shaped probe and a surface both made of silica. The study 

revealed that when the probe tip size is much larger than the separation gap d, surface
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phonon-polariton (SPhP) mediated heat transfer occurs such that the resonances of the 

heat rate correspond essentially to those of a single surface while the total heat rate 

approaches a d  "2 power law as d  ^  0. It was also found that coupled localized surface 

phonon (LSPh)-SPhP mediated heat transfer arises when the probe tip size is 

approximately equal to or smaller than the separation gap. In that case, the spectral heat 

rate exhibits four resonant modes due to LSPhs along the minor axis of the probe while 

the total heat rate in the near field convergences to a d  "03 regime. Finally, it was 

demonstrated that a prolate spheroidal electric dipole can approximate reasonably well 

near-field radiative heat transfer between a probe and a surface when the thermal 

wavelength is larger than the major axis of the spheroidal dipole and when the separation 

gap is much larger than the radius of curvature of the dipole tip facing the surface. The 

framework presented in this paper is not restricted to the probe-surface configuration, and 

can be applied to cases involving an arbitrary number of objects with various sizes and 

shapes above an infinite plane.

5.6 Supplemental Materials

5.6.1 Verification of the thermal discrete dipole approximation (T-DDA)

with surface interaction 

The T-DDA is verified by comparison against the exact solution of the heat rate 

between a sphere and a surface [10]. The problem parameters are the same as those 

discussed in the introduction of Section 5.4. The surface and the 1.6-^m-diameter sphere 

are both made of silica and are maintained at temperatures T1 = 300 K and T2 = 400 K, 

respectively. It is also assumed that there is no incident electric field. Figure 5.9 shows
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Figure 5.9 Net spectral heat rate between a sphere and a surface for separation gaps d of 
100 nm and 100 pm obtained with the T-DDA and the exact solution [10]. The sphere is 
at a temperature T2 = 400 K, while the surface is at T1 = 300 K.

the net spectral heat rate obtained from the exact solution and the T-DDA for separation 

gaps d of 100 nm and 100 pm.

The convergence of the T-DDA depends strongly on the dielectric function of the 

discretized object [16]. As the dielectric function increases, the wavelength and the decay 

length of the electric field (skin depth) inside the object shrinks. As such, the subvolume 

size resulting in a converged solution decreases as the dielectric function increases. 

Additionally, a large dielectric function negatively affects the T-DDA convergence by 

amplifying the shape error [16]. Since the dielectric function of silica varies significantly 

with the frequency in the infrared band (see Fig. 5.10), a frequency-dependent 

nonuniform discretization was used for calculating the net spectral heat rate. The number
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Figure 5.10 Dielectric function of silica obtained from Ref. [48]

of subvolumes employed for discretizing the sphere varied between 11536 and 33552 

depending on the frequency. It can be seen in Fig. 5.9 that the T-DDA and exact results 

are in excellent agreement. The locations of the resonances and their magnitudes are 

predicted accurately via the T-DDA. The small discrepancy observed for frequencies 

ranging from 0.1300 eV to 0.1375 eV is due to the fact that the dielectric function of 

silica is large within that spectral band. A better accuracy could be obtained by 

employing a larger number of subvolumes, since the accuracy of the T-DDA increases as 

the subvolume size decreases [16]. Yet, increasing the number of subvolumes within the 

0.1300-0.1375 eV spectral band is not necessary as its contribution to the net total heat 

rate is negligible. The satisfactory results obtained for the case of a sphere, which is one 

of the most difficult shapes to model with a cubical lattice, demonstrates that the T-DDA 

can accurately be used for modeling arbitrarily-shaped objects.
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5.6.2 Energy density at different distances above a silica surface at 300 K 

Figure 5.11 shows energy density at three distances d  of10 nm, 100 nm and 100 pm 

above the silica surface.

Figure 5.11 Spectral distribution of energy density at distances d  of 10 nm, 100 nm and 
100 pm above a silica surface at a temperature T1 = 300 K.
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CHAPTER 6

INVESTIGATION OF RESONANCE REDSHIFT IN NEAR-FIELD 

THERMAL SPECTROSCOPY

6.1 Introduction

So far, most near-field thermal radiation experiments have measured total (rather than 

spectral) radiative heat transfer [1-10]. However, many potential applications capitalize 

on the quasi-monochromatic behavior of thermal radiation in the near field [11-21]. As 

such, measuring the near-field thermal spectrum is of critical importance. Spectral 

measurement of near-field thermal radiation has been attempted in three recent studies 

[22-24] using a near-field thermal spectroscopy technique. In this technique, as shown in 

Fig. 6.1, the near-field thermal energy of a sample is scattered using a subwavelength 

probing tip brought within a subwavelength distance from the sample surface. Typical 

probes have a sharp tip size of approximately 100 nm, while the probe height can be as 

large as 10 ^m [24]. The distance between the probe and the sample varies in a range of 0 

to about 100 nm [24]. The evanescent component of thermal emission present in the near 

field is scattered by the probe into the far field in the form of propagating waves. The 

resulting signal, detected in the far field, is used to infer the spectral distribution of near­

field thermal emission by the sample. The main challenge in this technique is to extract 

the near-field thermal spectrum from the measured far-field signal. Particularly, recent
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Figure 6.1 Probe-sample interactions in near-field thermal spectroscopy.

studies [23,24] reported that the resonant frequency of the measured far-field signal is 

spectrally redshifted compared to the resonant frequency of thermal emission by the 

sample in the near field as predicted by fluctuational electrodynamics. The measured 

redshift ranges from 5 cm-1 to 50 cm-1 [23,24]. It is not clear if the observed resonance 

redshift is due to a physical phenomenon happening during the interaction between the 

probe and the sample or if it is an experimental artifact. A physical model capable of 

simulating the interaction between the probe and the sample is required to answer this 

question. Due to the complex shape of the probe, an analytical solution is unattainable. In 

addition, numerical methods are difficult to apply to such a multiscale problem due to the 

prohibitive calculation time associated with discretizing a sample that is many orders of 

magnitude larger than the probe. A few approximate models [23-25] have been applied to 

the probe-sample problem, but none of them was able to explain the physics underlying 

the resonance redshift.

The resonance redshift is undesired, because it prevents a one-to-one relationship 

between the near-field thermal spectrum and the measured far-field signal. Understanding 

probe-sample interactions is crucial for the interpretation of the measured signal and for
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designing an experimental setup that prevents the resonance redshift. In addition to near­

field thermal spectroscopy, an insight into the probe-sample interactions is beneficial for 

the establishment of techniques such as tip-based nanomanufacturing [26-29] and high- 

resolution imaging [30]. The objective of this chapter is to employ the T-DDA with 

surface interaction, which does not neglect any physical aspect of the probe-sample 

problem, to analyze the physics of the observed resonance redshift. A further 

investigation of the resonance redshift is performed by analyzing the heat flux between 

the sample and a thin film.

The rest of this chapter is organized as follows. The problem under investigation is 

described in Section 6.2. The T-DDA with surface interaction is applied to the probe- 

sample problem in Section 6.3. The resonance redshift is investigated in Section 6.4 by 

analyzing heat transfer between a thin film and the sample. The conclusions and the 

references of this chapter are provided in Sections 6.5 and 6.6, respectively.

6.2 Description of the problem

The interaction between the near-field thermal spectrum of a silicon carbide (SiC) 

sample at T1 = 300 K and an intrinsic silicon (Si) probe at T2 = 400 K is investigated. 

This choice of materials is based on the latest experiments performed by O’Callahan et 

al. [24]. The probe geometry is detailed in Fig. 5.3 of Chapter 5. The probe has a tip size 

of 57.8 nm, modeled as a rectangular cuboid, and has a height of 4.97 ^m. The 

frequency-dependent dielectric function of SiC is approximated by a damped harmonic 

oscillator given by s 1 = s tx(ca2- o 2LO + iTo)/{ca2-®T-o + i^o) [31], where o  is the

angular frequency and the high frequency dielectric constant ex , the damping factor r ,



the longitudinal optical phonon frequency o l o , and the transverse optical phonons 

frequency o t o  take values of 6.7, 8.966*10u s-1, 1.825*1014 rad/s, and 1.494*1014 rad/s, 

respectively. The dielectric function of silicon is obtained from Ref. [31]. The frequency 

band of from 1.6*1014 rad/s to 1.9*1014 rad/s is considered hereafter. The dielectric 

functions of Si and SiC in this spectral band are shown in Fig. 6.2.

Near-field thermal emission by a SiC sample, characterized by the energy density, is 

shown in Fig. 6.3 at a distance d of 10 nm above the sample. The energy density exhibits 

a resonance at a frequency 1.785*1014 rad/s. At this frequency, the real part of the 

dielectric function of SiC is equal to -1.0 such that surface phonon-polaritons (SPhPs) are 

excited at the sample-vacuum interface [32]. The near-field spectrum of the SiC sample is 

perturbed by the Si probe and the scattered signal is measured in the far field. The 

resonance redshift of the far-field signal is discussed in the following sections.
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Figure 6.3 Energy density at distance d  of 10 nm above a SiC sample at T1 = 300 K.

6.3 T-DDA analysis of probe-sample interaction 

The T-DDA with surface interaction, as discussed in details in Chapter 5, is used to 

establish a relationship between the far-field signal and the near-field spectrum of the 

sample. Near-field thermal emission by the sample at a distance d  above its surface is

proportional to the autocorrelation of the surface field, |̂e  w | ^ , where the symbol < >

denotes an ensemble average. The far-field signal is proportional to the correlation matrix 

of the induced dipole moments, md 0  P md''j, and can be related to the surface field

autocorrelation using the main equation of the T-DDA with surface interaction (Eq. 

(5.8)). To physically explain the probe-sample interaction, a simple case is considered in 

Section 6.3.1 where the probe is modeled using only one subvolume. The T-DDA 

simulations are performed in Section 6.3.2 using a sufficient number of subvolumes.



6.3.1 Spectral dependence of the far-field signal 

The T-DDA with surface interaction is employed in this section to qualitatively 

analyze the spectral dependence of the far-field signal. For simplicity, the probe is 

modeled with a single subvolume. It is assumed that the probe is nonemitting, such that 

the thermally fluctuating dipole moment p  of the subvolume is zero and the total dipole 

moment p equals the induced dipole moment p nd. Also, the incident electric field due to 

external illumination is zero. Under these assumptions, Eq. (5.8) reduces to:

1  ind 1 LiWl ,1 ll _ind k0 _ind -w?sur ^
O M P - ~------3 0 I1 - ik0a ) ~ ^ P ----- G ■ P = E (6.1)a  Ln-0  a —0

where the subscript 1 is dropped for simplifying the nomenclature. The self-interaction of 

the probe, represented by the second term on the left-hand side of Eq. (6.1), is extracted 

from the radiative polarizability given by Eq. (5.10). In Eq. (6.1), a CM is the Clausius- 

Mossotti polarizability, a is the radius of a sphere having the same volume as the probe,

and G is the reflection dyadic Green’s function. The induced dipole moment inside the
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probe can be derived from Eq. (6.1) as:

ind CMp - a
 ̂ 1 r / \ t k2
----— ■ leik°a(1 - ik0a )-1  !■ p ind G ■ pmd + E

v 2ns 0 a —0
(6.2)

According to Eq. (6.2), the dipole moment of the probe is the multiplication of the probe 

polarizability by the total electric field inside the probe given by the summation of the 

terms inside the parentheses. The electric field inside the probe has three components. 

The first and second terms are due to emission by the probe intercepted by itself directly 

and after interacting with the surface, respectively, and the third term indicates thermal 

emission by the sample. Equation (6.2) implies that the spectral distribution of the far-

sur



field signal, determined by the induced dipole moment pind, depends on the spectrum of 

the probe polarizability, direct self-interaction of the probe, indirect self-interaction of the 

probe through reflection at the surface and near-field thermal emission by the sample. 

The polarizability and direct self-interaction of the probe mostly depend on its dielectric 

function that is almost constant in the considered spectral band (see Fig. 6.2). The 

reflection interaction of the probe with the surface is a function of the probe dielectric 

function, the size and shape of the probe, as well as the dielectric function of the sample. 

The dielectric function of SiC varies strongly in the considered spectral band, which can 

result in a nonuniform spectral distribution of the reflection-interaction field. The 

spectrum of pind is the superposition of the spectral distributions of the surface field and 

the reflection-interaction field. As such, any shift in the resonant frequency of the 

induced dipole moment compared to the surface field can only be due to the reflection 

interactions of the probe and the sample.

6.3.2 T-DDA simulations 

The net spectral heat rate between the probe and the sample is simulated using the T- 

DDA. Both the probe heat rate and the far-field signal are proportional to the correlation 

matrix of the induced dipole moments. As such, the same spectral dependency is 

expected for the two quantities. The probe is discretized into 13111 nonuniform cubical 

subvolumes. The size of the subvolumes varies from 5.78 nm at the probe tip to 57.8 nm 

at its base. The reflection interaction between the probe and the sample is accounted for

in the T-DDA via the reflection-interaction matrix R which contains reflection dyadic 

Green’s functions of subvolumes (see Eq. (5.11)). Figure 6.4 shows the net spectral heat
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Figure 6.4 Net spectral heat rate between the probe and the sample with and without
considering reflection interactions modeled using the reflection-interaction matrix R . 
The reflection-interaction resonance is redshifted by 0.018*1014 rad/s (9.6 cm-1) relative 
to the SPhP resonance of a single SiC sample.

rate between the probe and the sample with and without considering the reflection- 

interaction matrix. When reflection interactions are ignored, the resonant frequency of the 

heat rate is aligned with the SPhP resonance of a single SiC surface. The reflection 

interactions play a significant role in the spectral band from 1.7*1014 rad/s to 1.8*1014 

rad/s, where they induce an additional resonance in the heat rate spectrum at a frequency 

of 1.767*1014 rad/s. This resonance is redshifted by 0.018*1014 rad/s (9.6 cm-1) relative 

to the SPhP resonance of a single SiC surface. The location and magnitude of this 

resonance strongly depends on the shape and size of the probe as well as the gap 

thickness. Depending on the probe geometry and its distance from the surface, the 

reflection-interaction resonance might dominate SPhP resonance in the far-field signal.
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The physical mechanism that amplifies the reflection-interaction contribution in the 

aforementioned spectral band can be investigated using Eq. (5.17). The physical 

interpretation of this equation is however not straightforward due to the complexity of the 

Sommerfeld integrals. In the next section, the probe is replaced with a thin film. The 

film-sample heat flux exhibits a similar spectral behavior to the probe-sample heat rate 

and is significantly simpler to analyze.

6.4 Spectral distribution of heat flux between the sample and a thin film 

The heat flux between the SiC sample (medium 1) and a thin film of silicon (medium 

2) separated by a vacuum gap show a similar spectral behavior as observed in the 

previous section for the probe-sample heat rate. In this case, the propagating and 

evanescent contributions to the monochromatic heat flux can be calculated analytically 

and are given by [32]:

2 2

, p iop\ [ , T ) -© (« ,T ) .  L  (1 -  )(1 - K b  k  (63)
\q« ) - --------- 3 ----------J kp L  , „t ,d 2 dkp (6 3)

4 3  0 i-T E ,T M 1 -  r  Rre2ikz0d 1 '0 1  2

/ qevan\ - [©(o , T2 ) - 0 (O  T 1 ) ]f  , - 2 K „d L  I m ( r o1) I m ( R ^ )  k
\ q *  / 2 J k p e  L  i 2T7T d k p  (6.4)3  k0 /-te,tm|1 -  r ^ R ^ e 1 z 0

where 0  is the mean energy of an electromagnetic state [33], k0 is the magnitude of the 

wavevector in vacuum (denoted as medium 0), kp is the parallel component of the 

wavevector, kzj -  k j + ik"zj is the z-component of the wavevector in medium j,  TE and

TM denote transverse electric and transverse magnetic polarizations, respectively, r l  is 

the Fresnel reflection coefficient between medium 0 and 1 in polarization state y [34] and 

Rl is the film reflection coefficient in polarization state y [32]. Figure 6.5 shows the
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Figure 6.5 Spectral heat flux between a Si film of thickness ti separated from the SiC 
sample by a gap size d = 10 nm for various film thickness to gap size ratios.

spectral heat flux for different film thickness to gap ratios ti/d ranging from 0.1 to 100 

when d  is fixed to 10 nm. The temperature of the SiC sample is Ti = 300 K, while the Si 

film is kept at Ti = 400 K. When ti/d is in the order of 1~10, the heat flux spectrum 

exhibits a second resonance that is spectrally redshifted as ti/d increases. When ti/d = 1, 

the secondary resonance is redshifted by 0.031*1014 rad/s (16.5 cm-1) relative to the SPhP 

resonance of a single SiC sample and it exceeds the SPhP heat flux by a factor of 1.35.

In Eqs. (6.3) and (6.4), the contributions from propagating and evanescent modes (in 

the vacuum gap) as well as TE and TM polarizations to the heat flux can be separated. 

Investigation of these four contributions reveals that the heat flux is dominated by 

evanescent modes in TM polarization. As such, the flux can be approximated as:
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The terms Im ^™ ) and Im (RM) in Eq. (6.5) can be seen as the spectral near-field

emittance and absorptance of media 1 and i ,  respectively, while the term in the 

denominator accounts for the reflection interactions between the film and the sample

[3i]. For surface polaritons in the extreme near-field regime where d  << A, the most 

significant contribution to the heat flux is from very large values of kp (kp >> k0) [3i,35]. 

In this regime, the z-component of the wavevector in medium j  can be estimated as kzj ~ 

ikp, and the following approximations can be made [3i]:

s  _ 1
C  - S — , j  = 1,i (6.6)

b j

rTM 1 _ e ~)TM ' 0 i  U  eTM (1 _ e-ikPti )Rtm ~  0i r  w 1 ,(■ 7n
i ~1 _ (rTM )i e ^  ( . )

According to Eq. (6.6), emission and absorption by the SiC sample, characterized by 

Im(r0TM), are maximum when s{ = -1 and when losses are small. This condition is

satisfied at a frequency of 1.785*1014 rad/s, where emission and absorption by the sample 

are dominated by the contribution of SPhPs. Emission and absorption by the Si film 

represented by Im(R™) have a maximum value when the denominator of Eq. (6.7) is 

zero. This requires that the real part of the dielectric function be negative. The real part of 

the dielectric function of silicon in the considered spectral band is almost constant and 

approximately equal to 11.7, such that emission and absorption by the film cannot 

resonate.

The heat flux of the coupled film-sample system resonates at the poles of the
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reflection-interaction term ( 1/ 1 _ r R e ). SiC supports SPhPs in the spectral

band under study. For surface polaritons with the largest contributing wavevector 

approximately equal to d -1 [32], an asymptotic analysis of the reflection-interaction term 

predicts a resonance when e[ = -1.25. For SiC, this condition happens at a frequency of 

1.777*1014 rad/s. The reflection-interaction term has another pole whose spectral location 

strongly depends on the film thickness and the gap size. For the case of t2 = d  = 10 nm, 

the reflection-interaction term resonates when e[ ~ -2 occurring at a frequency of 

1.754*1014 rad/s. Figure 6.6 shows the TM evanescent component of the spectral heat 

flux per unit kp for a gap size and a film thickness of 10 nm. A high-flux region is 

observed in the kp-rn plane between kp values from 10k0 to 150k0 and a> values from

Figure 6.6 Spectral distribution of heat flux per unit kp between a Si film and a SiC 
sample for film thickness t2 and separation gap d  of 10 nm. The film is at temperature T2 
of 400 K while the sample is kept at T1 = 300 K.

2



1.75*1014 rad/s to 1.78*1014 rad/s. The high values of heat flux in this region are caused 

by the reflection interactions between the film and the sample. Figure 6.6 demonstrates 

the existence of a resonance redshift in the heat transfer spectrum which is in agreement 

with the T-DDA results and the experimental measurements. A close examination of 

reflection-interaction term is required to explain the physical mechanism responsible for 

enhanced reflection interactions in the aforementioned region, which is left as a future 

research effort.

6.5 Conclusions

The interactions between a Si probe and a SiC sample were analyzed using the T- 

DDA with surface interaction and by investigating the heat flux between the sample and a 

thin Si film. Both analyses suggested that reflection interactions between the Si object 

and the sample induce an additional resonance in the heat rate spectrum which is 

spectrally redshifted relative to the SPhP resonance. The magnitude and the location of 

this resonance depend on the size and the shape of the probe as well as the gap thickness. 

For a probe with a tip size of 57.8 nm and a height of 4.97 ^m separated from the sample 

by a distance of 10 nm, this resonance redshift amounts to 0.018*1014 rad/s (9.6 cm-1) 

which falls within the reported range of 5 cm-1 to 50 cm-1. For some probe-sample 

configurations, the resonance due to reflection interactions might dominate SPhP 

resonance. In these cases, the resonant frequency of the far-field signal aligns with the 

reflection-interaction resonance rather than the SPhP resonance. For a 10-nm-thick film 

of Si separated from the sample by a gap of 10 nm, the heat flux at reflection-interaction 

resonance is larger than SPhP resonance by a factor of 1.35. A future research
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recommendation would be to investigate the physical mechanism that is responsible for 

the enhanced reflection interactions. This would be beneficial for designing experimental 

setups that do not induce a resonance shift. Another recommendation for future work is to 

model the far-field signal rather than the heat rate. Since both the far-field signal and the 

heat rate are proportional to the induced dipole moment correlation matrix, it is expected 

that the spectral distributions of both quantities are similar. However, it would be 

beneficial to model the exact location and magnitude of the resonances of the far-field 

signal.
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CHAPTER 7

CONCLUSIONS

Techniques for modeling near-field radiative heat transfer were discussed in this 

dissertation. These techniques provide solutions to near-field thermal radiation in several 

configurations including thin films, arbitrary-shaped objects and arbitrary-shaped objects 

interacting with an infinite surface. The proposed techniques were applied to study the 

physics of near-field radiative heat transfer in a number of geometries, namely thin films, 

sphere-sphere, sphere-surface, cube-cube and probe-surface. The main results of this 

research and recommendations for future work are provided hereafter.

7.1 Size effect on the emissivity of thin films 

The emissivity of thin films was studied using a direct model based on fluctuational 

electrodynamics. A closed-form expression for thickness-dependent emissivity of thin 

films was derived, which can also be considered as a mathematical proof of Kirchhoffs 

law. The derived expression was applied for studying the emissivity of a number of 

metallic and dielectric films. The simulation results revealed that thermal emission in 

dielectrics is a volumetric process, such that thicker dielectric films have larger 

emissivities. However, the emissivity of metals increases with decreasing film thickness. 

This counterintuitive behavior is due to the extraneous contributions of



waves experiencing multiple reflections within the thin layer, which are usually internally 

absorbed for metallic bulks. The simulations showed that the critical thickness above 

which the size effect is not observed has different orders of magnitude for dielectrics and 

metals. While the critical thickness of dielectric materials can be as large as a few 

centimeters, the critical thickness of metals is about a hundred nanometers. Finally, a 

simple expression based on the radiation penetration depth was provided for estimating 

the critical thickness of materials.

A next step in this project would be analyzing the emissivity of one-dimensional 

layered media. This is of particular interest since thin films are usually deposited on a 

substrate. It is beneficial to investigate how the presence of a substrate affects the 

emissivity of thin films. The results of this study would also be helpful for tuning the 

emissivity of multilayer hyperbolic metamaterials [1,2].

7.2 Modeling of near-field thermal radiation in complex, three-dimensional

and multiscale geometries 

A novel computational method called the thermal discrete dipole approximation (T- 

DDA) was proposed, implemented and verified for large-scale computations of near-field 

thermal radiation in complex three-dimensional geometries. The T-DDA is based on 

discretizing the volume integral form of the thermal stochastic Maxwell equations, and is 

conceptually similar to the discrete dipole approximation (DDA). In the T-DDA, objects 

are discretized into cubical subvolumes conceptualized as electric point dipoles. The 

dipole moment of each subvolume includes a thermally fluctuating component 

accounting for thermal agitation of charged particles inside the subvolume. The T-DDA
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was verified against the analytical solution of the radiative conductance between two 

spheres separated by a subwavelength gap. Excellent agreement was found between the 

T-DDA and analytical solutions for various sphere sizes, gap sizes and dielectric 

functions. Additionally, the T-DDA was applied to simulate the radiative conductance of 

two cubes for the first time. The T-DDA converges very rapidly for cubes compared to 

spheres. The fast convergence of the T-DDA for cubes is attributed to the fact that the 

shape error, due to approximating an object with a cubical lattice, is nonexistent in the 

case of cubes. The results of this study showed that the T-DDA is a robust and relatively 

simple numerical method for modeling near-field radiative heat transfer in complex 

geometries.

After verification of the T-DDA, an extensive convergence analysis of the method 

was performed using the analytical solution for two spheres. The approximations 

associated with the T-DDA were identified and discussed. The main parameters affecting 

the T-DDA accuracy are the refractive index, the size of the spheres, and their separation 

distance. The accuracy of the T-DDA was analyzed for six different refractive indices, 

including high and low real and imaginary parts, and a refractive index corresponding to 

surface phonon-polariton resonance of a silica sphere. Various sphere sizes and gap 

thicknesses ranging from much smaller than the wavelength to comparable to the 

wavelength were considered. It was found that regardless of the gap thickness and sphere 

size, the T-DDA accuracy decreases as the real and imaginary parts of the refractive 

index increase. A large refractive index negatively affects the accuracy of the T-DDA 

through increasing shape error and the error associated with assuming uniform dyadic 

Green’s function and electric field inside the subvolumes. Since the resonant refractive
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index has a moderate value (|m| = 1.39, m being the refractive index), the T-DDA 

converges very rapidly for the resonant mode. This is of a great importance because the 

total radiative conductance between spheres is dominated by the contribution of surface 

phonon-polaritons in the near-field regime. An almost constant decreasing trend was 

observed in the T-DDA error with increasing the number of subvolumes. However, 

computational requirements of the T-DDA increase nonlinearly with increasing the 

number of subvolumes. As such, the maximum number of subvolumes that can be used in 

the T-DDA simulations is limited by the available computational resources. A solution to 

this bottleneck is to use a nonuniform discretization scheme, where the size of the 

subvolumes increases from the front sides of the spheres (i.e., the sphere sides facing 

each other) toward their back sides. A fine discretization at the front side is more 

beneficial than at the backside, since the shape error and the variation of the electric field 

inside the spheres is more dominant at the front side. The nonuniform discretization is 

most useful when significant absorption occurs within a small portion of the sphere and 

when the sphere size to gap ratio is very large. Using nonuniform discretization, an error 

less than 5% was obtained in the T-DDA simulations for 74% of the cases studied. The 

T-DDA error for nonspherical geometries is expected to be smaller than for the spheres, 

since the shape error for spheres is very large.

It is very challenging to model radiative heat transfer between objects with different 

length scales. However, multiscale problems are encountered in many potential near-field 

thermal radiation applications, where complex-shaped micro/nanoscale objects interact 

with a large surface. To address this multiscale challenge, surface interactions were 

included analytically into the T-DDA formalism such that the necessity of discretizing
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the surface is eliminated. The presence of the surface modifies the T-DDA formalism in 

two ways. The first modification is concerned with the indirect interaction between the 

objects through reflection of the thermal electromagnetic field at the surface. This 

contribution was accounted for using a reflection-interaction matrix derived based on 

Sommerfeld’s theory of electric dipole radiation above an infinite surface. The second 

modification is associated with thermal emission from the surface when it is at a 

temperature larger than absolute zero. Thermal emission from an infinite surface is well- 

known and is obtained from fluctuational electrodynamics. The new version of the T- 

DDA accounting for these two additional contributions, referred to as the T-DDA with 

surface interaction, was verified against the analytical solution of heat rate between a 

sphere and a surface. Excellent agreement between the T-DDA with surface interaction 

and the analytical solution was obtained. The T-DDA with surface interaction was then 

applied to model the heat rate between a complex-shaped silica probe and a silica surface. 

The probe dimensions are typical to what is used in near-field thermal spectroscopy 

measurements [3]. The probe has a sharp tip of 57.8 nm and a height of 4.97 pm. The T- 

DDA was employed to model the net spectral heat rate between the probe and the surface 

within a frequency band of 0.04 eV to 0.17 eV. In the extreme near-field regime, the heat 

transfer between the probe and the surface is dominated by the contribution of surface 

phonon-polaritons. In the limit that d  ^  0, the total heat rate between the probe and the 

surface approaches a d  "2 power law identical to what is observed in the two-surface 

geometry. In this regime, the total heat rate and the location of the resonant frequencies 

can be predicted using the proximity approximation. As the gap size d  increases, the 

contribution from localized surface phonons becomes significant. When the gap thickness
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is comparable to the probe tip size, resonance splitting is observed in the heat rate 

spectrum due to localized surface phonon modes along the minor axis of the probe. In 

this regime, the location of resonances can be estimated by approximating the probe as a 

prolate spheroidal dipole with the same height and volume as the probe. The values of the 

heat rate can also be roughly approximated using the spheroidal dipole model. The 

spheroidal dipole approximation is valid when its axes are smaller or comparable to the 

wavelength, while the radius of curvature at its closest vertex to the surface is a few times 

smaller than the gap thickness. A small radius of curvature compared to the gap size 

ensures negligible contribution from multiple reflections of the thermal electromagnetic 

field between the dipole and the surface.

The T-DDA was proved to be a robust and efficient numerical method for modeling 

near-field thermal radiation in arbitrary geometries. However, the performance of the T- 

DDA can be improved in several ways. The T-DDA is a particular implementation of the 

method of moments [4]. Currently, the basis and testing functions used in the T-DDA are 

constant function and Dirac-delta function, respectively. The accuracy of the T-DDA can 

be improved by using higher-order functions [5]. The weighted discretization approach

[6,7] and the filtered coupled-dipole method [7-9] are other techniques that can 

potentially accelerate the convergence of the T-DDA. Currently, the maximum number of 

subvolumes that can be used in the T-DDA simulations is limited to a few hundred 

thousands. This limitation is due to the memory requirement and computational time 

associated with storing and inverting the interaction matrix. The computational demand 

of the T-DDA can be reduced considerably using an approach based on the fast Fourier 

transform [5]. In addition, the T-DDA is a very flexible method and can be applied to a
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wide variety of problems. A future research direction would be to generalize the T-DDA 

such that it can be applied to magnetic materials [10,11], inhomogeneous materials, 

anisotropic materials, geometries including objects buried in a surface [12], periodic 

geometries [13,14], Casimir interactions [15] and cases in which nonlocal effects are 

significant [16-19].

7.3. Investigation of resonance redshift in near-field thermal spectroscopy 

The T-DDA with surface interaction was employed to explain the reason behind the 

resonance redshift observed in near-field thermal spectroscopy measurements. The latest 

experimental attempts reported that the resonance frequency of the measured far-field 

signal can be redshifted by 5 cm-1 to 50 cm-1 compared to the near-field thermal spectrum 

of the sample as predicted by fluctuational electrodynamics [3,20]. The T-DDA analysis 

of the interactions between a silicon probe and a silicon carbide sample revealed that the 

spectrum of the far-field signal depends not only on the near-field thermal spectrum of 

the sample but also on the spectral distribution of the reflection interactions between the 

probe and the sample. The net spectral heat rate of a probe with a sharp tip of size 57.8 

nm and a length of 4.97 ^m was simulated using the T-DDA for a gap size of 10 nm. The 

simulations showed that reflection interactions between the probe and the sample induce 

an additional resonance in the heat rate spectrum which is spectrally redshifted by 10.8 

cm-1 compared to surface phonon-polariton resonance. The location and magnitude of 

this resonance strongly depend on the shape and size o f the probe as well as the gap 

thickness. For some probe-sample configurations, the reflection-interaction resonance 

might dominate surface phonon-polariton resonance in the far-field signal. An
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investigation of the spectral heat flux between the sample and a thin film, used for 

modeling the probe, supported the T-DDA results.

This study demonstrated that the resonance redshift is a physical phenomenon arising 

due to enhanced reflection interactions between the probe and the sample. However, the 

exact physical mechanism responsible for this enhancement is still not clear and is left as 

a future research effort. A clear understanding of the reflection interactions between the 

probe and the sample would be beneficial for designing an experimental setup that does 

not induce a resonance redshift. In this case, the far-field signal can be directly related to 

the near-field thermal spectrum of the sample. In the current study, the spectrum of the 

probe-sample heat rate was simulated. Another recommendation for future work is to 

model the spectral distribution of the far-field signal rather than the heat rate. Both the 

probe heat rate and the far-field signal are proportional to the correlation matrix of the 

induced dipole moments of subvolumes used for discretization of the probe. As such, a 

similar spectral distribution is expected for both quantities. However, modeling the exact 

location and magnitude of the resonances of the far-field signal would be beneficial.
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