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ABSTRACT 

 

 Asthma is a common disease that is most frequently treated with inhaled 

glucocorticoids which are used to decrease inflammation and mucus production in the 

airways.  However, about 30% of asthma patients do not respond to treatment.  A possible 

hypothesis for glucocorticoid insensitivity is increased metabolism of inhaled 

glucocorticoids by cytochrome P450 3A (CYP3A) enzymes, particularly in the lung.  The 

objectives for this dissertation were to evaluate the metabolism of five inhaled 

glucocorticoids (budesonide, beclomethasone dipropionate, fluticasone propionate, 

triamcinolone acetonide, and flunisolide) by CYP3A enzymes, and to determine if 

treatment with glucocorticoids in lung cells induced CYP3A enzyme expression, further 

increasing the metabolism of glucocorticoids in the lung.  All three CYP3A enzymes 

(CYP3A4, 3A5, and 3A7) metabolized the five glucocorticoids, but to varying degrees 

and with unique products.  CYP3A4 and CYP3A5 were the most efficient at metabolizing 

the glucocorticoids; CYP3A7 had the lowest rates of metabolism.  The most common 

metabolites produced by CYP3A enzymes with triamcinolone acetonide, budesonide, 

flunisolide, and beclomethasone dipropionate were 6β-hydroxylated and Δ6-

dehydrogenated product, all of which are believed to be clearance metabolites.  

Investigation into the metabolism of beclomethasone dipropionate by A549 lung cells 

showed that a dehydrogenated P450-mediated metabolite, [M5], was produced, decreasing 

bioavailability of the active drug.  It was also demonstrated that CYP3A5 mRNA was 



induced in A549 cells with glucocorticoid treatment.  The induction of CYP3A mRNA 

was blocked when cells were co treated with esterase inhibitors and BDP, confirming the 

active metabolite, beclomethasone 17-monopropionate ([M1]), was mediating the 

induction of CYP3A5 mRNA, presumably through the glucocorticoid receptor (GR).  

CYP3A5 mRNA induction was also attenuated by inhibiting GR using the antifungal 

drug, ketoconazole, further supporting the hypothesis that glucocorticoids binding to GR 

was the mechanism of CYP3A5 induction in A549 cells.  Additional experimentation with 

primary cells (NHBE, lobar, SAEC, BEAS-2B, and tracheal cells) demonstrated that only 

SAEC cells expressed CYP3A5.  However, CYP3A5 mRNA was not induced in SAEC 

cells with glucocorticoid treatment despite extensive manipulation of cell culture 

conditions, such as removing hydrocortisone and utilizing charcoal-stripped FBS for 

treatment, which could have interfered with the mechanism observed in A549 cells.  

Overall, the collective results described in this dissertation support the hypothesis that 

increased metabolism of glucocorticoids in the lung could lead to decreased 

bioavailability of pharmacologically active drug, and that continued treatment with 

inhaled glucocorticoids could perpetuate the inefficacy by inducing CYP3A5 enzymes, 

potentially causing glucocorticoid insensitivity seen in patients. 
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CHAPTER 1 

 

INTRODUCTION 

 

Asthma 

Asthma is a disease characterized by chronic inflammation of the airways that 

includes bronchoconstriction, increased mucus production and occasional airway 

obstruction (1).  This disease accounts for an estimated 500,000 hospital visits per year (2) 

and in 2007 the National Heart, Lung, and Blood Institute estimated that asthma cost the 

United States of America $20 billion in lost productivity and healthcare cost (3).  The 

most alarming statistic was in 2009 when the Center for Disease Control estimated there 

were 24.6 million people with asthma in this country, with 7 million under the age of 18 

(4, 5).  From these data, it is evident that asthma directly and indirectly affects the entire 

U.S. population through increasing healthcare cost, loss of productivity, as well as having 

an enormous impact on the health of our pediatric and neonatal populations, which will 

continue to impact their health and livelihood throughout their lives. 

 

Asthma Is a Complex Disease 

Asthma is a complex disease because it has diverse genetic and environmental 

components.  Twin studies have shown a strong genetic component to asthma (6, 7), with 

heritability estimated to be from 35% - 95% (8-14).  Although inheritance does not follow 
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Mendelian genetics, it is commonly believed that multiple genes are responsible for 

asthma (15, 16).  Genetic studies have found over 120 genes associated with asthma, all of 

which can be grouped into mutations affecting the structural components of the airways, 

increased levels and/or aberrant regulation of inflammatory proteins, or a decrease in 

antiinflammatory proteins (17).   

Recent genome-wide association studies have implicated four loci that are 

consistently associated with asthma across different ethnicities; 17q21, 2q12, 5q22.1 and 

interleukin 33 (IL33) (15, 18).  These loci are all associated with an increase in the 

endogenous inflammatory response.  The first locus implicated in asthma susceptibility is 

the orosomucoid-like 3 gene/gadsdermin like gene (ORMCL3/GSDML) located on 

chromosome 17q21 (19).  This locus has been associated with early childhood onset of 

asthma, particularly in children with frequent exacerbations, respiratory viral infections, 

and exposure to tobacco smoke (20-22).  Interestingly, children that have one of the many 

single nucleotide polymorphisms (SNP) in this region do not have any asthma attacks 

associated with direct contact with known common allergens or atopy, but experience 

symptoms sporadically (23).  The functions of ORMCL3 and GSDML are still poorly 

understood, but SNPs are believed to decrease endoplasmic reticulum Ca2+, which results 

in an induced endogenous inflammatory response (24).  The second locus implicated in 

asthma susceptibility is interleukin 1 receptor-like 1/interleukin 18 receptor 1 gene 

(IL1RL1/IL18R1) located on chromosome 2q12 (25).  This locus has been implicated in 

atopic asthma patients comorbid and codes for the IL1RL1 receptor, which IL-33 binds to 

on mast cells, T helper 2 cells, T-regulatory cells, and macrophages (18).  This locus is 

most commonly seen in patients that have asthma attacks from multiple environmental 
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factors and requires vigilant control of their environments (no pets, no carpet, etc).  The 

third locus is TSLP (thymic stromal lymphopoietin) located on chromosome 5q22.1 (25).  

TSLP is an epithelial cell derived cytokine involved in the inflammatory process 

associated with asthma.  SNPs in this region have also been highly associated with food 

allergies (26). The fourth locus is IL33, which has been implicated in allergy induced 

asthma.  IL33 activates mast cells, T helper 2 cells, T-regulatory cells, and macrophages 

(18).  This locus has also been implicated in children requiring vigilant control of their 

environments.  Though these are the four most common loci associated with asthma, it has 

also been documented that children can be afflicted with asthma without having any 

family history of the disease (15), suggesting a strong environmental component. 

The most common environmental instigators of asthma are a severe allergic 

reaction to an airborne allergen, such as cigarette smoke or a pesticide, and exposure to a 

viral infection in infancy or early childhood, such as the paramyxovirus or the respiratory 

syncytial virus (27).  There is also been evidence to suggest that children born in winter 

months in colder regions of the world also have a higher incidence of asthma, possibly 

due to decreases in Vitamin D exposure (28). 

Asthma patients suffer most commonly from acute attacks brought on by an 

environmental trigger.  Some environmental triggers include dust mite exposure, exercise, 

pet dander, cigarette smoke inhalation, and air pollution (29).  Studies have also shown 

that there are genetic factors that predispose patients to having asthma symptoms when 

exposed to certain environmental triggers (30), meaning not every patient has an asthma 

attack when exposed to the same triggers as another patient.  This inherent variability in 
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patient susceptibility to triggers complicates studying the genetic basis for asthma, as well 

as diagnosis. 

 

Diagnosis of Asthma 

Symptoms of asthma include chest tightness, wheezing, and breathlessness that 

often occur several times in a day or week (31).  Asthma diagnosis begins with an 

extensive family history questionnaire and a  physical examination in which physicians 

evaluate hyperexpansion of the thorax, wheezing occurring during normal breathing and 

forced exhalation, increased nasal swelling, and a manifestation of any allergic skin 

condition, such as eczema (32).  Spirometry tests are then used to evaluate the maximal 

volume of air forcibly exhaled from maximal inhalation (FVC) and the volume of air 

exhaled during the first second of exhalation (FEV1) (32).  Ratios of FEV1/FVC before 

and after a short acting bronchodilator are used to determine how much obstruction is seen 

in patients and to determine if there is improvement or significant reversibility after a 

short acting bronchodilator (29, 32).  Significant reversibility is defined as > 200mL 

increase in FEV1 and a > 10% increase in FEV1/FVC ratio as compared to baseline (32).   

Severity of asthma is also divided into four categories upon diagnosis: intermittent, mild 

persistent, moderate persistent, and severe persistent (29).  Intermittent is defined as 

symptoms less than once per week with brief exacerbations.  Mild persistent is defined as 

symptoms more than twice a week, but less than once a day, and exacerbations affecting 

activity or sleep.  Moderate persistent is defined as daily symptoms with exacerbations 

affecting activity and sleep.  Severe persistent is defined as daily symptoms, with frequent 

exacerbations and frequent sleep exacerbations.  Defining severity of asthma aids the 
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physician in determining the most appropriate therapeutic paradigm based on 

recommendations from the National Heart, Lung, and Blood Institute (32).   

Diagnosis of asthma is difficult because many of the characteristic symptoms of 

asthma can also occur in other conditions and disease states, such as chronic obstructive 

pulmonary disease (COPD), tuberculosis, allergic rhinitis, and pneumothorax (18).  Chest 

x-rays may also be performed to rule out these disorders (32), but even after physical 

examination and performing the diagnostic procedures outlined above, patients are not 

considered to have asthma unless improvement is seen after a 2-3 week glucocorticoid 

treatment regiment (32).  However, this theory is flawed based on reports of patient 

insensitivity to glucocorticoid treatment (33), and persistent symptoms of asthma, lending 

to potential misdiagnosis of asthma.    

 

Inhaled Glucocorticoid Therapy 

The first-line treatment for asthma is glucocorticoid therapy (29, 32, 34).  These 

drugs work by activating the glucocorticoid receptor (GR) in the cytosol of bronchiolar 

lung cells, forming a steroid-receptor complex, which translocates to the nucleus, and 

decreases the expression of proinflammatory genes and mucus production pathways in the 

lung (35-38).  The five most common inhaled glucocorticoids used in the clinic are 

flunisolide, triamcinolone acetonide, beclomethasone dipropionate, budesonide, and 

fluticasone propionate (32).  Clinical studies over the last two decades have compared the 

potency of these five drugs, and laboratories have ranked them as follows (least potent to 

most potent): flunisolide = triamcinolone acetonide < beclomethasone dipropionate (BDP) 

< budesonide < fluticasone propionate (38).  This ranking has been determined by 
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quantifying glucocorticoid receptor complex half-lives, glucocorticoid receptor binding 

affinities, and the topical potency skin blanching test (38), which measures the 

vasoconstriction of skin where steroids have been applied topically (39).   

 

Glucocorticoid Resistance 

Although glucocorticoids are the first-line treatment for chronic asthma, about 

30% of the asthmatic population does not respond to treatment due to glucocorticoid 

resistance or insensitivity (36).   Patients are defined as being resistant to steroids if they 

exhibit less than a 15% improvement in baseline FEV1 after a ten to fourteen day course 

of high dose steroids (40, 41).  Some factors contributing to steroid resistance are believed 

to be genetic abnormalities in the glucocorticoid receptor, abnormalities in histone 

acetylation, the ability of patients to control oxidative stress, and latent viral infections 

(41, 42).  However, the exact mechanisms of glucocorticoid resistance is still unknown 

(43).  A possible mechanism for resistance may be due to the differential metabolism and 

accelerated clearance of glucocorticoids in target cells and tissues by tissue-specific 

expression of catabolic enzymes, including cytochrome P450s.   

 

Cytochrome P450 Enzymes 

Cytochrome P450s (P450s) are heme-containing monooxygenases found in all 

organisms; Cyto stands for microsomal vesicles, chrome for colored, P for pigmented and 

450 for their characteristic absorbance at 450 nm when treated with a reductant and 

carbon monoxide (44-46).  They are biological catalysts that perform many different 

chemical reactions, such as oxidation of xenobiotics, and synthesis of steroids and 
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cholesterol (47-50).  Over 58 human P450 enzymes have been identified since their initial 

discovery in 1962 (45).  Table 1.1 summarizes all human cytochrome P450 enzymes 

identified to date, their tissue distribution, and their ability to metabolize glucocorticoids 

(51-61).  Cytochrome P450 enzymes are expressed predominately in the liver, but are also 

expressed in other such as the kidney, lung, brain, intestine, pancreas, bone marrow, mast 

cells, skin, ovary, testis, nose, and blood cells (62, 63).  Endogenous cytochrome P450 

reactions include vitamin metabolism, fatty acid metabolism, sterol metabolism and 

synthesis, and eicosanoid metabolism (62).  About 26% of cytochrome P450s are involved 

in the metabolism of xenobiotics.  These specific P450s have been studied as factors 

regulating drug bioavailability and pharmacokinetics, determinants of deleterious 

drug/drug interactions, and causes of toxicity associated with different xenobiotics in 

humans (62).    

 

Cytochrome P450 Catalytic Cycle 

The P450 catalytic cycle has been well studied and is reviewed in detail (Figure 

1.1) (64).  In brief, the P450 catalytic cycle begins in the “resting state” in which a water 

molecule is bound to the ferric iron in the P450 heme cofactor.  A substrate displaces the 

water from the heme, leaving a pentacoordinated-ferric heme. This induces the iron to 

adopt a high-spin state with an increased reductive potential which allows the ferric 

complex to become a better electron acceptor from a nicotinamide adenine dinucleotide 

phosphate (NADPH) cofactor via cytochrome P450 reductase.  Oxygen then binds to the 

reduced ferrous iron, producing a ferrous dioxygen complex.  A second reduction of the 

system takes place to form the ferric peroxo anion species, which is the rate limiting step  
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in the catalytic cycle of P450 enzymes.  The ferric peroxo complex is a good Lewis base 

and is rapidly protonated to form a ferric-hydroperoxide species, also called compound 0.  

Compound 0 extracts an additional proton to form compound I and water.  Compound I 

then oxidizes the substrate via the activated oxygen atom (65). This catalytic step is 

followed by product release, in which oxygen is incorporated, and the heme returns to the 

resting state. 

 

Cytochrome P450-Mediated Reactions 

 Numerous endogenous and exogenous compounds that can produce physiological 

effects are hydrophobic enough to facilitate their diffusion through biological barriers and 

to reach their molecular targets.  In order to avoid accumulation of such substances and to 

avoid toxicities associated with the accumulation of such chemicals, organisms have 

evolved the P450 enzymes, which metabolize a myriad of chemicals to more hydrophilic 

products that can be more easily excreted or further metabolized to conjugates that are 

actively excreted.  Phase I enzymes, such as esterases, P450 enzymes, and monoamine 

oxidases introduce (e.g., hydroxylation) or expose (e.g., heteroatom dealkylation) more 

polar functional groups to increase water solubility and to facilitate phase 2 conjugation 

reactions and ultimately clearance.  P450 enzymes are able to catalyze numerous different 

chemical reaction mechanisms to achieve this goal, including hydroxylation and 

dehydrogenation, which are central to the work presented in this dissertation.   

Hydroxylation is the best studied and well understood P450 catalyzed reaction 

mechanism that is commonly accepted to occur via hydrogen radical abstraction followed 

by a hydroxyl radical rebound mechanism to produce an alcohol (48); this hydroxylation 
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reaction has been confirmed using other glucocorticoid substrates, but not with 

beclomethasone dipropionate (66-68).   

Dehydrogenation reactions are less studied P450-catalyzed chemical reactions that 

produce a desaturated product (69); this reaction mechanism has been shown to occur 

during the metabolism of the glucocorticoids triamcinolone, flunisolide, and budesonide 

(70-72), but not beclomethasone dipropionate.  

 

Cytochrome P450 3A (CYP3A) Family Enzymes 

The 58 human P450s are named and arranged into families based on their 

sequence homology (73-75).  One of the most important classes of P450 enzymes 

involved in drug metabolism, particularly glucocorticoid metabolism, is the CYP3A 

family of enzymes (76).  The CYP3A family is located on chromosome 7 (77) and is the 

most abundant of the P450s in many tissues, primarily the liver, intestine, and lung and 

are differentially expressed based on which transcription factors are present (78-80).   The 

CYP3A enzyme isoforms most pertinent to this dissertation include CYP3A4, CYP3A5, 

and CYP3A7.  CYP3A4 is the predominant CYP3A isoform found in the liver and 

intestine (61, 66, 81), whereas CYP3A5 predominates in the lung (61, 82, 83).  CYP3A4 

and CYP3A5 together account for over 50% of the metabolism of therapeutic molecules 

on the market today (84).   CYP3A7 is the hepatic fetal isoform (85, 86) and  Lacroix et 

al. discovered that fetal CYP3A7 predominates at birth, but is replaced by the adult 

CYP3A4 or 3A5 isoforms shortly after birth (85),  This phenomenon may be important to 

consider when treating neonatal versus pediatric and adult patients with glucocorticoids.  
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CYP3A Expression in the Lung 

Analysis of CYP3A mRNA expression in adult lung tissue found that there are 

anatomical and age related differences in the level of expression of CYP3A enzymes (61).  

Leclerc et al. found that CYP3A5 and CYP3A7 message were detected in the pulmonary 

parenchyma, but CYP3A4 message was not detected.  It was also noted that only a very 

low amount of CYP3A5 message could be detected in the bronchial mucosa (bronchial 

epithelial cells), while no CYP3A7 or CYP3A4 message was found.  Therefore, in the 

context of asthma, CYP3A5 may be the most important CYP3A enzyme because it is 

expressed in the target tissue and it is capable of altering therapeutic concentrations of 

glucocorticoids through metabolic clearance, pharmacophore modification, and 

inactivation.  There also is a difference in how CYP3A enzymes are expressed in whole 

lung tissue during development.  Preliminary work by our laboratory has shown that 

CYP3A enzyme expression profiles are different between neonates, pediatric and adult 

patients.  Neonatal tracheal washes revealed that CYP3A7 was expressed at very high 

levels, with CYP3A5 being expressed at moderate levels.  Other research has shown that 

these higher CYP3A7 levels decline in the first year of life (86) with CYP3A5 remaining 

at moderate levels and even increasing to higher levels in some patients.  Adult lung 

continues to show high levels of CYP3A5, but very low to nondetectable levels of 

CYP3A7 (unpublished data).  Although these preliminary data show differences in the 

relative expression of CYP3A enzymes, little is still known about changes in the 

developmental expression and transcription of pulmonary CYP3A enzymes.  It is possible 

that variations of CYP3A enzymes might influence the behavior of therapeutic agents.    
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Cytochrome P450 3A Enzyme Regulation 

Transcriptional regulation of hepatic CYP3A genes has been extensively studied in 

liver cell and tissues, and it is commonly accepted that many xenobiotics, including 

glucocorticoids, induce changes in expression of drug-clearing enzymes via activation of 

the nuclear pregnane X receptor (PXR) (87-91).  However,  PXR-mediated changes of 

gene expression have not been detected in human lung (92). Although there is increasing 

evidence that drug treatment will alter pulmonary CYP3A expression, including a study 

by Hukkanen et al. that showed a 4-fold increase in CYP3A5 in response to BDP 

treatment in A549 lung carcinoma cells (83), the mechanism responsible for this 

physiological response has not been well studied and remains  poorly understood.  

Likewise, the significance of this induction phenomenon with respect to glucocorticoid 

pharmacotherapy is also unknown. 

Recent reviews have shown that the glucocorticoid receptor (GR) and the 

constitutive androstane receptor (CAR) also play important roles in regulation of gene 

expression in the liver (93, 94).  Hepatocytes treated with submicromolar concentrations 

of dexamethasone have been shown to increase the expression of CAR via GR (95, 96).  

Furthermore, the induction and activation of CAR has also been  shown to increase the 

expression of  P450 enzymes, including CYP3A enzymes (94).  Therefore, it is possible 

that the regulation of the CYP3A enzymes in the lung is mediated through GR and CAR 

upon treatment.  Studies presented in this dissertation investigate the possibility that 

glucocorticoid insensitivity observed in 30% of asthmatics may be due to glucocorticoid 

induced CYP3A expression, causing increased rates of glucocorticoid clearance, and thus 
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reduced drug concentrations in the target tissue.  Specifically, the roles of GR and CAR in 

pulmonary CYP3A expression are evaluated. 

 

CYP3A4 and CYP3A5 Polymorphisms 

Because almost 50%-90% of inhaled glucocorticoids are swallowed when inhaled 

(97), CYP3A4 will play a role in the metabolism of glucocorticoids in the liver.  To date, 

there have been 22 polymorphisms of CYP3A4 described (98).  Though most of the 

polymorphisms have no effect on steroid metabolism and are not robustly expressed in 

populations (98), one that could have an impact on steroid metabolism is CYP3A4*22, 

which codes for a null enzyme (99-101).  Patients who do express this polymorphism 

could demonstrate decreased metabolism of glucocorticoids.   

Many glucocorticoids are inhaled and exhibit their efficacy in the lung.  Therefore, 

CYP3A5 polymorphisms that change glucocorticoid metabolism in lung cells would alter 

glucocorticoid efficacy.  Many polymorphisms of CYP3A5 have been reported and two 

variants, CYP3A5*3 and CYP3A5*1, are of key interest to the work presented in this 

dissertation. The most common polymorphism is CYP3A5*3, which codes for an inactive 

form of CYP3A5 in the liver due to a defective splice site (81, 102), and presumably in 

the lung.  The majority of Caucasians are homozygotes for the CYP3A5*3 allele and 

therefore do not express active CYP3A5 in the lung or elsewhere in the body.   CYP3A5*1 

codes for an active enzyme (102).  Patients expressing the CYP3A5*1 polymorphism 

would presumably have increased metabolism of glucocorticoids in the lung and therefore 

would be predicted to exhibit decreased glucocorticoid efficacy compared to individuals 
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with the CYP3A5*3 genotype.  Both genotypes were assessed throughout the studies 

reported herein. 

 

Metabolism of Beclomethasone Dipropionate 

  BDP is administered as an inhaled prodrug and becomes pharmacologically active 

in the lung by hydrolysis of an ester at the C-21 position, forming beclomethasone 17-

monopropionate [M1] (Figure 1.2) (103).  Two other metabolites previously documented 

in the literature are beclomethasone 21-monopropionate [M2], which requires the 

hydrolysis of an ester at the C-17 position, and beclomethasone [M3], which requires the 

hydrolysis of both esters (104-108).  Cell culture experiments in A549 cells attributed 

product formation to esterases (109).  However, these experiments did not contain P450 

inhibitors, and thus, the possibility that P450 enzymes also contributed to the bioactivation 

of beclomethasone dipropionate was not determined.  Preliminary research by our 

laboratory, as well as by others, has shown that P450 enzymes may be able to catalyze the 

de-esterification of BDP and thus potentially could contribute to the biological efficacy of 

this drug.  At the time this research project began, it was not known whether CYP3A 

enzymes were capable of producing the pharmacologically active BDP metabolite [M1] or 

any other metabolites (e.g., [M4] and [M5]), that were predicted from the studies of the 

metabolism of other structurally similar glucocorticoids (66-68, 70, 71).  Therefore, the 

relative rates of metabolism by CYP3A isoforms and the metabolites they produced were 

investigated and quantified in this dissertation. 
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Research Objectives 

 The hypothesis for this work is that CYP3A enzymes produce the active 

metabolite as well as major clearance metabolites leading to glucocorticoid insensitivity, 

and beclomethasone dipropionate binds to GR, induces CAR, which induces the 

expression of CYP3A enzymes.  The metabolism of glucocorticoids by the CYP3A 

isoforms and the regulation of CYP3A enzymes in the lung in response to glucocorticoid 

treatment were the main objectives for this dissertation. 

 

Major Findings by Chapter 

Chapter 2 

 The ability of CYP3A isoforms to metabolize four major glucocorticoids, 

triamcinolone acetonide, flunisolide, budesonide, and fluticasone propionate, had not been 

previously documented and was evaluated.  CYP3A5 was able to metabolize all four 

glucocorticoids.  CYP3A4 metabolized triamcinolone acetonide, budesonide, and flutica-

sone. CYP3A7 metabolized budesonide, fluticasone propionate, and triamcinolone 

acetonide, but at lower rates than CYP3A4 and CYP3A5.  The major metabolites 

produced for triamcinolone acetonide, flunisolide, and budesonide were 6β-hydroxylation 

and Δ6-dehydrogenation.  Hydrolysis of an ester on the D-ring of the glucocorticoid by 

CYP3A enzymes occurred for fluticasone propionate and triamcinolone acetonide.  Novel 

metabolites, 21-nortriamcinolone acetonide and Δ6-flunisolide, were isolated and 

identified using NMR.   This work had been published in the journal Drug Metabolism 

and Disposition (72). 
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Chapter 3 

The ability of CYP3A isoforms to metabolize BDP was first evaluated.  The 

results indicated that only CYP3A4 and CYP3A5 are able to metabolize BDP, exhibiting 

similar rates, while CYP3A7 does not metabolize BDP.  Studies with in vitro incubations, 

including recombinant P450 enzyme, demonstrated that CYP3A4 and CYP3A5 produce 

clearance compounds, [M4] and [M5], and that the combined action of esterases and 

CYP3A4 produced [M6], a de-esterified, hydroxylated product.  Further investigation 

using cell culture experiments, showed only the formation of [M5] by A549 cells (lung 

adenocarcinoma cells).  However, both [M4] and [M5] were detected in liver cell culture 

(DPX2 cells).  [M6] was not detected in cell culture experiments.  This work has been 

published in the Journal of Pharmacology and Experimental Therapeutics (110).  

 

Chapter 4  

Studies focused on the regulation of CYP3A enzymes in response to 

glucocorticoid treatment in various lung cell culture models.  In A549 cells there was a 2-

fold induction of CYP3A5 mRNA upon BDP treatment, but neither CYP3A4 nor 

CYP3A7 mRNA were detected, even with BDP (and other glucocorticoid treatment).  The 

induction of CYP3A5 was blocked by inhibiting the formation of the active metabolite 

[M1] through inhibition of esterase activity.  Furthermore, inhibition of all P450 and 

esterase activity (through 1-ABT and esterase inhibitors) and treatment with [M1] was 

sufficient to induce CYP3A5 mRNA.  Blocking the glucocorticoid receptor using a 

competitive antagonist, ketoconazole, or knocking down GR expression using siRNA, 

blocked the induction of CYP3A5, suggesting this induction occurred through the 
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glucocorticoid receptor.  The constitutive androstane receptor did not participate in the 

induction of CYP3A5.   Additional investigations of this regulatory pathway in primary 

cell cultures, such as NHBE, SAEC, and lobar cells, showed that it could not be replicated 

with these model systems.  This suggests that there is a deficit in current lung models used 

to study not only the regulation of CYP3A5 in the lung in response to glucocorticoid 

treatment, but also the metabolism of glucocorticoids by CYP3A enzymes in the lung.  

This work was not published prior to submission of the final version of this dissertation. 
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CHAPTER 4 
 
 
 

REGULATION OF CYP3A GENES BY GLUCOCORTICOIDS 
 

IN LUNG CELLS 
 

 
 

Abstract 
 

 Inhaled glucocorticoids are the first line treatment for patients with persistent 

asthma.  However, approximately 30% of patients do not respond to treatment due to 

glucocorticoid insensitivity, which may involve excess metabolic clearance of the 

glucocorticoids by CYP3A enzymes in the lung.  CYP3A4, 3A5, and 3A7 enzymes 

metabolize glucocorticoids and glucocorticoids induce CYP3A5 in A549 cells.  However, 

the mechanism by which CYP3A5 expression is regulated in A549 cells in response to 

glucocorticoids has not determined.  In hepatocytes glucocorticoids bind to the 

glucocorticoid receptor, which induces the expression of the constitutive androstane 

receptor, which binds the retinoid X receptor α, leading to the induction of CYP3A4, 3A5, 

and 3A7.  This pathway was evaluated as the mechanism for CYP3A5 mRNA induction 

by glucocorticoids in A549, BEAS-2B, NHBE, SAEC, lobar, and tracheal epithelial cells.  

In A549 cells, beclomethasone 17-monopropionate ([M1]) induced CYP3A5 mRNA 

through the glucocorticoid receptor.  CYP3A5 mRNA induction by five different 

glucocorticoids was attenuated by inhibiting the glucocorticoid receptor using 

ketoconazole, and for beclomethasone dipropionate, using siRNA –mediated inhibition of 
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glucocorticoid receptor expression.  The constitutive androstane receptor was not 

expressed in lung cells.  SAEC cells, a primary lung cell line, expressed CYP3A5, but 

CYP3A5 mRNA was not induced by glucocorticoid treatment despite evaluating a 

multitude of cell culture conditions.  None of the other lung cells expressed CYP3A4, 3A5 

or 3A7 mRNA.  These studies demonstrate that CYP3A5 message is induced in response 

to glucocorticoid treatment in A549 cells via the glucocorticoid receptor, but an additional 

undefined regulatory process may exist in primary lung cells.   

 

Introduction 

 Inhaled glucocorticoids are the first line treatment for asthma (1-3).  

Glucocorticoids bind to the glucocorticoid receptor to reduce the expression of genes that 

produce a variety of pro-inflammatory mediators and mucus in the lung (4-6).  The most 

commonly prescribed glucocorticoids are beclomethasone dipropionate (BDP), 

triamcinolone acetonide (TCL), budesonide (BUD), fluticasone propionate (FLT), and 

flunisolide (FLN) (1).  BDP is a prodrug and requires removal of the C-21 propionate 

group to become pharmacologically active; the active drug is beclomethasone 17-

monopropionate, referred to as [M1] (Scheme 4.1) (7).  Pharmacological inactivation and 

clearance of glucocorticoids, such as BDP and its active metabolite [M1], is mediated, in 

part, by cytochrome P450 (CYP) enzymes (Scheme 4.1), mainly the CYP3A enzymes., 

CYP3A4, 3A5, and 3A7. 

In humans, CYP3A4, 3A5, and 3A7 are involved in glucocorticoid metabolism (8-

11).  CYP3A4 is the most abundant CYP3A enzyme in the liver and intestines (8, 12, 13), 

CYP3A5 is preferentially expressed in the lung (12, 14-16), and CYP3A7 is expressed in 
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fetal liver, but diminishes after birth when CYP3A4 becomes the dominant adult hepatic 

CYP3A enzyme (17, 18).  Expression of CYP3A7 in fetal and adult respiratory tissue has 

also been reported (16).  

 Regulation of CYP3A enzymes in response to glucocorticoid treatment has been 

extensively characterized in the liver, but little is known about this phenomenon in the 

lung.  In hepatocytes, CYP3A enzyme induction is mediated by the pregnane X receptor 

(PXR) (19, 20).  However, PXR is not expressed in the lung (21).  The glucocorticoid 

receptor (GR) and the constitutive androstane receptor (CAR) also regulate CYP3A 

induction by glucocorticoids in the liver (22, 23).  Briefly, glucocorticoids bind GR in the 

cytosol, which forms a homodimer and translocates to the nucleus, leading to increased 

transcription of CAR.  CAR forms a heterodimer with the retinoid X receptor alpha 

(RXRα), which binds to the CAR/RXR- response element and induces the expression of 

CYP3A enzymes (Figure 4.1).  This pathway, however, has not been demonstrated in the 

lung. 

 The purpose of this study was three fold: 1) to evaluate changes in the expression 

of CYP3A mRNA in lung cells treated with glucocorticoids; 2) to determine if the 

GR/CAR/RXRα pathway was responsible for glucocorticoid-induced changes in CYP3A 

mRNA expression; and 3) to determine the role of metabolism in this phenomenon.  The 

cell lines used in this study were BEAS-2B (immortalized bronchial epithelial cell line), 

NHBE (normal human bronchial/tracheal epithelial cells), lobar epithelial cells (secondary 

bronchus epithelial cells), primary cells recovered from tracheal washes of pediatric 

patients on mechanical ventilators, SAEC (small airway epithelial cells), and A549 

(human lung adenocarcinoma) cells.  It was hypothesized that CYP3A5 induction in A549  
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cells by BDP (11) and other glucocorticoids would occur via a mechanism involving 

GR/CAR/RXRα, as previously documented in hepatocytes. 

 

Materials and Methods 

Chemicals, Reagents, and Treatments 

Beclomethasone dipropionate (BDP), triamcinolone acetonide (TCL), fluticasone 

propionate (FLT), flunisolide (FLN), budesonide (BUD), prednisolone, ammonium 

acetate, eserine, and methanol were purchased from Sigma-Aldrich Chemical Company 

(St. Louis, MO).  Paraoxon was purchased from Chem Service (West Chester, PA).   

 

Cell Culture 

A549 cells (American Type Culture Collection, Manassas, VA) were cultured in 

Dulbecco's Modified Eagle Medium (DMEM) plus 5% fetal bovine serum (Life 

Technologies, Grand Island, NY).  SAEC cells (LONZA, Walkersville, MD; patient 

numbers 11662, 14453, 14457) were cultured in small airway epithelial growth medium, 

supplemented with the SAGM bullet kit.  Cells were cultured with and without 

hydrocortisone by adding or not adding the hydrocortisone component from the SAGM 

bullet kit.  NHBE cells (LONZA; patient numbers 15268, 5S03795) were grown in 

bronchial epithelial cell growth medium (BEGM Bullet kit) (LONZA).  BEAS-2B cells 

(American Type Culture Collection) were cultured in LHC-9 medium (Life 

Technologies).  Lobar cells (patient number 01334) were cultured in BronchiaLife Basal 

Medium supplemented with the BronchiaLife B/T supplement kit (Lifeline Cell 

Technology, Walkersville, MD).  All cells except A549 cells were plated in 12-well plates 
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pre-coated with LHC basal medium (Life Technologies).  Tracheal epithelial cells were 

recovered from tracheal washes from mechanically ventilated pediatric patients in the 

neonatal intensive care unit and pediatric intensive care unit at Primary Children’s 

Medical Center at the University of Utah, with IRB approval (00026839).  Briefly, cells 

were separated from sputum by centrifugation at 900 xg for 30 min in 14 mL of 

DMEM/F12 media.  Cells were plated in a 12-well plate pre-coated with 2% gelatin (Life 

Technologies) and cultured in DMEM/F12 media + 10% fetal bovine serum (FBS) (Life 

Technologies). All cells were cultured in an atmosphere of 5% CO2:95% air at 37ºC.  

 

Cell Treatments 

Cell treatments were prepared in treatment media with a final concentration of 

DMSO less than 1%.  Cells were treated at ~70% confluence (11).  A549 cells were 

treated in OPTIMEM (Life Technologies) and SAEC cells were treated in growth media 

with and without hydrocortisone and with and without heat inactivated and/or charcoal-

stripped FBS.  All other cell lines were treated in their respective growth medium, also 

heat inactivated to eliminate esterase activity from the FBS which would metabolize BDP 

before it could diffuse into the cells.  Cytotoxicity assays were performed using the 

Dojindo Cell counting kit-8 (Dojindo Laboratories, Rockville, MD) to determine 

glucocorticoid, esterase inhibitor, and ketoconazole concentrations exhibiting <20% 

cytotoxicity in A549 cells.  All other cell lines were treated with the same concentrations 

as determined with A549 cells.  Glucocorticoid treatments were as follows: BDP (10 μM), 

TCL (1 μM), BUD (10 μM), FLT (1 μM), and FLN (100 nM).  Pre-treatments in various 

experiments included ketoconazole (50 μM, 10 μM, and 1 μM, to inhibit GR), esterase 
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inhibitors (1:1 mixture of eserine and paraoxon, each at 175 μM, to inhibit [M1] 

formation), and 1-aminobenzotriazole (1-ABT; 200 μM, to inhibit P450-mediated 

metabolism) for 2 h prior to a 22 h glucocorticoid cotreatment.  Controls were treated with 

an equivalent concentration of DMSO.  All A549 cell treatments were carried out in 6-

well plates for 24 h (n=6).  All other cell lines were cultured in precoated 12-well plates 

and treated for 24 h (n=3).     

 

Analysis of BDP Metabolites 

After treatment, BDP and BDP metabolites were extracted from the collected 

media by adding 2x volume (6 mL for A549, 4 mL for all other cell lines) methyl tert-

butyl ether containing 1 nM prednisolone (internal standard for quantification) and 

shaking for 25 min.  Samples were clarified by centrifugation, the organic fraction was 

collected, dried under air, reconstituted in 100 µL 1:1 H2O:MeOH, clarified again by 

centrifugation, and transferred to autosampler vials for analysis by liquid chromatography-

mass spectrometry (LC/MS/MS).  LC/MS/MS was conducted on a Thermo LCQ 

Advantage Max ion trap instrument equipped with a Finnigan Surveyor LC pump, 

Surveyor Autosampler and universal Ion Max source operated with Thermo Xcalibur 

software version 2.0 (Thermo Fisher Scientific, Waltham, MA) as previously described 

(11).  

 

Quantitative Reverse Transcription-PCR 

Total RNA was isolated from cells using TRIzol reagent (Life Technologies).  

cDNA was synthesized using iScript Reverse Transcription Supermix for qPCR (BIO 
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RAD, Hercules, CA).  qPCR was performed using either LightCycler 480 Probes Master 

mix (CYP3A5) or LightCycler 480 SYBR Green I Master Mix (all other genes) (Roche, 

Indianapolis, IN) with a Light-Cycler 480 System.  The PCR program for probe mix 

consisted of a 5 min incubation at 95ºC, followed by 45 cycles of 95ºC for 10s, 55ºC for 

30s, then 72ºC for 1s.  The PCR program for SYBR Green I mix consisted of a 5 min 

incubation at 95ºC, followed by 40 cycles of 95ºC for 10s, 63ºC for 5s for CYP3A4, 

CYP3A7 and β2-microglobulin.  For GR and CAR, annealing was performed at 65ºC for 

5s and extension at 72ºC for 10s.  mRNA copy number was determined from standard 

curves for each gene and was normalized using β2-microglobulin.  Primer sequences for 

the various genes are listed in Table 4.1 (24).   

 

siRNA-Mediated Protein Knockdown 

Pre-annealed, short interfering “Smart Pool” siRNAs specific to human GR were 

purchased from Dharmacon (Waltham, MA).  siRNA directed against GFP (25) was used 

as a negative control with the following sequences: 5′-CUGGAGUUGUCCCAAUUCCT 

T-3′ and 5′-AGAAUUGGGACAACUCCAGTT-3′ (the 2-nucleotide overhanging of 2′-

deoxythymidine is indicated as TT and denoted by underlines).  Control siRNA was 

synthesized at the University of Utah oligonucleotide synthesis core and annealed by 

combining 40 µM of each strand and incubating in annealing buffer (100 mM potassium 

acetate, 30 mM HEPES KOH, 2 mM magnesium acetate adjusted to pH 7.4) for 1 min at 

90ºC followed by 1 h at 37ºC, in a final volume of 0.5 mL.  A549 cells were plated into 6-

well plates containing 20 nM siRNA per well, previously complexed with Lipofectamine 

2000 using a ratio of 3:2 lipid to siRNA in 100 µL of OPTIMEM (Life Technologies). 
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The cells were grown for 48, 72, and 96 h to determine the time at which maximum 

decreases in GR mRNA occurred (72 h).  In subsequent experiments, cells were treated 

with DMSO, 10 µM BDP, or 10 μM BDP + 175 µM esterase inhibitors (1:1 

eserine:paraoxon) for 24 h to determine the effects of attenuated GR expression on the 

induction of CYP3A5 in A549 cells. 

 

Results 

Inhibition of [M1] Formation Prevented CYP3A5 mRNA Induction by  

BDP in A549 Cells 

 Media from A549 cells treated with BDP (10 µM) for 24 h was extracted and 

analyzed for metabolites of BDP produced by CYP3A enzymes.  The only CYP3A-

mediated metabolite detected was [M5] (Scheme 4.1 and Figure 4.2A) (11).  For the 

remainder of the studies, [M1], the active metabolite, was used as a marker for esterase 

activity and [M5] was used as a marker for CYP3A5 activity.  BDP treatment significantly 

induced the expression of CYP3A5 mRNA (~2-fold) compared to the DMSO control 

(Figure 4.2B).  CYP3A4 and CYP3A7 mRNA was not detected in A549 cells, as 

previously documented (11, 16).   Inhibiting the production of [M1] using esterase 

inhibitors also blocked the induction of CYP3A5 mRNA (Figures 4.2A and 4.2B); 

esterase inhibitor (EI) treatment alone had no effect on CYP3A5 expression.  1-ABT, a 

mechanism-based inactivator of P450 enzymes, also inhibited esterase activity (i.e., [M1] 

formation) (Figure 4.2A), and as a result, prevented the induction of CYP3A5 mRNA 

(Figure 4.2B). 
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[M1] was Sufficient to Induce CYP3A5 mRNA in A549 Cells 

Cells were treated with [M1] in the absence and presence of 1-ABT and esterase 

inhibitors.  [M1] treatment was sufficient to induce CYP3A5 mRNA (~2-fold), 

independent of esterases (Figure 4.2B), indicating that CYP3A5 mRNA induction in 

A549 cells was mediated by [M1], presumably involving GR. 

 

GR, but not CAR, Regulated the Induction of CYP3A5 mRNA in  

A549 Cells  

GR and CAR mRNA were quantified in A549 cells.  A significant increase in GR 

message (~2.4-fold) was observed following 24 h treatment with BDP (Table 4.2).  CAR 

mRNA was not detected in A549 cells prior to or following glucocorticoid treatment 

(Table 4.2), consistent with previous studies (15), suggesting that GR, not CAR, was 

responsible for the induction of CYP3A5 message in A549 cells. 

 

Inhibition of GR with Ketoconazole Attenuated CYP3A5  

mRNA Induction by Glucocorticoids in A549 Cells    

Ketoconazole is a competitive antagonist of GR (24).  Ketoconazole alone had no 

significant effect on CYP3A5 mRNA expression (Figure 4.3A).  As the concentration of 

ketoconazole was decreased, dose-dependent increases in the expression of CYP3A5 

mRNA were observed for BDP, TCL, FLT, BUD, and FLN (Figure 4.3A-E): BDP caused 

a ~2-fold induction, BUD caused a ~4-fold induction, TCL caused a ~5.5-fold induction, 

FLT caused a ~3.5-fold induction, and FLN caused a ~5.5-fold induction, relative to their 

respective controls.  These data support the conclusion that the induction of CYP3A5  
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mRNA in A549 cells was mediated by GR.  

 

siRNA-mediated Knockdown of GR also Attenuated CYP3A5 mRNA Induction 

 by BDP in A549 Cells 

Cells were transfected with siRNA and grown for 48, 72, and 96 h to determine the 

time of maximum GR mRNA suppression (Figure 4.4A).  Maximum suppression 

occurred as early as 48 h, but the 72 h time point was chosen for further experiments to 

ensure efficient GR protein depletion.  An approximate 2-fold induction of CYP3A5 

mRNA was observed in A549 cells following treatment with BDP in control cells 

transfected with “nonsense” siRNA directed against GFP.  Consistent with previous 

results (Figures 4.2A and 4.2B), CYP3A5 mRNA induction was prevented by esterase 

inhibitors (Figure 4.4B).  Cells transfected with siRNA targeted for GR mRNA showed no 

change in CYP3A5 mRNA with BDP treatment, further confirming the role of GR in 

directly regulating the induction of CYP3A5 mRNA in A549 cells treated with BDP and 

presumably the other glucocorticoids used in Figure 4.3. 

 

CYP3A5 was not Expressed or Induced by Glucocorticoid  

Treatment in Tracheal/Bronchial Epithelial Cells 

Neither CYP3A5 mRNA expression nor induction of CYP3A5 mRNA following 

BDP or other glucocorticoid treatment was observed in NHBE, BEAS-2B, lobar, and 

freshly isolated tracheal wash samples (Table 4.2).   
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SAEC Cells Expressed CYP3A5, but mRNA for CYP3A5 was  

not Induced by Glucocorticoid Treatment 

SAEC cells from three separate patients were evaluated for CYP3A5 mRNA 

expression and induction in response to glucocorticoid treatment.  Initial experiments 

demonstrated that mRNA for CYP3A, but not CYP3A4 or 3A7, was expressed in one of 

the three SAEC samples (patient #11662), but that expression levels were not altered by 

glucocorticoid treatment.  It was hypothesized that the high concentration of 

hydrocortisone (500 µM) in the SAEC growth media prevented the induction of CYP3A5 

mRNA by substantially lower concentrations of the glucocorticoids used in the treatments.  

Elimination of hydrocortisone from the media decreased the basal expression of CYP3A5 

mRNA (Figure 4.5).  However, no change in mRNA abundance was observed over a 24 h 

treatment period with BDP.  Furthermore, neither increasing the treatment concentration 

of BDP to 50 µM, nor treatment with [M1] at 150 µM led to an increase in CYP3A5 

mRNA in SAEC cells.  It was subsequently hypothesized that phthalates or other 

substances in the FBS might alter GR function and CYP3A5 mRNA induction by 

glucocorticoids (26).  However, neither heat inactivation nor charcoal-stripping of the 

FBS in media with and without hydrocortisone led to CYP3A5 mRNA induction.  The 

various manipulations to SAEC culture conditions and results for CYP3A5 induction are 

summarized in Table 4.3. 

 

Discussion 

Inhaled glucocorticoids are used to control undesirable symptoms in asthmatic 

patients.  However, about 30% of the population does not benefit from this first-line  
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treatment (6).  Prior work demonstrated that the five most commonly prescribed 

glucocorticoids used in the treatment of asthma are metabolized by CYP3A enzymes, 

specifically CYP3A4, CYP3A5, and CYP3A7 (10, 11).  Therefore, it has been proposed 

that unusually high rates of metabolism of glucocorticoids in lung cells by these enzymes 

might contribute to the decrease and/or lack of efficacy in some individuals.  However, it 

is not understood how the expression of CYP3A enzymes is regulated in the lung in 

response to glucocorticoid treatment, despite extensive knowledge of this phenomenon in 

hepatocytes and the liver (22).  

Using A549 cells, it was demonstrated that CYP3A5 mRNA was induced by 

glucocorticoid treatment (Figure 4.2B and 4.3A-E); neither CYP3A4 nor CYP3A7 mRNA 

were detected in A549 cells.  Subsequent studies using a competitive antagonist of GR 

(ketoconazole) and siRNA selective for GR mRNA, demonstrated that inhibition of GR 

function prevented the induction of CYP3A5 mRNA by BDP and other glucocorticoids in 

A549 cells (Figure 4.3A-E and 4.4B).  It was also demonstrated that CAR mRNA was not 

expressed by lung cells, consistent with previous RT-PCR data (15), and therefore could 

not be involved in the regulation of CYP3A5 expression by glucocorticoids as occurs in 

hepatocytes.  It was concluded that CYP3A5 expression was directly regulated by GR.  

Schuetz et al. (27) previously described two “half sites” of GR (TGTTCT) separated by 

160 bp in the promoter region of CYP3A5 in HepG2 cells and in human and rat 

hepatocytes.  It was demonstrated that dexamethasone induced the expression of CYP3A5 

by the GR homodimer binding to these two joined “half-sites” which could be blocked by 

RU-486, a GR antagonist.  It is plausible these same sites are involved in the regulation of 

CYP3A5 in lung cells by BDP and other glucocorticoids.   
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Regardless of the exact mechanism of regulation, the current results illustrate that 

glucocorticoids have the capacity to induce the expression of CYP3A5 in A549 cells.  

These data, in conjunction with prior metabolism studies of glucocorticoids by this 

laboratory, support the hypothesis that treating patients with glucocorticoids could 

increase levels of CYP3A5 in the lung, and therefore increase pulmonary glucocorticoid 

metabolism, ultimately increasing clearance, and potentially decreasing the concentration 

of active drug in lung cells.  Though most of the population expresses the inactive form of 

CYP3A5 (CYP3A5*3) (13, 28) those expressing CYP3A5*1, the active form of CYP3A5 

(13), could exhibit increased clearance of the drug, and therefore could account for at least 

some of the 30% of patients who do not respond to inhaled glucocorticoid therapy. 

In order to further support the hypothetical scenario above, the induction of 

CYP3A enzymes by glucocorticoids in various lung cells was studied.  CYP3A5 mRNA 

expression was quantified in primary lung cells, which presumably more closely model 

epithelial cells of the human respiratory tract and lung.  NHBE, lobar, and cells recovered 

from tracheal washes of mechanically ventilated children were evaluated for CYP3A 

enzyme expression and induction by glucocorticoids.  Results in Table 4.2 show that 

CYP3A mRNA was not expressed in cells of the conducting airways in response to 

glucocorticoid treatment, indicating that these epithelial cells likely do not play a role in 

CYP3A-dependent metabolism of glucocorticoids in the lung.  In contrast, SAEC cells, 

representing cells of the distal bronchioles, alveolar ducts, and alveoli, did express 

CYP3A5 (Table 4.2).  However, there was no change in CYP3A5 message when these 

cells were treated with glucocorticoids.  A thorough examination of potential confounding 

issues associated with cell culture revealed a high concentration of hydrocortisone (500 
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µM) in the growth media.  Because cells were treated with only 10 µM BDP, it would 

stand to reason that no change in CYP3A5 mRNA would occur because CYP3A5 

expression would already be maximized as a result of hydrocortisone activating the GR 

pathway.  Experiments conducted in A549 cells showed that culturing cells in 500 µM 

hydrocortisone increased the basal expression of CYP3A5 mRNA by 2-fold, masking the 

induction routinely observed using 10 µM BDP for 24 h.  When A549 cells were 

subsequently cultured in media without hydrocortisone for a 48 h, providing sufficient 

time for a “wash out” of the hydrocortisone, the basal expression of CYP3A5 mRNA was 

reduced, and ~2-fold induction of CYP3A5 mRNA occurred with the 10 µM BDP, 24 h 

treatment.  Therefore, hydrocortisone was omitted from the SAEC growth media.  

Subsequent experiments in SAEC cells showed no change in CYP3A5 mRNA in response 

to glucocorticoid treatment (Figure 4.5), albeit removal of hydrocortisone from the media 

caused a slight decrease in the basal level of CYP3A5 mRNA expression, suggesting GR 

plays a role in the regulation of CYP3A5.  It is feasible that because cells had been 

exposed to such high concentrations of hydrocortisone during their isolation and 

expansion, that 10 µM of BDP was not sufficient to induce CYP3A5 mRNA, even after 

culturing the cells in the absence of hydrocortisone for multiple division cycles.  

Therefore, the concentration of BDP was increased to 50 µM and an additional treatment 

group using 150 µM [M1] was added.  Again no increases in CYP3A5 mRNA were 

observed.  Heat-inactivated and charcoal-stripped FBS were also utilized to remove 

potential interfering compounds from FBS, and still no change was observed.  To our 

knowledge, no one has observed a change in CYP3A mRNA expression in any primary 

human lung cell cultures.  However, Cyp3a11, 3a13, and 3a16 mRNA and protein 
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induction have been documented in mouse lung following dexamethasone treatment (29).  

As such, additional studies using animal models and relevant samples from human 

patients need to be evaluated in order to conclusively confirm or reject the hypothesis that 

CYP3A genes are regulated in response to glucocorticoid treatment in human lungs, since 

current in vitro models are unexplainably limited in value for such studies. 

In summary, the data presented herein demonstrate that, in A549 cells, 

glucocorticoid binding to the glucocorticoid receptor regulates the expression of CYP3A5, 

and therefore, corroborates the hypothesis that increased metabolism of glucocorticoids 

may occur in some patients.   However, further research is needed to determine if changes 

in CYP3A5 expression occur in the human respiratory tract similar to A549 cells, the 

precise mechanism by which this process occurs, and whether changes in the local 

metabolism of glucocorticoids by CYP3A5 ultimately impact glucocorticoid efficiency.   
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 The studies described in this dissertation focused on two research objectives: first 

to characterize the metabolism of commonly prescribed inhaled glucocorticoids by 

CYP3A4, CYP3A5, and CYP3A7 enzymes; and second, to evaluate how CYP3A enzyme 

expression may be altered in lung cells by glucocorticoid treatment.  Using recombinant in 

vitro systems, CYP3A4 and CYP3A5 were shown to be the principle enzymes involved in 

the metabolic decomposition of beclomethasone dipropionate (BDP), triamcinolone 

acetonide (TCL), fluticasone propionate (FLT), and budesonide (BUD).  CYP3A7 did not 

metabolize BDP or flunisolide (FLN), but did metabolize TCL, FLT, and BUD, albeit 

typically at lower rates than those observed for CYP3A4 and 3A5.  CYP3A4 was the only 

enzyme that metabolized FLN.  All CYP3A-mediated metabolism resulted in the 

formation of metabolites that were presumed to be pharmacologically inactive (1, 2).  

Common P450 metabolites produced for FLN, TCL, BUD, and BDP were the result of 

6β-hydroxylation and Δ6-dehydrogenation.  Immortalized and primary lung cell culture 

systems were used to evaluate CYP3A metabolism of glucocorticoids as it related to the 

induction of CYP3A gene transcription through GR and the constitutive androstane 

receptor (CAR).  Studies performed using A549 cells demonstrated that only GR 

participated in the induction of CYP3A5 by glucocorticoids, a mechanism that was unique 
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from liver cells.  BEAS-2B, NHBE, and lobar cells, as well as cells collected from 

tracheal washes of pediatric patients did not express any of the CYP3A enzymes.  

Selected patient samples of SAEC cells did express CYP3A5, but induction of CYP3A5 

mRNA by glucocorticoid treatment was not observed.  Furthermore, manipulations to the 

SAEC cell culture system did not lead to the induction of CYP3A5 by glucocorticoid 

treatment, as was observed in A549 cells.  The metabolism data and the gene induction 

data from this research project provide possible explanations as to why there exists a 

broad range of glucocorticoid efficacy in patients with asthma. 

 Glucocorticoids are first-line therapeutics for treating asthma, but roughly 30% of 

patients are not responsive to treatment (3).  A possible explanation for this “steroid 

insensitivity” may be that excess metabolism of glucocorticoids to clearance metabolites 

by CYP3A enzymes could decrease the bioavailability of the pharmacologically active 

drug systemically and/or in lung cells.  The results described in this dissertation support 

this hypothesis by demonstrating that CYP3A enzymes metabolize glucocorticoids to 

metabolites that are predicted from published structure activity studies (1, 2) to be 

pharmacologically less active or inactive.  For FLN, TCL, and BUD, the major 

metabolites produced by CYP3A enzymes were hydroxylated and dehydrogenated 

products resulting from metabolism at the 6 position of the B ring.  Metabolism of FLT 

and TCL by CYP3A enzymes produced D ring metabolites arising from ester cleavage.  

For BDP, CYP3A5 produced a hydroxylated metabolite, [M4], and a dehydrogenated 

metabolite, [M5], likely occurring at the C6 position of the B ring, similar to the other 

glucocorticoids.  CYP3A4 also generated these metabolites at similar rates as CYP3A5, 

but in addition produced [M6], a hydroxylated and de-esterified metabolite, arising from 
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the combined action of esterases and CYP3A4.  Because CYP3A5 metabolism leads to 

the pharmacological inactivation of four glucocorticoids, it stands to reason that increased 

expression of CYP3A5 enzyme in the lung could also decrease glucocorticoid efficacy.  

The CYP3A5 enzyme has two major polymorphisms: CYP3A5*1 and CYP3A5*3.  The 

majority of the Caucasian population expresses CYP3A5*3, which codes for an inactive 

CYP3A5 enzyme (4, 5), and therefore would not metabolize glucocorticoids regardless of 

the level of enzyme expressed.  However, about 20% of the Caucasian population, and 

approximately 90% of the African American population, express CYP3A5*1, which codes 

for an active enzyme.   Such individuals are characterized as “extensive metabolizers” (6).  

This population, in particular, could exhibit increased metabolism of glucocorticoids in 

the lung, particularly if CYP3A5 is induced by the glucocorticoid treatment, potentially 

causing a decreased benefit from glucocorticoid treatment.  This intriguing hypothesis 

requires further investigation to be confirmed or refuted and should be carefully evaluated 

in future studies of factors that influence glucocorticoid efficacy.   

 In addition to exploring how CYP3A enzymes metabolized glucocorticoids, it was 

important also to determine if these enzymes were induced in the lung in response to 

glucocorticoid treatment.  Previous research has established that in the liver, treatment 

with submicromolar concentrations of glucocorticoid leads to the induction of GR.  GR 

then forms a homodimer and translocates into the nucleus where it induces transcription of 

CAR.  CAR protein then forms a heterodimer with the retinoid X receptor (RXRα) which 

increases the transcription of CYP3A genes (7).  This pathway, however, had not been 

explored in the lung.  A549 cells were used as a general lung cell model to evaluate 

whether this pathway was also responsible for CYP3A gene expression in lung cells.  
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Experiments demonstrated that treatment with BDP induced CYP3A5*1 ~2-fold after 24 

h.  Blocking the production of [M1], the active metabolite of BDP, using esterase 

inhibitors, attenuated the induction of CYP3A5.  Inhibiting both cytochrome P450 

enzymes and esterases, using 1-ABT (a mechanism-based inhibitor of CYP enzymes) and 

a esterase inhibitor cocktail (eserine and paraoxon), and treating with [M1] led to the 

induction of CYP3A5 mRNA, demonstrating that [M1] was both required and sufficient 

to induce CYP3A5 mRNA expression and that GR was involved in this pathway.  This 

conclusion was further verified using siRNA targeted against GR mRNA: maximal 

depletion of GR mRNA correlated with inhibited induction of CYP3A5 mRNA by BDP.  

CAR mRNA, however, was not detected in A549 cells, prior to or following treatment 

with glucocorticoids, suggesting that CAR did not play a role in the induction of CYP3A5 

mRNA in A549 cells, which had been assumed based on studies using liver cells.   

 Primary lung cells were also used to confirm the mechanism for CYP3A5 

induction in A549 cells.  Primary cells representative of the tracheal and bronchial 

epithelium did not express CYP3A enzymes.  These data suggest that CYP3A enzymes 

likely do not contribute to the metabolism of BDP in the conducting airways.  SAEC cells, 

which are isolated from the distal bronchioles, alveolar ducts, and alveoli, did express 

CYP3A5, but not CYP3A4 or CYP3A7. Surprisingly, CYP3A5 mRNA was not induced 

in SAEC cells by glucocorticoid treatment.  Various manipulations were made to the 

SAEC culture conditions to evaluate the GRCYP3A5 regulatory pathway characterized 

in A549 cells.  However, even with extensive manipulation of cell culture media 

supplementation, treatment concentrations, and treatment durations, CYP3A5 mRNA was 

not inducible in SAEC cells.  Further investigation of literature related to this topic 
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showed that all of the research completed to date had been performed in A549 cells and 

no work had been published using primary cell culture systems.  Because the results of the 

primary cells were inconclusive, it was not possible to determine if the pathway of 

CYP3A5 mRNA induction demonstrated in A549 cells also functioned in the human lung.  

Completing a human study to evaluate this pathway would not be possible due to ethical 

issues with extracting human lung samples out of healthy individuals.  It may be a suitable 

substitute to culture mouse bronchiolar and alveolar tissue and/or cells and perform the 

same experiments described with A549 cells to determine if glucocorticoid treatment will 

induce Cyp3a mRNA through GR in mouse lung.  This experiment could be taken a step 

further by utilizing a mouse model, BALB/c mice (a common asthma model), and 

administering two doses of glucocorticoids via tracheal installation, 12 h apart, for 24 h.  

The lungs would then be extracted, homogenized, and assayed for Cyp3a mRNA, 

specifically Cyp3a11, Cyp3a16, Cyp3a41, and Cyp3a13, which are homologous to human 

Cyp3a enzymes (8, 9).  If Cyp3a mRNA increased in mice following treatment as 

compared to control mice, it would agree with the work completed in A549 cells, and 

would further support the hypothesis that glucocorticoid treatment increases CYP3A5 

expression in human lung.  Such results would also justify additional mechanistic studies 

to determine how glucocorticoids induce CYP3A in the intact lung system, including 

studies to link the effects of metabolic capacity on glucocorticoid efficacy. 

The cumulative results presented in this dissertation unquestionably demonstrate a 

role for GR in the induction of CYP3A5 mRNA in A549 cells.  However, it remains 

unclear if there are other regulatory elements involved, which limit CYP3A5 induction in 

primary lung cells.  Studies conducted by Schuetz et al. identified two “half-sites” 
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(TGTTCT) of the glucocorticoid response element separated by 160 bp in the CYP3A5 

promoter region in HepG2 cells (immortalized hepatic cells) and primary human and 

mouse hepatocytes (10).  It was demonstrated that mutating the GR homodimer inhibited 

the induction of CYP3A5 message with dexamethasone treatment.  It was also established 

that mutating either of these DNA “half sites” of the CYP3A5 promoter region inhibited 

the binding of the GR homodimer and therefore blocked the induction of CYP3A5 with 

dexamethasone treatment.  Thus, it is plausible that a similar role for these half-sites 

occurs in A549 cells.  Future experiments in A549 cells could be conducted by mutating 

one or both of these half-sites in the CYP3A5 promoter to confirm their role in CYP3A5 

expression and induction by glucocorticoids in lungs cells.  Specifically, if these 

mutations block the induction of CYP3A5 after glucocorticoid treatment, then a direct 

interaction between GR and CYP3A5 occurs.  If the mutations do not block CYP3A5 

induction, then another regulatory element and/or elements is/are involved, and more 

thorough studies of promoter region binding elements would need to be completed and 

evaluated in the primary lung cell models, particularly of negative regulatory factors exist.     

The known mechanism of action for glucocorticoids is to bind to GR, which ultimately 

decreases inflammation and mucus production in the lung by increasing the transcription 

of annexin 1, interleukin 10, and inhibitor of nuclear factor kappa B (3, 11-14).  The 

glucocorticoid receptor can also modulate expression of proinflammatory genes by 

binding to transcription factors such as nuclear factor kappa B and activator protein-1 and 

decrease their expression (15).  These actions are considered to be direct genomic actions 

of glucocorticoids (16).  A major finding of this work was that binding of glucocorticoids 

to GR, or genomic action, induces the expression of CYP3A5 mRNA in A549 cells.  
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Presuming a similar phenomenon also occurs in the human lung, it is possible that 

continued use of inhaled glucocorticoids could promote higher levels of CYP3A5.  For 

patients that express the active form of CYP3A5, this could increase metabolism of 

glucocorticoids in lung cells, and therefore, potentially reduce the efficacy of 

glucocorticoids over time (see Figure 5.1 for a schematic representation of this concept).  

A possible way to combat this cycle would be to include a selective CYP3A inhibitor that 

could be coadministered by inhalation with the glucocorticoid.  An inhibitor that could be 

used is the antifungal drug, ketoconazole, which is a well-known inhibitor of CYP3A 

enzymes.  Experiments conducted in A549 cells with ketoconazole at 1 µM and 

glucocorticoids at 10 µM (BDP and BUD), 1 µM (TCL and FLT), and 100 nM (FLN) 

showed that CYP3A5 was sufficiently inhibited, because no CYP3A-generated 

metabolites were produced.  Additionally, ketoconazole itself did not inhibit GR at this 

concentration, because induction of CYP3A5 was not blocked, and therefore, the 

glucocorticoid would still be able to target GR and inhibit inflammation.  This same idea 

could be used in patients or mouse models.  However, the ratio of ketoconazole to 

glucocorticoid would need to be carefully controlled.  Specifically, dosing would require 

that the CYP3A inhibitor, ketoconazole or a similar agent, be at a high enough 

concentration to effectively inhibit CYP3A enzyme activity, but low enough so that the 

glucocorticoid could outcompete for GR binding, since ketoconazole is also a GR 

antagonist.  Another alternative could be to utilize fluticasone in patients expressing 

CYP3A5*1.  Murai et al. showed that FLT is a potent mechanism-based inactivator of 

CYP3A5, with some inactivation also occurring with CYP3A4 (17).  Thus, patients 

receiving FLT treatment may receive the benefit of reduced glucocorticoid clearance by 
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CYP3A enzymes in lung cells, in addition to the intended effect through GR using a 

single drug.  This intriguing concept is supported by the results published by Stockmann 

et al. where it was demonstrated that patients expressing CYP3A4*22, which is associated 

with decreased hepatic CYP3A4 activity, and receiving FLT, showed greater control of 

asthma symptoms than individuals with the CYP3A4*22 genotype who were receiving 

other inhaled glucocorticoids, (with a limited number of subjects receiving drugs other 

than FLT) and compared to patients with the active forms of CYP3A4 (18).  It has also 

been demonstrated that patients who switch to FLT from other glucocorticoids are able to 

manage their asthma symptoms using a lower dose of FLT (19).  Therefore, patients who 

are not showing benefit from glucocorticoid therapy should first be switched to FLT and 

possibly treated with another selective CYP3A enzyme inhibitor, to potentially better treat 

their asthma symptoms.  As such, future studies should aim to confirm the basis of the 

relationship between FLT treatment and metabolic clearance by CYP3A enzymes as a 

possible way to improve how steroid insensitive patients are cared for. 

 In addition to genomic effects of glucocorticoids on GR, there are “off-

target” effects, or nongenomic actions that occur with glucocorticoid treatment.  

Nongenomic actions have a rapid onset, about 90 seconds, and are short in duration (16).  

These effects can be divided into three subcategories, as described by Stahn and Buttgereit 

(20); nonspecific interactions of glucocorticoids with plasma membranes, interaction with 

membrane bound GR, and nongenomic effects through binding to cytosolic GR.  Briefly, 

these nongenomic effects most frequently interfere with mineral and adenosine 

triphosphate transport across plasma membranes, resulting in immune cell suppression 
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(21, 22), inhibit Lck/Fyn kinases, which are downstream from T-cell receptors, and 

suppress major pathways important in T-cell activation (23, 24), or block arachidonic acid 

production, which has been shown to decrease bronchoconstriction and mucus production 

(25, 26).  While these experiments have been shown in vitro, they have not been 

demonstrated in vivo, and more than likely do not play a role in glucocorticoid 

insensitivity due to rapid onset of the effects and short duration (16).   

 Polymorphisms of GR have also been demonstrated and could possibly play a role 

in glucocorticoid insensitivity in asthma patients.  One GR polymorphism, ER22/23EK, 

occurs in 3% of the population and affects exon 2, replacing a lysine with an arginine at 

position 23 (27).  ER22/23EK is associated with lower transcriptional activity by GR in 

reporter assays (28) and has been seen in patients classified as glucocorticoid insensitive 

in other disease states, but not in asthma (29).  More genotyping studies need to be 

completed in asthma patients that respond to glucocorticoid therapy, and those who do 

not, in order to determine if this polymorphism is playing a role in glucocorticoid 

insensitivity in the context of asthma. 

 Esterases play an important role in the bioactivation of BDP and could also play a 

role in glucocorticoid insensitivity.  Esterases can be divided into three classes: A 

esterases, B esterases and C esterases (30, 31).  Those most pertinent to the hydrolysis of 

esterases in the lung are B esterases, which compromise carboxylesterases, 

cholinesterases, and acetycholinesterases, and are serine-dependent enzymes that 

participate in the bioactivation of xenobiotics (32-34).  This class of enzymes has been 

shown to cleave ester groups on a similar glucocorticoid (ciclesonide) to BDP (35) and 

may contribute to activation of BDP in the lung.  It is possible that differences in 
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expression of esterases in the lung, either leading to decreased bioactivation of BDP or 

increased metabolism of BDP, could contribute to glucocorticoid insensitivity, 

independent of CYP3A5 metabolism.  However, glucocorticoid insensitivity occurs with 

all glucocorticoids and most of the glucocorticoids used to treat asthma do not contain 

ester side groups.  Therefore, esterases could only play a role in glucocorticoid 

insensitivity related to certain drugs, not all drugs, as is observed.  As such, a role for 

esterases in glucocorticoid insensitivity is expected to be minimal, if any role at all. 

In summary, the work described in this dissertation supports the over-arching 

hypothesis that individuals who show lower benefit from inhaled glucocorticoid treatment 

may also exhibit increased glucocorticoid metabolism in the lung.  Further work described 

herein should be completed to fully evaluate this interesting possibility in human 

populations, since the elucidation of key factors that affect glucocorticoid efficacy could 

significantly improve the treatment of patients who currently exhibit poor control of 

asthma symptoms with their current inhaled glucocorticoid therapy. 
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