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ABSTRACT 
 
 

	   The overall objective of this thesis was to examine skeletal muscle function and 

the development of peripheral quadriceps fatigue in health and in patients with chronic 

obstructive pulmonary disease (COPD). The aim of the first study was to further 

elucidate the role of afferent feedback in the regulation of locomotor muscle fatigue 

during dynamic exercise by varying the amount of active muscle mass. Utilizing cycling 

(BIKE) and single-leg knee extensor (KE) exercise, far greater quadriceps fatigue at 

exhaustion was observed following KE exercise. These data imply that when the source 

of skeletal muscle afferent feedback is confined to a small muscle mass, the central 

nervous system tolerates a greater magnitude of peripheral fatigue, and likely a greater 

intramuscular metabolic disturbance; a finding that has important implications for the 

adoption of small muscle mass exercise in rehabilitative medicine. The second study 

sought to determine the impact of an acute oral antioxidant cocktail (AOC), with 

previously documented efficacy, on free radical concentration and KE exercise 

performance in patients with COPD. In this population, recognized to have elevated 

oxidative stress, administration of the AOC significantly attenuated resting free radical 

levels, which were negatively correlated with the degree of airflow limitation and 

baseline MVC force. Upon secondary analysis, however, a dichotomous response to the 

AOC was recognized, whereby the AOC appeared to be most efficacious in those patients 

with high initial free radical levels, with minimal effects when the initial free radical 
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load was low. Despite these antioxidant effects, no differences in KE exercise 

performance or the magnitude of peripheral quadriceps fatigue were evident following 

consumption of the AOC. These findings revealed that acutely reducing free radicals with 

an oral AOC does not translate to improved exercise capacity and fatigue resistance in 

patients with COPD. Collectively, this research has provided novel insight into the role of 

active muscle mass and the regulation of peripheral fatigue, and has better elucidated the 

link between free radicals, antioxidants, and fatigue in patients with COPD.  
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Defined as an acute impairment in performance, including an increase in the 

perceived effort to exert a desired force, and an eventual inability to produce this force 

(15), skeletal muscle fatigue directly limits exercise in both healthy and diseased 

populations (6, 17). Therefore, understanding the physiological and pathophysiological 

events governing the development of fatigue is important both scientifically and in the 

context of rehabilitative medicine. The processes contributing to a fatigue-induced 

decrease in muscle performance can be partitioned into central processes (proximal to the 

neuromuscular junction) and those arising at or distal to the neuromuscular junction 

(within the muscle cell) termed peripheral fatigue (35). As the relative contributions from 

primarily central or peripheral processes vary depending on, among other factors, the 

exercise task, length of the activity (15, 18), and environmental conditions (9, 27), the 

etiology of fatigue is often both complex and multifaceted. 

During short duration, high-intensity dynamic exercise, peripheral processes 

contribute significantly to muscular fatigue. Indeed, the accumulation of metabolic 

byproducts from skeletal muscle contraction (such as hydrogen ions and inorganic 

phosphates) depress the function of the cellular constituents of excitation-contraction 

coupling (ECC) (33). In addition, the production of reactive oxygen species (ROS) 

increases during fatiguing contractions, and these free radicals are similarly detrimental 

to ECC events (11, 34). The degree of intramuscular perturbation therefore plays a role in 

dictating the magnitude of peripheral muscle fatigue. In exercising humans, this can be 

assessed by a pre- to postexercise decline in the force evoked by supramaximal 

stimulation of the motor nerve innervating the active muscle group, reflective of changes 

that occurred within the muscle itself during exercise (3). 
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Interestingly, work by Amann et al. (5), experimentally altering the rate of 

development of peripheral fatigue by varying arterial oxygenation, has documented that 

despite improvements in fixed workload exercise time with increased arterial 

oxygenation (or reductions in performance time with arterial hypoxemia), the magnitude 

of peripheral quadriceps fatigue following dynamic, large muscle mass exercise was the 

same at task failure (~34% reduction in potentiated twitch force - ΔQpot,tw). In addition, 

following pre-fatiguing cycling bouts to induce a set level of quadriceps fatigue, central 

motor drive was modulated in subsequent 5 km cycle time trials, in a dose-dependent 

manner, such that participants again did not accumulate peripheral fatigue beyond the 

critical level (the ~34% ΔQpot,tw) (4). Accordingly, the authors postulated that central 

motor drive to the muscle is regulated by afferent feedback from the working skeletal 

muscle such that exercise cessation occurs at a sensory tolerance limit and a critical level 

of ensemble afferent input to the CNS to facilitate homeostasis (2). 

The interplay between the magnitude of peripheral locomotor muscle fatigue and 

afferent feedback from skeletal muscle has been demonstrated by experimentally 

blocking group III and IV thin-fiber afferents during dynamic exercise (6, 7). These 

skeletal muscle afferents, sensitive to mechanical deformation and the metabolic milieu 

of the muscle, are active during dynamic exercise (1) and contribute to the fine-tuning of 

the cardiovascular response (10). In regard to peripheral fatigue, blocking this source of 

afferent input to the CNS resulted in drastically elevated central motor drive to the 

muscle such that at the end of a 5 km cycle time trial the ~34% ΔQpot,tw was surpassed 

(~45% ΔQpot,tw) and serious atypical ambulatory difficulties were observed at task failure 

(7). These studies highlight the role of group III/IV afferents in the regulation of 
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peripheral fatigue; however, the link between the volume of exercise-induced ensemble 

afferent feedback and the degree of peripheral muscle fatigue during dynamic exercise 

has not been elucidated. 

Utilizing the postexercise circulatory occlusion technique to selectively stimulate 

metabolically sensitive afferents, Freund et al. (16) varied the mass of occluded muscle 

following dynamic cycle exercise. This study documented greater post-exercise mean 

arterial pressure (MAP) when two legs were occluded compared to just one, suggesting 

augmented afferent input to the CNS in proportion to the occluded muscle mass. As the 

sensory tolerance limit associated with exercise cessation appears to be substantially 

determined by the ensemble afferent signal from the working skeletal muscle (2), 

reducing the mass of active muscle mass could potentially lessen the signal during 

exercise. Thus, the sensory tolerance limit at task failure with dynamic, small muscle 

mass exercise would eventually be reached by a focused, but very strong, local afferent 

signal as opposed to the more diffuse signal (but of equal ensemble magnitude) achieved 

during whole body exercise. It is likely that the increased metabolic disturbance affecting 

less group III/IV afferents will take longer to reach the sensory tolerance limit, translating 

into a greater degree of contractile dysfunction at task failure. Accordingly, the first 

objective of this thesis was to determine the role of active muscle mass during dynamic 

exercise in the development of peripheral fatigue. 

Although the compromised pulmonary function intrinsic to lung disease certainly 

contributes to limited exercise capacity in chronic obstructive pulmonary disease (COPD) 

(8, 28), peripheral muscle abnormalities have also been implicated (23, 30). Specifically, 

structural abnormalities of skeletal muscle in COPD patients, such as a predominantly 
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type II skeletal muscle fiber phenotype (30), may hasten the production of metabolic 

byproducts intrinsic to the development of peripheral muscle fatigue (33). Indeed, 

significant peripheral locomotor muscle fatigue occurs in patients with COPD following 

cycle exercise (8, 24) and the perception of leg fatigue is frequently recognized as the 

primary symptom contributing to exercise intolerance in this population (20). In addition, 

the inflammatory pathology of lung disease increases the susceptibility of this group to 

oxidative stress (defined as an imbalance between pro- and antioxidant forces in favor of 

the former) (12, 13, 29, 32). Currently, the practical application of reducing the level of 

oxidative stress, and the impact on exercise tolerance, in patients with COPD has not 

been elucidated. 

Although free radicals directly impact the contractile apparatus (11, 34), their 

production has also been linked to an altered afferent signal. Specifically, ROS have been 

implicated in the exaggerated exercise pressor response typically observed in some 

disease states such as heart failure (21), and documented to increase the spontaneous 

firing of group IV afferents in resting and exercising mouse skeletal muscle (14). As the 

magnitude of afferent feedback plays an important role in determining exercise 

performance (2), oxidative stress may pathologically alter this signal. In COPD, 

antioxidant treatment has been documented to reduce markers of exercise-induced 

oxidant damage (19, 22), and the potent pharmacological antioxidant n-acetylcysteine 

(NAC) appears to improve exercise capacity (22). NAC, however, has also been 

documented to improve cycling time to exhaustion in healthy, young subjects (25, 26), 

and improve pulmonary function in patients with COPD (31), confounding interpretation 

of antioxidant administration on COPD patient skeletal muscle function. Thus, the second 



	  

	  
	  

6	  

aim of this thesis will be to examine the effect of a readily available, oral antioxidant 

cocktail with documented efficacy (29, 36, 37) on free radical concentration and the 

development of peripheral muscle fatigue in a population with a heightened susceptibility 

to oxidative stress and limited exercise capacity, patients with COPD. 
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MUSCLE MASS AND PERIPHERAL FATIGUE: A POTENTIAL  

ROLE FOR AFFERENT FEEDBACK? 
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Abstract 
 

The voluntary termination of exercise has been hypothesized to occur at a sensory 

tolerance limit that is significantly determined by feedback from group III and IV muscle 

afferents, and is associated with a specific level of peripheral quadriceps fatigue during 

whole body cycling. Therefore, the purpose of this study was to reduce the amount of 

muscle mass engaged during dynamic leg exercise to constrain the source of muscle 

afferent feedback to the central nervous system (CNS), and examine the effect on 

peripheral quadriceps fatigue. Eight young males performed exhaustive large (cycling – 

BIKE) and small (knee extensor – KE) muscle mass dynamic exercise at 85% of the 

modality-specific maximal workload. Pre- vs. postexercise maximal voluntary 

contractions (MVC) and supramaximal magnetic femoral nerve stimulation (Qtw,pot) were 

used to quantify peripheral quadriceps fatigue. Significant quadriceps fatigue was evident 

following both exercise trials; however, the exercise-induced changes in MVC (-28 ± 1% 

vs. -16 ± 2%) and Qtw,pot (-53 ± 2% vs. -34 ± 2%) were far greater following KE 

compared to BIKE exercise, respectively. The greater degree of quadriceps fatigue 

following KE exercise was in proportion to the greater exercise time (9.1 ± 0.4 vs. 6.3 ± 

0.5 minutes, p < 0.05), suggestive of a similar rate of peripheral fatigue development. 

These data suggest that when the source of skeletal muscle afferent feedback is confined 

to a small muscle mass, the CNS tolerates a greater magnitude of peripheral fatigue, and 

likely a greater intramuscular metabolic disturbance. An important implication of this 

finding is that the adoption of small muscle mass exercise may facilitate greater exercise-

induced muscular adaptation.  
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Introduction	  

	   During high-intensity cycle exercise (BIKE), a centrally mediated sensory 

tolerance limit (25) associated with a set level of peripheral locomotor muscle fatigue has 

been documented (5, 9, 10, 13). This level of peripheral fatigue appears to be consistent 

across exercise bouts in which variations in arterial oxygenation alter the rate of 

development of peripheral fatigue and exercise time (13), but at the point of task failure, 

end-exercise locomotor muscle fatigue appears to be quite similar (10, 13, 14). In line 

with this observation, utilizing plantar flexion (28) or single leg knee-extension (52), 

which recruits a larger muscle mass, exercise and nuclear magnetic resonance 

spectroscopy, the metabolic disturbance at exhaustion has been documented to be 

invariant despite variations in arterial oxygenation, or work rate, altering exercise time to 

exhaustion. Therefore, it seems that it is possible to alter the rate of peripheral fatigue 

development and endurance time, but at exhaustion following short duration, high 

intensity exercise a similar intramuscular metabolic disturbance and level of peripheral 

locomotor muscle fatigue is achieved (9, 10, 13, 28, 52). 

Group III and IV muscle afferents are active during dynamic exercise (2, 6, 15) 

and provide input to the central nervous system (CNS) regarding mechanical deformation 

and the metabolic milieu within the working skeletal muscle (39, 48). Pharmacological 

blockade of these thin fiber afferents from the lower limbs during high intensity cycling 

exercise has highlighted the role of afferent feedback in limiting the development of 

peripheral fatigue (7, 12). Indeed, in the absence of group III/IV muscle afferents, 

subjects accumulated a significantly greater amount of peripheral fatigue such that 

atypical ambulatory difficulties were observed at exercise cessation (7, 12). The authors 
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of this work postulated that group III/IV afferent feedback from the working muscles 

modifies central motor drive to the locomotor muscle to ensure that the overall 

homeostasis of the organism is not threatened (5). Thus, the voluntary termination of 

exercise during high-intensity constant load endurance exercise occurs once a sensory 

tolerance limit (25) is reached that is substantially dependent, amongst other factors, on 

the ensemble afferent input from the active locomotor muscles (5, 9, 10, 12, 13). The 

corresponding level of peripheral fatigue presumably depends on the exercise task, and 

may vary with the amount of muscle mass recruited.  

A relationship between the magnitude of afferent feedback and muscle mass has 

long been established (22, 29). Freund et al. (22) demonstrated that post-bicycle exercise 

occlusion of blood flow to both legs maintained mean arterial pressure at a higher level 

than occlusion of one leg alone. In addition, time to task failure has been documented to 

be shorter, with less end-exercise quadriceps fatigue, for bilateral compared with 

unilateral sustained maximal voluntary contractions (MVC) of the knee extensor muscle 

group (37). In combination, these observations reveal that increasing active muscle mass 

augments the ensemble feedback to the CNS from the periphery and these changes in 

ensemble feedback may alter the level of end exercise fatigue and endurance time. 

However, the link between exercising muscle mass, the associated changes in afferent 

feedback and the degree of peripheral muscle fatigue following dynamic exercise has not 

been elucidated. 

Therefore, the purpose of this study was to reduce the amount of active muscle 

mass during dynamic exercise to confine group III/IV afferent feedback to one muscle 

group. Thus, the sensory tolerance limit associated with task failure and a critical amount 
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of ensemble afferent input, would eventually be reached by a strong local afferent signal 

from the isolated muscle group. This would contrast with the sum of the more diffuse 

weaker signals, with an equal ensemble magnitude, associated with whole body exercise 

(Figure 1). Specifically, we tested the hypothesis that exhaustive high intensity constant-

load dynamic knee extensor (KE) exercise, utilizing ~2.5 kg of muscle (17, 40), would 

result in a greater degree of end-exercise quadriceps fatigue compared to the equivalent 

challenge utilizing a far larger muscle mass (BIKE, ~15 kg of muscle (40)). 

 
Methods 

 
 

Subjects 

Eight young, healthy males (24 ± 1 years, 83 ± 6 kg, 178 ± 4 cm) volunteered to 

participate in this study. Written, informed consent was obtained from participants prior 

to their inclusion and all protocols were approved by the Institutional Review Boards of 

the University of Utah and the Salt Lake City VA Medical Center. All testing was 

performed in a thermoneutral environment (22°C). 

  
Protocol 

Prior to data collection, subjects were familiarized with BIKE and KE exercise as 

well as the neuromuscular function assessment procedures during preliminary visits to 

the laboratory. On subsequent visits, separated by at least 48 hours, time to exhaustion 

(Tlim) during constant load exercise trials at 85% of maximal workload, for each exercise 

modality were used to induce quadriceps fatigue. This workload (85%) was selected 

because, during pilot testing, this intensity of effort elicited task failure in all subjects in 

~5 to ~12 minutes in both exercise modalities. Throughout each trial, ventilation, gas 
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exchange, heart rate (HR), and rating of perceived exertion (RPE) were assessed. Prior to 

each exercise bout, 2 minutes of resting data were collected and subjects were allowed a 

3-minute warm-up period (unloaded KE exercise and BIKE exercise at ~85 W). To 

quantify peripheral fatigue before exercise and 2 minutes following task failure, 

neuromuscular function tests were performed on the same leg used for both modalities. 

Task failure was defined as a drop of 10 rpm for both the KE and BIKE. The 

experimental limb was randomized and balanced between dominant and non-dominant 

legs (42).  

 
Bike (BIKE) and Knee-extensor (KE) Exercise 

Dynamic, small muscle mass exercise was performed on a cycle erogmeter 

(Monark, Sweden) modified to allow KE exercise (44). Briefly, this exercise modality 

recruits the quadriceps muscle group for active leg extension from 90 to ~170 degrees 

before a lever arm attached to a flywheel passively returns the leg to 90 degrees. Subjects 

were instructed to maintain a rate of 60 contractions per minute during KE exercise. For 

BIKE exercise, a cycle ergometer was employed (Excalibur, Lode, The Netherlands) and 

a constant pedaling rate was self-selected by all subjects (~75 rpm). For both exercise 

modalities, subjects performed one-minute stage, incremental exercise tests to exhaustion 

to determine peak workload (10 W + 5 W min-1
 for KE and 20 W + 25 W min-1 for BIKE 

(16)).  

 
Ventilation, Gas Exchange and Heart Rate 
 

Ventilation and pulmonary gas exchange were measured at rest and during 

exercise with a metabolic cart (ParvoMedics, Sandy, UT). HR was determined from the 
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R-R interval of a three-lead electrocardiogram (ECG) acquired at 200 Hz using a data 

acquisition system (AcqKnowledge; Biopac Systems, Goleta, CA). RPE was taken every 

minute during the TLim trials using Borg’s modified CR10 scale (19).  

 
Neuromuscular Function 
 
 The magnitude of peripheral quadriceps fatigue was quantified by supramaximal 

magnetic stimulation of the femoral nerve (9, 31, 43): the exercise induced reduction in 

potentiated quadriceps twitch force (Qtw,pot) assessed before exercise and again 2 minutes 

after both Tlim trials. This time delay was necessary to transfer the subjects from either 

exercise ergometer (BIKE or KE) to the neuromuscular function assessment apparatus, 

and was thus standardized for both exercise modalities. For the neuromuscular function 

test procedure, while subjects were semi-recumbent in a separate KE chair, with a knee 

joint angle of 90 degrees, a magnetic stimulator (Magstim 200, The Magstim Company 

Ltd, Wales) connected to a double 70 mm coil was used to stimulate the femoral nerve. 

The evoked twitch force was obtained from a calibrated load cell (Transducer 

Techniques, Temecula, CA) connected to a non-compliant strap placed around the 

subject’s ankle. To record magnetically evoked compound action potentials (M-waves) 

and evaluate changes in membrane excitability, quadriceps EMG was recorded from the 

vastus lateralis (VL) muscle (9). Electrodes were placed in a bipolar configuration over 

the middle of the muscle belly, with the active electrodes placed over the motor point of 

the muscle and reference electrode placed in an electrically neutral site. During a separate 

visit, supramaximality of stimulation was determined by serial, single unpotentiated 

twitch (Qtw) forces obtained every 30 seconds at 50, 60, 70, 80, 85, 90, 95, and 100% of 

maximal stimulator output.  
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 As potentiated, compared to unpotentiated, twitch force has been documented to 

be a more sensitive indicator of fatigue (31), Qtw,pot was assessed following a 5 second 

MVC of the quadriceps muscle. A series of 6 MVCs and Qtw,pot maneuvers were 

performed with 30 seconds between each MVC, such that the entire procedure lasted 2.5 

minutes. In addition, to quantify activation of the quadriceps during the MVCs, a 

superimposed twitch technique was employed (9, 38). Briefly, the additional force 

generated by a single twitch superimposed on the MVC was compared with the force 

produced by the potentiated twitch immediately following the MVC to determine the 

percent voluntary muscle activation (%VMA). Peak force, maximal rate of force 

development (MRFD), and maximal relaxation rate (MRR) were analyzed for all Qtw,pot 

values (32).  

 
Statistical Analyses 
 

Two-way repeated measures analysis of variance was used to compare the effect 

of exercise modality by time on the physiological parameters during exercise, with the 

Tukey’s honestly significant difference test used for posthoc analysis if a significant main 

or interaction effect was found. Student’s paired t tests were used to compare the effect of 

exercise modality on end-exercise physiological parameters and the magnitude of 

peripheral fatigue. Statistical significance was set at α = 0.05. Results are expressed as 

means ± S.E.M. 
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Results 
 
 
Exercise Responses 

The maximal workload for the incremental exercise test was 280 ± 9 W for BIKE 

and 60 ± 4 W for KE exercise. Peak oxygen uptake was significantly higher for BIKE 

compared to KE exercise (3.2 ± 0.1 vs 1.6 ± 0.2 L/min). Tlim trial data are documented in 

Table 1. Cardiovascular and respiratory responses to the BIKE and KE TLim differed, 

with ventilation (VE), oxygen consumption (VO2), carbon dioxide production (VCO2), 

and HR all being higher during BIKE exercise (p < 0.05). Tlim time was longer, by 31 ± 

5% (range 46 seconds to 283 seconds), for KE compared to BIKE exercise (p < 0.05). 

RPE was lower for KE exercise at minutes 4 and 5 (p < 0.05), but was not different at 

exhaustion (Table 1).  

 
Neuromuscular Function  

A plateau in Qtw and M-wave amplitudes with increasing stimulus intensity 

documented maximal depolarization of the femoral nerve in all subjects. Membrane 

excitability was maintained from pre- to post-exercise in all trials, as indicated by 

unchanged M-wave characteristics, indicating that the observed changes in Qtw,pot were 

predominantly due to changes within the quadriceps. Qtw,pot measured after exercise was 

significantly reduced from pre-exercise values for both exercise modalities, with a fall of 

52 ± 2% for KE and 34 ± 2% for BIKE exercise, with no difference in the %VMA from 

pre- to post-exercise or between modalities. The fall in Qtw,pot  was significantly greater 

for KE compared to BIKE exercise, by 36 ± 4%, and in proportion to the greater exercise 

time. Other indices of fatigue (MVC, MRFD and MRR) were significantly reduced from 
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preexercise values, and also revealed greater peripheral fatigue following KE exercise 

(Figure 2).  

 
Discussion 

 
The magnitude of group III/IV mediated afferent feedback from the active limbs 

substantially influences the voluntary termination of exercise, which has been suggested 

to occur once a sensory tolerance limit is reached (5, 25). By reducing the amount of 

active muscle mass during dynamic exercise, we sought to confine the source of afferent 

feedback to one muscle group in contrast to the ensemble feedback from many muscles 

during whole body exercise. Thus, a greater local metabolic disturbance at task failure 

with small muscle mass exercise would be required to elicit an afferent signal of equal 

magnitude to that achieved during whole body exercise (Figure 1). As the degree of 

metabolic disturbance significantly influences the magnitude of peripheral fatigue 

assessed immediately after exercise, it was hypothesized that small muscle mass exercise 

to exhaustion would result in a greater amount of peripheral fatigue than large muscle 

mass exercise. This was, indeed, the case, with KE exercise inducing significantly greater 

peripheral fatigue than BIKE exercise. These findings suggest that the CNS tolerates a 

greater degree of peripheral fatigue when the amount of active muscle mass is reduced. 

As exercise-induced peripheral adaptation responds to the degree of local perturbation, 

this study has implications for optimizing exercise training-induced muscle adaptations.  

 
Peripheral Fatigue and Large Muscle Mass (BIKE) Exercise 
 
 Previous work quantifying exercise-induced locomotor muscle fatigue following 

constant load, large muscle mass cycle exercise has identified a consistent level of 
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peripheral fatigue in a variety of populations (5). In a group of young, endurance trained 

individuals exercising at a high-intensity constant workload, Amann et al. (10) identified 

a ~34% decline in Qtw,pot from preexercise at exhaustion; altering arterial oxygenation 

affected endurance time, but not the observed threshold level of peripheral fatigue (10). 

In older, sedentary individuals, work by Mador et al. (33) documented a similar ~36% 

fall in Qtw,pot following exhaustive constant-load cycling. Interestingly, even moderate to 

severe chronic obstructive pulmonary disease patients have been documented to exhibit a 

~35% decline in potentiated twitch force following cycle exercise (34, 49). 

In the current study, BIKE exercise to exhaustion elicited quadriceps fatigue in all 

subjects, as exemplified by a consistent pre- to postexercise decline in MVC force (16%) 

as well as a 34% decline in Qtw,pot (Figure 3). Our intra-twitch indices, MRFD and MRR, 

which reflect reductions in the rate of calcium reuptake by the sarcoplasmic reticulum as 

well as cross-bridge dissociation (50), were similarly attenuated (~30% and ~33%, 

respectively). Of note, the mean decline in Qtw,pot was in agreement with values observed 

in the aforementioned studies. These similarities suggest that although factors such as 

oxygen availability, fitness level, age, and disease state influence the rate of development 

of peripheral fatigue, an apparently similar level of peripheral fatigue coincides with task 

failure during large muscle mass exercise.  

 
Peripheral Fatigue and Small Muscle Mass (KE) Exercise  
 

The knee extensor ergometer model provides a paradigm in which dynamic 

exercise can be limited to the quadriceps muscles (44). During KE exercise, Vanhatalo et 

al. (52) has documented a similar increase in inorganic phosphates and ADP, and fall in 

phosphocreatine and intramuscular pH assessed by nuclear magnetic resonance 
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spectroscopy, at task failure across work rates in both normoxia and hyperoxia. In 

addition, Fulco et al. (23) documented an equivalent fall in MVC force following 

exhaustive KE exercise in both hypobaria and normoxia. Utilizing evoked, potentiated 

twitch forces, Burnley et al. (20) documented a ~52% decline in Qtw,pot with electrical 

femoral nerve stimulation following exhaustive intermittent isometric contractions of the 

quadriceps, and Polkey et al. (43) found an equivalent reduction (~55%), following a 

similar exercise bout, with magnetic stimulation of the femoral nerve.  

In the current study, the quantification of exercise-induced quadriceps fatigue 

revealed a 53% reduction in Qtw,pot and ~28% fall in MVC force following KE exercise, 

whereas MRFD and MRR were reduced by ~53 and 46%, respectively (Figure 3). 

Interestingly, the magnitude of the exercise-induced decrease in the evoked twitch force 

in this study (~53%) was very similar to the values observed in previous work (~52% and 

55%) utilizing the Qtw,pot maneuver following quadriceps exercise to task failure (20, 43). 

Taken together, these studies, and our results, are suggestive of a similar level of end 

exercise peripheral quadriceps fatigue following small muscle mass exercise to task 

failure. Interestingly, the magnitude of peripheral fatigue when the exercise is confined to 

a small muscle mass may be greater then that obtained at exhaustion with whole body 

exercise.  

 
Muscle Mass, Afferent Feedback and Fatigue 
 

This study sought to compare the magnitude of peripheral fatigue following the 

voluntary termination of KE and BIKE exercise. Despite the matching of exercise 

intensity (85% of peak workload), KE exercise time was longer, by ~31%, and the 

magnitude of peripheral fatigue assessed following task failure was ~36% greater in 
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comparison to BIKE exercise. The proportionality between the increased time to fatigue 

and magnitude of fatigue, although speculative, suggests a similar rate of peripheral 

fatigue development, with the ability to achieve a greater degree of end-exercise 

peripheral fatigue potentially contributing to the greater exercise time. These results 

imply that at any given time point, achieved in both BIKE and KE trials, the magnitude 

of peripheral quadriceps fatigue was equivalent for both exercise modalities. During KE 

exercise with a reduced active muscle mass limiting the source of muscle afferent signal 

to the quadriceps, a similar magnitude of peripheral fatigue was likely associated with 

decreased ensemble input to the CNS. Indeed, during BIKE exercise, peripheral fatigue 

in both legs substantially augmented afferent feedback. Thus, subjects continued to drive 

the quadriceps muscle and delve deeper into its functional capacity during KE exercise, 

eventually reaching a greater level of quadriceps fatigue and presumably end-exercise 

metabolic disturbance, ultimately eliciting a muscle afferent signal of equal ensemble 

magnitude to that obtained with whole body BIKE exercise at task failure.  

A greater magnitude of peripheral fatigue was evident in all measured indices 

following KE exercise (Figure 2). With this reduction in active muscle mass, subjects 

surpassed the  ~34% decline in Qtw,pot observed following BIKE exercise, and continued 

until quadriceps contractile function was reduced by ~53%. This difference was also 

reflected in all other indicators of peripheral fatigue with an approximate two-fold greater 

decrease in MVC force, despite equal %VMA and therefore similar levels of central 

fatigue, and attenuated intra-twitch indices (Figure 2) following KE exercise. It is likely 

that when the source of afferent feedback to the CNS is constrained to the ~2.5 kg of 

muscle engaged during KE exercise, in contrast to the sum of multiple, more diffuse, 
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inputs from the ~15 kg of muscle utilized during BIKE exercise, the CNS tolerates a 

greater local accumulation of metabolic byproducts in the quadriceps, which impact 

peripheral fatigue (3, 4, 54). Thus, the sensory tolerance limit associated with exercise 

cessation and significantly influenced by, amongst other factors, the magnitude of 

ensemble afferent feedback, was likely reached with a greater degree of local skeletal 

muscle homeostatic disturbance during small muscle mass exercise (Figure 1). 

 
Active Muscle Mass and the Potential for Adaptation  
 

The utility of reducing active muscle mass during endurance training bouts to 

enhance peripheral muscle adaptation has been previously documented (1, 35, 46). 

Magnussen et al. (35) trained one set of quadriceps at a time with dynamic KE exercise 

and elicited large peripheral skeletal muscle adaptations (increased oxidative enzyme 

activity and capillarity) in chronic heart failure patients. Richardson et al. (46) 

documented a ~35% increase in quadriceps VO2peak in young, healthy subjects 

following an 8 week KE training program, which outstrips the typical 6-20% gains 

following whole body training. In addition, Abbiss et al. (1) documented increased 

cytochrome c oxidase subunits II and IV following single leg, compared with double leg, 

cycle training. As exercise training induces an adaptive response to a homeostatic 

disturbance, a greater degree of peripheral fatigue during small muscle mass exercise 

may provide a greater impetus for skeletal muscle adaptation. Thus, when the active 

muscle mass is kept small during dynamic exercise, an enhanced adaptation in response 

to a greater homeostatic disturbance may therefore be possible. In essence, the adoption 

of such a small muscle mass approach to exercise training could mean that the sum of the 
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parts will be greater than the whole, which has significant implications for exercise 

training in both healthy and diseased populations.  

 
Experimental Considerations  
 
 It is important to acknowledge that dissimilarities in the cardiovascular and 

respiratory responses to KE and BIKE exercise were evident, which could raise concerns 

about the role of oxygen supply and utilization (Table 1). However, experimental 

manipulations of oxygen availability achieved by altering arterial oxygen content (8) 

during exercise performance tests have been proposed to act via oxygen delivery to the 

working muscle and not the end-exercise level of peripheral fatigue (8). In addition, 

although fatiguing respiratory muscle work may increase afferent activity (27), the 

alleviation of diaphragm fatigue with proportional assist ventilation does not alter the 

end-exercise level of peripheral fatigue during BIKE exercise (11). Therefore, in the 

current study, as in previous work (5, 24), peripheral fatigue likely played a significant, 

autonomous role in curtailing exercise performance. 

Additionally, although our conceptual schematic (Figure 1) paints a uniform 

picture of increased afferent feedback with increasing muscle recruitment, we 

acknowledge that the characteristics of group III/IV afferents are more complicated. 

Certainly, some pathophysiological conditions are associated with alterations in group 

III/IV afferent sensitivity or their elicited reflexes (41). In addition, the role of these 

fibers can vary across skeletal muscle fiber type and muscle group (29, 36), and thus the 

picture is not actually so simple. Indeed, the increase in afferent feedback achieved by the 

increase in active muscle mass in our study from KE to BIKE was likely not directly 

proportional to the change in muscle mass. However, BIKE exercise included the 
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addition of the contralateral quadriceps performing the same action (knee extension from 

~90 to ~180 degrees), with added afferent feedback from other active muscles, which, 

although of unknown magnitude, would probably have greatly exaggerated the difference 

in ensemble afferent feedback. 

 Alternative explanations for the differences in peripheral fatigue following BIKE 

and KE exercise are also possible. Task specificity is an important facet in the etiology of 

fatigue (18) and although BIKE and KE exercise are similar, differences in neural 

activation strategies could have affected our results. Of importance, the relative 

contributions of peripheral and central fatigue could have varied between the two 

modalities. Although we attempted to measure central fatigue by the superimposed twitch 

technique and %VMA, and even though we did not observe any differences from pre- to 

post-exercise, or between BIKE and KE exercise, the time delay (2 minutes) between 

task failure and our fatigue measurements was probably too great to validly detect central 

fatigue. In addition, this time delay potentially could have led to an underestimation of 

the degree of peripheral fatigue at the moment of task failure, due to the extremely fast 

kinetics of phosphocreatine recovery. However, this time delay was logistically 

unavoidable to standardize the fatigue assessment protocol for both KE and BIKE 

exercise, so these effects, if present, were presumably constant between both trials.  

The ability of the magnetic stimulation technique to achieve supramaximility of 

stimulation following exercise is another potential concern. Specifically, varying degrees 

of activity-dependent hyperpolarization (51) of the quadriceps motor neurons following 

exercise may have led to a change in motor unit recruitment elicited by the supramaximal 

stimulation intensity prior to exercise. However, a recent comparison by Verges et al. 
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(53) of the magnetic stimulation technique with electrical stimulation revealed no 

difference between techniques in the magnitude of measured fatigue following exercise.  

Thus, these data contend that the twitch data does, in fact, represent changes within the 

quadriceps muscle, but a change in axon excitability, and thus axon recruitment following 

exercise can not be completely ruled out.  

Finally, the conclusions drawn from the current study are largely based on the 

assumption that afferent feedback was different between exercise modalities and in 

proportion to the metabolic disturbance in the quadriceps, neither of which were directly 

measured. Indeed, this study would have benefited greatly from a valid and feasible 

technique for the measurement of group III/IV afferent activity during dynamic exercise 

in humans, but currently this does not exist. Our group has previously utilized a partial 

afferent block to demonstrate the obligatory role of these afferents in the cardiovascular 

and respiratory response to both BIKE (6) and KE (15) exercise, but in the current study, 

it was not deemed that this approach  would actually have better elucidated the role of 

afferent feedback. In regard to differences in the end exercise metabolic disturbance, we 

have previously documented intramuscular pH values following KE exercise of ~6.5 

(45), a value considerably lower than that typically reported following maximal BIKE 

exercise (30). Therefore, in the context of previous research, and not without limitations, 

it can be contended that afferent feedback was varied, which enabled subjects to 

accumulate a greater degree of peripheral fatigue during small muscle mass exercise.  

 
Conclusion 
 

Confining group III/IV afferent feedback to a small muscle mass during dynamic 

KE exercise, in contrast to the multiple sources during whole body cycling, resulted in a 
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greater degree of peripheral fatigue following constant load exercise to exhaustion. This 

finding further highlights the role of afferent feedback in limiting the development of 

peripheral fatigue. Additionally, this study reveals that much greater local skeletal muscle 

fatigue can be achieved by utilizing small muscle mass exercise and thus may promote 

enhanced exercise-induced adaptation, with implications for the application of exercise 

training in both health and disease.  
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Table 1. Physiological responses to constant workload trials at exhaustion during 
large (BIKE) and small (KE) muscle mass leg exercise.  
 
 
 

 
BIKE (85%  

of peak workload) 

KE (85% 
of peak workload) 

Time to Exhaustion (s) 378 ± 30 547 ± 22.7* 
Workload (W) 238 ± 8 52 ± 4* 
Oxygen Consumption (L/min) 3.1 ± 0.1 1.8 ± 0.2* 
Carbon Dioxide Production (L/min) 3.4 ± 0.2 2 ± 0.2* 
Ventilation (L/min) 116 ± 9 84 ± 6* 
VE/VCO2 34.9 ± 1.9 42.6 ± 0.9* 
Heart Rate (bpm) 166 ± 4 130 ± 5* 
RPE 10 ± 0 10 ± 0 
Values expressed as mean ± S.E.M. VE/VCO2, ventilation relative to carbon dioxide 
production. RPE, rating of perceived exertion. *Significant difference between KE and 
BIKE exercise.  
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Figure 1. Conceptual schematic illustrating the equal magnitude of ensemble group 
III/IV skeletal muscle afferent feedback at task failure in both large (cycling - BIKE) and 
small (knee extensor - KE) muscle mass exercise. Group III/IV afferent feedback from 
active skeletal muscle is represented by the grey area. Accordingly, the sensory tolerance 
limit (10) influenced by the magnitude of ensemble afferent feedback and obtained by the 
sum of many diffuse signals during BIKE exercise (thin arrows; 1X10 = 10) (A) is 
reached with a focused, but very strong, local signal elicited by a greater intramuscular 
metabolic disturbance in the quadriceps (thick arrows; 5X2 = 10) at task failure during 
knee extensor exercise (B). 
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Figure 2. Change in quadriceps muscle function following constant load large (cycle -
BIKE) and small (knee extensor - KE) exercise to exhaustion. Data are represented as 
mean ± S.E.M. and values represent the percent change from pre- to post-exercise. MVC, 
maximal voluntary contraction; Qtw,pot, potentiated twitch force; MRFD, maximal rate of 
force development; and, MRR, maximal rate of relaxation. *Significant difference 
between KE and BIKE exercise.  
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Abstract 
 

Oxidative stress may contribute to reduced exercise tolerance in patients with 

chronic obstructive pulmonary disease (COPD). This study sought to determine the effect 

of an oral antioxidant cocktail (AOC: vitamins C, E, and alpha-lipoic acid), with 

documented efficacy, on skeletal muscle function in COPD patients during dynamic 

quadriceps exercise. Ten patients with COPD (FEV1/FVC < 0.7, FEV1 ≤ 80% predicted) 

performed knee extensor (KE) exercise to exhaustion and trials matched for time 

(isotime) following consumption of either the AOC or placebo (PL). Maximal voluntary 

contractions (MVCs) and supramaximal magnetic femoral nerve stimulation (Qtw,pot) 

quantified the degree of peripheral quadriceps fatigue. Despite increasing plasma 

ascorbic acid levels (10.1 ± 2.2 to 24.1 ± 3.8 ug/ml, p < 0.05) and reducing the electron 

paramagnetic resonance (EPR) spectroscopy signal (AUC: 11.6 ± 3.7 to 4.8 ± 2.2 AU, p 

< 0.05) prior to exercise, AOC consumption did not alter endurance time or the 

magnitude of quadriceps fatigue. Closer examination of the EPR spectroscopy data 

revealed a tendency for the AOC to be most efficacious in patients with high resting free 

radical levels (n = 5, AUC: 19.7 ± 5.8 to 5.8 ± 4.5 AU, p < 0.05) compared to those with 

lower values (n = 4, AUC: 1.6 ± 0.5 to 3.4 ± 1.1 AU). Interestingly, this baseline index of 

free radicals was inversely correlated with FEV1 (r = -0.54, p = 0.08) and baseline MVC 

force (r = -0.56, p = 0.09). Together, although it appears that the heterogeneity of free 

radical load in patients with COPD might have played a role, these findings reveal that 

acutely reducing free radicals with an oral AOC does not translate to improved exercise 

capacity and fatigue resistance in this population.  
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Introduction 
 

Oxidative stress, defined as an imbalance between pro- and antioxidant forces in 

favor of the former (45), is prevalent in patients with chronic obstructive pulmonary 

disease (COPD) (15, 17). Although numerous factors contribute to the elevated oxidant 

burden documented in these patients, the most accepted source of free radicals is the 

inflammatory pathology of the lung disease itself (50). However, following exhaustive 

knee extensor (KE) exercise, which minimally taxes the lungs (47), elevations in markers 

of oxidative damage, such as plasma lipid peroxidation products (LPP) and stimulated 

phagocyte superoxide (O2
-) production, have been recognized to increase in patients with 

COPD, but not healthy controls (15). Additionally, inhibiting the O2
- generator xanthine 

oxidase in these patients ameliorated the exercise induced increase in LPPs and prevented 

an increase in the oxidized to reduced glutathione ratio (GSSG:GSH) (22). Collectively, 

these studies implicate exercising skeletal muscle as a significant source of free radicals, 

contributing to the oxidant burden in this population. 

  Although the impaired pulmonary function that is intrinsic to lung disease 

certainly contributes to limited exercise capacity in COPD (6, 39), peripheral muscle 

abnormalities have also been implicated (29, 46). Indeed, significant peripheral 

locomotor muscle fatigue occurs in patients with COPD following cycle exercise (6, 31) 

and the perception of leg fatigue is frequently recognized as the primary symptom 

contributing to exercise intolerance (23). A failure to improve pulmonary function with 

treatment is a hallmark of the disease, thus enhancing quality of life and exercise capacity 

primarily through peripheral muscle therapy is regarded as an important rehabilitative 

tool (20, 32). As free radicals both depress muscle force production (7) and exaggerate 
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the discharge from thin-fiber muscle afferents (19, 26), which are inherent in the 

regulation of peripheral muscle fatigue (3-5), targeting oxidative stress in COPD to 

directly attenuate muscle fatigue and improve exercise tolerance appears to be a real 

possibility.  

Pretreatment with the potent pharmacological antioxidant N-acetylcysteine 

(NAC), a GSH precursor, has been documented to improve quadriceps exercise 

endurance and lessen markers of oxidative damage at exhaustion in patients with COPD 

(27). However, NAC also appears to improve both small muscle mass (44) and whole 

body (33, 34) exercise tolerance in young, healthy individuals, suggesting its benefits 

may not be unique to a cohort with a heightened susceptibility to oxidative stress. In 

addition, NAC has been documented to improve pulmonary function during exercise in 

patients with COPD (48), further confounding the interpretation of the apparent benefit to 

peripheral muscle function in this population. Adverse side effects of NAC, such as 

lightheadedness and nausea (44), also potentially limit the efficacy of this antioxidant as a 

therapeutic intervention. There is currently little known about the potential of other 

antioxidant interventions to improve exercise tolerance in patients with COPD.  

 Therefore, we sought to examine the effects of an orally administered, readily 

available, antioxidant cocktail (AOC; vitamin C, vitamin E, and α-lipoic acid) with 

demonstrated efficacy (45, 53, 54), on free radical concentration and skeletal muscle 

fatigue following dynamic KE exercise in patients with COPD. Specifically, we tested 

the hypotheses that in patients with COPD, the AOC would: 1) raise antioxidant levels 

and decrease free radicals, as assessed by plasma ascorbate concentration and electron 

paramagnetic resonance (EPR) spectroscopy, 2) improve exercise capacity, as measured 
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by constant load KE exercise time to exhaustion, and 3) attenuate the development of 

peripheral quadriceps fatigue, quantified by magnetic stimulation of the femoral nerve, 

such that the degree of contractile dysfunction at isotime will be diminished. 

 
Methods 

 
 
Subjects 

 
Eleven patients with COPD were recruited for this study based on spirometric 

evidence of moderate to severe airflow obstruction (FEV1 < 80% predicted, FEV1 / FVC 

≤ 0.7 (14)), as assessed by standard pulmonary function tests (36). Written, informed 

consent was obtained from participants prior to their inclusion and the Institutional 

Review Boards of the University of Utah and the Salt Lake City VA Medical Center 

approved all protocols. 

  
Exercise Protocol 
 

Prior to data collection, all subjects were thoroughly familiarized with KE 

exercise, constant load exercise trials to exhaustion (TLim), as well as the neuromuscular 

function assessment. Peak KE work rate was determined with subject specific protocols 

designed to elicit maximum effort within 8-12 minutes, consisting of a 2-5 Watt/min 

increases at a cadence of 60 rpm. On subsequent visits, two Tlim trials separated by at 

least 48 hours, at 80% of maximal workload were performed following ingestion of either 

the AOC or PL in a counterbalanced order. The shorter of the two TLim times was then 

matched with the opposite condition (AOC or PL) on a successive visit to allow isotime 

comparisons. Throughout all trials, ventilation, gas exchange, heart rate, ratings of 

perceived exertion and breathlessness, arterial oxygen saturation, femoral blood velocity 
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and quadriceps electromyograms (EMG) were measured. Prior to each exercise bout, one 

minute of resting data were collected and subjects performed one minute of unloaded 

warm-up KE exercise. To quantify peripheral fatigue, neuromuscular function tests were 

performed before exercise and 10 minutes after task failure (<50 rpm). Venous blood 

samples were taken prior to and 1 hour after ingestion of the second dose of PL or AOC 

and immediately after KE exercise, to determine pro- and antioxidant status, and for spin 

trapping and EPR spectroscopy to directly assess free radical concentration. 

 
Oxidative Stress, Antioxidant Assays, and Free Radicals 
 

Plasma samples were stored at -80°C until analysis. Lipid peroxidation, a marker 

of oxidant damage, was assessed by thiobarbituric acid reactive substances (TBARS) and 

malondialdehyde levels (55) (Bioassays Systems, Hayward, CA).  Total antioxidant 

capacity was assessed by determining the ferric reducing ability of plasma (FRAP), using 

the method described by Benzie and Strain (11). Although the efficacy of the AOC 

specific to plasma ascorbate levels was also assayed, as previously described (13) 

(CosmoBio, Carlsbad, CA). Endogenous antioxidant activity, assessed by superoxide 

dismutase (SOD) and catalase (CAT) activity, was also assayed in the plasma (51) 

(Cayman Chemical Company, Ann Arbor, MI). 

 To directly assess the ability of the AOC to reduce the concentration of free 

radicals, EPR spectroscopy was performed on pre- and postexercise blood samples, as 

previously described (45). Briefly, 3 ml of venous blood was collected into a vacutainer 

containing 1 ml of the spin trap α-phenyl-tert-butylnitrone (PBN) (0.0140 mol/l). After 

centrifugation, the PBN adduct (200 µl) was pipetted into a precision-bore quartz EPR 

sample tube (Wilmad, Vineland, NJ). EPR spectroscopy was then performed at 21°C 
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using an EMX X-band spectrometer (Bruker, MA) and commercially available software 

(version 2.11, Bruker Win EPR System), which was also used to calculate the AUC of 

the EPR spectroscopy signal by double integration.  

 
Ventilation, Gas Exchange, Heart Rate, and Perceived Exertion 
 

Ventilation and pulmonary gas exchange were measured at rest and during 

exercise with a metabolic cart (ParvoMedics, Sandy, UT). Heart rate, determined from 

the R-R interval of a three-lead electrocardiogram (ECG), and arterial oxygen saturation 

(SaO2), estimated using a pulse oximeter (Nellcor N-595, Pleasanton, CA, USA) with 

adhesive forehead sensors, were acquired at 200 Hz using a data acquisition system 

(AcqKnowledge; Biopac Systems, Goleta, CA). Ratings of perceived exertion (RPE) 

were taken every minute during the exercise trials using Borg’s modified CR10 scale 

(12).  

 
Leg Blood Flow Assessment 
 

Measurements of femoral artery blood velocity and vessel diameter in the leg 

being studied were performed at rest and throughout exercise, using a Logic 7 ultrasound 

system (General Electric Medical Systems, Milwaukee, WI, USA) as previously 

described (49). Briefly, arterial diameter was measured, and mean velocity (Vmean) values 

(angle-corrected, and intensity weighted area-under-the-curve) were calculated using 

commercially available software (Logic 7). Using arterial diameter and Vmean, blood flow 

in the femoral artery was calculated as: Blood flow = Vmeanπ(vessel diameter/2)2 × 60. 
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Neuromuscular Function 
 

Quadriceps electromyograms (EMG) were recorded from the vastus lateralis (VL) 

muscle (2). Electrodes were placed in a bipolar configuration over the middle of the 

muscle belly, with the active electrodes placed over the motor point of the muscle and the 

reference electrode in an electrically neutral site over the tibial tuberosity. These 

electrodes were used to record magnetically evoked compound action potentials (M-

waves) to evaluate changes in membrane excitability, as well as EMG from the VL 

throughout exercise to provide an index of central motor drive. Raw EMG signals were 

filtered with a bandpass filter (with a low pass cut-off frequency of 15 Hz and a high pass 

cut-off frequency of 650 Hz) and after visual inspection of the filtered signal, a threshold 

voltage was set to identify the onset of EMG activity (AcqKnowledge; Biopac Systems, 

Goleta, CA). For data analysis, the integral of each EMG burst (integrated EMG, iEMG) 

was calculated to determine a percent increase in iEMG from the first minute of exercise 

(2).  

The magnitude of peripheral quadriceps fatigue was quantified by supramaximal 

magnetic stimulation of the femoral nerve (2, 28, 42). Specifically, Qtw,pot was assessed 

before and after each exercise trial. For this procedure, while subjects lay semi recumbent 

in a KE chair, with a knee joint angle of 90 degrees, a magnetic stimulator (Magstim 200, 

The Magstim Company Ltd, Wales UK) connected to a double 70 mm coil was used to 

stimulate the femoral nerve. The evoked twitch force was obtained from a calibrated load 

cell (Transducer Techniques, Temecula, CA) connected to a non-compliant strap placed 

around the subject’s ankle and acquired at 200 Hz with a data acquisition system 

(AcqKnowledge; Biopac Systems, Goleta, CA). Supramaximality of stimulation was 
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determined by serial, single unpotentiated twitch (Qtw) forces obtained every 30 seconds 

at 70, 80, 85, 90, 95, and 100% of maximal stimulator output on a separate visit to the 

laboratory.  

A series of six MVCs and Qtw,pot maneuvers were performed with 30 seconds 

between each MVC. In addition, to quantify activation of the quadriceps during the 

MVCs, a superimposed twitch technique was employed (2, 35). Briefly, the additional 

force generated by a single twitch superimposed on the MVC was compared with the 

force produced by the potentiated twitch immediately following the MVC to determine 

the percent voluntary muscle activation (%VMA). Peak force, maximal rate of force 

development (MRFD) and maximal relaxation rate (MRR) were analyzed for all Qtw,pot 

values (30). 

 
Statistical Analyses 
 

Two-way repeated measures ANOVA was used to compare the effect of 

antioxidant treatment on physiological parameters during exercise, with a Tukey posthoc 

analysis if a significant main effect were found. Student’s paired t tests were used to 

compare the effect of the AOC in terms of antioxidant efficacy, end exercise 

physiological parameters, and indices of peripheral fatigue. Correlations between 

variables were evaluated using Pearson correlation coefficients. Statistical significance 

was set at α = 0.05 for all tests. All group data are expressed as means ± standard error of 

the mean (S.E.M).  
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Results 

 
Subject Characteristics 
 

Eleven subjects took part in the initial stages of the study, whose data are 

reflected in Table 2. However, complete muscle function and exercise data are presented 

only for the 10 subjects who completed the entire study, with the exception of blood 

sample data from one individual. Interestingly, resting free radical concentration, 

assessed by EPR spectroscopy, was inversely correlated with FEV1 and baseline MVC 

force (Figure 3).  

 
Antioxidant Efficacy 
 

Consumption of the AOC increased plasma ascorbic acid levels and reduced the 

EPR spectroscopy signal AUC (Figure 4), but did not alter any other markers of oxidative 

stress (TBARS: 5.1 ± 0.3 vs 4.7 ± 0.3 uM, MDA: 1.2 ± 0.1 vs 1.1 ± 0.1 uM) or 

antioxidant status (FRAP: 0.99 ± 0.1 vs 1.0 ± 0.1 SOD: 21.4 ± 5.5 vs 20.5 ± 5.3 U/ml, 

catalase: 22.4 ± 2.8 vs 27.7 ± 5.0 nmol/min/ml, PL vs AOC respectively) prior to 

exercise. Following exercise, FRAP was increased above the PL condition with the AOC 

(1.0 ± 0.1 vs 1.1 ± 0.1 mM, p<0.05, respectively), however, there were no other 

significant pre- to post-exercise changes.  

 
Performance Trials  
 

Exercise to exhaustion resulted in a decrease in quadriceps muscle function, as 

illustrated by reductions in all measured indices of fatigue (MVC, Qtw,pot, MRFD, and 

MRR) and an increase in the iEMG signal. M-wave characteristics were maintained from 

pre- to postexercise, indicating preserved membrane excitability. In addition, the %VMA 
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was reduced by ~5% following both exercise trials. AOC consumption, however, did not 

alter the physiological response to exercise, resulting in a similar time to exhaustion and 

magnitude of end-exercise fatigue (Figure 5).  

 
Isotime Trials 
 

Following exercise of equal duration and intensity, similar levels of end exercise 

quadriceps fatigue were attained with either AOC or PL consumption (Figure 6). M-wave 

characteristics were again preserved from preexercise values, and the %VMA was 

reduced by ~3% in both conditions. The physiological response to exercise was not 

different between conditions and is documented in Figure 7.  

 
Discussion 

 
This study has documented the ability of an oral AOC (vitamins C, E and alpha-

lipoic acid) to reduce the resting plasma free radical concentration in patients with 

COPD. A broad array of resting free radical levels, however, were also observed, which 

is in line with the diverse etiology of COPD, which were inversely correlated with FEV1 

as well as baseline MVC force. Indeed, the efficacy of the antioxidant cocktail in this 

population appeared to be affected by the heterogeneity of both the degree of lung 

dysfunction and subsequent free radical load in the current subjects. Therefore, despite 

clearly documented antioxidant effects, we did not observe any functional consequences 

in terms of KE exercise endurance time or end-exercise quadriceps fatigue. Collectively, 

these data suggest that this oral AOC is most efficacious when the oxidant load is 

elevated, and this susceptibility to oxidative stress may be related to pulmonary disease 
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severity, but an acute free-radical reduction does not necessarily impact skeletal muscle 

function in patients with COPD.  

 
Oxidative Stress and Lung Disease 
 

Oxidative stress has been implicated in a variety of pathophysiological roles in the 

etiology of COPD, including modulation of redox sensitive inflammation, mitochondrial 

dysfunction, and alterations in myofilament interactions (17, 25). Indeed, there are 

numerous instances where an elevated oxidant burden has been documented, both 

systemically (15) and in the lung (10, 37), in patients with COPD. Specifically, Barreiro 

et al (10) documented higher protein carbonyl groups, a marker of protein oxidation, in 

diaphragm muscle samples of patients with severe COPD, which were inversely 

correlated with FEV1 across those patients with moderate to severe airflow obstruction. 

Similar negative correlations between other markers of oxidative damage and airflow 

limitation have also been observed in the exhaled breath condensate (37, 38) as well as in 

the blood (40) of patients with COPD. However, EPR spectroscopy is considered to be 

the most sensitive technique for the direct detection of free radicals (9), and although it 

has been employed previously in the bronchoalveolar lavage fluid of patients with COPD 

(41),  the current study is the first to use the technique to directly assay the concentration 

of oxygen- and carbon-centered free radicals in the plasma of patients with COPD, 

reflective of the systemic free radical concentration.  

Resting free radical concentration, across the range of disease severity in this 

study cohort, tended to be inversely correlated with FEV1 (r = -0.54, p = 0.08, Figure 3), 

a finding that is in accord with previous literature, and corroborates the role of oxidative 

stress in the pathology of COPD. The measured resting free radical concentration also 
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tended to be negatively correlated with baseline MVC force (r = -0.54, p = 0.09, Figure 

3), implying a detrimental relationship between pulmonary disease severity, systemic free 

radical load and skeletal muscle function. AOC administration significantly reduced the 

concentration of plasma free radicals, assessed by EPR spectroscopy, consequent to an 

increase in plasma ascorbate levels (Figure 4). However, upon secondary analysis, a 

dichotomous response to the AOC was observed (Figure 8). Indeed, in terms of reducing 

free radicals, the AOC seemed to be most efficacious in those patients with high initial 

levels, with minimal effects in those with the lowest concentrations, despite a universal 

increase in plasma ascorbate. This finding parallels previously documented paradoxical 

effects of the AOC in other populations (45, 54). Thus, the current data support a role for 

the AOC to combat an elevated oxidant burden in patients with COPD, which, perhaps, 

may only be a concern in those patients with significant disease progression.  

 
Performance Time and Oxidative Stress 
 

Evidence exists for a role of oxidative stress in modulating exercise performance 

(43). Germane to the current study, Koechlin et al. (27) documented an improvement in 

quadriceps exercise time to exhaustion following oral NAC administration in patients 

with COPD, which was accompanied by an amelioration of the exercise induced increase 

in plasma TBARs observed in the placebo condition. The effects of NAC, however, are 

not unique to patients with COPD, as beneficial effects have also been documented in 

young, healthy subjects (33, 44), although typically only following intravenous 

administration which can yield greater plasma NAC levels. Such effects on exercise 

performance have not typically been demonstrated with vitamins C, E, or alpha lipoic 

acid (8, 43); however, the current study, to our knowledge, is the first to assess the 
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potential for nonpharmacological doses of these vitamins in modulating exercise 

performance in COPD.  

In contrast to the effects observed with NAC, the AOC did not change exercise 

time to exhaustion or the magnitude of quadriceps fatigue achieved at task failure (Figure 

5). This was despite the striking similarities between the characteristics of the subjects in 

the study by Koechlin et al. (27) and the current study’s cohort (i.e., moderate to severe 

COPD and an average age of 62 yrs of age). This may potentially be explained by the 4-

day loading period employed by the aforementioned study, enhancing the ability for 

NAC to enter the skeletal muscle itself. However, the principal aim of the current study 

was to document the efficacy of an acute, oral AOC with no known side effects, in the 

context of rehabilitative medicine. Thus, in an attempt to reconcile these discordant 

responses, in light of our AOC efficacy data, we correlated the change in free radical 

concentration following AOC consumption with the change in endurance time, but, 

somewhat disappointingly, did not find evidence of a relationship. Therefore, these data 

suggest that acutely decreasing free radicals in patients with COPD with the AOC does 

not translate to improved exercise capacity.  

 
Oxidative Stress and Fatigue 
 

Exercising skeletal muscle has been documented to contribute to the elevated 

oxidant load in COPD (15, 16), which, in turn, has been suggested to contribute to 

limited exercise capacity in this population (17). Indeed, Couillard et al. (16) have 

previously documented an inverse relationship between the exercise-induced increase in 

muscle oxidative stress and quadriceps endurance time in patients with COPD. In the 

current study there was no evidence of a relationship between exercise performance and 
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plasma free radical concentration at any time point. Due to the inherent variability in 

exercise performance trials, we employed isotime exercise to allow comparisons of the 

magnitude of end-exercise fatigue following identical exercise bouts with PL and the 

AOC. As illustrated in Figure 7, the physiological responses to the isotime exercise bouts 

were remarkably similar, at the very least illustrating the potential to achieve 

reproducible physiological measurements in a historically varied population. Pertinent to 

peripheral fatigue development during KE exercise, the percent increase in the iEMG 

signal, an index of central motor drive to the muscle, was one of these nearly identical 

responses assessed in both trials (Figure 7). Accordingly, no differences in end-exercise 

peripheral fatigue were observed (Figure 6), which again were unrelated, by correlational 

analysis, to a change in free radical concentration with AOC consumption. Therefore, 

although the EPR data imply a relationship between chronic oxidative stress and muscle 

function in patients with COPD (Figure 3), acute amelioration of this oxidant load does 

not diminish the magnitude of end-exercise quadriceps fatigue following dynamic KE 

exercise. 

 
Blood Flow, Vascular Function, Oxygen Delivery and Oxidative Stress  
 

The preponderance of efficacy data for this AOC is derived from studies 

examining vascular function in populations predisposed to oxidative stress (21, 45, 53, 

54). Specifically, our group has documented that the AOC can restore vascular function 

in the elderly as assessed by flow-mediated dilation (52) and submaximal handgrip 

exercise (21). In addition, this AOC has been observed to improve end-exercise muscle 

perfusion, evaluated during plantar flexion exercise utilizing nuclear magnetic resonance 

spectroscopy, resulting in an improvement in muscle oxidative capacity (53). Thus, it 
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would be reasonable to assume that in patients with COPD with consistently documented 

elevations in markers of oxidative stress (15, 16, 37), the vascular effects of the AOC 

would be more pronounced. Although evidence for the translation of improved vascular 

function to improved exercising muscle blood flow is relatively sparse, antioxidant driven 

increases in the bioavailability of the vasodilator nitric oxide, secondary to a reduction in 

oxidative stress, may improve skeletal muscle blood flow and potentially oxygen delivery 

(18, 24), which would likely improve exercise performance (1). Thus, in the current 

study, femoral artery blood flow was measured during KE exercise; however, no 

difference between the PL and AOC trials was observed (Figure 7). Collectively, these 

data are suggestive of similar oxygen delivery to the working muscle, although it is 

possible that the initial impact of the varied baseline free radical concentration and the 

subsequent heterogeneity of the AOC effects may have obscured this effect. 

 
Conclusion 
 

This study reveals a negative relationship between COPD severity, skeletal 

muscle function, and resting free radical concentration, as assessed by blood EPR 

measurements, and documents the efficacy of an oral AOC in reducing oxidative stress. 

Importantly, this study also reveals that low free radical levels prior to ingestion of the 

AOC in this population may temper these antioxidant effects. However, a translation to 

improved KE exercise performance is not supported by the current data. Thus, although a 

potentially beneficial role for the AOC can be inferred for patients with COPD, this acute 

reduction in free radicals does not appear to be related to KE exercise endurance or 

ameliorate peripheral fatigue development.  
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Table 2. Subject characteristics 
 
 
Age (yr)  62 ± 3 
Height (m)  1.73 ± 0.03 
Weight (kg)  84.1 ± 7.4  
BMI (kg/m2)  27.9  ± 1.7 
Quadriceps muscle mass (kg) 1.71  ± 0.2  
Peak knee-extensor work rate (W)   28 ± 3  
Male/Female  7/3 
Pulmonary function   
      Forced vital capacity, l (% predicted) 3.58 ± 0.2 (86.18 ± 4.7) 
      Forced expiratory volume in one s, l/s (% predicted) 1.81 ± 0.2 (57.09 ± 4.6) 
      FEV1/FVC (%) 50.45 ± 4.9 
Resting arterial blood gases (n = 8)  
      Hemoglobin concentration (g/dl) 13.5 ± 0.5 
      Oxyhemoglobin (%) 91.9 ± 0.6 
      Partial pressure of oxygen (mmHg) 69.9 ± 2.0 
      Partial pressure of carbon dioxide (mmHg) 32.2 ± 2.0 
      Bicarbonate (mmol/l) 22.0 ± 1.4 
      pH 7.45 ± 0.01 

Values expressed as mean ± S.E.M. FEV1/FVC = Forced expiratory volume in one 
second relative to forced vital capacity. BMI = Body mass index 
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Figure 3. Relationships between forced expiratory volume in 1 second (FEV1) and 
quadriceps maximal voluntary contraction (MVC) with resting free radical 
concentration assessed by electron paramagnetic resonance (EPR) spectroscopy. 
Resting free radical concentration (AUC, arbitrary units) tended to be moderately 
inversely correlated with A: FEV1 (p = 0.08) and B: baseline quadriceps MVC (p = 0.09). 
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Figure 4. Resting antioxidant and oxidant status assayed in the plasma following 
placebo (PL) and antioxidant cocktail (AOC) consumption. Data are presented as 
mean ± S.E.M. AOC consumption resulted in an increase in plasma ascorbic acid (A) and 
a reduction in the free radical concentration assessed by electron paramagnetic resonance 
(EPR) spectroscopy area under the curve (AUC, arbitrary units) (B). *Significantly 
different from placebo condition, p < 0.05.   
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Figure 5. Endurance time and end-exercise quadriceps fatigue assessed following 
exhaustive knee extensor exercise with either the consumption of a placebo (PL) or 
an antioxidant cocktail (AOC). Data are presented as mean ± S.E.M. Quadriceps 
fatigue values represent the percent change from pre- to post-exercise. Qtw,pot, potentiated 
twitch force; MVC, maximal voluntary contraction. There were no statistically significant 
differences.  
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Figure 6. End-exercise quadriceps fatigue assessed following constant workload 
knee extensor exercise matched for intensity and duration (isotime) following 
consumption of either placebo (PL) or antioxidant cocktail (AOC) Data are presented 
as mean ± S.E.M and values represent the percent change from pre- to post-exercise. 
Qtw,pot, potentiated twitch force; MVC, maximal voluntary contraction. There were no 
significant differences.  
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Figure 7. Physiological responses to constant workload knee extensor exercise 
matched for intensity and duration (isotime) following consumption of either a 
placebo (PL) or an antioxidant cocktail (AOC). Data are presented as mean ± S.E.M. 
End exercise values for femoral blood flow are not reported due to loss of signal. VE, 
ventilation; VO2, oxygen consumption; VCO2, carbon dioxide production; iEMG, 
integrated electromyogram. There were no statistically significant differences between 
interventions.   
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Figure 8. Individual changes in the α-Phenyl-tert-butylnitrone (PBN) spin adduct 
area under the curve (AUC, arbitrary unit) assessed by electron paramagnetic 
resonance (EPR) spectroscopy following the ingestion of both the placebo (PL) and 
antioxidant cocktail (AOC). Individual responses have been separated into two groups, 
those with low (left) and higher (right) initial values in the PL condition. As illustrated, 
the AOC appeared to only have an effect in those with high initial levels of oxidative 
stress, which is evidence that the baseline free radical load impacts the effect of the AOC. 
*Significantly different from placebo condition, p < 0.05. 
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Elucidating the mechanisms contributing to skeletal muscle fatigue in health and 

disease is important both scientifically and in terms of rehabilitative medicine, which 

may enhance the quality of life in populations with limited mobility. Among these 

mechanisms, group III and IV afferent feedback from exercising muscle, which relays 

information regarding metabolic disturbance and the magnitude of peripheral fatigue, has 

been documented to substantially influence the voluntary termination of endurance 

exercise performance (1), and therefore, is highly germane to the study of exercise 

intolerance. Active muscle mass and oxidative stress have both been documented to alter 

skeletal muscle afferent activity (4, 5), and thus the manipulation of these two factors has 

the potential to alter exercise capacity. In addition, an excessive free radical load has been 

recognized to depress contractile function (2) and therefore accelerate the development of 

peripheral fatigue. Accordingly, first, endurance exercise performance as well as the 

magnitude of end-exercise quadriceps fatigue was examined in a healthy, young group of 

subjects to determine the effect of varying the amount of active muscle mass on muscle 

fatigue. Second, the effect of an oral AOC, with previously documented efficacy in 

attenuating free radicals (8, 9), on skeletal muscle fatigue was studied in a population 

with a heightened susceptibility to oxidative stress and well-documented exercise 

intolerance, patients with COPD.  

 In the first study, we sought to vary the volume of muscle mass active during 

dynamic constant workload, single-leg KE and BIKE exercise, to alter the ensemble 

magnitude of group III/IV afferent feedback (5), and examine the impact on end-exercise 

peripheral quadriceps fatigue in young, healthy subjects. With this approach, we observed 

far greater quadriceps compared to BIKE fatigue following KE exercise to exhaustion. 
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This effect was likely due to the constraint of muscle afferent feedback to the one 

quadriceps muscle during KE exercise such that, at task failure, the critical level of 

ensemble afferent feedback influencing the voluntary termination of exercise was 

eventually reached by a strong, local afferent signal in contrast to the sum of the more 

diffuse signals during BIKE exercise. Thus, the magnitude of peripheral fatigue in the 

quadriceps muscle, presumably necessary to elicit the strong local afferent signal, was 

greater following KE exercise. These data suggest that the CNS tolerates a greater degree 

of peripheral fatigue during small muscle mass exercise, and have important implications 

for rehabilitative medicine. Specifically, small muscle mass training appears to facilitate 

a greater local homeostatic disturbance and therefore may promote greater muscle 

adaptation. 

 The second study examined the impact of an oral AOC on free radical 

concentration, dynamic KE exercise performance, and peripheral quadriceps fatigue in 

patients with COPD. In this population with consistently documented elevations in 

oxidative stress (3, 6, 7), we observed a tendency for an inverse relationship between 

resting free radical concentration and airflow limitation, assessed by FEV1, as well as 

baseline MVC force. The efficacy of the AOC, however, was dependent upon initial 

levels of free radicals, significantly decreasing free radicals in those with high initial 

levels, but having little effect in those patients with low baseline levels. Despite these 

antioxidant effects, no differences in endurance exercise performance or the magnitude of 

peripheral quadriceps fatigue were observed following AOC ingestion. Collectively, 

these data document the efficacy of the AOC to acutely reduce resting free radicals in 

patients with COPD, which may only be a concern in those patients with significant 
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disease progression. However, despite the suggestion of a relationship between chronic 

oxidative stress and skeletal muscle dysfunction in the study cohort, acutely reducing the 

free radical concentration with the AOC in patients with COPD does not necessarily 

impact skeletal muscle function during dynamic KE exercise.  

  In summary, the study of skeletal muscle fatigue is certainly of importance in the 

context of rehabilitative medicine, which is highly germane in populations with limited 

exercise capacity, such as patients with COPD. These studies have provided novel insight 

into the use of small muscle mass exercise to enable the attainment of a greater degree of 

peripheral quadriceps fatigue, potentially eliciting greater skeletal muscle adaptation. In 

addition, despite failing to document an effect of an AOC on peripheral fatigue in COPD, 

the second study has further substantiated the role of oxidative stress in the pathology of 

this lung disease and identified a beneficial antioxidant effect, most notably in those 

patients with more severe airflow obstruction. Further investigations addressing the role 

of free radicals and fatigue in patients with COPD, perhaps in patients with more 

homogeneously elevated levels of oxidative stress and perhaps with greater 

concentrations of antioxidants, are needed. However, the conclusions garnered from the 

current studies still have broad implications for improving rehabilitative medicine, and 

thus quality of life, in both health and disease, and have contributed to a better 

understanding of the factors influencing skeletal muscle fatigue. 
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