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ABSTRACT 
 
 

The overall objective of this dissertation was to examine the impact of oxidative 

stress on oxygen transport and utilization, and ultimately physiological function, in older 

individuals and patients with chronic obstructive pulmonary disease (COPD). The goal of 

the first study was to better understand the age-associated attenuation in leg blood flow 

(LBF), with a focus on the role of redox balance, at rest and during exercise. Under 

control conditions, by experimental design, aging was associated with ~15% reduction in 

LBF. During knee extensor exercise (KE), the old also exhibited greater leg free radical 

outflow, assessed by electron paramagnetic resonance (EPR) spectroscopy, than the 

young. At rest, administration of an acute, oral antioxidant cocktail (AOC) increased 

antioxidant capacity, decreased the EPR signal, and consequently, restored LBF in the 

old such that it was not different from the young. During exercise, however, the AOC did 

not alter free radical outflow from the muscle or LBF. Thus, these data document 

exaggerated free radical production during exercise in older individuals exhibiting 

attenuated LBF, and identify a favorable effect of decreasing oxidative stress on resting 

hemodynamics in these individuals. However, the inability of the oral AOC to alter free 

radical outflow or LBF during exercise suggests that the formidable, pro-oxidant state 

elicited by exercise in the old likely necessitates a more potent antioxidant strategy to 

alter free radical outflow and potentially improve LBF in this population. The second 

study sought to determine the impact of acute, oral AOC administration on oxygen 
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transport and utilization in a population recognized to have elevated oxidative stress, 

patients with chronic obstructive pulmonary disease (COPD). AOC administration led to 

an improvement in LBF during submaximal KE exercise, which was accompanied by an 

increase in muscle oxygen consumption, in the patients with COPD, but minimal effects 

in healthy subjects. Additionally, arterial oxygen saturation was improved in the patients 

with COPD, but unaltered in the healthy subjects. These results reveal detrimental 

consequences of elevated oxidative stress in patients with COPD in terms of vascular 

control, and oxygen transport and utilization during exercise. The third study examined 

the functional consequences of reducing oxidative stress in patients with COPD in terms 

of skeletal muscle fatigue development. Following intravenous ascorbate administration, 

an overall attenuation in the ventilatory and metabolic responses to high-intensity KE 

performed for the same duration and at the same intensity as the placebo condition was 

observed. Additionally, following the exercise matched for time, the patients exhibited 

less peripheral quadriceps fatigue. These results suggest a beneficial role for antioxidant 

administration in COPD, and further implicate oxidative stress in the systemic, 

pathophysiological consequences of the condition. Collectively, this research has 

identified novel, biological mechanisms by which oxidative stress may adversely impact 

oxygen transport and utilization in health and disease.  
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CHAPTER 1 
 
 

INTRODUCTION
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Oxidative stress can be described as an imbalance between pro- and antioxidant 

forces in favor of the former (40, 43, 44). Although acute oxidant production is likely 

necessary for cell signaling (17) and inflammatory processes (14), as well as cellular 

adaptation (38), there are also deleterious consequences of chronic oxidative stress in 

many tissues (3, 12, 14). Indeed, oxidative stress has been implicated in the etiology and 

pathophysiological processes of diseases such as heart failure (53) and chronic 

obstructive pulmonary disease (COPD) (43). In addition, normal healthy aging is 

associated with a pro-inflammatory, pro-oxidant phenotype (12, 48), which likely plays a 

role in the detrimental consequences of the aging process for many organ systems (18). 

Consequently, research examining the impact of oxidative stress on physiological 

function, and how the role of oxidative stress may change in pathophysiological 

conditions, is of utmost importance.  

  There are many sources of oxidant, or free radical production that may be 

dysregulated and contribute to oxidative stress (12, 14, 18, 24, 41, 43). Perhaps most 

notably, free radicals are produced by electron leak from complexes within the 

mitochondrial electron transport chain. Here, the leaked electrons reduce molecular 

oxygen, producing the free radical superoxide in several physiological and 

pathophysiological states (51). Nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase and xanthine oxidase have also been documented to contribute, via superoxide 

production, to oxidative stress, to varying degrees depending on the tissue examined (12, 

21, 40). Numerous nonenzymatic and enzymatic antioxidants, including superoxide 

dismutase and catalase, exist within the mitochondria and cytosol to neutralize radical 

species and protect the cell. However, excessive oxidant formation can overwhelm these 
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antioxidant defenses and lead to a chain of oxidation-reduction reactions, whereby 

additional radical species are generated, and cellular constituents, such as lipids, proteins, 

and DNA, are damaged (14).  

 Interestingly, acute exercise is associated with a transient increase in free radical 

production (2, 3, 44), and this pro-oxidant state is likely necessary for optimal contractile 

function of skeletal muscle (40), and is thought to confer beneficial adaptations following 

exercise (38). In health, therefore, upsetting the normal oxidant/antioxidant balance can 

attenuate exercise-training induced adaptations and may actually be detrimental to 

physiological function (13, 20, 56). Excessive oxidant production during exercise, 

however, has been linked to skeletal muscle dysfunction (9), increased fatigability (25), 

and may adversely impact exercise-induced hyperemia (10). Thus, the normally favorable 

pro-oxidant potential of exercise in health, may have deleterious consequences in 

populations predisposed to oxidative stress, such as patients with COPD and aged 

individuals. Therefore, the overall purpose of this dissertation was to study the interaction 

between oxidative stress, exercise, aging, and disease, and their collective impact on 

physiological function. The first study examined the influence of age and oxidative stress 

on peripheral hemodynamics. The second study further assessed the impact of oxidative 

stress on oxygen transport and utilization in a population with a greater predisposition to 

oxidative stress, patients with COPD. The third study of this dissertation investigated the 

functional consequences of oxidative stress, in terms of skeletal muscle fatigue 

development, in patients with COPD. 

 Healthy aging is associated with a decline arterial function, primarily manifested 

as vascular endothelial dysfunction (12, 48, 54). Oxidative stress has been documented to 
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contribute to this process, and as such, circulating markers of oxidative stress are 

inversely related to brachial artery flow-mediated dilation (FMD) (16), an assessment of 

endothelial cell mediated vascular function. As a result, antioxidant administration has 

been documented to improve FMD in older individuals (50, 54). Within the vasculature, 

mitochondria-derived free radicals as well as the upregulation of NADPH oxidase 

contribute to elevated superoxide production (12, 19). Superoxide, in turn, reacts with 

endothelial cell-derived, vasodilatory nitric oxide (NO), producing peroxynitrite; the 

resulting decrease in NO bioavailability impairs endothelially-mediated vasodilation (50). 

Furthermore, peroxynitrite may oxidize tetrahydrobyopterin, an essential cofactor for 

endothelial nitric oxide synthase (eNOS), causing eNOS uncoupling and additional 

superoxide production (26). Collectively, these processes, among others, are responsible 

for the observed impairment in vascular responsiveness with age to physiological and 

pharmacological stimuli that target the NO pathway (48).  

 In addition to diminished vascular function, aging is also commonly associated 

with reduced skeletal muscle blood flow at rest and during exercise (11, 24, 27, 28, 34, 

37, 39). Although the role of NO in exercise hyperemia is equivocal (34, 42), previous 

research has suggested that reduced NO bioavailability may be, at least partially, 

responsible for attenuated exercise hyperemia with age (10, 55). Specifically, antioxidant 

administration has been documented to improve skeletal muscle blood flow and end 

exercise skeletal muscle perfusion in older individuals (10, 55). However, these previous 

studies did not simultaneously investigate the impact of antioxidant administration on 

exercise-induced oxidative stress. In fact, the preponderance of evidence examining the 

impact of exercise-induced oxidative stress with age in humans is derived from changes 
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in antioxidant enzyme status (35) or from tissue samples taken immediately following 

exercise (4). Previously, our group has utilized ex vivo spin-trapping and electron 

paramagnetic resonance (EPR) spectroscopy of femoral arterial and venous blood, in 

combination with femoral artery blood flow measurements, during dynamic knee 

extensor exercise (KE) to elucidate the impact of exercise on directly measured free 

radical outflow from an isolated muscle bed in young individuals (3). While this previous 

work documented an increase in free radical outflow that was proportional to the increase 

in muscular work, the impact of age, as well as the potential impact of antioxidant 

administration was not evaluated.  

Thus, the purpose of the first study of this dissertation was to examine the impact 

of administering an acute, readily available, oral antioxidant cocktail  (AOC, Vitamins C, 

E and alpha-lipoic acid) with previously documented efficacy (13, 22, 44, 54), on redox 

balance in the femoral artery and vein and peripheral hemodynamics in young and old 

subjects. It was hypothesized that old subjects, characterized by attenuated leg blood flow 

(LBF), in comparison to young subjects would exhibit evidence of a greater pro-oxidant 

status at rest, and this would be translated into greater leg free radical outflow, assessed 

by EPR spectroscopy, during KE exercise. Additionally, it was hypothesized that the 

administration of an acute, oral AOC would increase antioxidant capacity, decreasing the 

augmented oxidative stress in the old, and correct the age-associated impairment in LBF.  

Chronic obstructive pulmonary disease, comprised of chronic bronchitis and 

emphysema, is a chronic inflammatory condition primarily impacting the lungs, resulting 

in an impaired ability of oxygen to diffuse from ambient air to the blood. Several 

systemic abnormalities have also been associated with COPD, including skeletal muscle 
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(31) and mitochondrial dysfunction (6), increased fatigability (1), and peripheral vascular 

dysfunction (5, 15, 22). Indeed, our group recently observed reduced vascular function, 

as measured by FMD, in patients with COPD, and documented that AOC administration 

improved FMD in these patients such that vascular function was similar to healthy 

controls (22). These data implicate oxidative stress, and subsequently reduced NO 

bioavailability, in mediating the reduced vascular function observed in patients with 

COPD. As the vasculature plays a critical role in regulating skeletal muscle blood flow 

and oxygen delivery, oxidative stress and reduced NO bioavailability may adversely 

impact oxygen transport and utilization in patients with COPD during exercise.  

 Therefore, the purpose of the second study of this dissertation was to examine the 

impact of the oral AOC on muscle blood flow and oxygen transport in the exercising 

skeletal muscle of patients with COPD and healthy subjects utilizing an exercise modality 

with minimal ventilatory demand, KE exercise (46). We tested two hypotheses: 1) that 

the redox balance would be abnormal in patients with COPD relative to healthy subjects, 

and 2) administration of the AOC would remedy the redox imbalance in patients with 

COPD and improve exercising skeletal oxygen transport and utilization, with minimal 

effects in healthy subjects. 

While compromised pulmonary function, intrinsic to lung disease, certainly 

contributes to limited exercise capacity in COPD (1, 36), peripheral muscle abnormalities 

have also been implicated (29, 31, 45). Specifically, structural abnormalities of skeletal 

muscle in COPD patients, such as a higher percentage of type II skeletal muscle fibers 

(45), may hasten the production of metabolic byproducts known to influence the 

development of peripheral muscle fatigue (52). Indeed, augmented peripheral locomotor 
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muscle fatigue occurs in patients with COPD following cycle exercise (1, 30) and the 

perception of leg fatigue is frequently recognized as the primary symptom contributing to 

exercise intolerance (23). Interestingly, elevated exercise-induced oxidative stress has 

also been documented to be in patients with COPD, and the magnitude of lipid 

peroxidation inversely related to endurance time (7, 8). In addition, transgenic mice 

overexpressing TNF-alpha in the lungs, resulting in systemic inflammation and a 

phenotype similar to patients with COPD, demonstrate elevated superoxide production 

from contracting skeletal muscle and decreased fatigue resistance (57). Oxidative stress, 

therefore, appears to contribute to skeletal muscle dysfunction in patients with COPD and 

may impact the development of peripheral muscle fatigue.  

Antioxidant treatment has been documented to reduce markers of exercise-

induced oxidant damage in patients with COPD (21, 25), and the potent pharmacological 

antioxidant n-acetylcysteine (NAC) appears to improve exercise capacity (25). NAC, 

however, has also been documented to improve cycling time to exhaustion in healthy, 

young subjects (32, 33), and improve pulmonary function in patients with COPD (49), 

confounding interpretation of antioxidant administration on skeletal muscle function in 

patients with COPD. Accordingly, our group previously examined the impact of 

administering an AOC to further elucidate the influence of oxidative stress on skeletal 

muscle function in patients with COPD (47). Interestingly, the AOC decreased the EPR 

spectroscopy free radical signal, but did not impact the magnitude of skeletal muscle 

fatigue developed during KE exercise. The individual responses to the AOC, however, 

were mixed, with only half of the patients exhibiting a substantially reduced EPR 
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spectroscopy signal. Therefore, in this prior study (47), the role of free radicals on 

skeletal muscle fatigue in patients with COPD was not fully elucidated.  

Thus, the purpose of the third study of this dissertation was to utilize a more 

potent antioxidant intervention, intravenous ascorbate (AO) administration, to examine 

the impact of oxidative stress and skeletal muscle fatigue development during dynamic 

KE exercise in patients with COPD. We tested the hypotheses that in patients with COPD 

intravenous AO administration would: 1) improve antioxidant capacity and decrease 

oxidative stress and, 2) decrease the magnitude of peripheral quadriceps fatigue induced 

by KE exercise matched for intensity and duration (isotime). 

 Free radicals play an important role in normal physiological function; chronic, 

excessive free radical formation, however, can lead to oxidative stress, which has been 

implicated in the etiology of many of the pathophysiological processes of aging and 

disease. Understanding the impact of oxidative stress may prove useful in developing 

novel therapeutic strategies to mollify the sequelae of aging and disease. Therefore, the 

overall purpose of this dissertation was to study the role of oxidative stress in health and 

disease by: 1) examining the effect of antioxidant administration on free radical outflow 

and peripheral hemodynamics in young and old individuals, 2) investigating the influence 

of antioxidant administration and oxidative stress on oxygen transport and utilization in 

patients with COPD and healthy controls, and 3) determining the functional 

consequences of reducing oxidative stress, in terms of skeletal muscle fatigue 

development, in patients with COPD.  
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Abstract 
 

This study sought to better understand the age-associated attenuation in leg blood 

flow (LBF), with a focus on the role of redox balance in the vasculature. LBF and pro- 

and antioxidant status in the femoral artery and vein were documented in control 

conditions at rest and during knee-extensor exercise (KE) in 10 old (68±2 yrs) subjects 

characterized by attenuated LBF and 10 young (25±1 yrs) subjects. The rest and exercise 

assessments were then repeated with an oral antioxidant cocktail (AOC), employed to 

shift the redox balance from control conditions. By experimental design, under control 

conditions, LBF was ~15% lower in the old compared to the young at rest and during KE. 

Interestingly, under control conditions, during KE the old also exhibited greater leg free 

radical outflow, assessed by electron paramagnetic resonance (EPR) spectroscopy, than 

the young at each work rate (3W: 14±3 vs 26±4; 6W: 15±4 vs 26±6; 9W: 18±3 vs 27±9 

AU L/min, respectively). The AOC improved LBF in the old at rest, abolishing the age-

related decrement, but did not alter LBF or free radical outflow in either group during 

exercise. These data document greater free radical outflow during exercise in old subjects 

exhibiting attenuated LBF at rest and during KE. Additionally, as the AOC ameliorated 

the attenuated LBF in the old at rest, but failed to alter free-radical outflow or LBF during 

exercise, this suggests that the formidable, pro-oxidant state elicited by exercise in the old 

likely necessitates a stronger antioxidant strategy to restore LBF in this population. 

 
Introduction 

 
 Oxidative stress, which can be defined as an imbalance between pro- and 

antioxidant forces in favor of the former (29), has been documented to contribute to the 

age-related reduction in peripheral vascular function (23, 31, 32). Indeed, previous 
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research has documented increased markers of oxidative stress with advancing age, and 

an accompanying reduction in the vasodilatory response to pharmacological (32) and 

physiological (23, 35) stimuli targeting the nitric oxide (NO) pathway. Furthermore, 

vascular function in the old has been documented to improve to a level that it is similar to 

the young with the administration of free radical scavengers such as ascorbate, and this 

restoration of vascular function is abrogated by NO synthase (NOS) inhibition (17, 32). 

Thus, it is likely that the age-associated reduction in vascular function is a consequence 

of elevated free radicals, which by reacting with NO, decreases NO bioavailability in the 

vasculature, impairing vasodilation (31). 

 Potentially as a result of impaired vascular function, reduced LBF both at rest and 

during exercise is commonly observed in the elderly compared to the young (11, 20-22, 

24, 26, 27). Indeed, although numerous factors likely play a role in impairing peripheral 

hemodynamics with age, limited NO bioavailability as a consequence of elevated 

oxidative stress may be an important factor (17, 20). Specifically, similar to the effects on 

vascular function, intra-arterial ascorbate has been documented to ameliorate the age-

associated attenuation in limb blood flow and vascular conductance at rest (17) and 

during exercise (20), while, during exercise, NOS inhibition abolished this improvement 

(10). Likewise, Wray et al. (36) observed an increase in end-exercise muscle perfusion, 

as assessed by nuclear magnetic resonance spectroscopy, during plantar flexion exercise, 

following administration of an AOC in older subjects. Collectively, these studies 

implicate oxidative stress as a causative factor in the impaired peripheral hemodynamics 

with age, suggest that reduced NO bioavailability is involved, and indicate a potential 

remedial role for antioxidants.  
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Likely due to the difficulty in studying free radicals, owing to their very short 

half-life (18), few studies have comprehensively evaluated the impact of age on free 

radical production by exercising skeletal muscle in humans (3, 25). Typically, such 

studies have relied on changes in antioxidant status (25) or the analysis of tissue/blood 

samples taken immediately following an exercise bout (3, 13). Aiming to utilize a more 

comprehensive and real-time approach, our group has utilized ex vivo spin-trapping and 

the EPR spectroscopic detection of α-phenyl-tert-butylnitrone (PBN) adducts in femoral 

arterial and venous blood, in combination with blood flow measurements, to directly 

document an increase in free radical outflow from skeletal muscle during exercise in 

young subjects (2). In addition, our group has documented the capability of an acutely 

administered, readily available, oral AOC to ameliorate the free radical signal in the 

vasculature at rest and as a consequence of exercise (13, 29). However, to date, there has 

not been a comprehensive examination of the age-associated attenuation in LBF in terms 

of pro- and antioxidant status and the impact of an AOC on peripheral hemodynamics.  

 Thus, this study sought to better understand the age-associated attenuation in LBF, 

with a focus on the role of redox balance in the vasculature. Specifically, it was 

hypothesized that old subjects, characterized by attenuated LBF, in comparison to young 

subjects would exhibit evidence of a greater pro-oxidant status at rest and this would be 

parlayed into a greater leg free radical outflow during KE exercise. Additionally, it was 

hypothesized that the administration of an acute, oral AOC would increase antioxidant 

capacity, decreasing the augmented oxidative stress in the old and correct the age-

associated impairment in LBF. 
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Methods 
 

Subjects  
 

With the intent to study old subjects characterized by attenuated LBF, during 

preliminary screening, old subjects were selected based on an a priori criteria (14) of a 

>15% attenuation in LBF relative to 10 young (~25 yrs) subjects. According to these 

criteria, 10 old (~70 yrs) subjects were identified and a total of 20 subjects participated in 

the study. General subject characteristics and peak KE work rate were determined during 

preliminary visits to the laboratory. Physical activity of the subjects was assessed using 

an accelerometer (GT1M; Actigraph, Pensacola, FL), worn for seven consecutive days, 

and expressed as time spent at differing levels of activity and average steps per day. 

Written, informed consent was obtained from all participants prior to their inclusion in 

this study, and the Institutional Review Boards of the University of Utah and the Salt 

Lake City VA Medical Center approved the protocols. 

 
Exercise Protocols and General Procedures:  
 

On the main experimental day, subjects reported to the laboratory following a 12 

hour fast, and rested for ~30 minutes prior to all procedures. Subsequently, catheters were 

placed in the femoral artery and vein using sterile technique, as previously described (1). 

After catheter placement, subjects rested for an additional 30 minutes before the resting 

measurements, which were followed by KE. Three absolute workloads (3, 6, and 9 

Watts), with 1 minute of rest between each exercise stage, were performed at 60 rpm on a 

cycle erogmeter (Monark, Sweden) modified to allow KE exercise (30). Briefly, KE 

recruits the quadriceps muscle group resulting in leg extension from 90 to ~170 degrees 

after which a lever arm attached to the cycle ergometer flywheel passively returns the leg 
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to 90 degrees. Due to the potentially long-lasting effects of the AOC, the AOC trial was 

always performed after the control condition (~2.5 hrs). However, of note, our group has 

previously documented the reproducibility of hemodynamic measurements employing 

this serial exercise testing experimental design, across a range of exercise intensities (5). 

Leg blood flow, mean arterial pressure (MAP), leg oxygen (O2) consumption (VO2), and 

heart rate (HR), were assessed during the last minute of baseline and each exercise stage. 

Blood samples were also taken in the same time frame to quantify antioxidant status, 

oxidative stress, inflammation, as well as for blood gas analysis and co-oximetry. 

 
Antioxidant Supplementation 
  

All subjects were instructed to refrain from vitamin supplements for at least five 

days prior to data collection. On the experimental day, the AOC was administered in a 

split dose, consumed 2 and 1.5 hours prior to the second exercise bout, to improve 

absorption and maximize the time of antioxidant efficacy. The first dose consisted of 300 

mg α-lipoic acid, 500 mg vitamin C and 200 IU of vitamin E, and the second dose 

consisted of the same amounts of α-lipoic acid and vitamin C and 400 IU of vitamin E. 

This AOC, and the dosing strategy employed, has been previously documented to reduce 

O2-centered free radical levels, as measured by EPR spectroscopy, and improve vascular 

function in older individuals (13, 35, 37). 

 
Mean Arterial Pressure and Heart Rate 
 

Arterial blood pressure measurements were collected continuously from an 

indwelling catheter placed in the common femoral artery, with the pressure transducer 

placed at the level of the catheter (Transpac IV, Abbott Laboratories). Mean arterial 
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pressure (MAP, in mmHg) was calculated as: MAP = diastolic arterial pressure + (arterial 

pulse pressure × 0.33). Heart rate was monitored continuously from a standard three-lead 

ECG, a component of the data-acquisition system (Biopac, Goleta, CA).  

 
Leg Blood Flow and Vascular Conductance 
 

The measurement of femoral artery blood velocity and vessel diameter in the leg 

being studied was performed at rest and during the last minute of each exercise stage, 

using a Logic 7 ultrasound system (General Electric Medical Systems, WI, USA) as 

previously described (6). The Logic 7 was equipped with a linear array transducer, 

operating at an imaging frequency of 9 MHz. The blood velocity profile was obtained 

with the same transducer with a Doppler frequency of 5 MHz operated in the high-pulsed 

repetition frequency mode. Blood flow in the femoral artery was calculated as: LBF = 

(mean velocity)π(vessel diameter/2)2 × 60. Leg vascular conductance (LVC) was 

calculated as LBF/catheter-derived MAP. 

 
Blood Analysis 
 

At rest, and in the last 15 s of each exercise stage, femoral arterial and venous 

blood samples (1-2 ml) were collected. One ml of each sample was presented to a GEM 

4000 blood gas analyzer and co-oximeter (Instrumentation Laboratories, Bedford, MA) to 

determine arterial and venous blood hemoglobin concentration and O2 saturation, and the 

partial pressure of oxygen. Arterial and venous blood O2 content (in ml/dl) was calculated 

as: blood O2 content = 1.39 hemoglobin x (O2 saturation) + 0.003 x partial pressure of O2. 

Leg VO2 was calculated as: VO2 = (arterial blood O2 content – venous blood O2 content) 

x LBF. A lipid panel was performed on blood attained in a rested and fasted state from all 



	  

	  
	  

22	  

subjects using standard clinical techniques.   

 
Antioxidant Status, Oxidative Stress, and Inflammation 
 

Femoral arterial and venous blood samples taken at rest and during exercise were 

centrifuged to facilitate the collection of plasma, and the plasma samples were stored at -

80°C until analysis. Total antioxidant capacity was evaluated by determining the ferric 

reducing ability of plasma (FRAP), using the method described by Benzie and Strain (7). 

The efficacy of the AOC specific to plasma ascorbate levels was assayed as previously 

described (8) (CosmoBio, Carlsbad, CA). Concentrations of the pro-inflammatory 

cytokines C-reactive protein and Interleukin (IL)-6, and the anti-inflammatory cytokine, 

IL-10 were determined by ELISA (R & D Systems, Minneapolis, MN). Lipid 

peroxidation was assessed by plasma malondialdehyde (MDA) levels (Bioxytech LPO-

586, Foster City, CA) and protein oxidation was assessed by plasma protein carbonyl 

(PCs) levels (R and D Systems, Minneapolis, MN). 

 EPR spectroscopy was performed on whole blood samples obtained at rest and 

during exercise, as previously described (29). Briefly, 1.5 ml of arterial and venous blood 

was collected into a vacutainer containing 0.5 ml of the spin trap PBN (0.0140 mol/l). 

After centrifugation, the PBN adduct (200 µl) was pipetted into a precision-bore quartz 

EPR sample tube (Wilmad, Vineland, NJ). EPR spectroscopy was then performed at 

21°C using an EMX X-band spectrometer (Bruker, MA) and commercially available 

software (version 2.11, Bruker Win EPR System) was used to calculate the area under the 

curve of the EPR spectroscopy signal by double integration. For the indices of 

inflammation (CRP, IL6, and IL10) and oxidative stress (EPR signal, MDA, and protein 
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carbonyls), outflow from the muscle was calculated as: (venous – arterial difference) x 

LBF (4). 

 
Statistical Analysis  
 

Two-way analysis of variance (ANOVA) was used to determine the impact of age 

on the physiological variables measured as well as indices of antioxidant status, 

inflammation and oxidative stress. Two-way repeated-measures ANOVA was used to 

identify significant changes in measured variables due to AOC administration within the 

young and old groups. A Tukey post hoc test was used if a significant main or interaction 

effect was found. Statistical significance was set at α = 0.05 for all tests. All group data 

are expressed as mean ± standard error of the mean. 

 
Results 

 
Subject Characteristics 
 

Initial prescreening of 16 old subjects yielded 10 old subjects who exhibited a 

>15% attenuation in LBF during rest and exercise relative to the young, and these old 

subjects were selected to complete the study. The subject characteristics of those who 

participated in the whole study are documented in Table 2.1. Of note, the old subjects 

exhibited slightly elevated blood lipids and peak KE work rate was higher in the young, 

despite exhibiting similar levels of physical activity as the old (Table 2.1). 

 
Aging and Peripheral Hemodynamics 

 
By experimental design, LBF was attenuated in the old subjects compared to the 

young at rest and during KE at 3, 6, and 9 Watts in control conditions (Figure 2.1). 

Additionally, in control conditions, although mean arterial pressure was not different 
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between young and old at rest, but was elevated in the old compared to the young during 

KE, LVC was also consistently attenuated in the old subjects compared to the young at 

rest and during KE at 3, 6, and 9 Watts (Figure 2.1). The attenuation in LBF in the old 

corresponded to a reduction in leg O2 delivery, however, leg VO2 was maintained in the 

old by a compensatory increase in leg O2 extraction (Table 2.2). 

 
Aging and Leg Free Radical Outflow  
 

Directly measured leg free radical outflow, quantified by femoral arterial to 

venous differences in the EPR signal multiplied by LBF, was unremarkable in both the 

young and old at rest, but was consistently and significantly elevated in the old during 

exercise (Figure 2.2). This greater leg free radical outflow during exercise in the old was 

the combined result of a lower femoral arterial and higher femoral venous EPR signal, 

with the resulting greater arterial to venous difference offsetting the attenuated LBF, such 

that free radical outflow was greater in the old relative to the young (Figure 2.2).  

 
Impact of AOC on antioxidant status, LBF, and LVC 
  

Administration of the AOC significantly improved antioxidant status in both 

young and old individuals, as evidenced by an ~100 % increase in arterial ascorbate 

concentration, as well as a significant 5-10 % increase in the antioxidant capacity of the 

arterial blood assessed by the FRAP assay (Figure 2.3). These robust antioxidant 

increases were present at rest and persisted throughout exercise in both groups (Figure 

2.3). AOC administration resulted in an increase in LBF and LVC relative to the control 

condition in the old at rest (2.4), but there was no impact of the AOC on LBF or LVC 

during exercise (Figure 2.5). 
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Oxidative Stress and Inflammation in Control and AOC Conditions 

Under control conditions, aging was accompanied by a general increase in 

inflammation and oxidative stress (Figures 2.6 and 2.7). Specifically, arterial and venous 

concentrations of the pro-inflammatory cytokines, CRP and IL6, were elevated, and the 

anti-inflammatory cytokine, IL10, attenuated, at rest and during exercise, in the old 

compared to the young (Figure 2.6). However, there were no group differences in the 

outflow of these cytokines from the leg (2.6). In terms of oxidative stress, indices of lipid 

peroxidation (MDA) and protein oxidation (PCs) were greater in the arterial and venous 

blood of old subjects at rest and during exercise compared with the young subjects. 

However, there were no differences in the outflow of these markers of oxidative stress 

from the muscles of the old and young subjects (Figure 2.7). 

Administration of the AOC had no effect on arterial or venous concentrations, or 

the leg outflow, of CRP or IL10 at rest and during exercise. However, during the AOC 

trial there was a small, but significant increase in arterial and venous IL6 concentrations 

and a positive veno-arterial difference in IL6, which translated to greater IL6 outflow 

from the muscle in both young and old subjects at rest and during exercise (2.6). With 

regard to oxidative stress, at rest only in the old did the AOC tend to lower the venous 

EPR signal (p = 0.09) and significantly attenuate this signal in the arterial blood (2.7). 

Other markers of oxidative stress were unaltered by the AOC at rest (Figure 2.7). During 

exercise, the AOC did not impact arterial or venous concentrations, or outflow from the 

muscle, of either free radicals or MDA (Figure 2.7). In the young, however, The AOC 

trial was associated with an increase in the arterial and venous concentration of PCs 

relative to the control condition, but there was no difference in PC outflow (Figure 2.6). 
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Discussion 

With the goal to better understand the age-associated attenuation in LBF, redox 

balance in the femoral artery and vein was assessed in both control and oral AOC 

conditions at rest and during KE in old subjects characterized by attenuated LBF and 

young subjects. By experimental design, under control conditions, LBF was ~15% lower 

in the old compared to the young at rest and during KE. In these control conditions, the 

old exhibited greater leg free radical outflow than the young during KE, assessed by EPR 

spectroscopy. Interestingly, the AOC improved LBF in the old at rest, abolishing the age-

related decrement, but did not alter LBF or free radical outflow in either group during 

exercise. Therefore, this study documents greater free radical outflow during exercise in 

old subjects exhibiting attenuated LBF at rest and during exercise. The observation that 

the AOC ameliorates the attenuated LBF in the old at rest, but fails to alter free-radical 

outflow or LBF during exercise, suggests that the formidable, pro-oxidant state elicited 

by exercise in the old likely necessitates a stronger antioxidant strategy to restore LBF in 

this population.  

 
Aging, LBF, and LVC 
 

The preponderance of evidence suggests that normal, sedentary aging is 

associated with a reduction in limb blood flow at rest (5, 12, 17, 21, 22, 26, 27, 34), and 

that this attenuated blood flow persists during exercise (11, 20-22, 24, 27), although this 

has not been a universal finding (5, 26). Indeed, although LBF and LVC were attenuated 

in the old at rest in the current study, our group recently reported similar LBF and LVC 

values in young and old subjects during KE, despite evidence of an enhanced activity of 

the vasoconstricting peptide, endothelin-1, in the old (5). However, even though some 
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ambiguity exists, there remains a considerable body of literature identifying an age-

associated attenuation in limb blood flow, and as adequate perfusion of the muscle is 

critical to meet muscle metabolic demand and ensure optimal function at rest and during 

exercise (28), understanding the mechanisms that contribute to the apparent impairment 

in vascular control with age remains an important question. Thus, to focus upon this issue, 

at prescreening, older subjects were identified with a >15% attenuation in LBF both at 

rest and during exercise relative to the young (Figures 2.1 and 2.2). Of note, this 

attenuation in LBF during exercise is of a comparable magnitude to that observed 

previously by our group utilizing the same exercise modality, without preselecting the old 

subjects for attenuated LBF (14). Additionally, when blood pressure was continuously 

monitored during the current catheter studies, it became apparent that the attenuated LBF 

in the old was a result of decreased vasodilation in the leg, as LVC was also attenuated in 

comparison to the young (Figures 2.1 and 2.4). However, it is interesting to note that 

despite this attenuation in LBF, leg VO2 was maintained in the old by a compensatory 

increase in leg O2 extraction (Table 2.2). 

 
Aging and Oxidative Stress 
 

Normal, healthy aging has been associated with a pro-inflammatory, pro-oxidant 

phenotype, which has deleterious effects on many physiological processes (15, 31). Acute 

exercise in older individuals has been suggested to contribute to the increase in oxidative 

stress with age (3, 13), although evidence of the impact of aging and exercise on oxidant 

production in humans is largely based on indirect markers of oxidative stress and/or 

samples taken following an exercise bout (3, 13, 25). In the vasculature, excessive 

oxidant production, predominantly in the form of superoxide, has the potential to 
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adversely impact vascular control by decreasing NO bioavailability, which has been 

linked to impaired limb blood flow both at rest (17) and during exercise (10, 20). As 

diminished muscle perfusion may limit physical capacity, and thereby increase 

cardiovascular disease risk (9), understanding the physiological consequences of age and 

exercise on oxidative stress and peripheral hemodynamics is of significant importance.    

 In line with previous findings, the older subjects in the current study demonstrated 

clear evidence of systemic inflammation and oxidative stress (Figures 2.6 and 2.7). 

Specifically, relative to the young, the old subjects exhibited higher circulating levels of 

the pro-inflammatory cytokines CRP and IL6 and lower levels of the anti-inflammatory 

cytokine, IL10 (Figure 2.6). Oxidative stress in the old was evidenced by greater levels of 

lipid peroxidation (MDA) and protein oxidation (PCs) in comparison to the young 

subjects. Furthermore, exercise in the old was associated with amplified oxidant 

production in comparison to the young, as evidenced by a larger, positive veno-arterial 

PBN spin adduct concentration difference and greater free radical outflow, assessed 

directly by EPR spectroscopy (Figure 2.2). As EPR spectroscopy is considered the most 

sensitive, specific, and direct molecular technique for the detection of free radicals (2, 18, 

19), these data provide convincing evidence of the augmented pro-oxidant potential of 

aging and exercise in the vasculature. Interestingly, it is important to recognize that these 

data were collected during relatively light, submaximal (<30% of peak work rate) KE, 

which likely reflects the level of muscular work encountered during many activities of 

daily living. Therefore, these data demonstrate, for the first time, that exercise in older 

individuals, who are characterized by impaired peripheral hemodynamics at rest and 

during exercise, is associated with exaggerated free radical production compared to 
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young subjects.  

 
Antioxidants and Aging at Rest 
 

Antioxidant administration has been utilized extensively in humans to elucidate 

the adverse consequences of oxidative stress on vascular function. Specifically, our group 

has previously documented the capability of the AOC employed in the current study to 

combat age- and disease-related increases in oxidative stress, revealing improvements in 

NO-mediated vascular function, as measured by flow-mediated dilation, in such scenarios 

(16, 33, 35). In addition, Jablonski and colleagues observed a restoration of resting LBF 

and LVC with intra-arterial ascorbate administration, such that LBF and LVC were no 

longer different from that of young subjects, and the augmented LBF in the old was 

suggested to be a result of improved NO bioavailability (17). The findings of the current 

study confirm and extend the observations of Jablonski et al. (17)  in terms of restoring 

resting LBF and LVC in the old, but with a much lower and more readily available, 

antioxidant dose, documenting the efficacy of the AOC as a means to negate the impact 

of age (Figure 2.4). Of note, these significant hemodynamic improvements were coupled 

with an improvement in arterial antioxidant status (Figure 2.3) and a reduction in the 

arterial EPR signal (Figure 2.7) in the old. Thus, these data further implicate oxidative 

stress in the age-associated decline in resting limb blood flow, which may be related to 

reduced NO bioavailability and deteriorating vascular function with age. 

 
Antioxidants and Exercise Responses  
 

With regard to antioxidant delivery to the old during exercise, Kirby et al. (20) 

documented an improvement in limb blood flow during intra-arterial ascorbate infusion, 
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and the increase in hyperemia was abrogated by NOS inhibition (10). In addition, Wray 

et al. (36) observed an increase in perfusion following plantar flexion exercise assessed 

by nuclear magnetic resonance spectroscopy in old subjects following AOC 

administration. In contrast, Nyberg et al. (24) did not observe an impact of arterial N-

acetylcysteine administration on LBF or LVC in older individuals, despite detecting an 

increase in NO metabolites after antioxidant treatment. This study, however, did not 

evaluate the impact of N-acetylcysteine on oxidative stress. In the current study, the 

AOC-induced improvement in antioxidant capacity following AOC administration at rest 

persisted during exercise (Figure 2.3). However, there was no impact of the AOC on free 

radical outflow from the exercising muscle, or positive effects on other circulating 

markers of inflammation and oxidative stress (Figures 2.6 and 2.7), and LBF and LVC in 

the old were unaltered from the control condition during exercise (Figure 2.5). In fact, 

during the second exercise bout with the AOC there was a small increase in IL6 in both 

the old and young subjects (Figure 2.6), which may simply have been a consequence of 

the preceding exercise bout, and PCs were slightly increased in the young (Figure 2.7). 

The surprising increase in PCs in the young, in whom the EPR data indicate lower free-

radical outflow (Figure 2.7), is difficult to interpret, but may indicate differing reaction 

kinetics for the initial free radical “insult” and downstream protein oxidation between 

young and old. Regardless, collectively these data suggest that while the AOC may be 

adequate for decreasing oxidative stress at rest in the old, leading to an improvement in 

LBF and LVC, the combined pro-oxidant potential of old age and exercise may challenge 

the efficacy of the AOC such that there is little impact of this intervention during exercise. 

Further research with different antioxidant strategies may be necessary to fully reconcile 
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the impact of age, elevated free radical production, and impaired peripheral 

hemodynamics during exercise. 

 
Conclusions 
 

With a goal of better understanding the age-associated attenuation in LBF, redox 

balance in the femoral artery and vein was assessed in both control and oral AOC 

conditions at rest and during KE in old subjects characterized by attenuated LBF, and 

young subjects. This approach revealed a greater free radical outflow during exercise in 

old subjects exhibiting attenuated LBF at rest and during KE. While the AOC 

ameliorated the attenuated LBF in the old at rest, the AOC failed to alter free-radical 

outflow or LBF during exercise. This suggests that the formidable, pro-oxidant state 

elicited by exercise in the old likely necessitates a stronger antioxidant strategy to restore 

LBF in this population.  
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Table 2.1 Subject Information 
 
 
 

  Young Old 
Male/Female 9/1 8/2 
Age (yrs) 25 ± 1 68 ± 2* 
Height (cm) 180 ± 2 172 ± 2* 
Weight (kg) 77 ± 3 72 ± 5 
BMI (kg/m2) 24 ± 1 24 ± 1 
Knee Extensor Maximum (W) 48 ± 3 30 ± 3* 
Mean Arterial Blood Pressure (mmHg) 89 ± 2 94 ± 2 
Hemoglobin (g/dL) 16 ± 0.4 16 ± 0.3 
Cholesterol (mg/dL) 157 ± 11 192 ± 9* 
Triglycerides (mg/dL) 78 ± 25 126 ± 18 
HDL (mg/dL) 46 ± 4 53 ± 4 
LDL (mg/dL) 95 ± 8 125 ± 8* 
Physical Activity        Steps/Day 1039 ± 98 923 ± 117 
    Sedentary Time (min/day) 1,215 ± 39 1191 ± 19 
    Low Physical Activity (min/day) 160 ± 34 164 ± 20 
    Moderate Physical Activity (min/day) 42 ± 6 28  ± 4 
    High Physical Activity (min/day) 3.8 ± 3 1 ± 0.5 

*Significantly different from the young, p < 0.05. Values presented as Mean ± Standard 
Error of the Mean.  
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Table 2.2 Selected Physiological Variables at Rest and During Exercise 
 
 
 
Work 
Rate    Rest 3 Watts 6 Watts 9 Watts 

Young 

Mean arterial pressure, mmHg CTRL 111±2 114±2 115±2 114±2 
AOC 107±2 111±2 112±3 111±2 

Heart rate, beats/min CTRL 63±3 74±3 75±4 78±4 
AOC 64±3 72±4 75±4 77±4 

Arterial O2 content, ml/dl CTRL 20.8±0.6 20.8±0.6 20.9±0.6 20.8±0.6 
AOC 20.8±0.6 20.9±0.6 20.8±0.6 20.8±0.6 

Leg O2 delivery, ml/min CTRL 63±5 343±29 367±17 409±20 
AOC 62±6 325±30 379±18 406±18 

Leg a-vO2 difference, ml/dl CTRL 8±0.4 11.5±0.3 11.9±0.3 12±0.4 
AOC 7.6±0.6 11.6±0.5 11.6±0.5 12.2±0.4 

Leg VO2 ,ml/min CTRL 24±2 189±18 209±11 235±8 
AOC 23±2 181±11 210±9 234±11 

Old 

Mean arterial pressure, mmHg CTRL 116±2 125±4* 125±4* 128±2* 
AOC 115±2 124±3* 125±4* 127±4* 

Heart rate, beats/min CTRL 65±3 72±3 74±4 78±4 
AOC 64±3 74±4 76±4 80±5 

Arterial O2 content, ml/dl CTRL 20.9±0.5 20.7±0.4 20.7±0.5 20.8±0.5 
AOC 20.7±0.5 20.7±0.4 20.9±0.5 20.9±0.5 

Leg O2 delivery, ml/min CTRL 52±5* 284±16* 322±15* 364±20* 
AOC 61±6# 285±13* 346±14 382±19* 

Leg a-vO2 difference, ml/dl CTRL 9±0.5 13.2±0.3* 13.5±0.3* 13.4±0.4* 
AOC 9±0.3 13.3±0.3* 13.7±0.4* 13.6±0.4* 

Leg VO2, ml/min CTRL 22±3 181±11 211±12 234±15 
AOC 26±3 182±12 226±9 248±11 

*Significantly different from the young, p < 0.05. #Significantly different from control 
condition (CTRL), P < 0.05. AOC, antioxidant cocktail. Values presented as Mean ± 
Standard Error of the Mean.  
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Figure 2.1 Impact of age on leg blood flow and leg vascular conductance at rest and 
during knee extensor exercise. Values are presented as mean ± S.E.M *Significantly 
different from the young, p < 0.05. 
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Figure 2.2 Impact of age on the electron paramagnetic resonance (EPR) spectroscopy 
signal of α-phenyl-tert-butylnitrone (PBN) radical adducts in arterial and venous blood, 
and free radical outflow at rest and during knee extensor exercise. Free radical outflow 
was determined by multiplying the arterial to venous PBN adduct difference by leg blood 
flow. Values are presented as mean ± S.E.M *Significantly different from the young, p < 
0.05 
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Figure 2.3 Percent change in arterial antioxidant status from control conditions following 
administration of an oral antioxidant cocktail (AOC) in young and old subjects at rest and 
during exercise (pooled data from 3, 6, and 9 Watts). FRAP, ferric reducing ability of 
plasma. Values are presented as mean ± S.E.M. *Significant difference from control 
condition, p < 0. 05.   
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Figure 2.4 Impact of antioxidant cocktail (AOC) administration on leg blood flow and 
leg vascular conductance in young and old subjects at rest. CTRL, control conditions. 
Values are presented as mean ± S.E.M. *Significantly different from the young, p < 0.05. 
#Significantly different from the AOC condition.  
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Figure 2.5 Impact of antioxidant cocktail (AOC) administration on leg blood flow and 
leg vascular conductance in young and old subjects at rest and during knee extensor 
exercise. CTRL, control conditions. Values are presented as mean ± S.E.M. *Significant 
difference from CTRL condition, p < 0. 05. 
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Figure 2.6 Arterial and venous concentrations, and outflow of markers of inflammation. 
Outflow was determined by multiplying the arterial to venous concentration difference by 
leg blood flow. CRP, C-reactive protein. Values are presented as mean ± S.E.M. ǂ	  Main 
effect of age, p < 0.05. *Significant difference from control (CTRL) condition within 
young, p < 0. 05. #Significant difference from CTRL condition within old, p < 0. 05.	  
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Figure 2.7 Arterial and venous concentrations, and outflow of markers of oxidative stress. 
Outflow was determined by multiplying the arterial to venous concentration difference by 
leg blood flow. EPR, electron paramagnetic resonance. Values are presented as mean ± 
S.E.M. ǂ	   Main effect of age, p < 0.05. *Significant difference from control (CTRL) 
condition within young, p < 0. 05. #Significant difference from CTRL condition within 
old, p < 0. 05. 
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Abstract 
 

The consequence of elevated oxidative stress on exercising skeletal muscle blood 

flow, and the transport and utilization of oxygen (O2), in patients with chronic obstructive 

pulmonary disease (COPD) is not well understood. This study examined the impact of an 

oral antioxidant cocktail (AOC) on skeletal muscle blood flow and O2 consumption 

during dynamic, small muscle mass exercise in 16 patients with COPD and 16 healthy 

subjects. Subjects performed submaximal (3W, 6W, and 9W) single-leg knee extensor 

exercise (KE) while leg blood flow (Doppler ultrasound), mean arterial pressure, arterial 

O2 saturation, leg arterial-venous O2 difference, and leg O2 consumption (direct Fick) 

were evaluated under control conditions (CTRL) and following AOC administration. 

AOC administration increased leg blood flow (3W: 1604±100 vs 1798±128; 6W: 

1832±109 vs 1992±120; 9W: 2035±114 vs 2187±136 ml/min, P<0.05, CTRL vs AOC, 

respectively), leg vascular conductance, and leg O2 consumption (3W: 173±12 vs 

210±15; 6W: 217±14 vs 237±15; 9W: 244±16 vs 260±18 ml O2/min, P<0.05, CTRL vs 

AOC, respectively) during exercise in COPD, while no effect was observed in the healthy 

subjects. In addition, the AOC afforded a small, but significant, improvement in arterial 

O2 saturation only in the patients (3W: 92±1 vs 93±1; 6W: 92±1 vs 93±1; 9W: 92±1 vs 

93±1%, P<0.05, CTRL vs AOC, respectively). Thus, these data demonstrate a novel, 

beneficial role of AOC administration on exercising skeletal muscle blood flow, O2 

utilization, and oxygenation at the lung in patients with COPD, implicating oxidative 

stress as a potential therapeutic target for impaired exercise capacity in this population.  
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Introduction 

 COPD is a pro-inflammatory condition that primarily impacts the lungs, resulting 

in diminished pulmonary function (24). Other detrimental sequelae of this condition 

include mitochondrial (30) and skeletal muscle (26) dysfunction, and, consequently, 

exercise intolerance and decreased fatigue resistance are recognized hallmarks of patients 

with COPD (2). Interestingly, peripheral vascular function is also impaired in these 

patients (19). As the vasculature plays a critical role in regulating skeletal muscle blood 

flow (32), and therefore the delivery of O2 and nutrients, poor vascular function also has 

the potential to influence exercise capacity and fatigability in this population (35).  

However, the mechanistic link between COPD, vascular dysfunction, and exercising 

skeletal muscle blood flow remains to be elucidated.  

 Peripheral vascular dysfunction in COPD has been attributed to numerous factors, 

including systemic inflammation and oxidative stress (17, 19). Indeed, relative to age-

matched healthy subjects, both elevated systemic inflammation and oxidative stress have 

been well documented, in patients with COPD (5, 19, 27). Specific to oxidative stress, 

our group has recently demonstrated the beneficial effects of an acutely administered, 

oral antioxidant cocktail (AOC) on vascular function, as assessed by flow-mediated 

dilation, in patients with COPD (19). The AOC, and the dosing strategy employed, has 

previously been documented to reduce O2 and carbon centered free radicals in patients 

with COPD (36). Thus, the improvement in vascular function following AOC 

administration in the prior work was attributed to the free radical scavenging ability of 

the AOC, restoration of the redox balance in the patients, and subsequent improvement in 

nitric oxide (NO) bioavailability (19). Based on these findings, targeting oxidative stress 



	  

48	  	  

with an acute AOC appears to represent a viable mechanism for improving NO 

bioavailability and peripheral vascular function in patients with COPD.  

 The role of NO in regulating exercising skeletal muscle blood flow is equivocal 

(15, 29, 38). Crecelius et al. (15), however, documented that an intra-arterial infusion of 

ascorbate improved forearm blood flow in older individuals during rhythmic handgrip 

exercise, and this effect was abrogated when ascorbate was co-infused with a NO 

synthase inhibitor. In addition, Wray et al. (38) documented elevated end plantar flexion 

exercise muscle perfusion, assessed by nuclear magnetic resonance spectroscopy, 

following administration of the AOC in older individuals. Collectively, these studies 

implicate antioxidant administration, free radical scavenging, and improved NO 

bioavailability as potential mechanisms to improve exercise hyperemia. Additional 

rationale for examining the contribution of NO in the regulation muscle blood flow 

during exercise in COPD comes from the observation that NO has also been suggested to 

play a substantial role in hypoxic “compensatory vasodilation,” whereby blood flow is 

increased to maintain O2 delivery when arterial O2 content is reduced (11, 12). Therefore, 

although bulk blood flow is typically not reduced in COPD (34), this pathology is 

associated with elevated oxidative stress, and can be associated with periodic reductions 

in arterial O2 content. Both of these may be exacerbated during exercise (21), with 

decreased NO bioavailability perhaps playing an especially deleterious vascular role in 

terms of O2 transport and utilization in the muscle bed of patients with COPD.  

 Therefore, the purpose of this study was to examine the impact of an acutely 

administered oral AOC on muscle blood flow and O2 transport in the exercising skeletal 

muscle of patients with COPD and healthy subjects. We tested two hypotheses: first, that 
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the redox balance, as assessed by antioxidant status relative to markers of oxidative 

stress, would be abnormal in patients with COPD relative to healthy subjects, and second, 

administration of the AOC would remedy the redox imbalance in patients with COPD 

and improve exercising skeletal muscle blood flow, with less of an effect in healthy 

subjects. 

 
Methods 

 
Subjects 

A total of 32 subjects, 16 patients with spirometric evidence of COPD, and 16 age 

and sex matched healthy subjects, completed this study. Subjects with overt 

cardiovascular disease, or other confounding conditions, such as diabetes, were excluded 

from the study. All subjects performed standard pulmonary function tests during an initial 

visit to the laboratory. General morphometric characteristics, and peak KE work rate, 

were also determined during this visit. Physical activity was assessed using an 

accelerometer (GT1M; Actigraph, Pensacola, FL), worn for seven continuous days, in a 

subset of 10 patients with COPD and 10 healthy subjects. Average total daily physical 

activity was expressed as both average steps per day, and average total accelerometer 

counts per minute. The latter assessment was parsed into sedentary, low-, moderate-, 

high-intensity activity using device-specific software (Actilife, Actigraph, Pensacola, 

FL). The Institutional Review Boards of the University of Utah and the Salt Lake City 

VA Medical Center approved all protocol and written, informed consent was obtained 

from all participants prior to their inclusion in the study. 
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Exercise Protocols and General Procedures 

On the experimental day, subjects reported to the laboratory following a 12 hour 

fast and rested for ~30 minutes prior to all procedures. Subsequently, catheters were 

placed in the femoral artery and vein using sterile technique, as previously described (3). 

After catheter placement, subjects rested for an additional 30 minutes before beginning 

KE exercise as presented in Figure 3.1. KE exercise was performed at 60 rpm on a cycle 

erogmeter (Monark, Sweden) modified to allow KE exercise (33). Briefly, this exercise 

modality recruits the quadriceps muscle group for active leg extension from 90 to ~170 

degrees before a lever arm attached to a flywheel passively returns the leg to 90 degrees. 

Due to the potentially long-lasting effects of the AOC, the AOC trial was always 

performed after the CTRL condition. However, of note, our group has previously 

documented the reproducibility of hemodynamic measurements achieved with this serial 

exercise testing experimental design, without an intervention, across a range of exercise 

intensities (7). Each workload  (3, 6, and 9 Watts) was sustained for 3 minutes. One-

minute of rest was allowed between each stage. Leg blood flow, mean arterial pressure 

(MAP), leg O2 consumption, and heart rate (HR) were assessed during the last minute of 

baseline and each exercise stage. Blood samples were taken anaerobically during the last 

minute of both baseline and each exercise stage. 

 
Antioxidant Supplementation 
 

All subjects were instructed to refrain from vitamin supplementation for at least 

five days prior to data collection. On the experimental day, the AOC was administered in 

a split dose, consumed 2 and 1.5 hours prior to the second exercise bout, to improve 

absorption and maximize the time of antioxidant efficacy. The first dose consisted of 300 
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mg α-lipoic acid, 500 mg vitamin C and 200 IU of vitamin E, and the second dose 

consisted of the same amounts of α-lipoic acid and vitamin C and 400 IU of vitamin E. 

This AOC, and the dosing strategy employed, has been previously documented to lower 

carbon and O2-centered free radical levels, as measured by EPR spectroscopy, and 

improve vascular function in patients with COPD (19, 36). 

 
Central Cardiovascular Responses  
 

Arterial blood pressure measurements were collected continuously from an 

indwelling catheter placed in the common femoral artery, with the pressure transducer at 

the level of the catheter (Transpac IV, Abbott Laboratories). MAP (in mmHg) was 

calculated as follows: MAP = diastolic arterial pressure + (arterial pulse pressure × 0.33). 

Heart rate was monitored from a standard three-lead ECG, a component of the data-

acquisition device (Biopac, Goleta, CA).  

 
Leg Blood Flow and Vascular Conductance 
 

Measurements of femoral artery blood velocity and vessel diameter in the leg 

being studied were performed at rest and during the last minute of each exercise stage, 

using a Logic 7 ultrasound system (General Electric Medical Systems, WI, USA) as 

previously described (8). The Logic 7 was equipped with a linear array transducer, 

operating at an imaging frequency of 9 MHz. The blood velocity profile was obtained 

with the same transducer with a Doppler frequency of 5 MHz operated in the high-pulsed 

repetition frequency mode. Blood flow in the femoral artery was calculated as: leg blood 

flow = (mean velocity)π(vessel diameter/2)2 × 60. Leg vascular conductance was 

calculated as leg blood flow/arterial catheter-derived MAP. 
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Blood Analysis 

A standard lipid panel was obtained for all subjects. At rest, and in the last 15 s of 

each exercise stage, femoral arterial and venous blood samples (1-2 ml) were collected. 

One ml of each sample was presented to a GEM 4000 blood gas analyzer and cooximeter 

(Instrumentation Laboratories, Bedford, MA) to obtain arterial and venous blood 

hemoglobin (Hb) concentration and O2 saturation (SO2), the partial pressure of O2 (PO2) 

and carbon dioxide, lactate and pH. Arterial (CaO2) and venous (CvO2) blood O2 content 

(in ml/dl) were calculated as: blood O2 content = 1.39 (Hb) x O2 saturation/100) + 0.003 x 

PO2. Leg O2 consumption (VO2; in ml/min) was calculated as: VO2 = (CaO2 – CvO2) x leg 

blood flow.   

 
Oxidative Stress and Inflammation 
 

Venous blood samples taken at rest were centrifuged to collect plasma, and the 

plasma samples were stored at -80°C until analysis. Lipid peroxidation, a marker of 

oxidant damage, was assessed by plasma malondialdehyde (MDA) levels (Bioxytech 

LPO-586, Foster City, CA). Total antioxidant capacity was evaluated by determining the 

ferric reducing ability of plasma (FRAP), using the method described by Benzie and 

Strain (9). The efficacy of the AOC specific to plasma ascorbate levels was assayed as 

previously described (10) (CosmoBio, Carlsbad, CA). Endogenous antioxidant activity 

was assessed by catalase activity in the plasma (37) (Cayman Chemical Company, Ann 

Arbor, MI). Plasma C-reactive protein levels, an index of systemic inflammation, were 

determined by a high sensitivity ELISA assay (R & D Systems, Minneapolis, MN). 

 

 



	  

53	  	  

Statistical Analysis 

Two-way	  repeated-measures analysis of variance (ANOVA) was used to identify 

significant changes in measured variables due to AOC administration within healthy 

subjects and the patient group. Two-way ANOVA was used to determine the impact of 

COPD on the measured physiological variables during exercise, and to evaluate the effect 

of the AOC on indices of antioxidant status, inflammation, and oxidative stress. A Tukey 

post hoc analysis was used if a significant main effect is found. Statistical significance 

was set at α = 0.05 for all tests. All group data are expressed as mean ± standard error of 

the mean. 

 
Results 

 
Subject Characteristics 

Subject characteristics are documented in Table 3.1. Patients with COPD 

exhibited reduced pulmonary function relative to healthy subjects, and blood gas 

characteristics consistent with COPD (Table 3.1). Apart from pulmonary function, 

arterial blood gases, and pulmonary disease medications, the healthy subjects were well 

matched with the patients with COPD (Table 3.1). By experimental design, physical 

activity levels were similar between healthy subjects and the patient group, resulting in 

similar peak KE work rates between groups (Table 3.1). Two of the patients with COPD 

were current smokers, who refrained from the use of tobacco products for 12 hours prior 

to all data collection. Four patients qualified for supplemental O2; only one of these 

patients, however, required the use of supplemental O2 during exercise (the blood gas 

data for the individual utilizing supplemental O2 was excluded from the analyses). 
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Antioxidants, Oxidative Stress and Inflammation  

Baseline plasma ascorbate was not different between patients with COPD and 

healthy subjects (Figure 3.2C). Relative to healthy subjects, patients with COPD 

exhibited a reduced antioxidant capacity, as assessed by FRAP (Figure 3.2B). In addition, 

C-reactive protein, a marker of systemic inflammation, was elevated in patients with 

COPD compared to healthy subjects (Figure 3.2A). Plasma catalase activity and 

malondialdehyde levels were not different between patients with COPD and healthy 

subjects (Figure 3.2D and E, respectively). Administration of the AOC increased plasma 

ascorbate levels similarly in both groups (Figure 3.2C). Interestingly, however, both 

FRAP (Figure 3.2B) and catalase activity (Figure 3.2D) were only increased in the 

patients with COPD as a consequence of ingesting the AOC. 

 
Resting Responses 
 

In patients with COPD at rest, administration of the AOC did not impact MAP, 

leg blood flow, vascular conductance, HR, CaO2, leg arterial-venous O2 difference, net 

lactate release or venous pH (Table 3.2), however, arterial O2 saturation was elevated 

slightly (91.7 ± 1.3 vs 92.2 ± 1.1%, CTRL vs AOC, respectively), but significantly. In 

contrast, in the healthy subjects, leg blood flow and vascular conductance were elevated 

following the AOC consumption, while the other measured variables were unchanged 

(Table 3.2). 

 
Exercise Responses  
 

During exercise at 3, 6, and 9 W, leg blood flow was elevated relative to the 

CTRL condition following AOC consumption in patients with COPD (Figure 3.3A, 
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Table 3.2). The elevated leg blood flow, in combination with an unaltered arterial-venous 

O2 difference, resulted in an increase in leg O2 consumption in the AOC condition in the 

patients with COPD (Figure 3.3). In the healthy subjects, leg blood flow, arterial-venous 

O2 difference, and leg O2 consumption, and were unaltered by AOC administration 

(Figure 3.3A, B, and C, Table 3.2). In addition, leg vascular conductance was elevated 

with the AOC over the control condition in the patients with COPD (Figure 3.4), but not 

in the healthy subjects. This was also the case for SaO2 (Figure 3.5A). PaO2, however, 

was somewhat randomly elevated at 6W in the healthy subjects (Figure 3.5B), but not 

different in patients with COPD. CaO2 was not different between conditions in either 

group, because in the patient group the elevated SaO2 was offset by a small, but 

significant, decrease in hemoglobin concentration during exercise in the AOC condition 

(Table 3.2). 

 
Discussion 

 
This study examined the impact of an acutely administered, oral AOC with 

previously documented efficacy, on exercise-induced skeletal muscle blood flow, 

vasodilation, O2 transport and utilization during small muscle mass exercise in patients 

with COPD and age and sex matched healthy subjects. Patients with COPD exhibited 

basal evidence of elevated inflammation and reduced antioxidant capacity. AOC 

consumption improved the abnormal redox balance in the patients, and these alterations 

were associated with favorable changes in the central and peripheral cardiorespiratory 

responses to exercise. Specifically, leg blood flow and vascular conductance during 

single-leg KE was augmented in patients with COPD following AOC consumption, while 

no changes were observed in the healthy subjects. The elevation in limb blood flow, in 
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combination with an unaltered arterial-venous O2 difference from control conditions, led 

to increased O2 consumption during exercise in the patients with COPD. In addition, 

arterial O2 saturation was improved, at rest and during exercise, in patients with COPD 

with the AOC, whereas there was no apparent effect in the healthy subjects. These data 

demonstrate beneficial effects of antioxidant administration on exercise-induced 

hemodynamics and skeletal muscle metabolism in patients with COPD, and indicate that 

impaired O2 transport, as a consequence of elevated oxidative stress, may represent a 

novel mechanistic link between oxidative stress and exercise intolerance in this 

population.  

 
Oxidative Stress and Exercise 
 

Oxidative stress has previously been documented to be elevated in patients with 

COPD relative to age-matched, healthy subjects at rest (5, 19, 27). In addition, indices of 

oxidative stress, such as protein carbonyls, have been inversely correlated with disease 

severity (5). Exercise appears to especially augment oxidative stress in patients with 

COPD, and as such, markers of oxidative damage are typically elevated in patients with 

COPD in comparison to healthy subjects following exercise (27). Interestingly, this 

amplified oxidant production during exercise in COPD occurs following exercise which 

minimally taxes the pulmonary system, such as isolated quadriceps exercise (13, 14), 

implying that organs beyond the lung may be contributing to the free radical production. 

Increased oxidative stress in patients with COPD has been attributed to mitochondrial 

electron transport chain dysfunction (30) and the systemic inflammation (24) 

accompanying COPD, among other factors (31).  
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The current data support the concept of elevated oxidative stress and 

inflammation in patients with COPD. Specifically, decreased plasma antioxidant capacity 

and increased C-reactive protein levels were documented in the patients with COPD 

relative to the healthy subjects (Figure 3.2). Administration of the AOC partially 

corrected the pro/antioxidant imbalance only in the patient group, increasing both FRAP 

and catalase activity, with minimal effects in healthy subjects (Figure 3.2). Although not 

examined in the current study, these data are accordance with the previously observed 

free-radical diminishing effects of the AOC in patients with COPD using ex vivo spin-

trapping and electron paramagnetic resonance spectroscopy (19, 36). In the current study, 

the absence of a change in antioxidant or oxidant status in the healthy subjects, despite an 

equal increase in plasma ascorbate (Figure 3.2A), is likely due to the absence of a 

substantial redox imbalance in these healthy individuals. Thus, these data further 

document elevated oxidative stress in patients with COPD, as well as beneficial effects of 

antioxidant administration on redox balance in patients with COPD, that may be useful in 

the face of the elevated free radical production associated with exercise in this 

population.  

 
Exercise Hyperemia and Oxidative Stress 
 

Independent of COPD, aging itself is associated with a pro-inflammatory, pro-

oxidant phenotype, which has been implicated as a causative factor in the age-associated 

decline in vascular function (16). As such, previous research has suggested that the 

increase in oxidative stress with age may impair resting limb blood flow and exercise 

hyperemia (11, 12, 15, 38). In this context, antioxidant administration has been 

documented to augment resting blood flow and exercise-induced hyperemia in older 
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individuals (15, 20, 38), although this is not a universal observation (29). Likewise, an 

abnormal pro/antioxidant balance has repeatedly been documented in patients with 

COPD (5, 19, 25), as observed in the current study (Figure 3.2). In addition, our group 

has previously observed beneficial effects of AOC administration on vascular function in 

patients with COPD (19). Collectively, therefore, these observations support the 

possibility that oxidative stress, and the consequent decrease in NO bioavailability, may 

negatively impact skeletal muscle blood flow in this population. Similar to previous 

research in older individuals, the current data, for the first time, demonstrate an 

augmented exercise-induced hyperemia following AOC administration in patients with 

COPD (Figure 3.3A). Interestingly, there was a positive relationship between the change 

in FRAP and the change in limb blood flow from the CTRL condition (r = 0.45), further 

implying an association between improved antioxidant status and improved exercise 

hyperemia. This increase in blood flow in the patients with COPD was observed across 

all submaximal workloads (Figure 3.3), and can be attributed to an increase in limb 

vascular conductance (Figure 3.4), as MAP was unaffected by AOC administration. 

These data imply an increase in leg vasodilation during exercise in the patients with 

COPD, providing a novel mechanism to target with the goal of improving O2 transport in 

this population. 

In the presence of increased limb blood flow following AOC administration, and 

no change in arterial-venous O2 difference, exercising skeletal muscle O2 consumption 

was elevated in the patients with COPD (Figure 3.3). Although the typical response to 

augmented O2 delivery is to decrease O2 extraction, and thereby maintain O2 

consumption, according to the Fick principle (18), there is growing evidence that skeletal 
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muscle can adjust VO2 at a given workload when O2 availability is altered (3, 4, 6, 23, 

28). These changes in VO2, accompanying alterations in O2 delivery, do not always result 

in compensatory changes in glycolytic metabolism, suggestive of intramuscular changes 

in energy turnover (28), which may have favorable effects on skeletal muscle fatigue 

development. Indeed, it has previously been demonstrated that augmented leg blood flow 

during submaximal KE in heart failure patients resulted in an increase in skeletal muscle 

VO2, which attenuated exercise-induced skeletal muscle fatigue (1, 4). The data from the 

current study suggest that augmenting exercise hyperemia, by reducing oxidative stress 

with the AOC, may enhance aerobic metabolism during exercise in patients with COPD, 

without altering glycolytic metabolism, as evidenced by a lack of an effect of the AOC on 

lactate release (Figure 3.3C, Table 3.2). As enhanced aerobic metabolism during exercise 

has been associated with a greater fatigue resistance during exercise (1, 4), it is tempting 

to speculate that increased aerobic metabolism during exercise may enhance fatigue 

resistance in patients with COPD. 

 
Central Responses 

Secondary to a significant ventilation-perfusion mismatch in the diseased lungs of 

patients with COPD (21), depressed arterial O2 saturation is common in patients with 

COPD and is typically associated with a reduced arterial PO2. In addition, the degree of 

hypoxemia is inversely related to exercise capacity, and hypoxemia exacerbates oxidative 

stress in patients with COPD (22). As expected, the patients with COPD in the current 

study exhibited reduced PaO2 and SaO2 relative to healthy subjects at rest (Table 3.1) and 

during exercise (Figure 3.5). Interestingly, following administration of the AOC, a small, 

but significant, increase in arterial O2 saturation was observed in patients with COPD, 
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both at rest (Table 3.2) and during exercise (Figure 3.5A), with no effect in healthy 

subjects. The changes in SaO2 were observed without any changes in PaO2, suggestive of 

an increase in the O2 affinity for hemoglobin, which may have been related to a decrease 

in exercise-induced acidosis as a consequence of the increase in aerobic metabolism 

afforded by the AOC (Figure 3.3C), although no measurable changes in lactate or pH 

were observed. Although the practical significance of the ~1% increase in saturation is 

questionable, as this increase was accomplished with a relatively small antioxidant dose, 

the impact on saturation of further decreases in oxidative stress with a more potent 

antioxidant intervention potentially deserves further examination. An increase in SaO2 

has the potential to improve CaO2 and O2 delivery, which would likely have beneficial 

effects for exercising skeletal muscle (1). CaO2, however, was not altered in the patients 

in the current study because of the small, but significant, decrease in hemoglobin 

concentration that offset the increased SaO2, and maintained CaO2 (Table 3.2). These data 

do, however, suggest that reducing oxidative stress in patients with COPD has the 

potential to attenuate arterial hypoxemia, which may improve exercise tolerance in this 

population. 

 
Summary and Conclusions 
 

The purpose this study was to examine the impact of an AOC on oxidative stress 

and antioxidant capacity, and subsequently exercise hemodynamics during small muscle 

mass exercise in patients with COPD and healthy subjects. Patients with COPD exhibited 

evidence of reduced antioxidant capacity relative to healthy subjects. Administration of 

the AOC improved the redox balance in the patients with COPD, with little effect in the 

healthy subjects. These favorable changes in redox balance were accompanied by 
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improved exercise hyperemia and leg vascular conductance as well as increased skeletal 

muscle O2 consumption during submaximal knee-extensor exercise in patients with 

COPD, while minimal effects were observed in healthy subjects. In addition, arterial O2 

saturation was improved at rest and during exercise in patients with COPD following 

AOC administration. Collectively, these data illustrate the role of oxidative stress in the 

integration of O2 transport and utilization during exercise in this population, and further 

implicate oxidative stress in the systemic pathophysiological consequences of COPD.   
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Table 3.1 Descriptive characteristics 
 
 
  

	  	  

  Healthy Subjects COPD 

Age, yr  68 ± 2 62 ± 3 

Male/Female  13/3 13/3 

Height, m 1.73 ± 0.02 1.74 ± 0.02 

Weight, kg 75 ± 4 85 ± 4 

BMI, kg/m2  25  ± 1 28  ± 1 

Peak knee-extensor work rate, W 31 ± 3 26 ± 3 

Glucose, mg/dl 84 ± 4 84 ± 3 
Cholesterol, mg/dl 201 ± 14  202 ± 16 

HDL, mg/dl  52 ± 3 61 ± 5 

LDL, mg/dl  132 ± 10 120 ± 13 

Triglycerides, mg/dl  94 ± 16 117 ± 14 

Pulmonary function  

	   	        Forced vital capacity, l (% predicted) 4.7 ± 0.3 (113 ± 5) 4.1 ± 0.3* (94 ± 5*) 
      Forced expiratory volume in one s, l/s (% predicted) 3.4 ± 0.2 (115 ± 4) 1.8 ± 0.2* (54 ± 6*) 

      FEV1/FVC (%) 75 ± 1 48 ± 4* 

Resting arterial blood gases 

	   	        Oxyhemoglobin, % 94.4 ± 0.5 91.7 ± 1.2* 

      Partial pressure of oxygen, mmHg 87 ± 4 71 ± 3* 

      Partial pressure of carbon dioxide, mmHg 30 ± 1 35 ± 1* 
      Bicarbonate, mmol/l 19.7 ± 0.5 23.4 ± 0.8* 

      pH 7.43 ± 0.01 7.43 ± 0.01 

Medications (% of Group) 

	   	        Long Acting Beta Agonists 0% 26% 

      Short Acting Beta Agonists 0% 80% 

      Acetylcholine Antagonists 0% 53% 
      Inhaled Corticosteroids 15% 33% 

Physical Activity, n = 10/group    
     Sedentary, min/day 1215 ± 17 1156 ± 75 

     Light, min/day 153 ± 9 127 ± 20 

     Moderate, min/day 26 ± 5 15 ± 6 

     High, min/day 0.4 ± 0.2 0.1 ± 0.01* 

     Steps, counts/day 5101 ± 671 3798 ± 728 

COPD, Chronic Obstructive Pulmonary Disease; FEV1/FVC, forced expiratory volume 
in one s relative to forced vital capacity; BMI, body mass index; Values expressed as 
mean ± S.E.M. *Significantly different from healthy subjects. 
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Table 3.2 Impact of Antioxidant Cocktail (AOC) Administration on Physiological 
Variables 
 
 
  
Work Rate        Rest 3 Watts 6 Watts 9 Watts 

Healthy Subjects 

Mean arterial pressure, mmHg 
CTRL 119±2 127±3 125±2 127±3 
AOC 117±2 124±2 125±3 127±2 

Leg blood flow, ml/min 
CTRL 282±37 1591±77 1856±80 2113±99 
AOC 322±35* 1674±105 1934±107 2126±125 

Leg vascular conductance, 
ml/min/mmHg 

CTRL 2.4±0.2 12.6±0.6 14.9±0.6 16.7±0.8 
AOC 2.8±0.3* 13.1±0.8 15.4±0.9 16.7±1.0 

HR, beats/min 
CTRL 64±2 76±4 78±4 81±5 
AOC 64±2 77±4 79±4 83±5 

Leg O2 Delivery, l/min 
CTRL 0.06±.01 0.31±0.03 0.36±0.02 0.41±0.02 
AOC 0.06±0.01 0.32±0.02 0.38±0.02 0.41±0.02 

Hemoglobin, g/dl 
CTRL 15±0.3 14.8±0.2 14.8±0.2 14.8±0.2 
AOC 14.8±0.4 15.0±0.3 14.8±0.2 14.8±0.2 

Arterial O2 Content, ml/dl 
CTRL 19.9±0.3 19.6±0.2 19.6±0.2 19.7±0.3 
AOC 19.6±0.3 19.8±0.3 19.8±0.3 19.7±0.3 

Net lactate release, mmol/min 
CTRL 8±18 338±82 417±113 975±179 
AOC 34±10 343±99 571±184 799±212 

Venous pH 
CTRL 7.41±0.01 7.31±0.01 7.30±0.01 7.29±0.01 

AOC 7.38±0.01 7.29±0.02 7.28±0.02 7.27±0.02 
                                                                                         COPD 

Mean arterial pressure, mmHg 
CTRL 129±4# 137±4# 137±4# 138±4# 
AOC 131±4# 138±4# 136±4# 140±4# 

Leg blood flow, ml/min 
CTRL 281±37 1604±100 1832±109 2036±114 
AOC 315±38 1798±128* 1992±120* 2187±136* 

Leg vascular conductance, 
ml/min/mmHg 

CTRL 2.1±0.3 12.0±0.9 13.8±1.1 15.2±1.3 
AOC 2.3±0.3 13.5±1.2* 15.2±1.3* 16.7±1.5* 

HR, beats/min 
CTRL 72±4 87±4 90±4 92±4 
AOC 72±4 85±4 87±4 90±4 

Leg O2 Delivery, l/min 
CTRL 0.05±0.01 0.3±0.02 0.34±0.02 0.38±0.02 
AOC 0.06±0.01 0.32±0.02 0.36±0.02 0.39±0.03 

Hemoglobin, g/dl 
CTRL 14.0±0.4 14.3±0.4 14.1±0.4 14.3±0.4 
AOC 13.9±0.4 13.8±0.4* 14.0±0.4* 13.8±0.4* 

Arterial O2 Content, ml/dl 
CTRL 18.1±0.4# 18.5±0.4# 18.2±0.4# 18.5±0.5# 
AOC 18.0±0.4# 17.9±0.4# 18.3±0.4# 18.0±0.4# 

Net lactate release, mmol/min 
CTRL 48±7 1777±373# 1968±369# 2083±442# 
AOC 70±11 1606±346# 1596±298# 2258±461# 

Femoral Venous pH 
CTRL 7.38±0.01 7.29±0.02 7.28±0.02 7.27±0.02 
AOC 7.38±0.01 7.31±0.02 7.29±0.02 7.28±0.02 

Values expressed as mean ± S.E.M. *Significantly different from control (CTRL) 
conditions. #Significantly different from healthy subjects 
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Figure 3.1 Experimental protocol. Arrows indicate points at which leg blood flow was 
recorded and arterial and venous blood samples were obtained.  
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Figure 3.2. Impact of an antioxidant cocktail (AOC) on indices of inflammation, 
antioxidant capacity and oxidative stress in patients with chronic obstructive pulmonary 
disease (COPD) and healthy subjects. Values are presented as mean ± S.E.M 
*Significantly different from the control (CTRL) conditions, p < 0.05. #Significantly 
different from healthy subjects, p < 0.05. 
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Figure 3.3 Impact of an antioxidant cocktail (AOC) on exercising limb blood flow (A), 
oxygen extraction (B) and oxygen consumption (C) in patients with chronic obstructive 
pulmonary disease (COPD) and healthy subjects. Values are presented as mean ± S.E.M. 
*Main effect of AOC, p < 0.05.  
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Figure 3.4 Impact of an antioxidant cocktail (AOC) on leg vascular conductance during 
exercise in patients with chronic obstructive pulmonary disease (COPD) and healthy 
subjects. Values are presented as mean ± S.E.M. *Significantly different from the control 
(CTRL) conditions within patients with COPD.  
 
 
 
 



	  

72	  	  

 
 
 
 
Figure 3.5 Impact of an antioxidant cocktail (AOC) on arterial oxygen saturation (A) and 
partial pressure (B) during exercise in patients with chronic obstructive pulmonary 
disease (COPD) and healthy subjects. Values are presented as mean ± S.E.M. *Main 
effect of AOC, p < 0.05. 
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Chronic obstructive pulmonary disease (COPD) is associated with
systemic oxidative stress and skeletal muscle dysfunction. The pur-
pose of this study was to examine the impact of intravenous ascorbate
administration (AO) on biological markers of antioxidant capacity and
oxidative stress, and subsequently skeletal muscle function during
dynamic, small muscle mass exercise in patients with COPD. Ten
patients with spirometric evidence of COPD performed single-leg
knee extensor (KE) trials matched for intensity and time (isotime)
following intravenous ascorbate (2 g) or saline infusion (PL). Quad-
riceps fatigue was quantified by changes in force elicited by maximal
voluntary contraction (MVC) and magnetic femoral nerve stimulation
(Qtw,pot). AO administration significantly increased antioxidant capac-
ity, as measured by the ferric-reducing ability of plasma (PL: 1 ! 0.1
vs. AO: 5 ! 0.2 mM), and significantly reduced malondialdehyde
levels (PL: 1.16 ! 0.1 vs. AO: 0.97 ! 0.1 mmol). Additionally,
resting blood pressure was significantly reduced (PL: 104 ! 4 vs. AO:
93 ! 6 mmHg) and resting femoral vascular conductance was signif-
icantly elevated after AO (PL: 2.4 ! 0.2 vs. AO: 3.6 ! 0.4
ml·min"1·mmHg"1). During isotime exercise, the AO significantly
attenuated both the ventilatory and metabolic responses, and patients
accumulated significantly less peripheral quadriceps fatigue, as illus-
trated by less of a fall in MVC (PL: "11 ! 2% vs. AO: "5 ! 1%)
and Qtw,pot (PL: "37 ! 1% vs. AO: "30 ! 2%). These data
demonstrate a beneficial role of AO administration on skeletal muscle
fatigue in patients with COPD and further implicate systemic oxida-
tive stress as a causative factor in the skeletal muscle dysfunction
observed in this population.

free radicals; peripheral fatigue; ascorbate

SKELETAL MUSCLE DYSFUNCTION plays a prominent role in limit-
ing exercise and activities of daily living in patients with
chronic obstructive pulmonary disease (COPD) (21, 22). Nu-
merous factors, including inactivity and skeletal muscle de-
training (34), mitochondrial dysfunction (9), and oxidative
stress (30) have all been implicated in the skeletal muscle
dysfunction associated with COPD. Of these factors, the con-
tribution of oxidative stress to reduced exercise capacity in
patients with COPD has been well documented (11, 13, 24).
Specifically, previous research has demonstrated an inverse
correlation between exercise time to exhaustion and evidence

of lipid peroxidation (12), as well as the favorable effects of
preexercise antioxidant pretreatment with N-acetylcysteine
(24) on performance in patients with COPD. Therefore, in
patients with COPD, exercising skeletal muscle is a significant
source of oxidative stress, the magnitude of oxidative stress
likely impairs skeletal muscle function, and the modulation of
redox state may enhance exercise capacity in this population.

Accordingly, our group previously utilized an acute, readily
available, oral antioxidant cocktail (vitamins C, E, and #-lipoic
acid), with documented efficacy (43), to examine the impact of
oxidative stress on skeletal muscle function in COPD (32). The
antioxidant cocktail decreased the electron paramagnetic reso-
nance (EPR) spectroscopy free radical signal, but did not
impact skeletal muscle fatigue measured after isotime knee
extensor (KE) exercise in patients with COPD. However, the
individual responses to the oral antioxidant cocktail were
mixed, with only half of the patients exhibiting a substantially
reduced EPR spectroscopy signal. Therefore, in this prior study
(32), the role of free radicals on skeletal muscle fatigue in
patients with COPD was not fully elucidated.

Likely due to free radical scavenging, the infusion of sup-
raphysiological doses of the antioxidant ascorbate (AO) have
previously been documented to restore vascular function in
several pathophysiological conditions such as heart failure
(19), hypertension (36), diabetes (38), as well in chronic
smokers (18). In addition, high-dose AO infusion has been
documented to improve resting (20) and exercising (14, 23)
skeletal muscle blood flow in healthy older individuals. Im-
proving limb blood flow, and possibly oxygen delivery, has the
potential to attenuate the rate of development of peripheral
muscle fatigue (3). Interestingly, intravenous AO administra-
tion also ameliorated the exaggerated exercise pressor reflex
during plantar flexion exercise in patients with peripheral
artery disease, which was attributed to a reduction in excessive
group III/IV afferent stimulation under basal conditions (27).
Decreasing the group III/IV afferent signal from the lower
limbs has also been documented to extend exercise time to
exhaustion in patients with COPD (17). Therefore, free radical
scavenging by AO may confer beneficial vascular effects and
dampen group III/IV afferent signaling, potentially translating
into fatigue resistance in patients with COPD.

Thus the purpose of this study was to examine the impact of
intravenous AO administration, a potent water-soluble antiox-
idant with no known side effects, on oxidative stress and
skeletal muscle fatigue during dynamic KE exercise in patients
with COPD. In addition, this study sought to comprehensively
evaluate the impact of reducing oxidative stress with AO on the
physiological responses to KE exercise in patients with COPD.

Address for reprint requests and other correspondence: R. S. Richardson,
VA Medical Center, Bldg. 2, Rm 1D25, 500 Foothill Dr., Salt Lake City, UT
84148 (e-mail: r.richardson@hsc.utah.edu).
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We tested the hypotheses that in patients with COPD intrave-
nous AO administration would 1) improve antioxidant capacity
and decrease oxidative stress and, 2) decrease the magnitude of
peripheral quadriceps fatigue induced by KE exercise matched
for intensity and duration (isotime).

METHODS

Subjects. Written, informed consent was obtained from all partic-
ipants before their inclusion in this study, and the Institutional Review
Boards of the University of Utah and the Salt Lake City Veterans
Affairs Medical Center approved all protocols. Ten patients with
COPD were enrolled based on spirometric evidence of moderate to
severe airflow obstruction [FEV1/FVC ! 0.7 (10)], as assessed by
standard pulmonary function tests performed during an initial visit to
the laboratory. General anthropometric characteristics, including thigh
volume, which was used to estimate quadriceps muscle mass (16),
were also determined during this visit. Resting arterial blood analyses,
collected in a parallel study in which the current subjects took part, are
also presented here to better characterize the patients.

Exercise protocols and general procedures. All subjects were
familiarized with single-leg KE exercise, which was performed at a
cadence of 60 rpm, during two preliminary visits to the laboratory.
Subsequently, peak KE work rate was determined with subject-
specific protocols designed to reach exhaustion within 8–12 min,
consisting of 2–5 W/min increases. The experimental protocol is
depicted in Fig. 1. After the peak work rate tests, subjects performed
at least two practice constant-load exercise trials at 80% of maximal
workload to the limit of tolerance to determine a target exercise
intensity and duration for the subsequent isotime trials. The intensity
of the practice trials was adjusted until subjects could maintain the
intensity, at a cadence of 60 rpm, for !6 to 8 min before their
cadence dropped below 50 rpm and the trial was terminated. Once
these criteria were met, the trial time was adopted as the target time
for the subsequent isotime trials. Next, in a repeated-measures design,
isotime trials, separated by 48–96 h, were performed following either
a bolus infusion of AO (100 mg/ml AO dissolved in normal saline,
infused at 1 ml/min for 20 min) or saline (PL: 0.9% NaCl infused at
1 ml/min for 20 min) via an intravenous catheter in the arm (Fig. 1).
The patient and all members of the research team, except for the

individual administering the AO or PL, were blinded to the experi-
mental condition.

Neuromuscular function tests were performed before infusion, after
infusion (but before exercise), and 10 min after the isotime trials. In
addition, venous blood samples were taken before and immediately
after the isotime trials to determine pro- and antioxidant status, and for
spin trapping and EPR spectroscopy to directly assess free radical
concentration. Before each exercise bout, 1 min of resting data were
collected and subjects performed 1 min of unloaded warmup KE
exercise. Ventilation, gas exchange, heart rate (HR), mean arterial
pressure (MAP), ratings of perceived exertion and breathlessness,
arterial oxygen saturation, femoral blood flow, and quadriceps elec-
tromyograms (EMG) were measured during the isotime trials.

Oxidative stress, antioxidant assays, and direct measurement of
free radicals. Plasma samples were stored at "80°C until analysis.
Lipid peroxidation, a marker of oxidant damage, was assessed by
plasma malondialdehyde levels (Bioxytech LPO-586, Foster City,
CA). Total antioxidant capacity was evaluated by determining the
ferric-reducing ability of plasma (FRAP), using the method described
by Benzie and Strain (6). The efficacy of the AO specific to plasma
ascorbate levels was assayed as previously described (8) (CosmoBio,
Carlsbad, CA). Free radical scavenging, assessed by superoxide dis-
mutase and catalase activity, was also assayed in the plasma (42)
(Cayman Chemical, Ann Arbor, MI). EPR spectroscopy was per-
formed on pre- and postexercise blood samples to directly assess the
ability of the AO to reduce the concentration of free radicals with an
EMX X-band spectrometer (Bruker, MA), as previously described
(31, 32).

Pulmonary and cardiovascular responses. Ventilation and pulmo-
nary gas exchange were measured at rest and during exercise using an
open-circuit system (ParvoMedics, Sandy, UT). HR, determined from
the R-R interval of a three-lead electrocardiogram, and arterial oxygen
saturation (SaO2), estimated using a pulse oximeter (Nellcor N-595,
Pleasanton, CA) with adhesive forehead sensors, were also acquired
during these trials at 200 Hz using a data acquisition system (Acq-
Knowledge; Biopac Systems, Goleta, CA). MAP was determined with
a finometer (Finapres Medical Systems, The Netherlands) at heart
level. Patients were asked how hard their leg was working (rating
of perceived exertion, RPE) and how labored was their breathing

Isotime: 
Placebo 
Trial (n = 4) 

Qtw,pot
MVCs 

Qtw,pot
MVCs 

Qtw,pot
MVCs 
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Qtw,pot
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Isotime: 
Ascorbate 
Trial (n = 6) 
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Ascorbate 
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Washout Isotime: 
Placebo 
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Fig. 1. Study protocol schematic. MVC, max-
imal voluntary contraction. Qtw,pot, potentiated
twitch force.
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(dyspnea) every minute during the exercise trials using Borg’s
CR10 scale (7).

Leg blood flow. Measurements of femoral artery blood velocity and
vessel diameter in the leg being studied were performed at rest and
throughout isotime exercise, using a Logic 7 ultrasound system
(General Electric Medical Systems) as previously described (39).
Blood flow in the femoral artery was calculated as the following:
blood flow ! (mean velocity)"(vessel diameter/2)2 # 60.

Quadriceps electromyograms. Quadriceps EMGs were recorded
from the vastus lateralis muscle during exercise from electrodes
placed in a bipolar configuration with an interelectrode distance of 20
mm over the middle of the muscle belly, with the active electrodes
placed over the motor point of the muscle and the reference electrode
in an electrically neutral site (4). To ensure similar electrode place-
ment between trials, the electrode location was marked with indelible
ink. Raw EMG signals were filtered with a bandpass filter (with a
low-pass cut-off frequency of 15 Hz and a high-pass cut-off frequency
of 650 Hz) and after visual inspection of the filtered signal; a threshold
voltage was set to identify the onset of EMG activity (AcqKnowledge;
Biopac Systems). For data analysis, the integral of each EMG burst
(integrated EMG) was calculated to determine the percent increase in
integrated EMG from the first minute of exercise (4), an index of the
development of peripheral fatigue during exercise. The EMG elec-
trodes were also used to record magnetically evoked compound action
potentials (M-waves, area and peak-to-peak amplitude) to evaluate
changes in membrane excitability from pre- to postexercise during
potentiated twitch force (Qtw,pot) assessments.

Neuromuscular function assessment. The magnitude of peripheral
quadriceps fatigue was quantified by pre- to postinfusion, and pre- to
postexercise changes in quadriceps maximal voluntary contraction
(MVC) and Qtw,pot evoked by supramaximal magnetic stimulation of
the femoral nerve (4, 29) with a magnetic stimulator (Magstim 200,
The Magstim, Wales, UK) connected to a double 70-mm coil (26).
Specifically, while laying semirecumbent with a knee joint angle of 90
degrees, subjects performed a series of six MVCs separated by 30 s,
with Qtw,pot assessments interspersed 5 s after each MVC. Patients
viewed a computer monitor displaying real-time visual feedback to
ensure maximal effort during all MVCs. The neuromuscular function
assessment procedure (6 MVCs and 6 Qtw,pot maneuvers) was per-
formed before the AO or PL infusion, after the infusion (but before
exercise), and 10 min after exercise. In addition, to quantify voluntary
activation of the quadriceps during the MVCs, the additional force
generated by a single twitch superimposed on the MVC was compared
with the force produced by the potentiated twitch immediately fol-
lowing the MVC to determine the percent voluntary muscle activation
(4). Force was obtained from a calibrated load cell (Transducer
Techniques, Temecula, CA) connected to a noncompliant strap placed
around the subject’s ankle and acquired at 200 Hz with a data
acquisition system (AcqKnowledge; Biopac Systems). On a separate
visit, to ensure supramaximality of stimulation during magnetic stim-
ulation of the femoral nerve, the plateau in evoked force following
serial twitch forces, obtained every 30 s, at 70, 80, 85, 90, 95, and
100% of maximal stimulator output, was also evaluated.

Statistical analysis. Two-way repeated measures ANOVA were
used to compare the effect of antioxidant treatment on physiological
parameters during exercise, with a Tukey post hoc analysis if a
significant main effect was found. Student’s paired t-tests were used
to compare the effect of AO in terms of antioxidant efficacy and
indices of peripheral fatigue. Statistical significance was set at $ !
0.05 for all tests. All group data are expressed as means % SE.

RESULTS

Subject characteristics. Subject characteristics are docu-
mented in Table 1. One patient was a current smoker, who
refrained from the use of tobacco products for 12 h before all
data collection. Two patients qualified for supplemental oxy-

gen; these patients, however, at the time of data collection,
only used the supplemental oxygen while sleeping. No patients
reported any side effects of AO or PL administration and were
therefore successfully blinded to the experimental condition.
Supramaximality of magnetic nerve stimulation was demon-
strated in all patients by evidence of a plateau in evoked force
with increasing stimulus intensity.

Antioxidant efficacy. Before exercise, AO caused an &10-
fold elevation in plasma ascorbate levels (Fig. 2A). AO infu-
sion also increased endogenous antioxidant capacity, as mea-
sured by FRAP, and resulted in greater free radical scavenging,
as evidenced by increased superoxide dismutase enzymatic
catalase activities (Fig. 2, B–D). Consequently, resting malon-
dialdehyde levels, a marker of lipid peroxidation and oxidative
stress, were decreased following AO infusion (Fig. 2E). In
contrast, and somewhat surprisingly, there was no detectable
difference in plasma free radical levels, directly measured by
EPR spectroscopy, between conditions (AO: 10.9 % 3.1 AU
vs. PL: 11.6 % 3.7 AU, P ' 0.05).

After exercise, AO and FRAP remained elevated over PL
values in the AO condition (AO: 107.6 % 8.1 (g/ml vs. 12.9
(g/ml, P ) 0.05; FRAP: 1.5 % 0.08 mM vs. PL: 0.97 % 0.08,
P ) 0.05 exercise, for AO and PL, respectively). In addition,
MDA was decreased to a similar extent as before exercise (AO:
0.94 % 0.1 (M vs. PL: 1.2 % 0.1 (M, P ) 0.05). Postexercise,
there were no differences between conditions in terms of
antioxidant enzyme (superoxide dismutase or catalase) activity
or plasma free radical levels, assessed by EPR spectroscopy.

Isotime trials. Acutely, MVC and Qtw,pot were unaffected by
AO infusion (MVC: 374 % 52 N to 374 % 53 N, P ' 0.05;
Qtw,pot: 105 % 13 N to 103 % 13 N, P ' 0.05, for pre- and
postinfusion, respectively), and these values were not different
from the pre- and post-PL infusion values. At baseline, before
exercise, MAP was reduced following the AO infusion (Fig. 3).
Despite the decrease in perfusion pressure, femoral artery
blood flow was not different between conditions (P ! 0.1), and
thus femoral vascular conductance was significantly elevated
in the AO condition (Fig. 3). Because of movement artifact,
differences in MAP could not be evaluated throughout the

Table 1. Subject characteristics

Age, yr 62 % 3
Height, m 1.73 % 0.03
Weight, kg 84 % 7
BMI, kg/m2 28 % 2
Quadriceps muscle mass, kg 1.7 % 0.2
Peak knee-extensor work rate, W 28 % 3
Male/Female 7/3
Pulmonary function

FVC, l (% predicted) 3.6 % 0.2 (86 % 5)
FEV in 1 s, l/s (% predicted) 1.8 % 0.2 (57 % 5)
FEV1/FVC, % 51 % 5

Resting arterial blood gases
Hemoglobin concentratio, g/dl 14 % 1
Oxyhemoglobin, % 92 % 1
Partial pressure of oxygen, mmHg 70 % 2
Partial pressure of carbon dioxide, mmHg 32 % 2
Bicarbonate, mmol/l 22 % 1
pH 7.45 % 0.01

Values expressed as means % SE. FEV1/FVC, forced expiratory volume in
1 s relative to forced vital capacity; BMI, body mass index.
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isotime trials. The cardiorespiratory responses to the isotime
trials are depicted in Fig. 4. As illustrated, oxygen consumption
(VO2) and carbon dioxide production (VCO2) were reduced
during exercise following AO infusion at isotime minute 4, but
reached similar levels at the end of exercise. In addition,
ventilation rate (VE) and the ventilation relative to carbon
dioxide production (VE/VCO2) ratio were reduced in the AO
condition during exercise and at the end of the isotime trials.
Arterial oxygen saturation and femoral artery blood flow were
not different between conditions.

With respect to the development of peripheral fatigue during
exercise, the percent increase in the integrated EMG signal
(Fig. 4) was reduced during exercise in the AO condition and
tended to be lower at end exercise (P ! 0.09). Subjects’ ratings
of perceived exertion were also lower during exercise follow-
ing AO infusion, as well as at the end of exercise. In line with
these observations, the patients’ dyspnea ratings were reduced
at the end of the isotime trials in the AO condition (6.3 " 1 vs.
4.8 " 1, P # 0.05, for PL and AO, respectively). There were
no changes in m-wave area (PL: 80 " 9 mVms vs. 72 " 10

Fig. 2. Quantitative assessment of antioxidants and markers of oxidative stress
after intravenous saline (PL) or ascorbate (AO) administration. FRAP, ferric-
reducing ability of plasma. Values are presented as means " SE. *Significantly
different from the PL condition.

Fig. 3. Resting mean arterial pressure and hemodynamic parameters following
intravenous PL or AO administration. Values are presented as means " SE.
*Significantly different from the PL condition.
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mVms, P ! 0.05; AO 85 " 11 mVms vs. 82 " 11 mVms, P !
0.05) or peak-to peak-amplitude (PL: 8.7 " 0.8 mV vs. 8.1 "
0.9 mV, P ! 0.05; AO 9.3 " 1.2 mV vs. 8.8 " 1.2 mV, P !
0.05) in either condition from pre- to postexercise, and these
values were not different between PL and AO trials. Voluntary
activation was reduced following exercise to a similar extent in
both conditions (AO: #3.1 " 0.7% vs. PL: #3.5 " 1.6%, P !
0.05). Additionally, the pre- to postexercise changes in MVC

and Qtw,pot were reduced to a lesser extent in the AO condition,
suggestive of less peripheral quadriceps fatigue (Fig. 5).

DISCUSSION

This study sought to evaluate the impact of intravenous AO
on systemic antioxidant capacity and oxidative stress in pa-
tients with COPD and subsequently determine the effects of

Fig. 4. Physiological responses to constant
workload isotime knee extensor exercise
matched for intensity and duration following
intravenous PL or AO administration. Group
mean data ("SE) over the first 4 min of
exercise, which were attained by all subjects.
The final time point represents end-exercise
values, which were not obtained for femoral
blood flow due to loss of signal. VE/VCO2,
ventilation relative to carbon dioxide pro-
duction; VCO2, carbon dioxide production;
VO2, oxygen consumption; iEMG, inte-
grated electromyogram from the vastus late-
ralis. *Significantly different from the PL
condition. #P $ 0.09.

Fig. 5. Changes from preexercise values in quadriceps
muscle function following constant-load knee extensor
exercise matched for intensity and duration preceded by
either intravenous PL or AO administration. Data are
presented as means " SE. *Significantly different from
the PL condition.
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this intervention on skeletal muscle fatigue following exercise
in this population. Before exercise, AO increased antioxidant
capacity and reduced oxidative stress, and these changes in the
pro- and antioxidant balance were accompanied by a reduction
in MAP and an increase in femoral artery vascular conduc-
tance. Exercise after AO administration, matched for time with
the PL trial, was associated with attenuated ventilatory and
metabolic responses to the work and a slowed rate of fatigue
development (rise in quadriceps iEMG). Thus the exercise bout
ultimately resulted in less of a decrease in quadriceps MVC
and evoked twitch force following exercise, revealing im-
proved fatigue resistance during exercise. Collectively, these
data demonstrate a beneficial effect of intravenous AO admin-
istration on systemic oxidative stress and skeletal muscle
function in patients with COPD. Moreover, these data further
implicate oxidative stress as a factor contributing to skeletal
muscle dysfunction in COPD.

Oxidative stress and fatigue. Previously, dynamic KE exer-
cise has been documented to increase markers of oxidative
damage in patients with COPD, but not in healthy control
subjects (11, 12). In this prior study, within the patient group,
the magnitude of increase in oxidative stress was negatively
correlated with exercise time to exhaustion (12). Furthermore,
when patients with COPD were pretreated with the pharmaco-
logical antioxidant N-acetylcysteine before performing KE
exercise, markers of oxidative damage were reduced and ex-
ercise time to exhaustion was improved (24). Excessive eleva-
tions in free radicals, within muscle itself, have been suggested
to impair function by decreasing the calcium sensitivity of the
myofilaments and attenuating calcium reuptake by the sarco-
plasmic reticulum, among other mechanisms (1). Collectively,
these studies suggest that oxidative stress contributes to skel-
etal muscle dysfunction in patients with COPD, and decreasing
the oxidant load has the potential to improve the intramuscular
redox state and therefore skeletal muscle function in this
population.

In the current study, intravenous AO decreased plasma
markers of oxidative damage, improved the antioxidant status
(Fig. 2), and attenuated exercise-induced fatigue (Fig. 5) in
patients with COPD. Consequently, these data reveal that KE
exercise performed by patients with COPD for the same
duration and at the same intensity with AO infusion is associ-
ated with less peripheral quadriceps fatigue than without AO
infusion. Specifically, the rate of increase in the integrated
EMG signal from the vastus lateralis, an index of peripheral
fatigue development during exercise, was attenuated (Fig. 4),
and the magnitude of decrease in quadriceps MVC and Qtw,pot

were diminished by !50% and !20%, respectively (Fig. 5).
These data contrast with the lack of effect observed previously
by our group following oral antioxidant administration in this
population (32). However, the plasma concentration of ascor-
bate achieved in the current study, and consequently antioxi-
dant capacity as assessed by FRAP, were elevated by approx-
imately fivefold over the values obtained in the previous
investigation (32), which may have enhanced the ability of the
ascorbate to enter the muscle and exert beneficial effects on
the myofilaments. It is therefore reasonable to hypothesize that
the altered redox state following AO administration was trans-
lated into improved muscle function, potentially due to de-
creased intramuscular free radical accumulation and greater
fatigue resistance during KE exercise. Thus these data suggest

that oxidative stress contributes to skeletal muscle dysfunction
in patients with COPD, and a reduction in oxidative stress
lessens the magnitude of fatigue accumulated during high-
intensity, small muscle mass exercise.

Physiological responses to exercise. Feedback from skeletal
muscle group III and IV afferent fibers contribute to the
cardiovascular and ventilatory response to dynamic exercise
(2). In the current study, ascorbate infusion led to a reduction
in VE and VE/VCO2 ratio (Fig. 4) as well as attenuated sensa-
tions of dyspnea at the same exercise time points in the PL
condition. The attenuated increase in the integrated EMG
signal during exercise in the AO condition suggests less pe-
ripheral fatigue development during exercise. This is largely
determined by the accumulation of metabolic by-products such
as hydrogen ions and inorganic phosphates (41), as well as
reactive oxygen species, within the muscle (1). These exercise-
induced metabolites, as well as oxidative stress, have also been
documented to activate group III and IV afferent fibers (15,
28). Thus the attenuated ventilatory responses to the exercise
bouts may have been the result of improved muscle function
following antioxidant administration due to an improved intra-
muscular redox state. This reduced metabolic perturbation
during exercise would, in turn, diminish the requisite increase
in VO2 and VCO2 during exercise in the AO condition (Fig. 4).

Alternatively, oxidative stress has been documented to di-
rectly stimulate group IV afferent fibers (15), and blocking
afferent feedback with spinal anesthesia attenuated the venti-
latory response to exercise in patients with COPD (17). There-
fore, reducing oxidant-driven afferent activity with the AO
infusion may have contributed to the reduced ventilatory re-
sponse in the AO condition in the current study. Collectively,
these data reveal that reducing oxidative stress by intravenous
AO administration was associated with an overall attenuation
in the ventilatory and metabolic responses to exercise. These,
likely positive, changes may be attributed to reduced stimula-
tion of lower limb afferent fibers potentially due to improved
muscle function during exercise and decreased metabolite
accumulation, or less direct stimulation of afferent fibers by
oxidative stress.

Blood pressure and vascular conductance. Research regard-
ing the hypotensive effect of antioxidant administration is
equivocal. However, in a small, tightly controlled experiment,
our group has previously observed a tendency for acute oral
antioxidant supplementation to reduce arterial blood pressure
in normotensive, older individuals (44), whereas chronic anti-
oxidant treatment has been associated with reduced blood
pressure in young healthy males (33). Under basal conditions
in the current study, as is not unusual in this population (35),
the patients with COPD had an average “high-normal” MAP of
!104 mmHg, and this tendency to exhibit elevated blood
pressure is associated with increased cardiovascular disease
risk (40). Intriguingly, intravenous AO administration resulted
in an !10- to 15-mmHg reduction in MAP, such that the
average resting blood pressure for the patients with COPD in
the AO condition returned to a healthy, normal value (Fig. 3).
Because COPD is an independent predictor of cardiovascular
disease mortality, and cardiovascular disease is a leading cause
of hospitalizations in patients with mild to moderate COPD
(35), ameliorating cardiovascular disease risk factors is of
utmost importance. Thus these data suggest that some form of
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antioxidant treatment may be important for cardiovascular
disease risk management in patients with COPD.

Despite reduced arterial blood pressure with the AO, femo-
ral artery blood flow at rest was unchanged (Fig. 3). Thus when
femoral artery blood flow was normalized for the decrease in
perfusion pressure, resting femoral vascular conductance was
significantly elevated in the AO condition (Fig. 3). Interest-
ingly, the magnitude of increase in femoral vascular conduc-
tance was similar to that demonstrated previously in healthy,
older individuals following a similar intravenous AO infusion
(20). AO has been documented to activate endothelial nitric
oxide synthase (25), and coinfusion of AO and a nitric oxide
synthase inhibitor negates the ability of AO to improve blood
flow and vascular conductance (14). Thus, in the current study,
intravenous infusion of AO may have improved nitric oxide
bioavailability, perhaps by both reducing oxidative stress and
promoting nitric oxide production by nitric oxide synthase,
which resulted in a reduction in total peripheral resistance,
leading to reduced MAP and improved femoral vascular con-
ductance. The potential increase in nitric oxide may have also
improved oxygen distribution in the working muscle and im-
proved aerobic metabolism (37), increasing fatigue resistance
during exercise. Collectively, these data support a favorable
role of reducing oxidative stress on resting hemodynamic
parameters in patients with COPD.

Perspectives and Significance

This study documents the ability of an intravenous AO
infusion to improve antioxidant capacity and decrease oxida-
tive stress in patients with COPD. These changes in redox
balance were associated with a reduction in resting blood
pressure and elevated femoral vascular conductance. In addi-
tion, dynamic KE exercise performed for the same duration
and at the same intensity as the placebo condition, was asso-
ciated with an attenuated rate of development of peripheral
quadriceps fatigue, improved metabolic and ventilatory re-
sponses, and less of a reduction in quadriceps force production
assessed after exercise. These data further implicate oxidative
stress in the systemic, pathophysiological consequences of
COPD and suggest a beneficial role for reducing oxidative
stress in this population. Therefore, targeting oxidative stress
with some form of antioxidant therapy in a clinical setting may
represent an important therapeutic avenue for patients with
COPD.
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 The overall purpose of this dissertation was to elucidate the impact of age- and 

disease-induced oxidative stress on physiological function. Specifically, the 

consequences of oxidative stress for oxygen transport and utilization, as well as 

peripheral hemodynamics, was evaluated in young and old individuals. The influence of 

oxidative stress on these parameters, as well as skeletal muscle fatigue development, was 

also examined in patients with COPD. Collectively, this research sought to identify 

novel, mechanistic strategies to improve physiological function, and thereby favorably 

affect physical capacity, with the overarching goal of ameliorating some of the adverse 

sequelae of aging and disease.   

With the goal to better understand the age-associated attenuation in LBF, The first 

study of this dissertation examined redox balance in the femoral artery and vein under 

control conditions and following administration of an AOC in old subjects characterized 

by attenuated LBF and young subjects, at rest and during KE exercise. By experimental 

design, under control conditions, LBF was ~15% lower in the old compared to the young 

at rest and during KE exercise. In these control conditions, the old exhibited greater leg 

free radical outflow than the young during KE exercise, assessed by EPR spectroscopy. 

Interestingly, the AOC improved LBF in the old at rest, abolishing the age-related 

decrement, but did not alter LBF or free radical outflow in either group during exercise. 

Therefore, in summary, this study documented greater free radical outflow during 

exercise in old subjects exhibiting attenuated LBF at rest and during exercise under 

control conditions. The observation that the AOC ameliorates the attenuated LBF in the 

old at rest, but fails to alter free-radical outflow or LBF during exercise, suggests that the 

formidable, pro-oxidant state elicited by exercise in the old likely necessitates a stronger 
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antioxidant strategy to restore LBF in this population.  

The second study of this dissertation examined the impact of the AOC on oxygen 

transport and utilization during submaximal KE exercise in patients with COPD and 

healthy controls. Patients with COPD exhibited basal evidence of elevated inflammation 

and reduced antioxidant capacity. AOC consumption improved the abnormal redox 

balance in the patients, and these alterations were associated with favorable changes in 

the central and peripheral cardiorespiratory responses to exercise. Specifically, LBF and 

leg vascular conductance (LVC) during KE exercise were augmented in patients with 

COPD following AOC consumption, while no changes were observed in the healthy 

controls. The elevation in LBF, in combination with an unaltered arterial-venous oxygen 

difference from control conditions, led to increased oxygen consumption during exercise 

in the patients with COPD. In addition, arterial oxygen saturation was improved, at rest 

and during exercise, in patients with COPD with the AOC, whereas there was no 

apparent effect in the control subjects. These data demonstrate beneficial effects of 

antioxidant administration on exercise-induced hemodynamics and skeletal muscle 

metabolism in patients with COPD, and indicate that impaired oxygen transport, as a 

consequence of elevated oxidative stress, may represent a novel mechanistic link between 

oxidative stress and exercise intolerance in this population.  

The third study of this dissertation evaluated the impact of intravenous ascorbate 

administration on oxidative stress, as well as the effects of this intervention on skeletal 

muscle fatigue following high-intensity KE exercise in patients with COPD. Prior to 

exercise, ascorbate increased antioxidant capacity and reduced oxidative stress, and these 

changes in the pro- and antioxidant balance were accompanied by a reduction in mean 



	   85	  

arterial pressure and an increase in LVC. Exercise after ascorbate administration, 

matched for time with the placebo trial, was associated with attenuated ventilatory and 

metabolic responses to the work, and a slowed rate of fatigue development. Thus, the 

exercise bout ultimately resulted in less of a decrease in quadriceps maximal voluntary 

contraction and evoked twitch force assessed following exercise, revealing improved 

fatigue resistance during exercise. Collectively, these data demonstrate a beneficial effect 

of intravenous ascorbate administration on systemic oxidative stress and skeletal muscle 

function in patients with COPD. Moreover, these data further implicate oxidative stress 

as a factor contributing to skeletal muscle dysfunction in COPD.  

In summary, this research has elucidated biological mechanisms by which 

elevated oxidative stress may impair physiological function with aging and disease. 

Accordingly, therapeutically targeting age- and disease-induced increases in oxidative 

stress, especially in relation to oxygen transport, may enhance exercise tolerance and 

physical activity. As low levels of physical activity are linked to elevated mortality risk 

and cardiovascular disease development, the conclusions garnered from this dissertation 

have broad implications for increasing functional capacity with aging and disease and 

thereby potentially enhancing quality of life and longevity.   
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