
MANYVIS: MULTIPLE APPLICATIONS IN AN
INTEGRATED VISUALIZATION

ENVIRONMENT

by
Atul Rungta

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computing

School of Computing
The University of Utah

May 2015

Copyright © Atul Rungta 2015
All Rights Reserved

The U n i v e r s i t y o f U tah G r a d u a te S ch o o l

STATEMENT OF THESIS APPROVAL

The thesis of _______________________ Atul Rungta____________________
has been approved by the following supervisory committee members:

Valerio Pascucci , Chair 11/11/2013
Date Approved

Richard F. Riesenfeld , Member 8/12/2013
Date Approved

Miriah Meyer , Member 8/12/2013
Date Approved

and by _____________________Alan L. Davis_____________________ , Chair/Dean of

the Department/College/School o f __________________ Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT
As the visualization field matures, an increasing number of general toolkits are developed

to cover a broad range of applications. However, no general tool can incorporate the latest
capabilities for all possible applications, nor can the user interfaces and workflows be easily
adjusted to accommodate all user communities. As a result, users will often choose either
substandard solutions presented in familiar, customized tools or assemble a patchwork of
individual applications glued through ad-hoc scripts and extensive, manual intervention.
Instead, we need the ability to easily and rapidly assemble the best-in-task tools into custom
interfaces and workflows to optimally serve any given application community. Unfortu
nately, creating such meta-applications at the API or SDK level is difficult, time consuming,
and often infeasible due to the sheer variety of data models, design philosophies, limits in
functionality, and the use of closed commercial systems. In this thesis, we present the
ManyVis framework which enables custom solutions to be built both rapidly and simply by
allowing coordination and communication across existing unrelated applications. ManyVis
allows users to combine software tools with complementary characteristics into one virtual
application driven by a single, custom-designed interface.

CONTENTS
A B S T R A C T .. iii
L IST O F F IG U R E S .. vi
L IST O F T A B L E S .. viii
A C K N O W L E D G M E N T S .. ix
C H A P T E R S
1......IN T R O D U C T IO N ... 1

1.1 Outline ... 2
2. R E L A T E D W O R K ... 4

2.1 Interapplication Interaction and Application
Extension... 4

2.2 Automated and Scripted In teraction.. 5
3. M A N Y V IS ... 7

3.1 Process M anager... 8
3.2 Window Manager ... 8
3.3 Event H and ler.. 8
3.4 API H a n d le r .. 9
3.5 Display M anager... 9
3.6 M anyM acro.. 9
3.7 ManyWorkflow .. 12

4. M A N Y A P P S ... 14
4.1 Debugger ManyApp .. 14
4.2 Presentation M anyA pp... 15

4.2.1 Creation .. 15
4.2.2 Presentation ... 16
4.2.3 User Experience .. 16

4.3 Additional ManyApps .. 17
4.3.1 Ad-hoc Anaglyph Visualization .. 18
4.3.2 Interactive Simulation Filmstrip .. 19
4.3.3 Annotation of Microscopy Data .. 19
4.3.4 Isosurface Custom Visualization .. 21
4.3.5 Exploring Parameter Space Using a Custom Histogram............................ 23

5. A N A LY SIS A N D C O N C L U S IO N ... 24
5.1 Performance .. 24
5.2 L im ita tio n s .. 26
5.3 Conclusion... 26

A P P E N D IX : C R E A T IN G A M A N Y A P P .. 27
R E F E R E N C E S ... 29

v

LIST OF FIGURES
3.1 T h e F ram ew o rk ’s C o m p o n en ts . (a) The primitive operations provided

by ManyVis along with their control and information flows. ManyMacros and
ManyWorkflows utilize these primitives to build custom unified ManyApps.
(b) A block system diagram of a ManyApp. The ManyVis core primitives
interface with the user and applications directly. ManyMacros leverage these
primitives into more sophisticated operations. ManyWorkflows handle the
coordination and synchronization of ManyMacros, ManyMacro scripts, and
possibly ManyVis core elements.. 7

4.1 C u sto m In teg ra tio n . ManyVis allows the custom integration of disparate
applications into a single, seamless ManyApp. This figure illustrates some of
the functionality of our PowerPoint Presentation ManyApp. This integrated
application allows a user to embed and manipulate external applications into
their PowerPoint presentation. a) Video codecs are often a problem when
embedding video. With ManyVis, a presenter can just embed the video player
(VLC) itself. b) Embedding a demo application is also simple. (b purple inset)
Often projector and room conditions may cause a demo to be presented poorly.
With ManyVis, a presenter can adjust the color, brightness, and contrast
in real-time. c) More sophisticated manipulation is possible with ManyVis.
In this example, a presenter creates a fully integrated MeshLab[2]demo by
cropping the unnecessary GUI and applying an alpha transparency to the em
bedded application (c purple inset). The application maintains full interactivity. 17

4.2 P re se n ta tio n U ser In terface . The Presentation ManyApp allows users
to easily insert virtually any application without the need for programming.
In this figure, the steps are outlined for the insertion of a video player into
a presentation. 1) A user creates or selects a PowerPoint shape. 2) They
choose to insert from the supplied GUI (purple). 3) To complete insertion,
they select the proper application window. PowerPoint and the embedded
application remain interactive.. 18

4.3 A d-hoc A nag lyph V isualiza tion . Two instances of a 3D visualization tool
are combined for red and cyan 3D anaglyph.. 18

4.4 In te rac tiv e S im ulation F ilm strip . Automatic creation of a filmstrip il
lustration for time-dependent data. ManyVis provides buttons to define the
number of windows to display. Two additional sliders provide user input to
denote the desired range of time steps... 20

4.5 A n n o ta tio n of M icroscopy D ata . In this example, ManyVis combines a
large-scale microscopy image renderer with Adobe Photoshop to provide a tool
for rapid annotation of very high-resolution dataset, a common workflow in
using microscopy data .. 21

4.6 Isosu rface C u sto m V isu a liza tion . An isorenderer, Microsoft Excel, and
Mathworks MATLAB (not shown) embedded into a single application for an
oil reservoir simulation. Users can adjust the timestep selected in all three
programs using the slider indicated by the yellow arrow or switch the 1D
plotting program between MATLAB and Excel using the button indicated by
the orange arrow.. 22

4.7 E x p lo ring P a ra m e te r Space U sing a C u sto m H is to g ram . A custom
ManyApp for the exploration of the topological parameter space of porous
media. This application combines a custom volume renderer and transfer
function editor (left and middle) with a 2D histogram provided by MATLAB
(right)... 23

vii

LIST OF TABLES
5.1 E v en t T h r o u g h p u t ... 25
5.2 M anyV is Im age P ro cessin g O v e rh ead .. 25

ACKNOWLEDGMENTS
This work is supported in part by NSF OCI-0906379, DOE 120341, DOE DESC0006872,

DOE DESC0001922, DOE DEEE0004449, DOE P01180734, DOE DESC0007446, NTNL
0904631, and DOE/LLNL B597476. This work was also performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344 (UCRLLLNL-CONF-641029).

CHAPTER 1
INTRODUCTION

Visualization is an integral part of advanced research in science and engineering; there
fore, various excellent visualization tools exist [20, 34, 19], each with its own strengths.
These tools are very good at certain tasks but are not very well- suited for others; for
example, despite providing a very general library for visualization, The Visualization Toolkit
(VTK) cannot contain all the numerical capabilities of software like MATLAB and Math-
ematica. Many of these tools are complementary (for example, VTK, MATLAB, and
PowerPoint), but it is very difficult to make them work together in a single, integrated
environment. Researchers are savvy in understanding the positives and negatives of these
tools and will often manually integrate several into their workflows. A common integration
strategy is to take output from one tool, convert it to a common format, and pass it as an
input to another. Synchronizing data between tools can be error prone, tedious, and time
consuming.

A common solution to this problem is to extend tools via provided application pro
gramming interfaces (APIs). These APIs, although very powerful, are often too limited in
functionality to provide an ideal solution. More importantly, each API is specific to a certain
application, even up to an application version, and therefore cannot provide generality. For
example, a developer may allow communication between two programs via their APIs, but
integrating a third application would require a significantly new code base. Visualization
researchers on the other hand are faced with the corresponding challenge of distributing their
solutions. Even using good software design principles, integrating capabilities into a custom
system requires significant time and effort. This can be frustrating for both the scientific
collaborators anticipating short-term solutions as well as the visualization researchers for
whom one-time implementation efforts are of low priority. Alternatively, visualization
researchers can make their solutions available as stand-alone tools or libraries, shifting
the integration effort to potential users. However, in many cases, application scientists
have neither the resources nor the expertise necessary to successfully integrate disparate

2

tools into their current systems. Therefore, it is common for visualization researchers to
provide small, specific tools to collaborators, thereby integrating the new techniques into
the scientists pipeline described above.

In this thesis, we propose an alternative method of deployment which is fast, provides
immediate benefits to scientific collaborators, and allows visualization researchers to achieve
a wide dissemination of their algorithms through single, stand-alone implementations. Our
framework, called ManyVis, drastically reduces the time lost by users in dealing with
multiple applications and, for the first time, provides an integrated application in which
separate tools communicate and coordinate. ManyVis sits between the user input and the
windowing system, recording, augmenting, and automating user interactions and display to
create the experience of a single, seamless user experience.

In the design of this framework, our guiding principle is: if a user can accomplish a task,
ManyVis should support such a task seamlessly. We provide several examples of ManyVis
accomplishing the type of tasks common in the scientific community using a combination
of several open source, commercial, and custom software. Using ManyVis, the development
of these examples, from conception to a workable solution, required only a few hours as
opposed to the days or months of effort that traditional methods typically require.

Specifically, our contributions are: i) the ManyVis framework that intercepts, coor
dinates, and processes low-level user interactions and allows combining them into higher
level, task-oriented operations, ii) the ManyMacro system built using ManyVis to allow the
easy creation and execution of custom scripts and applications which leverage the ManyVis
core primitives, iii) the ManyWorkflow system, which schedules and coordinates complex
workflows with multiple applications and exposes the user to a unified interface of a seamless,
interactive environment called a ManyApp, and iv) a demonstration of our new approach
with several ManyApps, including an exemplary case of building Powerpoint presentations
that integrate live demonstrations of external software tools.

1.1 Outline
This thesis is structured as follows:

• C h a p te r 1 gives the introduction.

• C h a p te r 2 gives the existing approaches and techniques.

• C h a p te r 3 introduces the ManyVis framework and provide details on ManyMacros and
ManyWorkflows.

3

• C h a p te r 4 describes how the framework, ManyMacros, and ManyWorkflows can be used
to design new integrated applications.

• C h a p te r 5 discusses our approach and provides a thorough performance evaluation and
identifies limitations to arrive at an overall conclusion.

CHAPTER 2
RELATED WORK

In a system like ManyVis, the two primary challenges are to enable the sharing of
information across disparate tools and to automate common user interactions. This section
discusses some existing approaches aimed at addressing these problems

2.1 Interapplication Interaction and Application Extension
Interapplication or interprocess communication is a fundamental service of all modern

computer operating systems. Methodology for communication among applications can vary
from simple file passing or shared memory to more complex message passing via pipes
or sockets. Typically, this communication occurs at the lower system level; therefore,
specifications for communication must be decided at the time of development. Consequently,
communication standardization often only exists on a specialized, per application basis.
Frequently, it is problematic to allow two programs to communicate if they were not designed
to do so from the outset. Of particular note are groups such as The Common Component
Architecture (CCA) Forum [1] or the commercial Common Object Request Broker Architec
ture (CORBA) [28], which work to standardize communication across separate applications.
Despite these efforts, at this time, such standardization in communication has not been
widely adopted. However, two notable exceptions to this rule exist: a) the operating systems
clipboard [25, 9] or pasteboard, which is often standardized by the operating system and
ubiquitous in modern applications and b) file passing between programs, which frequently
supports open or well-documented formats.

In this thesis, we will show how the experimental system, ManyVis, exploits these
two exceptions to allow for communication between programs that were not originally
designed for it. In addition to the visualization tools outlined in the previous section,
commercial software companies such as Adobe [3] and Microsoft [26] support extension and
interapplication communication amongst some families their products with development

5

kits that employ a proprietary application programming interface (API). Closed source
APIs are often very limited in scope by only allowing extensions in areas the company's
developers want or anticipate will be useful. In addition, these systems are typically in
direct competition and therefore collaboration between companies to allow communication
between their software is uncommonly rare. In contrast, open source systems offer a
potential unlimited scope for extension. However, for large open source projects modifying
an implementation often requires a significant investment in effort to learn the intricacies of
the system. Therefore, development teams for these projects will, again, supply a limited
API [15, 29] to developers.

2.2 Automated and Scripted Interaction
The support of automating common user interactions with a graphical user interface

(GUI), especially when the interactions are repetitive, is a desirable and useful feature
found in a wide-range of applications. Modern operating systems provide resources to aid
developers in adding this support. Examples include Apple's AppleScript or Automator and
Microsoft’s Visual Basic and JScript. Scripting support on the program level includes ex
amples such as Maya Embedded Language (MEL) or Python scripting support in Autodesk
software and Python scripting support in The Blender Foundation’s Blender. Scripting user
interactions need not involve traditional programming, and can be automatically recorded
by the user through the visual interface. Adobe’s Actions is one such example in which the
user can record actions to re-execute common interactions. Automating user interaction
is a topic typically studied in the Human Computer Interaction (HCI) community. Of
particular interest is the work in Programming by Demonstration or Example (PBD) [12].

As a research area PBD hopes to replace the programming of new system behaviors
with a user’s example input or scripted user interactions. This allows for a rudimentary
programming model that requires no expertise from the user and has the ability to allow
communication and coordination of separate programs without the need to use specific
system APIs. PBD also has applications in the design of intelligent help systems, where an
expert’s interactions are recorded to be replayed in order to help a novice user. Examples
include applications for guided tutorials [10], technical support [22], help across different
applications and dynamic environments [33], printed tutorials for image editing applications
[16], content-adaptive image manipulation macros [11], or full documentation of image
content creation [17]. Work has even been done to make user macros more stable by
introducing debugging schemes [11]. PBD can also be used in the design of interface agents,

6

software to aid users in accomplishing tasks that are too complex or repetitive to accomplish
alone.

Past work has shown that these agents, when combined with GUI interactions, can be
used to interface with closed source, commercial applications or handle the coordination
between multiple programs [23]. This work has also shown that for an agent to be general,
it must have an internal model of the program it is manipulating on the user's behalf. By
coupling user interaction with image processing such as pattern recognition or segmentation,
agents can build such a model employing machine learning techniques [38, 7]. These internal
application models have obvious implications in cognitive modeling and have the potential
to give new cognitive modeling techniques access to a wide range of software [6]. Given our
system's target use, the overhead due to model building would be undesirable and as we
show in the following sections, also largely unnecessary to achieve powerful applications.

Of particular interest is the work in PBD to automatically create a sequence of user
interactions which is used to perform a specific or number of tasks. This sequence is
typically called a macro. PBD is frequently used to record a macro or create a macro
script based on a users actions. PBD macro generation has proven to be popular in a
variety of application contexts [12, 24]. As mentioned earlier, similar techniques have been
adopted in software systems such as Adobe’s Photoshop [4]. Macros created via PBD have
appeared in systems to work with 2D graphics [21], desktop actions [27], business email
tasks [36], data analysis tasks [14], and web browsing [35]. Recent research [13] has applied
PBD to aid visual programming for GUI testing as well.

Again like agents, most of these examples typically require a system to have some
high level knowledge of the application which it is manipulating. The VisMap [39] and
TRIGGERS [5, 31, 32] systems are particularly relevant since they have been flexibly
designed to work generally with any program. Even though they have only been shown
to work with simple examples, these systems offer a sense of how such interactions can be
used to create a powerful tool.

ManyVis uses these lessons learned to provide what appears to be the first fully auto
mated GUI interaction system for visualization.

CHAPTER 3
MANYVIS

ManyVis is an abstract, low-level framework for managing application execution, over
seeing application window management, intercepting and processing user inputs, accessing
application API elements, and augmenting an applications display. Fig. 3.1 illustrates
the structure of the framework. Apart from the inputs, ManyVis coordinates process
management, windowing, and possible communication between applications. This enables
ManyVis to function as a quasi-virtualization environment giving enhanced/augmented
(low-level) control over applications, and allowing them to work together. Using ManyVis,
a user can, for example, coordinate time-varying data across multiple applications using
a single time line, edit images with Photoshop which are too big to be imported directly,
and/or create presentations which can have live applications embedded. Our prototype is
designed for the Windows 7 operating system and relies on Win32 API calls to intercept
user inputs, although the framework itself is general and can be applied to any underlying,
general purpose OS.

Information Control User

ManyVis Core
! V i r * * !

1 Process Manager 1 1 Window Manager 1 1 API Handler Event Handler Display Manager
Ai ▲1 i ▲1 i ▲i

Applications PowerPoint (^MeshLab

ManyApp
ManyWorkflow

ManyMacro

ManyVis Core

Applications

User

(a) (b)

F ig u re 3.1: T h e F ram ew o rk ’s C o m p o n en ts . (a) The primitive operations provided by
ManyVis along with their control and information flows. ManyMacros and ManyWorkflows
utilize these primitives to build custom unified ManyApps. (b) A block system diagram of
a ManyApp. The ManyVis core primitives interface with the user and applications directly.
ManyMacros leverage these primitives into more sophisticated operations. ManyWorkflows
handle the coordination and synchronization of ManyMacros, ManyMacro scripts, and
possibly ManyVis core elements.

8

3.1 Process Manager
At startup, a ManyVis session launches a set of applications to manage. Applications

are initialized by creating the corresponding process via system API calls and retrieving
the handles to windows the application creates. Application windows are addressed by the
(P, T, C) triple where P is the ID of the process that created the window. T is the title,
and C is the class name of the window. This allows ManyVis to identify windows uniquely
and associate them with a process. Although the title and class of a window are normally
enough to identify a window uniquely, this approach does not work for cases where there
are multiple instances of the same application. The triple ensures that the title and class
of a window, along with its process ID, uniquely identify a window.

3.2 Window Manager
To allow the display and coordination of multiple applications each with the possibility

of having multiple windows, ManyVis ties into the main operating systems window man
ager. This coupling allows ManyVis to move, resize, or change the current window focus.
Additionally, developers can create custom user interface elements (e.g., buttons, sliders)
via the Window Manager for later integration into their ManyApp.

3.3 Event Handler
ManyVis achieves much of its functionality acting as an intermediary for user input.

In its simplest form, ManyVis can determine with which program the user wishes to
interact and passes that information along to the proper program (provided by the Process
Manager). As detailed in Section 3.1, when recorded, edited, and saved into a ManyMacro,
this handler design allows for powerful functionality. A series of events can be created
to perform one or multiple operations on one or multiple applications. Events can be
passed either using messages or inputs (according to the Win32 API). Using the former,
the operating system passes events to windows using messages, while sending direct inputs
to the foreground window. A major advantage of using messages over direct inputs is
that it does not require the mouse to be physically present at a particular position. To
function, inputs, on the other hand, require the mouse cursor to be physically present
at a particular position. If there is accidental mouse movement during event playback
(ManyMacros), it may cause undesired results. That being said, messages suffer from a
major drawback: Posting a message to a particular window may not always work due to
the window composition. If a window is composed of several smaller windows, sending a
message to the parent window does not guarantee the events are passed to the proper child

9

window. Inputs, on the other hand, despite their drawbacks, are guaranteed to send the
right input to the right window. Although, ManyVis has provisions for both (messages and
inputs), the prototype system uses inputs due to this guarantee. Our current prototype
blocks user movements during playback to ensure proper ManyMacro executions.

3.4 API Handler
User input events are a powerful tool used by ManyVis to achieve much of its func

tionality, although they may not provide all (or even the best) functionalities necessary to
achieve a desired ManyVis application. Therefore, ManyVis includes a module to access
applications APIs using its native scripting language; for example: VBScript, MEL, etc.
The use of APIs helps to create ManyVis Objects, which are application specific. For
example, Microsoft PowerPoint exposes a rich set of functions giving access to many of the
objects that comprise a presentation. ManyVis uses this to create custom ManyVis objects
allowing access to the underlying application. A PowerPoint shape is a ManyVis Object
amongst others and can embed any application easily in a PowerPoint slide. It allows the
user to start/end presentations, change the size of boxes, and the like, all at runtime.

3.5 Display Manager
To give the end-user the impression of a common application, ManyVis also resides just

above the application level between each application and the display. Since ManyVis has
access to all the windows of the applications, it is possible to alter the window contents.
Since an application window from creation to display on the screen is simply an image,
ManyVis allows for the integration of any image processing technique as well. For our pro
totype application, we show how to integrate the ImageMagick library to process application
windows before they display on the screen. This enables a user to apply a wide gamut of
filters and effects on windows contents while maintaining interactivity with applications.
For example, this allows the ability for a user to change color or contrast, crop, splice, or
apply transparency to a window. This component is optional and can be disabled for an
application if no processing is necessary.

3.6 ManyMacro
The components detailed above are the primitive functionalities of the ManyVis frame

work. One or several of these primitives can be developed into a sophisticated ManyMacro
element and a ManyMacro script is a sequential collection of these new elements. Many-
Macro elements can be thought as a custom, mini-application which uses the ManyVis

10

Core primitives as an API-like interface. A ManyMacro script is recorded as a collection of
elements saved as XML. Each element in the script stores its needed state and behavior,
allowing each to be independent of the elements preceding or succeeding it. In its simplest
form, a ManyMacro resembles a sophisticated macro system by recording and playing back
mouse and keyboard events via a direct interface with the Event Handler. Using ManyVis
Process Manager, a user input recorder associates an interaction with the proper application
window. Since the process ID is different every time an application is started, ManyMacro
stores normalized (scoped) process IDs which are assigned in the order the process was
started. This makes the interactions to be scoped to a particular process and, thus, allows
multiple instances of the same application to be handled correctly. The ManyMacro captures
the size of a window and coordinates of the mouse pointer relative to the window to make
the playback independent of the size and position of the window. The ManyMacro also
stores the time elapsed between each event to create a detailed timeline and make the
playback mimic the original user interactions accurately. This supports playback as simply
the sequential replay of the recorded events with the proper timings. An example Event
Handler macro recording is included below.
<-- EVENT HANDLER -->

<LEFT_MOUSE_DOWN>

<!— application — >

<PROCESS_NAME>googleearth.exe</PROCESS_NAME>

<!— normalized process ID — >

<SCOPE>2</SCOPE>

<!— position— >

<X>425</X> <Y>306</Y>

<!-- is dragging -- >

<DRAGGING>true</DRAGGING>

<!-- timestamp (ms) -- >

<TIME>199</TIME>

<WINDOW_CLASS>QWidget</WINDOW_CLASS>

<WINDOW_TITLE>Google Earth</WINDOW_TITLE>

</LEFT_MOUSE_DOWN>

Note that ManyMacros offer far more expressive operations due to their close coupling
with the ManyVis framework. For example, processes can be launched or killed via the
ProcessManager. Here is an example script to launch two applications:
<-- PROCESS MANAGER -- >

<PROCESS>

<PATH>C:\\POWERPNT.EXE</PATH>

<TIME>0</TIME>

<SCOPE>1</SCOPE>

</PROCESS>

<PROCESS>

11

<PATH>C:\\googleearth.exe</PATH>

<TIME>0</TIME>

<SCOPE>2</SCOPE>

</PROCESS>

Windows can be moved, resized, and brought into focus via the Window Manager. Here
is an example of a window being resized:
<-- WINDOW MANAGER -->

<RESIZE>

<PROCESS_NAME>googleearth.exe</PROCESS_NAME>

<SCOPE>2</SCOPE>

<!— new size — >

<LEFT>982</LEFT> <RIGHT>1629</RIGHT>

<TOP>313</TOP> <BOTTOM>864</BOTTOM>

<TIME>2987</TIME>

<!-- window to resize -- >

<WINDOW_CLASS>QWidget</WINDOW_CLASS>

<WINDOW_TITLE>Google Earth</WINDOW_TITLE>

</RESIZE>

Program-specific calls via API Handler operations or custom elements developed using
these operations can be made. Here is an example of the insertion of an application into a
PowerPoint shape:
<-- API HANDLER -- >

<INSERT>

<!-- application to insert -- >

<PROCESS_NAME>googleearth.exe</PROCESS_NAME>

<SCOPE>2</SCOPE>

<!-- position to insert -- >

<LEFT>982</LEFT> <RIGHT>1629</RIGHT>

<TOP>313</TOP> <BOTTOM>864</BOTTOM>

<TIME>36</TIME>

<WINDOW_CLASS>QWidget</WINDOW_CLASS>

<!-- window to insert -- >

<WINDOW_TITLE>Google Earth</WINDOW_TITLE>

<!-- application to insert into -- >

<HOST_PROCESS_NAME>POWERPNT.EXE</HOST_PROCESS_NAME>

<HOST_SCOPE>1</HOST_SCOPE>

<!— Powerpoint shape to insert into — >

<SHAPE_ID>5</SHAPE_ID>

<!— Powerpoint slide with shape — >

<SLIDE_ID>266</SLIDE_ID>

</INSERT>

ManyMacros can also use ManyVis’ Display Handler to present a final custom appli
cation in a reduced, purpose-oriented interface by letting the ManyVis developer control
the content of application windows. When working with multiple applications, the screen

12

space is often utilized by the interface elements more than the area of interaction. For
example, an image editor application interface may consist of a number of toolbars and
buttons while the user needs to actively use only one tool. This is acceptable for a workflow
with a few applications; however, as the complexity of the task grows, this causes many
unnecessary interface elements to be on screen at once, and results in diversion of focus. For
such a scenario, the adjustment of interface is needed. At the time of this writing, Adobe
Photoshop [4] supported creation of multiple custom workspace layouts, yet this is far from
being a feature widely implemented in the rest of commercially available applications. Even
for applications where the workspace can be customized, the use of the same tool for different
tasks often requires different workspace arrangements. The workflow interface can be built
by drawing the contents on the screen in a way defined by the user through actions such as
cropping, resizing the dynamic content, or even processing pixel data directly. Such a model
not only allows the user to eliminate unnecessary interface elements, but it also allows the
user to append further actions to the ones existing. The workflow manager provides this
functionality via ManyVis' Display Handler. Multiple applications can be presented to a
user as a single, GUI-minimal view. Furthermore, ManyVis allows full integration of image
processing libraries (ImageMagick in our prototype system), which a workflow can use to
provide a wide range of effects and filters to apply to the application window images. A
sample script, which shows an example of a user creating an image from a window and
enabling a filter to replace an image color with transparency, appears below:
<-- DISPLAY MANAGER -->

<CREATE_IMAGE>

<PROCESS_NAME>googleearth.exe</PROCESS_NAME>

<SCOPE>2</SCOPE>

<WINDOW_CLASS>QWidget</WINDOW_CLASS>

<WINDOW_TITLE>Google Earth</WINDOW_TITLE>

</CREATE_IMAGE>

<ALPHA_REPLACE_START color= 0 0 255 />

<-- EVENTS-- >

<ALPHA_REPLACE_STOP />

3.7 ManyWorkflow
ManyMacros provide a developer full scripting and programming access to the ManyVis

core infrastructure. However, by itself, a ManyMacro script is still a single collection
of serial operations. ManyWorkflow bridges this gap by providing developers the ability
to schedule and coordinate multiple ManyMacro scripts. By doing this, a developer can
provide powerful new ManyVis applications (see Fig. 3.1) that combine several disparate

13

applications into a single seamless environment. The ManyWorkflow allows a developer
to coordinate and augment ManyMacros or ManyMacro scripts. One or several macros or
macro scripts can be bundled into workflow actions. Actions can be executed on a schedule,
through user input captured by the Event Handler, custom buttons provided by the Window
Manager, ManyMacros, or by other actions. In this way, a ManyWorkflow can allow much
flexibility and easily allow for the coordination and synchronization of applications. For
example, if time-dependent data are being viewed or analyzed in multiple applications,
a time step change in one window can trigger all applications to move time through
ManyMacros or ManyMacro scripts. This execution is transparent to the user and gives the
impression of a seamless new application. Merging and coordinating display and interactions
already allows a powerful system, as shown in the previous work in PBD. W hat makes
the ManyWorkflow far more powerful is the way it allows the control of the information
flow between applications, allowing communication between multiple applications whose
interfaces are not designed to interact in automated way. The ManyWorkflow enables
communication between programs by leveraging methods that a typical user would follow
to transfer content between different applications. W ith this manager, programs may
communicate by inserting data to and reading from the clipboard via actions. They may
also be set by a ManyWorkflow action to read and write to the same file(s) on the underlying
system. If no common file format is available or previous methods are not applicable, each
program can also communicate with a third party process or via application objects from
the Application Handler. Although flexible, actions are limited to what can be accomplished
through a programs interface or via ManyVis objects. For, instance, the microscopy example
detailed in Section 4.3 would not be possible if the out-of-core viewer did not allow the
insertion of new buffer values via the clipboard or the file menu, or did not provide a way
to determine the viewer's viewport location and resolution. In other words, we exploit and
coordinate the existing functionalities of the tools whenever possible to avoid creating new
ones.

CHAPTER 4
MANYAPPS

In this section, we demonstrate how ManyWorkflows and ManyMacros can be used
to create custom ManyVis applications (ManyApps). First, we will introduce a simple
ManyApp useful in debugging ManyMacros. Next, we will detail our exemplar Presentation
ManyApp. Finally, we will describe several additional ManyApps for scientific visualization

4.1 Debugger ManyApp
Macros have a tendency towards instability or inefficiency, as noted in previous work

on event driven macros [11]. Therefore, a debugger is necessary in order to enable the
achievement of a desired behavior more easily. ManyVis provides an initial bootstrap
application which provides a step-by-step ManyWorkflow debugger. Note that this de
bugger is an application built using its own ManyWorkflow. In the debugger, a user can
step through all ManyMacros sequentially or skip to a particular macro element. If the
user jumps forward, all intermediate ManyMacros are executed. At each breakpoint, the
debugger prints the related ManyVis state information to the console, exposing the state
of the primitives. The user is also presented visual feedback of the actual ManyWorkflow
as the ManyMacros are executed while the current ManyMacro is presented to user either
directly or as a highlighted element in corresponding ManyMacro script. The debugger
lets the user ”step back” by rolling back certain ManyMacro elements. While useful, this
backwards step relies on the fact that the element did not change the application state.
For instance, user interactions that load a new file would be unsupported. Even with this
limitation, this backward movement in the debugger is still useful enough to warrant its
inclusion. For example, a drag or scroll operation can often be undone. W ith this debugger,
ManyWorkflows and ManyMacros can correct undesired behavior.

15

4.2 Presentation ManyApp
Commonly, visualization researchers give presentations on new techniques or algorithms.

These presentations often include a live demo of a prototype application. Switching between
the presentation software and the demo is a cumbersome, error-prone, and sometimes
stressful process. Additionally, due to room or projector conditions, the brightness, contrast,
or color of the demo may not present the application in the best light. Finally, successful
embedding of a video into a presentation can be highly variable due to codecs and format
of the video file. Often, researchers will switch to a robust video player, like VLC [30],
instead of living at the mercy of the presentation softwares embedding. In this section,
we detail how to design a Presentation ManyApp via a custom ManyWorkflow. Using the
building blocks detailed previously, we show how a developer can create a highly customized,
interactive presentation that alleviates all of these common problems. At a high level, the
ManyWorkflow consists of a single presentation application, Microsoft PowerPoint, with
one or several applications that the user wishes to embed. The presentation application is
customized by the creation of specialized ManyMacros that use Application Handler API
objects tied to PowerPoint VBscript. The presentation software can be considered a ”host”
application that drives the actions and display of the ’’embedded” applications.

4.2.1 Creation
The creation of a presentation inside the new ManyApp is its own custom workflow. As

an initial process, a user manually creates a ManyMacro script to denote which applications
will be used in the new application (with PowerPoint being the host application). Many-
Macros can be called for each embedded application, or new ManyMacros can be recorded
at this time, to bring each program to a prescribed state. To embed the applications,
the user creates one or multiple powerpoint shapes on the desired slide, selects the right
application (by putting focus on them), and via the provided GUI, indicates to ManyVis to
insert the application. ManyVis, in turn, uses a custom ManyMacro that utilizes objects
in the Application Handler to find the coordinates of the selected shape and the window.
The ManyMacro also records the shape ID and slide number in order to identify the shape
uniquely in the presentation. Insertions are saved if the user is satisfied with the result as
a custom ManyMacro script that is called if the presentation is relaunched. To provide a
seamless user experience, the screenshot of the current state of the application is inserted
into the slide. By doing this, a placeholder shape for the program appears in the slide and
can be edited via PowerPoint. If the application needs to be adjusted, it can be unembedded,
modified, and re-inserted.

16

4.2.2 P resentation
During a presentation, a custom API ManyMacro embeds the application by overlaying

the selected application window over its corresponding shape, which for our demo appli
cations is a rectangle. In presentation mode, shape coordinates change; therefore, as a
first step, the ManyMacro queries the shape IDs of the embedded applications for their
new locations. Shape IDs are indexed local to each slide; therefore, the ManyMacro polls
PowerPoint on a timer to keep track of the current slide in order to resolve each shape to the
proper application. During the presentation, the placeholder screenshot for the application
is swapped for the real application when interaction is requested. The application is resized
or scaled (e.g., lanczos downsampling) via a Display Handler ManyMacro to fit seamlessly
into the new shape size. Any mouse interactions that occur within the shape, or prespecified
keyboard interactions, can be passed to the embedded application. At this point, the
application description assumes a user would like to embed the entire application window
into the PowerPoint shape like the video example in Fig. 4.1a. Using ManyMacros that
leverage the ManyVis Display Handler, there are many more options possible. Custom
GUIs can be created in the slide by cropping, moving, and resizing the original GUI elements
before they are embedded into the shape. Multiple GUI elements from the same window can
be embedded into different shapes using the same process. The embedded applications color,
brightness, contrast, and saturation can be adjusted by enabling and disabling ManyMacro
filters, as in Fig. 4.1b. These filters and their parameters can be tied to user interactions
and therefore can be adjusted in real-time during the presentation. Moreover, more complex
filters, like the transparency color replacement in Fig. 4.1c or image flood-filling, can be
applied to the embedded application to provide a fully interactive and integrated PowerPoint
application demo.

4.2 .3 U ser E xperience
In the previous paragraphs, we have detailed how a developer can provide the function

ality necessary for a PowerPoint Presentation ManyApp. After this initial creation, a user
can embed virtually any application to build a variety of different presentations. Before
launch, a user specifies a list of programs which they would like to embed via an XML
file. At launch, ManyVis starts each application along with PowerPoint. The ManyApp
provides a simple user interface to aid the presentation creation; see Fig. 4.2. A typical
user workflow would be the following: First, the user selects an application, then records or
replays a macro to bring the program to a desired state via the ManyVis GUI. Next, the
user can draw a PowerPoint rectangle to denote where to embed an application. W ith the

17

F ig u re 4.1: C u s to m In teg ra tio n . ManyVis allows the custom integration of disparate
applications into a single, seamless ManyApp. This figure illustrates some of the func
tionality of our PowerPoint Presentation ManyApp. This integrated application allows a
user to embed and manipulate external applications into their PowerPoint presentation.
a) Video codecs are often a problem when embedding video. W ith ManyVis, a presenter
can just embed the video player (VLC) itself. b) Embedding a demo application is also
simple. (b purple inset) Often projector and room conditions may cause a demo to be
presented poorly. W ith ManyVis, a presenter can adjust the color, brightness, and contrast
in real-time. c) More sophisticated manipulation is possible with ManyVis. In this example,
a presenter creates a fully integrated MeshLab[2]demo by cropping the unnecessary GUI
and applying an alpha transparency to the embedded application (c purple inset). The
application maintains full interactivity.

rectangle selected, a user can embed a selected window via the ManyVis GUI.
The application remains interactive after embedding for further manipulation. The user

can also switch between PowerPoints editing and presentation modes with the application
embedded. After they are satisfied, they can save the entire ManyApp in its current state
for later relaunch. Image processing components such as rescaling or alpha transparency
can be enabled by editing the XML script. Fig. 4.1 demonstrates a variety of applications
integrated seamlessly into PowerPoint using the ManyVis system. As previously mentioned,
each example provides a solution to a real problem faced by visualization researchers
when presenting their work. For instance, the MeshLab example in Fig. 4.1c shows how
ManyApps save time and effort along with providing dynamic context. In this example,
MeshLab model can be aligned with the text in a fluid manner. To achieve this effect outside
of our system would require saving a screenshot, loading the screenshot into Photoshop for
the alpha transparency, and placing the final image into the presentation. This takes many
iterations and on the order of minutes to complete. W ith the ManyApp, importing and
aligning the model is trivial and instantaneous. The application is also interactive during
the presentation for live demos.

4.3 Additional ManyApps
In the following section, we detail additional examples of using ManyVis and show how

simple extensions can lead to powerful visualization tools.

18
U 0 *5 - (3 TjB = presentation.pptK - PowerPoint DRAWING TOOLS

IM HOME j INSERT DESIGN TRANSITIONS ANIMATIONS SLIDESHOW REVIEW VIEW FORMAT
E e l * . .*!«*»»« ton -

__ EU Align Tent -
' Convert to SmartArt *

I j § ^Layout- . | ib~ 71a- a* ^ := IW D O D j r~} ^ shape nil.
iX-U O '& Q tH D 2; Shape Out
n a n ̂ Nfl"â st:k

2

Paragrap

& Replace
Styles T ̂ Shape Effects T SelectT

B lD Buttons \ /

Record | Playback | Insert | Start

1 1

Presentation Exit

BASIC EMBEDDING OF EXTERNAL APPLICATIONS

> Proper installation of codecs and .
compatibility with presentation
software is often a major problem
for presentations with embedded
video.

■ ManyVis solves this problem by
embedding the entire media
player not just the file.

■ If you can play your video, it is
guaranteed to play in your slide

■ This slide shows the VLC player

Signing

t video.ffv - VLC media player IW IL I JL ^ J

E HHH d d stum

i
3

F ig u re 4.2: P re se n ta tio n U ser In te rface . The Presentation ManyApp allows users to
easily insert virtually any application without the need for programming. In this figure, the
steps are outlined for the insertion of a video player into a presentation. 1) A user creates
or selects a PowerPoint shape. 2) They choose to insert from the supplied GUI (purple).
3) To complete insertion, they select the proper application window. PowerPoint and the
embedded application remain interactive.

4.3.1 A d-hoc A naglyph V isualization
In this example, we show how one can add new visualization functionality to a tool.

Specifically, we add an ad-hoc stereo anaglyph to a 3D application something that does not
initially support the functionality. Fig. 4.3 provides an example anaglyph tool. To provide
a ”toe-in” type anaglyph, we need to provide two 3D views with a slight rotational difference
to achieve the desired effect. The two (left and right stereo) views are presented overlaid
to the user filtered by the colors that correspond to the type of 3D glasses used. In our
particular example, these colors are red and cyan. A ManyMacro first launches two instances

F ig u re 4.3: A d-hoc A nag ly ph V isu a liza tio n . Two instances of a 3D visualization tool
are combined for red and cyan 3D anaglyph.

19

of the visualization application with each application image filtering the output image with
the appropriate color. The filtering is achieved with a Display Handler ManyMacro. A
final ManyMacro overlays the two images for display. As an initial phase, the ManyVis
tool allows the user to manually rotate a single view to achieve the desired offset for 3D
viewing or automatically apply the offset via a Event Handler ManyMacro. Note, if the
viewer exposes an API that allows the input of the view matrix directly, this manual step
can be traded for an automatic API Handler ManyMacro. After this initial stage, all input
given to the ManyWorkflow is passed to both viewers, keeping the views in sync and in
stereo.

4.3 .2 Interactive Sim ulation Film strip
Given time-dependent data, a common illustration is to provide a contact sheet or

filmstrip of key simulation time. As Fig. 4.4 shows, the ManyVis can be used to aid in
its creation. Given an application with time input slider or text, say, the ManyWorkflow
can create an initial number of filmstrip slides given a user input. Each slide is a separate
instance of the program. However, more sophisticated ManyMacros can be created to
leverage the Event and Display Handlers to achieve the same effect with a single application.
The time steps for the initial slides are set to be evenly distributed between the first and last
desired time steps. This range is an additional user input given to a custom ManyMacro in
the ManyWorkflow. After this initial setup, each individual application can be ”uncaptured”
to fine-tune the desired time step. The ManyWorkflow passes all view interactions to all
windows to keep views synchronized.

4.3 .3 A n notation of M icroscopy D ata
A common workflow in microscopy is the labeling and annotating of data. Methods

exist for the automatic annotation of digital microscopy data, though they can often be
insufficient or specific to a particular test-case. Therefore, there is often a manual portion
of this workflow where an expert verifies, corrects, and even adds additional annotation
to the work of the automatic method. Often, these microscopy data are extremely high
resolution and can be gigapixels in size. This large size can be significant in the complexity
of implementing an annotation system. Moreover, the annotation tools created for the
scientist must be anticipated in advance.

As is often the case, this predetermined solution may be insufficient for some tasks.
Depending on the complexity of the tools, this may add significant development time for
an implementation. This example is the result of conversations the authors have had with

20

F ig u re 4.4: In te ra c tiv e S im u la tion F ilm strip . Automatic creation of a filmstrip
illustration for time-dependent data. ManyVis provides buttons to define the number of
windows to display. Two additional sliders provide user input to denote the desired range
of time steps.

three microbiologists who commonly annotate microscopy images as part of their day-to-day
work. Their workflow consists of using Image-Pro to capture and view their microscopy data
then exporting this data into photoshop for annotation. After annotation, Neurolucida
software is used for analysis of the data. Each stage of their workflow requires tedious
saving, loading, or converting of data. Moreover, our partner scientists have recently begun
to capture entire slides as gigapixel-sized images and desire a quick solution for this datas
integration into their workflow. This example represents an initial prototype ManyApp to
provide a simple, gigapixel solution for two stages of their workflow. Assuming we have a
stand-alone out-of-core visualizer for the microscopy data, we would like to use ManyVis
to rapidly create a metaannotation system for the dataset from the work of Anderson et
al. [8]. We have chosen to use ManyVis to integrate the out-of-core visualizer with Adobe
Photoshop [4] inheriting its many sophisticated image editing tools without going through
laborious data conversion; see Fig. 4.5.

Given an instance of the out-of-core visualizer and the image editing program, a Many
Macro can overlay the visualizers data on the image editors canvas. The viewers GUI is
trimmed and therefore, it appears to the user as if the data are already in the editors
canvas. Since an editors canvas is often distinct, this overlay is a simpleManyMacro image
processing problem to detect the canvas and place the viewer image on it. If the user
pans or zooms the microscopy data, the user interaction is passed through to the viewer
by theManyWorkflow. When the user has reached the desired location, the buffer from

21

F ig u re 4.5: A n n o ta tio n o f M icroscopy D a ta . In this example, ManyVis combines a
large-scale microscopy image renderer with Adobe Photoshop to provide a tool for rapid
annotation of very high-resolution dataset, a common workflow in using microscopy data.

the viewer window is inserted into the editors canvas. This is triggered when the users
mouse leaves the canvas area and is seamless. The image data are passed to the editor
via a ManyWorkflow with ManyMacros that copy the data from the viewer to the system
clipboard and insert into the image editor with a COPY-PASTE operation. When the user
is satisfied with their annotation and a save command is given, ManyMacros trigger the
image editing application to copy the image buffer back into the clipboard. Our out-of-core
visualizer is then triggered by this same ManyMacro to paste the clipboard buffer into its
viewing buffer and then save the buffer into the dataset at the given resolution and viewport
to alternative color channels. If a viewer does not have this functionality, we could have
easily extended the ManyWorkflow/ManyMacros to save and load a common file. For
resolutions finer than the resolution of the edited buffer, we have found linear interpolation
of the annotation data to be sufficient to fill in the missing data. However, ManyVis still
maintains the flexibility to have a ManyMacro trigger an out-of-core processor to fill in the
finer resolution. Initial feedback has been positive from our microbiologist collaborators
and discussions have begun on extensions to cover more of their workflow and deployment
strategies.

4.3.4 Isosurface C ustom V isualization
There is a need in creating simple environments for distribution of visualization tools

for both the dissemination of work, as well as the creation of simple tools to accomplish
portions of a scientific workflow. In this example, ManyVis is used to provide a visualization

22

mash-up. This application is comprised of three separate applications, two of which are
closed-source and commercial. In particular, for this example, ManyVis provides a custom
ManyApp for the analysis of an oil reservoir simulation. For this analysis, the user is
interested in exploring over time both the isosurface of water saturation alongside a 1D plot
of oil pressure (see Fig. 4.6). Microsoft Excel and Mathworks MATLAB are used to provide
the 1D visualization and a stand-alone isosurface renderer provides the 3D visualization.
The main idea demonstrated in this example is to show the ability to combine separate
tools into a single ManyApp and synchronize their presentation via a ManyWorkflow and
ManyMacros. This enables a user to choose the application that she/he prefers to present
the shared data. Via ManyMacros, each application will load the dataset in their preferred
standard format at launch. If this format does not exist, a separate ManyMacro can
be configured to automatically convert the data file into a more common format. Each
tool provides an interface to switch the time-dependent data. In the spreadsheet, this
is achieved by activating the next row; in isosurface renderer, it is done by moving the
horizontal slider in the tools interface; and in MATLAB, this is accomplished through
keyboard input into workspace console by varying the index to access the desired row in
the matrix. All of these operations are performed by ManyMacros and coordinated by a
ManyWorkflow. The ManyWorkflow also provides a user with a custom time slider (via the
ManyVis WindowManager). When the user moves this slider, each of the time-dependent
data ManyMacros is triggered and each application is updated. This allows a continuous
inspection of data in different formats taking advantage of each applications strengths.
Therefore, in a very short deployment time, a unified custom visualization tool can be built

F ig u re 4.6: Isosu rface C u s to m V isua liza tio n . An isorenderer, Microsoft Excel, and
Mathworks MATLAB (not shown) embedded into a single application for an oil reservoir
simulation. Users can adjust the timestep selected in all three programs using the slider
indicated by the yellow arrow or switch the 1D plotting program between MATLAB and
Excel using the button indicated by the orange arrow.

23

by only creating a few, simple actions.

4.3.5 Exploring Param eter Space U sing a C ustom H istogram
In the example presented in Fig. 4.7, we build a custom tool to explore parameter

space of porous media. The technique and visualizations interface are made available in
Gyulassy, et al. [18]. The interface provides four sliders as bounding values for the active
contours being visualized. In this example, we chose Mathworks MATLAB to produce
the 2D histogram of the dataset used in the visualization and embedded this plot within
the ManyApp via ManyMacros. A semitransparent bounding box is placed on top of the
histogram image to represent the active bounding box intervals. The user of the tool can
move and resize this box, which effects adjusting the slider values on the visualization
interface. The box drawing and slider adjustment are provided by custom ManyMacros.
The user selects a region in the histogram that is of interest and the change becomes
immediately visible in the visualization, which would otherwise entail switching between
applications. This example targets a common frustration in data analysis and, specifically,
for the authors of the topological analysis tool. Often analysis techniques can be highly
data dependent. Therefore, when conducting research for new approaches, there is often
an extensive trial-and-error process needed, one that combines 2D, 3D, and topological
analysis to understand the nature of the data. Often for 2D analysis, a researcher will
use software such as MATLAB rather than creating a custom 2D tool. Therefore, tedious
switching and converting among different programs during analysis is commonplace. This
demo successfully streamlines this typical workflow of several analysis applications into a
single user experience.

ss

F ig u re 4.7: E x p lo ring P a ra m e te r S pace U sing a C u s to m H is to g ram . A custom
ManyApp for the exploration of the topological parameter space of porous media. This
application combines a custom volume renderer and transfer function editor (left and
middle) with a 2D histogram provided by MATLAB (right).

CHAPTER 5
ANALYSIS AND CONCLUSION

5.1 Performance
All timings and demos were performed on a 2.67 Ghz i7 Windows 7 system and 6 GB

of memory. For macro recording, ManyVis requires on average 1.5 milliseconds (ms) per
event to process and store the required data. If we compare that to our test system’s
USB polling rate of 8 ms (125 Hz) [37], we can safely say that ManyVis event processing
will not cause any perceptible performance loss relative to user input even for modestly
provisioned systems. During playback, ManyVis can process and send events at a rate of
700 instructions/ second. As the USB polling shows, this rate is well above what one would
expect from user input. However, one cannot assume the OS and application are designed
to handle this rate. Table 5.1 provides an evaluation of this performance.

This test was performed by sending click events to the OSs calculator to perform a
series of additions. Lost events would lead to an incorrect result. Clicks were chosen since
the OS and application must process these events. For example, mouse movements factor
into ManyVis’ throughput, but if an application does not process these events, they can be
considered ignored. We found our test system could process 9000 events at full rate before
an event was lost. Even without loss, there is approximately 6.6 seconds of delay from the
time the last event was sent to the time the proper value is displayed on the calculator. This
timing was performed via a screenshot of the calculator taken every 100 ms. By considering
the number of events and the time for the application to process all events, we calculated
that the OS and application can handle a throughput of approximately 450 instructions per
second. Running this test with varying throughput, we see similar results.

Based on this evidence, we can project that ManyVis can operate with throughput of ap
proximately 450 instructions per second with no lost events or delay in the application. W ith
tests of rates up to 400K events, we have verified this hypothesis. This rate is comfortably
above the rate expected from a user-created macro. Table 5.2 provides performance results
for the overhead incurred from ManyVis’ image processing component. This component is

25

T able 5.1: E v en t T h ro u g h p u t
Throughput (inst./s)

320 448 483 577 640 700
Max Inst.

Final Delay(s)
O S/App (inst./s)

200K
0

320

200K
0

448

53K
6.7
455

14K
6.4
457

10.5K
6.6
456

9K
6.6
463

ManyVis is capable of replaying events at a rate of 700 events/second. The throughput of
events (clicks) determines the maximum instructions the operating system and calculator
application can process without loss (Max Inst.) and the delay in the application after
the maximum events are sent (Final Delay(s)). Considering the total runtime with delay,
we can estimate the maximum throughput for the OS/application (OS (inst./s)). W ith a
throughput of approximately 450 events/second, one can reasonably expect no loss and no
delay during replay.

T able 5.2: M anyV is Im age P ro cess in g O verhead .
Time (ms)

100% 75% 50% 25%
Gaussian - 47.6 24.8 20.6

Cubic - 47.8 24.7 20.4
Lanczos 2-lobe - 48.3 24.8 21.3

Gaussian + Color - 54.7 28.2 22.3
Cubic + Color - 54.6 28.1 22.3

Lanczos 2-lobe + Color - 54.7 28.4 22.3
Color Only 24.9 14.1 7.5 3.0

Timings for the optional image (ImageMagick) processing for Google Earth embedded in
our Presentation ManyApp (900 x 700 original window size). We provide results for typical
downsampling filters and/or HSL color adjustment. All timings are shown as the average of
1000 runs. Overhead for image processing operations is 16 ms. As these numbers indicate,
applications maintain interactivity.

optional since a window can be directly passed through and incur virtually no overhead.
In Table 5.2, we provide results for the example described in Fig. 4.2b, which includes
downsampling and/or color correction of a 900 x 700 window. W ith the component enabled,
there is on average 16.1 ms overhead due to copying and passing buffers. For downsampling,
we have chosen three common downsampling filters, although all possible ImageMagick
filters were tested. Even more expensive filters, not typical for real-time applications, add
approximately 10 ms to the filters reported. As the timings show, the application maintains
interactivity. For future work, we plan to test other image processing libraries and GPU
acceleration to further improve these timings.

26

5.2 Limitations
Our current prototype supports a variety of commercial software such as Microsoft

PowerPoint, Microsoft Excel, VLC media player, Google Earth, MeshLab, Adobe Photo
shop, and Mathworks Matlab and the authors' own isosurfacing, large image viewer, and
topological analysis software. Adding additional software support varies in difficulty. For
example, ManyApps can accommodate tools like ad hoc stereo or filmstrip example with just
simple custom ManyMacros. Examples such as the exemplar Presentation ManyApp are
more difficult to develop because they require custom interfaces to a presentation software's
API. Therefore, a change in presentation software would require new development. However,
adding new applications into the currently supported Microsoft PowerPoint is trivial and
requires just interaction without programming.

In the current prototype, user edits on some features, such as the image processing
components, can only be enabled by editing the ManyVis XML. For less advanced users,
this may not be intuitive; therefore, future work will investigate how this functionality
can be exposed via a user interface. As detailed in the Event Handler description, using
Windows API inputs when replaying user interactions can cause unintended effects when
a user simultaneously begins to send new interactions via the mouse/keyboard while a
ManyMacro is being replayed. Although a limitation, inputs are far superior to the alter
native (messages) that do not handle multiple windowed applications well. Currently, user
interactions are inhibited during macro replay to prevent problems.

Future work will be to add a visual cue for a user. Currently, our PowerPoint ManyApp
is limited to embedding applications into rectangular PowerPoint shapes. Custom Many-
Macros can be designed using the Display Handlers image processing routines to support a
wider variety of shapes.

5.3 Conclusion
In this thesis, we have demonstrated a tractable design for a system that can enable

rapid deployment of custom visualization tools. We have detailed the design of the core
framework, ManyMacros, for sophisticated operations, and ManyWorkflow for the coordi
nation and synchronization of ManyMacros with applications. These technologies combined
provide a powerful development platform that can build customized solutions. Finally, we
have provided real-world examples of ManyVis enabling the rapid and simple design of
custom applications that serve real needs of visualization researchers and their scientific
partners.

APPENDIX
CREATING A M ANYAPP

In this appendix, we outline the creation of the Presentation ManyApp using the
ManyVis framework. We begin by assuming that the user wants to embed Meshlab and
Google Earth in the presentation.

A.1 Recording ManyMacros
The first step to creating a ManyApp is to record macros provided by ManyVis. The user

specifies the paths to the applications and uses the ’’record” button provided by the GUI.
On clicking the button, all the above applications are launched with Microsoft PowerPoint
being one of them. PowerPoint acts as the host here and ManyMacro makes sure not to
record any interactions with the host unless explicitly specified. Once all the applications
are up, the user starts interacting with the applications’ windows while the ManyMacro
records each of these events and stores them in an XML file. These interactions include the
initial loading of data files required for the application. So, for example, in case of Meshlab,
the user might need to load a mesh file, or load a kml file for Google Earth. These events,
too, are recorded by ManyMacro and stored as XML elements. The user may also specify if
ManyVis needs to create a custom window, in which case, the ManyVis’ image processing
layer creates a window and ManyMacro inserts a NOP in the XML for later editing. Each
event is stored in a way to make it independent of the events preceding or succeeding it.
Once done with the interactions, the user invokes a hotkey to save all the events to a file.

A.2 Creating ManyWorkflows
Once the recording takes place, the user has the option to edit the XML to change

the NOPs generated during the recording to include the filters and their parameters to
be applied to the ManyVis created window. The user then moves ahead with embedding
the applications (or the ManyVis created windows) inside PowerPoint slides. This is done
by selecting the particular rectangular shape on the slide, selecting the window that the

28

user wants in that shape, and then invoking a hotkey to complete the insertion. As soon
as the insertion takes place, ManyVis automatically takes a screenshot of the application
in its current state and pastes it in the shape. This allows users to run the presentation
without ManyVis but still have a custom edited screenshot of the application. ManyVis
also allows the user to insert screenshots of the embedded applications at, in their current
state, any given time, once the application windows have been embedded. ManyVis records
these transactions in the XML file as part of the workflow related to each application.
So, for example, if the Meshlab window needs to cropped out a portion of the GUI (as
specified by the user), the workflow for Meshlab will contain this information. This helps
the ManyWorkflow to resize the application accordingly while in presentation mode. As
another example, if the Google Earth window needs to have its color characteristics changed
during a presentation, the corresponding ManyWorkflow contains the parameters that need
to be changed, like RGB or HSV, and lets the user modify these values while giving the
presentation to compensate for poor lighting conditions.

A.3 Creating a ManyApp
Once the ManyMacros and ManyWorkflows have been defined, a ManyApp is created

which is responsible for coordinating the workflows and the macros. When the presentation
is launched through ManyVis, the ManyApp schedules the execution of the created macros
to bring the applications to a desired state; thus, Meshlab may automatically load the
model and bring it to a desired viewpoint, while GoogleEarth may load a kml file. A
timer then detects the current slide the presentation is on, and triggers the workflows
accordingly; if Meshlab was embedded in slide n, on reaching the nth slide, the workflow
for Meshlab will be triggered which will include resizing the cropped window, applying
additional filters if specified, and bringing the custom window to the foreground to give
an illusion of the application running inside PowerPoint. Even with a custom ManyVis
window, the application maintains full interactivity using ManyVis’ Event Handler. Thus,
ManyApp uses the ManyMacro and ManyWorkflow to enable application interoperability
to create a custom, seamless, experience as if provided by a single application.

REFERENCES
[1] The common component architecture forum,. http://www.cca-forum .org/.
[2] 3D-CoForm. Meshlab,. http://meshlab.sourceforge.net.
[3] Adobe. Acrobat sdk,. http://ww w.adobe.com /devnet/acrobat.htm l.
[4] Adobe. Photoshop™ ,. http://www.adobe.com /products/photoshop.
[5] R. S. Amant, H. Lieberman, R. Potter, and L. S. Zettlemoyer. Visual generalization

in programming by example. Commun. ACM, 43(3):107-114, 2000.
[6] R. S. Amant, M. O. Riedl, F. E. Ritter, and A. Reifers. Image processing in cognitive

models with segman, 2005.
[7] R. S. Amant and L. S. Zettlemoyer. The user interface as an agent environment. In

Agents, pages 483-490, 2000.
[8] J. R. Anderson, B. W. Jones, J.-H. Yang, M. V. Shaw, C. B. W att, P. Koshevoy,

J. Spaltenstein, E. Jurrus, K. U. Venkataraju, R. T. Whitaker, D. N. Mastronarde,
T. Tasdizen, and R. Marc. Ultrastructural mapping of neural circuitry: A computa
tional framework. In ISBI, pages 1135-1137. IEEE, 2009.

[9] Apple. Pasteboard documentation,. http://developer.apple.com /library/m ac/#docum entation/
cocoa/Conceptual/PasteboardGuide106/Introduction/Introduction.html.

[10] L. Bergman, V. Castelli, T. Lau, and D. Oblinger. Docwizards: a system for authoring
follow-me documentation wizards. In Proceedings of the ACM Symposium on User
Interface Software and Technology, Cool stuff, pages 191-200, 2005.

[11] F. Berthouzoz, W. Li, M. Dontcheva, and M. Agrawala. A framework for content-
adaptive photo manipulation macros: Application to face, landscape, and global
manipulations. ACM Trans. Graph, 30(5):120, 2011.

[12] Ruven, Brooks. ”watch what I do: Programming by demonstration,” edited by allen
cypher. International Journal of Man-Machine Studies, 39(6):1051-1057, 1993.

[13] T.-H. Chang, T. Yeh, and R. C. Miller. Gui testing using computer vision. In CHI,
2010.

[14] Mark, Derthick and Steven F., Roth Example based generation of custom data analysis
appliances. In Proceedings of the 2001 International Conference on Intelligent User
Interfaces, pages 57-64, 2001.

[15] Gimp. Developer guide,. http://developer.gim p.org.

http://www.cca-forum.org/
http://meshlab.sourceforge.net
http://www.adobe.com/devnet/acrobat.html
http://www.adobe.com/products/photoshop
http://developer.apple.com/library/mac/%23documentation/
http://developer.gimp.org

30

[16] F. Grabler, M. Agrawala, W. Li, M. Dontcheva, and T. Igarashi. Generating photo
manipulation tutorials by demonstration. ACM Transactions on Graphics, 28(3):66:1-
66:9, Aug. 2009.

[17] T. Grossman, J. Matejka, and G. W. Fitzmaurice. Chronicle: capture, exploration, and
playback of document workflow histories. In K. Perlin, M. Czerwinski, and R. Miller,
editors, UIST, pages 143-152. ACM, 2010.

[18] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann. Efficient computation
of morse-smale complexes for three-dimensional scalar functions. IEEE Trans. Vis.
Comput. Graph, 13(6):1440-1447, 2007.

[19] KitwThe Visualization Toolkit (VTK) and Paraview. http://www.kitware.com.
[20] Kitware. ParaView. http://www.paraview.org.
[21] David, Kurlander and Steven, Feiner. A history-based macro by example system. In

Proceedings of the ACM Symposium on User Interface Software and Technology, By
Example I, pages 99-106, 1992.

[22] T. A. Lau, L. D. Bergman, V. Castelli, and D. Oblinger. Sheepdog: learning procedures
for technical support. In J. Vanderdonckt, N. J. Nunes, and C. Rich, editors, IUI, pages
109-116. ACM, 2004.

[23] H. Lieberman. Integrating user interface agents with conventional applications. In
IU I ’98: Proceedings of the 3rd international conference on Intelligent user interfaces,
pages 39-46, 1998.

[24] H. Lieberman. Your Wish Is My Command — Programming by Example. Morgan
Kaufmann, 2001.

[25] Microsoft. Clipboard documentation, . http://msdn.microsoft.com/en-
us/library/ff468801%28v=vs.85%29.aspx.

[26] Microsoft. Office sdk,. http://msdn.microsoft.com/en-us/office/aa905340.
[27] F. Modugno and B. A. Myers. Pursuit: Visual programming in a visual domain.

Technical Report CMU-CS-94-109, Carnegie Mellon University, The Human Computer
Interaction Institute, Jan. 94.

[28] OMG. Common object request broker architecture, .
http://w w w .om g.org/spec/CO RBA/3.1/.

[29] OpenOffice. Developer guide,. http://wiki.services.openoffice.org/wiki/
Documentation/DevGuide/OpenOffice.org_Developers_Guide.

[30] V. Organization. Vlc,. http://www.videolan.org.
[31] R. Potter and B. Shneiderman. Pixel data access for end-user programming and

graphical macros. Technical Report CS-TR-4019, University of Maryland, College
Park, May 1999.

[32] R. L. Potter. Pixel data access :-interprocess communication in the user interface for
end-user programming and graphical macros. PhD thesis, research directed by Dept.
of Computer Science, 1999.

http://www.kitware.com
http://www.paraview.org
http://msdn.microsoft.com/en-
http://msdn.microsoft.com/en-us/office/aa905340
http://www.omg.org/spec/CORBA/3.1/
http://wiki.services.openoffice.org/wiki/
http://www.videolan.org

31

[33] Ashwin, Ramachandran, and R. Michael Young. Providing intelligent help across
applications in dynamic user and environment contexts. In Proceedings of the 2005
International Conference on Intelligent User Interfaces, Short papers: personal assis
tants, pages 269-271, 2005.

[34] D. A. Simulation and C. Initiative. Visit. https://w ci.llnl.gov/codes/visit/.
[35] A. Sugiura and Y. Koseki. Internet scrapbook: Automating web browsing tasks by

demonstration. In ACM Symposium on User Interface Software and Technology, pages
9-18, 1998.

[36] Atsushi,Sugiura and Yoshiyuki, Koseki. Simplifying macro definition in programming
by demonstration. In Proceedings of the ACM Symposium on User Interface Software
and Technology, Papers: Programming by Demonstration, pages 173-182, 1996.

[37] O. Tscherwitschke. Mouse rate checker,. http://www.tscherwitschke.de/old/mouserate
checker.html.

[38] L. S.,Zettlemoyer, R. S. Amant, and M. S. Dulberg. IBOTS: Agent control through
the user interface. In Proceedings of the 1999 International Conference on Intelligent
User Interfaces, Information Retrieval Agents, pages 31-37, 1999.

[39] L. S. Zettlemoyer and R. S. Amant. A visual medium for programmatic control of
interactive applications. In CHI, pages 199-206, 1999.

https://wci.llnl.gov/codes/visit/
http://www.tscherwitschke.de/old/mouserate

