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ABSTRACT 

 

 

 

There is now abundant evidence that an important consequence of recent climate 

change is the displacement of key elements within the global circulation. Considerable 

uncertainty exists with regard to the sign and magnitude of these changes, and it is also 

not fully understood how the roles of individual anthropogenic forcings contribute toward 

their cause. Because of the potential impacts they may impose upon hydroclimate, these 

changes in the circulation, and particularly their causation, are of high interest. Our 

primary goal is to differentiate between the various anthropogenic forcings driving these 

shifts. 

We analyze the results from long time-slice simulations performed using a state-

of-the-art atmospheric general circulation model, which show that important features in 

the general circulation have shifted poleward since the preindustrial era. Many of these 

shifts are characterized by pronounced seasonality and exhibit a tendency to be 

maximized during the summer months of each respective hemisphere. Furthermore, the 

magnitude of these shifts tends to exhibit a greater variability both over the southern 

hemisphere and within the extratropical regions. While reductions in ozone and increases 

of greenhouse gas concentrations have played a role in causation, the indirect effects 

from feedback mechanisms have been dominant. In most cases, a linear addition of the 

changes produced in those experiments prescribed with individual forcings is nearly 

identical to that for an experiment performed with all forcings included. This result is 



 

remarkably consistent, indicating that effects of the mechanisms that lead to changes in 

the circulation are approximately linearly additive. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

Previous model-based studies have found that prominent features within the 

global atmospheric circulation have undergone important shifts in recent decades and that 

this process is likely to continue in the future. However, from an observational 

perspective, it is difficult to verify the nature and magnitude of the relevant trends due to 

the limited amount of data. Displacements of circulation features are of particular 

concern because they can induce shifts in water distribution and availability. This can 

potentially lead to negative impacts on society (Battisti and Naylor 2009) and ecosystems 

– strains that will likely be increased through continued population growth and climate 

change throughout the 21
st
 century. Therefore, a thorough understanding of how the 

general circulation responds to anthropogenic activity is required. 

Methodically investigating changes in the circulation is made difficult due to the 

complexity of the system, but nevertheless many studies have been carried out over the 

last decade. Initially, much of this work centered on changes in the annular modes, 

motivated by the seminal work of Baldwin and Dunkerton (2001) suggesting 

stratospheric influences on large-scale tropospheric weather patterns. This prompted 

intense investigation of how the high-latitude stratosphere was being altered, with the 

southern hemisphere (SH) receiving a majority of attention due to the well-documented 
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ozone hole. Gillett and Thompson (2003) used simulations from a climate model with 

prescribed ozone losses to reproduce the observed increase in circumpolar westerlies over 

the SH. The propagation of this feature to the surface as well as its seasonality was also 

accurately reproduced. Additionally, Son et al. (2009a) showed that the entire SH 

circulation was significantly impacted by changes in ozone concentrations. 

In an early study, Kushner et al. (2001) showed that increases in anthropogenic 

greenhouse gases (GHGs) also played a role in altering the SH circulation. They 

described southward displacements of the SH jet and eddy momentum flux convergence 

among other features, which were seen in simulations using a version of the Geophysical 

Fluid Dynamics Laboratory (GFDL) climate model. Arblaster and Meehl (2006) found 

that while both ozone losses and GHGs play a role in modifying the SH stratospheric 

vortex, ozone losses were more important. More recently, Son et al. (2008) used an 

ensemble of stratosphere-resolving models to show that under a situation in which ozone 

recovery is realized, the observed increases in SH winds will likely be reversed, a 

scenario not accounted for in the simulations for Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC/AR4) . Results from Perlwitz et al. 

(2008) were in agreement with both of the previous two results. 

Gillett et al. (2005) showed that an observed decrease in December – February 

(DJF) sea-level pressure (SLP) over the SH high latitudes could be accurately reproduced 

by a suite of climate models forced with ozone decreases, and that this led to an 

intensification of the westerlies. It was later indicated (Gillett et al. 2006) that these 

changes corresponded to an increase in the southern annular mode (SAM), Antarctic 
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cooling, and a poleward shift of the SH mean storm track. These results were then shown 

(Gillett and Stott 2009) to be applicable for all seasons.  

The circulation over the northern hemisphere (NH) has also been vigorously 

studied. In particular, the northern annular mode (NAM), or Arctic Oscillation (AO), has 

been the focus of recent work. Gillett et al. (2003) found that modeling scenarios 

performed with anthropogenic forcings were not accounting for the observed magnitude 

of the northern hemisphere SLP changes that are consistent with an increase of the NAM. 

Miller et al. (2006) then used the IPCC/AR4 climate models to confirm that GHG 

increases cause a positive trend in the NAM, as well as the SAM. They also found the 

multi-model mean from this suite of models to be of the correct sign in annular mode 

(AM) changes, although weaker in magnitude – similar to the previous modeling work. 

Further studies investigating the linkages between large-scale global warming and 

increases in the AO have also been undertaken. Moritz et al. (2002) pointed out that the 

large-scale warming continued to be occur even as a downward trend in the NAM was 

observed, indicating that interconnectedness between them was weak. Later, Cohen and 

Barlow (2005) generally supported this idea, implying that largescale warming and the 

sign of the AMs were largely unrelated. Using an ensemble of climate models, Kuzmina 

et al. (2005) showed that the NAM index rises with increases in CO2 concentrations. It 

has been suggested (Overland and Wang 2005), however, that trends in the NAM may be 

more strongly related to internal variability than had previously been considered.  

Changes in the Hadley Cell have also been the subject of recent studies. Mitas and 

Clement (2005) found evidence for an intensification of this feature in a variety of 

observational data. Using a global circulation model (GCM), discrepancies were found 
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between the model-derived changes and those seen in the observations (Mitas and 

Clement 2006). Lu et al. (2007) were able to show that the IPCC/AR4 models produced a 

poleward expansion of the Hadley circulation and an expansion of the associated 

subtropical dry zones. In a study relating model simulations to observations (Johanson 

and Fu 2009), the widening of the total Hadley circulation in both hemispheres since 

1979 was found to be 2-5° latitude – a magnitude that could not be accounted for by 

internal variability. Hu and Fu (2007) used outgoing longwave radiation (OLR) as a 

proxy and found similar results, a total expansion of 2-4.5° latitude. Later observation-

based work by Hu and Zhou (2010) found that this total widening varied by measure and 

ranged from 1.2° (SLP datasets) to 3.6° (OLR and precipitation datasets) for annual 

averages.  

Potential changes in the structure of the tropopause were studied by Santer et al. 

(2003a). Reanalysis datasets were found to show a rise in tropopause height – a result 

confirmed by model simulations. Building upon these results, Santer et al. (2003b) 

showed that since 1979 the tropopause height has increased by several hundred meters. 

Furthermore, it was found that the effects of ozone and GHGs could account for 80% of 

this change. Using the Canadian Middle Atmosphere Model (CMAM), Fomichev et al. 

(2007) also found a rise in tropopause height due to the thermal expansion associated 

with a warmer troposphere. Son et al. (2009b) made the case that the tropopause could be 

affected by changes in ozone concentration.  

Various studies have used changes in tropopause structure to examine changes in 

tropical width. For example, Seidel and Randel (2007) examined the behavior of the 

subtropical tropopause using radiosonde and reanalysis data. Using the frequency of high 
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tropopause (> 15 km) occurrences as a proxy, they arrived at results indicating a 5-8° 

latitude expansion of the tropical belt between 1979 and 2005, implying that models 

could not accurately account for the rate of this widening. Along with observational 

studies, model-based evidence for this expansion also exists (Reichler 2009). Recently, 

Lu et al. (2009) showed that changes in tropical width seen in the ERA40 reanalysis can 

be accurately simulated using an atmospheric GCM (AGCM) forced only by direct 

radiative forcings from natural and anthropogenic sources. In addition, it was found that 

tropical width decreased when the model was forced by observed SSTs alone. Other 

methods of measuring tropical width, not described here, have also been undertaken 

(Reichler 2009). Considering both model-based and observational studies, methods of 

assessing tropical expansion have arrived at values ranging from 1° to 8° latitude (Seidel 

et al. 2008). Such a range leaves a large amount of uncertainty regarding the actual nature 

and magnitude of these shifts. This uncertainty is, of course, not completely surprising 

given the short observational record in combination with the large amount of internal 

climate variability, and the fact that many important variables of climate interest, such as 

meridional wind and precipitation, are poorly observed. 

An interesting aspect of recent work has been analysis of shifts in the hemispheric 

jets and the collocated storm tracks. Using the IPCC/AR4 climate models, Yin (2005) 

found a poleward shift in surface winds, storm tracks, precipitation, and increases in the 

index of the AMs. Using the ECHAM5 coupled climate, Bengtsson et al. (2006) also 

showed a poleward shift in storm track over the SH, which appears to be a response to 

shifts in SST gradients. Looking at reanalysis datasets, Archer and Caldeira (2008) found 

not only a poleward shift in jet location, but also an increase in jet altitude. Considering 
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the three-dimensional structure of the jet, Strong and Davis (2008) showed that jet 

location was strongly linked to the sign and magnitude of the NAM. Based on the 

IPCC/AR4 climate models, Lorenz and DeWeaver (2007) suggested that a rise in 

tropopause height was primarily responsible for shifts in the zonal jets as well as many 

above the above circulation features. 

Changes in the location of the storm track have been shown to produce congruent 

shifts in hydroclimate (Lu et al. 2007). Investigating the linkages between the AMs and 

tropical expansion, Previdi and Liepert (2007) raised concern regarding dynamical 

impacts on the future hydrological cycle. Studies using various climate models by 

Bengtsson et al. (2006) and Gastineau et al. (2009) confirmed that significant increases in 

precipitation were being seen in model simulations, with much of the increase being 

associated with the extratropical cyclone tracks. Bengtsson et al. (2009) found these 

increases to be highly sensitive to the spatial pattern of SSTs, aligning well with earlier 

work by the same authors. Seager et al. (2007) showed that the southwestern United 

States would likely see a period of increased aridity due to changes in the circulation – a 

result that likely carries implications for other regions as well. 

There has been debate as to which forcings are primarily responsible for inducing 

these changes in the circulation. Referencing earlier studies, especially with respect to the 

SAM, Karoly (2003) commented on the importance of understanding their individual 

contributions. Chen et al. (2007) stated that GHG increases and the indirect responses of 

the system would be the most important drivers of circulation change over the next 

century. Deser and Phillips (2009) showed that the influences of GHGs and indirect 

effects were nearly additive using the CAM3. Furthermore, they found that the roles of 
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direct and indirect effects in influencing the circulation are approximately equal. 

Karpechko et al. (2008) made the point that only ozone depletion leads to the previously 

mentioned downward propagation of stratospheric anomalies, while GHG primarily 

affects only the troposphere.  

Despite these previous studies, there is still a large amount of uncertainty evident 

in the literature regarding the role of individual forcings in driving particular aspects of 

circulation change. In addition, only a select number of the above studies attempted to 

resolve the seasonality of the trends associated with these circulation changes. For these 

reasons, there are gaps in knowledge concerning both the causation and annual cycle of 

these shifts.  

In this study, we use a model-based approach in an attempt to fill in the gaps 

mentioned above. First, we seek to resolve the uncertainty that exists regarding the sign 

and magnitude of trends in the general circulation since the pre-industrial era. Secondly, 

we explore indicators which have not been previously examined as a means to gain a 

more comprehensive understanding of these trends. Thirdly, we aim to fill the relative 

void in research related to both the influences of individual forcings and the annual cycle 

of changes associated with specific circulation features. Finally, we look to identify 

connections between these changes and the shifts they impose on hydroclimate. This is 

facilitated by running long time-slice simulations with a state-of-the-art AGCM, which is 

driven by different anthropogenic forcings and SSTs. These simulations enable us to 

fulfill our primary goal of understanding the contributions of the individual forcings to 

overall change. 
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In Chapter 2, we discuss the sources of our data and the methods employed to 

analyze it. Our results in Chapter 3 present our findings for changes in basic atmospheric 

quantities and selected circulation features. Chapter 4 provides a summary and discussion 

of our work. 

 



 

 

 

 

 

 

 

CHAPTER 2 

 

 

 

DATA AND METHODS 

 

 

  

We make use of the GFDL model AM2 to perform long time-slice simulations 

that are driven by different combinations of anthropogenic forcings and SSTs. The AM2 

has a grid point resolution of 2° latitude by 2.5° longitude and uses a finite-volume 

dynamical core to solve the equations of motion (Lin 2004). This model has both up to 

date physical parameterizations and a realistic climatological mean circulation (Reichler 

and Kim 2008).  

In this study, we define averages over the period 1861-1870 as representative of 

the preindustrial era and 1997-2006 as representative of the present-day climate. The 

control run is forced using preindustrial conditions, with GHGs as well as seasonally 

varying zonal-mean ozone and lower boundary conditions set to their unperturbed mean 

values from the preindustrial era. CFCs are nonexistent. For ozone, 1979 concentrations 

are used as the control values. The preindustrial SSTs and sea-ice conditions (hereafter, 

simply SSTs) are derived from a preindustrial control simulation with the coupled 

companion model (GFDL CM2.1) of AM2, ensuring that the lower boundary conditions 

are realistic for this time period. 

In addition to the control, we conduct a total of four different perturbed 

experiments, one of which is the control run described above. An overview of the 
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forcings prescribed for each perturbed experiment is provided in Table 1.  Based upon 

their importance in driving large-scale climate change, we have chosen to further 

investigate the effects of ozone depletion and increases in GHGs on the circulation. 

Aerosol is not included in this study, but an experiment designed to assess its role is 

planned in future work. In addition, naturally occurring forcings (e.g., the solar cycle, 

volcanic events) are not considered. The control run consists of over 1000 years of 

simulation data and each of our experiments contains at least 500 years. 

For the O3 experiment, the zonal-mean, seasonally varying ozone reflects its 

present-day distribution (Randel et al. 2002) while all other forcings are unchanged from 

the control run. The left panel in Figure 1 shows the changes in ozone concentration the 

O3 experiment is forced with. One can see that prescribed ozone losses are greatest at 

high latitudes and during the spring season, with the ozone hole being readily visible over 

the SH. 

In the CO2 experiment, as shown in Table 1, present-day, well-mixed GHG 

concentrations are prescribed to the model, while ozone and boundary conditions are 

unchanged from the control run. We also perform an experiment in which the values of 

anthropogenic forcings are held fixed at preindustrial levels, but boundary conditions are 

representative of their present-day values. One can clearly see that the largest prescribed 

increases in SSTs with respect to the preindustrial era occur during winter at high 

latitudes (Figure 1, right panel). By keeping ozone and GHGs unperturbed during this 

simulation, we are able to isolate the response of the system that is not due to direct 

radiative forcing. 

Finally, the ALL experiment is run with all three forcing components (ozone, 
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Table 1 Forcings for each experiment. Check marks indicate a perturbation with respect 

to the pre-industrial era using present-day values. Those for ozone and SST are shown in 

Figure 1. Perturbed (unperturbed) GHG concentrations are: CO2 – 380 (280) ppm; CH4 – 

1754 (805) ppb, N2O – 316 (275) ppb, CFC-11 – 260 (0) ppt, CFC-12 – 543 (0) ppt, 

CFC-113 – 82 (0) ppt, and CFC-22 – 144 (0) ppt. 
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Fig. 1 Prescribed experiment forcings. Climatology (black lines) of ozone concentrations and SSTs from the control run and changes (shading) for the O3 

experiment (left) and the SST experiment (right).
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GHG, and SST) set to their present-day values. 

 In addition, this study utilizes the ERA40 reanalysis (referred to as ERA) from 

the European Centre for Medium-Range Weather Forecasts (Uppala et al. 2005) to 

supplement the model-produced data. We only examine reanalysis from 1979 or later, as 

it has been suggested that significant inconsistencies exist in data from the presatellite era 

(Randel et al. 2000).  

In our analysis, we analyze climatological means taken over the entire simulation 

period available for each experiment. Changes or shifts are defined as the difference 

between the experiment climatology and that from the control run. For ERA, they 

represent linear trends from 1979-2001, multiplied by the number of years during this 

period. We focus on zonal-mean data unless otherwise stated. This affords us certain 

advantages: we aim for a diagnostic discussion of changes in the global circulation, and 

this allows for some simplicity in not having to contend with regional-scale issues. Linear 

interpolation is used to increase the native meridional resolution of our data to 0.1° 

latitude. The resulting meridional profiles are then smoothed using a Gaussian smoother 

with a ±15° latitude wide window. 

For our examination of the tropopause height, we use the standard World 

Meteorological Organization definition – a lapse rate of 2 K/km or less, and obtain it 

following Reichler et al. (2003). To describe the structure of the tropopause, we employ a 

methodology invoked by Seidel et al. (2007) by dividing the atmosphere between 350 

and 50 hPa into 60 vertical bins, each representative of a 5-hPa slab of atmosphere. We 

then count the number of tropopause occurrences found in a particular bin at all latitudes 

for each season, yielding a probability distribution function of tropopause pressure. This 
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offers a useful way to visualize the changes in the tropopause that have occurred in recent 

decades (Seidel et al. 2007, Seidel et al. 2008, Hu and Fu 2007, Lu et al. 2009). For the 

portion of our study which quantifies the seasonality of changes in tropopause structure, 

we adopt a different approach. We first derive a latitudinal profile of climatological mean 

tropical tropopause pressure (between ±20° latitude) for each experiment and the control. 

We then investigate shifts between the experiments and the control run in the latitudinal 

position of tropopause occurrences at a pressure 25 hPa below the tropical tropopause 

pressure. 

 The AMs (both SAM and NAM) are important measures of the atmospheric 

circulation over their respective hemispheres. In calculating the AMs, we follow the 

methodology suggested by Baldwin and Thompson (2009), using zonal-mean data. This 

approach was shown to provide an accurate assessment of the AMs while being readily 

employed for various model outputs (e.g., zonal-mean data only). We perform our 

analysis of the AMs with seasonal (3-month) mean SLP data, using the covariance 

matrix, as is standard. We also begin with yearly data, as opposed to decadal means for 

all other measures. An empirical orthogonal function (EOF) analysis is performed on our 

control run data using a routine provided in the Interactive Data Language. This operation 

yields a „reference‟ EOF, on which we project the data from our experiments to 

understand how the leading modes over each hemisphere respond to the imposed 

forcings. We multiply the resultant changes in indices by a factor of 3 to account for the 

reduction in variability that arises from using seasonal mean data. The resulting indices 

can therefore be more directly compared against results from similar studies using 

monthly mean input data. 
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The statistical significance of our diagnosed changes is determined using a two-

sided T-test on our data (Wilks 2006). Below is the relevant equation: 
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where xi represents the data, ni represents the number of years or decades for a given 

experiment, si
2
 denotes the variance, and the subscripts, E or C, denote either a selected 

experiment or the control run, respectively. The quantity z follows the t-distribution with 

υ = nE + nC – 2, where υ is the number of degrees of freedom. For changes to be 

significant, the value for z must be greater than the critical value of the t-distribution at a 

given significance level, α, for which we always choose 95%. In determining the 

statistical significance of the linear trends derived from the ERA40 reanalysis, we follow 

the methodology of Santer et al. (2000). The degrees of freedom are essentially 

determined by the number of years or decades in the control run (over 1000 years) and 

the experiment (over 500 years), or the number of years in the reanalysis.



 

 

 

 

 

 

 

CHAPTER 3 

 

 

 

RESULTS 

 

 

 

We now present the results of our analysis, which we divide into three sections: 

change in basic atmospheric quantities (3.1) and change in selected circulation indicators 

– both dynamical (3.2) and hydrological (3.3). The section on change in basic quantities 

examines fields which provide a broad overview of the general circulation. In the section 

on change in selected circulation indicators, we examine the forcings responsible for 

shifts in circulation features, as well as their seasonality.  

 

 

3.1 Change in Basic Atmospheric Quantities 

 

Figure 2 displays zonal-mean cross-sections of change in a number of key 

atmospheric features throughout the troposphere and lower stratosphere. Each column 

includes results from our four experiments as well as those seen in ERA (bottom). The 

shading shows changes in mean climate for each of our experiments with respect to the 

control run. For ERA, shading represents linear trends from 1979-2001. This season 

shown, DJF, was chosen because it coincides with Austral summer, a season in which 

shifts in many circulation indicators are most pronounced, particularly over the SH. 

The first column in Figure 2 shows how the thermal structure of the atmosphere 

changes in response to the various forcings. In O3, the model develops significant 
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Fig. 2 Change in basic atmospheric quantities during DJF. Results are presented (from 

left to right) for T (K), U (m/s), Ψ (10
9
 kg/s), - y/ (u‟v‟) (10

-6
 m

2
/s

2
), and the 

tropopause PDF (days/season). Thin black lines show climatological contours derived 

from the control run, which for Ψ and - y/ (u‟v‟) are one order of magnitude larger 

than those of their respective color scales. The black line shown in the last column 

denotes the climatological mean tropopause location (from the control run for the 

experiments; from 1979-2001 for the observations). Shading shows changes from both 

model-derived and observational data, where the linear trend from 1979-2001 is shown 

for the latter. Hatching shows changes which are non-significant according to a two-sided 

T-test at the 95% confidence interval. Units on the Y-axis are atmospheric pressure in 

hPa. 
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stratospheric cooling over the SH in response to ozone depletion with cooling exceeding -

2K, while tropospheric signals are largely insignificant. CO2 is also consistent with 

expectations: The direct radiative forcing from the well-mixed GHGs causes a small 

warming of the troposphere and a cooling of approximately -1K in the stratosphere. It is 

notable that the tropospheric warming due to GHG in the absence of indirect effects is 

fairly subtle. This limited warming occurs because all boundary conditions are held fixed 

and feedback mechanisms, which are responsible for most of the tropospheric warming 

associated with global warming, do not have an effect. In the SST experiment, the most 

pronounced changes take place. The increase in SSTs produces a tropospheric warming 

of at least 0.5K, with increases in excess of 1K occurring in the tropical upper 

troposphere and near the surface at northern high latitudes. This is consistent with our 

expectations that the troposphere has warmed by approximately 1K over the past century. 

The ALL experiment presents two prominent features: stratospheric cooling at southern 

high latitudes and significant tropospheric warming, which is maximized over the 

southern mid-latitudes. Comparing these findings with temperature trends seen in the 

ERA, there is overall consistency with only a few discrepancies, which are in most cases 

statistically insignificant. One particularly noteworthy aspect is the similarity between 

ALL and ERA. This good agreement between the observed trends and the model-

simulated changes underscores the fact that much of the warming observed over the past 

century has in fact occurred since 1979. 

The second column of Figure 2 depicts changes in the zonal wind (U). The most 

noticeable feature seen in O3 is a dipole structure in the vicinity of the SH jet, which 

represents a poleward shift of this feature as well as a possible increase in the altitude of 
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the jet core. The wind changes associated with this dipole extend all the way to the 

surface, although with somewhat reduced magnitude. CO2 produces weaker wind 

changes than O3, although we do again observe the aforementioned dipole structure. The 

exact mechanisms for these changes in wind are not well understood and are the subject 

of intense research (e.g., Chen and Held 2007).  In accordance with previous findings 

(e.g., Thompson and Solomon 2002, Gillett and Thompson 2003), it is reasonable to 

assume that the stratospheric cooling evident in O3 and CO2 is at least partially 

responsible for the wind shift in the upper troposphere – lower stratosphere (UTLS) 

region, and that baroclinic interactions may play a role in extending it towards the 

surface. The SH dipole centered near the jet is developed even more strongly in the SST 

experiment, while a large increase (> 1 m/s), without a shift, in the NH jet is also noted. 

ALL maintains the same pattern as the SST experiment and reveals the most pronounced 

changes in U. The dipole over the SH is particularly well developed, with changes in 

wind ranging from -1 to +4 m/s. Comparing to the ERA40 reanalysis, remarkable 

similarity is again depicted and the existence of the SH dipole is confirmed. As indicated 

by the absence of hatching in ERA, the large increases in U located at 60S are significant 

throughout the troposphere and lower stratosphere. 

In the third column of Figure 2 examine shifts in the meridional mass circulation 

(MMC), as it provides insights to changes in the strength and location of the primary 

atmospheric circulation cells. The climatology (black lines) clearly shows a strong 

Hadley cell over the winter hemisphere (NH), a weaker summer Hadley cell in the SH, 

the Ferrel cells, and the amorphous Polar cells. As before, the structure of the changes in 

all of the experiments exhibit a considerable degree of similarity, especially over the SH. 
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Noteworthy trends in O3 are restricted to the SH, where a poleward shift in the Ferrel cell 

and a poleward expansion of the Hadley cell are indicated. The other three experiments 

also produce these trends, with the SST experiment and ALL amplifying their magnitude. 

In addition, these experiments appear to shift the ITCZ southward and develop a stronger 

Ferrel cell over the NH. Confidence in reanalysis-derived changes in the MMC is low 

because they are dependent upon the meridional wind (V), which is a poorly observed 

quantity. Nevertheless, analyzing changes seen in ERA, the SH Hadley cell appears to be 

expanding poleward as the model predicted. Additionally, the northern Hadley cell 

becomes stronger. 

The fourth column in Figure 2 displays the modeled and observed eddy 

momentum flux convergence, showing the meridional rearrangement of zonal momentum 

by eddies and the position of the eddy-driven jet (EDJ) – the clear maximum over each 

hemisphere depicted in the climatology. Both O3 and CO2 produce changes in 

momentum flux convergence that are dynamically consistent with the shifts in the 

position of the Ferrel cell seen in the results for the MMC. In particular, they develop a 

dipole centered on the southern hemisphere EDJ, indicating a poleward shift in this 

feature. Increased SSTs produce a strong response in both hemispheres, with strong 

dipoles noted in each. The shift in maximum flux convergence seen over the NH is less 

well developed than that over its SH counterpart. A number of interesting comparisons 

and contrasts are found in the observations, but the only large area of robust change 

occurs in the vicinity of the SH maximum, comparing very favorably with the model-

derived changes. 
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The final column in Figure 2 shows changes in the location of the tropopause. All 

of our experiments depict similar alterations to the shape of the tropopause. These are 

characterized by both a rise in tropopause height and a poleward shift in the region of the 

tropical-extratropical transition, especially over the SH. Based on our experiments, 

changes in ozone and SSTs are primarily responsible for these shifts and they are clearly 

least developed in CO2. Changes in GHG concentrations do, however, seem to play a 

significant role in altering the tropopause structure over the NH, while changes in O3 are 

more dominant over the SH. The observations in ERA show very similar changes to 

those in our experiments, as well as those described in Lu et al. (2009), but are also 

suggestive that high-latitude rises in tropopause altitude are slightly underestimated in the 

model simulations. 

Summarizing, most circulation features exhibit strong poleward shifts in response 

to the imposed forcing, which are more pronounced over the SH. These shifts are 

statistically robust, and supported in most cases by the ERA40 reanalysis. 

 

3.2 Change in Dynamical Circulation Indicators 

 

Figure 3 shows the change in the latitudinal position of selected dynamical 

circulation indicators as a function of season. A complete list of these indicators and 

atmospheric features associated with them can be found in Table 2. For example, we 

explore two measures of zonal wind at the surface: the position of the zero-crossing 

between tropical easterlies and extratropical westerlies (USFC-ZC), and also that of the 

maximum westerlies (USFC-MAX). The position of maximum westerlies at 200 hPa (U200-

MAX) is also examined, along with the dynamically related location of maximum eddy 
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flux convergence, - y/ (u‟v‟). Two measures of the MMC are investigated: the 

boundary between the Hadley and Ferrel cells (ΨEQTR) and the boundary between the 

Ferrel and Polar cells (ΨPOLE). Another feature of interest is the latitudinal position at 

which the tropopause occurs at a pressure 25 hPa below the tropical tropopause pressure 

(TROPO). Finally, we also analyze shifts in the AMs. 

It is immediately apparent in Figure 3 that all indicators share a common 

seasonality and relatively similar magnitudes. For most measures, changes are fairly 

weak during the winter months for each respective hemisphere. This is in contrast to the 

rather robust shifts which occur during the summer months, consistent with the findings 

of Hu and Fu (2007). There are few exceptions to this generalization of the seasonal cycle 

– one notable example is seen in the NAM, for which we find two maxima occurring 

during the transitional seasons. Similarly, the SAM deviates from this pattern slightly in 

that shifts in this measure are weakest right before they become strongest, following the 

breakdown of the stratospheric vortex around October-November. 

Nearly all indicators, during all seasons, are characterized by poleward shifts. 

These typically are on the order of 1-2° latitude, following the seasonal pattern described 

above. However, cases exist for which these poleward displacements approach 2.5° over 

the SH (TROPO, ΨPOLE), and also for which even slight contractions occur over the NH 

(ΨEQTR, ΨPOLE). This indicates that changes in the MMC, particularly in the Hadley 

circulation, may be difficult to predict. This is supported by the range of results obtained 

in prior studies (Hu and Fu 2007, Johanson and Fu 2009, Hu and Zhou 2010). To the best 

of our knowledge, the large seasonal variations in changes of the Ferrel cell have not 

been previously documented. We do find that the poleward expansion of the Hadley cell 
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Fig. 3 Change in the latitudinal position of dynamical circulation indicators for each 

experiment and the linear addition of O3, CO2, and SST (legend at bottom). The top 

(bottom) half of each panel shows results for the NH (SH). Numbers shown in the top 

and bottom right corner of each panel represent the mean annual position of a given 

indicator in degrees latitude derived from the control run (except for U200-MAX, see text). 

Vertical bars show the length of the 95% confidence interval according to a two-sided T-

test. Units on the Y-axis are in degrees latitude, except for the AM. X-axis shows the 

center month of a three month seasonal average. Note that January and February are each 

shown twice for clarity. 
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and EDJ does roughly follow the 1:2 relationship put forth by Kang and Polvani (2010). 

Increases in the AMs are also consistent with the poleward shifts of other indicators.  

 The statistical significance of our results is found to be very high. The 

significance of shifts seen in indicators further from the equator tends to be slightly 

lower, likely to some degree a product of the higher variability at these latitudes. Only for 

ΨPOLE and the AMs are there certain seasons for which doubt is cast on the sign of the 

changes. 

 There are a number of relationships apparent in Figure 3. An excellent 

comparison can be made between ΨEQTR, and USFC-ZC, which should coincide directly 

with the downwelling branch of the Hadley circulation and the position of the subtropical 

highs at the surface. There is also good agreement between the changes seen in - y/

(u‟v‟), USFC-MAX, and ΨPOLE. This agreement is to be expected given the linkages between 

eddy momentum flux convergence, the EDJ, and the location of the Ferrel cell. For both 

these sets of similar features, the agreement tends to be even more evident over the SH, 

although it is good over the NH as well.  

 We observe that over the SH, changes in UMAX-200 undergo pronounced “jumps” 

during the transitional seasons. During these times, a dual jet regime tends to develop 

over the SH. Because of the difficulty in differentiating between the STJ and EDJ, we 

actually alternate between measuring the STJ during the cool season (May-October) and 

a combination of the STJ and EDJ during the warm season (November-April). Thus, the 

“jumps” seen in our analysis of changes in UMAX-200 occur because shifts of the EDJ are 

rather large (2° latitude), while those for the STJ are much smaller (1° latitude). The 

particularly odd behavior of changes in UMAX-200 seen during MAM over the SH is due to 



28 

 

slight changes in the structure of the “broad” climatological maximum of this feature. 

Once again, we find support for the 1:2 ratio suggested by Kang and Polvani (2010). 

Because of the meridional gradient in temperature that exists at the transition from the 

tropical to extratropical tropopause, TROPO is dynamically coupled to U200-MAX via the 

thermal wind relationship. We note that although similar, the seasonal transitions noted in 

TROPO are not as pronounced. However, due to the dynamical linkage, the analysis of 

TROPO may suffer from similar difficulties. 

 Examining the model-produced shifts for each of our experiments, it is clear that 

the indirect contribution associated with SST changes is dominant. TROPO, however, is 

also significantly affected by ozone forcing (Son et al. 2009b). The forcing from O3 

losses over the SH exhibits a clear seasonal signature (see Figure 1), coinciding with a 

similar seasonal structure in circulation indicators (blue). This is seen most clearly in high 

latitude features such as ΨPOLE, and the SAM. The signal becomes strongly evident 

around November (coinciding with the breakdown of the stratospheric vortex), before 

waning through austral summer and spring. For most measures, the individual 

contribution from changes in GHG concentrations is nearly invariant, changing little from 

one month to the next.  

 Interestingly, there is remarkable agreement between the magnitude and 

seasonality of shifts produced by ALL and those obtained from a linear addition (LIN) of 

the other three experiments. This reinforces the findings of Fomichev et al. (2007) and 

Deser and Phillips (2009) – that individual atmospheric forcings are approximately 

additive. 
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3.3 Change in Hydrological Circulation Indicators 

 

Along with dynamical measures, we also investigate a number of hydrological 

indicators. Figure 4 roughly shows the meridional profiles of precipitation (top) and 

precipitation minus evaporation, or P-E (bottom), indicating approximately where our 

hydrological indicators are located. As with the dynamical indicators, a complete list of 

these can be found in Table 2. We examine three indicators that are based solely on 

precipitation (Figure 4, top): the position of the Inter-tropical convergence zone (ITCZ), 

and also the locations of the subtropical minimum (PMIN) and extratropical maximum 

(PMAX) in precipitation for each respective hemisphere. In addition, we analyze measures 

of precipitation minus evaporation (Figure 4, bottom): the hemispheric minimum (P-

EMIN) and maximum (P-EMAX) in P-E, and the boundaries where P-E is 0, which occur at 

the transitions between the inner and outer tropics (P-EEQTR), and also between the 

subtropics and extratropics (P-EPOLE). Figure 5 presents the seasonal change in the 

latitudinal position of these features. 

Figure 5 shows a high degree of agreement between most hydrological indicators, 

although there exists slightly more variation than seen in the dynamical ones. Of greatest 

interest is the similarity in the sign of shifts, as nearly all measures are found to be 

displaced poleward, with few exceptions. P-EEQTR exhibits an equatorward shift over the 

NH, which we suggest is in fact consistent with the possibility of contraction seen in 

ΨEQTR over the NH during boreal winter, since both are products of the Hadley 

circulation. The other southward-displaced indicator is the ITCZ, which is consistent with 

changes in P-EEQTR as it aligns more closely to the equator. Examining further, the three 

indicators closest to the equator (ITCZ, P-EEQTR, P-EMIN) exhibit shifts that are 
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Fig. 4 Schematic showing the location of moisture-based measures: Precipitation (top) 

and P-E (bottom). 
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Fig. 5 As Fig. 3, except for hydrological indicators. The Y-axis for the ITCZ is centered 

on zero (e.g. our results indicate a 0-1° southward shift of this feature). 
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dynamically consistent with a southward shift of the zone of the inner tropics, anchored 

on the ITCZ. This is apparent noting that shifts over the NH for these features (P-EEQTR 

and P-EMIN) are minimal, while those over the SH are more clearly poleward, an aspect 

that we do not believe has been previously mentioned. Examining PMIN, this result can 

also be inferred to hold true, to some extent, at the edge of the Hadley cells.  

 There seem to be two primary “modes” of model-produced shifts seen in 

hydrological indicators. The first consists of moderate poleward shifts in location of 

about 1° latitude that are relatively uniform throughout the seasonal cycle. The second is 

characterized by strong seasonality – amplitudes approaching 2° latitude – especially 

over the NH, with the most significant changes occurring during the summer months of 

each respective hemisphere. These findings are largely consistent with the changes we 

see in dynamical indicators. It is interesting that these modes are favored by features 

closer to the equator (ITCZ, P-EEQTR, P-EMIN, P-EPOLE) and closer to the poles (PMAX, P-

EMAX), respectively. Changes in PMIN exhibit a behavior that is somewhere between these 

two extremes. This may be partially explained by noting that measures of changes in P 

are more seasonally variable than those for measures of P-E, which are smoother. 

Additionally, changes in the minima and zero-crossings of these measures are more 

seasonally uniform than those for the maxima. 

 The sign and magnitude of shifts seen in PMAX and P-EMAX are well correlated 

with those seen in several dynamical indicators: - y/ (u‟v‟), USFC-MAX, and ΨPOLE. All 

these features are related to the location of the EDJ and the concomitant storm tracks. 

Although first order consistency exists, there is also an interesting disagreement between 

the hydrological and dynamical measures. While the hydrological indicators are most 
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strongly displaced over the NH during boreal summer, the dynamical indicators are 

significantly shifted during summer over both hemispheres, perhaps more strongly (> 2° 

latitude) over the SH. Despite these dynamical shifts, changes in PMAX and P-EMAX 

exhibit a relatively smooth annual structure. In other words, although shifts in the large-

scale dynamics of the circulation over the SH undergo a significant seasonal cycle, the 

shifts in hydrological features do not. Furthermore, there is an indication that, over the 

SH, this is more true for precipitation than for P-E, which does show some seasonality. 

 The results from our experiments show that, as for dynamical indicators, SST is 

again the dominant contributor to modeled shifts. In fact, it could be argued that SST 

alterations are even more crucial for the shifts of these hydrological indicators than seen 

previously for those based on dynamics. We believe this may be linked to the strong 

coupling of the oceans and atmosphere in the hydrological cycle. Contributions from 

ozone depletion and increased GHGs play a very small role for all hydrological indicators 

and seasons, although ozone changes do affect changes in the location of the precipitation 

minimum and maximum over the SH. Only for PMIN does the contribution from one of 

these forcings (GHGs) ever supersede that from changes in SST. As shown previously, 

there is once again exceptional agreement between the changes in ALL and changes 

obtained from a linear addition (LIN) of those from the other three experiments. We 

again note that this result remains valid throughout the seasonal cycle. 

 As with the dynamical indicators, we find the statistical significance of these 

results to be very high. Only at high latitudes do we start to see the slightest uncertainty. 

So far, we have purposefully considered only the zonal-mean profiles of basic 

atmospheric quantities and selected circulation indicators in our analysis. We 
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acknowledge that this is a gross over-simplification of the spatial patterns observed in the 

atmosphere. To highlight this point, we present the model-produced annual changes in P-

E in Figure 6, highlighting the global distribution of shifts in this field, which forms the 

basis of many of our hydrological indicators. This figure provides a fuller sense of the 

differences between regional and zonal-mean shifts in hydroclimate and of the 

complexity of attempting to resolve the roles of anthropogenic forcings. 

Specifically, note the contrasting influences of increases in GHG concentrations 

and changes in SST on areas near the Sahel region of western Africa, both of which 

produce significant results. The ALL experiment confirms the canceling effects of these 

individual forcings, but there are questions as to how reliable these model-produced 

results may be. Accurately predicting these changes is of particular importance in regions 

such as the Sahel, where changing hydroclimate has already placed huge strains on the 

inhabitants. 

When considering the zonal-mean profiles to the right in Figure 6, it is seen that 

shifts in P-E are quite small in the CO2 experiment, corresponding well with the previous 

examination of our indicators. The SST experiment, however, produces significant shifts 

in P-E, which are largely reproduced with only minor differences in the ALL experiment. 

In describing these shifts, it is useful to say that in general the wet regions become wetter, 

while the dry regions become drier. More specifically, moistening occurs in the tropical 

latitudes around the equator and in the extratropics, while subtropical regions experience 

drying. 
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Fig. 6 Spatial distribution of annual mean change in P-E. Units for all scales are mm/day. 

The thin black line denotes where P-E = 0 (left column) and zonal-mean P-E (right 

column) derived from the control run. The top row depicts the climatological annual P-E 

for the full field (left) and in the zonal-mean (right). For each of our experiments (except 

O3 – not shown because only minor shifts occur), shading on the left denotes spatial 

change in P-E, while the colored lines on the right show change in zonal-mean P-E. 

Hatching shows changes which are nonsignificant according to a two-sided T-test at the 

95% confidence interval. 
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CHAPTER 4 

 

 

 

SUMMARY AND DISCUSSION 

 

 

 

Long simulations performed using the GFDL AM2.1 are used to diagnose 

anthropogenically-induced shifts in the general circulation since the pre-industrial era. 

Our results are to a large extent consistent with both the ERA40 reanalysis and the 

findings of previous studies. Summarizing, we find that changes in the atmospheric 

circulation have been characterized by clear poleward trends in many important 

indicators, consistent with an increase of the AMs (see Figure 7). These trends are on the 

order of 0.5 to 1.5° latitude in the annual mean and exceed 2° latitude for some features 

during favored seasons. These results are valid not only for previously investigated 

indicators, but newly explored features as well. Along with these poleward shifts, an 

increase in the altitude of some features, such as the tropopause and the jet, is also noted. 

Indirect forcing (represented by our SST experiment) is primarily responsible for nearly 

all of these shifts, but GHG increases and ozone depletion, especially over the SH, also 

play important roles. Additionally, the effects of individual forcings on the circulation are 

nearly additive – in agreement with Deser and Phillips (2009).  

An investigation of the seasonality associated with changes in major atmospheric 

features is an important aspect of this study. With the exception of some P-E features, 

changes in most circulation indicators over the SH exhibit a stronger magnitude and 
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Fig. 7 Mean annual change of circulation indicators. Results for our four experiments, as 

well a linear addition of O3, CO2, and SST are presented. Colors follow the scale at right. 
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seasonality as compared to those over the NH, contrasting with the results from the 

observational study by Hu and Fu (2007) in which both hemispheres exhibited more 

equal shifts. These changes are also more pronounced and more seasonally variable as 

one moves poleward, suggestive of a greater impact at high latitudes. We find evidence 

for an overall southward shift of the inner tropics, as well as an expansion of the Hadley 

circulation and subtropical dry zones. Consistent with this widening of the entire tropical 

belt is a poleward shift of the Ferrel cell and its associated features: the EDJ and storm 

tracks being the most prominent.  

There are also a number of caveats to this study, which deserve further discussion. 

Our study is performed using primarily zonal-mean data, which provides a number of 

advantages; most notably a reduction in complexity. However, this can be misleading 

without caution taken to realize that in the full field, many variables of climate interest 

are spatially very inhomogeneous and exhibit complicated patterns that are difficult to 

understand. We also take 3-month running averages. The advantage of this approach is 

that our analysis produces more gradual seasonal transitions. Similarly to our use of 

zonal-mean data, the drawback is once again that these averages can blur the magnitude 

of atmospheric phenomena occurring or being maximized on smaller scales, in this case – 

shorter time scales. Finally, our results are based on the outcomes of only one model. 
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