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ABSTRACT

Coal gasification temperature distribution in the gasifier is one of the important 

issues. High temperature may increase the risk of corrosion of the gasifier wall or it may 

cause an increase in the amount of volatile compounds. At the same time, gasification 

temperature is a dominant factor for high conversion of products and completing the 

reactions during coal gasification in a short time. In the light of this information it can be 

said that temperature is one of key parameters of coal gasification to enhance the 

production of high heating value syngas and maximize refractory longevity.

This study aims to predict the adiabatic flame temperatures of Australian 

bituminous coal and Indonesian roto coal in an entrained flow gasifier using different 

operating conditions with the ChemCAD simulation and design program. To achieve 

these objectives, two types of gasification parameters were carried out using simulation 

of a vertical entrained flow reactor: (1) oxygen-to-coal feed ratio by kg/kg and pressure 

and (2 ) steam-to-coal feed ratio by kg/kg and pressure.

In the first part of study the adiabatic flame temperatures, coal gasification 

products and other coal characteristics of two types of coals were determined using 

ChemCAD software. During all simulations, coal feed rate, coal particle size, initial 

temperature of coal, water and oxygen were kept constant. The relationships between 

flame temperature, coal gasification products and operating parameters were 

fundamentally investigated.



The second part of this study addresses the modeling of the flame temperature 

relation to methane production and other input parameters used previous chapter. The 

scope of this work was to establish a reasonable model in order to estimate flame 

temperature without any theoretical calculation. Finally, sensitivity analysis was 

performed after getting some basic correlations between temperature and input variables. 

According to the results, oxygen-to-coal feed ratio has the most influential effect on 

adiabatic flame temperature.
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CHAPTER 1 

INTRODUCTION

As the energy demands increase in the world, scientists have had to focus on 

new energy resources. Still, the need for energy, more than past years, has increased the 

importance of coal. The products that are produced by coal gasification can be used in 

different processes. The most common processes, that are being used today, can be 

described as energy and fuel production and electricity generation. Relatively, the heat 

and energy that are generated from coal combustion and gasification are more than the 

energy generated from the other primary energy sources such as biomass and wind 

energy. Because of this situation, the demand of coal and coal products are constantly 

increasing in the world. While the energetic potential of coal mines are evaluated, it can 

be seen that far Asia, North America and Eastern Europe are the leaders in terms of coal 

reserves. Almost 75% of coal is being provided from these three important areas (1).

Coal gasification is an important energy production technology and a key syngas 

source in the industrial world. Most of the chemical processes which require a huge 

energy demand are basically getting the power and energy using coal gasification and 

combustion. They also use the gasification products for different purposes. Hydrogen and 

carbon monoxide can be used in reactant for other chemical processes or producing 

electricity. These gasification products are being used to generate the substitute natural 

gas and other fuels as well.



Coal types are always tested by operators who work in gasification and 

combustion plants to get high quality coal products. The adiabatic flame temperature is 

one of the important parameters for coal type. If the gasifier temperature exceeds the 

adiabatic flame temperature of coal combustion or gasification, dissociation probably will 

occur and the amount of gasification products will begin to decrease slightly. The first 

aim of this research was the prediction of adiabatic flame temperature based on operating 

conditions. A computational software model was utilized to determine the flame 

temperature by applying different input parameters such as oxygen-to-coal feed ratio, 

steam-to-coal feed ratio or system pressure. Temperature in the gasifier is one of the 

important elements that deserves emphasis. High temperatures may increase the risk of 

corrosion of the gasifier wall or it may cause the amount of volatile compounds to 

ascend. Simultaneously, gasification temperatures are a dominant factor for high 

conversion of products and completing the reactions during coal gasification in a short 

time.

Recently, the effect of oxygen and steam on gasification temperatures, that are 

necessary factors for coal gasification, have been seriously studied by scientists (2, 3). 

New research areas have already emerged to ascertain an ideal temperature at optimum 

oxygen-to-coal and steam-to-coal feed ratios (4), then at this temperature point to raise 

the gasification products to the maximum level. In this study, gasification temperatures 

and products of Australian bituminous coal and Indonesian roto coal are determined 

using the ChemCAD software program. In addition, the modeling of gasification 

temperatures was completed with the help of different data.
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1.1. Gasification Terms

Coal gasification is a coal conversion process by which combustible gas from coal 

known as syngas, is produced. Gas obtained by coal gasification can be used in many 

ways: for electricity production, in chemical industry for petroleum, methanol, and 

ammonia synthesis, for ore reduction, as an industrial fuel, for residential heating, etc.

The cold gas efficiency is the ratio between the chemical energy content in the 

product gas compared to the chemical energy in the fuel (based on the lower heating 

value). The cold gas efficiency is calculated in the following way (5):

Cold gas efficiency =

Pr o du ct ga s ( m a s s fra cti o n * L o w e r H e ating Val u e)
--------- , g r-----:-------------------- :------ g— — - * 1 0 0  ( 1 .1)F u e l ( ma s s fra cti o n * L o w e r H e ating Val u e)

In this study, cold gas efficiency (CGE) was calculated by:

CGE =[mH2*LHVH2 + mCO* L H V co  + mCH4 *LH Vch4] / [mcoal* L H V c o a l]  * 1 0 0  (1 .2 )

Another important consideration in gasification is carbon conversion. Carbon 

conversion is defined as the amount of carbon in the product gas divided by the amount 

of carbon in the fuel (5). Carbon conversion is influenced by fuel particle size, fuel type, 

temperature, and residence time in the gasifier. The particle size can not be varied in a 

range that is intended for commercial application, because the size of the feeding system 

and the reactor is relatively small in the lab-scale set-up. The oxygen-to-coal feed ratio 

has a great effect on carbon conversion. The maximum carbon conversion is reached at a 

high oxygen-to-coal ratio. The carbon conversion generally increases with increasing



temperature. In the process of self-regulating, if  the temperature in the reactor lowers, the 

amount of char produced rises and the amount of heat produced in the combustor 

increases as well. This results in a surge in an increase in gasification temperature. In this 

study carbon conversion was calculated by the following formulas:

Xc = [Carbon in the product gas / Carbon feed rate in coal] * 100 or,

Xc = [(W co  + WcO2 + W ch4) / W c] (1.3)

Any solid carbon in the product is the unconverted product. So another way to calculate 

conversion is:

Xc = [1- (carbon remaining as solid product / carbon with entering coal)] *100 (1.4)

1.2 Basic Reactions of Coal Gasification

Coal gasification is essentially comprised of two major processes: Pyrolysis 

(between 573 K and 773K) and char gasification (4, 5). During the coal gasification 

process, a carbon considered as feedstock at elevated pressure and high temperature range 

is converted in a gasifier in the presence of steam and oxygen to the mixture of carbon 

monoxide and hydrogen commonly known as synthesis gas. The chemical reactions, 

which take place in the gasifiers, are the fundamental part of the coal gasification. Some 

of the more important of which are :

4



C +O2 — ► CO2 .............................. AH°298 = -3 93.51 MJ/kmol (R1)

C+1/2 O2 ----- ► CO.............................. AHo298 = -111.4 MJ/kmol (R2)

C + H2O ----- ► H2+ CO.......................AHo298 = 131.3 MJ/kmol (R3)

C + CO2 ---- ► 2CO.............................. AHo298 = 171.5 MJ/kmol (R4)

H2O + CO ------► H2 + CO2.................. AHo298 = -41.17 MJ/kmol (R5)

C +2 H2 ------► CH4 ............................... AHo298 = -75.17 MJ/kmol (R6 )

5

Reactions (R1) and (R2), which produce most of the heat reqired by the 

endothermic gasification reactions (R3) and (R4), are highly exothermic oxidation 

reactions. The oxidation reactions that completely consume all of the oxygen present in 

the entrained flow gasifier go on very fast. Therefore, most of the gasifier operates under 

reducing conditions. Char-vapor reaction (R3) is endothermic, and with increased 

temperature, the rate of reaction become fast. Finally, it leads the amount of H2 and CO in 

the product gas to increase. Another reaction which takes an important place during the 

coal gasification is the water-gas shift reaction (R5). The main characteristic of this 

reaction can be stated the forming of H2 and CO2 with the basis of H2O and carbon 

monoxide reactants (5). Moreover, H2/CO ratio in the final mixture is considerable 

changed by the water-gas shift reaction with increased temperature. The reason of this 

change is explained as H2 and CO2 contents in the product gas decrease. However, it does 

not greatly impact the heating value of the synthesis gas, because the heat of combustion 

of H2 and CO on a molar basis are almost identical if  the water is not condensed. 

Methane formation, reaction (R6 ), is generally obtained at high pressures and low



temperatures and thus, is mainly important in lower temperature gasification systems. 

Methane formation which does not consume oxygen is also an exothermic reaction and, 

therefore, this type of reaction eventually increases the efficiency of gasification and the 

final heating value of the synthesis gas (4).

1.3 Choice of Gasifier

Although there are several types of flow reactors such as fluidized bed reactor 

and fixed bed flow reactor used in the industry, the entrained flow gasifier was selected 

for the coal gasification in this study. There are several reasons to choose this type of 

gasifier (6 ). These reasons are explained below.

The entrained flow gasifiers, which are designed for high operating conditions, 

can be adapted for most of the coal types. In an entrained flow slaging gasifier, coal 

particles generally undergo two conversion stages that take place almost simultaneously 

because of the high heating rate. A higher throughput can be achieved due to a high 

temperature scale where the coal particles are substantially dissociated in the gasifier. The 

contents of unexpected products such as methane and tar do not yield at a significant 

level due to the high temperature ranges. The unexpected products easily leave the 

reactor after coal gasification. However, the air need for oxidation reactions which occur 

in the burner zone is higher than for the other types of gasifiers. In addition, the entrained 

flow gasifiers have the ability of the removal the major part of ash particles above the the 

flame temperatures. The entrained flow gasifiers with refractory or water-cooled steel 

walls depend on a slag layer to conserve the gasifier walls and reduce the heat loss 

through the wall. Finally, NOx formation can be neglected for these types of gasifiers and 

corrosive slags do not have a great influence on operating conditions (7).

6



1.3.1. Entrained Flow Gasifiers

In entrained-flow gasifiers, air, coal and steam go through the top of the gasifier 

(see Figure 1.1). The gasification products are collected at the bottom of the gasifier. The 

quench water is used to cool down the ash particles and slurry mixture. Then, the ash 

content is removed after finishing the gasifications. The coal gasification is operated at 

high temperature and elevated pressure in order to fuse coal into inert slag. The small 

coal particle size and high temperatures also allow the gasification reactions to take place 

at short residence time and a very high rate. Hydrogen, carbon monoxide and a small 

amount of hydrocarbon gases are produced by oil, tar and other liquids composed from 

devolatilization of coal inside the gasifier. The entrained flow gasifiers have the ability to 

use any coal type and result in the clean syngas (8).

Matyas et al. (8) demonstrated the coal which fed into the entrained flow gasifier 

in either a slurry or a dry form. Although a lock hopper system is used for dry form, the 

high-pressure slurry pumps are generally preferred for slurry form of coal feed. They also 

indicated that the slurry feed, which is a basic operation, initiates water into the gasifier 

reactor. The consequence of this extra water which needs to be evaporated is a product 

synthesis (high H2/CO ratio) gas. However, it unfortunately contains a lower thermal 

efficiency.

Entrained flow gasifiers typically display the following characteristic: 

Temperature does not deviate significantly within the reactor. However, it depends on the 

gasifier zone. The gasifier temperature is higher in burner zone than that in the reductor 

section because of oxidation reactions. Even though residence time is quite short 

compared to other types of gasifiers, the huge amount of oxygen is required to complete

7
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the reactions. A variety of solid feedstocks are usually utilized for design and operation of 

the entrained flow gasifiers where slag formation frequently occur. Finally, these types of 

gasifier contain low cold gas efficiency even though carbon conversion are high enough 

for industrial application (9).

1.3.2 Shell Gasification Process

In this study, coal gasification was performed using Shell gasification process. 

(The background of Shell gasification technology is discussed in this chapter). A Shell 

coal gasification scheme, which exhibits a dry feed system is illustrated in Figure 1.2.

According to this technology, a coal, which is dried and powdered, is supplied 

to opposite parts of the gasifier while oxygen follows to the gasifier below the coal 

feeding zones. Furthermore, N2 is considered as inert gas which carries out the coal 

particles into the reactor and it helps to pressurize the feed hoppers to the reactor 

operating pressure around 4.2 MPa. Slag/solid gas mixture, which flows up through the 

gasifier at about 1800oC, is removed at the bottom of the reactor. A cold recycle synthesis 

gas stream—the estimation temperature is around 300oC—is fed into the gasifier in order 

to decrease the temperature of gasification products. Similarly, the quench gas reduces 

the syngas mixture to around 850oC. The most important drawback of the cooling step is 

that if  the temperature of unquenched syngas is detected at about 1700oC, the steam 

boiler tubes located in the syngas cooler do not resist this high level temperature. 

Nonetheless, quenching gas reduces the gasifier temperature to an allowable rank, a very 

important step during the gasification process. Finally, the fly ash includes unconverted 

carbon due to the lack of oxidant. This is recycled to the coal feed system (8 , 9).
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1.4 Challenges of Measuring Temperature

To measure the temperature inside the gasifier is fundamental to the coal 

gasification process. The efficiency of coal products, slag formation in the gasifier and 

ideal operating conditions can be controlled by measuring of temperature. However, there 

are some challenges that need to be solved for measuring the temperature, in other words, 

one of the biggest difficulties facing gasifiers is the challenge in procuring a certain 

temperature inside the gasifier. Gasification process normally takes place around 1800°F 

and pressures of 100-800 psi (10). In a power plant, slagging coal gasifiers should operate 

and be set to work above the fusion point of ash. The aim of this attempt is the melting of 

ash inside the gasifier. Then, the ash is mixed with the corrosive slag. Hence, the ash falls 

from the walls of the gasifier.

The other challenges of measuring temperature that occur during coal 

gasification are large and/or rapid changes in temperature, erosion by particulates, attack 

by molten slag of variable compositions and hot corrosive gases, including alkali vapor 

(10).

Current gasifiers use thermocouples, thermistors and indirect measurement 

techniques in order to control and measure the temperatures. Unfortunately, these 

methods have limited life and accuracy. Thermocouples do not withstand to the high 

temperatures inside the gasifier. Indeed, they are broken down dramatically or display 

inaccurate measurement due to deviation from the actual temperature. Thermocouples 

also have other drawbacks such as stability and repeatability. Thermistors, which are not 

as rugged as thermocouples, also have package size and low sensitivity problems in a 

wide range of temperatures ( 11).



A rugged, reliable diagnostic system must be taken into account for all types of 

gasifiers in order to achieve not only a better life but also improved fuel economy and 

reliability. A reliable diagnostic system would also provide valuable information for other 

systems down the road, particularly heat values for the combustion turbines that could 

improve their efficiency, and thus maximize gasification’s great potential.

10
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Figure 1.1 Schematic of entrained flow gasifier with water quench
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CHAPTER 2

LITERATURE REVIEW

Coal is the most prominent energy source for the generation of electric power in 

the USA and Europe. The energy information administration (EIA) report states that coal 

used for electric power generation will rise in the next quarter century. Improved 

gasification is the indispensable step toward the development of commercial Integrated- 

gasification Combined Cycle (IGCC), and sensors for continuous monitoring of gasifier 

temperature and syngas energy content required to enhance the production of the high 

heating-value syngas while maximizing refractory longevity and other maintenance 

issues (12).

Gasification which produces energy from fuels for heating, electricity and 

industrial applications is a new and advance technology. Gasification is more efficient 

technology than combustion because it contains a multistage combustion steps which 

provide high conversion eficiency and low emissions. Coal gasification is defined as a 

coal conversion process by which combustible gas from coal is produced.

The ash properties of coal often specify the temperature in the gasifier. If the ash 

melting point of any coal type is very high to operate, the flux is generally added to the 

coal feed stream to reduce the ash melting point. The oxygen is significantly consumed at 

high temperature ranges during coal gasification process and this either causes to 

decrease the overall system efficiency or requires more oxygen need. Thus, system



temperature should be arranged with known oxygen-to-fuel and steam-to-fuel ratios in 

order to optimize the process control. Since most modern gasification processes operate 

at 30 bar or higher, temperatures of above 1300oC are required in order to produce a 

synthesis gas with a low methane content (13).

2.1 Effect of Temperature on Reactor Performance

The effect of gasifier temperature on gasification products and reactor 

performance is one of the most important subjects in studying coal gasification. It has 

been recognized that the adiabatic flame temperature and its evolution have a major 

influence on the conversion of coal, syngas production and composition of gasification 

products.

Lee et al. (14) studied the coal pyrolysis in a fluidized bed reactor. In their 

study, a model of the two-phase theory on coal gasification in a thermobalance reactor 

and coal pyrolysis in a fluidized bed was proposed to predict the gas compositions. The 

char particles for the thermobalance reactor were prepared by devolatilization of 

Australian bituminous coal, which was heated from room temperature to 900°C at a rate 

of 10°C min 1 and then maintained for 30 min at 900°C. The coal-particle diameters for 

the pyrolysis and gasification reactions were 0.25 to 1.0 mm. To eliminate the influence 

of diffusion on reaction rate, experiments were performed with varying sample sizes and 

masses. They gasified 0.3-0.6 g of char in the size range 0.3-1.0 mm in a thermobalance 

reactor.

Furthermore, Lee et al. (14) carried out pyrolysis and gasification in a 

fluidized-bed reactor made of 316 stainless steel. The solid particles were supported on a 

bubble-cap distributor which contained seven bubble caps (4*2.0 mm i.d.) that served as

14



air and steam distributors. Eight pressure taps were installed on the wall at 0.1 m height 

distances to measure temperature and pressure, and six K-type thermocouples were 

similarly adjusted along the bed height. To conclude their study, the effect of temperature 

on gasification gas compositions was determined. Their research also indicates the effect 

of reaction temperature on gas compositions from coal gasification based on model 

predictions. The product gases are 30-40% H2, 23-28% CO, 27-35% CO2, and 6-9% 

CH4. As the reaction temperature is increased, the yields of H2 and CO increase due to a 

rise in steam gasification and pyrolysis. At the same time, the CO2 yield decreases when 

combustion reactions decrease. The yields of CO and CO2 are increased in the product 

gas since the combustion reaction is faster than the steam-gasification char reaction. The 

amount of CH4 decreases with increasing reaction temperature since it is mainly 

produced by pyrolysis. Their model clearly predicts the experimental data well and much 

better than previously published models. Therefore, Lee et al. (14) concluded that 

pyrolysis plays an important role in coal gasification, especially for coals with higher 

volatile contents.

The effect of temperature on cold gas efficiency, carbon conversion and gas 

heating values have been investigated by Taba and Irfan (15). According to their findings, 

temperature is one of the most significant operating parameters because it affects both 

gaseous composition and carbon conversion through oxidation and gasification reactions. 

Furthermore, gas yield, heating value, cold gas efficiency and finally char and tar yields 

in coal gasification processes are affected by gasifier temperature. This effect depends on 

thermodynamic behaviour of the reactions and the balance between endothermic and

15



exothermic reactions. Taba and Irfan (15) also indicate that there is a limitation to how 

high the temperature can rise due to its effect on the ash fusion and volatile matter.

Taba and Irfan (15) concluded that carbon conversion and cold gas efficiency 

(CGE) increase with the rise of temperature while hydrocarbons and tar contents are 

decreased. This observation is mainly due to the higher temperature at which endothermic 

reactions involved in the gasification become more dominant. This result for cold gas 

efficiency is only because their reactor was electrically heated and the energy for that 

heating is not accounted for. Otherwise cold gas efficiency decreases with increasing 

oxygen-to-steam feed ratio. Theoretically, the yield of coal gasification depends upon 

various parameters such as temperature, pressure, particle size of coal, types of fuel used 

and the fuel/gasifying agent ratio; these parameters are equally important and interact 

with each other during gasification, but temperature is by far the most significant factor

(3).

2.2 Effect of Operating Conditions on Reactor Performance

The oxygen-to-coal ratio, steam-to-coal ratio, pressure and ash content of coal 

substantially influence the gasification temperature and coal products. Nguyen et al. (16) 

developed a two stage equilibrium model to investigate the role of oxygen-to-coal and 

steam-to-coal ratios on reactor performance and on carbon conversion and composition of 

the product gas in an entrained-flow coal gasifier. Nguyen’s model—which has been 

validated with experimental data taken from previous studies—is composed of two 

separate stages including char-gasification and gas-phase reaction; in the first, carbon 

conversion is estimated with solid-gas reactions; in the second, the product gas 

composition is calculated. Water consumption involved in the equilibrium reaction of the

16



first stage is expressed as an exponential function of temperature. This study confirms 

that carbon conversion and product gas composition are influenced decisively by the 

oxygen-to-coal ratio. The optimum range of the steam-to-coal ratio and the total yield of 

CO and H2 depend on the type of coal and particle size.

Nguyen et al. (16) also explained the product gas composition of each 

component and the gasification temperature at various oxygen-to-coal ratios. According 

to their research, as the oxygen-to-coal feed ratio increases, the CO composition increases 

considerably while H2O, H2 and CO2 decrease slightly. Furthermore, the research also 

exhibits the gasifier temperature rises as the oxygen-to-coal ratio increases due to 

exothermic combustion (16, 17). Finally, when the steam-to-coal ratio increases, the H2O 

and CO2 compositions increase proportionally; while CO decreases, H2 and CH4 change 

little with steam-to-coal ratios.

Higman and Burgt (13) indicate that the advanced gasification systems are 

mostly operated between 10 bar and 100  bar to conserve energy and keep down the 

equipment size. With the calculations all performed at 1000oC, Higman (18) examined 

gas composition changes with pressure. In addition, the CO concentration decreases 

dramatically while the other gas components do not change significantly. He also figures 

out that at this temperature, 1000oC, the actual changes of gas composition with pressure 

is almost negligible.

2.3 Gasifier Outlet Temperature as a Function of Methane

Higman and Burgt (13) report that under conditions where methane is the only 

hydrocarbon that is present, it is a reasonable approach for entrained flow gasifiers since 

the coal footprint assumes to reach chemical equilibrium between gas phases. They

17



further conclude that, in general, the temperature of a dry-slurry feed gasifier can be 

monitored by the concentration of methane product gas. In fact, the methane content 

should be determined for process control in entrained flow gasifiers. Otherwise, it does 

not considerably affect on energy and mass balance in the reactor (13).

As the gasification reactions and the coal feed stock have an important effect on 

methane content, the amount of methane frequently has to be determined by the 

calculations in the dry-coal feed entrained flow gasifiers where heat loss occurs due to the 

membrane wall. However, the gasifier temperature can not easily be monitored by the 

analyzer since the measuring of product gas which leaves the reactor is really difficult. 

Here, Higman (18) suggests a method called ‘post-mortem’ to overcome that issue.

The post-mortem method says that the gas sample which leaves the reactor can 

directly be measured in a cooled and thin tube after cooling down. The analysis is 

performed after finishing this operation (13, 18). Currently, researchers are debating why 

trace amounts of methane appear in the product gas when the gasification reactions take 

place in the entrained flow slagging gasifier, given that the methane hardly plays a role in 

the calculations. Moreover, with a view to process control, ignoring the methane 

exceedingly facilitates the calculations. Higman (18) mentioned that if  the isomethane 

lines agree with the isotherms, the gasifier temperature approaches pretty much to the 

actual one. In fact, he claims that this is only partly acceptable. Higman and his research 

group provide a valuable indication of the outlet temperature, but on calculating the 

actual temperature on the basis of gas analysis, values differ from reasonable 

expectations. However, introducing correction factors with the calculated temperatures

18



based on the other gas components, the CH4 content becomes an extremely worthwhile 

determinant of the reactor and gasifier temperature.

To accommodate liquid and slurry-type combustible wastes, Yun and Ju (19) 

developed a gasification/melting facility that can operate up to 10 bar and 1550oC with a 

maximum of 1 ton/day capacity. In developing the system, Yun and Ju’s main focuses 

were keeping the reaction with the minimum amount of expensive fuel and utilizing 

cheap waste oil instead for energy input efficiency. In their study, methane concentration 

dropped rapidly with increasing temperature. Inevitably, at temperatures as high as 

1400oC, structural damage to thermocouples occurred on the inner diameter surface of the 

gasifier during long runs. The directly contacting thermocouples cause an increased risk 

of corrosion and thermal melting during the measurement of variables. Therefore, finding 

an indirect way of measuring the gasifier temperature is very important. When the 

thermocouple suffered damaged in Yun and Ju’s study, the methane concentration was 

used as an indirect indicator of gasifier temperatures, which were measured by a direct 

contacting thermocouple with the reacting gas. The R-type thermocouple was used with a 

ceramic tip on the gas contacting area. When the temperature rose high enough, the 

methane concentration dropped rapidly. According to their findings, when the gasifier 

temperature reached around 1200oC, the CH4 concentration exhibited about a 2.5% 

value, however, the temperature increased above 1320oC, the CH4 concentration level 

dropped below 1000 ppm (parts per million) level. Normally a coal gasifier operation 

requires a methane level less than a few hundred ppm for smooth slag formation and 

discharge through the slag tap hole (19).
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Recent studies (3, 17, 19, 20, 21) demonstrate that during coal gasification, the 

concentration of CH4 and other hydrocarbons remain almost constant at low as well as at 

high temperatures. This is not because of the methanation reaction but is mainly due to 

the pyrolysis process by which CH4 is produced, as has been claimed by numerous 

researchers (20-23). However, a slight change in CH4 production during coal gasification 

has been reported, due mainly to the formation and consumption of CH4 in exothermic 

reactions at low and high temperatures, respectively (21). Kim et al. (24) have shown that 

when rising temperatures reach the range of 750 to 850oC, CH4 concentration starts 

decreasing from 16.7 to 8.9%. However, an opposite trend is observed for the rest of the 

hydrocarbons such that their concentrations increase with the increase of temperature. 

This may be because of the use of low oxygen-to-coal ratio which causes reduction in the 

reaction of volatiles; the rising gasifier temperature in turn increases the contents of 

hydrocarbons. It is also common knowledge that during coal gasification, methane is 

produced by the heterogeneous and homogeneous exothermic reactions (methanation and 

methane steam reforming). However, the combustion reaction starts consuming methane 

as a result of which CH4 concentration does not change significantly with the variation of 

temperature (25, 26).

2.4 Tunable Diode Laser Technology

Heppner (10) demonstrates that tunable diode laser technology has the potential 

to be used in harsh environments. The reason the instrumentation equipment is not 

influenced by harsh environments is because tunable diode laser technology is non- 

invasive and the interaction with severe conditions is done only by the laser. There is, 

however, one main difficulty which occurs during gasification measurement with this
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laser diagnostic. Heppner (10) describes this challenge: ‘The pressures at which the 

gasifier will operate broaden the absorption spectra of the constituents, making it difficult 

to achieve a clear wavelength at which absorption takes place’ (p.3).

Stanford’s High Temperature Gas Dynamics Laboratory has addressed this 

issue and has produced a probe that can accurately measure temperature and flow 

constituents at 147 psi at 80°F to match the density of 734 psi at 2240°F. The Stanford 

probe makes use of a wavelength-multiplexed approach that produces light at different 

wavelengths (10). The precise temperature can then be calculated by measuring the ratios 

of absorption from the different wavelengths provided by the laser.

2.5 Modeling of Temperature in Entrained Flow Gasifier

2.5.1 Polynomial Model

A polynomial model is described as a compilation of essential mathematical and 

statistical methods helpful for improving and optimizing processes in which a response of 

interest is affected by several inputs (27). This collection of techniques can be used to 

investigate the relationships between the response and the independent variables. The 

graphical perspective of the mathematical model is reflected in the term Response 

Surface Methodology. The relationship between the response and the input is given in 

equation (2 .1):

^  = f  (x1,x2, .............. ,Xn) + e (2 .1)

where q is the response, f  is the unknown function of response , x 1,x2, ..... ,xn denote the

independent variables (also called natural variables), n is the number of the independent



variables and finally s is the statistical error that represents other sources of variability not 

accounted for by f. It is generally assumed that s has a normal distribution with mean 

zero and variance.

After selection of the design, the model equation is defined and its coefficients 

are identified (28). The equation used in polynomial model is generally a full quadratic or 

a diminished form of this equation. The second order model can be written as follows:

y = Po + 1 P jxj + i Pj jxj + Z Z k j  P j  x > x  j (2  2 )

where po, pi, pii and pij are regression coefficients for intercept, linear, quadratic and 

interaction coefficients respectively and Xi and Xj are coded independent variables.

The matrix notation of the model is given in equation 2.3,

y= XP + s
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y  11 1 xn  x12 . . Xlk- r/?oi -£r
J 2 1 X 2 1  x22 ■ ■ x 2k P i ^2

= +

Jn- - 1 xn 1 xn2 • • xnk- i - - ̂ n-

The system of equations given above is typically solved using the method of 

least square which is a multiple regression technique. In the method of least square, it is 

assumed that random errors are identically distributed with a zero mean and a common 

unknown variance and they are independent of each other. The difference between the



observed and the fitted value (y) for the i th observation 8i = yi -y  is called residual and is 

an estimate of corresponding si. The criteria for choosing the Pj estimates is that they 

should minimize the sum of the squares of the residuals which is often called the sum of 

squares of the errors and is denoted by SSE. Thus,

SSE = Z?= = Y.% 1  (yt - y )2 (2.4)

The residuals may be written as

8 = y -  XP (2.5)

and the SSE is
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SSE = 8T8 = (y -  XP)T (y -  XP) (2.6)

Differentiating the SSE with respect to P, a vector of partial derivatives can be written as:

^  (SSE) = -2XT(y -  XP) (2.7)

Equating this derivative to zero, XP = y is found and this over-determined system of 

equations could be solved directly to obtained the coefficients of P by the following:
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XTXP = XTy (2 .8)

The formal solution of these equations is then

P = (XTX)-1XTy = CXTy (2.9)

where

C = (XTX) -1 (2 .10)

Where C is a square matrix (28). After the regression coefficients were obtained, the 

estimation response could be easily calculated using model equation.

2.5.2 Power Law

Chavan et al. (29) have recommended that the power law or another term, 

‘multivariate regression model (MVR)’ is a well-known method for developing multi­

input single-output regression models. It can also be employed for developing 

multivariable nonlinear regression models. In this study, power law models were 

developed using Matlab software program for temperature estimation of coal gasification 

in entrained flow gasifier.

The power law model comprises two types of models, namely power-nonlinear 

and power-linear regression, respectively. The power law with nonlinear regression 

model (MNR) with two or more predictor variables (x1, x2, ....... ,xn) is given as
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(2 .11)

where ai (i=0,1,2,.............,n) represent constants to be estimated. The multipower linear

regression (MLR) can be stated as

y = ao + a1x 1 + a2x2 + ......... +an-1 xn-1 + an xn + e (2 .12)

where e represents the residual. The MLR problem is easier to solve than the MNR 

problem. It is, however, possible to convert equation 2.12 into a multivariable linear 

regression problem by taking logarithms of both sides:

The constants of equation 2.14 can be now estimated using the standard MLR strategy.

2.5.3 Estimation of Sensitivity Coefficients of Nonlinear Model

Fang and Gentner (30) state that most of the existing sensitivity analysis 

methods imply the assumption of independence in their development. In other words, 

there is no generally applicable method for sensitivity analysis when correlation is 

encountered. Without considering correlation, sensitivity analysis will likely lead to 

incorrect conclusions and the ultimate purpose for conducting the sensitivity analysis will 

be irrelevant. That is why it is important to develop a generally applicable method for 

sensitivity analyses for correlated model inputs (30).

log (y) = log (ao) + a1 log (x0  + + an-1 log (xn-1) + an log(xn) (2.13)



Based on computational experimental design, parameter sensitivity can be 

assessed by building response surface models. Using response surface models, the 

estimated coefficients of the response surface model are used as measures of parameter 

sensitivity (31). When model inputs are correlated, random samples can be generated 

based on nonparametric statistical methods for building response surface models. 

However, as Davis and Helton (32) first discovered, the coefficients of a response surface 

model can not be used as a reliable measure of parameter sensitivity when model inputs 

are correlated.

Another computation based approach for conducting sensitivity analysis is 

based on ‘one-parameter-at-a-time’ sampling to generate sequential random samples for 

estimation of sensitivity coefficients of input parameters (33). The one-parameter-at-a- 

time sequential sampling method is convenient and easy to implement when input 

parameters are independent. Measures of sensitivity are directly estimated with the 

sampled model inputs and corresponding model outputs.

The objectives of this study are to develop an algorithm for generating 

sequential random samples of multinormal distributions for estimation of sensitivity 

coefficients of selected input parameters based on the one-parameter-at-a-time method, 

and to study the effects of correlation in the sensitivity analysis for Australian bituminous 

coal.

In a sequential random sample, the difference of two vector immediate neighbor 

vectors is only the random number of one parameter. In addition, the difference of model 

outputs corresponding to a pair of immediate neighbor vector is caused by the change of 

only one model input parameter. Therefore, sensitivity coefficients can be estimated
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based on the differences of model outputs and inputs (30). The expression of sensitivity 

analysis can be written follows:

SC, = -  YU-i —  (2.14)1 n Lj]-1 kxij v  ’

Where SC, is the estimated sensitivity coefficient of model input xi, Axy and Ayij are 

respectively, the j th differences of xi and model output y caused by the change of xi, and 

n is the sample size. The estimated sensitivity coefficients are global. Essentially, eq. 

(2.14) is the Monte Carlo integration approximation of the integral:

■ C ......... / I S ;  f(x) d x 1 ........ dxp ~  -  Yi - i S {  •

Where f(x) is assumed to be a multinormal distribution function.

Sobol (33) approaches this method with another way and points out that when 

the k input parameters of the model are mutually independent, such a sequential random 

sample is not difficult to generate. Firstly, an order to sample the numbers for the 

parameters are determined. Second, independently k random numbers are generated to 

form the first random vector. Third, according to the sampling order, independently a 

random number for the specific parameter is generated to replace the corresponding one 

in the preceding random vector to form a new vector (26, 34). The global sensitivity is 

given by the following formula:
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S  = J s L i ^ t f 0 ) 2 (2.15)

Where k is the total number of available patterns and SCij refers to sensitivity of j th 

output with respect to i th input. The sensitivities were later normalized to get the 

percentage sensitivity as given below:

% SCji = ( iSCji ) * 100 (2.16)
\Z j= , S C j i ( )



CHAPTER 3

SIMULATION SETUP AND PROCEDURE

The ChemCAD simulation program was used to determine coal conversion, 

cold-gas efficiency, coal gasification products, and the adiabatic flame temperature. The 

latter occurs exclusively in the presence of adiabatic conditions, which in turn are created 

solely by the Gibbs free reactor. This reactor offers the additional advantages of 

preventing heat loss to the outside. The application of the ChemCAD and the design of 

the Gibbs free reactor will be explained in the following pages.

3.1 Shell Gasification Diagram Setup

The Gibbs reactor was selected as the entrained flow gasifier because it provides 

the adiabatic conditions for coal gasification. Before coal particles are fed into the 

reactor, a slurry system was formed with coal and water. Then the upper side went 

through the vertical reactor with nitrogen and oxygen streams. The temperature of coal 

and water were held as 313 K and this value did not change during the simulation runs. In 

addition, the temperature of oxygen and nitrogen were kept constant as 333 K. The flow 

of coal for both types was set to 1000 kg/h. The development of the Shell gasification 

diagram and the Gibbs free reactor design were displayed with detailed explanations. The 

reason of the selection of Gibbs free reactor is that it does not require the stoichiometric 

ratio of components which consist of coal gasification.



3.2 The Gibbs Free Reactor

The Gibbs reactor model is often preferred to simulate reactors for the purpose 

of heat and material balances. Product rates, compositions, and thermal conditions are 

calculated by the minimization of Gibbs free energy, subject to an overall mass balance. 

All components in the component list (for the current flowsheet) are considered in the 

Gibbs free energy minimization calculation unless specifically excluded (identified as 

inert).

The minimum information required by the Gibbs reactor is the identity of the 

feed and product streams for standard database components. Temperature and/or pressure 

may be set if  different from those derived from the feed stream(s). The other conspicuous 

characteristic of this reactor is stated that no reaction stoichiometry is required when the 

reactions are identified in the program. Although the reactor could be operated 

isothermally at a specified temperature, or at the feed temperature, it was designed in 

adiabatic conditions in this study. Finally, heat may be added or removed, and 

temperature limits are definitely imposed (35).

For user-supplied or pseudo-components, the free energy of formation, 

molecular weight and heat capacity must be supplied. For solid components, the free 

energy of formation, the heat of formation, molecular weight, and heat capacity must be 

present in the database. Apart from this, it is important to point out that several overall 

constraints are imposed on the reaction. The gasifier temperature approach to chemical 

equilibrium for the entire reacting system can be specified. In this case, the chemical 

equilibrium is determined at T + AT, while the properties are computed at, T, where T is 

the reactor temperature and AT is the approach to chemical equilibrium.

30



3.3 Methods and General Assumptions

3.3.1 Method and Approach

The Gibbs reactor is based on the principal that at chemical equilibrium the total 

Gibbs energy of the system has its minimum value. In an attempt to minimize the total 

energy of the system, individual equilibria constants are not examined. Rather, the 

possible reaction species are noted, and the distribution of these species is established 

using a general mathematical technique to give a minimum free energy for the system. 

Thus, for any reaction system, all important species are expatiated and solution is carried 

out without prior knowledge of the chemistry of the system. The solution so achieved will 

satisfy all expected equilibria and be accurate within the limits of the thermodynamic data 

(36). To obtain the same solution using individual equilibrium constants would require 

knowledge of the reactions involved (the equilibrium reactor uses this method). Free 

energy minimization is accomplished with these steps:

a) Develop expressions for the free energy of the system.

b) Write an expression for the free energy of a mixture of assumed composition, i.e., 

assumed concentrations of the various species to be deliberated.

c) The free energy of the equilibrium mixture (composition unknown) is expressed in 

terms of the assumed mixture and in unknown increments which represent the 

changes needed to bring the assumed mixture composition to the final equilibrium 

composition. The expression used involves the first two terms of a Taylor series and 

is termed a ‘quadratic approximation’.

d) The expanded function, i.e., quadratic approximation, is minimized to simplify the 

equations.
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e) As a result of the manipulations involved, a system of linear simultaneous 

equations is obtained in as many unknowns. When solved, the system yields a new 

composition that represents a new approximation of the composition which gives 

minimum free energy.

f) The procedure is repeated until the calculated and prior compositions are identical. 

At this point, the free energy of the system is at a minimum.

The above approach for computing fugacity is effective only if the equation of 

state we use is adequate. This may not be true for two reasons. First, the equation may not 

adequately represent the compound itself, even in the pure state. Second, the mixing rules 

of the equation may not sufficiently interpret or quantify what happens to a molecule 

when it is in solution. This can happen for many reasons but frequently it is due to the 

failure to adequately model intermolecular forces. In such a case, an alternative approach 

is taken (36). Define activity, a i, as follows:

the component at some arbitrarily defined standard state. The activity coefficient (y) is 

also defined as

(3.1)

where is the fugacity of the component in solution and represents the fugacity of

(3.2)
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Thus, equation 3.2 can be written as,

f -  = xi*Yi *fio (3.3)

From the Gibbs-Duhem relations, it can be demonstrated for one mole of solution:

A(G-i - Goi) = £ jx  j RT1 ny j (3.4)

Where xi is the molar liquid fraction of ith component, R is the ideal gas constant, T is 

temperature and yi defines the activity coefficient.

A(G-i - Goi) = Total excess Gibbs free energy

The difference between the Gibbs free energy of the component in the solution 

and the Gibbs free energy of the component in the standard state, is called the excess 

Gibbs free energy. The term A(G-i - Goi) is the change in excess Gibbs free energy for the 

entire solution.

We can thus, approach yi, by relating it to the excess Gibbs free energy of 

solution, s Ge. However, since s G E cannot be directly measured, this is virtually always 

taken as a theoretical framework or starting point. In the final analysis, the value of yi, 

must be directly correlated over narrow data ranges. This is done through the use of 

binary interaction parameters or BIPs. ChemCAD provides a BIP database, as well as a



data regression facility through which these BIPs can be directly correlated from phase 

equilibrium data. Thus, activity coefficients are a function not only of the component for 

which they are computed, but also of the nature and quantity of the other components in 

the solution. In addition, the activity coefficients themselves are computed semi- 

empirically, i.e., the approach has a theoretical basis but the application is dependent on 

parameters correlated over specific data ranges.

At equilibrium, all net driving forces are zero and, thus, all thermodynamic 

properties such as U (free energy), A (Hemholtz free energy), G (Gibbs free energy), etc., 

are minimized. Mathematically, for any quantity, the first derivative of that quantity 

equals zero at either a maximum, a minimum, or an inflection point. Since the second law 

of thermodynamics states that energy always flows downhill, the free energy functions U, 

A, and G should be minimized.

dU = dA = dG = 0 (3.5)

Here, there are some options:

Since dU = TdS - PdV, if  S and T are fixed (i.e., known, measured), U can be minimized. 

Since dA = -PdV - SdT, if  V and T are fixed, A is minimized as well. Since dG = VdP - 

SdT, if  P and T are fixed, G may be minimized. For all purposes it is best to attempt to 

minimize G because T and P are easily measured. For a closed two-phase system,
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For any given phase,

Phase 1 : dG1= 2 iG  1 i dn  x i (3.7)

Phase 2 : dG2= E iG 2 l dn21 (3.8)

Where G1l defines the Gibbs energy of first component in liquid phase G2l explains the 

Gibbs energy of second component in liquid phase. Therefore,

dG = 2 i G-i dn 1 1 + ^  i G-i dn 2 i (3.9)

Conservation of mass requires that dn1 = -dn2. Hence,

dG= 2  i ( G-i -  G-d dn2 (3.10)

In order for equation 3.10 to be generally valid, it cannot depend on any particular choice 

of the dni. Thus, the total Gibbs free energy will be a minimum (dG = 0) for an arbitrary 

choice of the dni only if

G - = G-t (3.11)

for all components. Thus, at equilibrium the partial molar Gibbs free energy of each 

component must be the same in each phase present in the system. In other words,
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f i i  = f a  (3.12)

Therefore, partial Gibbs free energy of any component in the system can be 

used to specify the characterization of the other components due to the equality of 

fugacity. This approach is beneficial to convert the chemical properties of components, 

especially, when the equation is written by another fugacity term in order to find the 

target point.

3.3.2 Overall Assumptions

In this simulation, Australian bituminous (type 1) and Indonesian roto coal 

(type 2) in the entrained flow gasifier have been evaluated and different parameters such 

as system pressure, oxygen-to-coal feed ratio and steam-to-coal feed ratio were utilized to 

predict not only the adiabatic flame temperature of gasifier but also the amount of 

product gases. The compositions of coal types are annotated in this chapter. The 

boundary conditions were taken around the gasifier. The Shell gasification diagram was 

drawn in Figure 3.1 and a simulation using ChemCAD has been performed. Some 

suppositions, which are necessary to build up the properties of various streams and 

gasifier type, were made and explained below before designing the reactor.

An entrained flow gasifier which exists on a large scale because of envisaged 

products is characterized by coal particles dragged along with gas stream. Large scale 

coal particles generally mean lower specific costs and heat integration is easier. Small 

coal particles, typically 100 p,m, were used in this simulation. The coal gasification was 

performed at a high temperature to achieve high efficiency. Since the entrained flow 

gasifier operates at a high temperature, it results in a CO- and H2- rich gas (inevitably



also CO2). It was assumed to operate under pressure (typically 20-80 bar) with pure 

oxygen.

The two-phase flow was assumed to be steady-state and one dimensional. The 

gas phase reactions were assumed to reach equilibrium. The heterogeneous reactions 

between coal, steam and oxygen were considered as irreversible surface reactions. It was 

assumed that a pulverized coal was gasified with oxygen in a vertical reactor with co­

current flow, and that the coal particles were moved by N 2 and injected to the so-called 

burner in the gasifier. The burner intends to realize a thorough mixing of coal and 

oxygen.

3.4 Simulation Procedure

Gasification of Australian bituminous coal and Indonesian roto coal were 

performed by using ChemCAD simulation and design program. As mentioned before, 

one of the aims of this study was to ascertain the gasification products composition on a 

dry basis by moles %. Carbon monoxide, carbon dioxide, methane and hydrogen were the 

expected gasification products. The other gas products such as SO2 and NOx were 

assumed as negligible. Finally, the essential gasification characteristics— coal conversion 

and cold gas efficiency—which give a general idea on the gasifier performance were 

merely examined.

Table 3.1 indicates the coal characteristics of Australian bituminous coal and 

Indonesian roto Coal, respectively. The proximate analysis and ultimate analysis based on 

weight % were tabulated for two different coal types. These findings were taken from 

previous studies (35, 37). The amount of carbon in Indonesian roto coal was higher than 

the amount of carbon in Australian bituminous coal.
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However, the percentage o f oxygen and hydrogen by weight in Indonesian roto 

coal were lower than those o f the Australian coal type. Table 3.2 interprets ash contents 

o f the two types o f coal.

The first step to integrate the coal gasification and coal properties into 

ChemCAD program was to select the engineering unit selection. Here, the Alt SI 

engineering system was chosen for all simulation runs. The unit o f temperature was 

Kelvin, the unit o f pressure o f all stream were selected as bar. M J/h unit system was 

integrated to enthalpy o f Shell gasification diagram. Finally, the unit o f mass flow rate of 

the streams were kg/h as seen in Figure 3.2.

Another important step was to create a component which did not exist in the 

ChemCAD component database. Firstly, this simulation program actually does not 

perceive these two types o f coal even though the gasification products such as methane, 

sulfur dioxide or carbon monoxide exit the component database. Australian and 

Indonesian coals needed to be introduced into the simulation program. As illustrated in 

Figure 3.3, from the toolbar o f the program, ‘create new component’ is chosen with the 

assistance o f the thermophysical part and component database section. After clicking on 

the new data component heading, new component section appears as seen in Figure 3.4 

which demonstrates the introduction o f Indonesian coal into the program. The heart of 

this step is to select the combustion solid for new components (see Figure 3.4) due to the 

fact that coal typically is a combustible fuel.

After the combustion solid is pointed out in the database, the next step is to 

introduce the coal properties o f various coal types into the database. The coal properties 

o f Indonesian roto coal by weight are displayed in Figure 3.5. The same procedure is also
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applied for Australian bituminous coal. Figure 3.5 provides two options for users. The 

coal properties basically can be written either by weight or by stoichiometric terms. Thus, 

the coal properties of those coal types were written by weight percentage. If  the heat 

capacity o f coal or the solid heat capacity are known for each new component, it would 

be better to add into the solid component part located the bottom of this section. If  not, 

the heat capacity or solid heat capacity o f coals can be written in terms of properties of 

carbon element as well.

The ChemCAD program is now aware o f these new components before coal 

gasification as exhibited in Figure 3.6. The chemical formulas are already presented in 

the database. W hen these types o f coal are wanted to use for simulation, it is enough to 

write these components’ name in the ‘select component button’ for users.

For example, if  the user wants to change the properties o f components, it is very 

easy to do in the program. Figure 3.7 displays the edit/view, plot or print for all 

components exist in the database. The components used during coal gasification can be 

selected from the component list and all their properties can also be seen from view/edit 

component data. If  a new component is introduced into component list, all necessary 

characteristics should be written in the component data section. After ChemCAD 

identifies the new component in the database, the user may use the synonyms and 

formulas o f those components as seen in Figure 3.8. The numbers located to the left side 

of each component show the element or molecular code. For instance, the code of 

nitrogen is 46, or code 2 describes the methane component in the database. The new code 

is always denoted when a new component is put in the component list. The code of 

Australian bituminous coal is automatically dedicated as 8003 (see Figure 3.8).
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The other important component characteristics can be categorized as minimum 

required data, basic data, density data and heat capacity data. For each new component of 

simulation program, these properties must be found and introduced into the database as 

well. In this study, some o f the properties o f Australian bituminous coal and Indonesian 

roto coal such as polynomial heat capacity coefficients and heat o f formation could not be 

found and were treated as carbon characteristics. Figure 3.9 demonstrates the minimum 

required data o f Australian bituminous coal and before running a simulation, these 

essential terms must be put in the edit component section. The critical temperature and 

critical pressure were taken by 2778 K and 551 bar, respectively. Acentric factor of 

Australian coal was kept constant as 1.700 and specific gravity at 60 F was held as 2.38. 

Figure 3.10 illustrates the basic data o f Australian bituminous coal. The normal boiling 

point and melting point were fixed as 4232 K and 4250 K, respectively. Finally, the 

molecular weight was taken 100 kg basis for both coal types. Liquid density and solid 

density were dedicated by ChemCAD (see Figure 3.11). The equation numbers for both 

phase were exhibited as 100 but the user does not see that equation clearly. Low and high 

temperature values, unfortunately, were taken from carbon features because o f the fact 

that these terms could not be found in literature.

Gibbs free reactor provides an opportunity for users who want to perform the 

coal gasification simulation in ChemCAD program. It does not require the stoichiometric 

ratio for gasification and combustion reactions. ChemCAD determines the reactions and 

enthalpies o f all reactions itself. Hence, the only requirement for set-up gasification is to 

select the reactants and products from the component database. Figure 3.12 displays the 

selected components for coal gasification. These different components are always seen in
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each streams. The ‘clear’ and ‘delete’ options in the select components section also 

provide convenience for evaluating the design o f diagram.

The evaluation o f particle size is also possible for coal gasification. In this 

study, coal particle size is held at 100 micron. However, it is not an input parameter and 

this value did not change during the simulation. Then, the type o f stream which is 

considered as solid combustion is chosen. Here, the coal stream is described as stream 2 

and in the select streams part, this value should be written as shown in figures 3.13 and 

3.14. The next step is to evaluate the thermophysical settings. Figure 3.15 is the main 

window for thermodynamic settings. All thermodynamic assumptions, equations and 

rules such as Henry law and Raults law are calculated in this section.

Figures 3.16 and 3.17 also explain what model are used in this simulation. 

Global K model is supposed as ideal vapor pressure or in other term as Raults law. No 

vapor phase association is another assumption for this part. Finally, latent heat is 

preferred as global enthalpy model. The Gibbs free energy reactor design is the last 

design configuration. Figure 3.18 and 3.19 indicate the operating conditions o f Gibbs free 

reactor. The pressure drop is the same and kept constant as 1.5 bar. However, the pressure 

is being changed for every new parameter. The adiabatic conditions are taken into 

consideration due to the main purpose o f this study is estimation o f adiabatic flame 

temperature. Air/oxygen calculation is also determined by the program. The users only 

need to introduce which streams belong to fuel or air. Convergence parameters include 

minimum and maximum temperatures and they are 298 K and 3050 K, respectively. 

Then, the second screen named component element matrix occurs as shown in Figure
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3.20. The matrix system explains the molecular composition o f each reactant and 

products obtained in the coal gasification.

The Gibbs free energy reactor has an important advantage compared to other 

gasifier reactors. It does not require the stoichiometric ratio o f reactions and enthalpy of 

formation as well. The reactions take place in the Gibbs free energy reactor and the 

composition o f products gases or adiabatic flame temperature is the final state. The users 

can read the last values from stream 9 by clicking on it.
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Table 3.1- Coal Properties, Proximate and Ultimate Analysis o f Coal Types (34, 36)

Parameter

Proximate

Analysis(%weight)

COAL TYPE 1

Australian

Bituminous

COAL TYPE 2 

Indonesian Roto

Moisture 3.7 2.5

Volatile matter 29.6 48

Fixed Carbon 62.9 48

Ash 3.8 1.5

Ultimate Analysis Dry 

base (%weight)

Carbon 72.3 85

Hydrogen 4.3 1.9

Oxygen 13.7 4.1

Nitrogen 0.4 1.4

Sulphur 0.2 0.24

Chlorine 0.05 0.008

Ash 8.3 7.5

LHV 20.16414 (MJ/kg) 18.751(MJ/kg)

Table 3.2 - Ash Contents o f Coals by W eight (34, 36)

Ash Content weight % o f Type 1 and Type 2

Australian Bituminous Indonesian Roto

Al2O3 23 15.15

SiO2 55 37.93

Fe2O3 19.4 21.47

MgO 3.5 12.02

K 2O 1.1 2.57
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Figure 3.1. Shell gasification diagram
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Figure 3.4 Tool for new component expression
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Figure 3.5 Introduction o f  coal properties
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Figure 3.6 V iew  or edit Indonesian roto coal’s formula
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Figure 3.7 Component list
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Figure 3.10 Basic data o f  Australian bituminous coal
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Figure 3.11 Library density data
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Figure 3.16 K value models
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Figure 3.17 Enthalpy models
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Figure 3.18 Transport properties
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Figure 3.19 Gibbs free energy reactor
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Figure 3.20 Component element matrix



C H A PT E R  4

RESULTS: SIMULATION OF COAL GASIFICATION

4.1 Influence of Steam-to-Coal Ratio and Pressure on Gasification

The simulation procedure consists o f three main parts. In the first part, steam- 

to-coal feed ratio (kg/kg) and system pressure were changed while the temperature of 

coal, temperature o f oxygen, oxygen-to-feed ratio held constant. The feed rate o f coal 

also was assumed to be 1000 kg/h. The temperature o f coal and water were fixed as 313 

K and formed the slurry before reaching the gasifier. The oxygen-to-coal ratio was kept 

as 1.0 kg/kg o f feed ratio. The temperature o f oxygen was set at 333 K for all the 

simulation runs.

Figure 4.1 and Figure 4.2 illustrate the adiabatic flame temperature based on 

steam-to-coal ratio and pressure. The flame temperature was determined using different 

system pressure and steam-to-coal feed ratio by kg/kg. Type 1 describes the Australian 

bituminous coal and type 2 denotes the Indonesian roto coal. The highest adiabatic flame 

temperature o f Australian bituminous coal was found at 2223 K with a steam-to-coal feed 

ratio o f 0.0092 by kg/kg as shown in Figure 4.1. The flame temperature decreases with 

rising pressure and steam-to-coal ratio. Although an increase in steam-to-coal feed ratio 

promotes the char-steam reaction, the temperature decreases because the char-steam 

reaction is highly endothermic and lowers the reaction temperature.



Figure 4.2 demonstrates the temperature profile o f Indonesian roto coal (type 2) 

with varying pressure and steam-to-coal feed ratio (kg/kg). At steam-to-coal feed ratio of 

0.0092 kg/kg, the maximum adiabatic flame temperature was obtained at 2367 K. The 

reason that adiabatic flame temperature of Indonesian roto coal is higher than that of 

Australian bituminous coal is due to different carbon and oxygen percentages of coal 

properties. The unreacted carbon was clearly observed in simulation result with steam-to- 

coal ratio up to 0.2 and with increasing pressure. This observation caused a negative 

result in entrained flow gasifier on temperature. The simulation temperature was different 

than the expected result for that reason.

Figure 4.3 and Figure 4.4 state the concentration o f H2 on a dry basis for type 1 

and type 2, respectively. Even though the amount o f H 2 increased until reaching steam-to- 

coal ratio o f 0.82, it decreased slightly after this point as can be seen in Figure 4.3. Both 

the higher amount of steam and the lower temperature resulting from it contribute to this 

trend. This increasing line tends to promote the coal-steam and water gas shift reactions. 

It is possible to produce the hydrogen gas level 33-36 by moles % with these parameters. 

Other gasification parameters were assumed constant like other simulation runs. The 

production of H 2 with high efficiency is very important for industry because hydrogen 

product is generally evaluated in producing electricity and chemical products.

The concentration o f carbon monoxide on a dry basis by moles % with different 

steam-to-coal ratio and pressure has been mentioned in Figure 4.5 for type 1 and, in 

Figure 4.6 for type 2. W ith increasing steam-to-coal ratio and pressure, the molar 

concentration of CO decreases considerably. In the small amount of steam-to-coal ratio 

and pressure, the maximum CO was observed as 56% and 58.1% by moles in Figure 4.5
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and Figure 4.6, respectively. The results are pretty close to each other and the reason for 

this high quantity is due to the high carbon content o f both coal types. In addition to this 

observation, the decreasing line was obtained with increasing feed ratio and pressure. 

From the figures, it is possible to say that there is an inverse relation between CO 

concentration and variable parameters. This decreasing line tends to retard the coal- 

carbon dioxide and coal-hydrogen reactions.

The concentration o f CO2 was as shown in Figure 4.7 for type 1 and in Figure 

4.8 for type 2. The concentration o f CO2 intensified with ascending steam-to-coal feed 

ratio (kg/kg) and steam pressure. The maximum amount o f CO2 was found at 28% and 

25% by moles, respectively. This increasing line tends to promote the coal-steam and 

water gas shift reactions. Thus, it is concluded that the steam-to-coal ratio has a great 

effect on production o f CO and CO2. However, it can be seen that there is a inverse 

proportion o f CO2 and CO after simulation o f coal types.

Figure 4.9 and Figure 4.10 indicate the molar concentration o f methane (CH4)  

based on steam-to-coal feed ratio and system pressure. It can be seen that when water was 

employed instead o f superheated steam, the methane concentration reached a negligible 

level. M ethane formation, coal with hydrogen, is generally obtained at high pressures and 

low temperatures and is thus, mainly important in lower temperature gasification systems. 

Methane formation is also an exothermic reaction that does not consume oxygen and, 

therefore, increases the efficiency o f gasification and the final heating value o f the 

synthesis gas. In addition to this, most o f the cases or simulation experiments exhibit that 

methane concentration is negligible because o f very low concentrations. The maximum 

methane production on a dry basis by moles was detected as 0.161% with minimum
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steam-to-coal feed ratio (kg/kg) and pressure in Figure 4.9. Similarly, for the Indonesian 

roto coal, the maximum value was found as 0.142% by moles on a dry basis.

According to literature, these results are quite similar for methane concentration 

with industry. In reality, concentration o f CH4 can not be a significant level in order to 

used for producing energy. The graphs also indicate that the concentration o f CH4 begins 

to increase with heightening steam-to-coal feed ratio and pressure but not a significant 

amount. W ith new technology, the gasifier temperature basically might be accurately 

measured using methane concentration in ppm level because only a tiny amount of 

methane is needed for analyzer. However, this attempt requires a new gasification 

process and more experiments in the laboratory to gain consistent about the results and to 

find a logical correlation between CH4 and flame temperature as well.

The carbon conversion range with different steam-to-coal ratio and pressure for 

two types o f coal is demonstrated in Figure 4.11 and Figure 4.12. Carbon conversion 

steps up slightly with increasing steam-to-coal feed ratio and pressure for both coal types. 

However, the effect o f pressure is fairly at a negligible level. The steam-to-coal ratio 

showing a maximum carbon conversion ranges from 0.70 to 0.80 at the oxygen-to-coal 

ratio o f 1.

After that value, the conversion goes down slightly. That is due to the fact that 

the fraction o f steam contributing to the equilibrium reaction o f the pyrolysis step is 

almost constant, and this amount o f steam keeps promoting carbon-steam reactions to the 

direction o f CO and H2 formation while increasing steam-to-coal ratio.

Although an increase in the steam-to-coal ratio promotes the char-steam 

reaction, the gasifier temperature decreases because the steam reaction is highly
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endothermic and lowers the temperature. A maximum carbon conversion with respect to 

steam-to-coal ratio exists, because o f two opposite effects on the equilibrium reaction.

4.2 Influence of Oxygen-to-Coal Ratio and Pressure 

on Gasification

Another important input parameter is oxygen-to-coal feed ratio (kg/kg) for 

temperature distribution in an entrained flow gasifier. Oxygen is the main source to 

complete the kinetic reaction in the gasifier. If  the oxygen concentration is not enough for 

coal gasification, the unreacted coal will be observed at the end o f the reaction. Thus, 

oxygen concentration directly affects the concentrations o f CO, CO2 and methane. The 

concentration changes are caused by the competitive interactions between the combustion 

and gasification reactions, the rates of which are very sensitive to the temperature 

variations produced. Since a higher oxygen feed rate increases the temperature of the 

system, the oxidation reactions occur to a greater extent.

Figures 4.13 and 4.14 demonstrate the effect o f oxygen-to-coal feed ratio and 

pressure on adiabatic flame temperature. The temperature o f oxygen in the bottom 

stream was hold constant at 333 K. The temperature o f water and coal were fixed 313 K. 

Steam-to-coal feed ratio was assumed 0.8 kg/kg for each simulation run in order to point 

out the importance o f oxygen-to-coal feed ratio. Due to the exothermic coal combustion, 

the flame temperature rises as oxygen-to-coal ratio and pressure increase. Adiabatic 

flame temperature increased until oxygen-to-coal ratio o f 2.0 for type 1 shown in Figure 

4.13. At that point, the total gasification completed because o f the concentration of 

reactants. After this point, the temperature rapidly decreased. The reason for this decline 

is that the product gases start to absorb the heat from inside the gasifier and the excess
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oxygen absorbs some o f that heat. A similar tendency arose for Indonesian coal (type 2) 

can be seen in Figure 4.14. The maximum flame temperature was found for type 2 at 

2650 K. This result is higher than that o f the first type o f coal (Australian coal). It is 

highly possible that the reason for this difference is due to carbon composition o f coals.

Carbon monoxide is the dominant output parameter in coal gasification product. 

CO is important because it is actually a syngas component with hydrogen and sometimes 

methane. More carbon monoxide means more syngas which creates more electric power 

and energy used in industry. Under this background for CO, simulation results o f carbon 

monoxide are indicated below in Figure 4.15 for type 1 and in Figure 4.16 for type 2. 

W ith increasing oxygen-to-coal feed ratio (kg/kg) and pressure, the concentration o f CO 

in molar basis goes up considerably with increasing pressure and oxygen-to-coal ratio. 

Coal-carbon dioxide and coal-oxygen reactions cause this trend.

The maximum composition o f CO was attained 55.7% on a dry basis for 

Australian bituminous coal and 55.9% on a dry basis for Indonesian roto coal. The 

unreacted coal has just been obtained at the beginning o f the reaction in the entrained 

flow gasifier. Until reaching an oxygen-to-coal feed ratio o f 0.2, the unreacted coal was 

collected at the bottom of the stripper in the Shell gasification process illustrated in 

Figure 3.1.

The concentration o f hydrogen on a dry basis by moles are shown in Figure 4.17 

for type 1 and Figure 4.18 for type 2, respectively. Although an increase in the oxygen- 

to-coal feed ratio tends to increase the temperature, which in turn reverses the water gas 

shift reaction, it also tends to moderate the coal-steam and hence, the coal-carbon dioxide 

reactions during the gasification period. Eventually, a point is reached beyond which a
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significant change in the carbon monoxide and a somewhat lower yield of H 2 gas is 

observed. The decreasing line o f H 2 was acquired with increasing oxygen-to-coal ratio 

(kg/kg) and pressure for both charts, but it is insensitive to this parameter while the 

amount o f CO and CO2 change significantly. The molar composition o f H2 (see Figure 

4.17) only diminished from 44.1% to 36.4% with increasing oxidant ratio and from 

38.5% to 36.0% for type 2 as shown in Figure 4.18.

Figure 4.19 and Figure 4.20 display the carbon dioxide molar composition with 

respect to oxygen-to-coal ratio and pressure. The normal level in a coal gasification for 

CO2 was identified around 18.1 by moles % with same input parameters. The results 

indicate a consistent implication between CO2 concentration and input parameters. 

According to graphs, the amount of CO2 decreases considerably with increasing oxygen- 

to-coal feed ratio (kg/kg) and pressure. The oxidant concentration is a key parameter for 

chemical reactions in order to produce carbon dioxide. The maximum and minimum CO2 

concentration for type 1 was achieved at 18.1% and 6.2%, respectively. Similarly, for 

type 2, CO2 production varied from 16.2% to 4.5% as can be seen in Figure 4.20.

Another concentration profile describes the methane product. The mole fraction 

of methane with different oxygen-to-coal feed ratio has been stated in Figure 4.21 for 

Australian coal and Figure 4.22 for Indonesian roto. The content o f methane was 

considered as a pure matter and no other components which consist of methane were 

taken into account. Figure 4.21 shows that with increasing oxygen-to-coal ratio and 

pressure, the concentration of CH4 began to decrease and then after oxygen-to-coal feed 

ratio o f 0.92, the stable line which describes the methane fraction has been observed. In 

addition to this observation, as expected, the methane concentration profile was at a small
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level or in other words, the molar percentage o f CH4 in both graphs is less than that o f 

other products o f coal gasification.

Using methane concentration in ppm level, gasifier temperature is accurately 

measured, the temperature distribution is definitely identified in every height o f gasifier. 

In the next chapter, this subject was taken into account and a model which describes the 

relationship the methane and temperature was developed based on simulation results.

There are also other important coal characteristics which explain the quality o f 

coal and performance conditions including carbon conversion and cold gas efficiency. It 

is very important to know these essential properties o f coal in order to estimate the 

behaviour o f coal gasification products and gasifier conditions. Carbon conversion, 

defined by the ratio o f carbon in gas phase to that contained in coal, is an essential factor 

in improving the performance o f coal gasification. Carbon conversion was calculated 

using solid-gas reactions between char and gasification reagents. Equation 1.3 was used 

to determine the carbon conversion by percentage for this chapter. It is known that, in 

adiabatic conditions, the reaction temperature o f coal gasification and carbon conversion 

depend mainly on both oxygen-to-coal ratio and steam-to-coal ratio. The carbon 

conversion is plotted as a function o f oxygen-to-coal ratio and system pressure in Figure 

4.23 for type 1 and Figure 4.24 for type 2. Due to the exothermic coal combustion, the 

carbon conversion intensifies with increasing oxygen-to-coal feed ratio. The oxygen-to- 

coal ratio is critical to the conversion, since the heat resulting from combustion reactions 

supports the endothermic gasification reactions.

The unreacted coal were also observed in small oxygen-to-coal feed ratio since 

there was not enough oxygen which reacts with hydrocarbon compounds in the gasifier.
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These results are quite reasonable once the previous reporters support proportionally 

between oxygen feed rate and coal conversion, which is in line with the present results. 

Therefore, the carbon conversion is influenced by the oxygen-to-coal ratio rather than the 

steam-to-coal ratio.

Finally, the last two graphs, Figure 4.25 and Figure 4.26, display the cold gas 

efficiency o f coal types with different oxygen-to-coal feed ratio (kg/kg) and system 

pressure (bar). The formula o f cold gas efficiency was given in Chapter 1 (see Equation 

1.2 and 1.3). The lower heating value o f carbon dioxide was not considered because it 

does not react with oxygen to produce heat and never affects the release o f heat to the 

gasifier. The figures demonstrate that the cold gas efficiency decreases with increasing 

oxygen-to-coal ratio and pressure. It can be concluded that the highest cold gas efficiency 

occurs at the minimum oxygen-to-coal feed ratio and the lowest cold gas efficiency is 

obtained at the maximum oxygen-to-coal feed ratio and pressure. However, the pressure 

does not have a great influence on the cold gas efficiency. Therefore, it can be said that 

pressure is insensitivity to the cold gas efficiency.

4.3 Influence of Oxygen-to-Coal and Steam-to-Coal Ratios 

on Gasification

The purpose o f last part o f Chapter 4 is to investigate the effect o f oxygen-to- 

coal feed ratio and steam-to-coal feed ratio on gasifier performance. It is clearly seen in 

sections 4.1 and 4.2 that the effect o f pressure on adiabatic flame temperature and coal 

compositions is not as much as steam-to-coal ratio or the amount o f air inside the gasifier. 

The differences o f neighbour data in the graphs are negligible when the pressure is taken 

into account as an input parameter. The other input parameters, oxygen-to-coal ratio and
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steam-to-coal ratio have great influence on the flame temperature and concentrations of 

coal types in the entrained flow gasifier.

In this study, the system pressure was held at 40 bar and was not changed during 

the simulation. The coal feed rate was supposed at 1000 kg/h and the amount o f steam 

and oxygen were changed in order to determine the flame temperature of coal types and 

other coal characteristics. Since the initial temperatures of coal and water do not have 

enormous effects on the outlet temperature of coal gasification, they were maintained at 

313 K. Another aim o f this work is to figure out the importance o f oxygen-to-fuel ratio on 

the temperature o f coal gasification. It is known that with increasing oxygen-to-fuel ratio, 

the temperature increases considerably. This is due to exothermic combustion reactions 

which occur in the combustor zone inside the gasifier. As seen in the previous studies, the 

oxygen-to-coal ratio also is the dominant factor on the conversion of coal rather than 

steam-to-coal ratio. However, the steam-to-coal has an important effect on product gas 

compositions. For example, the methanation reactions do not consume oxygen, and the 

level of air in the gasifier does not alter significantly with the changing the methane 

concentration.

After maintaining the input parameters, the simulation begins to calculate the 

adiabatic flame temperature and coal characteristics. Figure 4.27 and 4.28 demonstrate 

the effect of oxygen-to-coal ratio and steam-to-coal ratio on the adiabatic flame 

temperature in the entrained flow gasifier for Australian bituminous coal and Indonesian 

roto coal, respectively. The graphs illustrate that the adiabatic flame temperatures rise 

significantly with increasing oxygen-to-coal feed ratio while they decrease with 

increasing steam-to-coal ratio. The reason for this tendency can be explained as the
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oxygen directly affects the combustion reactions which are highly exothermic reactions. 

It leads to an increase the reaction temperatures inside the gasifier. On the other hand the 

steam does not severely affect the oxidation reactions. Moreover, the char-steam 

reactions are obtained in the reduction zone and the endothermic reactions take place in 

that region. Therefore, it causes to the flame temperature to decrease due to the need for 

heat. Another observation from the figure is that the adiabatic flame temperature of 

Indonesian roto coal is higher than that o f Australian bituminous coal due to the coal 

properties such as carbon percentage.

Figure 4.29 and Figure 4.30 indicate the molar composition o f carbon monoxide 

with varying the oxygen-to-coal ratio and steam-to-coal ratio at 40 bar. The concentration 

o f CO increases considerably when the oxygen-to-coal ratio goes up inside the gasifier. 

The char-O2 reactions which take place in the combustor zone is the dominant factor in 

producing the carbon monoxide product gas. Nevertheless, the steam-to-coal ratio causes 

a negative effect on CO production. The decreasing line occurs with increasing steam-to- 

coal ratio. This is due to the fact that the carbon monoxide reacts with water to form 

carbon dioxide gas. Therefore, it is concluded that CO/H2 syngas ratio ascends when the 

oxygen-to-coal feed ratio increases in the entrained flow gasifier.

The concentrations o f hydrogen product gas for Australian bituminous coal and 

Indonesian roto coal based on oxygen-to-coal and steam-to-coal ratio are exhibited in 

Figure 4.31 and Figure 4.32, respectively. W hen the amount o f steam-to-coal increases 

for both types, hydrogen production rises inside the gasifier. The char-steam and water- 

gas shift reactions contribute to this tendency. On the other hand, the oxygen-to-coal feed 

ratio is insensitive to the fraction o f hydrogen. A remarkable change in the concentration
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of hydrogen is obtained during the gasification. The critical point for hydrogen and other 

hydrocarbon productions demonstrates that the amount of oxygen which react with fuel is 

not enough in the combustor zone. The maximum oxygen-to-coal ratio by kg/kg roughly 

corresponds to stoichiometric ratio o f 0.5. It means the gasification reactions have not 

completed due to lack of oxygen capacity.

The same observation was made for carbon dioxide concentration after finishing 

coal gasification simulation. The amount o f carbon dioxide increases with increasing 

steam-to-coal feed ratio. However, the CO2 product gas decreases slightly with rising 

oxygen-to-coal ratio. The highest steam-to-coal ratio produce the maximum value of 

carbon dioxide compared to small amount of steam-to-coal. In general, the lower CO2 

production is preferred for syngas efficiency and cold gas efficiency. The cost goes up in 

order to separate and clean up CO2 from the entrained flow gasifier. In addition, it can be 

predicted that the syngas composition which contains hydrogen and carbon monoxide 

product gases is higher at the lowest steam-to-coal ratio than that at the highest steam-to- 

coal feed ratio.

Figure 4.33 and 4.34 illustrate the mole fractions o f CO2 product gas for 

Australian coal and Indonesian roto coal. As can be seen from the figures, the oxygen 

effect on CO2 production is insensitive compared to steam-to-coal feed ratio. The 

gasification reactions which take place in the reduction zone are more effective for 

determining the CO2. The amount of volatile matter and fixed carbon of these coal types 

also limit the syngas content and carbon dioxide composition in the gasifier. Another 

consideration regarding carbon dioxide production is that the reaction kinetics of coal 

types can be calculated based on vapor pressure o f CO2 and gasifier temperature.
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Previous studies (4, 37) support the relationship between reaction kinetics and CO2 

concentration on the pilot scale in the industry.

The last gasification product is methane. Section 4.1 and 4.2 demonstrate that 

the amount o f methane does not change dramatically with varying system pressure. The 

effect o f pressure on methane production can be assumed as negligible level. Therefore, 

the effect o f steam-to-coal and oxygen-to-coal have simultaneously been investigated on 

methane concentration using ChemCAD simulation program. The concentration of 

methane with respect to oxygen-to-coal and steam-to-coal ratio is illustrated in Figures 

4.35 and 4.36 for Australian bituminous coal and Indonesian roto coal, respectively. The 

graphs display that the effect o f oxidant on methane production is not as strong as the 

effect o f steam. This trend is explicated by the methanation reaction for producing 

methane does not consume oxygen. Indeed, the range o f 0-500 ppm level o f methane is 

considered a reasonable standard indication at the moment. Thus, the optimum relation of 

methane composition and adiabatic flame temperature are obtained at the highest oxygen- 

to-coal ratio. Finally, as mentioned in Chapter 2, the gasification temperature can be 

measured with the help o f the methane concentration where the thermocouples show the 

deviation from standard measurement and break down due to the high temperature 

conditions.

The influence o f steam feed rates on the carbon conversion is presented in Figure 

4.37 in various oxygen-to-coal ratios. Although an increase in the steam-to-coal ratio 

promotes the char-steam reaction, the temperature decreases because the char-steam 

reaction is highly endothermic and lowers the reaction temperature. A maximum carbon 

conversion with respect to the steam-to-coal ratio exists, because o f the two opposite
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effect on the equilibrium reaction (i.e., promotion o f char-steam reaction and temperature 

decreasing). It is observed that the steam-to-coal ratio showing a maximum carbon 

conversion (99.15%) changes from about 0.70 to 0.80, as the oxygen-to-coal ratio 

increases from 0.8 to 1.0. The oxygen-to-coal feed ratio is critical to the conversion, since 

the heat resulting from the combustion reactions support the endothermic gasification 

reactions. Therefore, the carbon conversion is influenced by the oxygen-to-coal ratio 

rather than the steam-to-coal ratio.

This analysis demonstrates that the concentration o f steam and oxygen in the 

feed gas are crucial in determining the reactor performance and are sensitive controls for 

a stable gasification operation. Similar observations have been made by previous 

investigators. The sensitivity and insensitivity o f the distribution o f product gas to 

changes in steam-to-coal and oxygen-to-coal feed ratio were also found by Nguyen et al. 

(16), and Yoshida et al. (17). Moreover, these and other authors, Pinto et al. (43) and 

Harris (35), reported proportionality between oxygen feed rate and coal conversion, 

which is in line with the present results.
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Figure 4.1. Effect o f steam-to-coal feed ratio and pressure on adiabatic flame 
temperature o f Australian bituminous coal (oxygen-to-coal ratio: 1.0 kg/kg, coal feed 
rate: 1000 kg/h, temperature o f water and coal: 313 K, temperature o f oxygen: 333 K)

Figure 4.2. Effect o f steam-to-coal feed ratio and pressure on adiabatic flame
temperature o f  Indonesian roto coal (oxygen-to-coal ratio: 1.0 kg/kg, coal feed rate: 1000
kg/h, temperature o f  water and coal: 313 K, temperature o f  oxygen: 333 K)
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Figure 4.3. Effect o f steam-to-coal feed ratio and pressure on concentration o f H2 for 
Australian bituminous coal (oxygen-to-coal ratio: 1.0 kg/kg, coal feed rate: 1000 kg/h, 
temperature o f water and coal: 313 K, temperature o f oxygen: 333 K)

Figure 4.4. Effect o f  steam-to-coal feed ratio and pressure on concentration o f  H 2 for
Indonesian roto coal (oxygen-to-coal ratio: 1.0 kg/kg, coal feed rate: 1000 kg/h,
temperature o f  water and coal: 313 K, temperature o f  oxygen: 333 K)
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Figure 4.5. Effect o f steam-to-coal feed ratio and pressure on concentration o f CO for 
Australian bituminous coal (oxygen-to-coal ratio: 1.0 kg/kg, coal feed rate: 1000 kg/h, 
temperature o f water and coal: 313 K, temperature o f oxygen: 333 K)

Figure 4.6. Effect o f  steam-to-coal feed ratio and pressure on concentration o f  CO for
Indonesian roto coal (oxygen-to-coal ratio: 1.0 kg/kg, coal feed rate: 1000 kg/h,
temperature o f  water and coal: 313 K, temperature o f  oxygen: 333 K)
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Figure 4.7. Effect o f steam-to-coal feed ratio and pressure on concentration o f CO2 for 
Australian bituminous coal (oxygen-to-coal ratio: 1.0 kg/kg, coal feed rate: 1000 kg/h, 
temperature o f water and coal: 313 K, temperature o f oxygen: 333 K)

Figure 4.8. Effect o f  steam-to-coal feed ratio and pressure on concentration o f  CO2 for
Indonesian roto coal (oxygen-to-coal ratio: 1.0 kg/kg, coal feed rate: 1000 kg/h,
temperature o f  water and coal: 313 K, temperature o f  oxygen: 333 K)
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Figure 4.9. Effect o f steam-to-coal feed ratio and pressure on concentration o f CH4 for 
Australian bituminous coal (oxygen-to-coal ratio: 1.0 kg/kg, coal feed rate: 1000 kg/h, 
temperature o f water and coal: 313 K, temperature o f oxygen: 333 K)

Figure 4.10. Effect o f  steam-to-coal feed ratio and pressure on concentration o f  CH4 for
Indonesian roto coal (oxygen-to-coal ratio: 1.0 kg/kg, coal feed rate: 1000 kg/h,
temperature o f  water and coal: 313 K, temperature o f  oxygen: 333 K)
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Figure 4.11. Effect of steam-to-coal feed ratio and system pressure on carbon conversion 
for Australian bituminous coal (oxygen-to-coal ratio: 1.0 kg/kg, coal feed rate: 1000 kg/h, 
temperature of water and coal: 313 K, temperature of oxygen: 333 K)

S te a m -to -C o a l feed  ratio(kg/kg) System  Pressure,bar

Figure 4.12. Effect o f steam-to-coal ratio and system pressure on carbon conversion
for Indonesian roto coal (oxygen-to-coal ratio: 1.0 kg/kg, coal feed rate: 1000 kg/h,
temperature o f water and coal: 313 K, temperature o f oxygen: 333 K)
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Figure 4.13. Effect of oxygen-to-coal feed ratio and pressure on adiabatic flame 
temperature of Australian bituminous coal (steam-to-coal ratio: 0.8 kg/kg, coal feed rate: 
1000 kg/h, temperature of water and coal: 313 K, temperature of oxygen: 333 K)

Figure 4.14. Effect o f oxygen-to-coal feed ratio and pressure on adiabatic flame
temperature o f Indonesian roto coal (steam-to-coal ratio: 0.8 kg/kg, coal feed rate: 1000
kg/h, temperature o f water and coal: 313 K, temperature o f oxygen: 333 K)
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Figure 4.15. Effect of oxygen-to-coal feed ratio and pressure on concentration of CO for 
Australian bituminous coal (steam-to-coal ratio: 0.8 kg/kg, coal feed rate: 1000 kg/h, 
temperature of water and coal: 313 K, temperature of oxygen: 333 K)

Figure 4.16. Effect o f oxygen-to-coal feed ratio and pressure on concentration o f CO for
Indonesian roto coal (steam-to-coal ratio: 0.8 kg/kg, coal feed rate: 1000 kg/h,
temperature o f water and coal: 313 K, temperature o f oxygen: 333 K)
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Figure 4.17. Effect of oxygen-to-coal feed ratio and pressure on concentration of H2 for 
Australian bituminous coal (steam-to-coal ratio: 0.8 kg/kg, coal feed rate: 1000 kg/h, 
temperature of water and coal: 313 K, temperature of oxygen: 333 K)

Figure 4.18. Effect o f oxygen-to-coal feed ratio and pressure on concentration o f H2 for
Indonesian roto coal (steam-to-coal ratio: 0.8 kg/kg, coal feed rate: 1000 kg/h,
temperature o f water and coal: 313 K, temperature o f oxygen: 333 K)
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Figure 4.19. Effect of oxygen-to-coal feed ratio and pressure on concentration of CO2 for 
Australian bituminous coal (steam-to-coal ratio: 0.8 kg/kg, coal feed rate: 1000 kg/h, 
temperature of water and coal: 313 K, temperature of oxygen: 333 K)

Figure 4.20. Effect o f oxygen-to-coal feed ratio and pressure on concentration o f CO2 for
Indonesian roto coal (steam-to-coal ratio: 0.8 kg/kg, coal feed rate: 1000 kg/h,
temperature o f water and coal: 313 K, temperature o f oxygen: 333 K)
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Figure 4.21. Effect of oxygen-to-coal feed ratio and pressure on concentration of CH4 for 
Australian bituminous coal (steam-to-coal ratio: 0.8 kg/kg, coal feed rate: 1000 kg/h, 
temperature of water and coal: 313 K, temperature of oxygen: 333 K)

Figure 4.22. Effect of oxygen-to-coal feed ratio and pressure on concentration of CH4 for
Indonesian roto coal (steam-to-coal ratio: 0.8 kg/kg, coal feed rate: 1000 kg/h,
temperature o f water and coal: 313 K, temperature o f oxygen: 333 K)
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Figure 4.23. Effect of oxygen-to-coal feed ratio and system pressure on carbon 
conversion for Australian bituminous coal (steam-to-coal ratio: 0.8 kg/kg, coal feed rate: 
1000 kg/h, temperature of water and coal: 313 K, temperature of oxygen: 333 K)

Figure 4.24. Effect of oxygen-to-coal feed ratio and system pressure on carbon
conversion for Indonesian roto coal (steam-to-coal ratio: 0.8 kg/kg, coal feed rate: 1000
kg/h, temperature o f water and coal: 313 K, temperature o f oxygen: 333 K)
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Figure 4.25. Effect of oxygen-to-coal feed ratio and system pressure on cold gas 
efficiency for Australian bituminous coal (steam-to-coal ratio: 0.8 kg/kg, coal feed rate: 
1000 kg/h, temperature of water and coal: 313 K, temperature of oxygen: 333 K)

Figure 4.26. Effect o f oxygen-to-coal feed ratio and system pressure on cold gas
efficiency for Indonesian roto coal (steam-to-coal ratio: 0.8 kg/kg, coal feed rate: 1000
kg/h, temperature o f water and coal: 313 K, temperature o f oxygen: 333 K)
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Figure 4.27. Effect of oxygen-to-coal ratio and steam-to-coal ratio on adiabatic flame 
temperature for Australian bituminous coal (coal feed rate: 1000 kg/h, temperature of 
water and coal: 313 K, temperature of oxygen: 333 K)

Figure 4.28. Effect o f oxygen-to-coal ratio and steam-to-coal ratio on adiabatic flame
temperature for Indonesian roto coal (coal feed rate: 1000 kg/h, temperature o f water and
coal: 313 K, temperature o f oxygen: 333 K)
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Figure 4.29. Effect of oxygen-to-coal ratio and steam-to-coal ratio on CO production for 
Australian bituminous coal (coal feed rate: 1000 kg/h, temperature of water and coal: 313 
K, temperature of oxygen: 333 K)

Steam-to-Coal feed ratio(kg/kg) u u Oxygen-to-Coal feed ratio (kg/kg)

Figure 4.30. Effect o f oxygen-to-coal ratio and steam-to-coal ratio on CO production for
Indonesian roto coal (coal feed rate: 1000 kg/h, temperature o f water and coal: 313 K,
temperature o f oxygen: 333 K)
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Figure 4.31 Effect of oxygen-to-coal ratio and steam-to-coal ratio on H2 production for 
Australian bituminous coal (coal feed rate: 1000 kg/h, temperature of water and coal: 313 
K, temperature of oxygen: 333 K)

S te a m -to -C o a l feed ratio (kg/kg) 0 0 O x y g e n -to -C o a l feed ratio (kg/kg)

Figure 4.32 Effect of oxygen-to-coal ratio and steam-to-coal ratio on H2 production for
Indonesian roto coal (coal feed rate: 1000 kg/h, temperature o f water and coal: 313 K,
temperature o f oxygen: 333 K)
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Figure 4.33 Effect of oxygen-to-coal ratio and steam-to-coal ratio on CO2 production for 
Australian bituminous coal (coal feed rate: 1000 kg/h, temperature of water and coal: 313 
K, temperature of oxygen: 333 K)

0 2S te a m -to -C o a l feed ratio (kg /kg) * q o O x y g e n -to -C o a l feed ratio (kg/kg

Figure 4.34 Effect o f oxygen-to-coal ratio and steam-to-coal ratio on CO2 production for
Indonesian roto coal (coal feed rate: 1000 kg/h, temperature o f water and coal: 313 K,
temperature o f oxygen: 333 K)
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Figure 4.35 Effect of oxygen-to-coal ratio and steam-to-coal ratio on CH4 production for 
Australian bituminous coal (coal feed rate: 1000 kg/h, temperature of water and coal: 313 
K, temperature of oxygen: 333 K)

Figure 4.36 Effect o f oxygen-to-coal ratio and steam-to-coal ratio on CH4 production for
Indonesian roto coal (coal feed rate: 1000 kg/h, temperature o f water and coal: 313 K,
temperature o f oxygen: 333 K)
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Figure 4.37 Effect of steam-to-coal feed ratio on coal conversion at various oxygen-to- 
coal feed ratios at 40 bar.



CHAPTER 5

MODELING OF ADIABATIC FLAME TEMPERATURE 

5.1 Modeling of Adiabatic Flame Temperature Corresponding 

to Different System Parameters in Entrained Flow Gasifier

In this study, the adiabatic flame temperature was modelled by using operating 

input parameters. The aim of this work was to develop the basic correlations between the 

flame temperature as a response and input parameters, and to predict the flame 

temperature roughly in the entrained flow gasifier without any gasification calculations. 

Then, the results have been compared with the simulation to make the consistency 

between variables.

Recently, the concentration of methane produced during coal gasification has 

been used to predict the adiabatic flame temperature. Optical monitoring systems have 

been following the methane absorbance peaks and based on these peaks, the temperature 

can be determined in the gasifier. However, there are not enough studies for this new 

field and too few researchers who are interested in optical measurements for measuring 

temperature. The relationship between flame temperature and methane product was 

evaluated according to ChemCAD simulation results in this study. The important note is 

that the reliability of the results should be supported by experiments to make a good 

decision.



The gasification results of Australian bituminous coal have been used to calculate 

the flame temperature in entrained flow gasifier. There are two main input parameters to 

adjust the temperature of Australian coal: oxygen-to-coal feed ratio (kg/kg) and steam-to- 

coal feed ratio (kg/kg). The other operating conditions such as initial temperature of coal 

and oxygen, gasifier pressure and steam temperature have been kept constant. The 

temperature of coal and water were considered as 313 K, the temperature of air was 333 

K and total pressure was assumed to be 40 bar. The methodology of the study to find 

model equations is given below.

5.2 The Correlation between Methane Concentration and 

Gasification Temperature

The adiabatic temperature of Australian bituminous coal and the concentration of 

methane were determined based on different oxygen-to-coal and steam-to-coal feed ratios 

at constant operating conditions. The flame temperature and methane production were 

considered as output response with increasing oxygen-to-coal feed ratio at the steam-to- 

coal ratios of 0.6, 0.8, 1.0 and 1.2 kg/kg, respectively. Here, the pressure was selected at 

40 bar. Secondly, the adiabatic flame temperature and methane product gas distributions 

were indicated with increasing steam-to-coal ratio at different oxygen-to-coal ratios of

1.0,1.2 and 1.4 kg/kg, respectively.

Then, the relationship between flame temperature and composition of methane 

was illustrated with steam-to-coal ratio of 0.8 kg/kg and oxygen-to-coal ratio of 1.0 kg/kg 

at constant pressure and temperature. The aim of this step was to understand the trend of 

adiabatic flame temperature corresponding to methane production. This approach also 

provides the overview about the estimation of flame temperature and the required
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methane production to get high temperature value as well. If the methane concentration is 

known in the gasifier, the adiabatic flame temperature can be estimated roughly.

The correlations have been developed and shown in the chart. According to the 

relationship between adiabatic flame temperature and fraction of methane product gas, 

the models have been developed.

5.3 Effect of Oxygen-to-Coal Ratio on Adiabatic Flame 

Temperature and Composition of Methane 

at Different Steam-to-Coal Feed Ratios

The tendency between adiabatic flame temperature and methane product with 

increasing oxygen-to-coal feed ratio at different steam-to-coal ratio is illustrated in Figure

5.1. The blue line indicates the flame temperature distribution and the green line presents 

the CH4 production of Australian bituminous coal. The ratio of oxygen-to-coal varied 

from 0.019 to 2.6 kg/kg. In addition to this, the steam-to-coal ratio was changed from 

ratio of 0.6 kg/kg to ratio of 1.2 kg/kg. As can be seen from the graph, the adiabatic flame 

temperature increases when the amount of oxygen-to-coal ratio increases until 2.0 kg/kg. 

At that point, the gasification of coal just finished roughly. It is clear that the decreasing 

line occurs after the ratio of 2.0. The reason for this tendency is due to the fact that 

gasification products absorb the heat from the gasifier. Thus, this situation causes a 

decrease in the flame temperature, eventually. Therefore, the gasification regime can 

occur until the ratio of 2.0 kg/kg and after that, complete combustion occurs.

The second parametric observation is about methane production. The ppm unit is 

usually used for low concentration of products in industry. As expected, the composition 

of methane is very low compared to other gasification products. In this part, the ppm
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level for methane was chosen to develop the empirical model. The amount of CH4 

slightly decreases with increasing oxygen-to-coal ratio. The reduction in the fraction of 

methane with increasing oxygen-to-coal ratio follows from the smaller quantity of 

hydrogen produced. In reality, a reasonable range for entrained-flow gasifiers (the only 

type that is really relevant here, since others do not approach chemical equilibrium) is 0­

2000 ppm, with the most interest being in the 100-500 ppm range. The 400-500 ppm 

range could be reached before an oxygen-to-coal ratio of 2.0 kg/kg at low ratios of steam- 

to-coal. With increasing steam-to-coal ratio (see Figure 5.1), this optimum range 

switched to right side of oxygen-to-coal ratio of 2.0 or around the ratio of 2.2-2.3. 

However, at these ratios, the gasification process almost finished and it is much better to 

catch this optimum range in the gasification regime.

5.4 Effect of Steam-to-Coal Ratio on Adiabatic Flame 

Temperature and Composition of Methane 

at Different Oxygen-to-Coal Feed Ratios

This section contains the temperature and methane distribution related to steam- 

to-coal feed ratio at constant temperature of coal, water and system pressure. The aim of 

this section is to comprehend the importance of steam-to-coal ratio on adiabatic flame 

temperature and CH4 production. As similar to section 1, the ChemCAD software 

program was used to determine the adiabatic flame temperature and CH4 product gas with 

increasing steam-to-coal feed ratio at different oxygen-to-coal feed ratios such as 1.0, 1.2 

and 1.4 kg/kg in the entrained flow gasifier.
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Figure 5.2 displays the adiabatic flame temperature and methane distribution

based on steam-to-coal feed ratio (kg/kg) at pressure (40 bar). According to graph, the



flame temperature, the blue line, decreases with increasing steam-to-coal ratio. After the 

ratio of 0.91, there is not much change on temperature profile. Although an increase in 

steam-to-coal feed ratio promotes the char-steam reaction, the temperature decreases 

because the char-steam reaction is highly endothermic and lowers the reaction 

temperature.

On the other hand, the methane concentration, the green line, increases slightly 

while increasing steam-to-coal ratio for each oxygen-to-coal feed ratio. However, the 

steam-to-coal ratio does not have an important influence on methane production. It can be 

concluded that there is a reverse proportion between methane production and flame 

temperature. The lowest concentration of methane has been occurred at the highest flame 

temperature and minimum steam-to-coal ratio.

5.5 Modeling of ChemCAD Results

In the previous sections, the ChemCAD simulation results for coal gasification of 

Australian bituminous coal and Indonesian roto coal were shown with figures. Then the 

relationship between adiabatic flame temperature and the concentration of methane with 

respect to different input parameters was evaluated (see Chapter 4 and Chapter 5). The 

last step is to use ChemCAD results to develop the correlation between the flame 

temperature and the methane concentration. The flame temperature and methane 

production distribution were illustrated in Figure 5.3 and case 1 denotes the parameters as 

oxygen-to-coal feed ratio and pressure at constant steam-to-coal ratio and coal flow rate 

(1000 kg/h).
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pressure at constant oxygen-to-coal ratio, coal flow rate and temperature o f input



parameters. In case 1, the oxygen-to-coal ratio and pressure increase from right side to 

left side while steam-to-coal ratio keeps constant at 0.8 kg/kg. As can be seen in the 

figure below, the temperature increases while the composition of methane decreases 

dramatically. However, the temperature of gasifier begins to decrease after oxygen-to- 

coal the ratio of 2.0 kg/kg. The reason for this trend can be explained because all species 

are completely burned at oxygen-to-coal ratio of 2.0, so additional oxygen inputs delutes 

the gas and absorbs heat. After this observation, the modeling of case 1 has been divided 

into two subparts: until gasification and after gasification.

Case 2 follows a different path. It includes the effect of steam and pressure on 

concentration of methane and flame temperature. The ratio of steam-to-coal again 

increases from left to right and there is clearly a reverse proportion between flame 

temperature and CH4 production at constant oxygen-to-coal ratio of 1.0 kg/kg. The 

adiabatic flame temperature reaches the minimum level at the highest steam-to-coal ratio, 

although an increase in steam-to-coal ratio promotes the char-steam reaction, the 

temperature decreases because the char-steam reaction is highly endothermic and lowers 

the reaction temperature.

Figure 5.3 demonstrates that the composition of methane for both cases is very 

low because it is an unexpected product in the entrained flow gasifier. It is basically a 

reasonable observation as the fraction of tar, NOx compounds and methane are negligible 

in the entrained flow gasifier as mentioned in the Chapter 1. The reasonable range of 

composition of methane is generally assumed to be 0-2000 ppm and this study shows that 

the concentration of methane is an acceptable level for both cases. The problem is that it 

is very difficult to compare that results with actual ones due to the lack of studies.
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However, for case 1, the methane production, 450 ppm, was reached at the 

oxygen-to-coal ratio of 2.0 kg/kg. In addition to this, the steam-to-coal ratio does not 

have a great influence on methane production. The fraction of CH4 did not change 

significantly as the steam-to-coal feed ratio changed. Therefore, the effect of oxygen-to- 

coal ratio is more important than the steam-to-coal ratio for methane production in the 

gasifier.

In the model, firstly, the concentration of methane was basically considered as a 

input parameter to predict the adiabatic flame temperature and then, the other input 

parameters such as oxygen-to-coal ratio, steam-to-coal ratio and pressure were taken into 

consideration to estimate the flame temperature relatively.

5.5.1 Linear Model

The adiabatic flame temperature can be determined by using methane parameter 

in linear model as shown:

y=a1*t + a0 (5.1)

where y denotes adiabatic flame temperature, T, and t express the methane gas in terms of 

ppm unit as well. To find the a1 and a0 coefficients, Matlab TM software program gives the 

code polyfit (t,y,1).

For case 1, during gasification, the equation can be expressed as
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Tflame = -0.4 * [CHJppm + 2709.7 (5.2)
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For case 1, after the gasification process, the model equation is equal to

Tflame = 0.6 * [CH4]ppm+ 2224.2ame (5.3)

For case 2, the first order equation is

Tflame = -0.2 * [CH^ppm +2341.0ame (5.4)

5.5.2 Second Order Polynomial Model

Based on the plot, it is possible that the data can be correlated by a second order 

polynomial function as shown below:

The unknown coefficients a0, a1, and a2 are computed by minimizing the sum of the 

squares of the deviations of the data from the model (least-squares fit). To find the 

polynomial coefficients, in the Matlab, type p=polyfit(t,y,2) at the command line. Matlab 

calculates the polynomial coefficients in descending powers. For second order 

polynomial model, the model equation is:

For Case 1, during gasification process:

y= a2*t2 + a1* t+ ao (5.5)

Tflame = 0.000002 *[CH4]2ppm -0.5 * [CHJppm + 2761.4 (5.6)
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For case 1, after gasification:

Tflame 0.0000004 * [CH4]2ppm + 0.6 * [C H ^ m  + 2230.9 (5.7)

For case 2, the second order model can be exhibited as

Tflame 0.0000012 * [CH4]2ppm - 0.2 * [CH4]ppm + 2345.4 (5.8)

5.5.3 Power Law

Another type of model is the power law. This model can be shown as

y= a*tb (5.9)

However, it is difficult to estimate a and b coefficients with this form. By taking 

logarithm form, these coefficients can be found easily.

Log y = log a + b *log t (510)

Now, using polyfit(t,y,1) Matlab code, the a and b coefficients can be determined.

The power law model result in this study is:

For case 1, during gasification process it can be expressed as

Tflame = 12603.75 * [CH4]ppm-02487 (5.11)
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For case 1, after gasification it is written as

Tfliame 1776.642 * [CH4]ppm00547 (5.12)

For case 2, the power law is shown as

Tflame 3539.97 * [CH4]ppm-00701ame (5.13)

Figure 5.4 and Figure 5.5 show the summary of empirical models, respectively. 

As can be seen from the figures, second order polynomial model does not provide a good 

approach for both cases. The results of second order expression are clearly irrelevant and 

this model can not identify the estimation of adiabatic flame temperature. On the other 

hand, first order approximation gave a reasonable approach for both cases with minimum 

error percentage. Even though power law model provides an opportunity for case 2, it 

does not show a satisfying result for case 1 especially during the coal gasification.

5.5.4 Response Surface Methodology (RSM)

Response Surface Methodology (RSM) is a tool for understanding the 

quantitative relationship between multiple input variables and one output variable. 

Briefly, z can be considered as a polynomial function of two inputs, x and y. The function 

of z =f(x,y) describes a two dimensional surface in the space (x,y,z). In general, this 

model can have as many input variables as the operator wants and the result becomes a 

hypersurface. Also, the model can have multiple output variables with a separate 

hypersurface for each one.



Any order of polynomial could be used to model local surface patches, but a 

quadratic function can be regarded as a successful compromise between the number of 

data points required to uniquely model the surface and the fidelity with which the model 

fits the true surface. For three inputs (x1, x2,x3), the equation of a quadratic response 

surface is

y = a11*x12 + a22*x22 +a33*x32................................................................quadratic terms

b 12*x1*x2 + b 13*x1*x3 + b23*x2*x3...................................................... interaction terms

co + c1*x1 + c2*x2+ c3*x3............................................................................... linear terms

Here, a11, a22, a33, b 12, b13, b23, c1, c2, c3 and c0 are coefficients of variables to find the 

output parameter after calculation.

To summarize the theoretical explanation of quadratic surface model, the goal is 

to obtain a surface model for each response where the response is adiabatic flame 

temperature. The factors used in modeling in order to determine the output temperature 

are oxygen-to-coal feed ratio (x1), steam-to-coal feed ratio (x2) and pressure (x3).

After specifying input variables, the matrix form was formed and the 100 

different random variables from database were put in the matrix form numerically. Then, 

the model was run and then coefficients for each term were calculated. Based on these 

coefficients and parameters, the adiabatic flame temperature of Australian bituminous 

coal was determined and shown in Appendix A. Again, x 1, x2 and x3 terms are oxygen-to- 

coal feed ratio, steam-to-coal and pressure, respectively. The coefficients of the equation 

were:
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Tflame = 244.5*x12 + 730.6*x22 -0.1*x32......................................... quadratic terms

80.7*x1*x2 + 2.6*x1*x3 -1.6*x2*x3................................. interaction terms

1926.1 -231.9*x1 -857.8 *x2+ 5.9*x3.............................linear terms (514)

5.5.5 Multivariate Power Model

Multivariate power expression comprises two types of models, namely 

multivariate nonlinear and multivariate linear regression, respectively. The multivariate

nonlinear regression (MNR) model with two or more predictor variables (x1, x2, ....... ,xn)

is given as

y = ao 1 x £ 2 3........... xn-~ilx n” (515)

where ai (i=0,1,2,.............,n) represent constants to be estimated. The multivariable linear

regression (MLR) can be stated as

y = ao + a1x 1 + a2x2 + ......... +an-1 xn-1 + an xn + e (5.16)

where e represent the residual. The MLR problem is easier to solve than the MNR 

problem. It is however, possible to convert Equation (5.15) into a multivariable linear 

regression problem by taking logarithms of both sides

log (y) = log (ao) + a1 log (x0 + .......................+ an-1 log (xn-1) + an log(xn) (5.17)



In the present study, multivariate power model has been developed to predict the 

adiabatic flame temperature of Australian bituminous coal using coal properties such as 

oxygen-to-coal feed ratio (x1), steam-to-coal feed ratio (x2), pressure (x3), and the amount 

of methane (x4).

To begin, multivariate power law was performed to develop a nonlinear model 

for predicting the adiabatic flame temperature of Australian bituminous coal respectively, 

wherein the four model inputs (x1- x4) comprise the proximate analysis of a coal sample 

and gasification parameters. The set consisting of 100 data points were used for the 

development of power law based models. The power-based model for the adiabatic flame 

temperature (y) is given as

Tflame = 40 23.46 * (x1)00557 * (x2)00281 * (x3) -00028 * (x4) -00871 (5.18)

The summary of two empirical models have been done and shown in Appendix 

A. Quadratic surface model or response surface methodology gives appropriate results at 

the high ratio of oxygen-to-coal and high ratio of steam-to-coal. The model results are 

very close to results of ChemCAD. Similarly, if  the ratio of oxygen-to-coal is low, the 

steam-to-coal ratio is important to figure out which model gives best approach. Response 

surface methodology provides good temperature results at the high steam-to-coal ratio 

with high oxygen-to-coal ratio relatively. On the other hand, multivariate regression 

exhibits a reasonable model if  the steam-to-coal ratio is low and oxygen-to-coal ratio is 

high, but in reverse, with the low ratio of oxygen-to-coal and high amount of steam-to- 

coal, quadratic surface model should be preferred rather than multivariate power model.
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Finally, the last input parameter called pressure was investigated on the effect of 

adiabatic flame temperature. Both models can be accepted if the amount of pressure is 

high unless the ratio of steam-to-coal and oxygen-to-coal is low or high. Otherwise, 

multivariate power model supports the ChemCAD temperature results at low pressure 

and steam-to-coal ratio and a high amount of oxygen. However, quadratic surface model 

is a logical approach at the low pressure and oxygen-to-coal ratio with a high ratio of 

steam-to-coal.

5.6 Sensitivity Analysis

The last part of this chapter is to investigate the importance of input parameters 

on adiabatic flame temperature of Australian bituminous coal. The aim of sensitivity 

analysis is to find the effect of input parameters on response variable or variables. It is 

possible to have an idea about the influence of the input variables on the output response 

generally. Here, the four input parameters have been investigated on the adiabatic flame 

temperature after coal gasification in the entrained flow gasifier. These parameters were 

selected as oxygen-to-coal feed ratio (x1), steam-to-coal feed ratio (x2), pressure (x3) and 

the concentration of methane (x4). The temperature of coal or water, coal particle size and 

coal flow rate were not taken into consideration due to their constant values during all the 

simulation.

The Monte Carlo approximation method was followed to find the sensitivity 

coefficients of each parameters and then, the results were illustrated in Figure 5.6. 

Basically, 100 different random samples were chosen from database for using calculation 

of sensitivity coefficients of each parameter. The Equation 2.26 mentioned in Chapter 2 

was used to determine the coefficients as well.
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In a sequential random sample, the difference of two vector immediate neighbor 

vectors is only the random number of one parameter. Thus, the difference of model 

outputs corresponding to a pair of immediate neighbor vectors is caused by the change of 

only one model input parameter. Therefore, sensitivity coefficients can be estimated 

based on the differences of model outputs and inputs. The expression of sensitivity 

analysis can be written follows:

SC, = 1 YU-i —  (2.26)1 n Lj ] - 1 kx ij v ’

Where SC, is the estimated sensitivity coefficient of model input xi, Axij and Ayij are 

respectively the j th differences of xi and model output y (here, y is adiabatic flame 

temperature) caused by the change of xi, and n is the sample size. The estimated 

sensitivity coefficients are global. Essentially, Equation (2.26) is the Monte Carlo 

integration approximation of the integral:

/  °° ......... /  °° j -  f  (x) dx1 ........ dxp »  -  Y /- i ,J- °  J- °dxi  v ’ 1 p n i - 1 Ax  ̂ ’

Where f  (x) is assumed to be a multinormal distribution function. Figure 5.6 indicates that 

oxygen-to-coal ratio has the most influential effect on adiabatic flame temperature of 

Australian bituminous coal. The steam-to-coal ratio follows the oxygen-to-coal ratio as 

an important input parameter. The CH4 production called mutual independent parameter 

does not have a great effect on temperature. In conclusion, the importance of parameters 

can be ordered as x 1>x2>x3>x4.
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Figure 5.1. Adiabatic flame temperature and the concentration o f methane profile of
Australian bituminous coal versus oxygen-to-coal ratio at varying steam-to-coal ratios.
(Blue line: Adiabatic flame temp., Green line: CH4 conc.)
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Figure 5.3. Adiabatic flame temperature and CH4 gas profiles of Australian 
bituminous coal at different cases

Figure 5.4. The simulation result and the basic polynomial models for case 1
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS 

FOR FUTURE WORK

6.1 Summary of Results

This research reports the results of parametric studies using the ChemCAD 

simulation program and an empirical model. The objectives of this study were to 

investigate the effect of various operating conditions such as oxygen-to-coal feed ratio 

(kg/kg), steam-to-coal feed ratio (kg/kg), and pressure (bar) on estimation of adiabatic 

flame temperature of Australian bituminous coal and Indonesian roto coal in an entrained 

flow reactor and figure out the composition of product gases, syngas efficiency, carbon 

conversion and cold gas efficiency. Then, the relationship between adiabatic flame 

temperature of coal and methane product gas with different input parameters was 

investigated to find a correlation according to simulation results. During the simulation, 

the temperature of coal and water remained constant as 313 K and temperature of oxygen 

was held at 333 K.

To illustrate the effects of these parameters on the gasification process variables, 

simulation results were obtained over a range of steam, oxygen feed rates and pressure at 

constant coal feed rate, particle size and temperature of coal, water and oxygen. The 

maximum solids and gas temperatures in the entrained flow reactor were particularly



interesting. These temperatures were more sensitive to the concentration of oxygen in the 

feed than changes in steam feed rate. As explained in Chapter 3: graphs of adiabatic 

flame temperatures captured at various oxygen-to-coal and steam-to-coal feed ratio show 

peak values fall gradually with increasing steam-to-coal ratio and pressure. However, 

they were rapidly increasing with the rise of the oxygen and pressure.

The steam-to-coal ratio in the feed has a significant effect on the composition of 

product gas. As the ratio increases, the percentages of carbon dioxide increase 

considerably, hydrogen and methane rise up slightly. On the other hand, the percentage of 

carbon monoxide decreases rapidly. Both, the higher amount of steam and the lower 

temperature resulting from it contribute to this trend. The former tends to promote the 

coal-steam and water gas shift reactions, while the latter tends to retard the coal-carbon 

dioxide and coal-hydrogen reactions. Although an increase in the steam-to-coal feed ratio 

promotes the char-steam reactions, the temperature decreases because the char-steam 

reaction is highly endothermic and lowers the temperature.

According to the results, the amount of steam in the pyrolysis stage is almost 

constant. Therefore, the effect of steam-to-coal feed ratio on carbon conversion is not 

impressive as the effect of oxygen-to-coal on carbon conversion. However, if  the steam- 

to-coal ratio increases, the amount of steam keeps promoting carbon-steam reactions in 

the direction of CO and H2 formation.

Furthermore, the oxygen-to-coal in the feed has a great effect on the composition 

of the product gas. The slight concentration changes of methane and hydrogen are caused 

by the competitive interactions between the combustion and gasification reactions, the 

rate of which is very sensitive to the temperature variations produced. Since a higher
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oxygen feed rate increases the flame temperature of the system, the oxidation reactions 

proceed to a greater extent. Consequently, the concentration of formed carbon dioxide 

increases significantly. Moreover, although an increase in the oxygen-to-coal feed ratio 

tends to increase the temperature, which in turn reverses the water gas shift reaction, it 

also tends to moderate the coal-steam, and hence, the coal-carbon dioxide reactions 

during the gasification period. Eventually, a point reached beyond which a remarkable 

change in the carbon monoxide and carbon dioxide yield. The reduction in the fraction of 

methane produced by increasing oxygen-to-coal ratio and pressure was followed by a 

small quantity of hydrogen forming. As mentioned before, due to the exothermic 

combustion, the adiabatic flame temperature of coals rises as the oxygen-to-coal ratio and 

pressure increase. The increase of oxygen-to-coal ratio also results in the increase of 

carbon conversion. For the given oxygen-to-coal ratio, the steam-to-coal ratio maximizes 

the carbon conversion. Hence, the coal conversion increases significantly as the oxygen 

feed increases. The steam-to-coal ratio does not affect coal conversion significantly.

Another observation is that the ratio of hydrogen-to-carbon monoxide decreases 

due to an increase in the amount of carbon monoxide with increase of the adiabatic flame 

temperature or oxygen-to-coal feed ratio. The steam-to-coal ratio has a negative effect of 

syngas efficiency because of the decrease of carbon monoxide. It also caused the increase 

in hydrogen-to-carbon monoxide ratio in the entrained flow gasifier. The coal types are 

important figures to predict the adiabatic flame temperature and gasification products. 

The reason of the different findings about the flame temperature and gasification products 

can be explained by the different properties of Australian bituminous coal and Indonesian 

roto coal.
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The relationship between methane production and the adiabatic flame 

temperature of Australian bituminous coal was investigated in Chapter 5. The purpose of 

this study was to predict flame temperature based on methane concentration in ppm level 

without any calculation. The input parameters selected were oxygen-to-coal feed ratio, 

pressure and steam-to-coal ratio. Simulation results were used to estimate the temperature 

range. According to results, there was an inverse proportion between concentration of 

methane and adiabatic flame temperature with increasing oxygen-to-coal. This regime 

was monitored until the value of oxygen-to-coal ratio was 2.0 kg/kg. Even though the 

concentration of methane (ppm level) was decreasing, the flame temperature started to go 

down after the ratio of 2.0 kg/kg due to terminating the gasification process. After that 

point, it was difficult to say that gasification is going on. However, the combustion 

process and reactions are able to continue even though coal gasification comes to an end. 

The estimation of temperature is also possible by looking at the concentration of methane 

at various oxygen-to-coal and steam-to-coal ratio. The minimum ppm level of methane 

occurred at high temperature points and this can be possible with a high amount of 

oxygen-to-coal feed ratios. In other words, the optimum composition of methane in the 

gasifier could be reached at a high adiabatic flame temperature regime. From that point, if  

the concentration of methane is known after finishing gasification, the temperature range 

may be estimated successfully. Nevertheless, the simulation results must be supported by 

experiments to have a certain decision.

The adiabatic flame temperature based on methane production can be figured out 

with changing steam-to-coal and pressure parameters. As illustrated in Chapter 5, the 

adiabatic flame temperature decreased considerably with increasing steam-to-coal ratio
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while the yield of methane showed insensitivity to it. The optimum concentration of 

methane can be described as 0-500 ppm, and the reasonable range of concentration might 

be taken until 2000 ppm. According to the ppm level of CH4 in the gasification step, the 

amount of parameters and flame temperature can be estimated roughly. However, these 

findings should be in compliance with the experimental studies.

6.2 Recommendations for Future Work

Under practical operating conditions, the particle size of coal must be taken in 

applying the hypothetical mechanism and empirical correlation because the char-steam 

and char-oxygen reactions are strongly affected by the behavior of coal particles. In this 

study, the particle size of both coal types were assumed as 100 |im during the set-up of 

simulation program. The gasification temperature will increase or decrease with different 

sizes of coal. This parameter has also a great influence on the residence time of coal 

reactions. Therefore, it is essential to investigate the effect of coal particle size on coal 

gasification temperature in the entrained flow gasifier.

In addition, the steady state conditions and one dimensional approach were 

followed for operating conditions during the ChemCAD simulation. The multidistribution 

of temperature in the gasifier could occur if the flow was more than one dimension. It is 

essential to take into consideration governing equations of coal gasification to find the 

temperature dispersion in the gasifier. Therefore, it is highly recommended to study the 

effect of unsteady state conditions and dimensional factors on the temperature of gasifier. 

Finally, temperatures measured at the top and bottom of the gasifier differ in values. 

During this study, the outside temperature was determined by ChemCAD simulation 

program. However, in reality, the temperatures depend on the reactions that occurred in
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various parts inside the gasifier. For example, the temperature in the burner zone is higher 

than that of the reduction zone due to the combustion reactions and heat. Furthermore, 

temperature significantly differs near the wall from that of the farthest. The advanced 

model or design program including these important factors is utilized to attain accurate 

temperature distribution in the gasifier. In conclusion, the reasonable temperature results 

for each section inside the gasifier are obtained from model equations and operating 

conditions. Therefore, in future research, it is recommended to factor that certain 

temperatures can be measured at any point inside the gasifier.
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APPENDIX A 

ADIABATIC FLAME TEMPERATURE RESULTS

Table A1. Parameters and Temperature Results

Sample
No.

Oxygen
-to-
Coal
X 1,
kg/kg

Steam-
to-Coal
X2,
kg/kg

Pressure
X3,
bar

Adiabatic
FlameTemp.,
K

Quadratic 
surface 
response, 
Temp., K

Multi­
power 
model, 
Temp., K

1 1.0 0.045 20 2144 2033 2085
2 0.25 1.20 40 1976 1956 1858
3 0.20 0.80 30 1708 1748 2203
4 0.70 1.20 50 2208 2014 2006
5 1.60 1.00 50 2468 2356 2238
6 1.00 0.185 40 2054 1988 2114
7 1.25 1.20 80 2490 2100 2134
8 0.55 0.80 50 1891 1742 1958
9 1.05 1.20 70 2404 2056 2092
10 1.00 0.204 50 2037 1969 2114
11 1.60 1.20 60 2599 2487 2238
12 1.10 0.80 40 2168 1958 2119
13 1.00 0.310 30 1940 1918 2117
14 1.20 0.093 40 2228 2130 2141
15 1.50 0.80 70 2332 2113 2203
16 1.00 0.444 60 1889 1845 2101
17 1.85 1.00 20 2600 2496 2349
18 0.40 0.60 50 1690 1689 1906
19 1.90 1.20 40 2753 2772 2323
20 1.00 0.50 80 1866 1709 2095
21 1.20 0.407 50 2006 1980 2155
22 0.50 0.232 40 1966 1834 1872
23 1.70 1.20 40 2651 2602 2265
24 1.00 0.329 70 1955 1830 2106
25 1.20 0.532 30 1948 1957 2158
26 0.90 0.60 30 1946 1836 2081
27 1.10 0.60 40 2048 1921 2134
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Table A.1 Continued

Sample
No.

Oxygen
-to-
Coal
X 1,
kg/kg

Steam-
to-Coal
X2,
kg/kg

Pressure
X3,
bar

Adiabatic
FlameTemp.,
K

Quadratic 
surface 
response, 
Temp., K

Multi­
power 
model, 
Temp., K

28 0.10 1.00 50 1734 1764 1728
29 1.20 0.732 80 1917 1822 2146
30 1.00 0.612 50 1820 1863 2099

31 1.40 0.009 40 2425 2295 2101

32 1.90 0.60 30 2392 2415 2451
33 1.40 0.045 50 2352 2272 2157
34 0.85 1.00 40 2160 1947 2058
35 1.00 0.556 80 1848 1701 2097
36 1.20 0.970 70 1844 1982 2140
37 1.55 0.60 60 2233 2156 2247
38 0.65 1.20 30 2166 2044 2001
39 1.30 0.80 40 2246 2063 2170
40 1.15 1.20 50 2428 2215 2125
41 1.00 0.90 20 1714 1932 2101
42 1.40 0.348 70 2132 2049 2206
43 0.15 1.00 30 1798 1832 1800
44 1.45 0.80 40 2308 2155 2206
45 0.50 1.20 50 2098 1956 1950
46 1.00 0.980 30 1711 1997 2098
47 1.40 0.359 20 2090 2047 2218
48 1.25 0.60 70 2131 1910 2155
49 0.40 1.00 40 1914 1831 1919
50 1.00 0.776 60 1772 1851 2093
51 1.40 0.833 40 1929 2136 2194
52 1.20 0.80 80 2236 1838 2124
53 0.75 1.00 30 2116 1921 2030
54 1.00 0.732 70 1792 1784 2098
55 1.00 0.032 50 2185 2087 2065
56 1.00 0.045 60 2169 2051 2077
57 1.00 0.069 70 2157 1986 2094
58 0.30 0.60 40 1642 1710 1968
59 1.75 1.00 80 2582 2351 2257
60 1.20 0.093 40 2228 2130 2141
61 1.65 1.20 60 2600 2528 2239
62 1.40 0.165 30 2259 2166 2225
63 0.20 1.20 40 1949 1952 1832
64 1.00 0.532 30 1842 1872 2104
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Table A.1 Continued

Sample
No.

Oxygen
-to-
Coal
X 1,
kg/kg

Steam-
to-Coal
X2,
kg/kg

Pressure
X3,
bar

Adiabatic
FlameTemp.,
K

Quadratic 
surface 
response, 
Temp., K

Multi­
power 
model, 
Temp., K

65 1.85 1.20 50 2744 2725 2296
66 0.50 0.80 40 1856 1762 1946
67 1.20 0.204 40 2141 2063 2159
68 1.10 1.20 60 2415 2147 2111
69 1.00 0.732 20 1777 1868 2108
70 0.30 1.20 50 2004 1918 1877
71 1.65 0.60 40 2268 2247 2306
72 0.10 1.20 20 1889 1983 1763
73 1.90 0.60 30 2392 2415 2451
74 1.00 0.370 80 1917 1744 2093
75 0.01 1.20 30 1840 1978 1553
78 1.00 0.690 70 1800 1778 2098
79 1.70 1.20 40 2651 2601 2265
80 1.20 0.456 80 2006 1828 2147
81 1.85 1.00 50 2618 2562 2316
82 1.35 1.00 30 2374 2185 2185
83 1.00 0.854 60 1738 1876 2091
84 1.95 1.00 50 2654 2652 2350
85 1.40 0.690 40 1981 2092 2208
86 1.60 1.00 40 2462 2361 2243
87 1.35 0.80 30 2264 2081 2187
88 1.00 0.980 50 1718 1975 2095
89 0.85 0.80 40 2050 1855 2055
90 1.65 0.80 40 2388 2293 2271
91 1.20 0.754 40 1884 1994 2153
92 1.70 0.80 80 2440 2213 2256
93 1.00 0.129 30 2096 2009 2117
94 1.95 1.20 40 2773 2817 2342
95 1.40 0.732 50 1979 2095 2207
96 0.95 0.80 40 2100 1893 2078
97 1.00 0.019 50 2213 2098 2049
98 0.65 0.8 60 1950 1721 1985
99 1.40 0.925 70 1928 2091 2185
100 1.00 0.069 60 2151 2032 2096



APPENDIX B 

DESIGN PARAMETERS 

Table B1. Design and Input Parameters of the ChemCAD Simulation

Input parameters Design variables

Space 1D

Time Steady State

Solver equation Energy, Mass, Flow

Wall function Standart

Carrier Gas Nitrogen

Particle type Pulverized coal

Temperature of 
oxygen, K

333

Temperature of coal 
and water, K

313

Particle size of coal, 
p,m 100
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