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ABSTRACT 

 

Conducting polymer actuators have shown numerous improvements in 

mechanical performance over the last couple of decades, but can be better 

utilized in applications with the ability to adjust to unknown operating conditions, 

or improved during their lifetime. This work employs the process of sequential 

growth to initially fabricate polypyrrole-metal coil composite actuators, and then 

again for further actuator growth during its lifetime of operation. 

The novel synthesis process was first shown through the use of a custom 

testing apparatus that could support the sequential growth process by allowing 

different actuation and synthesis solutions to be controlled in the test cell, as well 

as facilitate mechanical performance testing. 

Open-loop testing demonstrated the actuator system performance for multiple 

growth stages over multiple input frequencies, and was then compared to the 

parameters identified to fit a simplified model during operation. The simplified 

model was shown to differentiate from the experimental data, but provided useful 

optimal growth prediction values with a performance cost evaluation algorithm. 

The model could predict the optimal growth determined by the experimental data 

to within one growth stage. 

Performance was improved by using a proportional-derivative feedback 

controller where the gains were calculated by the desired response at each 



iv 
 

growth stage for each sample. The cost performance was performed again with 

the closed-loop data, but did an inferior job of predicting the optimal amount of 

growth for each sample compared to the open-loop data. The simplified model 

accurately tracked the behavior changes through multiple stages of growth. The 

main contributions of this work include a novel testing apparatus and synthesis 

method for multiple growth steps, the implementation of a simplified model for 

tracking and optimal growth stage prediction, and the application of a model-

based proportional-derivative feedback controller. 
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CHAPTER 1  

 

INTRODUCTION TO POLYMERS 

 

1.1 Dissertation Motivation 

The ability of actuators to mimic human muscle is an ongoing challenge. 

Multiple actuator technologies can produce comparable, and even advanced 

mechanical performance, yet none have shown the human ability to heal or to 

regrow during use. This missing component, the organic process of evolving 

during use, is a challenge that this research seeks to address. 

An iterative approach was applied to a multiple link robot by Pil and Asada to 

improve the dynamic response by adding mass at specific spacing along the 

robot links [1]. The approach was three-pronged by analyzing the current 

dynamic system and predicting an improvement with added mass, actively 

adding mass, and then refining the control scheme to account for the adjusted 

system. The process flow is shown in Fig. 1.1. This work seeks to take a similar 

approach where adding mass equates to adding polymeric material and strength 

capability, as well as improving polymer degradation. 

The first step was to choose a suitable material. This search started within the 

field of smart materials. Piezoelectric materials possess impressive strength and 

speed, but lack in strain magnitude and require an extensive generation process 
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involving extreme heat to create crystalline structures. Shape memory alloys 

exhibit useful strain and speed for macroscale actuation, but possess an 

extremely difficult manufacturing process to control the composition parameters 

closely, and work with the reactive nature of titanium. The solution was found in 

the group of materials known as electroactive polymers (EAPs). Specifically, the 

discovery of conducting polymers (CPs) in the late 1970s has spearheaded 

research approaches to actuator fabrication, application, and implementation. In 

the last couple of decades, CPs have made great leaps due to material 

composition, geometric design, polymerization process, and currently, the ability 

to regrow during operation. 

 

1.2 Introduction 

The implementation of CPs began back in the mid-19th century with the 

discovery of aniline. It was not until a century later, though, that the conductivity 

of these materials was noticed with a form of polypyrrole (PPy) in the 

semiconductor range. CPs more akin to the forms known today were not created 

until 1977 with the discovery of polyacetylene [2, 3], and the increase in 

conductivity in its doped state. An increase in research soon followed in this field 

of newly minted ‘organic metals,’ ‘synthetic metals,’ or ‘plastic metals’ [4]. CPs 

are also referred to as conjugated polymers, or π-conjugated polymers. This is 

due to the fact that their conductive nature is made possible by the delocalized 

electrons in the π orbits created by the π orbit overlapping along the polymer 

chain as a result of the conjugated backbone. 
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Although polyacetylene was the first of the CPs to be used, the inherent 

instability and difficulty in manufacturing made researchers more heavily explore 

the CPs, polyaniline (PANi), polythiophene (Pth), and polypyrrole (PPy). All three 

CPs present a higher stability, and the ability to be fabricated electrochemically 

[5-7] and their molecular structures are shown in Fig. 1.2. 

 

1.3 Artificial Muscle Actuators 

EAPs have expanded to cover a large range of applications and uses that 

include coatings, energy storage devices, sensors, and actuators [8-19]. Much of 

the current research is focused upon actuators due to their similarities to natural 

muscle, like skeletal muscle in humans. Considering CPs specifically, both CPs 

and natural muscles are made up of polymeric materials, both operate in 

chemical solutions, both use electrical input or stimulation, and both use that 

input to convert chemical energy into mechanical energy. Both materials also 

create actuation as a combination of free (unloaded) strain, change in elastic 

modulus, and creep strain. For these reasons, CPs are sometimes referred to as, 

‘artificial muscles.’ 

 

1.3.1 Human Muscle 

Although mammalian muscle can be classified as skeletal muscle, smooth 

muscle, or cardiac muscle, this work focuses on the voluntary muscle used for 

dexterity and locomotion, skeletal muscle. Human muscle can exceed 40% 

strain, 0.35 MPa, 100%/s strain rate, but typical values of stress and strain are 
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0.1 MPa and 20%. Comparison values are shown in Table 1.1. 

 

1.3.2 CP Actuators 

Actuation of CP materials is a result of volumetric changes. It is controlled 

with an electrical input which offsets the electrical balance in the material, and 

counter-ions are exchanged between the CP and the electrolytic solution it 

operates in to accommodate the change in electrical potential. 

The mechanical performance of CPs has greatly increased since their initial 

creation; mainly through improvements in synthesis techniques, material 

selection, and electrolyte solvent selection. The CP material PPy has exhibited 

greater stress, strain, and work density than human muscle, but generally has a 

much shorter life span. The general operation principles for reduction and 

oxidation are shown below in Fig.1.3 and the comparison to human muscle is 

shown in Table 1.2. 

 

1.4 CP Materials 

The three most common conducting polymer actuator materials are 

polyaniline (PANi), polythipophene (Pth), and polypyrrole (PPy). All three can 

be synthesized through electrical and electrochemical means and use ion 

insertion or rejection through oxidation and reduction for volume change [4, 21-

29]. Polypyrrole is a common choice due to its relatively large strain stability, and 

conductivity [30-34]. 
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1.5 Synthesis 

1.5.1 Chemical Synthesis 

Polypyrrole can be polymerized both by chemical and electrochemical means. 

Electrochemical fabrication is more commonly selected due to the fact that 

chemical synthesis creates more of a particle based structure with only a partially 

conjugated structure, poor mechanical properties, and lower conductivity [35, 36]. 

These properties make chemically synthesized PPy more commonly used in 

sensing applications versus actuation applications [37]. Electrochemical 

polymerization of PPy improves polymer structure, mechanical properties, 

conductivity, and also improves overall synthesis control versus purely electrical 

means.  

 

1.5.2 Electrochemical Synthesis 

Electrochemical polymerization of PPy commonly occurs in a three electrode 

cell where a reference electrode monitors the charge distribution from counter 

electrode to working electrode. The cell holds the monomer solution and 

additional doping agents. The exact mechanisms that control polymer formation 

are not completely understood, but the polymer forms on the working electrode in 

an oxidative process. Growth can be controlled through voltage or current 

control, and it has been demonstrated that after the initial cell activation, polymer 

deposition increases almost linearly with time [38]. It has also been demonstrated 

that polymer structure can vary according to working electrode material [31]. 

Some common working electrodes include gold, tin, platinum, glassy carbon, and 
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glass coated with conductive substrates such as indium-tin oxide. Common 

counter electrodes include platinum, nickel, and stainless steel. 

Another factor that affects polymer growth is polymerization temperature. 

Higher performance polymers are achieved with a lower polymerization 

temperature. The colder temperatures (commonly -20 °C but even as low as -40 

°C) will slow polymer kinetics to produce more uniform polymer structures and 

reduce unwanted polymer oligomer formation. Current density during 

polymerization also affects polymer structure [39-41]. Lower currents can 

improve polymer chain alignment, but can also increase polymer compactness to 

the point that ion transfer is impeded. One solution around this is sequential 

growth where higher current densities are used to increase polymer formation, 

but the high growth periods are remediated with ethanol washes when the 

current is turned off. Sequential growth is discussed further in the body of the 

dissertation. Continuous growth methods commonly use a current density of 0.1 

mA/cm2 or 0.125 mA/cm2 and apply for anywhere from 6 to 24 hours based upon 

desired thickness and cell size and materials. 

Polymer actuator performance is also dependent upon solvent doping due to 

the fact that actuation can be the result of one of more of the four reaction 

processes: cation injection reduction, cation ejection oxidation, anion injection 

oxidation, and anion ejection reduction [40, 42]. This means actuation can be 

affected by the molecules doped in the polymer structure during synthesis, or by 

the substances in the actuation solution after the polymer is synthesized. 

Actuation is affected by both solutions because of the range of actuation 
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processes [23, 43-47].  

 

1.6 Geometry 

Polypyrrole has been used to create linear and bending actuators. This work 

is concerned with linear actuators. Linear PPy actuators are fabricated using 

different actuator geometries. Initial actuators used a flat film geometry. The films 

are synthesized on flat electrode and then peeled off for use. Since the CPs 

change shape in all three dimensions concurrently, film actuators usually had a 

long, thin profile so the longest dimension would be the main actuator direction 

with the largest overall shape change. An effort to more directly orientate 

actuation direction in the PPy actuators came in a cylinder, or tube, shaped 

actuator. Now the axis of the cylinder was the main actuation direction, and the 

other dimensional changes resulted in relatively small changes in tube diameter. 

These actuators are considerably more complicated to fabricate, though, making 

the increase in actuation orientation an unlikely tradeoff for actuator choice. Both 

the flat film and tubular actuators also suffered from a low charge distribution 

capacity, especially as the polymers were fabricated longer and thicker to be 

more useful in macro robotic applications. One study showed that increasing the 

number of electrodes along a film actuator improved performance by increasing 

electron distribution and the results are shown in Fig. 1.4 [48]. 

The increased performance with the larger electrode dispersion, and the 

directional shape change of the tubular actuator geometry are combined in a 

polypyrrole-metal coil composite actuator geometry. 
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Polypyrrole-metal coil composite actuators are fabricated on a core electrode 

with a metal wire wrapped around it. This core plus metal coil or helix is the entire 

working electrode for synthesis. Once the PPy is deposited on the working 

electrode, the core is removed to leave the metal coil embedded within the 

polymer. Although it will influence mechanical performance, it directs all 

significant shape change to be along one dimension, the axis of the coil, and 

more uniformly distributes the control charge along the entire length of the 

actuator. Studies comparing all three geometries show a marked improvement in 

performance with the polypyrrole-metal coil composite actuators [17]. CP 

actuators with embedded metal helixes more closely resemble muscle fibers and 

were even bundled together in a muscle configuration. In one study, sixteen 

hundred were bundled together to lift a twenty-two kilogram mass [49]. 

 

1.7 Improvements 

The main ways to improve actuator performance are to reduce actuator 

resistance, optimize mechanical properties, and extend life cycles. Incorporating 

a metal electrode is a means to reduce resistance along the length of the 

polymer actuator. Mechanical properties such as modulus can be increased by 

including additional materials, such as carbon nanotubes [27, 50]. Strain 

performance is increased with optimal doping and electrolyte selection as well as 

electrical input control strategies that can reduce the amount of time for any high 

electrical potential applications to reduce the possibility of polymer degradation 

[51]. Enhancing cycle life is also dependent upon avoiding degradation, as well 
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as avoiding degradation of the electrolytic solutions and overoxidation of the CP. 

Overoxidation leads to a loss of length in the conjugated backbones of the PPy 

material and the formation of unwanted carboxyl groups [52].  

Other problems limiting life cycles in PPy are the reduction of ion migration 

routes as the gaps left by counter ions can be filled by diffusing lengths of 

polymeric chains and an overall leaning towards a more oxidized state with 

symmetric voltage inputs [53-55]. Apparently a symmetric current controlled input 

can eliminate this effect by more directly controlling the charge input to the 

polymer actuator system. 

This work looks at improving performance by including a metal helix 

electrode, using sequential growth steps to optimize mechanical output and 

extend life cycles, and current based control to minimize destructive effects 

during operation. 

 

1.8 Dissertation Structure 

Chapter 2 introduces the unique testing apparatus needed to fabricate and 

test the sequentially synthesized PPy actuators. First, a test cell was used that 

could allow for the actuators to be fabricated, and then be used in actuation and 

additional growth tests. The test cell also allowed for easy insertion and removal 

of different electrolyte solutions to facilitate actuation cycles, and additional 

growth cycles. This test cell is part of a larger apparatus that can hold sensors to 

measure strain and force output, as well as house all of the necessary solutions 

and electrical equipment to operate and monitor the actuators. 
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Chapter 3 explains the investigation into the open-loop control of the 

actuators. Open-loop actuation tests were used to validate a simplified model, 

and then this simplified model was used monitor the change in model parameters 

over multiple growth cycles. Also, the actuators were tested at different 

frequencies to get a better idea of the trade-off between speed and strength in 

the actuators as additional growth steps are performed. These data could then 

be used in a performance cost analysis algorithm to predict the optimal amount 

of growth for a prescribed weighting value. Finally, the use of the model was 

analyzed as a replacement of the battery of tests needed to compile the 

frequency response plots. 

Chapter 4 looks at closed-loop feedback control with a proportional-derivative 

(PD) control scheme. The same sort of testing performed in the previous chapter 

is performed to examine the effect of PD control through multiple growth stages 

on the same actuator. The frequency analysis testing allows for performance cost 

analysis to look at the optimal amount of growth based upon a closed-loop 

system. The simplified model is compared to experimental data for the closed-

loop system to predict its efficiency in judging and predicting changes in actuator 

behavior. 

A general conclusion is found in Chapter 5 with final thoughts and objectives 

for future work. The appendices at the end add pictures to represent equipment 

needed for growth and experimentation, as well as the custom test cell 

equipment used for the creation and control of these polypyrrole-metal coil 

composite actuators. 
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Figure 1.1.  Recursive process for improving robotic prototypes (adapted from 
[1]). 

 

 

 

 

Figure 1.2. Molecular structure of three common CPs: polyaniline, polythiophene, 
and polypyrrole. 
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Table 1.1. Human muscle property values (data source [20]). 

Property Typical Value Maximum Value 

Strain (%) 20 >40 

Stress (MPa) 0.1 0.35 

Work Density (kJ/m^3) 8  

Density (kg/m^3) 1037  

Strain Rate %/s  500 

Power to Mass (W/kg) 50 200 

Efficiency (%)  40 

Life Cycles  10^9 

Elastic Modulus (MPa) 10-60  

 

 

 

 

Figure 1.3. Conducting polymer actuation process. The top row shows a section 
of polymer separated from the cations and electrons. The next picture 

incorporates the electrons and this attracts the cations, incorporating them into 
the polymer chains. The second row shows the reverse of this process. 
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Table 1.2. Human muscle and PPy actuator comparison (data sources [20, 21]). 

 Human Muscle PPy Actuators 

Stress (MPa) 0.1 >5 

Strain (%) 20 Up to 40 

Life Cycles 10^9 (Typical) Up to 10^6 

Work Density (kJ/m^3) 8 Up to 140 

Efficiency (%) >35 >30 

 

 

 

 

Figure 1.4. Research showing the improvement in displacement as electrode 
contact points are added for a flat PPy film in an aqueous NaPF6 solution at 

room temperature (adapted from [48]). 

 

 

  

E

(a)

E

(b) (c)

E

C
o

n
tr

ac
ti

o
n

 ra
ti

o
   

% 6

5

4

3

2

1

0
0                    50                  100

Time 1/s

(a)

(b)

(c)



14 
 

 
 

1.9 References 

[1] A. C. Pil and H. H. Asada, "Integrated structure/control design of 
mechatronic systems using a recursive experimental optimization 
method," presented at the IEEE/ASME Transactions on Mechatronics, 
1996. 

 
[2] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. 

Heeger, "Synthesis of electrically conducting organic polymers: halogen 
derivatives of polyacetylene,(CH) x," Journal of the Chemical Society, 
Chemical Communications, pp. 578-580, 1977. 

 
[3] C. K. Chiang, C. Fincher Jr, Y. Park, A. Heeger, H. Shirakawa, E. Louis, et 

al., "Electrical conductivity in doped polyacetylene," Physical Review 
Letters, vol. 39, p. 1098, 1977. 

 
[4] R. Baughman, "Conducting polymer artificial muscles," Synthetic Metals, 

vol. 78, pp. 339-353, 1996. 
 
[5] A. Diaz, K. K. Kanazawa, and G. P. Gardini, "Electrochemical 

polymerization of pyrrole," Journal of the Chemical Society, Chemical 
Communications, pp. 635-636, 1979. 

 
[6] A. Diaz and J. Logan, "Electroactive polyaniline films," Journal of 

Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 111, pp. 
111-114, 1980. 

 
[7] R. J. Waltman, J. Bargon, and A. Diaz, "Electrochemical studies of some 

conducting polythiophene films," The Journal of Physical Chemistry, vol. 
87, pp. 1459-1463, 1983. 

 
[8] K. Gurunathan, A. V. Murugan, R. Marimuthu, U. Mulik, and D. 

Amalnerkar, "Electrochemically synthesised conducting polymeric 
materials for applications towards technology in electronics, 
optoelectronics and energy storage devices," Materials Chemistry and 
Physics, vol. 61, pp. 173-191, 1999. 

 
[9] J. Roncali, "Conjugated poly (thiophenes): synthesis, functionalization, 

and applications," Chemical Reviews, vol. 92, pp. 711-738, 1992. 
 
[10] P. M. Beaujuge and J. R. Reynolds, "Color control in π-conjugated organic 

polymers for use in electrochromic devices," Chemical Reviews, vol. 110, 
pp. 268-320, 2010. 

 
[11] M. Gerard, A. Chaubey, and B. Malhotra, "Application of conducting 

polymers to biosensors," Biosensors and Bioelectronics, vol. 17, pp. 345-



15 
 

 
 

359, 2002. 
 
[12] J. Killian, B. Coffey, F. Gao, T. Poehler, and P. Searson, "Polypyrrole 

composite electrodes in an all‐polymer battery system," Journal of The 
Electrochemical Society, vol. 143, pp. 936-942, 1996. 

 
[13] T. Mirfakhrai, J. D. Madden, and R. H. Baughman, "Polymer artificial 

muscles," Materials Today, vol. 10, pp. 30-38, 2007. 
 
[14] M. Geoffrey and D. J. a. Spinks, "Electroactive conducting polymers for 

corrosion control: Part 2. Ferrous metals," J Solid State Electrochem, vol. 
6, pp. 85-100, 2002. 

 

[15] M. R. Abidian, D. H. Kim, and D. C. Martin, "Conducting‐polymer 
nanotubes for controlled drug release," Advanced Materials, vol. 18, pp. 
405-409, 2006. 

 
[16] E. L. Williams, G. E. Jabbour, Q. Wang, S. E. Shaheen, D. S. Ginley, and 

E. A. Schiff, "Conducting polymer and hydrogenated amorphous silicon 
hybrid solar cells," Applied Physics Letters, vol. 87, pp. 223504-223504-3, 
2005. 

 
[17] J. Ding, L. Liu, G. M. Spinks, D. Zhou, G. G. Wallace, and J. Gillespie, 

"High performance conducting polymer actuators utilising a tubular 
geometry and helical wire interconnects," Synthetic Metals, pp. 391-398, 
2003. 

 
[18] Y. Wu, D. Zhou, G. M. Spinks, P. C. Innis, W. Megill, and G. G. Wallace, 

"TITAN: a conducting polymer based microfluidic pump," Smart Materials 
and Structures, vol. 14, p. 1511, 2005. 

 
[19] G. M. Spinks, G. G. Wallace, J. Ding, D. Zhou, B. Xi, and J. Gillespie, 

"Ionic liquids and polypyrrole helix tubes: bringing the electronic Braille 
screen closer to reality," in Smart Structures and Materials, 2003, pp. 372-
380. 

 
[20] J. D. W. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. A. Madden, A. 

Takshi, R. Z. Pytel, et al., "Artificial muscle technology:  physical principles 
and naval prospects," IEEE Journal of Oceanic Engineering, vol. 29, pp. 
706-728, 2004. 

 
[21] P. A. T. Anquetil, "Large contraction conducting polymer molecular 

actuators," PhD, Massachusetts Institute of Technology, 2004. 
 
[22] J. D. W. Madden, "Conducting polymer actuators," PhD, Massachusetts 

Institute of Technology, 2000. 



16 
 

 
 

[23] X. Chen and O. Inganäs, "Doping-induced volume changes in poly (3-
octylthiophene) solids and gels," Synthetic Metals, vol. 74, pp. 159-164, 
1995. 

 
[24] M. Fuchiwaki, W. Takashima, and K. Kaneto, "Comparative study of 

electrochemomechanical deformations of poly (3-alkylthiophene) s, 
polyanilines and polypyrrole films," Japanese Journal of Applied Physics, 
vol. 40, p. 7110, 2001. 

 
[25] Q. Pei and O. Inganäs, "Electrochemical muscles: bending strips built from 

conjugated polymers," Synthetic Metals, vol. 57, pp. 3718-3723, 1993. 
 
[26] E. Smela, W. Lu, and B. R. Mattes, "Polyaniline actuators: Part 1. PANI 

(AMPS) in hcl," Synthetic Metals, vol. 151, pp. 25-42, 2005. 
 

[27] G. M. Spinks, V. Mottaghitalab, M. Bahrami‐Samani, P. G. Whitten, and G. 
G. Wallace, "Carbon‐nanotube‐reinforced polyaniline fibers for high‐
strength artificial muscles," Advanced Materials, vol. 18, pp. 637-640, 
2006. 

 
[28] W. Takashima, M. Fukui, M. Kaneko, and K. Kaneto, 

"Electrochemomechanical deformation of polyaniline films," Japanese 
Journal of Applied Physics, vol. 34, p. 3786, 1995. 

 
[29] B. Xi, V.-T. Truong, P. Whitten, J. Ding, G. M. Spinks, and G. G. Wallace, 

"Poly (3-methylthiophene) electrochemical actuators showing increased 
strain and work per cycle at higher operating stresses," Polymer, vol. 47, 
pp. 7720-7725, 2006. 

 

[30] L. Bay, K. West, P. Sommer‐Larsen, S. Skaarup, and M. Benslimane, "A 
conducting polymer artificial muscle with 12% linear strain," Advanced 
Materials, vol. 15, pp. 310-313, 2003. 

 
[31] S. Hara, T. Zama, W. Takashima, and K. Kaneto, "Free-standing gel-like 

polypyrrole actuators doped with bis(perfluoroalkylsulfonyl)imide exhibiting 
extremely large strain," Smart Materials and Structures, vol. 14, pp. 1501-
1510, 2005. 

 
[32] S. Hara, T. Zama, W. Takashima, and K. Kaneto, "TFSI-doped polypyrrole 

actuator with 26% strain," Journal of Materials Chemistry, vol. 14, pp. 
1516-1517, 2004. 

 
[33] S. Hara, T. Zama, W. Takashima, and K. Kaneto, 

"Tris(trifluoromethylsulfonyl)methide-doped polypyrrole as a conducting 
polymer actuator with large electrochemical strain," Synthetic Metals, vol. 
156, pp. 351-355, 2006. 



17 
 

 
 

[34] S. Hara, T. Zama, W. Takashima, and K. Kaneto, "Gel-like polypyrrole 
based artificial muscles with extremely large strain," Polymer Journal, vol. 
36, pp. 933-936, 2004. 

 
[35] M. Castillo-Ortega, M. Inoue, and M. Inoue, "Chemical synthesis of highly 

conducting polypyrrole by the use of copper (II) perchlorate as an oxidant," 
Synthetic Metals, vol. 28, pp. 65-70, 1989. 

 
[36] H. O. Chan, "Electrically conductive graft copolymers of poly (methyl 

methacrylate) with varying polypyrrole and poly (3-alkylpyrroles) contents," 
Journal of Materials Chemistry, vol. 8, pp. 2347-2352, 1998. 

 
[37] H. Bai and G. Shi, "Gas sensors based on conducting polymers," Sensors, 

vol. 7, pp. 267-307, 2007. 
 
[38] E. Genies, G. Bidan, and A. Diaz, "Spectroelectrochemical study of 

polypyrrole films," Journal of Electroanalytical Chemistry and Interfacial 
Electrochemistry, vol. 149, pp. 101-113, 1983. 

 
[39] S. Y. Chu, H. Peng, P. A. Kilmartin, G. A. Bowmaker, R. P. Cooney, and J. 

Travas-Sejdic, "Effect of deposition current density on the linear actuation 
behaviour of PPy (CF 3 SO 3) films," Current Applied Physics, vol. 8, pp. 
324-327, 2008. 

 

[40] J. Sui, J. Travas‐Sejdic, S. Y. Chu, K. C. Li, and P. A. Kilmartin, "The 
actuation behavior and stability of p‐toluene sulfonate doped polypyrrole 
films formed at different deposition current densities," Journal of Applied 
Polymer Science, vol. 111, pp. 876-882, 2009. 

 
[41] A. Ashrafi, M. Golozar, and S. Mallakpour, "Morphological investigations of 

polypyrrole coatings on stainless steel," Synthetic Metals, vol. 156, pp. 
1280-1285, 2006. 

 
[42] M. Gandhi, P. Murray, G. Spinks, and G. Wallace, "Mechanism of 

electromechanical actuation in polypyrrole," Synthetic Metals, vol. 73, pp. 
247-256, 1995. 

 
[43] T. F. Otero, "Soft, wet, and reactive polymers. Sensing artificial muscles 

and conformational energy," Journal of Materials Chemistry, vol. 19, pp. 
681-689, 2009. 

 
[44] G. Maia, R. M. Torresi, E. A. Ticianelli, and F. C. Nart, "Charge 

compensation dynamics in the redox processes of polypyrrole-modified 
electrodes," The Journal of Physical Chemistry, vol. 100, pp. 15910-
15916, 1996. 

 



18 
 

 
 

[45] S. Bruckenstein, J. Chen, I. Jureviciute, and A. R. Hillman, "Ion and 
solvent transfers accompanying redox switching of polypyrrole films 
immersed in divalent anion solutions," Electrochimica Acta, vol. 54, pp. 
3516-3525, 2009. 

 
[46] L. Bay, T. Jacobsen, S. Skaarup, and K. West, "Mechanism of actuation in 

conducting polymers: osmotic expansion," The Journal of Physical 
Chemistry B, vol. 105, pp. 8492-8497, 2001. 

 
[47] H. Okuzaki, T. Kondo, and T. Kunugi, "Characteristics of water in 

polypyrrole films," Polymer, vol. 40, pp. 995-1000, 1999. 
 
[48] T. Zama, S. Hara, W. Takashima, and K. Kaneto, "Fast response 

polypyrrole actuators with auxiliary electrodes," Japanese Journal of 
Applied Physics, vol. 44, pp. 8153-8160, 2005. 

 
[49] S. Hara, T. Zama, W. Takashima, and K. Kaneto, "Polypyrrole-metal coil 

composite actuators as artificial muscle fibres," Synthetic Metals, pp. 47-
55, 2004. 

 
[50] P. Laborde-Lahoz, W. Maser, T. Martinez, A. Benito, T. Seeger, P. Cano, 

et al., "Mechanical characterization of carbon nanotube composite 
materials," Mechanics of Advanced Materials and Structures, vol. 12, pp. 
13-19, 2005. 

 
[51] J. Rodriguez, H. Grande, T. Otero, and H. Nalwa, Handbook of organic 

conductive molecules and polymers. John Wiley & Sons Ltd: New York, 
vol. 2, 1997. 

 
[52] Y. Li and R. Qian, "Electrochemical overoxidation of conducting 

polypyrrole nitrate film in aqueous solutions," Electrochimica Acta, vol. 45, 
pp. 1727-1731, 2000. 

 
[53] T. Otero, H. Grande, and J. Rodriguez, "Conformational relaxation during 

polypyrrole oxidation: from experiment to theory," Electrochimica Acta, vol. 
41, pp. 1863-1869, 1996. 

 
[54] G. M. Spinks, B. Xi, D. Zhou, V.-T. Truong, and G. G. Wallace, "Enhanced 

control and stability of polypyrrole electromechanical actuators," Synthetic 
Metals, vol. 140, pp. 273-280, 2004. 

 
[55] T. F. Otero, M. Marquez, and I. J. Suarez, "Polypyrrole: diffusion 

coefficients and degradation by overoxidation," The Journal of Physical 
Chemistry B, vol. 108, pp. 15429-15433, 2004.   

 



 
 

 
 

 
 

 

CHAPTER 2  

 

APPARATUS FOR AND PERFORMANCE OF SEQUENTIAL  

GROWTH OF POLYPYRROLE-METAL COIL  

COMPOSITE POLYMERS 

 

2.1 Abstract 

This dissertation introduces a new electroactive polymer (EAP) actuator 

technology that allows for systematic, sequential growth of polypyrrole-metal coil 

composite actuators. The EAP material is synthesized in a specific apparatus 

with an embedded metal helix that acts not only as a support, but as an 

embedded working electrode for increased electrical conductivity during 

actuation; this provides a means by which to perform additional polymer growth 

stages. The additional growth is shown to increase electrical capacitance and 

mechanical force generation.  The ability for additional growth during operation 

adds a unique functionality to biomimetic actuator technology that is similar to the 

capabilities of biological muscle. 

 

2.2 Introduction 

Due to the current interest and exploration of biologically inspired actuator 

technologies, electroactive polymers (EAPs) have been used in a wide range of 



20 
 

 
 

devices and sensors [1-6]; one of the most exciting applications being artificial 

muscles [7-10]. Human muscle and ionic EAPs are both polymeric materials that 

operate in a chemical bath with electrical excitation for actuation and have an 

inherent mechanical response. Comparing the mechanical performance, EAPs 

exhibit lower strain rates, but higher activation stresses and power densities [11]. 

Nonetheless, EAPs have achieved strain rates over 10% s-1, strains exceeding 

20% (including recoverable strains of 14%), and stresses over 20 MPa [12-16]. 

One aspect of human muscle not yet compared to EAP actuators is the ability to 

improve during periods of additional growth. This is now possible with the 

inclusion of a metal helix working electrode and a sequential growth synthesis 

process. 

Embedding a helix in a tubular polypyrrole actuator has resulted in improved 

performance over film and tubular geometries without an additional helix 

electrode [16]. The metal helix acts as a support structure to hold the polymer 

form and direct the inherent three-dimensional shape change along the axis of 

the helix, assists in distributing the charge throughout the polymer (additional 

electrodes have been shown to improve performance in polypyrrole films [17]), 

and performs as a working electrode within the polymer material. Sequential 

growth has been shown to produce higher density polypyrrole films in a fraction 

of the time needed to synthesize polypyrrole by previous methods [18]. This work 

uses sequential growth to first create a polypyrrole-metal coil composite actuator, 

and then to continuously modify the actuator performance and electrochemical 

response in response to changing demands or degradation of the actuator. This 
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actuator technology would be ideal for autonomous robots that operate under 

conditions where minimizing actuator weight is of high priority and actuator 

demands are not well known. The ability of this polymeric actuator material to 

successively regrow and evolve makes this system able to mimic the more 

advanced functions of human muscle. 

 

2.3 Sequential Growth Apparatus 

The ability to perform multiple stages of sequential growth necessitates the 

use of a specific apparatus that allows for the switching of growth and actuation 

solutions while also permitting mechanical performance testing. The unique test 

cell used here was modeled after a previous hollow polypyrrole fiber actuator test 

cell that encapsulates the actuator, counter electrode, and actuation electrolyte in 

a tube, and is shown in Fig. 2.1 [16]. The test cell also allows for strain 

measuring by attaching the actuator to a lever that registers the displacement on 

a ruler. 

The custom test cell used here consists of a glass tube that is capped with 

form-fitting Delrin pucks and rubber gaskets (as shown in Fig. 2.2). The tube and 

pucks are held together to be airtight using three equally spaced bolts that clamp 

the assembly together with thumb nuts. The top Delrin puck is affixed with the 

reference and counter electrodes to allow for easy removal and electrode 

connections. The bottom clamp holds the actuator with an alligator clip (not 

shown in Fig. 2.2), which is also connected to a lead for the working electrode.  

Holes in the top puck allow for access to the actuator and holes to insert any 
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electrolytic fluid. The bottom puck has a hole for flushing out the electrolytic fluid 

after the specified operational step is completed. For testing of a polypyrrole-

metal coil composite actuator, the actuator is secured to the alligator clip on the 

bottom puck; then, the gaskets, glass tube, and opposite puck are assembled 

and sealed with the screws and thumb nuts. The assembled test cell can then be 

used in the custom testing apparatus where it can be connected to the 

electrolytic fluid stores and mechanical testing sensors. The different testing 

configurations are shown in Fig. 2.3. 

The testing apparatus is split into a front section (shown in Fig. 2.4) and rear 

section (shown in Fig. 2.5). The front section holds the test cell described above, 

along with a linear variable differential transducer (LVDT) to measure 

displacement, and a force sensor to measure actuator force output.  

The different sensors are utilized by running high-tensile fishing from the 

actuator and over pulleys to reach the desired sensor. The rear section holds 

bottles for the actuation solution, growth solution, ethanol wash solution, power 

source, and peristaltic pump and nitrogen tank (not pictured in Fig. 2.5). 

The nitrogen tank is used not only to dry out the actuator between growth 

stages, but pressurizes the solution bottles. Flow from the pressurized solution 

bottles is controlled using tubing sections that are held kinked on servo motors. 

The servo motors each hold two kinked tubing sections. Turning the servo from 

this base position will further kink one tubing section and unkink the opposite 

tubing section, thereby allowing the tubing’s fluid to flow into the cell. The flow 

concept is shown in Fig. 2.6. 
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The total of four tubing sections that feed the test cell stem from the growth 

solution bottle, actuation solution bottle, ethanol flush bottle, and the nitrogen gas 

tank. Since the test cell is not completely sealed, the tubing section originating in 

the nitrogen gas tank can be left slightly open to allow the test cell to have a 

slightly positive nitrogen gas pressure to stop natural cell oxidation from the 

environment. The experimental apparatus front section is shown in Fig. 2.7, and 

the rear section is shown in Fig. 2.8. 

 

2.4 Methods 

2.4.1 Reagents and Materials 

Methyl benzoate, tetrabutylammonium tetrafluoroborate (TBABF4), sodium 

tetrafluoroborate (NaBF4), ethanol, and acetone were purchased from Sigma-

Aldrich Inc. and used as-received. Pyrrole monomer (Sigma-Aldrich) was distilled 

before use. The polymerization solution, or growth solution, contained pyrrole 

(0.25 mol dm−3) and TBABF4 (0.2 mol dm−3) mixed in methyl benzoate. The 

actuation solution was an aqueous NaBF4 (1.0 mol dm−3) solution [12]. Working 

electrode materials consisted of 0.050 mm tungsten wire (Goodfellow) and 0.500 

mm nitinol wire (or shape memory alloy (SMA); Dynalloy, Inc.). The counter 

electrode was acetone rinsed stainless steel mesh (McMaster-Carr), and silver 

wire (Goodfellow) served as the reference electrode. 
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2.4.2 Electrochemical Synthesis 

Synthesis was performed using a Hokuto-Denko potentio-galvanostat model 

HA-151 in a conventional three-electrode setup. The working electrode was 

created by winding the smaller diameter tungsten wire around the nitinol core 

with a custom coil winder. A custom test cell was used that allows for ease of 

electrode connection and electrolytic fluid addition and removal. 

The polypyrrole was synthesized using a 3 mA/cm2 excitation for 2 minute 

cycles, which were interrupted with an ethanol wash and drying under nitrogen 

gas. A total of 8 cycles were performed and all films were grown at room 

temperature (approximately 21° C). After the 8 cycles, core removal was 

accomplished by placing the polypyrrole coated core and helix in boiling distilled 

water, thereby contracting the nitinol core to ease pulling out of the core 

physically. Electrode connection to the polymer-metal helix composite actuator 

was created by inserting shorter sections of the core material into each end and 

secured with silicon adhesive. The resulting polypyrrole-metal coil composite 

actuators measured between 1cm and 3cm in length. A schematic of the entire 

process is shown in Fig. 2.9. 

 

2.4.3 Characterization 

The completed actuators are placed back in the test cell, and the cell filled 

with actuation electrolyte solution.  After running tests, the growth process was 

repeated, and the effect upon the polymer analyzed using a data acquisition 

(DAQ) card (National Instruments USB-6009) connected to the potentiostat and 
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to the control circuit for the force sensor (Omega LCL-227G load cell). 

An FEI NanoNova scanning electron microscope (SEM) was used to take the 

surface images. LabVIEW was used to control the potentiostat and record 

response data. Post-processing was performed in SIMULINK. 

Initial creation and subsequent growth and actuation of the polymer-metal coil 

composite actuators follow similar protocol, which is outlined in Fig. 2.9. Initial 

construction uses a custom coil winder to wrap tungsten wire over a nitinol core 

wire. This tungsten helix-wrapped nitinol core acts as the working electrode for 

the initial growth steps. The initial polypyrrole growth consists of 8 cycles of 

electrical excitation in the growth solution, consisting mainly of pyrrole and a 

doping ion, followed by an ethanol wash and nitrogen drying cycle. All growth 

and actuation is performed in a custom test cell that allows for easy electrode 

connection and specific fluid and gas addition and removal. At this point, the 

nitinol core is physically removed after submerging the polypyrrole-coated 

tungsten helix and nitinol core in boiling distilled water. The water is therefore 

above the shape transition temperature of the nitinol core to instigate core 

contraction. This core contraction improves the ease with which the nitinol core 

can be removed to leave a hollow tube of polypyrrole with the tungsten helix 

embedded. Small bits of the core material are slightly inserted back into each 

end of the hollow polypyrrole tube and secured with silicon adhesive. The 

exposed sides of these wire sections act as actuator leads and connection points 

for the completed actuator. The completed actuator is placed back in the test cell 

for actuations and additional growth tests, where the additional growth tests 
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undergo the same growth protocol with the exception of the nitinol core in the 

actuator/working electrode. 

 

2.5 Results and Discussion 

2.5.1 Short-Term Size and Strength 

The SEM surface images in Fig. 2.10 show a clear distinction between the 

smoother texture of the polymer-metal coil composite actuator using sequential 

growth and the more clustered, less-dense, or ‘cauliflower,’ texture of the 

actuator using continuous growth. The cauliflower texture is common in 

continuously grown polypyrrole actuators where monomer diffusion limits the rate 

of polymerization. Greatly increasing the excitation current (by a factor of twelve 

comparing these two growth strategies) increases polymerization rate, but also 

sacrifices polymer structure by increasing undesired oligomer growth. This 

undesired growth is mitigated with the ethanol washes and nitrogen drying, both 

acting to restrict undesired growth and oxidation when increasing the excitation 

current to reduce the growth period. The process of sequential growth aids not 

only in producing denser, smoother polypyrrole films, but allows for production in 

a fraction of the time (tens of minutes versus hours). The additional benefit of 

using sequential growth in this work is that after an actuation cycle, sequential 

growth can be employed again to adjust performance of the actuator system 

within the lifetime of the actuator. 

Experiments were directed at exploring the electrochemical response through 

cyclic voltammetry (CV), as well as the mechanical performance through 
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measuring force output, and both results are shown in Fig. 2.11. To analyze the 

electrochemical response, the sample at each growth stage was cycled once 

between -1 and 1 volts at a rate of 50 mV/s. If this plot exhibited loops at the 

oxidative or reduced peaks where the curve crosses itself, then voltages where 

the intersections occurred were used as the new voltage bounds for CV tests 

lasting at least 200 seconds at 50 mV/s. Analyzing the cyclic voltammagrams for 

each stage of growth for one sample shows both increasing cathodic and anodic 

capacitances. Looking at the right side of the CV plot in Fig. 2.11(a) (positive 

voltage potential), the increase in number of growth cycles results in an increase 

in current density. The left side of the plot (negative voltage potential) also shows 

a magnitude increase in current density, although in the negative direction. The 

increase in negative potential voltage magnitude combined with the increase in 

current density (while keeping a similar curve shape) results in a larger anodic 

capacitance. Both anodic and cathodic capacitances increase, and are displayed 

in Fig. 2.11(b). These capacitances are generally normalized with the actuator 

mass, but the change in mass was not measured since removing and returning 

the actuator from the cell between additional growth cycles could disrupt 

electrochemical measurements, skew comparisons, and negate one of the main 

purposes of the custom test cell. Even small adjustments in electrode spacing 

can affect electrochemical measurements. The manifestation of the increase in 

cathodic capacitance was observed through physical testing on a separate 

sample where a positive step current input of 100 mA resulted in an increase in 

force output. 
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The polymer-metal coil composite actuators were held at a fixed length with a 

slight preload. A 100 mA current step excitation was applied at 5 seconds. Fig. 

2.11(c) shows the results for 1 sample at three different growth stages. All three 

tests exhibit a rise time of approximately 5-6 seconds to reach their steady-state 

force measurements. It is more important to note, though, that increasing the 

number of growth steps increases the force generated with the same excitation 

current. Given that the excitation current had a positive magnitude, this increase 

in force output correlates with the general increase in cathodic capacitance 

displayed by the CV tests performed at different growth steps. More specifically, 

a higher capacitance (created by increasing capacitive polymeric material) allows 

for a higher charge storage within the polymer, which increases ion mobility 

capability. Since the ability of the polymer to deform and produce force is a 

product of mass transfer, more polymeric material will produce more force, but 

also provide more material for ions to move through for polymer chain insertion 

or rejection. This means more time is needed for ion propagation, and therefore 

more time for mechanical response. More testing is being pursued to investigate 

this tradeoff between speed and strength with these polymer-metal coil 

composite actuators grown sequentially. This is all in effort to create an actuator 

system that is not only adjustable for an optimal means, but adjustable by 

individual actuators for specific, independent tasks. 
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2.5.2 Extended Lifetime 

An additional benefit of sequential growth was repairing degradation over 

longer actuation tests. One of the main drawbacks from using conducting 

polymer actuators (especially when comparing to human muscle performance) is 

cycle life. Preliminary tests illustrate that reducing the regrowth time does not 

greatly increase polymer material, and therefore strength, but can be used to 

rectify the decrease in performance over multiple cycles. The initial polymer was 

fabricated with the methods described above and cycled between -1 V and 1 V at 

200 mV/s for 4000 cycles. After 5 cycles, if the cycling results showed the 

behavior looping back upon itself, then the CV test was run for five samples 

between those limits. The 5 cycle CV test was performed again at cycle 4000. 

The amount of growth time used in the initial synthesis was decreased by 75% to 

only be applied for 30 seconds. The results are shown below in Fig. 2.12. 

The results shown in Fig. 2.12 show the evolution from the 5th to the 4000th 

cycle in the left column. In these tests, the earlier cycle is shown in black and the 

later cycle is shown in red. The trend is for the CV curve to decrease in both 

aniodic and cathodic potential as the number of cycles increase. The exception 

here is in Actuation Stage 2 where the curve seems to shift overall behavior in a 

positive current and voltage direction. This is the reverse behavior from the 

previous growth step. The difference before and after a growth stage is 

performed is shown in the right column. The same color scheme for growth cycle 

number is used here, so the overall timeline moves from the 4000th cycle in red 

to the 5th cycle in black after a growth stage. The test progression is shown as 
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going left to right, and then top to bottom in Fig. 2.12 (Actuation Stage 1 -> 

Growth Stage 1 -> Actuation Stage 2 -> Growth Stage 2 -> Actuation Stage 3 -> 

Growth Stage 3). The trends here display an increase in anodic and cathodic 

potential due to the growth. The shift in behavior shown at Actuation Stage 2 is 

the reverse of movement from Growth Stage 1, which is the growth stage directly 

before Actuation Stage 2 is performed. In Growth Stage 1, the actuator CV 

behavior shifts in both a negative current density and negative potential direction. 

This is likely due to a shift in the working electrode within the test cell that 

corrects itself during the next actuation stage. The comparison can still be seen 

that the growth increases the area of the CV curve while still retaining the same 

shape. The curve shifts back to the original position in Actuation Stage 2, and the 

CV curve shows a decrease in area as the actuation cycles are increased. 

 

2.6 Conclusion 

The ability to adjust performance and regrow a polymer during its lifetime 

advances both the field of polymers and the field of actuators. The method of 

sequential growth has been applied to a metal helix geometry and tested over 

multiple growth and actuation cycles to exhibit an increase in capacitance and 

force output, or strength. Specifically here, applying sequential growth to a metal 

helix actuator geometry, and then allowing additional growth after periods of 

actuation (using the sequential growth method, again) increases the similarity 

between artificial and actual muscles. 
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Figure 2.1. The testing cell apparatus adapted from [16]. The polypyrrole actuator 
is encapsulated in a tube to hold the electrolyte, is attached to a lever to measure 

strain, and is controlled with a computer. 

 

 

 

Figure 2.2. Custom test cell design with a glass tube capped with Delrin pucks 
and sealed with rubber O-rings and held with bolts and nuts. 
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Figure 2.3. The custom testing setup to measure displacement, force, or both 
displacement and force simultaneously. 

 

 

 

Figure 2.4. Design for the custom test apparatus with a view of the front section. 
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Figure 2.5. Design for the custom test apparatus with a view of the rear section. 

 
 
 
 
 
 

 

Figure 2.6. Concept design for the custom test apparatus input flow control. The 
separate flow tubes are kinked or unkinked by servo motors. 
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Figure 2.7. Construction for the custom test apparatus with a view of the front 
section. 

 
 
 
 

 

Figure 2.8. Construction for the custom test apparatus with a view of the rear 
section. 
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Figure 2.9. The entire initial synthesis process is described. (A) 50 µm tungsten 
wire is wrapped around the 500 µm nitinol wire as a helix; (B) the polymer is 
synthesized with the electrodes placed in the growth solution for 2 minutes at 

room temperature; (C) the growth solution is drained and the polymer rinsed with 
ethanol (EtOH); (D) the cell is dried with nitrogen gas, and B,C, and D are 

repeated eight times; (E) the working electrode now coated with polypyrrole is 
removed from the test cell; (F) the working electrode is placed in boiling distilled 

water to activate the nitinol core and contract; (G) the working electrode is quickly 
removed from the boiling distilled water and the contracted nitinol core removed; 

(H) smaller sections of the core material are inserted into each side of the 
polymer-metal tube; (I) the electrode sections are attached using silicon adhesive 

to complete actuator construction; (J) an actuation program is performed and 
then the entire system can move from (J) to ((B),(C),(D)) and back as needed for 

optimization. Diagram format adapted from [19]. 

 

 

 
Figure 2.10. SEM photographs of polypyrrole metal-coil composite actuators that 
have been synthesized using (A) sequential growth and (B) continuous growth. 
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Figure 2.11. These plots show the change in capacitance and force output over 
multiple growth cycles. (A) shows the 5th cycle of the cyclic voltammagram for 

multiple growth steps showing an increase in capacitance. (B) shows the 
cathodic and anodic capacitances for the CV tests displayed in (A). (C) shows 
the force output for a sample during multiple growth cycles (adapted from [20]). 
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Figure 2.12. Cyclic voltammetry tests for performance repair tests. The plots on 
the left show the 5th cycle for the sample in black, and the 4000th cycle in red for 
the same sample. The plots on the right show the 4000th cycle in red, and the 5th 
cycle of the same sample after a decreased growth stage has been performed. 
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CHAPTER 3  

 

EXTENDED CONTROL: OPEN-LOOP CONTROL AND OPTIMAL 

PERFORMANCE PREDICTION FOR SEQUENTIALLY GROWN 

POLYPYRROLE-METAL COIL COMPOSITE ACTUATORS 

 

3.1 Abstract 

Electroactive polymer actuator systems have demonstrated performance and 

behavior similar to human muscle, especially with the recent development of 

sequential growth cycles during normal operation. The ability to grow sequentially 

presents a need for multiple growth stage modeling and performance 

optimization. This work uses simplified control algorithms to identify pertinent 

model parameters and predict the amount of additional growth needed to reach 

an optimal polymer actuator system performance. Performance is determined by 

an algorithm that uses frequency analyses to assign actuator speed and strength 

values. The optimal amount of growth selection is dependent upon the chosen 

weighting value. The simplified model accurately predicts the optimal amount of 

growth to within one stage of growth. 
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3.2 Introduction 

Polypyrrole actuators have emerged as a viable actuator option for a range of 

robotic applications [1-5] and artificial muscles [6-9]. They have achieved 

stresses over 20 MPa, strains over 20 %, and strains rates over 10 %s-1 [10-14]. 

Electroactive polymer (EAP) actuators have not reached the strain and strain 

rates of human muscle, but do exhibit higher stresses and power densities [15]. 

Recent advances in polypyrrole actuator systems permit additional growth cycles 

during actuation cycles [16]. Multiple growth cycles allows for an artificial muscle 

actuation technology that can be adjusted over its lifetime, but also complicates 

the modeling and control of the actuator system. This paper presents a way in 

which to harness the multiple growth steps to achieve an optimal artificial muscle 

actuation system by analyzing and predicting performance over multiple growth 

cycles using a simplified actuator model. 

Current models for the chemical-electrical system of polypyrrole actuators can 

be generally grouped into two categories: an admittance/impedance circuit 

model, and a multiple segment transmission line model. The 

admittance/impedance circuit model was first presented as a single loop that 

contains a voltage source, resistances for the electrolyte, electrodes and ion 

diffusion, a bulk capacitance, and a double-layer capacitance to represent the 

boundary between the polymer and the electrolyte solution [17]. The model may 

be simplified by neglecting the double-layer capacitance, due to its quick 

charging time compared to the rest of the system [18]. This model was used for 

robust control [19, 20] and expanded specifically for polypyrrole metal-coil 
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composite actuators [8].  

Multiple segment transmission line models evolved by starting with an 

impedance model and splitting the impedance into multiple resistances and 

capacitances in an effort to more accurately model the electron (and resulting 

ion) transport and storage in the polymer system. The transmission line models 

allow for modeling polymer systems in multiple dimensions and for incorporating 

certain traits more specifically, such as charge transport, charge distribution, and 

rate limit effects [3, 21-26]. The polymer actuator system includes the polymer 

material, electrodes, and electrolytic solution. 

Given the recent development that polypyrrole-metal coil composite actuator 

systems that can regrow during their lifetime, no model has been created that 

accurately represents the behavior of these actuators over multiple growth 

cycles. Creating such a model to cover multiple growth steps multiplies any 

problems found with models of a single stage of growth. Since nothing is known 

about the polymer evolution over multiple growth cycles, each growth step model 

needs to be initially treated like a completely different actuator system. This work 

presents a simplified model and algorithm to monitor performance of the actuator 

system, and determines the ideal amount of growth required to produce the 

optimal actuator for the desired performance metric. First, a simplified model for 

the polymer actuator system is constructed separating the electric and 

mechanical systems. This allows parameter identification using recursive least 

squares and state estimation algorithms. Once parameters are identified, the 

state-space representation can be formulated and a frequency analysis used in 
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conjunction with a performance cost equation to determine if the optimal amount 

of growth has been achieved on a mechanical performance basis. 

 

3.3 Experimental Setup 

The polypyrrole-metal coil composite actuators were created by combining 

previous compositions and geometries. The actuators were synthesized, 

actuated, tested, and re-grown through the use of a custom test cell.   

 

3.3.1 Conducting Polymer Actuator Structure and Synthesis 

The polypyrrole-metal coil composite actuators were galvanostatically 

synthesized in a three-electrode cell (Fig. 3.1) containing an electrolytic solution 

consisting of 0.25 mol dm-3 polypyrrole, 0.2 mol dm-3 tetrabutylammonium 

tetrafluoroborate (TBABF4), and methyl benzoate. The working electrode was a 

0.250 mm diameter nitinol wire wrapped with a 0.050 mm tungsten wire in a 

helical geometry. The counter electrode was stainless steel mesh, and the 

reference electrode was silver wire. Synthesis consisted of 8 sequential cycles; 

each with a galvanostatic growth step, an ethanol rinse step, and a nitrogen gas 

drying step (as outlined for polypyrrole film actuators in [27]). Each galvanostaic 

growth step was performed at 0.001 A for 120 seconds. After the conclusion of 

the eighth growth cycle, the actuator was heated in boiling distilled water to make 

the nitinol core contract and ease core removal. The remaining polypyrrole 

cylinder with the embedded tungsten helix is completed as an actuator by 

inserting small lengths of core metal in each end to act as electrical leads, and 
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secured with silicon adhesive. The synthesis scheme is shown in Fig. 3.1. 

The actuation solution consisted of an aqueous solution of 1.0 mol dm-3 of 

sodium tetrafluoroborate (NaBF4). Additional growth steps between actuation 

cycles use the same electrolytic growth solution, galvanostatic excitation and 

time, and rinse and drying protocol. Electrical excitation was controlled with a 

Hokuto-Denko HA-151 potentio-galvanostat, and data recorded using LabVIEW.  

All chemicals were obtained from Sigma-Aldrich and received as-is, except 

for the pyrrole which was distilled and stored at approximately 5°C. Electrode 

materials were obtained from Goodfellow, except for the stainless steel mesh 

which was obtained from McMaster-Carr and rinsed with acetone before use. All 

growth and tests were performed at room temperature. 

 

3.3.2 Test Cell Setup 

The test cell is made from a glass tube capped on the top and bottom with a 

rubber O-ring and Delrin puck. The Delrin pucks have holes to accommodate the 

exchange of solutions for facilitating multiple growth and actuation cycles. The 

cell is held together by three screws and thumb nuts, allowing for ease of 

removal and replacement of actuators (Fig. 3.2). During a test routine, the 

electrodes are sealed in the cell and the eight initial synthesis steps performed. 

At this point, the working electrode, coated in polypyrrole, must be removed from 

the cell so that the nitinol core can be removed from the tungsten helix of the 

working electrode. Once the polypyrrole and embedded tungsten helix actuator 

have the electrical leads affixed, the actuator is returned to the cell and the 
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testing actuation and additional growth cycles are performed.  

 

3.3.3 Displacement Measurement System 

Actuator displacement was measured using an LVDT and the signals 

acquired using a National Instruments USB-6009 data acquisition card. A length 

of fishing line passed over a pulley connected the actuator to the floating core 

LVDT. The setup allows the addition and removal of counterweights. The tests 

here were performed with a load of 5grams. Data were collected in LabVIEW and 

post-processing was performed using Simulink and MATLAB (Fig. 3.3). 

 

3.4 Modeling 

The actuator system was modeled by first determining the electrochemical 

response of the polymer, and then analyzing the mechanical response.  

 

3.4.1 Electrical System 

A widely-accepted circuit model for polypyrrole actuators was originally 

introduced in [17]. The electrical circuit model was adjusted by including a 

leakage current and ignoring the double layer capacitance due to its quick 

charging time [28]. This simplified circuit model for a polypyrrole actuator can 

also be found by first starting with a more detailed electrical model specifically for 

polypyrrole-metal coil composite actuators [8]. By neglecting the effects of the 

quick-charging double layer as well as the inductor, the model can be simplified, 

eventually arriving at a single loop. If the voltage source is exchanged with a 
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current source in parallel with a resistance, an equivalent electrical model is 

achieved.  

The simplified circuit model covers the electric domain, and considering the 

simplification in Fig. 3.4a, the model can incorporate characteristics of the electric 

connectors and electrolytic solution, as well as a component or a superimposed 

resistance. The combination of the separate elements in this manner should 

allow for an easier transition to a more complex model in the future. 

 

3.4.2 Stress-Strain Relationship 

The charge build-up in the polymer directly creates a change in displacement 

by inducing a movement of ions into, or out of, the polypyrrole polymer chain. 

The proportional relationship between charge density (ρ) and electrochemical 

strain (ε) is described by the coefficient, α in Eq. 3.1. 

 

ε=αρ                                         (3.1) 

 

Polypyrrole actuators have been shown to have a viscoelastic response [28]. 

This work utilizes a similar mechanical response model, but includes the 

mechanical response of the embedded metal helix (Fig. 3.5). 

 

3.4.3 Derivation of State Equations 

The combined, simplified model for the actuator system can now be used to 

determine the state-space system. For this purpose, Bond graph analysis (shown 
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in Fig. 3.6) was used to formulate the state-space equations shown in Eq. 3.2.  

 

 

(3.2) 

  

The state-space form of the actuator system using parameter values from Fig. 

3.4 and Fig. 3.5 is shown in Eq. 3.2. For the states, Qc represents the amount of 

charge in the volume capacitance in the electrical domain, x1 is the overall 

actuator displacement, and its derivative is the actuator velocity. The other 

displacement value, x2, represents the polymer elasticity element in the 

mechanical model. The electrical parameters are shown in Fig. 3.4d. The 

actuator volume and mass are V and m, respectively, and α is the charge-to-

strain coefficient. Aligning with the nomenclature in Fig. 3.5, k1 is the coil spring 

constant and polymer elasticity parameter, k2 is the polymer elasticity element 

parameter, and b is the coil damping parameter. 

 

3.5 Open-loop Control 

Open-loop control of the polymer actuator system allows the parameters of 

the simplified model to be identified. First the response in the electrical domain is 

determined, and these values are used in predicting the states that could not be 

=

=
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directly measured. The unmeasured states are then used to determine the 

parameters of the mechanical system model. 

Three different samples were fabricated through identical means. All three 

samples possessed the same geometry, except for length. The samples are 

labeled Sample A, Sample B, and Sample C and had lengths of 15 mm, 27 mm, 

and 12 mm, respectively. 

 

3.5.1 Electrical Parameter Identification 

The electrical model parameters are determined first, since both the input 

current and input voltage can be easily measured, and the electrical system 

influences the mechanical output but the mechanical system does not influence 

the electrical system [28].  

The electrical system model is used to describe the relationship between the 

input voltage and current. This relationship can be analyzed at multiple time 

steps to create an array of data values. A recursive least squares algorithm is 

applied to solve for the electric system parameters (outlined in [16]). Although it 

is possible that the electrical system parameters can change over time, the 

change is expected to be minute over the time period covered by the 

identification data. 

 

3.5.2 Estimating Unknown States 

Referring to the system model, the determined electrical system parameters, 

along with the known inputs and displacement output, can be used to determine 
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the unmeasurable states, Qc and x2, which represent the charge buildup in the 

volume capacitance of the polymer, and the displacement of the polymer 

elasticity element, respectively. The unknown state formulation is in Fig. 3.7. 

 

3.5.3 Mechanical System 

The parameters of the mechanical system are determined by a recursive 

least squares algorithm, similar to the electrical system, with the inclusion of the 

unmeasurable states. Fig. 3.8 shows the process flow formulation of the 

mechanical domain recursive least squares algorithm. First, the overall 

displacement, x1, and its first and second derivatives are determined, along with 

the polymer elasticity displacement, x2, at one moment in time. These data are 

collected at two additional time steps and then rearranged in the matrix format 

shown in the bottom of Fig. 3.8 to solve for the unknown mechanical model 

parameters. These parameters are then fed through low pass filters. Once all of 

the model parameters have been determined, they can be used in the state-

space formulation frequency domain analysis. 

 

3.6 Frequency Domain Analysis 

3.6.1 Experimental Frequency Analysis 

The frequency response of each growth stage was analyzed by determining 

the sinusoidal response at each half decade value of sinusoidal current input. An 

example of the raw data is shown in Fig. 3.9. 

The raw data required some smoothing and filtering to condition before 
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results were taken, but the raw data in Fig. 3.8 illustrate the start of a lag in 

phase. 

The Bode plot response shows negative magnitude values at the lowest 

frequencies. The open-loop response for Sample A in Fig. 3.10 follows a linear 

trend with consistent response up to approximately 10-2 Hz. The linear trend 

decreases to a negative slope of 20 dB per decade. At approximately 101 Hz, the 

response takes another decrease in slope to approximately -40 dB per decade. 

The phase response shows an initial increase in phase lag just before 10-3 Hz 

with pauses around -90 degrees, and then decreases in value again to -180 

degrees at the maximum frequency tested. 

Although the lower frequency response shows a slightly lower magnitude 

response, the general Bode plot response from Sample A is also exhibited by 

Sample B in Fig. 3.11. Sample C also shows a similar Bode plot magnitude 

output at the lower frequencies, and two sequential linear slope decreases as the 

frequency value increases in Fig. 3.12. 

The general behavior from the Bode plot points was further explored by fitting 

a series of straight lines to the points and determining a representative Bode plot 

curve. The curve fitting process is shown in Fig. 3.13. 

Once an appropriate Bode plot curve was fit to the experimental data, the 3 

dB offset magnitude and corresponding frequency was determined. The 3 dB 

cutoff acts as a threshold at which the open-loop performance decreases a 

noticeable amount. The magnitude value associated with the 3 dB cutoff serves 

as the relative polymer strength for the respective growth stage. The 
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corresponding frequency at which the 3 dB cutoff strength is found serves as the 

relative polymer speed capability for the respective growth stage. The cutoff 

frequency line creation is shown in Fig. 3.14. 

This process of performing Bode plot frequency analysis, determining a fitting 

Bode curve, and establishing the 3 dB cutoff magnitude and frequency was 

repeated for each growth stage.  

 

3.6.2 Model Based Frequency Analysis 

The identification of all of the model parameters allows a Bode analysis at the 

end of each actuation cycle. Each Bode analysis is used to determine the 3 dB 

offset and corresponding phase shift at which the 3 dB offset occurs. These two 

factors are used to determine the actuator performance at the growth level 

analyzed. The magnitude offset represents the strength of the polymer, and the 

cutoff frequency represents the speed output of the polymer actuator. The Bode 

plot results created from a model based upon the parameters calculated during 

the open-loop experimental testing are shown below. 

The model based Bode plot for Sample A in Fig. 3.15 shows a flat linear 

response with a negative magnitude value at the lower frequencies. 

Approximately at a frequency of 10-2 Hz the model based response decreases 

with a slope of -40 dB per decade. The phase response decreases at 

approximately the same time as the experimental results do, but do not stop until 

-180 degrees are reached, unlike the experimental data which slow lag at -90 

degrees before reaching -180 degrees. 
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The model based Bode plot response for Sample B in Fig. 3.16 also starts 

with a flat linear response and decreases with a slope of -40 dB per decade at 

approximately 10-2 Hz. The phase response also decreases at approximately the 

same frequency as the experimental data, and then straightens out at -180 

degrees. The behavior is also shown with the model based Bode plot of Sample 

C in Fig. 3.17.  

The model based Bode plots follow the initial response from the experimental 

based Bode plots with a flat linear response at a negative magnitude value at the 

lower frequencies. Both the model and experimental Bode plots decrease in 

magnitude at around 10-2 Hz, but the difference is the amount of decrease. The 

experimental Bode plots make a slope of -20 dB per decade, but then another 

decrease at a higher frequency. The model based Bode plots make a slope of -

40 dB per decade at the cutoff frequency. The model based Bode plots show an 

increase in initial magnitude as the number of growth stages increase, and a 

decrease in cutoff frequency as the number of growth stages increase. This 

makes sense since an increase in polymer thickness results in a stronger and 

slower actuator. For example, an increased magnitude value and a decreased 

cutoff frequency value would represent an actuator that has grown stronger and 

slower compared to previous tests. This is compared on the basis of a consistent 

load and input level between actuation tests. A larger 3 dB magnitude value 

represents an actuator that has displaced the load further, and a larger cutoff 

frequency, or bandwidth value, represents the output of the actuator is lagging 

further from the input and is therefore considered to be slower. The difference in 
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experimental and model data is also mirrored with the phase response as the 

experimental data show a slight pause in the phase lag value decreasing at -90 

degrees before meeting the model data that decreased in phase lag value 

directly to -180 degrees. 

 

3.6.3 Performance Cost Equation 

The speed and magnitude values are combined in the cost equation to 

produce a cost performance value. The performance cost is determined relative 

to a weighting value, ‘w.’ The magnitudes for the open-loop tests were all 

negative, but initial tests inferred that a regression to a point with no growth 

would be at approximately -25 dB. Therefore, this was used as the Bode plot 

magnitude basis. Initial tests also showed that samples could all maintain a 10-3 

Hz input current without reaching the 3 dB cutoff magnitude. The bandwidth 

values were then selected as the value multiplied by 13. These steps make each 

magnitude and bandwidth value comparable with more similar orders of 

magnitude for the performance cost evaluation equation shown in Eq. 3.3. 

 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐶𝑜𝑠𝑡 =  
(𝑤)

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
+  

(1 − 𝑤)

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
 (3.3) 

 
 

 

  
The cost function analysis provides a performance cost value for each growth 

cycle dependent upon the chosen weighting value. The next step was to 

compare multiple performance values. 

 Once three performance values were determined, a parabola was fitted 



55 
 

 
 

with number of growth cycles being on the x-axis and the performance values on 

the y-axis. The minimum of a parabola would have the lowest cost and therefore 

be the optimal growth amount value per the chosen weighting value. Once the 

parabola is fitted to the three performance data points, the minimum of the 

parabola is determined. If the minimum is determined to be at a growth value 

less than the most recent growth number, then it is determined that no more 

additional growth would improve performance given the weighting value. If the 

minimum is determined to be greater than the most recent growth value, then it is 

determined that additional growth will yield a more optimal actuator performance. 

If additional growth cycles are employed, the curve optimization is repeated, but 

only the three most recent performance values and growth cycle numbers are 

used.  

 

3.7 Results and Discussion 

First, the model parameters determined by the recursive least squares 

algorithms are analyzed, and the performance growth optimization are analyzed.  

 

3.7.1 Parameter Evolutions 

The parameter identification algorithms first reach steady-state values with 

the electrical model, and then these values are used to determine the mechanical 

system values in a cascade behavior. The electrical domain values generally 

have clear results, as can be seen in the example below. 

This electrical parameter rises from zero to the initial guess of 50 during the 
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first 5 seconds of operation. This is when the RLS algorithm initiates, and the 

model parameter value is reached and held since a noticeable change in value is 

not reached to change the model parameter values. An example is shown in Fig. 

3.18. The mechanical domain values were not always quite as clear. This is likely 

due to the large range in input frequencies tested. The RLS has a specific delay 

used that is meant to be large enough to capture the behavior and not be greatly 

subjected to noise, and also short enough to capture discrete changes in 

behavior. At the lower frequencies tested, the RLS equations can be populated 

with very similar values providing singularities in the matrix inversions. Such an 

example is shown in Fig. 3.19. Here, the mechanical system value was taken to 

be approximately 5x106 and this is where the RLS response returns. 

The parameter evolution over the multiple growth cycles is shown in Fig. 3.20. 

The left column of parameter values in Fig. 3.20 show the electrical system 

parameters at each growth stage for Sample A. The resistances R1 and R2 

exhibit a general increase in magnitude as the number of growth stages 

increases. The volume capacitance, C shows an increase in value for the first 

couple of stages, and then a slight decrease during growth Stages 4 and 5. The 

right column of Fig. 3.20 shows the evolution of the mechanical system 

parameters over multiple growth stages for Sample A. The capacitance values k1 

and k2, and the damping value b generally increases over all stages as the 

number of growth stages increases.  

The parameter resistance values for Sample B shown in Fig. 3.21 also 

increase as the number of growth stages increases. The capacitance parameter 
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takes more of a stepwise approach with slight decreases in value for the third 

and fifth growth stages. All of the mechanical values for Sample B (shown in the 

right column in Fig. 3.21) increase until the fifth growth stage. At this stage, k1 

and k2 slightly decrease while b only slightly increases. 

Unlike the previous two samples, Sample C shows an increase in every 

parameter value as the number of growth stages increases, shown in Fig. 3.22. 

The general increasing trends in the parameters are most likely the result of 

an increase of polymeric material. A thicker polymer would create a higher 

resistance, and allows for a larger electrical capacitance. The trend in the 

mechanical system parameters could be due to the fact that operational 

conditions between growth steps did not fully excite the complete polymer 

response. Although the evolution of the model parameters could not be 

predicted, it indicates that, not only is more research required, but, until these 

polymers are better understood, each growth stage should be treated as a 

unique actuator. 

The parameter evaluation was also performed in a case where the polymer 

actuator was purposely overoxidized. The polymer had a triangular input current 

with an amplitude of one amp and a frequency of 12.5x10-3 Hz. The results 

shown in Fig. 3.23 show an initial convergence for R2, the only electrical system 

parameter that is not determined with additional arithmetic. It then starts to 

increase at approximately 40 seconds and then becomes erratic at about 60 

seconds. This behavior is shown similarly by R1 while the results from the 

capacitance, C, are seen with a closer scale in Fig. 3.24. The capacitance shows 
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an initial convergence up to 20 seconds, and then an increase up to 50 seconds. 

The capacitance also shows erratic behavior after 60 seconds, marking the point 

at which overoxidation has occurred. Further testing with the model evaluation 

can be used to observe and prevent overoxidation.  

 

3.7.2 Frequency Domain Results 

The frequency magnitude plots show the experimental data, the experimental 

data curve fitting, and the model based data for each growth stage of each 

sample. 

The experimental data curve fitting data from Sample A show an initial 

magnitude distribution similar to the experimental data; lower frequency 

magnitudes increase with increasing growth stage and then decrease sooner as 

frequency increases. All growth stages for Sample A produced a close coupling, 

so the curves fit to the experimental data almost overlap as the frequency 

increases, as can be seen in Fig. 3.25. The general experimental data fitting 

model is similar for Sample B in Fig. 3.26, but the curves are more distinct and 

less clustered as the frequency values increase. 

The general experimental data fitting model for Sample C is similar to Sample 

A with the curves clustering closer together less distinctly as the frequency 

values increase. The results from Sample C are shown in Fig. 3.27. 
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3.7.3 Cutoff Frequency Results 

Further analysis of the Bode plots shows the progression of cutoff magnitudes 

and frequencies. The cutoff magnitudes exhibit the general trend of increasing 

with additional growth while the frequencies generally decrease with increasing 

growth cycles. The data from Sample A shown in Fig. 3.28 start with a cutoff 

magnitude of just above 10 dB and rise approximately 4 dB each growth cycle. 

The frequency cutoff starts at approximately 6.4x10-3 Hz and decreases up to 

0.4x10-3 Hz during each growth cycle. 

Sample B has an initial cutoff magnitude of approximately 5.1 dB and rises 

between 0.75 dB and 1.3 dB each growth stage to end up at 8.7 dB. The cutoff 

frequencies for Sample B start at just above 3.7x10-3 Hz and decrease between 

0.1x10-3 Hz and 2.5x10-3 Hz at each growth stage to end up at approximately 

3.15x10-3 Hz. 

The cutoff magnitudes for Sample C start at approximately 13 dB and rise 

between 3 dB and 8 dB during each growth stage. The cutoff frequencies for 

Sample C start at 13-3 Hz and decrease between 0.1x10-3 and 0.7x10-3 Hz during 

each growth stage to end up just below 11.7x10
-3

 Hz. 

Although all of the samples exhibit different ranges for the cutoff magnitudes 

and frequencies, the behaviors are all similar. Even though these cutoff values 

were determined from a fitted Bode plot curve tailored to the experimental data, 

the qualitative behavior is consistent between samples. Next, the cutoff 

magnitudes and frequencies from the model parameters are evaluated. 

The data from the Sample A model start with a cutoff magnitude of just under 
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10 dB and rise approximately 3 dB each growth cycle. The frequency cutoff starts 

at approximately 6.9x10-3 Hz and decreases between 0.3x10-3 Hz and 0.5x10-3 

Hz during each growth cycle. 

Sample B has an initial cutoff magnitude of approximately 4.6 dB and rises 

between 0.4 dB and 0.8 dB each growth stage to end up at 7.2 dB. The cutoff 

frequencies for Sample B start at just above 4x10-3 Hz and decrease between 

0.1x10-3 Hz and 0.3x10-3 Hz at each growth stage to end up at approximately 

3.3x10-3 Hz. 

The cutoff magnitudes for Sample C start at approximately 12 dB and rise 

between 3 dB and 8 dB during each growth stage. The cutoff frequencies for 

Sample C start at 12x10-3 Hz and decrease between 0.5x10-3 and 2.0x10-3 Hz 

during each growth stage to end up just below 7.5x10-3 Hz. 

The model derived cutoff plots exhibits values that are different from the 

experimental data, yet the general behaviors are preserved. This conserved 

trend mirrored between the experimental data and model derived data represents 

the basis for using the model data to determine and predict polymer behavior 

between successive growth stages. 

 

3.7.4 Cost Function-Performance Analysis Comparison 

3.7.4.1 Cost Function-Performance Analysis Experimental Data 

The determined parameter values were next assembled into the state-space 

model for each growth cycle, and the model used in a Bode analysis. The 

performance costs were determined and plotted for the first three growth cycles 
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using a predetermined weighting value of 0.5, which favors strength and speed 

equally. 

Once three performance cost values were determined, the quadratic curve 

fitting algorithm was used to determine a quadratic curve to predict the polymer 

actuator performance over additional growth cycles so the minimum cost could 

be determined. The quadratic curve fitting shows a minimum value, or most 

optimal growth value. The minimum is shown with an upside down triangle in the 

plot below. The entire process is shown in Fig. 3.29. 

First, the performance cost values are determined using the performance cost 

equation and predetermined weighting value. Real-time examples will perform 

the analysis one growth stage at a time, but for initial evaluations, multiple growth 

stages were performed to verify results. In this first example, 5 growth stages 

were performed. The example with five different cost values is shown in Fig. 

3.29. 

The cost performance algorithm is only initially concerned with the first three 

growth stages. The first three growth stages are used to determine a best fit 

parabolic curve. Next, the minimum of the fit parabola is determined and 

represents not only the minimum of the parabola, but a minimum performance 

cost in the growth stage behavior and therefore the most optimal amount of 

growth for the predetermined weighting value. The example in Fig. 3.30 shows a 

minimum performance cost at a growth number of 2.43. 

The actual implementation of this algorithm would instruct the operator to stop 

growth since the optimal amount of growth was already surpassed. For the sake 
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of verifying the example, though, the next growth stage was analyzed. 

With four different performance values available, the cost performance 

algorithm is still only concerned with the three most recent values. These three 

values are used to determine a best fit parabola, and again, the minimum of this 

parabola is determined. In this example, the minimum of the parabola created by 

cost performance values from Stages 2 through 4 was calculated to be 2.3 and 

can be seen in Fig. 3.31. 

This test confirms that the optimal amount of growth has been surpassed, and 

two different trials reiterate that the optimal amount of growth would be at 

approximately 2.4 on the growth scale. This example was taken from an actual 

series of sample tests, and although it helped to explain the use of the cost 

performance algorithm, it also shows that the size of growth steps was so large 

that optimal stages of growth could be surpassed before the first three growth 

steps were achieved to allow proper use of the algorithm. This group of samples 

motivated a smaller growth period for subsequent tests and results from the 

revised growth procedure are shown in Fig. 3.31. 

The cost evaluation algorithm results are first shown for Sample A in Fig. 

3.32. The curve fitted parabolas are shown with dotted lines, and the minimums 

of the fitted curves are displayed with inverted triangles. All three performance 

minimums for Sample A are grouped around the fourth growth stage. 

The performance cost analysis for Sample B in Fig. 3.33 shows an initial 

optimal growth at growth Stage 5. Both additional growth stage performance 

tests show optimal growth at the fourth growth stage. 
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Sample C shows a different optimal growth evolution in Fig. 3.34. The first 

and second optimal growth amounts are around 12 and 6, respectively (not 

pictured in Fig 3.34). The third optimal growth analysis shows an optimal growth 

at just less than five growth stages. Next, the same performance cost analysis 

was performed with the model parameters.  

 

3.7.4.2 Cost Function-Performance Analysis Model Data 

The optimal growth analysis for Sample A shows the optimal growths grouped 

around three as a growth stage value in Fig. 3.35. 

The optimal growth values from the performance cost analysis of the Sample 

B model data are grouped between four and five on the growth stage axis in Fig. 

3.36. 

The cost performance analysis for the model data of Sample C has a large 

initial, optimal performance cost value at almost eight (not pictured in Fig. 3.37), 

and then the additional optimal growth analyses are between three and a half 

and four on the growth axis.  

Next, the cost performance was compared between the experimental and 

model data sets. 

 

3.7.4.3 Cost Function-Performance Analysis All Data 

The experimental and model data for Sample A both provide an initial optimal 

growth value between three and four growth stages, but the experimental data 

are much closer to four while the model data are much closer to three. 
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Performance cost values for Sample A are shown in Table 3.1. Using just the 

model data as a guide would instruct no additional growth at this stage while the 

experimental data would encourage one more growth stage. Either way, an 

additional growth stage was performed during this experiment. The second 

optimal growth value (which uses growth stage information from growth Stages 

2, 3, and 4) is approximately 3.7 from both the experimental and model data sets. 

This optimal growth point would be calculated after the fourth growth stage 

and would therefore instruct no more additional growth for the actuator. 

Nonetheless, an additional growth stage was performed and the resulting optimal 

growth stage is determined to be just above four for the experimental data and 

just below three for the model data. Although, optimal growth is reached after just 

one additional growth stage beyond the three stages needed to start the cost 

values and model data determined optimal growth values are consistently less 

than one growth stage in difference. 

The experimental and model data for Sample B both present an optimal 

growth amount between four and five with the experimental data value being 

closer to five and the model data value closer to four. Both model sets therefore 

recommend additional growth beyond the third growth stage. The second optimal 

growth value determined from the experimental data determines that the 

additional amount of growth is reached at the fourth growth stage. This is 

reiterated by the third optimal growth value determined by the experimental data 

set for Sample B. 

The second optimal growth value determined by the model data set is closer 
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to five and could encourage additional growth from Stage 4 to Stage 5. The third 

optimal growth value is then determined to be four on the growth stage. Again, 

the optimal growth values are different between the experimental and model data 

sets, but they are consistently less than one full growth stage between the 

experimental and model data for Sample B. 

The initial optimal growth stage from both data sets for Sample C recommend 

multiple growth steps needed to reach the optimal amount of growth. The second 

optimal growth value determined by the experimental data set instructs an 

additional stage to five, and then the third optimal growth stage reiterates that 

that stage has been achieved. Both the second and third optimal growth values 

determined by the model values are slightly above 3.5. Sample C shows a large 

difference in optimal growth values between the experimental data set and model 

data set. Following the cost performance analysis using the experimental data 

would have an optimal actuator at five growth stages, and following the model 

data would create an optimal actuator at four growth stages. This means the 

optimal growth values from each data set are different by multiple growth stages, 

but the final amount of growth using each formulation would produce actuators 

separated by one stage of growth. 

All of the previous analyses were performed at a weighting value of 0.5 which 

equally favors the speed and strength values. Additional analyses were 

performed using different weighting values. Decreasing the weighting value from 

0.5 to 0.3 shows a desired increase in optimal growth for Sample A. The third 

optimal growth value from the experimental data would recommend an additional 
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growth stage to six, and the third optimal growth value from the model data would 

reiterate that five is the optimal amount of growth stages. The end stages of 

growth are different between the experimental and model data, but both are 

greater than the desired optimal amount of growth using a weighting value of 

0.5.The difference in weighting value for Sample A is shown in Table 3.2. 

Decreasing the weighting value again shows an increase in desirable amount 

of growth stages. The analysis for Sample A with a weighting value of 0.1 is 

shown in Table 3.2 where the first, second, and third optimal growth values 

would instruct an additional growth stage. 

Next, the weighting value was increased above 0.5. Increasing the weighting 

value favors fewer growth cycles, as can be viewed by the second and third 

optimal growth values for both the experimental and model data with Sample A. 

The anomaly is the first optimal growth value for the experimental data, which 

would instruct additional growth. In this case the model based optimal growth 

values are more consistent and conservative than the experimental based 

optimal growth values. 

The general behavior of decreasing the weighting value and obtaining higher 

amounts of desired growth, and increasing the weighting value to obtain lower 

amounts of desired growth is shown below for Sample B in Table 3.3. 

Decreasing the weighting value to 0.3 shows the desired optimal growth values 

to be six and five for the experimental and model data, respectively. Increasing 

the weighting value to 0.7 describes an actuator that has already reached its 

optimal amount of growth by the third growth stage according to both the 
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experimental and model data.  

A larger weighting value, which greatly favors speed over strength, presents 

an optimal growth between the initial growth and the first additional growth 

stages. The increase in weighting value, which specifies a faster actuator 

response over actuator strength, favors less growth. This is consistent with the 

parameter evolution information that shows that increasing growth generally 

increases both capacitance and resistance. The increase in capacitance allows 

for more charge storage and ion storage, and therefore a higher force output, but 

the increase in resistance and material would slow ion and charge transport to 

achieve the maximal force output. The larger force output therefore requires 

more material and more growth. A lower weighting value should be selected to 

favor strength over speed. 

 

3.8 Conclusion 

The ability of polypyrrole-metal coil composite actuators to regrow during their 

lifetime of operation necessitates a means by which to judge and compare 

performance. This work first looks to better understand how the actuators evolve 

during multiple growth cycles by analyzing experimental Bode plots and using a 

simplified model and determining the model parameters at each growth stage. 

These experimental and model parameters are used in a frequency analysis and 

a performance cost value determined using a specific performance weighting 

value. These performance cost values were compared as the number of growth 

stages was increased between the experimental and model data. The model 
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data with parameters determined during operation acts as an accurate optimal 

growth stage predictor. 

This work will be extended by first implementing shorter growth times in an 

attempt to not surpass the optimal growth level before the optimization algorithm 

can be employed, and then, additional growth times based upon the performance 

prediction curves. Also, the parameter determination algorithms will be used to 

create closed-loop controllers for these nonlinear, polymeric actuators exercising 

multiple growth stages. 
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Figure 3.1. The polypyrrole-metal coil composite synthesis process is illustrated. 
The smaller tungsten wire is wrapped in a helix around the nitinol core material in 

A). Polypyrrole is synthesized on the tungsten/nitinol combination working 
electrode in B) when placed in the growth solution. After a 2 minute growth step, 
the polypyrrole is rinsed with ethanol (EtOH) in C) and dried in nitrogen (N2) gas 

in D). Steps B), C), and D) are repeated in succession eight times. Then the 
polypyrrole-coated tungsten/nitinol working electrode is removed from the cell in 

E) and placed in boiling distilled water in F). This contracts the nitinol core to 
allow for easier removal in G) while still leaving the tungsten helix embedded in 
the polypyrrole. Small core pieces are reinserted in the tips of the actuator in H) 

and affixed with silicon adhesive in I). At this point the initial synthesis of the 
actuator is complete and can be placed back in the cell with actuation solution, in 

J). Additional growth steps involve repeating steps B), C), and D) before 
returning to step J). 

 
 

A)              B)              C)               D)              E)        F)         G)    H)      I)                 J)

+  - +  -+  -
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Figure 3.2. The custom test cell is displayed with two Delrin pucks sealing a 
glass tube chamber and held by three bolts and thumb screws (adapted from 

[16]). 

 
 
 
 
 
 

 

Figure 3.3. The experimental setup for testing polymer actuator displacement, 
and control and analysis with a power source (Galvanostat), data acquisition card 

(DAQ), and laptop with the specified software installed 
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Figure 3.4. Electrical system model. A) shows the circuit model for a polymer 
metal-coil composite actuator, where RCON is the contact resistance between 
the wire helix and the polymer, RP is the polymer bulk resistance, CVP is the 

bulk volumetric capacitance of the polymer, RD is the diffusion resistance, LP is 
the inductance of the polymer metal-coil system, CDLP is the double layer 

capacitance at the polymer and electrolyte boundary, CDLC is the double layer 
capacitance at the counter electrode and electrolyte boundary, and RELC is the 

electrolyte resistance model reduction. The inductance and double layer 
capacitance, CDLP, are neglected to get the circuit model in B). The series 

combinations are made to get the simplification in C), and the voltage source is 
replaced with a current source and resistance to get the simplified circuit in D) 

(modified from [21]). 
 

 

 

 

Figure 3.5. Model shown for the mechanical system including the polymer 
response and the embedded metal helix influence [16]. The state x1 is shown as 
the overall displacement. The state x2 represents the change in displacement of 

the polymer elasticity element. 
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Figure 3.6. Bond graph for polymer model. The dashed line represents the 
connection between the mechanical and electrical domains. 

 

 

 

Figure 3.7. Unknown state estimation algorithm is shown. V is the polymer 
volume. 

 

0
S

f
: Polymer

Strain

1

C:Coil Stiffness

I:Mass

R:Coil Damping

C:Polymer 

Stiffness

S
f
: I(t)

1

C:Polymer Capacitance

R:Polymer 

Resistance

Mechanical 

Domain

Electrical 

Domain

0
R:Input 

Control 

Resistance

I

State Calculation

y Integrator



73 
 

 
 

 

Figure 3.8. The mechanical system recursive least squares algorithm. 

 
 
 
 

 

Figure 3.9. Raw data from a frequency test. The current input is shown in teal, 
and the resulting output is shown in dark blue. 
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Figure 3.10. Experimental testing Bode plot points for Sample A. The top plot, A), 
shows the magnitude response from the Bode analysis while the bottom plot, B), 

shows the phase response for the Bode analysis. 
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Figure 3.11. Experimental testing Bode plot points for Sample B. The top plot, A), 
shows the magnitude response from the Bode analysis while the bottom plot, B), 

shows the phase response for the Bode analysis. 
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Figure 3.12. Experimental testing Bode plot points for Sample C. The top plot, A), 
shows the magnitude response from the Bode analysis while the bottom plot, B), 

shows the phase response for the Bode analysis. 
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Figure 3.13. Magnitude Bode plot model fitting example using straight line 
segments to fit the data. The resulting curve fit is shown as a violet line. 

 
 
 

 

Figure 3.14. Bode plot 3 dB magnitude cutoff frequency and magnitude 
formulation. The magnitude is the value that is 3 dB below the initial values, and 

the cutoff frequency is the frequency at which the 3 dB cutoff magnitude is 
reached. 
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Figure 3.15. Model parameter based Bode plot curve fit for each growth stage 
with Sample A. The top plot, A), shows the magnitude response from the Bode 

analysis while the bottom plot, B), shows the phase response for the Bode 
analysis. 
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Figure 3.16. Model parameter based Bode plot curve fit for each growth stage 
with Sample B. The top plot, A), shows the magnitude response from the Bode 

analysis while the bottom plot, B), shows the phase response for the Bode 
analysis. 
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Figure 3.17. Model parameter based Bode plot curve fit for each growth stage 
with Sample C. The top plot, A), shows the magnitude response from the Bode 

analysis while the bottom plot, B), shows the phase response for the Bode 
analysis. 
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Figure 3.18. Model parameter evaluation for an electrical system parameter. 

 
 
 
 

 

Figure 3.19. Model parameter evaluation for a mechanical system parameter. 
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Figure 3.20. Model parameter evolution over multiple growth cycles for Sample 
A. 

 
 

 

Figure 3.21. Model parameter evolution over multiple growth cycles for Sample 
B. 
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Figure 3.22. Model parameter evolution over multiple growth cycles for Sample 
C. 
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Figure 3.23. Electrical system resistance value results from a purposefully 
overoxidizing experiment. 

 
 
 
 

 

Figure 3.24. A close up of the electrical system results from a purposefully 
overoxidizing experiment to show the capacitance value results. 
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Figure 3.25. Bode plot magnitude results for open-loop control of Sample A. 

 
 
 

 

 
Figure 3.26. Bode plot magnitude results for open-loop control of Sample B. 
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Figure 3.27. Bode plot magnitude results for open-loop control of Sample C. 

 
 
 

 

Figure 3.28. The resulting cutoff magnitudes and frequencies from the frequency 
analyses for each growth stage of each sample experimental and model data 

(denoted with the ‘M’). 
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Figure 3.29. Performance cost function evaluation example using five 
performance values. 

 
 

 

 

Figure 3.30. Performance cost function evaluation example. The minimum of the 
curve is determined for the quadratic curve fitted for the three most recent 

performance cost values. 
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Figure 3.31. The minimum of the curve is determined for the quadratic curve 
fitted for the three most recent performance cost values. 

 

 

 

Figure 3.32. The performance cost evaluation for Sample A with a weighting 
value of 0.5. The performance values are shown with blue dots. The minimum of 
the curve is determined for the quadratic curve fitting for each sequential set of 

three performance cost values, and is shown with an inverted triangle with a 
color matching the quadratic curve. 
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Figure 3.33. The performance cost evaluation for Sample B with a weighting 
value of 0.5. The minimum of the curve is determined for the quadratic curve 
fitting for each sequential set of three performance cost values, and is shown 

with an inverted triangle. 
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Figure 3.34. The performance cost evaluation for Sample C with a weighting 
value of 0.5. The minimum of the curve is determined for the quadratic curve 
fitting for each sequential set of three performance cost values, and is shown 

with an inverted triangle. 
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Figure 3.35. The performance cost evaluation for Sample A model data with a 
weighting value of 0.5. The minimum of the curve is determined for the quadratic 

curve fitting for each sequential set of three performance cost values, and is 
shown with an inverted triangle. 
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Figure 3.36. The performance cost evaluation for Sample B model data with a 
weighting value of 0.5. The minimum of the curve is determined for the quadratic 

curve fitting for each sequential set of three performance cost values, and is 
shown with an inverted triangle. 
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Figure 3.37. The performance cost evaluation for Sample C model data with a 
weighting value of 0.5. The minimum of the curve is determined for the quadratic 

curve fitting for each sequential set of three performance cost values, and is 
shown with an inverted triangle. 

 

 

Table 3.1. The performance cost evaluation for Samples A, B, and C: 
experimental and model data with a weighting value of 0.5. 

Sample 
Weighting  

Value 
Performance 

Cost Value 
1 2 3 

A 0.5 
Experimental 3.9 3.7 4.3 

Model 3.2 3.7 3.6 

B 0.5 
Experimental 4.8 3.9 3.8 

Model 4.2 4.8 4.0 

C 0.5 
Experimental 12.3 6.3 4.6 

Model 7.5 3.6 3.5 
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Table 3.2. The performance cost evaluation for Sample A: experimental and 
model data with weighting values of 0.3, 0.1, and 0.7. 

Sample 
Weighting  

Value 
Performance 

Cost Value 
1 2 3 

A 0.3 
Experimental 3.7     4.4     5.9 

Model 3.5     4.6     4.6 

A 0.1 
Experimental 3.6     5.3     6.9 

Model 3.6     5.2     5.8 

A 0.7 
Experimental 5.2     3.2     1.4 

Model 1.6     1.8     2.8 

 

 

Table 3.3. The performance cost evaluation for Sample B: experimental and 
model data with weighting values of 0.3 and 0.7. 

Sample 
Weighting  

Value 
Performance 

Cost Value 
1 2 3 

B 0.3 
Experimental 4.3     7.1     6.4 

Model 4.5    14.8     5.1 

B 0.7 
Experimental 2.3     2.5     2.7 

Model 3.3     2.8     3.1 

 

 

  



95 
 

 
 

3.10 References 

[1] G. M. Spinks, G. G. Wallace, J. Ding, D. Zhou, B. Xi, and J. Gillespie, 
"Ionic liquids and polypyrrole helix tubes: bringing the electronic Braille 
screen closer to reality," in Smart Structures and Materials, 2003, pp. 372-
380. 

 
[2] J. D. Madden, N. A. Vandesteeg, P. A. Anquetil, P. G. Madden, A. Takshi, 

R. Z. Pytel, et al., "Artificial muscle technology: physical principles and 
naval prospects," Oceanic Engineering, IEEE Journal of, vol. 29, pp. 706-
728, 2004. 

 
[3] T. Shoa, J. D. Madden, C.-W. E. Fok, and T. Mirfakhrai, "Rate limits in 

conducting polymers," Advances in Science and Technology, vol. 61, pp. 
26-33, 2008. 

 
[4] Y. Wu, D. Zhou, G. M. Spinks, P. C. Innis, W. Megill, and G. G. Wallace, 

"TITAN: a conducting polymer based microfluidic pump," Smart Materials 
and Structures, vol. 14, p. 1511, 2005. 

 
[5] G. Alici and N. N. Huynh, "Predicting force output of trilayer polymer 

actuators," Sensors and Actuators A: Physical, vol. 132, pp. 616-625, 
2006. 

 
[6] R. Baughman, "Conducting polymer artificial muscles," Synthetic Metals, 

vol. 78, pp. 339-353, 1996. 
 
[7] E. Smela, "Conjugated polymer actuators for biomedical applications," 

Advanced Materials, vol. 15, pp. 481-494, 2003. 
 
[8] Y. Tadesse, R. W. Grange, and S. Priya, "Synthesis and cyclic force 

characterization of helical polypyrrole actuators for artificial facial 
muscles," Smart Materials and Structures, vol. 18, 2009. 

 
[9] T. W. Secord and H. H. Asada, "A humanoid foot with polypyrrole 

conducting polymer artificial muscles for energy dissipation and storage," 
in Robotics and Automation, 2007 IEEE International Conference on, 
2007, pp. 2904-2909. 

 
[10] S. Hara, T. Zama, W. Takashima, and K. Kaneto, "Polypyrrole-metal coil 

composite actuators as artificial muscle fibres," Synthetic Metals, pp. 47-
55, 2004. 

 
[11] S. Hara, T. Zama, W. Takashima, and K. Kaneto, "Free-standing 

polypyrrole actuators with response rate of 10.8%s-1," Synthetic Metals, 
vol. 149, pp. 199-201, 2005. 



96 
 

 
 

[12] S. Hara, T. Zama, W. Takashima, and K. Kaneto, "TFSI-doped polypyrrole 
actuator with 26% strain," Journal of Materials Chemistry, vol. 14, pp. 
1516-1517, 2004. 

 
[13] P. A. Anquetil, D. Rinderknecht, N. A. Vandesteeg, J. D. Madden, and I. 

W. Hunter, "Large strain actuation in polypyrrole actuators," in Proc. of 
SPIE Vol, 2004, p. 381. 

 
[14] J. Ding, L. Liu, G. M. Spinks, D. Zhou, G. G. Wallace, and J. Gillespie, 

"High performance conducting polymer actuators utilising a tubular 
geometry and helical wire interconnects," Synthetic Metals, pp. 391-398, 
2003. 

 
[15] I. W. Hunter and S. Lafontaine, "A comparison of muscle with artificial 

actuators," in Solid-State Sensor and Actuator Workshop, 1992. 5th 
Technical Digest, IEEE, 1992, pp. 178-185. 

 
[16] J. Sarrazin and S. A. Mascaro, "Sequential growth and monitoring of a 

polypyrrole actuator system," in SPIE Smart Structures and Materials+ 
Nondestructive Evaluation and Health Monitoring, 2014, pp. 90563L-
90563L-11. 

 
[17] J. D. W. Madden, "Conducting polymer actuators," PhD, Massachusetts 

Institute of Technology, 2000. 
 
[18] P. G. A. Madden, "Development and modeling of conducting polymer 

actuators and the fabrication of a conducting polymer based feedback 
loop," PhD, Massachusetts Institute of Technology, 2003. 

 
[19] A. A. A. Moghadam, K. Torabi, M. Moavenian, and R. Davoodi, "Dynamic 

modeling and robust control of an L-shaped microrobot based on fast 
trilayer polypyrrole-bending actuators," Journal of Intelligent Material 
Systems and Structures, vol. 24, pp. 484-498, 2013. 

 
[20] Y. Fang, X. Tan, and G. Alici, "Robust adaptive control of conjugated 

polymer actuators," Control Systems Technology, IEEE Transactions on, 
vol. 16, pp. 600-612, 2008. 

 
[21] J. D. Madden, P. G. Madden, and I. W. Hunter, "Conducting polymer 

actuators as engineering materials," in Proceedings of SPIE, 2002, p. 176. 
 
[22] J. F. Rubinson and Y. P. Kayinamura, "Charge transport in conducting 

polymers: insights from impedance spectroscopy," Chemical Society 
Reviews, vol. 38, pp. 3339-3347, 2009. 

 
[23] T. Shoa, J. D. Madden, N. R. Munce, and V. Yang, "Analytical modeling of 



97 
 

 
 

a conducting polymer‐driven catheter," Polymer International, vol. 59, pp. 
343-351, 2010. 

 
[24] T. Shoa, D. S. Yoo, K. Walus, and J. D. W. Madden, "A dynamic 

electromechanical model for electrochemically driven conducting polymer 
actuators," Mechatronics, IEEE/ASME Transactions on, vol. 16, pp. 42-49, 
2011. 

 
[25] C. H. Nguyen, G. Alici, and G. G. Wallace, "Modelling trilayer conjugated 

polymer actuators for their sensorless position control," Sensors and 
Actuators A: Physical, vol. 185, pp. 82-91, 2012. 

 
[26] C. H. Nguyen, G. Alici, and G. Wallace, "An Advanced Mathematical 

Model and its Experimental Verification for Trilayer Conjugated Polymer 
Actuators," Mechatronics, IEEE/ASME Transactions on, vol. 19, pp. 1279-
1288, 2013. 

 
[27] W. Zheng, J. M. Razal, G. M. Spinks, V. T. Truong, P. G. Whitten, and G. 

G. Wallace, "The role of unbound oligomers in the nucleation and growth 
of electrodeposited polypyrrole and method for preparing high strength, 
high conductivity films," Langmuir, vol. 28, pp. 10891-7, Jul 24 2012. 

 
[28] D. B. McCombie, T. W. Secord, and H. H. Asada, "Modeling and observer 

design for polypyrrole conducting polymer actuator control systems," 
presented at the The First IEEE/RAS-EMBS International Conference on 
Biomedical Robotics and Biomechatronics, 2006. 

  



 
 

 
 

 
 

 

CHAPTER 4  

 

MODEL-BASED PD CONTROL 

 

4.1 Abstract 

Electroactive polymers (EAPs) are demonstrating increased use and possible 

applications at the microscale, and also at the macroscale due to their 

performance which is comparable to human muscle mechanical performance. 

The recent inclusion of sequential growth steps during operation increases the 

range of possible uses. This necessitates the need for enhanced modeling and 

control. Both tasks are made more complex due to the problems with obtaining 

trustworthy feedback. Also, previous work aimed at identifying a model for control 

requires a certain amount of calibration time for system identification. This work 

shows a simplified model-based PD feedback control that can be adjusted and 

adapted over each growth step. Also, the simplified model is shown to accurately 

represent actuator performance, and the change in actuator performance over 

multiple growth stages. 

 

4.2 Introduction 

Electroactive polymer (EAP) actuators are being applied to a variety of 

sensors and actuators [1, 2]. Conducting polymers are a subset of EAPs that 
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generate a change in volume in response to an electrical input causing ion 

migration. Specifically, polypyrrole based actuators are smart material actuator 

candidates due to their low activation voltage and current, biocompatibility, and 

mechanical performance reaching stresses over 20 MPa, strains over 20 %, and 

strains rates over 10 %s-1 [3-7], which is comparable to human muscle. Along 

with the performance characteristic, limitations exist in the form of repeatable 

manufacturability, large time constants [8, 9], unidentified system dynamics, 

hysteresis, drift, and poor lifetimes [10-12]. Although adjusting the actuator 

system chemistry and manufacturing has shown improvements in performance 

[4, 5, 13], this work applies methods based upon a simplified system model that 

is updated during operation. 

Polypyrrole actuators have been one of the actuator materials to fall in the 

category of ‘artificial muscles’ and this is made more accurate due to the recent 

inclusion of sequential growth steps during operation. Sequential growth is the 

ability to grow more polymeric material with certain actuator architectures and 

support systems to adjust actuator performance during the operational life cycle 

of the actuator. In the case of polyprrole-metal coil composite actuators, an 

increase in polymer material shows an increase in force output, but also results 

in a slower actuation due to the necessary increase in electrical and molecular 

diffusion in the actuator system [14]. The increase of polypyrrole actuator 

systems to mimic human muscle through multiple growth steps presents the 

additional issue of making modeling and control more complex since each growth 

step produces a new system and response. This is another reason to use a 
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control system that can adapt over time, and adapt over multiple growth steps. 

Much of the current advances in polypyrrole and similar polymer actuators 

has been directed at bilayer or trilayer bending actuators. In these configurations, 

the EAP is synthesized on either one or both sides of a thin, bendable substrate. 

Activating the polymer would contract or expand the polymer, and since the 

polymer lies above or below the midline of the entire actuator, the actuator 

bends.  

Robust adaptive control was developed and applied to trilayer polypyrrole 

actuators by Fang et al. [15]. First, a simplified model was constructed, and then 

the model parameters were adapted during operation by a self-tuning regulator. 

The robust adaptive controller proved to effectively reduce tracking error 

compared to a static model controller and a PID controller, especially after longer 

periods of operation. A purely feedforward controller is applied to trilayer 

actuators by John et al. [16] where a frequency analysis is used to identify the 

system, and then this model is inverted and combined with a low-pass filter to 

feed the desired input forward. This work presents a controller that combines 

parts of both of these works and applies to a linear polypyrrole actuator, not a 

bending actuator.  

First, the simplified model is used to determine representative values in the 

electrical and mechanical systems. These parameters are combined in a model 

of the polymer system to observe and predict performance, as well as to 

determine applicable PD gain values. The closed-loop performance is then 

monitored for each growth stage, and an optimal amount of growth for a desired 
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weighting value that can favor either speed or strength is determined.  

 

4.3 Experimental and Data Collection 

The experimental setup, actuator synthesis, and data collection process is 

outlined in the previous chapter.  

 

4.4 Control 

Position error control was compensated with a closed-loop control algorithm. 

The closed-loop control uses a conventional proportional derivative (PD) 

feedback control. PD control was selected to accommodate dynamic, sinusoidal 

trajectories. An integral control was not included due to the inherent lag with 

integral control of dynamic trajectories. The unique part of this controller is that 

the PD gains are calculated for each growth stage based upon the model 

parameters determined from the RLS algorithm. The open-loop response exhibits 

a second-order type behavior, so the PD gains are calculated to dictate a 

response with a settling time of 5 seconds and a damping ratio of at least 0.7. 

Initial comparisons between the experimental and model data sets for one growth 

stage are shown in Fig. 4.1. The experimental data set refers to the data 

obtained by the open-loop Bode plot tests and the simulated model data refers to 

the model created by performing the recursive least squares analysis during 

testing and plugging the resulting values into the simplified model. The different 

data sets exhibit similar root locus plots (as shown in Fig. 4.1). The calculated 

controller gains were also similar, reiterating that the values determined by the 
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simulated model determined data could be used to elicit the same desired 

response in the actual system. 

The fourth order state-space system model simplifies down to a third order 

transfer function, so the experimental model data produces three open-loop 

poles on the root locus with one being extremely fast and therefore not shown 

above. The two dominant open-loop poles for the experimental data are located 

at -6.23x10-3 and -1.29x101. The simulated model root locus was created using 

the recursively derived values in the state-space representation, so the simulated 

model data produces four poles and one zero. This summarizes as one fast 

open-loop pole like the experimental data (~-2x1011), and three open-loop poles 

closer to the origin. One open-loop pole is much closer to the origin than the 

other two, and is positioned near an open-loop zero. Analyzing the model-based 

root locus beyond the slower pole and zero shows a system with three open-loop 

poles similar to the experimental data root locus, making both models reduce to a 

third order model. The open-loop poles from the simulated model are situated at -

2.42x10-2, -1.09x10-2, and -2.35x10-12. Due to the proximity of the open-loop pole 

and zero (-1.05x10
-11

) near the origin, the two open-loop poles farther from the 

origin in the simulated model produce the second order open-loop Bode plot 

response shown previously, and the space between these experimental model 

open-loop poles is also reflected in the stepped open-loop Bode plot response for 

the experimental data shown previously. The feedback controller places a 

closed-loop zero at -2x104 and places the desired closed-loop complex pole pairs 

at -2.24x104 ± 2.24x104i and -2.56x104 ± 2.56x104i for the experimental and 
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simulated models, respectively. 

Preliminary tests show that gains calculated to have a larger settling time 

generally results in inputs that exceed the capability of the potentiostat and 

potentially exceed the safe input to the polymer actuators. To compensate, the 

proportional gain values were reduced to 20% of the calculated value. This 

greatly changed the closed-loop poles to be at -5.12x10-1 ± 1.33x102i and -

4.85x10-1 ± 1.36x102i for the experimental and simulated models, respectively. 

The additional closed-loop zero in the simulated model data does not move from 

the open-loop position of -1.05x10-11 in the closed-loop root locus, but the open-

loop pole at -2.35x10-12 quickly moves to an actual closed-loop position at the 

zero of -1.05x10-11, where they effectively cancel each other, leaving the complex 

pair as the dominant closed-loop poles. Further testing is required to determine 

the most optimal way to incorporate pole placement techniques within the 

confines of hardware limitations. The entire control scheme diagram is shown 

below in Fig. 4.2. 

 

4.5 Results and Discussion 

The testing results from a closed-loop control example are shown below in 

Fig. 4.3. PD feedback control supplied accurate tracking at lower frequencies. 

The frequency results from the open-loop and closed-loop control over the 

multiple growth steps are shown below. This PD feedback control extended the 

achievable frequency approximately two orders of magnitude from the open-loop 

results.  
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4.5.1 Frequency Results 

This PD feedback results for Sample A are shown in Fig. 4.4. The magnitudes 

are close to and slightly above zero at the lower frequencies. This illustrates the 

improved tracking of the polymer with the use of feedback control since the ideal 

case where the ratio of actual to desired displacement is 1 would have a Bode 

plot magnitude value of 0 dB. This trend continues up to a frequency less than 

100 Hz. At this point, the experimental values take a noticeable dip, and then 

continue to decrease as the testing frequency increases. 

The phase response exhibits a similar response as the open-loop response 

by decreasing in value, pausing, and then decreasing again. The differences are 

that the first decrease is at a frequency almost two orders of magnitude larger 

than the open-loop response, and the pause and final phases are not as low as 

the open-loop response. The closed-loop response pauses at just above -20 

degrees and then finally reaches -90 degrees. 

The differences between growth stages follow a similar behavior as the open-

loop control where an increase in growth equates to an increase in magnitude. 

The closed-loop response for Samples B and C (shown in Fig. 4.5 and Fig. 4.6, 

respectively) are similar to Sample A with an extended magnitude behavior up to 

approximately 100 Hz and then a dip and continuing decrease in magnitude 

response. The closed-loop phase responses follow similar behaviors as well. 
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4.5.2 Frequency and Model Results 

The model parameters determined with the open-loop experiments were 

combined with the PD gain values, and the model control predictions shown in 

Fig. 4.7. The model-based feedback control frequency response for Sample A 

shows a consistent linear magnitude response for the lower frequencies, and a 

spiking increase in magnitude that is followed by a rapid decline in magnitude. 

The decline in magnitude occurs at a similar point to the dip in experimental data 

points. Similar to the experimental points, the model based curves increase in 

magnitude with increasing growth stage, and then dip down sooner as frequency 

value is increased. The phase response from the model is also much different 

from the experimental data, taking a large dip down to approximately -140 

degrees, and then rising up to -90 degrees. This rise is likely due to the influence 

of the slightly different algorithm used to determine the simulated model data and 

create an additional closed-loop zero near the origin. Although the two 

formulations are different, the difference occurs at a higher frequency where 

performance degrades. The model also greatly varies from the experimental data 

at these higher frequencies requiring model refinement for operation at higher 

frequencies. The need to reduce the desired gain based upon hardware 

restrictions also created an underdamped system in the root locus analysis 

(shown in Fig 4.1). This underdamped system is represented by the resonance 

peak in the magnitude portion of the model-based Bode plots, for example, in 

Fig. 4.7. The model-based control response for Sample B is similar to Sample A 

with the noticeable spike and decrease in behavior. The model-based responses 
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from Sample B in Fig. 4.8 exhibit almost an overlapping behavior as the 

frequency values are increased. The phase response takes the same noticeable 

dip as seen with the model data response for Sample A. The model based 

frequency predictions are also similar for Sample C in Fig. 4.9, except for the 

more widely distributed response between growth stages as the frequency is 

increased. The phase response is similar to Sample B and Sample C, and the 

wide distribution can also be observed here. 

 

4.5.3 Cutoff Values 

The cutoff values were determined by the same means as the open-loop 

response. The main difference was that only straight lines were used to be fitted 

to the data and the cutoff value determined. This was in lieu of the additional step 

of fitting a curve to the lines since the behavior of the open-loop data was not 

necessarily identified as a common Bode plot behavior curve. 

The initial cutoff magnitude for Sample A shown in Fig. 4.10 is approximately 

0.71 dB and rises between 0.05 dB and 0.3 dB until it reaches 1.4 dB during the 

5
th
 growth cycle. The cutoff frequency starts at approximately 0.89 Hz and 

decreases between 0.1 Hz and 0.2 Hz to reach 0.41 Hz at the 5th growth cycle. 

Sample B has an initial cutoff magnitude of approximately 0.22 dB and rises 

between 0.0 dB and 0.09 dB each growth stage to end up at 0.38 dB. The cutoff 

frequencies for Sample B start at just below 0.8 Hz and decrease between 0.01 

Hz and 0.2 Hz at each growth stage to end up just above 0.3 Hz. 

The cutoff magnitudes for Sample C start at approximately 0.47 dB and rise 
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between 0.08 dB and 0.15 dB during each growth stage to end up at 0.82 dB. 

The cutoff frequencies for Sample C start at approximately 0.9 Hz and decrease 

between 0.05 Hz and 0.2 Hz during each growth stage to end up just above 0.5 

Hz. Next, the model data were analyzed. 

The initial cutoff magnitude for the Sample A model data is approximately 

0.65 dB and rises between 0.05 dB and 0.3 dB until it reaches 1.35 dB during the 

5th growth cycle. The cutoff frequency starts at approximately 0.35 Hz and 

decreases approximately 0.02 Hz to reach 0.25 Hz at the 5th growth cycle. 

The Sample B model data have an initial cutoff magnitude of approximately 

0.18 dB and rise between 0.01 dB and 0.08 dB each growth stage to end up at 

0.345 dB. The cutoff frequencies for Sample B start at just above 0.3 Hz and 

decrease approximately 0.01 Hz at each growth stage to end up just below 0.3 

Hz. 

The cutoff magnitudes for the Sample C model data start at approximately 

0.45 dB and rise between 0.03 dB and 0.12 dB during each growth stage. The 

cutoff frequencies for Sample C start at approximately 0.7 Hz and decrease 

between 0.02 Hz and 0.25 Hz during each growth stage to end up just above 0.3 

Hz. 

 

4.5.4 Cost Performance Values 

The performance values are displayed for the closed-loop tests, as well as 

the open-loop experiments from the previous chapter. The performance values 

for Sample A all fall between three and just above four and are shown in Table 
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4.1. 

The first two optimal performance values from both the experimental and 

model closed-loop results of Sample A show an optimal amount of growth to be 

between three and three and a half. The third optimal performance value from 

both sets of data recommends a fourth stage of growth to reach the optimal 

amount. For Sample A, the closed-loop test values follow a similar trend to the 

open-loop test values which start at approximately three and increase to 

approximately four as the number of algorithm analysis values increase. For all 

three values, the model values are larger than the experimental values, and there 

is never a difference over 0.3 between the experimental and model data sets for 

the closed-loop analysis. 

The optimal growth values for Sample B in Table 4.2 show a successive 

increase from just under three to just under four for the experimental data. The 

model data make a similar increase between the first and second value, and 

decreases slightly on the third. 

For a weighting value of 0.5 on the closed-loop data of Sample B, the optimal 

amount of growth is calculated to be less than the achieved level of growth. The 

optimal growth values from the experimental and model never differ more than 

0.3 for each growth stage of analysis. 

The closed-loop cost performance analysis for Sample C shown in Table 4.3 

follows a similar behavior to the model based performance values from the open-

loop analysis. The first optimal growth value for the closed-loop experimental and 

model data is at least two additional stages. After this stage, the optimal growth 
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is reduced, but the additional optimal performance values do not differ more than 

0.1 between the experimental and model values. 

 

4.5.5 Maximum Gain Algorithm 

The PD gains used in the closed-loop test were formulated at less than 

optimal conditions due to the fact that the potentiostat has a current magnitude 

input limit of one amp. The feedback gains were also limited in an effort to limit 

the current input to avoid over oxidation of the polymer. The relatively small dip in 

the closed-loop magnitude response alludes to the possibility in selectively 

increasing the gains at higher magnitudes to improve performance. The amount 

of gain increase was determined by looking at the phase plot of the frequency 

response and using the phase offset at the desired frequency to determine the 

predicted tracking error. The maximum proportional gain possible would then be 

the largest magnitude that could be multiplied by the error while still maintaining 

an input less than the value that could exceed the power source’s capability or 

polymer safety limit. 

To avoid needing extensive frequency tests, the phase shift could be taken by 

the phase shift predicted by the model data, but the error between the 

experimental data and model data is too great. The model data were used to 

create a more accurate, but still conservative phase shift estimate. The model 

phase shift data start at 0 degrees and takes a large dip to approximately -135 

degrees before leveling out at -90 degrees. The experimental data phase shift 

makes a much smaller shift and then gradually decreases to -90 degrees. The 
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conservative phase prediction uses a negative arc tangent curve to predict the 

actual phase shift from the model data. The conservative phase prediction starts 

at -10 degrees at the lower frequencies. The center of the arc tangent curve was 

determined by finding the midpoint frequency between where the model 

frequency takes its initial dip in magnitude from 0 degrees and where the 

frequency rises to meet the final phase value of -90 degrees. The change in 

magnitude for the arc tangent will always be from the initial -10 degrees to the 

final -90 degrees. The goal is to create a predictive phase behavior that is 

consistently conservative, but also follows the general behavior of the 

experimental data. The predictive phase plot for Sample A is shown below in Fig. 

4.11. 

The resulting predictive phase curve approaches the dip in experimental data, 

but manages to remain conservative and below the experimental data. Next, the 

conservative phase plot curve can be used to reference the phase shift at any 

frequency, and that frequency can be used to calculate the ideal error in tracking. 

The maximum allowed input current divided by the calculated maximum 

frequency provides the maximum allowable increase in proportional gain from the 

already assigned, 'safe' PD gains. This gain calculation algorithm now adjusts the 

previous model diagram to further refine the PD gain selections. The entire 

system schematic is shown in Fig. 4.12. 
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4.6 Conclusion 

Sequentially grown polypyrrole-metal coil composite actuators were 

synthesized, and a feedback PD controller instituted. First, a simplified model 

was used to track representative model parameters. Then, multiple frequency 

tests were performed to track actuator performance. Both the experimental and 

model data were compared to determine representative speed and strength 

parameters and these were combined in a cost performance analysis. Although 

the closed-loop cost performance points did not produce better optimal growth 

predictions than the open-loop results determined in the previous chapter, the 

model followed the experimental data closely. Finally, in an effort to maximize 

feedback control performance, an algorithm was created to determine the 

maximum proportional gain at higher frequencies where performance decreases. 
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Figure 4.1. Close-up root loci of experimental and simulated models for one 
growth stage at two different scales with the experimental data shown in blue and 

the simulated model shown in green. The dashed angled lines represent  a 
damping ratio of 0.7 and the black arrows show the placement of the desired 

closed-loop pole pairs in the first plot. The poles and arrows in the second plot 
show the determined closed-loop poles due to hardware restrictions (black for 

experimental data and red for simulated model data). 
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Figure 4.2. Block diagram of model parameter analysis and feedback control 
scheme. 
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Figure 4.3. Experimental results for a closed-loop frequency test. The desired 
input is shown in yellow, and the actual is shown in blue. 

 
 
 
 
 
 
 

1000 2000 3000 4000 5000 6000 7000 8000
-6

-4

-2

0

2

4

6
x 10

-3

Time (s)

D
is

p
la

c
e
m

e
n
t 
(m

)

Closed Loop Data

 

 

Experimental Results

Desired Displacement 

-



115 
 

 
 

 

 

Figure 4.4. Bode plot magnitude results for open-loop and PD feedback control 
for Sample A. The top plot, A), shows the magnitude response from the Bode 

analysis while the bottom plot, B), shows the phase response for the Bode 
analysis. 
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Figure 4.5. Bode plot magnitude results for open-loop and PD feedback control 
for Sample B. The top plot, A), shows the magnitude response from the Bode 

analysis while the bottom plot, B), shows the phase response for the Bode 
analysis. 
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Figure 4.6. Bode plot magnitude results for open-loop and PD feedback control 
for Sample C. The top plot, A), shows the magnitude response from the Bode 

analysis while the bottom plot, B), shows the phase response for the Bode 
analysis. 

 

10
-4

10
-2

10
0

10
2

-120

-100

-80

-60

-40

-20

0

20

Frequency (Hz)

M
a
g
n
it
u
d
e
 (

d
B

)

Frequency Analysis

 

 

OL Growth 1

OL Growth 2

OL Growth 3

OL Growth 4

OL Growth 5

CL Growth 1

CL Growth 2

CL Growth 3

CL Growth 4

CL Growth 5

10
-4

10
-2

10
0

10
2

-150

-100

-50

0

Frequency (Hz)

P
h
a
s
e
 (
 )

Frequency Analysis

 

 

OL Growth 1

OL Growth 2

OL Growth 3

OL Growth 4

OL Growth 5

CL Growth 1

CL Growth 2

CL Growth 3

CL Growth 4

CL Growth 5

A) 
 
 
 
 
 
 
 
 
B) 



118 
 

 
 

 

 

Figure 4.7. Bode plot magnitude results for PD feedback control and model 
predicted feedback response for Sample A. The top plot, A), shows the 

magnitude response from the Bode analysis while the bottom plot, B), shows the 
phase response for the Bode analysis. 
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Figure 4.8. Bode plot magnitude results for PD feedback control and model 
predicted feedback response for Sample B. The top plot, A), shows the 

magnitude response from the Bode analysis while the bottom plot, B), shows the 
phase response for the Bode analysis. 
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Figure 4.9. Bode plot magnitude results for PD feedback control and model 
predicted feedback response for Sample C. The top plot, A), shows the 

magnitude response from the Bode analysis while the bottom plot, B), shows the 
phase response for the Bode analysis. 
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Figure 4.10. The resulting cutoff magnitudes and frequencies from the PD 
feedback frequency analyses for each growth stage of the samples from both 

experimental and model data. 

 
 

 

Table 4.1. The performance cost evaluation for Sample A: experimental and 
model data with a weighting value of 0.5. 

Sample 
Performance Cost 

Value 
1 2 3 

A 

Open-loop 
Experimental 3.9 3.7 4.3 

Model 3.2 3.7 3.6 

Closed-loop 
Experimental 3.1     3.5     3.9 

Model 3.3     3.5     4.1 

 

 
 

1 2 3 4 5
0

0.5

1

1.5

Cutoff Magnitude

Growth Stages

B
o
d
e
 M

a
g
n
it
u
d
e
 (

d
B

)

1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cutoff Frequency

Growth Stages

F
re

q
u
e
n
c
y
 (

H
z
)

 

 

Sample A

Sample A M

Sample B

Sample B M

Sample C

Sample C M



122 
 

 
 

Table 4.2. The performance cost evaluation for Sample B: experimental and 
model data with a weighting value of 0.5. 

Sample 
Performance Cost 

Value 
1 2 3 

B 

Open-loop 
Experimental 4.8   3.9     3.8 

Model 4.2     4.8     4.0 

Closed-loop 
Experimental 2.7     3.3     3.7 

Model 2.9     3.6     3.4 

 

 

 

Table 4.3. The performance cost evaluation for Sample C: experimental and 
model data with a weighting value of 0.5. 

Sample 
Performance Cost 

Value 
1 2 3 

C 

Open-loop 
Experimental 12.3   6.3     4.6 

Model 7.5     3.6     3.9 

Closed-
loop 

Experimental 6.7     3.6     3.3 

Model 5.1     3.6     3.4 
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Figure 4.11. The resulting phase plot for the closed-loop experimental and model 
data, as well as the predictive phase plot using the model data for Sample A. 

 
 
 
 
 
 
 

 

Figure 4.12. Block diagram of model parameter analysis and feedback control 
scheme using maximum predictive proportional algorithm. 
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CHAPTER 5  

 

CONCLUSION 

 

This work presents multiple advancements in the field of electroactive 

polymer actuators. The main contributions start with (1) a new testing apparatus 

and synthesis method that allows for multiple, sequential growth steps, (2) the 

implementation of a simplified model for behavior tracking and optimal growth 

prediction, and (3) the implementation of proportional-derivative feedback control 

with gains determined by the simplified model data. These objectives can be 

combined to create an optimal artificial muscle actuator system that can be 

recursively fabricated, the control scheme determined, and the optimal amount of 

growth determined. 

The custom testing apparatus allows for the easy change out of different 

actuators, as well as the ease of operational solution exchanging. The application 

of sequential growth to helical metal electrodes is novel, and the inclusion of the 

metal helix as a working electrode allows for the method of sequential growth to 

be repeated and customize conductive polymer actuators. The amount of growth 

to reach an optimal state required open-loop operation to determine the optimal 

state. 

The open-loop operation of the conducting polymer actuators illustrated the 
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available operating range over multiple frequencies, and the change in capability 

as the number of growth stages is increased. Cutoff values were determined to 

get representative speed and strength values for each actuator at each growth 

stage. These values were used in a performance cost analysis to assign a 

performance value. Although this value could be used to determine the optimal 

amount of growth, the extensive amount of tests required to acquire the 

frequency response data makes the process cumbersome. A simplified model 

was used to determine representative model parameters and perform the same 

growth analysis and prediction using these model parameters, which can be 

collected during normal operation. The model determined values proved to 

provide representative data that could be used to predict optimal growth instead 

of requiring multiple tests at a range of input frequencies. Next, the open-loop 

response was improved by implementing closed-loop feedback control. 

A proportional-derivative controller was applied to the conducting polymer 

actuators. Although the PD gain selection was limited by the power source 

potential and polymer over oxidation, an additional algorithm was presented to 

find the maximal proportional gain allowable at the larger input frequencies where 

actuator performance decreases. The closed-loop results also show that the 

optimal amount of growth is better determined by the open-loop results than the 

closed-loop results. 

These three contributions work in tandem to not only further the state of 

conducting polymer actuators, but to close the distance separating artificial and 

actual muscles. They also work in tandem in the recursive actuator optimization 
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that moves between actuator prototyping, control refinement, and actuator 

adjustment as necessary. The conducting polymers are artificial muscles, but 

now have a more dynamic life cycle that can be adjusted as operating conditions 

and polymer response changes; just like natural muscles. 

 

5.1 Future Work 

The first step for future work entails performing multiple actuation tests with a 

wider variety of amplitudes and trajectories. This will help determine the success 

and shortcomings of the simplified model. It should also help with the next task of 

exploring the influence of creep on the actuators. 

The current simplified model does not include parameters to model the creep 

in the system. The model could be expanded to include a creep, damping 

parameter. The creep influence should be easier to recognize by adjusting the 

input parameters as mentioned in the previous paragraph. 

Another main area to improve upon is the electrolyte selection and actuator 

geometries. It is possible the novel combination of sequential growth and metal 

helix could benefit from a different doping electrolyte than the substituents used 

here. It is also possible to look at different actuator geometries. Previous groups 

have already looked at incorporating a metal wire as the working electrode in a 

zigzag pattern resulting in a polymer-metal serpentine arrangement actuator that 

results in large, flat polymer actuators. This arrangement could increase counter 

ion transport since both sides of the polymer are exposed to the actuation and 

growth electrolytic solutions. 



129 
 

 
 

Another important aspect to improve upon is determining a method for reliably 

measuring the polymer thickness during operation without needing to destroy the 

samples. Characterizing the thickness over multiple cycles, and the amount by 

which is changed during each growth cycle would improve polymer modeling and 

optimal growth prediction. A vision system is likely the easiest sensor system to 

implement, and once the change in thickness is reliably characterized for each 

growth stage, it may be possible to determine the exact amount of thickness 

change by the change in simplified model parameters. 

Once the simplified model is proven to handle a range of inputs and 

trajectories, the optimal amount of growth change needed to reach an optimal 

thickness will have more unique and specific growth stage times and current 

inputs compared to the constant currents and time periods used in these tests. 

 
 



 

 
 

APPENDIX A 

 

TESTING APPARATUS 

 

A.1 Equipment  

The helical coils were created with a manual hand crank mechanism. The 

core wire is spun while a guide travels down the core and feeds the coil wire. The 

model design is shown below in Fig. A.1. The completed mechanism is shown in 

the Fig. A.2. The image in Fig. A.3 below shows a close up of a partially created 

coil over the core wire material. 

 

A.2 Test Cell 

The first iteration of the assembled test cell is shown in Fig. A.4. The test cell 

in its disassembled form is shown in Fig. A.5, and a picture showing hand to 

scale is shown in Fig. A.6. 
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Figure A.1. Schematic of coil winder mechanism used for metal coil creation. 

 

 

 

 

Figure A.2. Picture of coil winder mechanism used for metal coil creation. 
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Figure A.3. Close up picture of coil winder mechanism used for metal coil 
creation. 
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Figure A.4. Picture of the initial test cell used for experimental testing. 
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Figure A.5. Picture of the initial test cell used for experimental testing 
disassembled. 
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Figure A.6. Picture of the initial test cell used for experimental testing. 

 

 



 

 
 

 
 

APPENDIX B  

 

ACTUATOR IMAGES 

 

B.1 Scanning Electron Microscope Images 

SEM images for different growth stages of an actuator sample are shown 

here. The first three images look at one actuator at three different growth stages. 

The initial growth is shown in Fig. B.1, the additional growth is shown in Fig. B.2, 

and the next additional growth stage is shown in Fig. B.3. 

The next series of figures looks at different magnification scales of polymers 

synthesized through separate techniques. A continuous growth actuator is shown 

in Fig. B.4 with a scale bar of 300 µm. The scale bar is decreased to 100 µm in 

Fig. B.5, 50 µm in Fig. B.6, and 20 µm in Fig. B.7. A sequential growth actuator is 

shown in Fig. B.8 with a scale bar of 300 µm. The scale bar is decreased to 100 

µm in Fig. B.9, 50 µm in Fig. B.10, and 40µm in Fig. B.11. 

 

B.2 Microscope Images 

 Different input currents influence actuator structure. Three different 

actuators are shown in Fig. B.12 that were synthesized with different input 

current magnitudes.  
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Figure B.1. SEM image of an actuator after the initial growth.
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Figure B.2. SEM image of an actuator after the first additional growth stage.
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Figure B.3. SEM image of an actuator after the second additional growth stage.
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Figure B.4. SEM image of an actuator grown with conventional, continuous 
conditions.
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Figure B.5. Increased magnification SEM image of an actuator grown with 
conventional, continuous conditions.
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Figure B.6. Further increased magnification SEM image of an actuator grown 
with conventional, continuous conditions.
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Figure B.7. Further yet increased magnification SEM image of an actuator grown 
with conventional, continuous conditions. One ‘cauliflower’ section is examined.
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Figure B.8. SEM image of an actuator grown with sequential growth conditions.
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Figure B.9. Increased magnification SEM image of an actuator grown with 
sequential growth conditions. 



146 
 
 

 

 
Figure B.10. Further magnified SEM image of an actuator grown with sequential 

growth conditions.
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Figure B.11. Further again magnified SEM image of an actuator grown with 
sequential growth conditions highlighting the surface structure. 
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Figure B.12.Images from initial sequential growth tests. The top actuator shows a 
rougher appearance from increased current input. The middle actuator had a 
decreased current and decreased superfluous growth, and the third actuator 

shows a smoother polymer with the lowest current input magnitude of the three 
actuators. 

 

 

 

 



 

 
 

 
 

APPENDIX C  

 

ALTERNATIVE TESTING METHODS AND DELAYED 

SUCCESS 

 

This appendix outlines some ideas only partially explored. Different 

experimental paths were pursued to adjust the actuator geometries, core 

materials and removal methods, coil control strategies, assembly methods, 

synthesis techniques, and actuation operation approaches. 

 

C.1 Geometries 

One of the initial alternate avenues pursued was fabricating custom coils 

using wire electric discharge machining (EDM). A nitinol tube was machined to 

similar coil pitch specifications to the coils used. This method allows control of 

unique coil cross-sections, ideally to optimize electrical conductivity, surface area 

for polymer adhesion, and coil motion. Another benefit was making connectors 

built-in to the coil so the additional step of adhering coil leads for connections 

after the main core is removed is no longer needed. A bayonet connector was 

selected for the initial prototypes. The geometry is shown in Fig. C.1. 

The custom coils permitted polymer growth, but enough samples were not 

created to attempt sequential growth methods. 
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C.2 Cores 

Another fabrication method attempted was to use a removable core under a 

thin metallic film that could be dissolved. One such attempt used a beeswax tube 

covered in a layer of aluminum foil. The wax and foil was fit snuggly into a 

purchased metal spring. The polymer was synthesized on the foil and coil 

following continuous growth methods. After growth, the actuator was placed in 

boiling distilled water to melt the wax and let it flow out. Then the spring, foil, and 

polymer composite was placed in an aqueous sodium hydroxide solution. This 

solution dissolved the aluminum, preserving the polymer. The polymer was left 

preserved, but the overlap section of the aluminum foil was too extreme to allow 

the polymer to span it. Further testing was not pursued. 

Another attempt was made to use a nonconductive material for the core, but 

coated in a conductive paint. The paint selected coated the core well, but did not 

stay adhered to the core while in the synthesis solution. Nonetheless, a core 

material coated, or even sputter coated with a metallic substrate, could improve 

fabrication and core removal options. 

 

C.3 Coils 

The manual coil winder makes coils that have a pitch of 0.5 mm. This pitch 

could easily be adjusted by fixing one end of the coil to the core, and then pulling 

or pushing on the free end until the desired coil pitch is achieved. Pulling to 

extreme pitches, though, held the residual stress in the spring. Initial attempts to 

remove the stress was to anneal using either an open flame from a lighter, or 
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boiling water. Although this avenue was not heavily pursued, it is presumed that 

coil annealing will improve coil performance over a certain actuation range. 

 

C.4 Assembly 

Removal of the core from the initially synthesized polymer proved to be a 

great problem. Many attempts led to destroying the polymer actuator. An attempt 

to mitigate this problem was made by applying lubricants to the core before 

synthesis. This did not yield any fruitful results, but it was not yet determined if a 

lubricant that was not broken down by the synthesis solution was selected. 

 

C.5 Synthesis 

Although these actuators are intended for room temperature use, and 

therefore, room temperature regrowth steps, the initial growth was attempted in a 

colder environment to produce optimal base layers of the polymer. Initial tests 

were performed with the synthesis cell in a salt water and ice bath. This 

produced similar polymer structures. Future work could include a cooling cell 

around the test cell for initial growth, and ice or preferably dry ice, could be used 

to cool the initial growth. The test cell would like have to be redesigned, though, 

since extreme temperature ranges will likely test the seals. 

Another method to ease fabrication after the core was removed was to insert 

core material leads on both ends, affix with epoxy, and then cover with heat 

shrink. The heat shrink covered the core leads to reduce any undesired electrical 

conductivity, and provided more material to clamp on to. Unfortunately, this also 
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made the ends much heavier and this increased the likelihood of damage. This 

also made the ends bulky in some cases, which helped in separating the actuator 

from accidentally contacting the reference or counter electrodes, but also made 

removal and insertion to and from the test cell cumbersome. 

 

C.6 Operation 

Actuation as a result in acidity level was preliminarily tested by systematically 

adding very basic or very acidic chemicals to an aqueous solution of a fabricated 

actuator, observing any shape change, and checking the pH level using pH 

testing strips. This proved no observable results, but should not be completely 

discounted as a possible means for actuation.  
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Figure C.1. Custom coil geometry. 




