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ABSTRACT

Scale-bridging models are created to capture desired characteristics of high-fidelity mod

els within low-fidelity model-forms for the purpose of allowing models to function at required 

spacial and/or temporal scales. The development, analysis, and application of scale-bridging 

models will be the focus of this dissertation. The applications dictating scales herein 

are large-scale computational fluid dynamics codes. Three unique scale-bridging models 

will be presented. First, the development and validation of a multiple-polymorph, par

ticle precipitation modeling framework for highly supersaturated CaCO3 systems will be 

presented. This precipitation framework is validated against literature data, as well as 

explored for additional avenues of validation and potential future applications. Following 

this will be an introduction to the concepts of validation and uncertainty quantification 

and an approach for credible simulation development based upon those concepts. The 

credible simulation development approach is demonstrated through a spring-mass-damper 

pedagogical example. Bayesian statistical methods are commonly applied to validation and 

uncertainty quantification issues and the well-known Kennedy O'Hagan approach towards 

model-form uncertainty will be explored thoroughly using a chemical kinetics pedagogical 

example. Additional issues and ideas surrounding model-form uncertainty such as the 

identification problem will also be considered. Bayesian methods will then be applied 

towards the creation of a scale-bridging model for coal particle heat capacity and enthalpy 

modeling. Lastly, an alternative validation and uncertainty quantification technique, known 

as consistency testing, will be utilized to create a scale-bridging model for coal particle 

devolatilization. The credibility of the devolatilization scale-bridging model due to the 

model development process is assessed and found to have benefited from the use of validation 

and uncertainty quantification practices.
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CHAPTER 1

INTRODUCTION 

1.1 Overview
Model building is a significant enterprise within simulation science. Models can be built 

to describe most multiphysics phenomena, albeit creation of a model does not guarantee 

satisfactory performance. A quote from George E. P. Box speaks towards this theme of 

model development: ‘remember that all models are wrong; the practical question is how 

wrong do they have to be to not be useful’ [16]. This dissertation will focus upon processes 

of building scale-bridging models. Such models are not meant provide new descriptions of 

physically phenomena, but capture and transfer desired portions of available descriptions, so 

that larger-scale models can couple a wide range of physical phenomena together in a feasible 

manner. The larger scale models for which models are developed herein are large-scale 

computational fluid dynamics codes. Scale-bridging models of CaCO3 mineral, multiple 

polymorph, particle precipitation in highly supersaturated systems for carbon sequestration 

applications and coal particle heat capacity, enthalpy and devolatilization for oxy-fire coal 

boiler applications will be utilized to both demonstrate model building techniques as well 

as hold scientific value in the form to which they are developed. Validation and uncertainty 

quantification is a field of study dedicated towards increasing the value of simulation science. 

Methodologies from the validation and uncertainty quantification community will be applied 

towards testing and increasing credibility of scale-bridging models.

1.2 Scale-Bridging
Large-scale, multiphysics simulations utilize submodels to describe physical phenomena, 

but can not always afford high-fidelity submodels. Additionally, high-fidelity models may be 

inefficient or a waste of resources for the large-scale simulation because high-fidelity models 

will likely produce information that the simulation does not require. When developing 

physics models for implementation into simulations, the model must be designed to function 

at appropriate temporal and spacial scales. Scale-bridging models are created to translate
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a model from higher-fidelity to lower-fidelity, so that the model functions at the proper 

scale for the application. Of course not all of the characteristics of the high-fidelity version 

of the model can be translated with the scale-bridging. The lower-fidelity version can be 

build based upon the ability to recreate the characteristics important to the application. 

Scale-bridging models differ from surrogate models in that they are physics based, albeit 

contain many approximations. An example of a simple scale-bridging model is a chemistry 

lookup-table tabulated across reaction extent, where the system contains many competing 

reactions.

Scale-bridging models present a unique opportunity for validation and uncertainty quan

tification methodologies. Regions of model validity for a scale-bridging model can be 

characterized based upon its high-fidelity equivalent. The uncertainty in the high-fidelity 

model can also be transferred to the scale-bridging model through this comparison, thus 

still allowing the uncertainty to be propagated forward through the model to the appli

cation predictions. Credibility of submodels is a concern for large-scale simulations, but 

if a scale-bridging model is developed through a validation and uncertainty quantification 

based methodology, the credibility of the high-fidelity model may become ingrained in the 

submodel. This should reduce uncertainty in application predictions.

1.3 Research Objectives
Objectives of this dissertation come at face value for the models developed, as well 

as in the processes utilized in their creation and improvement. Models created were 

developed with the intention of being utilized within computational fluid dynamics codes 

by other researchers postdevelopment. Given that a model created functioned for the 

desired application, understanding the model's validity, uncertainty, and credibility can 

be undertaken.

The first objective of this research was to develop a model capable of capturing the 

precipitation and mineral evolution processes for highly supersaturated CaCO3 systems. 

Validation of this model was a requirement identified early in the model development process 

and thus the model development was largely led by the objective of fulfilling the necessary 

validation. The validation metric determined for the precipitation model was matching a 

set of experimental data extracted from the literature including multiple data types.

The next major objective was to develop a foundational basis for the utility of applying 

validation and uncertainty quantification towards the development of scale-bridging models. 

Validation and uncertainty methodologies were studied and a process for credible simulation
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development is proposed. Model-form uncertainty is a significant issue within the devel

opment process for scale-bridging models and thus methods dealing with this uncertainty 

were required. Bayesian and engineering based methods of approaching such problems were 

explored.

The final objective was the creation of scale-bridging models where the process de

velopment was governed by validation and uncertainty quantification techniques. The 

application that drove the development of such scale-bridging models was oxy-fired coal 

boiler simulations. Heat capacity and enthalpy scale-bridging models for coal particles were 

created using Bayesian calibration, allowing greater transparency in the model’s calibration 

and thus providing understanding of the model’s validity and uncertainty. Coal particle 

devolatilization was another piece of physics that required scale-bridging. Devolatilization 

was known to contain significant amounts of uncertainty and thus an extensive effort towards 

the creation of a credible model was required. This objective included the creation of 

the scale-bridging model, as well as a demonstration of the improved product credibility 

produced utilizing validation and uncertainty quantification methods.

1.4 Organization of Dissertation
This dissertation is organized roughly in the order in which the research was under

taken. The exception to this is the philosophy within the process for developing credible 

simulations, which evolved throughout the time-frame of the entire research process. The 

two chapters focusing on particle precipitation are refined and expanded from a paper 

published on that work [127]. The chapter on coal devolatilization was also formulated 

with future publication planned. The credible simulation development discussion and 

application-problem walkthrough were created with the idea of being utilized in an up

coming course on verification, validation and uncertainty quantification being taught at 

the University of Utah, University of California - Berkley, and Brigham Young University 

during Fall 2015. Organization of this dissertation reflects its general theme: demonstrate 

scale-bridging model development and application, then introduce and explore concepts of 

validation and uncertainty quantification, and finally show that the integration of validation 

and uncertainty quantification methods into the process of creating scale-bridging models 

produces a superior product. Scale-bridging models can vary in range of physical complexity 

from single phenomena to many and strongly correlated physical phenomena. The first 

example provided is an instance of a scale-bridging model on the more complicated end of 

the spectrum.
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A framework for modeling multiple-polymorph, particle precipitation processes within 

highly supersaturated CaCO3 systems is proposed within Chapter 2. This framework 

description includes the approach taken towards the aqueous phase, utilizing population 

balance equations to describe the solid-phase evolution, physics submodels implemented 

within the population balances in order to capture the particle population’s evolution, and 

a mixing model used to investigate mixing effects. A significant effort was taken towards 

modeling interfacial tension within the framework and this work is described last. All 

physical phenomena within the precipitation framework are formulated in manners allowing 

the physics to be coupled, which then permits comparison with experimental systems of 

interest.

An application study of the precipitation framework is presented within Chapter 3, where 

literature data are compared against framework predictions. A description of corrections 

made to the literature data due to discovered inconsistencies is first outlined. Next, a few of 

the potential configurations tested throughout the model development process are discussed. 

Following the configuration analysis, the final configuration selected for comparison with 

experimental data is presented and compared with the literature dataset. Additional 

outputs from the modeling framework are then demonstrated to display the potential utility 

of this modeling framework for similar applications. A brief illustration of the sensitivity 

to uncertainty in parameter values is shown in the last section of this chapter. This 

acknowledgment of uncertainty effects on the framework’s predictions foreshadowed and 

motivated the application of means for increasing scale-bridging model’s credibility.

Within Chapter 4 the ideas of validation and uncertainty are outlined and two method

ologies for approaching model validation and uncertainty quantification are introduced 

and briefly described. The two methodologies considered are probabilistic Bayesian and 

consistency constraints. A process and philosophy for credible simulation design, containing 

applications for the validation and uncertainty quantification tools outlined, is presented. 

This design process is then demonstrated through a mass-spring-damper application where 

both Bayesian and consistency constraint approaches are used.

Continued exploration of Bayesian methodologies through considering a significant val

idation and uncertainty quantification issue, model-form uncertainty, is contained within 

Chapter 5. Overviews of Bayesian theory, Gaussian processes, and Markov Chain Monte 

Carlo methods are first introduced. Next, the particular Bayesian methodology known as 

the Kennedy O ’Hagan approach is introduced and the algorithm utilized for implementing 

this approach within this chapter is outlined. Following this background information and
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introductions is a pedagogical reaction-kinetics example further demonstrating the Kennedy 

O ’Hagan methodology. A basic application to this pedagogical example is walked-through. 

Following the basic analysis is a description of a significant issue within model-form un

certainty problems known as the identification problem. Additional methods explored 

within the confines of the pedagogical example are then sketched out: Bayesian model 

comparison, multi-input Gaussian processes, and constrained Gaussian processes. Finally, 

forward propagation of the calibrated parameter distributions is shown.

Some of the same Bayesian techniques introduced and implemented within Chapter 5 

are then applied towards parameter calibration of a scale-bridging model for coal particle 

heat capacity and enthalpy within Chapter 6. This problem acts as a simple demonstration 

of validation and uncertainty quantification based scale-bridging model development. First 

the application’s motivation for this scale-bridging model is provided. Following this is the 

derivation of the model-form implemented and description of the creation of probabilistic 

characterizations used within the Bayesian calibration. Concluding this chapter are compar

isons of a few model-form choices and demonstration of model performance. Although this 

example utilized Bayesian methods, consistency constraints could have been implemented 

in a similar manner, as is then shown through the next scale-bridging example.

Chapter 7 describes the development process utilized to create a scale-bridging model 

for coal particle devolatilization. First, the validation and uncertainty quantification based 

process that guided the model development is outlined. Next, the application space neces

sitating the scale-bridging model is presented. Following this is a brief description of the 

high-fidelity model utilized as the basis for the scale-bridging, as well as investigations into 

uncertainty generating components of the high-fidelity model. The model-form used as the 

reduced model for scale-bridging is then reported. Continuing along the model develop

ment’s process-flow, the theory of consistency testing is presented and then the application 

of this methodology on the devolatilization scale-bridging model is analyzed. The last 

sections of this chapter discuss the credibility of the model developed and demonstrate how 

the validation and uncertainty quantification based model development process utilized can 

lead to continued model refinement.



CHAPTER 2

MULTIPLE-POLYMORPH PARTICLE 
PRECIPITATION 

2.1 Introduction
Particle-precipitation modeling literature encompasses a wide range of physical phenom

ena including nucleation theory, growth mechanisms, dissolution mechanisms, aggregation 

kinetics, and Ostwald ripening or coarsening effects. For precipitating systems with multi

ple polymorphic forms, there may also be transitions from less thermodynamically stable 

polymorphic forms to more stable, or Ostwald's step rule, for the given system conditions

[108]. Such transitions between polymorphic forms within the confines of experimental 

observations requires large shifts in the system's aqueous composition, or polymorphs' rel

ative supersaturations. In order to capture the full evolution of precipitating systems, ionic 

aqueous-phase chemistry and solid-phase physical phenomena, whose effects often differ 

depending upon the portion of the particle population under consideration, must be coupled. 

Descriptions of the aqueous phase chemistry, solid-phase phenomena, and coupling of those 

phases is described in the following chapter. These physical descriptions are developed 

for the purpose of testing the coupled physics in a relatively simple reactor environment 

prior to use within large-scale computational fluid dynamics (C FD ) simulations. Thus, the 

models must be developed at scales appropriate for the final application or a scale-bridging 

formulation. While many of the physical phenomena occurring with such precipitation 

systems could be described with computational chemistry, or other fine scale computations, 

here models must be developed at spacial scales suitable for the CFD discretization, while 

also being able to evolve at the temporal scale at which CFD operates.

Adapted with permission from B. Schroeder, D. Harris, S. Smith, and D. Lignell, Theoretical framework 
for multiple-polymorph particle precipitation in highly supersaturated systems, Cryst. Growth Des., 14 (2014), 
pp. 1756-1770. Copyright 2014 American Chemical Society.
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2.2 Ionic Aqueous-Phase Chemistry
The ionic aqueous-phase chemistry of systems considered for calibrating and validating 

the precipitation framework will be considered to be at equilibrium, or assumed to be 

on far shorter timescales than all of the solid-phase physics. To model this equilibrium the 

open-source software toolkit Cantera [50] will be used. Cantera uses temperature dependent 

chemical kinetics and thermodynamics, as well as the Pitzer relations to calculate chemical 

activities of species in solution once the aqueous composition is known. Temperature- 

dependent solubility-product correlations for polymorphic forms of CaCO3 can be found 

in Plummer [109] and Brecevic [19]. Using the ratio of the polymorph-specific, indexed j, 

equilibrium solubility-products [CaCO3]eq,j and the activity of the aqueous-phase calcium 

carbonate [CaCO3], the respective supersaturation ratios, S j, can be calculated. After 

comparing the experimental ion-activity product (IAP) results reported by Ogino et al. 

[106] with the equilibrium chemistry model of Plummer and Busenberg [109], which the 

aforementioned results were based upon, it was hypothesized that an error existed within 

the original code used to create those results. This hypothesis and the method of deriving 

the means of correcting for this error were presented within Schroeder et al. [127] and are 

described in Section 3.2.

2.3 Solid-Phase Particle-Phenomena Models
2 .3 .1  P o p u la t io n  B a la n ces

In order to track the evolution of the solid-phase materials, population balance equations 

(PBEs) will be utilized. Randolph and Larson [114] popularized the use of PBEs in particle 

science and Ramkrishna [113] is known for presenting greater mathematical characterization 

of the use of such methods. Population balances are commonly utilized in the particle science 

community and have been shown to accurately track crystal populations for systems similar 

to those of interest [133, 102, 103]. Population balance equations track the evolution of 

distributions describing population’s physical characteristics such as size, shape, densities, 

etc. The following equation is the general form of the population balance equations that 

will be utilized to track the particle populations of each polymorph, where the particle 

characteristic or internal coordinate being transported is the particle radial size, r,

dn d
d  +  -  [G (r)n ]=  BN(r) +  A(r). (2 .1)

Here G is the growth rate, B is the birth rate, and A is the aggregation rate. No external 

coordinates will be tracked explicitly by the PBEs, effectively treating the system as a 

single well-mixed batch-reactor. A mixing model will be utilized to explore basic mixing
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effects upon the systems of interest. Another simplifying assumption utilized, is to omit any 

cross-polymorph aggregation. This assumption is justified by aggregation being a second 

order effect for the systems of interest.

Instead of incurring the computational cost of transporting the entire radial distribution, 

the method of moments will be utilized to represent the distribution by a few low order 

moments. By defining the a th radial moment of the distribution, n, as ma =  r an dr,

Eq. (2.1) can be written as
f  l'°  f  l'°  f  l'°

— a  r a -1 G (r )n  dr =  raB N(r )d r  +  raA (r)dr. (2.2)
rc rc rc

A closure technique is needed for Eq. (2.2) due to the integration of the growth and 

aggregation terms that depend upon the unknown distribution. Quadrature based methods 

of solving PBEs, such as the quadrature method of moments (QMOM), were introduced 

by McGraw [94] as a means of providing closure to the aforementioned integrals, and large 

amounts of progress in the development of such methods has been published by Dr. Rodney 

Fox’s group at Iowa State University [39, 92, 93, 91]. QMOM approximates integrals using 

Gaussian-quadrature with its associated weights, wk, and abscissae, Rk, for each quadrature 

node k =  1,2,..., 2 N  — 1, or defined such that lower-order moments are satisfied as
N

m a =  ^  wk Ra, for a  =  0 ,1 , . . . ,  2N — 1. (2.3)
k= 1

The product-difference algorithm, as derived by Gordon [51], can be used to solve for the 

weights and abscissae given the moments. Thus the QMOM form of Eq. (2.1) is
N

— a wkRa 1G(Rk) =  BN,a +  Aa. (2.4)dma a Y ^ w D a-1 / 
dt k= 1

Alternatively, the weights and abscissae can be directly transported, which is known as the 

direct quadrature method of moments (DQMOM) [90]
N r i n  N r ,

G (R k ) +  dRkE
k=1

?a “ m * 
k i i k dt *=1 dt =  BN,a +  Aa . (2.5)

For the current framework implementation, the DQMOM form of the PBEs will be 

solved. The birth
0

BN,a =  / raB (r) dr (2.6)
rc

and aggregation-rate integrals
0

Aa =  raA (r )d r  (2.7)
rc

both need means of solution and will be discussed within the the following sections along 

with growth mechanisms that are specific to both polymorph and system conditions.
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2 .3 .2  N u c le a t io n

The birth source term, B , for this application will be modeled using a classical 

homogeneous-nucleation mechanism [71]

J =  z k f  C  (1 )C e(ic ), (2.8)

where z is the Zeldovich factor, kf is the forward reaction-rate coefficient for molecular 

growth of a cluster, C (1) is the number density of single precipitant molecules in solution, 

and Ce(ic) is the equilibrium-based number density of particles of the size currently 

nucleating. The particle or embryonic-cluster size number-density is calculated with the 

Boltzmann equation

-A  G(i)
Ce(i) =  C (1)exp , (2.9)

where A G (i) is the Gibbs free energy, kB is the Boltzmann constant, and T  is the 

temperature. Due to nucleation causing the system to deviate from equilibrium, the 

Zeldovich factor is used to correct for the equilibrium assumption upon which the Boltzmann 

distribution is based [149]

z ~  ( ( :- G ) ^  y / 2 ^  (  a g c  y /2 (210)
y  2nkBT )  ~  \ 3 n k BT i2C j  ' ( . )

A variety of forward reaction-rate coefficients exist, but the two forms explored throughout 

this research and commonly found in the literature are interface-transfer-limited (kf;i) and 

diffusion limited (kf,d) varieties [71]

k f i  =  D (6n2v ) 1/3i2/3 (2.11)

k fd  =  D(48n2v i)1/3' (2.12)

Here v  is the molecular volume, D  is the diffusion coefficient, and i is the number of 

molecules composing the cluster. Any of these equations can be easily converted into terms 

of cluster/particle radius by assuming spherical shape (ic =  rf).

The birth-rate due to nucleation can be mathematically described by a delta function 

at the desired size, rc , multiplied by the nucleation rate or BN =  S(r — rc) J . Thus the 

birth-rate integral for Eq. (2.4) will be
r

BN,a — r a BN  (r )d r  =  r^J. (2.13)
J r c

This equation is shown in terms of radial-size because the PBEs in which it is utilized are 

based upon transporting particle radial-size characteristics. The size at which particles are
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inserted into the PSD will be the critical radii or the size at which it becomes energetically 

favorable for particle embryos to nucleate as is defined by the Gibbs free energy equation 

for molecular clusters

A G (i)  =  —kB T  ln(S )(i — 1) +  (36nv2) 1/3a (i2/3 — 1). (2.14)

Here a  is the interfacial tension. Eq. (2.14) has been written relative to a single molecule 

to maintain self consistency [70, 47]. Solving the derivative of Eq. (2.14) with respect to 

radius or number of molecules and then setting equal to zero corresponds to the point at 

which the energetics of additional particle volume overtake the surface energy’s resistance, 

or the critical size

32nv2a 3 2av
iC =  3(kBT ln S )3 or rC =  kBT ln S ' ( . )

As the system’s composition changes, so too will the rate of nucleation and the size at 

which particles become energetically favorable or enter the PBE. This is reflected within 

the integral limits of Eq. (2.13) that can now be understood to change over time as the 

system conditions vary.

While the above equations are generally based upon static interfacial tension values, the 

use of size dependent interfacial tension, as is discussed further in Section 2.3.7, provides 

further complications. The previously derived critical Gibbs free energy was based upon 

solving dAdG =  0, which can be rederived once the size dependent form of interfacial 

tension has been chosen

^bT  ln S 2 r . .
0 = ----- v----- rC — 2a(Xr c  +  2 a ^ 5 r . (2.16)

When solving it was found that taking the larger root kept the system physical and the 

actual critical size utilized was 1% larger in order to numerically separate where particle 

nucleated and growth began.

The nucleation rate, J , has thus far been treated as a quasisteady state model, where it 

has been assumed that the prenucleation embryonic-cluster distribution is fully established. 

For systems infinitely fast mixing, this assumption would prove false, but for the current 

system with finite mixing rate its validity is uncertain. As the Ca2+ and CO32- solutions 

are mixed, CaCO3 molecules will form and a distribution of embryonic clusters of the 

CaCO3 molecules will evolve towards the quasisteady state Boltzmann distribution. During 

this period of transition, the embryo distribution will have greater weight on smaller sized 

clusters. During the transition towards a quasisteady embryo distribution, nucleation can be
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described by transient nucleation models. Such models utilize the transitional time frame t , 

known as the time lag or induction time, as the timescale upon which transitioning to steady- 

state nucleation is scaled. The most well known model describing transient nucleation is 

that by Kashchiev [69]

t ,

J(t) =  J 1 +  2 ^ ] ( - 1 ) m e x p (-m 2 - ) (2.17)- 1) e x p (-m 2
m= 1

where t  =  4/z2n 3k f N (1) [73].

Alternative nucleation mechanisms exist and could potentially be present in the condi

tions of the systems of interest. A secondary heterogeneous-nucleation mechanism [71] 

was implemented during framework development. Secondary heterogeneous nucleation 

allows for nucleation on particles already present in the system, as opposed to primary 

heterogeneous nucleation that would occur on system boundaries and impurities. Using 

this heterogeneous nucleation mechanism introduces additional unknown model parameters 

such as: the contact angle at which one polymorph nucleates on particles of each of the 

other polymorphic forms, and the density of nucleation sites for each polymorphic form. 

These additional unknown parameters had to be fitted. Within recent literature it has been 

suggested that ACC might follow a nonclassical nucleation pathway [118, 42]. Although 

qualitatively ACC’s nonclassical nucleation has been described, no mathematical equivalent 

has been proposed thus far. The use of classical nucleation mechanisms to describe ACC’s 

appearance were investigated by Harris (2013) [60] and found to perform in a satisfactory 

manner.

2 .3 .3  G ro w th

Growth mechanisms can differ for each polymorph due to differing crystal structures 

and even then the growth mechanism will change as the system’s supersaturation values 

relative to each polymorph also evolve. The following growth mechanisms were selected 

based upon the system conditions of the validation system, but it is recognized that different 

mechanisms would be appropriate if the system’s initial conditions were altered and that 

the chosen mechanisms are rough approximations. Because the validation systems utilized 

have high initial supersaturation values, diffusion-limited growth [100] (Eq. (2.18)) will be 

the controlling mechanism for most of the crystalline polymorphs until their respective su

persaturations have been greatly diminished [27]. The diffusion-limited growth mechanism, 

assuming equilibrium boundary conditions, can be expressed as

G (r) =  —  [CaCO3]eq(S -  S ), (2.18)
pr
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where D  is the diffusion coefficient, p is the polymorph’s molar density, and S is a ratio of 

the activities accounting for the difference between a finite-radius particle and an infinite 

flat surface [100]. This activity ratio is often set to unity, likely due to describing geological 

precipitation instead of particles, but in order to capture coarsening effects it can be derived 

from the Kelvin equation to be S =  e 2a/pRTr [27, 102] or S =  e 2a^ (l-&/r)/pRTr once size 

dependent interfacial tension is included, Eq. (2.57). Eq. (2.18) assumes spherical particles. 

While this assumption should be valid for ACC, vaterite, and calcite, aragonite is known 

to take geometries better described as cylindrical. A diffusion-limited growth model for 

cylindrical particles was then derived as

7 D
G (r) =  6 ]n^  pr [CaCO3]eq(S — S )> ( ^ 9 )

where it was assumed that the diameter-to-height aspect ratio was 1:6 and the concentration 

boundary layer of the particles was within an order of the particle size.

Once respective supersaturation values for each polymorph become close to S, the growth 

rates are known to be determined by surface-controlled mechanisms, such as this singular- 

sourced screw-dislocation mechanism

G (r )  =  K r (S  — S )2, (2.20)

where K r is an empirical reaction-rate constant [76, 75, 3, 13]. The recently published 

surface-reaction limited mechanism for calcite from [145] that accounts for pH and ion ratio 

effects will be utilized. Although ACC has supersaturation values relatively lower than 

the other polymorphic forms, diffusion-limited growth will still be utilized due to ACC’s 

minimal crystal structure.

2 .3 .4  D is s o lu t io n  an d  D e a th

Mathematically, dissolution appears as a negative growth term and complete particle 

dissolution is implemented as a death term or negative birth event. As the system’s 

supersaturation relative to each polymorph reaches an undersaturated state, the system 

displays Ostwald’s step rule [108], or the gradual descent through increasingly more stable 

mineral forms until reaching the thermodynamically most stable polymorph. Dissolution, 

as it is defined within this framework, begins once a portion of a polymorph’s PSD becomes 

undersaturated or S <  S. It is through this definition of dissolution that coarsening or 

Ostwald ripening [81] within a polymorph’s PBE can be captured. Without the inclusion 

of S, all sizes of a mineral form would begin dissolution simultaneously.
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There is currently ambiguity in ACC’s dissolution mechanism [118, 15], so surface- 

and diffusion-limited mechanisms, Eq. (2.20) and (2.18), with fitted rate constants were 

investigated. Due to the dissolution mechanisms of vaterite and aragonite having not been 

extensively studied across the composition and temperature ranges of interest, the diffusion- 

limited mechanism (Eq. (2.18)) was implemented as a general estimate. Growth rates of 

more stable polymorphs have been found to be a limiting factor within CaCO3 systems 

[118, 77, 75], so the use of diffusion-limited dissolution for these two metastable polymorphs 

should allow the growth mechanisms of more thermodynamically favorable mineral forms to 

dictate the system dynamics. Although calcite’s dissolution has a minor appearance/effect 

upon the validation systems, calcite’s dissolution mechanisms are well characterized across 

a wide range of compositions and temperatures [22, 58, 24]. The surface-limited reaction 

mechanism of Plummer et al. (1978) [110] will be used to model calcite’s dissolution due 

to the mechanisms functionality across composition and temperature.

In order to remove particles from the PSD, a left boundary must be selected, rcutoff, and 

a death term D  must be specified. A minimal distribution weight at which a distribution 

environment will no longer have death enacted upon it will also be set for numerical reasons. 

The chosen left boundary must have a negligible effect upon the equilibrium-chemistry, but 

is still necessary in order to stop the PSD from encountering numerical issues. Because this 

death model serves as numerical convenience, but does not represent a physical process, an 

empirically defined equation is utilized

Di =  ^ , (2.21)

where

k =  0-2^ l  -  erf ( 8 1 n ( ) ) )  ( l  -  erf ( 5 1 o g i o ( ^ } ) ) .  (2.22)

A death term such as this was mentioned within Yuan (2012) [148], but the exact form was 

developed for this specific application. The criteria of selecting when death occurs in the 

system, or left boundary, were set at a particle radial size of 6 x 10-2 ^m with a respective 

distribution weight of 10-3 # /m 3.

2 .3 .5  A g g r e g a t io n

Although aggregation is not believed to be an effect of primary importance within the 

systems of interest and is not explicitly measured through the experimental data available, 

it is included for completeness and future flexibility in the theoretical description provided 

by the framework. Aggregation is the processes by which two individual particles collide
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and form a singular particle. Within the context of PBEs, a particle of the combined 

size is introduced into the population while two particles of the original sizes are lost. 

Mathematically this requires two source terms for the PBE, a birth and a death term. 

A PBE that only considers these two aggregation source terms is known as the general 

aggregation equation

(V; t) =  1 f  ^/(v — v/,v /)n '(v — v'; t)n '(v'; t) dv'
2 JO

— n'(v; t) / a '(v ,v ')n '(v '; t )d v ', (2.23)
Jo

where n' is the number density of particles on a volume basis, a ' is the aggregation kernel on 

a volume basis, and v and v' are the volumes of the two particles forming the new aggregate. 

The first term of the right hand side of Eq. (2.23) represents the creation of a new particle 

of size v, while the death of particles due to the aggregation is captured by the second term. 

Following the derivation by Marchisio et al. (2003) [92], this aggregation based population 

balance can be converted into its equivalent form in terms of weights and abscissae that 

can be utilized in the current framework

1 N N N N
A a ~  g E  Wi E  P(Ri ,R j )wj (R3 +  j  3 — E  R“ Wi E  P (R i ,R j  )w j  • (2.24) 

i= 1 j=1 i=1 j=1

The radial-based aggregation kernel ^ is the product of the radial-based collision-frequency 

kernel P* and the collision efficiency ^  [80],

^(ri, r j ) =  P *(ri, rj )^ . (2.25)

While there exist many collision-frequency kernels, a Brownian motion frequency kernel [30]

=  2kBT  (r +  r' )2 (2 2fi.
pBrownian — 0 , , (2.26)3^ rr'

will be implemented due to the large quantities of small particles within the systems. The 

collision efficiency ranges from zero to one reflecting the probability of an aggregation event 

given that a collision has occurred. To approximate this probability a semi-empirical model 

that balances the bonding forces/growth between two particles against tensile and shear 

stresses of the fluid dynamics will be implemented [64, 80, 4].

Collision efficiency must be considered due to the fact that not all collisions result in 

aggregation. Fundamentally the collision efficiency can be thought of as the probability that 

forces bonding the particles together overcome forces pulling the particles apart. At low 

ionic strengths the balance between attractive and repulsive forces influences the efficiency,
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but at high ionic strengths the repulsion greatly diminishes and the efficiency goes towards 

one [92]. While modeling this factor is an area of current research, one semi-empirical 

method introduced by Liew et al. (2003) [80] has been explored in recent literature [26, 65] 

and will be used for this application. This model creates a dimensionless strength variable 

(M ) out of the factors effecting the likelihood of the formation of a new particle when two 

particles collide. Dimensionless strength is derived by comparing the strength of the bond 

formed between the two particles (a) with the force from the surrounding fluid upon that 

bond (F / A ),

M  =  FTA ' <2-27>

The force placed on the bond is derived from hydrodynamic theory to be F  a  ^ Ajd2, where 

^  is the fluid viscosity, y is the shear rate, and d is the particle diameter. Previous versions 

of this model assumed that collisions occurred at single points, but this version allows for 

collisions to occur along a line. This seems reasonable due to crystal structures generally 

being composed of faces and edges rather than points. The area is set to A =  L (Y/sGG(Q) ), 

where G is the growth rate and Q is a shape factor. The growth rate is included because it 

describes that rate of enlargement of the bond. Using the defined terms in Eq. (2.27) along 

with assuming ^ A/2 a  pe, dimensionless strength can be expressed as

M  =  ^ , (2.28)
pd2e

where p is the fluid density, e is the mean turbulent dissipation energy, a* =  a / sin(Q), and 

d is the average particle diameter. For the average particle diameter a geometric average of 

the two particles will be used. If the particle growth rate being used is size dependent, it 

seems reasonable to base the growth rate on the larger of the two particles colliding because 

this value will be closer to the final particle size. Also, if a moment method is being used, 

the growth rate has likely already been solved for the particle sizes colliding, but not the 

new particle size. Because it was known that M  a  ^  at low efficiency and goes to one at 

high inefficiency, ^  takes the following functional form

\V =  m /m 50 , (2 .29 )
1 +  M /M 50 1 j

where M 50 is the M  value for fifty percent efficiency. Values for the variables M 50, a*, 

and L can be found in the literature for minerals such as calcite and vaterite, as can be 

seen in Table 2.1. Due to not being found in the literature, values of 0.1 and 0.5 N  m -1  

were approximated for ACC and aragonite based upon the values for the other polymorphs
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Table 2.1: Example of values for Eq. (2.28) from the literature.

— Calcite [80] Vaterite [4]
La*/M 5o [Nm-1] 0.72 ±  0.03 0.18 ±  0.02

shown in Table 2.1. For this model input values used included a fluid density of 998.2 

kg m - 3 , a fluid dynamic viscosity of 1.002 x 10-3 kg s - i m - i , and a turbulent dissipation 

energy of 5000 J kg.

2 .3 .6  M ix in g

In order to perform a preliminary evaluation of mixing effects upon the systems evolved 

within the precipitation framework, a simplistic mixing model will be included. The mixing 

model selected for this task is a three-environment, multienvironment micromixing model, 

where initially two environments represent the two feed streams into the precipitation 

system [39, 143]. As the two feed streams begin to mix together a third environment 

emerges into which the other two environments are redistributed over time. It is within this 

middle or third environment that all of the particle physics will then occur. This mixing 

model effectively scales the PBEs by the weight of the third mixing environment. The two 

initial environments shrink in size, but maintain constant compositions. Within [143] it 

was shown that this type of three-environment, multienvironment mixing model performed 

well in capturing low order moment characteristics of precipitation systems such as mean 

particle size and mean particle number density. The amount of mixing was calculated as

1 Z'2
Mixing =  - 7—  • Z(1 Z ) Z '2 , (2.30)7mix Z (1 Z ) Z

where tmix is the mixing time, Z  is the mean mixture fraction, and Z '2 is the mixture 

fraction variance. Mixing is then incorporated into the PBE as

N

£
k=i

R k ( ^  +  wk (Mixing) ')
N

-  a  £  w kRfc- i  
k=i

G (Rk ) +  ^ =  B N,a +  A a ■ (2.31)

2 .3 .7  In ter fa c ia l T en sion

Interfacial tension will be a key parameter in the nucleation calculations and major 

contributor to the uncertainty within the framework. Common methods of determining 

interfacial tension from experimental data include utilizing the Ostwald-Freundlich relation 

with measured solubility and nucleation rate/induction-period data for correlations [146]. 

Although interfacial tension values for many of the polymorphs of interest are extensively
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reported throughout the literature, as can be seen in Table 2.2, there is a wide variance 

in the values reported likely due to differing means of experimental determination. While 

interfacial tensions are dependent upon crystal structure, changing between polymorphic 

forms, they are also known to be dependent upon the system temperature and composition. 

Such temperature and composition functionality must be included within the precipitation 

framework in order to best capture the experimental data. Thermodynamically derived 

equations presented by van Oss [142] and Mersmann [96] allow for temperature and system 

composition dependence, but also involve more parameters that must either be experimen

tally determined or utilized as uncertain parameters for calibration.

2 .3 .7 .1  T h e r m o d y n a m ic  R e la t io n  D e r iv a t io n

The following derivation of thermodynamic relations describing interfacial tension will 

stem off of the work of Mersmann (1990) [96]. The equations proposed by Mersmann were 

meant to be simplistic and dependent upon composition but not temperature. In order to 

create an interfacial tension model that included both dependencies, the Mersmann deriva

tion can be altered. Within his derivation, Mersmann took the Guggenheim philosophical 

approach towards interfacial tension [54]. Where Gibbs (1928) [45] assigned interfacial 

tension to a purely mathematical plane between the two bulk regions, Guggenheim’s theory 

allows for an interfacial region. Within Guggenheim’s interfacial region lies all of the 

inhomogeneities associated with changing from one homogeneous phase to another. Having 

this transitional region exist allows for physical properties to be assigned to it as though it 

were another bulk phase. With Gibbs’ approach, the placement of the mathematical plane 

between the the two homogeneous bulk phases effects the values of the properties assigned 

to the plane.

Mersmann started his derivation with the Gibbs isotherm equation

which can be seen to be an isothermal and isobaric version of the Gibbs adsorption equation 

Table 2.2: A review of values for interfacial tension adapted from Donnet et al. (2009)

^  nPd^i +  Ada =  0, (2.32)

[28].

Polymorph a[mJ m 2] Source
ACC -

Vaterite 6.8 — 133 
Aragonite 150

Calcite 19.5 -  280

Not well established
[130, 89, 76, 48, 28] 

[130]
[23, 130, 52, 63, 48]
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da =  —Sad T  — ^  Tid^i +  VadP. (2.33)

Here mf is the number of moles of component i in the interfacial phase p, ^  is the chemical 

potential, A is the interfacial area, r i =  mf/A is the surface concentration, Sa =  Sp/A is 

the surface entropy, P  is the pressure, and Va is the measure of the interface’s width. The 

Gibbsian framework utilizes excess properties such as the surface excess entropy, Sf , instead 

of their counterpart properties described in Eq. (2.33) due to the lack of an interfacial phase. 

To derive the equivalent of the Gibbs adsorption equation within a Guggenheim framework, 

the definition of the differential of internal energy for the interfacial phase and the general 

definition of internal energy can be utilized.

dU  =  TdS — P d V  +  adA +  ^  ^ d m  (2.34)

U =  TS — P V  +  a A  +  ^  ^iUi. (2.35)

Thus in a variety of the Gibbs-Duhem equation

0 =  S dT — V dP  +  Ada +  ^  nid^i (2.36)

da =  —SadT — r id^i +  VadP-

From Eq. (2.33) an interfacial tension model with linear temperature dependence can 

be explored by assuming that the effect of pressure and chemical potential changes are less 

significant,

da =  —SadT (2.37)
r (T) rT
/ da =  —Sa d T  (2.38)

Ja(To) JTo
a (T ) =  a (T0) — S a(T  — To). (2.39)

Although in the initial compositions the system’s of interest will be known and fixed, those 

compositions will change over time as precipitation occurs unless additional material is 

added to the system. Thus if Eq. (2.39) were implemented within the framework, it would 

likely be representing a weighted average interfacial tension that gives greater weight to 

values during the nucleation processes if it is calibrated against experiments with temporally 

varying compositions. This weighing would be due to the physical effects of interfacial 

tension being most evident during nucleation. The temperature dependent interfacial 

tension model performed well for the fixed initial composition experiments of Ogino et 

al. [106] it was compared with, but in order to be able to capture composition varying 

experiments, we need to begin again with Eq. (2.33).
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In order to maintain both temperature and composition dependence, the Gibbs adsorp

tion equation will be carried through Mersmann’s derivation instead of the Gibbs isotherm 

equation. It will still be assumed that the system is isobaric,

da =  —S«dT — r id^ i . (2.40)

Now the surface concentration (r ) must be described. Guggenheim described the surface 

concentration as ‘the number of moles of the component in a unit area of the surface layer,’ 

and Mersmann interpreted this to mean the concentration of the component in a monolayer 

at the interface of the interfacial region and the solid-phase. In the Gibbsian framework, 

this term describes excess concentration of the component within the mathematical plane 

(or ntotal — nphase 1 — nphase 2 =  n a ). To quantitatively describe the surface concentration, 

Mersmann assumes the particles in the monolayer are spheres and relates their surface area 

to their volume,

O m,Totai =  nd2m Vm =  ndfm/6 (2.41)

^  O m,Totai = n 1/362/3Vm/3. (2.42)

The surface concentration is then described as r i =  1/(N AO m>i), where Mersmann assumes 

that the molecules in the monolayer are 50% exposed to the liquid phase and N a  is the 

Avogadro constant. The molar volume is described in terms of the component’s density in 

the solid-phase (cf) or O m,i =  n1/3262/3 (c|Na)-2 /3 . Substituting this back into Eq. (2.40) 

yields

da =  —SadT — 0414 V (c fN A )2/3d^i. (2.43)
Na ^

Using other geometric and coverage assumptions leads to different values for the surface 

concentration term. If it is assumed that water does not exist in significant quantities 

within the crystal lattice and that the surface of tension is located so that Th2o =  0, the 

summation can be dropped and only the terms involving CaCO3 remain,

da =  —SadT — ° # V n a )2/;V  (2.44)
N a

Now an integration over Eq. (2.44) from a reference interfacial tension value at a reference 

chemical potential and temperature yields

f a fT  0 414
da  =  — Sa / dT — — —  (csN a ) 2/3 d^ (2.45)

Ja(T°,^°) JT° N A J^°

a  =  a(To, ) — Sa(T — To) ----- ^ — (cfNA)2/3(^ — ^0)- (2.46)
N a
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The chemical potential can then be expressed in terms of activity [134, 10],

^i =  +  RT ln ai (2.47)

^CaC03,aq =  (1)^Ca2+ +  (1)^C032-  (2.48)

=  ^Ca2+ +  RT ln aCa2+ +  ^Co 2+ +  RT ln aCo 2-  (2.49)Ca C 03 3

^CaC0 3 =  ( 1)^Ca2+ +  (1)^ C ^ 2-  (2.50)

^CaC03,aq =  ^CaC03 +  RT ln(aCa2+ aC032 -). (2.51)

In the equations above (1) is displayed as a reminder of the chemical complex’s stoichiometry 

that must be included. Although it is a common practice to use the activities of the ions 

in solution to describe the chemical potential of the liquid complex, in order to maintain 

consistency with the supersaturation definition being utilized in our mineralization frame

work, the complexed form (CaCO3 ) will be utilized to describe the chemical potential 

of interest. The reference chemical potentials cancel out. The equilibrium between the 

chemical potential of the sum of the ions and the complexed form can be utilized to replace 

the ionic activities,

aCaC03K  = ----------- 3Î . (2 .52)
aCa2+ aC032-

Then the supersaturation (S) and the liquid-solid complex equilibrium constant ([CaCO3]eq) 

can be used to describe the complexed form activity,

a =  a(T° ,^°) — S„(T  — T0)

— TNT( c S ) 2/ 3 (^CaC03 +  RT ln(aCa2+ aC032-) — ^CaC03)

=  — 0.414kB T  (cs N a ) 2/3 ln(aCa2+ aC0 g2- )

=  — 0.414kBT(csNa )2/3 ln ( aCaC° 3’aq)

=  — 0.414kBT (csNa )2/3 ln ( S[CaC03leq)

a (T ,^ ) =  a(T °,^°) — S„(T  — T°) — 0.414kBT(csNa )2/3 ln ( S[CaC03leq )• (2.53)

Which for each polymorph then takes the form

a j (T ,^) =  a j(T °,^ °) — Sa,j (T  — T°) — 0.414kBT (csN a)2/3 ln ( Sj[CaC03lj,eq). (2.54)

The reference interfacial tension value in Eq. (2.54) does not have as physical of a 

meaning as the reference in Eq. (2.39). Where in Eq. (2.39) the reference value was the 

actual interfacial tension value utilized at the reference temperature, within Eq. (2.54) the 

composition dependent term is not negligible at the reference temperature unless the current
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activity coincides with the solid-liquid equilibrium value’s. The reference interfacial tension 

value can still be used as a calibration parameter along with the surface entropy, leaving 

two free parameters per polymorphic form.

2 .3 .7 .2  S ize D e p e n d e n c e

Like most physical material properties, the definition of interfacial tension and its 

quantitative value begin to lose validity when looking at small amounts of material. At 

high supersaturation values, particles can nucleate at sizes where continuum approxima

tions are questionable. Although it seems appropriate to use the interfacial tension of an 

infinity sized interface for particles that are millimeter and centimeter sized (known as the 

capillary approximation), the very definition and applicability of interfacial tension becomes 

questionable for nanoscale particles. With the recent expansion of nanoscale science, there 

have been many suggestions on how to scale properties with particle size [56, 55, 57]. This 

same question, specifically for interfacial tension, was addressed long ago by Tolman (1948) 

[137].
Tolman’s model for radially dependent interfacial tension,

0"(r) =  ^buik(1 +  25t / r ) - i , (2.55)

is well established in the literature, but introduces a Tolman length term 5T that is not 

well documented for solid particulates. Although there has been a great breadth of research 

into the Tolman lengths for liquid droplets, there has yet to be a consensus on either the 

magnitude or sign [138, 141, 97]. Following Kalikmanov (1997) [68], the Tolman length will 

be estimated as 20% of the radial size of a single molecule.

Within the derivation of Tolman’s equation, it was assumed that the Tolman length 

is not a function of the particle size. Thus the presented equation is a truncation due to 

the unknown functionality of the Tolman length with regards to the particle size. The 

Tolman length physically describes the difference between the surface of tension Rs and the 

equimolar dividing surface Re,

5t  =  lim (R e -  Rs). (2.56)
Rs —

The surface of tension is where interfacial tension is defined as physically occurring within a 

Gibbsian framework between the particle and the surrounding phase or where the standard 

Laplace equation is valid (R s =  2a(R s)/A p ). The equimolar dividing surface is where 

4 /o°°[P(R) -  P^]R2dR =  (pi -  pv) R3. Here pi and pv are the bulk liquid and vapor 
densities for the case of a liquid-vapor interface. Holten (2005) [62] derived, using the
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capillary approximation and assuming Tolman’s approximations, that R s is 2§t  from the 

capillary radius Rc1, or radius at which bulk properties are valid and which is commonly 

used in classical nucleation theory, and Re is directly between Rc1 and Rs. One means of 

implementing the Tolman equation is by utilizing its Taylor series expansion about r =  to 

truncated to two terms,

0"(r) =  ^buik(1 -  25t /r). (2.57)

This truncated series form will be implemented within the current nucleation model along 

with its associated effects upon coarsening, as was previously alluded to in Section 2.3.3.

2.4 Solid-Liquid Phase Interaction
The solid and liquid phases of the precipitating system are interdependent and need 

to be coupled. Solid-liquid coupling can be accomplished through the use of an extent of 

reaction variable %. This reaction-extent variable represents the normalized total amount 

of solid material precipitated out of solution. The amount of solid material present in 

the system at a position in time can be calculated by summing the third moments of all 

polymorphs, representing total volume, multiplied by their respective densities,

4ncj f ^  3 4ncj
cj vj  =  —  J  r Vj dr =  —  m3, j , (2.58)

and normalizing by the total amount of material initially available in the system,

X =  4n E  . (2.59)3  ̂ ___
j3 . —CaCO ,max

Here Cj represents polymorph j ’s molar density, Vj is the polymorph’s total volume, and 

—CaCo 3,max is the maximum amount of material that can be precipitated out of the system, 

which can be determined from the stoichiometrically limiting ion. Chemistry tables relating 

chemical activities to reaction-extents can be created a priori. Thus, as material precipitates 

into solid forms at each time step, the extent of reaction can be calculated and noted to be 

proportional to the sum of the rates of change of the polymorph's third moments

dX  x  e  Cj . (2 .60 )
dt ^  j dt K J

j

After each time step the aqueous-phase’s chemical activities are updated by interpolation 

within the chemistry tables depending upon the current extent of reaction.
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2.5 Conclusions
To capture the evolution of a highly supersaturated aqueous system as it evolves to ther

modynamic equilibrium, phases and timescales had to be coupled. Equilibrium chemistry 

generated by an ionic chemistry package was tabulated over the range of reaction extents. 

Population balance equations were derived to capture the coupling of solid-phase processes 

nucleation, growth, aggregation, and dissolution. The coupling of aqueous and solid-phases 

through the reaction-extent allowed thermodynamics effects such as Ostwald ripening to 

be captured. A simplistic mixing model was also implemented to roughly emulate mixing 

effects. Lastly, thermodynamic relations were derived to capture temperature and compo

sition effects upon interfacial tension. The aggregate of all these modeling pieces embodies 

a modeling framework for capturing the evolution of CaCO3 systems of interest and will 

function at spacial and temporal scales used within the CFD applications.



CHAPTER 3

PRECIPITATION FRAMEWORK  
RESULTS AND ANALYSIS 

3.1 Introduction
The validation metric used to test the precipitation framework created within Chapter 2 

was a dataset from Ogino et al. [106]. The experiments described within Ogino et al. 

were reported to have been carried out at fixed temperatures and were chiefly initiated 

at a single set of initial conditions. With this data for systems with fixed temperature 

and initial composition, the precipitation framework was able to produce results that were 

directly comparable to those reported. Experimental data were presented within Ogino et 

al. primarily in the form of volumetric polymorphic abundance and ion-activity product 

(IAP) traces. IAP traces can be extracted from the equilibrium-chemistry tables as the 

product of Ca2+ and CO32- activities. Each polymorphic form’s third moment can be 

utilized to track that form’s total volume, which in comparison to the total solid volume, 

or sum of the four forms, describes polymorphic abundance traces.

Results of this validation step will be analyzed in a step-wise fashion similar to that 

utilized throughout the framework’s development. Many potential configurations of the 

physics submodels comprising the framework are possible. Analyzing the effect of a subset 

of the potential configurations while in the process of choosing a final configuration for a 

more thorough validation will be presented first. The interfacial tension parameters were 

known to have large amounts of uncertainty and the system’s evolution was highly sensitive 

to their values. Once a final framework configuration was chosen, the interfacial tension 

values were optimized and framework outputs compared with the data from Ogino et al. 

[106]. Although only two types of data were utilized in this framework validation, the 

precipitation framework has the ability to produce many additional forms of data and

Adapted with permission from B. Schroeder, D. Harris, S. Smith, and D. Lignell, Theoretical framework 
for multiple-polymorph particle precipitation in highly supersaturated systems, Cryst. Growth Des., 14 (2014), 
pp. 1756-1770. Copyright 2014 American Chemical Society.
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some of these capabilities will be analyzed to extract additional insights. Before framework 

analysis is presented, a description of a hypothesized error in the experimental data as well 

as how it is corrected are outlined.

3.2 Corrections to Literature Data
During the analysis of the experimental data presented within Ogino et al. [106], 

it was hypothesized that an error was present within the BASIC code utilized by the 

experimentalists when calculating the published results. Although it was reported that the 

BASIC code was based upon the chemistry model developed by Plummer and Busenberg

[109], it can be seen in Figure 3.1 that a reimplemented version of Plummer and Busenberg’s 

model did not match the reported data of Ogino et al. By changing the model such that the 

direction of calcium carbonate complex, CaCO3°, formation was effectively reversed, Ogino 

et al. data were matched. The implementation of Plummer and Busenburg’s model was 

then checked against calcium concentrations measured by Gebauer et al. [42] in a similar 

experimental setup.

Following the assumption that the hypothesized error in the Ogino et al. results 

was correct, accounting for such an error is simple and allows the data to be utilized 

for framework validation. Figure 3.2 demonstrates how the experimental data can be 

corrected through correlation to the original model and the chemistry produced when using
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Figure 3.1: Demonstration of hypothesis that a model with a reversed equilibrium 
expression was likely utilized within results reported by Ogino et al. [106]. Dashed lines 
represent the original CaCO3 aqueous ionic-chemistry model developed by Plummer and 
Busenberg [109] and solid lines represent modifying that model such that the CaCO3° 
equilibrium expression is reversed. The left plot includes IAP data from Ogino et al. 
(circles) over a temperature range from 25 to 80°C, while the right plot contains calcium 
concentration data over time as reported by Gebauer et al. [42] (squares).
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Figure 3.2: IAP traces over the full range of reaction extent, starting with the initial 
conditions used by Ogino et al. [106] for systems at 25°C and 50°C, are compared for three 
ionic-equilibrium chemistry models. The model presented in Plummer and Busenberg [109] 
is shown as downward and upward pointing triangles, Plummer and Busenberg’s model 
with the CaCO3° equilibrium expression reversed is shown as solid and dotted lines, and 
the equivalent values calculated using Goodwin et al. [50] are shown as circles and stars, 
all for 25°C and 50°C, respectively.

the Cantera package [50] as a function of reaction extent. Such correlation was utilized 

throughout all portions of the framework validation. It should also be noted that this 

hypothesized error had no bearing upon the timescale and particle population statistics 

reported by Ogino et al.

3.3 Configuration Analysis
In order to evaluate the performance of the precipitation framework, a configuration of 

physical submodels had to be chosen. It was desired that the framework remain fairly simple 

in order to avoid overfitting the limited amount of data available, while still being able to 

capture the system’s dynamic trends across multiple time-scales. Many potential submodels 

were presented within Chapter 3. Beyond submodel selection, numerical implementation 

issues also had to be addressed.

When utilizing moment methods to solve the PSDs, the number of quadrature nodes 

utilized must be selected. Ideally, the more nodes evolved the better, but additional nodes 

add computational cost, thus creating a balancing problem. Initial simulations were run 

with two and three nodes. While producing similar results, there was enough discrepancy
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to justify exploring the use of more nodes. Using four or five nodes (eight or ten moments) 

for each PSD did not cause notable differences, when compared to the results produced 

using three nodes. Thus, it was decided that evolving three nodes was the balancing point 

between accuracy and computational speed.

The mixing-time, or time until complete mixing of the two reactant streams, also needed 

to be selected. Once the optimization process located the vicinity of likely parameter 

values, a range of mixing times were surveyed. It was found that a mixing-time that 

allowed for the majority of mixing to be concluded by 1.5 seconds and complete mixing 

prior to 5 seconds was optimal. The actual value of the mixing-time model-parameter 

utilized in the three-environment mixing-model Eq. (2.30) was 0.75 seconds. This mixing 

time allowed the optimization scheme to locate a set of parameters that corresponded to 

an acceptable amount of discrepancy from the experimental data. Additionally it was 

judged to be a physically realistic time-frame for the system’s specified mixing geometry. 

Supplemental data on the PSD and number density at short time-scales would allow for 

a better understanding of the mixing event and potentially justify the implementation of 

a more detailed mixing model. The other time-scale, the time-lag parameter, utilized for 

transient nucleation [69] was found to have no notable effect for the system conditions of 

interest, but might for systems with lower concentrations.

Also within the nucleation model, diffusion-limited and interface-limited reaction-rate 

coefficients were compared. The two reaction-rate coefficients were found to produce similar 

results and corresponded to approximately 0.01% and 2.0% differences in the interfacial- 

tension reference points and excess entropy values found during optimization. Such similar 

behaviors were also reported by Lindenberg and Mazzotti [83]. Ultimately, the diffusion- 

limited variant was selected for the final framework configuration to maintain consistency 

with the diffusion-limited growth mechanisms utilized when the majority of nucleation 

occurred.

The initial framework configuration considered consisted of homogeneous nucleation, 

aggregation, mixing, and diffusion-limited kinetics for growth and dissolution for all CaCO3 

forms except ACC’s dissolution, which used a kinetically limited rate in the form of Eq. (2.20) 

with a rate constant 9 x 10-9 m s-1 . This configuration was compared with and parameters 

fitted to experimental data for 250C, as is shown in Figure 3.3. Although this initial 

framework configuration captured the slopes, time-scales, and general trends reasonably, its 

primary purpose was to act as a basis of comparison throughout framework development.

Even though the basic framework configuration performed well in matching the exper-
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Figure 3.3: Traces of polymorphic abundance over time at 25°C calculated by the 
precipitation framework (lines) compared with experimental data (symbols) extracted from 
Ogino et al. [106]. The interfacial tension values used within the precipitation framework 
were optimized to fit the experimental data at this temperature with greater emphasis upon 
the shorter time-scale data. ACC data are shown as the dashed lines and triangles, vaterite 
data are shown as the circles and dash-dot lines, and calcite data are shown as the solid 
lines and the squares for the calculated traces and experimental data, respectively. At these 
conditions aragonite is not present in any significance.

imental data, there are still inconsistencies that can be used as points of comparison and 

analysis while refining the configuration. In order to capture the general polymorphic 

abundance trends and time-scales, the initial period of ACC dominance has been cut 

short. The time-lag between when calcite becomes prolific and when vaterite also reaches 

similar quantities has not been captured. In order to capture the short time-scale trends, 

simultaneous vaterite and calcite increasing trends were required. Lastly, this configuration 

did not allow vaterite and calcite to switch polymorphic abundance dominance roles twice, 

once in the short time-scale and once in the long time-scale. That being said, all of these 

criticisms should not be given too much weight considering the scale of potential error 

in the experimental data was reported to be up to 10%, potentially invalidating most 

of these issues. Throughout the exploration of framework configurations, the two most 

fundamentally significant options explored dealt with the selection of nucleation and growth 

mechanisms.

Within Figure 3.4 simultaneous heterogeneous and homogeneous nucleation has been 

implemented. Both forms of nucleation are likely to have occurred within the system of 

interest, but their relative levels of importance are unknown. The simultaneous implemen

tation does a notably better job at capturing most of the perceived shortcomings of the basic 

framework configuration. ACC is able to maintain near 100% polymorphic abundance for
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Figure 3.4: Traces of polymorphic abundance over time at 25°C calculated by the 
precipitation framework (lines) compared with experimental data (symbols) extracted from 
Ogino et al. [106]. Combined heterogeneous and homogenous nucleation with parameters 
fitted to best capture the experimental data were used with diffusion-limited growth and 
dissolution mechanisms for all CaCO3 forms. ACC is shown as dashed lines and triangles, 
vaterite is shown as dash-dot lines and circles, and calcite is shown as solid lines and squares, 
for the simulated and experimental data, respectively.
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a longer period of time. A period of lag between calcite's rise in polymorphic abundance 

and vaterite's exists, albeit occurring a minute premature. Even the short- and long-term 

intersections of polymorphic abundance for vaterite and calcite are captured. Although such 

results do appear promising, the heterogeneous nucleation mechanism introduces additional 

unknown parameters, which along with the interfacial tension values were optimized for 

fitting the experimental data. Optimizing too many parameters can add too many degrees 

of freedom to the framework for the results to be considered conclusive. Thus, to avoid 

such overfitting only homogeneous nucleation will be utilized in the final configuration.

A wide variety of permutations of growth and dissolution mechanisms exist for the frame

work including the possibility of transitioning between different mechanisms. Figure 3.5 

demonstrates how a configuration that includes a transition in growth mechanisms is able 

to capture dynamics absent in the basic configuration. For Figure 3.5 the only change from 

the basic configuration was that vaterite's growth mechanism shifts from diffusion-limited 

to screw-dislocation based at a supersaturation value of 47 and the interfacial tension values 

were refitted.

Transitioning vaterite's growth mechanism allowed for the delay in vaterite reaching 

significant polymorphic abundance and overtaking calcite around 3 minutes to be captured. 

This is caused by a change in the fitted interfacial tension values of vaterite relative to
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Figure 3.5: Traces of polymorphic abundance over time at 25°C calculated by the 
precipitation framework (lines) compared with experimental data (symbols) extracted from 
Ogino et al. [106]. Vaterite’s growth mechanism switched from diffusion-limited to a 
screw-dislocation mechanism when its respective supersaturation became less than 47. 
All other growth and dissolution mechanisms were diffusion-limited and interfacial tension 
values were fitted to best capture the experimental data. ACC is shown as dashed lines and 
triangles, vaterite is shown as dash-dot lines and circles, and calcite is shown as solid lines 
and squares, for the simulated and experimental data, respectively.

the other polymorphs. Realistically, the implemented change does not represent the true 

physical transition occurring because there are multiple growth mechanisms that should 

be transitioned through after diffusion-limited growth and prior to a screw-dislocation 

mechanism becoming dominant [27]. At the same time, inclusion of the full range of growth 

mechanisms was not desired in order to keep the framework relatively simple. The chosen 

transitioning point was arbitrary and will make extrapolating this configuration to other 

temperatures likely to fail. Another issue with this dual growth-mechanism configuration 

is that fitting interfacial tension values to allow for good short time-scale trend-matching 

causes the long time-scale trends to extensively overshoot the times of the experimental 

data. If multiple growth mechanisms were ever utilized, it appears likely that more than 

two would be necessary as well as transitions in the dissolution mechanisms.

Recently there has been a great deal of research on calcite’s growth and dissolution rates 

and many complex mechanisms have been suggested [82, 132, 43, 18, 111, 119]. Wolthers 

et al. [145] presented a calcite growth mechanism that accounted for ionic ratio and pH 

dependence. This mechanism was found to perform well when transitioned to from the 

diffusion-limited mechanism at a supersaturation value around 1.5. In order to incorporate 

temperature dependence within calcite’s dissolution, the Plummer et al. [110] mechanism 

can be utilized.
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3.4 Final Configuration
After considering many possible model configurations, one was ultimately selected as 

the best representation for the system of interest. This final configuration included mixing, 

homogenous nucleation (without time lag), aggregation, diffusion-limited growth except 

for calcite at supersaturations below 1.5 where the Wolthers et al. [145] mechanism is 

used, kinetically-limited dissolution for ACC, diffusion-limited dissolution for vaterite and 

aragonite, and the Plummer et al. [110] dissolution mechanism for calcite. A Nelder-Mead 

Simplex optimization was used to locate the slope and intercept parameters of the interfacial 

tension model Eq. (2.54) for each polymorph. The error kernel that the optimization 

scheme explored was based upon a weighted sum of squared-error between the framework 

outputs and the experimental polymorphic abundance and IAP data across all temperatures 

provided by Ogino et al. The optimized interfacial tension parameters are tabulated in 

Table 3.1 and Figure 3.6 depicts how the framework performs with optimized parameter 

values over the full range of temperatures. The comparison of the framework output with 

the experimental data points provides a visual of a portion of the error kernel minimized.

Within Figure 3.6 there are clearly areas of varying success in the framework's ability 

to capture the experiment data trends. Short time-scales and temperatures where data 

were available across the full time-spectrum are captured more satisfactorily. The worst 

performance is for the long time-scales at 80°C where the framework’s predicted time-scales 

far exceeded the experimental data. General trends for all polymorphic forms across the full 

temperature range were captured, reflecting the framework’s ability to generally account for 

temperature effects. Short-term data matching was likely more successful due to being more 

directly related to nucleation, which is most strongly affected by the optimized interfacial 

tension parameters.

A great metric for the framework’s ability to capture temperature related trends can 

be found in Figure 3.7, where the metastable polymorphic abundances from the onset of 

the metastable period are plotted. The onset of the metastable period was interpreted as

Table 3.1: Interfacial tension model parameters (for Eq. (2.54)) from optimization using 
the Nelder-Mead Simplex method with weighed residual.

Polymorph ^25°c,m° [mJ m-2 ] -K-mJ[m

to-

ACC -12.6 2.47 x 10-2
Vaterite 64.6 3.57 x 10-2

Aragonite 96.3 -3 .16  x 10-1
Calcite 8.94 1.06 x 10-1
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Figure 3.6: Traces of polymorphic abundance over time calculated by the precipitation 
framework (lines) compared with full temperature range of polymorphic abundance experi
mental data (symbols) extracted from Ogino et al. [106]. The final framework configuration 
as described in Section 3.4 was utilized with optimized interfacial tension values. ACC is 
shown as dashed lines and left-pointing triangles, vaterite is shown as shorter dash-dot lines 
and circles, aragonite is shown as the right-pointing triangles and longer dash-dot lines, 
and calcite is shown as solid lines and squares, for the simulated and experimental data, 
respectively. For 80°C aragonite’s IAP trace is approximately 100% for the entire time 
range shown.
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Figure 3.7: Polymorphic abundances calculated at the metastable stage by the precipita
tion framework (lines) compared with experimental data (symbols) extracted from Ogino 
et al. [106] over a range of temperatures. The time at which the metastable stage is 
reached was defined as the when the system’s IAP levels out following the majority of ACC 
dissolving. Vaterite is shown as the dash-dot line and circles, aragonite is shown as the 
triangles and longer dash-dot line, and calcite is shown as solid lines and squares, for the 
simulated and experimental data, respectively. The times at which data were extracted 
from the precipitation framework was set to those tabulated within Ogino et al., except 
at 13°C, where a longer time was used due to significant ACC still being present at the 
tabulated time.

occurring once the majority of ACC has dissolved and the IAP traces reached their second 

flat region. Within Figure 3.8 the transition to the metastable period can be observed 

to occur near 6 and 3 minutes for the 25°C and 50°C experimental data, respectively. 

Metastable onset was tabulated across temperature within Ogino et al. and those times 

were primarily used to define this same point for the framework’s output. Comparing the 

framework’s predictions with the experimental data demonstrates that the the interfacial 

tension model has satisfactorily captured temperature dependence. The metastable period 

is reached faster at higher temperatures and it is there that the framework best resembles 

the experimental data. At lower temperatures the trends for each polymorph are captured, 

but are dampened in amplitude. This generally shows that the framework’s response is 

less sensitive to temperature changes than was experimentally observed. Considering the 

approximations and simplifications known to be utilized within the physical submodels, the 

framework’s performance at capturing the metastable stage was deemed reasonable.

To observe the framework’s performance on all time-scales, the IAP traces in Figure 3.8 

can be analyzed. Figure 3.8 compares the outputs calculated by the framework with the raw 

experimental data extracted from Ogino et al. [106], as well as that experimental data once
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F igure 3.8: IAP traces over time at 25°C (a) and 50°C (b) compared with experimental 
data extracted from Ogino et al. [106]. The experimental data as originally extracted from 
Ogino et al. are shown as wide-gapped dotted lines, the extracted data when corrected 
as depicted within Figure 3.2 were shown as narrow-gapped dotted lines, and the data 
calculated by the precipitation framework were shown as solid lines. The solubilities of the 
four forms of CaCO3 are included for comparison with metastable periods of the particle 
evolution and are shown as vertical lines where ACC's are short dashed lines, vaterite's are 
dash-dotted lines, aragonite's are dotted lines, and calcites are long dashed lines. Arrows 
direct attention to inflection points, labeled ‘a,’ that are caused by an unknown particle 
phenomena and not captured by the particle framework.
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the hypothesized error was corrected for using the correlation with the Pitzer equation based 

chemistry equivalent [50]. The first discrepancy between the original experimental data and 

those calculated by the framework is the value at which the IAP initiates. This was a clue 

that eventually lead to the hypothesis of an error in the code utilized to create the reported 

experimental data. Another issue with the extracted experimental data is that the IAP 

remains above ACC’s solubility line until ACC dissolves. For systems containing multiple 

polymorphs it would be expected that the IAP values will remain below the solubility of 

the polymorph that is currently least stable. Once the correlation correction is applied, the 

experimental data satisfy this requirement.

Following ACC’s dissolution the IAP stabilizes into a metastable period at a value below 

the next most thermodynamically stable metastable polymorph vaterite. As was mentioned 

previously, the point at which the IAP reaches this second point of stability has been termed 

the metastable point, which was compared within Figure 3.7. This process continues on 

until the thermodynamically favored polymorph calcite is reached. At 50°C a transition 

through aragonite occurs, but at 25°C this polymorph is insufficiently stable to be present
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in significant enough quantities to impact the chemistry.

There appears to be an issue with the corrected experimental data during the longer 

time-scale data when aragonite and calcite become dominant. The corrected IAP traces 

level off near calcite’s solubility when aragonite is still present in significant quantities within 

the system and eventually moves below calcite’s solubility. It would be expected that the 

final IAP would asymptote at calcite’s solubility as the system approaches equilibrium due 

to calcite being the only polymorph remaining. Many potential explanations exist for why 

this is observed, one being possible fouling of the probe.

It appears that the current framework configuration was able to capture all of the general 

IAP and polymorphic abundance behaviors reasonably well considering the use of basic 

models and many assumptions. Of particular note is that the short-term time-scale trends 

were captured across a wide range of temperature while primarily using diffusion-limited 

growth and dissolution mechanisms (as can be seen within Figure 3.6). This is noteworthy 

considering it was known that other growth mechanisms occur within CaCO3 systems, but it 

appears that with high initial supersaturation, this approximation was acceptable. Calcite 

did have additional kinetic mechanisms enacted for its growth and dissolution, but due to 

the conditions in which they were utilized they should have only minor effects. For greater 

consistency with the long-term data, additional growth and dissolution mechanisms could 

be implemented as a future endeavor.

In both experimental IAP datasets extracted from Ogino et al. [106], there are two time- 

periods characterized on the basis of uniform time sampling: with order of tens of seconds 

for the short time-scales and tens of minutes for the long time-scales. While this adequately 

depicts the system’s general trends, it does little to aid in characterizing nucleation and 

the initial mixing event. Within Ogino et al., perfect mixing was assumed, so it is not 

surprising that this time frame was not better characterized. In the IAP traces for 25°C 

and 50°C there are large IAP drops initially, but they appear to occur at time zero. If 

greater time resolution were available the nucleation and mixing models could have been 

more thoroughly validated, effectively removing a significant amount of uncertainty from 

the framework.

Another feature of concern with the IAP traces are the unexplained inflection points, 

located approximately in the middle of the ACC’s period of stability, which are labeled in 

Figure 3.8 with an ‘a.’ The current framework configuration was unable to recreate these 

inflection points, but many potential physical causes were hypothesized. A secondary form 

of ACC, as was discussed in Cartwright et al. [21] and Radha et al. [112], could exist within
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the system with a lower solubility than the variety currently assumed. Further support of 

the potential existence of a second form of ACC can be found in position of the inflection 

point. The infection point occurs under ACC’s known solubility for both 25°C and 50°C, 

but well above that of vaterite. All other inflections in the IAP traces correspond to the 

system reaching a new metastable phase, so it seems reasonable that this point would also.

An additional noncaptured physical phenomena potentially related to that observed in 

the IAP traces can be found in the polymorphic abundance trances shown in Figure 3.6. 

Until near 2.0 minutes at 25°C, 0.75 minutes at 50°C, and 0.3 minutes at 60°C and 70°C, 

ACC encompasses nearly 100% of the polymorphic abundance. This phenomena can be 

viewed either as a longer period of ACC stability or a delay in the nucleation/growth of 

the other polymorphs. Either way the current framework configuration does not capture 

this behavior. The possibility of multiple ACC forms, as was suggested for the noncaptured 

IAP inflections, could be the cause of this considering that the second form of ACC would 

be expected to have lower solubility than the variety of ACC currently considered and thus 

remain stable longer. Transient nucleation was initially considered as a potential source of 

the delay, but induction-times were found to not be within the order of magnitude necessary 

to correlate with the observed phenomena. Alternative nucleation mechanisms for ACC and 

heterogeneous nucleation were also entertained as potential causes.

While the cause of the noncaptured physical phenomena could not be definitively proven, 

a temperature functionality was clearly observed. The event occurred on longer time-scales 

at lower temperatures. Where the IAP inflection occurred around 2 minutes at 25°C, it 

occurred in half that time at 50°C. The scaling of this effect is in line with the temperature 

effects upon the transition from ACC to the next most stable polymorph.

At both 25°C and 50°C there appear to be two points at which vaterite and calcite switch 

prevalence of relative polymorphic abundance. In Figure 3.6 the transitions for 25°C can be 

seen to occur around 3.5 and then between the first two long time-scale experimental data 

points. The short time-scale transition at 50°C cannot be directly observed in the available 

data, but can be inferred between comparing the short and long time-scale polymorphic 

abundance traces along with the metastable data in Figure 3.7. At 50°C the second 

transition occurs around 600 minutes. The long time-scale transitions can be attributed 

to calcite being the thermodynamically most stable polymorph. What causes the short 

time-scale transitions is less clear, but changes in the polymorphs growth mechanisms as 

the system’s conditions change seems likely, as was previously noted in Section 3.3.
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3.5 Additional Output Analysis
Although validation and calibration of the framework based upon comparison with the 

experimental data of Ogino et al. [106] was limited to the data forms included within that 

article, the framework developed allowed for many additional forms of data output. Evolving 

moments of the particle distribution allows for means, variances, and other statistical 

qualities of the particle distribution to be characterized across time. This provides a wealth 

of potential data forms for comparison with other experimental data sources. Examples of 

such potential statistical characteristics include the particle number density, average particle 

size, and variance in particle size as shown in Figure 3.9-3.10. The simultaneous tracking of 

the solid-phase PSD and aqueous-phase ionic-equilibrium chemistry allows for correlations 

between the events occurring in each phase to be extracted and analyzed, as will be done 

with the supersaturation traces in Figure 3.10.

An initial period of nucleation and mixing until around 10-7 minutes can be observed 

in both the plots of the particle number density and average radial size shown in Figure 3.9. 

After this period of nucleation, the number of particles remains stagnant while the particle 

size increases, indicating that growth and mixing are occurring. ACC is a slight exception 

to this trend until 10-4 minutes while aggregation is occurring. The fact that only ACC 

experiences significant aggregation within this time period should not be surprising con

sidering that aggregation is a function of number density and ACC has approximately five 

orders of magnitude more particles in solution following nucleation than any other CaCO3 

form.

These same temporal periods can be further analyzed through the particle distribution’s 

normalized standard deviations and supersaturation traces shown in Figure 3.10. During 

the nucleation and mixing-limited times, the radial distributions’ variances increase corre

sponding to the fact the size at which particles are nucleating into the distributions, the 

critical size, is shifting. Although the variance is increasing, these are still relatively narrow 

distributions. Once growth becomes the dominant phase-transformation mechanism, the 

distribution’s variances slope downwards. The downward slope is caused by diffusion-limited 

growth being size dependent, causing smaller particles to grow faster than larger particles. 

Such size dependent behavior is effectively collapsing the PSDs. Again, ACC is an exception 

with aggregation causing a continued increase in spread of the radial distribution. Vaterite 

and calcite also show signs of minor aggregation between 10-4 - 10-2 minutes within the 

average radial size plot.

Within the supersaturation traces the onset of growth corresponds to the first downward
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Figure 3.9: Traces of the particle number density or 0th moment, m 0, over time in the 
left plot and traces of the average radial size, m\/m0, over time in the right plot for all 
four forms of CaCO3. ACC is shown as the dashed lines, vaterite is shown as the shorter 
dash-dotted lines, aragonite is shown as the longer dash-dotted lines, and calicite is shown 
as the solid lines.
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Figure 3.10: Traces of the polymorphic PSD standard deviation normalized by their 
respective means over time are shown in the left plot and the respective supersaturation 
traces over time are shown in the right plot. A horizontal dashed line is shown in the 
supersaturation plot to provide reference for where a supersaturation of one is located. ACC 
is shown as the dashed lines, vaterite is shown as the shorter dash-dotted lines, aragonite 
is shown as the longer dash-dotted lines, and calcite is shown as the solid lines.
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shift. No shift o f similar proportion was caused by the entire nucleation process, indicating 

that growth has greater control over the system’s supersaturation and is the dominant means 

o f phase change occurring within the system. The effect of mixing upon particle growth 

can be noted by the bump in the supersaturation traces between 10-6  - 10-2  minutes. It 

is during this time that the mixing of the reactant streams is limiting the speed at which 

growth is occurring.

Shifting focus onto only A C C ’s traces, once its supersaturation begins to level out near 

unity there is no longer a driving force for growth. This effects smaller particles before 

larger particles due to the S  term used within the growth mechanisms. As the smaller 

ACC particles begin to dissolve, the radial variance experiences a slightly positive slope. 

Then as larger portions o f the PSD begin to experience dissolution, Ostwald ripening causes 

a spike in the radial variance. The continued growth of the other polymorphs eventually 

causes dissolution to become energetically favorable for all sizes of ACC and the radial 

variance drops off as ACC effectively disappears from the system. W ithin the average 

radius plot, positive inflection o f the more stable polym orph’s slopes corresponds with 

A C C ’s dissolution. The coupling o f the polymorphic forms’ PSDs is able to be captured in 

this manner due to the coupling of all solid forms with the aqueous-phase ionic-equilibrium 

chemistry table. W ithout such coupling A C C ’s dissolution would not be forced by the 

growth o f the other polymorphic forms, reflecting their favorable thermodynamic stability.

Trends similar to A C C ’s dissolution can be seen for vaterite and aragonite. Distribution 

coarsening causes more drastic spikes in these metastable polym orphs’ radial variances. 

The larger amplitude o f the spikes are due to the larger mean size o f the polymorphs 

prior to dissolution which allowed for a wider distribution to be formed as the side of the 

distribution corresponding to smaller particles elongated. Due to aragonite’s significantly 

lower number density (for the depicted conditions), there is no drop in the supersaturation 

traces corresponding to its dissolution. Once all metastable polymorphs have dissolved 

away, the thermodynamically favored calcite remains with a relative supersaturation around 

unity. Little will change in the system as calcite slowly experiences Ostwald ripening until 

equilibrium is eventually reached, but this is well outside the time frame o f interest.

Through comparing the number density and the average radial size traces, the sequence 

o f dissolution events can be confirmed. The average radial size and variance both drop 

significantly prior to the number density’s decline for each o f the metastable polymorphs. 

It should be stressed that the linear slopes corresponding to polymorph dissolution shown 

in the number density plot are due to the nonphysical death kernel implemented, which
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was designed to have a linear slope in log-log space. Although this is not based directly 

upon a physical mechanism, it is physical in that the particles have already significantly 

shrunk and should be reentering the aqueous-phase. As previously noted, particle death 

only occurs once it has been ensured that it will have a negligible effect upon the chemistry 

and remaining polymorphs.

While tabulated particle size characteristics were not reported by Ogino et al., figures 

containing electron micrograph photos were shown for a few system conditions. The Ogino 

et al. Figure 5-h shows vaterite and calcite particles 50 minutes into the process at 25°C. 

The depicted particles had radii around two microns, which is in reasonable agreement with 

the calculated averages shown in Figure 3.9. Ogino et al. also shows in Figure 5-e ACC 

particles at 7 minutes into the process for the same conditions with radii ranging from 0.5 

to 2.0 ^ m . While this range does not overlap with the calculated average radii of ~  0.1 ^m,  

it is within an order o f magnitude which is considered satisfactory given the large amount 

o f uncertainty within the system’s submodels.

3.6 Parameter Uncertainty
Framework results presented thus far utilized calibration parameters fitted with a 

weighted-sum squared-error minimization technique. W hile the framework’s results ap

peared reasonable in comparison with experimental data, the plots shown did not demon

strate the framework’s sensitivity to the calibration parameters. To clearly see this an 

exploratory sensitivity study was conducted. For this sensitivity study a centered Latin 

hypercube DOE was utilized to select ten parameter sets. The bounds o f the parameter 

space explored were plus or minus one percent around the optimally fit interfacial tension 

parameters, shown in Table 3.1, and plus or minus ten percent around the chosen mixing 

time, 0.75 seconds. The IAP and polymorphic abundance traces at 25°C for the ten 

calibration parameters sets are shown in Figure 3.11-3.12.

The effect of the specified parameter variance when propagated through the framework 

was clearly evident in the IAP traces. W hile in short time-scales minimal differences can 

be noted, by the first significant dissolution event the times at which the IAP drops occur 

have spread. The IAP traces then restabilize at varying IAP values, that do not directly 

correlate with the previously noted variance in IAP drop time. During the second major 

dissolution event there is also variety of time-scales over which this is observed and the 

temporal variance within the dissolution event now corresponds to time on the order of tens 

o f seconds. The IAP traces do all still maintain similar trends and equilibrate to the same
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F igu re  3.11: Ten IAP traces over time at 25°C that were created by varying the interfacial 
tension values and mixing times. The interfacial tension and mixing time values were varied 
using ten points from a centered Latin hypercube design were the parameter space varied 
plus or minus one and ten percent, respectively, around values previously found to optimally 
fit experimental data from [106].
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F igu re  3.12: Ten instance o f polymorphic abundances traces over time at 25°C that were 
created by varying the interfacial tension values and mixing times. The interfacial tension 
and mixing time values were varied using ten points from a centered Latin hypercube design 
were the parameter space varied plus or minus one and ten percent, respectively, around 
values previously found to optimally fit experimental data from [106]. ACC traces are the 
dashed lines, vaterite are the dash-dotted lines, aragonite are the dotted lines, and calcite 
are the solid lines.
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final value.

Propagation of the parametric uncertainty also shows significant effects upon the poly

morphic abundance traces. For short time-scale polymorphic abundance traces, the variance 

in the calibration parameter causes the time to complete ACC dissolution to spread over a 

minute and likewise the time to metastability for calcite and vaterite. Vaterite and calcite’s 

metastable polymorphic abundances vary over 30% and sometimes swap relative prevalence 

due to the uncertainty propagation. These short time-scale effects translate into variance 

in the long-time scales o f over 100 minutes. Again, while time-scales and polymorphic 

abundance values are effected by the parametric uncertainty, the general shapes and trends 

are not changed.

Clearly the framework and the results by which it is being validated are largely sensitive 

to the calibration parameters. At least near the optimized parameter values, the effect 

o f varying the parameters appears to produce smooth changes and does not drastically 

alter the system trends. Given that this sensitivity study only explored a small region of 

the true uncertainty contained within the parameter, especially those describing interfacial 

tension, this system clearly would benefit from a thorough uncertainty quantification. A 

study where interfacial tension effects could be better isolated from other system physics, 

such as a nucleation study, could allow better calibration o f the parameters.

3.7 Conclusions
The particle precipitation framework developed within Chapter 2 was validated against 

experimental data extracted from Ogino et al. [106]. First these data were studied and a 

hypothesis was created that an error was present in the presented data. Initial studies of 

subsets o f the data allowed for comparisons o f the configuration o f submodels used within 

the precipitation framework. Once a final framework configuration was selected, uncertain 

interfacial tension parameters were optimized against the experimental dataset, and the 

m odel’s performance at capturing the full range o f available data was evaluated. W hile the 

framework was not able to capture long time-scale trends well, it performed satisfactorily 

at capturing short time-scale trends across a wide range o f temperatures. Additional types 

o f framework data outputs were shown as examples o f datatypes that would be available 

if the framework was applied to a different system and had access to other types o f data. 

Finally, the sensitivity o f the framework to the uncertain interfacial tension and mixing 

time parameters was illustrated, demonstrating the necessity of greater emphasis upon 

model validation and uncertainty quantification for future work on similar frameworks.



CHAPTER 4

CREDIBLE SIMULATION 
DEVELOPMENT

4.1 Introduction
It has long been recognized that when scientific phenomena are computationally m od

eled, an inherent need to quantify the uncertainties involved with such computations exists 

[124]. From this opportunity the validation and uncertainty quantification (VU Q) field of 

study has been defined. Through statistical analysis of experimental data, high-fidelity 

simulations, as well as low-fidelity simulations, greater confidence in simulations’ ability 

to approach truth or underlying physics is obtainable. Modern VUQ encompasses topics 

such as experimental design [79], model calibration [74, 135], uncertainty quantification of 

model and experimental data [147], and model predictivity [61, 107]. VUQ methodologies 

are essentially an elaboration of the scientific process.

The following chapter will be organized as follows. First, descriptions of two VUQ 

methodologies are outlined: the National Institute for Statistical Sciences (NISS) [11, 12] 

approach and the consistency analysis [34, 33]. These two methodologies provide the 

backbone o f the VUQ related research contained within this dissertation. Next, a process 

and theory for credible simulation development, which is a means o f framing the scientific 

method for modern simulation development, is provided. Following this is an application 

walk-through o f the credible simulation development cycle utilizing a spring-mass-damper 

pedagogical example.

4.2 Validation and Uncertainty-Quantification
Choosing an appropriate VUQ approach is an application specific activity and there is 

likely no single correct approach. Two VUQ approaches will be considered throughout 

this dissertation: a probabilistic method and one based upon basic engineering tests. 

The probabilistic approach describes uncertainties in terms o f probability distributions, 

while the engineering method considers bounds. Where the probabilistic method applies
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Bayes theorem to determine posterior probabilities, the other method utilizes data analysis 

techniques to locate regions in which the model is deemed consistent. The probabilistic 

approach considered is that o f the NISS group, which is based largely upon the Kennedy 

and O ’Hagan [74] Bayesian methodology, and the engineering test based method is known 

as consistency analysis [34, 122, 147].

4 .2 .1  N IS S  A p p r o a c h

The NISS group presented a framework aimed towards the validation o f computational 

modeling o f physical processes. This framework was referred to as the Simulator Assessment 

and Validation Engine (SAVE) within Liu (2008) [86]. The framework is comprised o f a six 

step recipe by which model VUQ could be approached. Bayesian statistical methodologies 

were the foundation of this framework. Initially, key sources of error and uncertainty within 

parameters and data are determined and quantified in an input/uncertainty (I/U ) map. It 

could be argued that model-form uncertainty, as will be described in Chapter 5, could 

also be included in the I /U  map due to being highly coupled with parameter uncertainty. 

From the I /U  map, parameters are selected as active parameters for the current VUQ 

analysis based on sensitivity ranking and how many parameters the analysis can afford 

to investigate. Active parameters are the parameters whose uncertainty will continue to 

be considered throughout the investigation, while all other parameters are fixed to their 

nominal values. Bayesian methods are then utilized to propagate the active parameter’s 

uncertainties through the computational model, allowing the model outputs to contain 

full statistical measures. Frequently, computations are expensive with respect to capital 

and time, so surrogate models are constructed over sparse parameter and model output 

data allowing interpolation to predict behaviors in regions of interest. Continuing with 

the Bayesian influence, Gaussian processes (G P) were a suggested type of surrogate model 

[11, 12]. Next, analyzing the comparison o f the model and experimental data leads to gained 

knowledge, also known as validation. The gained knowledge can then be applied as prior 

knowledge for a new cycle o f VUQ. This VUQ cycle can easily be mapped into the more 

generic credible simulation development cycle that will be presented within Section 4.3.

A  Bayesian methodology upon which the the NISS VUQ approach was partially based 

and which can be used for a subsection of the overall NISS process is the methodology 

presented by Kennedy and O ’Hagan (2001) [74], which is now commonly known throughout 

the VUQ community as the Kennedy O ’Hagan method. W ithin this m ethodology GPs are 

used as surrogate models to represent simulations. These GPs are then compared with
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experimental data, and the difference between the GP inferred values and experimental 

data is also known as the model discrepancy. This discrepancy is then modeled with GPs as 

well. This approach allows for parameter calibration and uncertainty propagation through 

its Bayesian probabilistic framework, as well as a function discrepancy that can be utilized 

to study model-form issues. Interpolation once the model’s discrepancy is accounted for 

generally performs well, but extrapolation is still problematic. The original paper describing 

this methodology [74] has currently been cited over 1,200 times as of April 2015. A  more 

in-depth look into the Kennedy O ’Hagan approach is provided within Chapter 5.

4 .2 .2  C o n s is t e n c y  M e a s u r e s

Another approach towards VUQ known as consistency measures was developed within 

the combustion community by Michael Frenklach and Andrew Packard at the University of 

California Berkeley (U CB). This UCB group developed their VUQ methodology as part of 

an effort to characterize the full methane-combustion reaction scheme known as GRI-Mech. 

Consistency measures were first proposed within Frenklach (2002) [41] and then further 

developed and defined by Feeley (2004) [34]. The use o f consistency measures, imple

mented within a Matlab code published as Data Collaboration, was then demonstrated in 

model comparison capacities within Feeley (2006) [33]. Frenklach (2007) [40] presented the 

philosophy built within their consistency analysis tool, now contained within a framework 

called PrIMe, as a new scientific method of approaching model predictivity. An explanation 

and exploration o f sensitivity analysis of the parameter and error uncertainties was then 

presented in Russi (2008) [121]. Optimizing the information contained in descriptions of 

consistent parameter spaces was explored by Russi (2010) [122]. You (2011) [147] reported 

upon the use of several different optimization schemes for defining the consistent parameter 

set. Two PhD dissertations stemmed from the development o f this consistency analysis 

[32, 120]. The PrIMe tool was recently utilized by another research group for uncertainty 

quantification o f a soot particle model [125]. The UCB group currently refers to this method 

as bounds to bounds consistency, or b2b.

The basic concept o f consistency analysis boils down to comparing modeling outputs with 

experimental data. A  simplified version o f this concept can be described mathematically by

li <  M i ( x )  — di <  ui fo r i =  1 , . . . , N  (4.1)

a p <  x p <  ftp forp  =  1 , n .

Here the difference between model output M  and experimental data d is compared to the 

error bounds of the experimental data l and U. This comparison can be conducted for
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N  data points, which can include multiple types of data. Comparing multiple data types 

allows for the model-form to be more strenuously tested. The other major component o f the 

consistency analysis is the refinement o f the parameter space x  composed of n parameters, 

which initially are bounded by a  and . If consistency comparisons are simultaneously met 

for all data points using the same parameter subspace, the model is deemed consistent. 

This m ethodology’s utility is not limited to assessing overall consistency. A  great deal more 

information about the model and experimental data can be gained during the analysis 

through unary consistency, binary consistency, sensitivity to individual data points, as well 

as parameter sensitivity.

4.3 Credible Simulation Development
The scientific method has long been utilized as a means o f progressing scientific thought. 

An ever increasing amount o f science is now being undertaken through computational 

simulations. Here, I wish to provide a general description o f a conception of credible simu

lation development, as currently conceived within the University o f U tah’s Carbon-Capture 

Multidisciplinary Simulation Center. Credible simulation development can be thought of 

as a means of framing the scientific method in terms o f modern simulation science. The 

credible simulation development cycle currently utilized within the CCMSC is depicted 

within Figure 4.1.

Previous visions o f this topical area were discussed within many standards documents 

such as those generated by the American Society o f Mechanical Engineers (ASM E) and 

Sandia National Laboratories [136, 105, 8]. Such standards were typically based funda

mentally upon the Sargent Circle [126], which shares many similarities with the proposed 

credibility cycle. Where these two methodologies differ are the emphasis on the separation

qualificatio n - model-form uncertainty characterization 
- cost analysis

model equations code

justification
- limiting behaviors 
-thought experiments

verification
- analytical solutions
- mms. convergence

observations

validation
- Bayesian analysis
- consistency constraints

F igu re  4.1: Cyclic process for developing credible simulations.



47

of the conceptual model and mathematical equations, additional justification process, and 

how the qualification process is handled. Although previous descriptions of the cycle have 

separated the creation o f conceptual models and mathematical equations, this separation 

was approached as an elaboration on the Sargent Circle approach and not considered a 

fundamental piece o f the process as it is within this methodology. First, a brief description 

of all blocks and connecting processes comprising the credible simulation development cycle 

will be provided. Following those characterizations will be an application walk-though.

4 .3 .1  C o n c e p t u a l  M o d e l

The conceptual model is the current theoretical understanding on a phenomena o f inter

est. It is generally built upon prior knowledge o f the phenomena o f interest or phenomena 

that appear to be similar in nature. W hen constructing a conceptual model the intended 

application is identified and areas o f emphasis are ranked. Conceptual models are composed 

o f the current, complete vision o f all pieces of the phenomena, with no portions ignored due 

to preconceived irrelevance. Amassing the full description o f the phenomena in this step 

allows for assumptions o f the perceived importance o f individual details to be weighed and 

compared in future steps, but all potential information is available for future reevaluations.

4 .3 .2  M a t h e m a t ic a l  E q u a t io n s

The best representation o f the conceptual model in terms o f understood mathematics is 

what is being referred to with the mathematical equations step of the credible simulation 

process cycle. This step often builds heavily upon prior knowledge about the sorts of 

mathematical equations that have previously been used for similar models. Often a system 

o f equations with initial and or boundary conditions are necessary to specify the conceptual 

model in a manner satisfactory for the conceptual m odel’s intended use. The set o f equations 

selected are designed to suite the application’s characteristics of interest, not necessarily the 

full conceptual model. A  continuum phenomena may not need an atomistic description and 

the same is true o f the reverse situation. Creating a model for the appropriate model-scale 

is a practice known as scale-bridging.

4 .3 .3  C o m p u t e r  C o d e

Both the computational language and the algorithm used to numerically mimic the 

mathematical equations are considered parts o f the computer code step. The specific 

computer language utilized will determine how solving the equations o f interest can be 

structured. Algorithms translate mathematical equations into computational implementa
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tions that can be solved with a variety o f numerical methods. To ease the implementation of 

numerical solutions or algorithmic needs, the form of the mathematical equations might be 

altered. An important part o f this step is the selection and implementation o f appropriate 

numerical methods. Different numerical methods will cause different amounts of numerical 

error to be injected into the solutions of the mathematics.

4 .3 .4  E x p e r im e n t a l  O b s e r v a t io n s

Experimental observations are just that, recorded experimental data with which the 

conceptual model can be compared via outputs of the computer code. Sometimes high- 

fidelity model data can be used as a substitute for experimental data, but this is not optimal. 

There is generally some error within the experimental data and exactly what the recorded 

data actually represent needs to be considered. Although conceptually experimental data 

are simply observations o f reality, in practice, instrumentation is typically utilized to process 

raw data into reported data. How such instrumentation functions and potentially how 

the instrumentation was actually utilized often needs to be modeled, effectively creating a 

secondary credible simulation loop. Models describing how experimental data were collected 

can be referred to as instrument models. Even with many potential types o f error within 

the experimental data, it is still generally held as being our best means o f estimating the 

underlying ‘ reality’ that our models are aimed to mimic.

4 .3 .5  J u s t i f ic a t io n

The process o f evaluating the mathematical representation o f the conceptual model 

can be referred to as justification. W hen selecting the appropriate pieces o f mathematics 

believed to represent the contrived concept, the selection process should be based upon 

limiting justifying tests. Such tests can include searching limiting-behaviors and considering 

thought-experiments. If a mathematical component passes all tests currently believed to 

be important for the application o f interest, then the mathematical model has proven 

worthwhile for moving forward. If not, a different mathematical representation needs to 

be devised.

4 .3 .6  V e r i f ic a t io n

When translating mathematical equations into a computational language many error- 

checks and characterizations are necessary. ASME defines verification as ‘the process of 

determining that a model implementation accurately represents the developer’s conceptual 

description o f the model and the solution to the m odel’ [136]. Useful tools to aid in this
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translation process include analytic solutions and method o f manufactured solutions conver

gence studies. Examples of errors that such comparisons can illuminate include transcription 

errors, algorithmic issues, and discretization based errors. Each error type can be dealt 

with differently. For example, discretization error, or the error due to numerically solving 

mathematical equations across discrete space instead o f a continuum, can be characterized 

with Richardson extrapolation during postprocessing [104]. It is during this step that 

the error created by the mathematical modeling technique and implementation thereof 

can be quantified and this knowledge carried forward. As long as errors are recognized 

and quantified for any computed outputs, they should not cause significant issues moving 

forward.

4 .3 .7  V a l id a t io n

Quantifying the computational model's ability to reproduce experimental data is known 

as validation. W ithin validation processes lie opportunities for parameter calibration. By 

comparing model outputs produced while varying parameter values within their defined 

uncertainty against experimental data, the range or distribution o f likely parameter values 

can be learned. Likewise, model outputs can be compared against other experimental 

data to ascertain regions o f model validity. Measures o f validity are often relative and 

many methods o f approaching such definitions exist [98, 104]. An example o f a validation 

metric is the area validation metric wherein the cumulative distribution function o f model 

outputs is compared with an empirical cumulative distribution function for experimental 

data [98]. It should be stressed that data sets used for calibration and validation should 

not overlap in order to ensure confidence in model validity statements. An additional 

task that can be achieved throughout this step is uncertainty quantification, whereby 

pushing parameter uncertainties through the model into outputs allows uncertainty in the 

model predictions to be quantified. Two means of accomplishing these validation tasks are 

Bayesian analysis [74] and testing prescribed consistency constraints [34], as were previously 

mentioned in Section 4.2.1-4.2.2. Accomplishing calibration and uncertainty quantification 

during validation provides greater understanding of the model's true predictive capabilities 

than would otherwise be available.

4 .3 .8  Q u a li f ic a t io n

After a model's validity has been assessed, a credibility decision known as qualification 

should be considered. Qualification determines if the current state o f the model creates 

predictions adequate for the application. This analysis can include characterization o f the
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discrepancy between the model predictions and experimental data due to the model-form, 

also known as model-form uncertainty. All considerations here are framed within a cost 

analysis mindset, where the cost-benefit of completing an addition cycle o f model refinement 

must be evaluated. Depending upon the severity and character o f the discrepancy between 

the model prediction and experimental data, the amount of time taken in reconsidering the 

conceptual model versus altering the mathematical formulation or algorithmic implemen

tation utilized can be determined in order to most efficiently progress.

Idealistically, there is a clear distinction between model validity and adequacy. Model 

validity is meant to characterize a m odel’s ability to represent the ‘truth,’ while model 

adequacy quantifies the model’s capacity to satisfy criteria specified by the practitioner. 

Clearly, adequacy is application specific, but through successive iterations of the credible 

simulation development cycle, model adequacy should converge towards model validity. It 

would seem that as long as discrepancy between model prediction and experimental data 

exists due to model-form error, only adequacy and not validity can be claimed.

4.4 Application Example
For an application walk-through o f the credible simulation development cycle, a spring- 

mass-damper system will be utilized (Figure 4.2). This system involves a particle of mass 

m  attached to a spring and a damper. For this example the behavior o f the particle once it 

has been pulled away from an equilibrium position, flicked further away, and then evolves 

through ever lessening oscillations for 20 time units is what is meant to be simulated. Our 

conceptual model o f this phenomena stems from our understanding of Newton’s second law, 

or that mass times acceleration X o f a body is equivalent to the sum of forces acting on the 

body,

mX =  ^  forces

=  fb — fd — fs.  (4.2)

F igu re  4.2: Illustration of pedagogical example spring-mass-damper system.
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For a spring-mass-damper system the forces acting upon the particle will be a spring force f s , 

damper force f d, and general body force f b that initiates the system evolution by moving 

the particle from its equilibrium position. Due to our prior knowledge of springs, it is 

known that the spring force will pull the particle towards its equilibrium position with force 

linearly proportional to the amount the spring is stretched, also known as Hooke’s law of 

elasticity. Likewise the damper force will act against movement o f the particle based upon 

the velocity of the particle. The body force for this example will only effect the particle 

initially by providing the initial conditions from which the particle’s evolution is tracked.

This system can further be considered in terms o f energy balance. It can be conceived 

that once the particle is released, the spring will pull the particle and the damper will resist 

the particle’s movement. W ithout the damper the particle would infinitely oscillate as the 

spring’s energy was converted from potential energy to kinetic energy and then back into 

potential. Instead of this infinitesimal oscillation, the damper absorbs some of the kinetic 

energy, effectively siphoning away a portion o f the energy being passed between the particle 

and the spring. Then once the energy is reduced to an amount not substantial enough to 

move the particle, the system will settle to rest in the particle’s equilibrium position. This 

description in terms o f forces and energy comprise the conceptual model that will be carried 

forward for this cycle of simulation development.

Next, mathematical equations need to be created to describe the conceptual model. 

Linear relations will be utilized to describe the spring and damper forces,

fs =  - k x  fd =  - cob . (4.3)

These two mathematical definitions can be tested with thought-experiments or limiting- 

behaviors based upon the conceptual model. Given our conceptual understanding o f springs, 

the maximum amount o f spring force should be available when the spring is at the extreme 

points of an oscillation and the minimal spring force should occur at the equilibrium position. 

The devised relation for the spring force is linearly proportional to the particle position 

causing greater amounts o f force to be applied as the distance from equilibrium increases 

and no force occurs at the equilibrium position. Thus, this liner relationship fits our limiting 

behaviors. Conceptually, our understanding o f the damper is less well refined than the 

spring, but we do understand that the damper force is related to the amount o f kinetic 

energy available, which is based upon the particle’s velocity. Having the damper relation 

be linearly proportional to the particle’s velocity causes maximum dampening for each 

oscillation to occur at the equilibrium position where all spring energy have been converted 

to kinetic energy. Minimal dampening then occurs at the maximum positions o f oscillation
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where the velocity is zero and no kinetic energy remains. This linear relationship again

have a negative sign assigned to their relations in order to match the orientation o f positive 

position and velocity relative to the equilibrium point that is assigned coordinate position 

zero.

ematical equations. To describe moving the particle a distance away from equilibrium and 

then flicking it further from equilibrium as a release mechanism for the particle, an initial 

position o f six and an initial velocity of three can be utilized. A  particle mass m  =  3 

and a spring coefficient k =  5 will also be assigned as known values, but the damper 

coefficient will be set as an unknown parameter with Jeffreys prior distribution spanning 

from zero to 2\/km to reflect uncertainty in our understanding of the particular damper 

being utilized in the system, as well as our previously stated less refined understanding 

of dampers. This uncertainty was recognized as the potential range o f values because the 

system was characterized as falling within underdamped conditions within the conceptual 

model, or an oscillating system. Mathematically it can be shown that for this system to 

be underdamped it must meet the condition that c <  2\/km and a damper coefficient of 

zero would remove the damper from the system [78]. A  summation o f the mathematical 

description of the conceptual model can be expressed as

To convert this mathematical equation into a computational algorithm, the second order 

ODE can be converted into two first order ODEs

aligns well with the understood limiting-behaviors. Both the spring and damper forces

For this example the body force will be encapsulated as initial conditions for the math-

x(0) =  6.0 X(0) =  3.0

m x +  cx +  kx =  0. (4.4)

k c
v = ------x -------V

m m
(4.5)

X =  V,

also known as the state space representation. Eq. (4.5) can then be temporally discretized 

with Euler’s method to yield

where N  and N  +  1 differentiate the current and next temporal positions and A t symbolize 

the time-step. These equations can then be solved with a numerical time integration method
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initiated from time zero with the specified initial conditions. To solve these equations over 

the desired time domain of 20, a predictor-corrector variety o f an adaptive Heun-Euler 

time integrator can be used with two corrector cycles. Eq. (4.6) and the numerical time 

integrator have been coded as Python scripts. To verify the numerical implementation, an 

analytic solution to this system of equations is available [78]. The left plot o f Figure 4.3 

compares the analytic and numerical solutions of the spring-mass-damper system and the 

right plot shows the discrepancy between those two solutions. The discrepancy between the 

numerical and analytic solution indicates that the numerical approximations utilized cause 

up to 0.0002 absolute error but appear stable.

Now to compare against experimental data, synthetic experimental data will be gener

ated from an example ‘truth’ model presented by Oliver et al. (2015) [107]. The underlying 

‘truth’ for this case was that the damper coefficient was temperature dependent and the 

temperature o f the damper was effected by the velocity of the particle. This relationship 

tries to mimic the damper fluid heating due to absorbing the particle’s kinetic energy and 

then cooling as the fluid equilibrates with the surroundings via heat transfer. The damper 

coefficient and temperature changes are described by

c(T ) =  exp ( f  -  1) (4.7)

T  =  c ( T ) x 2 -  1 (T  -  To), (4.8)

where T0 =  20 is a reference/initial temperature and t =  1 is a heat transfer scaling factor. 

Synthetic data were created by taking samples along the ‘truth’ m odel’s position trace and

Time

F igu re  4.3: Verification o f numerical implementation of Eq. (4.6) solved with an adaptive 
Heun-Euler time integrator by comparing with an analytical solution. Left plot shows 
traces o f analytical (red line) and numerical traces (dashed blue line) over time and right 
plot shows the discrepancy between the solutions over time.
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adding random Gaussian noise with a standard deviation o f 0.1, N (0, 0.1). Three data 

replicates were created for each position and these data points are shown in the left plot of 

Figure 4.4.

The right plot of Figure 4.4 demonstrates the effect o f the uncertainty in damper 

coefficient value. Traces in that plot were generated by uniformly taking five samples 

from the variable’s potential values between 0 and 7.45. Clearly the prior uncertainty in 

the damper coefficient causes significant uncertainty in the model outputs when propagated 

through the model.

The next step is to perform calibration on the uncertain damper coefficient. Two 

calibration methods will be illustrated: an engineering consistency approach and a Bayesian 

parameter estimation. These methods are not exactly the two VUQ approaches discussed 

within Sections 4.2.1-4.2.2, but are similar and provide a feel for the differences between 

those methods. For both methods the prior range o f the calibration parameter, 0 to 2\/km 

will be explored.

For the consistency approach the prior knowledge about the calibration parameter will be 

utilized as prior bounds. Then sampling parameter values across that prior range, position 

traces are calculated. These position traces are compared with the experimental data and 

consistency can be assessed. First L 1 norms are calculated for each temporal position that 

experimental data are available for,

Li,x =  £  IVM’x -  yE’x’i|. (4.9)
n xt=Ux

Once L1 norms exist for each experimental temporal position an L ^  across the L i norms 

can be calculated, Eq. (4.10), and this value is then compared to the desired consistency 

constraint,

L^,t =  m ax(L ijx,t). (4.10)

Figure 4.5 illustrates how this method was applied to calibrating the current system with 

the left plot demonstrating the performance across the entire prior parameter range and 

the right providing a zoomed-in view of the better performing region.

Bayesian parameter estimation is accomplished using Bayes law Eq. (4.11) where the 

prior distributions P ( c , a )  for unknown parameters must be specified, as well as a like

lihood function P(y|c, a)  for the data. Here, we assume that the noise in the data is 

Gaussian distributed, so that the data were distributed as N (yE , a ), and through a variable 

transformation the likelihood also takes a Gaussian form, Eq. (4.12). For the calibration
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Time

F igu re  4.4: Comparing underlying true physics, experimentally observations, and un
certainty in model thereof. Left plot displays ‘true’ model trace and experimental data 
points synthetically created by adding random samples o f Gaussian noise with a standard 
deviation o f 0.1. Right plot shows traces from model Eq. (4.6) containing uncertain damper 
coefficient where the different traces correspond to samples of the uncertain parameter’s 
initial uncertainty range between 0 and 2^/km.

Calibration Param eter c

F igu re  4.5: Parameter calibration of uncertain damper coefficient c based upon consistency 
constraints. Left plot displays the error between the experimental data and model-form 
Eq. (4.6) across the prior range o f calibration parameter values. Error is calculated as the 
L\ norm across experimental data replicates and then L ^  norm of the resulting values 
across temporal positions. Right plot is a zoomed in view o f left plot, where the region of 
likely parameter values lies depending upon desired consistency constraints.
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parameter a bounded Jeffreys prior can be utilized as an uninformed prior for the parameter 

range. W ith the Bayesian approach the standard deviation o f the data’s noise must also 

be considered and a student’s t-distribution will be used as the prior, but we assume this 

distribution will converge to Gaussian if enough data points are available. By assuming the 

prior distributions are independent, they can joined as a joint prior P ( c ) P (a ) =  P (c, a). 

This can be expressed as

P (y| c,a )P (c , a)
P  (c,a|y ) =

P  (y |c,a)dc daJ — tt
1
2\nx(2na2)

exp
P (c , a)

f - n f - o o P  (y |c,a)dc d a ’

(4.11)

(4.12)

where

SSq  =  ^ ( V M , i  -  VE,i)2-
i=n

The denominator o f Bayes law does not need to be explicitly solved here because the fact 

that the posterior distribution integrates to one can be exploited. Figure 4.6 shows the 

posterior (left) and posterior with the noise’s standard deviation marginalized over (right).

Clearly the consistency and Bayesian methods produce different results, but the ultimate 

conclusions o f the two methods are similar. For this example the bound for consistency 

will be set as less than 0.30 based upon the amount o f spread that could be observed 

in the experimental data. Figure 4.7 demonstrates that the consistency method locates 

a calibrated region of parameter space between approximately 0.65 and 0.82, while the

-  0

- -5 0
Ow

CL,

-1 0 0  &

- -150

Calibration Param eter c

F igu re  4.6: Parameter estimation based upon Bayes law for uncertain damper coefficient 
c and noise standard deviation in experimental data a. Left plot displays posterior 
distribution P (c, a |y) across ranges o f c and a. Right plot shows marginal posterior 
distribution log P(c|y) across a range of c values.

2(7
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Calibration Param eter c Calibration Param eter c

(a) (b)

F igu re  4.7: Comparison o f calibration result. Plot (a) shows consistency constraints and 
and plot (b) shows Bayesian parameter estimation.

Bayesian estimate also locates a similar region between 0.71 and 0.81. The most consistent 

point occurs when the calibration parameter was 0.76 and the most probable point with 

the Bayesian method is at 0.75. The most probable standard deviation o f the experimental 

data noise was 0.14. The major difference between these methods is that the Bayesian 

method provides a distribution estimate, while the consistency method provides bounds. 

Ultimately, this difference will result in different types o f characterizations of uncertainty 

in predictions made by the model.

Now that calibrated parameter regions have been identified, validation o f the cur

rent model-form can occur. First, the uncertainty o f the calibration parameters can be 

propagated through the model, so that the uncertainty in the m odel’s predictions can 

be quantified. Where calibration can be referred to as the inverse problem, uncertainty 

propagation is then the forward problem. Figure 4.8 shows the uncertainty present in 

model outputs due to the forward uncertainty propagation, as well as illustrates that the 

parameter calibrations performed well at capturing the experimental data. The consistent 

region, which is shown as the grey region, represents the full parameter region found to 

be consistent, while two standard deviations from the probability based approach is shown 

as the red region where 50 samples were taken form the marginal distribution shown in 

Figure 4.7b. Both methods produced approximately the same best estimate o f the trace, 

but their uncertainties have different meanings. Where the Bayesian method produces a 

distribution of uncertainty across time, the consistent method produces an uncertain region 

across time.
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F igu re  4.8: Forward propagation of parameter uncertainty through model into model 
outputs. Here blue dots represent validation data points, the black line is the model run 
with the most consistent parameter value, the grey region represents the full uncertainty of 
potential model values based upon the full consistent parameter region, the red dash-dotted 
line is the model run with the most probable parameter value, and the red region represents 
two standard deviations of the uncertainty in the model prediction based upon the calibrated 
probability distribution. The left plot shows the full temporal range and the right plot shows 
a zoomed in view o f a section of the left plot.

To validate the model an experimental data set, distinct from the data used for calibra

tion, must be available. Thus, for validation another synthetic data set can be created with 

Eq. (4.6) using the temperature dependent damper coefficient Eq. (4.7) and evolving the 

dam per’s temperature with Eq. (4.8). W hat distinguishes this data set from the calibration 

data is that the particle mass is set to five instead o f three. This change in particle mass 

effectively represents changing the experimental system and should test if the calibration 

had a physical basis, or due to an incorrect model-form only fit to the data. The validation 

dataset and model performance is demonstrated within Figure 4.8.

To visualize the validity o f the current model-form, discrepancies between the experimen

tal data and model predictions are plotted within Figure 4.9. Plots (a) and (b) demonstrate 

the effect upon the model validity o f using the consistency versus the Bayesian method of 

calibration. W ithin these plots the optimal calibration value for each method is plotted, 

as well as the full calibration range. The dots indicate mean values and the error-bars 

show ranges. For the Bayesian parameter estimation, the distribution shown in Figure 4.7b 

had 50 random samples taken to reflect the consistent region. Plot (c) demonstrates the 

discrepancy between the data and model for the calibration data set, illustrating the models 

optimal performance for the calibrated parameter values. Evidently, optimal values found
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(a)

T im e

(b)

(c)

F igu re  4.9: Comparison o f discrepancies between model trace outputs and validation 
experimental data traces where the data were spread over the temporal domain. For all 
three plots the dots indicate mean discrepancy values across the data replicates. Plot (a) 
shows the discrepancy when the consistency calibration results are used, where the green 
error-bar is the most consistent point and the blue error-bars represent the full range of 
consistent calibration values. Likewise, plot (b) displays discrepancy when the Bayesian 
calibration is utilized, where the green errorbars reflect the most probable calibration value 
and the green error-bars correspond to 20 random samples from the calibration’s marginal 
posterior distribution, Figure 4.7b. Plot (c) is equivalent to plot (a) except that the traces 
were compared to the calibration data set.
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with both calibration techniques perform well and have mean discrepancies within ±0.2. By 

comparing the discrepancy based upon the validation data set against discrepancy based 

upon the calibration data set, it appears that the quantities o f discrepancy are similar 

for the model with both data sets. It seems that the calibration focused upon reducing 

discrepancy for the second and third temporal positions, but this effect did not translate 

to the validation system conditions. The conclusion of this validation step is that within or 

near the validation and calibration conditions the model should perform predictions with 

errors similar to those found during validation. The effect o f the calibration method utilized 

appears to have minimal repercussions on this m odel’s performance for validation.

The final step o f the credible simulation development cycle is to access the qualification 

o f the model-form. The first objective o f qualification o f the spring-mass-damper model 

involves determining if the model-form error, as shown in Figure 4.9, is significant enough 

to merit further investigation and ultimately an additional cycle o f the model development 

process. For the sake o f this example, the discrepancy will be deemed unacceptable. Next, 

the discrepancies can be further examined with the aim o f locating issues that could be 

traced back to the model-form. One notable feature shown in Figure 4.9 is the increased 

amount o f discrepancy for the second and third (in temporal order) data-points for the 

validation data set as compared with the calibration equivalent. Hypothetically, through 

continued examination it could be considered that this region o f increased discrepancy 

occurs where the particle is transferring the most energy to the damper. This could lead 

to conceptual contemplation about what that energy does to the damper and the dam per’s 

temperature could be experimentally monitored. Figure 4.10a shows what experimental 

observation o f the dam per’s temperature could uncover, based upon Eq. (4.8). A  conceptual 

model for the temperature’s effect upon the damper coefficient could then be constructed 

during the next development cycle.

Based upon Eq. (4.7), Figure 4.10b shows the ‘true’ damper coefficient’s value for the 

calibration data set. It can be noted that the calibrated parameter ranges corresponded 

with the true damper coefficients for the initial three data point temporal positions. The 

optimal calibrated parameter values lie near the middle o f the true range. This is not 

surprising, but indicates that the calibration methods performed as well as the model-form 

error allowed.
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F igu re  4.10: Demonstrating ‘true’ effect of temperature on damper. Plot (a) shows 
temperature profile according to ‘truth’ model Eq. (4.8) underlying calibration experimental 
data set. Plot (b) then translates the effect of the dam per’s temperature on the damper 
coefficient according to Eq. (4.7).

4.5 Conclusions
Validation and uncertainty quantification is a broad area o f study devoted towards 

improving performance and understanding o f models. Many potential VUQ approaches 

exist but two, Bayesian and consistency analysis, were introduced and will be explored 

throughout the subsequent chapters. A  process for developing credible simulations has 

been presented: consisting o f conceptual model development, translation to mathematical 

equations, checking that transition with justification tests, coding the mathematics into 

algorithms, double checking the code with verification techniques, amassing experimental 

data, validating the modeling framework against the experimental data, and ultimately 

qualifying if the current model development is adequate for the desired application. By 

walking though a mass-spring-damper pedagogical example, a general feel for the process 

has been provided. Applying such thorough methodologies should produce a better product, 

as well as likely help debugging unforeseen consequences of modeling decisions.

0 5



CHAPTER 5

BAYESIAN MODEL-FORM 
UNCERTAINTY EXPLORATION

5.1 Introduction
Often in modern scientific research imperfect models are continually evolved through 

comparison with experimental observations. Although these models are known a priori to 

be imperfect throughout such comparisons, this is frequently not explicitly accounted for 

and any error associated with this fact is distributed into parameter uncertainty and/or 

experimental error. Explicit characterization o f the extent of such model imperfection 

may allow for more appropriate use of the model, as well as extend the ability to use the 

model in predictive capacities. This new functional error quantity is known as model-form 

uncertainty, discrepancy, or model-bias. Calibration o f model parameters within imperfect 

models is a key issue that must be considered. Bayesian statistical methods are one family 

o f methods commonly utilized to approach model-form uncertainty problems.

The following validation exercise utilizes a pedagogical example provided in Bayarri et 

al. (2005) [11]. W ithin the example a method for approaching model-form uncertainty 

developed by Kennedy and O ’Hagan (2001) [74], which was also utilized by Bayarri et 

al. [11], will be explored. Overviews o f the Bayesian statistical philosophy, Gaussian pro

cesses, the Markov chain Monte Carlo technique utilized, as well as the Kennedy O ’Hagan 

methodology and the implementation algorithm used within the current exercise will be 

presented first. Following that background information will be a thorough exploration of 

implementing this approach through a chemical-reaction based pedagogical example. This 

exploration will include studying calibration estimation techniques, sensitivity to priors, 

potential short-comings due to assumptions, possible information gain from the discrepancy 

functionality, system sensitivity analysis, the identification problem, multi-input Gaussian 

processes, Bayesian model-comparison, and constrained Gaussian processes. Lastly, use of 

the calibrated parameters in forward propagation o f uncertainty is considered.
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5 .1 .1  B a y e s ia n  T h e o r y  O v e r v ie w

Bayesian statistical methods are derived from logic and probability theory. Sivia (1996) 

[128] and Gregory (2005) [53] provide basic overviews of Bayesian methods, while Jaynes 

(2003) [66] delves deeply into the underlying Bayesian doctrine. Gelman et al. (2013) [44] 

presents more advanced Bayesian techniques such as Markov chain Monte Carlo (M CM C), 

regression models, and nonparametric models.

The backbone and namesake of Bayesian methods is Bayes law

P  (H |D X ) =  P  (D|H(D >P  <H|X >, (5.1)

where P  denotes a probability function, H  a hypothesis, D  gained data, and X  prior infor

mation [66]. Verbally, Bayes law can be stated as the posterior P (H | D X ), or new knowledge, 

is gained by multiplying the prior P (H | X ), or old knowledge, by the likelihood P (D | H X ), 

probability based upon observations. This is all normalized by P (D | X ), sometimes known 

as the evidence or marginalized likelihood, which is necessary to force the integral o f the 

probability function to equal one.

Application o f Bayes law to scientific endeavors is intuitive considering that the scientific 

method is based on building upon the current state o f knowledge to gain new knowledge. 

Bayes law can be derived using the product rule o f probability theory and a joint probability 

distribution with simple rearrangement,

P (A , B ) =  P(B| A) P ( A )  =  P (A |B ) P (B ). (5.2)

The other key probabilistic theory definition relied upon heavily throughout Bayesian 

methods is the sum rule, which is shown here through both the continuous and discrete 

forms o f the aforementioned evidence

P (D |X ) =  y  P(D|H, X ) P (H | X )d H  (5.3)

=  ^  P(D|Hj, X ) P (H i|X ). (5.4)
i

Common uses of Bayesian theory include hypothesis testing, model selection, uncertainty 

quantification, and parameter estim ation/m odel calibration. Using prior distributions for 

uncertain model inputs and prescribed likelihood functions, Bayesian methods allow for joint 

posteriors to be calculated, which contain the maximum amount of potential information 

gain for the system [61]. Such joint posterior distributions are often explored and marginal

ized using M CM C methods and thus this method will also be included within this analysis 

o f approaching model-form uncertainty [74, 61, 144]. Surrogate modeling is often necessary
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when approaching many o f the aforementioned statistical tasks. Following the examples of

Kennedy and O ’Hagan [74] and Bayarri et al. [11], the Bayesian based surrogate models, 

Gaussian processes (G P), will be utilized for all surrogate modeling within the current 

approach. Once model parameters have been calibrated and uncertainty in inputs has been 

pushed through the model into predictions, the model can be validated against experimental 

data with methods such as Bayesian hypothesis testing [84, 98].

A  major focus o f this exercise and most applications where characterization o f model- 

form uncertainty is sought is parameter calibration. This is also known as parameter 

estimation. While least-squares and other techniques for the minimization o f weighed 

residuals can be utilized for estimating parameter values, Bayesian calibration techniques 

will be explored throughout this example instead.

Gaussian processes are stochastic processes, or a sampling o f a density function over 

a defined function space, where the joint distribution over any finite set o f test points is 

multivariate Gaussian [17]. Provided a set o f functional observations f  evaluated over an

i dimensional parameter space, a GP can be utilized to regress the underlying unknown 

function, which is now treated as a random function. In order to characterize a GP, a mean 

^  and a covariance matrix K  are needed,

Means can take functional forms and are often described as a set o f weighed basis

weighting o f each, but for instances with no prior knowledge they are often set to a 

constant such as zero. It is important to note that GPs will devolve back to the prior 

mean when far from data-points. A  multivariate normal distribution with mean ^  and 

covariance K  are the assumed prior distribution for f ,  which is then updated to a conditional 

posterior through incorporation o f the function outputs, as shown in Eq. (5.5). GPs are 

considered nonparametric because they assume the distribution has infinite dimensions, i.e., 

theoretically the model expands infinitely as additional data X i are added.

To regress or interpolate to desired points f* the joint distribution takes the form

Here K (X , X ) is the covariance matrix o f parameter values o f f , K (X , X *) and K ( X * ,X ) 

are the cross covariance matrix between parameter values for f  and f* and its transpose,

5 .1 .2  G a u s s ia n  P r o c e s s  O v e r v ie w

f  |X -  G P ( p , K (X , X )). (5.5)

functions such as h (X )T^ where h (X ) is a set o f fixed basis functions and the respective

(5.6)
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and K (X * ,X * )  is the covariance matrix for parameter values o f /* . The conditional mean 

m and covariance cov o f the posterior predictive distribution at points X* can be solved as

These conditioned properties are estimates o f the desired point and the uncertainty asso

ciated with that quantity.

Many covariance kernels exist and appropriate choices are application specific. A  general 

overview of available kernels can be found in Rasmussen and Williams (2006) [115]. The 

squared-exponential Eq. (5.9) and noise Eq. (5.10) covariance kernels are utilized within 

GPs for the current application,

Here rc is the Cartesian distance between input parameters, I  is an identity matrix, i 

refers to input dimensions, and the other parameters are hyperparameters that will be 

discussed shortly. The squared-exponential kernel is commonly utilized in modeling physical 

phenomena due to being stationary, smooth, isotropic, and infinitely differentiable. There 

are options for how multiple input variables can be handled with the squared-exponential 

kernel, but the form shown above will be used for this exercise. Noise in the observational 

data can be accounted for with the noise kernel. If no noise is added, the regressed 

distribution’s mean will go through all data-points. W hen present, noise can be added 

to the data covariance terms K (X , X ) in the above equations resulting in the following 

posterior predictive distribution [115],

/*|X *,X , y -  N ( K ( X * ,X ) (K (X , X ) +  A21) 1 y,

K (X * ,X * ) -  K ( X * ,X ) ( K ( X ,X ) +  A2I ) -1 K (X ,X * ) ) .  (5.11)

Here y is used to signify the functional output values once noise, which is assumed to be 

normal and independent, has been included in the description o f output values o f /  [117]

Small amounts o f noise are sometimes added to a GP to help keep the covariance matrix well 

conditioned and to dampen out noise due to numerics. Addition o f noise also differentiates 

regression from interpolation.

[17]

m (X *) =  E[/*|X*, X , / ]  =  K (X * ,X ) (K (X ,  X )) 1/  

cov(X *) =  K (X * ,X * )  -  K (X * ,X ) (K (X ,  X ) ) -1 K (X , X *).

(5.7)

(5.8)

(5.9)

k • =  A2 Iknoise — A 1 ♦ (5.10)

P  (y|/ ) =  N  (y|/, A2I ). (5.12)
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Covariance kernels have additional unknown parameters, known as hyperparameters, 

such as the u, l and A found in the aforementioned kernels. These hyperparameters will 

not necessarily have physical meaning, but do increase the dimensionality o f the posterior 

distribution. The squared-exponential kernel’s length-scale hyperparameter l does have 

a physical interpretation, larger values indicate that statistical correlation between data- 

points occurs over a wider range. Thus length-scales are relative sensitivity measures for 

functions with multiple inputs. Either the full distribution o f each hyperparameter is carried 

through the GP to the final posterior distribution, which is known as the full Bayes method, 

or an approximation can be made. To explore the negative log posterior

-  log P ( h p l X , y , K ( X , X )) a  2 y T ( K (x , x ) +  A2l ) - 'y  +

1 n
2  log |K(X, X ) +  A2I I +  2  log 2n -  log P (hp), (5.13)

a Newton method based upon gradients 

d
- dhp  log P ( h p | x ,y ,K (X ,X ))

and the Hessian

d 2 ■

K 2 t r ( (K  ( X - X  )-1  -  s a  T) )2 K X r ) (5.14)

dhpidhp
log P(hp|X, y, K ( X , X )) oc

2 " ( (K I X , X  , -1  -  „ T ) f g g i  -

( K , X . X , - 1 -  , « T ^ K , X . X ) - ' d K ( X X ) )■ «

where

a  =  K  (X , X  ) -1 y,

allows the maximum a posteriori (M AP) estimate o f the kernel hyperparameter (hp) val

ues to be calculated, reducing the number o f unknown parameters within the surrogate 

modeling.

The M AP method differs from the maximum likelihood estimate (M LE), another com 

mon method o f estimating hyperparameters, in that the likelihood P (y | X ,K (X ,X ) ,hp)  

is multiplied by the hyperparameters’ prior distributions P (hp) to produce a quantity 

proportional to the posterior instead o f only considering the likelihood. Prior distributions 

for the hyperparameters should reflect prior knowledge about the hyperparameters to the 

extent to which it is known. For instance, it is often the case that the hyperparameters will 

only take positive values and the general estimates o f variance in experimental data noise
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can also be easily produced. The MLE estimate is based upon the best fit to the data, 

which can be thought o f as equivalent to the M AP method with improper uniform priors 

set equal to unity P (hp) =  1. Prior distributions used throughout this exercise include the 

log-normal Eq. (5.16) and Jeffreys Eq. (5.17)

P (x|^ ,a) = -----exp (  ( ln(2x)2 \ , x >  0 (5.16)
x a v  2n \ 2a2 J

P  (x) =  X , (5.17)

where ^ and a are the distribution’s mean and standard deviation. Hyperparameter priors 

are assumed to be independent o f one another and thus can be multiplied to create joint 

priors

P(A ) P (w ) P (l)  =  P(A , w, l). (5.18)

The use o f M AP or MLE hyperparameter estimates cause the GP to make optimistic 

variance estimates due to the loss of the hyperparameters’ uncertainty or distribution. 

These methods are still commonly utilized due to their simplicity and computational speed.

Calibration can also be estimated through Eq. (5.13) with the inclusion of a prior for the 

calibration parameters. A  calibration distribution can then be computed by marginalizing 

over the hyperparameters

J  P (u , hp|X, y, K (X , X )) dhp =  P(u|X, y, K (X , X )) . (5.19)

Of course MLE equivalents are possible. Methods o f estimating the calibration distribution 

will be further explored within Section 5.3.3.

5 .1 .3  G a u s s ia n  P r o c e s s  E x a m p le

A  short example o f the use o f GPs and some o f the features they offers as a surrogate 

model is shown within Figure 5.1. This GP was conditioned upon seven data-points and 

used squared-exponential and noise covariance kernels. The intensity of the noise kernel 

A was set to 0.1 causing the GP to regress among the data-points instead performing 

interpolation. The regressed point corresponding to independent variable x =  0.2 is shown 

as well as its inferred derivative. The estimated amount o f error in the regression is shown 

as the blue shaded region, equivalent to one inferred standard deviation. Slopes of the 

data points upon which the GP was conditioned can also be estimated, as is shown for two 

data-points at x =  0.1 and x =  0.6.

A  visualization of the covariance matrix contained within the example GP is shown 

in Figure 5.2. Here it can be noted that the diagonal components o f the the matrix are



68

1.0
j. 0.8

•  Data 
—  Inferred mean

- 0.6
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Independent Variable, X

F igu re  5.1: Example use o f GP as surrogate model in a regression capacity. Initial data- 
points used as basis for GP are shown as black dots, an inferred data-point is shown as the 
red triangle, red lines are inferred slopes, the mean o f the GP conditioned on the initial 
data is shown as the blue line, and the blue region represents one standard deviation o f the 
conditioned GP.

the most correlated positions, corresponding to a data-point's covariance with itself. The 

diagonal values are not equal to unity due to the squared-exponential kernel’s intensity w 

being set to 0.56. A  notable trait o f the covariance matrix is the high covariance values 

between data-points close together. The range o f high covariance was determined by the 

squared-exponential kernel’s length-scale l being set to 0.25. Comparing the uncertainty 

in the regression o f points between the first the second data-points with that between the 

third and forth data-points illustrates that greater uncertainty is expected in regions of 

lower covariance.

A  simple tool that can be utilized to assess the performance of a GP is cross-validation. 

Figure 5.3 demonstrates two cross-validation visual tools that can highlight potential issues 

within the GP. For this cross-validation single data-points are removed from the set upon 

which the GP is conditioned and then the GP infers values for the removed point. The 

comparison o f the removed values with the inferred values are shown in Figure 5.3a. This 

comparison is excepted to be nearly linear and any points too far from the line shown with 

a slope o f one should be considered questionable. The standardized cross-validation shown 

in Figure 5.3b is the cross-validated residual normalized by the cross validated standard 

error of the inferred point or

f  (x (i)) -  / - i ( x (i))
(5.20)
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F igu re  5.2: Visualization o f the covariance matrix corresponding to data-points shown in 
Figure 5.1. Relative values of covariance between independent variable points is displayed 
as color quantified by the colorbar.
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F igu re  5.3: Cross-validation visual tools utilized to assess GP performance. Plot (a) 
compares values inferred, when left out o f the GP conditioning, with the true value. 
Black line o f slope unity is provided as guideline o f the desired trend. Plot (b) shows 
the standardized cross-validated residuals produced by leaving one data-point out o f the 
GP and then inferring that value. Yellow dashed lines correspond to bounds for good 
performance behavior. Data points correspond to GP shown in Figure 5.1.
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where / (x (i)) is the data-point removed, / - i (x (i)) is the inferred value for the removed 

data-point from the GP not conditioned upon the removed data-point i, and s - i (x (i)) is 

the standard deviation o f the point inferred. According to Sacks and Welch (2010) [123], 

upon which these cross-validation metrics are based, the absolute standard residual typically 

should be less than two. Values outside that bound but within three should be o f slight 

concern and anything larger should be flagged for further inspection.

5 .1 .4  M a r k o v  C h a in  M o n t e  C a r lo  O v e r v ie w

Markov chain Monte Carlo (M CM C) is a numerical technique frequently used to char

acterize posterior distributions when alternative means become unfeasible. M CM C can be 

simplistically described as a random walk whose step selection is biased by the underlying 

probability distribution it is tasked with exploring. That underlying probability distribution 

is ultimately characterized by considering the aggregate of the M CM C steps. Areas were 

more steps were taken indicate higher probability regions. Much more in-depth descriptions 

o f M CM C theory and methods can be found in literature sources such as Gilks et al. (1996), 

MacKay (2003) and Liu (2008) [46, 88, 87].

For the present problem the M CM C Python tool emcee created by Foreman-Mackey 

et al. (2013) [38] will be employed. Emcee uses an affine-invariant ensemble-sampling 

algorithm, originally proposed by Goodm an and Weare (2010) [49], to perform MCM C. 

The affine invariance o f the sampling allows for more efficient sampling o f anisotropic 

distributions. Ensemble sampling refers to the fact that multiple Markov chains, also known 

as ‘walkers,’ are evolved simultaneously. This parallel evolution allows the algorithm to be 

conducted computationally parallel, increasing the speed o f sampling. Like all M CM C 

flavors a ‘burn-in’ period is necessary for the walkers to become established throughout the 

full distribution. This allows poor initial parameter guesses to be overcome.

Unlike the traditional Metropolis-Hastings (M-H) algorithm where step selection de

pends upon sampling a transitional distribution based upon the previous step, step selection 

for each walker is based upon the position o f the complementary ensemble of other walkers 

[38]. Sampling from a distribution still occurs, but the sampled value is used to weight the 

difference between the current walker and one randomly selected from the complementary 

ensemble o f other walkers, and it is then this weighted difference that is added to the current 

walker’s position. This step selection method is informally known as the ‘stretch move’ [38]. 

The ratio o f the probabilities o f the old and new position of the walker, in a fashion similar 

to traditional M-H, is utilized to determine the likelihood that the new position is accepted.



71

Two measures o f the M CM C performance are included within the emcee tool: the 

acceptance fraction and the autocorrelation time. The acceptance fraction is the frac

tion o f steps proposed throughout the M CM C run that were accepted by the algorithm. 

Foreman-Mackey et al. [38] suggest that the acceptance fraction should be between 0.2-0.5 

for an effective/efficient exploration o f the distribution. The autocorrelation time is a 

measure o f how many Markov steps are necessary to to produce independent samples. This 

independence measure is eased by the simultaneous evolution o f multiple Markov chains. 

Comparing autocorrelation times with respect to each parameter in the distribution after 

the M CM C run allows the user to decide if further evaluations are needed to characterize 

the distribution. Additional evaluations can be easily gained through simply restarting the 

M CM C with the current walker positions.

5.2 Kennedy O’Hagan Approach
5 .2 .1  K e n n e d y  O ’ H a g a n  M o d e l -F o r m  U n c e r t a in t y  T h e o r y

The following is a general overview o f the approach presented by Kennedy and O ’Hagan 

(2001) [74] (KOH) for tackling model-form uncertainty. Models aimed at capturing physical 

phenomena are typically based upon many parameters. While numerous parameters may 

exist in a model, the parameters that are changing within the situation of interest are 

those often denoted as the active parameter-set. The active parameter-set can then be 

split into parameters who values are known, scenario parameters x, and those whose values 

are unknown, calibration parameters u. Outputs of interest from models, which can be 

compared with observable quantities, are known as quantities of interest (Q ol) and are 

typically represented as y.

Models are usually imperfect and often contain incomplete descriptions o f the physical 

realities they aim to represent. The difference between the physical reality y R(x)  and the 

m odel’s prediction thereof y M (x ,u ) can be termed the model discrepancy or bias S(x).  

Mathematically this relationship can be written

yR(x) =  yM (x ,u ) +  5(x) .  (5.21)

Note that the discrepancy is only a function of the scenario parameters, not o f the calibration 

parameters. Effectively, the ‘true’ discrepancy function can be thought o f as corresponding 

to the difference between reality and the model evaluated at the ‘true’ calibration value.

Currently, models can only be validated if experimental data exists that can substantiate 

the m odel’s basis o f prediction. W ith experimental data there is generally some error e
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associated with it. Reality is usually not known, which is why experiments were undertaken 

in the first place, but can be described by the experiments and their associated error or

y R (x) =  y E ( x ) +  e. (5.22)

Random /stochastic experimental error can usually be characterized through the gathering 

o f repetitions, while capturing any bias in the experiments necessitates alternative methods. 

Presently, experimental bias will be ignored, while bias in the model is the focus. Following 

this assumption the experiment error is assumed to be independently, identically distributed 

(iid) and Gaussian with zero mean, but these characteristics are not a requirement for the 

general approach. Now removing unknowable reality from the approach by combining 

Eq. (5.21) and (5.22), a relationship in terms of Qol, adjusted for bias and accounting for 

experimental error can be validated with experimental data and utilized for predictions 

outside o f ranges data is currently available,

yE (x) =  yM ( x ,u ) +  5(x) +  e. (5.23)

5 .2 .2  K e n n e d y  O ’ H a g a n  A lg o r i t h m

The algorithmic approach taken towards implementing Eq. (5.23) throughout this anal

ysis entails the following steps.

• First, a GP acting as a surrogate for the imperfect model is created using a set of 

parameter values that adequately explore the prior parameter ranges. The hyperpa

rameters of the covariance kernel used within the surrogate GP can either be treated 

with the full-Bayes method or estimated through the M AP approach,

P(y|X, u, hpm) M A P  P(y|X ,u , ). (5.24)

• The surrogate GP can then infer output values at input parameter positions corre

sponding to available experimental data or

P (y *| x * ,y ,X ,u ,h p m ) where x* =  x e. (5.25)

• Any differences 5 between the inferred means from the surrogate GP and the means 

of the experimental data can then be treated as y data inputs for the discrepancy 

GP. Use o f the experimental mean instead of the raw experimental data is discussed 

in Section 5.3.6.1. The discrepancy could be modeled with alternative forms such 

as constant values or Gaussian random variables as was investigated by Ling et al.
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(2014) [85], but GPs will be utilized throughout this example. The discrepancy GP 

will initially include both scenario and calibration parameters, but through analyzing 

the posterior distribution or potentially other characteristic distributions, calibration 

parameters should be defined,

• A  discrepancy GP can then be built that only depends upon scenario parameters. The 

hyperparameters of the covariance kernel used in the discrepancy GP can be estimated 

through either the full-Bayes or M AP approaches when analyzing the hyperposterior,

• The posterior predictive distribution then allows for predictions o f the Q ol by adding 

the model and discrepancy G P ’s posterior predictive means and uncertainties. In 

order to predict full uncertainty values, the full-Bayes approaches is necessary, but 

this additional uncertainty is often assumed insignificant and ignored,

A  graphical representation of this algorithm is shown in the form of a Bayesian network 

within Figure 5.4. Bayesian networks are directed acyclic graphs that provide a visual rep

resentation o f the underlying conditional probabilistic relationships for a Bayesian analysis. 

W ithin the Bayesian network, lines represent conditional dependence, circles are random 

variables, squares are data, and triangles are models. The models are not a necessary part 

o f the network, but help provide context and ease interpretation.

P (S (xe, u)|Xe, u, hps) calibrated P (S (xe, u)|Xe, u*, hps). (5.26)

P  (6(£e)|Xe,U*,hp^ ). (5.27)

P  (y*|x*,y, S (xe ), X e , X , u*, hpm*, h p ^ ) =

P(y*|x*, y, X , u*, hpTOi) +  P(S(x*)|x*, S(xe), Xe, u*, hp5̂ ). (5.28)

5.3 Pedagogical Problem
5 .3 .1  G e n e r a l  P r o b le m  O v e r v ie w

The pedagogical problem is framed around modeling the reaction kinetics of

SiH4 ^  Si +  2H2. (5.29)

To predict the progression of this reaction the following equation can be solved

(5.30)
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F igu re  5.4: Bayesian network representation o f algorithm used to implement the KOH 
approach to model-form uncertainty and calibration. Here circles represent random vari
ables, squares correspond to data, triangles indicate models, and lines represent conditional 
dependence.

where ysiH4 (t) is the concentration of SiH4 at time t, u  is an unknown reaction-rate and the 

initial condition is ySiH4 (0) =  yo,SiH4. The solution to this equation is

ysiH4(t) =  yo,siH4 e x p ( -u  t), (5.31)

but this is known to be an incorrect model-form. The actual equation to describe the 

aforementioned kinetics is

ysiH4(t) =  (yo,SiH4 -  c) e x p ( -u  t) +  c, (5.32)

where c is the concentration o f SiH4 remaining at the end o f the reaction (c =  1.5), also 

known as the residual.

Although Eq. (5.31) is known to contain model-form error, this exercise will explore how 

well the model with incorrect physics can be utilized to make predictions after implementing 

the model-form uncertainty validation scheme described within Kennedy and O ’Hagan 

(2001) [74]. Following this approach it can be seen a priori that a model discrepancy 

or deficiency term would analytically be described as

£(t) =  c (1 -  exp(u0 t)), (5.33)

where u0 designates the true value of the reaction-rate being calibrated and whose value is 

1.7.
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Parameters explored throughout this exercise are time t and the reaction-rate parameter 

u, which are treated as scenario and calibration parameters, respectively. The prior param

eter ranges are [0 — 3] for both parameters. Such bounds could also be thought o f as uniform 

prior distributions. Utilizing the points selected by Bayarri et al. (2005) [11], which were 

determined by a Latin hypercube design o f experiments (DOE), Eq. (5.31) can be evaluated 

at those points, providing output ysiH4 (t, u). The parameter space explored by this D OE was 

[0.5, 2.0] x  [0.1, 3.0] for u and t, respectively, and the design points are shown in Table. 5.1. 

The initial condition used throughout the example is y0,SiH4 =  5.0. Latin hypercubes are 

a popular method of efficiently exploring parameter spaces with high dimensionality, while 

also being computationally affordable. Compared to randomly sampling the parameter 

domain, Latin hypercubes have smaller variance on their sample mean [31].

5 .3 .2  A p p l i c a t i o n  A p p r o a c h

The parameter design points and corresponding model outputs can be used to construct 

a GP surrogate model utilizing the squared-exponential covariance kernel. Although eval

uations o f Eq. (5.31) are computationally cheap, a surrogate model will still be utilized to 

demonstrate how this analysis could be conducted for models with expensive evaluations. 

Optimal values for the length, li and l2, and amplitude, w, hyperparameters can be ap

proximated using the M AP method. Log-normal prior distributions with means 0.5, 0.7, 

0.2 and standard deviations 0.2, all reported in normal space equivalent, are specified for 

hyperparameters w, l i , and l2, respectively. No noise kernel is included in this GP due to the 

model providing deterministic outputs. This GP surrogate along with the model it is based 

upon are compared against the true physics in Figure 5.5. The model outputs corresponding 

to samples spanning the full prior parameter range are shown within Figure 5.5a and the 

best case scenario where the true calibration value 1.7 was used is shown in Figure 5.5b. 

It can be noted that the GP performs well in regions were data was sampled, but fails to

T ab le  5.1: Latin hypercube design o f experiments’ selected parameter points (time and 
reaction-rate u).

Latin Hypercube Design of Experiments

Time 2.159 0.941 0.303 0.709 1.753 1.144 0.506 2.391 1.956 1.550
2.594 2.797 1.347 0.100 3.000

u 1.145 2.000 0.710 1.040 1.895 0.605 1.685 1.565 0.500 0.935
0.815 1.790 1.460 1.355 1.250
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F igu re  5.5: Comparison of the ‘truth’ (red line) with the model containing an incorrect 
model-form (black line) and the posterior predictive mean and one standard deviation (blue 
line/region) of the GP surrogate model. Plot (a) shows the possible model outputs reflecting 
samples spanning the full range of parameter prior (0-3). Plot (b) depicts the best case 
scenario where the true calibration parameter value 1.7 is used in the model and surrogate 
GP.

capture the initial temporal behavior due to data not being sampled in that region. The 

discrepancy between the model and true physics is apparent.

Synthetic experimental data were created by sampling the true physics model and adding 

Gaussian white-noise with a standard deviation o f 0.3, Eq. (5.32) +  N (0,0 .3). These data 

include three replicates for each position sampled from the parameter space and are shown 

within Figure 5.6 and Table 5.2. In the spirit o f assuming the data were o f experimental 

origin, the variance o f the plotted experimental data was calculated following the assumption 

that the data were normally distributed and the mean and one standard deviation are 

also shown with the data-points. This same assumption was utilized in modeling the 

experimental noise within the noise kernels throughout the exercise as previously mentioned.

A  GP o f the discrepancy between the model GP and the experimental data can now 

be constructed. After inferring values with the model GP for the temporal locations of
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F igu re  5.6: Experimental data are shown (black dots), along with its respective mean (red 
line) and one standard deviation following the assumption o f a normal distribution (blue 
region).

T ab le  5.2: Experimental data times and corresponding three repetitions of SiH4 
concentrations.

SiH4 Concentration

Time 0.110 0.432 0.754 1.077 1.399 1.721 2.043 2.366 2.688 3.010

yi 4.730 3.177 1.970 2.079 1.908 1.773 1.370 1.868 1.390 1.461

y2 4.720 2.966 2.267 2.409 1.665 1.603 1.661 1.505 1.275 1.157

y3 4.234 3.653 2.084 2.371 1.685 1.922 1.757 1.638 1.679 1.530
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the experimental data, those values can be compared with the experimental mean values 

and the difference utilized as y inputs to create a discrepancy GP. Figure 5.7 depicts a 

range possible discrepancy GPs, each corresponding to a different calibration value, which 

is still unknown. For each discrepancy GP shown, a noise kernel and squared-exponential 

kernel with two length-scales were used and their respective hyperparameters estimated 

via the M A P method. W hen calculating the posterior, the prior for the noise intensity 

is set to the maximum standard deviation of the experimental data and the priors for 

squared-exponential's intensity and length are both set to log-normal with mean/standard 

deviation 0.5/0.2 and 0.9/0.2, respectively, in normal space equivalent.

5 .3 .3  C a l ib r a t io n  E s t im a t io n  T e c h n iq u e s

The discrepancy GP can only provide help with extrapolative predictions if the true 

calibration parameter value is utilized when constructing the discrepancy GP. If the dis

crepancy is based upon the wrong calibration parameter value, it will only provide useful 

predictions near the validation data parameter space. The ideal manner of searching for 

the calibration parameter is to search through the full posterior distribution. This could 

be accomplished with an M C M C  algorithm, but such a search is typically computationally 

costly. A  few alternative approaches for approximating this search also exist.

The first calibration estimation method considered is based upon the discrepancy G P ’s 

hyperposterior once the hyperparameters have been estimated and is shown in Figure 5.8.

This method is convenient because the calculation is already performed when utilizing the 

M A P hyperparameter estimation technique. Using estimated hyperparameter values allows 

for a psuedo-marginalized hyperposterior to be explored over the calibration parameter 

range,

Discrepancy

time

F igu re  5.7: Possible discrepancy functions where each line reflects a different value for the 
unknown calibration parameter between 0-3.
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F igu re  5.8: The discrepancy maximum hyperposterior over a range o f calibration values 
after the hyperparameters were estimated with MAP. The weight factor is effectively an 
unnormalized probability.

P(u|y, X , K (X , X ),hpM Ap) =  P(y|X, K (X , X ) ,u ,  hpMAp) P (u ). (5.34)

The hyperposterior is referred to as psuedo-marginalized here because the M AP algorithm 

is performed for each discrete calibration value explored. This method is generally known as 

the expectation-maximization (EM ) algorithm. Figure 5.8 shows the distribution produced 

by this method and using an averaging based upon distribution weight, a calibration value 

can be estimated. This method resulted in a calibration value estimate of 0.997. As is 

generally the case with most distributions found, the use o f the weighed mean value was 

only one o f the possible calibration estimates that could be chosen from this distribution. 

For the M AP calculations the noise was set equal to the maximum standard deviation in 

the experimental data and the squared-exponential’s intensity and the squared-exponential’s 

intensity and length were both set to log-normal with mean/standard deviation 0.5/0.2 and 

0.9/0.2, respectively, in normal space equivalent.

Another means o f estimating the calibration parameter is to find the minimum sum of 

squared errors for the discrepancy function over the calibration range. This can be seen 

as approximation o f the integral o f each o f the possible discrepancy functions in order to 

locate the smallest

u* ^  min (E S (xe ,i,u )). (5.35)
i

This method is shown within Figure 5.9a and results in a calibration estimate o f 0.72. This 

method is not deemed the best approximation due to there being no basis for why it should 

be assumed that the smallest amount o f discrepancy would be preferable. The real goal 

when approaching model-form uncertainty problems is to locate a discrepancy that corrects 

for a model based upon the true values o f the calibrated parameters. Interestingly, the
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F igu re  5.9: The sum of the squared-errors (SSE) of discrepancy functions for a range of 
calibration values is shown in plot (a). Plot (b) shows the corresponding GP mean and one 
standard deviation (blue line/region) based upon the calibration value 0.72 found with the 
SSE method versus the true physics (red line) and validation data-points (black dots).

minimized discrepancy calibration estimate should be similar to how parameter calibration 

o f the model would proceed if a discrepancy term was not utilized, also known as a residual 

minimization method. The only significant difference being that noise was included in the 

discrepancy functions. It can be seen within Figure 5.9b that the model calibrated without 

bias would perform poorly even in a regressive capacity.

One other possible means of estimating the calibration parameter, which in this instance 

can be seen to be similar to the EM  algorithm estimate, is to calculate a marginal likelihood 

distribution where the calibration value is not marginalized over. Figure 5.10 shows this 

marginal likelihood distribution where the noise kernel’s A and the u o f the squared- 

exponential kernel have both been marginalized over, or treated as nuisance parameters

P(y\u, X ,  K ( X ,  X ), Lflxed) =  J J  P(y\u, X ,  K ( X ,  X ) ,u , A, f i e d) du dA. (5.36)

For this marginalization, the hyperparameter length-scale was set to a fixed value o f 0.9 

that was hypothesized as being reasonable from an initial analysis o f the data. This length-
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F igu re  5.10: The likelihood distribution when marginalized over A o f the noise and u  o f 
the squared-exponential kernel. The length-scale was fixed at the value of 0.9 that was 
estimated after considering the available data.

scale estimate was reconsidered in further analysis discussed in Sections. 5.3.5.2-5.3.5.3. 

The fact that this distribution strongly resembles the psuedo-marginalized hyperposterior 

distribution found with the EM approach, as seen by comparing Figure 5.8 and 5.10, is 

a positive for the EM algorithm approach, due to it being computationally cheaper to 

compute. Here the marginalization method estimates the calibration parameter to be 1.04. 

Weight averaging of the distribution was again used.

5 .3 .4  P r e d ic t io n

Once the calibration parameter has been estimated, it can be utilized to create a 

discrepancy GP dependent only upon scenario parameters £(x), which when added to the 

original model GP allows for predictions as shown in Figure 5.11. Compared to the original 

model predictions, Figure 5.5, the model adjusted by accounting for the discrepancy has 

superior performance within the temporal range covered by the validation data. Even where 

the mean o f the posterior predictive does not directly line up with the true model, ‘truth’ 

is within a standard deviation.

5 .3 .5  C o n t in u e d  A n a ly s is

While the results shown in Figure 5.11 appear promising, recall that the calibrated 

reaction-rate parameter value used, as found in Figure 5.8, was 0.997, while the actually 

value is known to be 1.7. This means that the model shown in Figure 5.11 will likely 

be inaccurate outside o f the range o f the validation data. This conclusion can already be 

seen to an extent in Figure 5.11 near the end o f the temporal range where the posterior 

predictive mean begins to drift downwards and has a negative slope. Physically it is known 

that the system is limited by a chemical equilibrium that maintains a residual amount of
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F igu re  5.11: The mean and one standard deviation o f the posterior predictive distribution 
generated by adding the model and discrepancy GPs (blue line/region), both based upon 
the calibration parameter value (0.997) estimated by the EM approach. The data used for 
validation (black dots) and the true model-form (black line) are also shown for comparison.

SiH4 (c =  1.5), but the GP surrogate models are not based upon physical constraints. Such 

physical constraints could be built into the GP through a prior mean, but that would imply 

prior knowledge about the system not currently assumed. Filtering random samples o f this 

posterior predictive distribution by placing a set o f constraints upon them could be another 

means o f improving predictive capabilities (Section 5.5.3).

5 .3 .5 .1  M o d e l  D O E

An issue that should be addressed is the fact that the DOE o f the model inputs did 

not cover the full temporal range, but started at 0.1. Considering that such DOE is in the 

hands o f the computational modeler and not limited by available experimental data, it seems 

reasonable to ensure that the full parameter prior distribution is explored. To investigate 

any effects this would have upon the results, the design point (0.100, 1.355) was switched 

to (0.000, 1.355). This alternation was found to have a minor effect upon the initial times 

o f the final predictive distribution, which generally appears to be more strongly effected by 

the validation data. There were small changes in the calibration estimates with the EM 

estimate changing from 0.997 to 1.1 and the marginal distribution estimate changing from

1.04 to 1.09.

5 .3 .5 .2  T h r e e -D im e n s io n a l  L ik e l ih o o d

A  grid-based evaluation method was used to generate a three-dimensional likelihood 

distribution. Two-dimensional marginals and a slice o f the full three-dimensional distribu

tion are shown in Figure 5.12. All marginalization was undertaken by using the cumulative 

trapezoid method to integrate over dimensions. The three-dimensional likelihood that these
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F igu re  5.12: Two-dimensional marginal likelihood distributions (a, b) and a slice o f the 
three-dimensional discrepancy likelihood (c) that the marginals are based upon. The 
likelihood was marginalized over A o f the noise kernel for the plot (a), over u of the 
squared-exponential kernel o f the plot (b), and was sliced through the calibration dimension 
at the median parameter range value (1.5) in plot (c). The length-scale was fixed at a value 
o f 0.9.
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plots are based upon was parameterized by the calibration parameter u, A o f the noise 

kernel, and u  o f the squared-exponential kernel. The length-scale was set at the mean prior 

value 0.9 because this length-scale was initially deemed to be a reasonable estimate after 

considering the data spacing.

From these two-dimensional marginals and slice of the three-dimensional likelihood, 

the calibration value estimated by the EM  method appears to be reasonable and there 

is no indication within these distributions that would lead to any inference of the true 

calibration value. The marginal displaying the distribution over the squared-exponential 

kernel intensity and the calibration parameter indicates some correlation by its slight 

diagonal skew. There is minimal and no evidence of correlation between parameters for 

the other marginal and within the slice. Any correlation noted between the parameters 

in a posterior equivalent o f Figure 5.12 would not conflict any assumptions regarding the 

independence of the the parameter’s prior distributions because such correlations were only 

learned through the Bayesian process. Due to the low probability found in the region o f the 

known true calibration parameter, the assumption of using a fixed length-scale to create 

the likelihood was reconsidered.

5 .3 .5 .3  F o u r -D im e n s io n a l  L ik e l ih o o d

A four-dimensional likelihood including the same parameters considered within the pre

vious three-dimensional likelihood with the addition of the squared-exponential length-scale 

is now considered. Two-dimensional marginal distributions, shown in Figure 5.13, display 

many attributes not contained in equivalent marginals based upon a three-dimensional 

likelihood. Regions of high probability found in Figure 5.12, now appear to be local 

phenomena, but not the true global description. The noise variable A still appears to 

be independent o f the other parameters. The length parameter l shows clear correlation 

with the calibration parameter, while the squared-exponential intensity appears to have a 

weaker or minimal dependence. Perhaps the most interesting information to be gained is 

within the marginal distribution shown in Figure 5.13d, where all three hyperparameters 

have been integrated over, leaving a bimodal distribution. This bimodal distribution shows 

the region found in Figure 5.10 to be a local maximum and that a global maximum also 

exists with a value o f 1.69, or approximately the true value. This behavior is also present 

in all three corresponding two-dimensional marginals. Unlike previous estimation of the 

calibration parameter where weighted means were used, a maximum value appears more 

appropriate here considering the distribution is bimodal.
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F igu re  5.13: Two- and one-dimensional marginals of the discrepancy’s four-dimensional 
likelihood distribution. Plot (a) shows the distribution o f the calibration parameter and the 
squared-exponential kernel’s intensity u. Plot (b) show the distribution for the calibration 
parameter and the noise parameter A. Plot (c) plot shows distribution for the calibration 
parameter with the squared-exponential’s length hyperparameter l. Plot (d) shows the one
dimensional marginal, where the three hyperparameters, A, u, and l have been integrated 
out leaving only the unnormalized probabilities across calibration parameter space.



86

5 .3 .5 .4  A n a ly t ic  D is c r e p a n c y  C o m p a r is o n

Another comparison that exposes potential issues with making extrapolative predic

tions is between the discrepancy GPs created and the known analytic form as shown in 

Figure 5.14. Here it can be seen that when using the calibration value found with the 

EM algorithm method (0.997) that the discrepancy GP has different features than the 

analytical solution, Figure 5.14a. Even when using the known calibration value (1.7) to 

create the discrepancy GP, it can still be seen in Figure 5.14b that the method behind 

creating the discrepancy term does not yield the correct form, but does have values closer 

to the analytic solution throughout most of the temporal parameter range. From these 

plots it can be concluded that the model with discrepancy included would be unlikely to be 

predictive outside of the parameter range of the validation data if the correct calibration 

value was not found and even if the correct calibration parameter value is found, not a great 

deal of confidence should be placed upon its extrapolation.

(a)

(b)

F igure 5.14: A comparison of the discrepancy GP mean (blue line) with the analytical 
discrepancy function (black line). In plot (a) the discrepancy GP uses the calibrated 
parameter found with the EM algorithm method (0.997) and plot (b) uses the true value 
of the calibration parameter (1.7).
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That being said, both discrepancy models do provide insight into the shortcomings of 

the original model containing incorrect physics. Both discrepancy GPs indicate that the 

model was under-predicting the concentration and that qualitatively this increased over 

time until the end of the time domain. Looking back to the original model Eq. (5.31), 

there appear to be three potential locations within the model that the discrepancy could 

be attributed to: acting linearly along with y0, acting exponentially with u and t or as an 

additional term added on. Clearly the discrepancy has temporal functionality, and at least 

a portion must be additive to the current model-form in order to level out at a value other 

than zero. Hypotheses about model-form error within the preexponential and exponential 

terms would require further consideration.

5 .3 .5 .5  P o s te r io rs  a n d  P r io rs

Following the Bayesian philosophy, studying the discrepancy’s posterior distribution is 

the next logical step. In comparing the posterior and likelihood distributions the effect of 

the priors can be seen. Initially, the discrepancy’s posterior was created using a grid-wise 

evaluation of the parameter space, just as was previously done with the likelihoods except 

that hyperparameter priors were now included. The effect of slight alterations to the priors 

can be noted in posterior marginals shown in Figure 5.15. Here it can be seen that by 

changing the standard deviation and mean parameters of the log-normal distributions used 

for the hyperparameter priors of the squared-exponential kernel causes significant changes 

to the ultimate posterior marginals found for the calibration parameter. All log-normal 

distribution parameters are described in their normal space equivalent due to that space 

generally being more intuitive. Simply changing the standard deviation between 0.1, 0.2, 

and 0.5 (plot (b), (a), and (d)) causes two modes of the distribution to become differentiated. 

Changing the mean from 0.9 to 0.5 (plot (a) and (c)) can also be seen to have a significant 

effect upon the presence of two modes within the distribution. The shift of 0.4 to the 

mean of the prior distributions effectively caused the second mode of the original likelihood 

distribution to be ignored.

Analyzing posterior distributions in many dimensions becomes computationally expen

sive, often leading researchers to utilize MCMC methods. Following this tradition, the 

MCMC tool of Foreman-Mackey et al. (2013) [38] was then utilized to further explore the 

posterior distribution. Upon implementation the MCMC results were verified against the 

grid-wise results (Figure 5.16). In order to avoid allowing the experimental data to effect the 

surrogate model G P ’s characteristics, a modular approach towards probabilistic exploration
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Figure 5.15: Demonstrating the effect of prior distributions on the posterior distribution. 
For these four plots the same likelihood used to generate Figure 5.13 was implemented, 
but with a Jeffreys prior on the noise intensity A and log-normal distributions for the 
squared-exponential kernel’s intensity w and length l. The standard deviation of the 
squared-exponential’s hyperparameter priors, described in terms of an equivalent normal 
distribution, was altered between plots to values 0.2, 0.1, 0.5, and 0.2 for plots (a), (b), (d), 
and (c), respectively. The mean of those priors was 0.9 for all plots except plot (c), which 
was 0.5.
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F igure 5.16: Demonstrating that the MCMC run using the emcee tool from Foreman- 
Mackey et al. (2013) [38], plot (b), is able to produce results equivalent to those generated 
via grid-wise search, plot (a). The compared posterior marginals used the same hyperpa
rameter configuration as Figure 5.15b.

should be taken [11]. Such modularity refers to separately exploring the surrogate and 

discrepancy GPs parameter spaces, and the following MCMC explorations only involved 

the discrepancy.

Once the MCMC method was verified, different configurations of the hyperparameter 

priors were analyzed. These MCMC runs all utilized 100 walkers or separate Markov chains, 

with a 1,000 step burn-in period and a total of 3,000 Markov steps. These MCMC runs 

generally had a mean step acceptance ratio around 0.4. Figure 5.17 demonstrates that small 

changes to the prior distributions can have significant effects upon the marginal posterior 

spaces.

As would be expected, the bottom plot of Figure 5.17 shows that the Jeffreys prior, which 

is meant to be an uninformative prior, produces marginals most similar to the likelihood
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(a)

(b)

(c)

Figure 5.17: Comparison of marginals of the discrepancy posterior with varied priors on 
the hyperparameters. All plots included a Jeffreys distribution for the A in the noise kernel. 
Plots (a), (b) and (c), plus Figure 5.16b, used log-normal distributions for the squared- 
exponential’s intensity u and length l priors. All log-normal parameters are described in 
their normal space equivalent. Plot (a) had a mean of 0.9 and std of 0.2, plot (b) a mean 
of 0.9 and std of 0.5, plot (c) had a mean of 0.5 and std of 0.2, Figure 5.16b had a mean of 
0.9 and std of 0.1, and plot (d) used Jeffreys distribution for both u and l.
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equivalents previously shown in Figure 5.13. The log normal distribution produces marginals 

least similar to the likelihood equivalents when centered at 0.5. Being a more informative 

prior, the log normal distribution is showing a strong effect upon the posteriors. Thus, the 

marginals corresponding to log normal priors centered furthest from the second mode in the 

likelihood distribution appear least like their likelihood equivalents. Within the three sets 

of marginals where the log normal priors’ standard deviations were varied, the variance in 

the marginals directly reflects those variances. Overall, these examples demonstrate that 

an informative prior can have a strong effect upon the posterior distribution. As long as the 

prior information is correctly utilized this should ease locating a posterior, but care must 

be taken.

5 .3 .6  In itia l C o n c lu s io n s

Although much of the previous analysis would not be possible for real application 

problems, where ‘truth’ is not known, it does foreshadow an additional problem that 

could play an important role in any application of the model-form uncertainty method 

utilized thus far, the identification problem. The identification problem is the lack of 

ability to separately calibrate model parameters and create a functional model discrepancy. 

In the present application, the correct calibration value was found, but with uncertainty, 

through analyzing the discrepancy’s full likelihood distribution or posterior depending upon 

priors selected (including calibration parameters and hyperparameters), but not with any 

of the alternative approximations presented. Although no known method of solving the 

identification problem have been presented, discerning if an identification problem exists 

can be studied and discussed [6]. This will be elaborated upon within Section 5.4.

The final posterior predictive distribution is shown in Figure 5.18, where the calibration 

value (1.69) found from the four-dimensional likelihood distribution was utilized along with 

hyperparameter values then estimated with the MAP method. Compared to the posterior 

predictive shown in Figure 5.11, the mean in Figure 5.18 appears more likely to be predictive 

outside of the validation data’s parameter range because it is not trending away from the true 

physics at the end of the temporal region and generally contains more physical monotonicity.

5 .3 .6 .1  E x p e r im e n ta l D a ta  C o n s id e ra t io n s

When calculating the discrepancy between the surrogate model’s mean output and the 

experimental data, the mean value of the experimental data repetitions has been utilized 

throughout this exploration. The experimental data could have been used directly and
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Figure 5.18: The mean and one standard deviation of the final posterior predictive 
distribution generated by adding the model and discrepancy GPs (blue line/region), both 
based upon the optimal calibration parameter value (1.69) found as the maximum of the 
discrepancy’s four-dimensional likelihood distribution. The data used for validation (black 
dots) and the true model-form (black line) are also shown for comparison.

would have led to a more typical interpretation of the noise variance found within the 

discrepancy GP. When comparing the surrogate mean with the experimental mean the 

noise represents noise in moment space. If comparing directly with the experimental data 

the noise represent experimental data noise, or when assuming Gaussian white-noise it 

characterizes the variance in the distribution of repetitions. While characterizing noise in 

the experimental data is typically a desired goal, using the noise in the means is not believed 

to alter other results found throughout this analysis.

5.4 Identification Problem /  Sensitivity Analysis
The identification problem is the inability to identify unique calibration parameter 

values while also defining model discrepancy. Calibration parameters represent underlying 

physical characteristics whose values contain uncertainty, thus they can be treated as 

random variables. Calibration of physical parameters in the context of Bayesian analysis is 

known as the inverse problem and is an important scientific endeavor in of itself.

5 .4 .1  G ra d ie n t  A n a ly s is

To tackle the identification problem the gradients of the discrepancy GP will be con

sidered. Sharp gradients in the discrepancy GP with respect to the calibration parameter 

should imply that the discrepancy function and the calibration parameter are separately 

identifiable, while the opposite implies that identification is unlikely. This is not a means of 

identification, only a means of exploring if identification would be probable for the problem 

of interest. Following the order of analysis undertaken thus far, the model and discrepancy

5
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GPs based upon the EM algorithm calibration estimation will be analyzed first. This same 

analysis based upon the four-dimensional likelihood calibration estimation will subsequently 

be undertaken.

Figure 5.19 shows the gradients of the discrepancy GP with respect to time and the 

calibrated reaction-rate parameter. The discrepancy GP is the same as that used to create 

the results for Figure 5.11. The gradients with respect to the calibration parameter are 

those of interest for the identification problem, but the gradients with respect to time are 

included as a means of providing relative scale for comparison. The gradient of interest has 

a maximum value of similar order to the equivalent gradient with respect to time. This 

does not appear to give credence towards any conclusions about identification. The Hessian 

is also included in Figure 5.20 to look for further correlation between the parameters.

The gradients of the GP acting as a surrogate model for the model containing incomplete

(a)

(b)

F igure 5.19: Gradients (a) and Hessian (b) of the discrepancy function along time. 
Dashed lines denote averaged values, blue lines are with respect to time, red lines are 
with respect to the calibration parameter, the green line is a mixed differentials with 
respect to time and the calibration parameter, and the black dots show the experimental 
data-points. The calibrated parameter value utilized (0.997) was found with the EM method 
and hyperparameters were solved for with the MAP method.
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Figure 5.20: Gradients of the model GP along time. Red lines denote gradients with 
respect to the calibration parameter, blue lines are with respect to time, and the dashed 
lines are averages. The calibrated parameter value utilized (0.997) was found with the EM 
method and the hyperparameters were found with the MAP method

physics (Figure 5.20) can also be studied for parameter sensitivity and to look for correlation 

with those in the discrepancy GP. The inflection of the gradient with respect to the 

calibration parameter for the model is opposite in sign and of similar absolute maximum 

magnitude compared to the equivalent for the discrepancy function. While abstractly 

analyzing the model gradients for this applications bears little fruit, it could prove helpful 

in applications with higher dimensionality of unknowns.

While it was hard to interpret the likelihood of identification when studying the gradients 

of the GPs based upon the wrong calibration value, the counterparts based closer to the 

true calibration value (1.69 from the four-dimensional likelihood) are shown in Figure 5.21. 

The discrepancy GP gradients with respect to the calibration parameter have greater 

amplitude and magnitude when the GPs are based upon the correct calibration value. 

Gradients of the discrepancy GP with respect to the calibration parameter have the largest 

absolute magnitudes at the initial times. This could be interpreted to infer that it is 

these initial temporal periods where identification is most likely due to the function being 

most sensitive to the calibration parameter values within this temporal region. Although 

it has been previously mentioned that these results do not provide a definitive answer to 

the identification problem, it does appear that when the model was properly calibrated 

the gradients have greater magnitude and amplitude and thus identification appears more 

likely.

One final step in the examination of the discrepancy and model gradients with respect to 

the calibration parameter is to visualize how they change over the full calibration parameter 

space (Figure 5.22). For both the model and discrepancy GPs, the surfaces representing 

the gradients with respect to the calibration parameter over the full parameter ranges are

Gradients o f Model GP

time
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(a)

(b)

F igure 5.21: Gradients along time for the model (a) and discrepancy (b) with respect to 
the calibration parameter and time. Both GPs are based upon the calibration value found 
with the four-dimensional likelihood (1.69). Hyperparameters were located with the MAP 
algorithm.

near their minimal values and located in the relatively flattest regions for the calibration 

parameter value found through the EM algorithm approach. The true calibration value lies 

in an area of the surface with greater gradient values. Further extensions of this analysis are 

needed to gain deeper insight into this type of analysis’ value towards identification issues.

5 .4 .2  T y p e s  o f  N o n id e n tifia b ility

Two categories of nonidentifiability have been proposed in the literature: structural and 

practical [116]. Structural nonidentifiability is caused by redundancy in the parameteriza

tion of the of the model structure [85]. Practical nonidentifiability is due to insufficient 

quantity or quality of experimental data. While structural nonidentifiability will not be in

vestigated, practical nonidentifiability can easily be considered through varying the amount 

of experimental data as well as the aleatoric uncertainty in those data.

Figure 5.23 demonstrates the effect of data quantity. Here it can be seen that by remov

ing three data-points (a), the distribution appears to diverge into two separate distributions,
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(b)

F igure 5.22: Three-dimensional view of discrepancy (a) and model GPs’ (b) gradients 
with respect to the calibration parameter across time and calibration parameter space.

but by adding three more data-points (b) greater weight gets incorporated into the right 

mode of the distribution. The points removed were at times 0.754, 2.366, 3.010 and the 

points added were at times 0.266, 1.238, 2.527. Thus it appears that some portion of the 

nonidentifiability being observed can be attributed to the experiment being data poor.

Now to examine the effect that data quality has upon the current problem, the standard 

deviations in the Gaussian white-noise utilized to create the synthetic experimental datasets 

was altered, effectively creating more and less accurate data sampling. Figure 5.24 shows 

how decreasing the standard deviation to 0.15 (a) and increasing it to 0.45 (b) effects 

the calibration distribution. Reducing the variance in the experimental noise narrows the 

range of the calibration distribution, but creates a bimodal situation where both modes 

are of similar weight. Increasing the noise variance widens the range of the calibration 

distribution, but also significantly reduces the amplitude of the incorrect mode. The effect 

of changing the data quality on the models nonidentifiability does not appear conclusive
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F igure 5.23: Three one-dimensional marginals of the discrepancy’s four-dimensional 
likelihood distribution created in the same manner as Figure 5.13 except that that amount 
of experimental data available differs between plots. Compared to plot (c), which is the 
same as was shown previously, plot (a) used three less experimental data-points and the 
plot (b) used an additional three.
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F igure 5.24: Two one-dimensional marginals of the discrepancy’s four-dimensional likeli
hood distribution created in the same manner as Figure 5.13 except that that the standard 
deviation of the Gaussian white-noise used to generate the synthetic experimental differers 
between plots. Compared to Figure 5.23c, the plots were created with experimental data 
synthetically produced with a standard deviation of 0.15 and 0.45 in the Gaussian noise (as 
opposed to 0.3) for plot (a) and plot (b), respectively.

in this instance. It might be postulated that better calibration appears to occur with 

less precise experimental data because it allows the framework more leeway to balance the 

distribution of uncertainty between model-form and the experimental data.

5.5 Additional Approaches Towards Calibration
The Bayesian field of study is full of possibilities for tweaks and alterations of methods 

to accomplish new goals. The following three subsections describe a few ideas branching 

from Bayesian methods that were not found in a literature search during the summer of 

2014. The three topics explored were Bayesian model comparison, multi-input Gaussian 

processes, and constrained Gaussian processes. These methods were considered as means 

of aiding calibration, thus potentially reducing the identification issue.
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5 .5 .1  B a yesian  M o d e l  C o m p a r is o n

A Bayesian method of comparing model-forms and hypotheses is known as Bayesian 

model comparison. To compare two potential models (H i and H2), a ratio of their proba

bilities described by Eq. (5.1) yields

P(Hi|D) P (D|Hi) P (H i)
P (H2|D) P(D|H2) P (H 2) '

(5.37)

This Bayesian comparison can be described as the posterior odds p (hI\d ) equaling the 

Bayes factor p (D \ Hi]!) multiplied by the prior odds p jH j • In cases where there are no prior 

preferences, or the prior odds are unity, Bayesian model comparison becomes a comparison 

of how well data can be explained by each hypothesis. It should be noted that Occam’s 

razor, or favoring the least complex model that is reasonably able to explain the data, is 

explicitly contained within marginal likelihood of the GP. Referring back to Eq. (5.13), 

it can be seen that the first term on the right hand side of the equation yTK (X , X ) -1 y 

encapsulates how well the data fit, while the second term log |K(X, X)| penalizes for model 

complexity [115].

Within Figure 5.25 the discrepancy’s likelihood distributions, corresponding to calibra

tion values uniformly sampled across the prior range of calibration values, are divided by 

the sum of all of the other likelihoods under consideration,

P(y|X, K (X , X ) ,ui )/ Y , ( P (y|X, K (X , X ), u ) . (5.38)

Within this method each Bayes factor calculated is effectively comparing H  and H,  where 

P (H ) +  P (H ) =  1. From comparing the relative Bayes factors over the range of calibration 

values, it can be seen the values less than «  0.7 and greater than «  2.1 are unlikely. 

Although the peak around 1.8 clearly has the highest relative Bayes factor, other possible

Figure 5.25: Displaying functionality of Bayes factor calculated as marginal likelihood 
over sum of other possible marginals.
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values are within a 3:1 ratio of this maximum value. Within information theory and 

Bayesian equivalents, a ratio of greater than 3:1 is generally required to determine that 

a hypothesis is sufficiently supported to be more likely than another [72].

Bayes factors can be expressed in an evidence form, similar to those commonly seen in 

information theory, expressed as 10 log10 ( p (d |h1) ) . This form is advocated by Jaynes (2003) 

[66], due to it being in terms of decibel units (db) that humans often find more intuitive. In 

decibels a 10 db difference corresponds to a factor of 10 difference [66]. Figure 5.26 shows 

the equivalent of Figure 5.25 in db units (a), as well as the equivalent for the H2 discrepancy 

marginal likelihood (b) that will be further discussed in the following section. Although the 

same regions of the calibration space appear to be improbable, as was previously found by 

Figure 5.25, the degree of likelihood of each calibration, especially those of low probability, 

are easier to quantify.

5 .5 .2  M u lt i-In p u t  G au ssia n  P ro ce s s e s

Inclusion of multiple data types is a means of aiding identification suggested by Arendt 

et al. (2012) [7]. To investigate this idea, H2 data will be generated and incorporated 

into the analysis. First, H2 models and experimental data are created in the same manner 

previously used for SiH4. The incorrect model-form for H2 will be

Vh2 (t) =  2yo,SiH4 (1 -  e x p (-u  t ) ) , (5.39)

while its corresponding ‘true’ model-form is

Vh2 (t) =  2(yo,SiH4 -  c) (1 -  e x p (-u  t ) ) . (5.40)

From the true model, synthetic experimental data can be generated by taking samples 

including Gaussian white-noise with a standard deviation of 0.3 and three repetitions 

(Table 5.3), Eq. (5.40) +  N (0, 0.3). The models with incorrect form, true form, and the 

experimental data sampled for both datasets are shown in Figure 5.27. Now that two 

datasets are available, a means of gaining more insight into the calibration term can be 

derived from probability theory.

Previously, when calibrating with a single data source the likelihood was only conditioned 

on that single dataset,

P(u ,  hp\y, X ,  K ( X ,  X )) =  P(y\X, K ( X ,  X ),u , hp) P(u,  hp). (5.41)

If multiple datasets are available, the increased amount of information contained within 

the likelihood should allow for the calculation of a more informed posterior. In order to
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F igure 5.26: Functional behaviors of Bayes factors, equivalent to Figure 5.25, but now in 
terms of evidence as defined by Jaynes (2003) [66] for £SiH4 (a), equivalent to Figure 5.25, 
and 5h9 (b).

Table 5.3: Experimental data times and corresponding three repetitions of H2 
concentrations.

H2 Concentration

Time 0.110 0.432 0.754 1.077 1.399 1.721 2.043 2.366 2.688 3.010

yi 0.616 3.306 5.197 6.556 6.155 6.656 6.602 6.786 6.921 7.010
y2 1.411 3.840 5.156 5.498 6.099 6.909 6.961 6.610 6.974 7.242

y3 1.047 3.585 4.803 6.196 6.370 6.866 6.857 6.474 6.868 6.885
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Figure 5.27: Incorrect models (black solid lines), GPs of incorrect models (shaded 
regions for 1 std. centered on colored line for mean), correct models (colored lines), and 
experimental data generated by sampling the correct models with added Gaussian noise 
(dots) for SiH4 (red) and H2 (blue).

create such a joint likelihood Eq. (5.42), the likelihood of the first dataset conditioned on 

the second dataset can be multiplied by the likelihood of the second dataset,

P(u ,hp\yi ,y 2 , X , K ( X , X )) a  P ( y i , y 2 \ X , K ( X , X ) , u , h p )  P(u ,hp)  (5.42)

a  P ( y l \y2, X , K (X , X ) , u ,  hp) P ( y 2\ X ,K (X , X ) , u ,  hp) P(u ,  hp). (5.43)

This probabilistic expression can be captured within the scope of the current approach as 

follows (additional terms such as the inputs X , covariance kernels K  and hyperparameters 

are assumed and noted as ... )

• First, GPs acting as surrogate models for both the incorrect model-forms can be 

created, P (yM\t,u, ...) and P ( y M \t,u, ...).

• Then a GP modeling the discrepancy between the H2 model GP and the corresponding 

experimental data can be created, P(5V2\t,u, ...).

• Next, a GP modeling the discrepancy between SiH4 and the corresponding exper

imental data can be created, but the concentration discrepancy data for H2 that 

was utilized to create the H2 discrepancy GP will be an additional input parameter, 

P ( ŷi \̂ V2, t, u , ...).

• Once these two GPs have been created, their likelihoods can then be multiplied to 

effectively create the joint likelihood desired,

P (^Vl, V̂2 \ t , u , ...) =  P ( &yi \ ̂ V2 , t , u , ” 0 P ( V̂2 \ t , u , ...) .
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• The joint likelihood can either be explored for the MLE calibration estimate or it 

can be multiplied by the hyperparameter prior to find the full posterior and MAP 

calibration estimate, P (u\5yi ,5y2,...) =  P (Syi ,5y2\t,u,...) P (u).

Within Figure 5.28 the likelihoods of the discrepancy GPs composed of only a single 

dataset are compared with the equivalent joint likelihood. Where both likelihoods based 

upon single datasets appear to have two major modes, the joint distribution has less of 

this characteristic. Although the joint likelihood’s mode does not directly line up with 

the true value of the calibration parameter, it does greatly decrease the uncertainty within 

the distribution and provide greater confidence in its estimate. The joint likelihood can 

be calculated in two orders, exchanging which dataset is conditioned upon the other, and 

the two likelihoods resulting from the choice of ordering are shown in Figure 5.28c-5.28d. 

Probabilistically these joint distributions should be equivalent. Although the distributions 

shown are not completely equivalent, these two joint distributions are similar and differences 

are likely due to approximations made within the GPs. To create these four likelihoods, 

MCMC runs with 100 walkers were collected. The MCMC runs used 5,000 steps, with the 

first 2,000 discarded as the burn-in period. The hyperparameters of the surrogate model 

GPs were estimated by the MLE approach.

5 .5 .3  C o n s tra in in g  G au ssia n  P ro ce s s e s

There appear to be many potential uses of constraints within the KOH approach towards 

model-form uncertainty. Brynjarsdottir and O ’Hagan (2014) [20] have demonstrated that 

constrained GPs allowed greater accuracy within interpolations, but did little to improve ex

trapolation. Da Veiga and Marrel (2012) [25] provide an overview of a variety of constraints 

that can be placed upon GPs including boundaries, monotonicity, and convex regions. 

Further details about integrating constraints into GPs are provided within Riihimaki and 

Vehtari (2010) [117].

When modeling chemical reactions, such as is the case for this exploration, physical 

constraints are easily identified. Such constraints include maximum and minimum concen

trations, Eq. (5.44), monotonic trends (positive for products and negative for reactants), 

Eq. (5.45), and stoichiometric relations. Stoichiometry can be enforced through a compar

ison of the slopes of different chemical species traces, Eq. (5.46):
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(a)

(b)

(c)

(d)

F igure 5.28: Comparison of likelihoods of single datasets’ discrepancy GP, plots (a) and 
(b), with corresponding joint likelihood, plots (b) and (c). Likelihoods found by MCMC 
sampling of five-dimensional distribution for the likelihoods based upon single datasets 
and ten-dimensional for the joint likelihood. The joint was calculated in both orders, 
P(y1|y2...) P (y2|...) and P (y2|y1...) P (y 11...), as is reflected by the ordering in their titles.
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boundaries < ySiH"'% v  J (5.44)
I else ^  reject y

f  if sign(ySiH,%) =  expected sign ^  accept ymonotonicity < 4, (5.45)

if ySffl4,% >  bounds for all i accept y
else reject y

if sign(ySiH4,%) =  expected sign accept y
else reject y

if -  2 ySiH4,% >  (1 -  tol) yH2,% and

- 2  yS iH4,% <  (1 +  tol) yH2,% accept y
else reject y.

stoichiometry < - 2  ySî  % <  (1 +  tol) yH2 % ^  accept y  (5.46)
[ else ^  reject y.

For the present pedagogical example, the absolute ratio of the slopes of SiH4 and H2 should 

approximately have a value of two. All three of these constraints were explored with varying 

degrees of success.

For the initial exploration of incorporating constraints, the GP acting as a surrogate 

model for the incorrect physics was manipulated. This entailed creating the GP (MAP 

estimated hyperparameters), collecting a ensemble of random samples from the GP, and 

then applying a pass/fail filter upon each individual sample. The constraints applied initially 

bounded the concentration between zero and five and placed a negative slope requirement 

between points on the sample trace corresponding to the fifth and sixth experimental data- 

points. This method effectively produced a truncated posterior distribution for the GP. An 

example of the effect these constraints had upon the posterior can be seen in Figure 5.29, 

where the posterior of the surrogate GP with calibration values of zero (a) and three (b) are 

shown. Filtering can be noted to shift the initial range of the posterior distribution down 

for the calibration value of zero, and shift the entire distribution up for the distribution 

with a calibration value of three. Both of the effects forced upon the GP distributions cause 

the GPs to be more physical. The mean of the truncated posterior was then compared to 

the mean of the experimental data in order to create the discrepancy GP. The effect of the 

constraints was then judged by its affect upon the marginal likelihood of the discrepancy 

GPs in terms of the calibration parameter, shown within Figure 5.30.

Although the constraints had a significant effect upon the surrogate GP, this did not 

translate into noticeable changes in the calibration marginal likelihood. It seems that this 

is likely due to the constraints primarily affecting regions where the calibration parameter 

took values already seen as low probability regions by the discrepancy likelihood, such as the 

two bounding calibration values used as examples. For more probable calibration values, 

minimal changes occurred due to the filtering, and thus they were not shown.

The stoichiometric filter was then implemented at two experimental data-points (second 

and forth) with an allowed tolerance of 15%. The effect that the stoichiometric constrained



106

5.0 
4.5
4.0 

I  3.5 
|  3.0 
5 2.5

1.0
0.5

4
3

c  2 .2
2 1 4—1
§ 0
O _1 u

-2

—3--------- '---------'--------- '---------'--------- '---------'---------
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

time
(b)

Figure 5.29: Posterior predictive distributions of surrogate GPs with and without con
straints (truncated versus non) with calibration values of zero in plot (a) and three in plot
(b). Fifteen hundred random samples were taken from the GPs and then a pass/fail filter 
bounding the samples between zero and five as well as a filter forcing a negative gradient 
between the fifth and sixth experimental data-points were applied.

surrogate GPs had upon the ultimate marginal posteriors for the discrepancy GP can be 

seen in Figure 5.30. Although there are not major changes in distribution appearance, 

the marginal corresponding to the constrained surrogate Figure 5.30b does have slight 

differences. The marginal with constraints has more weight on the second mode than 

the nonconstrained version, Figure 5.30a. Although the noted effect appears minor, it does 

offer potential as possible future avenue to be explored for improving calibration.

5.6 Forward Propagation
While the inverse problem has been focused upon thus far for the pedagogical example, 

ultimately the calibration distribution will be propagated forward through the model. The 

goal of such forward propagation of an uncertain parameter’s distribution is to convert 

parameter uncertainty into predictive uncertainty for Qols. Characterizing Qol uncertainty 

is a necessary step for any prediction. Figure 5.31a contains the calibration distribution

Calibration Value - 0 .000000

time
(a)
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F igure 5.30: Comparison of marginals of four-dimensional posterior discrepancy GP, where 
surrogate GP was not constrained for plot (a), but was constrained for plot (b).

that was propagated forward through the surrogate and discrepancy models, as well as the 

QoI predictions produced with this forward propagation.

For this process, the surrogate model's hyperparameters were set using MLE and an 

MCMC exploration of the discrepancy GP was then utilized to create the calibration 

distribution. The MCMC consisted of 100 ‘walkers’ taking 5,000 steps with a burn-in 

period of 2,000 steps. This calibration distribution was then propagated through the 

surrogate model and discrepancy by taking a screening the total MCMC sampling frequency 

of the calibration parameter, so that every 100th sample was utilized. This screening 

should remain representative of the whole distribution, while also removing any correlations 

between samples. For each calibration parameter value used in the discrepancy GP, the hy

perparameter values were located with the MLE method. The resultant posterior predictive 

means are shown the left plot of Figure 5.31b and the mean and two standard deviations of 

those posterior predictive means are shown in the right plot. The true calibration parameter 

value lies within the region of high probability within this calibration distribution and thus 

will be used with high frequency when taking random draws.
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F igure 5.31: Forward propagation of calibration parameter distribution. The calibration 
distribution was created with an MCMC sampling frequency distribution of the discrepancy 
G P (a). Instances of posterior predictive mean traces created with instances based upon 
samples from calibration distribution are shown on the left in (b ) and the mean and one/two 
standard deviations (solid and dashed/dotted lines, respectively, or the shaded region 
overall) of those instances are shown in the right plot of (b). Experimental data-points 
are included as black dots.

The posterior predictive distribution shown in Figure 5.31 demonstrates the effect of 

the calibration parameter uncertainty. Uncertainty in the GP itself is not included within 

this distribution because it was based upon the mean values of the aggregate of forward 

predictions. Two standard deviations of the posterior predictive distribution have relatively 

small variance compared to the equivalent in the experimental data. This small variance 

appears to be a result of the model-discrepancy negating any variance in the model outputs 

caused by the calibration uncertainty. Outside regions of experimental data such negation 

will no longer occur, as can be noted by the fast increase in variance as the time approaches 

the right temporal boundary. In order to better observe the effect of the calibration 

parameter uncertainty on the output QoI, the surrogate model GP's outputs can be directly 

observed in Figure 5.32.
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Figure 5.32: Forward propagation of calibration parameter distribution within the surro
gate model. The calibration distribution was created with an MCMC sampling frequency 
of the discrepancy GP (Figure 5.31). Instances of mean value traces created with instances 
based upon samples from calibration distribution are shown on the left and the mean and 
one/two standard deviations (blue line and dashed/dotted lines, respectively, or overall 
shaded region) of those instances are shown in the right plot. Experimental data-points are 
included as black dots.

Forward propagation of the calibration parameter distribution through the surrogate 

model GP causes a much larger variance in QoI outputs than when combined with the 

discrepancy. Figure 5.32 shows the means of instances of GPs acting as surrogate models, 

where the calibration parameter was determined by sampling the distribution shown in 

Figure 5.31a. Just as in the previous figure for the posterior predictive, the left plot shows 

means of a sampling of the instances and the right plot shows the mean and standard 

deviations of those instance means. A single standard deviation of this distribution is 

of similar magnitude as the variance in the experimental data. In direct opposition to 

the effects noted for the variance in the posterior predictive, the variance shrinks in the 

right temporal boundary for uncertainty in the QoI. This is due to the fact that all the 

mathematical form of the model forces instances to converge to zero. Perhaps the most 

interesting information gained from this forward propagation can be found within its effects 

upon the model-discrepancy within Figure 5.33.

When using the KOH approach it seems that the model-discrepancy may be the best 

location for accessing model validation/consistency and the effects of uncertainty. The 

uncertainty in the discrepancy demonstrates the effects of the parameter uncertainty, while 

the mean discrepancy indicates bias error. By containing multiple forms of model er

ror/uncertainty, comparison with experimental error should allow for thorough model vali

dation and locating regions of model consistency. To better assess this, Figure 5.34 directly 

compares the discrepancy uncertainty with the experimental error.

Comparing the model discrepancy and its uncertainty due to the forward propagation
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Figure 5.33: Forward propagation of calibration parameter distribution within model 
discrepancies. The calibration distribution was created with an MCMC sampling frequency 
of the discrepancy GP (Figure 5.31). Instances of mean value traces created with instances 
based upon samples from calibration distribution are shown in plot (a) and the mean and 
one/two standard deviations (blue line and dashed/dotted lines, respectively, or overall 
shaded region) of those instances are shown in plot (b). Experimental data-points are 
included as black dots.

F igure 5.34: Comparison of uncertainty in model discrepancy due to forward propagation 
of calibration parameter uncertainty versus error in experimental data. Discrepancy mean 
and standard deviation, also shown in Figure 5.33, are shown as the blue region where the 
solid blue line indicates the mean value, the dashed line indicates one standard deviation, 
and likewise the dotted line indicates two standard deviations. The error bars indicate the 
standard deviations in the experimental data, where the red and green bars are for one and 
two standard deviations, respectively.
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of the calibration distribution with the error in the experimental data provides a useful 

measure of consistency for the original model. In Figure 5.34 it can be seen that overlapping 

regions within a standard deviation of the discrepancy and experimental data exist. These 

overlapping regions are also near a discrepancy value of zero, meaning that predictions 

from the original model would be valid when using portions of the calibration distribution. 

The regions of overlap then shrink and move out to the second standard deviation of the 

discrepancy as time advances and the discrepancy shifts upwards. Near 1.5 time units there 

is no longer any overlap within two standard deviations of the discrepancy or experimental 

error. In the later time points, the uncertainty in the discrepancy is reduced, yet due to 

the previous upward shift there is still no potential consistent regions in the calibration 

distribution that could allow the model to overlap with the experimental data. While it is 

possible that calibration values of low probability, or those in the distributions tail, could 

allow for overlap, this would still indicate significant issues within the model or experimental 

data.

5.7 Conclusions
Throughout this chapter the Bayesian approach created by Kennedy and O ’Hagan was 

explored and its boundaries tested. Only through application can a true understanding of 

the potential and limitations of a tool be understood. Clearly, Kennedy and O ’Hagan’s 

method of dealing with models containing uncertainty within the construction of their 

model-form is a valuable tool and can be applied to a wide array of problems. Interpolation 

with this methodology appears to be a good bet, while extrapolation is still something 

that must be approached with a critical mind. The identification problem, or simultaneous 

calibration and model-form uncertainty, is still an issue that must also be acknowledged 

whenever approaching this sort of problem. Model-form uncertainty is an area of research 

that will likely be a major focal point for the foreseeable future.



CHAPTER 6

COAL HEAT CAPACITY AND 
ENTHALPY SCALE-BRIDGING 

6.1 Introduction
A scale-bridging model for coal particles’ heat capacity and enthalpy are developed 

using Bayesian parameter estimation techniques. Scale-bridging involves the creation of a 

low-fidelity model to capture desired characteristics of a high-fidelity model at temporal and 

spacial scales appropriate for the application. The application for this model is large-scale 

computational fluid dynamics simulations of oxy-fired coal boilers. Scale-bridging of heat 

capacity and enthalpy is motivated by the desire to remove an iterative solve for particle 

temperature that currently exists within the code. Piecewise linear and piecewise quadric 

models are developed for this scale-bridging, followed by the gathering of experimental data 

and creation of probabilistic descriptions necessary to perform Bayesian calibration. Using 

a Markov chain Monte Carlo tool to perform the posterior distribution characterization, 

model-forms are compared, parameters reported, and demonstration provided.

6.2 Application
Within large-scale computational fluid dynamics (CFD) codes there are often opportu

nities to improve simulation speed. One such opportunity for reduced computational cost 

within the Carbon Capture Multidisciplinary Simulation Center’s ARCHES code [139] is 

to improve the speed at which enthalpy and heat capacity of coal particles are calculated 

for coal boiler simulations. Particle enthalpy is a transported quantity within the CFD 

simulations, but particle temperature and heat capacity are not. Previously, these quantities 

were calculated using a model proposed by Merrick (1983) [95] that includes the evaluation of 

exponential functions and division operations. Each evaluation of particle temperature and 

heat capacity followed the following steps: propose a temperature for the coal particle based 

upon the previous time-step, evaluate the Merrick model for that temperature, compare the 

calculated enthalpy with the known (transported) particle enthalpy, and use an iterative
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solve to converge. Once a particle temperature was found, Merrick’s equation for heat 

capacity could be directly solved. While this method does locate the correct temperature, 

an iterative solve containing exponential function evaluations and division operations can 

become computationally expensive when implemented within large-scale CFD codes. Also, 

due to domain discretization that typically occurs within such codes, the control volume with 

the slowest iterative convergence effectively limits the speed of time-stepping for the entire 

simulation. To reduce this computational burden a scale-bridging model was developed.

6.3 Scale-Bridging Model Development
For this scale-bridging model design, the high-fidelity model upon which a low-fidelity 

model will be based will be the Merrick model [95]. Merrick (1983) presented a formulation 

for calculating sensible enthalpy hsens and heat capacity Cp for coal particles. Mean atomic 

weight a is utilized throughout Merrick’s equations and can be calculated by summing 

the ratio of elemental weight fractions composing the coal yi and their respective atomic 

weights ^i , (a =  ^ i ). This is useful because different coal types can have a wide variety 

of components and even for a single coal type the composition changes as the particle reacts. 

Two relations derived from the Einstein form of quantum-theory specific heat for solids are 

utilized within Merricks’s equations,

go(z) =  — A ------  g i(z ) =  exp (z) . (6.1)w  exp(z) - 1  w  ( exp(z)-1 )2 v '

The sensible enthalpy hsens and heat capacity Cp can then be calculated with

hsens =  ( f )  (380 g o ( f ° )  +3600 g o ( ^ ) )  [J kg-1 ] (6.2)

and

c p  = ( f ) ( g 1 ( 380) + 2 g 1 ( ) )  [Jkg-1 K -1 ]> (6.3)

where T  is temperature [K] and f  is the ideal gas constant [J/kmol K]. Three material 

subdivisions into which the solid particles are characterized are raw coal material, char, and 

ash. Eq. (6.2)-(6.3) can be used for raw coal and char by utilizing their respective mean 

atomic weights (i.e., accounting for all constituents of raw coal and pure carbon for char). 

For ash Merrick provides an additional relation

Cp =  754 +  0.586 (T  -  T 0) [J kg-1 K -1 ] (6.4)

from which

hsens =  754 (T -  T 0) +  1 ■ 0.586 (T  -  T 0)2 [J kg-1 ] (6.5)
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can be derived. Here T 0 =  273.15 is include as a reference temperature to convert degrees 

Kelvin to Celsius in order to maintain the model-form presented by Merrick.

The scale-bridging model will take a piecewise linear model-form for heat capacity and 

piecewise quadratic for enthalpy. These model-forms allow for a linear solve to be skipped 

within the application calculations, reducing computational costs. Previously a temperature 

was guessed, followed by an iterative solve for the enthalpy. Now using the piecewise 

enthalpy model, the temperature can be directly evaluated. As previously stated, enthalpy 

is a transported quantity within the CFD simulations. Given an enthalpy value the section 

of the piecewise model in which this value belongs can be located and then temperature 

solved for with a quadratic equation for that section of the piecewise model. Given the solved 

temperature, the piecewise heat capacity can be calculated. Formulation of the piecewise 

models occurs in the opposite order starting with the creation of the heat capacity model.

Two and three section piecewise linear model-forms for the heat capacity will be con

sidered and compared:

(Co  +  mo ■ (T -  T 0), if T < T i  
Cp ■ a =  ( C i  +  mi ■ (T -  T 0), if T  <  T2 (6.6)

[C 2 +  m2 ■ (T -  T 0), else,

where

Ci =  C0 +  (m0 -  m i) ■ (Ti -  T 0)

and

C2 =  Ci +  (mi -  m2) ■ (T2 -  T 0).

Here Ci are intercepts, m; are slopes, Ti are reference temperatures in degrees Kelvin. The 

two section model-form removes the last conditional statement in Eq. (6.6) and replaces 

the conditional requirement for the second section with an ‘else.’ There will be four and six 

random variables for the two and three section model variants, respectively. This piecewise 

linear model can be calibrated with data generated with Merrick’s models [95]. The heat 

capacity multiplied by the mean atomic weight a is calculated, so that the equation can 

be scaled for raw coal, char, or any composition in-between. Utilizing the thermodynamic 

relation

dh =  Cp dT, (6.7)
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the piecewise representation of heat capacity can be transformed into a quadratic form for 

enthalpy

/  dh =  f  C  +  m  ■ (T -  T i ) d T  
Jhi JTi

h =  hi +  C ■ (T  -  Ti) +  2m ■ (T -  Ti)2.

This transformation allows enthalpy to be described by a piecewise quadratic model

(6.8)

(6.9)

where

hs a =
'ho +  Co ■ (T -  T 0) +  2mo * (T -  T 0)2, if T  <  Ti 
hi +  Ci ■ (T -  T 0) +  ±mi * (T -  T 0)2, if T  <  T2 

> 2  +  C2 ■ (T -  T 0) +  ±m2 * (T -  T 0)2, else,
(6.10)

hi =  h0 +  (C0 -  C i) ■ (Ti -  T 0) +  i (m 0 -  m i) ■ (Ti -  T 0)2

and

h2 =  hi +  (Ci -  C2) ■ (T2 -  T 0) +  i ( m i  -  m2) ■ (T2 -  T 0)2.

Now that piecewise models Eq. (6.6) and (6.10) are available, the path for solving particle 

temperatures is clearer. Given an enthalpy, hi , its relative position among reference enthalpy 

values hsens(Ti) and hsens(T2) is determined. Then the quadratic equation for that section 

of the piecewise model is solved, with the higher temperature solution always chosen due 

to the positive curvature of the enthalpy model. Then that temperature is compared to the 

reference temperatures Ti and T2 to determine the section of the piecewise heat capacity 

model to use and heat capacity is linearly solved.

6.4 Bayesian Calibration
Calibration of the scale-bridging model to the high-fidelity model will utilize Bayesian 

parameter estimation techniques. Prior to calibration, data from the Merrick model must 

be generated. Instead of simply using linearly spaced data across the temperature range of 

interest, prior knowledge of the particle temperatures typically found within the application 

boiler simulations will be incorporated. From boiler simulation data of the Boiler Simulation 

Facility provided by Dr. Benjamin Isaac of the University of Utah Carbon Capture Multi

Disciplinary Simulation Center, two particle distributions were estimated to approximate 

the typical particle temperature distributions found within the boiler. These distributions 

were a normal distribution N (1,650,130) and normal distribution N (1,100,130). A visual 

comparison of the two normal distributions with the original simulation data is provided
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in Figure 6.1. The full synthetic dataset was created by combining 35 samples of the first 

normal distribution, 15 samples of the second normal distribution, and 50 temperature 

points linearly spaced from 300 to 3500 K. The additional uniform distribution was added 

to give the model full coverage of the temperature range of interest.

Bayesian parameter estimation is performed by solving Bayes law

P ( X |y) =  f >P( X)  , (6.11)
SZ> p  ( y i x  ) d x ’ ' '

where by multiplying prior knowledge of parameter values (prior distribution) P (X ) by in

ferred knowledge about the parameters from available data (likelihood distribution) P(y|X), 

allows a probabilistic posterior estimate of the parameter value P(X|y) to be obtained.

For this application it will be assumed that the uncertainty in the heat capacity values 

is Gaussian distributed, allowing the likelihood to also take a Gaussian form

T)f w\  1 ( - ^ S n(yM,i(X ) -  yE,i)2 ^ ^
P  (y |X) =  ox n /2 exM  — ------------ 12----------------  > (6.12)(2na2)n/2 a 2

where yM are model outputs from the piecewise model, yE are synthetic experimental 

data points, and a is the standard deviation of the uncertainty in the experimental data. 

The standard deviation can be approximated for lower temperatures from data available in

0.045
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F igure 6.1: Comparison of particle temperature distributions from a simulation with 
the distribution sampled for calibration data. Plot (a) shows the relative frequency of 
particle temperatures provided by Dr. Benjamin Isaac from a boiler simulation of the 
Boiler Simulation Facility. Plot (b) shows the distribution created to resemble plot (a), 
which was utilized for creating samples during parameter calibration.
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Merrick (1983) [95] and then estimated as growing linearly from a threshold low temperature 

value or

( 0.05 * 3R, if T  <  1000 K
a  =  { (6.13)

[0.05 * 3R +  C(j ■ (T -  1000), else,

where R [J /  kmol K] is the ideal gas constant, 3 comes from a dimensionless scaling by 

Merrick, 0.05 is the estimate of error shown in Figure 2 of Merrick (1983) [95], and ca [J/ 

kmol K 2] is the estimated slope of uncertainty enlargement. Uniform prior distributions 

will be utilized for the uncertainty parameters, where prior knowledge will be used to define 

reasonable bounds: i.e., parameters determining temperatures at which the model shifts 

to a new section of the linear piecewise must be greater than zero but less than the next 

temperature bounds and slopes must be positive. Now that data, a likelihood function, 

and prior distributions are defined, a method of exploring the multidimensional posterior 

distribution can be utilized to provide distributions representing the uncertain parameters. 

The uncertain parameter distributions discovered for heat capacity can then be utilized 

within the enthalpy model.

To explore posterior distributions the Markov chain Monte Carlo (MCMC) Python tool 

emcee [38], previously discussed within Section 5.1.4, is used. After a few exploratory 

runs to locate good initial parameter values guesses, MCMC chains were initiated from the 

vicinity of those initial guesses by taking random 0.1% perturbations. For each MCMC 

run 100 Markov chains were evolved 3,000 steps and the first 1,000 were discarded as the 

‘burn-in’ period to remove the influence of the initial guess.

6.5 Model Performance
While calibrating the model, two model-form considerations were explored: the number 

of sections comprising the piecewise models and the slope at which the uncertainty in the 

Merrick model increases with temperature. The model’s performance with two and three 

sections were compared. Three sections appeared to be able to match the Merrick model 

well enough that additional sections would add complexity but minimally improve accuracy. 

Figure 6.2 shows marginal distributions from the MCMC results for a three section version 

of Eq. (6.6) with an uncertainty enlargement slope ca =  1. The distributions appear 

well defined, generally lacking bumps on the distributions that would be indicative of the 

‘burn-in’ insufficiently removing the influence of the initial conditions. The distribution for 

m2, plot (f), is clearly truncated at zero where its prior uniform distribution was bounded. 

Slopes less than zero would not be physical, so this truncation is acceptable. Most of the
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Figure 6.2: Illustrating the parameter estimation produced by MCMC exploration of 
posterior distribution for Eq. (6.6) where MCMC sampling frequency of parameter values 
reflects parameter posterior marginal distributions. The model variant explored within 
these plots was a three section piecewise linear Cp model where the experimental data’s 
uncertainty increased with a slope of one.
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marginal distributions appear to have non-Guassian form, indicating the multidimensional 

distribution has a complex, non-Gaussian form and that distribution means and modes will 

differ.

To visually compare the performance of the four model variants explored, Figure 6.3 

shows the model’s prediction for the temperature points at which experimental data were 

generated for calibration. Table 6.1 contains the marginal distribution means and full 

posterior mode for the uncertain parameters explored for each model variant. The effect 

of the number of segments composing the piecewise model is most clearly seen comparing 

plots (a) and (d) where the only difference between the model variants was changing the 

number of segments from three to two, respectively. As would be expected, the three section 

variant is a closer match to the Merrick model data, but if the uncertainty in the Merrick 

model is used to judge the model performance, the two section variant’s only significant 

issue lies with the region of the model near 900 K. Near 900 K is where the two section 

variant switches sections and it is here that the model performs poorly in mimicking the 

Merrick model.

To compare the effect that the rate of increase in data uncertainty has upon the model’s 

performance, plots (a, b, c) show model variants comprised of three piecewise-sections where 

the uncertainty was varied from 0.5 (b) to 1 (a) to 1.25 (c). It could be presumed that large 

slopes in uncertainty enlargement would cause the model’s calibration to be weighed in 

favor of lower temperature data, yet the larger quantities of data points utilized at higher 

temperatures appears to have countered that intuitive result. Visual comparison of plot (a, 

b, c) yield little notable difference correlated to the uncertainty in the data. Delving into 

Table 6.1, modes from the multidimensional posterior distributions as well as the means 

of the marginalized distributions for each parameter do not show trends in the parameter 

values correlated to the changes in data uncertainty. Thus model-forms with ca =  1 will be 

utilized moving forward.

Also significant towards the evaluation of the scale-bridging models is the comparison 

of the enthalpy predictions with the Merrick predictions, as shown in Figure 6.4. The 

most probable parameter values for the model variants with ca =  1 were utilized to 

create the scale-bridging model results. To calculate the enthalpy, the hsens calculated 

with Eq. (6.2) and (6.10) have a reference enthalpy, href =  hsens(25°C), removed. For the 

scale-bridging model this is accomplished by solving for h0 such that hsens(25°C) =  0. For 

the scale-bridging model variant with three sections and ca =  1, h0 =  - 2.25E5 J/kmol 

K when using the posterior mode parameter values. This reference enthalpy is removed
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F igure 6.3: Comparing performance of variants of Cp piecewise linear model using mode 
parameter values found with MCMC searches where red circles indicate data samples 
calculated with Eq. (6.3), green dots are the red dots plus/minus one standard deviation of 
uncertainty ca and blue squares are produced by piecewise linear model Eq. (6.6). Plots (a, 
b, c) show variants of the piecewise model containing three sections while plot (d) shows a 
two section variant. The uncertainty standard deviation ca for plot (a) is 1, plot (b) is 0.5, 
plot (c) is 1.25 and plot (d) is 1.
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Table 6.1: Mode from multidimensional posterior and mean values of parameter marginal 
distributions from the MCMC exploration of posterior distributions for 
parameter estimation. Order of parameters as they appear for each model variant left to 
right and top to bottom are C0, m0, Ti , m i , T2, and m2.

Mode : Mean

Linear 2 Section Piecewise Model with ca =  1
9,290 : 9,310 

1.83 : 1.84
18.9 : 19.2 927 : 924

Linear 3 Section Piecewise Model with ca =  0.5
8,600 : 8,480 

6.26 : 7.46
22.7 : 24.5 

1,360 : 1,370
738 : 706 

0.841 : 1.02
Linear 3 Section Piecewise Model with ca =  1

8,720 : 8,530 
6.71 : 8.33

22.6 : 25.3 
1,310 : 1,300

730 : 676 
0.907 : 1.24

Linear 3 Section Piecewise Model with ca =  1.25
8,340 : 8,550 

6.69 : 8.39
24.2 : 25.1 

1,310 : 1,330
710 : 679 
1.04 : 1.26

so that the enthalpy of formation can be added within the application calculations. Both 

the enthalpy and heat capacity within Figure 6.4 are scaled by a /3R  following Merrick’s 

example. From the figure it can be noted that the scale-bridging model’s performance in 

matching the Merrick model’s enthalpy predictions is not strongly effected by the number 

of segments utilized. The final step to using the derived models within the application 

calculations will be to scale the heat capacity and enthalpy by the mean atomic weights of 

the coal constituents. For the mineral matter Eq. (6.3) and (6.5) can still be utilized and 

are in the same mathematical form as the model’s created for scale bridging, making vector 

implementations simple.

The last piece of analysis for this scale-bridging will be forward propagation of uncer

tainty associated with the calibrated parameters. Forward propagation of uncertainty allows 

the uncertainty in predictions to be estimated, providing quantification of predictivity. To 

achieve this, the parameter-sets accumulated by the MCMC algorithm’s characterization of 

the posterior distribution can be used for evaluations of the piecewise models. After eval

uating the piecewise models with the parameter-sets embodying the posterior distribution, 

mean predictions as well as other statistical characteristics of the model’s predictions such 

as the standard deviation are available. Means and standard deviations for the enthalpy and 

heat capacity scale-bridging models are shown in Figure 6.5 for the two and three section 

variants.

Within the heat capacity plot it can be noted that the uncertainty propagated for both
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Figure 6.4: Comparing scale-bridging model performance for Cp and hsens against the 
Merrick model. Red lines are from Merrick model, blue dashed lines are the two segment 
variant of the scale-bridging model, and green dash-dotted lines are the three section variant. 
The left plot shows hsens scaled by a /3R  and the right plot shows Cp scaled by a/3R. For 
both scale-bridging model variants ca =  1. Mode parameter values were used for each model 
variant.
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Figure 6.5: Forward propagation of parameter uncertainty from multidimensional pos
terior distribution. For both plots the blue dash-dotted line is the mean solution for the 
two section model, the blue shaded region signifies two standard deviations of the two 
section model’s prediction, the red dashed line is the mean solution for the three section 
model, the red shaded region signifies two standard deviations of the three section model’s 
prediction, the black line is the Merrick solution, and the grey shaded region shows two 
standard deviations of the uncertainty attributed to the Merrick model using ca =  1 within 
Eq. (6.13).
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bridge-scaling model variants is far smaller than the prior uncertainty attributed to the 

Merrick model. Because the scale-bridging model’s uncertainties are smaller than that 

attributed to Merrick, these model-forms will not be able to fully propagate uncertainty to 

applications, if that were desired. Means for both model variants are smoother than model 

evaluations based upon a single parameter-set, shown in Figure 6.4. The uncertainty for 

the two segment variant displays regions of higher uncertainty surrounding the piecewise 

segment connection, and less uncertainty at the connection point. The three segment 

variant’s uncertainty generally appears smoother than the two segment variant and the 

Merrick model lies more within the three segment variant’s uncertainty. The uncertainty 

associated with both model variants increases around the upper and lower temperature 

regions explored, as is expected due to less data available within those regions. The 

uncertainty for the enthalpy appears to be less effected by the scale-bridging model-form 

and increases with temperature. Although enthalpy’s uncertainty appears minor, this 

uncertainty will effect the temperature that is utilized to calculate a heat capacity.

6.6 Conclusions
Piecewise linear and piecewise quadratic models for coal’s heat capacity and enthalpy 

were created as scale-bridging models. These model-forms allow for a quadratic equation 

to be solved instead of an iterative solve involving equations with exponentials and division 

operations. This should allow increased computational efficiency for the application sim

ulations. Using Bayesian parameter estimation with an MCMC tool, posterior parameter 

distributions were generated, allowing model variants to be compared. Upon comparing the 

performance of the model-forms, its appears that three section piecewise models perform 

well and the uncertainty in the synthetically created experimental data did not strongly 

influence the model’s appearance. If the noted error in heat capacity for the two section 

model is acceptable, this simpler model could be utilized with little error propagated to the 

enthalpy calculation. This model can now be implemented and the portion of computational 

time spent on this piece of physics can be reduced with minimal effect on simulation outputs.



CHAPTER 7

COAL DEVOLATILIZATION 
SCALE-BRIDGING MODEL 

7.1 Abstract
When performing large-scale, high-performance computations of multiphysics applica

tions, it is common to limit the complexity of physics submodels comprising the simulation. 

For a hierarchical system of coal boiler simulations a reduced physics model is constructed 

to act as a scale-bridging method for a coal devolatilization model of greater physical rigor. 

This study is a variant of model-form uncertainty, with a more rigorous physics model, 

the chemical percolation devolatilization model, acting as a measure of the reduced physics 

model's performance for an application of interest. The application space is utilized to 

create a means of designing the reduced physics model by determining requirements and 

weighting desired characteristics. A  single kinetic reaction equation with functional yield 

model and distributed activation energy is implemented to act as the reduced physics model. 

Consistency constraints are used to locate regions of the reduced physics model's parameter 

space that are consistent with the uncertainty identified in the rigorous model. Ultimately, 

the performance of the reduced physics model with consistent parameter-sets is validated 

against desired characteristics of the rigorous model and found to perform satisfactorily 

in capturing thermodynamic ultimate volatile yield trends and kinetic timescales for the 

desired application space. Framing the process of model-form selection within the con

text of validation and uncertainty quantification allows the credibility of the model to be 

established.

7.2 Introduction
Unlike more typical model-form uncertainty problems, where the goal is to the quantify 

a model's capacity to represent and predict experimental data, this application seeks to 

quantify a reduced physics model's (RPM) ability to stand in for a more complex, physics 

based model. The term model-form uncertainty will be used herein to refer to the difference
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between a model prediction and reality. This idea was also referred to as model inadequacy 

within the seminal paper upon this topic by Kennedy and O ’Hagan (2001) [74]. For the 

current application the RPM is calibrated to best fit desired characteristics of a more 

rigorous model for a given set of conditions. First and foremost the RPM must be able to 

produce results within the uncertainty of the more rigorous model’s results. Ideally, the 

RPM will be able to capture the full range of the complex model’s uncertainty, thereby 

allowing the full effect of the uncertainty in this set of physics be explored within the 

simulation applications. A RPM is based upon fewer parameters than the more rigorous 

model, and thus should allow easier propagation of the physics of interest’s uncertainty into 

the ultimate applications. That being said, sensitivity to the RPM ’s parameters will be 

difficult to map back to parameters in the more complex model.

A process flow diagram of the approach taken herein for credible model development is 

shown in Figure 7.1. Initially the model will be tested for basic adequacy. In the terms 

of the flow diagram, adequacy is assessed through the comparison of simulation outputs 

with experimental data. Such comparisons are restricted to characteristics that can be 

quantified into comparable terms. The consistency evaluation determines if any subset of the 

parameter space allows the model to meet constraints specified for adequacy. Given that the 

model is shown adequate for the application, analysis of the model-form error, or discrepancy 

between model outputs and experimental data, will drive the model development towards 

validity. While this document focuses upon a specific application, the general concept of 

utilizing reduced physics models with quantified model-form uncertainty to bridge scales 

from more complex physics models is applicable to a wide array of engineering problems.

The process flow diagram also provides an overview of this document’s organization. 

First the application of interest is introduced. Next, the experiments, or a more rigorous 

physics model within this implementation, is introduced and some of its characteristics 

such as input sensitivity and parameter uncertainty are analyzed. Following this will be 

a summary of the reduced model-form’s development. The methodology used for consis

tency testing will then be defined as well as the application-based constraints upon which 

consistency is evaluated. Once consistent regions of the parameter space have been found, 

the validity of the current model-form is assessed and refinements to the model-form are 

proposed based upon the model discrepancy.
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Figure 7.1: Process flow diagram of the method utilized to develop a scale-bridging coal 
devolatilization model.

7.3 Application Space
The University of Utah’s Carbon Capture Multidisciplinary Simulation Center, a Pre

dictive Science Academic Alliance Program (PSAAP) II Center, is primarily focused upon 

large-scale computational fluid dynamics (CFD) simulations of oxy-fired coal boilers. The 

project that the center has tasked itself with tackling is comprised of a hierarchy of high- 

performance computer-simulations spanning size-scales from the combustion of individual 

coal particles all the way up to a 350 MWe next-generation oxy-fire coal boiler. High- 

performance computer-simulations take significant computational resources, so simulation 

runs are limited. For the first year of the PSAAP II program, it was optimistically estimated 

that between eight and ten simulation runs per block of the hierarchy could be completed, 

thus limiting the validation and uncertainty quantification (VUQ) exploration of each of 

the blocks to two/three uncertain parameters within those confines. Each block of the 

hierarchy contains hundreds of uncertain parameters and tens of uncertain physics models. 

Focusing on two or three parameters from this list drastically limits what can be studied 

within a series of simulation runs. Uncertain parameters can be classified as scenario, model
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or numerical. For the first year’s simulations each block of the hierarchy was allowed to 

explore one model parameter and one/two scenario parameters. The scenario parameters 

were hierarchy-block specific including geometry specific attributes such as effective wall 

thickness or wall temperature profile, while the model parameter came from a piece of 

physics that ideally is shared among simulations.

For year one the piece of physics considered to have uncertainty to which the simulation 

outputs of interest will be most sensitive was coal devolatilization. Thus coal devolatilization 

physics will provide the model parameter for the first year’s VUQ study. When studying 

coal devolatilization in this context, the application space cannot be ignored. Instantaneous 

function evaluations are necessary for the large-scale simulation, where devolatilization is 

calculated for each grid-point at each time-step. Devolatilization is the mechanism by which 

nonoxidized gases and tars move from the solid to gaseous phase for coal combustion or 

other thermal treatment, and thus have a significant influence upon the entire simulation. 

Complex models of coal devolatilization exist [131, 101, 37] and have been successful in 

describing experimental data, but are computationally too expensive to incorporate into 

large-scale CFD simulations. Simply put, a function with cheap evaluations that accurately 

captures the physical process was needed, or a scale-bridging model. Scale-bridging is a 

technique commonly found in simulation science [140, 91], where submodel complexity 

is limited by the simulation’s resolution. Submodels are created to match the CFD’s 

limitations while still capturing the desired physical characteristics.

Devolatilization is a chemical process that can be viewed from a kinetic or thermody

namic perspective. For the first year’s simulations, capturing the ultimate volatile yield of 

the coal, or thermodynamic characteristic, is of first-order importance. The kinetics of how 

the coal reaches this ultimate yield will be considered of second-order importance. Kinetics 

are treated in this manner for the first iteration of simulations because devolatilization 

kinetics occur within a minimal region of the simulation domains and the amount of material 

transferred to the gas phase is judged to be more influential within the application than the 

rate at which this occurs.

7.4 The CPD Model
The ‘true’ physics of coal devolatilization is currently being represented by the chemical 

percolation devolatilization (CPD) model developed by Fletcher et al. (1992) [37]. CPD 

is an example of a rigorous devolatilization model that produces accurate results through 

relatively expensive evaluations. Within CPD, NMR spectroscopic data are utilized to char
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acterize the composition of a specified coal type. The CPD model includes a bridge-breaking 

reaction scheme, lattice statistics, percolation theory, and chemical phase-equilibrium cal

culations. CPD assumes a uniform temperature throughout the particle, or extremely 

small thermal Biot number, allowing the model outputs to be scaled by the mass of the 

desired particle size. In collaboration with Professor Fletcher of Brigham Young University, 

a MATLAB version of the CPD code [36] will be considered to produce ‘true’ physical 

data for this study. The CPD model predictions can be thought of as either ‘truth’ 

containing uncertainty or as a synthetic form of experimental data. Professor Fletcher 

provided uncertainty ranges for 13 uncertain model parameters within the CPD code, as 

shown in Table 7.1. These estimated ranges can be treated as uniform prior distributions 

based upon expert opinion. A secondary aspect of utilizing CPD for this study is that the 

credibility of the scale-bridging model will be leveraging CPD’s credibility.

7 .4 .1  T e m p e ra tu re  an d  H e a t in g -R a te  E ffe cts

For developing models of coal devolatilization physics, two system conditions are typ

ically considered as controlling the process: the rate at which coal is heated and the 

ultimate temperature that the coal reaches (hold-temperature). Due to the limitations 

of the ultimate application for the devolatilization model, a simplistic RPM was desired.

Table 7.1: CPD uncertain parameters and expert opinion uncertainty ranges solicited from 
Professor Fletcher of Brigham Young University.

Parameter Nominal Uncertainty Max. Min.

Coal Specific (Utah Sufco bituminous)
po [-] 0.483 0.03 0.513 0.453
co [-] 0.0827 - - -

a +  1 [-] 4.78 0.2 4.98 4.58
Mclust [kg/kmol] 457.8 20 477.8 437.8

m  ̂ [kg/kmol] 45.7 2 47.7 43.7
General CPD Model

A b [s- i ] 2.6E +  15 5% 2.73E +  15 2.47E +  15
Eb [cal/mol] 55,400 5% 58,170 52,630
ab [cal/mol] 1,800 5% 1,890 1,710

ac [-] 0.9 0.05% 0.90045 0.89955
ec [-] 0 - - -

Ag [s- i ] 3.0E +  15 5% 3.15E +  15 2.85E +  15
Eg [cal/mol] 69,000 5% 72,450 65,550
ag [cal/mol] 8,100 5% 8,505 7,695

Acr [s- i ] 3.0E +  15 5% 3.15E +  15 2.85E +  15
Ecr [cal/mol] 65,000 5% 68,250 61,750
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Thus, the potential of eliminating one of these controlling system conditions from the 

ultimate model-form was considered. The initial investigation of the heating-rate and hold- 

temperature effects spanned a wider range of system conditions than was anticipated for the 

application, nevertheless this was utilized to gain a wider grasp of potential implications. 

Devolatilization is also sensitive to coal composition, but a Utah Sufco bituminous coal 

was used throughout the current analysis. Pressure can also effect this phenomena [37], 

but atmospheric pressure was assumed throughout this analysis because the boilers under 

consideration operate near atmospheric pressure. Nominal CPD parameter values were 

utilized through the hold-temperature and heating-rate analysis.

7 .4 .1 .1  H o ld -T e m p e r a tu r e

To investigate the effect that the ultimate hold-temperature had upon coal’s volatile 

yield due to devolatilization, CPD calculations were made over a range of hold-temperatures 

spanning 500 to 3,500 K, as is shown in Figure 7.2. These calculations all used a constant, 

linear heat-up rate of 109 K/s, which was assumed to effectively represent instantaneous 

heating to the hold-temperatures. Instantaneous heating of the coal was desired in order 

to isolate the hold-temperature’s effect. The initial coal temperature was specified as 300 

K. Once the hold-temperature was reached, the coal was held at that temperature for 

10 seconds. This hold-time was assumed to be the infinite time-scale for the system of 

interest. For lower temperature and heating-rate systems, such an assumption would not 

be appropriate.

The vertical spikes in the volatile yield traces shown in Figure 7.2 are due to the coal 

reaching its specified hold-temperature and then continuing to produce volatile gases until 

reaching the effective equilibrium for that hold-temperature. The resulting equilibrium 

curve can be visualized in Figure 7.3, where data-points shown are the last points of the 

volatile yield traces in Figure 7.2.

It is evident that the ultimate volatile yield is strongly affected by the hold-temperature. 

The ultimate volatile yield curve represents an equilibrium curve for the application space 

of interest, but likely would change for applications in other domains such as underground 

in situ heating of coal where the heating-rates are much slower and the timescales are 

far longer. For the current application it appears that devolatilization initiates around 

600 K and minimal changes occur above 1,600 K. While the asymptotic behavior for high 

temperatures can be debated, this behavior was not considered presently. Another use for 

this curve could be to act as a yield model. Volatile yield traces for temperatures above
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Figure 7.2: Volatile yield traces of Utah Sufco bituminous coal devolatilization for a range 
of hold-temperatures over their instantaneous temperature. To create the trace profiles the 
coal was linearly heated from 300 K to the specified hold-temperature at a rate of 109 K /s 
and then held at the hold-temperature for 10 seconds.
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Figure 7.3: Ultimate volatile yield for Utah Sufco bituminous coal due to devolatilization 
over a range of hold-temperatures. Data points were extracted from traces shown in 
Figure 7.2 and were the product of linearly heating the coal from 300 K to the specified 
hold-temperature at a rate of 109 K /s and holding the coal at the hold-temperature for 10 
seconds.
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2,500 K were found to vary minimally, as can be noted in the overlap of traces for 2,500 

and 3,000, and thus were not included in Figure 7.2.

Volatile yield is also a function of time, with coal exposed to lower temperatures losing 

volatiles over a longer period of time. This temporal functionality is shown in Figure 7.4. 

From the time traces it is clear that the chosen infinite time is in fact not infinite for coal 

at lower temperatures. For coal that reaches temperatures above 1,200 K, this infinite time 

assumption appears sufficient. Even with the now recognized deficiencies in this assumption, 

coal will not spend longer than 10 seconds in the boiler applications of interest, which allows 

this assumption to remain valid for this problem. All of the temporal traces above 2,000 K 

were found to strongly overlap and were left off Figure 7.4 for visual clarity.

7 .4 .1 .2  H e a tin g  R a te

The effect of the heating-rate on the coal’s volatile yield was examined in the same 

manner as the hold-temperature. Heating-rates ranging from 102 to 109 K /s were examined, 

as shown in Figure 7.5. To produce the traces shown, a hold-temperature of 1,600 K was 

utilized, which was reached after linearly heating the coal from 300 K. Again, a hold-time 

of 10 seconds was assumed to represent infinite time.

Heating-rates evidently strongly effect devolatilization kinetics. The traces for different 

heating-rates have different instantaneous temperatures for equivalent volatile yields, i.e., for

1

0.9

0.8

0.7 

=  06

1 05  cd
o 0.4

0.3

0.2 

0.1

0
10-5 100 

Tim e [s]

Figure 7.4: Volatile yield traces for Utah Sufco bituminous coal due to devolatilization for 
a range of hold-temperatures as they evolve over time. Coal was linearly heated at a rate of 
109 K /s from 300 K to the hold-temperature and held at that temperature for 10 seconds.
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Figure 7.5: Volatile yield traces for Utah Sufco bituminous coal due to devolatilization for 
a range of heat-up rates over their instantaneous temperatures. These traces were calculated 
by CPD using a final hold-temperature of 1,600 K and were held at that hold-temperature 
for 10 seconds. For the range of heat-up rates shown, the coal was linearly heated from its 
initial temperature of 300 K to the hold-temperature.

coal heated at 109 K /s the instantaneous temperature for 20% volatile yield occurs around 

1,400 K, while for coal heated at 102 K /s this occurs near 850 K. While the heating-rates 

demonstrate strong effects upon the kinetics, the effect upon the equilibrium curve shown 

in Figure 7.6 is less significant than was noted for the hold-temperature in Figure 7.3. To 

verify that the heating-rates are functioning as expected, Figure 7.7 was created to ensure 

the heating of the coal had approximately order of magnitude spacing.

7 .4 .2  U n ce r ta in ty  Q u a n tifica tio n

In order to thoroughly investigate the behaviors of CPD and eventually develop a RPM 

to approximate CPD, a design of experiments (DOE) was specified. The design was meant 

to cover regions of interest where CPD was believed to be accurate and/or which were 

important for the application boiler simulations. The grid-wise DOE covered five hold- 

temperatures and three heating-rates, as shown in Table 7.2. From what has been shown 

in Section 7.4.1, covering the range of hold-temperatures and heating-rates specified in the 

DOE demanded a dynamic model. Luckily, some of the uncertainty in CPD may reduce 

the difficulty of fitting these dynamics for the RPM.

The effect of uncertainty in the 13 uncertain CPD model parameters was characterized
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Figure 7.7: Volatile yield traces for Utah Sufco bituminous coal due to devolatilization for 
a range of heating-rates as they evolve over time. Traces created by linearly heating the 
coal at the specified rates from 300 K to 1600 K and holding the coal at that temperature 
for 10 seconds.
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Table 7.2: Matrix of 15 design of experiments conditions.

Hold-Temperatures [K] : Heating Rates [K/s]

700 : 1E4 700 : 1E5 700 : 1E6
1,000 : 1E4 1,000 : 1E5 1,000 : 1E6
1,300 : 1E4 1,300 : 1E5 1,300 : 1E6
1,600 : 1E4 1,600 : 1E5 1,600 : 1E6
2,400 : 1E4 2,400 : 1E5 2,400 : 1E6

with an uncertainty analysis completed for the 15 DOE points by taking 1,000 random 

samples from the uncertain parameter space, also known as a hypercube. A sample of the 

volatile yield trace’s uncertainty produced by this random sampling is shown in Figure 7.8.

Clearly the parameter uncertainty causes significant effects within the CPD results. 

To better quantify the uncertainty in the CPD results, the data for the ultimate volatile 

yield was tabulated into statistical information within Table 7.3. The normalized standard 

deviation and normalized complete range provide quantitative measures of the direct effect 

of the model parameter uncertainties. Comparing those same statistics after marginalizing

Figure 7.8: For each of the 15 DOE conditions, 50 Monte Carlo samples of the 13 uncertain 
model parameters used in the CPD calculations were utilized to create volatile yield traces 
demonstrating the effect of those uncertainties.
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Table 7.3: Uncertainty statistics of 1,000 random samples of CPD’s uncertain parameters 
arranged according to the DOE matrix in Table 7.2 and characterized in Figure 7.8. Values 
refer to ultimate volatile yield.

Full D O E
Mean Std. Std /  Mean

0.0528 0.05348 0.05216 0.01540 0.01524 0.01576 0.2943 0.2945 0.3000
0.4605 0.4650 0.4652 0.02300 0.02331 0.02261 0.04974 0.05044 0.04875
0.5174 0.5325 0.5494 0.01908 0.01953 0.01881 0.03696 0.03670 0.03428
0.5174 0.5331 0.5504 0.01861 0.02010 0.01956 0.03593 0.03777 0.03557
0.5183 0.5329 0.5499 0.01908 0.01931 0.01888 0.03682 0.03623 0.03443

Min. Max. (Max. - Min.)/Mean
0.02032 0.01922 0.01803 0.09839 0.09694 0.09776 1.493 1.5022 1.518
0.3991 0.4050 0.4058 0.5270 0.5328 0.5345 0.2771 0.2765 0.2776
0.4603 0.4754 0.4998 0.5696 0.5890 0.6078 0.2117 0.2135 0.1968
0.4686 0.4764 0.5023 0.5751 0.5852 0.6057 0.2057 0.2044 0.1880
0.4603 0.4843 0.4880 0.5696 0.5900 0.6068 0.2110 0.1982 0.2165

Marginalize Holding-Temperature 
[ Max(Std/Mean) - Min(Std/Mean) ] /  Mean(Std/Mean) 

2.847 2.834 2.933
[ Max(Max-Min/Mean) - Min(Max-Min/Mean) ] /  Mean(Max-Min/Mean)

2.683 2.722 2.774
Marginalize Heating Rate 

[ Max(Std/Mean) - Min(Std/Mean) ] /  Mean(Std/Mean)
0.01932 0.03416 0.07459 0.1055 0.06037 

[ Max(Max-Min/Mean) - Min(Max-Min/Mean) ] /  Mean(Max-Min/Mean) 
0.01678 0.003766 0.08035 0.08882 0.08746

over the hold-temperature or heating-rate shows that the effect of hold-temperature is at 

least an order of magnitude more significant than that of the heating-rate. It should also 

be noted that the uncertainty in CPD parameters causes uncertainty in the volatile yields 

on the same order of magnitude as observed when varying the heating-rate.

7 .4 .3  S e n s itiv ity  A n a ly s is

A baseline sensitivity analysis for the 13 uncertain model parameters in CPD was con

ducted exploring local and global sensitivities with a screening approach. Local sensitivities 

were estimated by changing uncertain parameters by 0.5% of their nominal value. This was 

done for one parameter at a time and the effects of adding and subtracting this perturbation 

were averaged, a one-at-a-time sensitivity measure variation [59]. Likewise, global sensitivity 

was assessed by moving one uncertain parameter at a time to the edge of its prior bounds 

(equivalent to taking an order of magnitude larger perturbation than the local sensitivity 

analysis). The local and global sensitivity of each uncertain parameter for all 15 DOE 

points was calculated in order to account for the hold-temperature and heating-rate effects
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upon the sensitivities. The absolute amount that the ultimate volatile yield changes due to 

the altered parameter value is considered the sensitivity for this study. Sensitivities were 

normalized for each DOE point so that the largest is scaled to unity. This scaling allows 

simple identification of parameters having comparatively minor effect upon CPD outputs.

After analyzing the local and global sensitivities, five of the 13 uncertain-model pa

rameters were deemed to contribute relatively minor amounts of uncertainty to the CPD 

calculations. Relatively minor is quantified as at least two orders of magnitude less sensitive 

for all DOE conditions than each individual condition’s most sensitive parameter for both 

the local and global sensitivity. These five parameters were Ab, <rb, Ag, ag, and Acr. Thus, 

the majority of uncertainty in CPD calculations can be attributed to eight instead of 13 

parameters. This allows less points to be tested when characterizing CPD’s uncertainty, 

which ultimately was utilized to validate the RPM ’s performance. All five of the parameters 

that CPD is less sensitive to are general CPD model parameters, not coal specific, which 

makes this sensitivity finding applicable to studies for other coal types. It was noted that 

the local scaling of parameter ac was larger than the global scaling due to prior uncertainty 

bounds assigned, yet CPD was still found to be relatively sensitive to this parameter’s 

uncertainty.

7 .4 .4  C P D  A n a ly s is  D e c is io n s

From the analysis of the CPD model useful knowledge has been gathered that can be 

used for future approximations. First, it appears that it is a better approximation to neglect 

the heat-rate effect than the hold-temperature when creating the RPM. Transporting the 

heating-rate history of each coal particle would have meant additional modifications within 

the CFD code, so the ability to make this assumption is useful. The other significant 

conclusion reached is that our primarily thermodynamic characteristic is only sensitive to 

eight of the 13 uncertain CPD parameters, so less sampling will be necessary to sufficiently 

sample the parameter space, or the 1,000 already collected are sufficient. The uncertainty 

space exploration will also be useful in defining the RPM ’s characteristic in the upcoming 

model development.

7.5 Reduced Physics Model-Form
For the application space of interest, the ultimate volatile yield is the first order effect 

of primary interest. When considering how to capture this effect, the approach of using a 

single first order reaction (SFOR) model, as presented by Biagini and Tognotti (2014) [14],
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was considered,

d t  =  A exp (-E / T p )(V / -  V ). (7.1)

Here A [s-1 ] is a preexponential factor, E  [K] is the activation temperature, Tp  [K] 

is the particle temperature, V/ [—] is the ultimate volatile yield, and V is the volatile 

yield. Activation temperatures are equivalent to activation energies divided by the ideal 

gas constant. What differentiates this SFOR model from previous uses of single-reaction 

devolatilization models, such as that by Badzioch and Hawksley (1970) [9], is that the 

ultimate volatile yield is a function instead of a fixed value. Biagini and Tognotti proposed 

an exponential form with the ultimate volatile yield being a function of temperature

V/ =  1 -  exp ( -  D I  • T P ), (7.2)

where D I  stands for the composition specific, dimensionless devolatilization index and Tst 

is specified as the ‘standard temperature’ 1,223 K. This specific model-form did not closely 

resemble the thermodynamic yield curve produced by CPD, as shown in Figure 7.3, but 

further study of other forms appeared promising. Alternative functional forms can be 

explored through comparison with CPD results. Fitting

V/ =  a • ^ 1  — tanh ((b +  c • a) • (590 — TP)/T p +  (d +  e • a))^ (7.3)

to CPD data can be seen in Figure 7.9-7.10 where b =  14.26, c =  —10.57, d =  3.193, and 

e =  —1.230 for Utah Sufco bituminous coal. These values were found using a simplex 

minimization to fit the four curves shown in Figure 7.10 to the data extracted from CPD, 

as shown across both explored dimensions in Figure 7.9. Because the goal of this fitting 

was to match the CPD yield at low hold-temperatures, while allowing nonmatching, higher 

ultimate yields at high temperatures, only data-points with hold-temperatures less than 

or equal to 1000 K were used in the minimization. The value 590 K within Eq. (7.3) was 

physically meant to describe the temperature at which devolatilization begins. Although 

this volatilization temperature has currently been specified, it may be found to be coal 

dependent in the future.

From the three-dimensional view in Figure 7.9, it is evident that the yield model 

contained an error due to not capturing the effect of the heating-rate, especially at higher 

temperatures. Because the fitting included data from a range of heating-rates, the yield 

model was effectively fit to the center of the heating-rate range (105 — 106 K /s) and thus 

had the least error near those heating-rates. Overall, it can be noted that this yield model 

satisfactorily captures CPD’s yield trend across a range of hold-temperatures.
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Figure 7.9: Fitting a yield model, Eq. (7.3), to CPD results across heating-rates and 
hold-temperatures. Dots signify CPD data-points and the surface is an interpolation of the 
fitted yield model.

Hold Temperature [K]

Figure 7.10: Demonstrating the effect of varying the high-temperature ultimate volatile 
yield parameter a on the yield model Eq. (7.3). Each line signifies a different a value and the 
dots are CPD data, also shown in Figure 7.9, where heating-rates and hold-temperatures 
were varied. CPD data contain vertical spread due to varied heating rate from 102 -  109 
K /s.
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Figure 7.10 demonstrates an attribute of Eq. (7.3) for which this model was specifically 

designed. This model-form allows the ultimate volatile yield at high temperatures (relative 

to the application space of interest) be varied with the parameter a [—], while maintaining

sparsity of devolatilization data for higher temperatures. The optimal a value found through 

fitting with CPD data less than and equal to 1000 K was 0.54. Ultimately, this uncertain 

variable played a key role in exploring uncertainty in devolatilization for the application. 

Within Figure 7.10 the uncertainty in the parameter a can be noted to capture much of the 

same trend seen in the uncertainty within the CPD data due to the effect of the heating 

rate, with higher a values appearing to correspond with faster heating-rates, as well as the 

uncertainty in CPD outputs due to parameter uncertainty.

The simple SFOR model, Eq. (7.1), was unable to satisfactorily capture the desired 

physical characteristics of CPD for the specified DOE. In order to better reproduce the 

desired physical attributes, the concept of a distributed-activation energy model (DAEM) 

was incorporated into the reaction model. DAEM is based upon the idea of representing 

devolatilization as an infinite series of parallel reactions [5]. To model this concept it is 

assumed that there is a continuous distribution of activation temperatures and by evolving 

this distribution over time the effective activation temperature varies. The integral form of 

Eq. (7.1) with DAEM incorporated can be calculated as [129]

where k =  A exp(—E /T P). A Gaussian distribution was assumed to describe the distribu

tion of the activation energies or

One method of efficiently evaluating the DAEM model is to use the quadrature approx

imation to describe the distribution in terms of weights and abscissae [29]. Individual 

abscissae are evolved separately and then the final volatile yield is found by reapplying 

the weights and summing the then weighted abscissae. Alternatively, the DAEM can be 

approximated by the activation temperature distribution’s inverse cumulative distribution 

function normalized by the full potential conversion or

as illustrated in Figure 7.11 [37]. Note that the yield model’s high-temperature ultimate 

yield a was used as the measure of conversion extent for this implementation. This distri-

similar yields for lower hold-temperatures. This characteristic is allowed because of the

(7.4)

(7.5)

Z  =  max( — 4.0, m in(\/20 * erfinv(1.0 — 2.0 * (Vf — V )/a ), 4.0)), (7.6)
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Conversion

Figure 7.11: Activation temperature distribution’s inverse cumulative distribution trace 
normalized to the amount of potential conversion.

bution has been truncated to avoid numerical issues with the tails of the distribution. With 

this method the effective activation temperature is initially low and as conversion progresses 

it increases. For devolatilization this causes reactions to initially accelerate quickly, but 

then decelerate while progressing towards completion. The inverse cumulative distribution 

representation of the DAEM was selected for implementation due to its simple computation. 

Mathematically the ultimate form of the RPM was enacted as

dV =  J a exp ( -(E +,aZ 1

di ~  U

where the activation temperature E  [—], the distribution’s standard deviation aa [K ], 

the preexponential parameter A, and the yield model’s high-temperature ultimate volatile 

yield a are free-parameters. The conditional is explicitly shown here not for the current 

calculations, but for the ultimate CFD application. Without this conditional statement 

in the formulation, reversed devolatilization could occur for particles moving from hot to 

cooler regions of the boiler. These four parameters can now be explored with a consistency 

analysis. Equation (7.7) is referred to hereafter as the Single Reaction with Yield Model 

(SRWY).

7.6 Consistency Evaluation
A first step in locating a set of parameters for the RPM, which can be utilized for the 

application, was to characterize a consistent space within the parameter’s prior hypercube. 

The idea of a consistent space comes from the methodology described within Feeley et al. 

(2004) [34], where it was used to calibrate parameter values for the methane combustion

J(V f  — V ), if Vf  — V <  0
(7.7)
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reaction-set, GRI-Mech 3.0. The basic premise of a consistent space can be described by 

the following equation:

(1 -  Y )1i <  M (x )  -  di <  (1 -  Y)ui for i =  1,..., Nqoi . (7.8)

Here the model outputs, M , at specified parameter inputs, x, are compared directly to 

experimental data, d. This comparison proves consistency for a particular quantity of 

interest (QoI) i if it is within the upper, u, and lower, l, error-bounds of the data. Model 

consistency is then achieved if consistency for all QoIs is found and the parameter ranges 

of the consistent sets overlap. This model consistency or inconsistency can be further char

acterized by the decimal fraction that the error bounds could be shrunk while maintaining 

consistency or the amount they could be expanded to reach consistency with the term Y. 

The parameter hypercube is specified as

> xp >  ap for p =  1,...,n , (7.9)

where and a  designate the prior bounds for each parameter n. If model consistency 

is found, it will correspond to a subspace of the hypercube. If no consistent region is 

located, then the hypercube’s prior bounds as well as the experimental error bounds could 

be reevaluated for possible expansion. A convenient method of approaching inconsistent 

systems is to look at unary and binary consistency or sensitivity to individual data-points 

for outliers.

For the current analysis the experimental data are produced by CPD. The uncertainty 

in the QoIs quantified by the uncertainty exploration (Section 7.4.2) will act as the error 

bounds. Random samples, such as those previously shown in Figure 7.8, were collected 

for use in defining QoI bounds. One thousand samples were taken for characterizing the 

uncertainty in CPD predictions. This quantity of sampling is deemed sufficient considering 

CPD was found to be sensitive to only eight of the 13 uncertain parameters (Section 7.4.3).

Defining QoIs is perhaps the most subjective component of the consistency analysis. The 

simplest method of selecting a QoI is to use the ultimate quantity in which a prediction is 

desired. An alternative selection procedure is to use features that relate to desired attributes 

deemed physical and/or necessary for accurate predictions of a physical phenomena that 

has no means of direct comparison. The two QoIs chosen to define consistency for the 

SRWY model are the ultimate volatile yield and the time to get to half the ultimate volatile 

yield. The ultimate volatile yield is the quantity directly desired from the SRWY model 

and represents capturing thermodynamic trends of coal devolatilization relevant to the 

application. Although kinetics were set to secondary importance when the heating-rate
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effects were deemed less significant in Section 7.4.4, roughly capturing devolatilization 

kinetics is still desired. Thus, the second time-based QoI was selected to enable the SRWY 

model to roughly estimate the kinetic behaviors of CPD. The QoIs are visually depicted 

within Figure 7.12.

Using two QoIs for the 15 DOE points results in a total of 30 QoIs, as shown in 

Table 7.4, that must be simultaneously satisfied for consistency. Initially, all QoI values 

were strictly based upon uncertainty quantified in the uncertainty sampling of CPD, except 

for apparent outliers which were discarded. This was altered to accommodate greater 

perceived uncertainty that CPD does not take into account. There are high-temperature 

ultimate yield data reported to be higher than what CPD predicts [99]. An additional 

high-temperature data-point that could be considered is the sublimation point of graphite, 

which appears to have many caveats but is roughly estimated to be approximately 3950 

K [2]. This potential discrepancy with CPD is believed to be due to such data not being 

taken into account during its formulation. In order to allow the SRWY model to reflect 

such high-temperature data, the ultimate volatile yield bounds for the DOE points with 

hold-temperatures 1,600 and 2,400 K were enlarged to reflect the perceived potential span. 

Through the course of exploratory consistency tests, it was deemed that the upper bounds 

of the ultimate volatile yield QoIs for DOE points at 1,300 K were limiting the higher 

temperature DOE point's ability to reach higher ultimate volatile yields with the current 

model-form. Thus, these bounds were also raised for all three heating-rates. The final

Time [s]

Figure 7.12: Illustration of QoI definitions utilized within consistency analysis. Blue line 
is a devolatilization volatile yield trace over time. The red and green boxes demonstrates 
the position of first and second QoI, which are the ultimate volatile yield and time to half 
the ultimate volatile yield, respectively. Dashed and dashed-dotted lines illustrate where 
the boxes fall on the volatile yield and time-scales.
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Table 7.4: Qol ranges for 15 DOE points. Qols are the ultimate volatile yield and the 
time to get to half the ultimate volatile yield.

Q oIs
DOE 1 DOE 2 DOE 3

2 Ult. Vol. Yield Time [s] 8.099e-01 -  2.857e+00 7.544e-01 -  2.896e+00 7.627e-01 -  2.897e+00
Ult. Vol. Yield [-] 2.032e-02 -  9.839e-02 1.922e-02 -  9.694e-02 1.803e-02 -  9.776e-02

DOE 4 DOE 5 DOE 6
2 Ult. Vol. Yield Time [s] 6.312e-02 -  7.019e-02 6.933e-03 -  9.686e-03 9.058e-04 -  3.728e-03

Ult. Vol. Yield [-] 3.991e-01 -  5.270e-01 4.050e-01 -  5.328e-01 4.058e-01 -  5.345e-01
DOE 7 DOE 8 DOE 9

2 Ult. Vol. Yield Time [s] 6.402e-02 -  7.381e-02 7.035e-03 -  8.073e-03 7.867e-04 -  1.155e-03
Ult. Vol. Yield [-] 4.603e-01 -  6.500e-01 4.754e-01 -  6.500e-01 4.998e-01 -  6.500e-01

DOE 10 DOE 11 DOE 12
2 Ult. Vol. Yield Time [s] 6.456e-02 -  7.415e-02 7.120e-03 -  8.068e-03 7.881e-04 -  1.153e-03

Ult. Vol. Yield [-] 4.500e-01 -  7.000e-01 4.500e-01 -  7.000e-01 4.500e-01 -  7.000e-01
DOE 13 DOE 14 DOE 15

2 Ult. Vol. Yield Time [s] 6.443e-02 -  7.392e-02 7.076e-03 -  8.075e-03 7.848e-04 -  1.152e-03
Ult. Vol. Yield [-] 4.500e-01 -  7.600e-01 4.500e-01 -  7.600e-01 4.500e-01 -  7.600e-01

alteration to the QoIs was to increase the temporal Qol uppers bounds by multiplying 

them by 1.3 for the DOE points with 1E6 K /s heating-rate and hold-temperatures of 1,300, 

1,600, and 2,400 K. These bounds were extended to allow greater amounts of consistency 

across all DOE points. With high temperatures and fast heating-rates, the kinetic timescales 

of those three DOE points should have minimal effect upon the application simulations.

Once the Qol definitions were established and values set, random samples of the free 

parameters in the RPM were tested for simultaneous consistency across all QoIs and 7  values 

collected for consistent samples. Where typically 7  values indicate the ability to shrink data 

error-bounds, for this model-form uncertainty application a more useful interpretation of 7  

is that it is indicative of how true the RPM fits the center of the Q ol’s uncertainty. In order 

to capture the full spectrum of CPD uncertainty, a range of 7  values would be required.

Even with these relatively simple QoIs there is ambiguity about how they are defined 

and enacted. For each SRWY trace the ultimate volatile yield and time it took the SRWY 

trace to get to half of that ultimate volatile yield are compared with the CPD ranges of 

uncertainty for those same quantities. An alternative comparison that could be explored 

would be to check if the SRWY model’s trace passed through the volatile yield range equal to 

half the uncertain CPD ultimate volatile yield range within CPD’s time frame for reaching 

half its ultimate volatile yield. This could be visually conceived as checking that a SWRY 

trace line passes through a CPD defined QoI rectangle.

A few numerical methods are necessary for executing this analysis. SRWY model
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temporal traces are evolved in time using an adaptive Huen-Euler integration scheme. The 

adaptive method was found to handle the system’s stiffness while remaining computationally 

efficient. On a logarithmic time-scale between 1E-5 and 10 seconds, 200 points are saved for 

each volatile yield trace. Values representing the time to half the ultimate volatile yield are 

then located using a second-order Newton polynomial interpolation. This polynomial was 

chosen due to the curved nature of the volatile yield traces in the desired temporal periods. 

For random number generation the random.random function from the Python Numpy 

library was utilized to generate random samples from a continuos uniform distribution

[67].

7.7 Consistency Analysis
From visualizing a sample of consistent points in Figure 7.13, it was evident that 

exploring a transformed parameter space would increase search efficiency. A simple linear 

transformation base on the apparent linear correlation between E  and log10(A) values was 

utilized: log10(A) =  slope-E +  intercept. Instead of exploring the parameter spaces of A and 

E, the space of E  and the intercept can be explored once a slope was fitted to consistent 

points found with an initial search. The greater efficiency of exploring the transformed 

space is demonstrated in Figure 7.13. The dash-dotted rectangular region represents the

-1 0 0 0 0  -5 0 0 0  0 5000 10000 15000 20000 

E [K ]

Figure 7.13: Visualization of variable transformation utilized for efficient exploration of 
parameter space. The dots represent consistent points in the parameter space and the dots’ 
color indicates y values. The variable transformation is shown through the blue line and 
the red lines indicate the region explored.
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pure parameter hypercube that would be explored if a variable transformation was not 

used. The region between the two red lines is the transformed space that can be explored 

more efficiently. Throughout the process of refining the consistency search and regions 

of exploration, the transformation continuously evolved based upon the accumulation of 

additional data. A more refined search of the transformed E  versus log10(A) space is shown 

in Figure 7.14.

Linear transformed spaces for a and aa, as shown in Figure 7.15, were also utilized to 

minimize computational costs. Although initially a appeared to benefit from a variable 

transform, ultimately this transformation was found to be unnecessary and the nontrans

formed parameter space was utilized. The consistent points shown in Figure 7.14-7.15 

were generated by taking 50,000 random samples from a four-dimensional transformed 

parameter space. Of those random samples, 1,244 consistent parameter-sets were found 

or approximately 2.5%.

By considering Figure 7.14-7.15 the consistent space can be noted to have many in

teresting characteristics. The spread of the consistent space is relatively narrow across 

many two-dimensional visualizations or marginals of the data, demonstrating that the 

utility of variable transformations may encompass more than just an increase in search 

efficiency. Bounds appear to exist for many of the parameters and shift throughout the 

four-dimensional space. For instance, parameter a seems limited to a range between 0.5 

and 0.69, but the lower bound shifts upwards for the extreme E  values.

Parameters E , A, and aa appear to be highly correlated, as could be deduced by the 

variable transforms used to explore their spaces. Such correlation was expected with fast 

heating rates because the coal was effectively experiencing a fixed temperature for a large 

temporal portion of the devolatilization. Looking back at Eq. (7.7), it can be shown that for 

a constant temperature the equation has nonunique solutions or correlation between three 

parameters:

K  =  Constant =  A 1 exp ( -  (E 1 +  aa,1Z)/TP)

=  A 2 exp ( -  (E 2 +  ffa,2Z )/Tp)

W  A \ W  A \ E 1 +  aa,1Z  E2 +  Va,2Z  i n\ ln(A1) -  ln(A2) =  ------^ --------------- ^ ----. (7.10)

With this strong correlation, the three parameters’ bounds are also interdependent. The 

activation temperature E  covered the entire parameter region explored, but tapered off 

in the number of consistent points found and respective Y values of those points in the 

limits of its explored region, -9,000 K to 40,000 K. Because of the nonunique behavior, it
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F igure 7.14: Marginal views of the SFWY model’s four-dimensional parameter space. 
Dots signifying parameter-sets consistent with CPD uncertainty are shown in plot (a ) across 
three parameter dimensions: log A, E , and a. Plot (b) shows a two-dimensional view of the 
consistent points across log A and E  space. The dot color corresponds to the respective y 
value.
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F igure 7.15: Visualization of two-dimensional parameter spaces explored during search 
of the four-dimensional parameter space. Plot (a) shows parameter a across parameter E 
and plot (b) likewise shows transformation of parameter aa with respect to E . Blue line 
indicates axis for transformed parameter space and red lines indicate region of parameter 
space explored.
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is not possible to deduce which of the three correlated parameters limited the span of the 

consistent space.

Another interesting feature of the SRWY model found through the consistency search 

was the ability to remain consistent while inverting the temperature distribution. In 

Figure 7.15 it can be noted that consistent aa values become negative when the activation 

temperature E  surpasses approximately 18,000 K. The negative sign should not be thought 

of as part of the aa value because a negative standard deviation is not possible. Instead, 

looking back at Eq. (7.7) and Figure 7.11, a negative value is indicative of inverting 

the activation temperature distribution, causing high activation temperatures to initially 

control the reaction and low activation temperatures to be operating when high amounts of 

conversion have occurred. This change in the temperature distribution should significantly 

alter the kinetic trends, yet evidently does so in a manner that maintains consistency. A 

visual comparison of the effect of inverting the temperature distribution can be seen in 

Figure 7.16, where two traces generated with consistent SRWY parameter-sets, but with 

opposite activation temperature distribution orientations, are compared with an equivalent 

nominal CPD trace.

It is evident that the original orientation of the temperature distribution produces a trace 

that bears characteristics more similar to that of the CPD trace. The trace from the inverted 

temperature distribution has a sharper slope, but does level-off at the desired volatile

0.6
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Figure 7.16: Comparing volatile yield traces of CPD and SRWY model with a hold- 
temperature of 2,400 K and heating-rate of 1E4 K /s. The CPD trace was calculated 
with nominal parameter values, while the SRWY traces were calculated with consistent 
parameter-sets. One SRWY trace utilized a consistent parameter set with the standard 
temperature distribution (+ a a) and the other used an inverted temperature distribution
( - ^a) .
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yield. While consistent parameter-sets with inverted temperature distributions could be 

discounted from further consideration due to the poor shape characteristics, they will be 

retained presently due to fulfilling the current consistency criteria. If additional or redefined 

QoIs were utilized in the future, points with negative activation temperature distributions 

could justly be removed. This issue illustrates the distinction between adequacy and 

credibility. While the current consistency QoIs define model adequacy, they do not ensure 

credible solutions.

Throughout visualizations of consistent parameter-sets (Figure 7.13-7.15), it is evident 

that y values associated with those consistent points are not continuously distributed across 

the four-dimensional space. It appears that parameter-sets with higher y values typically 

lie within interior regions of the parameter space and that the bounding regions of the 

consistent parameter space have low gamma values, as would be expected. Exactly how 

the y values are distributed across each of the four uncertainty SRWY parameters can be 

visualized within Figure 7.17.

All four uncertain parameters appear to have reasonably well defined distributions 

indicating that the parameter space exploration was sufficient. Truncation of the edges

Figure 7.17: Scatter plots showing how y values are distributed across the four free, SRWY 
model parameters for consistent parameter-sets.
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of the distributions occurs, but should not significantly alter the distribution’s appearance. 

The high-temperature ultimate volatile yield a correlates to y with a distribution that 

reaches a maximum between an a value of 0.55 and 0.6. This is not surprising considering 

CPD predicted a similar range, as was seen in Figure 7.10. This distribution also has clear 

bounds that appear almost smooth even with the limited sample points. The most consistent 

parameter set or that with the highest 7  value found corresponded to log10(A) =  15.980 s-1 , 

E  =  29,400 K , aa =  —1,950 K , and a =  0.576. This set does not represent the largest 7  

possible for the SWRY model due to the use of random sampling, but acts as an estimate of 

the region of highest consistency. If consistent points with inverted temperature distribu

tions are discounted, the most consistent set would be log10(A) =  8.331 s-1 , E  =  13,240 K , 

(ra =  767.6 K , and a =  0.580.

Now that a set of consistent points has been located, the RPM ’s performance at rep

resenting the CPD model can be further evaluated. First, the consistent parameter-sets 

can be mapped into Qol space as shown in Figure 7.18. Clearly the red boxes, which were 

used as the Qol bounds within the consistency test, do not act as perfect representations of 

CPD’s uncertainty, as is shown with the black dots taken directly from CPD’s uncertainty 

investigation. With that caveat in mind, the red boxes do represent ranges of uncertainty 

believed to suffice in capturing the behaviors required of the SRWY model as specified by 

the application’s requirements. Again, information incorporated into the Qols outside of 

CPD’s uncertainty is evident in comparing the red boxes and black dots.

Within Figure 7.18 the SRWY parameter a is shown as the color of the consistent 

points, or dots of colors other than black. Interestingly, there is no observable correlation 

to a values with the consistent point’s positions within the 700 K DOE Qol spaces, but a 

linear correlation vertically across ultimate volatile yield is present in all other DOE points. 

The shape of the CPD uncertainty region at 700 K is also not captured. The rectangular 

shape of CPD’s Qol uncertainty is well replicated by the SRWY model consistent points 

for all higher temperatures.

A few additional features of the Qol spaces are captured poorly by the SRWY model. 

For DOE points at 1,000 K, SRWY was not able to be consistent for ultimate volatile 

yields below 0.45, while CPD yields spanned to near 0.4. Similar issues are seen to lesser 

extents for higher temperature and lower heating-rate DOE points. Back in Section 7.4.4 

it was decided that the SRWY would not include the heating-rate as a functional input. 

A consequence of this engineering decision can now be seen in the SRWY model’s ability 

to match the Qols across the range of heating-rates for all temperatures above 1,000 K.
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Figure 7.18: Comparison of uncertainty in Qol quantities from CPD calculations with 
equivalent values from RPM consistent parameter-sets across fifteen DOE conditions. Black 
dots indicate points generated from CPD uncertainty analysis, red boxes correspond to Qol 
spaces used to judge consistency, colored dots are consistent SRWY parameter-sets, and 
the color of the colored dots indicates the value of the high-temperature ultimate yield a 
for the consistent set. The plot’s x axes are the time to half the ultimate volatile yield and 
y axes are the ultimate volatile yield value.

Consistent points are found in the initial portion of the temporal Q ol’s span for the 1E4 

K /s DOE points, completely span 1E5 K /s DOE points, and overshoot much of CPD’s 

uncertainty time-frame for 1E6 K /s  DOE points in order to allow the model to span greater 

amounts of the temporal Qols within other DOE conditions. As was anticipated the SWRY 

model performed best for the middle of the heating-rate range due to the yield model’s 

parameter fitting method. The fact that Qol uncertainty ranges were on the same order of 

magnitude as the heating rate’s effect upon the ultimate volatile yield allowed the SWRY 

model to find consistency, but the need to increase the temporal bounds for the 1E6 K /s 

high-temperature DOE conditions demonstrates the danger of this approximation.
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7.8 Model Credibility
Up to this point the consistent parameter-sets for the RPM proved basic adequacy 

conditions had been met. Although consistent parameter-sets enable the SRWY model 

to meet specified QoI requirements, further analysis of the model’s results is required to 

judge the credibility of the model-form for use beyond this application. While the model 

possesses characteristics specified by the Qols, does it appear physical in other attributes 

not considered with the Qols? Visualizing how the SRWY traces compare with CPD traces 

allows further comparison of characteristics not quantified with the current QoI definitions, 

as was previously shown in Figure 7.16, and is a fundamental view of reaction model 

performance. Analysis of model-form error or discrepancy between the RPM and CPD 

traces can provide evidence for the continued evolution of the model-form towards validity 

as well as qualified measures of credibility for the current model-form due to the credibility 

CPD possesses.

A comparison of 12 randomly selected consistent SRWY traces and CDP traces is shown 

in Figure 7.19. Only SRWY traces corresponding to noninverted activation temperature 

distributions are visualized due to the inverted distributions previously being noted to 

have poor shape characteristics. Kinetically, the SRWY traces begin to display substantial 

amounts of devolatilization within the same time-frame as the CPD traces and all traces 

match the initial kinetic shapes satisfactorily. Significant discrepancy then appears to occur 

within the two lower temperature DOE conditions during the later kinetic stages. As could 

also be noted in Figure 7.18, the SRWY traces do not reach as high of ultimate volatile yields 

as CPD traces at 700 K. For the DOE points with 1000 K hold-temperature and 1E4-1E5 

K /s heating-rates, there is significant overshoot of the asymptote towards the ultimate 

volatile yield. A systematic discrepancy can be noted in how the traces corresponding 

to 1E4-1E5 K /s heating-rates asymptote to the ultimate volatile yield. The CPD traces 

have slower/gradual asymptotes, while the SRWY model’s traces have sharper/abrupt 

asymptotes. Greater variance in the SRWY traces is also evident. Such variance reflects 

that the current QoIs are not over-constraining the SRWY model. The significant variation 

in the activation temperature distribution’s standard deviation aa spanning from zero to 

approximately 10 percent of the activation temperature was expected to produce a wide 

assortment of kinetic shapes. Such variation due to the activation temperature distribution 

was most evident in the 1E6 K /s traces.

Following Ferson’s (2008) [35] use of comparing cumulative distributions of Qols, Fig

ure 7.20 was constructed to visualize the comparison of uncertainties contained within
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Figure 7.19: Comparing traces generated with 12 randomly selected consistent SRWY 
parameter-sets with 12 CPD traces created by randomly sampling the 13 uncertain parame
ters across 15 DOE conditions. Only SRWY parameter-sets with a noninverted temperature 
distribution are used in this comparison.
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CPD and the RPM. These distributions should be utilized to visualize the RPM ’s ability 

to represent CPD’s uncertainty characteristics, but the SWRY model’s distributions should 

not be treated as real distributions as thought of in a probabilistic sense because they 

were produced by enforcing constraints. CPD’s distributions are physical distributions and 

illustrate real propagation of uncertainty through the model into QoIs. All distributions 

shown are marginal distributions where one of the QoI dimensions was integrated out.

The most notable agreement between the SWRY model and CPD distributions can be 

found in the temporal QoIs for DOE points that used a 1E5 K /s  heating-rate. Again the 

discrepancies previously noted can be found within the CDFs as well, with CPD’s yield 

CDFs spanning larger ranges of yield QoI spaces for lower temperatures. With this visual 

testing methodology it is difficult to compare shapes for the higher temperature DOE points
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Figure 7.20: Comparison of quantities of interest’s cumulative distributions for 15 design 
of experiment conditions. Distributions were marginalized over other Qol, respectively. The 
blue lines represent CPD and the dashed red lines stand for the SWRY model’s consistent 
points.

due to the expanded QoI bounds utilized, which distort the distributions and to which 

CPD is not expected to be directly comparable. Ideally, the more the SWRY model’s 

CDFs resemble CPD’s, the better the forward propagating the SWRY model’s uncertainty 

through the application would represent the forward propagation of CPD’s uncertainty.

Overall, the SRWY model’s performance was deemed satisfactory for the application 

requirements. While shortcomings of the SRWY model have been highlighted, its ability to 

meet strenuous requirements for consistency with CPD characteristics across a wide range 

of system conditions is a strong statement towards its credibility. The traces produced by 

the SWRY model closely resemble the equivalent CPD traces and its ability to represent 

CPD’s propagated uncertainty has been qualified through CDFs. Basing our evaluation 

of the SWRY model on the application space demands for a scale-bridging approximation
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of CPD that could capture thermodynamic yield trends, the SWRY model was deemed to 

meet the requirements.

7.9 Model Refinement
Although time constraints necessitated the use of the model-form described thus far 

for the first year’s simulations, utilizing the discrepancies observed to motivate model-form 

refinement for year two’s simulations was possible. Propagation of knowledge gained is a 

fundamental piece of the development of credible models. Due to the discrepancy correlated 

to low temperatures, factors effecting the model’s performance in this condition region were 

reconsidered.

Within Section 7.4.1 a hold-time of 10 seconds was assumed to be the effective equi

librium time-scale for the application. Figure 7.4 demonstrated that this assumption 

was not ideal for temperatures below 1,200 K even when the coal effectively experienced 

instantaneous heating. While it is true that the coal will spend less than 10 seconds in the 

boilers, this assumption reduced the driving force for reactions at lower temperatures. The 

consequences of a reduced driving force were carried though the model development process, 

effecting the consistent spaces for the free parameters explored. This is an illustrative 

example of the difficulty of performing calibration and quantifying model-form uncertainty 

simultaneously, also known as the identification problem [6]. More realistic estimates of 

the time to reach equilibrium were investigated within Figure 7.21, where nominal CPD 

parameter values were again utilized. Estimates of time to equilibrium were found by 

locating positions on yield traces where (Vf -  V ) /V f <  0.01, or the yield was within one 

percent of the final yield for that hold-temperature.

As was previously noted, 10 seconds is a good approximation of an equilibrium hold-time 

above 1200 K, but now it becomes evident that this is a poor assumption for the lower 

temperatures included in the DOE. Data-points for temperatures below 900 K were not 

included in Figure 7.21 because the time to compute such data was prohibitive and the 

scaling behavior had already become evident. Another important consideration is that this 

figure was created using a 1E9 K /s  linear heat-up rate. Slower heat-up rates would most 

strongly effect lower temperatures, lengthening the time to reach equilibrium. Although the 

creation of an accurate yield model for low temperatures is out of the scope of this study, 

increasing the hold-times for 500, 600, 700, 800 and 900 K CPD runs to 1E5 seconds and 

1000 K to 1E4 seconds was viable. The effect of incorporating this data into an improved 

yield model can then be utilized to determine if future model development iterations should
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Figure 7.21: Approximate thermodynamic equilibrium time for CPD traces across a range 
of hold-temperatures. CPD traces were generated using nominal parameter values and a 
linear heating-rate of 1E9 K /s from 300 K to the respective hold-temperature.

focus upon this issue.

Using the same methodology as was previously described within Section 7.5, a yield 

model was created from CPD data that spanned a range of heating-rates and hold- 

temperatures, where the hold-times for lower temperatures were increased. This adjusted 

yield model is shown in Figure 7.22. The parameters fit to the CPD data were b =  11.53, c 

=  -9.122, d =  2.407, e =  -0.7773, and 500 K was the devolatilization initiation temperature. 

The effect of longer hold-times becomes evident when the adjusted yield model is compared 

with Figure 7.10. Also included in Figure 7.22 are purple dashed-lines indicating potential 

model-forms that could be explored in the future to account for uncertainty in the yields 

at higher temperatures. Until data are available in such temperature regions, it will be 

difficult to compare potential model-forms and reach definitive conclusions. Even if high- 

temperature experimental data for pure devolatilization do not become available in the near 

future, model-forms such as those suggested could be tested within multiphysics simulations 

against data-forms available for comparison at that scale, or a top-down validation.

The updated yield model was utilized in Eq. (7.7) and consistent parameter-sets were 

located in the manner previously described within Section 7.6. Plots of the consistent 

parameter-sets can be found in Appendix A, but the effect of the improved yield model 

can be judge through a yield trace comparison, as shown in Figure 7.23. Compared to 

Figure 7.19, improved performance in matching the low-temperature yield trends is evident. 

Additionally, the traces demonstrated improved matching of CPD’s asymptotic behavior 

across the higher temperature traces. The improvement in the asymptotic behavior appears
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Figure 7.22: Yield model equivalent to Figure 7.10 once the hold-times were increased for 
lower temperatures. Lines are based upon Eq. (7.3), where each line signifies a different 
a value and the dots are CPD data with the heating-rates and hold-temperatures varied. 
Additional purple dashed lines represent potential alternative forms of the yield model that 
could be implemented to account for uncertainty at higher temperatures.

to be at least in part caused by the activation temperature distribution’s standard deviation 

ua now varying between 3,000 and 8,000 K, where previously it ranged from 0 to 5,000 K. 

The distribution’s width is of similar breadth, but the updated yield model caused a shift 

towards larger values. The variance previously noted in the appearance of the volatile yield 

trends has been significantly reduced. While again this is likely due to a combination of 

factors, the large reduction in widths of the consistent ranges for A and E  are likely major 

contributors. With the updated yield model, optimal parameter-set values were found to 

be log10(A) =  8.499 s-1 , E  =  14,380 K , ua =  4, 719 K , and a =  0.565. These optimal 

values are similar to those previously found, when inverted energy distributions were not 

considered, except that the activation temperature distribution’s value is approximately six 

times larger.

An additional attribute of applying the SWRY model on the current application’s DOE 

becomes evident once the implications of Figure 7.21 for high temperatures is considered 

within Figure 7.23. For any given heating-rate, the traces above 1,000 K appear to be 

approximately the same. For the fastest heating-rate considered, 1E6 K /s, it takes ap

proximately 0.001 seconds to reach 1,000 K and the thermodynamic time-scale is over 

100 seconds at that temperature. However, for 1600 K the thermodynamic time-scale is 

approximately 1E-4 seconds, meaning that the traces are heating-rate limited and effectively 

are thermodynamic yield curves. Evidently, future iterations of model-development could
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Figure 7.23: A comparison of 12 traces generated with randomly selected consistent 
SRWY parameter-sets with 12 CPD traces created by randomly sampling the 13 uncertain 
parameters across 15 DOE conditions. The SRWY model used the yield model-form based 
upon longer times to reach equilibrium for lower temperatures.
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remove the 2,400 K DOE conditions and likely benefit from additional lower temperature 

DOE points or higher heating-rate points where the heating-rate conditions could be isolated 

from the kinetics. Moving forward it can also be noted within Appendix A that the extend 

time range Qol for higher temperatures and 1E6 K /s heating rates could be removed.

Clearly the updated yield model positively effected the RPM ’s credibility. Given the 

performance noted across traces for all DOE conditions, there should be greater confidence 

in utilizing the RPM in extrapolating applications. Throughout the developmental process 

of creating the current model-form, tasks that could be completed to increase the model’s 

validity for lower or higher temperature applications have been detected. Lower temperature 

applications would benefit from additional refinement of the yield model through longer 

CPD runs. Higher temperature uses could look to the creation of experimental data,
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or inversely, validate through comparing multiphysics simulations with experimental data 

available at that scale.

7.10 Conclusions
The need for a computationally cheap function to capture desired traits of a rigorous 

physics model, which has been deemed to contain significant amounts of uncertainty, was 

the driving force behind this research. Once the desired characteristics of the more rigorous 

model and corresponding uncertain had been quantified, a reduced physics based model was 

created using a single reaction model with yield model and distributed activation energy. 

This RPM contained four free parameters, which were calibrated using a consistency test 

against selected QoIs. The QoIs were based upon capturing desired physics and were 

quantified by the uncertainty contained within the more rigorous model and additional 

insights. Once consistent parameter-sets were located, the credibility of the reduced physics 

model in representing the more rigorous model was evaluated. Through visualizing the 

mapping of the consistent parameter-sets into the space of the QoIs, qualitatively comparing 

the characteristics of kinetic traces and considering cumulative distributions, the RPM was 

deemed to have satisfactory performance for the stated application. Then utilizing the 

discrepancies discovered throughout the model validation, an improvement to the yield 

model was implemented and the gained performance demonstrated.

The model development and analysis demonstrated throughout this work were based 

upon one particular coal type, Utah Sufco bituminous. The SWRY model can be applied to 

alternative coal types simply through repeating steps utilized during the model development 

process. The most significant difference between coal types will come from fitting the yield 

model to coal specific CPD thermodynamic data. Once alternative fitting parameters have 

been found for the yield model, the consistency test can be rerun. The parameter space 

exploration should be expedited by utilizing the consistent regions found for the current 

coal type as prior knowledge to base parameter bounds upon.

Like all engineering exercises, this process has the potential for continued refinement. 

Incorporation of additional sources of data, especially experimental data, is an obvious 

next step. High-temperature experimental-data could greatly reduce the uncertainty in 

the model-form for higher-temperature applications. An alternative route to experimental 

data could be to compare against another high-fidelity model such as FLASHCHAIN [101], 

which could give further credibility to the RPM within its current areas of application. 

Continued alteration to the form of the yield model is another avenue of simple improvement
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that has been demonstrated to positively impact the model’s performance and which could 

include model-form comparisons. Reconsidering the DOE design is another easy alteration 

to incorporate in order to gain additional insight efficiently. As was previously stated, QoI 

definitions are subjective, so further exploration might lead to superior model performance. 

Balancing the cost-benefit of such refinements is a research area in its own right.



CHAPTER 8

CONCLUSIONS

The narrative this dissertation aimed to espouse has been the demonstration of how 

scale-bridging models are created and how adoption of validation and uncertainty quantifi

cation methods into the development process for scale-bridging models generates greater 

model credibility. Scale-bridging models are an unusual type of model that are not meant 

to describe a novel phenomena nor capture a phenomena to a higher degree of accuracy 

than previous models of the same phenomena. Instead scale-bridging models are ultimately 

an engineering based approach towards creating the appropriate tool to meet application 

mandates. Simply fitting a lower-fidelity model to desired model outputs of a higher-fidelity 

model can create a functional scale-bridging model, but inevitably it will be desired to 

use that model outside of the range of data to which it was fit. To have confidence in 

the scale-bridging model’s robustness, greater understanding of the model’s development 

process, sensitivities, limitations, and strengths is necessary. Those desired attributes can 

be described as the model’s credibility. Methodologies from the validation and uncertainty 

quantification community provide means of increasing the credibility of scale-bridging mod

els. An overview of material presented, accomplishments, and ideas put forth will now be 

summarized.

A novel modeling framework for capturing multiple-polymorph precipitation in highly 

supersaturated, aqueous conditions was formulated. The novelty of this framework was in its 

application system, use of moment methods, and detailed physics suite. This framework was 

validated for a CaCO3 system, demonstrating the framework’s strengths and limitations. 

The framework and validation thereof were published within Schroeder et al. (2014)

[127]. This framework was developed as a scale-bridging model and its adoption into 

computational fluid dynamics codes was demonstrated within Abboud et al. (2015) [1].

An overview of two validation and uncertainty quantification approaches were outlined 

and these methods were demonstrated further in subsequent material. A philosophical 

approach describing a cyclic process for developing credible simulations was then presented.
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This philosophy was similar to methods previously presented, but its focus upon the con

ceptual model, as well as its justification and qualification processes were unique. This 

approach was then demonstrated on a pedagogical example that can be utilized as future 

educational material.

Model-form uncertainty refers to the effort to quantify the amount of error within model 

predictions attributed to the imperfections in model-form. A Bayesian framework known as 

the Kennedy O ’Hagan approach was explored through the application to a chemical kinetics 

pedagogical example. This application walkthrough illustrated strengths and limitations of 

the current methodology. Additional ideas within this realm were also explored such as 

multi-input and constrained Gaussian Processes.

A novel scale-bridging model for capturing coal particle enthalpy and heat capacity 

was presented. This model was created to meet a specific application demand of reducing a 

relatively expensive iterative solve. Through employment of Bayesian parameter estimation 

and Markov chain Monte Carlo methods, piecewise model-forms were created and calibrated 

to meet application requirements. While the development process created an adequate 

product, the process itself shed light on the uncertainty within this piece of physics that 

was previously not explicitly acknowledged.

Coal devolatilization was another piece of coal physics determined to need scale-bridging. 

A novel model-form was developed and consistency constraints were applied to locate con

sistent parameter regions. The uncertainty contained within a high-fidelity devolatilization 

model was used to define error bounds for the consistency analysis. After consistent pa

rameter regions were located, subsequent analysis determined that the model was adequate 

for the application. Mapping consistent parameter sets into the space of the constraints 

and comparing trace shapes across the conditions specified by the application-based design 

of experiments were key tools for the validation assessment. Further consideration of the 

discrepancies within the scale-bridging model’s performance led to model refinements that 

improved the model’s performance and increased credibility. Future areas of emphasis 

for continued model development were also noted throughout the analysis of the current 

model-form.



APPENDIX A 

ADDITIONAL FIGURES FOR CHAPTER 7 

A.1 Figures for Refined Devolatilization Model
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Figure A .1 : Two-dimensional view of the consistent points across log A and E  space once 
the yield model was improved as specified within Section 7.9. The dot color corresponds to 
the respective y value. The variable transformation utilized to increase search efficiency is 
shown through the blue line and the red lines indicate the region explored.
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Figure A .2 : Two-dimensional view of the consistent points across a and E  space once the 
yield model was improved as specified within Section 7.9. The dot color corresponds to the 
respective 7  value.
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Figure A .3 : Two-dimensional view of the consistent points across ua and E  space once 
the yield model was improved as specified within Section 7.9. The dot color corresponds to 
the respective 7  value. The variable transformation utilized to increase search efficiency is 
shown through the blue line and the red lines indicate the region explored.
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Figure A .4 : Scatter plots showing how y values are distributed across the four free SRWY 
model parameters for consistent parameter sets once the yield model was updated in the 
manner suggested within Section 7.9.
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Figure A .5 : Comparison of uncertainty in Qol quantities from CPD calculations with 
equivalent values from RPM consistent parameter sets across 15 DOE conditions. The 
RPM included the improved yield model, as specified within Section 7.9. Black dots indicate 
points generated from CPD uncertainty analysis, red boxes correspond to QoI limits used 
in judging consistency, colored dots are consistent SRWY parameter sets, and the color of 
the colored dots indicate the value of the high temperature ultimate yield value a for the 
consistent set. Plot’s x axis is the time to half the ultimate volatile yield and y axis is the 
ultimate volatile yield value.
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Figure A .6 : Comparison of quantities of interest’s cumulative distributions for 15 design 
of experiment conditions. Distributions were marginalized over other QoI, respectively. The 
blue lines represent CPD and the dashed red lines stand for the SWRY model’s consistent 
points. SWRY model utilized improved yield model suggested within Section 7.9.



APPENDIX B

HELPFUL TOOLS 

B.1 Software Tools Utilized
The following list includes software tools found useful through the course of my graduate 

studies, even beyond the material presented throughout the dissertation.

• Python: open source programing language utilized with Numpy and Scipy libraries to 

perform majority of numerical calculations.

h ttps://w w w .python .org

• pyDOE : open source Python library used to create Latin Hypercube designs. 

h ttp ://pyth onhosted .org/pyD O E /

• emcee: open source Python based Markov chain Monte Carlo tool utilized within 

Bayesian analysis to explore multidimensional posterior distributions. 

h t tp ://d a n .ie l .fm /e m c e e /c u r r e n t /

• Spyder: open source GUI interface for Python that was utilized for creating, running, 

and debugging many Python scripts.

h ttp s ://g ith u b .co m /s p y d e r -ide /spyder

• pyregress: in-house developed, Python based Gaussian process tool. For more infor

mation contact sean.t.sm ith@utah.edu

• CPD : MATLAB version of CPD code developed at Brigham Young University. For 

more information contact tom _fletcher@byu.edu

• matlab.engine: Python library for calling MATLAB functions from within Python 

scripts.

• SourceTree: Free Git repository management software. 

h ttps://w w w .sourcetreeapp.com

https://www.python.org
http://pythonhosted.org/pyDOE/
http://dan.iel.fm/emcee/current/
https://github.com/spyder-ide/spyder
mailto:sean.t.smith@utah.edu
mailto:tom_fletcher@byu.edu
https://www.sourcetreeapp.com
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• cpd-matlab: Git repository for scripts used for coal devolatilization work. 

h ttp s ://b itbu ck et.o rg /tea m _sea n /cp d -m a tlab

B.2 Coal Devolatilization Algorithm
Algorithmic steps followed for current devolatilization results. Scripts listed found in 

cpd-matlab Git repository.

• Collect coal specific parameter values and uncertainties for CPD. Potentially from 

Professor Fletcher at Brigham Young University.

• Create volatile yield traces over a range of heating-rates and hold-temperatures using 

MATLAB version of CPD. Export data for continued analysis within Python.

Script: cpd_explore.m

• Fit CPD ultimate volatile yield data (spanning conditions from previous step) to 

desired form of yield equation such as Eq. (7.3). Can be fit with Scipy’s minimize 

function using the Nelder-Mead algorithmic option.

Script: model_form_fitting.py

• Determine quantities of interest (i.e., ultimate volatile yield) and system conditions of 

interest (i.e., heating-rates and hold-temperatures) that will be utilized for consistency 

tests.

• Define uncertainty within CPD for all QoIs and system conditions of interest through 

Monte Carlo sampling of uncertain parameters. These data are then used as con

sistency constraint bounds within consistency tests. Monte Carlo sampling can be 

completed using Numpy’s random.random function and the MATLAB version of CPD 

can be called within Python scripts with the matlab.engine library.

Script: uncertainty_explore.py

• Explore the reduced model’s parameter space with a Monte Carlo search, where 

parameter correlations as shown in Section 7.7 increase search-efficiency. Iterate 

this step to improve number of consistent points found by improving search region. 

Again, Numpy’s random.random function can be used for the random search. Save 

consistency search results in a format amenable to future analysis and plotting. 

Script: consistency_test.py

• Visualize consistent points in parameter space, QoI space, and through yield traces 

for continued analysis and utilize discrepancies to motivate continued model-form

https://bitbucket.org/team_sean/cpd-matlab
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evolution.

Scripts: consistency_visualize.py and compare_rpm_cpd.py
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