

INTEGRATING TECHNOLOGIES, METHODOLOGIES, AND DATABASES INTO

A COMPREHENSIVE TERMINOLOGY MANAGEMENT ENVIRONMENT

TO SUPPORT INTEROPERABILITY AMONG

CLINICAL INFORMATION SYSTEMS

by

Shaun Cameron Shakib

A dissertation submitted to the faculty of

The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Biomedical Informatics

The University of Utah

December 2013

Copyright © Shaun Cameron Shakib 2013

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Shaun Cameron Shakib

has been approved by the following supervisory committee members:

Stanley Huff , Chair 27 April 2012

Date Approved

Bruce Bray , Member 27 April 2012

Date Approved

Lisa Albright , Member 27 April 2012

Date Approved

Lee Min Lau , Member 27 April 2012

Date Approved

Roberto Rocha , Member 27 April 2012

Date Approved

and by Julio C. Facelli , Chair/Dean of

the Department/College/School of Biomedical Informatics

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Controlled clinical terminologies are essential to realizing the benefits of

electronic health record systems. However, implementing consistent and sustainable use

of terminology has proven to be both intellectually and practically challenging. First, this

project derives a conceptual understanding of the scope and intricacies of the challenge

by applying informatics principles, practical experience, and real-world

requirements. Equipped with this understanding, various approaches are explored and

from this analysis a unique solution is defined. Finally, a working environment that

meets the requirements for creating, maintaining, and distributing terminologies was

created and evaluated.

I dedicate my dissertation work to my family, friends, and colleagues. To my wife Sabine,

children Thomas and Sarah, parents Nasser and Jenial, sister Julie, and friends and

mentors Lee Min and Lam. Thank you all for your patience, encouragement, and

support.

TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF TABLES ... ix

LIST OF FIGURES ... xi

1. INTRODUCTION .. 1

2. WHY INTEROPERABILITY IS ESSENTIAL TO REALIZE EHR BENEFITS 3

3. THE STATE OF THE ART WITH REGARD TO INTEROPERABILITY 6

3.1. Terminology Use in Interoperable Data Exchange .. 6

3.2. Layers and Levels of Interoperability .. 7

3.3. Terminology Use in EHR Systems .. 8

3.4. Interoperability Standards Efforts to Date ... 11

4. TERMINOLOGY THEORY AND STRUCTURE .. 17

4.1. Local Interface Terminology .. 17

4.2. Standard or Reference Terminologies and Classification Systems 19

4.3. Federated Terminology .. 20

5. CHALLENGES UTILIZING TERMINOLOGY ... 24

5.1. Integration Challenge ... 25

5.1.1. Multiple formats, update schedules, and content types 25

5.1.2. Differences in granularity ... 26

5.1.3. Pre- and postcoordination ... 26

5.2. Maintenance Challenge .. 28

5.2.1. Scalability ... 28

5.2.2. Semantic shift and drift ... 28

5.2.3. Code/concept deletion ... 30

vi

5.3. Utilization Challenge.. 30

5.3.1. Establishing an overarching data model ... 31

5.3.2. Maintaining source transparency .. 31

5.3.3. Lack of comprehensiveness .. 31

5.3.4. Historical compatibility .. 32

5.3.5. Establishing a distinction in the role of the terminology model vs. the

information model ... 32

6. PROJECT AIM: CREATE INFRASTRUCTURE FOR A TERMINOLOGY

MANAGEMENT ENVIRONMENT (TME) ... 38

7. DATABASE DESIGN OPTIONS FOR THE TME ... 40

7.1. Option 1: No Integration Model ... 41

7.2. Option 2: Loose Integration Model .. 43

7.3. Option 3: Tight Integration Model ... 45

7.4. Option 4: Hybrid Integration Model .. 47

8. COLLECTING AND ANALYSING REQUIREMENTS FOR THE TME............. 51

8.1. Terminology Actors ... 51

8.1.1. Terminology browser .. 52

8.1.2. Terminology author .. 52

8.1.3. Clinical investigator .. 54

8.1.4. Applications .. 54

8.2. Functional Requirements for the TME... 56

8.2.1. Faithful concept representation ... 57

8.2.2. Single schema/common terminology model ... 57

8.2.3. Support for multiple data/information models .. 58

8.2.4. Partitioning .. 58

8.2.5. Version control.. 59

8.2.6. Terminology browser use-case-based TME service requests 60

8.2.7. Terminology author use-case-based TME service requests 63

8.2.8. Clinical investigator use-case-based TME service requests 66

8.2.9. Standard Application Programming Interface (API) 67

9. THE TME LOGICAL AND PHYSICAL DATA MODELS 71

vii

9.1. TME Database Logical Model ... 71

9.2. TME Database Physical Model .. 72

9.2.1. ENTITY table ... 72

9.2.2. RSFORM (Related Surface Form) and RSFORM_LINK tables 77

9.2.3. ENTITY_RELATIONSHIP table ... 79

9.2.4. ENTITY_LINK table .. 81

9.2.5. ENTITY_ATTRIBUTE table ... 82

9.2.6. PROPERTY table ... 85

10. MANAGING TERMINOLOGY CONTENT WITHIN THE TME 95

10.1. Customization Mapping: Data Extraction for LIT ... 96

10.2. Data Transformation .. 98

10.3. Staging and “Diffing”... 99

10.4. Distributing Work to Appropriate SMEs ... 100

10.5. Initial String Matching ... 100

10.6. Attribute Matching ... 101

10.6.1. Mapping ingredient ... 102

10.6.2. Mapping form and route ... 102

10.7. SME Interrater Agreement ... 103

10.8. Questions and Answers: Between Source Organization and SMEs 104

10.9. Loading and Maintenance in the TFT .. 105

10.10. Quality Assurance (QA) and Quality Control (QC) of TME 105

10.10.1. QA emphasis on process ... 106

10.10.2. QC emphasis on content ... 106

11. VALIDATION OF DATABASE DESIGN AND INTEROPERABILITY

REQUIREMENTS FOR THE TME ... 112

11.1. Database Design Validation ... 112

11.1.1. Faithful data representation... 112

11.1.2. Single schema ... 113

11.1.3. Support for multiple data/information models .. 114

11.1.4. Partitioning .. 115

11.1.5. Version control.. 115

11.2. Interoperability Requirement Validation Using CTS 116

11.2.1. Assessment and categorization of CTS v1.2 functions 117

viii

11.2.2. CTS validate code ... 118

11.2.3. CTS validate a translation ... 120

11.2.4. CTS translate a code ... 121

11.2.5. CTS fill in code details ... 122

11.2.6. CTS implies .. 123

11.3. CTS Validation Results and Discussion... 125

12. DISCUSSION ... 132

12.1. Why Not Just Use Standards Directly? .. 132

12.1.1. Dealing with semantic change in external code systems 132

12.1.2. Dealing with the deletion of standard codes ... 134

12.1.3. Lack of comprehensive standard codes .. 135

12.1.4. Historical patient data ... 136

12.2. How the TME Is Different from other Vocabulary Servers............................. 136

12.2.1. Content integration in the TME .. 137

12.2.2. Content maintenance in the TME ... 139

12.2.3. TME content implementation ... 140

12.2.4. Additional characteristics of TME content ... 141

12.3. Significance of Work ... 143

12.4. Future Work ... 145

12.4.1. Optimizations to current TME design and content 145

12.4.2. More terminology tools... 146

12.4.3. Better ways to address the ETL .. 146

12.4.4. Alignment with CTS v2.0 ... 147

13. CONCLUSION ... 150

APPENDICES

 A: TME CORE TABLES ... 152

 B: TME STAGE TABLES ... 179

 C: TME SUPPORT FOR CTS FUNCTIONS .. 192

REFERENCES ... 218

LIST OF TABLES

1: Local Interface Terminologies (LIT) .. 23

2: Release Schedules and Formats for Some Standard Code Systems 36

3: Granularity of Terminology vs. Classification System. ... 36

4: Other Examples of Semantic Drift.. 37

5: LIT LOINC Coverage ... 37

6: ENTITY Table .. 90

7: RSFORM Table. ... 90

8: RSFORM_LINK Table... 91

9: ENTITY_RELATION Table .. 91

10: ENTITY_LINK Table .. 92

11: ENTITY_ATTRIBUTE Table. ... 93

12: PROPERTY Table. ... 94

13: Mapping Actions... 111

14: CTS Validation Results .. 131

15: Summary of TME Tables. .. 154

16: RID_CONTROL Table Detail .. 156

17: ENTITY Table Detail ... 157

18: ENTITY_REV Table Detail ... 159

19: RSFORM Table Detail ... 160

x

20: RSFORM_REV Table Detail ... 161

21: RSFORM_LINK Table Detail .. 162

22: RSFORM_LINK_REV Table Detail .. 164

23: ENTITY_RELATION Table Detail ... 165

24: ENTITY_RELATION_REV Table Detail ... 167

25: ENTITY_LINK Table Detail.. 168

26: ENTITY_LINK_REV Table Detail .. 169

27: ENTITY_ATTRIBUTE Table Detail ... 170

28: ENTITY_ATTRIBUTE_REV Table Detail ... 174

29: PROPERTY Table Detail ... 175

30: PROPERTY_REV Table Detail ... 178

31: TME Stage ERD Summary... 181

32: ENTITY_STAGE Table Detail .. 181

33: TMEXF.SOURCE_VERSION Table Detail .. 183

34: RSFORM_STAGE Table Detail .. 184

35: ENTITY_RELATION_STAGE Table Detail .. 186

36: ENTITY_ATTRIBUTE_STAGE Table Detail .. 187

37: TME Support for HL7 CTS Message Layer Runtime Functions 193

38: TME Support for HL7 CTS Vocabulary Layer Runtime Functions 202

39: TME Support for HL7 CTS Code Mapping Functions .. 206

40: TME Support for HL7 CTS Message Layer Browsing Functions 208

41: TME Support for HL7 CTS Vocabulary Layer Browsing Functions 213

LIST OF FIGURES

1: Option 1 - No Integration.. 48

2: Point-to-Point Mapping .. 48

3: Option 2 - Loose Integration Model ... 49

4: Centralized Mapping... 49

5: Option 3 - Tight Integration .. 50

6: Option 4 - Hybrid Integration ... 50

7: Terminology Actors .. 69

8: HL7 CTS Application Programming Interface (API)... 69

9: Example CTS Implementation.. 70

10: TME Logical Model. .. 87

11: TME Vocabulary Server Core Tables Simplified Schema ... 88

12: Simplified TME Physical Model with TME Logical Model Overlaid 89

13: Steps in the TME ETL Process ... 109

14: Example Lab Result .. 109

15: Lab LIT Data Model Mapping.. 110

16: Semantic Matching for Drugs ... 110

17: Summary of TME Concept Mapping Workflow .. 111

18: TME Return a Code for a Specified Domain ... 127

19: TME Validate a Code is Present and Active in a Specified Code System 128

xii

20: TME Validate Transformation.. 129

21: TME Transform Source Code to Mapped Code in Specified Target Code System . 129

22: TME Display all Descriptions, Codes, and Version Information in a Given

Namespace .. 130

23: TME How Are Two Entities Related ... 130

24: TME Overview. Example TME implementation .. 148

25: Entity Link Metadata .. 148

26: Representation Link Metadata. ... 148

27: Entity Attribute Example. ... 149

28: TME Support for Users, Applications, and Interfaces .. 151

29: TME ERD Table Description Summary ... 153

30: TME Stage Entity Relationship Diagram (ERD) ... 180

1. INTRODUCTION

The complexity of modern medicine and the volume of available and relevant

information that must be processed exceeds the limits of the unaided human mind.1 Man

is not perfectible. No amount of training will make humans into flawless information

processors. As a consequence, U.S. physicians provide the recommended care to their

patients only about 60 percent of the time, according to a set of reports from the Agency

for Healthcare Research and Quality (AHRQ).2 One large and commonly cited study in

Utah and Colorado found that adverse events occur in 2.9 percent of hospitalizations.3

Another similar study in New York assessed the adverse events at 3.7 percent.4

Respectively 6.6 and 13.6 percent of these adverse events led to death. Using U.S.

hospital admissions in 19975 (the approximate timeframe for these studies), the

percentages above imply that each year between 44,000 to 98,000 patients die from

adverse events of which a very high percent are potentially preventable. In addition to

the tragedy of preventable deaths and complications, there is economic impact associated

with error and inefficiency. The increase in the cost of health care has exceeded the

increase in the consumer price index for the last four decades, and the cost of health care

now represents approximately 17.9 percent of the U.S. gross domestic product.6

Biomedical Informatics has an important role in addressing this challenge. A key

technology domain that falls under Biomedical Informatics is the Electronic Health

Record (EHR). Study after study has shown that computerized decision support can

http://www.ahrq.gov/
http://www.ahrq.gov/

2

decrease errors, improve patient safety, and decrease costs.7-9 Our assumption is that this

type of computerized decision support and information sharing can only operate reliably

on coded and structured medical data. As such, regardless of how the clinical data are

collected, they must be either maintained or transformed to a state that is structured and

encoded. The goal of this Terminology Management Environment (TME) project is to

create a vocabulary server with supporting tools and services, which allows for the

collection, use, and exchange of structured, encoded, standardized data. This

dissertation:

 establishes why coded terminology is essential for realizing the benefits of EHR

systems (Section 2)

 defines semantic interoperability and what it means for health care delivery

(Section 3.2)

 describes the challenges and barriers that exist for consistent and sustainable use

of coded terminologies in EHR systems (Section 5)

 describes infrastructure options for integrating and managing standard

terminologies (Section 7)

 elaborates the detailed requirements for coded terminology used in EHR systems

(Section 8)

 develops a strategy and detailed design for creating, maintaining, and distributing

coded terminology in a TME that meets the interoperability requirements of EHR

use (Sections 9-10)

 evaluates a working system that meets the requirements for creating, maintaining,

and distributing coded terminologies used in EHR systems (Section 11).

2. WHY INTEROPERABILITY IS ESSENTIAL TO

REALIZE EHR BENEFITS

The need for coded data in the EHR and the specifics around how the data are

encoded are dependent on what users want to achieve with the data. Goals for the use of

data include:

1. Sharing of data—Implementing a standard method for exchanging clinical data will

help to address costly, custom interfaces among disparate systems and the inability to

exchange data in a computable form between different care areas, facilities, and

organizations. Sharing clinical data must happen at many different levels and for

different purposes: communicating reportable diseases to state public health, the

United States Centers for Disease Control and Prevention (CDC), and the World

Health Organization (WHO); integrating “best of breed” systems within a single

facility; transferring a patient’s electronic medical record to a new facility;

communicating with insures and the government for billing and reimbursement

purposes; making data available for research; integrating a patient’s personal health

record.10 These are a few examples of the reasons why clinical data are shared.

Some are to improve patient care, governments or insurers mandate others, and some

drive an organizations business operations.

2. Executing advanced decision support logic and alerts—Humans are good at

applying knowledge, context, and past experience to understand the “big picture,”

4

plan, adapt, and make decisions. However, the consistency and reliability of

human decision-making is not perfect.11 Computer-based decision support and

alerting tools are meant to augment human decision-making. They take

advantage of a computer’s superior ability to quickly and accurately store and

retrieve data12 and apply computable rules to supply warnings and

recommendations to decision makers.

3. Sharing of decision support logic and medical knowledge—Knowledge applicable

to clinical domains is vast, ever changing, and context-dependent. It is unlikely

that a single organization could collect, represent, and maintain all of this

information. Creating an environment where this type of knowledge can be

authored and distributed among multiple different organizations/systems allows

experts to focus on the part of the problem they are best suited to address. They

can share and compare approaches to come up with a comprehensive and higher

quality model.

Because computers are incapable of automatically establishing context or accounting

for variation in text, none of the above can be accomplished without coded and structured

data. Computers can only provide accurate and timely information if the underlying data

have been normalized to address variations inherent in natural language and free text.

The types of variation include those represented orthographically: valid synonyms,

abbreviations, lexical variants; and nonorthographically: awkward/incorrect grammar,

misspellings, nonstandard codes or abbreviations.13

As an example of orthographic variation, the concept “varicella-zoster virus” has all

of the following valid synonyms and acronyms: VZV, varicella virus, zoster virus, herpes

5

zoster virus, human herpes virus type 3, HHV-3, and chickenpox virus. As an example

of nonorthographic variation, one study that reviewed 6 million chief complaint records

found 379 different misspellings for the word “vomiting.”13 Encoding data using a

controlled vocabulary normalizes the text variation and allows computers to operate

against codes that represent “agreed-to” definitions of data.

In order for both legacy and future EHR systems to achieve the ultimate goal of

providing significant and measureable improvements to population health, it is essential

that those systems utilize coded, standard terminology.8 Every secondary use of data,

whether it be summarizing, analyzing, exchanging, or transforming the data, is

completely dependent upon the data being structured, normalized, and interoperable.

3. THE STATE OF THE ART WITH REGARD

TO INTEROPERABILITY

Having established the importance of interoperability, this section more rigorously

defines it and describes the current state of efforts toward achieving interoperability by:

1. Establishing the role of terminology in achieving interoperability (Section 3.1).

2. Defining the layers and levels of interoperability (Section 3.2).

3. Describing the types of code systems and their implications for interoperability

and TME design (Section 3.3).

4. Summarizing the existing vocabulary server technologies and where things are

failing today with regard to the collection, storage, and exchange of interoperable

clinical data (Section 3.4).

3.1. Terminology Use in Interoperable Data Exchange

Interoperability is a broad concept that has many levels and must be addressed across

systems architecture, content, and hardware. The TME facilitates a specific level of

interoperability at a specific system layer, which will be described in the following

sections. Simply defined, interoperability is the ability of one computer system to

exchange data with another.14 However, there are many layers, from the physical to the

application, that require interoperability standards and there are levels of interoperability

that define the degree of semantics captured in the data that are exchanged. The role for

7

interoperability in health information systems is to allow systems to do more with data

than merely capture, store, and display it in a single, standalone system. Advanced levels

of interoperability empower decision makers with actionable information by enabling

their computer systems to exchange meaningful data and to interpret and act upon shared

data and knowledge.

3.2. Layers and Levels of Interoperability

The interoperability layers are defined by the Open Systems Interconnection

Reference Model and define interoperability standards for everything from the physical

layer (electrical and physical specifications for devices) to the application layer (semantic

conversion between associated application processes).15 The TME operates at Level 7 or

the application layer in this model.

At that application layer, there are three different levels of interoperability. As

defined by the National Committee on Vital and Health Statistics (NCVHS) in their July

6, 2000 Report on Uniform Data Standards for Patient Medical Record Information,16 the

interoperability levels are:

1. “Basic” Interoperability

– Messages can be exchanged between systems, but not interpreted.

2. “Functional” (Syntactic) Interoperability

– Messages can be exchanged between systems and interpreted, but only to

the level of the data fields; in other words, the message structure/format is

defined and understood by both sending and receiving systems, but there

is no common/computable definition of the data within the fields.

3. “Semantic” Interoperability

8

– Messages can be exchanged between systems and interpreted by both

systems; the structure of the message is defined and the meaning of the

data within the data fields is understood. The data can be acted on by the

receiving system automatically.16

Standard terminologies address semantic interoperability by providing a common set

of codes with definitions/descriptions that can be referenced to encode data across

disparate systems. The TME helps to implement semantic level interoperability by

operationalizing standard terminologies in EHR systems.

3.3. Terminology Use in EHR Systems

Health care delivery operates at the patient-centric and population level and

terminology management and interoperability are important at both levels. A patient-

centric view of clinical data does not obviate the need for exchange of normalized and

standardized data. Aggregating a single patient’s data over time requires that the data be

collected from multiple different facilities and source systems such as COTS pharmacy

systems and laboratory information systems (LIS), and combining those data in a

nonredundant and meaningful way.

For example, a patient’s list of allergies at Facility A includes shellfish. At Facility

B the same patient’s allergy list includes shrimp and penicillin, and at Facility C the list is

PCN, peanuts, and chocolate. Automatically consolidating the lists and recognizing

related and redundant items is enabled through semantic interoperability. This is

important for the accurate and concise representation of data in a patient-centric system.

Even viewing a patient's data at a single point in time can benefit from interoperability, in

9

that it gives a clinician the ability to connect data in the patient’s record to external

knowledge sources or decision support and alerting tools.17

Take this hypothetical example: A severely ill infant with suspicion of meningitis is

transferred from a rural medical facility to a pediatric hospital. The health information

systems at the two facilities are not interoperable and cannot share information regarding

the patient. At the rural facility, a Cerebral Spinal Fluid (CSF) sample was collected and

laboratory tests performed, but when the baby arrives at the pediatric hospital, none of the

previous results from the rural hospital are available to the new physician. The parents

insist that testing was performed and may even know, for example, that bacterial

meningitis was ruled out. But it does not matter, the new physician must start over and

this begins with the collection of a new CSF specimen.

Collecting a CSF sample on an infant can be a traumatic procedure for both the

clinician and the child and can have complications that worsen the outcome. Not only

does the duplicate testing introduce additional risk, pain, and expense, but also causes a

delay in this time critical, life threatening situation.18 One study found duplicate testing,

which they defined as a repeat of the same test within a 12-hour period, in 32% of the

cases examined.19 The example above describes systems that lack interoperability. The

records in these systems are incomplete, ambiguous, or not electronic. The following

describes information exchange through progressively higher levels of interoperability

previously described:

1. “Basic” Interoperability

– The physician must search through printouts or multiple screens of data to

see if the necessary laboratory test results are available.

10

2. “Functional” Interoperability

– The receiving system is able to recognize a laboratory test result (versus a

medication order, for instance) in another system, but results for a

particular test cannot be identified and the values cannot be interpreted or

aggregated with results in the receiving system.

– Automated alerting for duplicate testing, adverse events, or infectious

diseases will not work for data collected from other systems.

3. “Semantic” Interoperability

– The receiving system is able to recognize and interpret a particular

laboratory test and its results from another system.

– Critical information vital to accurate decision-making is readily available

to automated decision support and the clinician without additional time,

expense, or hardship for the patient.

Beyond its value at the patient-centric level, semantic interoperability has

significant implications at the population level. Disease surveillance and early alerting

depends heavily on the timely and accurate exchange of clinical information.20 Without

basic interoperability, humans would be required to transfer information person-to-person

through phones, fax machines, email, etc. With syntactic interoperability, data from

multiple disparate sources can automatically be collected in a single repository, but a

human or additional tooling would be required to review, normalize, and interpret the

data. With semantic interoperability, the system can recognize a specific disease

occurrence without human intervention, and automatic triggers can be set up for alerts.

11

In addition to the benefits to health care at the patient and population levels, the

economic value of interoperable data exchange has been estimated in two recent studies.

The state of Maine commissioned a cost-benefit analysis as part of the feasibility study

for the Maine Health Information Network Technology (MHINT) system. The analysis

concluded that a health information exchange could potentially save the state $42.3-$58.4

million annually in health care costs.21 In 2005, Walker et al. from the Center for

Information Technology Leadership in Boston, MA assessed the value of electronic

health information exchange at the national level. They concluded that fully standardized

health information exchange and interoperability could potentially result in a net value to

the U.S. of $77.8 billion annually.22

3.4. Interoperability Standards Efforts to Date

Recently, health care providers have been incentivized through the HITECH Act

(part of the American Recovery and Reinvestment Act (ARRA) passed by the U.S.

Congress in 2009) to implement EHRs that can achieve “meaningful use.” Many of the

meaningful use criteria are either enhanced by, or can only be achieved through,

standardization and interoperability.23 In an effort to assess gaps and areas of overlap

with regard to standards for Health Information Exchange (HIE), the office of the

National Coordinator for Health Information Technology (ONC) has taken on as part of

its mission “providing leadership in the development, recognition, and implementation of

standards and the certification of Health IT products.”24

As early as 1994, Rocha et al. first described several of the key components

necessary for the practical implementation of a vocabulary server in “Designing a

Controlled Medical Vocabulary Server: The VOSER Project.”25 The VOSER Project

12

introduced the concept of knowledge representation through three components:

controlled medical vocabulary, knowledgebase, and medical information models. It also

proposed a strategy for integrating multiple source terminologies.

In 1998, Cimino published “Desiderata for controlled medical vocabularies in the

twenty-first century” a meta-analysis that compiled best practices with regard to the

design of a controlled medical vocabulary.26

Since that time, there have been commercial, academic, and government efforts to

develop tools, services, and content to address the terminology challenges. The

following are vocabulary servers that support mappings between LITs and standards and

among standards:

 The Apelon Distributed Terminology System (DTS) is a commercial suite of tools

for terminology maintenance and development, but contains no content.27,28

 The 3M Healthcare Data Dictionary (HDD) is a runtime vocabulary server that

houses a concept-based controlled medical vocabulary with mappings among

local terminologies and standards. It contains a “tightly federated” set of

terminologies and because of this, it is limited with regard to flexibility of

mappings and source native data that it can represent.29

 Columbia’s Medical Entities Dictionary (MED) is also a concept-based controlled

medical vocabulary that took a frames-based approach to represent concepts and

mappings in a semantic network.30,31

 The Health Language Language Engine® (LE®) is a commercial terminology

management environment that allows for content authoring and management of

external code systems.32

13

 Clinical Architecture’s Symedical® Server is a commercial terminology

management environment that allows for the management of external code

systems and the creation and maintenance of mappings.33

In addition, there are large collaborative efforts to develop, publish, and load health

care terminology:

 The Lexical Grid (LexGrid) Project created by the Mayo Clinic provides support

for the distributed authoring of terminology and a method to export the content in

multiple standard formats—no content.34

 Similarly, Biomedical Grid Terminology (BiomedGT) is an open terminology for

translational research. It was initially populated with content from the National

Cancer Institute (NCI) Thesaurus and made available in a wiki format to facilitate

collaborative development—not runtime.35

Efforts towards interoperability have accelerated over the last few years. Standard

Development Organizations (SDOs) such as HL7 have taken the lead in providing

interoperability definitions, and the HL7 version 2.x messaging standard is implemented

in information systems worldwide.36 Most, if not all, clinical information systems are

currently compliant to the version 2.x messaging standards, making syntactic

interoperability an attainable reality.37 However, semantic interoperability is still

uncommon, for many reasons:

 Clinical data that are not digital; a large volume of data collection is done via

transcription to either digital free text or paper and small facilities are either

primarily or entirely on paper.

14

 Digital data that do not encode discrete data elements; many EHR systems are

document management systems that store scanned images of paper records with

very little to no discrete, structured data.

 Coding that is not granular enough; in the U.S., coding is done primarily for

billing and reimbursement purposes, using classification systems like ICD-9-CM.

Classification systems lack the granularity to achieve semantic interoperability of

clinical data without information loss.38

 Challenges implementing standards; there are multiple standards and properly

implementing them requires significant expertise.

 Branching ideas/strategies; in the field of knowledge representation, there have

been both academic and pragmatic discussions with regard to how to represent

clinical data. One such dialogue occurred between Barry Smith (From concepts

to clinical reality: An essay on the benchmarking of biomedical terminologies)

and James Cimino (In defense of the Desiderata). Smith repeatedly states that his

theory is based on “reality” and goes on to describe an approach for knowledge

representation involving the use of ontology and “universals,”39 which are

essentially rigorous and formally defined concepts. Cimino rebuts, describing

how concepts and “universals” can coexist and why there is a practical need for

concepts as an intermediary between instance data and “universals.”40

 Issues with HL7 standardization and interoperability; if you have seen one HL7

interface you have seen one HL7 interface. That is, the HL7 V2.X family of

standards allows a high degree of optionality, and there is a lack of

standardization of terminology.

15

 Issues with Vendor Technology; the approach of each vendor is different: a

Cerner system cannot communicate with a Siemens system without translation.

Use of local master files, local term tables, and local terminology servers leads to

divergent terminology use. Standard practice is that even within customers of the

same vendor, each installation makes up its own attributes, terms, and codes.

Terminology is often the last problem to be recognized and addressed in the effort to

move to digital health records. Canada, for example, is working to create a pan-Canadian

EHR. The Canadian government has described a “blueprint” for their health information

highway, which defines the infrastructure for data exchange. A key component of the

blueprint is the Health Information Access Layer (HIAL). The HIAL is an interface

specification for EHRs and all Canadian regions and provinces are expected to connect to

the HIAL.41 Canada is several years into this project and has built a great deal of

infrastructure and defined many of the standards to be used in messaging. However, they

have yet to define a practical strategy for regions and provinces to implement and

maintain standard terminologies like LOINC and SNOMED CT. Interoperability

showcases and “connectathons” in Canada are based on use cases that begin with LOINC

and SNOMED CT, neglecting to recognize that most legacy systems are incapable of

providing LOINC or SNOMED CT codes.

The challenge of interoperable standards implementations remains. Most EHR

development predates current semantic interoperability requirements, and most health

care organizations already have clinical information systems in place, a significant

financial as well as operational investment. Replacing these legacy EHRs is not a viable

option for many organizations. Considerable patient data have already been collected,

16

encoded, and stored, using the LITs in these information systems. These historical data

are critical to continuity of care and optimal outcomes for patients. Switching to

encoding new patient data with a different terminology, even a standard, would mean

these historical data are no longer compatible with the new data. Thus, while the new

data encoded with a standard terminology are semantically interoperable with other

external data also coded to the same standard, ironically, the organization’s own

historical data would not be.

Communication of interoperable data is essential to achieve the best efficiency and

outcomes in health care, both for the patient and the population. The examples above

illustrate how the lack of semantic interoperability results in duplicate clinical effort (e.g.,

laboratory testing), additional human intervention (e.g., manual data entry and review),

and difficulty in performing advanced decision support and alerting functions. And the

cost savings estimates further justify the expense and effort of implementing

interoperable health care systems. A practical migration path is needed to help health

care organizations gain the ability to achieve semantic interoperability, without imposing

undue burden on the organization and that does not result in the loss of historical patient

data.

4. TERMINOLOGY THEORY AND STRUCTURE

Having established the importance of semantic interoperability and the role

terminology has in achieving it, the following sections define categories of terminology

and their characteristics. There are broad categories of terminologies/classification

systems used within clinical information systems. Each of these source code systems has

different behavior and design characteristics. These differences place numerous and

sometimes conflicting demands on the TME. The TME design must be flexible enough

to incorporate these different categories of code systems without loss of information.

There does not appear to be general consensus on definitions of these categories. So, for

the purposes of this dissertation, descriptions will be provided below.

4.1. Local Interface Terminology

An interface terminology has been described as a collection of terms and phrases used

to enter data in a computer system.42 For the purpose of this discussion, the definition of

interfaces will be broadened to include both end-user and machine interfaces. Local

Interface Terminologies (LIT), or local terminologies, are widely variable, “home-

grown” terminologies that supply the codes and displays used within many health

information systems. Often these types of terminologies are not well behaved. Examples

of problems with local interface terminologies include:

18

 Not concept-based; term-based resulting in denormalized data because of

orthographic and nonorthographic variants; e.g., dyspnea, shortness of breath,

disnea, and SOB are various valid and invalid terms that can be used to represent

one concept.

 Code removal and/or reuse; codes are deleted and/or codes for deleted or

deprecated (inactivated) terms or concepts are reassigned to new terms or

concepts. This problem occurs in local and standard code systems; e.g., CPT

code “0002T” for “Endovascular repair of infrarenal abdominal aortic aneurysm

or dissection; aorto-uni-iliac or aorto-unifemoral prosthesis” was deleted in

December 2003 and did not appear in subsequent versions of the code system43,44;

NDC “00074433501” was for the concept “Liposyn (Fat Emulsions), 10%, IV

Solution, 200ml Bag” before July 2002. It was deleted and reintroduced as the

concept “Paclitaxel (Paclitaxel, Semi-Synthetic), 6mg/ml, Vial, Injection, 5ml

Vial” after July 2002.29

 Lack of version control; updates can be ad hoc and often there is no rigorous

mechanism for versioning or standard maintenance protocols.

 Ambiguous content; content may have a nonunique or unclear description and no

formal definition; e.g., terms such as “Blue” in a specimen domain with no

definition.

In many cases, there are not only challenges with regard to how the LIT was created

and is maintained, but also with how systems are utilizing the terminology. The LIT is

often housed within a table that is referred to as a master file (see Table 1). Master files

are referenced by applications to encode/decode data. The LIT may be hardcoded into

19

the systems, such that replacing the terminology requires rewriting the software. It is also

important to consider all of the data collected previously. Data that have been encoded

using a LIT are referred to as legacy data.

4.2. Standard or Reference Terminologies and Classification Systems

A standard terminology is one that has wide industry acceptance or use. Standards

are obtained from a variety of efforts, cover different domains of clinical and nonclinical

content relevant to the EHR, and serve various purposes. Currently, no one terminology

or classification system contains everything that is needed for the EHR. Encoding a

longitudinal patient record in the EHR requires multiple standards.

Examples of standard terminologies include:

 Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT®) is a

comprehensive clinical terminology. The U.S. Federal Government purchased a

perpetual license for the core SNOMED CT® in 2003. SNOMED CT is

maintained by the International Health Terminology Standards Development

Organisation (IHTSDO).45

 Logical Observation Identifiers, Names, and Codes (LOINC®) is a terminology

for laboratory tests, results, and clinical observations. It is developed and

maintained by the Regenstrief Institute.46,47

 RxNORM and RxTERMS48 are reference terminologies for human clinical drugs

that are maintained by the National Library of Medicine (NLM) and distributed

via the Unified Medical Language System (UMLS).49

20

 Current Procedural Terminology (CPT™) is a proprietary standard used to encode

medical services and procedures. CPT is maintained by the American Medical

Association (AMA).44

 Examples of classification systems that are considered standards for billing and

reimbursement include the International Classification of Diseases, 9th and 10th

Editions, Clinical Modification (ICD-9-CM and ICD-10-CM),50,51 and several

different Diagnosis-Related Group (DRG) systems.

 Standards are also developed by consensus industry effort, such as the

terminology authored and distributed by Health Level 7 (HL7) to support the HL7

version 2.x and version 3 messaging standards.36

4.3. Federated Terminology

Because different code systems are required to support an EHR and since standard,

commercial-off-the-shelf (COTS: terminology that is sold as part of another product or as

a stand-alone system) and legacy terminologies can be overlapping, it is necessary to

have a practical strategy for integrating and maintaining them. Recently, some have

described the notion of a single terminology that harmonizes both concepts and

knowledgebases/ontolgies from multiple sources (and most importantly, for a particular

purpose), as a “federated terminology.” Consider the following example:

Objective: Author an alert within a clinical system to fire if a patient who is

allergic to penicillins is prescribed a drug that has any of the penicillins as an

ingredient.

Challenge: To avoid the ambiguity and variability of free text, the rule is

authored against a code system. The immediate problem is which code system to

21

use. Drugs can be encoded using Medispan, RxNORM, SNOMED CT, National

Drug Code (NDC), etc. Each code system has its own way of describing clinical

drugs and hierarchies for organizing them.

Solution: Author the alert against a concept-based federated terminology that

normalizes the codes and relationships across multiple source terminologies.

Result: Regardless of which terminology was used to collect the drug

information, the alert can recognize the concept of the class of penicillins and

traverse a “has ingredient” relationship to identify all drugs that have a penicillin

as an ingredient.

The UMLS is an example of a federated terminology, but it can be thought of as a

“loose federation.” The purpose of the UMLS is to act as a reference that compiles

multiple code systems and makes them available in one place. UMLS assigns a single

Concept Unique Identifier (CUI) for “synonymous” concepts in the various code systems

it incorporates.49 Because it is meant as a reference and not a product to perform

automated data transformation, the UMLS uses a loose definition of synonymy.

The 3M Healthcare Data dictionary (3M HDD) is a product that implements a

“tight federation” by creating a "single" concept-based controlled medical vocabulary

from integrating multiple source terminologies into a single schema. The HDD first

assigns a Numeric Concept Identifier (NCID) to a defined concept, and then maps the

identifiers of clinically equivalent concepts from the multiple source terminologies to this

NCID.29 Concepts in the HDD can be missing from standard terminologies. Redundant

concepts from source terminologies, or even within a single terminology, are not

duplicated in the HDD, but would have the identifiers all mapped to a single concept in

22

the HDD. Similarly, HDD concepts are organized in multiple hierarchies and

relationships. The source terminology's native hierarchies and relationships can also be

contained in the HDD and indicated as such, similar to the inclusion and indication of

native identifiers and descriptions for concepts. The HDD's federated terminology is

used in application programming, such as the alert authoring example above, which will

be encoded using the NCID for Penicillins. The relationships of the NCID are used to

trigger the alert when any medication containing a Penicillin as an ingredient is ordered,

and the mappings of the NCID for Penicillins are used to "translate" to the required

standard terminology (e.g., SNOMED CT or RxNORM) for data exchange.29

In contrast, the TME houses a “flexible federation.” The design of the TME

allows for links among integrated terminologies to be purpose-driven and for multiple

different types of mappings/links to be established. The exact design that accommodates

this behavior in the TME will be shown later.

23

Table 1: Local Interface Terminologies (LIT). Sample codes and descriptions from a

local lab system master file.

Antibiotic Drug Code Description

ACOM ANTIBIOTIC COMMENT

AM AMPICILLIN

AMI AMIKACIN

AMI10 AMIKACIN 10

AMI2 AMIKACIN 2 MCG/ML

AMI4 AMIKACIN 4 MCG/ML

AMI6 AMIKACIN 6 MCG/ML

AMI8 AMIKACIN 8 MCG/ML

AMPB AMPHOTERICIN B

AMS AMPICILLIN/SULBACTAM

AMX AMOXICILLIN

ASEN AFB SUSCEPTIBILITY

ASENS ANAEROBIC SENSITIVITY

ATM AZTREONAM

AUG AMOXICIL/CLAVULANATE

AZL AZLOCILLIN

AZM AZITHROMYCIN

5. CHALLENGES UTILIZING TERMINOLOGY

To this point, the role of coded clinical terminology and the current state of the art

with regard to implementation of terminology in clinical systems has been discussed.

Going forward, discussion will focus on the particular approach taken in this project to

address the challenges creating and maintaining a large centralized vocabulary server.

As we have discussed, health care organizations are beginning to recognize the many

advantages of semantic interoperability. However, to achieve semantic interoperability,

political, economic, and technical challenges must be overcome. While recognizing these

additional obstacles, the focus of this dissertation will be to address the technical

challenges implementing and maintaining a federated terminology in the TME.

There are a wide variety of code systems that must be incorporated in the TME and

each requires its own special considerations. Several of the code sets that are in common

use and have become “de facto” standards in the U.S. were originally designed for billing

and reimbursement, inventory, or summary analytics.52 Because of this, they are missing

important attributes necessary for a controlled medical vocabulary intended to collect

clinical data in a longitudinal patient record. For example, these code systems may lack

the necessary level of granularity to prevent information loss or proper maintenance and

version control policy to avoid practices such as code reuse or deletion. Where the

source code system is deficient, the federated terminology housed in the TME must

compensate.

25

The challenges integrating this heterogeneous content into a single system that can

supply fit-for-purpose content can be categorized in the following way:

 Integration Challenges – these are challenges normalizing the content for various

sources to a single concept-based terminology

 Maintenance Challenges – these are challenges that come about because of the

size, complexity, and ever-changing nature of both code systems and clinical

knowledge

 Utilization Challenges – these are challenges specific to making use of this

content within clinical systems.

Each of these categories will now be further elaborated.

5.1. Integration Challenge

The following subsections will describe the challenges specific to integrating

multiple heterogeneous source code systems in the TME.

5.1.1. Multiple formats, update schedules, and content types. Source code

systems are distributed in multiple different formats (see Table 2). Some are only

disseminated in printed form while those that are available digitally may be available as

one or a combination of the following formats: Portable Document Format (PDF), text

delimited files, databases, excel spreadsheets, etc. It is important that this source data,

regardless of format, be archived and indexed so that it can be referenced in the future.

The content must also be extracted and transformed in a consistent manner so that it can

be compared against previous versions, loaded, and mapped in the federated terminology.

This requires having custom rules for the transformation and loading of data from various

sources and various clinical domains.

26

5.1.2. Differences in granularity. Granularity describes the level of detail at

which a content (code attribute) is described. Finer granularity means a higher level of

detail. Generally, classification systems are less granular than terminologies (see Table

3), but even among different terminologies, granularity can vary. Also, within a single

terminology, there may be varying levels of granularity.53 The TME must account for

these differences in granularity without discarding information from more granular

content or implying additional information for less granular content.

5.1.3. Pre- and postcoordination. “Precoordinated” terms are “molecular” terms

that combine multiple concepts or a concept and its modifiers in a single phrase. The

precoordination can be done in adherence to an underlying terminology model such as

LOINC or in the absence of a specific terminology model. An example of a

precoordinated term would be “lower left eyelid laceration.” The same “molecular” term

can also be generated in “postcoordinated” fashion by assembling the “atoms” that make

up the term: lower, left, eyelid, and laceration using a defined syntax or language such as

the GALEN Representation and Integration Language (GRAIL).54

The pros and cons of precoordination are:

1) Pro: Only the logical or “real” precoordinated terms are created and available; in

other words, illogical combinations such as “lower left hair laceration” can be

prevented. It is much more difficult to do this in a postcoordination approach.

Con: “Combinatorial explosion” or the notion that attempting to create every

logical combination of all the “atoms” explodes into an unmanageable, vast (but

not infinite) number of precoordinated concepts.54

27

2) Pro: Precoordination provides a fixed reference for an information model. There

is only one canonical way of expressing the molecular term, instead of having

multiple ways of generating the same phrase/expression.

Con: Not as flexible or easily extensible—constant need to create new terms as

opposed to just assembling known concepts in a new way.

3) Pro: The messaging machinery for storing, interpreting, and communicating a

precoordinated concept is not complex. It does not have to reference rules or a

syntax for the composition or decomposition of the terms.

Con: Precoordination can result in the inclusion of properties or modifiers in a

molecular term that should instead be inserted in other, separate fields in an

information model/message.

The pros and cons of postcoordination are the inverse of those of precoordination, but

for the sake of completeness, they are described below:

1) Pro: Avoids “combinatorial explosion.” It is only necessary to create the “atoms”

and not every conceivable way that they could be combined.

Con: It is possible to create illogical combinations of concepts such as “fractured

hair.” Preventing illogical concepts requires significant effort defining the

properties of concepts and, based on those properties, which combinations they

can participate in. For example, define hair as a body structure that cannot be

fractured or enumerate all body structures that can be fractured.

2) Pro: Easier to maintain the referenced terms because there are fewer.

28

Con: The messaging machinery for storing, interpreting, and communicating a

precoordinated concept is more complex. It must reference rules for the

composition or decomposition of the terms.

3) Pro: More readily extensible and flexible. Assembling known concepts in a new

way can create new terms.

Con: There is the risk of storing the same molecular term in multiple different

ways, because of the many different ways of defining or parsing out “atoms.” For

example, “lower | left | eyelid | laceration” or “lower left | eyelid laceration,” or

“lower | left | eyelid laceration,” etc.

 The TME must have a means to compose atomic terms in a source terminology

into more molecular terms in a target terminology and the decomposition of more

molecular terms into their respective atoms.55

5.2. Maintenance Challenge

The following sections will describe the challenges maintaining multiple

heterogeneous source systems in the TME over time.

5.2.1. Scalability. The every-changing nature and volume of content and the

variety of sources require creating a flexible, extensible vocabulary server. The challenge

is doing this without making the system so complex that it cannot be maintained or

utilized. The TME must be able to grow and integrate new content without changing the

data model or becoming overly complex.

5.2.2. Semantic shift and drift. Semantic shift or drift is a change in the meaning

of a code—the identifier for a concept in a terminology—over time. This change in

meaning is referred to as semantic drift when it happens gradually with only slight

29

changes accumulating over time. When there is a significant change in meaning at a

single point in time, it is referred to as a semantic shift.29

 As an example of semantic drift, before June 2010, NDC “30768015605” was

described as “Vitamin D (Cholecalciferol), 1000 Unit, Tablet, Oral, Sundown Inc., 100

ea. Bottle.” As of June 2010, the same NDC was changed to “Vitamin D3

(Cholecalciferol), 1000 Unit, Capsule, Oral, Sundown Inc., 100 ea. Bottle.”56 One

change in the description, going from vitamin D to vitamin D3, is not drift. Rather it is

just more specificity in the display associated with the NDC, since

cholecalciferol=vitamin D3. However, the second change going from “tablet” to

“capsule” is a conceptual change in the form of the drug. The change has introduced

“drift” in the meaning of NDC “30768015605” (see Table 4 for other examples of

sematic drift).

As an example of semantic shift, before July 2002, NDC “00074433501” was

assigned to the concept “Liposyn (Fat Emulsions), 10%, IV Solution, IV, Abbott

Hospital, 200ml Bag.” After July 2002, the same NDC was assigned to an entirely

different drug concept, “Paclitaxel (Paclitaxel, Semi-Synthetic), 6mg/ml, Vial, Injection,

Abbott Hospital, 5ml Vial.”56 This practice of reusing a code to represent a new concept

is a case of semantic shift.

 When a standard code is used to encode data directly in the EHR and the meaning

of the code changes over time, historical patient data will be interpreted incorrectly.

Depending on the nature of the shift/drift, this can have a significant negative impact on

patient care and should be considered a patient health risk.

30

 The TME must have a mechanism that addresses semantic shift and drift in source

code systems.

5.2.3. Code/concept deletion. Code deletion refers to removal of a code from a

terminology. When data are encoded with a standard code that has since been removed

by the Standard Developing Organization (SDO), the data are no longer interpretable.

For example, before December 31, 2003, CPT code “0002T” was assigned to the concept

“Endovascular repair of infrarenal abdominal aortic aneurysm or dissection; aorto-uni-

iliac or aorto-unifemoral prosthesis.” The code was deleted from subsequent versions of

CPT and is no longer available.57

 The deletion of a code is addressed with the notion of concept permanence.

Concept permanence dictates that once a coded concept has been created and referenced

in some way or used to store instance data, it cannot be deleted.26 It is only acceptable to

change the status of the concept through some method of deprecation.58 Deprecation

allows for a status to be applied to concepts and concept attributes to indicate that they

are no longer active and should be avoided. This mechanism also requires that there be a

way of indicating when concepts have been superseded.

 For the TME, this means that appropriate metadata for tracking status of concepts

and their associated descriptions, relationships, and attributes as well as a means of

indicating when these have been superseded, must be maintained.

5.3. Utilization Challenge

 The following section will describe the challenges making use of multiple

heterogeneous source systems in a single environment.

31

5.3.1. Establishing an overarching data model. In order for multiple applications

using the terminology to be semantically aligned, there must be an overarching data

model that enforces consistency in the way concepts are defined and related.

Establishing this overarching model is challenging, both because of the heterogeneity of

source terminologies that must be integrated in the vocabulary server and the various and

at times conflicting requirements of terminology consumers.

The TME must be able to unify multiple source terminologies under an

overarching data model.

5.3.2. Maintaining source transparency. When source terminology is

transformed and stored in different schema in a vocabulary server, it is important to

confirm that information from the source was not lost or changed during the

transformation. Maintaining the fidelity of the source terminology and having the ability

to extract the transformed terminology and represent it just as the source originally did is

referred to as “source transparency.”59

The TME must adhere to the principle of source transparency.

5.3.3. Lack of comprehensiveness. In many cases, a standard code system

cannot provide all the content that is needed to encode the data in a target domain.29 This

is due to a number of factors: changing medical knowledge and events, content that is

truly local in nature such as room and bed numbers, granularity differences between the

data collected and the concepts available in the terminology, immature standards, etc.

Some standards provide for local extensions. Local extensions are codes added by an

entity, other than the SDO, to support operational needs, e.g., locally formulated

medications. However, not all standards have such a mechanism. The consequence is

32

that there is always data collected for which there is no standard code available. Table 5

reports LOINC coverage of US Department of Defense local lab terminology represented

in the 3M Healthcare Data Dictionary.60

The TME must employ a strategy to deal with the lack of comprehensiveness in

standards and standards that have no formal mechanism for local extensions.61

5.3.4. Historical compatibility. If historical data have been encoded with

nonstandard terminologies/LITs, then, encoding new data using standard terminologies

from a particular point onward would result in the historical data not being interoperable

with the new data. This creates an ironic situation where an organization can achieve

semantic interoperability with the outside world, but lacks interoperability with its own

legacy data and systems.

5.3.5. Establishing a distinction in the role of the terminology model vs. the

information model. An information model describes entities and events, the actions that

can be associated with them, and their attributes or properties. Patient data collected

according to an information model capture an "instance" in the clinical encounter. The

concepts that "instantiates" a model—encoding the patient data—are provided by a

medical terminology, and are defined by the terminology model. In theory, a

terminology model should be used to represent concepts their attributes (defining

relationships among concepts), while an information model formalizes the way concepts

interact in an event or observation.62

An information model enables syntactic level interoperability. It defines the

fields in a message and describes the relationships among clinical events and

terminologies in a fashion that gives them meaning and context. While it enforces

33

accepted truths, it allows uncertainty and even errors. An information model cannot and

should not prevent a clinician from making what seems to be an incorrect or uncertain

diagnosis, but it will help prevent the storage of illogical or impossible findings such as

“fractured body fluid.” Information models mediate between data-gathering software and

databases and are supported by terminologies.63

For example, a terminology model for clinical drugs can be used to define a

clinical drug as having an ingredient, strength, form, route, and brand name as the

defining attributes. An information model can then include the concept of a clinical drug

in a medication administration observation that defines the site of administration, the

dose, the prescribing clinician, etc. The key point is that a terminology model is used to

help define a concept/entity unambiguously and an information model defines the

behavior of the concept/entity or its interaction with other concept/entities.

Terminologies can always encode the “observables”/names in an information

model and in many cases, the “values” in a name-value pair. In one name-value pair

example, a LOINC code can be used to represent a white blood count. The associated

value for the white blood count is numeric and is not encoded. Since this type of data

(e.g., numbers, dates, times) is still computable, it would still be considered “encoded.”

In a slightly different situation, there can be two codes, “skin color” as the observable,

and “cyanosis” as the value. In this case, both the name and the value are encoded.

Fields Observables/Names Values

Information Model Terminology Coded or Noncoded Data

Terminology and information models must be closely associated. In the best case

scenario, they are developed together or the development of one informs the development

of the other.

34

For the precoordinated term previously mentioned, “lower left eyelid laceration,”

an information model may be written to capture a finding and it might look like this:

Observation = Finding

Modifier = Body Site

Observation = Body Site

Modifier = Laterality

Modifier = Depth

To properly instantiate this information model with the precoordinated term

“lower left eyelid laceration,” there must be a computable way to decompose “lower left

eyelid laceration” to:

Finding = “laceration”

Body Site = “eyelid”

 Laterality = “left”

 Depth = “lower”

Parsing these types of noun phrases is very difficult to do without being able to

reference some type of terminology model. Taking the same example, a postcoordinated

phrase requires that there be a mapping and harmonization of the terminology model to

the information model. For example:

Terminology Model: Information Model:

 Disorder Finding

Body Structure Body Site

 Structure Modifier Laterality

 Depth

In either case, the work of integrating an information model with terminology that was

developed independently is nontrivial.

Overlap between information and terminology models occurs when there is

ambiguity with regard to what relationships (laterality, chronicity, severity, etc.) form the

defining attributes of a concept. A simple example would be the concept of “left arm.”

A terminology model may have included laterality as a defining attribute for an anatomic

35

concept type, but at the same time laterality has been included as a modifier of an

information model that defines body site. This results in laterality (“left”) being included

in both the molecular concept (“left arm”) that has been used to instantiate the body site

observation of the information model (Body Site=”left arm”), and as an atomic concept

“on its own” being used to instantiate the laterality observation of the information model.

It is even conceivable to have conflicting laterality information in the two slots.

First Variant: Second Variant: Conflicting Variant:

Body Site = “arm” Body Site = “left arm” Body Site = “left arm”

 Laterality = “left” Laterality = “left” Laterality = “right”

Overlap between terminology model and information model creates a situation

where it is possible to instantiate the same data in multiple different ways. Allowing the

same conceptual data to be encoded/stored in multiple different ways replicates one of

the major issues with free text (high variability), drastically reduces semantic

interoperability, and results in denormalized data.

The TME must provide rigorous, computable definitions of concepts so that

terminology can be properly integrated with information models.

36

Table 2: Release Schedules and Formats for Some Standard Code Systems.

Standard Release Schedule Release Format

ICD-9-CM
yearly; with quarterly

updates

Variety of formats released by

several independent publishing

companies

LOINC
twice a year; approx. Feb

and Jul
ASCII Text, Microsoft Access

RxNORM monthly

UMLS Metathesaurus Relational

(MR) or Rich Release Format

(RRF) tables

SNOMED

CT
twice a year; Jan and Jul

SNOMED CT specific Release

Format (RF); transitioning from

Release Format 1 (RF1) to a new

Release Format 2 (RF2)

Table 3: Granularity of Terminology vs. Classification System. Hierarchy for

“benign neoplasm of bone” in SNOMED CT64 and ICD-9-CM.50 Each “↳” represents a

new level of increasing granularity in the hierarchy.

SNOMED CT (Clinical Terminology)
ICD-9-CM (Classification

System)

(no matching granularity)
Benign neoplasm of bone and

articular cartilage

benign neoplasm of bone (no matching granularity)

 ↳ benign neoplasm of bone of lower limb (no matching granularity)

 ↳ benign neoplasm of long bones of lower limb ↳ Long bones of lower limb

 ↳ benign neoplasm of femur (no matching granularity)

 benign neoplasm of fibula (no matching granularity)

 benign neoplasm of metatarsal bone (no matching granularity)

 benign neoplasm of tibia (no matching granularity)

37

Table 4: Other Examples of Semantic Drift. Changes in concept descriptions.

Attributes for which the descriptions changed are underlined.

NDC ORIGINAL DESCRIPTION NEW DESCRIPTION

24385041396

Calamine (Calamine), Lotion,

Topical, Bergen Brunswig,

180ml Bottle

Calamine (Calamine/Zinc Oxide),

8%-8%, Suspension, Topical,

Bergen Brunswig, 177ml Bottle

45802014464

Hydrocortisone-Pramoxine

(Hc Acetate/Pramoxine HCL),

1%-1%, Cream(gm), Topical,

Perrigo Co., 30g Tube

Hydrocortisone-Pramoxine (Hc

Acetate/Pramoxine HCL), 1%-1%,

Cream/Appl, Rectal, Perrigo Co.,

30g Tube

49348003539

Antacid (Mag Hydrox/Al

Hydrox/Simeth), 400-400-30,

Oral Susp, Oral, Sunmark,

360ml Bottle

Antacid-Antigas (Mag Hydrox/Al

Hydrox/Simeth), 400-400-40, Oral

Susp, Oral, Sunmark, 360ml Bottle

Table 5: LIT LOINC Coverage. As mentioned earlier, the 3M HDD holds a federated

terminology that maps among clinically equivalent concepts in standards and LITs.

“Unique Lab Results” = number of unique lab result concepts in the source code

system.60

Source of Code

System

Unique Lab

Results

Unique Lab Results

with LOINC®

Percent Unique Lab

Results with LOINC®

3M HDD Federated

Terminology Total
43,664 27,509 63.00%

U.S. Department of

Defense LIT
21,171 9,925 46.90%

Commercial Sites

LITs
13,400 6,752 50.40%

6. PROJECT AIM: CREATE INFRASTRUCTURE FOR A

TERMINOLOGY MANAGEMENT

ENVIRONMENT (TME)

At high level, there are three components critical to a system that addresses the

challenges described in Section 5 while supporting the structuring, encoding, and

integration of clinical data:

1. People, which include subject matter and informatics experts that author and

maintain the content. They must:

 Apply expert knowledge to the creation and management of content

 Understand terminology principles and best practice

 Enforce standard policies and procedures

 Understand the terminology life-cycle, how content is managed over time

2. Applications, which read and write content to and from the terminology server.

3. Infrastructure, which includes the database and services that store and provide

access to the content.

a. Services, supply consistent and controlled access to terminology

b. Database, houses content, which includes two interdependent

constituents:

i. clinical terminology to achieve semantic consistency (data

normalization)

39

ii. medical information models to achieve syntactic structure

This project considers the complete solution and focuses on the clinical terminology

and infrastructure components of a Terminology Management Environment (TME). It is

not the goal of this work to develop yet another theory with regard to how to best

represent knowledge or a branching strategy for the development of clinical

terminologies. The tools, databases, and methods developed in this project provide

infrastructure for the maintenance of standard terminologies and mappings among them,

while preserving backward compatibility with LITs and legacy systems.

7. DATABASE DESIGN OPTIONS FOR THE TME

This project considered four options for implementing standard terminologies in the

TME. Selecting the optimal approach took into consideration the following:

Key Consideration:

 Support for a single, overarching terminology model; ability to transform multiple

heterogeneous terminology models into a single reference model.

 Support for source transparency; ability to retain all native information and

attributes of integrated code systems.

 Overall scalability and maintainability of the solution.

Additional Considerations:

 Interoperability with legacy data and systems; is it necessary to maintain

compatibility with data previously stored using nonstandard codes and/or systems

that produce or are dependent on nonstandard codes?

 Cost/effort to implement standards; different approaches will have very different

cost and effort to implement. Are the expected immediate and/or long-term

benefits of the approach worth the additional cost?

 Cost/effort to stay up-to-date and maintain mappings; if there is a decision to map

between LITs and standards, what are the maintenance requirements and how can

the effort be optimized?

41

 Flexibility and extensibility of approach; how does the approach scale and how

adaptable is it to changing requirements?

The options for standards implementation are described in the following sections and

evaluated against TME key considerations for support for a longitudinal patient record in

an EHR. The four options were:

 Option 1: No Integration Model

 Option 2: Loose Integration Model

 Option 3: Tight Integration Model

 Option 4: Hybrid Integration Model

Each of these options will be discussed in detail in the following sections.

7.1. Option 1: No Integration Model

One implementation approach is to use standard terminologies “directly”—meaning

data are initially encoded using the standard code. In this case, all the LITs or master

files (e.g., list of tests, results, specimens, units) referenced in information systems are

replaced with standard codes. Systems then use the standard codes directly without

performing any type of translation from LIT to standard.

 Support for a single, overarching terminology model; this option does not support

a single reference terminology model unless a single standard code system is

used.

 Support for source transparency; this option can support source transparency as

long as a proper versioning strategy is implemented.

42

 Overall scalability and maintainability of the solution; specific to terminology,

this solution may require minimal effort to maintain. However, the approach may

create additional downstream effort for the consumers of terminology.

 Interoperability with legacy data and systems; because this approach does not

maintain any type of link between the original terminology used to encode data

and the standard, there is no backward compatibility.

 Cost/effort to implement standards; initial effort to implement may require

changes to the applications that reference the terminology. For example, if a

legacy system had rules that referenced particular concepts or classes in the LIT,

they will have to be changed to reference appropriate concepts/classes in the

standard.

 Cost/effort to stay up-to-date and maintain mappings; the effort to stay current

with changes in the standards is very use-case-dependent. It may be that the

applications referencing the standard can just follow the standard. In other words,

as updates are available in the standard, they are applied without attempting to

understand or mitigate the impact of any changes. However, as in the example

above, if the interaction between the application and the standard is more tightly

coupled, rules that reference particular concepts/classes in the standard must be

modified if the concept/class undergoes a change (i.e., deleted, deprecated, or

undergoes a change in meaning).

 Flexibility and extensibility of approach; this approach is not very flexible, but it

is extensible. The design of the standard terminology is dictated by the SDO,

limiting flexibility. Changes to the terminology are centrally managed by the

43

SDO requiring time to implement. However, the approach is scalable.

Complexity of dealing with the interaction between terminology and the systems

is pushed off to the systems, rather than dealing with it at the level of the

terminology.

This is not an appropriate organization-level approach to address standards

implementation, but for individual systems that are performing data collection and for

which the content available in the standards is adequate, this can be an appropriate and

effective way to implement standards.29 Since the TME is meant to address the needs of

an EHR, and integrate multiple disparate systems that have different levels of interaction

with terminology, this approach will not work (see Figure 1).

7.2. Option 2: Loose Integration Model

Another implementation approach involves performing a direct mapping between the

LIT and each target standard terminology (point-to-point mapping). Since multiple

standard terminologies are required to support an EHR, this approach results in a web of

many overlapping source LIT to target standard mappings as well as source LIT to target

LIT maps (see Figure 3).

 Support for a single, overarching terminology model; this option does not support

a single reference terminology model unless a single standard code system is

used.

 Support for source transparency; this option can support source transparency as

long as a proper versioning strategy is implemented.

44

 Overall scalability and maintainability of the solution; see the discussion

regarding point-to-point mapping. This solution has poor scalability and becomes

increasingly difficult to maintain as additional code systems are managed.

 Interoperability with legacy data and systems; since a reference mapping between

the LIT and the standard is maintained, new data are interoperable with legacy

data, except in the case where there is no equivalent concept in the LIT or

standard.

 Cost/effort to implement standards; for three or less mappings between

source/target pairs, this type of mapping can be effective. However, as the

number of overlapping source/target pairs increase, the number of mappings that

must be generated grows at a rate of n(n-1)/2 (see Figure 2).

 Cost/effort to stay up-to-date and maintain mappings; just as the initial effort

rapidly grows as the number of source/target pairs grow, so does the number of

mappings that must be maintained.

 Flexibility and extensibility of approach; this approach is neither flexible nor

extensible. A map requires that there be a corresponding concept in the target

terminology. If there is not one, there is no map, and consequently no way to

represent a LIT concept for which there is no standard code.

Because of the inability to represent LIT concepts for which there is no equivalent

standard code and the inefficiency of both initial and maintenance mapping, this

approach is inappropriate for the TME (see Figure 3).

45

7.3. Option 3: Tight Integration Model

The third option involves creating a reference terminology (mediation layer) to

which standards and LITs can be mapped (centralized mapping). In this approach, the

legacy systems that collect data continue to use their native code system (LIT). That LIT

is linked to a federated terminology through centralized concept mapping (see Figure 4).

Standards are similarly mapped to the federated terminology (see Figure 5)

Concept mapping is the process of building links among codes/terms in disparate

terminologies in order to integrate them for the purpose of data exchange. It can also

serve to normalize a term-based terminology to a concept-based terminology. A concept

is a unique, definable, abstract idea that describes a class of entities (i.e., “man”), a

category of objects (i.e., “mammal”), and/or the relationships between them (i.e., “is a”).

A concept has a specific, known meaning and is labeled using terms. Multiple different

terms can be used to label the same concept.

Mapping must also take into account the purpose for which the mappings will be

used. Because of this, a mapping done in one context could be considered equivalent

where in another context it would be broader or narrower. For example, drugs being

mapped for inventory may be matched for equivalence down to the level of manufacturer

and packaging, whereas drugs mapped as allergens could be matched for equivalence

based on ingredients alone. A third intermediate level of specificity for mapping of drugs

would be clinical drugs where the level of granularity could go to ingredient, strength,

form and route.

This approach has the following advantages:

46

 Interoperability with legacy data and systems; since a reference mapping between

the LIT and the standard is maintained, new data are interoperable with legacy

data.

 Cost/effort to implement standards; mapping effort is centralized, providing

significant economy of scale over point-to-point mapping.

 Cost/effort to stay up-to-date and maintain mappings; each mapping between the

source and the federated terminology can be maintained separately without

impacting other mappings (see Figure 4).

 Flexibility and extensibility of approach; this approach is both flexible and

extensible and provides for:

– full control over the federated terminology that is referenced by internal

systems

– the ability to compensate for semantic drift or shift in standard terminologies

– the ability to encode local data that do not appear/belong in the standard

terminologies

Although this has significant advantages over using the standards directly and point-

to-point mappings, it requires transforming the source terminologies to a single reference

terminology model. It is difficult to do this and maintain source transparency, the second

key consideration for the TME. Consequently, this option was not selected for the TME

(see Figure 5).

47

7.4. Option 4: Hybrid Integration Model

The fourth option combines a loose and tight integration models. In accordance with

the loose integration option, each source is maintained in its own namespace. A

namespace is an abstract or logical container within the terminology server that

segregates content from various sources. However, integration is accomplished through a

centralized mapping in a TME Federated Terminology (TFT), rather than point-to-point

mappings among the various namespaces (see Figure 4).

This design option was selected for the TME because it maintains many of the

advantages of centralized mapping and meets all three key considerations. It provides a

single overarching terminology model. It allows for centralized mapping, making the

approach more scalable and reducing the number of mappings that must be maintained.

It allows for source transparency (see Figure 6).

48

Figure 1: Option 1 - No Integration. This option involves using the standards directly.

It fails to meet the first key consideration for TME which is support for a single

overarching terminology model. *Systemized Nomenclature of Medicine - Clinical

Terms (SNOMED-CT); Logical Objects Identifiers Names and Codes (LOINC);

International Classification of Disease (ICD); RxNorm.

Figure 2: Point-to-Point Mapping. Dotted red lines represent mappings among LITs

and standard code systems. In this example, the mapping of nine source code systems

results in the creation of thirty-six point-to-point mappings.

Vocabulary

ServerVS.
2

)1(nn
maps

Source 1

Source 2

Source 3

Source 4

Source 5

Source 6

Source 7

LOINC

SNOMED

CT

Source 1

Source 2

Source 3

Source 4
Source 5

Source 6

Source 7

LOINC

SNOMED

CT

49

Figure 3: Option 2 - Loose Integration Model. This option involves content

integration through point-to-point mapping. It fails to meet the first and third key

considerations for TME. There is no overarching model and content is not scalable.

Vocabulary

ServerVS.
2

)1(nn
maps

Source 1

Source 2

Source 3

Source 4

Source 5

Source 6

Source 7

LOINC

SNOMED

CT

Source 1

Source 2

Source 3

Source 4
Source 5

Source 6

Source 7

LOINC

SNOMED

CT

Figure 4: Centralized Mapping. Mapping to a central reference terminology. Dotted

red lines represent mappings among source LITs and standards.

50

Figure 5: Option 3 - Tight Integration. This option involves content integration

through centralized mapping. It fails to meet the second key considerations for TME.

Since sources are transformed in the mapping, there is a lack of full source transparency.

Figure 6: Option 4 - Hybrid Integration. This option involves content integration

through centralized mapping while maintaining sources in their own namespaces. It

meets all key considerations for TME.

8. COLLECTING AND ANALYSING

REQUIREMENTS FOR THE

TME

Having established the challenges that must be addressed by the TME and the general

approach for managing content in a federated terminology in Section 7, this section

defines the TME actors and functional requirements.

8.1. Terminology Actors

A terminology actor is a role that aggregates a set of interactions between a

user/system and the federated terminology. In the TME, there are two broad types of

interaction: using/referencing the terminology and maintaining/augmenting the

terminology. A single user can assume multiple roles. Users can be organizations,

applications, services, or individuals. The types of actors were derived empirically,

through experience and observation of current vocabulary servers and EHR system and

by referencing similar work done by HL7.65 Terminology actors include: terminology

browser, terminology author, clinical investigator, and applications. These roles are not

necessarily distinct; rather in most cases, they are overlapping. In the subsequent

sections, actors will be defined along with supporting use cases that describe the manner

in which they interact with the terminology in the TME.65,66

52

8.1.1. Terminology browser. A terminology browser is an actor that must be

able to view a federated terminology either to maintain it or to use it (see Figure 7). This

requires capability to search for a specific concept using various terms and codes or

browse using navigational hierarchies or traversing the semantic network.

Good browsing capability is critical to the TME. Because of the volume and

complexity of the content integrated in the federated terminology, it can be challenging to

make it accessible for use and maintenance. Using the 3M HDD as an example, as of

July 2010 there were 2,206,205 active concepts, 16,711,326 relationships, and

31,513,166 descriptions associated with those concepts.29 As of January 2008,

SNOMED CT had approximately 311,000 active concepts,64 as of July 2010, RxNORM

had approximately 140,000 active concepts,67 and as of June 2010, LOINC had

approximately 56,000 active concepts.68 Finding a specific concept or set of concepts in

such large volumes of content requires advanced searching and filtering capabilities. A

terminology browser must be able to navigate a semantic network and employ various

searching string matching techniques against the federated terminology. This technique

must include methods that allow for string matching for a particular concepts or a concept

that is used to aggregate other concepts and the ability to place filters and or provided

related metadata in the searching. The metadata can be information such as source code

system version or other historical information with regard to the content (provenance

data) or the intended context of use.

8.1.2. Terminology author. A terminology author must be able to update,

version, and extend the federated terminology. Terminology author requires all of the

“reading” capabilities of terminology browser, but must also be able to “write” to the

53

federated terminology (see Figure 7). The key challenge with terminology author is

properly managing privileges and the various levels of access control within this role.

The content must provide namespaces and other means of organizing, partitioning, and

assigning status that can be referenced by privileges to determine access. Access control

for terminology author must have the following levels:

1) Global Author: This terminology author has editing privileges to all content

regardless of namespace.

2) Namespace Author: This author has editing privileges to content within a

particular namespace only. Namespace Author can add code attribute content

to concepts that are in other Global Namespaces within their local namespace

(e.g., add relationships to a LOINC concept that exist only in the author’s

namespace).

There are specific user-level privileges that can be enabled or disabled for Global and

Namespace Authors which include:

 Ability to create new concept

 Ability to create new relationships

 Ability to create new representations

 Ability to create new mappings.

 Ability to edit content created by another user.

 Ability to edit content that is not in active status.

Intentionally missing from the list of capabilities of terminology author is any ability

to delete concepts. Authors can only change the status of a concept or its associated

attributes. This approach to managing content is meant to be compliant with the notion

54

of concept permanence.26 A federated terminology that is referenced to store patient data

in a longitudinal record must have robust auditing capability, specifically the ability to

know how the terminology looked at any single point in time. By assigning status to

concepts and their associated attributes (relationships, properties, descriptions, etc.),

authors can perform “housekeeping” types of updates to the terminology such as

inactivating or making obsolete certain relationships or terms, but still maintain the

integrity and history of the federated terminology. This is important to support both

internal and external dependencies on the content. Examples of dependencies include the

ability to decode data that has been stored over time or track changes to a concept that

maybe referenced by a rule.

8.1.3. Clinical investigator. A clinical investigator is interested in using the

instance data encoded by the federated terminology to answer business intelligence

queries, perform benchmarking, and for quality assurance and research analytics (see

Figure 7). However, understanding the instance data and answering questions with it

requires knowledge of the data structure in the federated terminology and the ability to

augment/manipulate the data structure to answer new types of questions. A clinical

investigator must be able to create new classes and relationship types that can be used in

queries for indexing and inferenceing, to aggregate data for a specific purpose or link

concepts using horizontal or vertical relationships. In order to perform these tasks, a

clinical investigator must have the concept browsing functions of a terminology browser

and limited terminology author capability.

8.1.4. Applications. During development and deployment, clinical systems must

utilize the federated terminology. These applications require “read” and “write”

55

capability and must support both automated and manual referencing and manipulation of

the federated terminology (see Figure 7). The Lexical Query Services Specification

(LQS) describes use cases that would require the following types of tasks be performed.66

Applications reference the federated terminology to perform the following types of

tasks:

1. Collect structured/encoded data

 During data entry, an application references a class/pick-list in the federated

terminology to help a user populate a field with a concept. The proper place to

maintain these classes/pick-lists is in the federated terminology. Doing so allows

the lists to be dynamic and up-to-date, without requiring modification of an

enumerated list “hard coded” in the clinical systems. Applications may also

utilize the federated terminology to validate values “hand-entered” by system

users.

 If the data have already been entered in free-text, an application like a Natural

Language Processing (NLP) engine can be used to apply context and parse out

concepts that can be encoded by referencing the federated terminology.69

2. Perform mediation services

 Applications such as integration engines translate inbound codes in one code

system to an outbound code in another specified code system by referencing the

federated terminology.

 Applications may also modify the structure of instance data for export to other

systems.

3. Display data

56

 Applications need to be able to pick a particular concept description or set of

descriptions from the federated terminology to display to system users both

during data entry and when viewing previously collected data.

4. Inferencing

 Applications need to be able traverse relationships among concepts, for example,

if the application needs to check if a medication is an antibiotic.

8.2. Functional Requirements for the TME

The Lexical Query Services Specification (LQS) describes a set of use scenarios that

serve as a good reference for the minimum set of requirements the TME must support.

The following use scenarios are defined in LQS:

1. “Information Acquisition - Using terminology services to aid in the

process of entering coded data.

2. Information Display - Using terminology services to translate coded data

elements into human- or machine-readable external forms.

3. Mediation - Using terminology services to transform messages or data

records from one form or representation into another.

4. Indexing and Inference - Using terminology services to inquire about

associations which may or may not pertain between various data elements

and to assist in the location of various data record sets, which may contain

information relevant to the specific topic or entity.

5. Browsing - Using the terminology services to determine the structure and

meaning of a terminology system.

57

6. Composite Concept Manipulation - Using the terminology services to aid

in the entry, validation, translation, and simplification of composite

concepts.”66

The use scenarios are primarily addressed through TME support of CTS Section

11.2; however, they will be referenced in the use-case-based service requests described in

Section 11.1. In addition to these LQS use scenarios, there are additional requirements

described in following sections that are specific to the integration and maintenance of

multiple source terminologies in the TME.

8.2.1. Faithful concept representation. The TME is required to integrate multiple

standard code systems and LITs into a single federated terminology. This must be

accomplished without losing or altering the meaning of source content attributes and

properties. The TME follows a concept-based approach for knowledge representation

and is designed to allow creation of additional properties and defining attributes for

concepts.26 Differences in granularity among integrated terminologies can be reconciled

by traversing hierarchical relationships. In this way, the TME maintains the original

semantics and granularity of the data that are encoded or transformed with concepts in its

federated terminology.

Functional Requirement: Source content must be represented in the TME with

high fidelity (no change in the original meaning).

8.2.2. Single schema/common terminology model. The content of the TFT is

utilized for various purposes by multiple different terminology actors previously

described. The point of having a single schema is to integrate the content and reconcile

the heterogeneity of the source code systems from the terminology actors.

58

As an alternative, specification like HL7 Common Terminology Services (CTS)

can hide the heterogeneity of multiple disparate data models by using a services layer to

normalize the terminology models, but the content from multiple sources is not

integrated. Some type of federated terminology is still required for content integration.

HL7 CTS is described in further detail in Section 8.2.9.

 Functional Requirement: The TME must store, access, link, and augment

multiple disparate code systems in a single schema/terminology model.

8.2.3. Support for multiple data/information models. The semantics of concepts

in the TME must be explicit and computable in order to be shared among various

terminology actors, both people and machines. Concept definitions, relationships, and

representations must also be flexible and extensible enough to incorporate new content

without losing clinically relevant information. Information models will reference the

terminology for coded elements and value sets. The necessary metadata (TME) and

content organization (TFT) must be in place to support models.

 Functional Requirement: Concept representation in the TME must be

expressive enough to transform multiple source terminology models and support medical

information models of various systems.

8.2.4. Partitioning. In order to export terminology for a special purpose,

generate multiple consistent views of the same underlying data, control access to

particular type of content, and create value sets, the TME must have the ability to

partition concepts and concept attributes into sets. Any one concept or concept attribute

must be able to participate in multiple sets. The granularity of partitioning must be finer

than just generating concept sets. Sets of all concept attributes must also be supported.

59

Examples include creating values sets to support an information model or exporting a

subset of content for a domain-specific application.

Functional Requirement: The TME must have the ability to create “content

containers” or sets of concepts and/or concept representations.

8.2.5. Version control. The TME must be capable of tracking discrete version

information for all TME entities. Versions are associated through metadata linked to

each entity and are assigned based on changes in status. In order to make this possible,

concepts, relationships, mappings properties, and attributes are all assigned a status that

can be associated with additional metadata specific to version. Here are the types of

content that are versioned in the TME:

 Concept versioning, inactivation, and expiration management

 Concept representations

 Concept attribute/property versioning

 Concept relationships

 Mappings

 Native source code system version information

 TFT version history

All related data elements of concepts in standard terminologies can change from

one version to the next: relationships, surface forms, definitions, codes, and attributes. In

addition, it is not always clear when a change in a relationship or surface form (which

would result in versioning of the attribute) constitutes a change in the meaning of a

concept. These dependencies between a concept and its associated attributes,

representations, and relationships must be considered in the versioning process.

60

Unfortunately, the dependencies are not consistent across namespaces and in many cases

will require SME review. Tracking this information and being able to represent how a

source looked at any previous point in time is important for semantic interoperability and

QC of the federated terminology.

The management process for addressing versioning challenges requires:

 good tracking and auditing capabilities in the TME

 ability to store version information with instance data in the data repository or

reliably reference the date and time of data storage to determine the version

information using the TME

 ability to assign version information to content that is not versioned by the source

 ability to communicate version information in messages to external systems

Functional Requirement: The TME must be able to provide version information and

recreate multiple previous versions of the same content.

8.2.6. Terminology browser use-case-based TME service requests. Essential

functional requirements for the TME were established by identifying the capability

necessary to support the use cases for each type of terminology actor. A terminology

browser needs to view and navigate terminology for two general purposes: entity

browsing and administrative browsing. Entity browsing is focused on the meaning and

design of the terminological content in the federated terminology and the various

namespaces. Administrative browsing is focused on associated information about the

code systems integrated in federated terminology and the status of work performed by

various types of terminology authors.

61

The following is a set of specific example use cases for content browsing followed by

bulleted functional requirements:

1. A terminology browser needs to find a SNOMED CT code for the finding (term or

phrase) “dyspnea.”

 Find a representation of specified type (e.g., concept/code) in an optionally

specified code system/domain/namespace using one/many synonymous

term(s)/phrase(s) (e.g., search using the term “dyspnea” or the phrase “shortness

of breath” as display representations, in the domain of findings).

 Return a specified representation type for a concept (e.g., return the SNOMED

CT code for the concept of “dyspnea”).

2. A terminology browser needs to find a particular description for the SNOMED CT

code “267036007.”

 Find the concept for a code from a particular code system (e.g., return the concept

identifier for SNOMED CT code “267036007”).

 Return specified description/code for a concept (e.g., return the “SNOMED CT

Fully Specified Name” for the concept of “dyspnea”).

3. A terminology browser needs to find the “parent” concept of the finding “dyspnea.”

 Find the concept for the term “dyspnea” in the domain of findings; the domain

(context of use) is specified to disambiguate the concept of dyspnea as a finding

from a diagnosis or a keyword.

 Navigate the links/relationships among concepts/classes in and among code

systems (e.g., “dyspnea” is a “child” of “respiratory finding”).

62

 Return the concept identifier for the right- or left-hand concept in a relationship

triplet (relationship triplet = left-hand concept, relationship type, right-hand

concept).

4. A terminology browser needs to view everything that the federated terminology has

documented regarding the finding “dyspnea.” This includes concept metadata (e.g.,

status) as well as related concepts, mappings, and designations.

 Find the concept for the term “dyspnea” in the domain of findings.

 Return the links/relationships to and from the concept “dyspnea.”

 Return all of the associated codes and descriptions for the concept “dyspnea.”

 View all information related to a particular concept and how it is currently

described in various code systems; in other words, how a concept is represented in

the federated terminology, as well as the ability to determine how it was

represented in various other terminologies and the native code system it was

derived from (e.g., relationships, mappings, description, synonyms, attributes,

etc.).

5. A terminology browser needs to view the history of how the concept “dyspnea” has

been represented in the federated terminology.

 Return the history of a concept/code/description (e.g., what was the status of code

“x” in version “y” of a standard terminology).

The following is set of example use cases for administrative browsing which include

capabilities necessary to view information about the code systems integrated in federated

terminology and the status of work performed by terminology authors:

63

6. A terminology browser needs to determine what code systems are included in the

federated terminology.

 Return a list of code systems that have been mapped to the federated terminology

(e.g., LOINC, SNOMED CT, RxNORM, LITs, etc.).

7. A terminology browser needs to know what the most current version of LOINC in the

federated terminology is.

 Return version information for the code systems integrated in the federated

terminology.

8. A terminology browser needs to know row-level (LIT code to federated terminology

code) status of a mapping effort from an LIT to the federated terminology.

 Return metrics for the following types of workflow status reports:

– status of mapping effort (rows reviewed, rows mapped, rows with

outstanding questions)

– status of mapping questions

– results of validation during interrater review

8.2.7. Terminology author use-case-based TME service requests. SMEs are a

primary user of terminology author functions. The TME must address processes related

to the management of the federated terminology by SMEs. This includes workflow

functionality for maintenance and extension of content as well as QC processes.

At an operational level, concept mapping functions require:

 Editing environment to link external code systems to the TFT and to integrate

LITs and standard code systems with associated codes, terms/descriptions,

relationships, and attributes.

64

 Work queues for tool users

 Administrative reporting functionality around work queue status: pending, in

process, completed, etc.

 What about algorithms to find potential matches?

The previously enumerated use cases for a terminology author are addressed with the

following functions:

1. A terminology author needs to be able to browse the federated terminology to

perform maintenance and add content.

 All of the capabilities of a terminology browser.

2. A terminology author needs to be able to add a new concept “SARS” and

associated metadata to the federated terminology in the TFT namespace.

 Browse to verify that the concept “SARS” does not already exist in the

federated terminology.

 Build a unique concept with appropriate relationships, attributes, properties

and descriptions.

 Create mapping link from the concept in a source code system to the new

concept in federated terminology.

3. A terminology author needs to be able to add an “is a” relationship between the

concept “cytomegalovirus” and the class “virus.”

 Add attributes to an existing concept. Concept attributes include: properties,

attributes, relationships, and descriptions.

4. A terminology author needs to be able to create a new relationship type “has

ingredient.”

65

 Create new types of description, relationships, attributes, and properties for

concepts.

5. A terminology author needs to be able to update the status of the concept

“chickenpox virus” to “inactive” and indicate that it is superseded by the concept

“varicella zoster virus.”

 Change the status of concepts and associated metadata.

 Indicate that an inactive concept should be replaced with another concept.

6. A terminology author needs to be able to close a version of the federated

terminology.

 Create both workspace (a version that contains only the work of a single

terminology author) and global versions of the federated terminology.

7. A terminology author needs to be able to add a new namespace to the federated

terminology.

 Obtain code system from the source organization (extract step).

 Transform source content using a data mapping from the source code system’s

data model to the federated terminology data model (transform step).

 Load the source code system into the TME (loading step).

 Integrate the source code system by mapping it to the federated terminology

(mapping step).

8. A terminology author needs to be able to update an external code system

maintained in the federated terminology.

 Obtain code system update from the source organization (extract step).

66

 Transform source content using a data mapping from the source code system’s

data model to the federated terminology data model (transform step).

 Determine what was changed in the update (diffing step).

 Load changes in the source code system (loading step).

 Reevaluate mappings of all new and modified source content to the federated

terminology (mapping step).

8.2.8. Clinical investigator use-case-based TME service requests. The following

is a set of example use cases followed by functional requirements to support a clinical

investigator:

1. A clinical investigator needs to identify how often a drug is prescribed to treat a

bacterial infection, when susceptibility test results indicate that the isolated organism

is resistant to the prescribed drug’s active ingredients.

 Find the concept for a susceptibility test that has a result value of “resistant.”

 Follow a “has analyte” relationship from the susceptibility test to the drug

ingredient.

 Determine if a prescribed drug contains ingredients to which the isolated

organism is resistant by following a “has ingredient” relationship from the

prescribed drug to ingredients.

2. A clinical investigator wants to assess the effectiveness of a particular set of lab test

methods vs. other common methodologies.

 Enumerate the list of methodologies that are of interest.

 Build a new class that aggregates the methodologies.

67

8.2.9. Standard Application Programming Interface (API). In order for the TME

to be able to support a standard terminology service, it must provide efficient access to

computable data representations that are sufficiently granular and comprehensive to

provide all the information required by the service. HL7 Common Terminology Services

(CTS) version 1.2 was selected as the service to test the TME’s ability to support a

standard terminology service. Version 2 of the CTS specification was used as a gold

standard to validate the TFT schema. This will be discussed in greater detail in Section

11.2.

The HL7 Common Terminology Services (CTS) specification is an Application

Programming Interface (API) that specifies a set of common functions that a source code

system must provide in order to generate and interpret HL7 version 3 messages.65 A

custom CTS service must be written for each source. The service talks to the standard

CTS API and applications access the code systems using standard CTS calls against the

CTS API (see Figure 8 and Figure 9). Basically, the complexity of normalizing disparate

source data models is shifted from applications to the services. Applications evoke the

services using a specified set of input criteria. However, the CTS API does not integrate

the content from multiple source code systems. Each code system is housed in its native

data model, but the metadata that links/maps them and resolves conflict among the

sources must still be stored in ancillary tables.

The CTS version 1.2 specification defines messaging and vocabulary layers between

applications that process HL7 messages and the referenced code systems. The messaging

layer is a set of functions specific for support of HL7 messages. The vocabulary layer is

a more generic set of methods that should be supported by any vocabulary server. The

68

list of CTS functions that must be supported by the TME along with descriptions can be

found in Appendix C. The following are some examples:

1. Validate Code (validateCode): this function is used to determine whether the

supplied coded attribute from a code set is valid in the specified vocabulary

domain and application context.

2. Validate Translation (validateTranslation): this function is used to determine

whether the translation portion of the coded attribute is valid in the specified

vocabulary domain and application context.

3. Translate Code (translateCode): this function is used to translate a supplied coded

attribute into a target form that is valid in the target application context.

4. Fill in Details (fillInDetails): this function is used to supply additional details for a

coded attribute, including all code system names, versions, and display names.

5. Implies (Implies): this function is used to determine whether the parent-coded

attribute implies (subsumes) the child.

6. Equivalent (Equivalent): this function is used to determine whether two specified

coded attributes are equal.

Functional Requirement: The TME must support standard functionality as

described by HL7 Common Terminology Services version 1.2, at a minimum. CTS

version 2 will be used for external validation of TME capabilities.

69

Figure 7: Terminology Actors. Solid black arrows indicate interactions with

terminology. Roles are not discrete. For example, a Terminology Author must also

interact with the federated terminology as a Terminology Browser.

Figure 8: HL7 CTS Application Programming Interface (API). Diagram from Object

Management Group (OMG).65

Terminology Browser

Update and version

terminological content.

Enhance content with

synonyms and mappings.

Terminology Author

Clinical Investigator

Integration/

Interface

Engine

Data transformation

and translation.

Clinical workstations,

decision support,

analytics, etc. Generate

pick lists, encode data,

etc.

Reference vocabulary to

perform analytics and

generate reports on

encoded instance data.

View vocabulary to

support application

development or maintain

terminological content.

TERMINOLOGY

Applications

Custom CTS
Services

HL7 CTSInterface Layer

Applications

Disparate Data
Sources

70

Figure 9: Example CTS Implementation.65

Vocabulary
Server

Custom CTS
Services

Interface Layer

Applications

Disparate Data
Sources

Find all the children of “Units of Measure”

select * from rsform, rsform_context, concept_relation where

concept_relation.CONCEPT_RELATION_NCID=1110 and

concept_relation.RELATIONSHIP_NCID=363 and

concept_relation.CONCEPT_NCID=rsform.NCID and

rsform.RSFORM_ID=rsform_context.RSFORM_ID and

rsform_context.CONTEXT_NCID=2000 and

rsform_context.PREFERRED_SCORE=0;

HL7 CTS

Terminology

Browser

CTS Service

9. THE TME LOGICAL AND PHYSICAL

DATA MODELS

In Section 9.1, the schema for the TME vocabulary server will first be described as a

logical model. In the subsequent section, an Oracle implementation-specific, relational

database physical data model is presented.

9.1. TME Database Logical Model

The purpose of the TME logical model is to describe the association among TME

elements in a manner that is not implementation specific. The TME vocabulary server

design has the following primary elements:

 ENTITY: thing that exists; concepts (abstract ideas) are referred to as entities in

the TME70

 Entity Representations: Terms, designations, displays, codes used to label entities

 Entity Relationships: Named, directional associations among entities

 Entity Attributes: Defining characteristics of entities

 Entity Mappings: Links among entities for the purpose of transformation

 Properties: All other nondefining characteristics of entities, attributes,

representations, and relationships

Entity is the core element of the TME logical model. All other elements further

define or modify entity. An entity may have zero to many relationships, mappings,

72

attributes, and properties. An entity must have at least one representation. All elements

in the logical model may have zero to many properties. The association of TME

elements is represented visually in Figure 10.

9.2. TME Database Physical Model

1) A staging environment that is used to transform source code systems from their

native format during the ETL process.

2) Core tables that house the source terminological content and the TFT along with

versioning information.

3) Mapping tables that hold information specific to how content from various

sources is cross-linked and provide contextual information about the links such as

who performed the mapping, the purpose of the mapping, and the specificity of

the mapping.

Every table in the TME schema that holds terminological content has a base and

revision instance. The “current” table holds the currently-effective revision of the

content. The “revision” table holds previous and future-effective versions of the content.

The revision table is populated when content is inserted, updated, or deleted in the base

table. This allows for quick performance when referencing content that is current, but still

provides a reliable way to look at past and future-effective versions of the content.

A simplified schema of the core tables that does not include the revision tables is

depicted in Figure 11. This simple schema is overlaid with the logical model in Figure

12.

9.2.1. ENTITY table. The ENTITY table holds the basic structural unit of

source code systems. ENTITY assigns unique TME Component Identifiers (TCIDs) for

73

each code/set-of-codes in a source code system and for each concept in the TFT.

ENTITY is related to every other core table, except for RSFORM_LINK, through TCID

as a foreign key or any field with “_TCID” as the suffix. For sources that are concept-

based TCIDs are assigned per concept. For sources that are not concept-based, TCIDs

are assigned for each code or set of codes in the source. While the TFT is concept-based,

the TME vocabulary server is code-based. TCIDs are assigned for each row of

associated data in source code systems. It is only through mapping links to the concept-

based federated terminology in the TME that a virtual concept is created and associated

with source code system codes.

The ENTITY table includes the following fields (Table 6):

 ENTITY.TCID: TME Component Identifier; TCID is the ENTITY table primary

key—a numeric identifier for unique content in the ENTITY table. However,

TCID is not unique in the ENTITY revision table (ENTITY_REV), since multiple

previous and future-effective versions of the same TCID are tracked in

ENTITY_REV. All other fields in the TME that have a suffix of “TCID” are

foreign keys that reference a TFT concept in the ENTITY table.

 ENTITY.CID: Component Identifier; CID is an alpha-numeric identifier for

unique content in the ENTITY table. The CID cannot contain nonprintable

characters or spaces. The CID for all concepts in each source-terminology

namespace (identified by entity.SOURCE_TCID) is prefixed by the name of the

source code system—e.g., TFTActiveStatus, LOINCGlucose, RxNormGlucose,

etc. The CID is critical to the TME in the diffing step of the ETL process. A

consistently-produced CID is used to determine if there have been changes to

74

source content for sources that do not assign identifiers for all the TME-required

data elements (e.g., lacking a controlled identifier for description/representations)

or have appropriate change control.

 ENTITY.UP_CID: Uppercase Component Identifier; UP_CID is an all uppercase

CID. It is used to improve performance by allowing for case-insensitive

comparisons of CIDs during diffing. There are instances where term case implies

some of the semantics of the underlying concept (e.g., units of measure; m =

meters, M = Moles).71 In these instances, UP_CID is not used for the

comparison.

 ENTITY.SCHEMA_TCID: References a TCID from the ENTITY table for the

TFT concept that denotes the schema of this entity. Schema concepts are stored

in the TFT namespace. The schema is not set by the source code system, and is

currently always set to TCID 2 = TFTSchema.

 ENTITY.GENDER_TCID: References a TCID from the ENTITY table for the

TFT concept that denotes the gender for gender-specific entities. Gender

concepts are stored in the TFT namespace.

 ENTITY.ONTOLOGY_XML: XML string that holds a formal definition of the

entity.

 ENTITY.DEFINITION_XML: XML string that holds a human-readable

definition of entity.

 ENTITY.SUPERSEDED_BY_TCID: References a TCID from the ENTITY

table for the entity that replaces this entity. Since content can never be deleted

75

from the TME, SUPERSEDED_BY_TCID is a way of referencing the entity that

should replace this entity when/if it is deprecated (status changed to “inactive”).

The following fields appear in multiple TME tables. They are described here as

being associated with a component, where component is an entity, surface form, attribute,

property, or link (e.g., in the ENTITY table COMPONENT = ENTITY). These field

descriptions will not be repeated for subsequent core tables:

 COMPONENT.STATUS_TCID: References a TCID from the ENTITY table for

the TFT concept that denotes the status of this component. Status concepts are

stored in the TFT namespace (e.g., TFTActiveStatus, TFTInactiveStatus,

TFTProposedStatus, TFTObsoleteStatus). Status is used in combination with

version information in the revision tables to create an audit trail for TME content.

 COMPONENT.USAGE_SCORE: Holds a score from a ranking system that is

used to roughly evaluate how commonly this component is “used,” whether it is

instantiated in the patient record or appears in multiple source code systems.

 COMPONENT.SOURCE_TCID: References a TCID from the ENTITY table for

the TFT concept that denotes the source code system of this component. TFT

concepts for source code systems are stored in the TFT namespace (e.g.,

TFTHDD, TFTLOINC, TFTRxNorm, etc.).

 COMPONENT.SOURCE_VER_TCID: References a TCID from the ENTITY

table for the TFT concept for the source code system version/release/update

where this revision of this component first appeared. If this revision exists in

subsequent versions/releases/updates, COMPONENT.SOURCE_VER_ID is not

updated.

76

 COMPONENT.ADDED_DATE: The date/time (GMT) when this revision of this

component was added to the TME. This date/time is stamped as system date by

the TME database before insert.

 COMPONENT.REVISED_DATE: The date/time (GMT) when this revision of

this component was officially recorded in the TME. This is different than the

ADDED_DATE, which is the system date/time the row was inserted or updated.

 COMPONENT.EFFECTIVE_DATE: The date when this revision of this

component became effective in the source code system. This date must be

provided by the source code system, or it is set to null.

 COMPONENT.EXPIRATION_DATE: The date when this revision of this

component stopped being effective in the source code system. This date must be

provided by the source code system, or it is set to null.

 COMPONENT.VIEW_XML: XML string that holds a delimited list of TCIDs for

the “views” in which this component participates. Views are TFT concepts and

are stored in the TFT namespace (e.g., TFTDental, TFTER, TFTProjectX, etc.).

 COMPONENT.COMMENT_XML: XML string that holds author comments

regarding this component (e.g., <submitted_by> IHC </submitted_by >

<comment> For Allergen Id domain and Allergen Component Code domain </

comment > <created_by> SC Shakib </created_by >).

 COMPONENT.REV_COMMENT_XML: XML string that holds a human-

readable comment regarding the nature of the current revision of this component.

77

 COMPONENT.PREVIOUS_RID: References the COMPONENT_REV.RID of

the previous revision of this component in the corresponding component revision

table. If PREVIOUS_RID is null, this is the first revision of this component.

 COMPONENT.NEXT_RID: References the COMPONENT_REV.RID of the

next revision of this entity in the corresponding component revision table. If

NEXT_RID is null, this component is the most-future revision. When

NEXT_RID is not null for the currently-effective revision stored in the

COMPONENT table, it indicates that there is a more-future revision of the

component that has not yet become effective (a future-effective revision).

 COMPONENT.RID: Revision Identifier; Every time an insert or update is

performed against a core table in the TME, a trigger writes a copy of the

component revision in both the core table (e.g., ENTITY, RSFORM, etc.) and the

corresponding revision table (e.g., ENTITY_REV, RSFORM_REV, etc.), and

assigns a new RID. RID references the RID_CONTROL table to ensure that the

RID is unique TME-wide. There are no deletes allowed in TME; if a component

needs to be removed from TME, its status is changed to TFTInactive and it

persists in the revision tables.

9.2.2. RSFORM (Related Surface Form) and RSFORM_LINK tables. The

RSFORM table holds one-to-many representations (also referred to as surface forms) that

are associated with a single entity. In most cases, RSFORM will hold a display and code

for a source code system entity. In the case of the TFT, the related representations

include displays and codes that are considered synonyms of concepts in the ENTITY

table.

78

The RSFORM table includes the following fields (see Table 7):

 RSFORM.RSFORM_ID: Primary key of the RSFORM table. It uniquely

identifies the related surface form in the RSFORM table.

 RSFORM.REPRESENTATION: A text string that is associated with the

referenced entity through the RSFORM.TCID. The string is also referred to as a

surface form and it can be in any format (e.g., text, numeric, alpha-numeric) and

of any type/context (e.g., code, display).

 RSFORM.UP_REPRESENTATION: The surface form in all uppercase

characters. This field facilitates case-insensitive comparisons of surface forms

and improves performance of string matching during mapping and diffing.

 RSFORM.PREFERRED_REP: A Boolean flag that indicates whether or not this

surface form is the preferred representation for the referenced entity in the

referenced context.

 RSFORM.CONTEXT_TCID: References a TCID from the ENTITY table for a

TFT concept that denotes the type of surface form (e.g., TFTSite1InterfaceCode,

TFTSite1DefaultDisplay, TFTSNOMEDCTFullSpecifiedName, etc.).

 RSFORM.CASE_SENSITIVE: Boolean value that flags whether

REPRESENTATION is case-sensitive. Sometimes, changes in case imply

different meanings. This flag is checked before doing a case-insensitive match of

ENTITY.CID or RSFORM.REPRESENTATION.

 RSFORM.LANGUAGE_TCID: References a TCID from the ENTITY table for

a TFT concept that denotes the language of this surface form. Language concepts

are stored in the TFT namespace (e.g., TFTEnglish, TFTFrench, etc.).

79

 RSFORM.TCID: Foreign key that links this surface form to an entity in the

ENTITY table. Many surface forms can be associated with a single entity.

The RSFORM_LINK table is used to relate representations for a single entity. For

example, there may be multiple codes from a single source code system, each with its

own display, on one entity. In this case, RSFORM_LINK is used to join each code with

its corresponding display. RSFORM_LINK is also used to join lexical variants of a term

(e.g., “Mice” | “plural form of” | “Mouse”).

The RSFORM_LINK table includes the following fields (see Table 8):

 RSFORM_LINK.RSFORM_LINK_ID: Primary key of the RSFORM_LINK

table. It uniquely identifies the representation link triplet in the RSFORM_LINK

table.

 RSFORM_LINK.RSFORM_ID_1: References an RSFORM_ID from the

RSFORM table for the first surface form in a representation link triplet (e.g.,

“Mice”).

 RSFORM_LINK.RSFORM_LINK_TCID: References a TCID from the ENTITY

table for a TFT concept that denotes the kind of link between RSFORM_ID_1

and RSFORM_ID_2. Surface form link concepts (i.e., concepts that represent

links) are stored in the TFT namespace (e.g., TFTPluralFormOf).

 RSFORM_LINK.RSFORM_ID_2: References an RSFORM_ID from the

RSFORM table for the second surface form in a representation link triplet (e.g.,

“Mouse”).

9.2.3. ENTITY_RELATIONSHIP table. The ENTITY_RELATIONSHIP table

is used to provide structure to the TME by establishing meaningful links among entities

80

in a single name space. Single entities can have multiple different types of relationships

to multiple other entities. ENTITY_RELATIONSHIP is used to organize entities in to

classes, pick lists, and other logical or operational groupings. The relationship between

two entities is a TFT concept that has meaning and direction. Two broad categories of

relationship types are maintained in the TME: 1) Hierarchical relationships, which are

relationships between two entities where there is inheritance of attributes from the

“parent” entity to the “child”; and 2) Semantic relationships, which include any

meaningful relationship between two entities but do not imply inheritance.

The ENTITY_RELATIONSHIP table includes the following fields (see Table 9):

 ENTITY_RELATIONSHIP.ENTITY_RELATION_ID: Primary key of the

ENTITY_RELATIONSHIP table. It uniquely identifies an entity relationship

triplet in the ENTITY_RELATIONSHIP table. It is a foreign key in the

ENTITY_RELATIONSHIP revision table (ENTITY_RELATIONSHIP_REV).

 ENTITY_RELATIONSHIP.TCID_1: References a TCID from the ENTITY

table for the first entity in a relationship triplet (e.g., “Cytomegalovirus” (first

entity) | “is-a” (relationship) | “Virus” (second entity)).

 ENTITY_RELATIONSHIP.RELATIONSHIP_TCID: References a TCID from

the ENTITY table for a TFT concept that denotes the kind of relationship between

the first entity and the second entity. Relationship concepts (i.e., concepts that

represent relationships) are stored in the TFT namespace (e.g., “Cytomegalovirus”

(first entity) | “is-a” (relationship) | “Virus” (second entity)).

81

 ENTITY_RELATIONSHIP.TCID_2: References a TCID from the ENTITY

table for the second entity in a relationship triplet (e.g., “Cytomegalovirus” (first

entity) | “is-a” (relationship) | “Virus” (second entity)).

9.2.4. ENTITY_LINK table. The ENTITY_LINK table holds mappings among

entities in different source code system namespaces and to the TFT. This table is used to

hold concept and purpose-built maps among code systems and is referenced for the

creation of TFT concepts. It is not intended to store relationships among entities in the

same namespace.

The ENTITY_LINK table includes the following fields (see Table 10):

 ENTITY_LINK.ENTITY_LINK_ID: Primary key of the ENTITY_LINK table.

It uniquely identifies an entity link triplet in the ENTITY_LINK table. It is a

foreign key in the ENTITY_LINK revision table (ENTITY_LINK_REV).

 ENTITY_LINK.TCID_1: References a TCID from the ENTITY table for the

first entity in a map link triplet (e.g., “SNOMEDCTCytomegalovirus” (first entity

in SNOMED CT namespace) | “is-clinically-equivalent-to” (link type) |

“TFTCMV” (second entity in TFT namespace)).

 ENTITY_LINK.ENTITY_LINK_TCID: References a TCID from the ENTITY

table for a TFT concept that denotes the kind of link between the first entity and

the second entity. Concepts that represent map link types are stored in the TFT

namespace (e.g., TFTIsNarrowerThan, TFTIsEquivalentTo, TFTIsBroaderThan).

 ENTITY_LINK.TCID_2: References a TCID from the ENTITY table for the

second entity in a map link triplet (e.g., “SNOMEDCTCytomegalovirus” (first

82

entity in SNOMED CT namespace) | “is-clinically-equivalent-to” (link type) |

“TFTCMV” (second entity in TFT namespace)).

 ENTITY_LINK.MAP_SET_TCID: References a TCID from the ENTITY table

for a TFT map set concept. MAP_SET_TCID is used to group a set of mappings

in a many-to-many or many-to-one mapping. This is used for composition and

decomposition of molecular content (content comprised of multiple atomic

concepts). It does not specify the order of atomic coded attributes when doing

composition.

 ENTITY_LINK.MAP_SCORE: Used for ranking mappings. When more than

one mapping of the same type is created between a source entity and multiple

target entities, the MAP_SCORE is used to rank them. This is populated either by

attribute comparison (more defining attributes in common between source and

target equals a higher score) or is based on an SMEs judgment with regard to the

accuracy/granularity of the maps.

 ENTITY_LINK.RULE_XML: XML string used to express the rules that were

followed to create the map link or conditions for which the mapping is valid.

9.2.5. ENTITY_ATTRIBUTE table. The ENTITY_ATTRIBUTE table holds

name-value pairs that are defining attributes of entities. This table is similar in structure

to the PROPERTY table in that attributes can be organized hierarchically or grouped into

sets and the values in the name-value pair can be specified as being coded, numeric,

alpha, or XML. The concept attribute table is the primary reference for semantic

mapping. Attribute sets are used to define entities, and then those sets are compared to

determine if they match and a map link can be created.

83

The ENTITY_ATTRIBUTE table includes the following fields (see Table 11):

 ENTITY_ATTRIBUTE.ATTRIBUTE_ID: Primary key of the ENTITY_

ATTRIBUTE table. It uniquely identifies an entity attribute in the ENTITY_

ATTRIBUTE table. It is a foreign key in the ENTITY_ ATTRIBUTE revision

table (ENTITY_ ATTRIBUTE _REV).

 ENTITY_ATTRIBUTE.SET_ID: Identifies the attribute set to which this

attribute belongs. Used to group attributes. For example, it is necessary to

associate a strength with a particular ingredient in drugs that have multiple active

ingredients. SET_ID is used to associate each ingredient with the appropriate

strength.

 ENTITY_ATTRIBUTE.ATTRIBUTE_TCID: References a TCID from the

ENTITY table for a TFT concept that denotes the type of attribute this attribute is.

Attribute type concepts are stored in the source terminology namespace in which

they are used (e.g., LOINCAttributeAxis1), and are provided by, or derived from,

source code system data.

 ENTITY_ATTRIBUTE.VALUE_TYPE_TCID: References a TCID from the

ENTITY table for a TFT concept that denotes the type of value associated with

this attribute. Value type concepts are stored in the TFT namespace (e.g.,

TFTCodedValue, TFTAlphaNumericValue, TFTNumericValue, and

TFTXMLValue).

 ENTITY_ATTRIBUTE.CODED_VALUE_TCID: References a TCID from the

ENTITY table for an entity that denotes the value of this attribute if

ENTITY_ATTRIBUTE.VALUE_TYPE_TCID is TFTCodedValue. Coded value

84

entities are stored in the source terminology namespace in which they are used

(e.g., LOINCGlucose), and are provided by, or derived from, source code system

data.

 ENTITY_ATTRIBUTE.NUMERIC_VALUE: Populated with a numeric value

for the attribute name-value pair, when

ENTITY_ATTRIBUTE.VALUE_TYPE_TCID is TFTNumericValue.

 ENTITY_ATTRIBUTE.ALPHA_VALUE: Populated with an alphanumeric

value for the attribute name-value pair, when

ENTITY_ATTRIBUTE.VALUE_TYPE_TCID is TFTAlphaNumericValue.

 ENTITY_ATTRIBUTE.UP_ALPHA_VALUE: An all uppercase representation

of ENTITY_ATTRIBUTE.ALPHA_VALUE used to facilitate matching during

diffing and mapping.

 ENTITY_ATTRIBUTE.VALUE_UNIT_TCID: References a TCID from the

ENTITY table for a TFT concept that denotes the unit in which the value of this

attribute is expressed. Value unit concepts are stored in the TFT namespace (e.g.,

TFTMilligrams).

 ENTITY_ATTRIBUTE.XML_VALUE: Populated with an XML string for the

attribute name-value pair, when ENTITY_ATTRIBUTE.VALUE_TYPE_TCID

is TFTXMLValue.

 ENTITY_ATTRIBUTE.PARENT_ATTRIBUTE_ID: ATTRIBUTE_ID of the

parent entity attribute if this is an attribute of another entity attribute; null

otherwise. This is the primary method of combining several attributes into a

hierarchical group.

85

9.2.6. PROPERTY table. The PROPERTY table stores name-value pairs that

are properties of entities, representations, relationships, mapping links, representation

links, and other properties. This table is not meant to hold defining attributes of entities

but rather additional metadata associated with any component, including things like

source code system identifiers. An example of a property would be whether or not a

specified representation is the preferred representation. Properties can be organized

hierarchically or grouped into sets. The values in the name-value pair can be specified as

being coded, numeric, alpha, or XML. The property table gives the flexibility to model

additional relevant metadata that may be in a source terminology but is not explicitly

called out in the TME schema.

The PROPERTY table includes the following fields (see Table 12):

 PROPERTY.PROPERTY_ID: Primary key of the PROPERTY table. It uniquely

identifies properties which can be associated with any component in the TME,

including other properties. It is a foreign key in the PROPERTY revision table

(PROPERTY_REV).

 PROPERTY.SET_ID: Identifies the property set to which this property belongs.

 PROPERTY.PROPERTY_TCID: References a TCID from the ENTITY table for

an entity that describes this property. Property type entities are stored in the

source terminology namespace in which they are used and are provided by, or

derived from, source code system data (e.g., SNOMEDCTID).

 PROPERTY.VALUE_TYPE_TCID: References a TCID from the ENTITY table

for the TFT concept that denotes the type of value this property has. This field is

86

constrained to the same domain of TFT concepts as

ENTITY_ATTRIBUTE.VALUE_TYPE_TCID.

 PROPERTY.CODED_VALUE_TCID: References a TCID from the ENTITY

table for an entity that denotes the value of this property if

PROPERTY.VALUE_TYPE_TCID is TFTCodedValue. Coded value entities are

stored in the source terminology namespace in which they are used and are

provided by, or derived from, source code system data.

 PROPERTY.NUMERIC_VALUE: Populated with a numeric value for the

property name-value pair, when PROPERTY.VALUE_TYPE_TCID is

TFTNumericValue.

 PROPERTY.ALPHA_VALUE: Populated with an alphanumeric value for the

property name-value pair, when PROPERTY.VALUE_TYPE_TCID is

TFTAlphaNumericValue.

 PROPERTY.UP_ALPHA_VALUE: An all uppercase representation of

PROPERTY.ALPHA_VALUE used to facilitate matching during diffing.

 PROPERTY.VALUE_UNIT_TCID: References a TCID from the ENTITY table

for a TFT concept that denotes the unit in which the value of this property is

expressed. Value unit concepts are stored in the TFT namespace.

 PROPERTY.XML_VALUE: Populated with an XML string for the attribute

name-value pair, when PROPERTY.VALUE_TYPE_TCID is TFTXMLValue.

 PROPERTY.PARENT_TABLE_TCID: References a TCID from the ENTITY

table for a TFT concept that denotes the TME table of the

PROPERTY.PARENT_ID.

87

PROPERTY.PARENT_ID: ID of the component with which this property

modifies or is associated. This can be any of the core table primary keys

including PROPERTY_ID. It is combined with

PROPERTY.PARENT_TABLE_TCID as a compound foreign key.

Figure 10: TME Logical Model.

88

Figure 11: TME Vocabulary Server Core Tables Simplified Schema. This is a

simplified TME schema that includes just the core current revision TME tables.

ENTITY_RELATION

ENTITY_RELATION_ID DOUBLE

TCID_1 DOUBLE

RELATIONSHIP_TCID DOUBLE

TCID_2 DOUBLE

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

ENTITY_LINK

ENTITY_LINK_ID DOUBLE

TCID_1 DOUBLE

ENTITY_LINK_TCID DOUBLE

TCID_2 DOUBLE

MAP_SET_TCID LONG

MAP_SCORE DOUBLE

RULE_XML TEXT(4000)

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

RSFORM_LINK

RSFORM_LINK_ID DOUBLE

RSFORM_ID_1 DOUBLE

RSFORM_LINK_TCID DOUBLE

RSFORM_ID_2 DOUBLE

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

RSFORM_TCID LONG

ENTITY_ATTRIBUTE

ATTRIBUTE_ID DOUBLE

SET_ID LONG

ATTRIBUTE_TCID DOUBLE

VALUE_TYPE_TCID DOUBLE

CODED_VALUE_TCID DOUBLE

NUMERIC_VALUE DOUBLE

ALPHA_VALUE TEXT(4000)

UP_ALPHA_VALUE TEXT(4000)

VALUE_UNIT_TCID DOUBLE

XML_VALUE TEXT(4000)

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

PARENT_ATTRIBUTE_ID DOUBLE

TCID DOUBLE

PROPERTY

PROPERTY_ID DOUBLE

SET_ID LONG

PROPERTY_TCID DOUBLE

VALUE_TYPE_TCID DOUBLE

CODED_VALUE_TCID DOUBLE

NUMERIC_VALUE DOUBLE

ALPHA_VALUE TEXT(4000)

UP_ALPHA_VALUE TEXT(4000)

VALUE_UNIT_TCID DOUBLE

XML_VALUE TEXT(4000)

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID DOUBLE

NEXT_RID DOUBLE

RID DOUBLE

PARENT_TABLE_TCID DOUBLE

PARENT_ID DOUBLE

RSFORM

RSFORM_ID DOUBLE

REPRESENTATION TEXT(4000)

UP_REPRESENTATION TEXT(4000)

PREFERRED_REP TEXT(1)

CONTEXT_TCID DOUBLE

CASE_SENSITIVE TEXT(1)

LANGUAGE_TCID LONG

USAGE_SCORE DOUBLE

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

TCID DOUBLE

ENTITY

TCID DOUBLE

CID TEXT(4000)

UP_CID TEXT(4000)

SCHEMA_TCID DOUBLE

GENDER_TCID LONG

ONTOLOGY_XML TEXT(4000)

DEFINITION_XML TEXT(4000)

SUPERSEDED_BY_TCID DOUBLE

STATUS_TCID DOUBLE

USAGE_SCORE DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML CHAR(10)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

89

Figure 12: Simplified TME Physical Model with TME Logical Model Overlaid.

90

Table 6: ENTITY Table. Field names and data types.

Table 7: RSFORM Table. Field names and data types.

ENTITY

TCID DOUBLE

CID TEXT(4000)

UP_CID TEXT(4000)

SCHEMA_TCID DOUBLE

GENDER_TCID LONG

ONTOLOGY_XML TEXT(4000)

DEFINITION_XML TEXT(4000)

SUPERSEDED_BY_TCID DOUBLE

STATUS_TCID DOUBLE

USAGE_SCORE DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML CHAR(10)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

RSFORM

RSFORM_ID DOUBLE

REPRESENTATION TEXT(4000)

UP_REPRESENTATION TEXT(4000)

PREFERRED_REP TEXT(1)

CONTEXT_TCID DOUBLE

CASE_SENSITIVE TEXT(1)

LANGUAGE_TCID LONG

USAGE_SCORE DOUBLE

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

TCID DOUBLE

91

Table 8: RSFORM_LINK Table. Field names and data types.

Table 9: ENTITY_RELATION Table. Field names and data types.

RSFORM_LINK

RSFORM_LINK_ID DOUBLE

RSFORM_ID_1 DOUBLE

RSFORM_LINK_TCID DOUBLE

RSFORM_ID_2 DOUBLE

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

RSFORM_TCID LONG

ENTITY_RELATION

ENTITY_RELATION_ID DOUBLE

TCID_1 DOUBLE

RELATIONSHIP_TCID DOUBLE

TCID_2 DOUBLE

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

92

Table 10: ENTITY_LINK Table. Field names and data types.

ENTITY_LINK

ENTITY_LINK_ID DOUBLE

TCID_1 DOUBLE

ENTITY_LINK_TCID DOUBLE

TCID_2 DOUBLE

MAP_SET_TCID LONG

MAP_SCORE DOUBLE

RULE_XML TEXT(4000)

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

93

Table 11: ENTITY_ATTRIBUTE Table. Field names and data types.

ENTITY_ATTRIBUTE

ATTRIBUTE_ID DOUBLE

SET_ID LONG

ATTRIBUTE_TCID DOUBLE

VALUE_TYPE_TCID DOUBLE

CODED_VALUE_TCID DOUBLE

NUMERIC_VALUE DOUBLE

ALPHA_VALUE TEXT(4000)

UP_ALPHA_VALUE TEXT(4000)

VALUE_UNIT_TCID DOUBLE

XML_VALUE TEXT(4000)

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

PARENT_ATTRIBUTE_ID DOUBLE

TCID DOUBLE

94

Table 12: PROPERTY Table. Field names and data types.

PROPERTY

PROPERTY_ID DOUBLE

SET_ID LONG

PROPERTY_TCID DOUBLE

VALUE_TYPE_TCID DOUBLE

CODED_VALUE_TCID DOUBLE

NUMERIC_VALUE DOUBLE

ALPHA_VALUE TEXT(4000)

UP_ALPHA_VALUE TEXT(4000)

VALUE_UNIT_TCID DOUBLE

XML_VALUE TEXT(4000)

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID DOUBLE

NEXT_RID DOUBLE

RID DOUBLE

PARENT_TABLE_TCID DOUBLE

PARENT_ID DOUBLE

10. MANAGING TERMINOLOGY CONTENT

WITHIN THE TME

 Now that the types of terminology actors and how they use the terminology have

been defined, this section will describe the flow of data through the TME. In the TME,

the life cycle of terminology is centered on the process of concept mapping to the

federated terminology (TFT) to integrate various source terminologies. This type of

mapping also requires the ability to author new content used to organize terminology for

a particular purpose or create new concepts, relationships, designations, and/or codes.

Concept mapping and new content creation have the following high-level steps:

1. Identify a code or term/set-of-terms used to label a concept in one code system,

referred to as the “source.”

2. Use code attribute information from the source to determine context and identify

the underlying concept(s) for the term/phrase/code; metadata can be just a string

of text or a set of supplied/derived attributes.

3. Link the concept in the source code system to an equivalent concept in another

code system, referred to as the “target”; in the TME, the target code system is

typically the TME’s federated terminology (TFT).

Concept mapping is not a process of linking terms; terms are merely used as

descriptions/labels that have a many-to-one relationship to concepts. Concept mapping is

the process of linking semantically equivalent concepts from a source code system to a

96

target code system. The mapping links are directional (from source to target) and can be

qualified as being either “broader than,” “narrower than,” or “equivalent.”

The early steps in the mapping process are different in detail based on the nature

of the source code system (e.g., standard or local terminology) but in general, they follow

an Extract, Transform, and Load (ETL) process. Terms are extracted from the source,

transformed to the TFT schema, and loaded into a staging environment to prepare for

mapping (see Figure 13). Preparing a new source and going through the ETL process is

typically one of the most challenging steps in the integration process. The goal of this

phase of integration is to achieve semantic alignment of concepts in the source to the

TMEs canonical terminology model. It is not to achieve complete data integration or

concept mapping. Because of this, not all source code attributes are integrated in the

TFT. This first integration step requires understanding the source data schema,

reconciling the disparate terminology models of the source and target, and mapping code

attribute fields in the source to code attribute fields in the target.72

10.1. Customization Mapping: Data Extraction for LIT

Data extraction is the process of querying master files (see Table 1) from source

systems to pull data necessary for mapping the LIT into the TME. These master files

contain terms that are used to encode data in legacy systems. Multiple master files are

referenced to encode a single record in the legacy system. It is typically a custom effort

to determine how to link these files/tables and extract the data required for mapping.

This description of the data extraction steps is only relevant for local terminologies for

which there is often not a formal logical model and context is established either through

HL7 messages, source system attributes, or site SMEs.

97

In many cases, obsolete data remain in master files, along with ambiguous or

duplicate terms and invalid/inactivated concepts. All of these idiosyncrasies in the master

files must be resolved during the process of validating and grooming the source data.

Validation involves checking the status of LIT terms in the legacy system to determine if

they are active. Grooming involves normalizing duplicate terms, cleaning up special

characters, and expanding acronyms.

Another way to both validate and obtain the necessary data elements in the LIT is by

monitoring outbound HL7 messages from the legacy systems. The local interface codes

and descriptions can be mined from HL7 fields, which supply context. So, for example,

lab results codes can be found in the HL7 observation segment (OBX) field three (OBX3)

of a lab message. A utility can monitor HL7 messages for a period of time and collect

the data required for mapping. Regenstrief Institute has created a LOINC mapping tool

that operates in this manner.46 The advantage of this approach is that only active and

common data elements in the LIT are collected for mapping, reducing the overall

mapping effort. The disadvantage is that relevant data that are rarely instantiated or

seasonal in nature may not appear in HL7 messages during the period of data collection.

At the end of the data extraction process, lists of relevant terms, in context, have

been collected. Context establishes where and how the term is used and how much

information is being included in the underlying concept (e.g., the degree to which it may

be precoordinated) and makes it possible to determine, in part or whole, the meaning of

the underlying concept (e.g., is this a lab test, laboratory result, unit of measure, or

specimen and is this term a code or a display). Knowing context is critical to concept

mapping; without it, it is not possible to link terms to the appropriate concepts. So, for

98

example, the term “cold” cannot be mapped without knowing: 1) if “cold” is a code or a

display and 2) if it is a temperature (sensory perception), a diagnosis (pulmonary

diagnosis), or a finding (upper respiratory viral infection).73

In some cases, more information than a term and context for the source concept is

required in order to create an accurate mapping to the target. For example, mapping

laboratory results to the six-axis LOINC model (LOINC terminology model =

<component/analyte> {required} : <kind of property> {required} : <time aspect>

{required} : <system type> {required} : <scale> {required} : <method> {optional})46

requires the following associated information: lab result name, specimen, result type

(numeric or alpha), sample results with units of measure, and method. Since the data

model in the legacy systems almost never maps directly to the LOINC model, mapping

lab results requires deriving and in some cases assuming values to populate the six axes

with what can be extracted from the legacy systems. The work to derive additional

values and postcoordinate the attribute information is accomplished during the next step

in the TME ETL process.

10.2. Data Transformation

Data transformation involves mapping the concept model of the source to the

concept model of the federated terminology in the TME. The TME uses a “canonical”

model that serve as a model “interlingua.”74 Standard sources like LOINC as well as

LITs are mapped to the canonical concept model as well as domain-specific data models

within the TFT. In the case of a laboratory results LIT (see Figure 14), it requires

extracting the lab result name and associated specimen, result type, sample results with

99

units of measure, and method, then applying rules to build a data model in the LIT

namespace that mirrors the data model of the TFT (see Figure 15).

10.3. Staging and “Diffing”

Results of the data transformation are loaded into a staging environment. The

staging environment holds source code systems that have been converted to the TME

data model, but have not yet been mapped/integrated in to the TME. Content in the

staging environment has not been augmented with additional metadata or linked to the

TFT. It is native content that has been transformed into the TME data model.

The staging environment maintains all previous versions of each source code system.

This provides a history that can be queried to determine how a particular source looked at

any prior point-in-time. It is also used to establish what changes were made in the latest

version of a code system. A code system update can result in a variety of changes

(additions, modifications, and/or deletions) to concepts, codes, displays, relationships,

and definitions. Assessing the delta in new versions of a code system in the TME is

referred to as “diffing.”

 Diffing is the process of comparing a new version of source code systems to the

previous version to determine what changed (what is different). Occasionally, source

code systems will provide this information, but in most cases, it is not available or it is

not provided with enough detail to support the TME mapping process. Unique identifiers

are assigned to each attribute of a source code system data element. The identifiers are

used as an index for diffing. New concepts or changes that may alter the semantics of an

existing concept require mapping review.

100

10.4. Distributing Work to Appropriate SMEs

The result of diffing is a set of terms from the source code system that are new and

must be mapped or have previous mappings to the TME that must be reviewed because

of changes in the source. This work goes into mapping queues for the appropriated

SMEs. Assignments are tracked at the row level to allow very large mapping tasks to be

split between multiple SMEs.

10.5. Initial String Matching

There is initial automated matching of source code system terms to the TME. This

involves various types of string matching techniques that are incorporated into a tool

called Hypersearch75:

 Synonym Matching: Multiple synonymous terms are associated with a single

concept (e.g., Varicella, VZV, Chickenpox). The additional synonyms make it

easier to find concepts during the matching process.

 Phonetic Algorithms: Soundex is the phonetic algorithm used in the TME. It is a

standard capability of Oracle and Microsoft SQL Server (MS SQL) databases.

The Soundex algorithm attempts to encode terms that have the same English

pronunciation in the same way.75 This helps to address minor spelling errors in

the source terms.

 Lexical Variant Matching: Lexical variants are different forms or spellings of the

same term (e.g., mice/mouse, man/men, honor/honour, email/e-mail). The

Lexical Variant Generator (LVG),76 part of the UMLS Specialist Lexical Tools, is

used to build an index of variant terms on concepts in the TFT. Source terms are

then matched against the index.

101

At the end of initial automated mapping, three categories of terms that must be further

evaluated remain:

1) Terms that match with a low probability score from string matching.

2) Terms for which there are multiple potential matches in the target.

3) Terms for which there are no suggested matches in the target.

The remaining terms must be manually reviewed by SMEs through a process of

interrater agreement. For category one and two matches, all candidates are provided to

the SMEs for review.

10.6. Attribute Matching

In some domains, automated string matching is sufficient to map the majority of the

terms from the source code system. In other domains, like laboratory and pharmacy, a

semantic matching technique is applied. Pharmacy, laboratory, and observation data are

different from many other clinical terminology domains in that observations, clinical drug

concepts, and laboratory results can be readily and precisely defined by a set of

attributes.77 This allows for a more detailed data model for both lab results and drugs that

more closely approaches the “universals” and ontology knowledge representation model

discussed earlier in Section 3.4.39 Once an attribute set has been defined for a drug or lab

result it can be compared to those that already exist in the TFT.

Using drugs as an example to describe the semantic matching approach, a clinical

drug can be defined as having ingredient, strength, form, and route as core attributes (see

Figure 16).78 In addition, drugs have many brand names, abbreviations, synonyms, and

packaging information that sometimes need to be taken into account for unique

identification. Instead of matching representations for the entire drug concept at once,

102

attributes are matched. Parsing out the correct attributes from a drug representation is

challenging, but once all the attributes have been identified, they can be used to find

exact and near (but semantically equivalent) concept matches. This enforces mapping

consistency by removing human variability due to case-by-case judgment calls.

Separate, locally developed drug and lab mapping tools were created that utilized

synonyms of TME concepts to parse precoordinated strings into a set of attributes.78

Each drug concept is sent through a parser, which references a knowledge base to

identify ingredient, strength, form, and route. The knowledge base of the pharmacy

mapping tool supplies rules for parsing and matching each drug attribute. It is organized

to support multiple synonyms, brand name to generic ingredient conversions, and form

and route hierarchies.

10.6.1. Mapping ingredient. When a brand name is identified in a drug

representation, it is translated into the appropriate generic name by referencing the TME.

The generic ingredient is then matched against a comprehensive list of ingredients. If no

match is found, the tool will attempt to switch the generic and brand names and search

again.

10.6.2. Mapping form and route. The form and route hierarchies and synonyms

are used to broaden the scope of candidate matches. For example, the term CAPS in a

drug refers to capsule. Some synonyms used for matching include: CAP, CAPSULE,

CAPSULES, etc. Additional potential matches are identified by referencing the hierarchy

for all of the more specific forms of capsule: CAP SEQ, CAP SPRINK, CAP W/DEV,

CAP DS PK, CAP MPHASE, CAPSULE DR, CAPSULE CR, CAPSULE SA, etc.

103

Drawing a clear distinction between form and route is challenging. Often form

implies route and vice versa. Preferred attribute scores are used to assign form and route

for matching purposes, when there is confusion in differentiating them. For example,

injection is often used as both a form and a route. If injection and intravenous both

appear in a drug representation, a separate, tool-specific, knowledge base is referenced to

determine that intravenous is a preferred route and injection is a preferred form.

In the first mapping review of a large enterprise’s formularies, 151,854 unique drug

representations were evaluated. Using the semantic matching approach, 50.8% were

identified as exact matches to existing TME concepts, 35.5% were approximate matches,

and 13.7% were unmatched. Mapping speed was improved by 29% over the previous

string matching process and consistency among SMEs was enhanced because of rules

enforced by the approach.78

10.7. SME Interrater Agreement

The process of interrater agreement involves establishing consensus among SMEs

for mapping decisions that require judgment. Its purpose is to reduce variability and

increase accuracy. The validation of initial mapping is performed by one SME. A

second SME evaluates the first SME’s recommended mapping actions (see Figure 17). If

the second SME does not agree with the recommended action from the first SME, it is

returned to the first SME with a justification. Recommended actions that make more

than one loop in the mediation cycle between the first and second SME are escalated for

group review. Since the federated terminology is referenced in many different ways by

the EHR, and the data in the EHR are used to drive decision making, “small” errors in the

terminology are magnified multiple fold in the patient data and can be a patient safety

104

issue. This risk justifies additional effort to validate mappings. Although accuracy is of

critical importance, consistency (reducing variability) can be an even more significant

factor over time. If a mapping is incorrect, but consistently incorrect, it can be resolved

both in the vocabulary server and in systems that referenced terminology services to store

data. If it is only occasionally incorrect, resolving the issue in historical data and the

vocabulary server may not even be possible. Achieving consensus, documenting the

logic behind mapping decisions, and consistently applying the logic, makes it possible to

improve accuracy and data quality over time. Without consistency, accuracy will decline

over time.

During the SME review, questions about the source content are collected. Some

questions are related to the accuracy/specificity of a proposed mapping. These types of

questions are typically addressed to other TME SMEs. Other questions are related to the

source code system terms. These types of questions are addressed to the source

organizations. Both classes of questions are managed in the Question-Answer process.

10.8. Questions and Answers: Between Source Organization and SMEs

The question-answer process is a cycle that can go through multiple iterations. It can

sometimes be very time-consuming and involve multiple individuals across

organizations. It is important to capture both the discussion and the final decision so that

when similar future questions are raised, the effort to arrive at an answer is not repeated

and a consistent solution can be applied. In the TME, the communication between SMEs

and source organizations and the final decision are archived and indexed based on the

local or standard code used by the source organization.

105

10.9. Loading and Maintenance in the TFT

Once a final decision is made by an SME, the corresponding mapping action is

applied (see Table 13). However, purpose-built mappings are never truly “final.”

Because of semantic shift/drift in source terminologies and refinement or changes in the

definition of the mapping purpose, mappings are constantly being reevaluated in the

mapping maintenance process. Mappings can change if the meaning of the concepts

from a source change, but the meaning of concepts in the TFT must remain the same.

Loading involves creating the necessary content in the TFT and populating a table in

the TME that links source and target code systems. Figure 17 summarizes the concept

mapping process.

10.10. Quality Assurance (QA) and Quality Control (QC) of TME

QA and QC methods, processes, and tools are used in the TME to help ensure data

quality. The QA measures are focused on processes and the QC measures are focused on

the TME content. The goal of these measures is to try to achieve the highest level of

accuracy and consistency in data representation, but in a hierarchy of importance,

consistency is more important than accuracy:

 Correct and consistent

 Incorrect and consistent

 Correct and inconsistent

 Incorrect and inconsistent

Consistency takes precedence over accuracy because ongoing QC will eventually

uncover “errors.” Errors are not always unintentional. Because mapping requires

106

judgment, an error may be a decision that was made at a previous point-in-time that is

reconsidered.79

10.10.1. QA emphasis on process. QA measures are established among

TME SMEs using 3rd party tools such as Microsoft SharePoint. A SharePoint site

dedicated to the TME organizes and versions training and procedural documents and acts

as a communication hub for SMEs. Issue tracking, topic-specific discussions, and

calendars help to formalize communication with regard to process and status of work:

 SME training in informatics principles: SMEs have knowledge of the content

area, but require training in informatics to help make consistent and well-

informed mapping decisions. Understanding how the TME represents knowledge

helps to answer questions such as:

o Is this a new concept?

o Is this a property or an attribute?

o Is this terminology model adequate to identify this concept uniquely?

 Standard Operating Procedure (SOP) Documents: SOPs are detailed descriptions

of the steps to follow for any manual TME processes. SOPs are continually

updated and must be organized such that searches using phrases and keywords

can be used to find documents.

In addition to process that are assimilated by SMEs through instruction, automated and

interrater methods are employed through QC measures.

10.10.2. QC emphasis on content. QC measures are implemented in the

TME through processes like interrater agreement and domain-specific tools. Some QC is

107

specific to a current “job.” Other QC is ongoing and performed against the entire

federated terminology. The TME QC measures include:

 Interrater agreement: Previously described process using two SMEs to map and

then validate content changes to TME.

 3rd Party validation: In some cases, it is possible to get source organizations to

validate mappings. The TME mappings are exported in a “human-readable”

format and sent to the source organization for validation.

 Intersource agreement: In some cases, there are multiple sources for the same

content or publically available mappings. These are used to validate mappings

generated by TME SMEs. Discrepancies do not necessary indicate an error.

They are used to flag a potential QC issue that must be evaluated.

 Audit History/Change control for all TME content: Every TME table has a

corresponding revision table that tracks all changes. Changes can be audited and

simple flags such as the number of changes in a particular version can be used to

signal a potential QC issue.

 Domain-specific tools: Tools designed for creation and maintenance of a

particular type of content (e.g., lab, pharmacy) are tailored to remove manual

steps that might be necessary in a more general tool. This type of content control

can also be implemented through a terminology model that enforces the creation

of required attributes.

 Database Triggers and Constraints: The TME uses an Oracle relational database.

Triggers are used to generate content automatically based on certain types of

operations. For example, when content is added to a core table, triggers are used

108

to populate the corresponding revision table. Constraints prevent creation or

modification of certain types of content. For example, a TME constraint prevents

creation of more than one preferred display of a particular type.

In addition to the QC methods discussed here, implementation of a formal,

comprehensive ontology in the TFT is a future quality control measure. Although

attribute definitions are utilized in the TFT for semantic matching in the lab and

pharmacy domains, a formal ontology has not been implemented. Ontologies are a way

representing content that generates formal definitions that can be validated through

machine processing.80 Tools, such as protégé, are available for both the creation and

validation of ontologies.81 Such tools could be used for advanced quality control.

109

Figure 13: Steps in the TME ETL Process. Starting with source and ending in the

TME staging tables (target). Source may be standard or LIT. In the case of LIT, source

content will often require some manual grooming and reformatting by Subject Matter

Experts (SMEs) before going through the transformation from the source physical model

to the TFT physical model.

Figure 14: Example Lab Result. A lab test is ordered, a specific lab result is

performed, and a lab value is reported.

<<Lab Result>>

Cytomegalovirus DNA,

CSF Specimen Semi-

Quantitative

Probe.Amp.Tar

<<component/analyte>>

Cytomegalovirus DNA

<<kind of property>>

Arbitrary concentration

<<time aspect>>

Single point in time

<<system type>>

Cerebral spinal fluid

<<scale>>

Ordinal value

<<method>>

Probe with Target Amplification

<<Lab Value>>

POSITIVE

<<Lab Test>>

CMV PCR Test

ORDERED PERFORMED REPORTED

Transform

Validate

& Groom

Extract Load Source Target

110

Figure 15: Lab LIT Data Model Mapping. Code attributes from a source lab LIT are

on the far right of this diagram. Rules are used to map the source code system code

attributes to the TME data model in the sources namespace. The rules sometimes involve

simple parsing and in other cases involve inferring values. The source lab LIT is then

mapped to the federated terminology by linking source attributes to TME attributes.

Figure 16: Semantic Matching for Drugs29,78

<<TME Concept>>

Lab Result

<<TME Attribute>>

Analyte

<<Has>>

<<Term>>

Lab Result Name

<<TME Attribute>>

Property

<<Has>>
<<TME Attribute>>

Timing
<<Has>>

<<TME Attribute>>

System

<<Has>>

<<TME Attribute>>

Scale

<<Has>>

<<TME Attribute>>

Method

<<Has>>

<<Term>>

Method

<<Term>>

Result Type

<<Term>>

Specimen

<<Value>>

Results + Units

<<Source Attribute>>

Analyte

<<Source Attribute>>

Property

<<Source Attribute>>

Timing

<<Source Attribute>>

System

<<Source Attribute>>

Scale

<<Source Attribute>>

Method

<<Map>>

<<Map>>

<<Map>>

<<Map>>

<<Map>>

<<Map>>

<<Rule>>

<<Rule>>

<<Rule>>

<<Rule>>

<<Rule>>

<<Map>>

<<Rule>>

<<Rule>>

<<Rule>>

111

Table 13: Mapping Actions. List of final actions to be taken after SME review.

Mapping Action Description

Ignore Take no action with source code/term.

External question SME has question(s) pending with source

organization.

Internal question SME has question(s) pending with another SME.

Create new TME concept Build new concept in TFT and create mapping link to

source code/term.

Map to existing TME concept Build a map link between source code/term and

existing concept in the TFT.

Remove map link for source

code

Map link is determined to be no longer valid (either

because refinement in mapping purpose definition,

semantic shift/drift in source, or because it was

discovered as an error) and is deleted.

Remap Source Code Existing map link is deprecated and new map link is

created to existing TME concept.

Figure 17: Summary of TME Concept Mapping Workflow.

11. VALIDATION OF DATABASE DESIGN AND

INTEROPERABILITY REQUIREMENTS

FOR THE TME

The TME was evaluated to determine if it met database design and interoperability

requirements. The primary methodology for validation of the database design was source

transparency and an assessment of how well the environment met the functional and

design requirements specified in Section 8. The methodology for testing the

interoperability requirements involved determining support for all HL7 Common

Terminology Services version 1.2 (CTS v1.2) methods.

11.1. Database Design Validation

The high-level functional and design requirements from Section 8.2 are restated here

in italics followed by a discussion of how the TME addresses each requirement.

11.1.1. Faithful data representation. Source data must be represented in the TME

with high fidelity (no change in the original meaning).

The methodology employed to confirm faithful data-representation was source

transparency. Confirming source transparency involved taking multiple versions of three

source code systems (LOINC a clinical terminology with approximately 65,000 concepts,

ICD-9-CM a classification system with approximately 14,000 concepts, and the 3M HDD

a concept-based reference terminology with approximately 1.6 million concepts) with

113

varying levels of complexity and integrating them into the TME through the ETL process

described in Section 10. Each version of the code system was then run through a

“reverse” ETL to extract the code system in its original or native format. The extraction

was then compared to the original version of the content to determine if the TME ETL

process resulted in any loss or alteration of information in the source. Source system

concepts, codes, terms, relationships, and attributes were all included in the evaluation.

Testing was done against 3 successive versions of each code system and in all cases, the

comparison indicated no changes or information loss. All source system concepts, codes,

terms, relationships, and attributes were present and unaltered in the content extracted

from the TME.

Based on these tests, it was determined that the TME met the requirement for source

transparency. It is important to note that the source transparency test was performed

using the respective code system namespaces and not the TFT. The federated

terminology does not retain all source code system attributes and does not support source

transparency.

11.1.2. Single schema. The TME must store, access, link, and augment multiple

disparate code systems in a single schema/data model.

The TME houses the TFT along with all other source code systems in a single

schema. SNOMED CT, LOINC, RxNORM, and 3M HDD have all been successfully

transformed to the TME data model. The database addresses the storage requirement

stated above. To address the set of integration requirements (access, linking, and ability

to augment) a single schema and an overarching data model, the TFT was incorporated

114

into the TME as part of the hybrid integration model first described in Section 7.4. The

integration requirement validation will be further explored in Section 11.2.

The TME met the requirement for a single schema. The TME schema includes the

staging environment and vocabulary server and is detailed in the Appendix.

11.1.3. Support for multiple data/information models. Data representation in the

TME must be expressive enough to transform multiple source terminology models and

support medical information models of various systems.

The TME is capable of storing and representing source code system content at an

equivalent level of granularity to the source. This was also validated through the source

transparency testing. The code system code attributes can be captured either as

representations (RSFORM table Section 9.2.2), properties (PROPERTY table Section

9.2.6), or attributes (ENTITY_ATTRIBUTE table Section 9.2.5). Defining attributes of

entities are discrete and explicitly represented in the TME. As such, the TME design is

capable of supporting multiple data/information models and the TME is at least as good

as other external source code systems in its ability to represent knowledge. However, the

TME is not meant to manage direct links between information model data elements or

observations and terminology. This type of content can be managed in a TME

namespace, but it cannot be easily generalized to other information models

Essentially this requirement becomes a test of the generalizability of TME. Since it is

not possible to account for all possible implementations, the generalizability of the TME

is evaluated based on its support for CTS. The integration validation described in Section

11.2 details TME support for CTS.

115

11.1.4. Partitioning. The TME must have the ability to subset data for special

purposes or because of special characteristics of the content.

The TME provides five options for partition data:

1. VIEM_XML: is like a filter that allows for multiple consistent views of the same

underlying data. It can be assigned to any component and used to subset/partition

entities and their representations, relationships, attributes, and properties.

2. ENTITY_RELATIONSHIP: makes it possible to subset entities by defining a

subset and associating member entities with the subset entity. This can be

referred to as a concept-based value set.

3. RSFORM_LINK: makes it possible to subset terms by defining a subset and

associating member entity terms with the subset entity. This can be referred to as

a term-based value set.

4. RSFORM_CONTEXT: makes it possible to subset the types of surface forms

associated with an entity.

5. SOURCE_TCID: creates namespaces in the TME for source code systems and

can be assigned to any component.

11.1.5. Version control. The TME must be able to provide version information

and retrospectively represent multiple versions of the same content.

The TME provides extensive version control of all components, meaning entities and

their relationships, representations, attributes, and properties are all versioned and

archived in revision tables. Version information was used in the test for source

transparency.

116

11.2. Interoperability Requirement Validation Using CTS

The following plan was implemented for testing the TME interoperability

requirement using CTS:

1. Assessment of all CTS v1.2 functions to determine which have unique “intent.”

Unique intent was determined by evaluating method signatures and looking at

inputs and outputs.

2. Categorize unique-intent functions as being more content- or design-dependent.

In other words, is the function supported by the current design if specific content

is present?

3. Author database queries (SQL) against TME designed to return CTS function

specified output(s) with defined input parameter(s). Examples of these queries

are provided in Sections 11.2.2-11.2.6.

4. Compare TME query results with CTS output description and indicate one of the

following:

– Fully Supported: TME SQL output matches CTS function output

description

– Partially Supported: Meets the intent of the service; supported by the

TME database design, but output is null or incomplete because all values

are not instantiated in TME

– Not Supported: TME design and content cannot meet the intent of the

CTS function and supply the described output; cannot construct a query

against TME

5. Interrater validation of TME Support assessment

117

– Reviewed by other informaticists and engineers to confirm support

assessment.

11.2.1. Assessment and categorization of CTS v1.2 functions. Steps 1 and 2 of

the interoperability requirements plan produced the following results:

1. Assessment of all CTS v1.2 functions to determine which have unique

“intent”

– 57 total functions (same functions appear in multiple classes)

– 39 functions with unique definitions or input/output parameters

– 35 functions with unique “intent,” intent being what the function is

attempting to do (not considering overloaded/convenience functions)

2. Categorize 35 unique-intent functions as being more content- or design-

dependent

– 20 functions design-dependent

– 15 functions content-dependent

The TME supports standard functionality as described by HL7 Common Terminology

Services 1 compliance minimum (CTS 2 when published82). There are multiple correct

ways to address each of the CTS methods in the TME. The following sections illustrate

one method for executing each of the functions against the TME, but in many cases, it is

not the only way to support the function. Validation and peer review were used to assess

the TME’s capability. All CTS methods listed in Appendix C are supported by TME

design or through content. Some examples are described in further detail in Sections

11.2.2-11.2.6.

118

11.2.2. CTS validate code. The CTS validateCode method is used to determine

whether the supplied coded attribute from a code set is valid in the specified vocabulary

domain and application context. There are two CTS named methods for code validation:

validateCodeByCodedValue (uses the source code system code) and

validateCodeByConceptDescriptor (uses the source code system descriptor or term).65

These methods can be used to evaluate HL7 message content to determine if the codes in

the message are valid. The input for the method is a domain (e.g., “Units of Measure”)

and a code (e.g., SNOMED CT code = “258770004”) or a descriptor (e.g., SNOMED CT

Description = “Liter”).

 INPUT: Vocabulary Domain ID, Code/Code Descriptor to be validated,

Application Context (realm)

 OUTPUT: VALID/INVALID, list of warnings and/or errors (see Figure 18)

The method can be applied against the TME in two ways. It can be used to check

whether a code is valid in a source code system in the TME or it can be used to check if a

code is valid and present in the TFT. Queries against the source code system namespace

use source attributes, properties, and relationships. Queries against the TFT use TFT

attributes, properties, and relationships.

First it is necessary to obtain a TCID for the “Units of Measure” domain. The TCID

may be known, but it can also be determined by executing

getSupportedVocabularyDomains CTS function. This function will return a TCID that

has a representation(s) that match the supplied string. Query

RSFORM.REPRESENTATION field using the string “Unit” and return the

corresponding TCID in the SNOMED CT (SNOUnitsTCID) or TFT (TFTUnitsTCID)

namespace.

119

SQL Query:

Select RSFORM.TCID from RSFORM where

RSFORM.UP_REPRESENTATION is like “UNITS” and

SOURCE_TCID = SNOMED CTTCID;

or

Select RSFORM.TCID from RSFORM where

RSFORM.UP_REPRESENTATION is like “UNITS” and

SOURCE_TCID = TFTTCID;

RSFORM.TCID = SNOUnitsTCID or TFTUnitsTCID in subsequent queries. This

same type of query can be used to obtain TCIDs for strings for other entity structural

properties, attributes, and relationships. The query can also be constrained to the domain

of “Code System Domain” so that all the values returned will be domains/classes and not

other kinds of entities.

Next, execute the validateCode CTS method. Query

RSFORM.REPRESENTATION field with string “258770004” (for

validateCodeByCodedValue) or “Liter” (for validateCodeByConceptDescriptor) in the

SNOMED CT namespace to determine if the code is present, has an

RSFORM.STATUS_TCID that equals “Active,” and is a surface form for an entity that is

a child of SNOUnitsTCID or TFTUnitsTCID (see Figure 19).

SQL Query:

Select RSORM.TCID from RSFORM, ENTITY_RELATIONSHIP where

RSFORM.REPRESENTATION = “258770004” and

RSFORM.CONTEXT_TCID = SNOCodeContextTCID and

RSFORM.STATUS_TCID = SNOActiveTCID and

 {Look for the SNOMED CT code “258770004” in the SNOMED CT

context and confirm that it is active.}

RSFORM.TCID = ENTITY_RELATIONSHIP.TCID_1 and

ENTITY_RELATIONSHIP.RELATIONSHIP_TCID = SNOIsATCID and

ENTITY_RELATIONSHIP.TCID_2 = SNOUnitsTCID;

 {Join to the ENTITY_RELATIONSHIP table and confirm that the entity

with SNOMED CT code “258770004” is a unit of measure. This check is

not necessary for SNOMED CT since SNOMED CT codes are unique

120

across all domains in the code system. But for other source code systems,

uniqueness of code is not guaranteed across domains.}

Result: TME is capable of validating source code systems codes and descriptors.

11.2.3. CTS validate a translation. Validate Translation (validateTranslation): this

method is used to determine whether the transformation portion of the coded attribute is

valid in the specified vocabulary domain and application context.65 This method can be

used to evaluate a provided transformation between a source and target code system

against mappings in the TFT. The input for the method is a domain (e.g., “Units of

Measure”), a source and target code system codes or descriptors (e.g., SNOMED CT

code = “258770004” is equivalent to UMLS CUI = “C0475211”).

 INPUT: Vocabulary Domain ID, Code/Descriptor from source and target code

systems for the transformations to be validated, Application Context (realm)

 OUTPUT: VALID/INVALID, list of warnings and/or errors (see Figure 20)

Mappings are held in the TME ENTITY_LINK Table.

SQL Query:

Select RSFORM.TCID from RSFORM, ENTITY_RELATIONSHIP where

RSFORM.REPRESENTATION = “258770004” and

RSFORM.CONTEXT_TCID = SNOCodeContextTCID and

RSFORM.STATUS_TCID = SNOActiveTCID;

 {Look for the SNOMED CT code “258770004” in the SNOMED CT

context and confirm that it is active.}

 RSFORM.TCID = SNOLiterTCID

Select RSFORM.TCID from RSFORM, ENTITY_RELATIONSHIP where

RSFORM.REPRESENTATION = “C0475211” and

RSFORM.CONTEXT_TCID = UMLSCUIContextTCID and

RSFORM.STATUS_TCID = UMLSActiveTCID;

 {Look for the UMLS CUI code “C0475211” in the UMLS CUI context

and confirm that it is active.}

 RSFORM.TCID = UMLSLiterTCID

Once TCIDs have been obtained for both the SNOMED and UMLS codes, the

ENTITY_LINK table must be queried to see if any link/transformation exists between the

121

two TCIDs. TME can validate if any link in either direction exists between the two

TCIDs:

Select * from ENTITY_LINK where

ENTITY_LINK.TCID_1 = SNOLiterTCID and

ENTITY_LINK.TCID_2 = UMLSLiterTCID or

ENTITY_LINK.TCID_1 = UMLSLiterTCID and

ENTITY_LINK.TCID_2 = SNOLiterTCID;

TME can also validate transformations using only a specific link type

(ENTITY_LINK_TCID) or link direction:

Select * from ENTITY_LINK where

ENTITY_LINK.TCID_1 = SNOLiterTCID and

ENTITY_LINK.ENTITY_LINK_TCID = TFTClinicalEquivalentTCID and

ENTITY_LINK.TCID_2 = UMLSLiterTCID;

Result: TME is capable of validating transformations by evaluating links between TME

code identifiers (TCIDs) in the ENTITY_LINK Table. Not only can TME confirm if a

link exists, it can also provide the direction and type of linkage.

11.2.4. CTS translate a code. Translate Code (translateCode): this method is used

to transform a supplied coded attribute (code/descriptor) in a specified source code

system into a target form that is valid in the target application context.65 This method can

be used by an interface engine to provide mediation services, transforming local codes to

standards or one standard to another. The input for the method is a domain (e.g., “Units

of Measure”), a source code system code or descriptor (e.g., SNOMED CT code =

“258770004”), and a target code system and context (e.g., UMLS CUI).

 INPUT: Vocabulary Domain ID, source Code/Descriptor, and target Code

systems and Context

 OUTPUT: Target Coded Attribute (see Figure 21)

Similar to the validateTranslation method the primary TME table for this method is

the ENTITY_LINK table which holds mappings. The ENTITY table is included to check

122

entity status and the RSFORM table is joined to associate terms/descriptors with the

codes.

SQL Query:

Select RSFORM.TCID from RSFORM, ENTITY_RELATIONSHIP where

RSFORM.REPRESENTATION = “258770004” and

RSFORM.CONTEXT_TCID = SNOCodeContextTCID and

RSFORM.STATUS_TCID = SNOActiveTCID;

 {Look for the SNOMED CT code “258770004” in the SNOMED CT

context and confirm that it is active.}

 RSFORM.TCID = SNOLiterTCID

Once a TCID have been obtained for the SNOMED CT code, the ENTITY_LINK

table is queried to transform the code to a UMLS CUI (if such a mapping exists in the

TME):

Select RSFORM.REPRESENTATION from RSFORM, ENTITY where

RSFORM.TCID in

(Select TCID_1 from ENTITY_LINK where

ENTITY_LINK.TCID_2 = SNOLiterTCID)

or

(Select TCID_2 from ENTITY_LINK where

ENTITY_LINK.TCID_1 = SNOLiterTCID) and

RSFORM.CONTEXT_TCID = UMLSCUIContextTCID and

RSFORM.TCID = ENTITY.TCID

ENTITY.STATUS_TCID = UMLSActiveTCID;

Transformations can be made more specific by specifying link type

(ENTITY_LINK_TCID) and/or link direction.

Result: TME is capable of transforming a source coded attribute to a target coded

attribute. It is also possible to traverse relationships in the ENTITY_LINK table or

compare attributes in the ENTITY_ATTRIBUTE table and provide the “nearest” target

coded attribute.

11.2.5. CTS fill in code details. Fill in Details (fillInDetails): this method is used

to supply additional details for a coded attribute, including all code system names,

123

versions, and display names.65 The input for the method is a source code system code or

descriptor (e.g., SNOMED CT code = “258770004”). The output is additional optional

information the TME has regarding the code and associated content. The minimum

expected values are code attributes such as displays or descriptions and version

information, but TME is capable of supplying a great deal of additional information.

 INPUT: Source Code/Descriptor, Language

 OUTPUT: Coded Attribute Details (see Figure 22)

SQL Query:

Display all descriptions/codes, source, and version information in a namespace:

Select RSFORM.REPRESENTATION, RSFORM.SOURCE_TCID,

RSFORM.SOURCE_VER_TCID from RSFORM where

RSFORM.TCID = (Select RSFORM.TCID from RSFORM where

RSFORM.REPRESENTATION = “258770004” and

RSFORM.CONTEXT_TCID = SNOCodeContextTCID and

RSFORM.STATUS_TCID = SNOActiveTCID) and

RSFORM.LANGUAGE_TCID = EnglishTCID;

Result: TME is capable providing additional details for a coded attribute,

including: descriptions, codes, version information, defining attribute information,

properties, related coded attributes, and source code system information.

11.2.6. CTS implies. Implies (Implies): this function is used to determine whether

the parent coded attribute implies (subsumes) the child. This involves:

1. Determining if there is any type of relationship between the two coded attributes.

2. If there are relationships, do any of them imply subsumption?

Relationship types are concepts within the TME. They are used to organize, group,

and relate content for various purposes. The TME segregates relationships into two

classes:

124

1. Hierarchical relationship: also referred to as vertical relationships. These are

relationship types where a parent coded attribute implies the child (e.g.,

ENTITY_RELATION.RELATIONSHIP_TCID = “is a”). These relationship

types are further broken down into subtype:supertype and supertype:subtype

relationship types.

2. Nonhierarchical relationship: also referred to as horizontal relationships. These

are relationship types where the first coded attribute does not imply the second.

(e.g., ENTITY_RELATION.RELATIONSHIP_TCID = “has ingredient”).

The input for the method is a parent code or descriptor (e.g., SNOMED CT code =

“282115005,” “SI-derived unit of volume”) and a child code or descriptor (e.g.,

SNOMED CT code = “258770004,” “Liter”). The output is “TRUE” or “FALSE.

 INPUT: Parent Coded Attribute, Child Coded Attribute

 OUTPUT: True/False (see Figure 23)

SQL Query:

1. Determining if there is any type of relationship between the two coded attributes.

For this example, it will be assumed that it is unknown whether this is expected to

be a subtype:supertype (child to parent) or supertype:subtype (parent to child)

relationship type.

Select RELATIONSHIP_TCID from ENTITY_RELATION where

RELATIONSHIP_TCID in

(Select RELATIONSHIP_TCID from ENTITY_RELATION where

ENTITY_RELATION.TCID_1 = SNOLiterTCID and

ENTITY_RELATION.TCID_2 = SNOSIVolUnitTCID)

or

(Select RELATIONSHIP_TCID from ENTITY_RELATION where

ENTITY_RELATION.TCID_1 = SNOSIVolUnitTCID and

ENTITY_RELATION.TCID_2 = SNOLiterTCID);

2. If there are relationships, do any of them imply subsumption?

125

Select * from ENTITY_RELATION where

 TCID_2 = TFTHierarchicalRelationTypeTCID and

 RELATIONSHIP_TCID = TFTIsATCID and

 TCID_1 in

 (Select RELATIONSHIP_TCID from ENTITY_RELATION where

RELATIONSHIP_TCID in

(Select RELATIONSHIP_TCID from ENTITY_RELATION

where

ENTITY_RELATION.TCID_1 = SNOLiterTCID and

ENTITY_RELATION.TCID_2 = SNOSIVolUnitTCID)

or

(Select RELATIONSHIP_TCID from ENTITY_RELATION

where

ENTITY_RELATION.TCID_1 = SNOSIVolUnitTCID and

ENTITY_RELATION.TCID_2 = SNOLiterTCID));

Result: TME is capable of indicating if the relationship between two coded attributes is

hierarchical.

11.3. CTS Validation Results and Discussion

It was determined that all 57 CTS v1.2 functions can be fully or partially supported

by the TME infrastructure (see Table 14). Of the total functions, 51 (89%) are fully

supported and 6 (11%) are partial supported. When these numbers are adjusted for

functions that are duplicated across functional areas or have identical inputs and outputs

(method signatures or intent), the percent coverage for partial and full support remain the

same (89% or 31/35 full support and 11% or 4/35 partial support). It was determined that

support for the function was partial either because the intent of the function could be met,

but the method signature would be different than what is defined in CTS, or a partial or

“null” result was returned in the output.

The 4 functions that are partially supported are:

126

1. getSupportedMaps: The TME links concepts in disparate code systems through

the ENTITY_LINK table. Those links are “flattened” in the TFT for runtime

deployment of content. Comprehensive point-to-point mapping is not the specific

objective of the TME.

2. getSupportedMatchAlgorithms: Query ENTITY_RELATION for match

algorithm entity associated with the TFT "Service" entity. Although TME design

supports this service, the content has not been instantiated.

3. lookupValueSet: Query ENTITY_ATTRIBUTE, PROPERTY, and

ENTITY_RELATION tables with value set entity TCID to describe how the

value set is constructed in the TME. Note: indicated partial support because the

current implementation does not provide a value set "definition" (rules for how to

construct/populate the intentional value set), it returns enumerated values that

demonstrate how the value set has been instantiated.

4. lookupVocabularyDomain: TME can support this function from a design

perspective, but supporting content that maps RIM attributes dependencies has

not been instantiated in the TFT.

In all partially supported cases, the content was either intentionally not instantiated or

the work to populate the content was incomplete – nothing about TME design precluded

full support of all CTS v1.2 functions. Based on these results, it was concluded that the

TME interoperability requirement was met.

127

Figure 18: TME Return a Code for a Specified Domain. Fields used in the RSFORM

table to supply a TCID for the SNOMED CT Domain of “Units.” Yellow highlighted

fields are inputs; Green highlighted fields are output.

RSFORM

RSFORM_ID DOUBLE

REPRESENTATION TEXT(4000)

UP_REPRESENTATION TEXT(4000)

PREFERRED_REP TEXT(1)

CONTEXT_TCID DOUBLE

CASE_SENSITIVE TEXT(1)

LANGUAGE_TCID LONG

USAGE_SCORE DOUBLE

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

TCID DOUBLE

128

Figure 19: TME Validate a Code is Present and Active in a Specified Code System.

Fields used in the RSFORM and ENTITY_RELATION tables to determine if a given

code or code descriptor is present (code or description exists), active (STATUS_TCID =

“Active”), and in the specified code system (related to code system namespace in

ENTITY_RELATION table).

ENTITY_RELATION

ENTITY_RELATION_ID DOUBLE

TCID_1 DOUBLE

RELATIONSHIP_TCID DOUBLE

TCID_2 DOUBLE

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

RSFORM

RSFORM_ID DOUBLE

REPRESENTATION TEXT(4000)

UP_REPRESENTATION TEXT(4000)

PREFERRED_REP TEXT(1)

CONTEXT_TCID DOUBLE

CASE_SENSITIVE TEXT(1)

LANGUAGE_TCID LONG

USAGE_SCORE DOUBLE

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

TCID DOUBLE

129

Figure 20: TME Validate Transformation. Confirm that a mapping link

(ENTITY_LINK_TCID) exists between source code TCID and target code TCID.

Figure 21: TME Transform Source Code to Mapped Code in Specified Target Code

System.

ENTITY_LINK

ENTITY_LINK_ID DOUBLE

TCID_1 DOUBLE

ENTITY_LINK_TCID DOUBLE

TCID_2 DOUBLE

MAP_SET_TCID LONG

MAP_SCORE DOUBLE

RULE_XML TEXT(4000)

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

ENTITY_LINK

ENTITY_LINK_ID DOUBLE

TCID_1 DOUBLE

ENTITY_LINK_TCID DOUBLE

TCID_2 DOUBLE

MAP_SET_TCID LONG

MAP_SCORE DOUBLE

RULE_XML TEXT(4000)

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

RSFORM

RSFORM_ID DOUBLE

REPRESENTATION TEXT(4000)

UP_REPRESENTATION TEXT(4000)

PREFERRED_REP TEXT(1)

CONTEXT_TCID DOUBLE

CASE_SENSITIVE TEXT(1)

LANGUAGE_TCID LONG

USAGE_SCORE DOUBLE

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

TCID DOUBLE

ENTITY

TCID DOUBLE

CID TEXT(4000)

UP_CID TEXT(4000)

SCHEMA_TCID DOUBLE

GENDER_TCID LONG

ONTOLOGY_XML TEXT(4000)

DEFINITION_XML TEXT(4000)

SUPERSEDED_BY_TCID DOUBLE

STATUS_TCID DOUBLE

USAGE_SCORE DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML CHAR(10)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

130

Figure 22: TME Display all Descriptions, Codes, and Version Information in a

Given Namespace. RSFORM fields that provide code and descriptor information and

are used to link to version and entity tables to return source and version information.

Figure 23: TME How Are Two Entities Related. ENTITY_RELATION fields used to

determine if relationship between two entities implies subsumption.

RSFORM

RSFORM_ID DOUBLE

REPRESENTATION TEXT(4000)

UP_REPRESENTATION TEXT(4000)

PREFERRED_REP TEXT(1)

CONTEXT_TCID DOUBLE

CASE_SENSITIVE TEXT(1)

LANGUAGE_TCID LONG

USAGE_SCORE DOUBLE

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

TCID DOUBLE

ENTITY_RELATION

ENTITY_RELATION_ID DOUBLE

TCID_1 DOUBLE

RELATIONSHIP_TCID DOUBLE

TCID_2 DOUBLE

STATUS_TCID DOUBLE

SOURCE_TCID DOUBLE

SOURCE_VER_TCID DOUBLE

ADDED_DATE DATETIME

REVISED_DATE DATETIME

EFFECTIVE_DATE DATETIME

EXPIRATION_DATE DATETIME

VIEW_XML TEXT(4000)

COMMENT_XML TEXT(4000)

REV_COMMENT_XML TEXT(4000)

PREVIOUS_RID LONG

NEXT_RID LONG

RID DOUBLE

131

Table 14: CTS Validation Results. Count and percent of total number of CTS functions

supported by TME. Result validated indicates that multiple SMEs agree with the

assessment.

Description of

Category

Established

for TME

Validation

Count

(% of

Total)

Fully

Supported

(% of

Count)

Partially

Supported*

(% of

Count)

Not

Supported

(% of

Count)

Result

Validated

All CTS v1.2

Functions

(Across all

classes)

57

(100%)

51 (89%) 6 (11%) 0 (0%) Yes

Functions with

unique

definitions or

input/output

39

(68%)

34 (87%) 5 (13%) 0 (0%) Yes

Unique

functions

based on

“intent”

35

(61%)

31 (89%) 4 (11%) 0 (0%) Yes

12. DISCUSSION

This section takes a deeper look at justification for the project approach and

characteristics that differentiate it from other systems attempting to do similar things by:

 further reasoning for use of the TFT and the hybrid model as opposed to using

standards directly

 characteristics that distinguish TME from other terminology management

systems

 significance of this project to the field of biomedical informatics

 potential future work

12.1. Why Not Just Use Standards Directly?

An alternative approach (mentioned in Section 7.1) to the TME is to use standard

terminologies directly. Using standards directly entails using the identifiers of standard

vocabularies to encode patient data, instead of inserting an abstraction layer (redirecting)

through the TME and assigning TCIDs. While standardization and interoperability

would be achieved with this approach, other challenges remain.

12.1.1. Dealing with semantic change in external code systems. As discussed in

Section 5.1.3, change in the meaning of an encoded concept results in semantic shift

(sudden change) or drift (slight alteration over time). Patient data encoded with

identifiers that have undergone shift or drift cannot be correctly interpreted. If a code

133

from a standard terminology is used to encode data and the meaning of the code changes

over time, historical patient data will be interpreted incorrectly in a longitudinal patient

record. This can happen because of:

 Code reuse: a common problem for many standard code systems, e.g., ICD-9-CM,

NDC. This is where a code is deleted and then reintroduced with a different

meaning.

 “Adjustment or refinement”: these are “small” changes in the display associated

with content that can accumulate over time and in certain contexts could be

considered a change in meaning.29

The federated terminology in the TME (TFT) provides a buffer between the patient data

and flux in external terminologies. Concepts created in the TFT follow the principle of

concept permanence26 and never change their meanings so that patient data encoded with

TCIDs will never be misinterpreted.

Since external standard codes are associated with TFT TCIDs through the

ENTITY_LINK table, as external codes are reused, the mapping in the TME will change

accordingly. The ENTITY_LINK table also facilitates the task of remapping

ENTITY_LINK_TCID = TFTIsNarrowerThan or TFTIsBroaderThan mappings with

successive releases of the source terminology. Mappings that are not designated as

equivalent can be reevaluated to determine if any new content in the source would be a

more accurate or appropriate map than the current link.

This approach of using a third identifier (TCID) and associating detailed version and

context information to mappings in the ENTITY_LINK table does two things to address

the issue of semantic shift and drift in source terminologies:

134

1. Information is never discarded. Source content is encoded with native granularity

and compositional structure. The TFT follows the principle of concept

permanence and mappings in the ENTITY_LINK table are reevaluated when

there is semantic shift or drift in a source terminology.

2. The ENITY_LINK table is used to capture details with regard to the conditions

and specificity of the mappings (e.g., ENTITY_LINK.ENTITY_LINK_TCID

establishes the specificity of the mapping, ENTITY_LINK.RULE_XML defines

conditions for which the mapping is valid, ENTITY_LINK.MAP_SET_ID is used

as an index for composition and decomposition). Mappings between source and

target can be more easily reevaluated because each link is documented in such a

way that categories of mappings can be identified and evaluated.

12.1.2. Dealing with the deletion of standard codes. Standard code systems may

retire/deprecate or delete codes. If patient data are stored using the removed code, they

will no longer be interpretable. The TME addresses this challenge in two ways: 1)

through the revision tables which track changes to the sources and 2) through assigning a

stable concept identifier in the TFT namespace (TCID).

The namespace for each source terminology in the TME is kept current with the

source. If the source deletes a code or code attribute, it is also deleted in the source

namespace. However, the content change will result in entries in the mirror revision

tables. So the type of change and when it happens is tracked in the TME. While this

provides a means of tracking the changes that occur in source terminologies, it is not a

practical way to address the impact these changes may have on the ability to interpret

135

patient data over-time. Providing a stable third identifier to address this issue is one of

the primary purposes of the TFT.

In the TFT, a TCID, once created, is never deleted and its semantics are not altered.

Using the TFT TCID to encode and store patient data and not a standard code protects

patient data from code deletion.

12.1.3. Lack of comprehensive standard codes. A standard vocabulary may not

provide all the codes that correspond to the entire set of data in current use. The set of

data that falls outside the coverage of one or multiple standards must be addressed. Some

standards such as SNOMED CT provide an “extension” mechanism. SNOMED CT

allows third parties to request a local extension namespace that can be used to extend

SNOMED CT code coverage to content that is not currently and may never be in the

standard.83

Local extensions are codes used to encode data when the appropriate, equivalent

code is not found in the standard terminology. Local extensions provide concepts needed

by a third party for different granularity or compositional structure. This local content is

critical for efficient workflow and data capture. However, it is a major contributing

factor for why many health care organizations have data interoperability issues.29

Both the local extension namespace approach offered by standards and the federated

terminology in the TME address the issue of comprehensiveness, but when a standard

code is used as a system’s internal identifier, the consequence is that the system has no

insulation from the standards ontology or “world-view.” Issues such as semantic change

and nuance in the way content is defined cannot be addressed with this approach. The

TFT allows systems to create and maintain their own internal “world-view” and translate

136

to the appropriate standard for the purpose of data exchange. This approach allows for

standards compliance for the sake of interoperability without being constrained to the

precise manner in which the standards have modeled and defined content.

12.1.4. Historical patient data. If standards are used directly and no mapping is

performed to link legacy codes to the standards, backward compatibility is lost. The

historical patient data are important for continuity of care, quality of care delivery,

population health management, and outcomes research.29 Failing to create a mapping

would result in the historical data being incompatible with newly collected data and

essentially lost to computable clinical or administrative use.

Creating mappings in the TME ENTITY_LINK table maintains backward

compatibility and addresses this issue with historical patient data. At any point in time,

the association between legacy content and the TFT is kept in semantic alignment though

the notion of concept permanence and because of the metadata in the ENTITY_LINK

table that explicitly defines the nature of the mapping (see Section 9.2.4).

12.2. How the TME Is Different from other Vocabulary Servers

The TME is composed of a vocabulary server (the set of tables and services that hold

the source code systems and the TFT) and a set of terminology management utilities,

with supporting applications, processes, documents, and tables (see Figure 24).

Vocabulary server capabilities can be divided into the following broad categories:

 Content Development: creating a terminology; focus is on authoring new content

 Content Integration: linking various source terminologies; focus is on mapping

137

 Integrated Content Maintenance: keeping multiple integrated source

terminologies current and synchronized; focus is on identifying changes,

mapping, and reevaluating existing maps

 Content Implementation: strategy for making content operational within a system;

focus is on system content requirements—the ability to extract, transform, and

load content

 Runtime deployment: supporting applications with terminology services in

runtime; focus is on performance

Many of the vocabulary servers available today (listed in Section 3.4) are commercial

and most specialize in either content development or runtime deployment. The TME

focuses on content integration, maintenance, and implementation.

12.2.1. Content integration in the TME. The TME defines content and associates

attributes through the ENTITY, RSFORM, ENTITY_ATTRIBUTE, and PROPERTY

tables and establishes context through the ENTITY_RELATIONSHIP table (Section

9.2.3). The context and definition of content is used in the mapping process for content

integration (Section 10.5). Additional code attributes, including

ENTITY.GENDER_TCID, ENTITY.DEFINITION_XML, and

COMPONENT.USAGE_SCORE, are used to identify and filter candidate matches in the

mapping process. Theses mappings are defined and stored in the ENTITY_LINK table

(Section 9.2.4).

The way TME integrates content in the TFT is a key differentiator. This single

federated terminology acts as a concept-based “anchor” for the content managed in the

TME. There are approaches that attempt to achieve content integration by

138

incorporating/managing only the subset of standard content that is used within their

system through point-to-point maps (discussed in Section 7.2). Such systems only have

the ability to interpret the subset of standard codes that map to their LIT. This approach

is unidirectional in terms of interoperability. It works for sending data, but not for

receiving it.

Consider the following example; the English language is a terminology. The

subset of English language, which an individual understands, is his/her vocabulary. In

practical terms, semantic interoperability using English as an example cannot require

speakers to exchange a list of terms in their vocabulary prior to holding a dialogue and

limit the conversation to only those terms that are on both speakers’ lists. The more

complete a speaker’s understanding of the English language is, including terms they may

not commonly use, the less information is lost in communication. Similarly, exchange of

data using a standard terminology requires sending and receiving systems to

“understand” the entire code system, even if their local terminology only maps to a subset

of it.

The TME entity is not concept-based. In this way, external code systems can be

loaded into their TME namespace without losing native metadata (e.g., properties,

attributes, surface forms, etc.). Since the TME contains all the codes from sources that

have been integrated along with the associated native metadata, no information beyond

the code systems and version needs to be communicated in order to achieve semantic

interoperability between systems. In other words, two systems can arrange to use a

particular code system for exchanging data and as long as the sending system provides

139

the code system name and version, along with the code, the TFT can be referenced to

interpret and transform the code without loss of information.

The TME loads all of the code attributes of source code systems into their

respective namespaces and integrates those codes through mappings that are defined in

the ENTITY_LINK table. It permits point-to-point mapping, but there is a canonical

centralized mapping to the TFT. With this approach, runtime content generated by the

TME can interpret all incoming standard codes and translate to an exact or approximate

internal code.

12.2.2. Content maintenance in the TME. Content maintenance involves

evaluating subsequent versions of a source terminology for integration in the TME. The

key differences between content maintenance and initial content integration are:

1. Identifying where there was change and what type of change it was

2. Identifying what previous mappings must be reevaluated

This area of content maintenance is frequently overlooked. Many organizations and

systems think of mapping as a one-time effort and ignore the fact that both source and

target terminologies are likely to change over time. When systems do try to address these

changes, they typically think of maintenance as addressing things that “error off” in an

interface engine. This will happen if an interface engine attempts to translate a code and

no mapping exists. These systems think of maintenance as making sure that there is a

target code for every source code, but they do not evaluate changes in source or target

that may have affected existing mappings.

The TME attempts to keep mappings synchronized without requiring a complete

remapping with each subsequent version of a source and/or target terminology as the

140

source terminologies diverge. Change is tracked at the level of source code attributes in

the TME. This means that for any change to a code attribute such as a display or

relationship, there will be an entry in the corresponding revision table. The revision

tables allow the TME to generate a “snapshot” of what source content looked like in the

TME at any past point in time. This is because source code systems may make changes

to any single code attribute without versioning the code itself.

Content maintenance in the TME relies heavily on the temporal tracking of

entities and their corresponding metadata in the revision tables (Section 9.2 and TME

ERD Revision tables described in Appendix A) and “Diffing” (Section 10.3) to identify

changes. Once this is done, the source namespace can be updated. The next step is to

evaluate mappings between the source namespace and other namespaces. Mapping

maintenance involves creating new maps using the content integration steps described in

Section 12.2.1 and establishing which existing mappings must be evaluated using the

ENTITY_LINK table (Section 9.2.4).

The ENTITY_LINK.ENTITY_LINK_TCID is used to identify the mappings that

need to be reevaluated. Instead of remapping all source and target entities, only the links

where source or target changed and the ENTITY_LINK_TCID does not equal

“TFTIsEquivalentTo” must be reevaluated.

12.2.3. TME content implementation. Content implementation is using clinical

terminology in production systems. It involves support for runtime capabilities.

Examples of support for these runtime functions are provided in Section 11.2. CTS was

used for external validation of the capabilities of the TME (full evaluation is provided in

Appendix C and results are summarized in Table 14). However, design requirements for

141

the TME were taken from the functional requirements described in Section 8.2. The

TME design supports all CTS v1.2 requirements. The TME can support runtime

capabilities through these services or through direct calls or content may be extracted

from the TME and transformed to optimize runtime performance, since runtime

implementations may have performance requirements for which the TME is not

optimized. The current approach is to export TME content into indexes that are

optimized to support particular runtime capabilities and specific system requirements.

The TME facilitates content export with COMPONENT.VIEW_XML (Section 9.2).

COMPONENT.VIEW_XML allows for multiple consistent views of the same underlying

content.26 It is associated with every TME table and can be used to partition TME

content for export. It is used to designate the boundaries of namespaces among

concepts, designations, and attributes. In the current implementation, the VIEW_XML

attribute is manually assigned and static. Future work will entail implementing a strategy

for dynamic assignment to a particular view based on criteria.

12.2.4. Additional characteristics of TME content. The TME design has unique

characteristics that support modeling content and content integration. Entity and

representation links and entity attributes will be discussed as examples.

The TME Enitity Link table stores metadata about the association between two

entities (see Table 8). These associations can be created for multiple purposes (e.g., map

sets, value sets). The following are examples of unique capabilities enabled by entity

links:

 Ability to establish context for mappings--add additional information about

mappings between source and target code systems (see Figure 25)

142

 Ability to express bi- or unidirectional mappings

 Ability to indicate the specificity of the map (i.e., “isEquivalentTo,”

“isBroaderThan,” “isNarrowerThan,” etc.)

 Ability to assign mappings for a particular purpose or for a particular user

 Ability to comment on mappings and assign status

 Similarly to the TME Entity Link table, the Representation Link table stores

metadata about the association between two representations (see Figure 26). These

associations can be created for multiple purposes (e.g., lexical variant sets, value sets).

The following are examples of unique capabilities enabled by representation links:

 Ability to make explicit links between two representations on the same entity or

across entities

 Ability to link between code and display

 Ability to link lexical variants of terms

 Ability to create term-based value sets that link representations across multiple

entities

 The entity attributes table provides a way to formally define entities by

associating attributes with specified data types (see Figure 27). A coded attribute data

type specifies that the attribute is another entity. The following are examples of

capabilities enabled by entity attributes:

 Ability to formally define entity through associated attributes

 Ability to compare attribute sets source to target for mapping

 Ability to express name-value pairs where values can be coded (TCID),

number, string

143

12.3. Significance of Work

This project builds upon the work of many others who developed approaches and

systems to standardize clinical terminology.25 The unique contributions of this project

are:

 the work to derive and describe a conceptual understanding of the scope and

intricacies of the challenge

 the approach and solution derived from applying informatics principles, practical

experience, and real-world requirements

 a working environment that meets the requirements for creating, maintaining, and

distributing terminologies

 a system that address a set of key consideration (source transparency, overarching

data model, and scalability) that to-date no single system fully supports

Although the challenge of successfully implementing clinical terminology is widely

recognized, it is not well understood. This project explicitly enumerated many of the

challenges in justification of an approach that might seem “over-engineered” without a

more thorough understanding of the topic.

With the application of informatics principles to a more well-defined problem space,

a more strategic rather than tactical solution was defined. It would be possible to

engineer multiple discrete, tactical solutions to address each of the functional

requirements and challenges defined in the project. However, doing so would have

dramatically increased the complexity of the solution and the difficulty of maintaining it

and the content within it.

144

The TME is capable of maintaining a federated terminology and simultaneously

integrate code system namespaces. Name value pairs for a range of data types can be

defined in the ENTITY_ATTRIBUTE and PROPERTY tables. Additional entity

attributes and metadata are maintained within the system to integrate workflow and

tooling and formalize the creation, integration, and maintenance of content.

The TME is a key data governance tool that:

 Structures: associates concepts in a meaningful way

 Normalizes: provides a single identifier for the multiple terms and codes

associated with a concept in the TFT

 Standardizes: links local terminologies to standards through concept mapping

It does this by meeting the functional requirements of the various consumers and

authors of terminology (Section 8.1). It provides this support through the entire life cycle

of terminology within an organization addressing ETL, provenance, maintenance, and

runtime deployment.

Many terminology servers exist. The challenge is that the complexity of these

systems typically prevents them from being utilized by groups or individuals other than

those who initially created them. A large number and wide spectrum of individuals must

access an enterprise system of this type. If the database, terminology services, content,

processes, and tooling are not considered as an integrated environment, the complexity of

the system will prevent it from being understood and properly utilized. This work

defined the interaction of these various components, described the dependencies and

created a system that considers workflow, content integration, and maintenance

challenges that to this date have not been adequately addressed.

145

Although it is difficult to prove the generalizability of the approach and the work

involved in creating and maintain content beyond its successful implementation at 3M,

the validation was able to establish that other consumers of terminology can interact with

the environment using standard APIs.

The ultimate goal of this project is to support efforts to improve clinical outcomes and

electronic interoperability of the EHR. Hospitals and providers have an escalating need

to maintain a growing amount of standardized, structured data to comply with

requirements, interpret massive amounts of complex data, and organize, summarize, and

interpret information and outcomes. It is crucial that organizations be proficient in the

management, access, and utilization of these data. The TME can act as a key component

in an organization’s data governance strategy. Combined with the right people,

processes, and tools, the TME provides a practical migration path to help health care

organizations structure, normalize, and standardize their data. It provides this capability

without imposing undue burden on the organization and does not result in the loss of

historical patient data.

12.4. Future Work

There are multiple opportunities for additional work in this area. New database

designs, matching technologies, and informatics tools are areas that should be continually

evaluated and applied to this base framework. The following sections describe some

areas of potential future work.

12.4.1. Optimizations to current TME design and content. With regard to design,

some characteristics of the TME schema are aspects of the logical model that found their

way into the physical model. It may be possible to simplify the database schema further

146

by doing things such as merging the PROPERTY and ENTITY_ATTRIBUTE tables.

These tables were separated because the logical model made a distinction between

defining entity attributes and general properties of code and other code attributes. This

distinction in the logical model could be preserved without making two separate tables.

Similarly, version metadata was integrated directly into each of the core TME

tables as opposed to breaking out version information into a separate table. This makes it

awkward to add additional version metadata (e.g., “Date of deployment”) to TME

entities.

TFT terminology models are adhered to mostly through tool business logic or

SME training. Implementing formal ontology in the TFT would organize the content and

provide a valuable QC mechanism with automated validation tools.

12.4.2. More terminology tools. Several applications were created to support the

TME,79,84-87 but tools to manage workflow and map content can always be enhanced,

specifically in the area of searching and matching. This capability is not only important

for managing terminology, but also for using it. Structured documentation allows

clinicians to use picklists for data entry. The picklists reference value sets in the

terminology. In some cases, these value sets can get very large (e.g., lists of problems or

diagnoses). It is critical to be able to find the appropriate concept in a large list, quickly.

Coming up with better ways to find a target concept in large volumes of content is an

area for future work.

12.4.3. Better ways to address the ETL. Currently, the initial ETL for integrating

complex new source terminology into the TME is one of the most difficult parts of the

process. It requires informatics expertise and a very good understanding of both source

147

and target logical and physical models. It takes time to gain familiarity with the new

source data model and then time to reconcile differences and map the models in the ETL

process. Another option to explore is promoting exchange of data among vocabulary

servers using Resource Description Framework (RDF). RDF is a standard model for data

exchange that facilitates data interoperability even when the underlying data models

differ.88 Using RDF as an interlingua would simplify the ETL process allowing source

content to be loaded in the appropriate namespace without having to first map all the

divergent schemas.

12.4.4. Alignment with CTS v2.0. Common Terminology Services v2.0 (CTS

v2.0) is the most current version of the CTS specification. It seeks to expand the original

functionality of CTS v1.2 particularly in the area of content administration, authoring,

and distribution.82 At high level, the TME is aligned with CTS v2.0’s overall model.

However, a detailed analysis similar to the one performed against CTS v1.2 could also be

done as another form of external validation.

148

Figure 24: TME Overview. Example TME implementation

Figure 25: Entity Link Metadata.

Figure 26: Representation Link Metadata.

Terminology Services – HL7 CTS/Native

Mapping

Tools

Authoring

Browsing Workflow

Administration

Versioning

Maintenance

Reviewing

Update/Sync

Terminology

Management Utilities

LITs

SNOMED CT

LOINC System B

System A

Vocabulary

Maintenance

Repository

Standard

Code Systems

Import/Export

Questions/

Answers

Mapping

Requests

Workflow

Quality

Assurance

SOPs

SME Review

Group

A

Group

B

Group

C

Group

D

Review/Publish

TME

Vocabulary

Server

Master

Files

Others

Concept Hub Wiki

TRAX

3M HDD

149

Figure 27: Entity Attribute Example.

13. CONCLUSION

This project has defined the role and benefits of standard terminology and describes

the challenges and barriers that exist for consistent and sustainable use of coded

terminologies in EHR systems. Various approaches to implementing standard

terminologies were explored and finally the TME, a working system that meets the

requirements for creating, maintaining, and distributing coded terminologies used in EHR

systems, was created and evaluated against defined requirements and the industry

standard Common Terminology Services (CTS).

The TME approach involves creation of a federated terminology, the TFT, that

integrates multiple standards and local terminologies into a single source of truth for the

meaning and structure of clinical content (see Figure 28). In this approach, legacy

systems continue to collect data using local codes. The local terminology is linked to

standard terminologies through the TME. This approach of creating a centralized

vocabulary server that houses a federated terminology and using mappings as the means

to integrate both standards and local terminologies across multiple namespaces provides

an efficient, flexible, extensible approach for managing fit-for-purpose content and

clinical code systems.

151

Figure 28: TME Support for Users, Applications, and Interfaces. Summary of TME

model and interactions with users and systems.

APPENDIX A

TME CORE TABLES

1
5
3

Figure 29: TME ERD Table Description Summary

RSFORM_LINK_REV

PK,FK3,U1 RID

I2,I1,U1 RSFORM_LINK_ID

 RSFORM_ID_1

 LINK_TCID

 RSFORM_ID_2

 STATUS_TCID

 SOURCE_TCID

 ADDED_DATE

 EFFECTIVE_DATE

 REVISED_DATE

 EXPIRATION_DATE

FK1,I1,U2 PREVIOUS_RID

FK2,I2,U3 NEXT_RID

 COMMENT_XML

 VIEW_XML

 RSFORM_TCID

 REV_COMMENT_XML

ENTITY_RELATION

PK,U5,U3,U11,U10 ENTITY_RELATION_ID

FK3,U1,U9,U8,U7,U6,U5,U4,I1,U11,U10 TCID_1

FK5,U1,U9,U8,U7,U6,U5,U4,I2,U11,U10 RELATIONSHIP_TCID

FK4,U1,U9,U8,U7,U6,U5,U4,I2,U11,U10 TCID_2

U1,U9,U8,U6,U10 STATUS_TCID

U7,U6,U5,U3,I2,I1,U10 SOURCE_TCID

 ADDED_DATE

 EFFECTIVE_DATE

FK1,U2,U11,U10 RID

 REVISED_DATE

 EXPIRATION_DATE

 PREVIOUS_RID

FK2 NEXT_RID

U10 SOURCE_VER_TCID

 COMMENT_XML

 VIEW_XML

 REV_COMMENT_XML

ENTITY_LINK

PK,U3 ENTITY_LINK_ID

I1,U4,U1 TCID_1

U4,U1 ENTITY_LINK_TCID

I2,U4,U1 TCID_2

 SCORE

U1 STATUS_TCID

U3,U1 SOURCE_TCID

 ADDED_DATE

 EFFECTIVE_DATE

U2 RID

 REVISED_DATE

 EXPIRATION_DATE

 PREVIOUS_RID

 NEXT_RID

 COMMENT_XML

 VIEW_XML

 RULE_XML

 REV_COMMENT_XML

 MAP_SET_TCID

 SOURCE_VER_TCID

ENTITY_ATTRIBUTE_REV

PK,U2,U1 RID

U2,U1 ATTRIBUTE_ID

U1 TCID

U1 PARENT_ATTRIBUTE_ID

U1 SET_ID

U1 ATTRIBUTE_TCID

 VALUE_TYPE_TCID

 CODED_VALUE_TCID

 NUMERIC_VALUE

 ALPHA_VALUE

 VALUE_UNIT_TCID

 STATUS_TCID

U1 SOURCE_TCID

 COMMENT_XML

 VIEW_XML

 ADDED_DATE

 REVISED_DATE

U1 EXPIRATION_DATE

U1 EFFECTIVE_DATE

 PREVIOUS_RID

FK1 NEXT_RID

U1 TERMINOLOGY_VER_TCID

 UP_ALPHA_VALUE

 XML_VALUE

 REV_COMMENT_XML

PROPERTY_REV

PK,U4,U3,U2,U1 RID

U3,U2,U1 PROPERTY_ID

U3,U1 SET_ID

U3,U1 PARENT_TABLE_TCID

U3,U1 PARENT_ID

U3,U1 PROPERTY_TCID

U3 VALUE_TYPE_TCID

U3 CODED_VALUE_TCID

U3 NUMERIC_VALUE

U3 ALPHA_VALUE

 UP_ALPHA_VALUE

U3 XML_VALUE

U4,U3 VALUE_UNIT_TCID

U4 STATUS_TCID

U4,U3,U1 SOURCE_TCID

U1 TERMINOLOGY_VER_TCID

U4 COMMENT_XML

U4 VIEW_XML

 ADDED_DATE

 REVISED_DATE

U4,U3,U1 EFFECTIVE_DATE

U4,U1 EXPIRATION_DATE

FK1 PREVIOUS_RID

FK2 NEXT_RID

 REV_COMMENT_XML

RSFORM_LINK

PK,U3 RSFORM_LINK_ID

FK1,FK4,I1,U1 RSFORM_ID_1

U1 LINK_TCID

FK2,FK3,I2,U1 RSFORM_ID_2

 STATUS_TCID

U3 SOURCE_TCID

 ADDED_DATE

 EFFECTIVE_DATE

U2 RID

 REVISED_DATE

 EXPIRATION_DATE

 PREVIOUS_RID

 NEXT_RID

 COMMENT_XML

 VIEW_XML

FK3,FK4 RSFORM_TCID

 REV_COMMENT_XML

ENTITY_ATTRIBUTE

PK,U4,U2,U6 ATTRIBUTE_ID

FK1,U4,U2,U1,I4,I3,I2,I1 TCID

FK5,U4,U2,U1,I4,I2,I1 PARENT_ATTRIBUTE_ID

U4 SET_ID

U4,U2,U1,I4,I3,I2,I1 ATTRIBUTE_TCID

U1 VALUE_TYPE_TCID

U2,U1,I4,I3,I1 CODED_VALUE_TCID

U2,U1,I4,I1 NUMERIC_VALUE

U1 ALPHA_VALUE

U3,U1 VALUE_UNIT_TCID

U4,U3,U2,I4,I3,I1 STATUS_TCID

FK1,FK5,U4,U3,U1,I1,U6 SOURCE_TCID

U3 COMMENT_XML

U3 VIEW_XML

 ADDED_DATE

 REVISED_DATE

U3 EXPIRATION_DATE

U3 EFFECTIVE_DATE

FK2,U5,U3 RID

FK3 PREVIOUS_RID

FK4 NEXT_RID

FK6,U4 SOURCE_VER_TCID

 UP_ALPHA_VALUE

U1 XML_VALUE

 REV_COMMENT_XML

PROPERTY

PK,U6,U5,U2,U1 PROPERTY_ID

FK1,U5,U4,U3,U2 RID

U5,U2,U1 SET_ID

FK3,U6,U5,U2,U1,I1 PARENT_TABLE_TCID

U6,U5,U2,U1,I1 PARENT_ID

U6,U5,U2,U1,I1 PROPERTY_TCID

U2 VALUE_TYPE_TCID

U6,U2 CODED_VALUE_TCID

U6,U2 NUMERIC_VALUE

U2 ALPHA_VALUE

 UP_ALPHA_VALUE

U2 XML_VALUE

U3,U2 VALUE_UNIT_TCID

U6,U5,U3,U1,I1 STATUS_TCID

U6,U5,U3,U2,U1 SOURCE_TCID

U5 TERMINOLOGY_VER_TCID

U3 COMMENT_XML

U3 VIEW_XML

 ADDED_DATE

 REVISED_DATE

U3 EFFECTIVE_DATE

U3 EXPIRATION_DATE

 PREVIOUS_RID

FK2 NEXT_RID

 REV_COMMENT_XML

RID_CONTROL

 RID

FK1 PARTITION_TCID

RSFORM_REV

PK,FK3,U2,U1,U5 RID

FK1,U2,U1,U5 RSFORM_ID

FK1,U1,U5 TCID

U1,U5 REPRESENTATION

U1,U5 CONTEXT_TCID

 CASE_SENSITIVE

 STATUS_TCID

U1 SOURCE_TCID

 ADDED_DATE

U1 EFFECTIVE_DATE

 REVISED_DATE

U1 EXPIRATION_DATE

FK4,U3 PREVIOUS_RID

FK2,U4 NEXT_RID

U1 TERMINOLOGY_VER_TCID

 LANGUAGE_TCID

 PREFERRED_REP

 COMMENT_XML

 VIEW_XML

 UP_REPRESENTATION

 REV_COMMENT_XML

RSFORM

PK,U6,U5,U4 RSFORM_ID

FK1,FK5,U2,U1,I4,I3,I2,U6,U5,U3,I6 TCID

U2,U1,U6,U3,I7 REPRESENTATION

I4,I3,I2,I6 UP_REPRESENTATION

U2,U1,I4,I3,I2,U6,U3,I6,I5 CONTEXT_TCID

 CASE_SENSITIVE

U2,U1,I4,I3,I2,U6,I6 STATUS_TCID

FK1,U2,U1,I4,I3,U6,U4,U3 SOURCE_TCID

 ADDED_DATE

 EFFECTIVE_DATE

FK2,FK7,I1 RID

 REVISED_DATE

 EXPIRATION_DATE

FK6 PREVIOUS_RID

FK3 NEXT_RID

U6 SOURCE_VER_TCID

 LANGUAGE_TCID

 PREFERRED_REP

 COMMENT_XML

 VIEW_XML

 REV_COMMENT_XML

ENTITY_RELATION_REV

PK,FK3,U2,U1,U5 RID

U2,U1,U5 ENTITY_RELATION_ID

U1,U5 TCID_1

U1,U5 RELATIONSHIP_TCID

U1,U5 TCID_2

 STATUS_TCID

U1 SOURCE_TCID

 ADDED_DATE

U1 EFFECTIVE_DATE

 REVISED_DATE

U1 EXPIRATION_DATE

FK1,U3 PREVIOUS_RID

FK2,U4 NEXT_RID

 SOURCE_VER_TCID

 COMMENT_XML

 VIEW_XML

 REV_COMMENT_XML

ENTITY

PK,U7,U6,U3,U2,U1 TCID

I3,U7,U4,U1 CID

I3,I2 UP_CID

 SCHEMA_TCID

 GENDER_TCID

 DEFINITION_XML

 COMMENT_XML

FK4,I1 SUPERCEDED_BY_TCID

U6,U2 STATUS_TCID

 VIEW_XML

 USAGE_SCORE

I4,I2,U6,U4,U3,U2 SOURCE_TCID

 ADDED_DATE

 REVISED_DATE

 EFFECTIVE_DATE

 EXPIRATION_DATE

FK1,FK6,U5 RID

FK2 PREVIOUS_RID

FK3 NEXT_RID

 ONTOLOGY_XML

 REV_COMMENT_XML

FK5,U6 SOURCE_VER_TCID

ENTITY_LINK_REV

PK,FK3,U1 RID

I3,I2,I1,U1 ENTITY_LINK_ID

 TCID_1

 ENTITY_LINK_TCID

 TCID_2

 SCORE

 STATUS_TCID

I1 SOURCE_TCID

 ADDED_DATE

 EFFECTIVE_DATE

 REVISED_DATE

 EXPIRATION_DATE

FK1,I2,U2 PREVIOUS_RID

FK2,I3,U3 NEXT_RID

 COMMENT_XML

 VIEW_XML

 RULE_XML

 REV_COMMENT_XML

 MAP_SET_VCID

 SOURCE_VER_TCID

ENTITY_REV

FK4,U1,I2,U5,U4 RID

FK1,U1,I2,U5 TCID

U5 CID

 SCHEMA_TCID

 COMMENT_XML

 SUPERCEDED_BY_TCID

 STATUS_TCID

FK1,I2 SOURCE_TCID

 ADDED_DATE

I2 EFFECTIVE_DATE

 REVISED_DATE

I2 EXPIRATION_DATE

FK2,U2,U4 PREVIOUS_RID

FK3,U4,U3 NEXT_RID

 SOURCE_VER_VCID

 GENDER_TCID

 UP_CID

 ONTOLOGY_XML

 REV_COMMENT_XML

 DEFINITION_XML

1
5
4

Table 15: Summary of TME Tables. List of TME table names and descriptions.

TME TABLE NAME TME TABLE DESCRIPTION

RID_CONTROL

(see

Table 16 for detailed description)

The RID_CONTOL table is used to generate and maintain unique revision identifiers

(RIDs). RIDs are used by the other TME to index changes to content. The

RID_CONTROL table can be considered as several same-structured tables combined into

one (see PARTITION_TCID description). Because RIDs must be unique across all core

TME tables, they are stored in the RID_CONTROL, where designation as a primary key

can be used to enforce uniqueness.

ENTITY

(see Table 17 for detailed description)

The ENTITY table stores the “most-future” revision of every entity in the TME. This

means that it is possible that a revision of an entity in this table will not be the “current-

effective” revision and the ENTITY_REV table will need to be referenced in order to

determine the most current revision of the entity.

ENTITY_REV

(see Table 18 for detailed description)

The ENTITY_REV table stores entity revisions. Anytime an entity is inserted, updated, or

deleted in the ENTITY table, a row is created in the ENTITY_REV table. Except where

commented otherwise, all fields are identical to the ENTITY table.

RSFORM

(see Table 19 for detailed description)

The RSFORM table stores entity related surface forms (RSFORMs) or

designations/displays/representations/codes used to label an entity in a specific

CONTEXT_TCID.

RSFORM_REV

(see Table 20 for detailed description)

The RSFORM_REV table stores entity representation revisions. Anytime an entity

representation is inserted, updated, or deleted in the RSFORM table, a row is created in the

RSFORM_REV table. Except where commented otherwise, all fields are identical to the

RSFORM table.

RSFORM_LINK

(see Table 21 for detailed description)

The RSFORM_LINK table is used to stores named associations among entity

representations.

RSFORM_LINK_REV

(see Table 22 for detailed description)

The RSFORM_LINK_REV table stores representation link revisions. Anytime a

representation link is inserted, updated, or deleted in the RSFORM_LINK table, a row is

created in the RSFORM_LINK_REV table. Except where commented otherwise, all fields

are identical to the RSFORM_LINK table.

1
5
5

TME TABLE NAME TME TABLE DESCRIPTION

ENTITY_RELATION

(see Table 23 for detailed description)

The ENTITY_RELATION table stores all named relationships among entities in the same

namespace.

ENTITY_RELATION_REV

(see Table 24 for detailed description)

The ENTITY_RELATION_REV table stores entity relationship revisions. Anytime a

relationship is inserted, updated, or deleted in the ENTITY_RELATION table, a row is

created in the ENTITY_RELATION_REV table. Except where commented otherwise, all

fields are identical to the ENTITY_RELATION table.

ENTITY_LINK

(see Table 25 for detailed description)

The ENTITY_LINK table stores named links (mapping types) between entities.

ENTITY_LINK is not meant to hold relationships among entities. Entity links may cross

TME namespaces, while entity relationships are not permitted to cross TME namespaces.

ENTITY_LINK_REV

(see Table 26 for detailed description)

The ENTITY_LINK_REV table stores entity link revisions. Anytime an entity link is

inserted, updated, or deleted in the ENTITY_LINK table, a row is created in the

ENTITY_LINK_REV table. Except where commented otherwise, all fields are identical to

ENTITY_LINK.

ENTITY_ATTRIBUTE

(see Table 27 for detailed description)

The ENTITY_ATTRIBUTE table stores all attributes of entities. It allows for the data type

of the attribute to be specified accommodating name-value pairs.

ENTITY_ATTRIBUTE_REV

(see Table 28 for detailed description)

The ENTITY_ATTRIBUTE_REV table Stores ENTITY_ATTRIBUTE revisions.

Anytime a attribute is inserted, updated, or deleted in the ENTITY_ATTRIBUTE table, a

row is created in the ENTITY_ATTRIBUTE_REV table. Except where commented

otherwise, all fields are identical to ENTITY_ATTRIBUTE.

PROPERTY

(see Table 29 for detailed description)

The PROPERTY table stores name-value pairs that are properties of entities,

representations, relationships, mapping links, representation links, and other properties.

PROPERTY_REV

(see Table 30 for detailed description)

The PROPERTY_REV table stores property revisions. Anytime a property is inserted,

updated, or deleted in the PROPERTY table, a row is created in the PROPERTY_REV

table. Except where commented otherwise, all fields are identical to PROPERTY.

Table 15: Continued

1
5
6

Table 16: RID_CONTROL Table Detail. The RID_CONTOL table is used to generate and maintain unique revision identifiers

(RIDs). RIDs are used by the other TME to index changes to content. The RID_CONTROL table can be considered as several same-

structured tables combined into one (see PARTITION_TCID description). Because RIDs must be unique across all core TME tables,

they are stored in the RID_CONTROL, where designation as a primary key can be used to enforce uniqueness. *Primary Key

(PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

RID Integer (22) PK YES

Unique Revision ID used to identify versions of TME

objects (i.e., entities, relationships, representations,

attributes, and links). The RID is generated by a java

routine that encodes a check-digit into the RID value to be

used for some future purpose.

PARTITION_TCID Integer (22) YES

The table set in which this RID is used. Table set means

the combination of a main TME table and its associated

revision table (i.e., ENTITY / ENTITY_REV,

ENTITY_RELATION / ENTITY_RELATION_REV,

RSFORM / RSFORM_REV, ATTRIBUTE /

ATTRIBUTE_REV, ENTITY_LINK /

ENTITY_LINK_REV, and RSFORM_LINK /

RSFORM_LINK_REV). This is required because RID is

used in all partitions.

1
5
7

Table 17: ENTITY Table Detail. The ENTITY table stores the “most-future” revision of every entity in the TME. This means that it

is possible that a revision of an entity in this table will not be the “current-effective” revision and the ENTITY_REV table will need to

be referenced in order to determine the most current revision of the entity. *Primary Key (PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

TCID Integer (22) PK YES

TME Component Identifier; TCID is the ENTITY table

primary key—a numeric identifier for unique content in

the ENTITY table. However, TCID is not unique in the

ENTITY revision table (ENTITY_REV), since multiple

previous and future-effective versions of the same TCID

are tracked in ENTITY_REV. All other fields in the TME

that have a suffix of “TCID” are foreign keys that

reference a TFT concept in the ENTITY table.

CID Varchar (4000) YES

Component Identifier; CID is an alpha-numeric identifier

for unique content in the ENTITY table. The CID cannot

contain nonprintable characters or spaces. The CID for all

concepts in each source-terminology namespace

(identified by entity.SOURCE_TCID) is prefixed by the

name of the source code system—e.g., TFTActiveStatus,

LOINCGlucose, RxNormGlucose, etc. The CID is critical

to the TME in the diffing step of the ETL process. A

consistently-produced CID is used to determine if there

have been changes to source content for sources that do

not assign identifiers for all the TME required data

elements (e.g., lacking a controlled identifier for

description/representations) or have appropriate change

control.

1
5
8

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

UP_CID Varchar (4000) YES

Uppercase Component Identifier; UP_CID is an all

uppercase CID. It is used to improve performance by

allowing for case-insensitive comparisons of CIDs during

diffing. There are instances where term case implies

some of the semantics of the underlying concept (e.g.,

units of measure; m = meters, M = Moles). In these

instances, UP_CID is not used for the comparison.

SCHEMA_TCID Integer (22) YES

References a TCID from the ENTITY table for the TFT

concept that denotes the schema of this entity. Schema

concepts are stored in the TFT namespace. The schema is

not set by the source code system, and is currently always

set to TCID 2 = TFTSchema.

DEFINITION_XML Clob (0) YES
XML string that holds human readable definition of

entity.

COMMENT_XML Clob (0) NO
XML string that holds author comments regarding an

entity.

ONTOLOGY_XML Clob (0) NO XML string that holds a formal definition of the entity.

SUPERSEDED_BY_TCID Integer (22) FK NO
References a TCID from the ENTITY table for the entity

that replaces this entity.

STATUS_TCID Integer (22) YES
References a TCID from the ENTITY table for the TFT

concept that denotes the status of this entity.

SOURCE_TCID Integer (22) YES
References a TCID from the ENTITY table for the TFT

concept that denotes the source code system of this entity.

ADDED_DATE Date (0) YES
The date/time (GMT) when this revision of this entity was

added to the TME.

EFFECTIVE_DATE Date (0) YES
The date when this revision of this entity became effective

in the source code system.

Table 17: Continued

1
5
9

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

REV_COMMENT_XML Clob (0) NO
XML string that holds human readable comment

regarding the nature of the current revision of this entity.

RID Integer (22) FK YES
Unique Revision ID used to identify versions of this

entity.

Table 18: ENTITY_REV Table Detail. The ENTITY_REV table stores entity revisions. Anytime an entity is inserted, updated, or

deleted in the ENTITY table, a row is created in the ENTITY_REV table. Except where commented otherwise, all fields are identical

to the ENTITY table. *Primary Key(PK)/Foreign Key(FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

TCID Integer (22) FK NO
See ENTITY table. Note TCID is not required in the

revision tables.

CID Varchar (4000) YES See ENTITY table.

SCHEMA_TCID Integer (22) YES See ENTITY table.

DEFINITION_XML Clob (0) YES See ENTITY table.

COMMENT_XML Clob (0) NO See ENTITY table.

ONTOLOGY_XML Clob (0) NO See ENTITY table.

SUPERSEDED_BY_TCID Integer (22) NO See ENTITY table.

STATUS_TCID Integer (22) YES See ENTITY table.

SOURCE_TCID Integer (22) YES See ENTITY table.

ADDED_DATE Date (0) YES See ENTITY table.

EFFECTIVE_DATE Date (0) YES See ENTITY table.

REV_COMMENT_XML Clob (0) NO See ENTITY table.

RID Integer (22) PK/FK YES See ENTITY table.

Table 17: Continued

1
6
0

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

REVISED_DATE Date (0) NO
The date/time (GMT) when this revision of this entity was

changed in the TME.

EXPIRATION_DATE Date (0) NO
The date/time (GMT) when this revision of this entity

expires (status changed to inactive) in the TME.

PREVIOUS_RID Integer (22) FK NO The RID for the previous revision to this entity.

NEXT_RID Integer (22) FK YES The RID for the next revision to this entity.

Table 19: RSFORM Table Detail. The RSFORM table stores entity related surface forms (RSFORMs) or

designations/displays/representations/codes used to label an entity in a specific CONTEXT_TCID. *Primary Key (PK)/Foreign Key

(FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

RSFORM_ID Integer (22) PK YES
Primary key of the RSFORM table. It uniquely identifies

the related surface form in the RSFORM table.

TCID Integer (22) FK YES

Foreign key that links this surface form to an entity in the

ENTITY table. Many surface forms can be associated

with a single entity.

REPRESENTATION Varchar (4000) YES
A text string that is associated with the referenced entity

through the RSFORM.TCID.

UP_REPRESENTATION Varchar (4000) YES
RSFORM.REPRESENTATION in all uppercase

characters.

CONTEXT_TCID Integer (22) FK YES
References a TCID from the ENTITY table for a TFT

concept that denotes the type of surface form.

CASE_SENSITIVE Varchar (1) YES
Boolean value that flags whether REPRESENTATION is

case-sensitive.

Table 18: Continued

1
6
1

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

STATUS_TCID Integer (22) YES
References a TCID from the ENTITY table for the TFT

concept that denotes the status of this surface form.

SOURCE_TCID Integer (22) YES

References a TCID from the ENTITY table for the TFT

concept that denotes the source code system of this

surface form.

ADDED_DATE Date (0) YES
The date/time (GMT) when this revision of this surface

form was added to the TME.

EFFECTIVE_DATE Date (0) NO
The date when this revision of this surface form became

effective in the source code system.

REV_COMMENT_XML Clob (0) NO

XML string that holds human readable comment

regarding the nature of the current revision of this surface

form.

RID Integer (22) FK YES
Unique Revision ID used to identify versions of this

surface form.

Table 20: RSFORM_REV Table Detail. The RSFORM_REV table stores entity representation revisions. Anytime an entity

representation is inserted, updated, or deleted in the RSFORM table, a row is created in the RSFORM_REV table. Except where

commented otherwise, all fields are identical to the RSFORM table. *Primary Key (PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

RSFORM_ID Integer (22) FK YES See RSFORM table.

TCID Integer (22) YES See RSFORM table.

REPRESENTATION Varchar (4000) YES See RSFORM table.

CONTEXT_TCID Integer (22) YES See RSFORM table.

CASE_SENSITIVE Varchar (1) YES See RSFORM table.

Table 19: Continued

1
6
2

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

STATUS_TCID Integer (22) YES See RSFORM table.

SOURCE_TCID Integer (22) YES See RSFORM table.

ADDED_DATE Date (0) YES See RSFORM table.

EFFECTIVE_DATE Date (0) YES See RSFORM table.

REV_COMMENT_XML Clob (0) NO See RSFORM table.

RID Integer (22) PK/FK YES See RSFORM table.

REVISED_DATE Date (0) NO
The date/time (GMT) when this revision of this

representation was changed in the TME.

EXPIRATION_DATE Date (0) NO

The date/time (GMT) when this revision of this

representation expires (status changed to inactive) in the

TME.

PREVIOUS_RID Integer (22) FK NO The RID for the previous revision to this representation.

NEXT_RID Integer (22) FK YES The RID for the next revision to this representation.

Table 21: RSFORM_LINK Table Detail. The RSFORM_LINK table is used to stores named associations among entity

representations. *Primary Key (PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

RSFORM_LINK_ID Integer (22) PK No Primary key of the RSFORM_LINK table. It uniquely

identifies the representation link triplet in the

RSFORM_LINK table.

RSFORM_ID_1 Integer (22) FK No References an RSFORM_ID from the RSFORM table for

the first surface form in a representation link triplet.

Table 20: Continued

1
6
3

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

RSFORM_ID_2 Integer (22) FK No References an RSFORM_ID from the RSFORM table for

the second surface form in a representation link triplet.

LINK_TCID Integer (22) FK Yes References a TCID from the ENTITY table for a TFT

concept that denotes the kind of link between

RSFORM_ID_1 and RSFORM_ID_2.

STATUS_TCID Integer (22) No References a TCID from the ENTITY table for the TFT

concept that denotes the status of this link.

SOURCE_TCID Integer (22) No References a TCID from the ENTITY table for the TFT

concept that denotes the source code system of this link.

ADDED_DATE Date (0) No The date/time (GMT) when this revision of this link was

added to the TME. This date/time is stamped as system

date by the TME database before insert.

EFFECTIVE_DATE Date (0) No The date when this revision of this link became effective

in the source code system. This date must be provided by

the source code system, or it is set to null.

REV_COMMENT_XML Clob (0) Yes XML string that holds author comments regarding this

link.

RID Integer (22) FK Yes Revision Identifier; Every time an insert or update is

performed against the RSFORM_LINK table a trigger

writes a copy of this revision in both the RSFORM_LINK

table and the RSFORM_LINK_REV table.

Table 21: Continued

1
6
4

Table 22: RSFORM_LINK_REV Table Detail. The RSFORM_LINK_REV table stores representation link revisions. Anytime a

representation link is inserted, updated, or deleted in the RSFORM_LINK table, a row is created in the RSFORM_LINK_REV table.

Except where commented otherwise, all fields are identical to the RSFORM_LINK table. *Primary Key (PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

RSFORM_LINK_ID Integer (22) FK No See RSFORM_LINK table.

RSFORM_ID_1 Integer (22) No See RSFORM_LINK table.

RSFORM_ID_2 Integer (22) No See RSFORM_LINK table.

LINK_TCID Integer (22) No See RSFORM_LINK table.

STATUS_TCID Integer (22) No See RSFORM_LINK table.

SOURCE_TCID Integer (22) No See RSFORM_LINK table.

ADDED_DATE Date (0) No See RSFORM_LINK table.

EFFECTIVE_DATE Date (0) No See RSFORM_LINK table.

REV_COMMENT_XML Clob (0) Yes See RSFORM_LINK table.

RID Integer (22) PK/FK No See RSFORM_LINK table.

REVISED_DATE Date (0) Yes The date/time (GMT) when this revision of this link was

changed in the TME.

EXPIRATION_DATE Date (0) Yes The date/time (GMT) when this revision of this link

expires (status changed to inactive) in the TME.

PREVIOUS_RID Integer (22) FK No The RID for the previous revision to this link.

NEXT_RID Integer (22) FK No The RID for the next revision to this link.

1
6
5

Table 23: ENTITY_RELATION Table Detail. The ENTITY_RELATION table stores all named relationships among entities in

the same namespace. *Primary Key (PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

ENTITY_RELATION_ID Integer (22) PK No Primary key of the ENTITY_RELATIONSHIP table. It

uniquely identifies an entity relationship triplet in the

ENTITY_RELATIONSHIP table. It is a foreign key in

the ENTITY_RELATIONSHIP revision table

(ENTITY_RELATIONSHIP_REV).

TCID_1 Integer (22) FK Yes References a TCID from the ENTITY table for the first

entity in a relationship triplet (e.g., “Cytomegalovirus”

(first entity) | “is-a” (relationship) | “Virus” (second

entity)).

TCID_2 Integer (22) FK Yes References a TCID from the ENTITY table for the second

entity in a relationship triplet (e.g., “Cytomegalovirus”

(first entity) | “is-a” (relationship) | “Virus” (second

entity)).

RELATIONSHIP_TCID Integer (22) FK Yes References a TCID from the ENTITY table for a TFT

concept that denotes the kind of relationship between the

first entity and the second entity. Relationship concepts

(i.e., concepts that represent relationships) are stored in

the TFT namespace (e.g., “Cytomegalovirus” (first entity)

| “is-a” (relationship) | “Virus” (second entity)).

STATUS_TCID Integer (22) No References a TCID from the ENTITY table for the TFT

concept that denotes the status of this relation

SOURCE_TCID Integer (22) No References a TCID from the ENTITY table for the TFT

concept that denotes the source code system of this

relation.

1
6
6

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

TCID_1_SOURCE_TCID Integer (22) Yes References a TCID from the ENTITY table for the TFT

concept that denotes the source code system of this

relation.

TCID_2_SOURCE_TCID Integer (22) Yes References a TCID from the ENTITY table for the TFT

concept that denotes the source code system of the first

entity in the relationship triplet.

ADDED_DATE Date (0) No References a TCID from the ENTITY table for the TFT

concept that denotes the source code system of the second

entity in the relationship triplet.

EFFECTIVE_DATE Date (0) No The date when this revision of this relationship became

effective in the source code system. This date must be

provided by the source code system, or it is set to null.

REV_COMMENT_XML Clob (0) Yes XML string that holds author comments regarding this

relationship.

RID Integer (22) FK No Revision Identifier; Every time an insert or update is

performed against the ENTITY_RELATION table a

trigger writes a copy of this revision in both the

ENTITY_RELATION table and the

ENTITY_RELATION_REV table.

Table 23: Continued

1
6
7

Table 24: ENTITY_RELATION_REV Table Detail. The ENTITY_RELATION_REV table stores entity relationship revisions.

Anytime a relationship is inserted, updated, or deleted in the ENTITY_RELATION table, a row is created in the

ENTITY_RELATION_REV table. Except where commented otherwise, all fields are identical to the ENTITY_RELATION table.

*Primary Key (PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

ENTITY_RELATION_ID Integer (22) FK No See ENTITY_RELATION table.

TCID_1 Integer (22) No See ENTITY_RELATION table.

TCID_2 Integer (22) No See ENTITY_RELATION table.

RELATIONSHIP_TCID Integer (22) No See ENTITY_RELATION table.

STATUS_TCID Integer (22) No See ENTITY_RELATION table.

SOURCE_TCID Integer (22) No See ENTITY_RELATION table.

TCID_1_SOURCE_TCID Integer (22) Yes See ENTITY_RELATION table.

TCID_2_SOURCE_TCID Integer (22) Yes See ENTITY_RELATION table.

ADDED_DATE Date (0) No See ENTITY_RELATION table.

EFFECTIVE_DATE Date (0) No See ENTITY_RELATION table.

REV_COMMENT_XML Clob (0) Yes See ENTITY_RELATION table.

RID Integer (22) PK/FK No See ENTITY_RELATION table.

REVISED_DATE Date (0) Yes The date/time (GMT) when this revision of this

relationship was changed in the TME.

EXPIRATION_DATE Date (0) Yes The date/time (GMT) when this revision of this

relationship expires (status changed to inactive) in the

TME.

PREVIOUS_RID Integer (22) FK No The RID for the previous revision to this relationship.

NEXT_RID Integer (22) FK No The RID for the next revision to this relationship.

1
6
8

Table 25: ENTITY_LINK Table Detail. The ENTITY_LINK table stores named links (mapping types) between entities.

ENTITY_LINK is not meant to hold relationships among entities. Entity links may cross TME namespaces, while entity relationships

are not permitted to cross TME namespaces. *Primary Key (PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

ENTITY_LINK_ID integer(22) PK No Primary key of the ENTITY_LINK table. It uniquely

identifies an entity link triplet in the ENTITY_LINK

table. It is a foreign key in the ENTITY_LINK revision

table (ENTITY_LINK_REV).

TCID_1 integer(22) FK Yes References a TCID from the ENTITY table for the first

entity in a map link triplet (e.g.,

“SNOMEDCTCytomegalovirus” (first entity in SNOMED

CT namespace) | “is-clinically-equivalent-to” (link type) |

“TFTCMV” (second entity in TFT namespace)).

TCID_2 integer(22) FK Yes References a TCID from the ENTITY table for the second

entity in a map link triplet (e.g.,

“SNOMEDCTCytomegalovirus” (first entity in SNOMED

CT namespace) | “is-clinically-equivalent-to” (link type) |

“TFTCMV” (second entity in TFT namespace)).

ENTITY_LINK_TCID integer(22) FK Yes References a TCID from the ENTITY table for a TFT

concept that denotes the kind of link between the first

entity and the second entity. Concepts that represent map

link types are stored in the TFT namespace (e.g.,

TFTIsNarrowerThan, TFTIsEquivalentTo,

TFTIsBroaderThan).

SCORE integer(22) No Value that estimates quality of the entity link

RULE_XML clob(0) Yes XML string that expresses the circumstances (rule) under

which the link applies.

STATUS_TCID integer(22) No References a TCID from the ENTITY table for the TFT

concept that denotes the status of this link.

1
6
9

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

SOURCE_TCID integer(22) No References a TCID from the ENTITY table for the TFT

concept that denotes the source code system of this link.

ADDED_DATE date(0) No References a TCID from the ENTITY table for the TFT

concept that denotes the source code system for the link.

EFFECTIVE_DATE date(0) No The date when this revision of this link became effective

in the source code system. This date must be provided by

the source code system, or it is set to null.

REV_COMMENT_XML clob(0) Yes XML string that holds author comments regarding this

link.

RID integer(22) FK Yes Revision Identifier; Every time an insert or update is

performed against the ENTITY_LINK table a trigger

writes a copy of this revision in both the ENTITY_LINK

table and the ENTITY_LINK_REV table.

Table 26: ENTITY_LINK_REV Table Detail. The ENTITY_LINK_REV table stores entity link revisions. Anytime an entity link

is inserted, updated, or deleted in the ENTITY_LINK table, a row is created in the ENTITY_LINK_REV table. Except where

commented otherwise, all fields are identical to ENTITY_LINK. *Primary Key (PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

ENTITY_LINK_ID integer(22) FK No See ENTITY_LINK table.

TCID_1 integer(22) No See ENTITY_LINK table.

TCID_2 integer(22) No See ENTITY_LINK table.

ENTITY_LINK_TCID integer(22) No See ENTITY_LINK table.

SCORE integer(22) No See ENTITY_LINK table.

Table 25: Continued

1
7
0

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

RULE_XML clob(0) Yes See ENTITY_LINK table.

STATUS_TCID integer(22) No See ENTITY_LINK table.

SOURCE_TCID integer(22) No See ENTITY_LINK table.

ADDED_DATE date(0) No See ENTITY_LINK table.

EFFECTIVE_DATE date(0) No See ENTITY_LINK table.

REV_COMMENT_XML clob(0) Yes See ENTITY_LINK table.

RID integer(22) PK/FK No See ENTITY_LINK table.

REVISED_DATE date(0) Yes The date/time (GMT) when this revision of this link was

changed in the TME.

EXPIRATION_DATE date(0) Yes The date/time (GMT) when this revision of this link

expires (status changed to inactive) in the TME.

PREVIOUS_RID integer(22) FK No The RID for the previous revision to this link.

NEXT_RID integer(22) FK No The RID for the next revision to this link.

Table 27: ENTITY_ATTRIBUTE Table Detail. The ENTITY_ATTRIBUTE table stores all attributes of entities. It allows for the

data type of the attribute to be specified accommodating name-value pairs. *Primary Key (PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

ATTRIBUTE_ID integer(22) PK No Primary key of the ENTITY_ ATTRIBUTE table. It

uniquely identifies an entity attribute in the ENTITY_

ATTRIBUTE table. It is a foreign key in the ENTITY_

ATTRIBUTE revision table (ENTITY_ ATTRIBUTE

_REV).

Table 26: Continued

1
7
1

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

SET_ID integer(22) Yes Identifies the attribute set to which this attribute belongs.

Used to group attributes. For example, it is necessary to

associate a strength with a particular ingredient in drugs

that have multiple active ingredients. SET_ID is used to

associate each ingredient with the appropriate strength.

TCID integer(22) FK Yes Foreign Key to ENITY table.

PARENT_ATTRIBUTE_ID integer(22) FK Yes ATTRIBUTE_ID of the parent entity attribute if this is an

attribute of another entity attribute; null otherwise. This is

the primary method of combining several attributes into

hierarchical group.

ATTRIBUTE_TCID integer(22) No References a TCID from the ENTITY table for a TFT

concept that denotes the type of attribute this attribute is.

Attribute type concepts are stored in the source

terminology namespace in which they are used (e.g.,

LOINCAttributeAxis1), and are provided by, or derived

from, source code system data.

VALUE_TYPE_TCID integer(22) No References a TCID from the ENTITY table for a TFT

concept that denotes the type of value associated with this

attribute. Value type concepts are stored in the TFT

namespace (e.g., TFTCodedValue,

TFTAlphaNumericValue, TFTNumericValue, and

TFTXMLValue).

Table 27: Continued

1
7
2

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

CODED_VALUE_TCID integer(22) Yes References a TCID from the ENTITY table for an entity

that denotes the value of this attribute if

ENTITY_ATTRIBUTE.VALUE_TYPE_TCID is

TFTCodedValue. Coded value entities are stored in the

source terminology namespace in which they are used

(e.g., LOINCGlucose), and are provided by, or derived

from, source code system data.

NUMERIC_VALUE integer(22) Yes Populated with a numeric value for the attribute name-

value pair, when

ENTITY_ATTRIBUTE.VALUE_TYPE_TCID is

TFTNumericValue.

ALPHA_VALUE varchar(4000) Yes Populated with an alphanumeric value for the attribute

name-value pair, when

ENTITY_ATTRIBUTE.VALUE_TYPE_TCID is

TFTAlphaNumericValue.

UP_ALPHA_VALUE varchar(4000) Yes An all uppercase representation of

ENTITY_ATTRIBUTE.ALPHA_VALUE used to

facilitate matching during diffing and mapping.

XML_VALUE clob(0) Yes Populated with an XML string for the attribute name-

value pair, when

ENTITY_ATTRIBUTE.VALUE_TYPE_TCID is

TFTXMLValue.

VALUE_UNIT_TCID integer(22) Yes References a TCID from the ENTITY table for a TFT

concept that denotes the unit in which the value of this

attribute is expressed. Value unit concepts are stored in

the TFT namespace (e.g., TFTMilligrams).

Table 27: Continued

1
7
3

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

STATUS_TCID integer(22) No References a TCID from the ENTITY table for the TFT

concept that denotes the status of this attribute.

SOURCE_TCID integer(22) No References a TCID from the ENTITY table for the TFT

concept that denotes the source code system of this

attribute.

ADDED_DATE date(0) No References a TCID from the ENTITY table for the TFT

concept that denotes the source code system for the

attribute.

EFFECTIVE_DATE date(0) No The date when this revision of this attribute became

effective in the source code system. This date must be

provided by the source code system, or it is set to null.

REV_COMMENT_XML clob(0) Yes XML string that holds author comments regarding this

attribute.

RID integer(22) FK Yes Revision Identifier; Every time an insert or update is

performed against the ENTITY_ATTRIBUTE table a

trigger writes a copy of this revision in both the

ENTITY_ATTRIBUTE table and the

ENTITY_ATTRIBUTE_REV table.

Table 27: Continued

1
7
4

Table 28: ENTITY_ATTRIBUTE_REV Table Detail. The ENTITY_ATTRIBUTE_REV table Stores ENTITY_ATTRIBUTE

revisions. Anytime an attribute is inserted, updated, or deleted in the ENTITY_ATTRIBUTE table, a row is created in the

ENTITY_ATTRIBUTE_REV table. Except where commented otherwise, all fields are identical to ENTITY_ATTRIBUTE.

*Primary Key (PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

ATTRIBUTE_ID integer(22) FK No See ENTITY_ATTRIBUTE table.

SET_ID integer(22) Yes See ENTITY_ATTRIBUTE table.

TCID integer(22) Yes See ENTITY_ATTRIBUTE table.

RSFORM_ID integer(22) Yes See ENTITY_ATTRIBUTE table.

CONCEPT_RELATION_ID integer(22) Yes See ENTITY_ATTRIBUTE table.

CONCEPT_LINK_ID integer(22) Yes See ENTITY_ATTRIBUTE table.

RSFORM_LINK_ID integer(22) Yes See ENTITY_ATTRIBUTE table.

PARENT_ATTRIBUTE_ID integer(22) Yes See ENTITY_ATTRIBUTE table.

ATTRIBUTE_TCID integer(22) No See ENTITY_ATTRIBUTE table.

VALUE_TYPE_TCID integer(22) No See ENTITY_ATTRIBUTE table.

CODED_VALUE_TCID integer(22) Yes See ENTITY_ATTRIBUTE table.

NUMERIC_VALUE integer(22) Yes See ENTITY_ATTRIBUTE table.

ALPHA_VALUE varchar(4000) Yes See ENTITY_ATTRIBUTE table.

XML_VALUE clob(0) Yes See ENTITY_ATTRIBUTE table.

VALUE_UNIT_TCID integer(22) Yes See ENTITY_ATTRIBUTE table.

STATUS_TCID integer(22) No See ENTITY_ATTRIBUTE table.

SOURCE_TCID integer(22) No See ENTITY_ATTRIBUTE table.

ADDED_DATE date(0) No See ENTITY_ATTRIBUTE table.

EFFECTIVE_DATE date(0) No See ENTITY_ATTRIBUTE table.

REV_COMMENT_XML clob(0) Yes See ENTITY_ATTRIBUTE table.

RID integer(22) PK/FK No See ENTITY_ATTRIBUTE table.

REVISED_DATE date(0) Yes The date/time (GMT) when this revision of this attribute

was changed in the TME.

1
7
5

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

EXPIRATION_DATE date(0) Yes The date/time (GMT) when this revision of this attribute

expires (status changed to inactive) in the TME.

PREVIOUS_RID integer(22) FK No The RID for the previous revision to this attribute.

NEXT_RID integer(22) FK No The RID for the next revision to this attribute.

Table 29: PROPERTY Table Detail. The PROPERTY table stores name-value pairs that are properties of entities, representations,

relationships, mapping links, representation links, and other properties. *Primary Key (PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

PROPERTY_ID integer(22) PK No Primary key of the PROPERTY table. It uniquely

identifies properties which can be associated with any

component in the TME, including other properties. It is a

foreign key in the PROPERTY revision table

(PROPERTY_REV).

SET_ID integer(22) Yes Identifies the property set to which this property belongs.

PARENT_TABLE_TCID integer(22) FK Yes References a TCID from the ENTITY table for a TFT

concept that denotes the TME table of the

PROPERTY.PARENT_ID.

PARENT_ID integer(22) FK Yes ID of the component that this property modifies or is

associated with. This can be any of the core table primary

keys including PROPERTY_ID. It is combined with

PROPERTY.PARENT_TABLE_TCID as a compound

foreign key.

Table 28: Continued

1
7
6

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

PROPERTY_TCID integer(22) No References a TCID from the ENTITY table for an entity

that describes this property. Property type entities are

stored in the source terminology namespace in which they

are used and are provided by, or derived from, source

code system data (e.g., SNOMEDCTID).

VALUE_TYPE_TCID integer(22) No References a TCID from the ENTITY table for the TFT

concept that denotes the type of value this property has.

This field is constrained to the same domain of TFT

concepts as

ENTITY_ATTRIBUTE.VALUE_TYPE_TCID.

CODED_VALUE_TCID integer(22) Yes References a TCID from the ENTITY table for an entity

that denotes the value of this property if

PROPERTY.VALUE_TYPE_TCID is TFTCodedValue.

Coded value entities are stored in the source terminology

namespace in which they are used and are provided by, or

derived from, source code system data.

NUMERIC_VALUE integer(22) Yes Populated with a numeric value for the property name-

value pair, when PROPERTY.VALUE_TYPE_TCID is

TFTNumericValue.

ALPHA_VALUE varchar(4000) Yes Populated with an alphanumeric value for the property

name-value pair, when

PROPERTY.VALUE_TYPE_TCID is

TFTAlphaNumericValue.

UP_ALPHA_VALUE varchar(4000) Yes An all uppercase representation of

PROPERTY.ALPHA_VALUE used to facilitate matching

during diffing.

Table 29: Continued

1
7
7

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

XML_VALUE clob(0) Yes Populated with an XML string for the attribute name-

value pair, when PROPERTY.VALUE_TYPE_TCID is

TFTXMLValue.

VALUE_UNIT_TCID integer(22) Yes References a TCID from the ENTITY table for a TFT

concept that denotes the unit in which the value of this

property is expressed. Value unit concepts are stored in

the TFT namespace.

STATUS_TCID integer(22) No References a TCID from the ENTITY table for the TFT

concept that denotes the status of this property.

SOURCE_TCID integer(22) No References a TCID from the ENTITY table for the TFT

concept that denotes the source code system of this

property.

ADDED_DATE date(0) No References a TCID from the ENTITY table for the TFT

concept that denotes the source code system for the

property.

EFFECTIVE_DATE date(0) No The date when this revision of this property became

effective in the source code system. This date must be

provided by the source code system, or it is set to null.

REV_COMMENT_XML clob(0) Yes XML string that holds author comments regarding this

property.

RID integer(22) FK Yes Revision Identifier; Every time an insert or update is

performed against the ENTITY_PROPERTY table a

trigger writes a copy of this revision in both the ENTITY_

PROPERTY table and the ENTITY_ PROPERTY_REV

table.

Table 29: Continued

1
7
8

Table 30: PROPERTY_REV Table Detail. The PROPERTY_REV table stores property revisions. Anytime a property is inserted,

updated, or deleted in the PROPERTY table, a row is created in the PROPERTY_REV table. Except where commented otherwise, all

fields are identical to PROPERTY. *Primary Key (PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

PROPERTY_ID integer(22) FK No See PROPERTY table.

SET_ID integer(22) Yes See PROPERTY table.

PARENT_TABLE_TCID integer(22) Yes See PROPERTY table.

RSFORM_LINK_ID integer(22) Yes See PROPERTY table.

PARENT_ID integer(22) Yes See PROPERTY table.

PROPERTY_TCID integer(22) No See PROPERTY table.

VALUE_TYPE_TCID integer(22) No See PROPERTY table.

CODED_VALUE_TCID integer(22) Yes See PROPERTY table.

NUMERIC_VALUE integer(22) Yes See PROPERTY table.

ALPHA_VALUE varchar(4000) Yes See PROPERTY table.

XML_VALUE clob(0) Yes See PROPERTY table.

VALUE_UNIT_TCID integer(22) Yes See PROPERTY table.

STATUS_TCID integer(22) No See PROPERTY table.

SOURCE_TCID integer(22) No See PROPERTY table.

ADDED_DATE date(0) No See PROPERTY table.

EFFECTIVE_DATE date(0) No See PROPERTY table.

REV_COMMENT_XML clob(0) Yes See PROPERTY table.

RID integer(22) PK/FK No See PROPERTY table.

REVISED_DATE date(0) Yes The date/time (GMT) when this revision of this property

was changed in the TME.

EXPIRATION_DATE date(0) Yes The date/time (GMT) when this revision of this property

expires (status changed to inactive) in the TME.

PREVIOUS_RID integer(22) FK No The RID for the previous revision to this property.

NEXT_RID integer(22) FK No The RID for the next revision to this property.

APPENDIX B

TME STAGE TABLES

1
8
0

Figure 30: TME Stage Entity Relationship Diagram (ERD)

1
8
1

Table 31: TME Stage ERD Summary.

TABLE NAME TABLE DESCRIPTION

ENTITY_STAGE The ENTITY_STAGE table temporarily stores concepts from source vocabulary

versions/releases during the ETL process.

TMEXF.SOURCE_VERSION The TMEXF.SOURCE_VERSION table stores all versions of source code system

releases, both standard and LIT, whether or not they are formally versioned/released by

the source.

RSFORM_STAGE The RSFORM_STAGE table temporarily stores representations from source code systems

during the ETL process.

ENTITY_RELATION_STAGE The ENTITY_RELATION_STAGE table temporarily stores entity relationships from

source code system during the ETL process.

ENTITY_ATTRIBUTE_STAGE The ENTITY_ATTRIBUTE_STAGE table temporarily stores entity attributes from

source code system during the ETL process.

Table 32: ENTITY_STAGE Table Detail. The ENTITY_STAGE table temporarily stores concepts from source vocabulary

versions/releases during the ETL process. *Primary Key (PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

STAGE_ID integer(22) PK No Identifies the record, and facilitates diffing and

applications.

SOURCE_VERSION_ID integer(22) FK No References the source version/release that this staging is

for.

1
8
2

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

CID varchar(4000) Yes Used instead of TCID because the source knows nothing

about TCIDs, so there are no TCIDs in the version/release

to be used to compare the version/release to TME. CIDs

must be consistently derived from source data between

versions/releases or the diffing process will not work

correctly because it will not be able to tell if the source

data already exists in TME.

SCHEMA_CID varchar(4000) Yes

DEFINITION_XML clob(0) Yes

COMMENT_XML clob(0) Yes

ONTOLOGY_XML clob(0) Yes

SUPERSEDED_BY_CID varchar(4000) Yes

STATUS_CID varchar(4000) Yes

SOURCE_CID varchar(4000) Yes

ACTION varchar(1) Yes Set by the diff process, the action tells the load process

what it must do in TME (insert, update, delete, or

nothing). Following the diff process, the user can review

and change the automatically-determined actions, and

must specify actions anywhere the system was unable to

automatically determine what the action should be.

CASE_CHANGE varchar(1) Yes Flags whether this CID exists in TME exactly as it is here,

except in a different case (i.e., upper vs. lower, or different

combination of mixed-case).

TME_CID varchar(4000) Yes Used during the diff process, this identifies the CID in

TME that matches this CID, if it exists in TME.

TME_CID_COUNT integer(22) Yes Used during the diff process, this shows how many CIDs

in TME exactly or case-insensitively match this CID.

Table 32: Continued

1
8
3

Table 33: TMEXF.SOURCE_VERSION Table Detail. The TMEXF.SOURCE_VERSION table stores all versions of source code

system releases, both standard and LIT, whether or not they are formally versioned/released by the source. *Primary Key

(PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

SOURCE_VERSION_ID integer(22) PK No Identifies the version/release.

SOURCE_ID integer(22) No References the source of the version/release (e.g., LOINC,

RXNorm).

VERSION_NUM varchar(100) No The version/release number provided by the source, if one

is provided, or made up by the user, otherwise.

VERSION_DATE date(0) No The version/release date provided by the source, if any, or

the user, otherwise.

VERSION_TYPE varchar(100) Yes Type of version/release (e.g., full, patch, etc.). This is

provided by the source, derived from the version/release,

provided by the user, or left null.

ACTIVE varchar(4) No Used by applications.

DESCRIPTION varchar(1000) Yes Description of the version/release. Provided by the source

or by the user.

COMMENTS varchar(4000) Yes Comments on the version/release. Provided by the source

or by the user.

IMPORT_DATE date(0) Yes Date/Time the version/release was imported (not loaded)

and versioned.

STAGE_DATE date(0) Yes Date/Time the version/release was transformed into the

staging tables.

DIFF_DATE date(0) Yes Date/Time the staged version/release was diffed against

the source's namespace in TME.

1
8
4

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

LOAD_DATE date(0) Yes Date/Time the diffed version/release was loaded into the

source's namespace in TME. The loading process is what

creates revisions of core TME components (i.e., entities,

entity relations, representations, entity links,

representation links and attributes).

STATUS varchar(100) Yes The current status of the started process if any

(IMPORTING_STARTED, _COMPLETED, or

IMPORTED_WITH_ERRORS; STAGING_STARTED,

_COMPLETED, or _ERROR; DIFFING_STARTED,

_COMPLETED, _ERROR, or _CONFLICTS;

LOADING_STARTED, _COMPLETED, or _ERROR)

STAGING_STATUS_NOTES clob(0) Yes Execution details of the ETL process.

Table 34: RSFORM_STAGE Table Detail. The RSFORM_STAGE table temporarily stores representations from source code

systems during the ETL process. *Primary Key (PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

STAGE_ID integer(22) PK No Identifies the record, and facilitates diffing and

applications.

SOURCE_VERSION_ID integer(22) FK No References the source version/release that this staging is

for.

CID varchar(4000) Yes Used instead of TCID because the source knows nothing

about TCIDs, so there are no TCIDs in the version/release

to be used to compare the version/release to TME.

REPRESENTATION varchar(4000) Yes

Table 33: Continued

1
8
5

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

CONTEXT_CID varchar(4000) Yes Used instead of TCID because the source knows nothing

about TCIDs, so there are no TCIDs in the version/release

to be used to compare the version/release to TME.

CASE_SENSITIVE varchar(1) Yes

STATUS_CID varchar(4000) Yes Used instead of TCID because the source knows nothing

about TCIDs, so there are no TCIDs in the version/release

to be used to compare the version/release to TME.

SOURCE_CID varchar(4000) Yes Used instead of TCID because the source knows nothing

about TCIDs, so there are no TCIDs in the version/release

to be used to compare the version/release to TME.

ACTION varchar(1) Yes Set by the diff process, the action tells the load process

what it must do in TME (insert, update, delete, or

nothing). Following the diff process, the user can review

and change the automatically determined actions, and

must specify actions anywhere the system was unable to

automatically determine what the action should be.

TME_CID varchar(4000) Yes Used during the diff process, this identifies the CID in

TME that matches this CID, if it exists in TME.

TME_CONTEXT_CID varchar(4000) Yes Used during the diff process, this identifies the context

CID in TME that matches this context CID, if it exists in

TME.

TME_REPRESENTATION varchar(4000) Yes

TME_RSFORM_ID integer(22) Yes Used during the ETL processes. If a match is found in

TME, then the ID in TME is stored here; otherwise, a

sequenced unique number is generated to serve as the ID

of the row inserted into TME.

Table 34: Continued

1
8
6

Table 35: ENTITY_RELATION_STAGE Table Detail. The ENTITY_RELATION_STAGE table temporarily stores entity

relationships from source code system during the ETL process. *Primary Key (PK)/Foreign Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

STAGE_ID integer(22) PK No Identifies the record, and facilitates diffing and

applications.

SOURCE_VERSION_ID integer(22) FK No References the source version/release that this staging is

for.

CID_1 varchar(4000) Yes Used instead of TCID because the source knows nothing

about TCIDs, so there are no TCIDs in the version/release

to be used to compare the version/release to TME.

CID_2 varchar(4000) Yes Used instead of TCID because the source knows nothing

about TCIDs, so there are no TCIDs in the version/release

to be used to compare the version/release to TME.

RELATIONSHIP_CID varchar(4000) Yes Used instead of TCID because the source knows nothing

about TCIDs, so there are no TCIDs in the version/release

to be used to compare the version/release to TME.

STATUS_CID varchar(4000) Yes

CID_1_SOURCE_CID varchar(4000) Yes

CID_2_SOURCE_CID varchar(4000) Yes

SOURCE_CID varchar(4000) Yes

ACTION varchar(1) Yes Set by the diff process, the action tells the load process

what it must do in TME (insert, update, delete, or

nothing). Following the diff process, the user can review

and change the automatically-determined actions, and

must specify actions anywhere the system was unable to

automatically determine what the action should be.

TME_CID_1 varchar(4000) Yes Used during the diff process, this identifies the CID in

TME that matches this CID, if it exists in TME.

1
8
7

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

TME_CID_2 varchar(4000) Yes Used during the diff process, this identifies the CID in

TME that matches this CID, if it exists in TME.

TME_RELATIONSHIP_CID varchar(4000) Yes Used during the diff process, this identifies the CID in

TME that matches this CID, if it exists in TME.

TME_ENTITY_RELATION_

ID

integer(22) Yes Used during the diff and load processes. If a match is

found in TME, then the ID in TME is stored here;

otherwise, a sequenced unique number is generated to

serve as the ID of the row inserted into TME.

Table 36: ENTITY_ATTRIBUTE_STAGE Table Detail. The ENTITY_ATTRIBUTE_STAGE table temporarily stores entity

attributes from source code system during the ETL process. CIDs are used ETL process for mapping when a stable identifier is not

available in the source code system. CIDs must be consistently derived from source data between versions/releases or the ETL

process will not work correctly because it will not be able to tell if the source data already exists in TME. *Primary Key (PK)/Foreign

Key (FK).

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

STAGE_ID Integer (22) PK No Identifies the record, and facilitates diffing and

applications.

SOURCE_VERSION_ID Integer (22) FK No References the source version/release that this staging is

for.

E_CID Varchar (4000) Yes ENTITY.CID used instead of TCID because the source

knows nothing about TCIDs, so there are no TCIDs in the

version/release to be used to compare the version/release

to TME.

Table 35: Continued

1
8
8

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

R_RSFORM_CID Varchar (4000) Yes RSFORM Rsform CID. Used instead of TCID because the

source knows nothing about TCIDs, so there are no

TCIDs in the version/release to be used to compare the

version/release to TME.

R_REPRESENTATION Varchar (4000) Yes RSFORM.REPRESENTATION.

R_CONTEXT_CID Varchar (4000) Yes RSFORM.CONTEXT_TCID (CID). CID used instead of

TCID because the source knows nothing about TCIDs, so

there are no TCIDs in the version/release to be used to

compare the version/release to TME.

ER_CID_1 Varchar (4000) Yes ENTITY_RELATION.TCID_1 (CID). CID used instead

of TCID because the source knows nothing about TCIDs,

so there are no TCIDs in the version/release to be used to

compare the version/release to TME.

ER_CID_2 Varchar (4000) Yes ENTITY_RELATION.TCID_2 (CID). CID used instead

of TCID because the source knows nothing about TCIDs,

so there are no TCIDs in the version/release to be used to

compare the version/release to TME.

ER_RELATIONSHIP_CID Varchar (4000) Yes ENTITY_RELATION.RELATIONSHIP_TCID (CID).

CID used instead of TCID because the source knows

nothing about TCIDs, so there are no TCIDs in the

version/release to be used to compare the version/release

to TME.

EL_CID_1 Varchar (4000) Yes ENTITY_LINK.TCID_1 (CID). CID used instead of

TCID because the source knows nothing about TCIDs, so

there are no TCIDs in the version/release to be used to

compare the version/release to TME.

Table 36: Continued

1
8
9

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

EL_CID_2 Varchar (4000) Yes ENTITY_LINK.TCID_2 (CID). CID used instead of

TCID because the source knows nothing about TCIDs, so

there are no TCIDs in the version/release to be used to

compare the version/release to TME.

EL_LINK_CID varchar(4000) Yes ENTITY_LINK.LINK_TCID (CID). CID used instead of

TCID because the source knows nothing about TCIDs, so

there are no TCIDs in the version/release to be used to

compare the version/release to TME.

RL_RSFORM_CID_1 varchar(4000) Yes Rsform link CID 1. Used instead of TCID because the

source knows nothing about TCIDs, so there are no

TCIDs in the version/release to be used to compare the

version/release to TME.

RL_RSFORM_CID_2 varchar(4000) Yes Rsform link CID 2. Used instead of TCID because the

source knows nothing about TCIDs, so there are no

TCIDs in the version/release to be used to compare the

version/release to TME.

RL_LINK_CID varchar(4000) Yes Rsform link CID. Used instead of TCID because the

source knows nothing about TCIDs, so there are no

TCIDs in the version/release to be used to compare the

version/release to TME.

PARENT_ATTRIBUTE_STA

GE_ID

integer(22) Yes STAGE_ID of the parent attribute if an attribute of

another attribute (created during the staging process); null

otherwise.

SET_ID integer(22) Yes Used during the diff and load processes. If a match is

found in TME, then the ID in TME is stored here;

otherwise, a sequenced unique number is generated to

serve as the ID of the row inserted into TME.

Table 36: Continued

1
9
0

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

ATTRIBUTE_CID varchar(4000) Yes Used instead of TCID because the source knows nothing

about TCIDs, so there are no TCIDs in the version/release

to be used to compare the version/release to TME.

VALUE_TYPE_CID varchar(4000) Yes

CODED_VALUE_CID varchar(4000) Yes

NUMERIC_VALUE integer(22) Yes

ALPHA_VALUE varchar(4000) Yes

XML_VALUE clob(0) Yes

VALUE_UNIT_CID varchar(4000) Yes

STATUS_CID varchar(4000) Yes

SOURCE_CID varchar(4000) Yes

ACTION varchar(1) Yes Set by DIFFing - what action is necessary to perform

during LOADing (Update, Insert, Delete, or nothing).

TME_ENTITY_CID varchar(4000) Yes Used only during the DIFFing process of a entity attribute:

the TCID of TME concept matched against the parent

concept (if the parent concept still not existing in TME

then TCID of the future parent concept which will be

INSERTed).

TME_RSFORM_ID integer(22) Yes Used during the ETL processes. If a match is found in

TME, then the ID in TME is stored here; otherwise, a

sequenced unique number is generated to serve as the ID

of the row inserted into TME.

TME_ENTITY_RELATION_I

D

integer(22) Yes Used during the ETL processes. If a match is found in

TME, then the ID in TME is stored here; otherwise, a

sequenced unique number is generated to serve as the ID

of the row inserted into TME.

Table 36: Continued

1
9
1

FIELD NAME DATA TYPE PK/FK* REQUIRED FIELD DESCRIPTION

TME_ENTITY_LINK_ID integer(22) Yes Used during ETL processes. If a match is found in TME,

then the ID in TME is stored here; otherwise, a sequenced

unique number is generated to serve as the ID of the row

inserted into TME.

TME_RSFORM_LINK_ID integer(22) Yes Used during the ETL processes. If a match is found in

TME, then the ID in TME is stored here; otherwise, a

sequenced unique number is generated to serve as the ID

of the row inserted into TME.

TME_PARENT_ATTRIBUTE

_ID

integer(22) Yes Used during ETL processes. If a match is found in TME,

then the ID in TME is stored here; otherwise, a sequenced

unique number is generated to serve as the ID of the row

inserted into TME.

TME_SET_ID integer(22) Yes Used during the ETL processes. If a match is found in

TME, then the ID in TME is stored here; otherwise, a

sequenced unique number is generated to serve as the ID

of the row inserted into TME.

TME_ATTRIBUTE_ID integer(22) Yes Used during the ETL processes. If a match is found in

TME, then the ID in TME is stored here; otherwise, a

sequenced unique number is generated to serve as the ID

of the row inserted into TME.

Table 36: Continued

APPENDIX C

TME SUPPORT FOR CTS FUNCTIONS

1
9
3

Table 37: TME Support for HL7 CTS Message Layer Runtime Functions. The following table is copied from the HL7 CTS

Specification. It describe CTS methods related to message layer runtime functions.65 *TME support for each method is indicated in

an appended column.

Function Inputs Outputs Description
TME Support

Comment*

getServiceName Service name

Return the name that

was assigned to this

service by the service

provider.

Fully Supported: TFT

Content Query. “Service”

is a TFT entity and entity

attributes and properties

are used to store name,

version, description, HL7

Release Version, CTS

Version, and supported

match algorithms

information pertaining to

the service.

getServiceVersion Version identifier

Return the current

version of the service

software.

Fully Supported: TFT

Content Query; Note

service version is

instantiated as an

attribute value for

“Service” TFT entity.

getServiceDescription Service description

Return a description of

the service function,

authors, copyrights, etc.

Fully Supported: TFT

Content; TFT “Service”

entity metadata.

1
9
4

Function Inputs Outputs Description
TME Support

Comment*

getHL7ReleaseVersion Version identifier

Return the HL7 release

version that is currently

supported by this

service.

Fully Supported: TFT

Content; TFT “Service”

entity metadata.

getCTSVersion
Major and minor

version number

Return the CTS version

that this service

implements.

Fully Supported: TFT

Content; TFT “Service”

entity attribute.

getSupportedMatchAlgorith

ms

List of match

algorithms

Return a list of string

match algorithms

implemented by this

service.

Fully Supported: TFT

Content; TFT “Service”

entity attributes.

getSupportedVocabularyDo

mains

Match text and

algorithm, time limit

and size limit

List of vocabulary

domain names

Return a list of the

vocabulary domains

matching the supplied

match text that are

recognized by this

service.

Fully Supported: TME

Design and TFT Content;

TFT entity “All

Domains.” Children of

“All Domains” in

ENTITY_RELATION

table supplies the list of

supported vocabulary

domains in the TFT.

Table 37: Continued

1
9
5

Function Inputs Outputs Description
TME Support

Comment*

validateCode

Name of the

vocabulary domain,

code to be validated,

application

context(realm), flag

indicating whether to

validate active

concepts only and

flag indicating

whether to check

both errors and

warnings or just

errors

List of errors and

warnings.

Validate the coded

attribute for the supplied

vocabulary domain and

context.

Fully Supported: TME

Design and TFT Content.

ENTITY table referenced

to determine status,

ENTITY_RELATION

table referenced to

validate participation in

domain.

Table 37: Continued

1
9
6

Function Inputs Outputs Description
TME Support

Comment*

validateTranslation

Name of the

vocabulary domain,

coded attribute

containing

translation(s) to be

validated, application

context(realm), flag

indicating whether to

validate active

concepts only and

flag indicating

whether to check

both errors and

warnings or just

errors

List of errors and

warnings.

Validate the CD

translations, if any, for

the supplied vocabulary

domain and context.

Fully Supported: TME

Design and TFT Content.

Two options for

validating translation.

Runtime option

references TFT and

checks only the

RSFORM table for

concept equivalent

translations. Option 2

involves querying the

ENTITY_LINK table and

specifying a link type.

Table 37: Continued

1
9
7

Function Inputs Outputs Description
TME Support

Comment*

translateCode

Name of the

vocabulary domain,

coded attribute to be

translated, target

code system, and

target application

context(realm)

Translation of the

coded attribute.

Translate the supplied

coded attribute into a

form that uses the target

code system or uses

whatever code system is

appropriate for the

supplied context

Fully Supported: TME

Design and TFT Content.

Two options for

translating a code.

Runtime option

references TFT and

checks only the

RSFORM table for

concept equivalent

translations. Option 2

involves querying the

ENTITY_LINK table and

specifying a link type.

Table 37: Continued

1
9
8

Function Inputs Outputs Description
TME Support

Comment*

fillInDetails
Coded attribute and

target language code

Coded attribute value

with details supplied.

Fill in the optional parts

of the coded attribute

such as the concept

display name, the code

system name and code

system version.

Fully Supported: TME

Design and TFT Content.

TME supports additional

more granular metadata

that is not specifically

called out in other CTS

functions but can be

provided through this

function. This includes

information such as

USAGE_SCORE, entity

link type, superseding

entity, gender specific

entities, representation

links, representation

status, case sensitive

representations, etc.

Table 37: Continued

1
9
9

Function Inputs Outputs Description
TME Support

Comment*

subsumes

Parent coded

attribute, child coded

attribute

True / False

Determine whether the

parent coded attribute

subsumes (or implies)

the child.

Fully Supported: TME

Design and TFT Content.

Query

ENTITY_RELATION

and validate that

RELATION_TCID

(relationship type)

between two entities is a

child of TFT

“Subsumption

Relationship Type.”

areEquivalent

First coded attribute,

second coded

attribute

True / False

Determine whether the

two coded attributes are

‘equivalent’.

Fully Supported: TME

Design and TFT Content.

Query

ENTITY_RELATION

determine if two entities

have TFT “Equivalent”

relationship type.

Table 37: Continued

2
0
0

Function Inputs Outputs Description
TME Support

Comment*

lookupValueSetExpansion

Name of the

vocabulary domain,

application

context(realm),

language for

expansion text, flag

indicating whether to

do a complete

expansion of just one

level, time limit and

size limit

Hierarchical

expansion of the

value set associated

with the domain in

the supplied context

Return a hierarchical list

of selectable concepts

for the supplied

vocabulary domain and

context.

Fully Supported: TME

Design and TFT Content.

Query

ENTITY_RELATION

table specifying the

domain entity and

relationship type.

Table 37: Continued

2
0
1

Function Inputs Outputs Description
TME Support

Comment*

expandValueSetExpansionC

ontext

Opaque expansion

context returned from

previous

lookupValueSetExpa

nsion or

expandValueSetExpa

nsionContext call

Further hierarchical

expansion of the

value set associated

with the domain in

the supplied context

Return further

expansion on nested

value set contents.

Fully Supported: TME

Design and TFT Content.

Query

ENTITY_RELATION

table specifying the

domain entity and

relationship type. TFT

content includes a

specific relationship type

for transitive closure. So

it is possible to query for

immediate “parent” only

or all ultimate parents of

an entity.

Table 37: Continued

2
0
2

Table 38: TME Support for HL7 CTS Vocabulary Layer Runtime Functions. The following table is copied from the HL7 CTS

Specification. It describe CTS methods related to vocabulary layer runtime functions.65 *TME support for each method is indicated

in an appended column.

Function Input Output Description TME Support Comment*

getServiceName Service name

Return the

name that was

assigned to this

service by the

service

provider.

Fully Supported: TFT Content

Query. “Service” is a TFT entity and

entity attributes and properties are

used to store name, version,

description, HL7 Release Version,

CTS Version, and supported match

algorithms information pertaining to

the service.

getServiceVersion Version identifier

Return the

current version

of the service

software.

Fully Supported: TFT Content

Query; Note service version is

instantiated as an attribute value for

TFT “Service” entity.

getServiceDescription Service description

Return a

description of

the service

function,

authors,

copyrights, etc.

Fully Supported: TFT Content; TFT

“Service” entity metadata.

2
0
3

Function Input Output Description TME Support Comment*

getCTSVersion
Major and minor

version number

Return the CTS

version that this

service

implements.

Fully Supported: TFT Content; TFT

“Service” entity attribute.

getSupportedCodeSystems
Time limit and size

limit

List of code systems

and versions

supported by the

service

implementation.

Return the

identifier, name

and release

versions of all

code systems

that are

supported by

the service.

Fully Supported: TFT Content; TFT

“Supported Code Systems” entity is a

domain that includes all supported

code system root entities.

lookupCodeSystemInfo
Code system name

or identifier

Description of the

code system

including name, id,

description, version,

supported languages,

supported relations,

supported properties,

etc.

Return detailed

information

about a specific

code system.

Fully Supported: TFT Content; Code

system metadata are associated with

code system root entities through

ENTITY_ATTRIBUTE and

PROPERTY tables.

Table 38: Continued

2
0
4

Function Input Output Description TME Support Comment*

isConceptIdValid

Code system

identifier, concept

code and flag

indicating whether

inactive concepts

are considered valid

True / False

Determine

whether

concept code is

currently valid

in the specified

code system

Fully Supported: TME Design.

Validate that supplied code is a valid

representation (RSFORM) on an

active concept

(ENTITY.STATUS_TCID) in the

specified code system

(ENTITY_RELATION).

lookupDesignation

Code system

identifier, concept

code and target

language code

Designation text

Return the

preferred

designation for

the concept

code in the

supplied

language

Fully Supported: TME Design.

Determined through RSFORM

LANGUAGE_TCID,

PREFERRED_REP, and

CONTEXT_TCID.

Table 38: Continued

2
0
5

Function Input Output Description TME Support Comment*

areCodesRelated

Code system

identifier, source

concept code, target

concept code,

relationship code,

relationship

qualifiers, and flag

indicating whether

to use only directly

related codes or the

transitive closure of

the relationship

True/False

Determine

whether the

named

relationship

exists between

the source and

target codes.

Fully Supported: TME Design.

Determined through

ENTITY_RELATION

RELATION_TCID, TCID_1, and

TCID_2.

Table 38: Continued

2
0
6

Table 39: TME Support for HL7 CTS Code Mapping Functions. The following table is copied from the HL7 CTS Specification.

It describe CTS methods related to code mapping functions.65 *TME support for each method is indicated in an appended column.

Function Input Output Description TME Support Comment*

getServiceName Service name

Return the name that

was assigned to this

service by the service

provider.

Fully Supported: TFT Content Query.

“Service” is a TFT entity and entity

attributes and properties are used to

store name, version, description, HL7

Release Version, CTS Version, and

supported match algorithms

information pertaining to the service.

getServiceVersion Version identifier

Return the current

version of the service

software.

Fully Supported: TFT Content Query;

Note service version is instantiated as

an attribute value for “Service” TFT

entity.

getServiceDescription Service description

Return a description

of the service

function, authors,

copyrights, etc.

Fully Supported: TFT Content; TFT

“Service” entity metadata.

getCTSVersion
Major and minor

version number

Return the CTS

version that this

service implements.

Fully Supported: TFT Content; TFT

“Service” entity attribute.

2
0
7

Function Input Output Description TME Support Comment*

getSupportedMaps

List of named sets

consisting of from code

system id, name and

version, to code system

id, name, and version

and a mapping

description

Return a list of

mappings that are

supported by this

service.

Partially Supported: The TME links

concepts in disparate code systems

through the ENTITY_LINK table.

Those links are “flattened” in the TFT

for runtime deployment of content.

Comprehensive point-to-point

mapping is not the specific objective of

the TME. Mappings are more purpose

driven so it is more difficult to name

and enumerate the mappings supported

in the TME.

mapConceptCode

Source code

system

identifier and

concept code,

target code

system

identifier and

name of

mapping

resource

Corresponding concept

code in target system

and quality indicator

Return the mapping

of the supplied

concept code from

the source code

system to the target

code system using

the named mapping

resource.

Fully Supported: Information specific

to the mapping resource and type of

mapping is stored in the

ENTITY_LINK table, the source and

target codes are representations that are

assigned contexts in the TFT. Either

mapping links between source and

target namespaces in the TME or

designations in separate contexts in the

TFT can be used to support this

function.

Table 39: Continued

2
0
8

Table 40: TME Support for HL7 CTS Message Layer Browsing Functions. The following table is copied from the HL7 CTS

Specification. It describe CTS methods related to message layer browsing functions.65 *TME support for each method is indicated in

an appended column.

Function Input Output Description TME Support Comment*

getServiceName Service name

Return the name

that was

assigned to this

service by the

service provider.

Fully Supported: TFT Content

Query. “Service” is a TFT

entity and entity attributes and

properties are used to store

name, version, description,

HL7 Release Version, CTS

Version, and supported match

algorithms information

pertaining to the service.

getServiceVersion Version identifier

Return the

current version

of the service

software.

Fully Supported: TFT Content

Query; Note service version is

instantiated as an attribute

value for “Service” TFT entity.

getServiceDescription Service description

Return a

description of

the service

function,

authors,

copyrights, etc.

Fully Supported: TFT Content;

TFT “Service” entity metadata.

2
0
9

Function Input Output Description TME Support Comment*

getHL7ReleaseVersion Version identifier

Return the HL7

release version

that is currently

supported by

this service.

Fully Supported: TFT Content;

TFT “Service” entity metadata.

getCTSVersion
Major and minor

version number

Return the CTS

version that this

service

implements.

Fully Supported: TFT Content;

TFT “Service” entity attribute.

getSupportedMatchAlgorithms

List of string match

algorithms

implemented by the

browser service

Fully Supported: TFT Content;

TFT “Service” entity attributes.

getSupportedAttributes

Match text and

algorithm, time

limit and size limit

List of RIM

attributes known to

the browser

Returns a list of

RIM attributes

whose name

matches the

supplied match

text that are

known to the

browser.

Partially Supported: TME can

support this function from a

design perspective, but

supporting content that maps

RIM attributes has not been

instantiated in the TFT.

Table 40: Continued

2
1
0

Function Input Output Description TME Support Comment*

getSupportedVocabularyDomains

Match text and

algorithm, time

limit and size limit

List of vocabulary

domains known to

the browser

Returns a list of

vocabulary

domains whose

name matches

the supplied

match text that

are known to the

browser.

Fully Supported: TME Design

and TFT Content; TFT entity

“All Domains.” Children of

“All Domains” in

ENTITY_RELATION table

supplies the list of supported

vocabulary domains in the

TFT.

getSupportedValueSets

Match text and

algorithm, time

limit and size limit

List of value sets

known to the

browser

Returns a list of

value sets whose

name matches

the supplied

match text that

are known to the

browser.

Fully Supported: TME Design

and TFT Content; TFT entity

“All Value Sets.” Children of

“All Value Sets” in

ENTITY_RELATION table

supplies the list of supported

value sets in the TFT.

getSupportedCodeSystems

Match text and

algorithm, time

limit and size limit

List of code

systems known to

the browser

Returns a list of

code systems

whose name

matches the

supplied match

text that are

known to the

browser.

Fully Supported: TFT Content;

TFT “Supported Code

Systems” entity is a domain

that includes all supported code

system root entities.

Table 40: Continued

2
1
1

Function Input Output Description TME Support Comment*

lookupVocabularyDomain
Name of

vocabulary domain

Domain name,

description,

domains restricted

by this domain, list

of RIM attributes

that use this

domain, and list of

value sets that

represent this

domain

Look up all of

the information

known about the

supplied

vocabulary

domain

Partially Supported: TME can

support this function from a

design perspective, but

supporting content that maps

RIM attributes dependencies

has not been instantiated in the

TFT.

lookupValueSet
Value set name or

identifier

Detailed value set

description,

including name,

identifier,

description, list of

value sets used to

construct the set,

value sets that this

set helps define, list

of concept codes

the value set

references, etc.

Look up

detailed

information on a

value set

(including

vocabulary

domains,

constructors,

etc).

Fully Supported: Attributes,

properties and relationships of

the value set entity.

Table 40: Continued

2
1
2

Function Input Output Description TME Support Comment*

lookupCodeSystem
Code system name

or identifier

Name, id,

copyright, release

and registration

information

Look up details

on a code

system

Fully Supported: Attributes,

properties and relationships of

the code system root concept

entity.

lookupValueSetForDomain

Name of

vocabulary domain

and application

context(realm)

Name and id of the

value set used for

this vocabulary

domain

Return the

identifier of the

value set that

would be used

for the

vocabulary in

the supplied

context (if any).

Fully Supported:

Representations and properties

of the value set entity.

isCodeInValueSet

Value set name or

identifier, code

system identifier

and concept code,

and indicator

whether to include

the "head code" as

part of the value set

True/False

Determine

whether the

supplied concept

code is a valid

value in the

supplied value

set

Fully Supported: Entity

relationship link between entity

with specified concept code

and value set entity.

Table 40: Continued

2
1
3

Table 41: TME Support for HL7 CTS Vocabulary Layer Browsing Functions. The following table is copied from the HL7 CTS

Specification. It describe CTS methods related to vocabulary layer browsing functions.65 *TME support for each method is indicated

in an appended column.

Function Input Output Description
TME Support

Comment*

getServiceName Service name

Return the name

that was assigned

to this service by

the service

provider.

Fully Supported: TFT

Content Query.

“Service” is a TFT entity

and entity attributes and

properties are used to

store name, version,

description, HL7

Release Version, CTS

Version, and supported

match algorithms

information pertaining to

the service.

getServiceVersion Version identifier

Return the current

version of the

service software.

Fully Supported: TFT

Content Query; Note

service version is

instantiated as an

attribute value for

“Service” TFT entity.

2
1
4

Function Input Output Description
TME Support

Comment*

getServiceDescription Service description

Return a

description of the

service function,

authors,

copyrights, etc.

Fully Supported: TFT

Content; TFT “Service”

entity metadata.

getCTSVersion
Major and minor

version number

Return the CTS

version that this

service

implements.

Fully Supported: TFT

Content; TFT “Service”

entity attribute.

getSupportedMatchAlgorithms

List of string match

algorithms

implemented by the

browser service

Fully Supported: TFT

Content; TFT “Service”

entity attributes.

getSupportedCodeSystems
Time limit and size

limit

List of supported code

systems and their

descriptions

Fully Supported: TFT

Content; TFT

“Supported Code

Systems” entity is a

domain that includes all

supported code system

root entities.

Table 41: Continued

2
1
5

Function Input Output Description
TME Support

Comment*

lookupConceptCodesByDesignati

on

Code system

identifier, match text

and algorithm, target

language code, flag

indicating whether

nonactive concepts

should be retrieved,

time limit and size

limit

List of code system

identifiers and concept

codes.

Return a list of

concept codes

that have

designations that

match the

supplied match

string in the

supplied

language, if any.

Fully Supported: Return

code representations on

all entities with the

supplied designation in

the RSFORM table.

lookupConceptCodesByProperty

Code system

identifier, match text

and algorithm, target

language code, flag

indicating whether

nonactive concepts

whould be retrieved,

optional list of

property mime types,

time limit and size

limit

List of code system id /

concept codes.

Return a list of

concept codes

that have

properties that

meet the supplied

criteria

Fully Supported: Return

code representations on

all entities with the

supplied properties in

the

ENTITY_ATTRIBUTE

or PROPERTY tables.

Table 41: Continued

2
1
6

Function Input Output Description
TME Support

Comment*

lookupCompleteCodedConcept

Code system

identifier and concept

code

Everything that is

known about the

concept (designations,

properties,

relationships, etc.)

Return a

complete

description of the

supplied concept

code

Fully Supported: Return

entity relationships,

links, attributes,

properties, and

representations.

lookupDesignations

Code system id and

concept code, match

text and algorithm,

target language

List of designations

Return all

designations for

the supplied

concept code that

match the

supplied criteria.

Fully Supported: Return

all of representations

associated with an entity

in the RSFORM table.

lookupProperties

Code system id and

concept code, match

text and algorithm,

list of property codes

to search, list of

mime types to match

and target language

code

List of concept

properties (property

code, value, language,

mime type)

Return the

properties of the

given code

system id /

concept code that

match the

supplied criteria.

Fully Supported: Return

properties/attributes for

the specified entity from

the

ENTITY_ATTRIBUTE

and PROPERTY tables.

Table 41: Continued

2
1
7

Function Input Output Description
TME Support

Comment*

lookupCodeExpansion

Code system id and

concept code,

relationship code,

relationship direction

indicator, target

languag code, size

limit and time limit

Hierarchical code

expansion list

Recursively list

the concept codes

that are related to

the supplied

concept,

including the

preferred

designation for

the codes.

Fully Supported:

Returns relationships in

the

ENTITY_RELATION

table.

Table 41: Continued

REFERENCES

1. Millenson ML. Demanding medical excellence : doctors and accountability in the

information age. Chicago, Ill.: University of Chicago Press; 1997.

2. Agency for Healthcare Research & Quality (AHRQ). National Healthcare

Quality Report. 2008. AHRQ Publication No. 09-0001.

3. Thomas EJ, Studdert DM, Burstin HR, et al. Incidence and types of adverse

events and negligent care in Utah and Colorado. Med Care. Mar 2000;38(3):261-

271.

4. Brennan TA, Leape LL, Laird NM, et al. Incidence of adverse events and

negligence in hospitalized patients. Results of the Harvard Medical Practice Study

I. N Engl J Med. Feb 7 1991;324(6):370-376.

5. American Hospital Association, Health Forum (Organization). Hospital statistics.

Chicago, Ill.: Healthcare InfoSource; 1998.

6. Martin AB, Lassman D, Washington B, Catlin A. Growth In US health spending

remained slow in 2010; health share of gross domestic product was unchanged

from 2009. Health Affairs. 2012;31(1):208-219.

7. Shojania KG, Duncan BW, McDonald KM, Wachter RM, Markowitz AJ. Making

health care safer: a critical analysis of patient safety practices. Evid Rep Technol

Assess (Summ). 2001(43):i-x, 1-668.

8. Shekelle PG, Morton SC, Keeler EB. Costs and benefits of health information

technology. Evid Rep Technol Assess (Full Rep). Apr 2006(132):1-71.

9. Bakken S, Currie LM, Lee NJ, Roberts WD, Collins SA, Cimino JJ. Integrating

evidence into clinical information systems for nursing decision support.

International journal of medical informatics. Jun 2008;77(6):413-420.

10. Mookencherry S. Eight reasons payer interoperability and data sharing are

essential in ACOs. Interoperability standards could be a prerequisite to measuring

care. Health Manag Technol. Jan 2012;33(1):16-19.

11. Eddy DM. Clinical decision making: from theory to practice. Anatomy of a

decision. JAMA. Jan 19 1990;263(3):441-443.

219

12. Anusuya MA, Katti SK. Superficial analogies and differences between the human

brain and the computer. IJCSNS. July 2010 2010;10(7).

13. Shapiro AR. Taming variability in free text: application to health surveillance.

MMWR Morb Mortal Wkly Rep. Sep 24 2004;53 Suppl:95-100.

14. IEEE Computer Society. Standards Coordinating Committee. IEEE standard

computer dictionary : a compilation of IEEE standard computer glossaries, 610.

New York, NY, USA: Institute of Electrical and Electronics Engineers; 1990.

15. International Organization for Standardization (ISO). Information Technology -

Open Systems Interconnection - Basic Reference Model: The Basic Model

(ISO/IEC 7498-1). International Organization for Standards. 1996.

16. National Committee on Vital and Health Statistics (NCVHS). Report to the

Secretary of the U.S. Department of Health and Human Services on uniform data

standards for patient medical record information. July 6, 2000 2000.

17. Cimino JJ, Elhanan G, Zeng Q. Supporting infobuttons with terminological

knowledge. AMIA Annual Fall Symposium. 1997:528-532.

18. Lau LM, Lam SH, Shakib SC. What true interoperability means. Paper presented

at 12th World Congress on Health (Medical) Informatics; 2007.

19. Stewart BA, Fernandes S, Rodriguez-Huertas E, Landzberg M. A preliminary

look at duplicate testing associated with lack of electronic health record

interoperability for transferred patients. JAMIA. 2010;17(3):341-344.

20. Amato-Gauci A, Ammon A. The surveillance of communicable diseases in the

European Union--a long-term strategy (2008-2013). Euro surveillance : bulletin

europeen sur les maladies transmissibles = European communicable disease

bulletin. Jun 26 2008;13(26).

21. Alfreds ST, Witter DM. The impact of electronic Health Information Exchange

(HIE) services in Maine: avoidable service and productivity savings estimates

related to HealthInfoNet services. The Maine HealthInfoNet Stakeholder Group

Maine Quality Forum;2008.

22. Walker J, Pan E, Johnston D, Adler-Milstein J, Bates DW, Middleton B. The

value of health care information exchange and interoperability. Health Affairs.

Jan-Jun 2005;Suppl Web Exclusives:W5-10-W15-18.

23. H.R. 1--111th Congress: American Recovery and Reinvestment Act of 2009.

2009.

220

24. Office of the National Coordinator for Health Information Technology. About

ONC. 2012;

http://healthit.hhs.gov/portal/server.pt/community/healthit_hhs_gov__onc/1200.

Accessed July 9, 2012.

25. Rocha RA, Huff SM, Haug PJ, Warner HR. Designing a controlled medical

vocabulary server: the VOSER project. Comput Biomed Res. Dec

1994;27(6):472-507.

26. Cimino JJ. Desiderata for controlled medical vocabularies in the twenty-first

century. Methods Inf Med. Nov 1998;37(4-5):394-403.

27. Apelon Inc. Apelon home page. 2012; http://www.apelon.com. Accessed July 9,

2012.

28. Apelon Inc. Apelon DTS. 2012; http://apelon-dts.sourceforge.net. Accessed July

9, 2012.

29. Lau LM, Shakib SC. Towards data interoperability: practical Issues in

terminology implementation and mapping. Clinical Vocabulary Mapping

Methods Institute, 77th AHIMA Convention and Exhibit; 2005.

30. Columbia-Presbyterian, New York-Cornell. Medical Entities Dictionary. 2013;

http://med.dmi.columbia.edu/. Accessed April 17, 2013.

31. Cimino JJ. From data to knowledge through concept-oriented terminologies

experience with the Medical Entities Dictionary. JAMIA. 2000;7(3):288-297.

32. Health Language Inc. HLI Language Engine. 2013;

http://www.healthlanguage.com/products/language-engine.html. Accessed

February 12, 2013.

33. Clinical Architecture. Clinical Architecture home page. 2013;

http://www.clinicalarchitecture.com/solutions/symedical-server/. Accessed

February 12, 2013.

34. National Cancer Institute. LexGrid. 2013;

https://wiki.nci.nih.gov/display/LexEVS/LexGrid. Accessed April 17, 2013.

35. National Institutes of Health (U.S.). BiomedGT wiki. 2013;

https://wiki.nci.nih.gov/display/EVS/BiomedGT+Wiki. Accessed April 17, 2013.

36. Health Level Seven International. HL7 home page. 2013; http://www.hl7.org/.

Accessed April 17, 2013.

37. McDonald CJ, Overhage JM, Dexter P, Takesue B, Suico JG. What is done, what

is needed and what is realistic to expect from medical informatics standards.

International journal of medical informatics. Feb 1998;48(1-3):5-12.

http://healthit.hhs.gov/portal/server.pt/community/healthit_hhs_gov__onc/1200
http://www.apelon.com/
http://apelon-dts.sourceforge.net/
http://med.dmi.columbia.edu/
http://www.healthlanguage.com/products/language-engine.html
http://www.clinicalarchitecture.com/solutions/symedical-server/
http://www.hl7.org/

221

38. Strang N, Cucherat M, Boissel JP. Which coding system for therapeutic

information in evidence-based medicine. Computer methods and programs in

biomedicine. 2002;68(1):73-85.

39. Smith B. From concepts to clinical reality: an essay on the benchmarking of

biomedical terminologies. J Biomed Inform. Jun 2006;39(3):288-298.

40. Cimino JJ. In defense of the desiderata. J Biomed Inform. Jun 2006;39(3):299-

306.

41. Canada Health Infoway. The Electronic Health Record Solution (EHRS) blueprint

version 2. 2006.

42. Rosenbloom ST, Miller RA, Johnson KB, Elkin PL, Brown SH. A model for

evaluating interface terminologies. JAMIA. 2007;15(1):65-76.

43. American Medical Association. CPT 2003: Current Procedural Terminology.

Chicago2002.

44. Abraham M, Ahlman JT, Anderson C, Boudreau AJ, Connelly J. CPT 2012 (CPT

/ Current Procedural Terminology (Professional Edition)). Chicago: American

Medical Association Press; 2011.

45. The International Health Terminology Standards Development Organisation

(IHTSDO). SNOMED Clinical Terms® technical reference guide. 2008.

46. Regenstrief Institute for Health Care. LOINC and RELMA. Indianapolis, Ind.:

Regenstrief Institute; 1995: http://www.regenstrief.org/loinc/#releasenotes.

47. Huff SM, Rocha RA, McDonald CJ, et al. Development of the Logical

Observation Identifier Names and Codes (LOINC) Vocabulary. JAMIA.

1998;5:276–292.

48. National Library of Medicine (U.S.). RxNorm. Bethesda, MD: U.S. National

Library of Medicine, National Institutes of Health, Health & Human Services;

2004: http://www.nlm.nih.gov/research/umls/rxnorm/. Accessed December 15,

2004.

49. National Library of Medicine (U.S.). UMLS reference manual. Bethesda, MD:

U.S. National Library of Medicine, National Institutes of Health; 2010:

http://www.ncbi.nlm.nih.gov/books/NBK9676. Accessed February 24, 2010.

50. Buck CJ. 2012 ICD-9-CM for hospitals, volumes 1, 2 and 3 professional edition.

Elsevier Health Sciences; 2011.

51. Leon-Chisen N. ICD-10-CM and ICD-10-PCS Coding Handbook, With Answers,

2012 Revised Edition. AHA Press.; 2011.

http://www.regenstrief.org/loinc/#releasenotes
http://www.nlm.nih.gov/research/umls/rxnorm/
http://www.ncbi.nlm.nih.gov/books/NBK9676

222

52. Nelson DA. Why does medicine need standards? Medical Computing Today.

1997. http://medicalcomputing.org/archives/0astandwhy.php. Accessed April 17,

2013.

53. Schulz S, Boeker M, Stenzhorn H, Niggemann J. Granularity issues in the

alignment of upper ontologies. 20090313 DCOM- 20090814 2009(0026-1270

(Print)).

54. Rector AL, Nowlan WA. The GALEN project. 19950419 DCOM-19950419

1994(0169-2607 (Print)).

55. Shakib SC, Knight E, Lau LM. Challenges of mapping microbiology data to a

common data dictionary. Poster presented at AMIA Annual Symposium; 2000.

56. National Drug Data File Plus. In: First DataBank, ed: National Libarary of

Medicine; 2010.

57. Current Procedural Terminology (CPT). In: Association AM, ed: American

Medical Association; 2003.

58. Oliver DE, Shahar Y, Shortliffe EH, Musen MA. Representation of change in

controlled medical terminologies. Artificial intelligence in medicine. Jan

1999;15(1):53-76.

59. Hole WT, Carlsen BA, Tuttle MS, et al. Achieving "source transparency" in the

UMLS Metathesaurus. Studies in health technology and informatics. 2004;107(Pt

1):371-375.

60. Lau LM, Banning PD, Monson K, Knight E, Wilson PS, Shakib SC. Mapping

Department of Defense laboratory results to Logical Observation Identifiers

Names and Codes (LOINC®). Paper presented at AMIA Annual Symposium;

2005.

61. Shakib SC, Lau LM. Making standard terminologies operational in the electronic

health record. Paper presented at 12th World Congress on Health (Medical)

Informatics; 2007.

62. Huff SM, Rocha RA, Solbrig HR, Barnes MW, Schrank SP, Smith M. Linking a

medical vocabulary to a clinical data model using Abstract Syntax Notation 1.

Methods Inf Med. 1998;37:440-452.

63. Shakib SC, Endo J, Lau LM, Karitis JW. Development of an integrated dentistry

information model. Poster presented at AMIA Annual Symposium; 2001.

http://medicalcomputing.org/archives/0astandwhy.php

223

64. National Library of Medicine (U.S.). SNOMED Clinical Terms (SNOMED CT).

Bethesda, MD: U.S. National Library of Medicine, National Institutes of Health,

Health & Human Services; 2009:

http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html. Accessed

October 20, 2009.

65. Solbrig H. HL7 Common Terminology Services. HL7 Version 3 Standard. Health

Level Seven, Inc. 2003.

66. Object Management Group Inc. Lexicon Query Service specification. Object

Management Group, Inc.; 2000.

67. National Library of Medicine (U.S.). UMLS knowledge sources. Bethesda, MD:

U.S. National Library of Medicine, National Institutes of Health, Health &

Human Services; 1999:

http://www.nlm.nih.gov/research/umls/knowledge_sources/index.html. Accessed

April 2, 2008.

68. McDonald C, Huff S, Vreeman DJ, Mercer K, Hernandez JA. Logical

Observation Identifiers Names and Codes (LOINC®). 1995.

69. Friedman C. Towards a comprehensive medical language processing system:

methods and issues. AMIA Annual Symposium; 1997.

70. Chen PP-S. The entity-relationship model—toward a unified view of data. ACM

Transactions on Database Systems (TODS). 1976;1(1):9-36.

71. Schadow G, McDonald CJ. The Unified Code for Units of Measure (UCUM).

Regenstrief Institute and Indiana University School of Informatics. 2005.

72. Halevy AY, Ashish N, Bitton D, et al. Enterprise information integration:

successes, challenges and controversies. ACM SIGMOD International

Conference on Management of Data; 2005.

73. Lau LM, Johnson K, Banning P, et al., Inventors; Google Patents, assignee.

Managing relationships between unique concepts in a database. 2001.

74. Rocha RA, Rocha BH, Huff SM. Automated translation between medical

vocabularies using a frame-based interlingua. Paper presented at Annual

Symposium on Computer Application in Medical Care; 1993.

75. Nachimuthu SK, Lau LM. Applying hybrid algorithms for text matching to

automated biomedical vocabulary mapping. AMIA Annual Symposium.

2005;2005:555.

76. Browne AC, Divita G, Aronson AR, McCray AT. UMLS language and

vocabulary tools: AMIA 2003 open source expo. AMIA Annual Symposium;

2003.

http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html
http://www.nlm.nih.gov/research/umls/knowledge_sources/index.html

224

77. Zollo KA, Huff SM. Automated mapping of observation codes using extensional

definitions. JAMIA. 2000;7(6):586-592.

78. Shakib SC, Che C, Lau LM. Using knowledge rules for pharmacy mapping.

Poster presented at AMIA Annual Symposium; 2006.

79. Che C, Monson K, Poon KB, Shakib SC, Lau LM. Managing vocabulary

mapping services. AMIA Annual Symposium; 2005.

80. Fensel D. Ontologies. Springer Berlin Heidelberg; 2001.

81. Gennari JH, Musen MA, Fergerson RW, et al. The evolution of Protégé: an

environment for knowledge-based systems development. International Journal of

Human-Computer Studies. 2003;58(1):89-123.

82. Mayo Clinic. Common Terminology Services 2. 2013;

http://informatics.mayo.edu/cts2/index.php/Main_Page. Accessed April 7, 2013.

83. Lee DH, Lau FY, Quan H. A method for encoding clinical datasets with

SNOMED CT. BMC Medical Informatics and Decision Making. 2010;10(1):53.

84. Poon KB, Che C, Monson K, Shakib SC, Lau LM. The evolution of tools and

processes for data mapping. ACMI Senior Member Presentations presented at

AMIA Annual Symposium; 2005.

85. Shakib SC, Poon KB, Lau LM. Tools and processes to improve data mapping

accuracy and reliability. Poster presented at 11th World Congress on Medical

Informatics; 2004.

86. Poon KB, Shakib SC, Lau LM. A quality assurance browser tool for tracking

vocabulary mapping. Poster presented at 11th World Congress on Medical

Informatics; 2004.

87. Shakib SC, Knight E, Endo J, Lau LM. An application to integrate the logistical

and technical aspects of data dictionary support to multiple healthcare systems.

Poster presented at AMIA Annual Symposium; 2002.

88. Brickley D, Guha RV. Resource Description Framework (RDF) schema

specification 1.0: W3C candidate recommendation 27 March 2000. 2000.

http://informatics.mayo.edu/cts2/index.php/Main_Page

