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ABSTRACT

Message passing (MP) has gained a widespread adoption over the years, so much so, that

even heterogeneous embedded multicore systems are running programs that are developed

using message passing libraries. Such a phenomenon is a shift in computing practices,

since, traditionally MP programs have been developed specifically for high performance

computing. With growing importance and the complexity of MP programs in today’s times,

it becomes absolutely imperative to have formal tools and sound methodologies that can

help reason about the correctness of the program.

It has been demonstrated by many researchers in the area of concurrent program veri-

fication that a suitable strategy to verify programs which rely heavily on nondeterminism,

is dynamic verification. Dynamic verification integrates the best features of testing and

model checking. In the area of MP program verification, however, there have been only a

handful of dynamic verifiers. These dynamic verifiers, despite their strengths, suffer from

the explosion in execution scenarios. All existing dynamic verifiers, to our knowledge,

exhaustively explore the nondeterministic choices in an MP program. It is apparent that

an MP program with many nondeterministic constructs will quickly inundate such tools.

This dissertation focuses on the problem of containing the exponential space of execution

scenarios (or interleavings) while providing a soundness and completeness guarantee over

safety properties of MP programs (specifically deadlocks). We present a predictive verifica-

tion methodology and an associated framework, called MAAPED(Messaging Application

Analysis with Predictive Error Discovery), that operates in polynomial time over MP

programs to detect deadlocks among other safety property violations. In brief, we collect a

single execution trace of an MP program and without re-running other execution schedules,

reliably construct the artifacts necessary to predict any mishappening in an unexplored

execution schedule with the aforementioned formal guarantee.

The main contributions of the thesis are the following:

• The Functionally Irrelevant Barrier Algorithm to increase program productivity and

ease in verification complexity.



• A sound pragmatic strategy to reduce the interleaving space of existing dynamic

verifiers which is complete only for a certain class of MPI programs.

• A generalized matches-before ordering for MP programs.

• A predictive polynomial time verification framework as an alternate solution in the

dynamic MP verification landscape.

• A soundness and completeness proof for the predictive framework’s deadlock detection

strategy for many formally characterized classes of MP programs.

In the process of developing solutions that are mentioned above, we also collected

important experiences relating to the development of dynamic verification schedulers. We

present those experiences as a minor contribution of this thesis.
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Ôp Operation sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
≡t Type equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
≡t,d Type-Target equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Op�k K many ancestors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Op�k K many descendants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Op�k,p K many ancestors satisfying p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Op�k,p K many descendants satisfying p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
F j(Opi) First from Pj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Lj(Opi) Last from Pj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
≺w Wait-for ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Professor Ganesh Gopalakrishnan,

whole heartedly for the constant support and advice that he has generously provided me

over the duration of my study. His enthusiasm in research is a great source of inspiration for

all his students including myself. Ganesh is the best advisor one can hope to be supervised

by.

I would also like to thank all my committee members for their constant support and

excellent suggestions, without which completing this dissertation would not be possible. I

also have had the opportunity to work closely with few of my committee members (Eric

and Greg) and they are some of the smartest and most helpful people I have come across.

Thanks Eric and Greg. Working with you was an enriching experience. I am especially

grateful to Professor Robert M. Kirby for initiating me in to the Gauss verification group

and guiding me in my early years of the program.

I also express my gratitude to all the present and past Gauss group members, especially

Sarvani Vakkalanka, Anh Vo, Sriram Aanantakrishnan, Michael Delisi, Geof Saway, and

Wei-fan Chiang for the discussions that I have had with them in the past relating to this

dissertation. I would also like to thank Ann Carlstrom and Karen Feinauer for patiently

helping and guiding me in making sure the administrative requirements of this program

were completed.

Last but not the least, finishing this dissertation would not have been possible without

the love and support of my parents and my siblings. They will always have my gratitude.

I would also like to express my gratefulness to my brother-in-law who has always been a

source of inspiration. I am also thankful to a lot of my friends who made my stay in Salt

Lake City comfortable and cherishable. I especially thank Manu Awasthi and Amlan Ghosh

for making my graduate school experience memorable.



CHAPTER 1

INTRODUCTION

Parallel computing has become ubiquitous. Each year, we witness the arrival of more

powerful supercomputers and parallel platforms that outperform their predecessors. The

need to simulate larger problems with increased performance requirements is not the only

reason for propelling parallel computing into such ubiquity. Even low powered embedded

hand-held devices are also increasingly adopting parallel computing. The expectation to see

lesser response times and higher throughput on the devices is leading to such widespread

adoption of parallelism at all components (hardware/software) of computing. At a software

layer, parallel computing can be realized by writing programs that are run on multiple

processes/threads wherein the participating processes/threads communicate either by share

memory (multithreading) or via explicit messages. In the domain of MP (Message Passing),

the most successful and widely adopted standard for library implementation is MPI (Mes-

sage Passing Interface [42]). The extreme scale computing roadmap [52, 18] clearly indicates

that both, shared-memory and a standard such as MPI, are essential and must coexist in

order to achieve the goal of exascale computing; thus, reaffirming what many believe, that

MPI is not dead yet. The work in this dissertation focuses on programs written using MPI

and the Mutlicore Communications APIs (MCAPI [40])

It is a widely accepted fact that writing correct parallel programs is difficult. Even

if we concentrate on the correctness of reactive aspects of the program (such as absence

of deadlocks, races, etc.), reasoning about program correctness still remains an arduous

task. The primary reason for the difficulty in constructing correct parallel programs is the

unexpected ways in which participating processes of the program interact leading to an

exponentially vast number of execution scenarios. The expectation to be able to visualize

all possible program interpretations is unreal. The unanticipated interactions are due to

the nondeterministic constructs employed by application developers while developing the

program. Such interactions are a big source of worry since it is possible that conventional

ad-hoc testing only explores a segment of the schedule space, which may never expose
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the bug. However, porting the code to a different machine architecture or running the

program under a different environment may manifest the bug. Such bugs are also called

Heisenbugs [30]. Figure 1.1 illustrates a simple MPI example where a deadlock is present as

a Heisenbug. Note that for simplicity we have only synchronous sends and receive operations

in the example. Observe that Send from P0 is racing with Send from P2 for the first receive

from P1. Further assume that the data payload d2 is very large in size as opposed to

d1. Under traditional testing, one may never discover the bug because Send from P0 would

always reach its destination before Send from P2. However, under certain unusual conditions

where the network latency is high on the P0−P1 line, we may witness Send from P2 racing

ahead, thus, exposing the bug.

Unfortunately, existing ad-hoc testing/debugging methodologies [36, 66, 82, 47, 10] fall

vitally short in the ability to examine programs where bugs are deep-seated. Pursuing formal

verification strategy is the only plausible solution to validate such parallel programs. There

are many ways to formally validate parallel programs, viz. static analysis, model checking,

and dynamic verification. Static analysis can validate all possible program interpretations

independent of the input, however, there is a possibility that any imprecision in the analysis

may produce false alarms. Attaining high precision in a scalable manner is still an area

of active research in this domain. While model checking methodology offers the coverage

guarantee without producing false alarms, the effort to model large real code-bases in a

modeling language is often a laborious and error prone task. Dynamic verification is a

choice that offers some of the better benefits. Dynamic verification integrates the best

features of testing (ability to directly run the programs) and model checking (coverage

guarantees). This dissertation focuses on creating efficient dynamic verification algorithms

for MP programs.

1.1 Dynamic Verification of MP Programs

There has been a considerable body of work on developing state-of-the-art debugging

and visualization methodologies/tools for MP (specifically MPI) programs [36, 10, 74, 66].

P0 P1 P2

Send(to P1,d1) Recv(from:*,x) Send(to P1, d2)
Recv(from:*,y)

if(x==d2) ERROR

Figure 1.1: MPI example to illustrate the deadlock (Heisenbug)
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However, for the reasons elicited in the previous section, such tools fall short in validating

parallel programs with nondeterminism. While schedule perturbation methods such as [80]

enhance the likelihood that alternate execution paths are taken, very often such techniques

lack the fine control necessary to actually affect the send/receive matches in an MPI

program. Tools such as MPI-SPIN [59] are the first to provide model checking based

solutions in the MPI program verification landscape. MPI-SPIN is built by extending

the SPIN [32] language and tool. There have also been tools that perform symbolic analysis

of MPI programs [62] written for scientific applications, however, such tools suffer from a

common problem of the blowup in the constraint formula. Moreover, they are geared to

show functional equivalence of scientific software which is a solution to a different problem

altogether.

In the area of formal dynamic verification of MPI programs, In-Situ Partial order

(ISP [69, 78, 72, 67]) and Distributed Analyzer for MPI (DAMPI [76, 75]) are the known

tools that perform exhaustive exploration of the nondeterministic schedule space of the

program. For the purpose of this dissertation, we choose ISP as the baseline, however, our

algorithms are very applicable to DAMPI. ISP is a centralized verification scheduler and

DAMPI is a distributed verification scheduler, both of which generate the relevant schedule

space of MPI programs and exhaustively explore such a space by repeatedly executing the

program with a fixed input under the control of the verification scheduler, which orchestrates

different interleavings in each separate run. Irrespective of whether the verification scheduler

is centralized or distributed, we believe that there is a substantially large class of MPI

programs for which exhaustive verification is not necessary.

1.2 Thesis Statement

Building a predictive dynamic verification framework that can circumvent the exponential

schedule space search problem, and yet provide the coverage guarantee over certain safety

properties, is feasible and novel.

1.3 Contributions of Dissertation

1.3.1 Analysis for Performance

The result of my initial efforts in understanding the ISP scheduler led to the construction

of a dynamic algorithm that detects the presence functionally irrelevant barriers [56] (FIB)

in an MPI program. A barrier whose removal does not alter the communication structure of
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the program is defined to be functionally irrelevant. Note that MPI barriers, unlike shared-

memory barriers, have weaker semantics. MPI barriers enforce an ordering constraint on

operations appearing after the barrier as opposed to shared-memory barriers, which enforce

an ordering constraint on memory operations before and after the barrier.

Often application developers employ barriers for good measure; they are unsure whether

a barrier is indeed necessary. Sometimes barriers are also inserted to avoid network or

input/output (I/O) contention. There removal not only increases the parallelism in the

application but also eases the verification complexity. Any dynamic verification scheduler

(centralized or otherwise) would be able to run the application faster under its orchestration.

The FIB algorithm is implemented on top of the ISP scheduler. Since it is tightly coupled

to the ISP scheduler, FIB algorithm could successfully scale up to MPI programs running

on ∼ 30 processes. However, for FIB to scale to larger problem sizes, successful strategies

must be devised to contain the exploding schedule space. This served as the motivation for

the next piece of my dissertation work.

1.3.2 Reduction of Persistent-sets

After evaluating a number of MPI benchmarks, we observed that nondeterministic

receive call matchings rarely affect the subsequent communication calls of the program.

Thus, the persistent-set of such nondeterministic receives can be safely reduced for proving

absence of deadlocks. This piece of work served as a motivation for my subsequent work,

which forms the basis of the title of this dissertation work. We realized that the current

strategy of reducing persistent-sets works on a restricted class of programs and we would

ideally want to devise a strategy by relaxing the aforementioned constraint.

1.3.3 Predictive Verification Framework

Our contributions here were two-fold.

• Generalized matches-before (MB) relation: An MPI call can exist in one of the

multiple states of existence after its issuance. Either the call is simply enabled but not

matched yet, or the call has found its match but not completed yet, or the call has

successfully completed. Knowing precisely when the call has completed would require

probes into the runtime, which often communication libraries provide in the form of

Wait and Test functions. However, after formally studying the call semantics, it was

demonstrated that call issue order or call completion order are far from true ordering
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among operations. We build upon the established matches-before relation in [67, 75]

and extend it to a more generalized form.

• Polynomial deadlock detection algorithm: We provide the first novel predictive poly-

nomial time deadlock detection algorithm for MPI programs that do not have input

dependent communication flow in the program. A large class of MPI programs fall

under this category. We further demonstrate that the artifacts constructed in this

predictive framework can also be utilized for a cheaper predictive FIB analysis. Fi-

nally, we present the soundness and completeness proof (refer to [63] for the definition

of soundness1) of our deadlock algorithm, which depends on the completeness of the

potential match relation and the generalized matches-before relation that we construct

early on. We conjecture that the generalized matches-before ordering and the potential

match relation construction is complete and we provide a proof sketch for it.

1.3.4 Dynamic Verification of MCAPI Programs

We also developed a dynamic formal verifier for MCAPI application, which reinforced our

understanding of matches-before relation and exposed us to various forms of nondeterminism

in different flavors of MP libraries. We present the experiences in building a dynamic

verifier for MCAPI applications as another contribution of this dissertation with a focus on

answering the following questions:

• What consideration one must make in order to build a non-intrusive dynamic verifi-

cation scheduler?

• What solutions can be attempted in order to have a deterministic replay capability

under the presence of nondeterminism?

1.4 Organization of the Dissertation

This dissertation is organized as follows: Chapter 2 introduces an overview of MPI and

presents some relevant facts about ISP tool on which some of the subsequent work is based

on. Chapter 3 presents the FIB algorithm and Chapter 4 presents the strategy to perform

safe persistent-set reduction in ISP. Chapter 5 defines potential match-graph and presents

a generalized matches-before relation. Chapter 6 presents a polynomial deadlock detection

strategy (based on the artifacts discussed in the previous chapter) along with the sound-

1The definitions of soundness and completeness used by the researchers in the field of abstract interpre-
tation are different from what we use in the bug-hunting literature.
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ness and completeness proof. Chapter 7 presents some of the findings we collected while

developing the MCC (Multicore Checker) for MCAPI applications. We finally conclude and

discuss future directions in the Chapter 9.



CHAPTER 2

BACKGROUND

The work described in Chapters 3 and 4 is based on ISP. In this chapter, we provide a

brief introduction to MPI along with a succinct description of ISP.

2.1 Message Passing Interface (MPI)

MPI is a library interface specification designed to primarily help application developers

write scalable and portable HPC (high performance computing) software. Almost all the

supercomputers and clusters of today run software written using MPI. It would not be

incorrect to say that MPI is a lingua-franca of HPC software.

MPI library comes with C/C++ and Fortan bindings. MPI provides synchronous and

asynchronous communication primitives and further classifies communication type as either

point-to-point or collective communication. For a detailed report on MPI, readers are

encouraged to refer to [42]. For illustrative purposes, we would limit all future discussions in

this dissertation to the following MPI operations: Send, Recv, Barrier and Wait. All MPI

calls must be gated within MPI Init and MPI Finalize calls as illustrated in Figure 2.1.

Failure to comply will result in a compilation error. We will assume that all examples

provided in this dissertation have followed the correct rules of writing an MPI program. In

order to make the presentation easier, we will skip showing MPI Init, MPI Finalize call.

Furthermore, we will only show relevant arguments to the calls when necessary. Figure 2.1

illustrates a simple example with master-worker configuration. Such a communication

pattern is widely witnessed in MPI applications. Once a MPI call has been issued, it

can only exist in one of the following states:

• Enabled: The call has been issued by the process but is yet to be matched in the MPI

runtime.

• Matched: The call has been issued and matched with a compatible operation by the

runtime, however, the calls have not completed.
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#include <stdio.h>

#include "mpi.h"

int main( int argc, char **argv)

{

int rank;

MPI_Init( &argc, &argv );

MPI_Comm_rank( MPI_COMM_WORLD, &rank );

if (rank == 0)

master();

else

slave();

MPI_Finalize( );

return 0;

}

int master()

{

int i,j, size;

char buf[256];

MPI_Status status;

for (i=1; i<size; i++) {

MPI_Recv( buf, 256, MPI_CHAR, i, 0, master_comm, &status );

}

return 0;

}

int worker()

{

char buf[256];

int rank;

MPI_Comm_rank( comm, &rank );

MPI_Send( buf, strlen(buf) + 1, MPI_CHAR, 0, 0, MPI_COMM_WORLD);

return 0;

}

Figure 2.1: An MPI program with master-slave communication pattern
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• Completed: The call is said to be completed when all associated memory effects have

transpired. For instance, a send call is completed when the data payload is copied

from the sender’s address space to the receiver’s address space.

We now describe the syntax and semantics of the MPI calls mentioned earlier.

• Send: MPI application programming interface (API) provides various versions of the

send call such as: plain send MPI Send, buffered send MPI BSend, synchronous send

MPI Ssend, ready send MPI Rsend, and nonblocking send MPI Isend. MPI Send

can act as a buffered send (MPI BSend) call when there is an availability of runtime

buffering, otherwise, it acts as a typical blocking/synchronous send (MPI Ssend). The

syntax of MPI Send is the following:

MPI_Send(void *buff, int count, MPI_Datatype dt, int dest,

int tag, MPI_Comm comm);

The pointer to the data payload to be sent is denoted by buff; count is the number of

elements in buff of datatype dt and dest signifies the destination process identifier (ID)

for buff. Additionally, tag is an identifier associated with the message and comm is a

world of processes that are grouped to interact with each other. MPI Comm World is

the default communicator wherein all the processes supplied by the user are grouped.

Tags and communicators facilitate finer grained communication. MPI Isend, on the

other hand, is nonblocking and will immediately return. Its syntax is shown in the

following text:

MPI_Isend(void *buff, int count, MPI_Datatype dt, int dest,

int tag, MPI_Comm comm, MPI_Request* handle);

The additional argument to Isend call is the request handle, which MPI runtime uses to

uniquely identify this nonblocking request. Such a handle can be used by developers

to ascertain the status of the nonblocking call, for instance, whether the call has

completed or is still pending. According to the MPI standard ([42], pg 52), accessing

buff before the successful completion of the call is illegal. In order to ascertain the

completion of a nonblocking request, we rely on the Wait call.

• Recv: MPI API provides two types of receive calls, viz. blocking receive MPI Recv

and nonblocking receive MPI Irecv. Blocking receive call successfully returns after

the sent data has been copied in the receiver’s intended address space. Nonblocking
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receive call, just like nonblocking send, immediately returns and the completion of the

call can happen at any later point in time. The syntax of blocking and nonblocking

receive calls are the following:

MPI_Recv(void *buff, int count, MPI_Datatype, dt, int src,

int tag, MPI_Comm comm, MPI_Status *status);

MPI_Irecv(void *buff, int count, MPI_Datatype, dt, int src,

int tag, MPI_Comm comm, MPI_Request *handle);

Each argument, except src and status, holds similar meaning as described earlier for

the send call. The argument src denotes the process ID of the sender. When this

sender ID is set to MPI ANY SOURCE, it implies that the receiver is free to receive from

any matching sender that is enabled. Such receive calls are termed as wildcard receive

calls. Also note that the tags in receive calls can be set by MPI ANY TAG, which acts

as another source of receive nondeterminism. The argument status is an object that

stores the current state of the call and other information such as error return code (if

any) and process ID of the matched sender.

• Wait: Wait is a blocking call that detects the completion of nonblocking call whose

request handle is passed as an argument to the wait call. It returns successfully only

after the nonblocking request has successfully completed. The syntax for the wait call

is the following:

MPI_Wait(MPI_Request * handle, MPI_Status *status);

• Barrier: MPI API provides many constructs that require the participation of all the

processes in a communicator and for this reason such calls are categorized as collective

communication calls. Barrier is a collective synchronization construct. MPI standard

requires that if one process has issued a barrier within a certain communicator then

all processes within that communicator must also issue barrier calls. No single process

within a communicator can progress until all processes have successfully issued their

barrier calls. The syntax of the barrier is the following:

MPI_Barrier(MPI_Comm comm);

Although there are other collective calls such as Bcast, Reduce, etc., for the purpose

of this dissertation having an understanding of barriers alone will suffice.
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2.1.1 Notation for MPI Calls

We will consistently use the following notation throughout this dissertation with respect

to the MPI calls:

• A nonblocking send call from process i to process j with d to be data sent will be

denoted by Si,−(j, d). The extra field next to source process ID i signifies the issue

index of the MPI call from the process i. The symbol − denotes a do not care value.

From here on, for brevity, we will suppress the fields that are not relevant in the

context.

• Similarly, a nonblocking receive call receiving the data in variable x is denoted by

Ri,−(j, x).

• A nondeterministic receive from process i is denoted by Ri,−(∗). Note that we

suppressed the data field in the representation. This is to illustrate the future use

of these notations where data or certain other fields hold no importance.

• A wait call associated with a handle hi,l is Wi,−(hi,l). The handle hi,l denotes that a

nonblocking request was made from process i at index l.

• A barrier call is denoted by Bi,− .

An MPI Send is equivalent to S;W (a nonblocking send immediately followed by a wait).

Similarly, MPI Recv is equivalent to R;W (a nonblocking receive followed by a wait).

2.1.2 Nondeterminism in MPI

MPI API provides nondeterministic constructs primarily to squeeze out maximum par-

allelism from the program whenever possible. Here is a list of constructs that introduce

nondeterminism in the MPI programs:

• MPI ANY SOURCE and MPI ANY TAG can be set as arguments to receive or probe

calls making them nondeterministic. Receive or probes that use source and tag

nondeterminism will match or return true (respectively) whenever there is a sender

present (within the communicator) that is a compatible match with the receive/probe

regardless of the process ID of the source or tag of the message.

• MPI Waitany and MPI Waitsome are another source of nondeterminism. MPI Waitany

will return true whenever any one of the request handles that the wait call is waiting

upon, completes successfully. MPI Waitsome will return only after a set number of

requests that the waitsome call is waiting upon, have completed.
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2.1.3 Common Bugs in MPI

Errors in MPI programs can be caused by a variety of reasons. We present some of the

bug classes in MPI programs that are the most commonly found.

• Deadlocks: The main reason for the presence of a deadlock in the program is because

a certain send/receive operation has become orphaned (not found a match). The

reasons for this mismatch can be numerous, for instance:

1. MPI program is not well-formed, i.e., number of send calls do not equal the

number of receive calls. Figure 2.2 illustrates such an example.

2. MPI program with wrong buffering assumptions where two processes issue sends

to each other and in the absence of sufficient runtime buffering, the sends would

act as blocking calls, leading to a head-to-head deadlock. Figure 2.3 illustrates

such a deadlock.

3. Presence of a nondeterministic receive which causes a deterministic receive ap-

pearing later from the same process to be orphaned. Figure 2.4 illustrates this

scenario.

4. Mismatched collective call orderings leading to a deadlock. Figure 2.5 illustrates

such a deadlock.

• Resource leaks: Resource leaks can be fairly common in MPI applications. Application

developers can create a new type or attach a buffer for communication calls but when

they forget to free the type or buffer, they inadvertently cause a resource leak. From

the benchmarks that we studied, we have observed that in many practical situations

the resource leaks come across as interleaving oblivious errors.

• Erroneous buffer reuse: Accessing the buffer that has been passed as an argument to

a nonblocking call before the successful completion of the call is illegal.

2.2 Details of ISP

ISP [69, 78, 68, 79, 73, 71] is a dynamic verification scheduler for MPI programs. The

basic strategy employed by ISP is similar to Verisoft [26]. We provide brief details of ISP

in this dissertation. Complete details of the ISP scheduler can be found in [69].

ISP employs a MPI-specific dynamic partial order reduction strategy (DPOR) called

POE [69] (Partial Order under Elusive interleavings). POE differs with DPOR [22] in a
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P0 P1 P2

R0,1(0) S1,1(0) S2,1(0)
R0,2(1)
R0,3(2)

Figure 2.2: Deadlock due to send-receive
mismatch

P0 P1

S0,1(1) S1,1(0)
R0,2(1) R1,2(0)

Figure 2.3: Head-to-head deadlock

P0 P1 P2

R0,1(∗) S1,1(0) S2,1(0)
R0,2(2)

Figure 2.4: Deadlock due to nondeterminis-
tic receive

P0 P1

Bcast0,1 Barrier1,1
Barrier0,2 Bcast1,2

Figure 2.5: Deadlock due to collective
call order mismatch

significant manner. First of all, DPOR was constructed for multithreaded programs and

as pointed out by [67], DPOR implicitly assumes that instructions are executed under a

total issue order. This cannot be applied to MPI, since issue order has little in common

with the match order. Consider, for instance, the example shown in Figure 2.6. If we

proceeded by verifying the MPI program according to the rules of classical DPOR with a

global issue order as the only criterion, then we would miss exploring the match of S2,2 with

R1,2; therefore, the error will not be discovered. This is because S0,1 would always precede

S2,2 in a global issue order. However, note that S0,1 can be concurrently alive with S2,2

(since, with sufficient runtime buffering available, S0,1 successfully crosses the barrier B0,2)

and either of the racing sends can match with R1,2.

ISP successfully verifies MPI programs for all the bug classes that were presented in

Section 2.1.3. We present here some of the important details of ISP.

2.2.1 Matches-before Ordering

ISP utilizes MPI runtime’s correctness guarantee in order to build its matches-before

ordering for MPI programs. According to the MPI standard, the runtime must ensure

that when two sends or two receive operations are issued in succession from the same

process targeting/sourcing from the same destination process, then the second operation

must match after the first operation has matched. Simply put, the MPI standard enforces

FIFO (First In First Out) match ordering among subsequent send/recv calls that are of the

same kind.
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P0 P1 P2

S0,1(1, d0) B1,1 B2,1

B0,2 R1,2(∗, x) S2,2(1, d2)
if(x == d2) error

Figure 2.6: Crooked barrier: issue order vs. match order

We refer to such an MB ordering as IntraMB ordering, since all the operations involved

are issued from a single process. Following is detailed presentation of the MB ordering

enforced by the MPI runtime that ISP dynamically builds:

• For any two send calls targeting Si,l(j) and Si,l′(j), such that they target the same

destination process j and l < l′, then the earlier send Si,l′(j) is always matched with a

receive call before the later send call Si,l′(j). In other words, sends that target the same

destination must match in the issue order. Note, however, a similar guarantee can not

established w.r.t the completion status of such sends. It is perfectly feasible for Si,l

and Si,l′ to complete out-of-order. Figure 2.7 illustrates these ideas pictorially. The

curved lines with an arrow depict the MB ordering among operations. Note that S0,1

matches before S0,2; however, due to runtime buffering constraints it is possible that

S0,2 (which has a smaller data to send) will complete before S0,1. Finally, stating the

obvious, two sends, Si,l(j) and Si,l′(k), that target different destinations (i.e., j 6= k)

can match out-of-order.

• For any two receive calls, Ri,l(∗) and Ri,l′(j), such that l < l′ and Ri,l is a wildcard

receive then Ri,l will always match before the later Ri,l′ . Figure 2.8 illustrates this

ordering. Note that Ri,l′ can either be a wildcard or a deterministic receive.

• For any two receive calls, Ri,l(j) and Ri,l′(∗), such that l < l′ and Ri,l′ is a wildcard

receive, then there exists a MB ordering between Ri,l and Ri,l′ only on the condition

that there is a send from process j that enabled when Ri,l(j) is issued. If the condition
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is not met, then Ri,l′ , even though issued later than Ri,l, can match before Ri,l. Such

an ordering is denoted by Conditional MB ordering. Figure 2.9 captures this scenario.

The dotted directed edge from R1,1 to R1,2 would become nonexistent if S0,1 was

enabled postmatching of S2,1.

• For any two MPI calls, Opi,l and Opi,l′ , such that l < l′ and Opi,l is a synchronous

call, then Opi,l and Opi,l′ are MB ordered.

• Each nonblocking request is MB ordered with its associated wait call. Figure 2.9

illustrates one such MB edge between S0,1 and W0,2.

2.2.2 ISP’s POE Algorithm

It is important to understand the working of various components of ISP before under-

standing POE algorithm. Figure 2.10 illustrates the basic blocks in ISP, namely, the profiler

and the scheduler.

ISP intercept the MPI calls from the program with the help of the profiler. The profiler is

essentially a collection of wrapper calls for MPI API functions utilizing the PMPI (profiling

MPI) interface. Each wrapper function communicates to the scheduler and only after getting

a signal to proceed from the scheduler, issues the actual MPI call to the runtime. The profiler

is compiled with the source code of the program.

ISP’s scheduler is responsible for building the MB ordering and executing the POE

algorithm. ISP scheduler is a stateless dynamic verification engine. Initially, the scheduler

intercepts all the MPI Init calls from each process. Each process subsequently enters a

blocked state. Once the scheduler has received the initialization call from all the processes

set by the user, it broadcasts the go-ahead signal (signal to proceed with the execution of

the program) to all the blocked processes. Scheduler, subsequently operates by intercepting

calls from each process. If the call issued is a nonblocking send/recv then the scheduler

immediately signals a go-ahead to the process. However, if the call is a blocking call, then

scheduler searches for a process that is not in a blocked state and will switch to that process

and start intercepting and collecting calls from it. When scheduler arrives at a state where

no process is runnable, then we say that scheduler has hit a decision-point. It invokes its

verification algorithm (POE) and identifies a set of processes that can be signaled to proceed.

If such set of processes is computed to be empty and there exists at least one process that has

not finished executing the program, then the scheduler has correctly discovered a deadlock.

Otherwise, if the set of processes is not empty, then the scheduler forms the match-sets
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Figure 2.9: Conditional MB ordering
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Figure 2.10: Overview of ISP tool

(sets of matching operations). If at a decision-point more than one match-set is formed, the

scheduler explores those choices exhaustively by reexecuting the program (replay up to the

choice point and then pursues the alternatives).

When an MPI call is encountered during program execution, the scheduler intercepts

the call and records it in its state. If the call is nonblocking, the scheduler immediately

signals the process that encountered the call to simply proceed with its execution. However,

if the call is blocking (fence instruction) then the scheduler searches for an another runnable

process. When all processes have hit their respective fence instructions, the scheduler arrives

at a decision-point. At the decision-point the scheduler forms the match-sets. The rules for

computing the match-sets are as follows:

• If at the decision-point the scheduler has recorded barrier instruction from each

process, then a set of all the barrier instructions forms a single big-step match-set

move.

• If at the decision-point the scheduler has recorded wait operation of a request that

has already been matched, then the scheduler signals the wait operation to be issued

to the runtime.

• If at the decision-point the scheduler has recorded a synchronous deterministic re-



17

ceive from a process and a compatible matching send from an another process, then

the scheduler forms again a match-set move comprising of the receive and the send

operation. Note that multiple such match-sets comprising of synchronous recv and

send calls can exist at a decision-point. Since such match-sets are independent of each

other (i.e., they can commute), all the match-sets can be simultaneously issued to the

runtime.

• If at the decision-point the scheduler records a wildcard receive and none of the

aforementioned match-sets can be constructed, then the scheduler constructs a set

of match-sets with each match-set comprised of the same wildcard receive with one

distinct matching send. An important point to note here is that only one of such

match-sets can be explored in a single interleaving. The program has to be rerun,

taking the same choices in the previous run until the same decision-point is witnessed

at which point the unexamined choices are explored.

A natural question that arises is: how does the scheduler choose a match-set when at

a decision-point there are multiple types of match-sets constructed (for instance, barrier

match-set, deterministic receive and send match-set, or sets of match-sets consisting of

wildcard receive)? ISP scheduler assigns a priority to the match-sets. At each decision-point

scheduler chooses a match-set with highest available priority. Following are the priority

levels assigned to match-sets:

• A big-step barrier match-set is assigned the highest priority.

• A big step deterministic recv-send match-set is assigned the next highest priority.

• Wildcard receive match-sets are assigned the lowest priority.

The reason for such a prioritization is the following: ISP scheduler delays the matching

of a wildcard receive as much as possible in order to discover all the matching senders. Each

wildcard recv-send based match-set at a decision-point is explored in a separate interleaving

by the ISP scheduler. The scheduler replays the program repeatedly until all such choices

are exhausted. The collection of match-sets that have the same priority assigned at a

decision-point are termed as persistent-sets. This term finds its beginnings in a rich set of

literature associated with the partial order reduction theory [23, 24, 29, 28] for concurrent

programs. Persistent-set are singleton sets at decision-points where barrier match-sets or

the synchronous receive and send match-sets are available to move. It is only when wildcard

receive based match-sets are the only choice we witness nonsingleton persistent-sets.
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If at a decision-point the only available match-sets are of the lowest priority (wildcard

receive based), then in order to avoid matching sends race at runtime, the scheduler performs

a dynamic rewriting of the wildcard receive operation. The wildcard receive is rewritten

into a deterministic receive sourcing from the process ID of the sender that was also the

part of the match-set.

Consider the example shown in Figure 2.11.

• At the first decision-point, the ISP scheduler has recorded S0,1 and B0,2 from P0,

B1,1 from P1 and B2,1 from P2. The only possible match-set at this decision-point is

〈B0,2, B1,1, B2,1〉. This match-set is issued into the MPI run time.

• At the second decision-point, the ISP scheduler has the following instructions enabled:

S0,1 and W0,3 from P0, R1,2 from P1 and S2,2 from P2. The match-sets computed

are the following: 〈S0,1, R1,2〉 and 〈S2,2, R1,2〉. ISP scheduler picks the match-set

〈S0,1, R1,2〉 and rewrites the R1,2(∗) to R1,2(0) and issues them to the runtime (note

that when we say scheduler issues a match-set to runtime, we actually mean that the

scheduler signals the profiled calls of the associated processes to proceed).

• Subsequently, W0,3 is issued into the runtime.

• At the next decision-point, 〈S2,2, R1,3〉 is chosen and issued to the runtime.

• Once the execution completes, the ISP scheduler reruns the program and explores the

choice 〈S2,2, R1,2〉 at the second decision-point.

We now present the notations and definitions surrounding IntraMB ordering that we

will use in forth-coming chapters.

2.2.3 Notations for IntraMB Ordering

IntraMB ordering is a local process ordering. It establishes an ordering among two

operations issued from the same process. Let ≺lp be the notation that captures the IntraMB

ordering among two operations. Then the IntraMB ordering, with the assumption that

l < l′, can be represented by the following:

• Si,l(j) ≺lp Si,l′(j).

• Ri,l(j/∗) ≺lp Ri,l′(j).

• Ri,l(j) ≺lp Ri,l′(∗) and there exists a Sj,−(i) that was enabled with Ri,l(j).

• Si,l(j) ≺lp Wi,l′(hi,l) and Ri,l(j/∗) ≺lp Wi,l′(hi,l).

• Bi,l ≺lp Opi,l′ and Wi,l ≺lp Opi,l′ . The barrier and wait constitute the fence operations.
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P0 P1 P2

S0,1(1) B1,1 B2,1

B0,2 R1,2(∗) S2,2(1)
W0,3(h0,1) R1,3(∗) W2,3(h2,2)

W1,4(h1,3)

Figure 2.11: Example explaining POE

Note that IntraMB is a transitively closed relation. We further define the following

terms:

Definition 2.1 An operation Opi,l is an ancestor of operation Opi,l′ when Opi,l ≺lp
Opi,l′ .

Let Op� denote the set of ancestors to Op. Further, Op< denotes the set of immediate

ancestors to Op. Can we have a situation where we witness mutliple immediate ancestors

of an operation? If not, then the set definition of immediate ancestors is not required.

However, in reality we can come across situations where a single operation can have multiple

ancestors. Imagine two nonblocking send calls targeting the same destination are followed

by two wait calls for the first and the second send, respectively. Notice that the second wait

call will have two ancestors: the immediately preceding wait call and the second send call

on which it waits. Let Op�∗ denote the set of ancestor operations of Op that includes Op.

Definition 2.2 An operation Opi,l is a descendant of operation Opi,l′ when Opi,l′ ≺lp
Opi,l.

Let Op� denote the set of descendants to Op. Further, Op> denotes the set of immediate

descendants to Op. There are situations where a single operation can have a set of immediate

descendants. For instance, consider a program wherein a certain process a wait call is

followed by two nonblocking send calls targeting different destinations. In such a scenario

notice that both the sends are immediate descendants of the wait call. Let Op�∗ denote

the set of descendant operations of Op that includes Op.

We further define an operator ≺ that establishes a total order on match-sets in an

interleaving explored by ISP. Thus, m ≺ m′ tells us that in the interleaving of the program,

match-set m was issued by the scheduler earlier (in time) than the match-set m′.



CHAPTER 3

FUNCTIONALLY IRRELEVANT

BARRIERS

This chapter presents the details of discovering functionally irrelevant barriers (FIB) [56]

in MPI programs. Identifying sets of FIBs increases the performance without compromising

the correctness of the programs. Note that for illustration purposes, we will assume that the

tag based nondeterminism is absent and the communicator is MPI COMM WORLD. However,

the algorithm operates even without this simplification. Specifically, this chapter covers the

following contributions:

• A notion that captures matches-before ordering among operations from distinct pro-

cesses. We denote it by InterMB relation.

• Algorithm for identification of Barrier match-sets that are not required.

3.1 Introduction

The barrier construct (MPI_Barrier) is an important function in the MPI library. It is

a collective call, meaning that all processes in the communicator must call the barrier. We

define such a collective call defined by a set of barrier calls (one from each process) to be a

collective barrier. A collective barrier is functionally irrelevant (“irrelevant” for short) if its

removal does not alter the overall MPI communication structure of the program in terms

of correctness and matching of operations. To the best of our knowledge, this problem has

not been solved before. We present an algorithm called FIB to solve this problem based

on dynamic (runtime) analysis for MPI programs employing 24 widely used two-sided MPI

operations (results presented in [20]).

The importance of detecting irrelevant barriers comes from a number of perspectives.

Many MPI users are known to employ collective barriers for “good measure;” they are unsure

whether it is necessary. The authors of [2] narrate the example of an MPI program where a

barrier was considered irrelevant, and removed. A year later they were proven wrong as a

race condition was introduced by its removal. In [51], it is shown that barriers can consume
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a significant fraction of the total application time. Of course, users wanting to control

performance by avoiding network or I/O contention may insert collective barriers. In this

case, they are employing functionally irrelevant barriers for controlling the non-functional

aspects of their program. The FIB algorithm can help these users by checking that these

barriers are indeed functionally irrelevant.

Detecting irrelevant barriers by inspection is not straightforward, as we show through a

number of small examples in Section 3.2. While each example seems to warrant a different

justification, a nice feature of the FIB algorithm is that it reduces all these justifications

to a single mathematical relation, the MB relation introduced in Chapter 2. This relation

has two aspects: intra matches-before (IntraMB), and inter matches-before (InterMB). In

a nutshell, the FIB algorithm detects a change in the set of communication possibilities by

computing the InterMB relation in the presence of a barrier, and checks whether the barrier

plays a role in ordering a send and a wildcard receive.

The examples given in Section 3.2 do not reflect the following additional difficulties.

In realistic MPI programs, a user may forget to use a collective barrier (i.e., forget to

place a barrier within a process), thus introducing a deadlock. Also, realistic programs

may compute many quantities at run time, including send targets, receive sources, tags,

and communicators. They also have data-dependent control flows which can determine the

actual sends and receives issued. The FIB algorithm works in the presence of all these

realities. Since FIB is implemented as an extension to the dynamic formal verification

methodology employed in ISP ([49, 70, 68]), it is capable of detecting deadlocks, and then

aborting its analysis. Here are some example deadlock scenarios that ISP can detect:

(i) deadlocks due to a collective barrier being incorrectly placed, (ii) those introduced when

the user forgets to issue the (supposed) collective call from within some of the processes,

(iii) the user employing the wrong communicator for one of the barrier calls, or (iv) MPI

messages not matching.

Since FIB employs dynamic (runtime) analysis, all computed quantities would be fully

resolved, and become known. For the same reason, data-dependent control flows are also

not an issue for FIB, in so far as path coverage goes. It is clear that in general, the behavior

of an MPI program can change in response to the input data being analyzed (addressing

this issue is considered future research). However, a preliminary static analyzer that we

have implemented confirms that for many examples (e.g., all examples in [20]), control flow

does not depend on data; for such programs, the analysis results of FIB are good for all
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input data.

FIB flags a barrier as functionally irrelevant if and only if it is functionally irrelevant

across all possible executions (process interleavings) of the program for the given input data.

Clearly, we cannot hope to examine all the interleavings of any realistic MPI program,

because this number grows exponentially with the number of processes. Fortunately, the

ISP tool actually generates only a small fraction of all possible interleavings by computing

only the relevant interleavings of an MPI program using a formal verification method called

partial order reduction [8, 22].

3.1.1 Related Work

FIB is a significant extension of our POE algorithm implemented in the ISP verification

tool. The mathematical relation IntraMB is employed in POE (formally defined in [69],

summarized in Section 2.2.2). The relation InterMB builds on IntraMB is brand new to

the FIB algorithm. In [61], the authors provide a formal approach for arguing about the

relevance of barriers in MPI programs that do not employ wildcard receives. They prove that

for wildcard receive free MPI programs that are deadlock free, all barriers are irrelevant. This

justifies our criterion for relevant barrier detection, which is: In a deadlock-free program,

the removal of a barrier causes a wildcard receive statement placed before or after a barrier

to now begin matching a send statement with which it did not match before. The examples

in Section 3.2 provide added insights into our criterion. The work in [46] uses vector

clocks [38], and provides a method for identifying the racing messages in a single trace of

an MPI program execution across “frontiers” or consistent cuts [38]. While these ideas

are somewhat related, the classical vector clock formulation does not directly apply to

MPI because of its out-of-order completion semantics and barrier semantics, pointed out in

Section 3.2.

The chapter is organized in the following way: Section 3.2 provides the intuition behind

our FIB algorithm through several examples. The FIB algorithm itself is detailed in

Section 3.5. Section 3.7 provides experimental results, and Section 3.8 provides concluding

remarks.

3.2 Overview of FIB and InterMB Relation

In this section we present a number of examples, introducing the concepts of IntraMB

and InterMB in context. These relations can be assumed to be always maintained in a

transitively closed manner. Please note that we omit the prefix MPI_ in most cases, and
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also suppress irrelevant arguments of MPI calls. Also for immediate-mode operations, we

show a corresponding Wait only in some cases.

Consider the following single process (rank) MPI pseudo-code program as Example 1 :

P0 : R0,1(0);W0,2(h0,1);B0,3;S0,4(0);

In this program, the collective barrier is a singleton set containing B0,3. Curiously, P0 is

trying to send to itself, which is allowed in MPI. In this case, FIB will report a deadlock

whether there is a barrier or not. This is because W0,2 ≺lp B0,3 ≺lp S0,4. An IntraMB

edge implies the MPI guarantee of not issuing any instruction after W0,2 until R0,1 has been

completed. The IntraMB is explained in sufficient detail in Section 2.2.1. In our example,

there is S0,4 after W0,2, and unfortunately Wait cannot finish unless Isend finishes—a

circular dependency causing the deadlock.

In MPI there is also an IntraMB edge from a Barrier to any following instruction (since

Barrier operation is a blocking/synchronous operation). This means that instructions

following the barrier cannot be issued until the collective barrier can be crossed. Now,

suppose we alter this example by moving Wait to be after the Isend. In this altered

example, Barrier can be crossed after issuing Irecv, and this leads to Isend being issued.

Thus, for this altered example, the barrier is irrelevant.

Consider the following pseudicode as Example 2 . Here, * indicates ANY_SOURCE (a

wildcard receive)1:

P0 : R0,1(∗);B0,2;S0,3(0);W0,4(h0,1)

P1 : S1,1(0);B1,2;W1,3(h1,1)

In this example, it is possible for S0,3 to match the receive R0,1, whether the collective

barrier is there or not! This is because even though B0,2 ≺lp S0,3(0), there is no IntraMB

ordering between R0,1(∗) and B0,2, and similarly there is no IntraMB ordering from S1,1(0)

and B1,2. Thus, R0,1(∗), S1,1(0), and S0,3 can all be alive post-barriers and any one of the

two sends can race ahead to match the receive. Therefore, for this program, FIB will flag

the collective barrier as irrelevant.

1Note all examples up to example 5 are deadlock free; hence, assume count of sends and recvs match in
the program. For full code please refer [20]
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Consider the following program pseudocode as Example 3 :

P0 : R0,1(∗);B0,2;W0,3(h0,1);

P1 : S1,1(0);B1,2;S1,3(0);

Here, the collective barrier is indeed irrelevant, and will be flagged as such by the FIB

algorithm following this line of reasoning: (i) R0,1(∗) and S1,1(0) can be issued; (ii) the

Barriers, B0,2, B1,2, in the respective processes can be crossed, as R0,1 ⊀lp B0,2 and

S1,1(0) ⊀lp B1,2; (iii) before R0,1(∗) matches, S1,3(0) can also be issued; (iv) however,

S1,1(0) ≺lp S1,3(0), therefore, R0,1(∗) can match S1,1(0) only.

Consider the following program as Example 4 . In contrast with Example 3, in this

program, we move the second send to process P2:

P0 : R0,1(∗);B0,2;W0,3(h0,1);

P1 : S1,1(0);B1,2;

P2 : B2,1;S2,2(0)

The send calls are in different processes. Therefore, there is no IntraMB ordering

between them. Also, R0,1 ⊀lp B0,2 and S1,1(0) ⊀lp B1,2. Thus, R0,1 and S1,1(0) can live past

their respective barriers. Therefore, the collective barrier is irrelevant. Now consider an

alternative example (call it Example 4(a)) in which W0,3 is moved to be before its Barrier

B0,2.

P0 : R0,1(∗);W0,2(h0,1);B0,2;

P1 : S1,1(0);B1,2;

P2 : B2,1;S2,2(0)

Now, the collective barrier becomes relevant. This is because W0,2 ≺lp B0,3. Hence, B0,3

cannot be crossed until R0,1(∗) finishes. Therefore, S2,2(0) cannot issue. Therefore, R0,1(∗)

has to match S1,1(0).

The reasoning employed in Example 4(a) highlights the need for the notion of InterMB

edges. Basically, S2,2(0) “wishes to match” R0,1(∗). The only thing that prevents this is

that the collective barrier orders R0,1(∗) to be before it, and S2,2(0) to be after it. This is the

ordering defined by InterMB (detailed in Section 3.3). Furthermore, there is no alternative

ordering path starting from R0,1(∗) to S2,2(0) that does not involve a barrier. Hence, the

barrier is relevant.
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In all previous examples, the wildcard receive statement appeared before a barrier.

Consider the following example as Example 5 where the wildcard receive appears afterwards:

P0 : B0,1;S0,2(2);

P1 : S1,1(2);B1,2;

P2 : R2,1(1);B2,2;R2,3(∗);

Here, the barrier is irrelevant. Note that S1,1 ⊀lp B1,2 and R2,1 ⊀lp B2,2. Thus, S1,1 and R2,1

can exist past the barriers. However, if there is a specific-source nonblocking receive followed

by a wildcard receive in an MPI program, the wildcard receive can trump the specific receive

(i.e., may match before it), if there is no matching sender to the specific-source receive! (This

conditional MB ordering is explained in Section 2.2.1). In Example 5, however, there is a

matching S1,1, and so trumping does not happen. Since there is no trumping, R2,1 ≺lp R2,3.

Thus, S0,2 cannot match R2,1 and S1,1 cannot match R2,3, thereby causing the barrier to

be irrelevant.

3.3 InterMB Relation

InterMB relation is built on top of IntraMB relation and the match-sets that were

explored in the interleaving under focus. This makes the InterMB relation as interleaving-

specific. Let ≺ip be the operator that denotes InterMB ordering between two operations.

Following are the rules for InterMB computation:

• if the match-set is 〈Sj,m(i), Ri,l(j)〉 then ∀x, y : x = R>i,l, y = S>j,m, we have, Sj,m≺ip x

and Ri,l(j) ≺ip y.

• if the match-set is 〈Sj,m(i), Ri,l(∗)〉 then ∀x : x = S>j,m, we have, Ri,l(j) ≺ip x.

• if the match-set is B = 〈B1, ..., Bn〉 then ∀x, i, k : x = B>
i , k 6= i then Bk ≺ip x.

Figure 3.1 illustrates the relation pictorially. The solid directed arrows are the IntraMB

edges. The solid undirected edge is the match-set and dotted arrows are the InterMB edges.

In Figure 3.1b, note that we do not add an edge from the Sj,m to R>i,l. This is because

Ri,l(∗) could have matched some other send causing the Sj,m to match with a later receive.

The InterMB edges are added after the POE orchestrated interleaving has finished.

3.4 Matches-before Relation

The MB relation is a union of InterMB and IntraMB relations. Let ≺mb be the operation

that establishes an MB ordering among two operations. Thus, Opi ≺mb Opj implies either
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Figure 3.1: InterMB relation (a) Deterministic recv (b) Nondeterministic recv (c) Blocking
operations

Opi ≺lp Opj or Opi ≺ip Opj .

Definition 3.1 An MB-Path from operation Opi to operation Opj in an observed trace

τ is defined to be an ordered sequence of operations Ôp = 〈Op1, ..., Opn〉 (excluding Opi

and Opj) such that the following conditions are met:

• Opi ≺mb Op1 and Opn ≺mb Opj
• ∀k : Opk, Opk+1 ∈ Ôp then Opk ≺mb Opk+1

MB-Path between Opi and Opj is a path containing operations wich are either intraMB

or interMB ordered with Opj .

3.5 The Functionally Irrelevant Barrier (FIB)
Detection Algorithm

We now provide a detailed presentation of the FIB algorithm and then describe the FIB

algorithm. The FIB tool framework is illustrated in Figure 3.2. We have already presented

the details of the InterMB Constructor block in the previous section.

The details of the FIB detector are expressed in Algorithm 1. The function Paths(a,b)

(line 10) compute a set of MB-Paths from operation a to operation b. For each send observed

in the trace, the FIB algorithm looks up in the trace to check whether the send can match

an earlier wildcard receive. The FIB algorithm then computes all paths from such a send

to the prior wildcard receive. Now, if there exists a path from the send to the wildcard

receive that does not involve a focal barrier match-set, then that barrier match-set is FIB.

Alternatively, if in each interleaving all the paths have the presence of the focal barrier

match-set then the barrier match-set is a functionally relevant barrier (FRB). Algorithm 2

captures the construction of MB-Paths.

Notice that in Example 4, R0,1 ⊀ S2,2. Now in the alternate example called Example

4(a) discussed earlier, the above procedure will end up creating a path R0,1 ≺mb W0,2 ≺mb
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Figure 3.2: FIB framework

Algorithm 1 COMPUTE-FIB

1: Input:
2: Set IBL, RBL . Irrelevant, Relevant Barrier List; Intially empty
3: It . Interleaving Tree
4: Output:
5: Set IBL, RBL

6: for all interleaving in It {
7: for all ms in interleaving {
8: if ms = 〈Si,l(j), Rj,m(−)〉 {
9: if ∃ ms’ = 〈Sk,−(j), Rj,m′(∗)〉 : m′ < m {

10: P ← Paths (Rj,m′ , Si,l)
11: if ∀p ∈ P, ∃Bi,l′ ∈ p : Bi,l′ ≺ip Si,l {
12: RBL← RBL ∪ {B} . Let B be the match-set:Bi,l′ ∈ B
13: if B ∈ IBL {
14: IBL← IBL \ {B}
15: }
16: } else
17: IBL← IBL ∪ {B}
18: }
19: }
20: }
21: }
22: }
23: if ∃B : B /∈ IBL ∧ B /∈ RBL {
24: IBL← IBL ∪ {B}
25: }
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Algorithm 2 PATHS

1: Input: a, b

2: Output: P . P is a set of MB-Paths from a to b
3: Paths(a, b) { . Computes all MB-Paths from a to b
4: P = {}
5: S = {} . Stack for DFS
6: for all op adjacent to a {
7: S ← DFS(op,b)

8: P ← P ∪ S

9: }
10: }

B0,3 ≺mb S2,2. There is no alternate ordering path – so the collective barrier containing B0,3

is relevant. Figure 3.3 summarizes the above explanation. The IntraMB edges depicted in

Figure 3.3 for process P0 are easy to reason. After the collective barriers are discharged into

the runtime, FIB constructs InterMB edges from one barrier to another barrier’s immediate

successor. After adding InterMB edges, the only path that reaches to S2,2 from R0,1 involves

a barrier. Thus, the barrier and all the barrier operations from other processes that formed

the match set are flagged to be relevant.

3.6 Correctness Proof

Let us consider the soundness of the algorithm. Assume that a caught FIB Bi,l′ in a

program by MSPOE is in fact not an FIB. That means it is an FRB (Functionally Relevant

Barrier). Let Bi,l′ be a part of the match-set m. If it is an FRB, then by definition,

removing barrier operations in m, of which a barrier Bi,l′ is a part, will enable a later

appearing send Si,l (l′ < l) to match Rj,m. Let Si,l be a part of match-set m′ and Rj,m be

InterMB edge

21
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13 11

S  (0)
22
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P P
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IntraMB edge
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Figure 3.3: Example 4(a) in Section 3.2 with InterMB and IntraMB edges
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a part of match-set m′′. Notice that if Bi,l′ is an FRB for Si,l, then Bi,l′ ≺ip Si,l. Also,

in any interleaving m′′ ≺ m ≺ m, which implies that Rj,m ≺mb Bk,n where Bk,n ∈ m.

Since Bi,l′ ≺lp Si,l, then Bk,n ≺mb Si,l. Hence, regardless of which interleaving is explored,

every path from Rj,m to Si,l must include a barrier from m. The barrier set m would then

accordingly be added to the FRB list (lines 10-14 of Algorithm 1) and removed from the

IBL list. This proves, that a discovered FIB is indeed an FIB.

Now consider the completeness of the algorithm. Assume the algorithm fails to discover

an FRB in an MPI program. Being an FRB implies that a certain receive Rj,m is MB

ordered w.r.t a certain send Si,l that targets process j via a barrier Bi,l′ . The algorithm,

since it is based precisely on the above definition, can miss detecting a FRB only when a

certain interleaving is not explored by the ISP. Note, however, that ISP being a exhuastive

verifier, explores all the relevant interleavings. Thus, Algorithm 1 is complete.

3.7 Implementation and Experimental Results

We instrument the MPI user code where all MPI Barrier(comm) calls are replaced by

MPI Barrier new(comm, LINE , FILE ). The two new arguments are system macros

that keep the information of line number the function call and the file name that contains it.

The instrumentation tool is written using C intermediate language (CIL [45]), which offers a

framework to create a custom source-to-source program instrumentation pass. We have run

our FIB tool on several MPI programs including: (i) the Monte-Carlo computation of Pi, (ii)

two-dimensional (2D) diffusion, and (iii) all 69 tests that came along with UMPIRE tool [74].

As for runtimes, the ISP algorithm introduces a slowdown because of its scheduler-mediated

executions ([70] provides ideas for improving the execution time). The added overhead that

FIB introduces over and above ISP is negligible. Our web page [20] provides detailed results;

here is a summary:

• Monte-Carlo: The code of Monte-Carlo, did not have any barrier calls. To acid-test

our implementation we deliberately inserted an irrelevant collective barrier, which our

implementation flagged as such. The run times of the FIB algorithm are as follows:

(i) with four processes, it explored six interleavings in 0.2 seconds, and with five

processes, it explored 24 interleavings in 1.52 seconds.

• 2D Diffusion: This code had 2 irrelevant barriers which were caught by the tool.

In fact, this example does not employ wildcard receives, and so all its barriers are

irrelevant, and FIB finishes with one interleaving. The runtime of FIB on this example
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was less than a second. This reinforces that without wildcards we need only one

interleaving.

• Umpire test suite: We ran our tool successfully on all the 69 tests that came along

with Umpire tool [74]. Of the 36 tests that had barriers, all were flagged as irrelevant,

with negligible runtimes.

3.8 Summary

Removing unnecessary barriers is important because they needlessly add to the program

execution time. This is particularly true for applications running on petascale machines with

thousands of processors. We presented an algorithm, FIB, that is built as an extension to

our verification tool ISP for MPI programs. FIB works by detecting, for each barrier,

whether its removal causes a wildcard receive statement placed before or after a barrier

to now begin matching a send statement with which it did not match before. We report

success in detecting irrelevant barriers in a number of examples. Since all these examples

have a control that does not depend on data, the analysis is good for all input data.

3.8.1 Discussion

Note that the FIB algorithm cannot declare the barriers relevant or otherwise until ISP

has explored all the interleavings of a program. Observe that the FIB algorithm was run

with the input process count unrealistically small. When the examples were made to run on

larger processes, the size of the schedule space that ISP has to examine grows exponentially.

Even though the execution time of the FIB algorithm is negligible, as opposed to the time

taken by the ISP to orchestrate a schedule, such a measure has little meaning when the

schedule space that must be examined by ISP, is exceptionally large. This observation led us

to examine ways to prune the schedule space of MPI programs over-and-above the pruning

performed by POE. The work presented in the next chapter is an effort in such a direction.

Couple of important questions that one must bear in mind before exploring any schedule

space pruning strategies are: (i) does the pruning strategy mask violation of certain safety

property? and (ii) does the strategy offer any formal guarantee w.r.t. detection of certain

safety property violation or (in our case) detection of relevant/irrelevant barriers?



CHAPTER 4

PERSISTENT-SET REDUCTION

HEURISTIC

In this chapter, we present the details of a heuristic to effectively reduce the persistent-

sets (described in Section 2.2.2) at a decision-point. The heuristic is highly effective for

common applications in the MPI landscape. In other words, the assumptions that lay the

foundations of this work are common programming practices in the MPI application space.

The heuristic work presented in this chapter is sound, however, it is not complete w.r.t.

deadlock detection as we explain in later sections of this chapter. For the purpose of FIB

detection, the heuristic is complete as long as the barriers are textually aligned. The specific

contributions of this chapter are:

• Discuss prime motivation for the heuristic, which is practical MPI programs deadlock

under the presence of deterministic receive calls.

• Present the notion of independent operations in a MPI program and finally, discuss

the details of the heuristic algorithm.

4.1 Introduction

A significant risk facing MPI codes being used in practice is that when they employ

nondeterministic communication constructs (such as MPI wildcard receives), there may be

a vast number of unexamined behaviors. Recently created formal dynamic verifiers such as

ISP [69, 78] and DAMPI [77] take an approach that integrates the best features of testing

tools (ability to run on user applications) and model checking (coverage guarantees). They

run the MPI program under the control of a verification scheduler, and thanks to their MPI

semantics-aware algorithms, guarantee to detect all potential communication matches for

wildcard receives. They also guarantee to enforce these matches. The net effect is that they

can scale up to thousands of MPI processes (such as in DAMPI) and handle realistic MPI

program runs on cluster machines, and regardless of the actual speed-paths in the cluster,

ensure full coverage of nondeterminism.
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4.1.1 Problem Statement

Unfortunately, dynamic formal verifiers such as ISP and DAMPI are indiscriminate

in covering nondeterminism. This can lead to an exponential blow-up in the number of

execution schedules that a verification scheduler has to explore. For instance, consider an

MPI program with n + 1 processes where each of the n processes sends a message to the

(n+1)th process. The (n+1)th process posts n wildcard receive calls (say in a loop). One can

easily observe that even in such a simple setting, there will be n! execution schedules. This

is clearly unacceptable; all dynamic verifiers must, ideally, be equipped with approaches to

detect when such exhaustive explorations are unnecessary, and then avoid them.

Eliminating unnecessary nondeterministic matches in a program with multiple identical

processes is an instance of parameterized reasoning which is formally undecidable [8] and

very difficult to approximate in practice. We do not attempt to solve the entire problem

– but do provide a specialized dynamic analysis method that significantly reduces the

number of interleavings while detecting deadlocks due to the orphaning of deterministic

receive operations – something that MPI programmers do worry about. Our method is

implemented by augmenting the ISP tool and its dynamic verification algorithm POE,

and is called MSPOE (the name comes from “macroscopic POE”) [53]. We first let POE

compute the potential send matches for MPI nondeterministic receives, as it currently does.

The execution history following the nondeterministic receive is then examined by MSPOE.

It chooses to include only some of these sends (called relevant sends) for later exploration

with respect to this nondeterministic receive. These sends are the ones considered relevant

to cause orphaned receive deadlocks.

4.1.2 Observation

We say that an MPI program does not “decode data” if it does not employ data depen-

dent control flows, and does not alter its control flows based on which specific send/receive

matches occurred. For an MPI program that does not decode data and has a orphaned

deterministic receive causing a deadlock, it must either have an unequal number of sends

and receives in some execution path, or must satisfy these conditions: (i) it employs a

process employing a wildcard receive and a specific receive; (ii) a previous wildcard receive

consumes a send that was meant for the later occurring specific receive, thus orphaning the

specific receive. MSPOE exploits this observation and computes relevant sends based on

the occurrence of specific receives.
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One may initially think that our problem is one of symmetry detection, which has

been extensively researched [5, 33, 16, 7]. Symmetry detection is based on constructing a

smaller quotient structure of the system by exploiting the automorphism in the system’s state

space. These are computationally hard problems [5], which are impractical during dynamic

verification of MPI programs. The work in [12] computes symmetries in communicating

programs based on channel graphs and is not directly applicable for our purposes.

4.1.3 Contributions

Specific contributions of this work are the following:

• We present a macroscopic partial order elusive interleaving reduction (MSPOE) algo-

rithm that exploits communication symmetry.

• We demonstrate the savings made by MSPOE for the purpose of deadlock detection

and FIB detection.

Observe the example shown in Figure 4.1. The ISP scheduler will explore six interleav-

ings for this example. The six interleavings are illustrated in Figure 4.2. Note that solid

circles are the states and the directed edges are the match-sets signaled to the runtime at

that state. The path shown by dotted arrow edge is the first interleaving that ISP explores.

However, observe that the example code has only wildcard receive calls. Thus, as long as all

sends commute, such examples cannot have deadlocks and there is no necessity to examine

other schedules. MSPOE will analyze the program in Figure 4.1 in the following way:

• MSPOE will explore the first interleaving as shown by dotted arrows in Figure 4.2.

• MSPOE discovers that it did not encounter any specific receive calls. Thus, MSPOE

will reduce the persistent-set of each nondeterministic receive to a singleton set (con-

taining the entry that was explored in the current run of the program). Note that

in Figure 4.2, the states that are bounded in the dotted box will witness their

persistent-set reduced. For the rest of the states, the persistent-set is a singleton

set to begin with.

• At the end of the exploration, the ISP scheduler removes the entry (chosen in the

current interleaving) from the persistent-set at each state. Since each persistent-set

has already been reduced to singleton set by MSPOE, the ISP scheduler subsequently

will erase these single entries. Hence, the ISP scheduler’s check whether another

run of the program is required based on the presence of a state with unexamined

persistent-set entry will return false, thereby ending the verification process.
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P0 P1 P2

S0,1(2); S1,1(2); for(i = 1 to 4)
R2,i(∗);

S0,2(2); S1,2(2); end for;

Figure 4.1: Deadlock free example
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Figure 4.2: State graph for Figure 4.1

In the example of Figure 4.3, there is a deadlock introduced by the use of the determin-

istic receive call. Figure 4.4 shows that if R4,1 were to match S3,1 (rightmost transition from

the initial node), the subsequent deterministic call (R4,2) will be orphaned, thus creating a

refusal deadlock. ISP would explore all the matches starting from the leftmost choice (shown

in Figure 4.4) and then moving right with every new run, generate four interleavings before

finding the deadlock. MSPOE will, on the other hand, choose S3,1 as the next relevant send

to explore after any initial run. This guarantees that the deadlock will be detected in two

interleavings, at most.

In a nutshell, MSPOE allows one to incorporate specialized modes of verification within

tools such as ISP and DAMPI. In these modes, one can have a static analyzer that de-

termines whether data decoding is going on; and in the absence of data decoding (true

for many large examples), deploy MSPOE to obtain orders of magnitude reduction in the

number of interleavings.

4.2 Preliminaries

Let P be a concurrent MPI program and Pi is the ith sequential process executing P

where i ∈ PID and PID = {0, 1, ..., n}. We assume the program is executed with finite

processes. Each Pi is Li instructions long. Let l denote the program counter(PC) array;

thus, li ∈ l denotes the PC value for the ith process. The jth MPI command in the ith

process is denoted pi,j where j ∈ Li.

As explained in Section 2.1.1, a nonblocking send call issued by the process Pi with a

program counter j with a destination as Pk is denoted as Si,li(k). Similarly, a nonblocking

receive call is written as Ri,li(k). If the receive is a wildcard move then it is denoted as

Ri,li(∗). An MPI Barrier operation by process i is represented as Bi,j where j is the li for
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P0 P1 P2 P3 P4

S0,1(4); S1,1(4); S2,1(4); S3,1(4); R4,1(∗);

R4,2(3);

R4,3(∗);

R4,4(∗);

Figure 4.3: Deadlocking example
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that process. Let Op be the set of MPI operations, i.e.,

Op = ∪i,j,k,m {Si,j(k), Ri,j(k), Ri,j(∗), Bi,j}

. In our presentation, we will suppress all wait1 calls and show the IntraMB ordering

appropriately. Note that an operation belonging to Op is a visible operation and all other

operations are invisible. A visible operation is one that is intercepted by the ISP scheduler.

The state of the system is represented as σ = 〈I, P,M, l〉 that consists of issued (I ⊆ Op)

instructions, persistent-set (P ) set, matched (M ⊆ I) instructions, and the PC array l. It is

really the state of the ISP scheduler since knowing the precise state of MPI runtime is very

hard. We keep an approximate track of the MPI runtime via maintaining the scheduler

state. We refer to these states as system’s states. The set of all states of the system is

denoted by S.

Set of instructions that are issued (i.e., instructions in I) but not completed in a state

σ are the enabled instructions sitting ready to be matched. Persistent-set P at a state

σ ∈ S (denoted by Pσ) is a set of match-set moves (as explained in Section 2.2.2). Since

match-set transitions the system from one state to a subsequent state, we view match-set

moves as the transitions of the MPI program. The terms match-sets and transitions in

this dissertation would be used interchangeably. Thus, when a send call Si,li(k) matches a

receive call Rk,lk(i) at σ, the associated transition t ∈ Pσ is represented by 〈Si,li(k), Rk,lk(i)〉.

Completed instructions are those that have found a match and have been signalled into the

runtime by the ISP scheduler.

Let T denote the set of all transitions of the system. A t ∈ T enabled at state s, which

when executed results in a unique successor state s′, written as s
t−→ s′. The successor state

1To simplify the presentation we take such a step although blocking/nonblocking operations are both
handled by the MSPOE algorithm
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is also represented by the following: s′ = t(s). We define the whole MPI program as a state

transition system AG = (S, δ, so) where δ ⊆ S × S is the transition relation defined by:

(s, s′) ∈ δ iff∃t ∈ T : s
t−→ s′

and s0 is the starting state of the system. AG of the example in Figure 4.1. is shown in

Figure 4.2.

4.2.1 Nature of Transitions in a Persistent-set

A persistent-set at a state can have multiple transitions. Persistent-sets are constructed

in a prioritized manner as discussed in Section 2.2.2. The only possibility of a persistent-set

containing multiple transitions is when there is a wildcard receive involved. When all the

potential senders to a wildcard receive are determined at a state, we observe that ISP takes

each sender and forms a transition with the wildcard receive call. The work in [67] views

all resulting transitions as dependent and designates the collection of such transitions as

dependence transition group (DTG). For instance, in Figure 4.2 the DTG w.r.t the receive

R2,1 has the following transitions: t1 = 〈S0,1, R2,1〉 and t2 = 〈S1,1, R2,1〉. We define a

function Dtg(s) �Ri,l that returns a set of transitions that belong to the DTG w.r.t. to the

nondeterministic receive Ri,l that are enabled at a state s.

Notice, however, multiple DTGs can coexist at a state. The example shown in Figure 4.5

illustrates such a scenario. Figure 4.5 shows one trace of the program. Note that the solid

undirected arrows were the match-sets fired in the execution. The dotted undirected arrow

represents another possible match-set. The solid directed arrows capture the IntraMB

ordering2. Observe that augmentation of the DTG1 can happen only when transition in

DTG2 is fired before the transition in DTG1. This would result in S2,2 being enabled with

S1,1 and R0,1. The result is the following: DTG1 is augment from containing the transition

〈S1,1, R0,1〉 to containing two transitions, 〈S1,1, R0,1〉 and 〈S2,2, R0,1〉.

POEOPT (optimized POE) in [67] takes an optimistic stand and tags any two transitions

belonging to separate DTGs that are enabled at a given state as initially independent and

if it discovers later that ordering a transition in one DTG may lead to the augmentation of

another DTG (discovery of an additional send that can match the wildcard receive), then

it adds transitions to both the DTGs in the persistent-set of that state.

2The edge between R2,1 and S2,2 indicates that their must be a wait operation fo R2,1 in between which
has been suppressed but the effects are appropriately captured in the IntraMB edge.
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Figure 4.5: Dependence among DTG transitions

The MSPOE algorithm, on the other hand, aspires to optimize the working of POEOPT

within a single DTG. The whole exercise of MSPOE is to optimistically treat transitions

within a DTG in σ as independent and operate on a reduced persistent-set. Only when a

transition later is discovered to be dependent, we accordingly augment the persistent-set in

σ where the dependent transitions are concurrently enabled.

Why is it important to discover dependent/independent transitions? Every POR method

leverages on the independence among transitions. If, by changing the order of execution of

concurrent independent transitions we witness no effective change in the state of the system,

then it suffices to explore just one such interleaving order among transitions.

4.3 Independent Transitions

In order to first define independent transitions, we first introduce the notion of commut-

ing sends that are part of the transitions within a single DTG.

Definition 4.1 Sends Si,l(k) and Sj,m(k) are commuting sends iff, the following con-

ditions hold: (i) Let t1 = 〈Si,l(k), Rk,n(∗)〉 and t2 = 〈Sj,m(k), Rk,n(∗)〉 such that t1, t2 ∈

Enabled(s); (ii) Sj,m(k) ∈ t′2 and Si,l(k) ∈ t′1 where t′2 = t1(s) and t′1 = t2(s).

Observe that in Definition 4.1, two sends, Si and Sj can commute only when they are

enabled in state s and are part of transitions t1 and t2 such that firing one send at s should

not leave the other send disabled or unmatched in the subsequent state. Let C be the relation

of commuting sends. We now define independent relation as:

Definition 4.2 I ⊆ T ×T is an independence relation iff, for each 〈t1, t2〉 ∈ I following

conditions hold: (i) Enabledness: t1 and t2 ∈ Enabled(s) and there exists a Rk,n(∗) such that

t1, t2 ∈ Dtg(s) �Rk,n ; (ii) Commutativity: If Si,l(k) ∈ t1 and Sj,m(k) ∈ t2 then (Si,l, Sj,m) ∈

C.

Thus, with the independent relation, we now can say two transitions, t1 and t2, are
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dependent when the send operations in t1 and t2 do not commute. Consider the example

and its corresponding state graph shown in Figure 4.6 and Figure 4.7. The initial state

s0 has two enabled transitions, viz.: t1 = 〈S1,1, R0,1〉 and t2 = 〈S2,1, R0,1〉. Note that

transitions commute since they lead to the same final state. Firing t1 disables t2 in the next

state, however, the transition enabled at t1(s) is t′2 = 〈S2,1, R0,2〉 and t2 ≡c t′2. Thus, t1 and

t2 are independent.

If send calls in t1 and t2 do not commute (assuming t1 was fired from s), then following

can be the only reasons:

• The send from t2 is disabled at t1(s).

• The operation available at t1(s) is not a receive t2’s send can match with. If the

operation enabled at t1(s) is a receive, then it must be a deterministic receive, which

is sourcing from a process other than the process that issued t2’s send.

We discuss in detail the ability of MSPOE to compute the independence of transitions in

Section 4.6. We stick to the same persistent definition that is defined in [25].

Definition 4.3 A set T of transitions enabled in a state s is persistent in s iff, for all

nonempty sequences of transitions from s in AG

s = s1
t1−→ s2

t2−→ s3...
tn−1−−−→ sn

tn−→ sn+1

and including only transitions ti /∈ T , 1 ≤ i ≤ n, tn is independent in sn with all transitions

in T .

Informally, this means that when a transition sequence is generated from a state s by

choosing only transitions that are independent with transitions in T , then the final state

reached cannot have a transition that is dependent with any of the transitions in T . The

interleavings obtained by only executing the entries in the persistent-set at every state are

the representative interleavings and result in a quotient state graph denoted as AR. Such

representative interleavings are also called Mazurkiewicz traces [39].

Let us revisit the state graph shown in Figure 4.2. Using Definition 4.2, we now can

reason about the example. Notice that for the states shown in the dotted box, the DTGs

at those states have only independent transitions. Thus, for the purpose of verification

of safety properties (such as absence of deadlocks), or FIB detection, examining only one

representative interleaving would suffice.
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4.4 MSPOE Algorithm

Algorithm 3 presents the MSPOE algorithm in detail. The match-set move (or the

transition) selected at a particular state s in an interleaving is denoted by Curr(s) ∈ Ps
where Ps is the persistent-set at state s. RPs is the reduced persistent-set at state s. We

also maintain a stack St of states that have been visited but not completely explored.

Statements tagged with ∗ are additions to POE which transform POE into MSPOE.

MSPOE starts with the initial state s0 in the stack. We generate a complete interleaving

by calling the function GenerateInterleaving (line 6) We repeat the following steps from

this point forwards until the state stack (St) becomes empty:

• Select the last state s from the trace and remove the match-set entry explored in the

trace from Ps and RPs. If RPs becomes empty then pop the state off from the state

stack St.

• If, after executing the step the last state has nonempty RPs, then generate further

interleaving from s.

Algorithm 3 MSPOE algorithm
1: Input:
2: Stack of State: St . St has s0; initial state
3: Vector of Set: P . Persistent-set for each state
4: Vector of Set: RP . Reduced persistent-set for each state
5: s← First(St) . Get bottom of Stack St
6: St← GenerateInterleaving(s)
7: while ∼ Empty(St) { . continue until St becomes empty
8: s← Last(St) . Get top of Stack St
9: RPs ← RPs \ {Curr(s)} * . Curr(s) returns the match-set chosen at state s

10: Ps ← Ps \ {Curr(s)}
11: if Empty(RPs) { * . RPs was singleton and was explored in the interleaving
12: St← St− s . Remove state s from St
13: } else
14: St← GenerateInterleaving(s)
15: }
16: }
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GenerateInterleaving function is explained in detail by Algorithm 4; it takes as input a

state and generates an interleaving from that state in the following manner:

• From Ps, choose a match-set m according to POE’s prioritized match-set selection

procedure and add m to RPs. The prioritized selection of match-sets is explained in

detail in Algorithm 5.

• If m involves a deterministic receive, then search for each state s′ in the stack St and

perform the following: (i) if Ps′ contains a match-set m′ involving a send from the

same process whose send is a part of m at Ps, then add m′ to RPs′ , (ii) however, if

Ps′ contains a barrier operation MB ordered with the send that is part of m, then

terminate RPs′ update and move on to explore the next state in the interleaving.

Consider the example shown in Figure 4.8. Notice that no matter which interleaving

is explored, S1,3 can never be enabled and be a potential match for receive calls R2,1

and R2,2 since such a match is restricted by the presence of barriers. We avoid such

unnecessary augmentation of persistent states by adding the barrier check (lines 12-13)

to the MSPOE algorithm.

• Repeat all the steps until no more states can be explored.

Algorithm 4 GenerateInterleaving from state s
1: Input:
2: State: s

3: Stack of State: St

4: Output:
5: Stack of State: St

6: while s is not NULL { . Continue until next state can’t be found
7: m← Choose(Ps) . Choose a match-set to explore from s
8: RPs ← RPs ∪ {m} *
9: if m = 〈Si,l(j), Rj,m(i)〉 { * . if m has det recv

10: for all s′ ← s− 1 until First(St) { * . Update RPs′

11: if ∃Bi,− ∈ Ps′ : Bi,− ≺lp Si,l { *
12: goto Next State *
13: }
14: if ∃m′ ∈ Ps′ : m′ = 〈Si,−(j), Rj,−(∗)〉 ∧m′ /∈ RPs′ { *
15: RPs′ ← RPs′ ∪ {m′} *
16: }
17: }
18: }
19: Next State: s← Explore(s,m) . Get the next state by firing m from s
20: St← St+ s . Add s to the Stack
21: }
22: return St
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Algorithm 5 Choose Ps
1: Input:
2: State: s

3: Output:
4: Match-set: m

5: if ∃m ∈ Ps : m contains barrier {
6: return m
7: else if ∃m ∈ Ps : m contains wait {
8: return m
9: else if ∃m ∈ Ps : m contains det. recv {

10: return m
11: else if ∃m ∈ Ps : m contains nondet. recv {
12: return m
13: }

P0 P1 P2

S0,1(2) S1,1(2) R2,1(∗)
R2,2(∗)

B0,2 B1,1 B2,3

S1,3(2) R2,4(2)

Figure 4.8: MSPOE with redundant exploration

In the following section, we present the experimental results of MSPOE algorithm and

compare it with the results from ISP.

4.5 Experimental Results

All the experiments were run on Intel Core 2 Duo 2 Ghz machine with 3 GB of RAM .

We set a time limit of 2 hours to verify the benchmarks. We abort the verification process

if it did not complete within the time-limit. The results of these experiments are tabulated

in Table 4.1. Let us quickly review the benchmarks used for the experiments.

4.5.1 2D-Diffusion

We tested ISP’s POE and MSPOE algorithm on 2D-Diffusion [19] example. The code

has a deadlock when evaluated in zero buffering mode. In this mode, the send calls act as

synchronous operations. Its communication pattern is shown in Figure 4.9. The deadlock

was caught by ISP and MSPOE right in the first interleaving. The sign
√

in the MSPOE

column next to the number of interleavings examined illustrates that MSPOE also caught

the same deadlock. When the same code is run on infinite buffering mode, the code becomes
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Table 4.1: Interleaving results for deadlock detection

Interleavings Time(sec)

Benchmark Buffering # of procs Deadlocks? ISP MSPOE MSPOE

Mat-Multiply
0

4 No 54 1 0.001
8 No 120 1 0.002

∞ 4 No 54 1 0.3
8 No 120 1 0.3

2D-Diffusion
0 4 Yes 1 1

√
0.013

∞ 4 No 90 1 0.314
8 No > 10, 500 1 0.442

Pi- Monte-Carlo
0

4 No 36 1 0.002
8 No 5040 1 0.003

∞ 4 No 36 1 0.24
8 No 5040 1 0.3

Integrate mw 0
4 No 81 81 20.19
8 No 2401 2401 1806.738

Madre
0 4 Yes 1 1

√
0.05

∞ 4 No > 8000 1 1.48
8 No > 8000 1 3.09

Parmetis 0 4 No 1 1 128.933

Gaussian Elimination
0

4 No 1 1 0.24
8 No 1 1 0.276

∞ 4 No 180 1 0.31
8 No > 20, 000 1 0.324

Heat Diffusion 0 8 Yes 5041
√

23
√

12.033

P0 P1 P2

R0,1(∗) S1,1(0) S2,1(0)
R0,2(∗) S1,2(0) S2,2(0)
R0,3(∗)
R0,4(∗)
B0,5 B1,3 B2,3

S0,7(1) S1,4(2) S2,4(0)
· · · · · ·

Figure 4.9: Communication in 2D-Diffusion

deadlock free. The code was modified to run with a single time-step. Note that if sends

were treated as synchronous, then after barriers each process is blocked on their respective

sends causing a deadlock.

4.5.2 Integrate

Integrate mw [19] is another benchmark that uses heavy nondeterminism to compute an

integral of sin function over the interval [0, P i]. Integrate has a master-slave pattern where

the root process divides the interval in a certain number of tasks. The root process then

delegates (via issuing sends) to each worker process a single task and then waits for results
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from them by posting wildcard receive calls (in a loop). Workers that finish early with their

work are provided with more tasks until all tasks are distributed. This benchmark does not

have a deadlock. Notice that MSPOE does not demonstrate any savings over ISP while

exploring the schedule space. This is because, the master process finally posts deterministic

receive calls targeting each worker before it sends termination signals to each worker. This

causes the MSPOE to fully expand the persistent-sets of each prior wildcard receive.

4.5.3 Data Redistribution Engine

Memory aware data redistribution engine (MADRE [58]) is a library written in MPI,

which mainly performs load balancing tasks in an efficient manner. MADRE moves the data

blocks across nodes in a distributed system within the bounds of memory available to each of

the application’s process. We tested MADRE with its unitBred algorithm on various data-

sets. unitBred algorithm is of particular interest to us because it uses MPI ANY SOURCE

and MPI ANY TAGS. MADRE has no bugs provided normal MPI send calls are not treated

as blocking calls. We ran ISP’s POE and then MSPOE algorithm with sbt9 dataset with

unitBred algorithm and the results are documented in Table 4.1.

4.5.4 Parmetis

Parmetis [35] is a parallel hypergraph partitioning code-base. Since, Parmetis only

uses deterministic calls, ISP and MSPOE complete the verification process in a single

interleaving. Parmetis was selected as a benchmark despite the absence of nondeterminism

because the application issues a lot of MPI calls which served as a basis to evaluate the

scalability of the data-structures used in MSPOE. When run on four processes, Parmetis

issues ∼ 55, 000 calls.

4.5.5 Heat Diffusion

Heat diffusion is an MPI example borrowed from the SC 2011 tutorial presented by G.

Gopalakrishnan et al. that has a deep-seated deadlock. ISP discovers the deadlock in the

5041th intereaving when the benchmark is run on eight processes. MSPOE, on the other

hand, discovers the same deadlock in the 23rd interleaving.

4.5.6 MSPOE for Identifying FIBs

We ran the same benchmarks in Table 4.1 for the FIB analysis. Among all the bench-

marks, the only ones that have either FIBs or FRBs are listed in Table 4.2. Note that
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Table 4.2: FIB results with MSPOE

Benchmark ISP MSPOE
2D-Diffusion 1 FRB (171), 1 FIB(169) 1 FRB (171), 1 FIB(169)

Gaussian Elimination 6 FIB (51, 243, 302, 306, 312, 317 ) 6 FIB (51, 243, 302, 306, 312, 317)
MADRE 2 FIB (455, 502) 2 FIB (455, 502)

all benchmarks were evaluated for 4 processes under infinite buffering mode. In each case

MSPOE returned with the exact set of FRBs and FIBs that ISP reported. In Table 4.2,

the numbers in curved brackets are the line number of Barrier calls issued from the source

program.

4.6 Discussion

An important question pertaining to the working of MSPOE is the following: Does

MSPOE precisely compute all the dependent actions in an MPI program? Notice that

MSPOE only augments the persistent-set of a prior state (at which a wildcard move took

place) only when a deterministic receive is witnessed later in the trace. It is by no means

a complete criterion to discover all dependent transitions.

Consider, for instance, examples shown in Figure 4.10 and 4.11. In Figure 4.10, if S3,1

matched R1,1, then S1,2 and S2,1 would engage in a cyclic wait-on-each-other causing a

deadlock. Notice that S1,2 cannot match unless S2,1 successfully completes since R2,2 is the

only match of S2,1 and S2,1 is an enabler operation for R2,2. Notice that MSPOE will fail to

discover such a deadlock. However, a pertinent question that will underscore the usability

of MSPOE is the following: how often are such coding patterns employed in applications,

if at all? In real MPI codes that we have assessed, we did not witness such a coding style.

Typically, a deterministic communication from a process following a wildcard receive is

S   (2)2:

3:

1:

P1 P2 P3

S   (1)

S   ( 1)

R   ( 1)

R   (*)
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Figure 4.10: Deadlock because cyclic
dependency between S1,2 and S2,1
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Figure 4.11: Deadlock because barriers do
not discharge
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accomplished by reply channels. Processes often employ reply channels to perform dynamic

load balancing duties by sending data/task to the sender that matched the prior wildcard

receive. Thus, in our opinion, it is rare (almost none) to observe that applications issue

hardwired deterministic receives/sends following a wildcard receive operation. If S1,2(2) is

re-written as S2,1(status.Source) (indicating a reply-channel), then the deadlock in the code

disappears. Figure 4.11 is another example where MSPOE will fail to detect a deadlock. In

Figure 4.11, note that the barriers would not discharge if S3,2 were to match R1,1, thereby

causing the deadlock. Notice that S3,2 is unordered w.r.t. B3,1. This can happen only

when S3,2 is issued before B3,1, however, the wait associated with S3,2 is issued after the

barrier. Again, such a coding practice is flawed and we have not witnessed any real MPI

program so far that employs such a coding style. Typically, global fence operations (such

as barriers) are issued only after the local fence operations such as waits are successfully

discharged. If such were to be the programming style, then the wait calls for both R1,3

and S3,2 should have been issued before the respective process barriers. In which case, the

match-set 〈B1,2, B2,2, B3,1〉 would be issued only after the completion of 〈S3,2, R1,3〉. Even

in alternate trace when S3,2 pairs-up with R1,1, notice that S2,1 will now find a match in

R1,3. Hence, the deadlock will disappear.

In all our benchmarks, none of above mentioned coding styles were employed except

the deterministic receive calls following a wildcard receive. MSPOE, thus, as a result of

such observations, despite being incomplete works extremely well (in other words, appears

complete) in practice. Constructing a methodology that is complete forms the basis of our

next work, detailed in the subsequent chapters.

4.7 Conclusions

We have presented a novel algorithm, MSPOE, that demonstrates significant savings in

the exploration space of programs for the purpose of communication deadlock detection and

FIB detection. In many cases the the reductions were from tens of thousands of interleavings

to just one interleaving. We document the MSPOE reduction results observed over several

benchmarks. We further present evidence on the criticality of the match-set selection in

avoiding redundant explorations and for early detection of bugs.

4.7.1 Future work

Conditional communication flow pattern is sill not tackled by MSPOE. However, MSPOE

algorithm can be notified of the causal receive calls whose buffers, when decoded, would
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result in a conditional communication flow. Such information can be statically mined and

provided to the dynamic verification scheduler. To gather the aforesaid information, we

would require a MPI specific control flow graph (CFG). Work in [3] presents p-cfg, which is

a CFG for MPI programs. Our future work would, therefore, lie in modifying the p-cfg work

to handle nondeterministic MPI operations. Furthermore, we will develop flow-sensitive

static analysis methods on top of the improved p-cfg to analyze conditional communication

patterns.



CHAPTER 5

GENERALIZED MATCHES-BEFORE

RELATION

In this chapter we discuss the inconclusiveness of InterMB ordering. This inconclusive-

ness is the result of InterMB being a weak ordering relation. We, subsequently, present

a generalization of matches-before relation by providing a tighter wait-for ordering among

operations from the distinct processes. Finally, we present the rules to construct the desired

relation. Further, we present the importance of generalizing the existing MB ordering

(detailed in Chapter 3) and its criticality in our predictive verification effort.

5.1 Introduction

In earlier chapters we presented the MB ordering and its utility in the FIB and the

MSPOE algorithms. However, the central question is whether or not the MB ordering is

general enough to provide us with the savings that we are seeking in the exploration space.

The answer is in the negative. It is because InterMB ordering (defined in Section 3.3)

is interleaving-aware. Thus, two operations that are InterMB ordered in one interleaving

may no longer be ordered the same way in an alternate interleaving. Consider the example

shown in Figure 5.1. A complete interleaving is demonstrated in the figure. Matches that

took place in the interleaving are shown by solid undirected lines and possible matches

in alternate interleavings are shown by dotted undirected lines. The solid directed lines

are capturing IntraMB ordering and the red dotted directed arrow shows the InterMB

ordering. Note that w.r.t, the InterMB rule shown in Figure 3.1b, we have R0,2 ≺ip S2,2.

However, in an alternate interleaving when S2,1 matches with R0,1 and R0,2 matches with

S2,2, then R0,2 ⊀ip S2,2. Does it mean that the FIB algorithm that utilizes InterMB

ordering is broken? Notice that FIB explores all the interleavings that ISP generates. The

FIB decision is settled only after all the relevant interleavings are examined. Hence, the

aforementioned abnormality in InterMB relation does not affect FIB analysis. Besides, we

have also presented the soundness and completeness proof of the FIB algorithm. However,
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Figure 5.1: Example illustrating inconclusiveness of InterMB ordering

this discussion puts an important point across the table that we cannot, in general, depend

on interleaving-aware constructs when the goal is to prune the interleaving space.

The larger question is, can the interleaving-oblivious global dependencies among com-

munication operations be established and computed precisely? Consider the same example

in Figure 5.1. Note that regardless of whichever interleaving is explored, S2,2 can never

match R0,1. This is because S2,1 ≺lp S2,2 and R0,1 being the first receive from process P0

must match S2,1 first (nonovertaking ordering detailed in Section 2.2.1). Such an ordering

is based on FIFO ordering among sends; thus, it can be computed precisely.

The above discussion illustrates that a global dependency can be established among

operations, however, is the nonovertaking ordering the only ordering that forms the basis

of global dependency among operations? Consider the example shown in Figure 5.2. In

this example, if we strictly adhere to the nonovertaking rules of matching, then S2,3 can

match R0,3 or R0,2. However, due to an additional ordering constraint, such matches would

never manifest in reality as we demonstrate in the ensuing discussion. Observe that there

is a deterministic receive R2,2 ordered in the following manner: R2,2 ≺lp S2,3. Thus, in

any interleaving R2,2 must match before S2,3. Operation R2,2’s first and only match is

S0,4. Hence, R2,2 cannot match any operation earlier than S0,4. In such a situation, we can

view R0,3 as an enabler for S0,4. Hence, we can safely say that matching R2,2 is globally

dependent on R0,3 and regardless of whichever interleaving is examined, R2,2 will match

only after S0,4 has matched.

Equipped with the observations discussed above, we present in this chapter the details

to comprehensively construct global dependencies among operations, which we also connote

by wait-for (W ) ordering. The W ordering is constructed by examining a single run of the

program. In order to construct W relation by only observing a single interleaving, we must

ensure that the program communication flow is not dependent on choice of sender that a
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Figure 5.2: Example illustrating ordering enforced by deterministic operations

particular wildcard receive matches. In other words, the communication actions issued by a

process P after it engages in a nondeterministic receive is unaffected by which of the vying

senders it chooses to match with (P does not decode the identity of the sender nor the data

payload and change its future program paths). We term such programs as sender oblivious

message matching (SOMM) programs.

Further note that to precisely compute the W relation, we must know all the potential

match possibilities of the operations. For instance, in Figure 5.2, the W ordering from R2,2

to R0,3 could be established only after ascertaining that S0,4 is the first and the only legal

match for R2,2. Hence, we also present the rules to construct the match possibilities of the

communication operations in MPI programs. We denote the relation capturing the match

possibilities of MPI operations by M . Finally, we revisit the MB ordering (presented in

Section 3.4) and modify it with the newly constructed W relation.

5.2 Preliminaries

We define the notion of type equality (denoted by ≡t) among MPI operations. Two

operations Op1 and Op2 are type equal, i.e., Op1 ≡t Op2 when the following holds:

• Either Op2 ≺lp Op1 or Op1 ≺lp Op2 (i.e., both operations are issued by the same

process)

• If Op1 is a send (or recv) then Op2 is also a send (or recv).

The first condition reveals that not only Op1 and Op2 are issued by the same process, they

are also ordered in a certain way in the trace. In any observed trace either Op2 matches

before or after Op1. We extend the notion of type equality by adding target equality to it
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(denoted by ≡t,d) and term it by type-target equality. Thus, two operations Op1 and Op2

are type-target equal, i.e., Op1 ≡t,d Op2, when the following holds:

• Op1 ≡t Op2
• Op1 and Op2 has the same destination process. If Op1 is a send to process j then

Op2 is also a send to process j. If Op1 is a receive sourcing from process j then Op2

is either a receive sourcing from j or a wildcard. If Op1 is a wildcard receive that

matched a send from process j in the observed trace then Op2 is either a deterministic

receive sourcing from process j or a wildcard.

We extend the notation Op� defined on page 19. Let Op�k return a set of k many

ancestors of the operation Op. Similarly, Op�k return a set of k many descendants of the

operation Op. Further, Op�k,p return a set of k many ancestors of the operation Op that

satisfy the predicate p. Similarly, Op�k,p return a set of k many descendants of the operation

Op that satisfy the predicate p. The implementation of Op�k,p is illustrated in Algorithm 6.

The function GetImmAncs(Op) returns the immediate IntraMB ancestors of the operation

Op. The implementation of Op�k,p can be similarly constructed. Consider the example

shown in Figure 5.2. Let the predicate p be: ∃x : R0,5 ≡t,d x. Then R
�2,p

0,5 = {R0,3, R0,2}.

We further define C as a function mapping an ordered pair of integers to an ordered

triple of integers - C : N × N → N × N × N where N is the set of natural numbers. Let

Ck return the entire relation C at the event τk in the sequence τ . Note that a trace of

the program as a sequence of match-sets is represented by τ . The kth event of this trace

sequence is represented by τk. Let Ck(i, j) return an ordered triple 〈Scnti (j), Rcntj (i), Rcntj (∗)〉

for the process pair (i, j) at τk. This triple captures the total number of point to point

communication events between Pi and Pj until τk. More specifically, if Pi is the sender and

Pj is the receiver, then the ordered triple captures the following information:

• total count of send calls from Pi to Pj

• total count of deterministic receive calls from Pj sourcing Pi, and

• total count of nondeterministic receive calls from Pj .

Let Ck[(i, j)← e] represent an update of the entry Ck(i, j) by e. Let Ck(i, j).fst, Ck(i, j).sec,

and Ck(i, j).trd denote the first, second, and third fields of the ordered triple Ck(i, j),

respectively. We inductively build the C relation by executing the following rules.

Init Condition:

true

C0(i, j) = 〈0, 0, 0〉
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Algorithm 6 ComputeKPAncs

1: Input:
2: Operation : Op
3: Integer: k
4: Property: p
5: Output:
6: Set of Operation: res

7: Ancs← {Opi}
8: while k > 0 ∧ ∼ Empty(Ancs) {
9: ImmAncs← GetImmAncs(Ancs)

10: for all x ∈ ImmAncs {
11: if x satisfies p {
12: res← res ∪ {x}
13: k ← k − 1
14: }
15: }
16: Ancs← ImmAncs
17: }
18: return res;

Rule 1:

e ∈ [1, n], τe = 〈Si,l(j), Rj,m(i)〉
Let prev = Ce−1(i, j) in Ce[(i, j)← 〈prev.fst++, prev.sec++, prev.trd〉]

Rule 2:

e ∈ [1, n], τe = 〈Si,l(j), Rj,m(∗)〉
Let prev = Ce−1(i, j) in Ce[(i, j)← 〈prev.fst++, prev.sec, prev.trd++〉],
∀k : k 6= i, k 6= j, Let prev = Ce−1(k, j) in

Ce[(k, j)← 〈prev.fst, prev.sec, prev.trd++〉]

The explanation for rule 1 is fairly evident. If the match-set τe involves a send from

Pi and deterministic receive from Pj , then increment the send count and the deterministic

receive count of C(i, j) maintainted at event τe. Rule 2 is more subtle. If τe involved a

nondeterministic receive from Pj , then the rule not only updates the entry for Ce(i, j) (the

entry for communication processes) but also all the nondeterministic receive count for all

other entries in Ce.

5.3 Potential Match (M o) Relation

Consider two MPI operations, Opi and Opj , such that they have not matched each

other in a trace τ . Opi is a potential match of Opj if there exists an alternate execution
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trace in which they are legally matched by the MPI runtime. Let the potential match

relation (M) be the symmetric set of all such pairs (Opi, Opj). However, looking at a single

execution trace we cannot initially conclude that a pair of operations form a legal match

in an alternate trace. Therefore, we initially construct an over-approximation of M (which

we label by Mo). We present the definitions of some of the helper functions which we will

later use to present the Mo construction rules.

Let E(Ce(i, j)) = Ce(i, j).sec+Ce(i, j).trd−Ce (i, j).fst. The E function computes the

number of prior wildcard receive calls (until τe) issued by Pj that did not match the sends

from Pi. In other words, E at τe captures the number of prior receive calls that a send (that

matched in τe) can potentially match in alternate interleavings.

Lemma 5.1 The function E respects the per-process based nonovertaking ordering.

While computing the extra receives that can potentially match a send from process i

(which was part of match-set at τe), we remove the number of sends already witnessed and

matched from process i at trace events pior to τe. Thus, E function avoids the addition of

superfluous edges that violate the nonovertaking ordering.

Function Di,j(k) returns k if from the trace event where the function Di,j is invoked

there exist k many instances of a deterministic receive issued by Pj that sources from Pi.

If k many instances do not exist, then INT_MAX is returned. This function is required

to discover the match ordering enforced by deterministic receive calls. The E function is

oblivious to such an ordering. The higher level intuition behind the existence of such a

function is the following: nth instance of send from Pi targeting Pj can slide down from its

current match and match later receive calls from Pj sourcing Pi, however, only up to (and

including) the nth instance of deterministic receive call . Figure 5.3 provides a trace of an

example that clarifies the intuition. In the example, the nonovertaking ordering constraint

as implemented in E function, will restrict the matching of R0,4 with S1,1. However, the E

function will be unable to discover that S1,1 cannot match any receive appearing after R0,2.

The deterministic receive R0,2 pins the ability of S1,1 to match with any later receive. S1,1

is the first send from P1 and cannot match any receive appearing after the first instance of

the deterministic receive from P0. Such a matching constraint will be captured by the D

function.

Init Condition:
true

e ∈ [1, n], τe = 〈Si,l(j), Rj,m(i/∗)〉, τe ∈Mo
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Figure 5.3: Deterministic receive pinning a send

Upward-M rules:

e ∈ [1, n], τe = 〈Si,l(j), Rj,m(i/∗)〉, E(Ce(i, j)) > 0

Let φ = ∀Op : Rj,m ≡t,d Op, K = E(Ce(i, j)) in

{〈Si,k(j), x〉| x ∈ R
�K,φ

j,m } ⊂Mo

Downward-M

e ∈ [1, n], τe = 〈Si,l(j), Rj,m(i/∗)〉, Ce(i, j).fst > Ce(i, j).sec,
Let K = E(Cn(i, j))− E(Ce(i, j)) in K > 0

Let φ = ∀Op : Rj,m ≡t,d Op, in
Let D = Di,j(Ce(i, j).fst− Ce(i, j).snd) in

Let K ′ = min{D,K} in {〈Si,l(j), x〉 | x ∈ R
�K′,φ
j,m } ⊂Mo

The initial condition adds all the matched events in the trace to the Mo set. Assuming

we have already computed the C relation by applying the rules presented in Section 5.2,

we now present the details of the Upward-M and Downward-M rules. The Upward-M rules

construct the Mo edges for a send that can find possible matches in receives that appear

prior to the receive that matched the send in the trace. Similarly, the Downward-M rules

construct the Mo edges for a send that can potentially match receives appearing later than

the receive that matched the send in the observed trace. In other words, upward and

downward rules capture the upward and downward matching mobility of sends.

Consider the trace of the example shown in Figure 5.4a and Figure 5.4b. In Figure 5.4a,

the sends S1,1 and S1,2 matched in trace events τ1 and τ2, respectively. These sends

cannot move up and match prior receives simply because there are not any prior receive

operations. The E(C1(1, 0)) = 0 and E(C2(1, 0)) = 0 captures that information. However,

E(C3(2, 0)) = E(C5(2, 0)) = 2 and R
�2,φ

0,3 = {R0,2, R0,1}, R
�2,φ

0,5 = {R0,3, R0,2} with

appropriate φ predicates. This suggests that for sends S2,1 and S2,3 there are two prior

receive operations with which these sends can potentially match.
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Figure 5.4: Upward and downward Mo edges

The downward mobility of sends is computed in a similar manner. Consider the same

example in Figure 5.4b. Notice that for trace event τ3 we have the following: K =

E(C5(2, 0)) − E(C3(2, 0)) = 2 − 2 = 0. Thus, there are no later receive operations from

R0,3 with which S2,1 can potentially match. The same reasoning is applied to the send

S2,3. In Downward-M rule, E(Cn(i, j)) captures the total number of receive operations

from Pj that did not match sends from Pi even though they were a compatible match for

such sends. Similarly, E(Ce(i, j)) captures the number of matched receive operations up to

(and including) the trace event τe such that they were compatible for a match with send

operations from Pi but did not match those sends. Then E(Cn(i, j))− E(Ce(i, j)) denotes

the number matched receive operations from the trace event τe onwards until τn. These

receive operations must be a compatible match for sends from Pi but did not match sends

from Pi. For send operation S1,1, note that K = E(C5(1, 0))−E(C1(1, 0)) = 2−0 = 2. Also

note that D = D1,0(1) = INT MAX since there are no deterministic receive operations

posted by P0. This results in K ′ = min{D,K} = 2. Hence, the send S1,1 can match with

two receive operations appearing immediately after R0,1. Those receive operations are in

the set R
�K′,φ
0,1 = {R0,2, R0,3}. We apply similar reasoning for the send S1,2. The Mo edges

computed are shown in the figure with dotted undirected lines. We provide complete details

for the Mo relation computation for the example in Figure 5.4a in Table 5.1.

Let us revisit the example in Figure 5.4a. From the construction rules, we have dis-

covered that S2,3 can potentially match R0,2 and R0,3 in alternate interleavings. However,

notice that R2,2 is a deterministic receive whose only match is S0,4. Since R2,2 ≺lp S2,3,

we deduce that S2,3 cannot match any operation that is MB ordered with S0,4. Hence, we
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Table 5.1: Computation of C, E, K and D details

C 〈E,K,D〉
(1,0) (2,0) (0,2) (1,0) (2,0) (0,2)

τ0 〈0, 0, 0〉 〈0, 0, 0〉 〈0, 0, 0〉 - - -
τ1 〈1, 0, 1〉 〈0, 0, 1〉 〈0, 0, 0〉 〈0, 2,∞〉 〈1, 1,∞〉 〈0, 0,∞〉
τ2 〈2, 0, 2〉 〈0, 0, 2〉 〈0, 0, 0〉 〈0, 2,∞〉 〈2, 0,∞〉 〈0, 0,∞〉
τ3 〈2, 0, 3〉 〈1, 0, 3〉 〈0, 0, 0〉 〈1, 1,∞〉 〈2, 0,∞〉 〈0, 0,∞〉
τ4 〈2, 0, 3〉 〈1, 0, 3〉 〈1, 1, 0〉 〈1, 1,∞〉 〈2, 0,∞〉 〈0, 0,∞〉
τ5 〈2, 0, 4〉 〈2, 0, 4〉 〈1, 1, 0〉 〈2, 0,∞〉 〈2, 0,∞〉 〈0, 0,∞〉

must refine such a false Mo edge from the Mo relation. In order to refine such edges we

first define the following:

Mo(Opi) = {Opj | (Opi, Opj) ∈Mo ∨ (Opj , Opi) ∈Mo}

F (Opi) = {x | x ∈Mo(Opi) ∧ ∀y ∈Mo(Opi) : x ∈ y�}

L(Opi) = {x | x ∈Mo(Opi) ∧ ∀y ∈Mo(Opi) : x ∈ y�}

F (Opi) is the set of first IntraMB ordered operations from each process in the set Mo(Opi)

and L(Opi) is the set of last IntraMB ordered operations from each process in the set

Mo(Opi). When Opi is a send or a deterministic receive then F (Opi) and L(Opi) are

singleton sets. However, when Opi is a wildcard receive then F (Opi) and L(Opi) can be

nonsingleton sets in which case we define the set projections w.r.t process IDs. F j(Opi)

is first IntraMB ordered operation from Pj that belongs to the set Mo(Opi). Similarly,

Lj(Opi) is the last IntraMB ordered operation from Pj that belongs to the set Mo(Opi).

We now present the refinement rules that will safely remove false Mo edges. In the list of

refinement rules, first is the consistency rule presented in Definition 5.1.

Definition 5.1 For any two operations, a and b, such that a ≺lp b then the following

relation holds:
∀j : (F j(a) ≺lp F j(b)) ∨ (F j(a) = F j(b)),
∧ (Lj(a) ≺lp Lj(b)) ∨ (Lj(a) = Lj(b))

Definition 5.1 articulates the following fact: if there exists an IntraMB ordering between

two operations, a and b, then w.r.t each process j, F j(a) and F j(b) must either be IntraMB

ordered or the same operation. Similarly, Lj(a) and Lj(b) must also be either IntraMB

ordered or the same operation. We refine the set Mo by removing all those edges that

violate the above property. The following rule presents this refinement formally:
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F-rule:

∀a, b : a ≺lp b,
∀j,∃x, y : x ∈ F j(b), y ∈ F j(a), x ≺lp y

Mo \ {〈b, z〉|z ∈ y�}

L-rule:

∀a, b : a ≺lp b,
Let ∀j,∃x, y : x ∈ Lj(b), y ∈ Lj(a), x ≺lp y

Mo \ {〈a, z〉|z ∈ x�}

The F-rule and L-rule are illustrated in Figure 5.5a and Figure 5.5b, respectively. The

red dotted arrows illustrate the false Mo edges that must be removed. Consider again

the example in Figure 5.4a. Notice that R2,2 ≺lp S2,3. Furthermore, F 0(R2,2) = S0,4 and

F 0(S2,3) = R0,2. Thus, any operation prior to S0,4 cannot belong to the Mo(S2,3). This

leads to the removal of the following edges from the Mo relation: (S2,3, R0,3) and (S2,3, R0,2).

The application of F-rule and L-rule on the example from Figure 5.4a results in the first

complete Mo graph. This graph, for the example in Figure 5.4a, is presented in Figure 5.5c.

5.4 Wait-for Relation

We now formally discuss the wait-for relation that captures the global interleaving-

oblivious orderings on communication operations of a program. An operation Opi is wait-for

dependent on Opj only when Opj is either an enabler to all the operations belonging to the

set Mo(Opi) or an enabler for Opi itself. We use Mo to construct wait-for dependencies.

Since Mo is over-approximate, we, thus, construct an under-approximation of W which we

represent as W u. We present the operational semantic rules for the computation of W u

below.

S-rule:

e ∈ [1, n], τe = 〈Si,l(j), Rj,m(i)〉
{(Si,l(j), x)| x ∈ F j(Si,l)<} ∪
{(y, F j(Si,l))| y ∈ S>i,l} ∪
{(z, Si,l(j))| z ∈ L(Si,l)

>} ⊂W u

R-rule:

e ∈ [1, n], τe = 〈Si,l(j), Rj,m(i)〉
{(Rj,m(i), x)|x ∈ F i(Rj,m)<} ∪
{(y, F i(Rj,m))|y ∈ R>j,m} ∪
{(z,Rj,m)| z ∈ Li(Rj,m)>} ⊂W u

We provide an additional rule for the barriers. Barrier match-sets are ordered w.r.t to prior

IntraMB ordered operations from each process.
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Figure 5.5: F-rule, L-rule, and complete Mo graph

B-rule:
e ∈ [1, n], τe = 〈

⋃
i∈[1,n]Bi,−〉

{〈Bi, x〉|x ∈ B<
j : j 6= i} ⊂W u

The explanation of S-rule can be best understood by the Figure 5.6. The cone represents

the Mo of a send and the variables have the same meaning as described in the rule parts of S-

rule. At each trace event, the rules are applied depending on the kind of operations involved

in the event. Furthermore, these rules are applied after the phase of Mo construction has

finished.

S-rule and R-rule are exactly the same. We will explain S-rule here in detail. Note that

a send call (s) is always targeted and therefore, Mo(s) is a set of operations from a single

process. Figure 5.6 demonstrates the wait-for dependencies introduced by the S-rule. It

is evident that s must match after x has matched since x is an ancestor operation to all

possible matches of s. Similarly, z, being descendant to all possible matches of s, must

match after s has matched. The only wait-for dependency in S-rule that has a subtle

explanation is the edge from s> to y = F j(s). If y could find a match in the descendant of s

in some interleaving then, by definition, y will not be the F j(s). Thus, under no execution

interleaving y can match any send later than s. Hence, the wait-for dependency from s>

to y is correct.

A natural question that a reader may ask is: how does the wait-for edges introduced for

wildcard receive? A wait-for edge can only be introduced starting from a wildcard receive

Rj,m(∗) when the following holds:

∃x : (Rj,m, x) ∈W u iff Rj,m ∈ Lj(x)>
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Figure 5.6: The three parts in S-rule

This condition is pictorially represented in Figure 5.7. Note that this condition is accom-

modated within S-rule(c) and R-rule(c), thus, we do not require a separate rule for wildcard

receives.

Theorem 5.2 If (Opi, Opj) ∈ W u then ∀x ∈ Op�∗j , (Opi, x) ∈ W u and ∀y ∈ Op�∗i ,

(y,Opj) ∈W u.

Proof. It is straightforward to observe that if Opi is waiting for Opj to match then Opi

is waiting for every operation that is IntraMB ordered before Opj . The proof follows

from the definition of IntraMB ordering. Similar reasoning applies for an IntraMB ordered

descendant of Opi.

Let ≺w be the operator that defines wait-for ordering among two operations. Thus,

Opj ≺w Opi would mean that Opj can match only after Opi has matched. In other words,

Opj ≺w Opi ≡ Opi ≺mb Opj . We re-define the MB ordering (presented in Section 3.4),

which is now a union of IntraMB and wait-for relation instead of the union of IntraMB and

x

R*

Figure 5.7: Condition for introducing wait-for from a wildcard recv
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InterMB relations.

Consider the example from Figure 5.5c. Applying the S and R rules for wait-for

construction we obtain the wait-for edges as illustrated in Figure 5.8 by directed red dotted

arrows.

5.5 Potential Match (M o) Relation Refinement

Like we mentioned before, Mo is an over-approximate construction. In this section, we

provide rules for refining the Mo relation. We locate false Mo edges and remove them by

the application of the following rules:

WfRefinement rule:

Opi ≺w Opj , ∃x ∈ Op�∗i , y ∈ Op�∗j : (x, y) ∈Mo

Mo \ {(x, y)}

WfRefinement rule removes Mo edges which are positioned as illustrated in Figure 5.9.

However, removing an Mo edge from the Mo relation may cause certain other Mo edges to

be not feasible anymore. For such scenarios we define a predicate balance(t) where t is an

Mo entry.

balance((Si,l(j), Rj,m(i/∗))) =
Let R = {x|x ∈ R�j,m ∧ x ≡t Rj,m} in
Let Sx = ∃x ∈ R : {y|y ∈Mo(x), Si,l ⊀mb y, Si,l 6= Sk,−} in
Let S =

⋃
x∈R Sx in

if(∀x ∈ R,Sx 6= {} ∧ |S| ≥ |R|)

The predicate Balance returns true when each receive in the ancestor of Rj,m that either

sources from Pi or is a wildcard, has a unique potential matching send such that Si,l is not
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Figure 5.8: wait-for edges introduced due to S and R rules with complete Mo graph
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MB ordered with respect to that potential matching send. When balance returns false, we

have ascertained that Mo edge 〈Si,l, Rj,m〉 is infeasible at runtime since one of the ancestors

will be left without a single match, which is a clear violation of MPI runtime operational

semantics since all receives sourcing from a single process must finish in FIFO order. The

balance in the communication structure is violated because of the existence of wait-for edges.

We use the balance predicate in our rule 2 as follows:

Imbalance rule:

∃m,m′ ∈ τ : a ∈ m, b ∈ m′, (a, b) ∈Mo,¬balance((a, b)),m ≺ m′
Mo \ {〈a, b〉}, (b, a) ∈W u

In Imbalance rule, we assume that event a matched before event b (m ≺ m′) in a global

timeline. This assumption comes handy in introducing the wait-for edge from b to a. We call

the Mo graph of a program to be balanced when all Mo edges satisfy the balance predicate.

Algorithm 7 gives the procedural view of applying the Mo, W u construction rules and

the refinement rules. The algorithm maintains a transitive closure of M and W relations

at all times. At the termination of this procedure we assert that M = Mo and W = W u.

Consider the example shown in Figure 5.8. After the removal of Mo edges (S2,3, R0,3) and

(S2,3, R0,2), the Mo graph gets imbalanced. Observe that (S1,1, R0,3) and (S1,2, R0,5) are

imbalance edges since if such matches were to manifest in an interleaving then R0,1 will

remain orphaned. Hence, after correctly removing the imbalanced edges, the correct Mo

graph of the example is illustrated in Figure 5.10.

5.6 Proof of Correctness

We first show that the fix-point reached (the final M graph) in Mo graph refinement

process is unqiue.
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Algorithm 7 M-W construction
1: Input:
2: Trace: τ
3: Output:
4: Relation: M

5: Relation: W

6: C ← Compute(τ) . Apply C construction rules
7: Mo ← Compute(C,Mo) . Apply Mo construction rules
8: Wu ← Compute(Mo,Wu) . Apply Wu construction rules
9: M ←Mo

10: W ←Wu

11: repeat
12: Mo ←M
13: Wu ←W
14: M,W ← Refine(Mo,Wu) . Apply WfRefinement and Imbalance rule
15: M,W ← TransitiveClosure(M,W )
16: until Wu = W
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Figure 5.10: Final Mo of the example from Figure 5.8

Theorem 5.3 (Unique fix-point) A unqiue fix-point, i.e., M graph, is computed after

the termination of Mo graph refinement process.

Proof. There are three reduction rules to refine the imprecise Mo graph, viz., (i) The

Mo consistency related rules F-rule and L-rule (on page 55), (ii) the WfRefinement rule

(on page 59), and (iii) the Imbalance rule (on page 60). F-rule and L-rule are part of the

Mo construction process and thus are not concurrently enabled with the WfRefinement

and Imbalance rules. After the Mo refinement by Mo consistency rules, the resulting Mo

graph may be imbalance. At this point, both the WfRefinement rule and the Imbalance

rule may be applicable. However, observe that Imabalance rule is not conflicting with the

WfRefinement rule. The only way these rules would conflict is when wait-for edges are
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removed by either of these rules. Removal of wait-for edges may make either of these rules

inapplicable at a certain verification state of the rule-system. Since these rules clearly do

not remove any wait-for edges in the W u relation, we can safely say that the two distinct

reduction rules commute at all steps of the verification system.

According to the Church-Rosser theorem [4], a single normal form term is reached via a

(possibily empty) sequence of reductions from a starting term when two distinct reduction

rules are applicable from the starting term. In our case, the starting term is the starting

state with an imprecise Mo graph and the reduction rules are the aforementioned two

reduction rules. Then according to the Church-Rosser Theorem, we must have a single final

term (M graph) reachable from the intial term (the imprecise Mo graph).

From the preceding discussion, we now know that there is only a single M graph

reachable from our reductions. All we need to show is that the final M graph, which

is unique, does not have any false potential match edges. We start by identifying ways

in which a certain Mo edge can be false under our construction setup in a balanced Mo

graph. Assume ms,ms′ ∈ τ (where τ is a trace for an MPI program) and ms ≺ ms′.

Further, assume that Opi,l ∈ ms,Opj,m ∈ ms′, then if (Opi,l, Opj,m) ∈ Mo \M iff, one of

the following reasons are satisfied:

• Exists x ≺w y such that x ∈ Op�∗j,m and y ∈ Op�∗i,l .

• Exists Opj,m ≺w x such that Opi,l = F i(x).

It is quite evident that if (Opi,l, Opj,m) is false then there must exist a wait-for ordering.

Such a wait-for ordering can result either due to Opj,m ≺w Opi,l or due to Opj,m ≺w x

where x is another match for Opi,l, however, with an extra constraint that F i(x) = Opi,l.

It becomes evident that when Opi,l matches Opj,m, x would be left orphaned as there is no

match prior to Opi,l. Since x ≺w Opj,m, MPI runtime will always match x before Opj,m

and hence the match (Opi,l, Opj,m) would never arise in any interleaving of the program.

We show that WfRefinement rule is sufficient to refine and remove all such false edges that

arise in a balanced Mo graph. Furthermore, any false Mo edge in an imbalanced graph is

rightly discovered by the Imbalance refinement rule.

Lemma 5.4 Let in trace τ of the program there be ms,ms′ ∈ τ such that ms ≺ ms′.

Assume that Opi,l ∈ ms and Opj,m ∈ ms′. If the Mo edge (Opi,l, Opj,m) in a balanced Mo

graph is false then there must exist the following relation in W u: Opj,m ≺w Opi,l.

Proof. Assume (Opi,l, Opj,m) is the first false edge so far in the trace. If the edge is false
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then there must exist a wait-for dependency from Opj,m to Opi,l (since Opi,l matched before

Opj,m) by definition. The question is whether the W u construction rules can discover such

a wait-for dependency. As espoused earlier in this section, there are only two cases for the

wait-for dependency to exist. We evaluate the first case – in order for wait-for dependency

to exist from Opj,m to Opi,l there must exist operations x ∈ Op�∗j,m and y ∈ Op�∗i,l such that

x ≺w y. Under what scenarios such operations, x and y, can exist and what are the nature

of these operations? The following text explains this in detail.

• Direct wait-for: There is a direct communication between processes Pi and Pj such

that the wait-for dependency from x to y is a result of that direct communication, i.e.,

x has matched the operation from Pi in the observed trace. Now for x ≺w y, either

Mo(x) ⊆ y� or Mo(y) ⊆ x�. In either case, y ≺lp F i(x). Thus, from Definition 5.1,

it follows that y ≺lp F i(Opj,m). Hence, the F-rule and L-rule of Mo construction and

refinement will remove the edge (Opi,l, Opj,m) from Mo to begin with. If on the other

hand, we could not establish x ≺w y despite the presence of a wait-for from x to y

then we know that Mo(x) * y� or Mo(y) * x�. This makes it evident that an earlier

Mo edge is false and (Opi,l, Opj,m) is not the first false Mo edge. We apply the same

reasoning for all earlier false Mo edges.

• Transitive wait-for: There is no direct communication that has taken place between

Pi and Pj so far (i.e., until ms′ in the trace τ). However Pi and Pj have interacted

transitively by engaging in communication with other processes. Thus, x ≺w w is

a wait-for edge that is transitively established from a series of direct wait-for edges

x ≺w y1, y1 ≺w y2, · · · yn ≺w y. Each of y1, y2, · · · , yn is from a separate process

involved in the transitive communication thread. For discovering each such direct

wait-for and consequently the associated false Mo edge, we re-apply the same lemma

(that is under discussion). For demonstration purposes, we take a simpler instance

where x ≺w y1 and y1 ≺w y such that y1 is an operation from Pk. Furthermore,

let y1 ∈ ms′′. If wait-for dependencies were to exist the way we have assumed then

ms ≺ ms′′ ≺ ms′. If for some reason the W u construction rules could not establish

x ≺w y1 or y1 ≺w y, then it is evident that F k(x) ∈ y�1 and F i(y1) ∈ y�. As

long as the match-sets containing F k(x) and F i(y1) have matched later than ms,

we have correctly simulated x ≺w y1 ≺w y and will be able to successfully discover

(Opi,l, Opj,m) to be false. On the other hand if that is not the case, then there is an

earlier false edge waiting to be discovered by applying the exactly same reasoning.
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We evaluate the other case when there is no genuine wait-for ordering from x to y, yet

(Opi,l, Opj,m) is false. Note that we are still working with a balanced Mo graph. If we

stick to the definition of wait-for dependency then discovering that Opj,m and Opi,l are not

wait-for dependent implies there exists an interleaving where they are co-enabled. If there

exists such a interleaving where they are co-enabled then there must exist a state in the

execution where they match. However, knowing that Opi,l and Opj,m cannot match implies

that there must exist some other ordering that disallows the match between Opi,l and Opj,m.

If Opi,l and Opj,m were a compatible match then one of these two operations must be a

receive. If the receive is deterministic then only wait-for ordering between them can be

the direct wait-for ordering. Therefore, if neither direct nor transitive wait-for ordering

is present between Opi,l and Opj,m then the receive must be a nondeterministic receive.

Without losing generality, lets assume that Opi,l is the wildcard receive, then Opj,m is a

send targeting Pi. In such a case there is possibility that there exists an operation x from

Pk such that Opi,l = F i(x). It is also perfectly feasible that Opj,m ≺w x because of direct or

transitive communication between Pj and Pk. If such a wait-for dependency is established

from Opj,m to x then we have witnessed what we call inter-process nonovertaking ordering

among sends that target the same destination process. In such a scenario, even though

Opj,m is not waiting on Opi,l it still cannot match Opi,l because if Opj,m were to match

Opi,l, then x must find a match prior to Opi,l. However, Opi,l being the first match for x,

operation x will remain orphaned. MPI runtime always matches sends in a nonovertaking

order and thus, would disallow the match between Opi,l and Opj,m in every interleaving.

Notice that in order to establish Opj,m ≺w x, we again resort to the reasoning presented to

discover direct or transitive wait-for dependencies earlier.

Thus, we have demonstrated that in a balanced Mo graph, the refinement rules will

discover all the false Mo edges by first discovering the right W u dependencies.

Lemma 5.5 An Mo edge e may violate the balance predicate only after a false edge has

been removed from the Mo graph by a prior application of WfRefinement rule. Imbalance

rule is sufficient to discover such an imbalance.

Proof. Assume that there is imbalance in the Mo graph with out any prior successful

application of WfRefinement rule. This implies that no wait-for dependency was discovered

and the Mo graph constructed right after the first iteration was imbalanced, which clearly

violates the Mo construction rules. Hence, it is a contradiction to the starting assumption.
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Thus, an imbalance in Mo graph can result only after a false Mo edge is removed. We now

present the sufficiency of Imbalance rule to discover such an imbalance. MPI runtime allows

a sends in the program to freely match receive calls as long as the co-realizability property

is maintained. The Mo construction rules also respect this co-realizability property when

constructing Mo edges.

Co-realizability property:

τe ∈ τ : τe = (Si,−(j), Rj,m(∗)) ∧ (Si,−(j), Rj,m(i/∗)) ∈Mo ∧m′ > m⇒
∃τe′ ∈ τ : τe = (Sk,−, Rj,m′′(k/∗)) ∧m′ < m′′ ∧ k 6= i ∧ (Sk,−, Rj,m(∗)) ∈Mo

Figure 5.11 illustrates this property. In the figure, edge p is realizable iff edge q is realizable.

Notice that when application of WfRefinement rule removes an edge like q then it is evident

that edge p can no longer belong to Mo since Rj,m will be left orphaned. Thus, removing p

creates an imbalance which the Imbalance refinement rule correctly captures by comparing

the cardinality of the set containing potential senders for receives prior to Rj,m′ (when we

consider Si,− to be a match for Rj,m′) with the cardinality of the set of receives prior to

Rj,m′ .

Conjecture 5.6 The Mo graph of the program obtained after the termination of

Algorithm 7 has no false Mo edges, i.e., Mo = M .

Proof. From Lemma 5.4 and Lemma 5.5 it is evident that when the fix-point is reached

Mo will have no false edges and W u will have no omissions. Since certain parts of the proof

from Lemma 5.4 and Lemma 5.5 have yet to be formalized, we present this theorem as a

conjecture which we strongly believe to be true from the partial proof of Lemmas 5.4 and

5.5.

Corollary 5.7 The W u relation of the program obtained after the termination of

Algorithm 7 has no omissions, i.e., W u = W .

:e R    (*)
j,m

τe’ R      (k/*)
j,m’’

R     (i/*)
j,m’

qp

i,−

k,−

S    (j)

S    (j):

τ

Figure 5.11: Co-realizability of Mo edges
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5.7 Conclusion

In this chapter we have presented the preliminaries and the rules to construct the poten-

tial match relation for each send and receive in the program after evaluating a single trace

of the program. Furthermore, we demonstrate the inconclusiveness of InterMB ordering for

predictive verification and present the rules to construct the global interleaving-oblivious

orderings in the form of wait-for dependencies and supplement them with additional rules

to refine potential match relation and the wait-for relation.

5.7.1 Discussion

We use the Mo and W u relation to construct a deadlock detection strategy that operates

in polynomial time. We present deadlock detection strategy details in the subsequent

chapter. We further discuss the usefulness of these constructs to detect FIBs for the SOMM

class of programs in Chapter 9.



CHAPTER 6

POLYNOMIAL TIME DEADLOCK

DETECTION ALGORITHM

We present, in this chapter, the details of a deadlock detection strategy that operates in

polynomial time. The deadlock detection strategy builds upon the work that is presented

in Chapter 5. The strategy is sound and complete for a class of MPI programs that falls

under the SOMM category (introduced in Section 5.1). The algorithm can be applied to

any message passing system that uses communication constructs similar to MPI. Finally we

present the results of this algorithm as a part of the tool MAAPED (Messaging Applications

Analysis with Predictive Error Discovery) on several benchmarks.

6.1 Introduction

Deadlocks in MPI programs can occur because of a variety of reasons. A significant

number of these reasons cause an MPI program to deadlock in the first run of the pro-

gram. For instance, supplying an incorrect number of sends and receives in the program,

passing incorrect arguments to the send/recv calls thereby leaving a certain communication

operation orphaned, or having nonsynchronized collective operations in the code are a few

reasons that cause the deadlock to manifest in the first run of the program. Any debugger

would suffice to discover such types of deadlocks. There is another class of deadlocks which

do no manifest on the first run or repeated runs of the program. The moment the program

is ported to a different machine architecture the deadlock suddenly appears. The reasons

for such a deadlock could be the following:

• The code is written with certain buffering assumptions which may no longer hold

true when the program is ported on a different machine architecture. Consider the

program in Figure 6.1. This program will deadlock when run on a machine that does

not provide system buffering. This is because in the absence of system buffering the

sends act as blocking calls.
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P0 P1

S0,1(1) S1,1(0)
W0,2(h0,1) W1,2(h1,1)
R0,3(1) R1,3(0)

Figure 6.1: Example with buffer dependent deadlock

• Code has a nondeterministic receive that ends up consuming the sends meant for a

deterministic receive appearing later, thereby orphaning the deterministic receive call.

• Code has convoluted wait-for dependencies that interact with certain nondeterministic

receive calls causing a send to suddenly get disabled, which causes deadlocks that

are deep seated in the schedule space. Consider Figure 6.2. In this example, S1,2

has matched R0,2, however, there exists an alternate interleaving where S1,2 can be

successfully delayed until the control of process P0 reaches S0,4 at which point we

witness a cyclic progress dependency creating a deadlock.

Notice that for such classes of deadlocks, debugging technology would be inconclusive

and fall short in achieving the goal. While there have been schedule perturbation solutions

such as [81], such techniques rely on the right perturbation of the schedule to catch the

deadlock, thus, they lack the completeness guarantee. Dynamic verifiers such as ISP and

DAMPI, which rely on exhaustive verification of the schedule space, detect such deadlocks,

though the time they take to find such deadlocks or to prove deadlock freedom of the

program is very high because of their innate strategy to examine a large schedule space.

We assert that for most MPI programs we do not need such an expensive strategy to

discover deadlocks. We provide an alternate strategy which precisely predicts the presence

of a deadlock after evaluating a single schedule of the program. Such a predictive deadlock

detection strategy relies on two important artifacts that we presented in Chapter 5, namely,

the M relation and the W relation.

6.2 Deadlock Detection Rules

We now present the rules for deadlock detection. The deadlock detection analysis

proceeds by ascertaining whether the communication opportunities are preserved. We mean

the following in regard to the preservation of communication opportunities:

• Under any execution scenario, each receive/send must find at least one matching

send/receive. In other words, a deadlock is a state in an execution of the program
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Figure 6.2: Deadlock due to wait-for on Send

where a receive/send from a certain process has not found a match irrespective of the

progress of other processes in the system.

Note that any other deadlock (for instance, mismatched collective calls, wrong arguments

to send and receive calls, incorrect number of send/receive calls) would be discovered in the

first run of the program. Our focus is on “deep seated” deadlocks (deadlocks that do

not manifest in the first run of the program). We have a two-step mechanism to detect

deadlocks that are due to the violation of the principle of preservation of communication

opportunities.

• A deadlock in the program due to orphaning of a deterministic receive, which can

be ascertained if the last ordered potential matching send in the M image of the

deterministic receive can find a match in a receive preceding the deterministic receive

under focus. Rule 1 formally captures this condition. Figure 6.3 illustrates such a

deadlock scenario pictorially.

• A deadlock in the program due to the orphaning of a deterministic/nondeterministic

receive (Rj,m) which can be discovered by rule 2. Rule 2 can be understood in the

following manner: Assume the focal (orphaned) Rj,m operation matched with Si,l(j)

at the event τk of the observed execution trace. Further, assume Mlow ⊂M(Rj,m) is a

set of sends that have matched with receive calls appearing later (in global time) than

Rj,m. If Si,l and all the elements of Mlow could be consumed by receives prior to Rj,m,

then by pigeon-hole principle there must exist send calls to Pj , which in the observed

trace matched earlier than Rj,m. This set of send calls must now find a match in

Rj,m and receive calls appearing later. However, if Rj,m were to be orphaned, then
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R(j)

i  j

Figure 6.3: Orphaned deterministic receive scenario

it implies that there exists at least one earlier send that cannot find a match in Rj,m

or later receives. This send becomes disabled for Rj,m or later receives and therefore,

must be a target of a wait-for dependency. Hence, the deadlock due to an orphaned

Rj,m can be caught precisely by identifying such an orphaned matchable send earlier

in the trace. This must imply that the orphaned send to Pj must be a target of a

wait-for dependency, which disallows the send to match freely with Rj,m or any receive

appearing later than Rj,m.

A natural question after following the above discussion is: why scenario two is not

sufficient since it appears that scenario two covers scenario one too? Notice that scenario

two does not really cover scenario one. Consider the example shown in Figure 6.4. In this

example, none of the sends are a target of a wait-for dependency. They are enabled from

the start state until they are consumed. At no point in the program did they get disabled.

However, a deadlock still results purely because of a deterministic receive’s potential only

match S2,1 can be consumed by R0,1 in an alternate interleaving. This example fits the

description of scenario one only. The example thus asserts the need to separately deal with

the two scenarios.

We now present the rules to discover such deadlocks.

Rule 1:

e ∈ [0, n] : τe = 〈Si,l(j), Rj,m(i)〉, ∃x ∈ L(Rj,m) : (x,Rj,m′) ∈M : m′ < m

deadlock = true

Rule 2:

e ∈ [0, n] : τe = 〈Si,l(j), Rj,m(i/∗)〉, (Op, Si,l) ∈W : Op ∈ R�j,m,
Discharge(Si,l, Rj,m, Op, V̂ )

deadlock = true

Rule 1 is fairly obvious to grasp. In rule 2, note that we have used Boolean function

Discharge. This function returns true (indicating presence of a deadlock) when all receive
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Figure 6.4: Example illustrating a deadlock despite no wait-for dependencies

calls (R) from Rj,m onwards until Op (source of the wait-for dependency) can be successfully

be matched to sends other than Si,k, else it returns false. When Discharge function returns

true, it means that the process control of Pi and Pj have reached Si,l and Op respectively,

and Si,l has not found a match leading to cyclic wait-for dependency between Pi, Pj .

Algorithm 8 explains the boolean function Discharge from rule 2. In this function,

the procedure FindEnabledSends (line 7), (presented in Algorithm 9) refines the M(R) by

removing all sends from it that are (i) present in V̂ , (ii) wait-for dependent on S, and

(iii) from the same process barring the first ordered send from that process. The above

procedure is responsible for discovering concurrently enabled sends that can match a certain

focal receive. Once the concurrent sends are discovered, we arbitrarily choose one send other

than S (line 8) , add it to V̂ , and move on to the next MB ordered receive R’ and treat R’

as the focal receive.

6.3 Correctness Proof

We show that the deadlock detection rules presented in Section 6.2 are sound and

complete.

6.3.1 Soundness

A deadlock is discovered by our algorithm under the following situations:

• There exists a deterministic receive, Rj,m(i), whose L(Rj,m) has a potential match

to a prior receive Rj,m′ . From Theorem 5.6 it follows that such a match is a true

match. From the definition of potential match M it follows that there must exist an

execution, say e′, where such a match is realized. Since all sends targeting j are MB

ordered, we infer that all sends s ∈ S� : S ∈ L(Rj,m)∧s ≡t,d S also match to receives

prior to Rj,m leading to a real deadlock.

• There exists an execution where a wildcard receive is orphaned, which implies that

there must also exist a matchable send that gets orphaned in the same execution. Such
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Algorithm 8 Discharge algorithm

1: Input:
2: Operation: S,R . Send and Recv
3: Operation: Op . Source of wait-for edge
4: List: V̂ . List of matched sends up to (including) S
5: Output:
6: Boolean

7: for all R′ from R until Op: R ≡t R′ {
8: M ′ ← FindEnabledSend(M(R′), S, V̂ )
9: S′ ← Choose(M ′) . Randomly choose a send

10: result← true
11: if S’ is Null { . Choose(M ′) that there is no send available
12: return false . No deadlock until S’
13: } else
14: V̂ ← V̂ ∪ {S′}
15: }
16: }
17: return true

Algorithm 9 FindEnabledSends algorithm

1: Input:
2: Set: M(R)
3: List: V̂
4: Send Operation: S
5: Output:
6: Set: M ′

7: for all s ∈M(R) {
8: if s /∈ V̂ ∧ s ⊀w S ∧ @(x ∈M(R) : x ≺lp s) {
9: M ′ ←M ′ ∪ {s}

10: }
11: }
12: return M ′
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a send is a target of a wait-for dependency, which can be delayed sufficiently so that

source of that wait-for dependency is issued leading to a cyclic progress dependency.

Note that Discharge function plays an actual partial trace (keeping the prefix of the

trace fixed). At each step the Discharge function only considers sends enabled for a

particular receive by appropriately removing all the choices that were either already

taken in the trace prefix, or are just not enabled with a focal receive. Thus, the

deadlock discovered is a real deadlock.

6.3.2 Completeness

There are two parts to the completeness argument. Firstly, we have to show that

our definition of deadlock covers all possible deadlocks in the program that has executed

successfully in the first run. Secondly, the deadlock detection rules precisely covers this

space of deadlocks. Since the program ran successfully in the first run, we infer that

program is well-formed. In a well-formed program, the only cause of deadlock is when

a certain operation is orphaned ( a send/receive in our case). Our definition of deadlock

(at the start of the Section 6.2) precisely states that. Thus, we need to show that our

algorithm covers this definition of deadlock in a complete manner. Note that whenever a

send is orphaned in a well-formed program it implies there is a certain receive that is left

orphaned. Our algorithm discovers such orphaned sends and have a specialized algorithm

for deterministic receives. The proof of completeness, therefore, reduces to showing that our

strategy for deadlock detection does not miss any deadlocks. From Theorem 5.7 we know

that W u = W . Thus, any wait-for dependency targeting a send call is already computed.

Rule 2 is, therefore, applied to each send that is a target of a wait-for dependency. The

question is: whether the random choice of send (in the rule) to match a receive (line 8 in

Algorithm 8 ) can mask a deadlock? Notice that a choice among sends to match a receive

would matter only when that choice is no longer available for later receive operations. In

other words, choice of send matters at a particular state in verification only if that send

gets disabled and remains disabled for the rest of the states of the execution.

Assume that a send, Sk,l′ where k 6= i, is such a send where choice plays a role.

Furthermore, let us assume that during random selection of sends, Sk,l′ , that may get

disabled after a certain state, was not selected by the Choose function. The fact that Sk,l′

gets disabled implies that it is a target of wait-for dependency. Let the source of the wait-for

dependency be Op′. If Op′ ≺lp Op, i.e., the source of wait-for dependency to Sk,l′ precedes
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the source of wait-for dependency to Si,l, then the deadlock due to the orphaning of Sk,l′ is

caught when rule 2 is applied again with Sk,l′ as the focal send. If Op ≺lp Op′ and if the

deadlock is present, then it will be Si,l which will be orphaned since the process issuing Op

and Op′ will issue Op prior to Op′ and will wait for it to get matched. Any cyclic progress

dependency would be discovered right at this point. Thus, we demonstrate that random

selection of sends in the Choose function will not mask a deadlock.

6.4 Complexity Analysis

Assume that an MPI program is run on P many processes. Each process issues K many

calls. Notice that in rule 1 (refer to Section 6.2), L(Rj,m) can be obtained in constant time.

The check whether L(Rj,m) matches with any ancestor of Rj,m has the time complexity

O(|M(L(Rj,m))|). Rule 1 can be applicable to Rj,m only when it is a deterministic receive.

Thus, |M(L(Rj,m))| < K since every entry of the M set of the operation L(Rj,m) is from

a single process. Therefore, for P ×K many instructions, rule 1’s asymptotic upper bound

time complexity is O(P×K2). In rule 2 ascertaining the condition Op ∈ R�j,m takes constant

time. The only function that consumes non-trivial time is the Discharge function. Within

the Discharge function, the maximum size that M ′ can attain is K. Thus, the Discharge

function would be called for at most K many times. For P ×K many instructions, rule 2

would be fired for P×K
2 many times. Furthermore, the function FindEnabledSends called

with Discharge has a time complexity of O(K2). Hence, the total time worst case complexity

for applying rule 2 for all the instructions in the program is O(P×K3). Hence, the deadlock

detection strategy is still polynomial in the number of processes and number of instructions

per process.

6.5 MAAPED Tool

We present the tool flow of our predictive verification framework which we call MAAPED.

Figure 6.5 illustrates the components of the tool. The component Scheduler generator

generates the first canonical interleaving exactly like ISP. The Potential match generator

and Wait-for constructor apply the potential match relation and wait-for rules, respectively

(presented in Section 5.3 and Section 5.4), on the trace. The Refinement loop is responsible

for firing the refinement rules and finally after reaching the fixed point, the Deadlock analyzer

fires the deadlock detection rules.



75

No Error

Profiler

+

MPI Prog.

Executable

Proc 1

Proc n

.

.

MPI Runtime

Schedule

Generator

Generator

Potential Match

Constructor

Wait−for

Refinement Loop

Deadlock 

Analyzer

Error 

Figure 6.5: MAAPED workflow

6.6 Results

The experiments were executed on Intel Core i7 quad-core with 8 GB of memory. We

set a time limit of 2 hours to verify the benchmarks. We abort the verification process if

it did not complete within the time-limit. The benchmarks considered to demonstrate the

notions discussed in Chapter 6 and Chapter 5 are the same that were used to testify the

FIB work. However, we modified some of the benchmarks where dynamic load balancing

takes place. This is because MAAPED does not support dynamic load balancing based

communication structure, yet. The modified benchmarks are marked with the asterisk

(Matrix multiply and Integrate). We removed all reply-channel based communication

(which is indicative of dynamic load balancing) from the codes and replaced them with

static work load assignments.

Notice that in the results shown in Table 6.1, some numbers are marked with †. In those

experiments ISP failed to catch the deadlock, however, MAAPED discovered the deadlock.

6.6.1 Heat-Diffusion

The heat-Diffusion benchmark is obtained from the SuperComputing 2011 tutorial

presented by T. Hilbrich, G. Gopalakrishnan and others. The benchmark solves the heat

equation on a 2-D grid. Observe that ISP failed to execute even a single run for the

benchmark Heat-Diffusion. However, when a certain optimization of ISP (persistent-set

optimization for distinct DTGs) was turned off then ISP discovered the same deadlock that

MAAPED discovered. When the example was executed on four processes, ISP discovered
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Table 6.1: Results for deadlock detection via predictive verification

Interleavings Time(sec)
Benchmark # of procs Deadlocks? ISP MAAPED MAAPED

Heat-diffusion 4 Yes 0×† 1
√

2.911
DTG-deadlock 5 Yes 1 ×† 1

√
0.009

Integrate mw* 8 No > 3500 1 1.669
Matrix Multiply* 8 No 120 1 4.564

Gaussian Elimination 8 No > 20, 000 1 2.68
Floyd Warshall 8 No > 20, 000 1 9.14

the deadlock in seven interleavings and when the same process was run on eight processes,

ISP took over two hours and discovered the deadlock in the 5041th interleaving. MAAPED

discovers the same deadlock, taking far lesser time (3 seconds when examined with 4

processes and 92 seconds with 8 processes).

6.6.2 DTG-Deadlock

This benchmark is a simplified version of the communication structure that exists in

Parmetis [35]. We also introduced a deadlock into such a simplified example. A successful

execution of this example is illustrated in Figure 6.6. The deadlock will manifest only

when seemingly two independent DTGs are both explored by ISP from a certain state.

Exploring DTG2 before DTG1 one will enable S2,2 to match R0,2, leading to a cyclic progress

cycle between S0,2 and S1,1. Like before, ISP could only discover the deadlock after the

persistent-set optimization was turned off. MAAPED detected the same deadlock after

evaluating a single run of the program in far less time.

6.6.3 Floyd-Warshall

This benchmark is obtained from [82]. It computes the all-pairs shortest path algorithm

given by Floyd and Warshall in a parallel fashion. Note that ISP did not complete in the

stipulated time of 2 hours. We ran the verification separately for fewer processes to discover

that code has no deadlocks. MAAPED verified the same program for all interleavings of

the program in barely 10 seconds.

6.7 Discusson

What considerations/modifications must we apply to make the MAAPED framework

work successfully for FIB detection? How can we relax the SOMM constraint on programs

under testing and develop predictive solutions utilizing the constructed artifacts M and W?



77

R    (0)

P0 P1 P2

R    (*) S   (0)
11

P3

R    (*)
21

S   (0)
3101

DTG1 DTG2

S   (0)

R   (*) S   (0)
2203

02 12

Figure 6.6: DTG-deadlock program trace

We explore the latter question of relaxing the SOMM constraint in Chapter 9.

The FIB analysis can be easily ported to the predictive analysis framework. Notice

that we add wait-for edges whenever a barrier match-set is witnessed in the trace of the

program. All it requires is the slight modification of the MB-Paths definition (Definition

3.1 in Section 3.4). Instead of constructing MB paths from InterMB and IntraMB edges,

we now construct the same MB paths from wait-for edges and IntraMB edges. The rest of

the FIB detection algorithm remains unchanged.

6.8 Conclusions

In this chapter we have presented the rules to discover deep seated deadlocks in MPI

programs. We further demonstrate the completeness of our deadlock detection strategy

and illustrate that the rules operate in polynomial time complexity. We finally show the

implementation of these rules in the framework MAAPED along with inspiring results on

several benchmarks. All of the benchmarks belonged to the class of SOMM programs.



CHAPTER 7

MCC: A DYNAMIC VERIFICATION

SCHEDULER FOR MCAPI

APPLICATIONS

We present a dynamic direct code verification tool called MCC (MCAPI Checker) for

applications written in the newly proposed Multicore Communications API (MCAPI).

MCAPI provides both message passing and threading constructs, making the concurrent

programming involved in MCAPI application development a non-trivial challenge. MCC

intercepts MCAPI calls issued by user applications. Then, using a verification scheduler,

MCC orchestrates a dependency directed replay of all relevant thread interleavings. This

chapter presents the technical challenges in handling MCC’s nonblocking constructs. This

is the first dynamic model checker for MCAPI applications, and as such our work provides

designers the opportunity to use a formal design tool in verifying MCAPI applications and

evaluating MCAPI itself in the formative stages of MCAPI.

The purpose of this chapter is to present the set of questions that every dynamic verifi-

cation scheduler developer must ask before embarking on the effort to create a verification

engine. We discuss some of the investigations pertaining to those set of questions in this

chapter.

7.1 Introduction

It has been observed that the combined use of threading and message passing is necessary

in order to create efficient multicore applications. This will require the standardization

of an API for inter-core communication and synchronization. MCAPI [40] is one such

effort which is under active development by a group of over 25 companies in the embedded

system’s market. Unlike large existing APIs like MPI [42], which target high-end compute

clusters, MCAPI is designed keeping in mind the very specific needs and goals of embedded

software/hardware system developers. MCAPI is aimed at programmers writing applica-

tions for embedded distributed systems employing loosely coupled cores. In particular,
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MCAPI is well suited for systems that have much smaller memory footprints and are much

more oriented towards reactive behaviors than computational. This paper describes the

first direct code dynamic verification tool for MCAPI applications called MCC (MCAPI

Checker). It takes as input a C code and verifies it directly. Therefore, we resort to dynamic

direct code verification methods that were originally pioneered in Verisoft [27]. Dynamic

formal verification is witnessing ever growing presence in tools such as CHESS [43], Java

Pathfinder [44], etc. In order to contain the thread interleaving explosion we use partial

order methods that have been shown to be quite effective in software verification. MCC

uses a customized version of dynamic partial order reduction (DPOR [22]) that is similar

to the partial order with elusive interleavings (POE) algorithm explained in [69].

MCC builds on the strength of past projects, namely, ISP [34] and Inspect [83]. However,

there are subtle differences between MCC, ISP, and Inspect. ISP is purely a MPI verifier

and Inspect is purely a shared memory thread program verifier. MCC, on the other hand,

accommodates Pthread create and join calls as well as message passing based MCAPI calls.

Furthermore, MCC differs from ISP in the manner in which nondeterminism is handled in

the input programs. ISP uses dynamic rewrite mechanism to force a deterministic match

at runtime. MCAPI provides only nondeterministic receive calls, therefore, in the absence

of specific receives the dynamic rewrite mechanism cannot work for MCC.

MCC supports “get/create” endpoint calls, connection-less blocking and nonblocking

communication constructs and the “wait” call. The novelty of this lies in the way we enforce

a deterministic match at the runtime. We discuss two solutions to enforce this determinism

at runtime: (i) by intrusively modifying the MCAPI library and (ii) by inserting an implicit

wait call in the instruction stream after a send and nonblocking receive pair has been given

a go-ahead by the MCC scheduler.

7.1.1 Contribution

The contribution of this work are two fold. First, we have devised novel ways to enforce

a deterministic match at the runtime; thereby avoiding the possibility of a communication

race and the second is to pose a set of questions and pen our experience while building

MCC which will be useful in building future dynamic verification engines.

7.2 Overview of MCAPI

The MCAPI effort traces its heritage to MPI and Socket communication libraries;

however, it differs from both with respect to the application domain it targets and the
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functionality it offers. MCAPI is less flexible than MPI (i.e., offers fewer functionalities as

compared to MPI). It is an API specification for the inter-core communication in a loosely

coupled distributed embedded SoC.

MCAPI defines three communication types viz., connection-less datagrams, connection-

oriented FIFO packet streams and connection-oriented FIFO scalar streams. MCAPI

communication is performed by nodes, which are abstract entities that could either be

a process, a thread, a hardware accelerator or a processor core. Furthermore, nodes

communicate with each other via endpoints that are the communication termination points.

Endpoints are defined as a tuple of 〈node id, port id〉 pair. Each node can support multiple

endpoints and every endpoint in the system is assigned a globally unique identifier. Each

receiving endpoint is associated with a FIFO ordered receive queue. Since MCC currently

supports only connection-less MCAPI constructs, we will restrict the discussion in this

chapter to only those API calls. The connection-less communication type of MCAPI is

similar to MPI in that there is not static routing of messages. The API provides blocking and

nonblocking variants of a send, receive, wait and test call to check the successful completion

of nonblocking requests. An example code illustrating the usage of MCAPI calls in a C

compilable code is shown in Figure 7.1.

7.3 Verification of MCAPI User Applications

We will stick to the same conventions for send, receive and wait calls as explained in

earlier chapters with only slight modifications. Ri,l(ep) is a receive posted by node i and the

receiving endpoint is ep. Similarly, Si,l(ep1, ep2) is a send posted by node i from endpoint

ep1 targeting endpoint ep2.

Consider the example shown in Figure 7.2. While the runtime will always explore

only one of the two possible execution scenarios, we must explore both the scenarios to

guarantee program correctness. Any dynamic scheduler would make two match-sets for the

first wildcard receive. (S1,1, R3,1) and (S2,1, R3,2). Assume that the scheduler decides to

issue (S1,1, R3,1) into the runtime. For the scheduler, the moment calls are signaled into

the runtime, the calls have matched. This can be dangerous. Observe that immediately

after the scheduler issues (S2,1, R3,2) into the runtime it is expecting the previous match

to have actually matched in the runtime. However, it is quite possible due to network

latencies that the operations in the match-set (S1,1, R3,1) have really not matched by the

runtime while S2,2 is also issued to the runtime. This would initiate a communication race
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1:#define NUM_THREADS 3

2:#define PORT_NUM 1

3:void* run_thread (void *t) {

4: thread_start();

5: mcapi_initialize(tid,&version,&status);

6: if (tid == 2) {

7: recv_endpt =

pmcapi_create_endpoint (PORT_NUM,&status);

8: pmcapi_msg_recv(recv_endpt,msg,BUFF_SIZE,&recv_size,&status);

9: pmcapi_msg_recv(recv_endpt,msg,BUFF_SIZE, &recv_size,&status);

10: } else {

11: send_endpt = mcapi_create_endpoint(PORT_NUM,&status);

12: recv_endpt = mcapi_get_endpoint(2,PORT_NUM,&status);

13: pmcapi_msg_send(send_endpt,recv_endpt,msg,strlen(msg),1,&status);

14: }

15: pmcapi_finalize(&status);

16: thread_end();

}

17:int main () {

...

18: main_thread_start();

19: for(t=0; t<NUM_THREADS; t++){

20: rc = mcapi_thread_create(&threads[t], ...)

21: }

22: for (t = 0; t < NUM_THREADS; t++) {

23: mcapi_thread_join(threads[t],NULL);

24: }

25: main_thread_end();

}

Figure 7.1: An instrumented MCAPI example C program
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Figure 7.2: MCAPI receive nondeterminism
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among S1,1 and S2,2 in the runtime to match R3,1. Notice that MCAPI does not provide

a deterministic variant of a receive call. Thus, unlike ISP, we can dynamically re-write

the wildcard receive calls. Observe the gravity of the situation, we have a scenario where

scheduler decides a certain match-set to match in the runtime but the runtime decides to

match another match-set. This will lead to a broken analysis of the dynamic scheduler. The

big question is then the following: How can a dynamic verification scheduler ensure that

the runtime respects the order of match-sets that the scheduler decides? We devised two

novel ways with which the runtime determinism could be established.

• Receive buffer probes: We augmented the MCAPI library with an extra call

MCAPI_Probe_Endpoint(MCAPI_Endpoint,MCAPI_Status). This call served as a hook

into the MCAPI runtime. The function returned the endpoint pointer of the sender

whose data payload is at the top of the receive queue at the endpoint supplied as the

argument to this function. The MCC scheduler, after signalling a match-set involving

a nondeterministic receive, probes on the endpoint of that receive call until the sender

belonging to the signalled match-set makes an entry into the receive queue. Since the

queue is FIFO ordered, the scheduler can safely decide to compute the next match-set

and signal them to the runtime. Note, however, that for such a policy to be applicable,

the scheduler should itself act as an MCAPI node, since, in order to probe it will have

to issue the augmented MCAPI probe call. Secondly, this is quite an intrusive solution.

We are suggesting a change in the MCAPI library with a function call that is not even

a part of the standard. Furthermore, it is possible that the library’s souce code may

not be available to the developer of the verification engine.

• Wait introduction: This solution is non-intrusive as opposed to the previous solu-

tion. In this solution we remove the distinction between the calls getting matched and

the calls getting completed. The scheduler, after deciding to signal a match-set into

the runtime which invovles a nonblocking receive, waits until the nonblocking receive

has completed. This wait is acheived by introducing an extra wait into the instruction

stream of the MCAPI application. The wrapper call of the nonblocking receive call,

after getting a signal from the scheduler, calls an additional wait instruction. In

other words, we have implicitly transformed nonblocking receive calls into blocking

receive calls. Note that this will not affect the communication structure of the original

program other than the performance hit.

The MCC scheduler adopts the second solution since it is non-intrusive.
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7.4 MCAPI Checker (MCC) Overview

MCC is based on the current reference implementation of MCAPI provided by the MCA.

The reference implementation uses Pthreads and a thread describes the notion of a node.

Communication is performed only after a node has successfully issued MCAPI INITIALIZE.

It is an error to issue a communication call after a node has performed an MCAPI FINALIZE.

We have identified a list of safety properties that are important to ensure a correct and safe

use of the API. For instance, invoking a communication call without creating valid endpoints

or accessing the data buffer (passed to a nonblocking call) before the corresponding wait

operation is issued are few of the conditions that violate the correctness of an MCAPI

program. A list of default usage properties are compiled in [41].

Figure 7.3 describes a high level work-flow of the MCC tool. MCC has three components.

The first component instruments an input MCAPI C user program at compile time. As a

part of the instrumentation process all the MCAPI calls along with the Pthread create/join

calls are renamed (by prepending the character “p”). These instrumented calls serve as

wrappers to the actual MCAPI calls. Additionally, the thread function bodies are enveloped

within the calls thread start and thread end and the main thread is instrumented with a

main start and main end call. Figure 7.1 shows a snippet of instrumented C code that has

the same communication pattern as depicted in Figure 7.2. Note that thread function body

is instrumented with a thread start (line 4) and a thread end (line 16) call. The thread end

call notifies the scheduler that thread count, a piece of information noted by the scheduler

before processing any instrumented call, should be decremented by one. The thread count

helps the scheduler to determine when all threads have blocked. The thread start call acts

as a barrier (global fence) operation. In other words, all the threads (except the main

thread) have to issue the thread start call before any thread can proceed with its execution.

The main thread is also instrumented with a main thread start and a main thread end call

(lines 18, 25). These calls notify the scheduler of the start and end of the verification

process. Additionally, the traditional Pthread create and join calls are also instrumented.

The primary reason for create/join call instrumentation is to ascertain the total number

of nodes in the system before each node starts issuing MCAPI communication calls. We

assume no dynamic creation of threads. All the MCAPI related calls are replaced with the

wrapper calls that are defined in the profiler component of MCC.

The second component of MCC is the profiler that has function definitions of the instru-

mented calls. The profiler functions perform the necessary book-keeping and communicate
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Figure 7.3: MCC workflow

the information collected to the scheduler. The functions block until they receive a signal to

continue with the execution from the scheduler. The profiler wrapper functions eventually

issue the actual MCAPI calls to the runtime. The third component of MCC is the scheduler

that ultimately decides which calls should be issued to the runtime and subsequently signals

the blocked threads to unblock and execute those calls.

The scheduler explores all the independent thread steps in a single non-commutative

canonical order while commuting all dependent co-enabled thread steps resulting in the

exploration of a reduced state space that is a valid partial order reduction of the complete

state space. The MCC scheduler accommodates receive nondeterminism by delaying (dy-

namically re-ordering) the processing of receive calls until all sends that can potentially

match the receives are dynamically discovered. Each such send-receive match is explored

in separate runs of the program (these matches form the persistent-sets).

7.4.1 MCC Scheduler Explanation Through an Example

The MCC scheduler, unlike the ISP scheduler, does not perform dynamic re-writing

because MCAPI does not provide specific source point receives; meaning that one cannot

designate where one would like to receive from. The scheduler is able to perform dynamic

re-ordering of calls by first discovering all pending calls and then issuing matched calls

sequentially to the run time and inserting waits when needed in nonblocking semantics.

While an MCAPI node (i.e., a thread w.r.t. the reference implementation) would issue the

calls in program order, the MCC scheduler can permute the order of these calls without

introducing any new behaviors in the program.
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Consider the example shown in Figure 7.4 where the MCC scheduler re-orders the calls.

Threads T1, T2 and T3 are blocked at the W1,3, W2,2 and W3,3 calls, respectively. The

match-sets formed by the scheduler at this point are 〈S1,2, R3,1〉 and 〈R1,1, S2,2〉. As the

wait call for R1,1 is not yet seen, the recv call is not obliged to finish before S1,2 call.

Note that signaling the match-set 〈S1,2, R3,1〉 to runtime enables S3,2 call, which is

another potential sender to the call R1,1. Hence, signaling the match-set 〈S2,1, R1,1〉 to the

runtime before the match-set 〈S1,2, R3,1〉 would lead to incorrect verification results. Noting

this fact, the scheduler should signal a go-ahead to S1,2 call first, thus permuting the issue

order different from the program order.

Figure 7.5 illustrates an interleaving scenario as a time-line based sequence of message

interactions between the scheduler and the threads of an MCAPI user program (from

Figure 7.4). The user program is branched off as a separate thread under the controlled

environment of the scheduler. The main thread of the instrumented program issues thread

create calls, which when signaled to go-ahead by the scheduler, create threads T1, T2, and

T3. Note that the main thread blocks at the first thread join call. Threads T1, T2, and

T3 are all blocked at their respective thread start calls. The reason to have a thread start

call is explained in Section 7.4.2. The scheduler then unblocks the threads T1, T2 and T3

after ascertaining a count of the total number of threads alive in the system. The threads

continue to run and issue calls until they have hit their fence operations (blocking calls). At

this point the scheduler has seen the following operations: (i) Until W1,4 from T1; (ii) Until

W2,2 from T2; and (iii) Until W3,3 from T3. The scheduler has come across a decision-point

and subsequently forms match-sets from the list of enabled transitions. Scheduler issues

the signals to go-ahead to the match-sets and subsequently spin-loops until the recv call in

the match-set completes before signaling a go-ahead to the next match-set. The box in the

timing diagram of Figure 7.5 represents this spin-loop.

The main thread unblocks following the completion of the thread end calls and the

program runs to completion.

T1 T2 T3
R1,1(e1) S2,1(e2, e1) R3,1(e3)
S1,2(e1, e3) W2,2(h2,1) S3,2(e3, e1)
R1,3(e1)
W1,4(h1,3) W3,3(h3,2)

Figure 7.4: Re-ordering example
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7.4.2 MCC Scheduler Algorithm

Algorithm 10 in Section 7.4.2 explains the working of the scheduler. The MCC scheduler

works under certain assumptions. It assumes that all threads of the system are created at

the outset of the program. The MCC scheduler must know the total thread count in the

system to determine when all threads have blocked. As such, MCC count threads as they are

created by the main thread, and blocks them on their thread-start calls until the main thread

either invokes an MCAPI call or a thread join call. At that point, MCC assumes the total

number of threads to be those already created and starts all the created threads running.

After ascertaining the thread count, the scheduler liberates all the blocked threads (line

17) and starts receiving transitions from all runnable threads until the next decision-point

is hit. Note that if a thread issues a thread end call, the thread count of the system is

decremented (lines 18-28).

Once a decision-point is hit, the scheduler then computes the match-sets from a list of

enabled transitions. Algorithm 11 presents the ways find matchset function behaves. It

then selects one match-set and liberates the participating threads in that match-set (lines

29-32). A match-set consists of either a send-receive call pair, or a single entry comprising a

wait call. The enabled transitions are computed with the help of the IntraHB relationship

that is maintained for each state of the scheduler. The priority order for evaluating these

match-sets is the following: (i) enabled wait call (ii) and then the send-receive match-set.

The MCC scheduler also handles get endpoint and create endpoint calls. When a thread

issues a create endpoint call, the scheduler looks to see if any blocked thread (on get endpoint

call) was waiting for it. If so, the create endpoint call and the blocked get endpoint call are

both signaled to go-ahead. If that is not the case, then the scheduler stores the created

endpoint in an auxiliary table. When the scheduler encounters a get endpoint call then it

first looks up the table of created endpoints. It blocks the thread if the sought endpoint is

not created. Otherwise, get endpoint call is immediately signaled to go-ahead.

Every decision-point advances the state of the scheduler. The match-sets for a state

under exploration are stored in a separate data structure (persistent-set). Every state

has an persistent-set associated with it. One entry is selected from this ample-set for the

go-ahead. Subsequently, the match-set entry that has been recently liberated is removed

from the persistent-set. The updated persistent-set is then copied to the next state.

Note that only the first interleaving builds the per-state persistent-set. The scheduler

declares a deadlock in the code if at a state the persistent-set is found to be empty while
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Algorithm 10 MCC scheduler pseudocode

1: GenerateInterleaving( ) {
2: while (1) { // Computes the total number of threads alive
3: ti = Obtain transition ();
4: if (ti is thread create) {
5: num threads++;
6: signal go-ahead to thread of(ti);
7: }
8: if (ti is thread join || ti is MCAPI communication call by thread “main”) {
9: signal go-ahead to thread i;

10: break;
11: }
12: if (ti is thread start) {
13: update the status of thread i to blocked;
14: }
15: }// while (1) ends here
16: count = num threads;
17: signal go-ahead to all the blocked threads;
18: while (count) { // till no more threads are alive
19: for each (runnable thread i) {
20: ti = receive transition from thread i;
21: update transition list of thread of (ti) in the Scurr;
22: if (ti is of blocking type) {
23: update the status of thread i to blocked;
24: }
25: if (ti is of type thread end) {
26: count --;

27: }
28: }

// All threads are blocked here
29: while (no thread is runnable) {
30: find matchset ();
31: unblock the threads owning transitions in the above match-set;
32: }
33: }// while (count) ends here
34: }

35: check for runtime race( ) {
36: if (any ti ∈ current match-set races with nonblocking call from prev match-set) {
37: while (nonblocking call is completed); {
38: }
39: }
40: }
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Algorithm 11 Find a suitable match-set

1: find matchset( ) {
2: Store the computed match-sets in ample set of Scurr;
3: if (ample set is not empty) {
4: for each (ti in head element of the ample list) {
5: check for runtime race();
6: give a go-ahead to thread of (i);
7: }
8: remove head element from ample set;
9: copy the ample set in Snext;

10: return;
11: }
12: flag that a deadlock found;
13: }

there are still runnable threads in the system (lines 41-52).

A safety check is performed before the participating threads can be given a go-ahead.

This safety check ensures that a deterministic match manifests at runtime and the transi-

tions of the match-set in the current state (Scurr) do not race with the transitions from the

match-set in the previous state (Sprev). In the case when a race is found, then the scheduler

spin-loops until the racing transition from Sprev is completed by repeatedly testing the

request handle of the racing transition. Only after the completion of the racing transition

is the current match-set processed (lines 35-40). Later, if a wait call is observed by the

scheduler for the completed racing transition it is still issued to the runtime, however, it

will return immediately.

The procedure GenerateInterleaving is called in a loop until there are no more replays

to be performed. The decision whether to perform a replay is made by inspecting the

persistent-set of the visited states in the stack. If for each state the persistent-set is found

to be empty then the scheduler has explored all the relevant interleavings.

7.4.3 Discussion

The MCC scheduler explores all the interleavings which are resulting from the connec-

tionless wildcard receive calls of MCAPI that are supported by MCC. Thus, Being a a

dynamic strategy, MCC is guaranteed to discover deadlocks and safety violation assertions

soundly. Furthermore, it also offers the completeness guarantee over the schedule space

resulting from the use of wildcard receives. We now present some of the important questions

that we came across while constructing dynamic verification engines for Message Passing
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systems.

• Should the developer of the verification scheduler insert hooks in to the API’s runtime

or use the API calls which may manipulate the semantics of the program?

• How can a scheduler enforce determinism in the event of a communication race?

Enforcing determinism may require controlling the runtimes of multiple APIs.

• Would it be more convenient to have a trace-based order-replay scheduler as opposed

to a stateless order-replay scheduler?

• Should the dynamic process/thread/node creation be considered important for appli-

cation verification or would it suffice to verify an application with fixed nodes?

7.5 Results and Concluding Remarks

We have developed the first dynamic verification engine for MCAPI user applications

that currently handles blocking and nonblocking connection-less communication constructs

of the MCAPI reference implementation. Since no publicly available benchmark using

MCAPI is currently available, we tested MCC successfully on small test examples con-

structed by ourselves. For instance, the example program from Figure 7.4 was verified in two

interleavings in a fraction of a second. We are currently working to extend MCC to support

the full set of MCAPI calls. Future works involves exploring solutions to verify programs

that have subtle bugs, for instance, data-races in unison with the MCAPI nondeterminism.



CHAPTER 8

RELATED WORK

In this chapter, we provide a general summary of research that has taken place in the area

of MPI application verification, particularly in those areas that have a significant overlap

with the solutions that we have investigated in our dissertation.

8.1 Correctness and Verification Tools in MPI

We first evaluate the space of correctness checking tools. These are the type of tools

that check for runtime errors of an MPI program by examining only the current trace of

the program which is under execution. Such tools are not sufficient to explore alternate

schedules of the program. A detailed survey of correctness checking tools and debuggers

can be found in [57]. We briefly list some of the correctness tools in the following text:

• MPI-CHECK: MPI-CHECK supports only FORTRAN 90 programs. The version

that supports C/C++ is under development. MPI-CHECK does not use the MPI

profiling Interface to capture the calls and analyze them; instead, it uses a macro-like

mechanism wherein the MPI calls in the program are instrumented to have extra

arguments. These arguments provide information such as line number in the source

code where the call was made, the MPI function name and its arguments. The

information is stored in a database known as the Program Database (PDB). The

process of checking is split into two phases. In phase one, instrumentation of MPI

programs is performed followed by their compilation. In phase two, execution of the

instrumented MPI code under the control of the MPI-CHECK server takes place. The

errors captured by MPI-CHECK as explained in [37] are incorrect usage of MPI calls,

exceeding buffer bounds, and deadlocks.

• MARMOT: MARMOT is a tool that analyzes MPI programs by trapping communi-

cation calls using the MPI profiling interface. It performs all argument verification like

tags, communicators, ranks, etc. locally on the client side. MARMOT also detects

potential and real deadlocks. However, the mechanism employed to detect deadlocks
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is different from that of MPI-CHECK. In MARMOT dependency graph is not created.

Instead, a time-out mechanism is used to conclude the presence of a deadlock. Some

of the checks performed by MARMOT as explained in [36] are: MPI type errors,

resource leaks, deadlocks, erroneous use of MPI I/O.

• UMPIRE: UMPIRE, developed at LLNL (Lawrence Livermore National Labs), is

another MPI program correctness checker. It is a tool that dynamically analyzes

MPI programming errors using MPI profiling interface. It performs checking at two

levels. Firstly, it checks at the local level where it uses all the task-local information

to perform the checks. For instance, tests regarding the checksum on nonblocking

send buffers can be carried out at this level. The second check is performed at a

global level. It digs out more subtle errors like deadlocks, consistency errors, and type

mismatches at the global level. UMPIRE uses time-out mechanism and dependency

graphs to detect deadlocks. Complete operational details regarding UMPIRE can be

found in [74].

• MPIDD: MPIDD, like UMPIRE has a central manager that traps all MPI calls using

the MPI profiling interface (PMPI); however, UMPIRE runs as a separate process and

communicates using shared memory with different processes. MPIDD runs as another

MPI process and the trapped information is sent to the central detector using MPI

calls as explained in [31]. MPIDD is essentially a deadlock detection tool. It creates a

dependency graph to figure out potential/real deadlocks. The detection algorithm is

a Depth First Search for cycles in the dependency graph. The architecture of MPIDD

suggests that it should be able to do all the argument verification tests that other

tools perform.

• MPIRace-Check: It is a tool that identifies communication race among sends vying

to match a nondeterministic receive. MPIRace-Check [48] uses vector clocks to dis-

cover such racing sends. MPIRace-Check does not have the ability to deterministically

replay the program unlike the verification tools that we will discuss shortly. Since,

vector clocks are used, MPIRace-Check have scalability issues.

• Intel Message Checker: Intel Message Checker [11] (IMC) is an MPI correctness

tool which has a centralized mechanism to detect errors/deadlocks like MARMOT

and UMPIRE. However, UMPIRE and MARMOT are purely runtime checking tools.

IMC, on the other hand is a post-mortem analyzer. The component of IMC called

“TRACE collector,” collects information of each MPI call in a trace file using a library
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file, libVTmc.so, which is similar to the PMPI interface. This trace file is then analyzed

by a checking engine after the execution. IMC also provides a visualizer to examine

the output of the analyzer. IMC checks for type errors, resource leaks, deadlocks and

unsafe buffer uses in the program. IMC can suffer from several impediments. The

trace files generated can be large. Furthermore, the generation of trace files in the

presence of an MPI error cannot be guaranteed, as the behavior after an MPI error

is implementation defined.

Unlike correctness checking tools, verification tools have a scheduler that orchestrates

various interleavings to exhaustively examine the relevant scenarios of the program. Verifica-

tion tools provide a guaranteed coverage of MPI programs over the space of nondeterminism.

To the best of our knowledge, the two dynamic verification tools for MPI are ISP [69] and

DAMPI [77]. MPI-SPIN [60] is the only model-checker for MPI programs that operates on

user built models of MPI programs. MPI-SPIN models are written in the extended SPIN

language. MPI-SPIN suffers from scalability issues and can be applied to only very small

programs.

MAAPED is the only predictive verification tool in the MPI application landscape

that offers similar coverage guarantees as dynamic verification tools for SOMM class of

programs. In future work, we discuss ways to extend the MAAPED work so that the

predictive verification methodology is applicable to class of programs wider than SOMM

class.

8.2 Tools for Checking MCAPI Applications

In the space of MCAPI programs, MCC [55, 54] is the first dynamic verifier. MCC

is very similar to ISP in operation and borrows concepts from ISP and Inspect [84, 85].

The only other tool that performs deterministic replay of MCAPI programs is DR-MCAPI

[14]. Its functioning is similar to that of MCC where the end goal is concerned. There are,

however, operational differences in MCC and DR-MCAPI. While DR-MCAPI records the

trace and performs order-replay, MCC does not record any trace. DR-MCAPI, being more

recent, supports a wider number of MCAPI calls (MCAPI test and MCAPI wait any) as

opposed to MCC which is not actively supported anymore.

In [13, 15], the authors have presented a symbolic debugger for correctness checking of

MCAPI applications knows as CRI. The CRI tool obtains a trace of an MCAPI program

execution and builds an SMT (Satisfiability Modulo Theories [64]) formula which is fed
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to a popular back-end decision procedure such as Yices [86]. It checks for common errors

such as communication races and assertion failures. It does not have the ability to replay

the program and suffers from similar problems that IMC (discussed earlier) suffers from.

Another work related to symbolic analysis of MCAPI applications is presented in [21]. This

work is related to CRI to a certain extent. They have symbolically modeled the MCAPI

program after observing a single execution trace. However, instead of restricting their

reasoning to the observed trace, the work can also reason about other execution schedules

where the sequence of conditional branch outcomes are same as the one observed in the

execution trace. The work in [21] has a shortcoming that the authors themselves have

noted, which is that the technique for SMT formula generation in their work is prohibitively

expensive in computation time.

8.3 Related Work in Barrier Analysis

To the best of our knowledge, FIB detection is the only work in the domain of MPI

that soundly and completely discovers all the collective barrier operations that are either

relevant/irrelevant or a cause of deadlocks in MPI programs. Other work in the SPMD

(Single Program Multiple Data) domain that identifies textually aligned barriers is from

[1]. Their algorithm statically infers whether or not the textually unaligned barriers in

the program are correctly synchronized. A related work in [50] detects barriers that are

cause of a deadlock in the actual run of the program and visualizes them in the Eclipse

IDE (Integrated Developement Environment). This work is a part of the debugging facility

provided by the PTP (parallel tools platform) of Eclipse.

If we move to the domain of threaded applications, then there is a vast body of work

that has investigated the problem of erroneous barriers. The work in [87] is one of recent

efforts to statically identify mismatched barriers that are textually aligned. Notice that the

essential work, that all the earlier research, regardless of the domain (shared memory or

message passing), is trying to solve is the barrier matching problem in order to discover

the deadlock due to ill-synchronization at compile time. Our FIB work, on the other hand,

not only discovers ill-synchronization of barriers (regardless of whether they are textually

aligned or unaligned), it also discovers which set of matching barriers are irrelevant.



CHAPTER 9

CONCLUSIONS AND FUTURE

DIRECTIONS

Verification of programs that are constructed using message passing libraries with non-

deterministic constructs is not only essential but also the only option for obtaining coverage

guarantees. However, most verification tools in this domain explore the whole schedule

space of programs in an indiscriminate fashion. We demonstrate in this dissertation that

it is unnecessary for a large class of SPMD styled programs to explore the whole schedule

space. For such a class of programs we have investigated two methodologies and shown

their effectiveness to verify programs for the presence of deadlocks in far fewer interleavings

and in much less time.

We first presented the MSPOE algorithm (implemented on top of ISP) and its effective-

ness to prune the schedule space for several benchmarks. The MSPOE algorithm could have

very well be implemented on top of other dynamic verification schedulers such as DAMPI

without any changes to the algorithm. We then presented a generalized matches-before

framework which was utilized to construct the predictive deadlock detection framework

called MAAPED. We sketched the soundness and the completeness proof of the generalized

matches-before constructor and presented the results of the polynomial time deadlock de-

tection strategy on several benchmarks and compared them to ISP’s results. As previously

stated with respect to the MSPOE work, the predictive verification strategy of MAAPED

can also be built on top of DAMPI verification scheduler without significant algorithmic

changes. We finally relayed some of our experiences while building dynamic verification

scheduler for message passing library MCAPI.

MSPOE and MAAPED algorithms discover deadlocks cheaply. MSPOE has the ad-

vantage of simplicity of implementation, however, its results are incomplete. MAAPED,

on the other hand, subsumes MSPOE results. MSPOE can handle reply channel based

communication which MAAPED, at the moment, cannot. MSPOE, theoretically, can end

up exploring a exponential schedule space while MAAPED only explores a single trace
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and discovers deadlocks in polynomial time. As a recommendation to a potential user of

these algorithms, we suggest a portfolio approach (run both algorithms) by evaluating which

algorithm can fit the constraints that the program offers. We also presented an algorithm to

improve the performance of MPI applications by removing global synchronization operations

(MPI barriers) that were discovered to be irrelevant. We further present the soundness and

completeness proof of the algorithm and present some results on various benchmarks.

9.1 Future Research Directions

Following is a list of future research problems that we would like to explore:

• Proof for the Conjecture: We strongly believe in the conjecture that we presented

as Theorem 5.6 to be true. In future, we would pursue this conjecture and try to

prove it in totality. Theorem 5.6 not only holds value in MPI program verification

but also in compiler assisted program optimizations.

• Synergistic Static-Dynamic Analysis: We believe that there is a wide variety

of MPI program errors that can discovered at compile time, for instance, erroneous

buffer re-use, type mismatches in the send/recv arguments, and even irrelevant barrier

detection and some types of deadlocks. Most of these errors can be identified by

examining the traditional CFG (Control Flow Graph) of the SPMD program by

treating it no differently than a sequential program CFG. However, for the rest of

the errors where matching information among MPI operations is essential, it would

require a special CFG tailored to SPMD programs. The work in [65, 3] have tried

to partially address that problem. We would ideally like to build a static analysis

framework, especially borrowing the work from [3] to perform analysis on identifying

a set of wildcard receive calls that must be examined dynamically. Such information

can then be fed to a dynamic verification scheduler, which can selectively explore

interleavings for a supplied input thus pruning a vast schedule space without masking

any safety property violations. We can also rely on MPI specific CFGs to deal with

programs where the communication flow is conditionally dependent on a particular

sender a wildcard receive chooses to match.

• Task Permutation vs. Match Permutation: Consider the traces of a program

shown in Figures 9.1a and 9.1b. Both traces are of the same program. In these figures,

P0 is the master and P1 and P2 are the workers. In Figure 9.1a, P1 is allotted two tasks

and P2 is allotted one task. With such a fixed allotment policy, we would witness that



97

R    (*)

01

02

03
R   (*)

S   (0)

S   (0)

S   (0)

11

12

21

P P P
0 1 2

R    (*)

(a) Match Permutations

22

01

02

03
R   (*)

S   (0)

S   (0)

11

P P P
0 1 2

R    (*)

R    (*) S   (0)
21

(b) Task Permutations of the same
example in Figure 9.1a
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the two sends from P1 and a single send from P2 can permute and match any of the

three receives. However, the moment task allotment policy changes (such as shown in

Figure 9.1b), we would witness a whole different class of interleavings. Such instances

arise in programs written with dynamic load balancing. The programs with dynamic

load balancing are highly symmetric, however, existence of such a symmetry must be

first established. The work in [12] provides a solution for discovering symmetry in

message passing programs, however, their solution revolves around approximating the

NP-HARD orbit problem [17, 6]. We strongly believe that for the purpose of SPMD

programs, we can have simple syntactic checks performed at compile time to discover

symmetric components in the communication space of the program. Such checks

can very well be on the lines of the work presented in [85] (which, however, is only

for multithreaded programs) and can be added as peripheral tools in the MAAPED

framework.

• Verification for Performance: Verification methodologies can and will be used

to increase the performance of MPI application in forthcoming years. We have only

scratched the surface with our investigations on identifying FIBs in the MPI code.

Barriers are not the only synchronization operations or global fence operations in

MPI libraries. It is stated in [9] that: We would ideally want to construct a dynamic

framework which operates not only on the application layer but also at the library

layer. Such a framework would identify hot-spots (such as barriers/collective calls) in

the application where most time is spent. Furthermore, the framework will provide

a summary whether or not such synchronization points are functionally relevant and

whether they can be replaced by suitable point-to-point operations.

• Hybrid Program Verification: Consistent with the predictions of extreme scale

computing report [52], the hybrid programming support has increasingly been wit-
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nessed in popular parallel programming libraries. For instance, MPI implementations

exploit shared memory mechanisms for data transfer as long as the communicating

processes are mapped on the separate cores of a single processor. Programs written

with mixed API usage, such as CUDA and MPI have already made their way in

the high performance computing world. To the best of our knowledge, inter-API

interactions that would exist in applications that rely on mixed usage of APIs have

not been formally studied before. The loose semantic characterization of inter-API

interactions can be a source of a new class of hard-to-reproduce bugs. For instance, a

benign data race caused by an erroneous use of multithreaded API calls in the program

may lead to communication deadlock in the MPI specific part of the same program.

We believe that a formal study of inter-API interactions in such applications (with the

use of hybrid programming models) is essential. The research into extending predictive

dynamic verification methodology for such hybrid programming models would be a

valuable contribution.
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