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ABSTRACT

Magnetic Resonance Imaging (MRI) is one of the most important medical imaging 

technologies in use today. Unlike other imaging tools, such as X-ray imaging or computed 

tomography (CT), MRI is noninvasive and without ionizing radiation. A major limitation 

of MRI, however, is its relatively low imaging speed and low spatial-temporal resolution, 

as in the case of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). 

These hinder the clinical use of MRI. In this thesis, we aim to develop novel signal 

processing techniques to improve the imaging quality and reduce the imaging time of MRI.

This thesis consists of two parts, corresponding to our work on parallel MRI and 

dynamic MRI, respectively. In the first part, we address an important problem in parallel 

MRI that the coil sensitivities functions are not known exactly and the estimation error 

often leads to artifacts in the reconstructed image. First, we develop a new framework 

based on multichannel blind deconvolution (MBD) to jointly estimate the image and the 

sensitivity functions. For fully sampled MRI, the proposed approach yields more uniform 

image reconstructions than that of the sum-of-squares (SOS) and other existing methods. 

Second, we extend this framework to undersampled parallel MRI and develop a new 

algorithm, termed Sparse BLIP, for blind iterative parallel image reconstruction using 

compressed sensing (CS). Sparse BLIP reconstructs both the sensitivity functions and the 

image simultaneously from the undersampled data, while enforcing the sparseness 

constraint in the image and sensitivities. Superior image constructions can be obtained by



Sparse BLIP when compared to other state-of-the-art methods. In the second part of the 

thesis, we study highly accelerated DCE-MRI and provide a comparative study of the 

temporal constraint reconstruction (TCR) versus model-based reconstruction. We find that, 

at high reduction factors, the choice of baseline image greatly affects the convergence of 

TCR and the improved TCR algorithm with the proposed baseline initialization can achieve 

good performance without much loss of temporal or spatial resolution for a high reduction 

factor of 30. The model-based approach, on the other hand, performs inferior to TCR with 

even the best phase initialization.
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CHAPTER 1

INTRODUCTION

Magnetic resonance imaging (MRI) is widely used in radiology due to its ability to 

detect cancer and accurately diagnose several other diseases noninvasively. Compared to 

other medical imaging tools, such as X-rays and computed tomography (CT), the 

advantage of MRI is that it uses nonionizing radiation and does not have the risk of 

radioactive harm to people (1). In addition, MRI provides more flexibility in image contrast 

by using various imaging sequences and scanning protocols. MRI is broadly used in many 

applications, such as imaging brain, blood vessels, abdomen, and bones, etc. MRI can also 

be used to measure brain oxygen saturation, blood flow velocities, diffusion of water 

molecules, and concentration of metabolites.

The most challenging problem of MRI is its relatively slow acquisition speed and low 

spatial-temporal resolution. Although imaging speeds have increased dramatically over the 

last four decades, many clinical and research applications, ranging from dynamic contrast 

enhanced imaging of breast tumors to cardiac imaging, require faster imaging methods. 

Unfortunately, current MRI scanners already operate at the limits of potential imaging 

speed because of the technical and physiological problems associated with rapidly switched 

magnetic field gradients.

Many methods have been developed to deal with this problem. Parallel MRI 

reconstruction is one type of method to accelerate acquisition speed by using several coil



to acquire undersampled data simultaneously (2-4). Another way to accelerate imaging 

speed is the new emerging compressed sensing technology, which exploits the sparse 

property of images (5-8). It states that if an image is sparse in some transform domain, it 

can be accurately reconstructed using a subset of the data under certain conditions. In this 

thesis, we investigate several key challenges in accelerating MRI reconstruction. The main 

contributions of this thesis are three methods for rapid imaging technologies which utilize 

signal processing techniques including blind signal estimation and compressed sensing.

First, we consider image reconstruction from fully sampled multichannel phased array 

MRI data without prior knowledge of the coil sensitivities. To overcome the nonuniformity 

of the conventional sum-of-squares reconstruction (9), we develop a new framework based 

on multichannel blind deconvolution (MBD) (10-12) to jointly estimate the image function 

and the sensitivity functions. We investigate the nonuniqueness of the MBD problem by 

exploiting the smoothness of both functions in the image domain through regularization. 

We successfully demonstrate that the reconstructions by the proposed algorithm are more 

uniform than those by the existing methods using simulation, phantom, and in vivo 

experiments.

Second, we investigate image reconstruction from undersampled multichannel parallel 

MRI data using compressed sensing. Image reconstruction for parallel MRI can be 

formulated as a multichannel sampling problem where solutions are sought analytically

(13). However, the channel functions given by the coil sensitivities in parallel imaging are 

not known exactly and the estimation error usually leads to artifacts (14). In this study, we 

propose a new reconstruction algorithm, termed Sparse BLIP, for blind iterative parallel 

imaging reconstruction using compressed sensing. The proposed algorithm reconstructs
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both the sensitivity functions and the image simultaneously from undersampled data. It 

enforces the sparseness constraint in the image as done in compressed sensing (CS), but is 

different from CS in that the sensing matrix is unknown and additional constraint is 

enforced on the sensitivities as well. Both phantom and in vivo imaging experiments are 

carried out with retrospective undersampling to evaluate the performance of the proposed 

method.

Third, we investigate the image series reconstruction of dynamic contrast enhanced MRI 

(DCE-MRI) for breast tumor imaging. We provide a comparative study of the temporal 

constraint reconstruction (TCR) (15) versus model-based reconstruction (16). We find that, 

at high reduction factors, the choice of the baseline image greatly affects the convergence 

of TCR. We design a jigsaw undersampling pattern and form a good baseline estimation. 

The improved TCR algorithm with the proposed baseline initialization achieves good 

performance for a high reduction factor of 30. Next, we study the model-based 

reconstruction method (16), and find that the model-based reconstruction method performs 

inferior to TCR with even the best phase initialization that we have tested.

1.1 Dissertation Structure

This dissertation is organized as follows.

Chapter 2 is a brief introduction to MRI, which provides the necessary basic background 

about MR imaging. It covers some basic MR physics, including spin, magnetization, signal 

generation, signal reception, spatial encoding, and image generation, and fundamentals in 

parallel MRI, compressed sensing, dynamic MRI, and DCE-MRI.

In Chapter 3, we consider image reconstruction from fully sampled multichannel phased 

array MRI data. First, we introduce the structure of the multichannel blind deconvolution
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(MBD) problem. Then we introduce the subspace approach (17) and the proposed 

regularized MBD approach. The proposed method is compared to the traditional methods 

using simulated dataset, phantom, and in vivo brain dataset.

In Chapter 4, we develop a sensitivity-based parallel imaging reconstruction method to 

iteratively reconstruct both the coil sensitivities and MR image simultaneously based on 

their prior information. First we introduce the Sparse SENSE (7) method and JSENSE (14) 

method. Then we describe the proposed Sparse BLIP method and its implementation. At 

last we compare the proposed method with IRGN-TV (18), Sparse SENSE (7), JSENSE

(14), and L1-SPIRiT (8) using phantom, in vivo brain, and in vivo cardiac dataset.

In Chapter 5, we study the dynamic contrast enhanced MRI (DCE-MRI) for highly 

accelerated breast tumor imaging. We first review the traditional TCR method (15) and 

then describe the improved TCR method with our proposed sampling and baseline 

initialization approach. Then we present the phase-enhanced model-based method (19,20). 

We present a comparative study of the improved TCR method with phase-enhanced model- 

based method, and find that while the improved TCR method achieves good image 

reconstruction without much loss of spatial and temporal resolution at a high reduction 

factor of 30, the model-based method performs inferior to TCR with even the best phase 

initialization.

In Chapter 6, we summarize the main contribution of this dissertation and discuss future 

research directions.
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CHAPTER 2

BACKGROUND

Since the first successful nuclear magnetic resonance (NMR) experiments, MRI has 

improved dramatically in imaging quality and imaging speed. MRI is a tomographic 

imaging method that produces images of internal physical and chemical characteristics of 

an object from externally measured NMR signals. NMR signals are used to form the image 

by spatial encoding technology, which uniquely encodes spatial information into the 

activated MR signals detected outside the object. Unlike computed tomography (CT) and 

positron emission tomography (PET), MRI can provide images with high resolution 

without using ionizing radiation. Furthermore, MRI can provide more flexibility in image 

contrast by using different imaging sequences and scanning protocols. These advantages 

lead MRI to become one of the most preferred imaging modalities in clinical applications.

2.1 Principle of Magnetic Resonance Imaging

2.1.1 Spin and Magnetization 

As depicted in quantum physics, nuclei that have odd atomic weights or odd atomic 

numbers have angular momentum J  (called a spin), such as the nucleus of a hydrogen 

atom (21-23). As shown in Figure 2.1, the angular momentum J  gives rise to a nuclear 

magnetic moment fi = y J , where Y  is gyromagnetic ratio. The overall magnetization M 

of an object is defined as the sum of all the micro nuclear magnetic moment. Without the



external magnetic field, the nuclear magnetic moments are randomly aligned, so the 

macroscopic magnetization of an object is zero. To activate magnetism from an object, we 

need to expose the object to an external magnetic field B0 . When exposed to an external

magnetic field, a large part of the magnetic moments aligns with the external magnetic 

field.

From the quantum theory, the magnetic moment vectors can assume one of a discrete 

set of orientations when exposed to a strong external magnetic field. For the hydrogen 1H 

nuclei, the magnetic moment vector takes one of two possible orientations: pointing up 

(parallel) and pointing down (antiparallel) as shown in Figure 2.2.

Classical mechanics can be used to describe the motion of the magnetic moment f~i in 

the presence of b 0 , which is termed as precession, as shown in Figure 2.3. The precession 

frequency is also denoted as Larmor frequency: = r B0. The direction of the field b 0 and

its perpendicular plane are often referred to as the longitudinal direction (z-axial) and the 

transverse plane (x-y plane).

Because most spins adopt the parallel rather than the antiparallel state, the macroscopic

magnetization M  = is in the direction of the b 0 field. The transverse component of

macroscopic magnetization is zero at equilibrium since the precessing magnetic moments 

have random phases.

2.1.2 Bloch Equation

The interaction of the magnetization M with an external magnetic field B  can be 

conveniently described by the Bloch equation (1):
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—  = M x v B  + 
dt

[2.1]
T T ’ 12

where Mxy, Mz, and M0 are the transverse, longitudinal, and equilibrium magnetization, 

T1 and T2 are relaxation constants and are specific to different tissues.

The net magnetization M  is the source of signals used to provide information about the 

object. However, the net magnetization is not an oscillating signal (like a DC voltage), 

which is not detectable. In order to detect a signal from the spins, another radio frequency 

(RF) excitation field B 1 must be applied. As shown in Figure 2.4, an external RF field B 1 

is applied in the transverse plane and precesses at the Larmor frequency. The magnetization 

M  will be “excited” or flipped away from the equilibrium state, which can be described by 

Bloch equation.

After the excitation, there are two components of the magnetization M, i.e., longitudinal 

magnetization Mz and transverse magnetization Mxy. As shown in Figure 2.5 (a), after B 1 

is removed, the magnetization will gradually return to the original equilibrium position 

through the process termed as “relaxation”, which can be described by the Bloch equation 

[2.1]. The relaxation parameters are key to image contrast because different tissues have 

different relaxation parameters.

2.1.3 Resonance

2.1.4 Relaxation

2.1.5 Signal Generation 

As presented in Figure 2.5 (a), magnetization that is excited to the transverse plane 

precesses at the Larmor frequency. According to Faraday's law, the precession will induce



a changing voltage in the receiver coil tuned to the Larmor frequency, as shown in Figure

2.5 (b). This voltage is the signal that is used for imaging. The received signal is the 

cumulative contribution from all the excited magnetization in the volume. With only the 

homogeneous B0 field present, the system does not contain any spatial information. The 

received signal is a complex harmonic with a single frequency peak centered at the Larmor 

frequency.

2.1.6 Spatial Encoding and K-space 

The signal generated with the coil is a sum of local signals from all parts of the object. 

For a spatially homogeneous object, this signal is enough for imaging. But for a 

heterogeneous object, it is necessary to differentiate local signals from different parts of 

the object. In order to image a slice of the body, a linear gradient field Gz along z direction

is used. The magnetic field will vary as B (z ) = B0 + Gzz . This variation causes the

precession frequency to vary linearly in z direction: G)( z ) = y  (B0 + Gzz ). Therefore, when

the band-limited RF field B1 is applied, only the protons at a slice of the body will be 

excited with the corresponding resonant frequency (1). The bandwidth of the RF pulse 

determines the thickness of the excited slice.

Similarly, the gradient fields Gx and Gy are applied to localize the MR signal in the x-y

plane. The magnetic field at a specific spatial location (x, y) and time point t is 

B ( t ) = B0 + G x ( t ) x + Gy ( t ) y , and the precession frequency at position (x, y) becomes

co = y (B 0 + Gx ( t) x + Gy ( t ) y ) .  The phase of magnetization can be computed from the

t

integral of precession frequency: (p (x, y , t ) = jY (B0 + Gx (r )x  + Gy ( r ) y ) d r  .
0
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So the magnetization at position (x, y) and time point t is:

(  t ^  

M x y ( x ,y,t )  =  m( x ,y ) exp - - Jy(B0 +  G x ( r ) x + — ( r ) - ) - r

V  0

where exp is the exponential function. The signal received from the entire object is:

(  t ^
S (t ) = JJ m ( x, y  ) exp -  j  j y (  B0 + Gx{ r) x + Gy {r) y ) d r  dxdy .

[2 .2 ]

v  0

[2.3]

After demodulation, i.e., removal of the carrier signal exp - jJ y B 0dz  , the signal is:
v  0

(  t \
S  ( t ) = J J  m ( x, y ) exp - j J y ( G x{r)  x + Gy { r ) y ) d r  d xdy .

x y V 0 )

[2.4]

I I

Let kx ( t ) = —  JGx ( r )d r , and ky ( t ) = —  JGy (r) d r , the signal can be represented as: 
2 n  J2n

D (k- ky) = J, Jym ( x, y ) exp ( - - 2nkxx -  j2nkyy ) dxdy. [2.5]

This equation indicates that there is a Fourier transform relation between the received MR 

signal D  (kx,ky) and the magnetization distribution image m (x, y ) . In MRI, m (x, y ) is

the desired image, and D  (kx ,k y) are the experimental data measured in the Fourier space, 

which is called the k-space (1). The received signal is the Fourier transform of the object 

image sampled at the spatial frequency (kx,k y) in k-space. Such a gathering method is 

different from the traditional optical imaging where pixel samples are measured directly.

2.1.7 K-space and Image Reconstruction 

The MR sampling data in k-space are usually complex values. Low-frequency signals 

locate near the center of k-space, while high-frequency signals locate near the periphery of
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k-space. Image resolution is determined by the extent of the k-space that is covered. The 

focus of view (FOV) is determined by the sampling density.

Figure 2.6 shows an in vivo brain image and its corresponding k-space magnitude image. 

Traditionally, fully sampled k-space sampling pattern is designed to meet the Nyquist 

criterion and has a full FOV image after inverse Fourier transform. Violation of the Nyquist 

criterion causes the aliasing in the reconstruction image. The appearance of the artifact 

depends on the undersampling pattern. Coherent aliasing is produced by equispaced 

undersampling and incoherent aliasing is produced by random undersampling. Incoherent 

sampling is essential to compressed sensing reconstruction, which will be illustrated later 

in this chapter. The appearance of such artifacts is shown in Figure 2.6 (c). Equispaced 

undersampling acquisition with a reduction factor of R=2 results in a half reduced FOV 

(FOV/2) with fold over aliasing artifacts. Image resolution is determined by the sampled 

region of k-space: lower frequency of samples gives lower resolution, as shown in Figure

2.7 (d).

2.2 Parallel MRI

2.2.1 Parallel Imaging 

Imaging speed is one of the most important considerations in clinical MRI. In practical 

acquisition, to cover the whole k-space line by line is time consuming and may take several 

minutes. Therefore, MRI is much more susceptible to patient motion which leads to motion 

artifact in the reconstructed image. Although imaging speeds have increased dramatically 

over the years, current MRI scanners already operate at the limits of potential imaging 

speed because of the technical and physiologic problems associated with rapidly switched 

magnetic field gradients.



Parallel MRI (pMRI) is a technique to increase the speed of MRI acquisition, which 

works by acquiring a reduced amount of k-space data with several phased array receiver 

coils (2-4). Parallel MRI differs from conventional MRI in two ways. First, an array of 

coils is used to collect k-space data simultaneously. Second, to improve imaging speeds, 

the k-space is undersampled with respect to Nyquist rate.

The imaging equation of parallel data acquisition using an array of L  receiver coils 

with sensitivity sl (x, y) can be expressed as the followings (3):

D  (kx,ky) = \ x j ym (x, y ) S (x, y ) e~} 2nKxe~ }2nkyydxdy, [2 .6]

where m (x ,y ) is the desired image and D (kx,k y) are the data measured at k-space

location (kx,ky) . The term parallel imaging comes from the fact that Dl (kx,ky) are 

acquired simultaneously, and sensitivity encoding refers to the spatial encoding effect of 

sl (x, y ) . The k-space data from each coil is the Fourier transform of the sensitivity

weighted image m (x ,y ) sl (x ,y ).

Fully sampled 8-channel head coil data for axial brain images are shown in Figure 2.7. 

Data are acquired using eight independent receiver channels instead of using a large 

homogeneous volume receive coil. Each receiver coil is more sensitive to the specific 

volume of tissue nearest to the coil, which means that the coils provide an additional source 

of spatial information for image reconstruction. The sensitivity weighted images of the 

eight coils are shown in Figure 2.7 (a), and their corresponding sensitivities are shown in 

Figure 2.7 (b).

In the case of undersampling, direct Fourier transform leads to aliasing image and
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reconstruction algorithms are used to combine the undersampled data from each of the coils 

into a unallased reconstructed image with the full FOV. The reconstruction methods of 

parallel MRI can be categorized into two groups: image-based parallel imaging 

reconstruction and k-space-based parallel imaging reconstruction. Image-based methods 

reconstruct images from the aliasing image of each coil and merge the images using 

knowledge of individual coll sensitivities. The commonly used image-based reconstruction 

methods include SENSE (3) and PILS (24). K-space based methods reconstruct the missing 

k-space data. The commonly used image-based reconstruction methods include SMASH 

(2), GRAPPA (4), AUTO-SMASH (25), and VD-AUTO-SMASH (26), etc. Among the 

pMRI algorithms, SENSE is the representative algorithm of the image-based method and 

GRAPPA is the representative algorithm for the k-space-based method.

2.2.2 SENSE

SENSE (3) is the first reconstruction algorithm used for clinical applications. It is 

considered as an “unfolding” algorithm in image domain. To perform the SENSE 

reconstruction, the maps of the coll sensitivities must be known. SENSE generally uses a 

prescan to measure sensitivity maps. After the prescan, an undersampled acquisition results 

in a reduced FOV in every coil image.

An example of 8-coil data of axial brain images is shown in Figure 2.8. For simplicity, 

only two coils are shown. We used an equispaced undersampling pattern of acceleration 

factor R = 2; the aliased pixels come from two locations at a distance of exactly half of 

FOV apart. The pixels of each coll image are weighted by the sensitivity of the coll. Pixels 

close to the coll will have a higher weighting than pixels further away. By knowing the 

aliasing pattern and the spatial sensitivities, we can write a linear equation and solve it to
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obtain the values of the two pixels. The linear equations are described below:

A (  x  y  ) = Si(  x  y ) f  (x  y  ) + Si ( x + f o v /  2 , y ) f  (x + f o v /  2 , y ) , [2 .7]

A2 (x, y ) = S2 (x, y ) f  (x, y  ) + S2 (x + FO V / 2, y ) f  (x + FOV /  2, y ) , [2.8]

where A1 (x, y) and A2 (x, y) are the aliased image pixel of coil 1 and coil 2 at position 

(x ,y ) , f  (x,y) and f  (x + FO V f2 ,y ) are the unaliased image pixel of the desired object 

image, and S1 and S2 are the sensitivities of the two coils. In these two equations, A1 (x, y ) 

and A2 (x, y) are known from the undersampled coil images, and S1 and S2 are known from

the prescan. So only f  (x,y) and f  (x + FO V /2,y) are unknown. We can solve this

equation for the two pixels easily. The reconstruction for all pixels can be written into a 

matrix form and solved with a least square algorithm or gradient search algorithm.

When there is no noise and the sensitivities estimation is accurate, the acceleration factor 

could reach the number of the coil. However, in reality the SNR is low in a MRI scan. In 

addition, the sensitivities estimation from the prescan is not accurate enough. So inaccuracy 

in sensitivity estimation will propagate to the reconstructed image (14). These practical 

issues will limit acceleration factor far below the theoretical maximum value in actual 

reconstruction methods. Both image-based reconstruction methods and k-space-based 

reconstruction methods in parallel MRI have this problem.

2.2.3 GRAPPA

GRAPPA (4) has been employed in clinical applications to avoid the estimation of coil 

sensitivities which is necessary for SENSE. In addition to the equispaced sampling, 

GRAPPA samples a few auto-calibration signal (ACS) lines at the center k-space for
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calibration. The conventional GRAPPA method reconstructs the missing k-space data by 

a linear combination of the acquired data, where the linear combination coefficients are 

estimated using the ACS lines.

Figure 2.9 shows an example of 2-coil k-space data. Each coil has an 11 x 11 data matrix. 

The black dots are acquired data and gray dots are unacquired data. The center 3 columns 

are fully sampled ACS lines, and outer k-space are equisapced undersampling with a 

reduction factor R = 2. The key is to work out how to generate missing lines, and this is 

where the calibration data are needed.

In Figure 2.9, we need to determine what combination of columns 5 and 1 from all coils 

gives the best approximation to column 6 of coil 1. Similarly, we must determine what 

combination gives the best approximation to column 6 of coil 2. The combination equations 

are given by:

k 16 = o 1 5 k 15 + 0,-11 k \ i  o2 5 k 25 + O 2 1  k 21  , [2.9]

k26 b15k15 + +11 k11 ^ b25k25 + +21 k21 , [2.10]

where o and b are the combination coefficients that need to be estimated. They can be 

computed using data fitting algorithms such as least square or gradient search, etc. After 

the combination coefficients are computed out, the missing columns can be interpolated 

using the neighbor columns with these coefficients. For example, the 2nd column can be 

generated with columns 1 and 3 with those coefficients.

k 12 _  0 1 5 k 11 0 11 k 13 ^  0 2 5 k 21 ^  0 21  k 23  , [2.11]

k 2 2  _  b 15k 11  ̂b 11 k 13 b 2 5 k 21 ^ b 2 1  k 23 . [2. 12]

Finally, full k-space data are reconstructed for each coil, which are then Fourier 

transformed and combined into a single image using the square root sum-of-squares (SOS).

14



More detailed descriptions about GRAPPA are given by (2) and (4). More information 

from adjacent data blocks can help GRAPPA to improve reconstruction quality (27-29).

GRAPPA is an approximate scheme to interpolate missing lines in k-space with a linear 

model. When the acceleration factor is high, GRAPPA reconstruction can suffer from 

aliasing artifacts and noise amplifications, while SENSE is theoretically an exact scheme 

which can give the best performance when sensitivities are known exactly. But GRAPPA 

need not explicitly compute the sensitivity maps as SENSE does. This is one benefit of 

GRAPPA compared to SENSE.

2.3 Compressed Sensing MRI

Conventional MRI using Fourier imaging is based on Shannon sampling theory. The 

large number of data that Shannon sampling theory requires and the slow data acquisition 

scheme greatly limits the MR imaging speed. Therefore, many researchers are seeking 

methods to reduce the amount of acquired data without degrading the image quality. 

Parallel MRI is one method which is based on the multichannel sampling theory (13,30), 

and is a generalization to Shannon sampling theory. As we discussed before, its maximum 

reduction factor of undersampling is limited by the number of channels, while the new 

emerging compressed sensing (CS) theory (5,31) allows exact recovery of a sparse signal 

from a set of samples which is far below the Shannon sampling theory requires.

The CS theory (5,31) requires that: (a) the desired image have a sparse representation 

in a known transform domain; (b) the aliasing due to undersampling should be incoherent 

or noise like in that transform domain; (c) a nonlinear reconstruction should be used to 

solve a constrained minimization problem which enforces the consistency with the 

acquired data and the sparsity of the image representation.
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MRI is suitable for compressed sensing reconstruction due to the following reasons (6). 

Most of the MR images have the property of sparsity. Some MR images are sparse in the 

original image domain, such as MR angiography. Some MR images are sparse in some 

transform domain, such as wavelet transform or total variation transform. MRI scanners 

naturally acquire samples in k-space domain, which gives an easy way for incoherent 

aliasing by random undersampling in k-space. The MRI reconstruction problem can be 

formed into a constrained minimization problem to address the data consistency and the 

sparse prior information.

If we know the signal is sparse in some transform domain, then the CS method tries to 

find the solution that is sparsest in the transform domain and satisfies the data consistency 

requirement. This process can be written into a constrained optimization problem:

minimize | |Tm|| 0

s.t.| Am -  d| |2 < s ,  [2.13]

where m is the sparse signal in some transform domain, and ¥  is the sparsifying transform 

such as wavelet or finite difference. ||-||0 is the I0 norm, which counts the number of nonzero

coefficients in the sparse signal. A  is the linear operator, d  is the observed data, and the 

threshold parameter £  is usually set below the noise level. In the context of MRI, A 

usually refers to the undersampled Fourier transform.

The constrained optimization problem can be reformulated with the Lagrange's 

multipliers as

arg min | |Am -  d | £ + l \ ¥ m \ 0. [2.14]

This I0 minimization problem is difficult to solve numerically. Fortunately, Candes et al.
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have proved that I1 minimization is equivalent to I0 minimization if the sparse transform 

matrix satisfies the restricted isometric property (RIP) (32,33). It has been shown that 

random Gaussian and partial Fourier matrices satisfy the RIP with high probability. The 

optimization problem is thus turned into:

where • [ is the I1 norm. This optimization problem is convex and can be solved with the 

nonlinear conjugate gradient algorithm or other convex optimization methods.

Dynamic MRI captures an object in motion by acquiring a series of images at a high 

frame rate to show the structure and function of the object. The application of dynamic 

MRI includes cardiac, breast, perfusion imaging, etc. Dynamic MRI collects more 

information than static MRI, which is helpful in detection of certain types of diseases such 

as cardiovascular diseases and breast cancer. Conceptually, the straightforward approach 

is acquiring full data to reconstruct each time frame separately. However, obtaining 

dynamic MR images with high spatial and temporal resolution in a short period of time is 

challenging. Over the years, a number of methods have been proposed to increase the 

acquisition rate of dynamic MRI without compromising image quality significantly. In 

general, such methods can be divided into three categories: methods based on exploiting 

correlations in time, correlations in k-space, or correlations both in spatially and 

temporally.

The most popular methods using temporal correlations includes keyhole (34), sliding

[2.15]

2.4 Dynamic MRI

2.4.1 General Dynamic MRI Methods



window (35), and temporal constraint reconstruction (TCR) method (15). Keyhole starts 

with gathering a full k-space data as the reference data. During the dynamic data 

acquisition, the center of k-space is updated at each time frame and the outer edge of k- 

space remains the same as the reference data. The sliding window method uses several 

frames of the acquired undersampled k-space data in a time window. The full k-space data 

are recovered by combining the high-frequency part of those k-space data in the window 

and the most recent low-frequency k-space data. Then the time window moves forward 

and repeats the process again. TCR assumes that the images of adjacent time frames are 

similar and uses the prior information that the finite difference along the time domain is 

sparse. With this sparse property, compressed sensing technology is used to do the 

reconstruction.

The methods that exploit correlations in the spatial domain are actually applications of 

parallel MRI (2-4). They exploit the correlation of the data acquired from multiple coils. 

These methods accelerate acquisition by collecting undersampled data with multiple coils. 

The missing data are recovered using the measured k-space data from all coils. In these 

methods, the image at each time frame is reconstructed independently from the images at 

other time frames.

The third type of methods exploit both spatial and temporal correlations (36-38). These 

methods are motivated by the fact that the Fourier transform of the spatial-temporal signal, 

i.e., the spatial-temporal frequency (x -f) signal, is usually very sparse. This enables the use 

of compressed sensing technology, which utilizes the sparsity in the x -f space. Another type 

of method that exploits spatial and temporal correlations is the k-t PCA method (39). PCA 

is a commonly used method that reduces highly dimensional datasets to lower
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dimensionality by exploiting correlations in the data. In k-t PCA, the ACS data are used as 

the training data to find the principal components. Since the spatial-temporal signal 

projected onto the principal components is sparse, the compressed sensing-based method 

can be used.

2.4.2 DCE-MRI

The dynamic MRI application considered in the thesis is the dynamic contrast enhanced 

magnetic resonance imaging (DCE-MRI) for breast tumor detection. DCE-MRI provides 

a promising method to detect and characterize lesions. A contrast agent is injected and the 

data are acquired in k-space for each time frame. The acquired image series are used to 

track changes over time in the region of interest. DCE breast tumor imaging uses those 

contrast uptake patterns to distinguish malignant and benign tumors.

In DCE-MRI, high spatial resolution is desirable to identify tumor location, and high 

temporal resolution can improve the accuracy of quantitative analysis of the uptake and 

washout curves (40). However, high spatial resolution typically comes at the expense of 

high temporal resolution, and vice versa. A number of techniques have been used to enable 

the acquisition of images with both high spatial and temporal resolutions.

Model-based reconstruction (MBR) methods (16,20) assume that contrast agent (CA) 

exchanges at constant rates between vascular space and extravascular-extracellular space 

(EES). It constrains the magnitude of the reconstructed time series to be consistent with a 

pharmacokinetic model (16,20). The model only has a few parameters and it may achieve 

a reduction factor of eight as reported in (20) .

The methods for general dynamic MRI reconstruction can also be used, such as Keyhole 

(34), UNFOLD (41), RIGR (42), HYPR (43), k-t BLAST (44), k-t FOCUSS (38), k-t PCA
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(36,39), and TCR (15), etc. TCR method is easy to implement and perform well at 

reduction factor around ten. Usually, the initialization images are using low-resolution 

images reconstructed from the fully sampled low-frequency samples or the aliasing 

measurements images. However, the convergence of traditional TCR is relatively slow at 

high reduction factors. We find PCA also suffers from performance loss when initial 

estimation is too bad when reduction factors are high. To improve the limitations of these 

previous methods, we propose a better initialization method together with the 

corresponding sampling pattern to improve the reconstruction for both TCR and PCA at 

higher reduction factors.
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Figure 2.1 The nucleus angular momentum (spin) J  gives rise to a nuclear magnetic 
moment u  = yJ.

Figure 2.2 When exposed to an external magnetic field, the magnetic moment of the 
hydrogen nuclei can assume one of two orientations: parallel direction and antiparallel 
direction.



22

Figure 2.3 The magnetic moments precess in the presence of external magnetic field.
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Figure 2.4 An external radio frequency excitation field B 1 is applied in the transverse plane 
and B 1 rotates at the same frequency as the spins precess. The magnetization M  will be 
excited from the equilibrium state after B 1 is applied.
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Figure 2.5 Describes how the receiver coil detects the signal from the magnetization. (a) 
After B 1 is removed, the magnetization will gradually return to the original equilibrium 
position through the relaxation process. (b) The transverse magnetization Mxy will induce 
a changing voltage in the receiver coil. This voltage is the signal that is used for imaging.
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Figure 2.6 Describes different reconstruction images with different sampling patterns. (a) 
and (e) are the fully sampled brain image and its corresponding k-space magnitude image. 
(b) and (f) are the equispaced undersampling image and k-space image. The reduction 
factor of R=2 resulting in a half reduced FOV (FOV/2) with fold over aliasing artifacts. (c) 
and (g) show incoherent interference produced by random undersampling. Image 
resolution is determined by the sampled region of k-space, and lower frequency of samples 
gives lower resolution, as shown in (d) and (h).
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Figure 2.1 The sensitivity weighted images of the eight coils are shown in (a), and their 
corresponding sensitivities are shown in (b).
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Figure 2.8 Describes the sensitivity encoding (SENSE) method. (a) and (c) are sensitivity 
maps of two coils. (b) and (d) are the aliased image from the two coils. An equispaced 
undersampling pattern of acceleration factor R = 2 is used. The sensitivity weighted aliased 
pixels in (b) and (d) come from two locations at a distance of exactly half of FOV apart.
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Figure 2.9 Two coils of undersampled k-space data are shown. The black dots are sampled 
data, and gray dots are the missing data. The fully sampled center calibration data consist 
of columns 5, 6, and 7.



CHAPTER 3

IM AGE RECONSTRUCTION FRO M  PHASED-ARRAY 

DATA BASED ON M ULTICHANNEL 

BLIND DECONVOLUTION

MRI using phased array coils has emerged as a powerful technique to improve signal- 

to-noise ratio (SNR) of an image (9), reduce image acquisition time (2-4), or remove 

artifacts (45). With phased array coils, the acquired images usually have nonuniform 

intensity due to the coil sensitivity weighting. Removal of the sensitivity weighting for the 

original image requires prior knowledge of the sensitivities of the receiver coils (9,46,47). 

A typical method to reconstruct the original image without such prior information is the 

sum-of-squares (SOS) method (9). Other combination approaches (48-50) have also been 

proposed to improve SNR. For the SOS method, the reconstructed image is obtained by 

taking the square root of the sum of the absolute squares of the multiple images acquired 

with phased array coils. The SOS method effectively removes the spatially varying 

sensitivity weighting under the key assumption that the sum of the absolute squares of all 

sensitivity functions are spatially uniform. This assumption, however, is usually violated 

with surface coils, and the reconstructed image tends to be dark at locations further away 

from all coils (e.g., the center of the array). The nonuniformity of the image intensity 

greatly complicates further automatic analysis such as registration and tissue segmentation 

(51). Although nonuniform intensity of single-coil images has already been addressed by



numerous works (e.g., (51) and references therein), few works (17,52) have studied the 

issue in the context of multicoil images. In (52), an lp norm was used in place of the I2 norm 

in the SOS reconstruction to improve the uniformity, based on the assumption that the lp 

norm of the sensitivity is uniform. The accuracy of such an assumption, however, depends 

on specific coil structures. Another method in (17) is based on a multichannel blind 

deconvolution (MBD) framework (10-12), treating both the original image and the 

sensitivity functions as unknowns to be reconstructed simultaneously. It adopts a subspace- 

based MBD method to perform deconvolution in the image domain and assumes a 

polynomial model for the sensitivity functions. A limitation of the method is that it is 

sensitive to noise, and typically high SNR acquisitions are needed for uniform 

reconstructions. Compared to (52), the MBD approach in (17) does not impose any 

uniformity constraint on the combined coil sensitivities.

In this paper, we propose a new approach to reconstruct the original uniform image 

using fully sampled multichannel data. Inspired by an approach developed previously for 

image super-resolution (53), the proposed method uses regularizations to address the non­

uniqueness of the solutions, which utilizes the prior information that the image and 

sensitivity functions are smooth in the image domain.

3.1 Theory

3.1.1 Summary of the MBD Structure 

In MRI with phased array coils, the k-space data are acquired simultaneously from L 

receiver coils with different sensitivities. The acquired data are the Fourier transform of 

the sensitivity-weighted images. The imaging equation is given by the Fourier imaging 

equation described in Chapter 2:
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Y (K’K) = jj f  (x  y) hi (x  y)e>2nkx+kyy)dxdy, [3 .1 ]

where (x ,y ) are image domain coordinates, f  (x,y) is the desired object image, hi (x ,y )

are the sensitivity functions for the i-th coll (i = 1,2, •••, Z ) , (kx, ky) are k-space domain

coordinates, and Yi (kx,ky ) are the k-space sampling data collected from the i-th coll. The 

discretized sensitivity-weighted image can be represented by

y (  m,n) = f  (m,n) ht ( m,n ) . [3.2]

When both the original image f  (m, n ) and the sensitivity functions h. (m, n) are

unknown, the problem of reconstructing the original image from the output y  (m, n) can 

be handled in the MBD framework.

3.1.2 Subspace Approach and Maximum-likelihood Approach 

Two approaches are widely used for MBD image reconstruction. The first approach is 

the maximum-likelihood method (11), which utilizes the data consistency in measurements 

in Eq. [3.2]. The second approach for MBD is the subspace method (10,12), which utilizes 

the property, referred to as the cross-relation, that in the absence of noise, if  the output of 

the i-th channel is put into the j-th channel, then the signal generated is the same as that 

generated by putting the output of the j-th  channel into the i-th channel. Mathematically, 

we have

Y ^ H j  -  Yj*Hj = 0, [3.3]

where Hi and Hj are the Fourier transform of hi and hj. Combining Eq. [3.3] for all (i, j )  

pairs, we obtain a set of equations which can be used to solve for the sensitivity functions
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H .  given the acquired data. The sub space approach was adopted in (17) where the

sensitivity functions are modeled as polynomials in the image domain. Since multiplication 

of polynomials becomes a linear convolution between the polynomial coefficients, the 

subspace-based MBD method was employed. However, the subspace approach is known 

to be sensitive to noise, which is also demonstrated in the Results section.

For our case of interest where circular convolution is involved, however, we observe 

that the solutions to both Eqs. [3.2] and [3.3] are not unique. To see this, we first show that 

the SOS reconstruction is always a solution to Eqs. [3.2] and [3.3]. Let us consider the SOS 

reconstruction
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and the corresponding sensitivity function given by

y, (m  n)

f sos (m n y

. . y, (m, n)
hsos,, (m, n ) = \ , 1 = 1 • " , L . [35]

It follows that

yt (m n ) = L s (m n) K Ss (m n ) , [3.6]

and equivalently in k-space

Yl ( K A  ) = Fsos (km A  ) * H SoS,i (km A  ) . [3.7]

This verifies that the SOS reconstruction is a solution to Eq. [3.2]. One can further verify 

that the following cross-relation holds:

Y. (k , k ) * H  .(k , k )  = Y.( k , k ) * H  . (k ,k  ) [3 8]j \ m’ n J sos, , m ’ n )  x \  m ’ n )  sos, , m ’ n ) ’ •'“'J

which suggests that the SOS reconstruction is also a solution to the cross-relation Eq. [3.3]. 

It is easily seen that when we multiply a particular pixel of the SOS image f sos (m, n) by

1=1



Y  , and multiply the corresponding pixel of sensitivity function hsos( m, n ) by 1 /y  to

obtain a new pair of f  (m, n) and hi (m, n ), the new pair is still a solution to Eqs. [3.2] and

[3.3]. This confirms the nonuniqueness of both the maximum-likelihood and subspace 

methods for our case of interest, and the nonuniqueness leads to an ill-posed problem.

3.1.3 P-norm Approach 

The p-norm approach is a generalization of the traditional SOS method. SOS is simple 

to implement and has nearly optimal SNR, but it may lead to signal inhomogeneity. The p- 

norm combination is given by

f pnorm (^  n ) = ^ , n)|^ ̂  . [3 9]

After the p-norm combination is computed, a constraint optimization problem is solved to 

estimate the optimal sensitivity h:

arg min E l  f Pnormh, -  It + (h. ) , [310]
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where h = {h1,h2, --,hL} are sensitivity functions, and r (ht) is the regularization term using

total variation or finite difference. Then the estimated sensitivities are used to compute the 

weights:

h *w. = -

E l  h , l

[3.11]

where () is the conjugate operator. These weights are used to compute the optimal linear 

combination (9) image

f opt = E w y  . [3.12]
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The p-norm combination may increase image homogeneity in noise-free environments (52). 

However, the problem is generally ill-conditioned due to low SNR, and the SNR offopt is 

degraded when the p-norm combination is used for sensitivity estimation (52).

3.1.4 Regularized MBD Approach 

Given the nonuniqueness of both approaches, we propose a new approach which 

employs regularization in the maximum-likelihood method to resolve the ambiguity in non­

unique solutions. Two regularization terms are used with one for the image function and 

the other for the sensitivity functions, both incorporating smoothness constraint in the 

image domain. The proposed method can be equivalently regarded as a maximum a 

posteriori method with known prior (54). To estimate the image f  and sensitivity functions

h ={*1 ,h2 • • •,hL}, we minimize an objective function defined as

E ( f ,  h) = £ | |h , - /  -  y $  + aQ  ( f ) + f iR  (h ) , [3.13]
i =1

where • denotes the pixel-wise product. The first term measures the fidelity to the data and 

comes from the acquisition model in Eq. [3.2]. The last two regularization terms utilize the

smoothness of the image and the sensitivity functions in the image domain. The term Q (f )

is the I2 norm of the finite difference of the image defined as

Q (f  ) = f  A f . [3.14]

Here, A  is a positive semi-definite Laplacian matrix. Similarly, R  (h) is the summation 

of all coils’ I2 norm of the finite difference of the sensitivity functions, which is defined as

R (h ) = Z hf Ahi . [3.15]
i=1
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The parameters a and (  are adjusted to control the convergence and smoothness of the 

solution to Eq. [3.13].

3.1.5 Alternative Minimization 

It follows from Eq. [3.13] that the objective function can be written as

E  (/■ h ) = i \ \ hr f  -  y  |f + « / A /  + & A } , ; .  [3.16]
i= 1  i= 1

As a function of both/ and h, the objective function E  in Eq. [3.16] is not a convex function. 

However, E  is convex with respect to / if  h is fixed and is also convex with respect to h if 

/ i s  fixed. Thus, the optimization problem can be solved by an alternative minimization

(AM) method (14,53), which computes a minimization sequence (/ m, hm) alternatively.

We propose the following two-step approach to find the values of/ and h to minimize the 

objective function. Specifically we fix/ or h and compute the derivatives with respect to h 

and/  respectively, and set them to be zero to find the minimum. After initialized with / 0 

and h 0, the m-th iteration is performed as follows

f-step: / m = argm inE ( / , hm = 0 » £ 2 (hT ')  - ( h r ' - / - y ) + a A /  = 0, [3.17]

h-step:h~ = argniinE ( / m, = 0 »  2( / m)'.(h, - / m - y ) + 0 A h ,=  0, [3.18] 

where () is the conjugate operator.

3.2 M ethods

The proposed MBD method was evaluated on four T1-weighted datasets: simulated data, 

phantom data, in vivo brain data, and in vivo cardiac data. All reconstruction methods were
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implemented in MATLAB on a workstation. The SOS reconstruction, the subspace 

reconstruction, and the p-norm reconstruction are provided for comparison. All 

reconstructed images for the same dataset are normalized for visual evaluations.

3.2.1 Phantom Experiment 

The objective of the phantom experiment is to demonstrate that the proposed method 

can generate uniform intensity in reconstructions. A phantom that is piecewise-constant 

was used for easy identification of nonuniformity. A T1-weighted scan was performed on 

the phantom using a two-dimensional spin echo sequence on a 3T commercial scanner (GE 

Healthcare, Waukesha, WI) with a four-channel torso coil (echo time/pulse repetition time 

= 11/300 ms, FOV = 18 x 18 cm, matrix = 256 x 256, slice thickness = 1.1mm). For 

comparison, SOS method, subspace method, and p-norm method were also used for 

reconstruction. The regularization parameters are: a = 1x10-5, ft = 1x102 for the proposed 

method.

3.2.2 In vivo Human Brain Imaging Experiment 

This experiment is to examine the performance of the proposed method when applied 

to in vivo data. One set of sagittal in vivo human brain data was acquired. The sagittal 

dataset was on a GE 3T scanner (GE Healthcare, Waukesha, WI) with a four-channel head 

coil and a 3-D T1-weighted spoiled gradient echo sequence (TE = minimum full, TR =

1.5ms, FOV = 24 x 24 cm, matrix = 256 x 256, slice thickness = 1.1mm). Informed consent 

was obtained from the volunteer in accordance with the Institutional Review Board policy. 

Similar to the phantom study, the SOS, subspace method, and p-norm method were used 

for performance comparison. The values for the regularization parameters are: a  = 1x10'5,
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P = 1x104 for the proposed method.

3.2.3 In vivo Cardiac Imaging Experiment 

This experiment is to examine the performance of the proposed method when applied 

to one frame of in vivo cardiac data, where air-tissue boundaries induce sharp transitions 

in the estimated coil sensitivities. The dataset was acquired from a 3T scanner (Siemens 

Trio, Erlangen, Germany), with a 12 channel phased array coil (combined to 4 coils), using 

a 2-D true FISP sequence (TE = 1.87 ms, TR = 29.9 ms, BW = 930, flip = 50°, FOV = 34 

x 28.6875 cm, matrix = 256 x 216, slice thickness = 6mm). The values for the 

regularization parameters are: a = 1 x10-4, ft = 1x104 for the proposed method.

3.2.4 Simulation

A 128 x 128 MR image is used as the original image. The simulated k-space data (nolse- 

free) were generated by Fourier transforming the images weighted by a set of eight 

sensitivity functions. The sensitivity functions were simulated using the Biot-Savart law 

(17). The objective of this simulation is to study the effectiveness of the proposed method 

under noise-free measurements. The proposed method is compared with the SOS method, 

the subspace method, and the true image. The values for the regularization parameters are: 

a = 1 x10-5, ft = 1x10'2 for the proposed method.

3.2.5 Parameters Selection 

For the proposed method, different regularization parameters are needed for 

optimization. Regarding the choice of parameters, we find: (a) the parameters should be 

chosen such that the three terms in Eq. [3.16] are roughly in the same order. (b) Since the 

sensitivity function is in general smoother than the image, the parameter /3 should be
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orders of magnitude larger than a  to impose a stronger smoothness constraint.

3.3 Results

3.3.1 Phantom Experiment 

For the phantom data, Figure 3.1 presents the reconstructed images using three different 

methods. We observe that the intensity of reconstruction using the proposed method is 

more uniform across the whole image, when compared with the SOS reconstruction, which 

is very dark in the center, and the subspace method, which is clearly nonuniform along the 

vertical direction, and p-norm method, which is also nonuniform around the center.

3.3.2 In vivo Human Brain Imaging Experiment 

Reconstructions for the in vivo human brain sagittal data are shown in Figure 3.2. The 

intensity of the reconstruction by the proposed method is more uniform across the whole 

image, when compared with those by the SOS, subspace method, and p-norm method. In 

particular, the region toward the neck part makes the details more visible than that in the 

SOS reconstruction and subspace method. The subspace method is unable to provide a 

uniform reconstruction, possibly due to its lack of robustness to noise. The proposed 

method gives a less noisy reconstruction compared with the p-norm method toward the 

top-left region of the brain.

3.3.3 In vivo Cardiac Imaging Experiment 

Reconstructions for the in vivo cardiac data are shown in Figure 3.3. The intensity of 

the reconstruction by the proposed method is more uniform across the whole image with a 

brighter vessels part, when compared with those by the SOS and subspace methods. In 

particular, the brighter region toward the heart and vessels makes the details more visible
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than that in the SOS and subspace method. The proposed method gives a less noisy 

reconstruction compared with the p-norm method, especially at the vessels part and the 

top-right region of the image.

3.4 Discussion

3.4.1 Effectiveness Test Using Simulated Data 

To study the effectiveness of the proposed method under noise-free measurements, we 

have compared the SOS, proposed method, and subspace method using the simulated data. 

Figure 3.4 presents the true image and the reconstructed images obtained from the SOS, 

proposed method, and subspace method. Figure 3.5 shows the root sum-of-squares of the 

corresponding sensitivity functions. It is observed in Figure 3.4 that the center part of the 

SOS reconstruction image is darker compared to that of the proposed method and the 

subspace method. This is because the SOS reconstruction is based on the assumption that 

the sum-of-squares of the sensitivity functions is a constant. However, as shown in Figure 

3.5, this assumption is clearly violated for the sensitivity functions. In comparison, the root 

sum-of-squares for the estimated sensitivity functions obtained by the proposed method 

and the subspace method is nonuniform and resembles that of the true one. In this 

experiment, the proposed method is seen to perform better than the subspace method in 

reconstructing the original image and sensitivities.

3.4.2 Relation to Previous Works 

We proposed a multichannel blind deconvolution reconstruction method in k-space for 

phased-array MRI data in (55), where the image function and sensitivity functions are all 

expressed and solved in k-space domain. The computation and store of the convolution
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matrices in k-space take a lot of running time and memory, which leads to slow 

reconstruction speed. By handling the estimation problem in the image domain, we 

accelerate the running time and occupy less memory in this work. Previously in (55), we 

included a cross-relation term as a regularization term in the objective function to address 

the cross-relationship in the theory section. However, we found that the solutions of cross­

relation are nonunique. Besides, the subspace method is sensitive to noise and may lead to 

the wrong solution. So in this paper we have not included the cross-relation term in the 

objective function. Based on these improvements, we notably improve the computation 

speed or reconstruction quality. For instance, in our reconstruction of the in vivo sagittal 

brain dataset, the computer running time of the proposed image domain method is around 

120 seconds, while the k-space method needs more than 600 seconds. The reconstruction 

results of the image domain method and the k-space method are shown in Figure 3.6. We 

can see that, for this phantom dataset, the image domain method significantly improves the 

homogeneity of the reconstruction image comparing with the k-space method.

It is also worth noting that the first iteration of the proposed method is similar to the p- 

norm method. However, the p-norm method has not utilized the better estimated image and 

sensitivity to improve each other’s reconstruction, while the proposed method improves 

the image and sensitivity through AM iterations. Such an AM optimization method can be 

proved to converge to a local minimum (56).

3.4.3 Initialization

The proposed method is robust to different initialization. We have tried totally random 

initialization with noise like image and sensitivities as well as initialization with p-norm 

combination. Figure 3.7 shows the comparison results of random initialization and p-norm
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initialization. We can see that both initialization methods lead to similar reconstruction 

images.

3.4.4 Convergence and Computation Complexity 

The prosed method converges fast and only needs 6 ~ 8 AM iterations. In the 

reconstruction of the sagittal brain dataset, the computer running time is around 120 

seconds. The objective function decreases fast over the first few iterations. After that, the 

algorithm converges and further iterations do not improve the quality of the reconstruction.

This is demonstrated in Figure 3.8 for the in vivo brain data, where the 1st iteration 

reconstruction appears inhomogeneous and noisy, the 4th iteration reconstruction appears 

uniform, and the 6th iteration and 10th iteration show little difference from the 4th iteration. 

Figure 3.9 shows the objective function e  (f , h) versus the number of iterations for the

optimization. E  ( f , h) decreases until convergence after 6 iterations.

3.4.5 Signal-to-noise Ratio 

In addition to the uniformity of intensity, the SNR of the final reconstruction is also 

improved over the SOS reconstruction and p-norm reconstruction due to the regularization 

terms for both image and sensitivities in the proposed method. We can observe the 

improvement of SNR for the proposed method over SOS reconstruction and p-norm 

reconstruction in Figure 3.2 and Figure 3.3, as discussed in the results section.

3.5 Conclusion

In this paper, we develop a regularized MBD method for image reconstruction using 

multichannel phased-array MRI data. The proposed method is compared with SOS, 

subspace method, and p-norm method using computer simulation, phantom, and in vivo
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experiments. The results demonstrate that the proposed method reconstructs more uniform 

images than the SOS does. It is also more robust than the subspace approach in the presence 

of measurement noise. The proposed method gives more uniform or high SNR 

reconstructions than p-norm method.
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Figure 3.1 Experimental results from a set of phantom data for the SOS (a), the proposed 
method (b), p-norm method (c), and subspace method (d). We can see the image intensity 
of the proposed method is more uniform than that of the SOS, p-norm method, and 
subspace method.

Figure 3.2 Experimental results from a set of in vivo sagittal brain data for the SOS (a), the 
proposed method (b), p-norm method (c), and subspace method (d). The higher level of 
uniformity in the proposed method makes some image details more visible in the region 
toward the neck compared with SOS and subspace method. The top-left part of the 
reconstruction image of p-norm method is noisier compared with the proposed method.

Figure 3.3 Experimental results from a set of in vivo cardiac data for the SOS (a), the 
proposed method (b), p-norm method (c), and subspace method (d). The higher level of 
uniformity in the proposed method makes some image details more visible in the region 
toward the vessels compared with subspace method. The vessels part of the reconstruction 
image of p-norm method is noisier compared with the proposed method.
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Figure 3.4 Simulation results for a 128 x 128 image reconstructed from a set of 8-channel 
data of the original image (a), SOS (b), the proposed method (c), and the subspace method 
(d) are shown in the first row. The difference image of SOS (e), the proposed method (f), 
and the subspace method (g) compared with the original image are shown in the second 
row. With the original image for reference, the reconstructions using the proposed method, 
subspace method, and p-norm method are brighter than the SOS reconstruction in the 
central region.

True SOS 0.2429 MBD 0.0075 Subspace 0.0768

a b c d

Figure 3.5 Composite images for the root sum-of-squares of the original (a) and estimated 
sensitivity functions for SOS (b), the proposed method (c), and the subspace method (d). 
The proposed method and subspace method show similar composition to the original one, 
while the composite sensitivity image from the SOS method is far away from the true one. 
Furthermore, the composition of the proposed method gives the smallest nRMSE compared 
with the true one.
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Figure 3.6 Comparison reconstruction results of image domain method (a) and k-space 
method (b). Image domain method gives more uniform reconstruction than k-space 
method.

Figure 3.7 Comparison reconstruction results of random initialization (a) and p-norm 
initialization (b). Both initialization methods lead to similar reconstruction images.
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Figure 3.8 Reconstruction images of the proposed method for the 1st (a), 4th (b), 6th (c), and 
10th (d) rounds of optimization for the in vivo brain dataset. We can see after the 1st round 
optimization, the reconstruction is close to the p-norm results, and after 4 iterations, the 
reconstruction image homogeneity is increased. Further iterations do not improve much of 
the reconstruction quality.

Number of iterations

Figure 3.9 Convergence curves of the objective function value of the proposed method for 
the 1st, 4th, 6th, and 10th rounds of optimization for the in vivo data.



CHAPTER 4

SPARSE BLIP: BLIND ITERATIVE PARALLEL IM AGING 

RECONSTRUCTION USING COMPRESSED SENSING

Parallel imaging with phased array coils can be formulated as a multichannel sampling 

problem (13,30). Based on Papoulis generalized sampling theorem (51), SENSE (3) is an 

optimal reconstruction method among many existing methods (e.g., SMASH (2), AUTO­

SMASH (25), PILS (24), SPACE-RIP (58), GRAPPA (4)) when exact knowledge of the 

coil sensitivities is provided. However, coil sensitivities are usually obtained from low- 

resolution images or through a separate scan, where accuracy cannot be guaranteed. 

Inaccuracy in estimation of coil sensitivities may lead to artifacts at high acceleration 

factors. JSENSE (14) provided a framework for image reconstruction without knowledge 

of coil sensitivities. It models both coil sensitivities and the desired image as unknowns to 

be reconstructed simultaneously. The underlying nonlinear problem can be solved by 

alternating minimization (14) or Gauss Newton method (59).

With the recent emergence of compressed sensing (CS) theory (5,31) and its successful 

application in MRI (6), several techniques (1,60-66) have been developed to apply CS to 

SENSE. Among these techniques, Sparse SENSE (1) is a direct application of CS 

reconstruction to SENSE with pseudo random trajectories. It minimizes the L 1 norm of the 

image in the sparsifying transform domain under the data consistency constraint from 

SENSE reconstruction equation. Similar to SENSE, these methods all suffer from artifacts



when coil sensitivities are inaccurate. Recently, there are a number of methods that 

explicitly take advantage of the smoothness prior in coil sensitivities (18,67,68). For 

example, (68) explores the sparseness of coil sensitivities using polynomial or Fourier 

transforms without regularization for the image, while (18), i.e., the iteratively regularized 

Gauss-Newton method with total variation (IRGN-TV), employs TV regularization for the 

image and a weighted L2 norm in the frequency domain to incorporate the smoothness prior 

of sensitivities, and (67) also employs TV regularization for the image but a L2 norm of 

high-order derivative for the sensitivities. On the other hand, L 1-SPIRiT (8) integrates CS 

with the k-space-based parallel imaging method and has the advantage of reconstruction 

without explicit representation of coil sensitivities in the image domain.

The sparseness model of CS provides a general prior for most images. Given the 

smoothness of coil sensitivities, the sparseness prior should also be able to represent the 

coil sensitivities with high fidelity and thus improve JSENSE. In this chapter, we propose 

a new approach of blind iterative parallel imaging reconstruction using compressed 

sensing, termed Sparse BLIP. Built on the formulation of JSENSE, the proposed Sparse 

BLIP method effectively incorporates the sparseness constraint to both the desired image 

and coil sensitivities. Subject to the data consistency constraint of the SENSE equation, the 

image and coil sensitivities are regarded both as unknowns and the total variation (TV) of 

both image and sensitivities are minimized simultaneously. We use an alternating 

minimization (AM) method (14) to find a suboptimal solution to the original nonconvex 

minimization problem. The convergence of the AM method to a local minimum is studied 

in (56). Starting with an initial estimation of coil sensitivities, the method alternately 

updates the reconstructed images and the coil sensitivity functions in each iteration, and
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repeats until convergence. The performance of the proposed method is compared with that 

of Sparse SENSE, IRGN-TV, JSENSE, and L 1-SPIRiT.

4.1 Theory

4.1.1 Summary of Sparse SENSE 

In SENSE with arbitrary trajectories, the imaging equation can be written as

E f = d , [4.1]

where d  is the vector formed from all k-space data acquired from all channels, and f is the 

unknown image vector formed from the desired full field of view (FOV) image. The 

encoding matrix E consists of the product of Fourier encoding and modulation by the coil 

sensitivity over the image, i.e.,

E{l ,m},n = e-2nkm ̂ l  ( r ), [4.2]

where km and rn denote the coordinates of the k-space data and image domain pixels 

respectively, and s t denotes the sensitivity of the l-th coil. To reconstruct the desired

image f  given knowledge of acquired data d and sensitivities si, the least-squares method 

is usually used to solve Eq. [4.1]. Sparse SENSE (7) directly applies CS to SENSE by 

generalizing the formulation of Sparse MRI (6) to sensitivity encoding. In data acquisition, 

the k-space data are undersampled with fully sampling at the center and undersampled less 

near the k-space center and more in the periphery. In reconstruction, the problem is 

formulated as a constrained nonlinear convex program based on the SENSE equation [4.1]:

minimize |¥ f | |x s.t. ||Ef - d | |2 <s  [4.3]

where ¥  is the sparse transformation matrix. We write Eq. [4.3] into a regularization form 

and add a TV of the image penalty term as
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argmln {| |d -E f | + A||Yf| [ + ̂ T V (f)}, [4.4]

where X and a  are regularization parameters which control the tradeoff between data 

consistency and sparseness prior, and the anisotropic TV operator on a complex image f is 

defined as:

T V  ( f  )  =  x  i f  - f u v
u=1 v=1

where u and v are pixel indices for the image with size U by F. Sparse SENSE uses the 

fully sampled central k-space lines to estimate the sensitivities, and based on which the 

image is reconstructed. Hence, the inaccuracy in sensitivities estimation can propagate to 

the reconstructed image.

4.1.2 Summary of JSENSE 

JSENSE (10) is a method to reconstruct the image and coll sensitivities simultaneously 

such that the initial estimated coil sensitivities can be corrected through iterations and error 

propagation can be alleviated in the final reconstruction. In reconstruction, instead of 

assuming that the sensitivity functions are known and given, JSENSE assumes that 

sensitivities are unknown. With a parametric model for the coil sensitivities with unknown 

parameters a, the imaging equation in Eq. [4.1] becomes

E(a)f = d . [4.6]

Then the unknown parameters a for coil sensitivities and the desired image f can be solved 

by finding a solution to the following minimization problem:

argm ln1 !Id - E (a)f||2. [4 7]
{a,f} 2"

The nonlinear optimization problem in Eq. [4.7] does not guarantee convergence to a global
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optimal solution. When the pixel-based model is used for the coil sensitivities, the problem 

becomes highly under-determined and regularization on the sensitivity functions is usually 

needed to ensure convergence to a solution close to the true one (59). In (59), a weighted

L2 norm form of regularization term R  (c) = ||Wc|f was used to penalize the high Fourier

coefficients of the sensitivities, where c is the coil sensitivities and W is some weighting 

matrix. While JSENSE incorporates some prior information (e.g., smoothness) in coil 

sensitivities, no prior information on image is employed. In addition, the original work was 

based on uniform trajectories, although it can be extended to arbitrary trajectories.

4.1.3 Proposed Method: Sparse BLIP 

Similar to JSENSE, the proposed method aims to reconstruct the desired image and coil 

sensitivities simultaneously. The data consistency term is thereby given by Eq. [4.6] where 

a pixel-based model is used for the coil sensitivities and the unknown parameter a 

represents all pixels of the sensitivities of all coils. The acquired data di from the l-th 

channel relates to the unknown image and pixel-based coil sensitivity function si of the l- 

th channel by

Fd ( si • f  ) = di, [4.8]

where • denotes the pixel-wise product and Fd  is the undersampled Fourier operator. The 

proposed method improves upon JSENSE by incorporating the concept of CS into the data 

consistency formulation. Specifically, the data are acquired with incoherent sampling and 

the reconstruction enforces sparseness constraints on both the image and sensitivity 

functions. Incoherent sampling is the fundamental requirement for a successful 

reconstruction using the CS theory. Incoherent sampling means that the aliasing artifacts 

caused by k-space undersampling should be incoherent (i.e., noise-like) in the sparsifying
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transform domain (5,6,31). Based on the CS theory, to resolve the ambiguity of nonunique 

solutions to Eq. [4.8], the sparsest solution in a predetermined transform domain is needed. 

In this work, both the image and sensitivities are assumed to be sparse in TV of the spatial 

domain. The image is also assumed to be sparse in the wavelet domain similar to Sparse 

MRI (6). Incorporating the sparseness constraint using the CS framework, the image f  and 

sensitivity functions s , are jointly reconstructed by minimizing the energy function

defined as

E (f, s ,) = £ | | fd (s, • f ) - d f  + ^ 4  + « T V (f)  + )s £ t V (s ) . [4.9]
l=1 ,=1

In [4.9], L is the total number of coils. The first data consistency term measures the fidelity 

to the measurement from multiple coils. The second regularization term exploits the 

sparseness of the image in the wavelet domain. The last two regularization terms utilize 

the sparseness of the image and sensitivity functions in the TV of the image domain, where 

TV is defined in Eq. [4.5]. The positive constants X, a, and p  are adjusted to balance the 

tradeoff between data consistency and sparseness prior.

As a function of both unknowns f  and si, the objective function E  in Eq. [4.9] is non- 

convex and thus convergence to the global optimal solution is not guaranteed. However, E  

is convex with respect to f  if  s i  is fixed and is also convex with respect to s i  if  f  is fixed. To 

tackle the nonconvex optimization problem, we use an alternating minimization (AM) 

method (53,56) to find a suboptimal solution. Specifically, the coil sensitivities are initially 

estimated using the densely sampled data at the central k-space as done in SENSE. These 

initial coil sensitivities s , (0 )  are assumed to be known and plugged into Eq. [4.9]. The 

problem thereby reduces to Sparse SENSE. We then use the image reconstructed from 

Sparse SENSE as the initial image f(0) and plug into Eq. [4.9] to update the coil sensitivities.
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Subsequently, we alternate between updating the image and updating the coil sensitivities 

through iterations to obtain a sequence of minimizing (f(n), s,(n)) until the energy function 

stops decreasing. The alternating procedure at the ” -th iteration is represented as: 

f-step: Fix s, = s,(n-1), Eq. [4.9] reduces to

It is seen that each subproblem in [4.10] and [4.11] is convex and thus an optimal solution 

can be found for each subproblem. We use the nonlinear conjugate gradient (NLCG) 

algorithm with line search to solve this alternating optimization problem. It is worth noting 

that the f-step of the first iteration of Sparse BLIP is the same as Sparse SENSE, and Sparse 

BLIP improves the sensitivities estimation of Sparse SENSE through alternating 

optimization of image and sensitivities. Such alternating minimization can be proved to 

converge to a local minimum (56) which gives a suboptimal solution to the original 

nonconvex problem.

f (” = argmin E  (f , s, ”” 1) f

= ai-gmm ]T ¥d (s,(”-1) • f  ) -  d , + A f ¥ f |[ + aT Y  (f  ) ,= arg min
[4.10]

s-step: Fix f  = f n), Eq. [4.9] reduces to

[4.11]

4.1.4 Gradient Computation 

In the NLCG algorithm, the most important steps are the computation of the gradients 

of [4.10] and [4.11], which are given by the following equations:
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-1h L
d E = ±  2 (S,; - ,,)‘ • FH ( Fd (s(n-" • f ) -  d l)

l = n [4.12]

+ 2*?* ( ( ? f ) • ( ? f ) + £ ,  • ? f  + aA f ( (V f  ) • (V f )* + e)^1/2 • Vf

2 (f (n) )* • Fdh  (Fd (Si • f (n)) -  d l) + fiA [ ((V s,) • (Vs, )* + 5 )-1/2 • V s , j , [4.13]
dE (f (n), s, )

dsl

where (•) is the conjugate operator, FH (•) is the conjugate transpose of fd which is 

implemented by zero filling followed by the inverse Fourier transform, V (•) is the finite 

difference operator, A(-) is the self-adjoint of the finite difference operator (6), and the 

operator V (-) and A(-) are defined below. e is a small positive smoothing parameter and 

usually takes a value in the range of e e  [10-15, 10-6] (6). In our implementation, we choose 

e=10-7.

Consider a 2-D image f i n  the spatial domain, and (u, v) is its 2-D coordinate’s index. 

The finite difference operation off  is defined as

V ( f  )u,v = [ f .  + 1,v -  fu V ■, f .  V ,1 -  fuv ] . [4.14]

The result of the finite difference operation of a 2-D image f  in the spatial domain thereby 

becomes two 2-D finite difference images. We refer to the two finite difference images as 

the “x-part” and “y-part” of the finite difference domain variable, i.e.,

V ( f  ) = [V J , V f  ] . [4.15]

Consider a 2-D finite-difference domain variable Df,

Dfu ,v = [V xf„ ,v , Vyfu ,v ]  , [4.16]

where (u, v) is its 2-D coordinate’s index of its “x-part” and “y-part”, respectively. The self-



adjoint operator of the finite difference operation of D f is defined as

A (D f  L  = ( V f  - . ,  -  Vxfuv) + ( V -  V/ ) .  [4.17]

The result of the self-adjoint of the finite difference operation of a finite-difference domain 

variable will turn the two 2-D finite difference images back to one single image in spatial 

domain.

4.2 M ethods

The proposed Sparse BLIP method was evaluated on five T1-weighted datasets: 

phantom, in vivo brain data with coronal, sagittal, axial views, and in vivo cardiac data. 

For all in vivo studies, informed consent was obtained from the volunteer in accordance 

with the Institutional Review Board policy. All reconstruction methods were implemented 

in MATLAB (MathWorks, Natick, MA) on a workstation. The root sum-of-squares (SOS) 

reconstruction from fully sampled data was used as the gold standard for visual comparison. 

All phased array data were acquired in full and then manually undersampled 

retrospectively to simulate accelerated scans. The state-of-the-art parallel imaging 

techniques JSENSE (14), Sparse SENSE (7), L 1-SPIRiT (8), and IRGN-TV (18) were used 

to compare against the proposed Sparse BLIP method. Except for JSENSE where the data 

are acquired using variable-density uniform undersampling with the central k-space 

sampled with Nyquist rate as in (14), the same variable-density random sampling pattern 

was used for all reconstruction methods for fair comparison. Specifically, we choose 

samples randomly with sampling density scaling according to a power of distance from the 

k-space center. Usually, using density powers of 1-6 is good to reduce interference (6), 

and we use a power of 5. The coil sensitivity functions estimated from the central k-space 

data were used for Sparse SENSE and for the first iteration of the proposed Sparse BLIP.
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For the coronal dataset, the initial and final coll sensitivities from Sparse BLIP were used 

for SENSE (3) reconstructions, which were compared with the conventional GRAPPA (4) 

reconstruction with a kernel size of 4 blocks and 5 columns. We scaled all undersampled 

k-space data from all channels by the same constant to have a maximum magnitude value 

of 1 prior to reconstruction. All reconstructed images for the same dataset were normalized 

and shown individually on the same scale for visual evaluations of image quality. 

Quantitative comparison was also provided in terms of the normalized root mean squared 

error (nRMSE) with the SOS as the reference, which is defined as:
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nRMSE = ■
max (  f SOS )  m l n  (  f SOS ) '

U F

I l |f  ( u , v ) -  f SOS ( u , v )  
u=1 v=1 [4.18]

UF

where f  is the reconstructed image and f SOS is the SOS image.

4.2.1 Selection of Regularization Parameters 

Although automatic optimization of regularization parameters remains an open problem 

in the context of compressed sensing, we use an approach named L-surface (69) similar to 

the L-curve method (70) to automate the parameter selection. At first we optimize only a 

and ft using L-surface while keeping X=0. The wavelet term parameter X can be selected at 

the same order of a after a and ft are selected. Specifically, we change the values of a and 

ft in a reasonable range. For each pair of (a, ft), we carry out the reconstruction and calculate 

the corresponding values for the three terms in the objective function: data consistency

I I  |F„ ( V  f ) - d,| , TV of image TV (f ),  and TV of sensitivities I  TV (sl). We then plot
l=1 l=1

an L-surface in 3-D over a wide range of regularization parameters where the vertical axis



represents the value of data consistency terms, and the two horizontal axes are the values 

of the TV of image term and the TV of sensitivities term. To construct the surface, we 

connect the line segments between points with constant a and varying ft, and then connect 

line segments between points with constant ft and varying a. Thereby each point on the 

surface corresponds to a particular (a, ft) pair, and the corresponding values on the three 

axes represent the values of data consistency, TV of image, and TV of sensitivities for this 

(a, ft) pair. The “optimal region” is located at the “corner” of the L-surface—the region 

analogous to the corner of the traditional L-curve for a single regularization constraint. The 

optimal parameters are the (a, ft) pair at the “optimal region” (69). Usually, it takes 7*7 

tests of (a, ft) pairs to construct the L-surface and identify the “optimal region”.

To give a fair comparison, the parameters for other competing methods were also chosen 

by the L-surface method. The parameters for Sparse SENSE include X for the wavelet term 

and a for total variation. The parameters for L 1-SPIRiT are X1 for autocalibration and X2 for 

the wavelet term. The parameters for IRGN-TV include ak for the high Fourier coefficients 

of the sensitivities from the k-th iteration, ftk for the generalized total variation from the k- 

th iteration, the scaling factors qa, qp for ak, ftk in each iteration, and the minimum amin and 

ftmin. JSENSE is only tested for the 2-D phantom and in vivo experiments. A uniform 

sampling pattern is used for JSENSE, which includes the central Nyquist samples fully 

sampled and outer samples uniform undersampled.

4.2.2 Initialization

The coil sensitivities are initially estimated with the standard approach where each 

channel image obtained from windowed, Nyquist-sampled central k-space data is divided 

by the SOS image of all channels. This is called the low resolution estimation method.
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These estimated coil sensitivities were then used for JSENSE, IRGN-TV, Sparse SENSE, 

and Sparse BLIP.

4.2.3 Stopping Criterion 

For Sparse BLIP, we find that even though the energy function E ( f , sl) keeps

decreasing over AM iterations, the data consistency term usually stops decreasing after 

several iterations. As a result, the quality of the reconstructed image hardly improves 

afterwards (a similar observation was made in (8) for L 1-SPIRiT). This leads to an effective 

stopping criterion for Sparse BLIP. Specifically, we define the root mean squared error 

(RMSE) of the under-sampled data as

S i f  (si • f ) -  d j 3
RMSE = -----L--------------- , [4.19]

V S  #(dl)
l=1

where #(d,) denotes the number of elements in dl. The RMSE is computed after each f-

step and s-step. If within an AM iteration, the RMSE of s-step is larger than that of f-step, 

then we stop the algorithm because it is unlikely that additional AM iterations will improve 

the RMSE further.

4.2.4 Phantom Experiment 

The objective of the phantom experiment is to evaluate the performance of the proposed 

method when the sparseness constraint is satisfied. A phantom that is piecewise-constant 

was used to meet the requirement that the finite difference of the image is sparse and thus 

the TV is small. A T1-weighted scan was performed on the phantom using a two­

dimensional spin echo sequence on a 3T commercial scanner (GE Healthcare, Waukesha,
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WI) with an 8-channel torso coil (echo time/pulse repetition time = 11/300 ms, FOV = 18 

x 18 cm, matrix = 256 x 256, slice thickness = 1.7 mm). The k-space data were randomly 

undersampled along the phase encoding direction with a variable-density sampling pattern 

(6). The undersampled k-space data included a total of 40 random phase-encoding lines 

with the central 24 lines Nyquist sampled, and the net reduction factor was 6.4. This is 

relatively high reduction factor for an 8-coil dataset.

4.2.5 In vivo Brain Imaging Experiment: Coronal View

This experiment is to examine the performance of the proposed method when 

reconstructing in vivo coronal brain images which have few fine structures and thus are 

close to the prior model. A T1-weighted scan was performed using a 2-D spin echo 

sequence on a 3T commercial scanner (Magnetom Trio, Siemens Healthcare Sector, 

Erlangen, Germany) with a 32-channel head coil (TR = 100ms, TE = 2.29s, FOV = 24 x 

24 cm, matrix = 256 x 256, slice thickness = 3 mm, Flip Angle = 25). To reduce the 

computational complexity, 8 out of 32 channels were used for reconstruction. The 

undersampled k-space data were composed of a variable density sampling pattern that has 

a total of 88 random phase-encoding lines with 32 Nyquist-sampled central lines, 

corresponding to a net reduction factor of 2.91.

4.2.6 In vivo Brain Imaging Experiment: Sagittal View

This experiment is to evaluate the proposed Sparse BLIP when there are many fine 

structures with different contrast in the images to be reconstructed. A set of sagittal data 

was acquired on a GE 3T scanner (GE Healthcare, Waukesha, WI) with an 8-channel head 

coil and a 3-D T 1-weighted spoiled gradient echo sequence (TE = minimum full, TR = 500
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ms, FOV = 24 x 24 cm, matrix = 256 x 256). A total of 92 phase-encoding lines were 

acquired with the variable density sampling pattern which has central 24 lines fully 

sampled and the rest randomly sampled. The net reduction factor was 2.78.

4.2.7 In vivo 3-D Brain Imaging Experiment: Axial View 

A T1-weighted, inversion recovery prepared 3-D spoiled gradient echo (SPGR) 

sequence was used to obtain a fully sampled high resolution dataset of a brain of a healthy 

volunteer. The scan was performed on a GE Signa-Excite 1.5-T scanner, using an 8- 

channel receive coil. The scan parameters were echo time = 8 ms, pulse repetition time=

17.6 ms, flip = 20°, BW = 6.94 khz. The data were downloaded from 

http://www.eecs.berkeley.edu/~mlustig/Software.html. The field of view was 20x20x20 

cm, with a matrix size of 200x200x200, corresponding to isotropic 1 mm3 resolution. A 2­

D undersampling pattern was exploited along the phase and slice encoding directions 

according to a variable-density sampling pattern (6). The sampling pattern has a net 

reduction factor of 4 with an 8x8 Nyquist-sampled region at the center of k-space for 

calibration. This is a relatively high reduction factor for a 8-coil dataset in practice.

4.2.8 In vivo Cardiac Imaging Experiment 

This experiment is to examine the performance of the proposed method when applied 

to one frame of in vivo cardiac data, where air-tissue boundaries induce sharp transitions 

in the estimated coil sensitivities. The dataset was acquired from a 3T scanner (Siemens 

Trio, Erlangen, Germany), with a 12-channel phased array coil (combined to 4 coils), using 

a 2-D true FISP sequence (TE = 1.87 ms, TR = 29.9 ms, BW = 930, flip = 50°, FOV = 34 

x 28.6875 cm, matrix = 256 x 216, slice thickness = 6 mm). A total of 82 phase-encoding
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lines were acquired with a variable density random sampling and 24 fully sampled central 

lines. The net reduction factor was 2.63. This dataset is different from the other datasets in 

that it has different size in the x andy  dimension. So it is a little tricky for the wavelet term 

to run smoothly and has to extend it to 256 x 256 during the wavelet transform.

4.3 Results

4.3.1 Phantom Experiment 

For the phantom data, Figure 4.1 presents the images reconstructed using five different 

methods, JSENSE, Sparse SENSE, IRGN-TV, L 1-SPIRiT, and the proposed Sparse BLIP. 

The parameters of all methods were selected based on the L-surface method. The values 

for these parameters are: A = 1 x10-6, a = 5x10-6, (  = 2x10-4 for the proposed Sparse BLIP, 

A=1x10-6, a=5x10-6 for Sparse SENSE, a0=1, ( 0= 1 , qa=0.1, qp=0.2, amin=0, (min= 0.005 for 

IRGN-TV, and A1=0.001, A2=0.02 for L 1-SPIRiT. For this phantom data, we observe that 

at the high reduction factor of R=6.4, the proposed Sparse BLIP has less aliasing across 

the whole image when compared with JSENSE, Sparse SENSE, IRGN-TV, and L 1-SPIRiT. 

The nRMSE of each reconstructed image, as defined in Eq. [4.12], is shown in Table 4.1 

(see the row corresponding to the phantom dataset). It is seen that the nRMSEs of JSENSE, 

IRGN-TV, and L 1-SPIRiT are about three to four times higher than that of the first iteration 

of Sparse BLIP. The nRMSE of Sparse BLIP continues to decrease over subsequent AM 

iterations and it converges in four iterations. This is consistent with visual inspection that 

Sparse BLIP has less aliasing than other methods for the phantom dataset. The phantom 

results demonstrate that when the model is fairly accurate, the proposed method is able to 

reconstruct high quality images at high reduction factors. We also compare the initial and 

final estimated coil sensitivities of a single channel using Sparse BLIP against that
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estimated using the full data (named “SOS sensitivities”) on the bottom of Figure 4.1. The 

comparison shows that the iterative updating procedure gradually smoothens the sensitivity 

function, and the final estimated sensitivity looks more smooth and continuous than the 

initial estimate.

4.3.2 In vivo Coronal Experiment 

Reconstructions for the coronal data are shown in Figure 4.2 at a reduction factor of 

R=2.91. When using the L-surface method, the parameters were chosen as X = 2*10'6, a = 

2x10'6, ft = 2x10'5 for Sparse BLIP, X=2*10'6, a=2*10'6 for Sparse SENSE, X1=0.01, 

X2=0.0015 for L 1-SPIRiT, and a0=1, ft0=1, qa=0.1, qp=0.2, amin=0, ftmin=0 for IRGN-TV. It 

shows in Figure 4.2 that Sparse BLIP largely suppressed the aliasing artifacts that are 

present in other methods. The arrows in the images highlight the regions where aliasing 

are most prominent. Quantitatively, the nRMSE of Sparse BLIP is lower than those of other 

methods, as shown in Table 4.1. We also show the initial, final, and SOS sensitivities on 

the bottom of Figure 4.2. The conclusion is consistent with that from Figure 4.1. To further 

validate the accuracy of the final sensitivities, we use both the initial and final sensitivities 

obtained by Sparse BLIP to perform the conventional SENSE (i.e., uniform sampling 

without regularization), and the reconstructions are contrasted with conventional GRAPPA, 

which is known to be less prone to aliasing artifacts due to inaccurate coil calibrations than 

SENSE (3). The comparison in Figure 4.3 demonstrates that the SENSE reconstruction 

obtained using the final sensitivities is able to suppress the aliasing that is present in the 

reconstruction using the initial sensitivities and achieve a quality similar to that of 

GRAPPA. This suggests that the final sensitivities may be closer to the true ones than the 

initial sensitivities do. Such an improvement from Sparse BLIP is important because it
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would enable more accurate image-space-based parallel imaging.

We also use this dataset as an example to demonstrate how the parameters are selected 

using the L-surface method (69). Figure 4.4 shows the L-surface in the range of a e  [8*10' 

9, 2*10-3] and f te [8 * 1 0 -8, 5*10-6], where the mesh becomes denser near the “optimal 

region” labeled with a circle. Different (a, ft) pairs near the “optimal region” have similar 

performance which makes the choice of optimal parameters less stringent. For this 

particular dataset, we found that any parameters within a e  [2*10-6, 1*10-5], f t e  [2*10-5, 

5*10-4] can generate similar reconstructions.

4.3.3 In vivo Sagittal Experiment 

Figure 4.5 shows reconstructions of the sagittal image. The parameters of the Sparse 

BLIP are X = 5*10-6, a = 5*10-6, ft = 5*10-4, Sparse SENSE X=5 * 10-6, a=5* 10-6, L 1-SPIRiT 

X1=0.01, X2=0.0015, and IRGN-TV a0=1, ft0=1, qa=0.1, qp=0.2, amin=0, ftmin=0. As indicated 

by the arrows, aliasing artifacts are present in IRGN-TV, Sparse SENSE, JSENSE, and L 1- 

SPIRiT reconstructions, but are largely suppressed in the Sparse BLIP reconstruction. This 

is consistent with the results of Table 4.1, which indicates that other methods have higher 

nRMSEs than that of Sparse BLIP. In Table 4.2, we present the RMSE for the first 4 

iterations where both f-step and s-step reduce the RMSE in the first 3 and then the RMSE 

starts to increase and the iteration terminates.

4.3.4 In vivo Axial Experiment 

The axial reconstructions from the 3-D data are shown in Fig. 4.6. The parameters are X 

= 8*10-6, a = 8*10-6, ft = 2*10-4 for Sparse BLIP, X=8*10-6, a=8*10-6 for Sparse SENSE, 

X1=0.01, X2=0.0015 for L 1-SPIR1T, and a0=1, ft0=1, qa=0.1, qp=0.2, amin=0, ftmin=0 for
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IRGN-TV. At a reduction factor of 4 with 2-D undersampling, Sparse BLIP is still able to 

achieve a reconstruction that is visually close to the SOS reconstruction, while other 

methods cannot preserve the same image quality. From Table 4.1, Sparse BLIP 

reconstructions have about 20% lower nRMSE than other reconstructions.

4.3.5 In vivo Cardiac Experiment 

Figure 4.7 shows reconstructions of the cardiac image. The parameters of Sparse BLIP 

are X = 2x10'6, a = 2x10'6, ft = 2x10'5, Sparse SENSE X=2x10'6, a=2x10'6, L 1-SPIRiT 

X1=0.05, X2=0.01, and IRGN-TV ao=0.001, fto=0.001, qa=1, qp=1, amin=0, ftmin=0. As 

indicated by the arrows, artifacts are present in Sparse SENSE, JSENSE, and L 1-SPIRiT 

reconstructions and certain structures are lost in IRGN-TV. The sparse BLIP reconstruction 

is still able to reduce artifacts and preserve details. The lower nRMSE of Sparse BLIP 

compared to those of other methods is shown in Table 4.1.

4.3.6 Influence of Regularization Parameters 

Similar to other compressed sensing algorithms, the performance of the proposed Sparse 

BLIP method depends on the choice of regularization parameters X, a, and ft. Here, we 

compare the Sparse BLIP reconstructions of the cardiac data using different sets of 

parameters in Figure 4.8. The SOS reconstruction and the reconstruction with optimal 

parameters (X = 2x10-6, a = 2x10-6, ft = 2x10-5) are shown on the top row as references. It 

is seen from the 2nd row that when the two TV terms are included in the energy function, 

reconstruction without the wavelet term (X = 0) yields slightly inferior image quality and 

nRMSE to those obtained using the optimized value of X = 2*10'6. We can see that the 

image in Figure 4.8b has a higher resolution and has less aliasing artifacts than that in
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Figure 4.8d (see the region pointed by the arrow), which justifies the inclusion of wavelet 

penalty in the problem formulation. Large value of X, however, could cause a loss of details. 

The 3rd row demonstrates that small regularization parameter a for the image leads to noisy 

reconstruction with aliasing artifacts, while large a makes the reconstruction blurry and 

lacks details. The 4th row shows that when (  is too small, the Sparse BLIP reconstruction 

is very close to that of Sparse SENSE. While if ( is too large, the reconstruction has aliasing 

artifacts due to inaccurate sensitivities.

4.3.7 Influence of Different Initialization 

It is known that the performance of Sparse SENSE relies heavily on the estimated 

sensitivities. In contrast, we find that the final reconstruction of the proposed Sparse BLIP 

is not as sensitive to the initial estimated sensitivities. This is demonstrated in Figure 4.9 

where different distributions between the number of Nyquist-sampled lines (ACS) and the 

number of randomly undersampled lines are used with the net reduction factor fixed. The 

reason that we maintain the same net reduction factor is because the reconstructions of both 

methods will improve if the net reduction factor decreases with increasing ACS lines and 

it is difficult to distinguish whether such an improvement is due to the increase in ACS 

lines or in the total acquisition lines. When the ACS lines become fewer, the Sparse SENSE 

reconstruction becomes obviously inferior, while Sparse BLIP is still able to maintain a 

similar visual quality with a slightly increased nRMSE and some loss of resolution. The 

figure shows how Sparse BLIP improves the reconstructions over iterations with Sparse 

SENSE as the initial estimate. The result suggests that, when the coil sensitivity is well 

represented by the piecewise-smooth model, Sparse BLIP takes advantages of the prior 

information on coil sensitivities by iteratively updating their values, while Sparse SENSE
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only utilizes the central Nyquist sampled ACS data to obtain the sensitivities information.

4.3.8 Computation Complexity 

Sparse BLIP typically requires 3 or 4 AM iterations to converge. The f-step and s-step 

in each AM iteration are implemented using the NLCG algorithm that takes 40~50 

iterations for convergence. The complexity of Sparse BLIP per AM iteration is slightly 

higher than that of Sparse SENSE because the latter involves only the f-step. Since Sparse 

BLIP requires multiple AM iterations, its complexity can be several times higher than that 

of Sparse SENSE. For instance, in our reconstruction of the in vivo sagittal brain dataset, 

the computer running time of Sparse BLIP, JSENSE, Sparse SENSE, L 1-SPIRiT, and 

IRGN-TV is 113 seconds (for 3 AM iterations), 172 seconds, 25 seconds, 40 seconds, and 

213 seconds, respectively.

4.4 Discussion

4.4.1 Relation to Previous Works 

There are several previous methods that attempt to jointly estimate image and 

sensitivities simultaneously (14,18,67,68). The success of these methods and Sparse BLIP 

depends on the accuracy of the prior information incorporated in the image and coil 

sensitivity models. The method in (68) exploits the sparseness of coil sensitivities using 

polynomial or Fourier transforms. There are no regularizations on the image in the 

objective function, and thus the prior information of the image is not used. Both (18,67) 

employ TV regularization for the image and simultaneously impose a smoothness 

constraint on the coil sensitivities. The IRGN-TV method in (18) uses a weighted L2 norm 

to penalize high frequencies of the coil sensitivities, and (67) uses a L2 norm of the high-



order gradient as the constraint for sensitivities instead. The key difference between Sparse 

BLIP and methods of (18,67) is that Sparse BLIP uses the total variation constraint in both 

image and coil sensitivities. There are two key differences between Sparse BLIP and 

methods of (18,67). First, Sparse BLIP uses the total variation constraint, instead of the L2 

norm as in (18) and (67), for both image and coil sensitivities. Second, the optimization 

method used in Sparse BLIP is based on alternating optimization, whereas (18) and (67) 

use the Gauss-Newton method. Due to the nonconvexity of the minimization problems 

addressed here, different optimization algorithms yield different behavior in local 

optimality. These result in the difference in reconstruction qualities. It is evident from the 

Results section that the TV penalty of the coil sensitivities combined with alternating 

minimization is more appropriate for the datasets used here, resulting in superior 

reconstructions for the same number of measurements. We acknowledge, however, since 

such TV penalty is not universal, it might not be the best model in some scenarios other 

than those tested in this study. Higher order differentiation operators (71) or nonlocal total 

variations (72) may be useful as alternative penalty functions for Sparse BLIP when the 

traditional total variation representation is inadequate such as in applications with rapidly 

varying coil sensitivities from small coil elements.

4.4.2 Sampling Pattern Selection 

Based on the compressed sensing theory (5,31) and analysis in Sparse MRI (6), a key 

requirement of successful recovery is that the sampling must be incoherent, meaning that 

the aliasing introduced by undersampling should be noise-like (5,6,31). Random sampling 

is known to satisfy the incoherent requirement and variable density random undersampling 

with denser sampling close to the center of the k-space has the additional benefit of
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improved SNR (6). Figure 4.10 compares the Sparse BLIP reconstruction results of random 

and uniform undersampling patterns using the 2-D sagittal datasets. The top row presents 

the sampling patterns used where the white lines indicate the acquired readout lines. The 

random sampling has a variable density with a total of 92 lines and the uniform one has the 

same total number of lines with 38 fully sampled ones in the center. For uniform sampling, 

conventional GRAPPA (4) reconstruction is also shown for comparison. A kernel size of 

4 blocks and 5 columns was used. The results confirm that random undersampling provides 

better reconstructions than uniform undersampling for the proposed method.

4.4.3 Gain over Sparse SENSE and JSENSE 

While Sparse BLIP can improve the reconstruction quality of Sparse SENSE and 

JSENSE for the same reduction factor, the advantage of Sparse BLIP also lies in its ability 

to reconstruct images of the same quality using fewer acquired samples, especially fewer 

central k-space samples. It is therefore of interest to see how much acceleration that Sparse 

BLIP could bring compared to Sparse SENSE and JSENSE. While it largely depends on 

the particular dataset and sampling patterns, we use the in vivo sagittal dataset as an 

example to examine the additional acceleration. For Sparse BLIP shown in Figure 4.11b 

and Figure 4.12b, we use 24/92 to represent that a total of 92 phase-encoding lines were 

acquired with the variable density sampling pattern, which has 24 fully sampled ACS lines 

and the rest 68 lines randomly sampled. This corresponds to reduction factor 

R=256/92=2.78. In Figure 4.11 c-f, we increase the number of ACS lines and total phase 

encoding lines to examine the performance improvement in Sparse SENSE. This is in light 

of the observation from Figure 4.9 that the performance of Sparse SENSE is sensitive to 

the number of ACS lines. As shown in Figure 4.11 c-e, Sparse SENSE suffers from aliasing
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(refer to the arrow in each figure) despite increased number of ACS lines and phase 

encoding lines. In Figure 4.11f, we observe that Sparse SENSE generates a reconstruction 

with a similar nRMSE and visual quality as Sparse BLIP, while requiring 16 additional 

readout lines. This shows that Sparse BLIP has a gain of 16/108=15% in acceleration over 

Sparse SENSE. Similarly, in Figure 4.12 c-f, we increase the number of total phase 

encoding lines for JSENSE with ACS/total lines being 38/92, 22/100, 34/108, and 40/112, 

respectively. As shown in Figure 4.12 c-f, JSENSE suffers from aliasing (refer to the arrow 

in each figure) even when 112 lines are acquired. This shows that the TV constraints are 

important and Sparse BLIP has a gain of at least 20/112=18% in acceleration over JSENSE.

4.5 Conclusion

We propose a new method, Sparse BLIP, to jointly reconstruct the image and coil 

sensitivities from undersampled multichannel phased-array data. Phantom and in vivo 

experimental results demonstrate that Sparse BLIP provides reconstructions superior to 

those using IRGN-TV, Sparse SENSE, JSENSE, and L 1-SPIRiT both qualitatively and 

quantitatively. In particular, Sparse BLIP is robust to the initial estimate of coil sensitivities 

and the algorithm converges to a high quality image reconstruction after a small number of 

joint image and sensitivities updates.
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Figure 4.1 Comparison of reconstructions for the phantom dataset. The reconstruction 
images of SOS, Sparse BLIP, IRGN-TV, JSENSE, Sparse SENSE, and L 1-SPIRiT are 
shown in (a) -  (f). The method used for image reconstruction is shown on the top left corner 
of each image and the net reduction factors “R” and the nRMSE “e” are shown on the top 
right corner. For the high reduction factor of R = 6.4, the proposed Sparse BLIP yields a 
reconstruction with much less aliasing than IRGN-TV, JSENSE, Sparse SENSE, and L 1- 
SPIRiT. The sensitivity estimated from the fully sampled data (SOS sensitivities), the 
initial, and final sensitivities of channel #1 estimated from Sparse BLIP are shown in (g) -  
(i). While the initial sensitivity of Sparse BLIP has errors in the regions where the image 
has low intensity, the final estimation is able to recover the smoothness of the sensitivity 
function.
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Figure 4.2 Comparison of reconstructions for the coronal dataset. The reconstruction 
images of SOS, Sparse BLIP, IRGN-TV, JSENSE, Sparse SENSE, and L 1-SPIRiT are 
shown in (a) -  (f). For the reduction factor of R = 2.91, the proposed Sparse BLIP method 
has less aliasing and preserves more details than IRGN-TV, JSENSE, Sparse SENSE, and 
L1-SPIRiT. The arrows in the reconstructed image for Sparse SENSE point to the vertical 
white stripes that extend from the top of the image to the center due to aliasing. Similar 
aliasing artifacts, as indicated by the arrows, are also present in the reconstructed image for 
IRGN-TV, JSENSE, and L1-SPIRiT. The SOS, initial, and final sensitivities estimated by 
Sparse BLIP for channel #1 are shown in (g) -  (i). The conclusion is consistent with that 
from Figure 4.1 that the final estimated sensitivity represents the smooth and continuous 
nature of the sensitivity function more accurately.
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Figure 4.3 Using SENSE reconstruction to show the improvement of the sensitivities 
estimation from Sparse SENSE to Sparse BLIP. SENSE reconstructions using the initial 
sensitivities of Sparse SENSE (a) and final sensitivities of Sparse BLIP (b), GRAPPA 
reconstruction (c), and Sparse BLIP reconstruction (d) are shown for comparison. The 
reduction factor of R = 2 is used. The aliasing artifacts that appear in the SENSE 
reconstruction with the initial sensitivities are suppressed in that with the final sensitivities. 
The SENSE reconstruction using the final sensitivities achieves a reconstruction quality 
similar to GRAPPA. Sparse BLIP, which has the lowest nRMSE, is able to suppress the 
noise present in SENSE and GRAPPA reconstructions.
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TV of im age
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Figure 4.4 Illustration of the L-surface method for automated parameter selection using the 
coronal brain dataset. Each point in the 3-D space corresponds to a pair of parameters (a 
and P) used for Sparse BLIP. The three coordinates of a given point correspond to the 
values of the data consistency, TV of image, and TV of sensitivities, respectively. A surface 
is generated by varying (a and P) in a certain range. The optimal parameters are located at 
the circled corner of the L-surface.
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Figure 4.5 The reconstructed images for the sagittal dataset at R = 2.78 are shown for 
comparison. The reconstruction images of SOS, Sparse BLIP, IRGN-TV, JSENSE, Sparse 
SENSE, and L 1-SPIR.iT are shown in (a) -  (f). We can see that the Sparse BLIP method is 
able to suppress the aliasing artifacts that are present in IRGN-TV, JSENSE, Sparse 
SENSE, and L1-SPIRiT reconstruction. The aliasing artifacts are indicated by arrows in 
each image.
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Figure 4.6 Comparison of the axial reconstructions of a 3-D brain dataset with a 2-D 
reduction factor of 4. The reconstruction images of SOS, Sparse BLIP, IRGN-TV, Sparse 
SENSE, and L 1-SPIRiT are shown in (a) -  (e). Among all methods, the proposed Sparse 
BLIP method is able to reconstruct an image with the least reconstruction error.
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Figure 4.7 Comparison of reconstruction results for the cardiac dataset. The reconstruction 
images of SOS, Sparse BLIP, IRGN-TV, Sparse SENSE, JSENSE, and L 1-SPIRiT are 
shown in (a) -  (f). The results show that, at R = 2.63, the proposed Sparse BLIP method 
has less aliasing and preserves more details than IRGNTV, Sparse SENSE, JSENSE, and 
L 1-SPIRiT. The two arrows on the left in the reconstructed image of IRGN-TV show the 
loss of structural details. The other arrows in the figures show the aliasing artifacts.
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Figure 4.8 Illustration of the influence of regularization parameters X, a, and p. The SOS is 
shown in (a), result of Sparse BLIP with the regularization parameters X=2e-6, a=2e-6, 
P=2e-5 is shown in (b), X=2e-4, a=2e-6, P=2e-5 is shown in (c), X=0, a=2e-6, P=2e-5 is 
shown in (d), X=2e-6, a=2e-8, P=2e-5 is shown in (e), X=2e-6, a=5e-5, P=2e-5 is shown in 
(f), X=2e-6, a=2e-6, P=2e-8 is shown in (g), X=2e-6, a=2e-6, P=2e-2 is shown in (h), The 
values of these parameters are shown on the bottom right corner of each image. The 
reduction factor “R” and the corresponding nRMSE “e” are shown on the top right corner 
of each image. In the first row, the left image is obtained by SOS, and the right image is 
obtained by Sparse BLIP with optimally chosen parameters. In rows 2-4, we examine the 
effect of changing one of the parameters X, a, and p, respectively, while keeping the other 
two parameters fixed at their optimal values. The images and nRMSEs indicate that the 
reconstruction can suffer from noise, aliasing artifacts, or loss of details when the 
parameters are not chosen properly either too small, or too large from the optimal values.
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Figure 4.9 Comparison of sagittal reconstructions with different ACS lines for a fixed 
reduction factor R = 2.78. Sparse SENSE and Sparse BLIP reconstruction of 24 ACS lines 
are shown in (a) and (c), the difference images are shown in (b) and (d). Sparse SENSE 
and Sparse BLIP reconstruction of 8 ACS lines are shown in (e) and (g), the difference 
images are shown in (f) and (h). The proposed Sparse BLIP method is able to achieve 
similar reconstructions with decreasing numbers of ACS lines, while Sparse SENSE relies 
on a larger number of ACS lines to estimate the coll sensitivities accurately.



79

Figure 4.10 Comparison of Sparse BLIP reconstructions using variable density random 
undersampling and uniform undersampling pattern for the in vivo sagittal datasets. The 
random (a) and uniform (b) sampling patterns with white lines representing the acquired 
k-space locations are shown. The reconstructions from the random sampling pattern and 
the difference images with the reference are shown in (c) and (d). The reconstructions from 
the uniform sampling pattern and the difference images with the reference are shown in (e) 
and (f). We can see that Sparse BLIP using random sampling gives better reconstruction 
quality than uniform sampling.
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Figure 4.11 Reconstructions of Sparse SENSE for the sagittal dataset with decreasing 
reduction factors are compared. SOS reconstruction is shown in (a). In (b), 24/92 represents 
that 92 phase-encoding lines were acquired with the variable density-sampling pattern, 
which has 24 fully sampled ACS lines and the rest randomly sampled. The reduction factor 
is R = 256/92 = 2.78. In (c-e), it is seen that Sparse SENSE suffers from aliasing artifacts 
despite increased number of ACS lines and phase-encoding lines. Sparse SENSE in (f) 
achieves a reconstruction quality similar to that of Sparse BLIP when the number of ACS 
lines and phase-encoding lines increase to 40/108, corresponding to R = 2.37.
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Figure 4.12 Comparison of Sparse BLIP with JSENSE to show the improvement of 
acceleration rate of Sparse BLIP over JSENSE. Reconstructions of JSENSE for the sagittal 
dataset with decreasing reduction factors. SOS is shown in (a), Sparse BLIP with reduction 
factor of 2.78 is shown in (b), and JSENSE with reduction factor of 2.78, 2.56, 2.37, and 
2.28 are shown in (c) -  (f). JSENSE in (f) achieves a reconstruction quality close to (but 
still with aliasing) that of Sparse BLIP when the number of phase-encoding lines increases 
to 112, corresponding to R = 2.28. So the improvement of Sparse BLIP over JSENSE is 
around 20%.
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Table 4.1 nRMSE of different methods over iteration for the four different datasets: 
phantom, in vivo brain data with coronal, sagittal, and axial views.

The nRMSE of Sparse BLIP is lower than those of L 1-SPIRiT 
and Sparse SENSE after convergence.

^ " '' '\M e th o d
D a t a ' \ ^ ^ L 1-SPIRiT

Sparse BLIP
Iteration 1 

(Sparse SENSE)
Iteration 2 Iteration 3 Iteration 4

Phantom 0.0501 0.0171 0.0149 0.0144 0.0143
In vivo coronal 0.0235 0.0195 0.0183 0.0175 0.0174
In vivo sagittal 0.0105 0.0096 0.0094 0.0092 0.0092

In vivo axial 0.0403 0.0444 0.0363 0.035 0.0346

Table 4.2 Take RMSE of each step during the iterations as a stop criterion.

Iterations RMSE of f-step RMSE of s -step
1 0.000461 0.000388
2 0.000352 0.000341
3 0.000327 0.000327
4 0.000321 0.000323



CHAPTER 5

A STUDY OF TEM PORAL CONSTRAINED RECONSTRUCTION 

AND MODEL-BASED RECONSTRUCTION FO R  DCE-M RI 

5.1 Introduction

Dynamic Contrast Enhanced magnetic resonance imaging (DCE-MRI) has emerged in 

the past decade as an important imaging tool for both routine clinical practice and cancer 

detection and treatment. Although MRI speeds have increased dramatically over the last 

two decades, many DCE-MRI applications require still faster imaging methods to provide 

the desired spatial and temporal resolutions. A common approach to balance the trade-off 

between spatial resolution and temporal resolution is to reduce the sampling of k-space 

data at each time frame. Examples of such methods include UNFOLD (41), keyhole (34) , 

RIGR (42), HYPR (43), and k-t BLAST/k-t SENSE (44). Most of these methods use 

constraints or prior information in the image reconstruction to compensate for the 

information loss from reduced sampling. In particular, temporal constrained reconstruction 

(TCR) (15,73) is an effective method to produce good reconstruction by imposing the 

temporal constraint that the images of adjacent time frames are similar, and in which case 

temporal total variation (TV) is a reasonable regularization term. The TCR approach, 

however, requires the reconstruction of every pixel in each time frame, and hence involves 

a huge number of unknown variables in the reconstruction. An alternative approach to 

incorporate prior information into the reconstruction is in the form of the pharmacokinetic



model (16,19,20). Such model-based reconstruction method reduces the reconstruction 

task from estimating each pixel intensity over time to estimating only the parameters of the 

model. Both the TCR approach and the model-based approach have been shown to achieve 

high quality reconstructions for reduction factors up to 10.

In this work, we conduct an in-depth study of the TCR approach and the model-based 

approach and develop improved versions of these algorithms to achieve good image 

reconstructions for highly sparse DCE-MRI data. We find that, at high reduction factors, 

the choice of the initial image plays a critical role in the convergence of the TCR algorithm 

and the convergence can be accelerated dramatically with the aid of a well-designed 

sampling pattern, termed the jigsaw sampling. The reconstruction quality of the model- 

based approach, on the other hand, greatly depends on the accuracy of the initial phase 

estimate. Our study reveals that, for the high reduction factors considered, the model-based 

approach performs inferior to the improved TCR approach, even with the best phase 

estlmates available. For the in vivo breast DCE-MRI data, we show that the improved TCR 

approach can achieve a highly accelerated reduction factor of 30, while achieving a good 

balance of temporal and spatial resolution without a significant loss in image quality. The 

improved spatiotemporal resolution leads to better estimation of the kinetic parameters, 

which is instrumental in improving the accuracy of lesion characterizations.

5.2 M aterials and Methods

5.2.1 Improved TCR Method for High Reduction Factor 

In this section, we first review the TCR method and then present the improved TCR 

algorithm for high reduction factors. The TCR method follows the SENSE (3) framework, 

in which the imaging equation is written as
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E f = d , [5.1]

where d is the vector formed from all k-space data acquired from all channels, and f  is the 

unknown image vector formed from the desired full field of view (FOV) image. The 

encoding matrix E consists of the Fourier encoding, i.e.,

Em,n = ^ ^  , [5.2]

where km denotes the coordinates of the k-space data. To reconstruct the desired image 

from acquired data, the least-squares method is usually used to solve Eq. [5.1].

Based on the data consistency in the imaging equation, TCR uses the temporal TV as a 

sparse constraint and the reconstruction is formulated as a nonlinear optimization problem:

argmin m  |d,„ - W, E f + a T V ,  f t ) j , [5.3]

where dt,c is the vector consisting of the undersampled k-space data acquired from the t-th 

time frame and the c-th channel, f,,c is the corresponding unknown image vector, E is the 

Fourier Encoding matrix, W , is the sparse sampling pattern of k-space data from the ,-th 

frame, TV, is the total variation operator along the temporal domain, and a is the 

regularization parameter which controls the tradeoff between the data consistency term and 

the prior information term. The temporal TV operator on a complex image series fc of the 

c-th coil is defined as:

TV, (fc-) = t|f ,.1 ,c  -  f, ,c|, [5.4]
t=1

where t is the frame index for the image series, and T  is the total number of frames. Gradient 

descent algorithm is used to find the optimum solution of Eq. [5.3].

The TCR algorithm (15) is initialized with a low-resolution image, obtained from taking
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the inverse-Fourier Transform of the central, fully sampled k-space data in the center of 

the acquired k-space data. We refer to this TCR algorithm as the low-resolutlon initialized 

TCR (LTCR). While LTCR performs well at low reduction factors of up to 10 (add 

reference), we find that it suffers from performance degradation at high reduction factors. 

The reconstructed image of LTCR remains blurry after thousands of iterations and the 

convergence to the optimal solution of [5.3] is very slow.

To improve the convergence of the TCR method, we design an undersampling pattern 

at the precontrast stage, and these undersampled frames are combined along the temporal 

direction to form a better baseline estimation. We refer to this sampling pattern as the 

jigsaw sampling pattern, and an example of such is shown in Figure 5.1. Since the k-space 

data at the auto-calibration (ACS) region are fully sampled, we take the average of these 

precontrast frames to obtain the values for the baseline image in the ACS region. The outer 

k-space data and the averaged ACS data are combined to generate a full k-space data, which 

are used to obtain an initial estimation of a baseline image. We make replica of this jigsaw 

image to all time frames and get a whole series of initial estimation images for TCR 

reconstruction. We refer to this jigsaw sampling enhanced TCR method as JTCR.

5.2.2 Phase Enhanced Model-based Reconstruction Method 

In this section, we first review the existing model-based method, then present our 

approach of phase enhanced model-base reconstruction. The model-based reconstruction 

method assumes that contrast agent (CA) exchanges at constant rates between vascular 

space and extravascular-extracellular space (EES). It constrains the magnitude of the 

reconstructed time series to be consistent with a pharmacokinetic model (16):

f  (x, t ) = (|s„ (x, c)| + K (x, c) C , (t - 1„ (x, c )) * e-"’ 'x'c* )• e"*',c), [5.5]
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where fc (x,t) is the complex signal intensity of a pixel, x is the spatial location, t is the 

frame index, c is the coil index, |S0 (x, c)| is the magnitude of the complex baseline signal 

of the c-th coil, K trans (x, c ) and kep (x, c) are transfer rates of the CA from plasma to EES 

and back, Cp (t) is the concentration of CA in the plasma, which remains zero until time 

t0 (x, c ) , (p( x, c) is the phase, and * is the convolution operator over time.

In (19), model-based reconstruction estimates the phase information y (  x, c) from the

low-resolution images reconstructed from the fully sampled low-frequency samples or the 

aliasing measurements images. Since the accuracy of the phase estimation is not 

guaranteed, the model-based reconstruction suffers from significant reconstruction error at 

high reduction factors. In this study, we aim to enhance the performance of model-based 

method using better phase initializations. It is found that an effective way to improve the 

phase initialization is to adopt the phase estimates provided by JTCR reconstruction. We 

refer to the JTCR phase enhanced model-based reconstruction as JTCR-M. Note that the 

baseline estimation used in JTCR-M is the same as that used for JTCR.

5.2.3 Jigsaw Initialization for Other Image Reconstruction Methods 

Our study shows that at high reduction factor, the initialization is very important for 

convergence and it has great effects on the reconstruction quality. We find that the 

proposed jigsaw initialization method not only works for the TCR method, but also helps 

to improve the convergence rate of other image reconstruction methods. For instance, when 

we apply the proposed approach to the PCA method, we find that the jigsaw sampling 

initialized PCA method, termed JPCA, also demonstrates improved performance than the
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standard low-resolution initialized PCA (LPCA) method, since a good initialization will 

adopt more prior information of the dataset. More detail of the analysis and comparison of 

those methods are shown in the Results and Discussion sections.

5.2.4 Data Acquisition and Simulation

Breast DCE-MRI datasets were acquired on a Siemens 3 Tesla scanner equipped with a 

7-channel dedicated breast coil. Three datasets from three study participants with clinically 

confirmed breast cancer were obtained under an Institutional Review Board-approved 

protocol. The root sum-of-squares (SOS) reconstruction from fully sampled data was used 

as the gold standard for visual comparison. All three k-space datasets were acquired in full 

and then manually undersampled retrospectively to simulate accelerated scans.

The imaging used a 3-D spoiled gradient echo pulse sequence with the following 

imaging parameters: TR = 2.35-3.16 ms, TE = 0.99-1.24 ms, flip angle = 10-15°. 

Omniscan of dose 0.1 ml/kg was injected at 4 ml/s followed by 20 ml saline flush injected 

at 2 ml/s. Temporal resolution per frame was 12-15 s with data acquired with 6/8 reduced 

Fourier space in the phase and slice directions and elliptical acquisition in the kx-ky plane. 

The acquisition matrices for the data kx x ky x kz x T were 256 x 83 x 64 x 45 , 256 x 83 

x 64 x 42 and 512 x 83 x 51 x 59 , respectively. The acquisitions were bilateral, with the 

read direction left to right. The fast inverse Fourier transform (IFT) was performed in the 

read (kx) direction, and the ky-kz datasets were extracted from each slice in the x 

dimension.

Jigsaw sampling patterns are divided into the precontrast stage and the postcontrast 

stage. In the precontrast stage, the k-space center ACS region has a size of 8 by 8, and the 

outer reduction factor is 8 and 10, respectively, depending on the total number of frames.
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The sampling masks are designed so that the summation of the precontrast sampling masks 

cover the outer k-space. In the postcontrast stage, k-space data are undersampled with a 

variable-density random undersampling with the central k-space sampled with Nyquist rate 

as in Sparse MRI (6). Specifically, the samples are taken randomly with a sampling density 

that is scaled according to a power of distance from the k-space center. Undersampled k- 

space data were simulated by randomly picking a portion of the acquired phase encodes in 

the ky and kz directions. We have tested high reduction factor R=30 for the postcontrast 

frames.

5.2.5 Implementation Issues 

All the reconstructed images of the same dataset were normalized and shown 

individually on the same scale for visual evaluations of image quality. Quantitative 

comparison was provided in terms of the normalized root mean squared error (nRMSE) 

with the SOS as the reference, which is defined as:

nRMSE = -
max (  / so s )  m i n  (  f s o s  )  >

M  N  T

m=1 n=1 t=1

M NT
[5.5]

where f  is the reconstructed image and f SOS is the SOS image.

The mean intensity (MI) curves obtained from the region of interest (ROI) can be taken 

as another criterion for the reconstruction quality. To obtain the MI curves, the image series 

are normalized by dividing the mean value of all frames.

5.3 Results

Figure 5.2 and Figure 5.3 show the reconstructed images and the MI curves from a 

subject with two lesion regions. The first 8 frames are undersampled with R=8, and the

2



other frames are undersampled with R = 30. Reconstruction results from JTCR, JPCA, and 

JTCR-M are compared with the fully sampled SOS image for the last frame. Both JTCR 

and JPCA achieve smaller estimation error than that of the JTCR-M method. JTCR has a 

smaller estimation error that that of JPCA even though the reconstruction images are 

similar. In comparison, JTCR-M gives a noisy reconstruction. In the 1st region of interest 

(ROI 1), indicated by the left red square, the MI curves of all three methods are close to 

that of the fully sampled SOS. In the 2nd region of interest (ROI 2), indicated by the right 

red square, the MI curves of JTCR are still close to the fully sampled SOS, whereas the 

curves of JPCA and JTCR-M deviate away from that of the SOS towards later frames.

In Figure 5.4 and Figure 5.5, we present results for a second dataset. The jigsaw 

sampling pattern is the same as that of the first dataset. For this dataset, we also observe 

that JTCR still gives the smallest reconstruction error among all three methods. For both 

ROI1 and ROI2, the MI curve of JTCR is the closest to that of the SOS.

Figure 5.6 and Figure 5.7 present the reconstructed images and the MI curves from a 

third subject with one lesion region. The first 10 frames are undersampled with R= 10 and 

the other frames are undersampled with R = 30. Both JTCR and JPCA methods produce 

good reconstructions while JTCR-M gives noisy reconstruction. In the ROI, the MI curves 

of both JTCR and JPCA are closer to that of the SOS curve than the JTCR-M.

5.4 Discussion and Conclusion

5.4.1 Different Initialization 

In this study, we observe that the images of the precontrast stage are similar and a large 

part of the tissues shown in the postcontrast frames are close to that in the precontrast 

frames except for the tumor regions. LTCR and LPCA methods adopt the low-resolution
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initialization without using such prior information, and thus fail to give quality 

reconstruction at high reduction factors. Based on this prior information, we design the 

jigsaw undersampling pattern for initialization, which improves the reconstruction quality 

for highly undersampled data. Figure 5.8 shows the comparison of low-resolution 

initialized reconstructions (LTCR and LPCA) with the jigsaw initialized reconstructions 

(JTCR and JPCA) using one dataset. We can see both LTCR and LPCA give inferior 

reconstruction at R=30 while JTCR and JPCA improve the reconstruction quality 

significantly.

5.4.2 Different Jigsaw Sampling Frames 

As shown in the Methods section, the jigsaw sampling pattern is designed such that the 

samples are taken from the first 8 (JTCRF8) precontrast frames. This allows the JTCR to 

have a better baseline initialization. We have also examined other sampling patterns, such 

as combining the last 8 (JTCRL8) frames to cover the whole k-space. In this way, the 

initialization captures more information from the postcontrast frames. The MI curves of 

two different jigsaw sampling patterns are shown in Figure 5.9. We see that the baseline 

signal estimation for ROI 2 of JTCRL8 has a larger bias than that of JTCRF8. Thus, for 

the datasets that we have, we take more samples from the precontrast frames to give a better 

baseline signal estimation.

5.4.3 Relationship with Model-based Method 

As mentioned earlier, the model-based method constrains the magnitude of the 

reconstructed curves to be consistent with a pharmacokinetic model and good 

reconstructions can be achieved at relatively low acceleration factors. However, since the
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phase information is unknown a priori and needs to be estimated, inaccurate estimation of 

the phase may lead to large estimation error in the reconstructed image for the model-based 

method. Figure 5.10 shows the comparison of reconstruction results of model-based 

methods using the low-resolution phase estimate and the phase estimate from the JTCR 

reconstruction. We can see the performance of JTCR-M is much better than that of the 

model-based method using the low-resolution phase estimate. Since JTCR utilizes 

temporal total variation constraint and does not need the phase information to perform 

reconstruction, we conclude that the JTCR is more robust than the model-based method for 

the datasets considered.

Baseline estimation is another important element for model-based reconstruction. In this 

work, we use the magnitude of the jigsaw image of the precontrast frames as the baseline 

signal. To show the accuracy of jigsaw baseline estimation, we compare the curves of the 

model-based method using jigsaw baseline estimation and those using the fully sampled 

baseline estimation for one dataset with R = 30. For fair comparison, both methods use 

phase information from the fully sampled images, i.e., true phase information. In Figure 

5.11, we can see that the reconstruction curve using jigsaw baseline estimation is close to 

that using fully sampled baseline estimation. This demonstrates that jigsaw estimation is a 

good approximation to the true baseline estimation.

5.4.4 Kinetic Parameter Estimation 

In clinical applications, the pharmacokinetic parameters are important for diagnosis. 

Thus, it is meaningful to examine the accuracy of the parameters estimated from the 

reconstructed MI curves and compare with that obtained from the fully sampled MI curves. 

The parameters estimation is based on the pharmacokinetic model (16), and the values are
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estimated via a nonlinear least-squares function Isqcurvefit defined in Matlab®

optimization toolbox. The nRMSE of curve fitting parameters K trans and kep of JTCR,

JPCA, and JTCR-M for different ROIs of three datasets are shown in Figure 5.12. The 

normalized estimation error is calculated based on comparisons with the SOS parameters. 

We can see that JTCR parameters are closer to the SOS parameters compared to those of 

the JPCA and JTCR-M methods. To examine the statistical performance of JTCR, JPCA, 

and JTCR-M across the tumor region, we show the correlation plot of kinetic parameters 

(Ktrans, kep) generated from JTCR, JPCA, and JTCR-M curves with that of the fully sampled 

SOS curves. The kinetic parameters are computed from the MI curves of many small 

regions (7x7) across the ROIs. The correlation plots of K trans and kep are shown in Figure 

5.13 and Figure 5.14, respectively. As shown, parameters obtained from JTCR demonstrate 

the best correlation with the SOS parameters compared to those of JPCA and JTCR-M.

5.5 Conclusion

In the work we provide a comparative study of the TCR method and the model-based 

method for highly accelerated DCE-MRI data and show that an improved version of the 

TCR method can achieve a very good image quality at a high reduction factor of 30 without 

much loss in temporal and spatial resolution. The model-based method shows inferior 

performance to that of the improved TCR reconstruction, due to the crudeness of the model 

and inaccurate phase estimation. Further research is needed to improve the model-based 

method at high reduction factors. This includes the development of a more accurate kinetic 

model and better phase estimates.
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Figure 5.1 The sampling masks for the first 8 precontrast frames are shown in (a)-(h). The 
central ACS region has a size of 8x8, and the outer reduction factor is 8. The summation 
of the 8 downsampling masks, shown in (i), covers the entire k-space. Since the central 
ACS region is covered 8 times, the average of these, together with the outer combined 
samples, form the k-space samples as shown in (i), which is used to obtain the initial 
baseline image.
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Figure 5.2 The last frame of the reconstructed image of the 1st dataset for R=30 is shown 
in (a)-(d) for SOS, JTCR, JPCA, and JTCR-M, respectively. The nRMSE averaged over 
all reconstructed frames (number at the top) and the nRMSE of the last reconstructed frame 
only (number at the bottom) are shown in each subfigure. Both JTCR and JPCA achieve 
superior performance than JTCR-M. The reconstruction of JTCR-M is noisy and has the 
largest nRMSE.
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Figure 5.3 MI curves of two ROIs (corresponding to the two subfigures) for JTCR, JPCA, 
and JTCR-M reconstructions. The error between the MI curve of each reconstruction 
method and the SOS curve is shown in the figure. In ROI 1 (see the left subfigure), the 
JTCR curves best match the SOS curve and has the smallest error. In ROI 2 (the right 
subfigure), the MI curve of JTCR is also the closest to the fully sampled SOS curve, while 
the curves of JPCA and JTCR-M’s show much deviation for the postcontrast frames.
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Figure 5.4 The last frame of the reconstructed image of the 2nd dataset for R=30 is shown 
in (a)-(d) for SOS, JTCR, JPCA, and JTCR-M, respectively. The nRMSE averaged over 
all reconstructed frames (number at the top) and the nRMSE of the last reconstructed frame 
only (number at the bottom) are shown in each subfigure. Both JTCR and JPCA achieve 
superior performance than JTCR-M. The reconstruction of JTCR-M is noisy and has the 
largest nRMSE.
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JTCR e=0.0144, JPCA e=0.0287, JTCR-M e=0.0425
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JTCR e=0.0257, JPCA e=0.0413, JTCR-M e=0.0485

Frame

Figure 5.5 MI curves of two ROIs, corresponding to the two subfigures, for JTCR, JPCA, 
and JTCR-M reconstructions with reduction factor R = 30. The curves of all three methods 
are close to the fully sampled SOS curve in both ROIs. The MI curves of JTCR have the 
smallest error compared to JPCA and JTCR-M.
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Figure 5.6 The last frame of the reconstructed image of the 3rd dataset for R=30 is shown 
in (a)-(d) for SOS, JTCR, JPCA, and JTCR-M, respectively. The nRMSE averaged over 
all reconstructed frames (number at the top) and the nRMSE of the last reconstructed frame 
only (number at the bottom) are shown in each subfigure. Both JTCR and JPCA achieve 
superior performance than JTCR-M. The reconstruction of JTCR-M is noisy and has the 
largest nRMSE.
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Figure 5.7 MI curves in ROI for JTCR, JPCA, and JTCR-M reconstructions with reduction 
factor R = 30. The curves of all three methods are close to the fully sampled SOS curve in 
both ROIs. The MI curve of JTCR has the smallest error compared with JPCA and JTCR- 
M.



101

Figure 5.8 Comparisons of low-resolution initialization and jigsaw initialization for TCR 
and PCA methods. Reconstructed images for SOS, jigsaw initialized TCR, low-resolution 
initialized TCR, jigsaw initialized PCA, and low-resolution initialized PCA are shown in 
(a), (b), (c), (d), and (e), respectively. Jigsaw initialized TCR and PCA provide good 
reconstruction qualities, while low-resolution initialized TCR and PCA give poor 
reconstruction qualities.
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Frame

Figure 5.9 Comparisons of JTCR using the first 8 frames and the last 8 frames, respectively, 
for jigsaw initialization. JTCR using the first 8 frames performs slightly better than that 
using the last 8 frames.
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Low Phase e=0.2937, TCR Phase e=0.0425
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Figure 5.10 The time curves of model-based method using phase estimates from the low- 
resolution image and from the JTCR reconstruction for reduction factor R = 30.



104

Figure 5.11 The MI curves of model-based method using jigsaw baseline estimation and 
fully sampled baseline estimation for the 3rd dataset with reduction factor R = 30. The 
reconstruction curve using jigsaw baseline estimation is close to that using fully sampled 
baseline estimation.
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Figure 5.12 The nRMSE of model-based curve fitting parameters Ktrans and kep compared 
with fully sampled SOS curve fitting parameters for the mean signal intensity curves of 
JTCR, JPCA, and JTCR-M methods. For both parameters, the JTCR estimates are closer 
to the SOS estimates compared to JPCA and JTCR-M.
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Figure 5.13 The correlation plots of kinetic parameter Ktrans generated from reconstructed 
images of SOS, JTCR, JPCA, and JTCR-M. The kinetic parameters are obtained from the 
mean intensity (MI) curve of a small region (7x7) moving across the ROIs of the three 
datasets. The value R is the correlation coefficient between the kinetic parameter estimates 
from the SOS method and other methods.
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Figure 5.14 The correlation plots of kinetic parameter kep generated from reconstructed 
images of SOS, JTCR, JPCA, and JTCR-M. The kinetic parameters are obtained from the 
mean intensity (MI) curve of a small region (7x7) moving across the ROIs of the three 
datasets. The value R is the correlation coefficient between the kinetic parameter estimates 
from the SOS method and other methods.



CHAPTER 6

CONCLUSIONS AND FUTURE W O RK

In this thesis, we developed novel signal processing techniques within the blind 

estimation and compressed sensing framework to improve MRI image reconstruction for 

parallel MRI and DCE-MRI. This work is innovative in several aspects: a) it addresses the 

problem of ill-conditioning and inaccurate sensitivities in parallel imaging simultaneously 

with a novel joint optimization approach. The reconstruction algorithms result in a more 

uniform image and achieve better spatial resolution with a smaller number of acquired k- 

space samples. b) It provides a comparative study of the TCR method and the model-based 

method for DEC-MRI and shows that high quality reconstruction images and accurate 

kinetic parameters can be obtained at the high reduction factor of 30 without much loss of 

spatial or temporal resolution.

An interesting direction for future work is to study the integration of parallel imaging 

with dynamic imaging. It is promising to investigate the application of Sparse BLIP to 

DCE-MRI applications to explore the benefit of data correlation across space (parallel 

imaging) and the data dependence over time. Extension of Sparse BLIP to non-Cartesian 

sampling will make it applicable to a wider range of applications and signal types. The 

extension of the proposed work to 3-D imaging is also worth pursuing because it has the 

potential to greatly accelerate the current slow imaging speed of 3-D imaging and enhance 

the image quality. Another direction of handling 3-D and dynamic imaging is the dictionary



learning method. Through the dictionary learning, more information of the datasets could 

be utilized to improve the quality of reconstruction. Finally, the development of more 

accurate kinetic models for DEC-MRI will be important for further improvement of spatial 

and temporal resolution for very sparse DEC-MRI data.
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