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ABSTRACT

Cell division is a complex process that involves carefully orchestrated chemical and

mechanical events. Tight regulation is vital during division, since a breakdown in control

mechanisms can lead to serious disorders such as cancer. A key step in division is the

movement of chromosomes to specific locations in the cell with remarkable precision. In

higher eukaryotes, the movement of chromosomes has been well observed over the course of

hundreds of years. Yet, the mechanisms underlying chromosome motility and the control

of precise chromosome localizations in the cell are poorly understood. More recently, a

wealth of experimental data has become available for bacterial division. Despite the long

supported theory that bacteria and eukaryotes differ widely when undergoing division, it

is emerging that similar mechanisms for motility and cell cycle control might be at play

in both cell types. Mathematical modeling is useful in the study of these dynamic cellular

environments, where it is difficult to experimentally uncover the mechanisms that drive

a multitude of mechanical and chemical events. In this dissertation, we develop various

mathematical models that address the question of how dynamic polymers can move large

objects such as chromosomes in higher eukaryotes and in bacteria. Then, we develop models

that address how chemical and mechanical signals can be coordinated to control the precise

localization of a chromosome. The mathematical models proposed here employ stochastic

differential equations, ordinary differential equations and partial differential equations. The

models are numerically simulated to obtain solutions for various parameter values, but

we also use tools from bifurcation theory, asymptotic and perturbation methods for our

model analysis. Our mathematical models can not only reproduce the experimental data

at hand, but also make predictions about the mechanisms underlying chromosome motility

in dividing cells.
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CHAPTER 1

INTRODUCTION

In just one minute 300 million cells in the human body die and become immediately

replaced. New cells are furnished from existing cells through a process called cell division or

mitosis. Proper mitosis progression is extremely important in multicellular organisms since

disruptions in cell division can lead to very serious disorders such as cancer. Indeed, cancer

in somatic cells can be defined as a disease of mitosis. The development of future vaccines

and cancer treatments that target aberrant mitotic cells will require a good understanding

of mitotic mechanisms and checkpoints. Advances in technology have allowed for a wealth

of experimental data to be collected about cell division, however the mechanisms that drive

the observed cellular properties are not clear. A very conspicuous and poorly understood

step in mitosis is the movement of chromosomes to specific locations in the cell. In this

thesis, we develop and analyze mathematical models which propose mechanisms for how

chromosomes move and how biochemical reactions can be used to control this movement in

space and time in two model systems: newt lung cells (eukaryotic cells), and Caulobacter

crescendus bacterial cells (prokaryotic cells). We start in this first chapter by introducing

the necessary biological background and experimental data that are going to be important

in the development of mathematical models presented in subsequent chapters.

1.1 Chromosome movement in higher eukaryotes

Cell division or mitosis is only one of a few states that a healthy cell can experience

as part of its cell cycle. The cell cycle of an eukaryotic cell is made up of three distinct

stages: DNA replication, cell growth, and cell division. See Figure 1.1. Due to large energy

requirements, cells undergo growth stages such as G1 and G2 before replicating their genetic

material in S phase and physically separating DNA for the two daughter cells in M phase

or mitosis.

During mitosis, a cell undergoes significant physical changes which are grouped into a

sequence of consecutive steps or phases. The stages of mitosis are depicted in Figure 1.2.

In prophase, duplicated chromosomes start to condense and an array of fibers (called
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Figure 1.1. A diagram of the eukaryotic cell cycle. A cell undergoes four phases during
the cell cycle. In G1 phase cells grow and use a significant amount of nutrients while they
prepare to enter the next phase. In S phase new DNA is produced as the cell’s current DNA
is being copied. In G2 another growth phase takes place and in M phase the cell physically
separates into two daughter cells with identical genetic material. G1, G2 and S phase are
grouped into interphase, which is where a cell typically spends most of its time. Some cells
do not enter G1 phase after mitosis and instead remain in a quiescent state called G0.

microtubules) develops from two structures called centrosomes (or poles). The fibers in

a dividing cell form a dense network known as the mitotic spindle. In prometaphase,

the nuclear envelope breaks and spindle fibers interact with chromosomes, some attach at

specific sites while some push on the chromosome itself. In metaphase, the centrosomes have

migrated to the two ends of the cell and chromosomes are being moved by the spindle at

the middle of the cell, called the metaphase plate. We will frequently refer to the movement

of chromosomes to the metaphase plate as congression. In anaphase, the spindle begins

to shorten thereby causing each chromosome half to be pulled in two different directions.

Finally, in telophase/cytokinesis, the nuclear envelopes reform and the mitotic spindle starts

to disintegrate. In its final step (cytokinesis) the cytoplasm is divided in half with the help

of filaments that constrict the mother cell at the metaphase plate. Given the complexity of

these stages of mitosis, it is quite striking that a cell can segregate identical copies of DNA

to the daughter cells. This precision has intrigued biologists since the late 1800s.

The ability of a cell to precisely split chromosomes into two equal groups for the daughter
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Figure 1.2. A diagram of mitosis stages in animal cells. During interphase, the genetic
material has been replicated. In prophase chromosomes are condensed, while a dense
network of fibers appears from the centrosomes. In prometaphase, the nuclear envelope
breaks down and chromosomes are released in the cell. In the meanwhile, the mitotic
spindle fibers have pushed centrosomes to opposite parts of the cell. The fibers start to
interact with chromosomes at specific sites called kinetochores. In metaphase, chromosomes
are pushed by the fibers at the middle of the cell, or metaphase plate. In anaphase, the
fibers pull chromosome arms toward the centrosomes. Finally in telophase and cytokinesis,
chromosomes have been moved to opposite sides of the cells and the cytoplasm is pinched
in half. The nuclear envelope reforms around the chromosomes.
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cells is tightly correlated with the proper movement of chromosomes in the cell. During mi-

tosis, chromosomes have already been replicated and condensed into a two-strand compact

structure, as depicted in Figure 1.3. Each of the replicated DNA copies in a chromosome is

called a chromatid. The two chromosome chromatids (or sister chromatids) are joined by

a structure called centromere. Chromosome movement is very tightly controlled in space

and time to ensure that two identical copies of cells result from division. The movement of

chromosomes is facilitated by the mitotic spindle network of microtubules, which interacts

with and facilitates the movement of chromosomes in the cell. The spindle microtubules can

associate and attach to a chromosome with the help of dedicated proteinaceous structures

called kinetochores (Kt) [4]. See Figure 1.3.

The mitotic spindle is able to generate the necessary movements of chromosomes due to

the dynamic nature of microtubules. A microtubule is a hollow polymer with diameter 25

nm built by αβ tubulin dimers which are arranged into 13 protofilaments. Since the dimers

preserve their orientation, the polymer lattice also inherits polarity; molecular motors use

this lattice polarity to establish directionality in their movement while delivering cargo [4].

Microtubules frequently experience a state called dynamic instability, in which polymerizing

and rapidly depolymerizing polymers coexist at steady state [4]. When a polymer changes
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Figure 1.3. A schematic of vertebrate chromosomes and of the dynamic instability of
microtubules. A chromosome is attached to mitotic fibers (microtubules) with the help of
specific sites called kinetochores. Typically kinetochores can bind multiple microtubules
at the same time. In this diagram, only one kinetochore of the chromosome is bound to
microtubules while the other kinetochore is unattached. Multiple filamentous proteins are
localized at kinetochores as marked by the fibrous corona. Microtubules undergo dynamic
instability during mitosis, which is marked by stochastic transitions of the filaments between
growth and shrinking states. Adapted by permission from Macmillan Publishers Ltd: Nat.
Rev. Mol. Cell Biol. [4], copyright 2008.
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from a polymerization to a depolymerization state the event is called a catastrophe; the

opposite is a rescue. A diagram of a MT undergoing polymerization/depolymerization is

shown in Figure 1.3. Polymerization of GTP hydrolyzed β tubulin locks GTP associated

energy into the lattice so that there is a 1000 fold difference in the dissociation of GDP-

tubulin at depolymerizing ends relative to GTP-tubulin dissociation at a polymerizing end

[4]. Therefore a microtubule retains a polymerizing tip due to the lag between subunit

addition and the stabilizing GTP-hydrolysis (stabilizing cap). The cap could be lost either

stochastically or by external signals, either of which results in rapid depolymerization.

Polymerization and depolymerization of MTs can generate significant forces in vivo [4].

In vertebrate cells, chromosome movement has some striking characteristics. Exper-

iments have shown peculiar chromosome movement which is characterized by periods of

motion at approximately constant speeds marked by abrupt switches in direction [15][21].

This led to the classification of the behavior as chromosome oscillations or “Directional

Instability” [21]. Depending on the state of attachment of a chromosome, we can have a

monooriented chromosome, which is attached to microtubules coming only from one pole.

Bioriented chromosomes are attached to microtubules emanating from both poles. Both

monooriented and bioriented chromosomes experience directional instability. Monooriented

chromosome oscillations are highly regular with amplitudes ≈ 2−3 μm and periods ≈ 2−3

min [21]. Bioriented chromosomes also display oscillations with amplitudes ≈ 1 − 3 μm

and periods of ≈ 1 − 2 min. While monooriented chromosomes show consistent, very

sharp switches in direction ≈ 6 sec, bioriented chromosomes occasionally display phases of

no motion which are not seen in monooriented chromosomes [15][21]. After biorientation

motion preserves constant velocities with a bias toward the metaphase plate (or spindle

equator) controlled by the duration of poleward and antipoleward trips [21].

The cornerstone experiment which quantified chromosome motion in vertebrate cells was

conducted by Salmon et al. in [21], where dividing newt lung cells were observed. newt lung

cells make an excellent model organism for mitosis observations since they have very large

cells with diameters ranging 40−50 μm, which imposes extended excursions for kinetochores

for both congression to the equator and anaphase separation [21]. Furthermore, the cells

remain flat and optically clear and motion coming solely from Kt/MT interactions could

be discerned [21]. Using high resolution video microscopy and semiautomatic tracking,

chromosome motions could be followed for various time intervals in dividing cells. A distance

versus time plot for kinetochore movements from [21] is shown in Figure 1.4.
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Figure 1.4. Distance versus time plot of typical single kinetochore movements throughout
mitosis adapted from [21]. G-phase represents chromosome gliding on ATP dependent
molecular motors toward the pole with high load dependent velocities. M-phase represents
monooriented state in which typically chromosomes display very sharp changes in direction
once close to the pole (in this figure the pole is positioned at y = 0). S-phase represents
congressing phase in which an attachment on the other kinetochore of a monooriented
chromosome is established. One kinetochore becomes the leader and the other is trailing.
B-phase represents lower amplitude chromosome oscillations around the equator. At A
phase the sister chromatids split and each arm moves separately toward the corresponding
pole.

A few important observations were made in [21] which we will refer to later in the thesis:

• Kinetochores abruptly and autonomously change between phases of poleward (P) and

anti-poleward (AP) motion which are coupled to the dynamic instability of kinetochore

associated microtubule (kMT) plus ends.

• The anti-poleward and poleward trips have constant velocities averaging to 1.7− 1.8

μm/min with little variation from prometaphase to anaphase.

• Chromosomes display neutral phases (or confused phase) with bioriented chromosomes

having longer neutral phases than monooriented ones. However such phases are

usually brief compared to P and AP phases.
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• Congression movements are primarily the result of the differences in the duration of

P and AP movements and not their velocities.

• Kinetochore poleward movements produce pulling forces on the centromere whereas

AP movements produce pushing forces.

Perhaps the most curious prediction from this study had to do with the role of tension

in coordinating AP and P trips. High tension across the centromere (high loads on kineto-

chores) was hypothesized to be the main modulator of P and AP phase switching with high

tension (stretch) increasing the probability of AP motion and low tension increasing the

probability of P motion [15][21]. This study points to a possible mechanism by which tension

and kMT tip dynamics (i.e., poleward and antipoleward movements) can be coordinated.

In order to better understand the above described behavior one needs to not only take a

closer look at what could be generating P and AP motion at the kinetochores, but also

how tension could be communicated to the chemical species localized there to generate

the observed chromosomal motions. Accordingly, in the next section we discuss some key

kinetochore components.

1.1.1 Molecular composition of kinetochores

Chromosome motion imposes difficult tasks on vertebrate kinetochores. On the one

hand, the Kt scaffold has to provide microtubule attachment sites robust enough to endure

large loads (chromosome). On the other hand, the attachment site should be flexible enough

to couple motion to the dynamics of the anchored microtubules. Experiments have shown

that kinetochores have three distinct regions: the inner, central and outer kinetochore

[4][13]. The inner kinetochore interacts directly with the chromatin, thus connecting the

rest of the structure to the chromosome arm. The outer kinetochore is a 50− 60 nm region

that provides a location where spindle microtubules can interact with the chromosome [4].

Finally, the central kinetochore contains linker complexes that connect the inner with the

outer kinetochore. For the remainder of this section we will review the most recent data on

kinetochore proteins which are implicated in chromosome motility.

In order for a microtubule to attach, kinetochores need to be equipped with microtubule

attachment sites. The structure for such sites is provided by the KMN network, which

contains two important complexes: Ndc80 and KNL-1 [4], as depicted in Figure 1.5. Initial

studies showed that Ndc80 was vital to the ability of the kinetochore to form stable

microtubule attachments, however it was not clear whether this complex interacted with
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Figure 1.5. A diagram of the KMN network at kinetochores. The KMN network located
at kinetochores provides a site for Kt/MT interaction. The network is composed of fibrous
proteins Ndc80 and KNL-1 which bind the microtubule lattice. Multiple KMN binding
sites are arranged on a kinetochore to support multiple Kt/MT interactions. Adapted by
permission from Macmillan Publishers Ltd: Nat. Rev. Mol. Cell Biol. [17], copyright 2007.

microtubules directly [13]. Indeed, recent experiments have shown that Ndc80 has a rod-like

structure ≈ 50 nm with globular heads at each end, one of which has high a affinity

for the inner kinetochore, and the other binds microtubules directly [4][8][24] (see Figure

1.5). Ndc80 interacts with the microtubule lattice through weak electrostatic interactions

[6]. Furthermore, at higher concentrations the Ndc80 complexes display cooperativity in

binding to the microtubule lattice [3][5][6][8]. KNL1 also binds directly to microtubules and

shows cooperativity in binding [3]. The Ndc80 complex binding affinity to microtubules

is synergistically increased when in complex with KLN-1 [4]. Current models place the

microtubule binding complexes into an array which contains several weak sites that make

multiple contacts with microtubules [4]. The proposed arrangement of kinetochore binding

sites is shown in Figure 1.5. Therefore the experimental data points to multiple fibrous

structures that allow for attachments flexible enough to support microtubule dynamics

without letting go.

Microtubules that are bound to Kts have been shown to have stabilized tips in vitro,

however it had been observed that under certain circumstances kinetochores can instead

promote microtubule dynamics [13]. Recent experiments have shed light into the different
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proteins located at the kinetochore that can alter microtubule dynamics. The kinesin-13

family member, MCAK is the most powerful microtubule destabilizing enzyme known

to date [9]. MCAK is found throughout the cell but it is particularly concentrated at

kinetochores, centromeres and spindle poles [11]. There are two main models for MCAK

roles at the kinetochores: 1) The first model widely implicates MCAK in the correction of

meteoric attachments during cell division [11], 2) The second model proposes MCAK as a

direct regulator of chromosome motion by affecting local kMT tip rates. To this end a recent

study in [25], used mutants and chimeras of MCAK designed so that they would specifically

target kinetochores to study possible mechanistic roles of this kinesin. Using live imaging,

the experiments showed that depletion of centromeric MCAK considerably decreases sister

kinetochore coordination which decreases speed and increases intra-kinetochore tension [25].

This group proposes that MCAK is not solely specialized for error correction, instead MCAK

could enhance motility and coordination of sister kinetochores, with error correction a

corollary of these main tasks since erroneous attachments slow down congression. Indeed,

[12] earlier reported that depletion of centromeric MCAK leads to delayed congression,

alignment defects and severe missegregation. At any rate, the precise role of this protein in

chromosome motion or other mitotic events is not well known; it is certainly puzzling that

cells place such a powerful destabilizing agent at a site where attachment maintenance is of

vital importance.

Given its powerful depolymerizing action, MCAK activity requires tight control from the

cell. Aurora B kinase, a regulator of chromosome movement and microtubule dynamics

regulates via phosphorylation both the localization of MCAK at the centromere, as well as

its depolymerase activity (phosphorylated MCAK is inactive) [1][2][25]. Aurora B kinase is

found in a complex with INCENP, survivin and borealin (Chromosomal Passenger Complex

-CPC) [17], Figure 1.6. Of these complex components Aurora B kinase is the only enzymatic

protein with the rest of the members regulating the activity and stability of Aurora B. Just

like Aurora B, the complex is localized at centromeres. INCENP binding activates Aurora

B, in turn Aurora B phosphorylates INCENP which further activates the kinase in a positive

feedback loop [17].

The CPC complex is proposed to be involved in tension sensing at kinetochores. First,

in an Aurora B regulation study by [2], a model was proposed for force dependent kinase

activation. The model speculated that force could affect the morphology of the complex

by separating Survivin and Aurora B and physically blocking their interactions. Such a
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Figure 1.6. A diagram for the CPC complex. Aurora B kinase activity is regulated by the
rest of the components of the complex. The complex is implicated in tension sensing, since
an increased physical distance between the components affect the regulation of Aurora
B action. Adapted by permission from Macmillan Publishers Ltd: Nat. Rev. Mol. Cell
Biol. [17], copyright 2007.

mechanism would predict different levels of activated Aurora B for different forces applied

to the complex. However, in order for this force-dependent activation to be useful, CPC

needs to be in contact with centromere components that undergo physical stretch. A study

by [18] in budding yeast revealed a possible role of CPC in a tension detecting mechanism

at kinetochores. It was already known that ICENP can bind microtubules, however the

study confirmed Survivin association with a kinetochore component (CBF3), therefore the

complex could be placed as a linker between kinetochores and microtubules and change

activation state upon stretch-dependent events. Therefore, we can envision a situation

where CPC acts as a localized tension sensor at the kinetochore, which in turn affects

Aurora B activation and subsequently MCAK activity, see Figure 1.7. To our knowledge

this is the most direct connecting path between mechanical forces and kinetochore chemical

reactions. We will build upon these interactions when formulating our mitotic chromosomal

movement model in Chapter 3.

Finally, many other proteins that affect kMT tip dynamics localize at kinetochores,

as depicted in Figure 1.7. Cytoplasmic linker proteins (CLIP), cytoplasmic associating

proteins (CLASP), MAP215 are proteins which are implicated in promoting polymerization
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Figure 1.7. Kinetochore associated proteins. A variety of proteins which affect microtubule
dynamics localize at kinetochores. MCAK and KIF18A cause MTs to depolymerize whereas
CLIP, CLASP, MAP and EB1 promote polymerization. Adapted by permission from
Macmillan Publishers Ltd: Nat. Rev. Mol. Cell Biol. [4], copyright 2008.

at kinetochores [4]. EB1 has been shown to bind and stabilize microtubule lattice seams,

kinesin-8 (KiF18A) has been identified to have both motor and depolymerizing activities

(MCAK is not motile) [4]. In conclusion, kinetochores are not only equipped with binding

structures for kMTs, but they also recruit many proteins which directly affect kMT tip

dynamics. The interactions between all these components produces the motions observed

in experiments.

Movements of chromosomes with multiple kMT attachments are arguably one of the most

difficult phenomena to understand mechanistically [7]. The first generation of theoretical

models only focus on modeling mechanical and kinetic effects due to the availability of

data. However, kinetochores contain many proteins which are part of mitotic regulatory

pathways and affect kMT kinetic rates; the effects that these pathways can have on motion

are not well known. Modeling can be useful when information is incomplete. In Chapters

2 and 3, we develop and analyze mathematical models which describe various aspects of

chromosome motion in higher eukaryotes. Our model organisms are newt lung cells, and

we use data from [21] in order to construct our models. We take a two step approach to

modeling chromosome movement in higher eukaryotes. First, in Chapter 2, we formulate

a model for kinetochore/kMT coupling which allows us to make predictions about the

relationship between velocities and loads. Then in Chapter 3, we integrate our chromosome

motor model into a negative feedback mechanism that relates localized chemical reactions
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with force dependent spatial cues. We use our models to answer three important questions:

1) How can very unstable polymers (microtubules) carry large loads (chromosomes) at

constant velocities over significant distances? 2) Why and how does directional instability

take place? 3) How is congression achieved and how do chemical signals affect anaphase

division? Given the large number of proteins involved in the process as well as the small

size of kinetochores, mathematical modeling can help in sorting out the important factors

that contribute to the characteristic well observed mechanical events.

1.2 Chromosome segregation in bacteria

Bacteria are among the most widespread organisms on Earth. A key factor for survival in

these systems is the selection for fast reproduction rates, which has led to highly streamlined

architectures and small genomes [22]. Due to their perceived simplicity, bacteria have been

long thought to be in a primitive cell state, whereby many of the features seen in eukaryotic

cells simply did not exist. Recent technological advances have given us a window into

the structural details of bacterial cells and the resulting observations contradict long-held

beliefs. More specifically, many complex processes in bacterial cells, such as cell division,

have been shown to be regulated by dedicated mechanisms, which are comprised of dynamic

cytoskeletal elements, much like in eukaryotic cells. For the remainder of this chapter,

we give an overview of the experimental data available for chromosome segregation in

Caulobacter crescendus.

C. crescendus is a gram-negative bacterium. Like in many other bacterial cells, the large

genome of C. crescentus is packed into a circular chromosome, see Figure 1.8. It was initially

thought that the chromosomal DNA in C. crescendus was randomly spread throughout the

cell. However, closer analysis of data revealed that chromosomes in this cell followed specific

patterns. More specifically, as depicted in Figure 1.8, the origin of replication (ori) in a

chromosome is always found at the flagellated pole and the terminus (ter) is located at the

opposite end of the cell [22]. Given the specific orientation of chromosomes in these cells, it

is clear that the bacterium has to ensure that chromosome location in the cell is preserved

throughout its life-cycle.

Experimental studies have shown that the specific localization of chromosomal sites in

C. crescendus is established while the bacterium segregates its DNA during division. A

diagram of the C. crescendus life cycle is shown in Figure 1.9. In the course of its life cycle,

C. crescendus transitions from a flagellated swarmer cell into an immobile stalked cell. The

division of this bacterium cell is asymmetric. Out of the two daughter cells, only the stalked
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ori

Figure 1.8. C. crescendus chromosome. The circular chromosome is oriented so that the
ori is located by the flagellum and the ter is located at the opposite side. Reprinted by
permission from Macmillan Publishers Ltd: Nat. Rev. Microbiol. [22], copyright 2008.

cell can immediately enter division, whereas the flagellated cell has to wait for another cycle

of division. Interestingly, the flagellum is shed during the swarmer to stalk transition and

it always reappears on the other pole, opposite to the stalk.

During the asymmetric division of this bacterial cell, the circular chromosome undergoes

a sequence of tightly controlled movements that result into two identical chromosome copies

for the daughter cells. Next, we discuss the machinery that mediates chromosome movement

in C. crescendus.

1.2.1 Mitotic apparatus of C. crescendus

Before replication is initiated, the mother cell ori of C. crescendus is anchored to the

membrane in a region we refer to as the old pole, as depicted in Figure 1.9. After replication

is initiated, one copy of the chromosome moves from the old mother cell pole to the new cell

pole traversing the whole length of the cell in a matter of minutes. While this movement

is taking place, the other chromosome copy remains steadily anchored to the old pole. In

C. crescendus, chromosome segregation is unidirectional (i.e., no oscillations in wild type

cells). Because chromosome movement in this bacterial system is taking place while the

chromosome is being replicated, it was not clear whether the replication fork or if the

membrane of the growing cell were involved in the movement of the chromosome. However,

the observed chromosome segregation velocities were much too rapid to be accounted for

by passive transport, and furthermore other chromosome regions (such as ParB in Figure
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Figure 1.9. C. crescendus life cycle. C. crescendus differentiates from a mobile flagellated
swarm cell to a sessile stalked cell. The stalked cell undergoes asymmetric division which
results into a new stalked cell and a flagellated swarmer cell. Only the stalked cell can
immediately enter another round of cell division. The swarmer cell has to develop into a
stalked cell before it can divide again.

1.9) always reached the new pole faster than ori, indicating that the replication fork was

does not generate a pulling force [23].

Experimental evidence suggests that an active mechanism mediates the movement of the

chromosome copy in C. crescendus. The type I DNA partitioning system is believed to drive

segregation in these bacterial cells. There are three components to this system: 1) ParA, an

ATPase, 2) parS, a centromere-like site that localizes close to the origin of replication of the

chromosome, and 3) ParB, a mediator protein which binds parS and also regulates ParA

activity [14]. The ParAB system has been shown to be required for the proper movement

of chromosomes in various bacterial cells [22]. ParB binds parS and spreads along the

chromosome, forming a large nucleoprotein complex similar to kinetochores in eukaryotes.

ParA proteins are Walker-type ATPases. A ParA protein will bind ATP and then dimerizes
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with another ATP-bound ParA. ATP-bound ParA dimers have been shown to interact with

ParB directly [14]. On the other hand, ParB stimulates the ATPase activity of ParA dimers

which results in the release of ParA monomers. In experiments, ParB is observed to move

from the old pole to the new pole, while the chromosome copy follows [14][19].

ParA proteins form dynamic cloud-like structures in dividing C. crescendus cells [19].

Further, in vitro experiments with purified ParA have shown that ParA polymerizes into

linear polymers in the presence of ATP [14]. Super-resolution imaging in vivo also indicates

that ParA is assembled into linear narrow structures oriented along the long axis of dividing

cells. Taken together, the experimental data seem to suggest that ParA clouds are composed

of linear polymers that are laterally bundled with one another [14]. Thus, a dynamic picture

for ParA/ParB proteins seems to emerge in this bacterium. ParA binds ATP and creates

dimers that are added to ParA polymers. If ParB comes in contact with ParA polymers, it

will bind and also stimulate the ATPase activity of ParA, causing ParA to depolymerize.

Indeed, experimental observations have shown a correlation between ParB movement and

a retracting cloud of ParA during chromosome segregation [14][19]. Images of chromosome

movement marked by ParB location in vivo, taken from [14], are shown in Figure 1.10.

In vivo observation of dividing cells, as depicted in Figure 1.10, indicates that initially

a ParA bundle of filaments extends from the new pole to the old pole near parS/ParB.

Contact between ParB and the ParA structure results in the shrinking of the ParA bundle

���

Figure 1.10. ParA and ParB dynamics in vivo. Time-lapse epifluorescence microscopy
of C. crescendus cells undergoing chromosome segregation. ParA structures (green) lead
the ParB complex (red) toward the new pole. Adapted by permission from Macmillan
Publishers Ltd: Nat. Cell Biol. [14], copyright 2010.
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toward the new pole. ParA bundle shrinking is accompanied with the translocation of

parS/ParB, creating what is referred to as a “pulling” mechanism. After ParB has reached

the new pole, the ParA structure reorganizes and it reappears along the entire length of

the cell. The underlying mechanisms that drive this supposed pulling motion in the ParAB

system are not well understood.

Even though ParA and ParB together are sufficient to generate motion of the chro-

mosome in C. crescendus, the unidirectionality of segregation seems to be controlled by

additional proteins. C. crescendus cells are highly polarized since during division a bac-

terium develops both a flagellum and a stalk at opposite ends. The protein TipN localizes

at the new pole in dividing cells, where it ensures that new pole markers such as the

flagellum are properly localized [19]. Surprisingly, TipN can affect the movement of ParB

even though it remains bound to the new pole membrane while the chromosome copies are

being segregated. In �tipN cells ParB motion was found to experience frequent pauses

along with reversals in direction, as opposed to the unidirectional movement of ParB for

wild-type cells [19]. In cells depleted of TipN, ParA structures appear between the ParB

complex and the old pole, indicating that ParA localization is related to TipN action.

Further, in contrast to wild type cells, which show an accumulation of ParA protein at the

new pole, �tipN cells do not display new-pole ParA accumulation. Experiments in [14]

have shown that ParA monomers can directly interact with TipN. Thus, erratic segregation

could result due to poor ParA monomer localization in the cell when TipN is removed. In

Figure 1.11 are shown images of chromosome segregation in �tipN cells.

Given the experimental evidence, it is postulated that TipN is part of a segregation

regulatory mechanism. It is not clear from experiments, however, how TipN could control

ParA monomer concentration in the cell. There are two theories in the literature: 1) TipN

might nucleate or stabilize ParA structures at the new pole [14], 2) TipN simply provides a

binding site at the new pole that increases the local concentration and biases the insertion

of ParA molecules into the bundle at the pole [19]. Mathematical modeling can help test

the viability of these two proposed mechanisms.

The control of ParA dynamics in C. crescendus cells seems to be key to the control

of chromosome movement. Besides TipN, there is one other protein which is implicated

in ParA monomer sequestration. PopZ is a protein that assembles into a matrix at both

cell poles [19], and it has been shown to anchor ParB at the new pole after segregation

in order to prevent backward movement of the complex. However, in addition PopZ can

directly interact with ParA monomers and is thought to accumulate ParA monomer at the
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Figure 1.11. ParA and ParB dynamics in �tipN cells. Time-lapse epifluorescence
microscopy of C. crescendus cells undergoing chromosome segregation, images are captured
every several min as indicated in the figure panels. ParA structures (green) appear between
ParB (red) and the old pole. ParB fails to segregate unidirectionally. Adapted by permission
from Macmillan Publishers Ltd: Nat. Cell Biol. [14], copyright 2010.

old cell pole when TipN is depleted [19]. In many �tipN cells, ParA monomers are shown

to slowly accumulate at the old pole as ParB slowly and erratically moves toward the new

pole; simultaneously large ParA filaments appear between ParB and the old pole [14][19].

Based on the current working model, PopZ works similarly to TipN to somehow control

ParA monomer concentrations in the cytoplasm. The similar action of PopZ and TipN is

reinforced by experimental data from �popZ cells, which show that when TipN is depleted

from these cells, ParB completely fails to segregate to the new pole. So a double deletion

in these pole proteins seems to remove all polar sequestration mechanisms for ParA and a

subsequent loss of ParB movement toward the new pole. All in all, the deletion experiments

seem to indicate that TipN is a necessary protein for unidirectional chromosome movement,

and that if ParA bundle dynamics are not carefully managed, proper chromosome movement

is lost. We remark that the biochemical control of chromosome movement in C. crescendus

is almost identical to the tight control of chromosome movement in higher eukaryotes via

MT rate altering enzymes at kinetochores.

We conclude our discussion about the mitotic apparatus of C. crescendus by returning

to the ParA polymerization dynamics. A variety of Par family proteins form dynamic

scaffolds in bacterial cells. The best studied one is the network of ParM polymers which
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works in E. coli to segregate plasmids. In vitro, ParM forms polymers in an ATP dependent

fashion, similarly to F-actin. However, ParM assembly dynamics are distinct from what is

seen in actin in a couple of ways. First, ParM polymers are not polar and elongate in

either direction and also the nucleation of polymers is rapid and spontaneous [22]. Second,

instead of treadmilling, ParM polymers constantly transition between states of rapid growth

and disassembly, similar to the dynamic instability observed in eukaryotic MTs. The same

dynamic instability property has been observed in ParA filaments in T. thermophilus [16].

Thus, it is expected that the same dynamic properties seen for ParM filaments work for

ParA filaments in C. crescendus.

The interaction of ParM filaments with ParR is also of great interest in the context

of the ParAB system. In E. coli ParR is attached to plasmids and works in the opposite

fashion to ParB by stabilizing ParM filaments. Biochemical and EM experiments have

shown that ParR wraps around or encircles the ends of elongating ParM filaments in a

similar way to kinetochore protein arrangement around kMTs [10]. A diagram for the

model of ParR/ParM interactions is shown in Figure 1.12. These interactions indicate that

the Par apparatus in bacterial systems has many similarities with the mitotic apparatus

used in higher eukaryotes.

There is a wide variety of biological models that are proposed for how a segregating

Figure 1.12. ParR interaction with ParM filaments. DNA is colored brown and ParM
yellow. The ParR molecules are shown in magenta, green, blue and yellow, and cyan. Figure
reprinted by permission from MacMillan Publishers Ltd: Nature [20], copyright 2007.
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chromosome moves in the C. crescendus cell, however the molecular mechanisms that

mediate the ParAB-mediated chromosome movement are not well understood. In this

respect mathematical modeling can make a contribution to our understanding of chromo-

some motility by quantitatively assessing the various mechanisms that could be at work

in these cells. In light of the experimental evidence, there are two questions that are of

interest and which we can address with mathematical modeling: 1) What is the molecular

mechanisms by which a ParA bundle pulls on ParB, and how do ParA dynamics affect ParB

movement? 2) What is the role of ParA monomer regulatory proteins such as TipN in the

control of chromosome segregation? We address these questions in Chapter 4 by developing

mathematical models for chromosome segregation in C. crescendus.
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CHAPTER 2

KINETOCHORE MOTORS

In this chapter, we construct and analyze a mathematical model for kinetochore motors

operating at the chromosome/microtubule interface. Motor dynamics are modeled using a

jump-diffusion process that incorporates biased diffusion due to the binding of microtubules

by kinetochore binder elements and thermal ratchet forces that arise when the polymer

grows against the kinetochore plate. The resulting force-velocity relations are nonlinear

and depend on the strength of microtubule binding at kinetochores, as well as the spatial

distribution of binders and of microtubule rate altering enzymes inside the kinetochore. In

the case when kinetochore binders are weakly bound and spaced with the same period as

the microtubule binding sites, the numerical results for the motor force-velocity relation

and breaking loads are in complete agreement with our approximate analytic solutions.

We show that in this limit motor velocity depends directly on the balance of polymer tip

polymerization/depolymerization rates and is fairly insensitive to load variations. In the

strong binding regime, the motor can support attachment for large kinetochore loads but

responds with smaller velocities, independent of the polymer tip dynamics. When the

kinetochore binders are redistributed with spacing off-register from the microtubule lattice

period, our numerics match our analytical velocity results independent of binding strength

at kinetochores; motor velocities do not decrease in response to binding strength variation

in this case.

2.1 Introduction

Molecular motor enzymes that harvest the chemical energy of ATP hydrolysis to move

unidirectionally are used in various cellular processes. However, cells sometimes make use

of mechanisms for motion that do not involve ATP-dependent molecular motors. Cellular

protrusions such as filopodia and lamellipodia, for example, do not appear to involve

molecular motors but instead use thermal ratchets in conjunction with dynamic polymers

to generate motion [13]. Another example comes from mitosis, where chromosomes move by

tethering to the dynamic tips of microtubules (MT) in an ATP-independent fashion [1][4].
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The mechanisms underlying this dynamic coupling of chromosome movement to attached

polymerizing/depolymerizing MTs is not well understood.

A chromosome moves by attaching to microtubule plus ends with the help of specialized

macromolecular complexes called kinetochores. For each chromosome arm, a single kineto-

chore (Kt) complex that can bind either one or several microtubules at once is assembled

on the chromatid. Microtubules are hollow cylindrical structures that contain 13 linear

protofilaments composed of α-β tubulin dimers. During mitosis microtubules stochastically

transition between growth and shortening states both when they are attached (kMT) or

not attached to a kinetochore [1]. For a polymerizing MT, GTP-tubulin is added at

the growing end; these dimers have a preferred flat orientation relative to the polymer

lattice. Subsequently, GTP-tubulin is hydrolyzed with some time delay into GDP-tubulin,

which prefers a bent conformation. Inside the lattice, lateral tubulin interactions hold the

monomers in a straight conformation with the energy of hydrolysis stored as strain. When

the lateral interactions are lost, the strain is released so that the ends of depolymerizing

MT protofilaments bend and the MT tips become gently flared.

Two important motility characteristics of chromosome movement have been observed

experimentally. First, chromosome movement has been shown to be coupled to the polymer-

ization/depolymerization state of an inserted microtubule [10] with velocities dependent on

the balance of kMT tip polymerization/depolymerization rates. Second, kinetochores that

are attached to a spindle pole by tethering to a kMT display toward and away motion with

similar speeds [16] indicating that kinetochore motors are fairly insensitive to variations in

load.

Several theoretical models that propose various force-generation mechanisms at kineto-

chores have been put forward. These models can be separated into two distinct classes: 1)

biased diffusion models, and 2) forced walk models. Each model uses variations in kineto-

chore motor (coupler) geometry and size to convert the energy of Kt-MT interactions into

useful work [6].

The first model for chromosome attachment, initially advanced by Hill [5], uses a biased

diffusion mechanism. Hill’s model proposes that movement is facilitated by a rigid array

(so called “sleeve”) of weak binding sites that diffuse on the lattice of a kMT. An increased

overlap between the sleeve and the lattice is favorable due to free energy decrease from

the attachment of more bonds between the sleeve coupler and the microtubule. As the

microtubule shortens, sleeve diffusion relocates the bonds so that overlap is preserved

generating poleward motion, i.e., biased diffusion. The key aspects of this model are that it
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allows for continuous attachment for both growing and shortening microtubules, and also

produces speeds that are fairly insensitive to load, in good agreement with experimental

data.

Forced walk models use the force of flaring of depolymerizing MT tips in conjunction

with force couplers (such as rings) built to resist protofilament outward bending in order

to generate depolymerization-coupled movement [11]. If constructed appropriately, these

motors can track depolymerizing tips efficiently. However, attachment cannot be maintained

when a polymer transitions into a polymerizing state (with blunt ends), nor do velocities

remain constant for varying loads. Therefore, these types of motors fail to capture the full

range of chromosome motions seen experimentally.

Recent experiments indicate that binding at kinetochores is weak and that diffusion may

play a significant role in movement [14][17]. These results seem to support a biased diffusion

mechanism but also provide new data that require a more comprehensive treatment of the

biased diffusion mechanism at play. Hill’s model uses a discrete Markov chain model to

show that attachment can be maintained at steady-state for a kinetochore attached to a

slowly depolymerizing tip. This work was extended by [7] to account for polymer growth

inside the sleeve. In both cases, the transition rate assumptions are valid only in the high

activation barrier limit and model implementation into a larger scale mitosis model requires

time consuming numerical simulations. Furthermore, for the biased diffusion models that

have been studied thus far there has been no inclusion of polymerization thermal ratchet

effects that arise when the inserted kMT grows against the kinetochore plate. Also, to our

knowledge, the biased diffusion model has not been studied when there are variations in

the spatial distributions of Kt binders on the MT lattice.

The present chapter is aimed at developing a mathematical model for kinetochore motors

that incorporates a biased diffusion mechanism but also takes into account several features

of kinetochore motors not addressed in previous biased diffusion models. This chapter is

organized as follows. In section 2.2 we state model assumptions and derive model equations.

Then we separate our study into two parts. In the first part of the chapter (sections 2.3-2.4)

we consider the case when the spacing between the Kt binders and the MT lattice binding

sites are integer multiples of each other (in-register case); in the second part (sections 2.5 and

2.6) we examine the case when binder spacing is not an integer multiple of the MT lattice

binding site spacing (off-register case). In section 2.3 we find numerical solutions for system

breaking loads and the force-velocity relation when the strength of binding between the

motor and the MT lattice is varied. In section 2.4 we use homogenization to find analytical
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expressions for the breaking loads and the force-velocity relation in the limit of low unit

activation energy for binding. Finally, in sections 2.5 and 2.6 we repeat our simulations and

calculations from section 2.3 and 2.4 for the off-register case.

2.2 Mathematical model

Based on recent structural data [1][9], it is assumed that a kinetochore motor consists

of a collection of fibers extending from the kinetochore plate, each with multiple binding

attachments (motor binders) that can weakly bind onto the lattice of an inserted MT, see

Figure 2.1. These fibers form a structure analogous to the rigid sleeve of Hill, but they are

assumed to be sufficiently flexible so that they can attach to the flaring microtubules. The

MT lattice is assumed to have one motor binder binding site per tubulin dimer. Thus, each

binder has an additional preference to attach to a specific binding site after associating with

the MT lattice.

(x) (x)�

D F

Kt Plate

Tubulin Monomer

x(nm) LNs

Kt Binder Fiber

0

�

Figure 2.1. A schematic of the kinetochore motor model components. The kinetochore is
composed of several binder fibers which are connected to the Kt plate on one end and can
bind the MT lattice. For a kinetochore motor, N binders are uniformly spaced a distance
s apart from one another along the microtubule lattice, from x = 0 to x = Ns. The
attached MT polymer is dynamic and the tip polymerizes/depolymerizes with prescribed
rates α(x), β(x).
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Since a motor binder is assumed to be weakly bound to a microtubule, the kinetochore

binders experience thermal motion (diffusion) on the lattice of an attached MT. However,

since the binders are physically linked to each other on the fibers, the entire coupler

experiences 1D diffusion on the polymer lattice.

Finally, a polymer embedded in the kinetochore motor can grow/shorten with prescribed

polymerization/depolymerization rates, specified below. We also assume that if due to

thermal motion the kinetochore plate is pushed against the polymer tip, polymerization is

prevented by the lack of space, while the energy of polymerization is sufficiently large so

that a tubulin monomer is not subsequently cleaved [13].

To describe the motion of the kinetochore motor, we suppose that motion is one di-

mensional along the horizontal x-axis. The motor position variable, x, marks the distance

between the polymer tip and the coupler end distal to the kinetochore plate. Thus, the

position axis starts at the coupler entry point (x = 0 nm) and extends to the Kt plate

(x = L), Figure 2.1.

In the viscous-dominated limit, the motor system can be modeled with a one dimensional

jump-diffusion process described by the stochastic differential equation (Langevin equation)

dx(t) =
1

ν
(−Ψ′(x)− F )dt+ σD(x(t))dWt + δdNα(t)− δdNβ(t), (2.1)

where x(t) represents the position of the polymer tip relative to the coupler, Nα(t), and

Nβ(t) are independent homogenous Poisson processes with amplitudes δ (tubulin size)

and position dependent rates α(x) and β(x), which govern MT tubulin addition/removal

respectively; Wt is standard white noise applied to the motor with amplitude σD(x(t)). The

term Ψ′(x) represents polymer lattice binding forces, F describes loads on the kinetochore

motor, and ν is the effective drag coefficient for the coupler.

Binding interactions between the coupler and the polymer are characterized by the

potential function, Ψ(x). We construct this function by envisioning the MT polymer as

a semi-infinite linear chain of monomer beads that are rigidly connected. For a MT with

13 protofilaments and 8 nm long tubulin dimers, the monomer size in the linear chain is

δ = 8/13 nm. Individual binders can attach to the monomer beads with potential energy

function ψ(x), as shown in Figure 2.2. The net energy associated with polymer binding by

the motor is the sum of the potential energy of all attached binders,

Ψ(x) =

N∑
n=0

ψ(x− ns). (2.2)
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Figure 2.2. Diagram of the potential well component functions, ψ(x). The energy function
becomes periodic when a binder is bound to the MT due to the polymer lattice binding site
periodicity.

The unit energy terms, ψ(x), in the sum are shifted by an arbitrary amount, s to account

for the offset between consecutive Kt binders. We use

ψ(x) =
b

2
sin

(
2πx

δ

)(
1 + tanh(λ1x)

)
− a

2

(
1 + tanh(λ2x)

)
, (2.3)

with λ1 >> λ2. An exact representation of the function Ψ(x) can be given, however, it is

more convenient for computational purposes to use an approximate representation for the

well, which we provide in the following sections.

In our analysis we consider two cases for the shift parameter s: a) s = δ in which case

the period of the binders is the same as the MT lattice binding site period (in-register),

and b) s = κ̄δ where κ̄ is not an integer (off-register). In the second case, we are interested

in κ̄ > 1 since for these values the number of linkers that can bind the MT is in good

agreement with the binder numbers recently predicted in experimental studies [14].

For this model binding involves two steps, first binder association with the polymer and

then binder transition on the lattice due to additional preference for polymer binding sites.

Therefore, for ψ(x) we assume that for each new binding interaction established between

the binders and the polymer, the system free energy is lowered by the amount “− a”, see

Figure 2.2. Once one binder is engaged, it then has to hop between δ-separated binding

sites on the MT lattice, which produces the periodic part of the unit energy function ψ(x).

Each thermally induced hopping event of the linkers on the polymer lattice has to overcome
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a unit potential energy barrier corresponding to the energy needed for existing bonds to

break and a new one to reform. We denote the barrier by “b” in the well, where b = ka as

shown in Figure 2.2. While the kMT increases overlap with the kinetochore motor, more

bonds are established so that total system free energy in Ψ decreases in multiples of a;

however more bonds must also be broken so that the net potential barrier increases by

some multiple of b, as shown in Figure 2.3. The rate of increase in the net barrier for Ψ

depends on the overlap parameter, s. When s = δ the net barrier increases linearly, since

for each attachment event exactly one bond must be broken to readjust the overlap. If on

the other hand, s = κ̄δ then the net activation barrier grows slower than linear as overlap

increases. In both cases, we obtain a corrugated well, Ψ(x) that has the net effect of a drift

force that biases the diffusion of the polymer further inside the coupler.

It is possible that the polymer tip moves either by diffusion or polymerization past the

last coupler binder. At this position all the available binding sites are occupied, so there

is no gain for the system to bias thermal motion in either direction; further kMT insertion

into the coupler does not lower the free energy. Nonetheless, if the coupler moves in this

region it must cross the potential barrier associated with breaking all N1 or N2 bonds.

Consequently, the potential well function Ψ(x) loses its tilt and becomes periodic past the

last binder position at x = Nis nm as shown in Figure 2.3A and 2.3B. The numbers N1,
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Figure 2.3. Diagram of the potential energy well, Ψ(x) for varying s. A. The potential
energy well for the in-register well with binder spacing s = δ. B. The potential energy well
for the off-register well with s = κ̄δ.
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N2 are chosen such that the motor binders are uniformly spread along ≈ 40 nm for both

the in-register and off-register Kt motors.

Spindle forces acting on a chromosome create mechanical stress on kinetochores produc-

ing load (F ) on the motor. With our sign convention, F > 0 pushes on a kinetochore in

such a way as to increase the distance between the polymer tip and the kinetochore (i.e.,

to decrease x), whereas F < 0 favors polymer tip insertion toward x = L, increasing x.

Finally, the tip of the inserted polymer is dynamic and can grow or shorten with

prescribed rates that vary with the position of the tip relative to the kinetochore coupler.

A plot of the rates is shown in Figure 2.4. We assume that a powerful depolymerase

(such as the kinesin MCAK [1]) is enriched at the coupler end proximal to the kinetochore

plate. Hence, we choose a depolymerization rate that depends on the position of the kMT

tip relative to the motor with β(x) = β0 + (β2 − β0)/(1 + exp(−λ(x − β1))), where λ

controls the steepness of the rate transition and β1 < Nis. On the other hand, we keep the

polymerization rate constant independent of the MT tip position relative to the coupler,

except for the restriction that if the polymer tip is located less than δ away from the x = L

boundary, then no new monomers can be inserted with α(x) = α0/(1 + exp(λ(x − α1))).

We note here that we have not chosen the polymerization rate to be a heaviside function

as in [13]. This is because, we believe, it is unlikely that the polymerization rate drops

instantaneously at the x = L− δ position if one takes into account random fluctuations in

MT monomer size. Thus, we assume that a space slightly more than δ between the polymer

tip and the KT plate is necessary for the MT to be able to polymerize at the full rate

α0. Finally, the constant basal polymerization and depolymerization rates α0, β0 reflect the

presence of several kinetochore enzymes that have been shown to favor slow kMT growth

or shortening [1].

The SDE in eq. (2.1) corresponds to the forward Chapman-Kolmogorov equation [3]

∂p(x, t)

∂t
= −1

ν

∂

∂x

(
V ′(x)p(x, t)

)
+D

∂2

∂x2
p(x, t) + α(x− δ)p(x− δ, t)

+ β(x+ δ)p(x+ δ, t)− (α(x) + β(x))p(x, t) (2.4)

where p(x, t) is the probability density function for the relative position of the attached MT

tip with respect to the coupler, x, and V ′(x) = −Ψ′(x) − F . For the additive Gaussian

noise we take σD(x(t)) =
√
2D, where D is the diffusion coefficient of the coupler, calculated

according to the Einstein relation D = kBT/ν. The value used for this coefficient agrees

with coefficients chosen in previous models [5][7].
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Figure 2.4. Kinetochore microtubule tip rate functions. The polymerization rate is given
by α(x) and β(x) describes the depolymerization rate. Parameter values are given in
Table 2.1.

To complete the specification of the problem, we impose a reflecting boundary at x = L

where the kinetochore wall physically impedes polymer penetration. At x = 0, we prescribe

an absorbing boundary, since if the polymer tip crosses this point the coupling connection is

broken and not likely to be reestablished. Unless otherwise stated, the parameters used for

calculations in this chapter are given by those in Table 2.1. Some parameters in Table 2.1

are estimated from parameter ranges reported in the literature. The specific values chosen

here produce motor velocities that are in agreement with chromosome movement velocities

observed in newt lung cells [16].

2.3 In-Register well

We approximate the potential well function of the in-register case with

Ψ(x) =

{
f(x)

(
1− cos(2πxδ )

)
+ h(x) x ≤ N1s

f(N1δ)
(
1− cos(2πxδ )

)
+ h(N1δ) x > N1s.

(2.5)

where f(x) = a
2δ

(
b
ax+ C

)
, C = 0.172 and h(x) = −ax

δ . The linear and scalar coefficients in

eq. (2.5) arise because we use a Fourier series to approximate the well function expression

given in eq. (2.2). In what follows we set b = ka and then vary k to control the relative

amplitude of well corrugation, as depicted by the diagram in Figure 2.3A.
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Table 2.1. Model parameter values.

Parameter Description Value

L Kinetochore thickness 50 nm [1]

δ Binding site period on the MT lattice 8/13 nm

ν Effective viscous drag coefficient 6 pNs/μm [7]

α0 Rate of tubulin subunit addition 80 s−1 [7]

β0 Basal rate of tubulin subunit removal 27 s−1 [7]

β2 Max. rate of removal of tubulin 27 s−1, 100 s−1 (estimated)

β1 Depol. rate transition point 35 nm (estimated)

α1 Pol. rate transition point L− 1.6δ (estimated)

a Free energy of binding 2.6 kBT [5]

D Coupler diffusion coefficient 690 nm/s2 [5][7]

N1 In-register Kt binder number 65

N2 Off-register Kt binder number 30

2.3.1 Numerical calculation of force-velocity relations

As it is customary for molecular motors, we are interested in calculating the force-

velocity relation. In general, the velocity of the Kt motor with respect to an outside frame

of reference must account for the internal velocity of the inserted kMT relative to the

coupler. However, if the polymer-coupler assembly has reached an internal equilibrium or

steady-state (i.e., there is no motion of the tip relative to the binding sites), the velocity

calculation is greatly simplified. This is because, at steady-state the ensemble of binding

sites plus the polymer is moving with respect to an outside frame of reference at a velocity

that is equal to the balance of kMT polymerization/depolymerization rates.
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Before we start seeking steady-state solutions we must recognize an important fact: with

our current boundary conditions a steady-state solution of eq. (2.1) does not exist. This is

due to the absorbing boundary condition at x = 0, which causes the polymer to eventually

decouple. Nevertheless, if the polymer reaches a metastable position inside the coupler

sufficiently far away from the absorbing boundary, we can safely approximate the x = 0

position as a reflecting barrier and solve for a steady-state solution of eq. (2.1). One way

to determine the validity of this approximation is to determine the time it takes a polymer

to find the absorbing boundary if it starts from some position in (0, L). Thus, as a first

step we formulate and then solve the mean first exit time problem for the polymer tip of

an attached MT.

We let T (x) be the mean time for exit through x = 0, starting from x ≤ L. Then [3]

−1 =
1

ν
V ′(x)∂xT (x) +D∂2

xT (x) + α(x)(T (x+ δ)− T (x)) + β(x)(T (x− δ)− T (x)) (2.6)

with boundary conditions T (0) = 0, T ′(L) = 0.

The dde in eq. (2.6) cannot be solved analytically, however we can obtain an estimate for

the solutions numerically. For our numerical studies we simulate a large number of Monte

Carlo trials (1000 trials) of the Langevin equation in eq. (2.1) for various model parameter

values. For each trial we record the exit time and then the results are averaged over the

total number of paths tried.

In Figure 2.5, we show a plot of the Monte Carlo trials for the mean first exit times of

the system for various loads, F and activation energy levels, measured by the parameter

k. From Figure 2.5, we see that increases in motor loads decrease the time for exit from

the coupler significantly. This is expected since forces F > 0 decrease x by counteracting

well attractive forces thus making it easier for the motor to escape through the absorbing

boundary. From our simulations, we observe that for a wide range of loads the polymer does

not exit the coupler for long times as compared to the relaxation time, i.e., 〈T (L)〉 > 100 s,

whereas the time to relaxation to a steady-state is ≈ 1 s. Indeed, in Figure 2.5 simulations

are only shown for F ≥ 19 pN due to the large values of the first passage times that result

when F is smaller than 19 pN. Thereby, a steady-state approximation is appropriate for

forces with large exit times. Further, when the activation energies increase, the system

takes longer to escape from the absorbing boundary, as shown by the upward shifts in the

mean first exit time curves in Figure 2.5 as k increases. These shifts can be explained

by observing that for higher k it takes more energy for the polymer to detach from the
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Figure 2.5. Monte Carlo simulation results for the mean first exit times from x = 0,
starting from x = L. Each curve represents the mean first exit time estimates for a given
value of k, with β2 = 100 s−1. Polymer tips start at x = L at t = 0 and then the measured
times for exit from the left boundary are averaged over 1000 trials for each F . The error
bars mark the standard deviation. The maximum time allotted for exit was Tmax = 800 s.
For F < 19 pN exit times exceeded Tmax so computations were restricted to F ≥ 19 pN.
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coupler and hence more force is necessary to pull the polymer out of the chamber. For

low activation energies (k = 0.001), the system is more “slippery” with metastable states

occurring for a smaller range of loads with F ≤ 18 pN. The range of forces supported by

these motors is in agreement with the predictions of [7]. Measurements of anaphase forces

in meiotic grasshopper spermatocytes, have produced maximal chromosomal forces on the

order of 700 pN [12]. With our force estimates, we predict that for the total number of

motors engaged in these chromosomes, we have 35× 18 pN = 630 pN, which is consistent

with experimental observations. Hence, we conclude that it is necessary to restrict the range

of loads (F ≤ Fbreak ≈ 18 pN) for which the system can be examined at steady-state, and

that the activation energies for the binding sites can significantly affect the range of forces

that the motor can support.

Now that we have a range of loads for which the system equilibrates, we seek to find the

kMT tip positions at steady-state for various amounts of motor loads and Kt/MT binding

strengths. The steady-state positions can be obtained by solving the delay-differential

equation

0 = −1

ν

∂

∂x

(
V ′(x)p(x, t)

)
+D

∂2

∂x2
p(x, t) + α(x− δ)p(x− δ, t) + β(x+ δ)p(x+ δ, t)

− (α(x) + β(x))p(x, t). (2.7)

Eq. (2.7) cannot be solved analytically, but numerical solutions of the steady-state distri-

butions can be easily obtained with Monte-Carlo simulations of the Langevin equation in

eq. (2.1). For each trial, we allow the system to relax into steady-state and then record the

final position of the kMT tip after some prescribed amount of time.

In Figure 2.6 and Figure 2.7, we have plotted normalized histograms of the system at

steady-state for varying values of the parameter k and force, F. In Figure 2.6 the plots

are generated for a depolymerizing motor (β2 > α0), whereas in Figure 2.7 the plots are

generated for a polymerizing motor (β2 < α0). In both rate regimes, as the activation energy

increases the polymer settles on average closer to x = x0, the position where the kMT tip

rates equilibrate with one another so that α(x0) = β(x0) (x0 ≈ β1 for a depolymerizing

motor and x0 ≈ α1 for a polymerizing motor). For the highest barrier tried with k = 0.08,

one immediately notices that the distributions are centered exactly at x0. This can be

explained by noting that for high activation barriers, the only way the system can transition

down the potential well landscape is by jumping via the net Poisson jump rates given that

the diffusion rate is too small to overcome the well barriers. Also, since the Poisson jumps
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Figure 2.6. Normalized histograms of the numerical simulation results with varying acti-
vation barriers and motor loads for a depolymerizing motor with β2 = 100s−1 > α0 = 80s−1.
The histograms are generated by gathering simulation statistics for 1000 trials after relax-
ation into steady-state.

control the equilibrium positions when k is large, it follows that the motor steady-state

positions are insensitive to motor loads, which when varied only alter the tilt and thus

minimum of the potential well function. On the other hand, if the well barriers are low,

then diffusion is sufficient to transition the polymer tip to the minimum energy state of

Ψ(x) independent of the polymerization/depolymerization rates (as long as α, β are small).

Further, in the low k limit, the positions where the distributions center in the well depend

on the amount of load on the motor. As the pulling loads (F > 0) on the motor increase,

the well loses its tilt and the peaks of the distributions relocate closer to x = 0. Whereas

as the pushing loads increase (F < 0) in magnitude the overlap bias is increased and the

steady-state distributions are pushed closer to x = L boundary (see the k = 0.001 panels

in Figure 2.6 and Figure 2.7). For intermediate k = 0.04, we see that the distributions
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Figure 2.7. Normalized histograms of the numerical simulation results with varying
activation barriers and motor loads for a polymerizing motor β2 = 27s−1 < α0 = 80s−1.
Each histogram is generated by gathering simulation statistics for 1000 trials after relaxation
into steady-state.

are sensitive to the loads while also settling closer to x0. In summary, we deduce that the

position of the peaks of the steady-state probability distributions of kMT tips depend on

the height of the unit activation barrier, k. If k is sufficiently small, then the distributions

also depend on the motor loads, F .

We are now ready to calculate motor velocities. As noted at the beginning of this

section, at steady-state, the velocity of the system with respect to an outside frame of

reference (let this frame have horizontal displacement measured by y) has a velocity which

depends entirely on the net balance between the polymerization and depolymerization rates,

v = δ

∫ (
α(y)− β(y)

)
ps(y)dy, (2.8)
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with ps(y) the steady-state distribution probability density for the position of the kMT tip.

Eq. (2.8) tells us that the motor velocity can be easily obtained by calculating the balance

of the jump rates at the kMT tip steady-state position. Therefore, even though we do not

currently have analytic expressions for ps(y), we can obtain velocity values for a given load

F from Monte-Carlo simulations by sampling the forward and backward jump rates after

the system reaches an equilibrium.

In Figure 2.8, we show load-velocity calculations from the simulations for various values

of k.

From the load-velocity curves plotted in Figure 2.8, we see that the system produces

distinct regions of constant velocity for a wide range of pulling loads when k is small (k ≤
0.03) for both polymerizing and depolymerizing motors. This can be explained by examining

the steady-state distributions in Figures 2.6, 2.7. For low activation barriers, as the forces on

the motor vary, the steady-state distributions experience shifts on the x-axis. However, since

at steady-state the velocity depends only on the kMT polymerization/depolymerization
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Figure 2.8. Numerical load-velocity relationships for varying k. Velocities are obtained by
averaging the numerical trial velocities, which are calculated by sampling the forward and
backward jumps of the MT tip after the system relaxes into steady-state. A. Force-velocity
calculations for a depolymerizing motor with β2 = 100s−1 > α0 = 80s−1. B. Force-velocity
calculations for a polymerizing motor with β2 = 27s−1 < α0 = 80s−1.
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rates, if the difference between α(x) and β(x) is the same in the new shifted equilibrium

position then the motor velocity does not change. Consequently, there are flat velocity

regions in the force-velocity curves for small k and F > 0 that keep the distributions in

areas of constant net kMT rates. On the other hand, if we increase k the flat regions

in the force-velocity curves start to disappear. This happens because as k increases, the

steady-state distributions tend to center closer to the Poisson rate transition points, β1, α1.

Being already located in sensitive regions, small perturbations in load can easily push the

tip distributions on either side of the rate transition points and thus considerably disrupt

the α(x), β(x) contribution to the velocity. Thus, the motors are more sensitive to loads

and the force-velocity relations become more uniformly monotone when k is increased, as

shown in Figure 2.8. Indeed, if we increase k enough, the steady-state distributions become

immobilized and center at exactly the rate transition points so that motor velocities decay to

almost zero, resulting in the motor being stalled independent of load (see the force-velocity

curves for k = 0.08).

The nonlinear force-velocity relations for k ≤ 0.03 shown in Figure 2.8 are quite different

from the typical linear force-velocity relations obtained for conventional motors such as

kinesin and dynein. As noted above, the constant velocity regions depend directly on the

balance of kMT rates for a kinetochore motor. It follows that if we change the concentration

of the kinesin inside the motor by lowering β2, for example, then the force-velocity relation

for the motor will shift down the velocity axis to reflect the change in the rate balance

(compare the force-velocity curves for k ≤ 0.03 in Figure 2.8A and Figure 2.8B). Thus,

variations in kMT depolymerization rates in the low k regime produce shifts in the force-

velocity relations. This shift is significant when β2 < α0 since motor velocities reverse

signs, signaling a change in motor direction. The latter means that our motor model

displays chemically controlled bidirectionality induced by modification of the depolymerase

concentrations at the Kt. This feature of chemical control can be very useful when modeling

chromosome movement during mitosis, where both chemical and mechanical signals can

create feedback for kinetochore motion control [15].

Next, we consider the monotone regions of the force-velocity relations for small k. By our

convention for F values, if F < 0 the motor operates in the thermal ratchet regime. Under

large pushing load, the gap between the polymer tip and the Kt plate becomes very small,

with steady-state distributions equilibrating less than δ away from x = L. In this scenario,

since there is little space between the polymer and the barrier, polymerization against
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the Kt plate is insignificant and motor velocities limit to δβ2. If β2 is large, then motors

experience rapid increments in depolymerizing velocity as F becomes more negative, see

Figure 2.8A. In the polymerizing motor case shown in panel B of Figure 2.8, this ratcheting

effect is particularly prominent since it indicates that a polymerizing motor eventually

transitions into a depolymerizing state (i.e., reverses direction of motion) when subjected

to large negative pushing loads. On the other hand, if too much pulling load is placed on

the motor (F large and positive), the polymer is pulled out of the chamber and velocities

quickly decay due to steady-state distribution shifts in regions where α0 > β0 (note that for

the polymerizing motor shown in Figure 2.8B for large F > 0, velocities remain constant

because of our choice of β2 = β0).

In summary, our numerical solutions show that the jump-diffusion model proposed here

produces constant motor velocities that are sensitive to kMT tip rate variations for weak

binding (k small “slippery” regime), in agreement with experimental observations. We also

found that when the activation barriers for detachment are increased, the motor transitions

into stationary states where attachment is maintained against large loads as shown by

the mean first exit time calculations. It is possible that this stalled or “sticky” motor

regime is employed in cells where Kts need to maintain attachment despite significant

increases in forces opposing movement. Our model shows that attachment robustness can

be greatly improved by increasing binding affinities of the Kt binders for the MT lattice,

however robustness is achieved at the expense of velocity. Experimental work has shown

that the inhibition of phosphorylation of Ndc80 binding filaments by Aurora B kinases

at kinetochores, increases the binding affinity of the linkers for the kMT lattice and also

results in kinetochores being immobilized on the kMT lattice [2]. Our model predicts that

this observed immobility could be the result of only changes in filament affinity for the

kMT lattice, independent of the polymerization/depolymerization dynamics of the inserted

polymer tip. In the second part of this chapter we will see that variations in the spatial

distribution of Kt binders on the MT lattice can dramatically change motor response to

changes in the parameter k.

2.3.2 Asymptotic approximation

From the simulations of the jump-diffusion model, we see that the height of the activa-

tion energy barrier between binding sites can greatly affect motor motion characteristics.

However, Monte-Carlo simulations are computationally expensive so it would be useful to

explore parameter ranges for which analytical expressions for the force-velocity relationship



40
can be derived. In this section, we use homogenization theory in order to obtain simpler

approximate analytical force-velocity relation expressions for the Kt motor model.

Since we are ultimately interested in determining the force-velocity relation for the

motor, the equation of interest for approximation is the steady-state equation for the

probability density, which reads

0 =− 1

ν

∂

∂x

[(
f(x) cos

(
2πx

δ

)
+ r(x)

)′
p(x)

]
+Dpxx(x)−

(
α(x) + β(x)

)
p(x)

+ β(x+ δ)p(x+ δ) + α(x− δ)p(x− δ), (2.9)

where we have used the expression in eq. (2.5) for Ψ(x) and r(x) = −f(x)− h(x)− Fx.

We start by Taylor expanding the jump terms, which introduces an infinite sum term

in eq. (2.9). Then, using the no flux boundary conditions we integrate eq. (2.9) once to

obtain

0 =− 1

ν

(
f(x) cos

(
2πx

δ

)
+ r(x)

)′
p(x) +Dpx(x)

+
∞∑
n=1

δn

n!

dn−1

dxn−1

((
β(x) + (−1)nα(x)

)
p(x)

)
. (2.10)

From the numerical solutions of the steady-state distributions, we notice that the solution to

eq. (2.10) should contain high frequency periodic oscillations with a slow varying amplitude.

In order to identify equation terms that evolve on different spatial scales, it is necessary to

rescale space in eq. (2.10). We set x = Xy =
νDδ

b
y, where y is a dimensionless variable.

In terms of the variable y the steady-state equation reads

0 =−
(
f̂(y) cos

(
2πy

ε

)
+ r̂(y)

)′
p(y) + py(y)

+ α2

∞∑
n=1

εn−1

n!

dn−1

dyn−1

((
β̂(y) + (−1)nα̂(y)

)
p(y)

)
, (2.11)

where we identify ε = b/kBT as the small dimensionless parameter and α2 = β0δ
2ν/b. Also,

f̂(y) = f(y)/νD, r̂(y) = r(y)/νD, β̂(y) = β(y)/β0, α̂(y) = α(y)/β0. Note that this change

of variables allowed us to rewrite the oscillatory part of the drift term as a high frequency

periodic oscillator with a slow varying amplitude.

Following the multiscale technique we now introduce two spatial variables: a “slow”

variable z = y and a “fast” variable σ =
y

ε
. Immediately, we see that the drift term in

eq. (2.11) contains fast oscillations with a slow varying amplitude.
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Next, we treat z and σ as independent variables and by the chain rule,
d

dy
=

∂

∂z
+

1

ε

∂

∂σ
.

The equation now becomes

0 =−
(
f̂ ′(z) cos(2πσ) + r̂′(z)− 2π

ε
f̂(z) sin(2πσ)

)
p(z) + pz(z) +

1

ε
pσ(z) (2.12)

+ α2

∞∑
n=1

β̂(z) + (−1)nα̂(z)

n!

∂n−1

∂σn−1
p(z, σ)

+ εα2

∞∑
n=2

(n− 1)

n!

∂

∂z

∂n−2

∂σn−2

((
β̂(z) + (−1)nα̂(z)

)
p(z)

)
+O

(
ε2
)
...

As is customary for the multiscale method, we seek a solution that can be written as

an asymptotic series p(z) = p0(z, σ)+ εp1(z, σ)+O
(
ε2
)
where p0(z, σ) represents the mean

field, and p1 has zero mean value in z and is periodic in σ, with period 1. Substituting the

expansion for p(z) into eq. (2.12) and collecting same order terms we obtain the following

hierarchy of equations,

O

(
1

ε

)
: 2πf̂(z) sin(2πσ)p0(z, σ) + p0σ(z, σ) = 0, (2.13)

O(1) : 2πf̂(z) sin(2πσ)p1(z, σ) + p1σ(z, σ)−
(
f̂ ′(z) cos(2πσ) + r̂′(z)

)
p0(z, σ)

+ p0z(z, σ) + α2

∞∑
n=1

1

n!

(
β̂(z) + (−1)nα̂(z)

) ∂n−1

∂σn−1
p0(z, σ) = 0. (2.14)

Finally, the probability densities need to be normalized, with

1 =

∫ L/X

0

(
p0(z, σ) + εp1(z, σ)

)
dz. (2.15)

We solve eq. (2.13) by direct integration to obtain

p0(z, σ) = A0(z) exp
(
f̂(z) cos(2πσ)

)
. (2.16)

Next, we examine the infinite sum term in eq. (2.14). For a fixed arbitrary value of z = z0,

we define F (σ) =

∫ σ

0
p0(z0, η)dη. Taylor expansion of F (σ) gives

∫ 1

0
p0(z0, η)dη = F (σ + 1)− F (σ) =

∞∑
n=1

1

n!

∂n

∂σn

(∫ σ

0
p0(z0, η)dη

)
, (2.17)

−
∫ 1

0
p0(z0, η)dη = F (σ − 1)− F (σ) =

∞∑
n=1

(−1)n

n!

∂n

∂σn

(∫ σ

0
p0(z0, η)dη

)
, (2.18)
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where we have used the periodicity of p0(z, σ) in σ for a fixed z = z0.

Substituting the expressions from eqs. (2.17)-(2.18) into the O(1) equation we have

O(1) : 2πf̂(z) sin(2πσ)p1(z, σ) + p1σ(z, σ)−
(
f̂ ′(z) cos(2πσ) + r̂′(z)

)
p0(z, σ)

+ p0z(z, σ) + α2

(
β̂(z)− α̂(z)

)∫ 1

0
p0(z, σ)dσ = 0. (2.19)

We solve for the coefficient A0(z) by examining the O(1) eq. (2.19). Since we are looking

for a solution p1(z, σ) that is periodic in σ, we impose the following solvability condition on

eq. (2.19),

0 =

∫ 1

0

(
(p1(z, σ)I(z, σ))σ + exp (r̂(z))

(
p0(z, σ) exp(−r̂(z))I(z, σ)

)
z

+α2

(
β̂(z)− α̂(z)

)∫ 1

0
p0(z, η)dηI(z, σ)

)
dσ

= −r̂′(z)A0(z) +A′
0(z) + α2A0(z)

(
β̂(z)− α̂(z)

)
I20

(
f̂(z)

)
, (2.20)

where I(z, σ) = exp
(
−f̂(z) cos(2πσ)

)
and I0(f̂(z)) is the integral form of the modified

Bessel function of the first kind.

Therefore,

A0(z) = Ĉ exp

(
r̂(z)− α2

∫
I20

(
f̂(z)

)(
β̂(z)− α̂(z)

)
dz

)
. (2.21)

Finally, in terms of our original variable x this yields the solution

p0(x) = C exp

(
V (x)

kBT
− δν

kBT

∫
I20

(
f(x)

kBT

)(
β(x)− α(x)

)
dx

)
, (2.22)

where the coefficient C is found from the normalization condition for the probability den-

sities in eq. (2.15). Therefore, our approximation for the probability density function at

steady-state is

p(x) ≈ C exp

(
V (x)

kBT
− δν

kBT

∫
I20

(
f(x)

kBT

)(
β(x)− α(x)

)
dx

)
+O(ε). (2.23)
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With the steady-state solutions for the system in eq. (2.23), we can readily calculate motor

velocities using

v ≈ v0 +O(ε) (2.24)

= δ

∫ L

0

(
α(x)− β(x)

)
p0(x)dx+O(ε) (2.25)

= δC

∫ L

0

(
α(x)− β(x)

)
exp

(
V (x)

kBT
− δν

kBT

∫
I20

(
f(x)

kBT

)(
β(x)− α(x))

)
dx

)
dx

+O(ε). (2.26)

The integral expression for the approximation of motor velocities given in eq. (2.26) contains

a fast oscillating term in the integrand, which creates difficulties in numerical calculations.

We can further simplify the velocity expression by deriving an approximation for v0(x) using

a modification of the method of averaging [8].

To find the velocity, we want to solve the initial value problem

dV (x)

dx
= δ

(
α(x)− β(x)

)
p0(x), (2.27)

V (0) = 0, (2.28)

where we are interested in evaluating V (L).

Using the same rescaling for space with x = Xy, we again introduce the fast and slow

variables, y = z, σ =
y

ε
. With this change of variables the problem reads

dV (z, σ)

dz
= δ

(
α(z)− β(z)

)
p0(z, σ), (2.29)

V (0) = 0. (2.30)

We now assume a solution of the form V (z, σ) = V0(z)+εV1(z, σ) with V1(z, σ) periodic

in σ. Notice that V0(z) represents the mean field so that V1(z, σ) has zero mean in z.

Substituting the expansion into eq. ( 2.29) and retaining the O(1) terms yields

dV0(z)

dz
+

dV1(z, σ)

dσ
= δ

(
α(z)− β(z)

)
p0(z, σ). (2.31)

Recalling that V1 is periodic in σ it follows that

∫ σ

0

(
∂V0(z)

∂z
+

∂V1(z, η)

∂η

)
dη =

∂V0

∂z
σ, (2.32)

which in turn produces



44

∂V0(z)

∂z
=

1

σ

∫ σ

0
δ
(
α(z)− β(z)

)
p0(z, η)dη = δ

(
α(z)− β(z)

)
p0(z, σ). (2.33)

Substituting σ = 1, we obtain the first order approximation to the solution

dV0(z)

dz
= δ

(
α(z)− β(z)

)
exp

(
r̂(z)− α2

∫
I20

(
f̂(z)

)(
β̂(z)− α̂(z)

)
dz

)
×∫ 1

0
exp

(
f̂(z) cos(2πσ)

)
dσ. (2.34)

We immediately recognize that the integral expression in eq. (2.34) is the integral form

of the modified Bessel function of the first kind, I0(f̂(z)), therefore we can now write an

explicit solution for the velocity of the coupler,

v = V (L)

= δ

∫ L

0

(
α(x)− β(x)

)
exp

(
r(x)

kBT
− δν

kBT

∫
I20

(
f(x)

kBT

)(
β(x)− α(x)

)
dx

)
×

I0

(
f(x)

kBT

)
dx+O(ε). (2.35)

Next, we observe that the approximate solution, p0(x), is the steady-state solution of

the Fokker-Planck equation,

∂p0(x, t)

∂t
= −1

ν

∂

∂x

[(
V ′(x)− δνI20

(
f(x)

kBT

)(
β(x)− α(x)

))
p0(x, t)

]

+D
∂2

∂x2
p0(x, t), (2.36)

with appropriate boundary conditions. Thereby, by setting out to derive an asymptotic

approximation, we have also gained a reduction of the jump-diffusion motor model into a

simpler drift-diffusive model. The advantage of this approach is that for the approximate

drift-diffusive process we can not only calculate the velocity explicitly, but also the mean

first passage time problem is greatly simplified and can be obtained analytically. In what

follows, we derive analytical solutions for the mean first exit time calculation starting with

the approximate drift-diffusion model.

From the Fokker-Planck equation given in eq. (2.36), we obtain the following ordinary

differential equation for the first passage time T (x) at x = 0,
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1

ν

(
V ′(x)− δνI20

(
f(x)

kBT

)(
β(x)− α(x)

))
∂xT (x) +D∂2

xT (x) = −1 (2.37)

with boundary conditions T (0) = 0, T ′(L) = 0 as before. Note that since the delay terms

do not appear in this case, we can use direct integration to obtain the solution for the mean

first exit time

T (x) =
1

D

∫ x

0
exp

(
−V (y)

kBT
+

δν

kBT

∫
I20

(
f(y′)
kBT

)(
β(y′)− α(y′)

)
dy′

)
× (2.38)

∫ L

y
exp

(
V (z)

kBT
− δν

kBT

∫
I20

(
f(z′)
kBT

)(
β(z′)− α(z′)

)
dz′

)
dzdy.

The underlying assumption for our asymptotic approximation so far has been that ε

is sufficiently small in order for our approximate solutions to be accurate. Recall, that

ε = b
kBT , which means that b has to be small and since b = ka, the parameter k must be

small. This conclusion is in agreement with our intuition, since the jump-diffusion process

we started with can only be expected to reduce to a diffusive process we obtained in eq. (2.36)

if the unit activation barrier in the Ψ(x) term is sufficiently small, so that the diffusive steps

can overcome the Poisson noise. As we show below, k = 10−3 is sufficiently small for our

diffusive approximation to exactly match the numerics of the full jump-diffusion model.

In Figure 2.9, we have plotted a comparison between the approximate steady-state

solutions, p0(x) and the histograms we obtained numerically in the previous section for

k = 0.001 for both a polymerizing and depolymerizing motor. As it can be seen from

Figure 2.9, our analytical steady-state solutions are in very good agreement with the

numerical simulation of the full jump-diffusion model for small k.

Next, a comparison between the load-velocity relationships from eq. (2.26) and the

numerical calculations for the velocity presented in the previous section is given in Fig-

ure 2.10A.

From Figure 2.10A, we see that for small barriers with k = 0.001, the analytic solution

v0 is in excellent agreement with the numerical results obtained for the full jump-diffusion

model. This approximation remains in very good agreement for k = 0.01, however the plot

is not shown for clarity as these plots overlay with one another. For k > 0.01, the diffusive

limit solutions lose their accuracy and thus cannot be used to compare with the numerical

calculations. Further, in panel B of Figure 2.10 we see that the averaged velocity expression
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Figure 2.9. A comparison of the numerical versus the analytical steady-state distributions
for the diffusive approximation of the steady-state probability density function for varying
loads, F , and k = 0.001.

in eq. (2.35) is in very good agreement with eq. (2.26) for k = 0.001 and is also a good

approximation for k = 0.01.

In Figure 2.11A-C, we have plotted the mean first exit time solution in eq. (2.38) for

varying force terms, F with respect to the initial position, x. Notice from the plots that it

takes a very long time for the tip to leave the coupler for small pulling forces and thus we

consider the system to have reached a metastable state in panels A and B of Figure 2.11.

However, for larger pulling loads (panel C) the exit times decrease significantly indicating

that the forces are approaching the breaking loads for the motor. Thus, the mean first exit

time calculation in the diffusive limit allows us to analytically determine breaking loads.

In Figure 2.11D, we show a log-log plot of first exit times through x = 0 starting from

x = L, with respect to varying load, F . From Figure 2.11D we observe that our numerical

results from section 3.1 and the analytical solution for the exit times in eq. (2.38) agree well

with each other. Furthermore, panel D shows that our mean first exit time approximation
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Figure 2.10. A. Load-velocity relationship comparison between the diffusive approxi-
mation v0(x) and the Monte Carlo simulations for k = .001 for a depolymerizing and
polymerizing motor. For the numerical simulations, bars represent the standard deviation.
B. Load-velocity relationship comparison between the diffusive approximation load-velocity
relationship as given in eq. (2.26) and the averaged velocity in eq. (2.35) for k = 0.001 and
k = 0.01.

experiences a sharp decline in exit times past F = 18 pN in agreement with our numerical

results for breaking loads.

In conclusion, in this section we have shown that for small k, analytical expressions

for the force-velocity relation can be obtained which are in good agreement with our

numerical simulations. The parameter range for which we obtained analytical approximate

solutions falls within the range of experimental predictions for kinetochore binding. Recent

measurements of the diffusion coefficients of several microtubule binding proteins which are

involved in Kt-MT binding seem to indicate that their activation energy for MT binding is

indeed very low [17] and thus the diffusive limit we explore here might be a good approximate

model for the interaction of the kinetochore coupler with a dynamic microtubule polymer.

2.4 Off-Register well

So far, we have discussed the case when the spacing of Kt binders is an integer multiple

of the binding site spacing on the MT lattice, δ. However, the exact geometry of the Kt

binder elements on the attached MT lattice is not yet known. Therefore, alternate scenarios
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for the spacing between Kt linkers must be considered. If the kinetochore binders are not

in-register with the binding sites on the polymer, then the Kt bound coupler linkers need

not be all detached for a new attachment to be established. As a result, the geometry of

the potential well is altered and two well parameters are important: s the linker spacing

which establishes the period of free energy drops due to binding events in the well, and δ

which establishes the period of transitions between the individual activation barriers. In

the remainder of this chapter, we examine the case in which the linkers are spaced with

distances that are not integer multiples of δ with s = κ̄δ = δ/κ = 3
√
2δ/2: the off-register

well case.

We use a Fourier series approximation for the off-register well Ψ(x), which reads
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Ψ(x) =

⎧⎪⎪⎨
⎪⎪⎩
−aC1 sin

(
2πx

s

)
+ bC2g(x)− bC3 cos

(
2πx

s

)
+ h(x) x ≤ N2s

−bC3 + bC2g(x) + h (N2s) x > N2s,

(2.39)

with h(x) = −0.5aC20x and g(x) = cos (2π(x− (N2 + 1/2)s)/δ)− cos (2π(x+ s/2/δ). The

coefficients from the approximation are: C20 = 1.5, C1 = 0.17, C2 = 2.7, C3 = 0.01.

2.4.1 Numerical calculation of force-velocity relations

The steady-state expression in eq. (2.7) with the well function of eq. (2.39) can be solved

numerically using Monte-Carlo simulations we described in section 3.1. The new well shape

significantly affects how the motor responds to increases in individual activation barriers,

b.

Numerical solutions for the steady-state distributions with the off-register well are shown

in Figure 2.12 and Figure 2.13. For all the values of k that we consider in our study, the

numerical solutions for the steady-state distributions settle at the lowest energy state of the

potential well for both a polymerizing and depolymerizing off-register motor as shown in

Figure 2.12 and Figure 2.13. Recall that the forces, F , change the well tilt and thus affect

the position of the lowest energy state in the well, thereby we see shifts on the x-axis as

the motor loads are varied. These steady-state results are quite different from what we saw

for the in-register well in the previous section where high k values affected the steady-state

histograms. This is due to the new well shape which does not hinder diffusion of the kMT

tip to the lowest binding energy state since the increases in the individual barriers are not

amplified significantly as the overlap increases.

Next, we numerically determine motor velocities for various motor loads at steady-state.

In Figure 2.14 we have plotted the force-velocity relation for the motor with the off-register

well for different values of the parameter k. The plots are obtained using Monte-Carlo

simulations as in section 3.1. We observe that there are some differences in motor response

when the well function is altered to be off-register. Namely, the force-velocity relations do

not show a slow down in velocity as we increase the value of the parameter k. This is to

be expected, since the new topology of the well changes how the steady-state histograms

respond to variations in the value of k, as we saw in Figure 2.12 and Figure 2.13. For all

the k we have tested here the steady-state distribution histograms experience shifts on the

x-axis and accordingly the force-velocity curves show flat regions corresponding to loads

that cause shifts in regions where the net balance of rates is unchanged. As a result, both a
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Figure 2.12. Off-register well normalized histograms of the numerical simulation re-
sults with varying activation barriers and motor loads for a depolymerizing motor with
β2 = 100s−1 > α0 = 80s−1. Each histogram is generated by gathering simulation statistics
for 1000 trials after relaxation into steady-state.

polymerizing and depolymerizing motor with an off-register well can only display a slippery

or “floating grip” velocity mode.

Finally, the change of the well function also causes the breaking loads for the system to

decrease. This is because with the given value of s we can only fit about half the number

of binders on the MT lattice when the coupler is fully engaged (note that F ≤ 8 pN in

Figure 2.14). Since the motor breaking load needs to overcome the total energy of binding

to detach a coupler, a reduction in the total amount of binders results in a decrease in the

amount of load required to detach the MT polymer from the Kt.
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Figure 2.13. Off-register well normalized histograms of the numerical simulation
results with varying activation barriers and motor loads for a polymerizing motor
β2 = 27s−1 < α0 = 80s−1. Each histogram is generated by gathering simulation statistics
for 1000 trials after relaxation into steady-state.

2.4.2 Asymptotic approximation

The simulations of the off-register case indicate that the motor remains in the slippery

regime despite changes in the unit activation barrier values. Based on our previous calcula-

tions, we expect that in the off-register case the drift-diffusion approximation can be a good

model approximation for a wider range of k values. Accordingly, in this section, we repeat

the homogenization argument for the off-register well in order to derive analytic expressions

for the force-velocity relation.

We repeat our steps from section 3.4 with the off-register well. After integrating once

with the no-flux boundaries, the steady-state equation with the new well function yields
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Figure 2.14. Numerical load-velocity relationships for varying k for the off-register well.
A. Force-velocity calculations for a depolymerizing motor with β2 = 100s−1 > α0 = 80s−1.
B. Force-velocity calculations for a polymerizing motor with β2 = 27s−1 < α0 = 80s−1.

0 = −1

ν

(
aC1 sin

(
2πx

s

)
− bC2g(x) + bC3 cos

(
2πx

s

)
+ r(x)

)′
p(x) +Dpx(x) (2.40)

+

∞∑
n=1

δn

n!

dn−1

dxn−1

((
β(x) + (−1)nα(x)

)
p(x)

)
,

where r(x) = −h(x)− Fx.

As before, we rescale space by setting x = Xy = νDδb/y and eq. (2.40) reads

0 = −
(
aC1

kBT
sin(2πκσ)− εC2g(2πσ) + εC3 cos(2πκσ) + r̂(y)

)′
p(y) + py(y) (2.41)

+ α2

∞∑
n=1

εn−1

n!

dn−1

dyn−1

((
β̂(y) + (−1)nα̂(y)

)
p(y)

)
.

This time, we assume the existence of a solution with the expansion p(y) = p0(y, σ) +

εp1(y, σ) + O(ε2), where we now require p1(y, σ) to be a bounded function. In accordance

with our previous derivation we introduce two spatial variables: a “slow” variable z = y

and a “fast” variable σ =
y

ε
.
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The hierarchy of equations after substituting the assumed asymptotic solution expansion

into eq. (2.41) is

O

(
1

ε

)
: −

(
2πaC1

kBT
cos(2πκσ)

)
p0(z, σ) + p0σ(z, σ) = 0, (2.42)

O(1) : −
(
2πaC1

kBT
cos(2πκσ)

)
p1(z, σ) + p1σ(z, σ)−

(
r̂′(z)− 2πC3 sin(2πκσ)

− C2g
′(2πσ)

)
p0(z, σ) + p0z(z, σ) + α2

(
β̂(z)− α̂(z)

)∫ 1

0
p0(z, σ)dσ = 0. (2.43)

First, we see that the solution of the O (1/ε) equation can be obtained, as before, by direct

integration where we get

p0(z, σ) = A0(z) exp

(
aC1 sin(2πκσ)

kBT

)
. (2.44)

Note that p1(z, σ) is only required to be bounded, so after solving the O(1/ε) equa-

tion, we have to check that the O(1) equation indeed satisfies the required boundedness

requirement. This last step allows us to obtain an expression for the coefficient A0(z).

Let,

I(z, σ) = exp

(
−aC1 sin(2πκσ)

kBT

)
, (2.45)

and the O(1) equation can now be written as

0 =
(
p1(z, σ)I(z, σ)

)
σ
+ exp(r̂(z))

(
p0(z, σ) exp(−r̂(z))I(z, σ)

)
z

(2.46)

+
(
C2g

′(2πσ) + 2πC3 sin(2πκσ)
)
A0(z) + α2

(
β̂(z)− α̂(z)

)
A0(z)I(z, σ)I0

(
aC1

kBT

)
.

where I0 (aC1/kBT ) again denotes the integral form of the modified Bessel function of the

first kind, this time evaluated at f̂(z) = aC1/kBT .

So,

p1(z, σ) =
−1

I(z, σ)

∫ (
exp(r̂(z))

(
p0(z, σ) exp(−r̂(z))I(z, σ)

)
z
+

(
C2g

′(2πσ) (2.47)

+2πC3 sin(2πκσ)
)
A0(z) + α2

(
β̂(z)− α̂(z)

)
A0(z)I0

(
aC1

kBT

)
I(z, σ)

)
dσ.
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Since we are interested in the boundedness of p1 we examine the following limit

lim
c→∞

∫ c

0
exp(r̂(z))

(
p0(z, σ) exp(−r̂(z))I(z, σ)

)
z
+

(
C2g

′(2πσ) + 2πC3 sin(2πκσ)
)
A0(z)

+ α2

(
β̂(z)− α̂(z)

)
A0(z)I0

(
aC1

kBT

)
I(z, σ)dσ, (2.48)

= lim
c→∞c

(
A0z(z)− r̂′(z)A0(z)

)
+ α2

∫ c

0

(
β̂(z)− α̂(z)

)
A0(z)I0

(
aC1

kBT

)
I(z, σ)dσ

+K(z, σ), (2.49)

= lim
N→∞

(N + ξ)
(
A0z(z)− r̂′(z)A0(z)

)
+ α2

(
β̂(z)− α̂(z)

)
A0(z)I0

(
aC1

kBT

)∫ N+ξ

0
I(z, σ)dσ

+K(z, σ), (2.50)

= lim
N→∞

N
(
A0z(z)− r̂′(z)A0(z)

)
+ α2N

(
β̂(z)− α̂(z)

)
A0(z)I

2
0

(
aC1

kBT

)
+K(z, σ)

+O(ξ), (2.51)

where K(z, σ) =
(
C2g(2πσ) − C3 cos(2πκσ)

)
A0(z) + K1(z) is a bounded term. Also we

have decomposed c = N + ξ with N = [|c|] and 0 ≤ ξ < 1.

Immediately, we see that in order to bound the p1(y, σ) solution we must take care of

the unbounded part of the above limit. We do so by setting

−r̂′(z)A0(z) +A0z(z) + α2

(
β̂(z)− α̂(z)

)
A0(z)I

2
0

(
aC1

kBT

)
= 0, (2.52)

which gives us the following condition on the coefficient A0(z),

A0(z) = exp

(
r̂(z)− α2I

2
0

(
aC1

kBT

)∫ (
β̂(z)− α̂(z)

)
dz

)
. (2.53)

Notice, the striking similarity of this expression with the expression we derived for the

in-register well in eq. (2.21). In contrast to eq. (2.21), for the expression of eq. (2.53) the

solution is greatly simplified due to the modified Bessel function, I0, being evaluated at

the specific value
aC1

kBT
. This results in a constant coefficient multiplying the jump term

expansion in the zero order solution in eq. (2.53).

We can now write our approximation for the off-register case as

p0(z, σ) = exp

(
aC1 sin(2πκσ)

kBT
+ r̂(z)− α2I

2
0

( aC1

kBT

)∫ (
β̂(z)− α̂(z)

)
dz

)
+O(ε). (2.54)
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Next, we calculate the approximation for motor velocities using p0 to obtain

v ≈ δ

∫ L

0

(
α(x)− β(x)

)
p0(x)dx+O(ε) (2.55)

= δC

∫ L

0

(
α(x)− β(x)

)
×

exp

(
aC1

kBT
sin

(
2πx

s

)
+

r(x)

kBT
− δν

kBT
I20

(
aC1

kBT

)∫ (
β(x)− α(x))

)
dx

)
dx

+O(ε).

We can further simplify our analytic solution for the velocity by applying averaging for the

velocity expression which gives

v ≈ δ

∫ (
α(z)− β(z)

)
p0(z, σ)dz +O(ε)

= δC

∫ L

0

(
α(x)− β(x)

)
exp

(
r(x)

kBT
− δν

kBT
I20

(
aC1

kBT

)∫ (
β(x)− α(x))

)
dx

)
×

I0

(
aC1

kBT

)
dx+O(ε). (2.56)

A comparison between the expression obtained for p0 in eq. (2.54) and the numerical

results from the previous section is shown in Figure 2.15.

Similar to the previous homogenization results, from Figure 2.15 we see that the analyti-

cal expression for the steady-state solution is in good agreement with numerical results. The

main difference for p0(x) here as compared to the in-register calculation is that the value of

k does not affect the approximate steady-state distributions (recall that in eq. (2.23), the

term I20

(
f(x)

kBT

)
depends on the value of the parameter k). Indeed, the independence

of p0 on k is a necessary feature due to the fact that the numerical solutions of the

steady-state distributions show no changes as k is varied. Further, this also means that

the analytical solutions presented here are a good match to the numerics for all the k values

we have examined in this chapter (for clarity, a comparison only for k = 0.001 is shown in

Figure 2.15).

In Figure 2.16A we show a comparison between the numerical results for the force-

velocity relation and our analytic solution from eq. (2.55) (only the numerical solution for

k = .001 is shown for clarity). The analytical velocity solution is a very good approximation

to the numerical solutions for all the values of k we have considered. Similarly, a comparison
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Figure 2.15. Off-register well comparison of the numerical versus the analytical steady-s-
tate distributions for the diffusive approximation of the steady-state probability density
function for varying loads, F , and k = 0.001.

between the averaged solution in eq. (2.56) and the solution in eq. (2.55) in Figure 2.16B

shows that the averaged solution is in good agreement with the asymptotic solution and is

thus an excellent fast approximation for the force-velocity relation.

In summary, in this section we have calculated analytical expressions for the force-

velocity relation for the off-register motor. The solutions obtained are much simpler than

the solutions for the in-register well. A distinguishing characteristic in the off-register well

case is that the unit barrier amplitudes do not affect the analytic and numeric solutions as

opposed to the in-register case, where the value of k significantly affects motor behavior.

Therefore, the analytic solutions we obtained in this section are not only strikingly simple

but also useful for a much wider range of parameters than in the in-register well case.
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Figure 2.16. A. Off-register well load-velocity relationship comparison between the diffu-
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2.5 Conclusions

Understanding the mechanisms underlying the attachment of chromosomes to micro-

tubules presents various challenges due to the dynamic nature of the attached microtubules.

Even though many components of this attachment site have been identified, there is no clear

understanding of how these components combine with one another to create a motor that

can robustly pull significant loads with velocities that depend on the rates of the attached

microtubule tip.

In this chapter we have proposed a mathematical model for kinetochore motors. With

our model, we can study the effect of the strength of Kt-MT binding on motor velocities as

well as the effects of variations in the polymerization/depolymerization rates of the attached

kMT. We have also explored two cases for the model: a) the in-register case in which the Kt

binder period is an integer multiple of the MT binding site spacing, b) the off-register case in

which the binder period is not an integer multiple of binding site spacing. For the in-register

scenario we saw that for weak binding with low activation barriers the Kt model can be
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reduced to a simple model where closed form expressions for the velocity-force relationship

can be obtained. We observed two modes for motor movement: 1) a slippery mode, in which

less load could be sustained and the motor moved with velocities that obeyed the balance

of kMT rates and, 2) a sticky mode, in which the motor becomes almost static; however the

threshold for breaking loads increases. In the slippery mode, motors respond with velocities

which are mostly insensitive to loads, since load variation for this motor results in coupler

repositioning on the MT lattice, which preserves constant velocities as long as the new

equilibrium position allows for the net rate of polymerization/depolymerization to remain

constant. We also showed that variations in the kMT depolymerization rate for low unit

activation in binding produce shifts in the force-velocity relationship, which depending on

the balance of kMT rates can lead to a direction change for the motor. This last feature is

particularly important for our motor in the larger chromosome movement context.

In the off-register case we saw many of the characteristics observed for the in-register

well. The main difference in this model scenario is the motor’s reaction to variations in

the unit activation barrier. Whereas the in-register case penalized the increased overlap

between the coupler and the polymer, the off-register case penalty in free energy is much

smaller. As a result in the off-register case the motor only displays the slippery mode with

no slow down as the unit activation barrier energy increases. This finding pointed us to the

scenario that if the linkers are not highly organized, there could be an advantage in motor

velocities since slow down would require high amounts of energy. Another advantage of the

off-register well model is that analytic solutions can be obtained and result into surprisingly

simple expressions that produce very good approximations for all the values of the unit

activation barriers explored. The analytical approach is extremely valuable for this model

both for the in-register and off-register case since numerical simulations are time consuming.

Given the current biological data, it is unclear which linker distribution case is operating at

the Kt/MT interface. However, if the linkers are not organized into a higher order structure

that would impose the same period for the binders as the MT lattice, we suspect that the

off-register motor case is a more appropriate kinetochore motor model. In this last scenario,

we predict that changes in the Kt binding strength to kMTs caused by the phosphorylation

of Ndc80 by Aurora B kinase would have to involve a large energy exchange in order to

cause a Kt motor to stall.

Furthermore, in our study we also incorporated polymerization ratchet effects that arise

from the MT polymer pushing on the kinetochore plate. We saw that such effects are
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important when predicting the motility of kinetochores especially when the motor is subject

to large pushing forces.

In conclusion, biased diffusion mechanisms coupled with spatial variations in kMT

trip rates produce force-velocity relations which are distinctively nonlinear and are di-

rectly dependent upon Kt binding affinities to the MT lattice and the balance of kMT

growth/shortening rates. Our kinetochore motor is another example of a motility mecha-

nism which uses the chemical energy of polymerization/depolymerization and the energy of

polymer binding to bias thermal motion.
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CHAPTER 3

CHROMOSOME MOVEMENT DURING

MITOSIS1

During mitosis, chromosomes use a complex network of dynamic microtubules to find

the cell equator in preparation for division signals. The roles of cellular chemical signals

in mechanisms driving mitotic chromosomal movements are not well understood. In this

chapter, we propose a mathematical model of this process which incorporates a molecular

scale model of kinetochore-microtubule interactions into a negative feedback loop between

spindle forces and local kinetochore biochemical reactions. This system allows kinetochore

biochemical reactions to control and coordinate chromosome movement, thus providing a

direct connection between mechanical signals and mitosis chemical species. Our feedback

control model can recreate chromosome movement from prometaphase to anaphase in good

agreement with experimental data.

3.1 Introduction

The movement of chromosomes to the cell equator is one of the most striking mitotic

events. Chromosome motility is facilitated by the mitotic spindle, which consists of a

complex network of microtubules that nucleate from two poles. The spindle machinery

essentially lays out a system of tracks on which chromosomes move. Mechanical linkage

between chromosomes and microtubules is provided by proteinaceous structures called

kinetochores [3]. Depending on its attachment to the spindle, a chromosome can be in one

of two states: monooriented if tethered to microtubules from only one pole, or bioriented if

connected to microtubules from both poles.

In many vertebrate cells, monooriented and bioriented chromosomes show oscillatory

movements classified as “directional instability” [29]. Oscillatory motility is characterized

by periods of motion at approximately constant speeds marked by abrupt switches between

1Reprinted from J. Theor. Biol., 263, B. Shtylla, J. P. Keener, A mechanomolecular model for the
movement of chromosomes during mitosis driven by a minimal kinetochore bicyclic cascade, pp. 455-470,
Copyright (2010), with permission from Elsevier.
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motion directed toward and away from a pole [26][29]. We refer to chromosome motion

directed toward the closest pole to which it is tethered as poleward motion and motion

away from the closest pole as antipoleward (AP) motion. Toward and away from pole

movements have been shown to be primarily coupled to Kt associated microtubule (kMT)

growth/shortening by tubulin addition/removal at the attachment site [17]. Typically a

chromosome becomes first monooriented and travels toward the pole from which the kMT

nucleated. Once close to this pole, it experiences directional instability awaiting connections

from the opposing pole. After biorientation, motion preserves constant velocities with a bias

toward the spindle equator controlled by the duration of poleward and antipoleward trips

[29]. At the end of metaphase, chromosomes align at the cell equator and undergo further

oscillations.

Poleward chromosome movement results from forces arising at kinetochores. In turn,

kinetochore forces could originate from Kt coupling to depolymerizing microtubules or the

pulling action of minus-end directed motor proteins. Several motor proteins such as dyneins,

CENP-E are found at kinetochores [3]. Even though molecular motor enzymes are likely to

contribute to kinetochore tethering to kMTs, their role in generating motion is questioned

on the basis that molecular motor depletion in higher eukaryotes does not entirely hinder

Kt/kMT interactions [13], and their activity is dispensable for chromosome motility in

yeast [10][30]. Therefore it seems reasonable to expect chromosome poleward movement to

depend on kinetochore coupling to kMT tip shortening rates.

Interactions between spindle MTs and chromosome arms could be sufficient for antipole-

ward motion provided that kinetochores are tethered to growing kMTs. Astral microtubules

push chromosome arms away from the poles toward the spindle equator creating what

are known as “polar ejection” forces [25][26]. The interactions between the spindle and

chromosome arms at a given position depend on the density of microtubules there. For

equal densities of microtubules emanating from each pole the polar ejection forces should

balance half way, at the spindle equator. Therefore, polar ejection forces provide spatial

cues which guide chromosomes to the cell equator.

Since movement seems to depend on the coordination of the forces exerted on kine-

tochores with kMT tip rates, a mechanism for local Kt control that incorporates force

dependent kMT tip rate regulation could be sufficient to generate motion. Indeed, local

motility control at kinetochores is supported by evidence that chromosomes in the same cell

move autonomously with uncoordinated directional switches [26][29]. Also, tension arising
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from stretching of sister kinetochores during oscillations has been implicated in controlling

transitions from poleward to AP motion [29]. More importantly, there is evidence for a kine-

tochore force mediated regulatory mechanism based on experiments which have identified

Kt associated force sensing proteins that also affect kMT polymerization/depolymerization

rates [2][9][15][20][28]. The details of how such a biochemical-force regulatory machinery

could work to control chromosome motility are not well understood.

A previous model by [6] studied how kinetochore force sensing affects chromosome

motility in yeast where kinetochores only bind a single MT. This study, however, did

not specify how kinetochores sustain attachment or address any explicit mechanisms that

would integrate mechanical tension with velocity modulation at kinetochores. Recently [16]

considered a chemical reaction mechanism for chromosome motility where velocity control

was purely chemical with no explicit load dependence or variation in attachment numbers

at each kinetochore. While kinetochores seem to operate on flat load velocity curves with

velocities insensitive to load variations, any coupler motor would have to eventually adjust

its response if loads became too large. We reasoned that these effects could be important

in chromosome motility and thus sought to investigate them explicitly in a chromosome

motility model.

In this chapter, we develop a model of chromosome movement where velocity is controlled

by a negative feedback mechanism between spindle forces and kinetochore localized force

dependent chemical reactions. For each chromosome attachment site, we use the Kt coupler

model from Chapter 2 to describe the molecular mechanics of the Kt/MT connection. Then,

we use the corresponding Kt coupler load-velocity relationships to predict system velocity

in response to various Kt loads and kMT tip rates. The proposed feedback mechanism

generates independent chromosome oscillations in the monooriented case, and predicts

congression and further oscillations in the bioriented state, in good agreement with data.

3.2 Model

In this section we describe model assumptions and equations.

In Figure 3.1 is shown a diagram of a chromosome and of all the forces included in our

model that affect its motion. We suppose that chromosome movement is in the horizontal

direction along a one-dimensional axis starting from the left pole (at x = 0) to the right

pole (at x = L).

Furthermore, we assume that the motion is viscous dominated (inertia can be neglected)

so that
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Figure 3.1. Diagram of model components. For ease of illustration we have increased the
relative scale of a chromosome in the cell. Polar-ejection forces (shown as large arrows) arise
when the chromatids interact with microtubules that nucleate from two poles. These forces
are directed away from each pole and thus create a centering effect. Each kinetochore in our
model is equipped with up to 20 couplers; for simplicity we have shown only two per sister
kinetochore. Sister chromatids are connected by a spring that maintains proper separation.
The net polar ejection and spring forces exerted on a chromosome are read by each connected
Kt motor that in turn responds with forces and velocities from its load-velocity curve.
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ν
dxj
dt

=
∑

F, (3.1)

where xj is the x-coordinate position of a chromosome arm, ν is the viscosity, and
∑

F is

the sum of all applied forces. Three types of forces are included in our model. These are: 1)

polar ejection forces due to spindle MTs, 2) forces from each kinetochore molecular motor

bound to a MT, and 3) forces coming from physical linkage with sister chromatids.

The individual forms for these forces are specified as follows. Polar ejection forces

are assumed to arise when MTs interact with chromosome arms. Since these forces are

thought to be microtubule density dependent we model their effect using an inverse square

distribution law of the form fap/x
2 = kapAcc/x

2 where Acc is chromosome cross sectional

area parallel to the equator and x is chromosome distance from the pole [12][25]. The

parameter kap is a force density term which depends on the number of astral microtubules

interacting with chromosome arms.

Kinetochore motor forces are calculated from load-velocity relationships which we de-

rived in the previous chapter. We allow a Kt to bind several MTs, however each binding

generates a force corresponding to a single molecular motor. The key motor model result

(described below) is that when attached, a motor generates a load (or force) that depends

on the motor velocity and the balance of kMT tip polymerization and depolymerization

rates, identified by the depolymerization rate βj .

Finally, cohesin complexes provide physical connection between sister chromatids [32]

and are modeled by a linear center spring.

Thus, the positions of the chromatids are governed by the equations

ν
dxL
dt

=
1

2

(
fap
x2L

− fap
(L− xL)2

)
−

m∑
i

FsL,i(−dxL
dt

, βL(t)) + kf(xR − xL − Lk), (3.2)

ν
dxR
dt

=
1

2

(
fap
x2R

− fap
(L− xR)2

)
+

n∑
i

FsR,i(
dxR
dt

, βR(t))− kf(xR − xL − Lk), (3.3)

where xj (j = L,R) refers to the position of the chromatid facing the jth pole (Figure 3.1)

with n,m the total number of attached right and left kinetochore couplers respectively. Fsj,i

corresponds to the forces coming from ith motor attached at kinetochore j, and Lk is the

cohesin spring relaxed length. For simplicity we have split the anti-poleward forces on each

sister chromatid in half.

The next important ingredient of the model are the Kt chemical reactions. We propose
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that kinetochores contain a sensor species S which is activated at a force dependent rate

subsequent to a microtubule binding a kinetochore. We assume that if S grows above a

threshold value, it promotes the phosphorylation of a species A into Ap; if S decays below

threshold a phosphatase takes Ap into A. Possible candidates for the sensor are components

of the CPC complex and A could correspond to Aurora B (AurB), a kinetochore specific

kinase. The members of the CPC complex are thought to first bind and activate AurB

via force dependent phosphorylation and subsequently the kinase (auto)phosphorylates

to its fully active state [2][27][28]. Since the activation of AurB is not yet completely

understood we retain a simplified description where events are grouped into an activation

and phosphorylation reaction. Next, the species Ap catalyzes in a threshold dependent way

the phosphorylation of a mitotic kinesin, Mc. A candidate for Mc is the kinesin-13 MCAK

which is a substrate of AurB at centromeres and is also the most powerful microtubule

depolymerase known to date [5][9]. In line with the observation that phosphorylation of

MCAK by AurB blocks its activity in vitro and in vivo [1][35] phosphorylated Mc (which

we denote by Mcp) is inactive in our model. Figure 3.2 illustrates a wiring diagram for the

kinetochore chemical reactions.

S

McpMc

ApA

k μ

Fs

Figure 3.2. Reaction diagram of the negative feedback loop between Kt loads (Fs) and
chemical species reactions. Kt loads increase sensor production (S), which in turn initiates
a reversible two step phosphorylation cascade between the kinase (A) and kinesin (Mc).
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In accordance with the above description, each kinetochore sensor species is activated

at a load adaptive rate k
∑

i Fsj,i(
dxj

dt , βj(t)), and decays with a constant rate μ,

dSj

dt
= k

∑
i

Fsj,i(
dxj
dt

, βj(t))− μSj . (3.4)

The two step phosphorylation cascade is modeled using Michaelis-Menten dynamics,

dApj
dt

=
k+ASj(ATj −Apj)

KA +ATj −Apj
− k−AApj

KA +Apj
, (3.5)

dMcj
dt

=
−k−MApjMcj
KM +Mcj

+
k+M (MTj −Mcj)

KM +MTj −Mcj
. (3.6)

with MTj = Mcj + Mcpj , ATj = Aj + Apj , the total concentration of species Mc and A

at kinetochore j. KA, KM are the Michaelis constants for the reactions. The rates k−A , k
+
M

characterize phosphatase kinetics whereas k+ASj , k
−
MApj are chosen so that maximum kinase

velocities are reached when S and Ap are at their highest values. A similar cascade has

been shown to cause limit cycle behavior for the cyclin-cdc2 kinase mitotic oscillator in [7].

The key characteristic of this cascade is that Ap and Mc show zero-order ultrasensitivity

(i.e., the reactions display sigmoidal switch-like signal-response curves) so that response

increases continuously with signal strength and is fully reversible [8][31].

Further, we assume that the microtubule depolymerization rate βj at a given kinetochore

is related to the amount of Mc available through the linear relationship

βj(t) =
βmax − βmin

MTj
Mcj + βmin. (3.7)

Notice that the depolymerization rate βj feeds back into the motor forces through the

Fsj,i(
dxj

dt , βj) term of eq. (3.2)-(3.3) to report chemical species levels into the force balance

calculation. Thus, we have feedback between chemical reactions and kinetochore forces.

Finally, we note here that in general our model is a system of eight nonlinear differential

equations, but when one sister kinetochore is not attached (monooriented case) this system

reduces to 5 equations since one set of chemical equations has trivial solutions.

3.2.1 Load-velocity relationship for kinetochore motors

For the Kt motors in this model we use the in-register model discussed in Chapter 2. In

this section we restate the key equations of the biased diffusion motor for the chromosome

movement model. A diagram of the kinetochore motor components is shown in Figure 3.3.
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Figure 3.3. Diffusive coupler diagram. (A) Several weak kMT lattice binding sites diffuse
on an inserted microtubule with a dynamic tip. The energy of binding is represented by a po-
tential well function Ψ(y) which creates a bias for increased overlap between the kinetochore
filaments and the polymer. Motor loads (F ) coming from polar ejection forces and the spring
oppose the potential well bias for insertion. (B) The polymerization/depolymerization rates
for the tip of an inserted MT are position dependent functions. The polymerizarion rate
is constant whereas the depolymerization rate is a step function that varies from β0 to βj .
βj depends on the concentration of active MCAK at the kinetochore. (C) Load-velocity
curves for the diffusive couplers and their respective linear approximation. For the diffusive
motors load velocity curves for are mostly flat. The linear load-velicity curves have the same
quantiative behavior as the nonlinear load-velocity curves when the rate βj varies. The rate
βj for the linear curves was chosen to give a good fit to the nonlinear case; all other rate
parameters are the same. In this plot −v > 0 denotes poleward or depolymerization-driven
motion, whereas −v < 0 denotes antipoleward or polymerization-driven motion.
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Horizontal displacement for the Kt motor is measured with respect to an internal motor

frame of reference. The motor position variable, y, marks the distance between the polymer

tip and the coupler end distal to the kinetochore plate. Thus, the position axis here starts

at the coupler entry point (y = 0 nm) and extends to the Kt plate (y = 50 nm), as shown in

Figure 3.3A. The reason for this new frame of reference is that motor dynamics are directly

dependent on the amount of overlap between the polymer and the coupler and not the

specific chromosome position in the cell.

To characterize the binding interactions between the coupler and the polymer, we use

an explicit in-register energy landscape function, Ψ(y). We suppose that each motor binder

can weakly bind to a single monomer (i.e., there is a single binder binding site on each

monomer). We position the binding sites so that when the polymer is fully inserted there

are 65 occupied binding sites spread along 40 nm of the polymer. In agreement with [11]

for an MT with 13 protofilaments with 8 nm long monomers, the binding sites are placed

δ = 8/13 nm apart on the y-axis. The components of the motor model are illustrated in

Figure 3.3A. The assumptions used to construct the motor model are as follows.

Spindle forces acting on a chromosome as well as spring forces due to cohesins create

mechanical stress on kinetochores producing load (F ) on the motor. With our sign conven-

tion, F > 0 pushes on a kinetochore to oppose poleward motion or equivalently pulls the

polymer outside the coupler, whereas F < 0 favors polymer insertion or poleward motion.

Finally, the tip of the inserted kMT polymer is dynamic and can grow or shorten with

prescribed rates that vary with the position of the tip relative to the kinetochore. A plot

of the rates is shown in Figure 3.3B. We assume that the depolymerase MCAK is enriched

at the coupler end proximal to the kinetochore plate. Hence, we choose a depolymerization

rate that depends on the position of the kMT tip relative to the motor (it varies from a

basal value β0 to a maximal value of βj) and keep the polymerization rate constant (α0),

independent of tip position.

In the viscous-dominated limit, the motor system is described by the forward Chapman-

Kolmogorov equation,

∂p(y, t)

∂t
= −1

ν

∂

∂y

[(−Ψ′(y)− F
)
p(y, t)

]
+ α(y − δ)p(y − δ, t) + β(y + δ)p(y + δ, t)

− (α(y) + β(y))p(y, t) +D
∂2

∂y2
p(y, t), (3.8)

where p(y, t) is the probability density function for y, the relative MT tip position. D is

the kinetochore diffusion coefficient, ν is the effective kinetochore viscosity and α(y), β(y)
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are position dependent polymerization and depolymerization rates for the kMT tip. Notice

that eq. (3.8) includes jump terms coming from the addition or removal of monomers of

size δ in addition to diffusion and drift.

For a given depolymerization rate βj and reasonable loads, a motor sustains attachment

to an MT. Since the polymer tip is constantly growing/shortening, attachment produces

movement of the motor with respect to the x-axis. Notice, however, that so far, all the

coupler equations have been written in terms of the relative position variable, y. Yet, in

order to incorporate this motor into the cell we have to measure its movement with respect

to the cell’s frame of reference, x. The average velocity of an attached motor with respect

to the x-axis is calculated as the sum of the average velocity of movement of the MT tip

given by the balance between α and β, plus the average velocity of movement of the Kt

relative to the kMT tip,

v(F, βj) =
d

dt
< xK >=

d

dt
< xp > +

d

dt
< y >, (3.9)

= δ

∫
(α(y)− β(y))p(y, t)dy +

∫
ypt(y, t)dy,

where xK , xP are the Kt plate and MT polymer tip positions respectively in the x frame

of reference.

For our chosen parameters, the attractive forces coming from the potential well create a

metastable state in which the position of the tip relative to the coupler is fixed. This implies

that at steady-state the coupler moves (relative to the x-axis) with an average velocity that

equals the balance of kMT tip rates. If we let ps(y) be the corresponding steady-state

probability density (which is obtained by solving eq. (3.8) with left hand side set to zero

with appropriate boundary conditions), the velocity expression reduces to

v(F, βj) = δ

∫
(α(y)− β(y))ps(y)dy. (3.10)

We use eq. (3.10) to determine load-velocity curves for the motors. Two representative

load-velocity curves are shown in Figure 3.3C (note that we plot −v(F, βj(t)) in the y-axis

of these graphs).

The key feature of the load-velocity curves is the wide range of loads for which the ve-

locity is nearly constant. This arises due to the dependence of the steady-state distributions

on the force term, F . In Figure 3.4, we show numerical solutions for steady-state distri-

butions. The solutions are shown as normalized histograms representing the steady-state
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Figure 3.4. Steady-state distributions for various system loads, F , compared with kMT
tip growth/shortening rates. For each force value, eq. (3.8) is solved numerically and the
histograms (smoothed to eliminate micronscale details) are plotted (solid lines). For these
simulations βj = 100 s−1, and the remaining parameters are the same as in Table 3.1. MT
tip polymerization/depolymerization rate functions are shown with dashed lines.

distributions calculated for various amounts of load on the motor. For ease of visualization

the microscopic corrugated well effects on the histograms have been filtered out to highlight

the macroscopic behavior of the system when the value F is varied. Note from eq. (3.8)

that the load term F can act directly to either enhance or diminish the well force effect

Ψ′(y) depending on its sign. Consequently, the steady-state distribution for the position

of the polymer tip, ps(y) experiences shifts on the y-axis as a result of changes in the load

on the motor. However, notice from Figure 3.3C and Figure 3.4 that the velocity does not

change as long as the values of the tip rates in this shifted position remain unchanged.

This is due to the fact that the velocity of this motor is determined by the balance of MT

growth/shortening rates at the equilibrium tip position. Effectively, the coupler does not

change its velocity unless the loads are such that the tip is in the regions where the balance

of rates changes. Thus, as in [11], our model provides a mechanism by which the coupler

responds to a wide range of loads with constant velocities.
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Table 3.1. Parameter Values

Parameter Description Value

L Cell diameter 40 μm [29]

ν Effective viscous drag coefficient 6 pNs/μm [12]

k Sensor response rate to load .02 nM/pNs (estimated)

μ Sensor decay rate .5 s−1(estimated)

k−M = k+A Maximum kinase reaction velocity .1 s−1 [31]

k+M = k−A Maximum phosphatase reaction velocity .2 nM/s [31]

KA = KM Michaelis rate constants .01 nM [7]

Lk Cohesin spring relaxed length 1000 nm [33]

kf Cohesin spring coefficient .1 pN/nm [12]

α0 Rate of tubulin subunit addition 80 s−1 [12]

β0 Basal rate of tubulin subunit removal 27 s−1 [12]

βmax Max. rate of removal of tubulin 130 s−1 (estimated)

βmin Min. rate of removal of tubulin 27 s−1 (estimated)

a Free energy of binding 2.6 kBT [11]

b Unit activation barrier .01 kBT [24]

D Coupler diffusion coefficient 690 nm/s2 [11]

Fmax Linear load-velocity curve force factor 18 pN (estimated)
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In Figure 3.4 observe that the polymerization rate has to drop to zero when the distance

between the polymer tip and the Kt plate is less than δ, since monomers cannot be

added unless there is enough space to do so. This imposes a transition to higher motor

depolymerization velocities in the load-velocity plot as the polymer is pushed with more

force (F < 0) against the plate. This is because it is harder for the MT to add monomers

against a large pushing load; however depolymerization still proceeds unaffected (see Figure

3.3C). Therefore, in this force regime the motor effectively responds like a polymerization

ratchet in agreement with the results of [23]. On the other hand, when the pulling forces

(F > 0) are significant, parts of the steady-state distributions localize in regions where the

polymerization rate is greater than the depolymerization rate. This produces a decline in

depolymerization velocities in the load-velocity curves when βj > α0 since in eq. (3.10)

there is a contribution in the velocity integral for regions where α(y) > β(y). Of course,

if the pulling loads increase too much the motor breaks down with the polymer pulled out

of the motor. Thus the pulling force range in the velocity calculation must be restricted

accordingly.

Finally, we note that the expression in eq. (3.10) cannot be evaluated to find explicit

relationships between motor velocity v , the rate βj and load F . Furthermore, for equations

(3.2)-(3.3), we need the load as a function of velocity and βj , and these equations are implicit

rather than explicit equations for chromosome velocity. We can greatly simplify the analysis

of our model by replacing the diffusive motor load-velocity curves coming from solutions of

(3.8)-(3.10) with explicit relationships that retain key characteristics of the motor. Thus, in

addition to solving the full model (numerically) we also explore the behavior of the model

when the motor load-velocity relationships are given by the linear equation,

Fsj,i(vj , βj) =
2Fmax

δ(β0 − βj − α0)

(
vj − δ(βj + β0 − α0)

2

)
. (3.11)

A comparison between the load velocity curves of the biased diffusion couplers and the

linear equation (3.11) is shown in Figure 3.3C. Notice that the linear curves show the same

qualitative behavior as the numerically determined diffusive coupler curves for βj between

βmin and βmax.

3.3 Results

We numerically solved the model equations to track chromosome positions and chemical

species levels as functions of time. For the simulations, local kinetochore species concentra-
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tions were scaled by Sθ and normalized Sθ=MTj=ATj = 1. Kinetic and binding parameter

values were either taken directly from the literature or estimated from experimental data (see

Appendix). A complete list of model parameters is shown in Table 3.1. For the simulations

of the system with linear load velocity curves the variables were rescaled and the results are

presented in terms of χj = xj/L, sj = Sj/Smax, aj = Apj/AT , mj = Mcj/MT , τ = t/T .

3.3.1 Monooriented chromosome oscillations

We first calculated solutions for kinetochores equipped with up to 20 attachments at

each kinetochore as suggested by data from newt lung cells [29], then we repeated our

calculations with the linear load-velocity curves and analyzed model behavior.

The plots in Figure 3.5 display model solutions for the position of each sister chromatid,

sensor, load per motor, and kinase/kinesin levels as a function of time. For these solutions

only the left kinetochore is allowed to attach motors to kMTs, i.e., the chromosome is

monooriented.

In Figure 3.5A we show the simulated motion of a chromosome with the left chromatid

positioned initially at x = 15 μm. The left kinetochore is allowed to establish 1 − 2

new attachments every 100 s. Independent of the initial chromosome position, the model

predicts an initial approach to the pole and then movement with very regular poleward and

antipoleward excursions with speeds ≈ 1.8 μm/min in each direction (amplitude ≈ 2 μm,

period ≈ 3 min) matching experimental observations in newt lung cells [29].

The characteristic constant velocity poleward and antipoleward excursions seen in our

simulations are a consequence of the flatness of the load velocity curves on which kinetochore

diffusive couplers operate. A load increase results in a shift in the maximal probability

for the position of the tip inside the coupler. However, if kMT dynamic rates in this

shifted position are unchanged chromosome velocity remains constant. On the other hand,

if the depolymerization rate (βj) is altered, coupler load-velocity curves shift so chromosome

velocities change. In our case since Mc controls the depolymerization rate βj and it quickly

switches between either zero or fully active levels, the couplers essentially operate on two

load-velocity curves: one where the depolymerization rate is at its highest (depolymerizing

movement) and the other where the depolymerization rate is at its basal level (polymerizing

movement), see Figure 3.3C.

In Figure 3.5C we plot the load felt by each attached left Kt motor as a function of

time. The addition of new attachments redistributes loads by lowering the burden on each

coupler. However, this does not affect motion as long as load variations remain within
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Figure 3.5. Monooriented chromosome directional instability. (A) Chromatid positions
are controlled by respective feedback loops. The left pole is located at x = 0. The initial
conditions for sister chromatids are: xL = 15 μm; xR = 16 μm; SL=SR=0; ApL=ApR=0.1;
McL=McR=0.9. (B and D) Chemical species levels during chromosome oscillations. (C)
Motor numbers and loads per motor at each Kt.

the flat region of the load-velocity curves. This implies that all motors respond with the

same velocities despite individual load variations. Furthermore, since new attachments

do not affect total load (and thus the local chemical reactions), the model predicts regular

monooriented oscillations that are insensitive to the number of attachments at a kinetochore.

As can be seen from the sensor species concentrations plotted in Figure 3.5B, “direc-

tional instability” for monooriented chromosomes is a direct byproduct of sensor species

oscillations. Sensor species oscillations occur due to the change in the balance of forces
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as the chromosome changes position. The oscillations in sensor levels turn on or off the

bicyclic cascade switch, as shown in Figure 3.5D. If a kinetochore moves to a location

where the load it feels increases, then the sensor reaches its threshold value Sθ faster.

Once above threshold, S levels force A to fully activate by mediating its phosphorylation

into Ap which subsequently turns off the depolymerase Mc. The time necessary for Ap

to build up and Mc to shut down is the time allocated for direction switch in our model.

Consequently, the kinetic parameters for kinases and phosphatases are chosen to match the

sharp chromosome directional changes (≈ 6s [29]). When Mc is inactive the Kt diffusive

couplers are in polymerizing state driving antipoleward motion, which causes the couplers

to feel less load, S decays below Sθ and the phosphorylation cascade switch is reversed so

that monooriented directional instability is established.

It should be noted that the reaction cascade we propose here exhibits threshold depen-

dent switching behavior. Oscillations are not sustained if Ap and Mc activation curves lack

the necessary zero order ultrasensitivity, which is controlled by Km values as predicted in

[8]. In the Appendix, we plot chromatid positions for different values of phosphorylation

reaction kinetic parameters. The model predicts monooriented chromosome oscillations for

a wide range of parameter values provided there are sufficiently sharp thresholds in the

activation of the kinase and kinesin species. It should be noted that it is likely that more

steps are involved in the cascade than our minimal representation. Increasing the number

of cascade steps could produce sharper thresholds in activation since sensitivity is amplified

in subsequent cycles [8] resulting in a possible increase of oscillation robustness.

For the system with linear load-velocity curves we obtain similar monooriented oscilla-

tions. In the Appendix, we plot system solutions for the position and kinetochore chemical

levels of a monoriented chromosome with linear load-velocity curves. The system produces

monooriented oscillations independent of the initial chromosome position, with some slight

differences in movement arising from the shape of the load-velocity curves. As expected,

velocities are not constant, this is especially noticeable in the initial left pole approach

while motor loads increase. The variation of velocity becomes apparent when the sensor

production rate is slightly decreased, as shown in the Appendix supplementary figures.

Also, in contrast to the diffusive coupler motors, for the system with linear load-velocity

curves the addition of new connections affects the shape of monooriented oscillations since

motor load variation imposes changes in velocity. Clearly, the diffusive coupler model is a

much more adequate model for the coupling mechanism, although the linear load-velocity
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approximation retains qualitative model behavior for the monooriented case.

In conclusion, our model suggests that monooriented oscillations could be the result of

a local kinetochore load sensor driving fast switch-like phosphorylation cascades.

3.3.2 Congression of bioriented chromosomes

In Figure 3.6 we show the model solutions for which the right kinetochore is allowed to

accumulate attachments so that the chromosome becomes bioriented.

In Figure 3.6A is shown the simulated motion of a chromosome which is initially monoori-

900 1000 1100 1200 1300 1400
0.5

1

1.5

2

2.5

x 104

P
o

s
it

io
n

(n
m

)

 

 

900 1000 1100 1200 1300 1400
−30

−20

−10

0

10

20

30

time(s)

M
o

to
r 

L
o

a
d

s
 (

p
N

)

900 1000 1100 1200 1300 1400
0

0.2

0.4

0.6

0.8

1

1.2

time(s)

S
c
a
le

d
 C

o
n

c
e
n

tr
a
ti

o
n

 

 
900 1000 1100 1200 1300 1400

0

10

20

30

40

S
c
a
le

d
 C

o
n

c
e
n

tr
a
ti

o
n

 

 
S

L
S

RLeft Chromatid
Right Chromatid

Ap
L

Mc
L

Ap
R

Mc
R

Right Kt is
attached

Left Kt Load/Motor
Right Kt Load/Motor

Left Coupler
no.

Right Coupler
no.

D

B

C

A

Figure 3.6. Bioriented congression. (A) The position of a chromosome which becomes
bioriented at t = 900 s. For the polar ejection forces, fap is increased to allow for congression
rates seen in [29]. Despite unequal attachment numbers, a leading Kt is established and
congression is achieved. (B and D) Chemical species levels during chromosome oscillations.
(C) Motor numbers and loads per motor at each Kt.



78
ented (7 left couplers attached) and becomes bioriented at t = 900 s when one right kineto-

chore coupler is engaged. Observe that the chromosome immediately changes direction and

follows the right (leading) kinetochore with persistent motion away from the pole covering

distances of ≈ 10 μm in a few minutes, in accordance with experimental observations in

[29].

A comparison between sister kinetochore positions and chemical levels (Figure 3.6B,

3.6D) shows that the movement of sister chromatids follows the evolution of their respective

chemical reactions. At the onset of biorientation, coupler motors at each sister kinetochore

feel forces in opposing directions. The right kinetochore motor experiences a strong ejection

gradient which pushes the kMT tips inside the coupler so that the right coupler responds

with right pole directed (poleward) motion. The left couplers, on the other hand, feel large

opposing AP loads which result in antipoleward velocities slightly smaller in magnitude

than right coupler velocities. This difference produces immediate stretch on the center

spring which increases the spring forces on both motors. However, only the left motors feel

a significant pulling load and sensor increase since the AP gradient absorbs the spring force

effects on the right coupler, as seen in Figure 3.6C. After the initial spring force spike, if the

AP force gradient remains strong then right kinetochore motors continue to respond with

poleward velocities, whereas the left kinetochore motors keep high sensor levels due to high

loads. Consequently, both motors move with almost the same magnitude velocities toward

the equator according to load velocity relationships. It is important to highlight here that

congression in our model is insensitive to the amounts of trailing kinetochore sensor at the

time of biorientation (figures not shown).

In fact, the distance travelled by a congressing bioriented chromosome depends on the

strength of the ejection forces. In the Appendix, we show model solutions for high and

low levels of polar ejection force gradients. We observe that for very weak AP forces

a bioriented chromosome experiences oscillations close to the poles, essentially failing to

congress. This is because the trailing kinetochore does not feel enough load to keep S from

going below threshold and it attempts poleward trips at the onset of congression. However,

once ejection forces build up, AP movement persists allowing for fast equator approach,

as seen in experiments. This implies that the AP gradient strength directs congression by

controlling the length of antipoleward trips and not velocity differences, in good agreement

with observations in [29].

A comparison of attached motor numbers on each sister chromatid from Figure 3.6C
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shows that congression is achieved despite the trailing kinetochore having far more motors

attached than the leading one. Our simulations show that for the same values of the AP

gradient, increasing the number of trailing kinetochore attachments does not significantly

affect congression. More attachments on the trailing kinetochore produce more initial

resistance to congression followed by sharp spring responses. However, if the AP forces

can quickly counteract spring forces and keep sensor levels sufficiently high the trailing

kinetochore moves antipoleward and congression progresses independent of the number of

attachments. Therefore, the model suggests that the AP gradient is necessary and sufficient

to assign a leading kinetochore independent of attachment numbers.

Interestingly, chemical species reactions show that sister kinetochores have very different

levels of phosphorylated Mc during congression as seen in Figure 3.6D. Our simulations show

a situation where the leading kinetochore always has all Mc active (unphosphorylated)

whereas the trailing one has little active Mc (all phosphorylated) as it approaches the

equator. This model behavior is particularly interesting since experiments have shown that

Aurora B inexplicably phosphorylates MCAK asymmetrically across centromeres showing

an accumulation of active MCAK at the leading kinetochore during congression [1][14]. It

has been proposed that congression could be mediated by asymmetries in active MCAK

levels [1][9]. Nonetheless, there is to date no clear mechanistic explanation as to why such

differences in MCAK activity levels across kinetochores may occur. Our model predicts

that asymmetries could be the result of inequalities in the dynamics of kinetochore chemical

reactions caused by AP induced load differences across sister kinetochores.

Substitution of the load-velocity curves with linear functions does not change system be-

havior significantly during congression. In the Appendix, we show the simulated chromatid

motion and respective chemical species levels of a chromosome that becomes bioriented

at τ = 60. Even though a chromosome congresses to the equator, linear load-velocity

curves can cause early onset of right kinetochore congression opposing trips. This arises

due to the fact that in the linear load-velocity curve case, direction reversal is achieved for

different loads as compared to the nonlinear case (i.e., different x-intercept for each curve

in Figure 3.3C). Thus, when AP forces weaken closer to the equator, smaller amounts of

resistive spring forces cause the right motors to reverse into polymerizing motion than in

the nonlinear case. In summary, the shape of the load-velocity curves affects the speed of

congression through its triggering of resistive poleward trips during equatorial approach.
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3.3.3 Bioriented chromosome oscillations

In Figure 3.7A, 3.7C and Figure 3.8A, 3.8C are shown model solutions for times after

the initial congression has occurred.

Once a bioriented chromosome moves close to the equator the AP force gradient weakens

and center spring forces become significant. Because of the load feedback response, as a

chromosome gets closer to the equator, the motors prolong the congression-opposing states

during which they test the AP gradient. Bioriented oscillations take place only if the
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AP gradient is weak enough for the motors to directly oppose each other so that both

kinetochore sensors increase above threshold (intra-Kt tension takes over spatial cues).

Sensors fully synchronize at the equator where there is no AP gradient bias, as seen in Figure

3.7C. Bioriented oscillations tend to be in-phase when there is a significant difference in the

numbers of couplers engaged at each kinetochore, shown in Figure 3.7A. These in-phase

movements are due to the difference in loads as seen in Figure 3.8C and subsequently

the coupler velocity response of each sister chromatid. If the number of attached motors

at each kinetochore is the same they all pick equal speeds for equal loads. So, as the

differences in velocities decrease, kinetochores are forced into out-of-phase trips driven by

sensor synchronization at the equator followed by periods of no movement where both

kinetochores are polymerizing slowly against the center spring (neutral). In our simulations,

the maximal amplitude of oscillations for bioriented in-phase and out-of-phase oscillations

is ≈ 1 μm and the period is ≈ 1 − 1.5 min. The amplitudes of these oscillations are

smaller than the ones reported in [29], this is due to our choice of kMT polymerization and

depolymerization rates. With higher kMT tip rates the amplitudes increase to closer match

experimental observations.

In Figure 3.9 system solutions are displayed for a bioriented chromosome at the equator

with linear load-velocity curve motors. The feedback mechanism in this case produces

nearly identical bioriented oscillations, shown in Figure 3.9A, as simulations in Figure 3.7A

for the fully nonlinear coupler.

In conclusion, our model predicts oscillations around the cell equator for bioriented

chromosomes. The phase relationship between sister kinetochores seems to depend on the

number of attachments established on each kinetochore. Unequal numbers of attachments

produce in-phase oscillations similar to the ones seen in experiments. For equal numbers

of attachments phases of no motion are seen, similar to those seen in experiments during

bioriented oscillations but not during monooriented oscillations in newt lung cells [29].

Unequal numbers of attachments on sister kinetochores produce oscillations centered slightly

away from the equator. However, when a chromosome steers too far from the equator

AP centering cues become stronger than intra-centromeric tension which decreases sensor

synchrony and causes quick trip interruptions that bias position toward the equator. This

implies that attachment number variation can slightly offset centering until the chemical

reactions can build a response to the AP gradient that points the chromosome back to the

equator. Nonetheless, once the attachment numbers become nearly equal on each side, the
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chromosome always returns to oscillating around the equator independent of the strength

of the polar ejection gradient.

3.3.4 Metaphase/anaphase transition

So far we have discussed model results with the assumption that the chemical species

included in the feedback remain localized at kinetochores. However, if the sensor species is

interpreted as part of the chromosome passenger complex (CPC) then we should take into

account that the position of this complex varies depending on the particular stage of cell

division [27]. Since we integrate the action of this chemical species in movement control, we

can use our model to test whether variation in species localization agrees with movement

phenotypes observed in mitotic cells.

Once all chromosomes are properly aligned at the equator, AurB-INCENP relocates

from centromeres to the spindle midzone microtubules due to Cyclin B degradation upon

anaphase-start signal release [19]. We can investigate the effects of this relocation in

our model by allowing for quick sensor removal, i.e., by increasing the decay rate μ. In

Figure 3.7B, 3.7D anf Figure 3.8B, 3.8D we show model solutions extended after equatorial

alignment as a function of time while model parameters are varied sequentially. In Figure

3.7B we show a plot of the position of each chromatid where at time t = 2500 s the sensor

decay rate is significantly increased. Accordingly, oscillations stop and the chromosome

is precisely positioned at the equator with high centromeric stretch. This behavior is

explained by Figure 3.7D, 3.8B that show sensor levels below threshold and low kinase

activity. The kinetochores thus pull against the polar ejection gradient until their couplers

reach their stall loads. Thus, fast removal of sensor predicts a stretched conformation as

a precursor to anaphase pole migration. However, as can be seen in Figure 3.10 where

we have plotted solutions of the system with moderate μ rate, if removal is not very fast

the system experiences oscillations with high centromeric stretching. In cells depleted of

centromeric MCAK both stretch and oscillations were observed at the onset of anaphase

[14]. We predict that both these experimental observations could be the result of different

levels of feedback disassembly at kinetochores.

The final step for transition from metaphase to anaphase requires the protease separase

to cleave a cohesin subunit allowing for sister chromatid separation [32]. There is evidence

that transition into anaphase poleward movement might not only entail the breaking of

the linking cohesins but also proper modulation of kinetochore chemical reactions. The

reintroduction of Cyclin B in cohesin cleaved chromosomes can cause AurB-INCENP to
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Figure 3.10. Bioriented chromosome oscillations at the equator for slow sensor relocation.
(A) Chromosome position. (B and D) Chemical species levels at each kinetochore. (C) Load
per motor and motor attachment numbers at each kinetochore. The reaction parameters
change as follows: 1) at t = 2500 s sensor decay rate increases from μ = .05 s−1 to μ = 2.5
s−1 and oscillations persist with the chromsome stretched and precisely centered. 2) at
t = 3000 s the cohesin spring is removed with kf = 0 allowing for chromosome segregation.
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not relocalize producing interesting chromosome movement phenotypes such as oscillations

around a pseudometaphase plate [22]. Further, experiments that vary Cyclin B doses in

cells show that a separated chromatid can either oscillate or experience stand-still behavior

at different locations in the cell depending on polar-ejection strength [34]. Both experi-

ments seem to indicate that kinetochore reactions (more specifically AurB removal) control

anaphase movement phenotypes. We can easily test whether our model captures these

experimental observations.

In Figure 3.7B we show the movement of a bioriented chromosome after cohesin removal

(kf = 0) at time t = 2700 s. Notice that poleward movement is sustained upon separation

and reaction disassembly. However, if the sensor is not quickly removed oscillations occur

due to the feedback response to load. In Figure 3.10 we have plotted the movement of a

chromosome that undergoes separation when the removal of the sensor is slow; close to the

poles oscillations persist. Our model produces both stand still and oscillatory movement at

the equator for separated chromatids if the polar ejection forces are kept strong (figures not

shown). If the feedback is partially operating after separation, oscillations persist close to

the pole for weak polar ejection forces, or at a pseudometaphase plate if the force gradient is

strong. If the removal of the sensor is complete then the chromatid loses oscillatory behavior

and moves to a new equilibrium position where the motors stall, which can be either close

to the pole or the equator depending upon the strength of the polar forces. Therefore,

our results indicate that anaphase transition for chromosomes is not purely a force balance

problem. Indeed, our model predicts that persistent anaphase poleward movement has a

strong chemical component, which when interpreted as feedback disassembly, agrees well

with experimental observations.

The relocation of the sensor produces the same stretching effects for the system with lin-

ear load-velocity equations as for the nonlinear load-velocity curves and finally the removal

of the spring causes persistent poleward trips. In panel B of Figure 3.9, model parameters

are changed so that at τ = 160 there is faster sensor removal and at τ = 170 the cohesin

spring is removed. Just as in the nonlinear load-velocity curve motor case, if the sensor

is not removed quickly enough the chromatids oscillate close to their respective poles after

segregating (figure not shown).

In conclusion, the shape of the load-velocity curve does not significantly change the

behavior of the negative feedback system. As long as the couplers can move with velocities

that depend upon kMT tip rates, the negative biochemical feedback mechanism produces

monooriented oscillations, congression, bioriented oscillations and proper segregation.
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3.3.5 Feedback response to noise

Cells are noisy environments so a more realistic model of chromosome movement has

to take into account some stochastic effects. Since the linearized system retained all the

features of the implicit nonlinear model, we can easily explore the effects of noise on the

system by perturbing the velocity equations (eq. (3.10)) with Gaussian distributed noise

terms ξi(t) (see Appendix). In Figure 3.9C, which shows the position of the chromatids

of a bioriented chromosome, we see that the addition of noise causes the appearance of

more in-phase oscillations at the equator. This is due to the the random variation of

sensor values which can delay the phosphorylation switch response forcing kinetochores into

in-phase movements. The noise induced in-phase oscillations are in very good agreement

with observations in newt lung cells [29].

It is important to note that noise does not affect the precise centering of a chromosome

at the equator after sensor relocation. This can be seen from the solutions plotted in Figure

3.9D where sequential parameter variation produces solutions which are very similar to those

of the system without noise in Figure 3.9B. This implies that our biochemical feedback is

robust to noise and an appropriate control mechanism in noisy cellular environments.

3.3.6 Feedback is robust to parameter variation

The response of the negative feedback mechanism depends on the value of a few key ki-

netic parameters. These parameter values however have not been experimentally measured

so it is important to explore system robustness to parameter variations. Since the linearized

system retains qualitative behavior of the full model we can use it to explore the robustness

of the feedback and its dynamic properties.

In this section we investigate the behavior of our system under variations of the dimen-

sionless parameters: k1 = k+AkFmax/μ
2, K1 = KA/AT = KM/MT . These two parameters

were chosen since they directly control monooriented and bioriented oscillations as follows:

1) the parameter k1 encodes the strength of position cues into the feedback so its variation

should affect system behavior, 2) the value of K1 affects the delay in the feedback coming

from kinase/kinesin switch and consequently controls the onset of oscillations.

In Figure 3.11 we have plotted the bifurcation diagrams of a monooriented chromosome

(only one attachment at the left Kt) with respect to the parameters k1 and K1. Oscillations

are sensitive to kinase/kinesin switch sharpness since a periodic branch appears for a small

range of K1, as seen in Figure 3.11B. However, once the value of K1 is less than K1crit the

system produces stable periodic solutions for a wide range of k1 > k1crit, Figure 3.11A.
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Figure 3.11. Bifurcation diagrams for a monooriented chromosome with linear load-veloc-
ity curves. Solid line depicts stable steady-states solutions whereas dashed line represents
unstable steady-state solutions. Filled circles represent stable periodic solutions whereas
open circles represent unstable periodic solutions. (A) Steady-state response of the left
chromatid position, χL as a function of the parameter k1. Inset. For a small interval of
parameter k1 values, close to the Hopf bifurcation point, the system experiences hysteresis.
(B) Steady-state response of χL as a function of the parameter K1.

Clearly, as k1 increases the system becomes more sensitive to spatial cues and a monoori-

ented chromosome will tend to oscillate closer to the equator. If the system is made

extremely sensitive then any amount of AP gradient will cause even a monooriented chro-

mosome to oscillate at the equator (the periodic branch asymptotes to χ=0.5 in Figure

3.11A). Thus, the model predicts that if too much sensor (AurB) is recruited at an attached

kinetochore, a monooriented chromosome can be forced to the equator without the need

for biorientation. Also observe in Figure 3.11 (inset) that around the Hopf bifurcation at

k1crit the system experiences a brief hysterisis. This arises due to the nonlinearities in the

feedback mechanism.

In Figure 3.12 we show the bifurcation diagram of a bioriented chromosome which

has one motor attached at each kinetochore with respect to the variables k1,K1. Sister
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Figure 3.12. Bifurcation diagrams for the bioriented case with linear load-velocity curves.
Solid line depicts stable steady-states, dashed line represents unstable steady-states. Filled
circles represent stable periodic solutions whereas open circles represent unstable periodic
solutions. To simplify the diagram we have shown the position of only the left chromatid,
χL since the right kinetochore shows identical dynamics with positions shifted to the right
due to spring separation. (A) Steady-state response of the left kinetochore position, χL

as a function of the parameter k1. (B) Steady-state response of χL as a function of the
parameter K1.
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chromatid coupling with linear springs introduces more complex dynamics in the system.

The variation of feedback sensitivity in Figure 3.12C generates two Hopf bifurcation points

and a period doubling bifurcation for small values of k1. The doubling of the period for

k1h1 < k1 < k1p indicates that if the system is fairly insensitive to spatial cues, it can

take longer for a chromatid to complete an oscillation until it stops oscillating if k1 is too

small. The stable steady-state branch for k1 < k1h1 shows that each kinetochore settles

in a stretched position as the feedback is disassembled. The unstable periodic branch

that appears for this system (k1 > k1h2, Figure 3.12A, 3.12C) shows interesting dynamic

properties; however such behavior is due to the nonlinearity of the system and it is of no

biological consequence due to lack of stability. Variation of K1 in Figure 3.12B shows two

periodic branches in the bioriented case; however, since the second branch is not stable, it

does not affect chromosome oscillation dynamics at the equator. Note that the oscillatory

domain with respect to the parameter K1 has expanded compared to the monooriented

system. We conclude by noting that bifurcation analysis indicates that monooriented and

bioriented oscillations are robust to parameter variations once the kinase/kinesin switch is

sufficiently sharp.

3.4 Discussion

During mitosis both mechanical forces and chemical signals are implicated in the ac-

curate division of chromosomes. Mechanical forces directing congression arise from polar

ejection forces that increase loads on sister chromatids when poles are approached. Several

kinases localized at kinetochores are thought to read load information and change their

activation states via phosphorylation reactions. Finally, substrates of kinetochore kinases

can alter attached kMT tip dynamics, which in turn modulates Kt velocities.

In this chapter we propose a feedback control mechanism which integrates mechanical

and chemical signals at kinetochores to recreate chromosomal movement. Even though

there could be several Kt kinases that phosphorylate/dephosphorylate in a force dependent

manner, we model motility by reducing all possible interactions into three simple reactions:

a mechanical load reader species that activates/deactivates in response to loads, a kinase

that experiences (auto)phosphorylation in response to sensor activation, and a kMT tip rate

altering species that is regulated by the kinase. Chemical species levels are introduced into

a diffusive coupler model, which yields a molecular scale treatment of kMT tip dynamics

coupling to chromosomal velocities. The well-observed CPC-Aurora B-MCAK system could

be the most direct representation of a possible complex network of load-sensing and kMT
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tip rate modulation species. With parameters estimated from mitosis experiments, our

simple network predicts many experimentally observed features of vertebrate chromosomal

movement for both monooriented and bioriented states. The system shows robustness to

parameter variation as well as cellular noise effects.

Previous theoretical models have successfully captured different aspects of chromosome

motility in various organisms. The models of [12] for newt lung cells and [4] for Drosophila

embryos are based on a force balance mechanism for chromosome motility. In our study, we

sought to combine these mechanical force effects with local kinetochore reactions. Indeed,

a force balance mechanism might be sufficient to generate oscillatory behavior; however, a

kinetochore biochemical feedback mechanism might be necessary to assure robust monoori-

ented oscillations, equatorial alignment and proper transition between different mitotic

stages.

The limit cycle behavior produced by our model is different from the response produced

by a biochemical feedback control mechanism recently proposed in [16]. We suspect that

these differences are more likely to occur due to the introduction of load dependence

on velocities rather than biochemical feedback topology differences. Consequently, we

predict that the introduction of kinetochore motors in a biochemical feedback model can

significantly affect chromosome motility.

If the biochemical feedback control we propose here indeed controls mitotic motion then

the question about its functional significance naturally arises. Many proteins that localize at

kinetochores are part of the spindle assembly checkpoint (SAC), a complex quality control

network that blocks anaphase until all chromosomes are properly attached [21][27]. There is

evidence that Aurora B either directly or through the CPC affects mitotic spindle checkpoint

proteins which build a tension sensitive SAC signal [18][27]. In our model, at the onset of

biorientation each kinetochore has different levels of the kinase A, but when the chromosome

is fully centered, bioriented sister kinetochore sensors become fully synchronized. It could

be that the presence of a feedback mechanism with kinases like AurB allows for a chemical

signal build up to indicate that a specific chromosome is ready for separation. How such

a signal can be transduced from chromosomes and how tension modulates it is not well

known [21][27]. It would be interesting to investigate possible integration of chromosomal

movement control with SAC dynamics.
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CHAPTER 4

CHROMOSOME SEGREGATION IN

BACTERIA

Caulobacter crescendus uses the dynamic interactions between ParA and ParB proteins

to segregate its circular chromosome. Deletion of the proteins that are involved in the control

of ParA monomer dynamics in the cytoplasm, such as TipN, leads to loss of unidirectional

chromosome movement. It is not clear from experiments what mechanisms generate and

control chromosome movement in these bacterial cells. In this chapter, we develop two

mathematical models of the movement of the circular chromosome of C. crescendus during

division. In the first model, posed as a set of stochastic differential equations (SDE), we

propose that a simple biased diffusion mechanism for ParB/ParA interactions can reproduce

the observed patterns of ParB and ParA localization in the cell. The second mathematical

model, posed as a set of nonlinear partial differential equations, is a continuous treatment of

the problem where we use results from the SDE model to describe ParB/ParA interactions

and we also track ParA monomer dynamics in the cytoplasm. For both models, we show

that if ParB complexes bind weakly and nonspecifically to ParA filaments, then they can

closely track and move with the edge of a shrinking ParA filament bundle. Results from

both models indicate that unidirectional chromosome movement is obtained when ParB

complexes have a passive role in depolymerizing ParA filaments. Finally, we show that

tight control of ParA filament dynamics is essential for proper segregation, and we test two

mechanisms of TipN action in cells. Our model results are in agreement with experimental

observations.

4.1 Introduction

Cell division in bacteria has not received much attention due to their perceived simplicity.

Imagined as random bags of DNA, it was not clear whether bacterial cells actively moved

their DNA during division. Recent experimental observations, however, indicate that active

mechanisms similar to the mitotic spindle are operating in these cells.
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Caulobacter crescendus has a single densely packed circular chromosome that spans

the entire length of the cell. While the chromosome is replicating, C. crescendus uses a

dedicated apparatus to move and segregate chromosome copies into the daughter cells. The

two key components necessary for segregation are the proteins ParA and ParB. Similar to

actin, ParA monomers first bind ATP and then assemble into dimers that are recruited into

growing ParA filaments [1][3]. In vivo observations in C. crescendus indicate that ParAs are

assembled into narrow linear structures (or bundles) oriented along the long axis of the cell.

ParBs interact with ParAs through their N-terminal ends and also stimulate ATP hydrolysis

causing the ParA filaments to depolymerize. The ParA/ParB system has been shown to

be important in chromosome segregation in a few bacterial systems. In C. crescendus, the

chromosome region bound by ParB translocates to the opposite side of the cell following

a strictly unidirectional path [3][5]. Further, the position of moving ParBs in the cell has

been observed to correlate with the retracting ParA bundle edges, indicating that the ParA

network is somehow pulling ParB [5]. The mechanics of this coupled ParB/ParA movement

are not well understood.

Proteins that localize at the cell poles have been implicated in the control of chromosome

movement of C. crescendus [5]. One such protein is TipN, which localizes at the new pole

and has been shown to be essential for unidirectional ParB movement during segregation.

In �tipN cells, the movement of ParB frequently changes direction and pauses [3][5].

Simultaneously, when TipN is missing, ParA filaments appear close to the old pole, in

contrast with the wild type ParA network patterns [5]. There is evidence that there are

direct interactions between ParA monomers and TipN [3]. TipN/ParA interactions are also

corroborated by the accumulations of ParA proteins at the new pole in wild type cells. It

is not clear how proteins that localize at one end of the cell, such as TipN, can affect the

movement of ParB proteins that are located several microns away [3][5].

The connections between the spatiotemporal localization of ParA in dividing cells and

the mechanisms of ParB segregation are not well understood. The movement of the C.

crescendus chromosome has not been previously modeled. However a somewhat similar

mechanism has been examined in E. coli, where a Par network works to move plasmids.

Experimental observations in [1] indicate that ParA dynamics and plasmid movements

are tightly correlated as plasmids oscillate in dividing cells. The ParA filaments in this

bacterium are positioned in between the plasmids, which experience frequent switching in

direction as they are pushed to the two cell halves. Plasmid movement dynamics were
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explored with computational modeling for the first time by [4]. In the computational

model proposed, proper plasmid localization could only be obtained if ParB detachment

rates were made to be ParA filament length-dependent. This assumption is puzzling and

not well motivated. Here we aim to develop a mathematical model for the underlying

Par/chromosome interactions in the C. crescendus bacterium, and then we compare our

results to plasmid segregation in E. coli.

We explore two questions in this chapter: 1) What are the underlying mechanisms

that facilitate ParB motility in C. crescendus?, 2) How is the direction of ParB movement

controlled in a dividing cell? Two mathematical models are constructed to answer the

above questions. First, we develop a stochastic differential equation model that studies the

mechanics of ParA/ParB interactions, which we simulate numerically using Monte Carlo

simulations. Next, we develop a continuous model where partial differential equations are

use to follow ParA/ParB interactions along with ParA monomer dynamics in the cytoplasm.

4.2 Model assumptions

In this section, we present the assumptions for both models of ParB/ParA mediated

movement examined in this chapter.

Model components are shown in Figure 4.1. ParA is assumed to assemble into a bundle of

linear filaments, or polymers. A ParA bundle of filaments extends from the new pole (x = L)

to the vicinity of the old pole (x = 0), as depicted in Figure 4.1. Due to the structure of ParA

bundles, ParA monomer removal or addition is only allowed at ParA filament tips. Further,

once ParB has made initial contact with the bundle, all ParA polymers are assumed to

depolymerize independently of ParB with a natural depolymerization rate β0 [4]. Similarly,

new ParA dimers can be added to the bundle with rate α. For the purposes of our work, we

assume that a ParB complex under consideration has made initial contact with the ParA

polymers; i.e., we do not model ParA assembly before it reaches the ParB complex of the

replicated chromosome.

ParB is envisioned as a complex composed of a dense array of binders that can associate

with ParA. The ParB binders have binding affinity for the ParA filament lattices, with no

additional preference for specific ParA binding sites. Based on experimental evidence, we

envision a ParB complex to wrap around the ParA bundle in order to maximize contacts

with ParA filaments [1]. ParB interacts with ParA filaments and stimulates ParA ATP-ase

activity, which results in the detachment of ParA from filaments [1]. Thus, we assume that

ParB can bind and then depolymerize a ParA filament with rate β. The energetics of the
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Figure 4.1. A diagram of the C. crescendus segregation apparatus. ParA assembles into
linear filaments in the cell prior to making contact with a copy of the ParB complex of the
replicating chromosome. ParB has binding affinity for the ParA filaments but also stimulates
ATP hydrolysis of ParA dimers, which leads to depolymerization of ParA filaments. TipN
proteins localize at the new pole and also interact with ParA monomers in the cytoplasm.
In wild type cells, the ParB complex pulls the replicated copy of the chromosome from the
old pole to the new pole without reversing direction.

ParA/ParB binding interactions are described by an explicit free energy function, Ψ. We

specify Ψ for each model in the following sections.

ParB cannot move freely in the cell since it is attached to a chromosome copy through

the parS site, as depicted in Figure 4.1. Since the size of the replicating chromosome is

considerable, ParB movement is resisted by structures found in the cytoplasm. Accordingly,

similar to kinetochores, the ParB complex is envisioned to be attached to a constant load F ,

which opposes movement. Also, in agreement with our kinetochore model, a ParB complex

that is bound to the ParA bundle is supposed to undergo diffusion on the ParA filament

lattices. Thermal effects must be taken into account here, since the ParB complex binds

the ParA filaments nonspecifically.

The common parameters for the models are listed in Table 4.1. The effective drag
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Table 4.1. Parameter Values

Parameter Description Value

L Cell length 3 μm [5]

LB ParB length .15 μm [5]

δm ParA monomer/dimer length 10 nm

νB ParB effective drag coeff. .06 pNs/μm

νA ParA effective drag coeff. 2× 10−4 pNs/μm

DB ParB diffusion coeff. 0.069 μm2/s

DA ParA diffusion coeff. 21 μm2/s

F ParB load 1 pN

coefficient for the ParB complex, νB, is calculated based on the Stokes drag coefficient

formula νB = 6πηRB, with cytoplasmic viscosity η = 2 mPas and RB = 1.5 μm, the

radius of the sphere representing the ParB complex and the chromosome. Similarly, the

drag coefficient for ParA dimers and monomers is νA = 6πηRA with RA = 5 nm. The

diffusion coefficients are calculated from the Einstein relation, D = kBT/ν. The rest of the

parameters are specified when we describe each model below.

4.3 Discrete model for ParB motors

In this section we develop a simple stochastic differential equation (SDE) model that

addresses how a growing or retracting ParA bundle of filaments can move a ParB complex

(or motor). In Figure 4.2 we show a diagram of the discrete model setup. The assumptions

made to construct this model are as follows.

We represent a C. crescendus cell by a rectangular lattice with length L and width

proportional to the number of ParA filaments present in the cell. The ParB complex is

projected onto the ParA bundle in Figure 4.2, because we are assuming that ParB wraps

around the bundle to maximize contact with ParA filaments. The SDE model equations
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Figure 4.2. A diagram of the C. crescendus discrete model setup. The cell is envisioned
as a rectangular lattice with length L = 3 μm. Multiple ParA filaments (light blue) are
aligned next to one another. The ParB complex (red) binds the ParA filaments but also
cleaves ParA monomers from the filament ends.

track the longitudinal or x-axis displacement of the ParB complex and ParA bundle tips.

ParB displacement on the x-axis is controlled by two forces in this model. A white noise

forcing term due to thermal fluctuations of ParB, and a deterministic force that arises due

binding between ParB binders and ParA filaments. Binding between ParB and ParA is

energetically favored. Thus, a decrease in the system free energy is achieved when more

ParB binders make contact with ParA filaments. Since ParB is supposed to be densely

packed with binders, we ignore the position of specific ParB binders relative to the ParA

bundle. Instead, the binding force on the complex can be calculated if we know how much

overlap there is between ParB and ParA filaments. For the overlap between ParB and ParA,

we must know the configuration of the ParA bundle at any given time. Thus, for each ParA

polymer i in the bundle, we keep track of the position of individual filament tips, xtips(i)

and we also track the position of the ParB complex denoted by xc, see Figure 4.2. The total
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overlap between ParB and ParA filaments, A(xc, xtips(i)) is calculated as

A(xc, xtips(i)) =
n∑
i

max(min(xc + LB − xtips(i), LB), 0), (4.1)

where n is the total number of ParA polymers in the bundle. Note that by construction A

has units of length.

The tip positions in Figure 4.2, which depicts the model configuration at t = 0, are

arranged to replicate a ParA filament density that gradually increases as x increases. Hence,

xtips(5) is positioned to be the tip closest to the old pole and xtips(10) is located the farthest

distance from old pole. This arrangement generates a transition in tip densities from low

at xtips(5) to high at xtips(10), creating what we refer to as ParA bundle edge. Note that as

the distance between these extremal ParA tip positions increases, the ParA bundle edges

lose their sharpness.

From our binding assumptions we deduce that if A increases, then the ParB system free

energy decreases, since more ParB binders can make contact with the filaments. However,

the size of the ParB complex is necessarily finite, and the ParB binders will eventually be all

occupied. Given the definition of the overlap variable A in eq. (4.1), saturation of binders

takes place when A = A∗ = nLB. Consequently, if A ≥ A∗ the ParB system does not

experience a decrease in free energy, i.e., there is no bias for ParB to increase the overlap

with ParA. In accordance, the system free energy will produce a bias for more overlap in

this model as long as 0 < A < nLB.

In view of our assumptions for binding, we construct a potential well function Ψ(A),

Ψ(A) =

⎧⎨
⎩
−aA 0 < A < A∗

−aA∗ A ≥ A∗.
(4.2)

The binding force Ψ′(A) reads,

Ψ′(A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−a

n∑
i

χ[xc,xc+LB ](xtips(i)) 0 < A < A∗

0 otherwise.

(4.3)

The parameter a is measured in pN and it represents the parB binding energy per unit

length. The function χ[xc,xc+LB ] is an indicator function defined as

χ[xc,xc+LB ] =

⎧⎪⎨
⎪⎩
1 xtips(i) ∈ [xc, xc + LB]

0 otherwise.

(4.4)
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Observe that the binding force term Ψ′(A) is dependent on the density of filament tips

present in the overlap at a given time. Thus, if the total density of tips in the overlap

increases, then the ParB complex should feel more force in response.

The total binding energy felt by a fully attached ParB complex in this model is given

by anLb. The energetics of ParB/ParA binding interactions are currently not known, so we

estimate the value of the parameter a. For our the discrete model simulations we use a = 1

pN. In C. crescendus cells a ParB complex is estimated to have around 500 binders [2] which

gives us .7 kBT of binding energy per binder. Due to the large number of ParB binders,

the binding force values per binder are chosen to be smaller than the kinetochore binder

energies used in the previous chapters, where each binder experienced a binding energy of

2.6 kBT for association with the MT lattice.

With the above assumptions in hand, we are now ready to write the model equations.

The Langevin equations for the ParB and ParA tip locations read

dxc =
1

νb
(−Ψ′(A)− F )dt+

√
2DBdWt, (4.5)

dxtips(i) = δmdNβ0(i, t) + χ[xc,xc+LB ]δmdNβ(i, t)− δmdNα(i, t), (4.6)

where Nα(i, t), Nβ(i, t) and Nβ0(i, t) are independent homogenous Poisson processes for

each tip i, with amplitudes δm and ParA polymerization/depolymerization rates α, β, and

β0. We assume, for the rest of this chapter, that ParA dimer addition/removal rates have

constant values; Wt is standard white noise, applied to the ParB complex.

Note that the model is composed of n + 1 equations in total. At the boundaries x = 0

and x = L, xc is reflected and then fixed to xc = 0 and xc − LB to represent the capture

of the ParB complex by PopZ at the cell poles. Further, we highlight that for this first

model we have made some simplifying assumptions. Specifically, we have assumed that

ParA monomers are abundant and well mixed in the cytoplasm so that the polymerization

rate is not ParA monomer dependent. Further, the dimerization reaction of ParA in

solution is assumed to be rapid compared to polymer growth, and we also ignore any TipN

sequestration effects on ParA monomer concentration in the cytoplasm. The contributions

from ParA monomer diffusion, ParA dimerization, and TipN sequestration are examined in

the continuous model, which we discuss later in this chapter.

4.3.1 Discrete model results

The model equations given by eq. (4.5) - (4.6) are simulated numerically. In Figure 4.3

we show two typical solution trajectories for xc and xtips(1), when the ParA filaments are
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Figure 4.3. Solution trajectories for xc and xtips(1). The ParB position, xc experiences
noise and drift toward the new pole because A < A∗ due to at least xtips(1) being found
in the overlap. The tip xtips(1) experiences Poisson jumps of size δm. The simulation
parameters are β0 = .5 s−1, β = .5 s−1 and α = 0 s−1.

depolymerizing (α = 0).

As can be seen from the plot in Figure 4.3, the solution trajectory for xc experiences

both white noise and a binding force which guides the complex toward the new pole. For

the trajectories shown in Figure 4.3, we observe that at least one ParA bundle filament

(xtips(1)) is located between xc and xc + LB, which indicates that all the ParB binding

sites are not saturated and A < A∗. Hence, the Ψ′ forcing term biases the motion of xc

toward the new pole to increase the overlap. On the other hand, the tip position xtips(1)

experiences jumps in position due to the Poisson noise terms in the tip Langevin equations.

Since the polymerization rate is set to zero for this simulation, only depolymerization jumps

occur and the tip moves closer to the new pole as monomers are cleaved.
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Next, we simulate multiple solution trajectories (N = 500) for xc and xtips(i) for different

combinations of ParB depolymerization and ParA polymerization/depolymerization rates.

In Figure 4.4 we show histograms for ParB positions, xc with β0 = .5 s−1, β = .05 s−1, and

α = 0 s−1. From the histograms in Figure 4.4, we observe that as time progresses the peaks

of the ParB distributions shift toward the new pole, indicating that on average the binding

drift term in eq. (4.5) is pushing the complex to increase overlap with ParA filaments. On

the other hand, we also notice a decrease in the peaks and an increase in the tails of the
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Figure 4.4. Histograms of ParB positions for a depolymerizing ParA bundle. Each
histogram is generated from 500 solution paths of eqs. (4.5)-(4.6). When ParA bundles
depolymerize with β << β0, the histograms for ParB positions shift on the x-axis toward
the new pole pushed by the binding force Ψ′. Over time, the histograms show smaller
peaks and growing tails, indicating higher variability in ParB positions. The simulation
parameters are β0 = .5 s−1, β = .05 s−1, and α = 0 s−1.
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distributions, which indicates that over time there is higher variability in ParB positions in

the cell. We can get a better idea about the behavior of our model if we plot the average

positions for both ParB and two representative ParA tips.

In Figure 4.5, we show the average values for xc and ParA tips, xtips(10), xtips(5) obtained

from simulations with β0 = .5 s−1, β = .05 s−1, and α = 0 s−1.

The plot of position averages in Figure 4.5 indicates that the ParA tips and the ParB

complex closely track one another as they both approach the new pole. Because ParB

advances toward the new pole during these simulations, we deduce that the overlap is

staying on average under A∗ and the binding drift in the xc equation pushes firmly in

the direction of the new pole. Eventually the ParB complex finds the new pole and the
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Figure 4.5. Average xc, xtips(5), and xtips(10) versus time for β << β0. Each point in
the plot is obtained by averaging the data from 500 solution trajectories of eqs. (4.5)-(4.6).
The bars mark standard deviation. When β << β0, ParB distributions move toward the
new pole along with xtips(5) and xtips(10). The distance between average extremal tip
positions increases over time indicating that ParA bundle edges lose their sharpness. For
all three solution trajectories plotted, the distributions have increasing tails as marked by
the increasing standard deviations. The simulation parameters are β0 = .5 s−1, β = .05
s−1, and α = 0 s−1.
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distributions tighten around 3− LB, as can be seen from the histograms plotted in Figure

4.4.

In Figure 4.5 we see that the distance between the average positions for xtips(10) and

xtips(5) increases over time, which indicates that ParA edges lose sharpness. This property

can be understood if we refer back to our binding well function Ψ. As soon as ParB latches

on to the ParA bundle, the binding energy well Ψ pushes xc to maximize overlap to A∗, thus

forcing the ParB complex to sit slightly ahead of the tips in order to fill as many binding

sites as possible. This ParB position with respect to the ParA bundle unavoidably leaves

some ParA tips out of the ParB overlap. The tip positions located the closest to ParB, such

as xtips(10), consequently experience β + β0 jump rates as opposed to β0 for the tips that

are left behind by ParB, such as xtips(5). The difference in depolymerization rates for the

ParA tips creates a situation where there is a bias for tips moving away from one another

over time (spreading out).

The change in tip arrangement on the ParA bundle feeds back into the movement of

ParB in two ways. First, as the tips spread out, the region for which A < A∗ on the

ParA bundle edge has increased, thus ParB can inch further forward toward the new pole.

Second, the spreading of the tips on the ParA bundle lowers tip densities at a position x on

the bundle so the number of tips and consequently Ψ′ decreases. Therefore, diffusion slowly

takes over other forces in eq. (4.5), increasing the variance of ParB positions sitting on

the ParA bundle, shown by the increasing ParB standard deviations in Figure 4.5. Larger

tails in the ParB distributions cause more variation in depolymerization rates on the ParA

bundle filaments, which in turn results in increased variation in the positions of the ParA

tips. In conclusion, in this model, over time ParB binder and ParA tip distributions become

less focused, and the standard deviations increase for both xc and xtips(i).

From the numerical model solutions thus far, we have learned that ParA filament

configuration and ParB movement are tightly connected due to the dependence of the

ParB binding term on the overlap A. Since we postulated that the spreading of the ParA

bundle edge depends on the difference between β0 and β+β0, we expect that as β becomes

larger while β0 is fixed, some ParA tips will move faster ahead of the bundle toward the

new pole due to the higher ParB depolymerization rate. Also, the ParB distributions will

feel diffusion effects earlier in the simulations as Ψ′ in the drift term declines in response to

faster spreading of ParA filament tips. In order to test our hypothesis, we solve our model

when β is increased as β0 is kept fixed.

In Figure 4.6, we repeat our simulations when the depolymerization rate β is increased.
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Figure 4.6. Average xc, xtips(5), and xtips(10) versus time for a depolymerizing ParA
bundle. Each point in the plot is obtained by averaging the data from 500 solution
trajectories of eqs. (4.5)-(4.6). The bars mark standard deviation. The parameters are
β0 = .5 s−1, and α = 0 s−1. A. For β = .1 < β0 = .5, ParB distributions move toward
the new pole along with xtips(5) and xtips(10) as the distance between average extremal
tip positions increases over time. B. For β = .5 = β0 = .5, the distance between average
extremal tip positions increases very quickly and ParB experiences erratic motion.
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From the average position plots for xc and xtips(10), xtips(5) in Figure 4.6A and Figure

4.6B, we see that as we increase the ParB depolymerization rate, β, both the ParB positions

and the ParA tip distributions have significantly larger tails. This is due to the higher ParB

depolymerization rate which depolymerizes tips that are closest to the new pole faster

leaving many trailing ParA tips behind. This is indicated by the fast increase in the

distance between the average xtips(5) and xtips(10) followed by large standard deviations

for xtips(10), xtips(5) in Figure 4.6A and Figure 4.6B. On the other hand, as the ParA

tips relocate, ParB distributions also quickly become more variable and experience erratic

motion ahead of the ParA bundle edge, particularly when β = β0. These results are telling

us that when β ≈ β0, the ParB complex unavoidably leaves some ParA filaments behind

as it erratically moves to the new pole. This mode of ParB movement is not in agreement

with experimental observations which show that ParB positions strongly correlate with the

position of the edge of a retracting ParA bundle.

Furthermore, it is clear from Figure 4.6B that ParBs reach the new pole on average

faster when β = β0. This slight change in velocities is due to the fact that for higher β

ParBs spread more quickly ahead of the ParA bundle edge, which creates a faster average

movement of the complex toward the new pole. We must remark however that from multiple

simulations with various β0, we saw that the velocities of ParB movement toward the new

pole directly correspond to the magnitude of β0. This is to be expected since xc is driven

by the presence of ParA at a position x.

Finally, we test the dependence of the ParB positions on ParA bundle dynamics by

simulating the model when the ParA bundle is in a polymerizing state with α > β0, β. The

case when ParA is growing is important to study because ParA filaments have been shown

to have a natural tendency to polymerize if there are monomers available, as discussed

in Chapter 1. A plot of the average positions for ParB and ParA tips when ParA is

polymerizing is shown in Figure 4.7.

As can be seen from the plot in Figure 4.7A, when α > β + β0 the ParA filaments grow

toward the old pole despite ParB binding and depolymerization. Since the polymerization

rate is faster than depolymerization, the ParB binders become quickly saturated (A = A∗)

so the xc movement is solely controlled by the balance between F and thermal motion,

which quickly creates large tails in ParB distributions and ParA tip distributions. However,

the load F operates to oppose the motion of ParB toward the complex, so as the ParA

bundle grows, the ParB complex is eventually pushed to the ParA edge due to the load. As

a result, we see that when the ParA bundle is polymerizing the ParB complex will follow,
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Figure 4.7. Average xc, xtips(5), and xtips(10) versus time for a polymerizing ParA bundle.
Each point in the plot is obtained by averaging the data from 500 solution trajectories of
eqs. (4.5)-(4.6). The bars mark standard deviation. The parameters are β0 = .5 s−1, α = 1
s−1. A. For β = .05 s−1, ParA tips grow quickly, saturating the ParB binders, which pushes
the complex to the growing ParA edge. The distance between average extremal tip positions
remains constant because the ParA tips are uniformly growing. Diffusion relocates ParBs
causing xc to have quickly increasing tails. B. For β = .5 s−1, some ParA tips grow toward
the old pole while the tips proximal to the new pole are left behind with the ParB binders.
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thus further confirming that ParB movement is directly dependent upon ParA polymer

dynamics.

In Figure 4.7B we plot model solutions when α = β + β0. In this case the total

depolymerization rate of ParA tips that overlap with ParB matches the ParA polymerization

rate. For the ParA tips which are in contact with ParB there is no net movement due to

polymerization/depolymerization because α = β + β0. However, the ParB complex, driven

by Ψ(A), will try to relocate on the bundle in order to increase A. This ParB motion will

undoubtedly leave some ParA tips behind, which start growing as soon as they lose overlap.

In Figure 4.7B we see that indeed the distance between xtips(5) and xtips(10) is much larger

when α = β + β0 in Figure 4.7B. This large gap in tip positions is reflected in a quick

spreading of PaB distributions over the ParA polymer lattices as the complex struggles to

push toward the new pole by holding on to a few tips with large A. As a result of the erratic

ParB motion, the polymerization rate α will overcome depolymerization, slowly moving the

tips and the ParB complex to the old pole.

The ParB movement seen in this model when α > β0 gives us an idea as to what

happens when ParA polymerization rates are not tightly controlled. ParB segregation to

the new pole directly depends on how fast ParA grows or shrinks. More specifically, when

ParAs manage to grow toward the old pole, ParB fails to segregate the chromosome to

the new pole. Because the pool of monomers in this discrete model is assumed to be

large enough to warrant polymerization independent of the amount of ParA monomers in

solution, we see that if given enough monomers the ParA tips will grow pulling ParB to the

old pole. Since the pool of ParA monomers in bacterial cells is constant [5] the growth of

polymers shown in this discrete model is not a physiologically relevant property. However,

the simulations with α > 0 give us an opportunity to correlate ParB movement with ParA

filament dynamics. From our model results we expect that the observed erratic motion with

poleward trips of ParB when α > β0 along with ParA filaments appearing behind ParB will

be a prevailing feature of movement when ParA is allowed to freely polymerize. Indeed, in

�tipN experiments ParA polymers grow behind ParB and ParB shows stalled and frequent

backward movement [5]. Our model results seem to indicate that chromosome movement

can be controlled in the cell by modulating the ParA polymerization/depolymerization rate

balance. Proteins which interact with ParA monomers in the cell, such as TipN, would

thus be a natural candidate for ParB movement control. In the next section we will explore

mechanisms by which TipN can operate in C. crescendus cells.

In conclusion, our model has reproduced some key characteristics of ParB/ParA in-
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teractions that are seen in C. crescendus cells. We have shown that if the ParB/ParA

binding forces are formulated such that they bias ParB diffusion to maximize the amount

of ParB/ParA overlap, a chromosome will track both a polymerizing and depolymerizing

ParA bundle with velocities that closely match ParA rates. Thus, we have proposed a

simple mechanism where weak binding due to multiple ParB binder interactions biases

diffusion in order to keep the ParB complex on the edge of a retracting polymer bundle.

We also saw that if the rates at which ParB depolymerizes the bundle are comparable to

the natural ParA depolymerization rates, the ParA bundle will have significant tails as

the ParB complex erratically approaches the new pole. This kind of behavior is not in

agreement with experiments which show that the ParA bundle has small retracting tails

as ParB segregates the chromosome in the cell. Thus, from this first simple model we

predict that fast ParB depolymerization is not necessary to drive chromosome motility in

C. crescendus. Instead, the dynamics of ParA polymerization/depolymerization and biased

diffusion are sufficient to reproduce the desired motility. This model result is very similar

to our kinetochore model result in which weak binding and microtubule depolymerization

were sufficient to drive motility.

4.4 Continuous model for chromosome
segregation in C. crescendus

In this section, we use some of the results from the discrete model for ParB/ParA

interactions in order to develop a continuous model which tracks the complete segregation

apparatus of C. crescendus. We start by listing assumptions that are specific to the

continuous model.

A C. crescendus cell is assumed to be a cylinder of length L. Since ParB experiences

little motion along the width of the cylinder and the ParA bundles also localize along the

length of the cell, we ignore any ParB movement or ParA dynamics along the width of the

cell. Thus, for this model we keep track of ParB location and ParA concentrations along the

x-axis which starts at the old pole (x = 0) and ends at the new pole (x = L), as depicted

in Figure 4.1.

The ParA bundle has varying filament densities along the cell, which must be properly

projected on the x-axis. In this model we track the ParA bundle filament cross sectional

density denoted by A(x) (note that A(x) here is different from the overlap A(x) described in

the previous model). So, the function A(x) gives the total number of ParA filaments found in

the C. crescendus cell cross section at position x. For the rest of this discussion we redefine
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A(x) = A(x)/A0, where A0 is the maximal number of filaments that can make up a bundle

cross section in the cell at t = 0 (i.e., A0 marks the initial ParA bundle thickness). From

physical considerations we initialize the ParA bundle density with a saturating function as

depicted in Figure 4.8A.

We are now ready to formulate the binding energy well function, Ψ. As before, each ParB

binder element is assumed to have affinity for a ParA bundle filament. Thus, for a ParB

binder/filament interaction we assume that there is a free energy drop of −a. However, at

a position x, ParB encounters and interacts with multiple filaments so that the total energy

is given by −aA(x). It follows that the energy of binding at a position x is described by the

unit energy function ψ(x) = −aA(x), which describes the energy of ParB/ParA binding at

a cell cross section. The function ψ is shown in Figure 4.8B.

Qualitatively, the unit energy function of a ParB binder interacting with a ParA filament,

ψ(x) is very similar to the unit energy functional we assumed for kinetochore binders

interacting with a microtubule. In contrast to the energy function for kinetochores, for

the ψ(x) presented here we have not distinguished among specific binding sites on the ParA

lattice. This is because we are assuming that ParB has nonspecific affinity for the bundle
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Figure 4.8. A(x) and a diagram of the ParB binding energy function, Ψ(A). A. The
function A(x) represents the cross sectional density of the ParA bundle. For our simulations
we set xA = 0.5 μm. B. When a ParB binder associates with a ParA filament the system free
energy decreases by −a. The total amount of energy is dependent upon the total number
of filaments that a ParB complex can bind so Ψ = −aLBA(x) is a function of ParA bundle
filament density.
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filaments.

The total energy of binding of the ParB complex is calculated as the sum of all the unit

energy functions over the length LB of the ParB complex. So we write

Ψ =

∫ x

x−LB

ψ(x)dx, (4.7)

= −a

∫ x

x−LB

A(x)dx. (4.8)

Note that in the above calculation there is an inherent assumption that ParB binders are

sufficiently dense on the complex to warrant integration. Also, x here marks the position

of the front edge of the ParB complex (equivalent to xc + LB in the discrete model). Since

the length of the ParB complex is small compared to the length of the cell (LB << L) we

can further simplify eq. (4.8) to obtain

Ψ(A) = −aLBA(x). (4.9)

Observe that the expression in eq. (4.9) gives us a direct relationship between the cross

sectional density of ParA bundle filaments and the energy of binding. Indeed, if the density

of filaments in the bundle is increased, then the ParB complex will reach more filaments

and the free energy is lowered accordingly. However, the total amount of energy arising

from the binding interaction must be capped off since the binders on ParB will eventually

be all occupied. In order to achieve this we construct a saturating function

K(A) =

{
A 0 < A < A∗

A∗ A ≥ A∗,
(4.10)

and the binding energy now reads

Ψ(A) = −aLBK(A). (4.11)

Note the similarity between Ψ(A) given here (see Figure 4.8B) and the Ψ we derived for

kinetochores in Chapter 2. Both energy functions, Ψ level off after the motor binders are

fully occupied. However, for the C. crescendus case there are no individual ParA binding

sites on the polymers, which removes the high frequency oscillations from the potential

energy well. Also, the transition from the biased (decreasing) part of the well to the unbiased

(flat) for C. crescendus is not directly dependent on position but instead on A∗, the cross

sectional density. This is because the ParB motor is bound to multiple ParA filaments as
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opposed to a single linear MT polymer for kinetochores. We choose A∗ = 1, which saturates

the ParB binders sites at A0.

A note is in order about the binding force term Ψ′(A). The binding force in this

model is directly proportional to Ax. The term Ax is a measure of the density of exposed

ParA filament tips along the x-axis. Thus, binding forces on the complex can increase if

depolymerization of the ParA bundle is such that the exposed filament tip density increases.

Recall that the binding force Ψ′ for this model has the same tip density dependence as the

discrete model binding force. We conclude the discussion of the binding energy function

by defining aLB = 3 pNμm for the binding energy, in order to match the forces from the

discrete model described in the previous section.

ParA monomers are assumed to undergo an ATP-dependent dimerization reaction in

solution. We track the concentration of monomers with AM(x) and the concentration of

dimers with AD(x). In the equations for AM and A we must be careful to conserve total

volume, so we set

total bundle volume = total monomer volume (4.12)

χ

∫
A(x)dx = Vm

∫
AM(x)dx (4.13)

A = δmAM, (4.14)

with Vm the monomer volume and χ the filament cross sectional area.

Finally, TipN affects ParA dynamics in the cell by accumulating high ParA monomer

concentrations at the new pole. It is not clear how TipN interacts with the ParA proteins

so we explore two modes of TipN activity : 1) sequestration, 2) nucleation. For the first

case, TipN is assumed to bind and thus remove ParA monomers from the cytoplasm so

that they cannot return to the ParA bundle. This mode of TipN operation is based on

the experimental observations of [5]. However, it has been very recently proposed that the

TipN protein might not only capture the monomers but also facilitate a nucleation reaction

at the new pole [3]. In this second scenario, once sequestered by TipN at the new pole,

the monomers are allowed to recruit dimers from solution in order to nucleate polymers.

A TipN nucleated polymer may undergo depolymerization if in contact with ParB, like

the rest of the ParA bundle. TipN has been shown to be essential in order to maintain

ParB directionality during cell division. Experimental evidence points that there might be

a compensatory mechanism that mediates sequestration of monomers at the old pole when

TipN is removed. The protein PopZ, which mediates the tethering of ParB to the poles and

been shown to also directly interact with ParA monomers in a fashion that is very similar
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to TipN [5]. Due to the similarity of PopZ with TipN we do not directly model its activity;

however, we discuss our predictions for how this protein affects chromosome motion when

we present model results.

Based on the above assumptions we write the following system of equations for interac-

tions between ParA and ParB in a dividing C. crescendus cell:

1

δm

∂A

∂t
= α|Ax|AM − β0|Ax|+ κnktip(x)AM − βγ|Ax|

Ka + |Ax|
∫ x+LB

x
pB(x)dx, (4.15)

∂pB
∂t

= −1

ν

∂

∂x

(
(−Ψ′(A)− F )pB

)
+DB

∂2pB
∂x2

, (4.16)

∂AM

∂t
= −kAAM

2 + β0|Ax| − ktip(x)AM +
βγ|Ax|

Ka + |Ax|
∫ x+LB

x
pB(x)dx+DA

∂2AM

∂x2
,

(4.17)

∂AD

∂t
= kAAM

2 − α|Ax|AD +DA
∂2AD

∂x2
. (4.18)

In eq. (4.15), eq. (4.17) and eq. (4.18), the polymerization and depolymerization terms

are multiplied by |Ax| to enforce that monomer addition or removal at filament tips.

The location of ParB is tracked probabilistically with a Fokker-Planck equation in

eq. (4.16), where pB is the probability density function for locating the complex ParB

at position x at time t. So, the depolymerization rate β is multiplied by the probability of

finding ParB in position x. Further, since the total number of ParB binders is finite, the

ParB depolymerization rate that arises due to ParB association with ParA is modeled with

a saturating function of the form γβ|Ax|/(Ka + |Ax|) (for simplicity, we normalize γ = 1

μM/μm).

The TipN protein is introduced in the model equations with the help of a position

dependent polymerization rate function ktip(x) = kTipN exp(−25(x−L)2), which peaks at

x = L where TipN is found. The function ktip(x) is plotted in Figure 4.9.

Finally, for small LB, the model equations can be further simplified to remove the

integral terms in the ParB depolymerization rates as follows

1

δm

∂A

∂t
= α|Ax|AD − β0|Ax|+ κnktip(x)AM − βLB|Ax|

Ka + |Ax|pB, (4.19)

∂pB
∂t

= −1

ν

∂

∂x

(
(−Ψ′(A)− F )pB

)
+DB

∂2pB
∂x2

, (4.20)

∂AM

∂t
= −kAAM

2 + β0|Ax| − ktip(x)AM +
βLB|Ax|
Ka + |Ax|pB +DA

∂2AM

∂x2
, (4.21)

∂AD

∂t
= kAAM

2 − α|Ax|AD +DA
∂2AD

∂x2
. (4.22)
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Figure 4.9. A plot of the function ktip(x). The sequestration function for TipN is given
by ktip(x) = kTipN exp(−25(x− L)2). In this plot we have set kTipN= 1.

The term κn is set to zero when we consider the TipN sequestration model and otherwise set

to one when we consider the TipN nucleation model. In the following sections we discuss

results from numerical simulations of the model equations. For the simulations we use

no-flux conditions for ParB, ParA monomers, and ParA dimers at the boundaries x = 0, L.

4.4.1 Chromosome segregation without polar
ParA accumulation

In this section, we test the dependence of ParB movement on ParA bundle polymeriza-

tion/depolymerization rates. Therefore, we ignore ParA monomer sequestration and ParA

dimerization is assumed to be instantaneous, so that only ParA monomers are tracked in

the cytoplasm. With these assumptions, the model equations read

1

δm

∂A

∂t
= α|Ax|AM − β0|Ax| − βLB|Ax|

Ka + |Ax|pB, (4.23)

∂pB
∂t

= −1

ν

∂

∂x

(
(−Ψ′(A)− F )pB

)
+DB

∂2pB
∂x2

, (4.24)

∂AM

∂t
= −α|Ax|AM + β0|Ax|+ βLB|Ax|

Ka + |Ax|pB +DA
∂2AM

∂x2
. (4.25)
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In Figure 4.10 we show model solutions for a depolymerizing ParA bundle (β0 = 0.5

s−1, α = 0) and varying depolymerization rates, β for the ParB complex.

As can be seen from the plots for pB(x) and A(x) in Figure 4.10A, when β << β0,

the ParB distributions closely follow the ParA bundle edge as it depolymerizes toward the

new pole. The ParA bundle density, A(x) shows almost wave-front movement with edges

that slightly lose steepness over time. The reason for this smoothing effect is the same as

in the discrete model. The ParB complex sits at the bottom of the Ψ well, which localizes

close to A(x) = 1. The positioning of the ParB complex ahead of the ParA tips causes

faster depolymerization close to A = 1, as compared to A = 0. This discrepancy in the

depolymerization rates of the ParA bundle moves some ParA filament tips farther ahead of

the bundle edge. The ParB complex distributions also experience stronger diffusion effects

as A(x) retracts, because as time progresses, Ax decreases causing a decline in the magnitude

of Ψ′. This is shown by the smaller peaks and larger distribution tails of pB as it approaches

the new pole in Figure 4.10A. Note that due to the decline in pB peaks as ParB approaches

the new pole, high loads F will eventually cause the ParB complex to detach. We thus

expect that for a depolymerizing ParA filament bundle interacting with a ParB complex,

the likelihood of ParB detaching under load increases as the ParA bundle gets shorter. This

prediction is in agreement with the experimental observations and assumptions of [4] in E.

coli plasmids. However, here we present a mechanistic reasoning for why ParB detachment

rates should increase for shorter ParA bundles. In C. crescendus, the increased detachment

probability due to low ParA binding site densities at the new pole is remedied by PopZ,

which has been shown to anchor ParB at the new pole to prevent movement reversals.

In panels B and C of Figure 4.10, we repeat our simulations with the same β0, but with

higher ParB depolymerization rates, β. These plots indicate that an increase in β causes the

ParB complex to depolymerize the front edge of A(x) faster, thus creating a faster overall

decay in Ax over time. In response the ParB complexes experience stronger diffusive effects

with the pB distributions having lower peaks as compared to the distributions shown in

panel A. The gentle linear indentations on the ParA bundle for panels B and C in Figure

4.10, are due to large differences in β0 and β + β0. When there is faster monomer removal

by ParB, more tips are exposed ahead of the ParA bundle edge to which ParB can bind and

depolymerize. In response, pB will spread at the front of the ParA bundle to bind the tips

that have been quickly shortened. Due to the small constant Ax, ParB will bind these sites

with equal probability so the pB distributions attain an almost box-like shape. This feature
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Figure 4.10. Plot of pB(x) and A(x) for depolymerizing ParA bundles. Each solution is
shown after t = .67 min for a total of 10 min. Ψ(A) pushes ParB ahead of the ParA bundle
edge. The parameters used are β0 = .5 s−1 and α = 0. A. β = .05. The ParB distributions
follow the ParA bundle closely since β < β0. B. β = .1. ParB distributions move slightly
ahead of the ParA bundle edge. C. β = .5. ParB distributions move significantly ahead of
the ParA bundle edge since the complex removes monomers with β = β0.
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is particularly prominent in panel C where the pB peaks spread over .5 μm ahead of the

ParA edge. The shape of the ParB distributions for β = β0 indicates that ParB complexes

have equal probabilities of moving closer to the new pole or away from the new pole, so

that ParB complexes experience erratic motion as they segregate.

From the plots in Figure 4.10, we see that an increase in ParB rates works against the

ParB complex. By quickly decaying the front edges of A(x), ParB complexes can quickly

advance toward the new pole without fully degrading the bundle which causes pB to spread

its peaks and diffuse out ahead of the ParA bundle edge. We therefore conclude from these

simulations that a ParB complex composed of multiple binders can hold on and move with

a depolymerizing ParA bundle edge, provided that the ParB depolymerization rates are

small compared to β0. In lieu of the experimental data, which show ParB closely trailing a

depolymerizing ParA bundle with no movement reversals, we favor a scenario where ParB

slowly depolymerizes the ParA filaments and waits for the natural depolymerization rate

to move both the complex and the ParA bundle front. In this scenario ParB has a passive

depolymerization role. The results obtained thus far are in complete agreement with our

discrete model results.

Next, we repeat our simulations in the case when the ParA filaments are allowed to

polymerize with α > β0, i.e when the ParA bundle is in polymerization mode. This scenario

is important to consider since from experiments it is seen that if free ParA monomers are

around, then ParA filaments will tend to grow. Thus, in a wild type cell we expect α �= 0.

Simulation results for polymerizing ParA bundles are shown in Figure 4.11.

As can be seen from Figure 4.11A, when β << β0, the ParA bundle initially moves

closer to the new pole until the monomer pool is large enough to allow for polymerization

of the ParA bundle filaments. Then, the ParA bundle experiences growth toward the old

pole with tips close to A = 0 growing the fastest due to no overlap with ParB. This ParA

growth causes a fast decay in Ax and a subsequent spreading of pB distributions due to

diffusion. The end result is that ParB complexes with slow ParB depolymerization rates

first move toward the new pole, then experience a significant slow down (almost stalling)

followed by higher probabilities for toward and away movement from the new pole. In this

case, it is clear that the natural depolymerization rate β0 cannot rescue ParB from slowly

depleting the concentration for ParA filament tips that it can bind to. The ParB complex

thus fails to segregate. If given enough time, the ParA edge will decay and significantly

decrease Ax, so the ParB distributions detach and move close to the old pole under the load,

F . Next, from the simulation results in Figure 4.11B and 4.11C, we conclude that ParBs fail
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Figure 4.11. Plot of pB(x) and A(x) for polymerizing ParA bundles. Each solution is
shown after t = .67 min for a total of 10 min. The ParB complexes slow down after an
initial new pole approach. The parameters used are β0 = .5 s−1 and α = 1 s−1 μM−1. A.
β = .05. ParB distributions initially follow the ParA bundle closely and then slow down. B.
β = .1. The ParB fail to segregate despite higher β. C. β = .5. ParB distributions localize
ahead of the ParA bundle edge, but also fail to segregate.
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to segregate if ParA monomers are quickly returned to the bundle independent on how fast

ParB depolymerizes. The main difference for higher β is that the pB distributions spread

out further and faster in the cell indicating that the ParB complexes experience highly

erratic motion closer to the new pole. It is important to highlight that in all simulation

results presented in Figure 4.11, we see that ParA polymers will always appear between the

old pole and the ParB complex.

From the model solutions considered so far, we predict that ParA bundle dynamics are

extremely important to assuring proper segregation in the C. crescendus cell independent

of ParB depolymerization. First, we saw that when the ParA bundle is allowed to freely

depolymerize (α = 0), then the ParB complex will move toward the new pole. If in addition

ParB is slow at depolymerizing, the movement of the chromosome closely tracks ParA

bundle edges and moves unidirectionally, in agreement with wild type cell observations.

From our model results, we also see that if the bundle polymerization rate, α is not tightly

controlled proper chromosome segregation is lost. More specifically, when α > β0, the ParB

complex first moves toward the new pole, then it is overcome by polymerization and it will

very slowly move toward the new pole essentially stalling as it undergoes erratic motion due

to diffusion of ParB on ParA filament tips. In these cases, ParA will appear behind ParB

and grow toward the new pole. Our model predictions are in agreement with experimental

observations. When TipN is deleted, ParB complexes first move toward the new pole and

then slow down and experience frequent reversals in direction while ParA filaments appear

behind ParB [3]. In �tipN �popZ cells where all polar interaction with ParA is removed,

which is the direct equivalent to our results above with α > β0, the slow erratic motion

of ParB eventually results in complete failure of segregation with ParB return to the old

pole [5]. Thus, we believe that the mechanism proposed in our model may be a good

representation of what is happening in dividing C. crescendus cells.

In conclusion, we predict that segregation will be restored if the polymerization rates

of the ParA bundle are properly controlled. Since polymerization rates for ParA filaments

are monomer concentration-dependent, it follows that cytoplasmic ParA monomer concen-

trations need to be tightly controlled to allow for chromosome segregation. In the next

section, we discuss mechanisms by which ParA monomer concentrations can be controlled

in dividing C. crescendus cells.
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4.4.2 Chromosome segregation with TipN and

ParA dimerization

So far we have not taken into account that the ParA monomers, released due to de-

polymerization, are required to dimerize before returning to the ParA bundle. Recent

experimental evidence seems to indicate that ParA monomers may undergo conformational

changes [6] before dimerizing in the cytoplasm. This data suggests that there is a delay in

the polymerization of ParA filaments once monomers are in solution. We introduce such a

delay by adding the dimerization term in the model equations with kA = 1/3 min−1 μM−1

(note that kA is chosen to be much smaller than α).

In Figure 4.12 we show model solutions when dimerization is allowed with kA = 1/3

min−1 μM−1 and there is no ParA monomer interaction with polar proteins (kTipN=0).

From the A(x) and pB(x) solutions in Figure 4.12 we see that when dimerization is

added, the ParB complex initially experiences slow motion toward the new pole. The ParB
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Figure 4.12. pB(x) and A(x) when ParA monomers dimerize in the cytoplasm. Each
ParA profile and ParB distribution solution is shown after t = .67 min of simulation for a
total of 10 min. Despite the delay from dimerization, if ParA monomers are not removed
from the cytoplasm, the ParB complexes fail to find the new pole in the allotted time and
will eventually become stalled. The parameters are β0 = .5 s−1, β = .1 s−1,α = 1 s−1μM−1,
kA = 1/3 min−1 μM−1 and kTipN= 0.
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distributions in this case move closer to the new pole and retain their peaks better than in

Figure 4.11B, where no dimerization delay was present. However, even in this case when

the dimer concentrations are sufficiently high, A(x) will grow toward the old pole. As a

consequence, the ParB complex will fail to segregate the chromosome in the same time frame

as when ParA bundles are allowed to freely depolymerize. Thus, unless the dimerization

delay is long enough to allow for full chromosome segregation (which from experiments

seems that it is not [6]), the monomers in solution need to be somehow removed or recycled

in locations that do not prevent ParB from moving with a depolymerizing ParA bundle.

This monomer sequestration or nucleation action is precisely what TipN is hypothesized to

do.

We start by testing the model of [5], where TipN is assumed to sequester ParA monomers

from the cytoplasm. To this end, we introduce TipN in the model using the rate function

ktip(x) and κn = 0, indicating that the monomers are not returned to the ParA bundle

after being sequestered. In Figure 4.13 we show model results when ParA dimerizes and

TipN sequesters monomers out of the solution.

As can be seen from the plot in Figure 4.13, the delay from ParA dimerization cou-

pled with fast TipN monomer sequestration fully restore segregation of the C. crescendus

chromosome in the cell. Thus, in this model TipN is essential to warrant segregation.

Next, we test the hypothesis where TipN not only sequesters monomers but also assem-

bles them onto the existing ParA bundle so that dimers can be recruited and new ParA

filaments are formed. We simulate our model with κn = 1 and the results are plotted in

Figure 4.14.

The plots in Figure 4.14 show that the introduction of the nucleation action from

TipN creates new ParA bundle filaments at the new pole. The TipN-generated filaments

grow with rate α. The ParB complex segregates the chromosome due to the delay in

dimerization coupled with the monomer recruitment from TipN. We note that the main

difference between the nucleation and the sequestration model for TipN operation has to do

with the shape of the ParB probability density solutions, pB. In the case when TipN only

sequesters monomers, the shape of pB is identical to the distributions of depolymerizing

ParA filaments in the previous section. Accordingly, the distributions diffuse out as the

ParA tip density is decreased. In the case of nucleation, the tip density is kept high close

to the new pole due to the addition of TipN nucleated polymers. Thereby, TipN nucleation

keeps the pB distributions sharply focused on the ParA edge even when close to the new

pole (Ax is large close to the new pole as TipN nucleates). Thus our model predicts that the
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Figure 4.13. pB(x) and A(x) for the TipN sequestration model. Each solution is shown
after t = .67 min for a total of 10 min. The addition of TipN sequestration removes ParA
monomers from the cytoplasm so that the ParA bundle depolymerizes and ParB follows to
the new pole. Segregation is completely restored. The parameters are β0 = .5 s−1, β = .1
s−1 and α = 1 s−1μM−1 , kA = 1/3 min−1 μM−1, and kTipN= 5 s−1.

probability of late filament detachment is lowered when TipN nucleates ParA filaments at

the new pole, supporting a more robust segregation mechanism. Both TipN models restore

segregation, with accumulation of either monomers or generation of polymers at the new

pole. In both cases our model indicates that there is a large concentration of ParA protein at

the new pole when TipN is working. These results are in agreement with experiments where

the addition of TipN to �tipN and �popZ fully restored segregation and accumulations of

ParA proteins were observed at the new pole [5].

We conclude this section by remarking on the role of the compensatory protein PopZ.

As discussed in Chapter 1, when TipN is removed from cells, there is slow accumulation of

ParA protein at the old pole. Since PopZ is postulated to work similarly to TipN in [5], we

expect that PopZ works by slowly sequestering monomer from the cytoplasmic pool. This

PopZ action would introduce a delay in the build-up of ParA monomers in solution and thus

a delay in the growth of ParA bundles. From our model results with β0 < α, we expect that
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Figure 4.14. pB(x) and A(x) for the TipN nucleation model. Each solution is shown after
t = .67 min for a total of 10 min. The addition of TipN nucleation not only removes ParA
monomers from cytoplasm but also adds new filaments to the bundle. The ParA bundle
depolymerizes and ParB follows to the new pole with densities that retain their peaks as
they get close to the new pole due to the TipN-nucleated ParA filaments. Segregation is
also completely restored in this model. The parameters are β0 = .5 s−1, β = .5 s−1 and
α = 1 s−1μM−1 , kA = 1/3 min−1 μM−1, and kTipN= 5 s−1.

when PopZ is operating ParB will initially approach the new pole, then it will slow down

and eventually move toward and away from the new pole as the ParA bundle grows. In this

case the chromosome might be segregated if it the erratically moving ParB is anchored at

the new pole by PopZ. These predictions are in agreement with experimental observations

in TipN depleted cells [5]. It is not clear whether and how PopZ nucleates ParA filaments,

so further experimental data is needed to clarify the action of this protein. Note that in

the PopZ sequestration scenario, slow removal of ParA only allows the complex to advance

a little farther in the cell, but it does not restore unidirectionality. Indeed, we predict that

fast ParA sequestration is key to TipN restoring unidirectional segregation in cells.

4.5 Discussion

In this chapter we have presented two models that explore the mechanisms for the

segregation of the circular chromosome of C. crescendus bacterium. In the first model, we
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put forward a simple mechanism for how a ParB complex can hold on and move with a

polymerizing/depolymerizing ParA bundle. From our model we deduced that if ParB is

allowed to have multiple binding interactions with the ParA bundle which depolymerizes

with a natural depolymerization rate, movement of the ParB complex toward the new

pole can be sustained. We showed that in order to reproduce experimental observations

ParB is required to depolymerize the ParA bundle with rates that are much lower than the

natural depolymerization rate of the ParA bundle filaments. Thus, we predict that the ParB

complex has a passive role in ParA bundle shortening. On the other hand, the velocity of

ParB is directly dependent upon the ParA growth/shortening rates. We also showed that

if polymerization is allowed in this simple model, segregation fails and the complex has

an increased probability of experiencing backward motion toward the new pole. We thus

predict that a simple mechanisms of biased diffusion of an array of binding sites on a bundle

of depolymerizing polymers can be sufficient to allow ParB to track the edge of a retracting

ParA bundle of polymers.

In the second part of the chapter, we presented a more generalized continuous model

which built on the discrete model results in order to capture ParB/ParA interactions and

also followed the biochemical reactions that ParA monomers and dimers undergo once

released in the cytoplasm. From this continuous model, we obtained similar results to the

discrete model, where biased diffusion coupled with a retracting polymer bundle generated

proper segregation of the ParB complex. Next, using the continuous model we could test

the effects of dimerization delay on the system as well as the effects of TipN proteins acting

at the new pole end. Our model supports a scenario where TipN action on ParA monomers

controls ParA dynamics and thus consequently the polymerization rate of the ParA bundle.

Since ParB movement is sensitive to ParA growth/shortening rates, this TipN action is

sufficient to control the direction of ParB movement. These results are in agreement with

experimental observations. We tested two modes of TipN operation in the cell and showed

that both mechanisms could work to properly segregate ParB in a dividing cell.

One of the most interesting aspects of the C. Crescendus models is that a recurring

theme appears in chromosome movement machines across different cell types. We see that

weak binding in conjunction with dynamic polymers and diffusion can produce movement of

objects in the cell. The advantage of these dynamic assemblies in the context of cell division

is that the direction and velocity of movement can be easily controlled biochemically by

altering polymer dynamics.
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CHAPTER 5

CONCLUSIONS

In this thesis, we have presented mathematical models that describe mechanisms for

how chromosome movement is sustained and controlled in eukaryotic and bacterial cells. In

this chapter we give a brief overview of our model results and predictions.

5.1 Model results summary

In eukaryotic cells, a kinetochore is shown to move with velocities that match the

balance of kMT tip rates. In Chapter 1 we asked the following question: How can very

unstable polymers such as microtubules carry large loads such as chromosomes with constant

velocities over significant distances? In Chapter 2, we presented a mathematical model of

the mechanical coupling between chromosomes and dynamic microtubule polymers. The

key components of this model were that kinetochores were composed of multiple binders

which could associate with the kMT lattice. The binders would undergo diffusion on the

microtubule lattice due to weak interactions with specific MT sites. Finally, the attached

microtubules were assumed to grow or shorten with prescribed rates. We showed that

multiple weak binders could indeed move with a growing or shortening polymer provided

that it was energetically favorable for the system to engage as many binders as possible.

In this model, diffusion is essential to warranting that a Kt motor is able to move. This

because when the binders were allowed to have strong preference for specific binding sites,

the effects of diffusion diminish and the motor is stalled without being able to readjust on

the growing or shortening polymer. Therefore, in our model diffusion essentially lubricates

the Kt/MT interaction such that the kinetochore can rearrange on the MT in order to

move with the polymer tip. In the case of weak binding, we showed that kinetochore motors

moved with rates that matched the balance of kMT polymerization/depolymerization rates,

in agreement with experimental observations. We also were able to calculate how much load

it took to break the motor. Note that a key property of binding in this case is that there

be multiple interactions between the Kt and the microtubule, otherwise thermal effects

overcome binding energies and cause a failure of the motor. This need for multiple weak
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binding interactions in order to harvest the dynamics of polymers is a theme which we

encountered again in Chapter 4.

A key and novel result of the Kt motor model is our study on the effect of Kt binder

arrangement on motor velocities. We showed that if the binders are arranged off-register

to the MT lattice, then diffusion could relocate the Kt more easily on the MT lattice so

that the motor would be harder to stall as the binding affinity between the binder and the

MT increased. Thus, we showed that a random arrangement of binders at the Kt might be

advantageous to maintaining nonzero chromosome velocities.

Finally, an important contribution of the Kt motor we proposed in Chapter 2 has to

do with the analytical expressions we obtained, for the first time, for the load-velocity

relationship of kinetochore motors. These analytical results give us a quick way of assessing

Kt movement velocities as a function of MT polymerization/depolymerization rates and

motor loads.

Next, we posed two questions about the control of eukaryotic chromosome movement

during mitosis: 1) why and how does directional instability of chromosome movement

take place, 2) how is chromosome congression achieved and how do chemical signals affect

ana-phase transition? In order to answer these questions, we constructed a model for

chromosome movement during mitosis in Chapter 3. The underlying idea of the chromosome

movement model was that chromosome movement is generated by a negative feedback mech-

anism between mechanical and chemical signals in the cell. For this model, we used results

from the Kt motor model in the second chapter to get relationships between chromosome

velocities, kMT rates and loads. We postulated that a localized chemical control mechanism

is in place at each kinetochore. We constructed a minimal biochemical control loop which

contained a force sensor protein, a kinase and a kinesin. The kinetochore chemical reactions

were constructed to be switch-like, to be turned on and off depending on the amount of

load or resistance that a chromosome feels at a given position in the cell. The load on the

kinetochore motors in this model was assumed to arise due to interactions between spindle

MTs and chromosome arms. We showed that the presence of switch-like chemical reactions

introduces a delay in a negative feedback loop between loads and kMT rates- which results

in oscillations. We showed that oscillations were bound to arise as long as the chemical

switch at kinetochores provided enough delay to kinesin shut down in response to force.

Further, we showed that chemical control of movement in chromosomes is essential not

only to generate oscillations, but also to establish a leading kinetochore during congression.

Due to the asymmetry in forces that sister kinetochores feel when close to a pole, the sister
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kinetochore chemical reactions are also asymmetrically activated. The chemical asymmetry,

creates a propensity for kinetochores to move away from the pole independent of how many

microtubules are attached on each side of the chromosome. Therefore, in our model a leading

kinetochore is established independent of mechanical signals. This finding is in agreement

with experimental observations which show that leading kinetochores during mitosis often

contain fewer attached microtubules than the trailing kinetochore.

The control of the chemical feedback at kinetochores is key to proper transition of

the cell during various phases of mitosis. We showed that if the chemical feedback was

not properly disassembled at the beginning of anaphase, a chromosome would experience

oscillations when approaching the poles. So we predicted that chromosome movement has

a strong chemical component and is not the result of a simple balance of spindle and Kt

motor forces.

For bacterial systems, we asked two questions concerning chromosome movement: 1) how

do the interactions between ParA/ParB generate motion, and 2) how do chemical species at

the cell poles control chromosome movement direction? We developed two models, where

the underlying assumption for ParB/ParA interactions was that ParB had multiple binders

that could diffuse on the lattice of ParA bundles, similar to the kinetochore model. The new

element in this model had to do with the depolymerizing action of ParB. We showed that

ParB would closely tack retracting ParA bundle edges to the new pole if it depolymerized

the ParA polymers slowly compared to the natural ParA depolymerization rate. We also

showed that the movement of ParB was directly dependent on ParA dynamics. In the

case when ParA could depolymerize, then ParB moved to the new pole with velocities

that were directly dependent on ParA depolymerization rates. In the case when ParA

polymers were allowed to grow with rates proportional to ParA monomer concentrations,

ParB also followed the stalled edges of ParA bundles and failed to properly congress.

Thus, in this model biased diffusion coupled with depolymerizing ParA polymers and slow

ParB depolymerization lead to chromosome congression, in agreement with experimental

observations.

In wild type cells ParA has been shown to polymerize in the presence of ParA monomers.

Using the second continuous model we set to test mechanisms by which the dynamics

of ParA could be controlled in order to allow for ParA/ParB poleward movement. We

introduced the action of the pole protein TipN in the model and showed that fast ParA

monomer removal from the cytoplasm from the new pole fully restored unidirectional

chromosome segregation. Thus, our model predicted that TipN is a necessary and sufficient
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protein that can be used to control chromosome movement in these cells. The role of TipN in

this system is similar to the role of MCAK in eukaryotic cells. The kinesin MCAK controlled

the direction of chromosome movement and magnitude of velocities by modulating the

depolymerization rate of attached MTs. On the other hand, TipN also controls ParB

movement by modulating the polymerization rate of ParA. In the case of TipN, the action

is delayed by the need of the ParA monomers to diffuse to the new pole where they can be

removed or renucleated in the ParA bundle. However, for both cases we see that a unifying

mechanism is at play for these dynamic polymer machines: movement control is achieved

by modification of the biochemical reactions that control the growth/shortening rates of

polymers that interact with chromosomes.

5.2 Future directions

In the context of eukaryotic cells, many questions remain open about chromosome

movement. In the chromosome movement model of Chapter 2, only one chromosome was

considered; however, in many eukaryotic cells several chromosomes move to the cell equator.

An important aspect of this motility has to do with the coordination of chromosomes right

before the cohesins break in anaphase. From experiments it is seen that the transition into

anaphase is a well coordinated process; however, it is not known how such an event takes

place. Recent data have pointed out that some of the chemical species which we considered

in our model might be involved in the synchronization of chromosomes.

Another important aspect in mitosis is related to the mechano-chemical signaling path-

ways. In the model of Chapter 3, we considered chemical reactions which altered the

rates of kMTs. However, a very large network of proteins localizes at kinetochores and

constantly monitors the amount of force exerted at kinetochores. These proteins are part

of the SAC network, and their primary function is to hold the mitotic checkpoint until all

the chromosomes are properly attached. Experiments show that the loss of even a single

kMT triggers a hold signal to the mitotic checkpoint. It is not known how these proteins

check the attachment status of microtubules at kinetochores or how their signal can quickly

amplify and propagate in a cell to prevent erroneously attached chromosomes from dividing.

In the context of C. crescendus many questions remain open. An important aspect of

segregation here is related to the dynamics of ParA polymers. In our model in Chapter 4, we

proposed that the filaments of ParA are disassembled from the tips distal to the new pole,

similarly to spindle MTs. We also assumed that polymerization occurs at the ParA tips.

Recent experimental data, however, suggest that ParA polymers might not be polar, so



132
that ParA growth may occur in either direction. This feature will require the modification

of our model to test the case when polymerization and nucleation of ParA dimers is allowed

to occur throughout the cell.

In conclusion, we have so far studied two cellular motors that were composed of arrange-

ments of binders and dynamic polymers. These types of assemblies fall in the category of

polymer motors, which operate by harvesting the energy of polymerizing and depolymerizing

biopolymers. These polymer motors are thought to be the precursors of ATP-dependent

motors such as dynein and kinesin. A key characteristic of these assemblies is that movement

velocity and direction can be easily controlled by modulating the rates of polymer growth or

shrinking. In the context of cell division, this flexibility of movement seems to be essential

since chromosomes need to be able to rearrange their position in the cell until they can

be placed either at the cell equator or at the new pole. Further, the chemical control

of movement seems to be an important aspect, since it integrates chromosome movement

into the larger network of chemical control of mitosis progression. We propose that this

chemical control of motility in chromosome movement is very important not only for precise

localization, but also for the cell to be able to check that movement is progressing in the

right direction and no errors have occurred. Since mitosis errors are fatal to a cell, it

makes sense that mechanical events in dividing cells be tightly controlled and chaperoned

by chemical networks that set off a variety of checkpoints if there are mechanical anomalies.



APPENDIX

SUPPLEMENTARY INFORMATION

In this appendix we present supplemental assumptions and figures for the chromosome

movement model discussed in Chapter 3.

A.1 Simplifying assumptions

We model the motion of only one chromosome. In newt lung cells with several chromo-

somes there could be interactions between motile chromosomes. We do not take any such

interactions into account.

We assume that the biochemical reaction species are localized at the kinetochores i.e.,

do not diffuse in the cytoplasm.

We assume that each kMT is attached to a pole that has a fixed position (i.e., constant

pole to pole distance). Also we ignore any flux effects at MT minus ends.

Polar ejection forces are assumed to be density dependent and thus modeled with a

smooth distribution as in [4]. It is likely that this force distribution varies more with position

and time, which in our context would produce less regular oscillations. Chromosome arms

contain chromokinesin motors which are thought to contribute in the generation of polar

ejection forces. We do not directly model fluctuations in chromokinesin motor activity.

A.2 Potential well for the motor

Note that in agreement with [3] and [4] we position the binding sites so that a fully

attached coupler binds 65 sites along 40 nm of the polymer lattice with each site separated

by δ = 8 nm per monomer
13 protofilaments . The equation for the well is given by,

Ψ(y)=

⎧⎪⎨
⎪⎩
0 0 ≤ x < δ

2

(n− 1)
(−3a

2 + b
2 − b+a

2 cos(2πxδ )
) (2n−1)δ

2 ≤ x < nδ

n
(−a+ b

2 − b
2 cos(

2πx
δ )

)
nδ ≤ x < (2n+1)δ

2 .
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A.3 Cohesin spring stiffness

For our cohesin springs we used the spring coefficient estimated by [4] of .1 pN/nm

and a relaxed intra-kinetochore distance of 1 μm as measured in [7]. The magnitude of

the spring coefficient dictates sister kinetochore coupling during bioriented movement. We

tested several values and observed that if the spring coefficient is lowered to 0.001 pN/nm

coupling is almost completely lost with bioriented oscillations looking like monooriented

oscillations around the equator. Higher spring coefficients (up to .2 pN/nm) on the other

hand, enhance sister chromatid coupling but also lower oscillation amplitudes since loads

are greatly increased when a kinetochore tries to initiate movement away from the equator.

Intermediate values allow for both coupling and reasonable amplitudes. Furthermore, we

have imposed repulsion for springs compressing more than Lk, which corresponds to a

physical barrier that does not allow chromosome arms to get closer than what has been

observed experimentally.

A.4 Chemical reaction parameter estimation

We estimated the parameters for growth and decay of S so that the amplitude and

frequency of monooriented chromosome oscillations (which are the most regular ones)

matched data from newt lung cells in [5]. For the kinetic parameters of the bicyclic

phosphorylation cascade we use the values of KA, KM , k+A, k
−
A, k

−
M , k+M estimated in [6],

similar to the cascade parameters for cyclin and Cdc2 kinase in [2]. These parameters give

the needed time delays for chromosomal directional switches.

A.5 Congression and AP force gradient

For the simulation of the monooriented chromosome the AP force density factor is

decreased to allow the chromosome to move close enough to the pole to which it is attached.

Lower gradients can be justified since it takes time for the astral microtubules to grow

enough to exert forces on the arms so that AP forces gain strength as mitosis progresses.

Thus, we envision this gradient to gain strength over time. For congression the factor was

increased to allow timely equator approach. After congression is achieved the AP gradient

is increased to reach the measured value of ≈ 100 pN at 2 μm from the equator [1].

A.6 System with noise

To study the effects of noise we include the stochastic forcing term ξ(t) with < ξi >=0, <

ξi(t1), ξi(t2) >= σ2
i δ(t1− t2) which perturbs the velocity of each kinetochore. The equations
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of motion (3.1) are modified to be of the form

ν
dxi
dt

=
∑

F + ξ(t), (A.1)

In the simulations the noise level is adjusted to be such that σi/Vmax=.06, where Vmax

is the effective maximal velocity the system reaches when there is no noise.

A.7 Supplementary Figures

In this section we present supplemental figures for Chapter 3.
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Figure A.1. Monooriented oscillations dependence on phosphorylation cascade kinetic
parameters. For each plot only the parameters indicated in the legend are varied; the rest
of parameters are kept the same as in the main text. (A-B) System oscillations are sensitive
to Km values, allowing for up to 10Km before oscillations are lost. (C-D) For Km = .01
nM, oscillations persist for a wide range of cascade kinetic parameters, even for ki < ki/20
and ki > 20ki, however oscillation amplitudes vary accordingly and we restricted our plots
to parameter values for which oscillations can be easily depicted.
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Figure A.2. Monooriented chromosome oscillations with linear load-velocity curves. (A)
Chromatid positions are controlled by respective feedback loops acting via the linear
load-velocity curves. The left pole is located at χ = 0. The initial conditions for sister
chromatids are: χL = 0.375 ,χR = 0.4; sL=sR=0; aL=aR=0.1,mL=mR=0.9.(B and C)
Chemical species levels during chromosome oscillations.
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Figure A.3. Monooriented oscillations comparison between the linear and diffusive
couplers for sensor rate variations. (A-B) The sensor growth rate is decreased from k=.02
to k=.0125 for both the linear and diffusive couplers. (C-D) Sensor levels for each coupler
shown from A and B. (E-F) Monooriented oscillations for a single left Kt attachment. The
sensor growth rate is set to k=.0125 for both couplers. (G-H) Sensor levels for each type of
coupler (shown in E and F) with only one attachment at the left Kt.
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Figure A.4. Congression depends on the strength of the AP gradient. For low gradients
a bioriented chromosome starts oscillating close to the pole taking a long time to congress.
Higher gradients, however, allow for congression. The cascade and loads follow sensor
dynamics.
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Figure A.5. Bioriented congression for linear couplers. (A) The position of a chromosome
which becomes bioriented at τ = 60 (7 left couplers and 1 right coupler). Despite unequal
attachment numbers, a leading Kt is established and congression is achieved. (B and C)
Chemical species levels.
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