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ABSTRACT

Being the end-product of the hierarchical merging scenario, early-type (elliptical and 

lenticular) galaxies (ETGs) are the “live” fossil records that permit compelling tests of 

galaxy formation theories within a cosmological context. Also, ETGs can be extremely 

luminous and serve as the ideal cosmological tracers in the Universe. Additionally, the 

mysterious dark matter (DM ), which is believed to constitute almost 85% of the observed 

mass portion, acts as the host of galaxies and hence plays a pivotal role in shaping the 

observed Universe. A  thorough understanding of DM, including its nature, properties, and 

structures provides crucial insights into the fundamental laws of physics and cosmology.

On the luminous side, a hierarchical Bayesian determination o f the velocity-dispersion 

function of approximately 430000 massive luminous red galaxies observed by the Baryon 

Oscillation Spectroscopic Survey (BOSS) is performed. We use the full velocity-dispersion 

likelihood function for each galaxy to make a self-consistent determination o f the velocity- 

dispersion distribution parameters as a function o f absolute magnitude and redshift. Param

eterizing the distribution at each point in the luminosity-redshift plane with a log-normal 

form, we detect significant evolution in the width o f the distribution toward higher intrinsic 

scatter at higher redshifts, which indicates a more diverse heterogeneity in ETGs at earlier 

cosmic time.

On the dark side, I report the discovery of 40 strong gravitational lenses in the SLACS 

for the Masses (S4TM ) Survey and 33 additional systems with single-lensed images in 

S4TM and SLACS Surveys, for which upper limits of the Einstein radii are determined. 

A  hierarchical Bayesian analysis reveals strong evidence (4a) of variations of the total 

mass-density structure toward shallower profiles at larger velocity dispersion when upper 

limits are incorporated. Estimating the stellar masses based on the HST I-band photometry, 

we find a significant trend of higher dark-matter fraction at higher velocity dispersion. A 

Salpeter initial mass function is substantially disfavored for all but the most massive lens 

galaxies by predicting stellar masses in excess of the total lensing-measured mass. An 

approach of constraining mass structure via a joint analysis of lensing and stellar kinematics 

is also outlined, the application of which on a sample o f strong lenses shows a 4a evolution 

trend in the sense of steeper mass profiles at later cosmic times.



To my beloved fiancee -  Minne Wang, and my parents.
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CHAPTER 1

INTRODUCTION 

1.1 Brief History of the Universe
The Universe is the totality of time, space, and any matter/energy within it. The 

currently observable universe is about 46 billion light years in radius (Gott et al., 2005), 

and the age of the universe is 13.813 ±  0.058 billion years according to the latest Planck 

results (Planck Collaboration et al., 2013).

The currently well-accepted model for explaining the early development o f the universe

—  the Big Bang theory (Einstein, 1916; Friedmann, 1924; Hubble, 1929; Lemaitre, 1931, 

also see Figure 1.1) believes that our universe originated from a quantum singularity with 

infinite density and temperature and underwent a short period (10-33 — 10-32 seconds) 

of exponential inflation due to quantum fluctuations. As the universe expanded, photons, 

together with the baryons they were coupled to, started to cool down. At some point 

when the universe was cool enough, protons and electrons combined into neutral atoms 

(mostly hydrogens) and photons decoupled from baryons and traveled freely ever since. 

This epoch happened at about 379,000 years (z ~  1100) after the Big Bang and is referred 

to as “Recombination” by cosmologists. The “relic radiation” was studied by a number of 

scientists (McKellar, 1941; Dicke et al., 1946; Gamow, 1948; Alpher and Herman, 1948) and 

eventually detected “accidentally” by Penzias and Wilson (1965), which earned them the 

1978 Nobel Prize in Physics. Since the universe had been growing so dramatically during 

the inflationary epoch, this relic radiation known as the Cosmic Microwave Background 

(CM B) can be well-characterized by a perfect black-body spectrum at a temperature of 

2.72548 ±  0.00057 K (Fixsen, 2009).

Although the universe could be considered as homogeneous and isotropic after inflation, 

small quantum fluctuations at the beginning o f the Big Bang persisted and led to small 

density fluctuations after recombination. Slightly denser regions attracted nearby matter 

and thus became even denser due to gravitational instability. After a period of “dark Ages” 

in which only 21-cm hydrogen line was emitted, first stars and quasars started to form due 

to gravitational collapse of the accumulated molecular clouds that exceeded the Jeans mass
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F igu re  1.1: The chronology o f our universe as seen in the Big Bang the
ory. Please refer to text for details. Credit: N A S A /W M A P  Science Team, (via 
http://wm ap.gsfc.nasa.gov/m edia/060915/060915_CM B_Tim elinel50.jpg)

http://wmap.gsfc.nasa.gov/media/060915/060915_CMB_Timelinel50.jpg
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(Jeans, 1902) at about 400 million years after the Big Bang. The intense radiation from the 

first stars and quasars reionized the neutral universe to be a plasma in the “Reionization” 

epoch. Later on, a large volume of matter collapsed to hierarchically form stars, galaxies, 

and all the other objects we now observe.

The ACDM  model is so far the most successful model in the Big Bang Theory, in which 

the universe is composed by a cosmological constant term denoted as A (also known as the 

“dark energy” ) and Cold Dark Matter (CDM ). According to the latest study o f the CMB 

by the Planck collaboration, the fraction of dark energy density to the critical density pcrit 

for which the spatial geometry is flat, Qa , is 0.685 ±  0.017 (Planck Collaboration et al.. 

2013). The rest 0.315 ±  0.017 resides in the “matter sector” that includes both ordinary 

matter (0.049) and CDM  (0.266), which is the focus o f this dissertation work.

1.1.1 Luminous Component
Although only constituting 15.5% of the total mass sector, the ordinary matter builds 

up literally all the fascinating objects in the universe that we are able to observe in various 

wavelength ranges, including planets, stars, star clusters, interstellar medium, quasars, 

galaxies, intergalactic medium, galaxy clusters, etc. Figure 1.2 shows the very impressive 

Hubble-Ultra-Deep-Field (HUDF) observation o f a small sky region in the constellation 

Fornax that had been observed repeatedly for several months by the Hubble Space Telescope 

(H ST ), which contains about 10,000 o f the most distant/oldest galaxies that have ever been 

imaged in the optical band with various brightnesses, colors, shapes, and ages (a few hundred 

million years after the Big Bang).

All the observed structures, especially galaxies, are built up in a so-called “bottom -up” 

fashion. At first, a giant molecular cloud starts to collapse after exceeding the Jeans mass 

for which the internal gas pressure can no longer balance the gravitational attraction. As it 

becomes dense and hot enough, nuclear fusion is ignited, and the radiation pressure prevents 

the gas from further collapsing. A  star is then formed. The process happens everywhere in 

the universe and because of gravitational instability, stars accumulate to form star clusters 

and small galaxies. They interact with each other to form more massive galaxies by merging. 

Galaxies become further bounded to galaxy groups, clusters, and superclusters.

Galaxies can be classified according to their morphologies. Figure 1.3 shows the clas

sification scheme invented by Hubble (1936a), also known as the “Hubble tuning fork” 

diagram. The “handle” is comprised of smooth, featureless galaxies with generally elliptical 

shapes, known as “elliptical” galaxies (denoted by E). The integer following E represents the 

degree o f the observed ellipticity. On the right are “spiral” galaxies with disk-like structures
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F igu re  1.2: Hubble-Ultra-Deep-Field o f about 10000 most distant galaxies ob
served by the HST from September 2003 to January 2004. Credit: NASA, 
the European Space Agency, S. Beckwith (STScI), and the HUDF Team, (via 
http://im gsrc.hubblesite.org/hu/db/im ages/hs-2004-07-a-print.jpg)

http://imgsrc.hubblesite.org/hu/db/images/hs-2004-07-a-print.jpg
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F igu re  1.3: Hubble tuning fork diagram of the Hubble se
quence. Credit: Public Domain, (via Wikimedia Commons,
http://com m ons.wikim edia.org/wiki/File:HubbleTuningFork.jpg, User: Cosmo0)

http://commons.wikimedia.org/wiki/File:HubbleTuningFork.jpg
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and evident spiral arms. The two “tines” are two subcategories of spiral galaxies, one 

with bar-like structures and one without. Sitting in between are the “lenticular” galaxies 

(designated S0) that have bright prominent central bulges and visible disk components but 

no visible spiral arms. Although not shown in the Hubble tuning fork diagram, there are also 

irregular galaxies which have no obvious regular shapes. Elliptical and lenticular galaxies 

can be furthered grouped into “early-type” galaxies (ETGs). Further studies have shown 

that ETGs are passively evolving (little ongoing star formation, mergers, and interactions) 

and share many common properties, among which are spectral features and scaling relations. 

Spiral and irregular galaxies are referred to together as “late-type” galaxies.

Named as “early” type, massive ETGs are believed to be the end-product of the hier

archical merging scenario (Toomre and Toomre, 1972; W hite and Frenk, 1991; Kauffmann 

et al., 1993a; Baugh et al., 1996; Cole et al., 2000). Although featureless in shape, ETGs are 

of particular interest because they are the “live” fossil records that allow us to test theories 

of galaxy formation within a cosmological context by studying their structures, properties, 

and formation histories. Also, massive ETGs are the most luminous and highly clustered 

objects that serve as the ideal cosmological tracers of clustering and the large-scale structure 

(Eisenstein et al., 2005a; Percival et al., 2007; Anderson et al., 2012).

There are several well-established empirical scaling relations among the kinematic and 

photometric properties observed in ETGs. The Faber-Jackson relation (FJR) was first 

derived by Faber and Jackson (1976) using 25 E and S0 galaxies, the central line-of-sight 

velocity dispersions o f which were determined by a subjective visual comparison method and 

a Fourier transform method independently. They adopted the means of the visual method 

as the measured velocity dispersions mostly because the visual method was found to be less 

sensitive to noise. A  strong correlation between the so-measured velocity dispersion and the 

B-band absolute magnitude of the “normal” elliptical galaxies (as compared to the smaller 

and fainter “dwarf” ellipticals) was detected as displayed in Figure 1.4. They obtained a 

simple relation of

L b  rc a4 (1.1)

The same analysis was done with larger samples and led to similar relations in both elliptical 

and lenticular galaxies (e.g., Tonry and Davis, 1981; de Vaucouleurs and Olson, 1982; 

Jorgensen et al., 1996).

In his thesis work in 1977, John Kormendy saw an anticorrelation between the V-band 

surface brightness (in magnitude) B e at the effective radius and the effective radius re 

derived from de Vaucouleurs’ fits o f a small sample o f “normal” ellipticals (Kormendy, 1977).
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J________ I-------------1------------- 1------------- 1------------- 1------------- 1—
16 -18 - 2 0  - 2 2

F igu re  1.4: Correlation between the line-of-sight velocity dispersion and absolute 
magnitude for elliptical galaxies detected by Faber and Jackson (1976). The lowest 
velocity dispersion value (60 km s- 1 , corresponding to M32) was taken from Richstone 
and Sargent (1972). Credit: Figure 16 in the referred publication: “Velocity dispersions 
and mass-to-light ratios for elliptical galaxies,” Faber, S. M. and Jackson, R. E., 1976, ApJ, 
204, 668. Reproduced by permission o f the AAS.
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later known as the Kormendy Relation (K R ). A  de Vaucouleurs’ fit is a two-dimensional fit 

to the surface brightness of elliptical galaxies first introduced by de Vaucouleurs (1948). A 

de Vaucouleurs’ profile is parameterized as

I (R ) =  Ie e-7 -669t(R/Re)1/4-1l (1.2)

where Re is called the effective radius or equivalently the half-light radius within which 

the enclosed light is equal to one half of the total light, and Ie is the surface brightness at 

R  =  R e. Figure 1.5 is a snapshot o f the original version of the KR. A  linear least squares 

fit yielded

Be =  3.02 log 10 re +  19.74 (1.3)

Considering the fact that the surface brightness in physical units Ie is related to B e and 

luminosity L as

B e =  —2.5 log10 Ie

L rc Ie X R2 (1.4)

more luminous elliptical galaxies are more diffuse (with larger R e).

Dressler et al. (1987) defined a new photometric size parameter D n as the diameter 

within which the mean surface brightness drops to some fiducial value (chosen to be £  =  

20.75 m ag/arcsec2 in that work) and found a tight correlation between D n and the central 

velocity dispersion a for a sample of elliptical galaxies in 6 rich clusters, Coma, Virgo, 

Fornax, Perseus, A2199, and DC2345-28, in the direction that galaxies with larger velocity 

dispersions are more extended in terms o f the light distribution (Figure 1.6). Shortly after 

that, Dressler (1987) showed that this correlation extended to lenticular galaxies (S0) as 

well (Figure 1.7).

Furthermore, if distributed in the three-dimensional space spanned by log10 a, log10 R e, 

and log10(I )e, elliptical galaxies populate a well-defined thin plane (Figure 1.8) known 

as the Fundamental Plane (FP, Dressler et al., 1987; Djorgovski and Davis, 1987). The 

parameterized form of the plane can be written as

log10 Re =  a log 10 a +  b logw (I)e +  c (1.5)

in which log10(I )e is defined as the mean surface brightness within R e. Using the fact that 

the integrated light within R e is one half of the total light, we have

V ) .  =  < u »
Converting luminosity L to mass M  by assuming a mass-to-light ratio Y,

log10 Re =  0.5 log10 M  — 0.5 log10 Y — 0.5 log10(I )e +  constant (1.7)

If the galaxy is virialized (which is in general valid), the dynamical mass is related to the 

velocity dispersion as
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F igu re  1.5: Correlation between the surface brightness and size o f “nor
mal” ellipticals detected by Kormendy (1977). Credit: J. Kormendy, (via 
http://chandra.as. utexas.edu /  ~ kormendy/Be-logre-big.gif)

http://chandra.as
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log Dn

F igu re  1.6: Correlations between D n and central velocity dispersion of ellipticals in 
clusters FORN AX, PERSEUS, A2199, and DC2345-28. Credit: Figure 2 in the referred 
publication: “Spectroscopy and photometry of elliptical galaxies. I - A new distance 
estimator,” Dressler, Alan, et al., 1987, ApJ, 313, 42. Reproduced by permission of the 
AAS.
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F igu re  1.7: Correlation between D n and central velocity dispersion o f S0 galaxies in the 
Coma cluster. Credit: Figure 5 in the referred publication: “The Dn-sigma relation for 
bulges o f disk galaxies - A  new, independent measure o f the Hubble constant,” Dressler, 
Alan, 1987, ApJ, 317, 1. Reproduced by permission o f the AAS.



12

4.2

F igu re  1.8: Near-infrared Fundamental Plane o f ETGs in the log10 a, log10 R e, and 
log10( / ) e space observed by the 6dF Galaxy Survey. Blue and black symbols represent 
ETGs above and under the best-fitting plane. Credit: Figure 9 in the referred publication: 
“The 6dF Galaxy Survey: the near-infrared Fundamental Plane of early-type galaxies,” 
Magoulas, Christina, et al., 2012, M NRAS, 427, 245.
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(1.8)

Combining the above two equations, we have

log 10 Re =  2 log 10 a -  logio ( I )e -  logio Y  +  constant (1.9)

If the mass-to-light ratio Y  is constant, we would expect a =  2 and b =  - 1 .  However, the 

observed values of coefficients a and b vary from sample to sample and from one photometric 

band to another, which is known as the “tilt” of the FP. For instance, Jorgensen et al. (1996) 

found a =  1.24±0.07 and b =  —0.82±0.02 using Gunn r-band (Thuan and Gunn, 1976) data 

for 226 E and S0 galaxies. By simply restricting to log10 a >  2.0, they noticed a significant 

change in coefficient a to a =  1.35 ±  0.05. Pahre et al. (1998) analyzed the near-infrared 

data o f 251 ETGs and obtained a =  1.53 ± 0.08 and b =  —0.79± 0.03. A  much larger sample 

of nearly 9000 ETGs selected from the Sloan Digital Sky Survey (SDSS, York et al., 2000) 

yielded a =  1.49 ±  0.05 and b =  —0.75 ±  0.01 in the Sloan r band (Bernardi et al., 2003c).

It is clear that the empirical scaling relations introduced above are the two-dimensional 

projections of the FP, which is quite useful for various purposes. The FJR can be used as 

a good distance-estimator as it estimates the true luminosity from a distance-independent 

quantity a with little scatter, which can be compared with the observed apparent magnitude 

to estimate the distance to the galaxy (e.g., de Vaucouleurs and Olson, 1982; Dressler et al., 

1987; Paturel and Garnier, 1992). The Kormendy relation has been employed to test the 

expansion of the universe and cosmology (e.g., Pahre et al., 1996; Moles et al., 1998). 

The D n-a  relation has been shown to be capable of constraining the expansion rate or 

equivalently the Hubble constant (e.g., Dressler, 1987; Kelson et al., 1999).

Although it has been well-accepted that the origin and tilt of the FP is related to the 

galaxy formation/evolution processes in ETGs and dark matter that will be introduced in 

the next section, how exactly the FP is affected is still under investigation. For example, 

the deviations in the coefficients from the canonical Virial Theorem ’s predictions can be 

caused by a mass/luminosity-dependent mass-to-light ratio. In particular, a larger mass- 

to-light ratio for more massive and luminous ETGs can shift the coefficients in the right 

direction (Trujillo et al., 2004; Cappellari et al., 2006a; Bolton et al., 2007; D ’Onofrio et al., 

2008; Tortora et al., 2009; Cappellari et al., 2013). Also, the wavelength-dependence of 

the coefficients indicates some entanglement between galaxy mass, structure, and stellar 

population (e.g., Scodeggio et al., 1998; Onorbe et al., 2005; La Barbera et al., 2010b; 

D ’Onofrio et al., 2013; Dutton et al., 2013a). Furthermore, studies o f the time/redshift 

evolution of the FP provide fruitful insights in understanding the history o f the Universe 

(Gebhardt et al., 2003; Fritz et al., 2005; Fernandez Lorenzo et al., 2011; Shu et al., 2012).
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Other factors such as metallicity and environment also have nonnegligible effects on the tilt 

o f the FP (Kochanek et al., 2000a; Boylan-Kolchin et al., 2005; La Barbera et al., 2010a).

1.1.2 Dark Component
Despite its large portion in the total mass budget, the existence o f the mysterious dark 

matter (DM ) was not known until the 1930s, when measurements o f the orbital velocities of 

stars within galaxies led to a suggestion of “missing mass” (Oort, 1932; Zwicky, 1933). The 

most compelling evidence of the existence o f dark matter then came in 1970 when Rubin 

and Ford (1970) made measurements of the rotational velocities spectroscopically in the 

Andromeda galaxy (a.k.a. M31) as a function of the distance from the center. The original 

data points are shown in Figure 1.9. Measurements in the central 16 arcminutes region 

(about 3.2 kpc) as represented by the open circles were done using the [N II] emission line 

and measurements in the outer region were done using [H II], [O III], and other emission 

lines. It is clear that the rotational velocity profile is unexpectedly flat in the outer region 

of M31, which, according to Newton’s laws o f motion (Newton, 1760), indicates that the 

total enclosed mass is approximately linear in radius. While the luminous mass drops 

significantly at large radii, there must be some extended dark component that provides 

necessary gravitational attraction to maintain this flat-rotation curve. Later on, other 

techniques such as gravitational lensing and CMB anisotropy studies have further supported 

the existence o f dark matter (Bolton et al., 2008a; Coe et al., 2010; Dietrich et al., 2012; 

Krawczyk et al., 2013; Hinshaw et al., 2013; Planck Collaboration et al., 2013). Note that 

various modified gravity theories, as an alternative o f DM theory, also provide reasonable 

explanation o f the flat-rotation curve without the inclusion of DM. However, unless the 

modified gravity theories can do a better job  in explaining observational facts such as the 

structure formation and CMB anisotropies (Slosar et al., 2005), they would not be able to 

challenge the currently widely-accepted DM  theory.

So far, the consensus is that DM is made up o f one or more species of exotic, elementary 

particles that, not like the usual protons, electrons, and neutrons, only interact gravita

tionally in order to match its dark feature. The most commonly proposed candidates are 

Weakly Interacting Massive Particles (W IM Ps), axions, and sterile neutrinos. There are 

tons of detectors searching for evidence o f DM particles either directly or indirectly, but 

no conclusive result has been found. The latest study of the CMB power spectrum by 

the Planck collaboration suggests that DM  density pc =  0.266 pcrit assuming a flat ACDM  

cosmology (Planck Collaboration et al., 2013). Additionally, based on various observations, 

DM  particles are thought to be “cold” and move at a speed much less than the speed of
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F igu re  1.9: Original rotation curve for the Andromeda galaxy (a.k.a. M31) as measured 
by Rubin and Ford (1970). Velocities in the central 16 arcminutes region (about 3.2 kpc, 
open circles) were measured from the [N II] emission line and outer measurements were 
done using [H II], [O III] and other emission lines. Solid circles are data points from the 
Northeast arm and solid squares are from the Southwest arm. Credit: Figure 9 in the 
referred publication: “Rotation o f the Andromeda Nebula from a Spectroscopic Survey 
o f Emission Regions,” Rubin, Vera, C. and Ford, W . Kent, Jr., 1970, ApJ, 159, 379. 
Reproduced by permission o f the AAS.
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light (e.g., Peebles, 1982; Blumenthal et al., 1984).

Several lines o f evidence have suggested that DM  plays a pivotal role in galaxy formation. 

Particularly, the flat-rotation curve indicates that DM  distributes much more extendedly 

than the galaxy itself. Therefore, W hite and Rees (1978) proposed a “two-stage” theory 

to describe galaxy formation and clustering, according to which DM  forms structures with 

various scales in the “bottom -up” fashion; then gas starts to cool and condense within 

the DM  gravitational potential wells and ignites the star formation that eventually leads 

to luminous galaxies residing in the centers of DM  halos. During these processes, the 

interaction between dark and luminous matter determines the properties o f both DM  and 

galaxies. The theory has been further improved since the 1980s and become the preferred 

solution for galaxy formation.

Nevertheless, the nature o f DM  is still an open question. N -body DM -only numerical 

simulations have suggested it has a somewhat “universal” density profile with a r -1  inner 

profile and a r -3  drop-off at large radii, independent of the halo mass (Navarro et al., 1996, 

1997), known as the Navarro-Frenk-White (N FW ) profile

p(r) =  -—; 1—— ; (1-10)
{ r / r s){ 1 + r / r s)2

where rs is a scale radius that differs from halo to halo. However, various observations 

of DM-dominated galaxies yield inconsistent (shallower) inner density slopes against high- 

resolution numerical simulations (Moore et al., 1999b; Diemand et al., 2005; Graham et al., 

2006; Navarro et al., 2010), which is known as the “cuspy core problem.” The solution of 

the cuspy core problem relies mostly on the baryonic physics that has not been captured 

in DM -only simulations such as gas cooling, gravitational heating, and energetic feedbacks 

(e.g, Governato et al., 2012; Weinberg et al., 2013; Velliscig et al., 2014). Figure 1.10 

shows the effect of baryon outflows on the DM  density profiles from a high-resolution N- 

Body+Sm oothed-particle hydrodynamics (SPH) simulations ran by Governato et al. (2012). 

The dash-dot black line shows the DM  density profile prediction by a DM -only N -body 

simulation. The three colored lines represent the redshift evolution of the DM  density 

profile by including gas outflows, star formation, and other baryonic physics. Finally the 

solid black line is the prediction at z =  0. It is clear that the inclusion o f baryonic physics is 

able to flatten the inner profile of a galaxy. However, how exactly all these effects compete 

and shape the galaxy mass structure is still unknown.

Another big failure of the ACDM  model is the “missing satellite problem,” which is the 

significant excess (by a order o f magnitude) in the number of DM subhalos predicted by 

numerical cosmological simulations compared to that of the observed satellite galaxies in
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F igu re  1.10: DM  density profiles predicted by various simulations. Dash-dot black curve 
is the result o f a DM -only simulation, while different colored lines show the evolution o f the 
profile when baryonic physics is included. The solid black line is the prediction at z =  0 
from a D M +SPH  simulation. Credit: Figure 3 in the referred publication “Cuspy no more: 
how outflows affect the central dark matter and baryon distribution in cold dark matter 
galaxies,” Governato, F., et al., 2012, MNRAS, 422, 1231.
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the Local Group (Klypin et al., 1999; Moore et al., 1999a). Figure 1.11 shows a comparison 

of the mass functions between the observed results in the Milky Way (filled circles) and 

Virgo Cluster (open circles with error bars) and numerical predictions. Although the Virgo 

Cluster data agree well with numerical simulations, observations from our own Milky Way 

show a definite deficit in the abundance of substructures. The lack of observed satellites in 

galaxy scale indicates either a suppression in the galaxy formation process in subhalos, or 

more importantly, an insufficient understanding of the nature o f DM  particles.

1.2 Gravitational Lensing in a Nutshell
Gravity, as one of the four fundamental forces in the Universe, has been known for 

centuries for governing motions from falling apples to celestial objects. It pulls objects 

toward the center of the gravitational field as stated in one of Sir Isaac Newton’s most 

famous works - Philosophiae Naturalis Principia Mathematica (Newton, 1760, the original 

book was published in 1687 in Latin). However, the motion of massless photons had not 

been well-understood until Albert Einstein’s General Theory of Relativity (GR, Einstein, 

1916), a novel idea o f interpreting gravity as a pure geometric effect o f space and time. Then 

Chwolson (1924) first discussed the gravitational lensing (GL) effect which, in analogy to 

an optical lens, is the bending of the photon trajectories under the influence of gravity of 

a massive object which is called the “lens.” Einstein (1936) quantitatively studied the GL 

effect in the framework of GR, which I will briefly recap here.

1.2.1 Deflection of Photons in Gravitational Field

In GR, a freely moving photon follows the so-called “geodesic,” a generalized “straight 

line” in curved spacetime, which is determined by the geodesic equation

I =  o (111^
dA2 + i ^ dA dA 1 ;

in which x M, x v, x p are the spacetime coordinates with all Greek indices taking the value

[0, 1, 2, 3]; A is the “affine parameter” which uniquely corresponds to the position along the

geodesic; and is the “Christoffel symbol” purely determined by the spacetime metric

gMV. For photons, an extra constraint is that the speed is always the speed of light. In G R ’s

language, that is
dxM d x v _

9tw dA dA “  ( }
Considering a locally Minkowski spacetime perturbed by the gravitational potential of

a massive object, under the weak-field approximation, metric g^v can be written as

Q^v =  +  hjUV (1.13)
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VC /  ^global

F igu re  1.11: Mass functions o f substructures within the Milky Way (filled circles) and 
Virgo Cluster (open circles) as a function o f their circular velocity. The solid line is the 
numerical prediction for a simulated cluster, and the two dashed lines are the predictions 
for simulated galaxies at different ages. Credit: Figure 2 in the referred publication: 
“Dark Matter Substructure within Galactic Halos,” Moore, Ben, et al., 1999, ApJ, 524, 
19. Reproduced by permission o f the AAS.
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where is the Minkowski metric as
1 0 0 0 \
0 - 1 0 0
0 0 - 1 0

V 0 0 0 - 1 )
and h^v is the metric components due to perturbation, which, in an appropriate coordinate 

system, is
( 2$ 0 0 0 \

0 2$ 0 0
0 0 2$

e3" 0
V 0 0 0 2$

c2 )
We can then work out the speed of photons in the gravitational field as

„ .  ||#|| .  ( l ± * 2 , V » c  (1.14)
1 hii

in which c is the speed o f light in vacuum. The effect o f the gravitational potential $  on 

photons can therefore be expressed as the light path in a medium with effective refractive 

index n defined as

n =  -  = ( i ^ ) V 2 ~ i _ ̂  (i.i5)
v 1 +  h00 c2

The last step in the above equation is valid under the weak-field approximation in which

$ / c 2 < <  1. From Snell’s law, it can be shown that the deflection angle is related to the

gradient o f the refractive index as

a =  — J  V ± n d l = - ^ J v ^ d l  (1-16)

In all cases of interest, the deflection angle is small and the integration can be approximated 

by integrating along the unperturbed light ray instead of the actual light path.

For a point mass M  acting as the lens, the gravitational potential is

‘T) =  ~ (b 2 +  x 2)1/ 2 (L17)
with G the gravitational constant, b the impact parameter, and x the position along the

unperturbed light ray. Therefore, the deflection angle is
-  2 f™  _  n 2 f™  d $ (b ,x K  4 G M r
a = -r  V ±® (b , x) dx = -r  — —— dx = —p— b (1-18)

c2 J-™  c2 J -™  db c2b2
To study the deflection by a realistic lens that usually has a 3D mass-density distribution, 

we first introduce the thin lens approximation. Note that most of the deflection occurs when 

|x| ~  b which is almost negligible compared with distances between the lens and the source 

and between the observer and the lens. So the lens can be considered thin and replaced by 

a sheet of mass perpendicular to the line-of-sight. The plane of the mass sheet is referred 

to as the “lens plane” with a surface mass-density

s ( d  =  y  p(i, x) dx (1.19)

As a result, the deflection angle at position -  is the summation o f deflections by individual
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mass-element
S = 4 G [  E ( g ) « - r ( L 2 0 )

In a special case o f circularly symmetric mass-density distribution, we can simplify the

integral using the residual theorem to
e 4G , 1A. 4 G M (£)
a  — ^  Jo ^  ^ 7r‘̂  — ^  (1-21)

1.2.2 Lens Geometry and Lens Equation

Figure 1.12 displays a gravitational lens system that consists of a background source 

at a distance D s from the observer, and a massive object as the lens located at a distance 

Dd along the line-of-sight between the observer and the source. The distance between the 

lens and the source is D ds. Note that all the distances defined above are angular diameter 

distances and hence D ds =  D s — D d in general. The impact parameter is £ and the deflection 

angle at this position a  is given by Equation 1.21. The source has an angular position of fl 

as seen by the observer and an image is generated at an angle d. From geometry, it is clear 

that D sfl +  Ddsa  =  D sd under the small-angle approximation. Therefore, the positions of 

the image and the source are related by the following equation known as the “lens equation”

fl =  e -  a 0 )  ( 1 .2 2 )
Dds 
Ds

Consider a circularly symmetric lens and a very special case when the source lies exactly

where a =  a^y3-.

on the optical axis (fl =  0). The lens equation becomes

1 -  = °  ( i -23) n R  ^ crit
where R  =  D dd and the critical surface density Xcrit is defined as

c2 D
s.crit =  — ---------- —  (1-24)

cnt AttG  D dsD d 1 ;
It is clear that if the average surface density of the lens within an arbitrary radius is always 

less than the critical density Xcrit, then Equation 1.23 can never be satisfied and hence no 

extra images will be seen by the observer at distance D d. To ensure multiple images, there 

has to be a radius in the lens plane within which the average surface density is equal to 

Xcrit. Due to the rotational symmetry in this case, the source is imaged to a complete ring 

which is known as the “Einstein ring” (Figure 1.13). The corresponding radius in the lens 

plane is called the “Einstein radius” 0Ein, which, as will be shown later, is a very important 

and useful quantity because it is a direct indicator of the lens mass.

9e„, =  [4 g M f Elll) ]1/2 (1.25)
c D dD s
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F igu re  1.12: Illustration o f the gravitational lensing effect. A  massive object (yel
low blob) along the line-of-sight direction between the observer and the background 
source acts as a gravitational lens. Credit: Public Domain, (via Wikimedia Com
mons, http://commons.wikimedia.org/wiki/File:Gravitational-lensing-angles.png, Author: 
Michael Sachs)

http://commons.wikimedia.org/wiki/File:Gravitational-lensing-angles.png
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F igu re  1.13: A  gravitational lens system with an Einstein ring discovered in the SLACS 
for the Masses Survey (Shu et al. 2014, to be submitted). The bright blob in the center is 
an early-type galaxy selected spectroscopically from the Sloan Digital Sky Survey (SDSS) 
acting as the lens. The bluish ring (Einstein ring) around the lens is the lensed image o f a 
star-forming galaxy behind the lens. False color scales are employed for better illustration.
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1.2.3 Time Delay and Magnification

Due to the change in the refractive index and the light path, the arrival time o f a signal 

from the source will be delayed as compared to that in the absence of the lens. This delay 

is known as the “time delay.” Obviously, the time-delay contains contributions from two 

parts, gravitational delay tgrav due to the change in the speed of photons and geometric 

delay tgeom due to the change in the light path.

tgrav =  J  ^ J n — I d /  =  — J j J  <f>cU =  — J j J  $>(Dd9 ,x )d x  (1-26)

where the integration is along the unperturbed light path and D d6 is the two-dimensional

coordinates in the lens plane. We can define an effective lensing potential •0(0) as
2 d  f  _»

^  =  ~2 rTTT H D dO,x)dx (1.27)c2 D dDs J
Then

t g r a v  =  (1-28)
The change in the light path can be easily derived from the laws of sines and cosines to

be

A l =  - ^ ( d - ( 3 ) 2 (1.29)
2 D ds

and tgeom is

tg e o m  =  ~  =  ~  ^  (L30)

Note that both tgrav and tgeom are derived in the lens plane. To convert them to the 

observed quantities in the observer plane, an extra (1 +  zd) factor is needed. So eventually 

the time-delay function is

m  =  -  m 2 -  m ]  u . 3 1 )
c Dds 2

Note that the time-delay function explicitly contains the angular diameter terms which are 

cosmology-related quantities. So time-delays can be used to constrain cosmological parame

ters either independently or jointly with other methods (e.g., Blandford and Narayan, 1992; 

Jackson, 2007; Treu, 2010; Suyu et al., 2010, 2013).

Another property of GL is the magnification ^. According to the Liouville’s theorem, GL 

preserves the surface brightness, but changes the apparent size (solid angle) o f the source. 

The net effect is a flux magnification in lensed images. The solid-angle elements o f the

image 5d2 and the source 5fi2 are related by the Jacobi matrix
d6>i dfh 

562 =  "

We can define a matrix which is

9fil df3n 
902 99 2 
9th  9 f3 2

5/32 (1.32)

A - 9 !3 (S da^  (1 oo'i

It is easy to see that the magnification is the inverse of the determinant of matrix A
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At 6/32 
Define the following quantities

dfh dfh
dp! dp2
d9n dOo
dp! dpn detA

(1.34)

2
W ith these definitions, we have

«  =  ^(011 +  '022) (1-35)

7 1  =  ^ (0 1 1 -0 2 2 )  (1-36)

72 =  012 =  021 =  77 (012 +  021) (1-37)

and

A  =  1 -  K -  Y1 . (1.38)
V -7 2  1 -  K +  7 1 /

1
2 2 (1.39)(1 -  k)2 -  Y2 -  y2

^  is very sensitive to the gravitational potential as it depends on the second derivative of the 

potential. Therefore, it has been used as an effective probe of the lens mass distribution. 

The feasibility o f using flux-ratio anomaly to detect substructures in the lens was first 

discussed by Mao and Schneider (1998) and then supported by various observations and 

simulations (e.g., Metcalf and Zhao, 2002; Moustakas and Metcalf, 2003; Keeton et al., 2003; 

Kochanek and Dalal, 2004; McKean et al., 2007; Xu et al., 2009; MacLeod et al., 2013).

1.2.4 Singular Isothermal Ellipsoid Model

According to the definition o f the effective potential 0 ( ° )  (Equation 1.27), we can easily 

see that the deflection angle a  is the gradient o f 0 ( ° )

a  =  Ve 0 ( ° )  (1.40)

and 0 ( ° )  itself satisfies the following two-dimensional Poisson’s equation

V i m  =  2k =  2 ^  (1.41)
^ crit

In principle, we can solve for 0 ( ° )  for an arbitrary surface-density distribution using Green’s 

function as

0 (0 ) =  ^  J  k (0') In \6 -  0'\c\20' (1.42)

from which the deflection angle can be further derived. However, there are only a small 

fraction of density profiles that permit analytical solutions to the direct integration, among 

which the Singular Isothermal Ellipsoid (SIE) model has the largest degree of generality 

and at the same time well matches the observations.

In an SIE lens model, the two-dimensional density profile can be written as
^Iie VS 

2 0  sJ^x +  Q
where aSIE has the dimensionality o f velocity and represents the characteristic velocity

2 1



26

dispersion of the lens, and q is the minor-to-major axis ratio. The total mass within an 

intermediate axis R  is

M  (R) =  p i ?  (1.44)
G

The radius within which the average surface density is equal to the critical density, namely 

the Einstein radius, can be found as

* * ■  =  4 , # ^  (1.45)
c D s

This model is called “isothermal” because <tsie is assumed to be independent o f the radius.

In thermal equilibrium, the temperature T  is proportional to the velocity dispersion ctsie

as a result o f the virial theorem. Once ctsie does not depend on radius, the temperature is

constant across the entire galaxy and therefore, the galaxy is isothermal.

As proven by Kormann et al. (1994), the potential ^ ( 0) can be solved analytically to be 
/— 2*

0 (r ,0 )  =  r#Ein[sin(/> arcsin( \ /l — q2 sm<p) +  cos(/>arcsinh(----------—  cos<p)] (1.46)
1 -  q2 q

The deflection angle is simply the gradient of ^ (0)

a.T =  0Ein arcsinh( v̂ ~  cos <p) (1.47)

Oiy =  0E in ^ ^ = arcsin ( \ /l — q2 sin</>) (1-48)
\fl-q

1.3 Hierarchical Bayesian Inference
Astronomy has been significantly revolutionized after entering the new century by the 

developments of mirror production, adaptive optics, robotic optical fiber, space techniques 

and etc. Dedicated large all-sky surveys in various wavelength ranges such as the Sloan 

Digital Sky Survey (SDSS-I,II,III, York et al., 2000; Frieman et al., 2008; Eisenstein et al., 

2011a), Dark Energy Survey (DES), Wide-field Infrared Survey Explorer (WISE, Wright 

et al., 2010) and the Galaxy And Mass Assembly survey (G AM A, Driver et al., 2011) have 

shed light on the Universe unprecedentedly with enormous data (GBs to TBs) observed 

nightly. To “survive” from this data-explosion situation, effective tools which enable un

ambiguous studies o f large populations based on typically low signal-to-noise ratio (SNR) 

datasets are highly demanded. One such tool is the hierarchical Bayesian inference, which 

can deconvolve the observational uncertainties and hence probe the intrinsic properties of 

the entire population.

Bayesian inference is build upon the Bayes’ theorem which states that the conditional 

probability o f event A  given event B  multiplied by the prior probability of event B  is equal 

to the conditional probability o f event B  given A  multiplied by the prior probability of 

event A, and is also equal to the joint probability of event A  and B . In a mathematician’s
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language, that is

P r(A |B )Pr(B ) =  Pr(B| A )P r(A ) =  Pr(A , B ) (1.49)

Bayesian inference is used to determine how likely a hypothesis H  is true given the measured 

data D . Typically, a hypothesis H  can be represented by a particular model described by 

a set of physical parameters A. So we have

Pr(A|P, JT ) =  P r ( P p ; ^ ] A | J )  (1-60)

in which Pr(A|D, H ) is the posterior probability density function (PDF) o f parameter A 

given the data D  and assuming hypothesis H , Pr(D|A, H ) is the likelihood function of A, 

P r(A |H ) is the prior PD F of A and P r(D | H ) is the evidence Z . Notice that

Z  =  y  Pr(D|A, H )P r (A | H )d A  (1.51)

One relies on the evidence to determine which hypothesis/m odel better describes the 

observation. For instance, to select between H\ and H 2, we simply write down the ratio of 

the two evidences, known as the Bayes factor K , as
K = Z 1  =  P r ( ^ i )  =

Z 2 Pr(D|JT2) /P r (D | A 2, j r 2)P r(A 2|jr2)d A 2 1 ’
In statistics, a value of K  >  1 indicates that H  is more strongly supported by the

observation than H 2. More specifically, according to the interpretation by Jeffreys (1961),

1 <  K  <  3 means “barely worth mentioning,” 10 <  K  <  30 corresponds to a “strong”

confidence o f favoring H\, and K  >  100 is “decisive.”

Under a particular hypothesis, Bayesian inference can be used to constrain physical

parameters A based on the observational data D . Recall that the posterior PD F of A is

purely determined by the likelihood function and the prior PD F of A as the evidence itself

does not depend on A. Once the likelihood function o f A is constructed, under a reasonable

assumption of the prior (typically uniform or Gaussian distribution), one can map out the

posterior PD F of A.

A  hierarchical Bayesian model is introduced when the parameters A themselves can 

be parameterized by another set of parameters 6, in which case, 6 is identified as the 

hyperparameters. The likelihood function of the hyperparameters 6 can be constructed as 

L  (6|D, H ) =  Pr(D|6, H ) =  J  Pr(D| A, H  )Pr(A|6) dA (1.53)



CHAPTER 2

EVOLUTION OF VELOCITY-DISPERSION 
FUNCTION OF LUMINOUS RED 
GALAXIES: A HIERARCHICAL 
BAYESIAN MEASUREMENT

We present a hierarchical Bayesian determination of the velocity-dispersion function 

o f approximately 430,000 massive luminous red galaxies(LRGs) observed at relatively low 

spectroscopic signal-to-noise ratio (SNR ^ 3 -5  per 69k m s-1 ) by the Baryon Oscillation 

Spectroscopic Survey (BOSS) o f the Sloan Digital Sky Survey III (SDSS-III). We marginal

ize over spectroscopic redshift errors, and use the full velocity-dispersion likelihood func

tion for each galaxy to make a self-consistent determination of the velocity-dispersion 

distribution parameters as a function of absolute magnitude and redshift, correcting as 

well for the effects of broadband magnitude errors on our binning. Parameterizing the 

distribution at each point in the luminosity-redshift plane with a log-normal form, we 

detect significant evolution in the width of the distribution toward higher intrinsic scatter 

at higher redshifts. Using a subset of deep reobservations of BOSS galaxies, we demonstrate 

that our distribution-parameter estimates are unbiased regardless of spectroscopic SNR. 

We also show through simulation that our method introduces no systematic parameter 

bias with redshift. We highlight the advantage o f the hierarchical Bayesian method over 

frequentist “stacking” o f spectra, and illustrate how our measured distribution parameters 

can be adopted as informative priors for velocity-dispersion measurements from individual 

noisy spectra.

2.1 Introduction
Massive elliptical galaxies (EGs: Hubble, 1936a) are one o f the most important classes of 

astrophysical objects for galaxy evolution and cosmology. They represent the end stage of

^Published as Shu, Y ip in g , Bolton, A. S., Schlegel, D. J., Dawson, K. S., Wake, D. A., Brownstein, J. 
R., Brinkmann, J., Weaver, B. A., “Evolution of Velocity-Dispersion Function of Luminous Red Galaxies: 
A Hierarchical Bayesian Measurement,” 2012, AJ, 143, 90”
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hierarchical galaxy-formation processes (e.g., Kauffmann et al., 1993b; Baugh et al., 1996). 

and therefore their properties and scaling relations represent a key test for theories of galaxy 

formation within a cosmological context. In addition, since they are the most luminous and 

highly clustered galaxies, they serve as ideal cosmological tracers o f clusters and large-scale 

structure (e.g., Eisenstein et al., 2005b).

To a first approximation, EGs are “pressure-supported” rather than rotationally sup

ported (e.g., Bertola and Capaccioli, 1975; Illingworth, 1977; Binney, 1978), with their 

stellar motions characterized by a velocity dispersion a. Among the many observational 

parameters of massive elliptical galaxies, a is unique in its direct sensitivity to the depth of 

the galaxy’s gravitational potential (and therefore to its mass), and in its relatively weak 

dependence on observational aperture. In combination with galaxy sizes (i.e., half-light 

radii), velocity dispersions can be used to determine “dynamical masses” that are inde

pendent of stellar-population assumptions (e.g., Padmanabhan et al., 2004; Bolton et al., 

2008d). Dynamical masses can then in turn be used to trace the evolution o f EGs at 

fixed mass (e.g., van der Marel and van Dokkum, 2007; van der Wel et al., 2008; Cappellari 

et al., 2009), indicating a nuanced dynamical history despite generally passive star-formation 

histories at z <  1 (e.g., Thomas et al., 2005; Cool et al., 2008). Stellar velocity dispersion 

is also the most important single predictor o f strong gravitational lensing cross-sections 

(e.g., Turner et al., 1984; Bolton et al., 2008c), and can be used in combination with strong 

lensing observations to constrain the central mass-density structure o f elliptical galaxies 

at cosmological distances (e.g., Koopmans and Treu, 2002; Treu and Koopmans, 2004; 

Koopmans et al., 2006a). Stellar velocity dispersions are tied to nearly all other properties 

of EGs through multiple empirical scaling relations. Faber and Jackson (1976) found a 

correlation between luminosities o f early-type galaxies and their velocity dispersions a 

known as the Faber-Jackson Relation (FJR). The relation o f Kormendy (1977) ties the 

surface brightness (I)e with the effective radius R e. Both the FJR and Kormendy relations 

can be viewed as projections of the “fundamental plane” (FP, e.g., Djorgovski and Davis, 

1987; Dressler et al., 1987; Bernardi et al., 2003c) within the space spanned by log10 R e, (I)e 

and logio a. Furthermore, central black hole mass has been found to be correlated with the 

velocity dispersion o f the bulge via the M BH — a relation(e.g., Ferrarese and Merritt, 2000; 

Gebhardt et al., 2000; Kormendy and Bender, 2009). Together, these relations provide 

multiple constraints on the structure, formation, and evolution o f EGs .

Although velocity dispersion plays a starring role in the study of EGs, it is an “expensive” 

observable that must be measured spectroscopically. Hence, large samples of galaxies with
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well-measured velocity dispersions across cosmic time are largely unavailable. Measurements 

o f a are made by quantifying the line-of-sight Doppler broadening o f absorption lines relative 

to a set of template stellar spectra, either via the Fourier method (e.g., Sargent et al., 1977; 

Tonry and Davis, 1979) or the direct-fitting method (e.g., Burbidge et al., 1961; R ix and 

White, 1992). Both methods rely on the quality of galaxy spectra: for spectra o f low 

signal-to-noise ratio (SNR), uncertainties in the measured stellar velocity dispersion can be 

very large and significantly non-Gaussian. This aspect is of particular concern for galaxies 

at cosmological distance (faint even if luminous), which can only be measured at high SNR 

through substantial investment of spectroscopic observing time and aperture.

In this paper, we introduce a hierarchical Bayesian statistical method to measure the 

parameters of the distribution of stellar velocity dispersions within a population o f galaxies 

that has been observed with relatively low spectroscopic signal-to-noise ratio. We apply 

the method to approximately 430,000 luminous red galaxy (LRG) targets from the Baryon 

Oscillation Spectroscopic Survey (BOSS: Schlegel et al., 2009), one o f four survey projects 

within the Sloan Digital Sky Survey III (SDSS-III: Eisenstein et al., 2011b). We quantify 

the evolution of the velocity-dispersion function o f BOSS galaxies, and detect significant 

evolution in the intrinsic population RMS of log10 a at fixed absolute magnitude since 

z w 0.8.

This chapter is organized as follows. In Section 2.2, we describe the sample selection 

and the method for velocity dispersion measurement. Section 2.3 presents our statistical 

method for the measurement of the distribution of stellar velocity dispersions within a 

population of galaxies, including a verification using high-SNR reobservations o f a subsample 

o f galaxies and a test for redshift-dependent systematic biases. Section 2.4 presents the 

results o f our application of this method to the BOSS sample, showing the evolution o f the 

velocity-dispersion function at fixed magnitude. Discussion and conclusions are presented 

in Section 2.5. Throughout the paper, we assume a standard general-relativistic cosmology 

with Qm =  0.3, Qa =  0.7 and H0 =  70 km s-1  M pc- 1 .

2.2 Spectroscopic Data
2.2.1 Sample Selection

We use spectroscopic data obtained by the BOSS project via the 2.5-m SDSS telescope 

located at Apache Point Observatory in Sunspot, New Mexico (Gunn et al., 2006). The 

primary science goal o f BOSS is the detection of the baryon acoustic feature in the two-point 

correlation function o f galaxies (and quasar absorption systems), from which to constrain the
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distance-redshift relation and the nature of dark energy. BOSS also offers a unique resource 

for the study of the properties and evolution o f massive galaxies. The BOSS footprint covers 

approximately 10,000 deg2 in five imaging filters (ugriz, Fukugita et al., 1996), and will by 

2014 obtain spectra o f about 1.5 million LRGs out to redshift z ~  0.8. Note that the 

majority of the BOSS LRG targets are massive EGs, although there is a small fraction of 

late-type galaxies as well as unresolved multiples, particularly at the higher redshift end 

(Masters et al., 2011).

The BOSS spectra are broadly comparable to SDSS-I (York et al., 2000) spectra in 

resolution (R  w 2000), and cover a wavelength range from 3,600A to 10,000A. The primary 

design goal o f BOSS is to measure as many redshifts as efficiently as possible, in order 

to map the largest possible volume of the universe. Consequently, the SNR of the galaxy 

spectra is significantly lower than in SDSS-I, with typical SNR values of 3 to 5 per 69 km s-1 

(rebinned) pixel, as compared with >  10 per pixel in SDSS-I. Thus, although the BOSS 

spectroscopic database is by far the largest available for the study of massive galaxies, the 

individual spectra are well below the SNR threshold of about 10 per A  generally regarded 

as a minimum for acceptable velocity-dispersion measurement on a galaxy-by-galaxy basis. 

Motivated by this context, we develop the Bayesian analysis method presented below.

Spectroscopic calibration, extraction, classification, and redshift measurement of all 

BOSS galaxy spectra are carried out using the id ls p e c2 d  software (see, e.g., Aihara et al., 

2011), written originally for SDSS-I and recently updated to handle the data format and 

noise regime of BOSS. In selecting our analysis sample, we make the following cuts based 

upon the redshift pipeline output:

• We use only the best spectroscopic observation of any given galaxy target as some ob

jects are observed more than once (SPECPRIMARY=1 according to SDSS terminology).

• We use only objects that were both targeted as galaxies and spectroscopically con

firmed as galaxies

• We require a confident redshift measurement with no warning flags (ZWARNING =  0 

according to SDSS term inology).1

These cuts return approximately 430,000 galaxies from the first 1.5 years of BOSS spectro

scopic observations, with redshifts ranging from zero to 1, but concentrated primarily over 

the interval 0.2 <  z <  0.8.

For all selected galaxies, we use the measured spectroscopic redshifts and SDSS broad

band imaging colors to compute absolute rest-frame V-band magnitudes and associated

1For BOSS galaxies, the specifically relevant flag is ZWARNING_N0QS0 =  0 (Bolton et al., in prep.)
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uncertainties via the s d s s 2 b e s s e ll  routine implemented in the k c o r r e c t  software o f Blan

ton and Roweis (2007).

The details o f the BOSS galaxy target selection, and the corresponding incomplete

nesses, are the subject o f a separate paper (Padmanabhan et al., in preparation). Here we 

summarize the target selection cuts for the two main galaxy target classes that we focus 

upon in our current study. The first is the CMASS sample (for “constant mass” ), which is 

selected photometrically to deliver LRGs o f approximately constant stellar mass over the 

redshift interval 0.3 <  z <  0.8, and which constitutes approximately 76% of the galaxies 

selected above. The second sample, LOW Z, is selected to target LRGs at lower redshifts, 

and represents the remaining 24% of the selected galaxies. Defining the following quantities 

(Eisenstein et al., 2001a; Cannon et al., 2006):

c|| =  0.7(g -  r) +  1.2[(r -  i) -  0.18] (2.1)

c± =  (r -  i) -  (g -  r )/4 .0  -  0.18 (2.2)

d± =  (r -  i) -  (g -  r )/8 .0  (2.3)

ifiber2 =  i-band fiber magnitude for 2" fibers, (2.4)

the CMASS sample is defined by the photometric cuts:

17.5 <  i <  19.9 (2.5)

r -  i <  2 (2.6)

d± >  0.55 (2.7)

ifiber2 <  21.7 (2.8)

i <  19.86 +  1.60(d± -  0.80) (2.9)

as well as a cut to exclude galaxies with major-axis half-light radii greater than 8". Equa

tions (2.5) and (2.7) aim to select galaxies between redshifts z ~  0.4-0.8, while Equa

tion (2.9) attempts to impose a cut at constant stellar mass across this redshift range. The 

LO W Z sample is defined by the cuts:

r <  13.5 +  cy/0.3 (2.10)

|c± | <  0.2 (2.11)

16 <  r <  19.6 . (2.12)

Equation (2.10) sets up a magnitude threshold as a function of redshift and Equation (2.11) 

picks out low-redshift galaxies specifically.

The redshift-absolute magnitude distributions o f these two BOSS galaxy samples, with 

associated 1D projections, are plotted in Figure 2.1. In the following analysis, we will treat 

the two populations separately, since the combined sample does not define a simple locus



33

2.0^104E

-25 E_.__.__.__i__.__.__.__i__.__.__.__i__.__.__.__i__.__.__._.......... i......... i
0.0 0.2 0.4 0.6 0.8 1.0 1000 2000 3000

z

F igu re  2.1: Distribution o f galaxies for our sample, along with histograms of redshift z 
and V-band absolute magnitudes M V . LO W Z galaxies (black) and CMASS galaxies (gray) 
are plotted separately. For both the samples, contours are drawn at constant number 
density in the z -M V plane, enclosing 50%, 90%, and 99% of the sample. Credit: Figure 1 
in the referred publication “Evolution o f the Velocity-dispersion Function o f Luminous Red 
Galaxies: A  Hierarchical Bayesian Measurement,” Shu, Yiping, et al., 2012, AJ, 143, 90. 
Reproduced by permission o f the AAS.
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in luminosity-redshift space, with LO W Z galaxies being o f generally higher luminosity over 

the redshift range where the two samples overlap.

2.2.2 Velocity Dispersion Extraction
Our strategy for extracting velocity-dispersion information is to make use o f the full 

velocity-dispersion likelihood function for each galaxy spectrum. To do this, we make 

use of the IDL routine v d i s p f i t  within the id ls p e c 2 d  product of spectroscopic analysis 

software. This software has been extensively tested in the SDSS-I, and has been upgraded 

for the analysis o f BOSS data. Velocity dispersions measured with this software have been 

the basis for multiple studies o f the dynamics o f EGs (e.g., Bernardi et al., 2003a,b,c; Sheth 

et al., 2003; Padmanabhan et al., 2004; Koopmans et al., 2006a). To summarize briefly: 

v d i s p f i t  uses a set o f stellar eigenspectra derived from a principal-component analysis 

(PC A ) decomposition of the ELODIE stellar spectrum library (Prugniel and Soubiran, 

2001). The eigenspectra are convolved and binned to the resolution and sampling o f the 

BOSS spectra, then broadened by Gaussian kernels of different trial velocity dispersions. 

The broadened templates are then shifted to the redshift of the galaxy under consideration. 

After masking out regions containing common emission lines, a linear least-squares fit 

is performed to obtain a best-fit model spectrum at each trial velocity dispersion. The 

resulting curve of x 2 as a function of trial velocity dispersion encodes the likelihood function 

of velocity dispersion given the data. For measurements from high signal-to-noise spectra, 

the position o f the minimum x 2 is adopted as the maximum-likelihood estimate o f the 

galaxy’s velocity dispersion. Below, rather than adopt these estimates, we will work with 

the full likelihood function.

In this procedure, we must choose the number o f stellar eigenspectra to use in forming 

the template basis. The pipeline analysis of SDSS-I data used the first 24 P C A  modes. For 

the much lower signal-to-noise BOSS data, an acceptable x 2 can be obtained using only the 

first 5 P C A  modes, and hence we restrict our basis to this smaller number of eigenspectra 

so as to avoid fitting noise fluctuations.

As described above, before being fit to the galaxy spectra, the stellar eigenspectra are 

shifted by the appropriate galaxy redshifts. If the redshifts have nonnegligible errors, the 

corresponding offsets can introduce a bias into the measured velocity dispersion. Although 

the BOSS spectra provide redshifts with a precision well in excess o f what is required 

for large-scale structure studies and absolute-magnitude determinations, their errors can 

be nonnegligible on the scale of internal galaxy velocity dispersions. Therefore, we im

plement a marginalization over redshift errors in our analysis. Specifically, we modify the
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v d i s p f i t  routine to take a radial velocity-marginalization range A z  (expressed in constant- 

velocity pixels) and the redshift error bz (the ±68%  confidence interval as estimated by the

where zbest is the best-estimate redshift from the BOSS spectroscopic pipeline. The choice of 

a Gaussian prior is made because the galaxy redshifts have been determined using absorption 

and emission-line information over the full optical range of the BOSS spectrograph, whereas 

the velocity-dispersion fitting is done only over the 4100-6800 A  rest-frame range covered 

by the ELODIE spectra, while also masking the wavelength positions o f common emission 

lines. We also explored the use of a flat prior to completely marginalize over redshift in the 

velocity dispersion analysis, and found only a negligible change (at most a few percent) in 

the derived relations. For most galaxies, the effect of this marginalization on the x 2 curve 

is insignificant, but since we wish to avoid introducing any spurious broadening into our 

population analysis, we apply the procedure to all spectra.

In this work, we do not make any aperture correction for velocity dispersions, although 

the angular BOSS fiber radius of 1" subtends a different physical length scale as a function 

of redshift. Since aperture velocity dispersions are seen in the local universe to depend 

on aperture radius only to a weak power of approximately 0.04 to 0.06 (e.g., J0rgensen 

et al., 1995; Mehlert et al., 2003a; Cappellari et al., 2006b), this effect should be relatively 

insignificant. For example, taking a redshift range spanning the majority of our CMASS 

sample, the angular size of a fixed physical length at z =  0.8 is about 72% of its angular size 

at z =  0.4. Assuming the velocity dispersion within an aperture decreases as the aperture to 

the power -0 .0 5  (a representative compromise value between the previous three references), 

this would correspond to a systematic change in measured velocity dispersion o f about 1.7%, 

which is well below the level o f other uncertainties in our analysis. In addition, the typical 

atmospheric seeing of approximately 1.8" delivered to the BOSS spectroscopic focal plane 

will dilute the significance of the varying projected fiber scale. Essentially, BOSS velocity 

dispersions will represent a fair luminosity-weighted average value over the half-light radius 

of most target galaxies, which have half-light radii on the order of 1/;.

id ls p e c 2 d  pipeline) as arguments. Then we calculate x 2(a, z) for a set o f trial redshifts in 

the range z ±  A z  and define a new effective x 2(a) by integrating over z as

We assume a Gaussian probability distribution for z given by

(2.14)
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2.3 Statistical Population Analysis Formalism
The results of Bernardi et al. (2003b) suggest that the distribution of velocity disper

sions for early-type galaxies at fixed luminosity can be well-approximated by a log-normal 

function. Motivated by this, we will assume a Gaussian distribution in log10 a  with mean 

m and intrinsic scatter s:

j9(logio a\m, s) = - ^ L -  exp[ ^°gl°J2— — ] (2.15)

We will treat m and s as functions of redshift and absolute magnitude, although we will 

suppress this dependence in our notation for convenience. Compared to the SDSS-I studies 

by Bernardi et al. (2003b) and Sheth et al. (2003), we have a much larger sample with greater 

redshift coverage, so we may investigate the evolution of both the mean and intrinsic scatter 

of log10 a  with redshift and luminosity as encoded by these two distribution parameters (see 

also Bezanson et al. 2011 for a complementary analysis in terms of photometric velocity- 

dispersion proxies). Our strategy will be to analyze samples binned by an interval of 0.04 

in redshift z, and by 0.1 in absolute magnitude MV.

2.3.1 Frequentist A pproach

As mentioned above, the SNR of BOSS galaxy spectroscopy is typically rather low, 

especially at the high-redshift end of the survey. Therefore, point estimation of the velocity 

dispersion of individual galaxies is of questionable reliability. Hence, we resort to analyzing 

the data by binning galaxies in the z-M v plane, requiring at least 100 galaxies in every 

single bin. The most obvious first approach to determining the mean velocity dispersion in 

these bins is to remove the small relative redshift differences within the bin, stack all the 

spectra directly, and analyze the resulting high-SNR combination (see Figure 2.2). Although 

we do not adopt this method for our ultimate determinations of m and s, it is instructive 

to consider how such an approach relates to these parameters.

While a velocity dispersion can be measured at high SNR from the stacked spectrum, the 

measured value bears a nontrivial relation to the parameters m and s, which we now derive. 

Assuming equal luminosities within the bin (which basically holds by construction due to 

binning in absolute magnitude), what we measure from the stack aStack is the population- 

weighted expectation value of a 2, i.e.

astack =  (a2) =  y a2 P(logl0 a |m ,s)d lo gl0 a  (2.16)
The variance of as2tack is given by

Var((js2tack) =  ^ V a r (a2) = ^ ( ( ^ 4) -  W2)2) (2.17)

with N  being the number of galaxies in the bin.
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Figure 2.2: Results for stacking of spectra within a single redshift-luminosity bin. Panels 
(a) and (b) show typical individual spectra, while panel (c) shows the high-SNR stacked 
spectrum for that bin, resulting from averaging the spectra of ~  200 galaxies. Credit: Figure 
2 in the referred publication “Evolution of the Velocity-dispersion Function of Luminous 
Red Galaxies: A Hierarchical Bayesian Measurement,” Shu, Yiping, et al., 2012, AJ, 143, 
90. Reproduced by permission of the AAS.
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Making use of the following relation, which can be derived for our log-normal form of 

Equation (2.15):

(an) =  j a n p(logio a |m ,s)dlogio a

=  10[n m+n2 ln(10) s2/2] (2 18)

we find that

attack =  10[2 m+2ln(10) s2] (2.19)
(a 2 )2 2

V a r{a l  ack) =  104 ln(10) *2 -  1] (2.20)

Thus we see that the velocity dispersion measured from the stacked spectrum is not 

given by the mean log-a value alone, but rather includes a contribution from the width of 

the population distribution as well. In principle, if a good estimator of Var(a2tack) can be 

obtained, the system can be closed and solved for m and s independently. Although we 

attempted to estimate Var(a2tack) via bootstrap resampling within each bin, we found the 

treatment of observational errors and varying signal-to-noise ratio among the spectra to 

be intractable within this framework. Rather than working further from measurements of 

stacked spectra, we proceed to the hierarchical Bayesian method described in the following 

section.

2.3 .2  H ierarchical B ayesian A pproach

To constrain the distribution parameters m and s within each redshift-magnitude bin, 

we consider the following expansion of the likelihood function L (m , s|{d}) in the bin:

L  (m,s|{d}) =  Pr({d}|m, s) =  ]^[ Pr(di|m, s)
i

= n / P r ( d i |  logio a)Pr(logio a |m ,s)dlogio a  (2.21)
i

Here {d} is the set of all spectra in the bin, with each element di representing the spectrum 

of the ith galaxy. The expression Pr(di | logio a) is related to the x 2 (logio a) function by

Pr(di | logio a) «  exp X2(logio a) (2.22)
2

and Pr(logio a|m, s) is given by Equation (2.15). Translating into Bayesian terms, we have 

a posterior probability for m and s given by

P r ^ j s ^ d } )  x  Pr({d}|m ,s)P r(m ,s)  (2.23)

with Pr(m, s) being the prior probability distribution for m and s. For simplicity, we 

assume a uniform prior on m and s over a reasonable range. In actuality, we find that the 

likelihood is quite strongly peaked in each bin, so the exact nature and range of the prior 

are insignificant.
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2.3 .3  V erification

To verify the correct functioning of our Bayesian approach, we make use of data from 

BOSS plate 3851. Due to a CCD failure on one of the two BOSS spectrographs that 

temporarily suspended normal survey operations, 500 of the 1000 targets on this plate were 

plugged and observed for a total integration time of 7 hours (28 exposures of 15 minutes 

each) over the course of several nights ending on 2010 April 12, denoted within the SDSS-III 

database by the modified Julian date (MJD) of 55298. Subsequent to the replacement of 

the failed CCD, the entire plate was replugged and observed for a more typical BOSS 

integration time of 1.75 hours total on MJD 55302. The set of reobserved targets allows us 

to compare BOSS galaxy spectra of standard survey depth with spectra of the same objects 

at essentially double the nominal survey SNR. We use these repeat observations to verify 

that our method (1) does not have a signal-to-noise ratio-dependent bias in the estimation 

of velocity-dispersion distribution parameters, and (2) reproduces the known distribution 

of velocity dispersions within a controlled sample, as measured from the high-SNR set of 

spectra.

Between the deep and shallow reobservations, there are 308 galaxies which have equal 

redshifts (within Az =  ±0.005) and classifications for both observation dates. Since the 

sample is heterogeneous in magnitude and redshift, we select a subsample with a controlled 

distribution in velocity dispersion. We restrict our attention to galaxies that have their 

individual velocity dispersions measured at SNR of 10 or more from the 7-hour observations, 

and that have redshifts between 0.4 and 0.6. We then select a random subsample of 125 

galaxies from this set so as to have a Gaussian histogram in log10 a with a mean of m =  2.33 

and an intrinsic RMS scatter of s =  0.07. The histogram of this subsample, along with the 

histogram of the same sample as constructed from galaxy-by-galaxy measurements using 

the 1.75-hour observations, is shown in Figure 2.3.

The frequentist formulas given by Equations (2.19) and (2.20) do not account for 

observational error, and hence we do not use them to solve for m and s estimates for 

our relatively low signal-to-noise BOSS survey data. However, our subsample of high 

signal-to-noise 7-hour observations allows us to test them, which we do before proceeding 

to the verification of our Bayesian analysis framework. First, we use Equation (2.19) with 

a mean of 2.33 and an intrinsic scatter of 0.07 to predict a value of astack =  219 km s-1 , 

which is in very good agreement with the result of (222 ±  12)kms-1 that we obtain by 

fitting the stacked spectrum of this set of 125 galaxies directly. Similarly, we predict 

[Var(a2tack)]1/4 =  40kms-1 from Equation (2.20), which is in reasonable agreement with
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Figure 2.3: Engineered subsample Gaussian histogram in log10 a  constructed using 
measurements from 7-hour BOSS observations (black), with a histogram of the same 
subsample using velocity dispersions measured from 1.75-hour observations (gray). The 
two histograms have been given a slight relative horizontal offset, for display purposes. The 
vertical dashed line indicates the mean log10 a  value of 2.33 for the subsample. Note the 
relative broadening of the 1.75-hour histogram due to the effects of observational error. 
Credit: Figure 3 in the referred publication “Evolution of the Velocity-dispersion Function 
of Luminous Red Galaxies: A Hierarchical Bayesian Measurement,” Shu, Yiping, et al., 
2012, AJ, 143, 90. Reproduced by permission of the AAS.
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the value of 46kms-1 obtained through a bootstrap resampling process. In both cases, the 

agreement is not exact because there is still some observational error even in the 7-hour 

data, but as mentioned above, we will pass to the Bayesian framework to quantify these 

effects.

We next carry out the estimation of the m and s parameters of the selected subsample of 

objects, using the Bayesian approach described above, for both the 7-hour and the 1.75-hour 

data sets. Figure 2.4 shows the resulting posterior probability density for these parameters 

as estimated from both data sets. As expected, we see that the posterior PDF is tighter for 

the 7-hour data. More importantly, we see no significant bias in the posterior PDF between 

the low-SNR and high-SNR data sets. This is especially significant for the estimation of the 

s parameter: if we were not handling our observational uncertainties correctly, we might 

expect to infer a broader intrinsic distribution (higher s value) from the noisier data, but 

this not the case. We also see that the parameters used to engineer the subsample are 

recovered with no significant bias in m. We see a slight offset of the 7-hour maximum 

posterior s value from the input value used to engineer the sample. This is in the direction 

and of the size to expected given the observational error of the 7-hour individual-spectrum 

velocity dispersion measurements, which have an RMS signal-to-noise of about 17. This 

corresponds to an observational broadening of about 0.025 dex in the engineered histogram 

of Figure 2.3, which is deconvolved by the Bayesian parameter estimation procedure to give 

the lower recovered s value seen in Figure 2.4.

Another concern is that there might be a systematic bias with redshift, since the spectral 

regions used by v d is p f i t  in fitting for velocity dispersions (rest frame wavelength range 

from 4,100A to 6,800A) move to the redder and noisier parts of the spectrum as the 

redshift gets higher. In order to test this, we construct another controlled subsample with 

152 galaxies of redshift z < 0.2 and very high SNR. Then we take the best-fit template 

combination models of those 152 galaxies returned by v d is p f i t  and redshift them to 

progressively higher redshift bins, giving them a uniform random distribution over a bin 

width of Az =  0.04 in each case (to match our actual binning). At each new redshift, 

the model spectra are added to sky-subtracted BOSS sky fibers to simulate realistic survey 

noise, and scaled individually in flux to give a typical median SNR at that redshift bin. We 

then analyse the simulated redshifted samples with our Bayesian method to estimate the 

posterior PDF of m and s. The results are shown in Figure 2.5 and Figure 2.6, for 5 separate 

redshift bins. We see that the recovered parameters are consistent within observational error 

across all redshifts, with no apparent redshift-dependent bias.
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Figure 2.4: Credible-region contours of constant posterior probability density for m and 
s parameters measured from the engineered test subsample of galaxies observed with both 
7-hour integrations (black) and 1.75-hour integrations (gray). The symbol is the location of 
the parameters chosen for the construction of the test subsample. The offset in s between the 
contours and the symbol is a result of the proper deconvolution of observational uncertainty 
that is implemented by the Bayesian method. Credit: Figure 4 in the referred publication 
“Evolution of the Velocity-dispersion Function of Luminous Red Galaxies: A Hierarchical 
Bayesian Measurement,” Shu, Yiping, et al., 2012, AJ, 143, 90. Reproduced by permission 
of the AAS.
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Figure 2.5: Contours of constant posterior probability density (68%, 95%, and 99%) for 
m and s parameters obtained from a controlled subsample of 152 galaxies in 5 different 
redshift bins with gradually reduced SNRs. Credit: Figure 5 in the referred publication 
“Evolution of the Velocity-dispersion Function of Luminous Red Galaxies: A Hierarchical 
Bayesian Measurement,” Shu, Yiping, et al., 2012, AJ, 143, 90. Reproduced by permission 
of the AAS.
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Z

Figure 2.6: The best estimated m (Diamond) and s (Triangle) values for the controlled 
subsample of 152 galaxies at 5 different redshift bins. Credit: Figure 6 in the referred 
publication “Evolution of the Velocity-dispersion Function of Luminous Red Galaxies: A 
Hierarchical Bayesian Measurement,” Shu, Yiping, et al., 2012, AJ, 143, 90. Reproduced 
by permission of the AAS.
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Finally, to rule out any significant dependence of our measurement on airmass and fiber 

position within the BOSS spectrographs, we make use of data from plates 3615, 3647, 4238, 

and 4239. These four plates cover roughly the same area of sky, but with different plate 

drillings that place the same objects in very different fibers within the spectrograph system. 

They were also observed over a range of different airmasses on multiple nights. From these 

plates, we construct several subsamples of spectra, all of which include the same galaxies, 

but are drawn from different plates and/or observations. As with the previous tests, we 

recover consistent estimates of m and s from the analysis of all these samples.

Based on the above three tests, we conclude that our method recovers accurate estimates 

of the population velocity-dispersion distribution parameters.

2.3 .4  M agnitu de Error C orrection

Our method of determining Pr(di| logio a) incorporates an explicit marginalization over 

redshift error, and propagates all observational uncertainty in the velocity dispersion of a 

given galaxy. Our binning in redshift and absolute magnitude introduces additional error 

possibilities that we must account for. In the case of redshift, the errors are negligible relative 

to the bin width of Az =  0.04, and are unlikely to contribute any artificial broadening to 

our determination of the redshift dependence of m and s. The absolute magnitude errors 

are, however, nonnegligible in comparison to the magnitude bin width of AMy =  0.1, and 

thus we use the following technique to estimate and compensate for the broadening effect of 

the observational scattering of galaxies between absolute-magnitude bins (see Figure 2.1).

Suppose (m,s) are the true values within a bin, and (mi ,s i ) are the values that we 

determine in the presence of absolute-magnitude errors. We assume that

m i =  m +  5m (2.24)

si =  s2 +  5s2 (2.25)

where 5m and 5s are the biases introduced by magnitude errors. To estimate and remove 

these biases, we add additional random errors to all our galaxy absolute magnitudes M v  to 

give

MV  =  M y  +  e5My (2.26)

where e is a normally distributed random number with mean 0 and standard deviation 1, 

and 5M y  are the galaxy-by-galaxy absolute-magnitude errors estimated by sdss2 b esse ll 

(propagated from SDSS ugriz apparent magnitude errors). We repeat our analysis, binning 

instead in M 'v , and denoting the new distribution parameter results by m2 and s2. We 

assume these new determinations are related to mi and si in the same way as mi and si
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are related to m and s, which implies that

m2 = m +  2 bm (2.27)

s2 =  s2 +  2 bs2 (2.28) 

Thus the biases due to absolute magnitude errors bm and bs can be removed to yield

m =  2 m 1 — m2 (2.29)

s = s j ' 2 s \ - s l  (2.30) 

In practice, we find typical values for bm of 0.01, and for bs of 0.04.

2.4 Results: Evolution of the Velocity-Dispersion 
Function

In this section, we present the results of the application of our hierarchical Bayesian 

velocity-dispersion distribution measurement technique to the approximately 103,000 galax

ies in our LOWZ sample and 330,000 galaxies in our CMASS sample.

2.4.1 LOW Z Sam ple

The LOWZ sample extends to z w 0.5. The two-dimensional contour plots of m and 

s (Figure 2.7) and scatter plots in different redshift bins (Figure 2.8) show that the mean 

m is strongly correlated with absolute magnitude, while the intrinsic scatter s shows no 

significant variation. Tracks of constant stellar mass assuming the LRG stellar population 

model of Maraston et al. (2009) have also been overplotted in Figure 2.7, and used to convert 

from an absolute-magnitude to a stellar-mass baseline in Figure 2.8. Galaxies in the LOWZ 

sample have estimated stellar masses between approximately 1011M© and 1012M©.

To quantify the variation of the m and s parameters with redshift and absolute magni

tude, we consider a simple model specified by:

m0 =  A^My +  Bm log1o(1+z) + 6 ^  (2.31)

s0 =  A°My +  B° log 10(1 +  z) +C° (2.32)

with the “0” superscript denoting the LOWZ sample specifically. Performing a linear least 

squares fit to the individual bin data points, we obtain

A°m =  —0.0880 ±  0.0012 A° =  0.006 ±  0.002

=  —0.087 ±  0.018 =  —0.08 ±  0.03

6 ^  =  0.37 ±  0.02 C° =  0.20 ±  0.04 (2.33)

We can translate the resulting scaling into the standard form for the FJR, with luminosity 

L <x ax by recognizing that x =  —0.4/A ^. The resulting value of x =  4.55 ±  0.06 is 

in reasonable agreement with the canonical local-universe value of x =  4. Thus, BOSS
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Figure 2.7: Contour plots of m & s for LOWZ sample galaxies. Top panels in (a) and (b) 
show the map of maximum posterior probability density functions of m and s, respectively, 
over the range of the plane with bins containing at least 100 galaxies. Middle panels 
show low-order bivariate model fits to these maps constructed as described in the text, and 
residuals (top minus middle) are shown in the bottom panels. Dashed lines in the top panels 
show tracks of constant stellar mass from the LRG population model of Maraston et al. 
(2009). Credit: Figure 7 in the referred publication “Evolution of the Velocity-dispersion 
Function of Luminous Red Galaxies: A Hierarchical Bayesian Measurement,” Shu, Yiping, 
et al., 2012, AJ, 143, 90. Reproduced by permission of the AAS.
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Figure 2.8: Scatter plots of m & s versus MV (panels (a) and (b)) and log10(M*/M©) 
(panels (c) and (d)) for LOWZ sample galaxies in different redshift ranges. Credit: Figure 
8 in the referred publication “Evolution of the Velocity-dispersion Function of Luminous 
Red Galaxies: A Hierarchical Bayesian Measurement,” Shu, Yiping, et al., 2012, AJ, 143, 
90. Reproduced by permission of the AAS.
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LOW-Z LRGs define an FJR whose slope and scatter has little dependence on redshift and 

luminosity; there is correspondingly little evidence for dynamical evolution in this sample 

since roughly z =  0.5.

2.4.2 C M A SS Sam ple

The CMASS galaxy sample extends from z w 0.3 to z w 0.8. The results of our a 

distribution parameter measurements are shown in Figures 2.9 and 2.10, once again using 

tracks of constant stellar mass based on the Maraston et al. (2009) population model. Using 

the same model form as used for the LOWZ sample above,

m i =  A^My +  Bm logio(1+z) +Cm (2.34)

s1 =  A^My +  B,1 logio(1 +  z) +CS (2.35)

(with the “1” superscript denoting the CMASS sample specifically), and again doing a linear 

least-squares fit, we find that

Am =  -0.1128 ±  0.0010 A, =  0.0263 ±  0.0016

Bm =  -0.77 ±  0.02 B l  =  0.82 ±  0.04

Cm = -0.089 ±  0.019 Ci =  0.52 ±  0.03

In the case of the CMASS sample, the FJR is still apparent, but the scaling exponent 

in L rc ax is now x =  3.55 ±  0.03. This observation that the FJR becomes “shallower” at 

higher redshift can be interpreted in terms of mass-dependent star-formation history (e.g., 

Cowie et al., 1996; di Serego Alighieri et al., 2005), with less massive (lower a) galaxies 

having undergone more recent star formation and thus fading more rapidly with cosmic 

time relative to more massive galaxies.

There is a clear evolution in the zero-point of the m versus M v  relation (upper left 

panel in Figure 2.10) with redshift. This evolution is essentially eliminated in the lower 

left panel of Figure 2.10, which translates to a baseline of constant stellar mass. Hence, 

the evolution of the m versus M v  relation in the CMASS sample is consistent with passive 

stellar evolution.

It can easily be seen from Figures 2.9 and 2.10 that s is no longer constant with redshift 

at fixed luminosity or stellar mass. The significance of this result is encapsulated in the 

nonzero value of B1 =  0.82 ±  0.04 given above. To quantify this result in more detail, we fit 

the s versus Mv  relation with a linear model at each redshift bin, and plot the zero-point of 

this relation as a function of redshift in Figure 2.11. We see that within the CMASS sample, 

the intrinsic width s of the velocity-dispersion function at fixed magnitude or stellar mass 

decreases with cosmic time (i.e., broader distribution width at higher redshift), especially
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F igure 2.9: The same as Figure 2.7 but for CMASS galaxies. Credit: Figure 9 in 
the referred publication “Evolution of the Velocity-dispersion Function of Luminous Red 
Galaxies: A Hierarchical Bayesian Measurement,” Shu, Yiping, et al., 2012, AJ, 143, 90. 
Reproduced by permission of the AAS.
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Figure 2.10: The same as Figure 2.8 but for CMASS galaxies. (Note that the scales 
of these panels are expanded relative to Figure 2.8.) The increase of intrinsic scatter with 
redshift can be seen in the right-hand figure. Credit: Figure 10 in the referred publication 
“Evolution of the Velocity-dispersion Function of Luminous Red Galaxies: A Hierarchical 
Bayesian Measurement,” Shu, Yiping, et al., 2012, AJ, 143, 90. Reproduced by permission 
of the AAS.
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z

Figure 2.11: Variation of the intrinsic width s of the CMASS population distribution in 
log10 a  as a function of redshift. Credit: Figure 11 in the referred publication “Evolution 
of the Velocity-dispersion Function of Luminous Red Galaxies: A Hierarchical Bayesian 
Measurement,” Shu, Yiping, et al., 2012, AJ, 143, 90. Reproduced by permission of the 
AAS.
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at redshifts z > 0.6. This is consistent with our tentative detection of evolution in the 

FJR slope between the LOWZ and CMASS samples, in the sense that a given range in 

luminosity encompasses a larger range of velocity dispersions at higher redshift, but the 

signal is too large to be explained by this effect alone (since the FJR slope is not seen to 

evolve significantly within the CMASS sample alone). We are therefore seeing increased 

dynamical heterogeneity at fixed luminosity in the CMASS sample at higher redshifts.

We note that the apparent increase in the intrinsic a distributions at high redshift 

cannot be explained in terms of surface-brightness selection effects. Through the FP 

or Kormendy relations, velocity dispersion at fixed luminosity is correlated with surface 

brightness. At the high-redshift end of the CMASS sample, we can expect a degree of 

incompleteness at both ends of the surface-brightness distribution. On the one hand, 

relatively low surface-brightness galaxies will have fainter magnitudes within the BOSS 

spectroscopic fiber, and will thus be less likely to be targeted, and less likely to have 

confident and correct spectroscopic redshift measurements even if targeted. On the other 

hand, relatively high surface-brightness galaxies (again, at fixed luminosity) run the risk of 

being unresolved in star-galaxy separation. Consequently, we might expect the distribution 

of velocity dispersion at fixed magnitude to be made more narrow at high redshift by these 

considerations, which goes in the opposite sense to the trend we detect.

2 .4 .3  A pp lication  to  Individual Spectra

Our results characterize the dynamical properties of the population of LRGs targeted 

by BOSS. The parameters of the population can in turn be used to inform our estimates 

of the velocity dispersion values of individual noisy BOSS spectra. For this application, 

we want to use distribution parameters uncorrected for broadband magnitude errors, since 

these same errors will be present in the photometric data for the individual galaxies whose 

spectra we wish to analyze.

For LOW-Z LRGs, without magnitude error correction, we have

m0 =  -0.0829My -  0.042log10(1 +  z) +0.48 (2.36)

s0 =  0.006My -  0.09log10(1 +  z) +0.22 (2.37)

and for CMASS galaxies, without magnitude error correction, we have

m 1 = -0.0973My -0.60log10(1 +  z) +  0.23 (2.38)

s 1 =  0.0240My +0.76log10(1 +  z) +  0.49 (2.39)

We can then take the posterior probability Pr(m, s|{d}) from the entire sample as a prior 

probability for the analysis of an individual galaxy spectrum. The posterior probability for



54

logio a  of the spectrum is then

Pr(logio a|di) rc Pr(di| logio a) Pr(m, s|{d}) (2.40)

Loosely speaking, if the observational error in the velocity dispersion measured from a single 

spectrum is comparable to the intrinsic width s of the particular population from which it 

is drawn, then the data and the prior will contribute equally to the determination of the 

posterior PDF of logio a. If the observational error is small, the effect of the prior will be 

correspondingly minor, while if the observational error is large, the posterior PDF will be 

determined primarily by the prior.

The application of this method can thus permit a more precise a  estimate for individual 

galaxies, by making use of the collective information about the population from which it 

was drawn. It is important, however, to note that if the spectra under consideration are 

somehow selected to be biased towards either higher or lower velocity dispersions, then the 

prior will pull them systematically towards the population mean, giving posterior PDFs 

that are biased relative to the true a  values. We must also be sure only to apply this 

method to subsamples of spectra that are much smaller than the population samples used 

to determine the distribution parameters.

2.5 Discussion and Conclusion
In this paper, we have presented a new technique for estimating the velocity-dispersion 

function of LRGs from large numbers of low SNR spectra. This method incorporates 

the effects of observational uncertainties in spectroscopic redshift, velocity dispersion, and 

broadband magnitude. We have compared our method favorably to the more traditional 

approach of “stacking” multiple spectra; our new approach can perhaps be termed “Bayesian 

stacking.” We have also indicated how the results of our method can be used as informative 

priors to provide more precise estimates of the velocity dispersions of individual galaxies, 

provided that those galaxies are an unbiased selection from the parent distribution at their 

particular redshift and luminosity.

We have applied our technique to a sample of 430,000 galaxy spectra from the BOSS 

project of the SDSS-III, covering the redshift range from zero to unity, concentrated between 

approximately z =  0.2 and z =  0.8. For the higher-redshift CMASS target sample (approx

imately 76% of our galaxies), we detect a highly significant increase in the intrinsic width of 

the velocity-dispersion distribution at higher redshifts, indicative of greater galaxy diversity 

at fixed luminosity at earlier cosmic times. For the lower-redshift LOWZ galaxy sample, 

we find little evolution in the velocity-dispersion distribution below z w 0.5. Although
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the CMASS and LOWZ samples do not form a single uniform sample (LOWZ galaxies 

being generally more luminous than CMASS targets over the range of redshift where the 

two overlap), our results suggest that dynamical evolution of massive LRGs is much more 

significant over the interval 0.5 < z < 1.0 as compared to 0 < z < 0.5.

Future applications of this method to the BOSS galaxy samples will focus on the effects 

of observational selection on the deduced population evolution. We also plan to divide 

our analysis further by rest-frame color, so as to differentiate between galaxies of different 

stellar population at a given redshift and magnitude. By making a more accurate division 

of the sample in terms of stellar mass and star-formation history, we hope to separate the 

signatures of dynamical and stellar-population evolutionary channels, and to thereby obtain 

a more detailed picture of LRG population evolution and a more powerful discriminant 

between theoretical scenarios. This approach can also determine whether the effect of 

increased population scatter in log10 a  at high redshift is due to greater dynamical diversity, 

greater stellar-population diversity, or to some combination of the two effects.

Our measurements can also have important implications for the statistics of gravitational 

lensing, by constraining the total lensing cross-section in massive elliptical galaxies between 

redshift 0 and 1. Although a precise application to gravitational-lensing statistics must await 

a proper treatment of completeness, our current results can be combined with published 

luminosity functions (e.g., Cimatti et al., 2006; Cool et al., 2008) to place a lower limit on 

the integrated lensing cross-section.

The application of hierarchical Bayesian methods such as the one presented here may 

hold the key to reconciling the tension between redshift surveys designed for constraining 

cosmological parameters and those designed for the study of galaxy evolution. The former 

goal generally dictates an SNR just sufficient to measure redshift for as many galaxies over 

as large a volume of the universe as possible, while the latter goal traditionally requires 

observations at high enough SNR to precisely constrain multiple physical parameters for 

each galaxy. However, if the ultimate goal of galaxy-evolution studies is to measure the 

distribution of physical parameters within a statistically significant sample of galaxies, then 

Bayesian methods can remove the need to measure those parameters precisely on a galaxy- 

by-galaxy basis. In fact, there may indeed be an objective galaxy-evolution case for trading 

fewer high-SNR spectra for more low-SNR spectra, so as to reduce the effects of sample 

variance. If cosmological experimental designs can also accommodate the more permissive 

(e.g., magnitude-limited) targeting desired for galaxy population studies, then both goals 

may be well-served by the same redshift survey.



CHAPTER 3

THE SLOAN LENS ACS SURVEY. XIII. 
EXTENDING STRONG LENSING TO 

LOWER MASSES'1"

We present observational results from a new Hubble Space Telescope (HST) Snapshot 

program to extend the methods of the Sloan Lens ACS (SLACS) Survey to lower lens- 

galaxy masses. We confirm and model 40 new galaxy-scale strong lenses from this program, 

which we supplement with 58 lenses previously discovered by SLACS. In addition, we 

determine upper limits to the masses of an additional 33 galaxies (18 new and 15 from 

legacy SLACS data) based on single images of background galaxies without detectable 

lensed counter-images. Incorporating these lensing measurements and upper limits together 

in a single statistical analysis, we find a significantly less-than-unity slope of 0.78 ±  0.05 

for the log10 a*-log10 ctsie relation, which corresponds to an evidence at 4<r that the total 

mass-density profile of early-type galaxies (parameterized by the ratio of stellar to lensing 

velocity dispersions) varies systematically within the population in the sense of having 

shallower profiles at larger lens-galaxy velocity dispersions. This trend provides evidence 

of variation in the efficiency of dissipative baryonic processes as a function of galaxy mass. 

The trend is only evident when upper limits are incorporated into the analysis, highlighting 

the importance of including both “lenses” and “nonlenses” for an unbiased treatment of the 

lens population when extending to mass ranges with lower lensing cross-sections. By scaling 

simple stellar population models to the HST I-band data under a variety of assumptions, 

we identify a strong trend of increasing dark-matter fraction at higher velocity dispersions, 

which can alternatively be interpreted as a trend in the stellar initial mass function (IMF). 

Consistent with previous finding and the suggestion of a non-universal IMF, we find that 

a Salpeter IMF is ruled out for galaxies below 1010'8M© within one half of the half-light 

radii, while it is acceptable above this mass. Considered together, our mass-profile and 

dark-matter-fraction trends with increasing galaxy mass could both be explained by an

 ̂Subm itted to  the Astrophysical Journal
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increasing relative contribution on kiloparsec scales from a dark-matter halo with a spatial 

profile more extended than that of the stellar component.

3.1 Introduction
Early-type galaxies (ETGs), classified by their morphology, compose one of the two main 

categories of galaxies (Hubble, 1926, 1936b). Although considered to be relatively “dead” 

and “featureless” as a consequence of their little star formation activities and smooth light 

distributions, ETGs play a crucial role in studying the evolution of galaxies, the nature 

of dark matter, and cosmology. Being the endproducts of hierarchical merging scenario 

(Toomre and Toomre, 1972; White and Frenk, 1991; Kauffmann et al., 1993a; Cole et al., 

2000), their structures, properties, and formation histories can be used as a compelling 

test of the A Cold Dark Matter (ACDM) paradigm. Additionally, ETGs can be extremely 

luminous and therefore can be used as powerful cosmological tracers of the large-scale 

structure (Eisenstein et al., 2005a; Percival et al., 2007; Anderson et al., 2012).

However, the formation and evolution of ETGs are still puzzling and further investiga

tions are highly demanded. Concerning the mass-density profile of ETGs, N-body DM-only 

numerical simulations have revealed a somewhat “universal” density profile with a r -1 

inner profile and a r -3 drop-off at large radii, independent of the halo mass (Navarro et al., 

1996, 1997). Later on, various observations of DM-dominated galaxies yield inconsistent 

inner density slopes with numerical simulations (Moore et al., 1999b; Graham et al., 2006; 

Navarro et al., 2010), the tension of which can be loosened by taking baryonic physics into 

account. Gas cooling permits baryons to condense in the central regions of galaxies, and 

therefore makes the mass distribution more centrally concentrated (e.g. Gnedin et al., 2004; 

Gustafsson et al., 2006; Abadi et al., 2010; Velliscig et al., 2014). Heating due to dynamical 

friction and supernovae (SN)/Active Galactic Nucleus (AGN) feedback, on the other hand, 

can soften the central density concentration (e.g. Nipoti et al., 2004; Romano-Dlaz et al., 

2008; Governato et al., 2010; Duffy et al., 2010; Martizzi et al., 2012; Velliscig et al., 2014). 

The strength of these competing effects differs from galaxy to galaxy and hence studying the 

dependences of the shape of the mass-density profile in the central region on galaxy mass, 

redshift, and other structural quantities unravels the formation and evolution of ETGs.

The stellar initial mass function (IMF) is an empirical relation quantifying the relative 

fraction of stars as a function of the stellar mass at the time when the whole population 

formed. Salpeter (1955) first quantified the IMF as a simple power-law function using 

main-sequence stars in the solar neighborhood. Later on, various modifications have been
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considered at the low-mass end and the most commonly used forms are the Kroupa IMF 

(Kroupa, 2001) and the Chabrier IMF (Chabrier, 2003). Apparently, the IMF of a galaxy 

should depend on the environmental properties of the molecular cloud it originated from 

such as metallicity, temperature, and density, and is therefore non-universal. Having 

knowledge of the form and the variation of the IMF provides deep insights in understanding 

the role of the environment during star formation and galaxy evolution processes. Recently, 

several pieces of evidence convince that the IMF indeed varies (e.g. van Dokkum and Conroy, 

2010; Strader et al., 2011; Cappellari et al., 2012; Sonnenfeld et al., 2012; Spiniello et al.. 

2012; Ferreras et al., 2013; La Barbera et al., 2013; Conroy et al., 2013; Tortora et al., 2013; 

Brewer et al., 2014; Spiniello et al., 2014).

Strong gravitational lensing (GL) has its unique power among the many techniques 

for the study of ETGs. As a pure gravity-dependent effect, GL provides highly accurate 

measurements of total mass that are robust against different models and assumptions about 

galaxy properties. Therefore, it provides the best estimation of the total projected mass 

within the so-called Einstein radius enclosed by the lensed images of the background object. 

Various lensing surveys have been conducted in the past decade and led to numerous 

important results. The Lenses Structure and Dynamics (LSD) Survey aimed to measure 

the stellar kinematics of a small sample of E/S0 galaxy lenses and combine it with GL to 

constrain the central mass distribution (Koopmans and Treu, 2002, 2003a; Treu and Koop- 

mans, 2002, 2004). The SLACS survey (Bolton et al., 2006; Treu et al., 2006; Koopmans 

et al., 2006b; Gavazzi et al., 2007; Bolton et al., 2008a; Gavazzi et al., 2008; Bolton et al., 

2008b; Treu et al., 2009; Auger et al., 2009, 2010; Newton et al., 2011) is by far the most 

productive survey for galaxy-scale strong lenses with known lens and source redshifts, with 

a discovery of over 90 spectroscopically-selected lenses confirmed by high-resolution Hubble 

Space Telescope (H ST ) follow-up. SLACS observes relatively low-redshift (zL < 0.4) ETG 

lens candidates selected from the Luminous Red Galaxy (LRG, Eisenstein et al., 2001b) and 

MAIN (Strauss et al., 2002) galaxy samples of the Sloan Digital Sky Survey (SDSS, York 

et al., 2000). The SLACS survey has yielded multiple novel results on the structure and 

dynamics of ETGs, which are detailed in the previous papers of this series. Recently, the 

technique of spectroscopic lens selection has been extended to earlier cosmic time (higher 

redshift) by the BOSS Emission-Line Lens Survey (BELLS Brownstein et al., 2012), which 

has confirmed 25 strong lenses (0.4 < zL < 0.7) using data from the Baryon Oscillation 

Spectroscopic Survey (Dawson et al., 2013) of the SDSS-III (Eisenstein et al., 2011a).

The SLACS sample is a unique resource for studies of the structure of ETGs, but
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it has been significantly biased toward the high-mass end due to several related factors. 

First, strong lensing cross section (an approximation of the lensing possibility in general) 

increases with the lens galaxy mass, so high-mass ETGs are more likely to act as strong 

lenses. Second, even if a low-mass galaxy acts as a strong lens, the characteristic angular 

separation of the lensed images will be small and hard to resolve even at space-based 

imaging resolution. Third, low-mass galaxies can be intrinsically too faint to be selected for 

SDSS spectroscopy. Fourth, for the preceding reasons, high-mass SLACS candidates have 

previously been prioritized for HST follow-up, in order to maximize the survey success rate.

In order to extend the power of strong lensing to low-mass galaxies, an extension of 

the SLACS survey known as “SLACS for the Masses” (hereafter S4TM, HST Snapshot 

Program 12210) was initiated in April 2012 with a focus on lens candidates with lower 

masses and smaller predicted Einstein radii as compared to SLACS lenses. While the 

lensing confirmation rate of S4TM is lower than that of previous SLACS HST programs, 

it importantly achieves a wider lens-mass baseline in combination with previous SLACS 

lenses. We refer the readers to the catalog paper by Brownstein et al. 2014 (in preparation) 

for a full description of the S4TM program details. In this paper, we present the first 

scientific results on the total mass-density profile and dark-matter content of an extended 

ETG sample combining the S4TM lenses and previous SLACS lenses. We use a hierarchical 

Bayesian method to infer the mass-profile scaling relation of the combined lens sample, 

and estimate stellar masses through single stellar-population (SSP) model scalings to the 

observed HST photometry.

This chapter is organized as follows. In Section 3.2, we briefly describe our lens identi

fication technique using the SDSS spectroscopy and high-resolution imaging data observed 

by the HST. Section 3.3 describes our parametric lens-modeling technique. We then derive 

the main findings in Sections 3.4 and 3.5 with regards to the study of the mass-density 

profile and dark-matter fraction of the ETGs. Discussion and conclusions are presented in 

Section 3.6. Throughout the paper, we assume a standard cosmology with Qm = 0.274, 

Qa =  0.726 and Ho =  70kms-1 Mpc-1 (WMAP7, Komatsu et al., 2011).

3.2 Lens Candidate Identification
The S4TM survey is a snapshot program designed to extend strong gravitational lensing 

observations toward lower masses and relatively smaller Einstein radii as compared to 

previous SLACS programs. Using the same lens searching technique as SLACS, 137 lens 

candidates were identified from the seventh data release (DR7) of the SDSS (Abazajian
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et al., 2009) and awarded as HST snapshot targets in Observing Cycle 18. The details about 

the lens selection technique can be found in Bolton et al. (2006, 2008a) and Brownstein et 

al. 2014 (in preparation). The basic approach is to search for high-redshift emission lines 

such as [On] doublets, H ^, and [Oiii] superimposed on the spectra of SDSS target galaxies 

at lower redshifts. Such emission lines, associated with star-forming galaxies more distant 

along the same line of sight, indicate the presence of a candidate lensing system, and also 

allow us to simultaneously determine the redshifts of the background objects.

Between 2010 September and 2012 June, 118 out of 137 candidates were successfully 

observed with an exposure time of 420 s each with a single exposure through the F814W 

filter of the Wide Field Channel (WFC) of the Advanced Camera for Surveys (ACS). The 

images were visually inspected using the ACSPROC  software, a GUI tool implemented 

by Brownstein et al. (2012). By searching for lensed features in the b-spline-subtracted 

residual images (Bolton et al., 2006, 2008a), we have confirmed 40 strong gravitational lenses 

with clear and definite multiple lensed images or even complete Einstein rings (classified as 

“grade-A”), 8 systems with suspect multiple images due to various limitations, including low 

signal-to-noise ratio (SNR), spiral galaxies as the lenses, and lens galaxies being in a group 

environment (classified as “grade-B”), as well as 18 systems showing clear images of the 

background objects but no clear counter-images (classified as “grade-C”). Note that we only 

consider lens candidates that are isolated ETGs for consistency. Grade-B lenses are therefore 

excluded from this work for now. We also exclude one grade-C lens (SDSSJ1310 +  0220) 

from now on as it turned out to be a face-on late-type galaxy with strong emission lines after 

an examination of its SDSS spectrum. Tables in Brownstein et al. 2014 (in preparation) 

give a summary of all the lens-galaxy properties; images of these systems can be found in 

the same paper.

3.3 Lens Modeling and Sample Definition
For the foreground lens galaxies, we consider a singular isothermal ellipsoid (SIE) lens 

model (Kassiola and Kovner, 1993; Kormann et al., 1994; Keeton and Kochanek, 1998; 

Bolton et al., 2008a) that is generalized from a singular isothermal sphere (SIS) model in 

which the 2D surface mass density falls off as R-1 , but consists of elliptical iso-density 

contours specified by position angle P.A. and minor-to-major axis ratio qSIE. We do not 

include external shear in our lens model as it has been shown by Koopmans et al. (2006b), 

Treu et al. (2009), and confirmed again using our grade-A lens sample to be a minor 

effect (a few percent). The SIE lens model is characterized by the lensing strength bSIE
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(a.k.a. Einstein radius, specified according to an “intermediate axis” convention for elliptical 

models) defined as

fe *  = 4 , ^  (8.1)

where dLS and ds are the angular diameter distances from the lens and the observer to 

the source, respectively. ctsie is a characteristic velocity-dispersion parameter of the lens

galaxy, which is related to the total enclosed mass within the Einstein radius as
»,r 4vr2 dLdLs  _4
M b " -  Gc> ~  ° S'E- (3J)

Note that since the strong-lensing cross-section scales as &Sie , and bSIE in turn scales as

°sIE, the cross-section for strong lensing scales linearly with mass (although this picture

is somewhat nuanced due to the spatially extended nature of the mass profile). The

surface brightness distribution of sources are represented by either one or multiple Sersic

components with the form

/(* ,„ > «  e x p h i f ^ ^ ? ) ^  (3.3)2 ct2
with the axis ratio q, width ct, and exponent n as free parameters.

For a particular SIE lens model and specific composition of the source, one can generate 

the predicted lensed images via the ray-tracing technique according to the analytical expres

sions of the lens equation (Kormann et al., 1994). Then a Levenberg-Marquardt nonlinear 

least-squares fit (MPFIT, More, 1978; Markwardt, 2009) to the observed lensed images is 

performed to obtain the best-fit parameters for both the lens and the source.

3.3.1 V erification Test

Before applying our lens modeling code to the newly discovered lens sample, we did 

a verification test using the SLACS grade-A lens sample (Bolton et al., 2008a) which has 

been thoroughly studied. Restricting on the 58 modeled grade-A ETG lenses in the SLACS 

survey with well-measured velocity-dispersion values from SDSS, we re-did the SIE fittings 

and found highly consistent results. Figure 3.1 shows the ratios of the derived Einstein radii 

in this work to the published SLACS results. No significant bias is observed: the average 

ratio is 0.999 with an RMS of 0.005. Hence, our code is able to measure Einstein radii 

successfully within uncertainties and without bias relative to previously published SLACS 

Einstein radii.

3.3 .2  Lens M odeling: G rade-A  Lenses

For each of the 40 newly discovered grade-A lenses with distinct multiple lensed images 

in the S4TM survey, the fitting strategy is relatively straightforward. We use the position
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Figure 3.1: A comparison of the derived Einstein radii between this work and the 
published SLACS values for 58 grade-A lenses confirmed by the SLACS Survey. The ratios 
are consistent with 1 with a rms =  0.005 which suggests that our code works well in 
reproducing robust lens models.

...............................................

*
*

*
*  *  *  *

*
X

■ ■ ■ I ■ ■ ■ I ■ ■ ■ I ■ ■ ■ I ............................



63

angle P.A.* and axis ratio q* extracted from the b-spline fit to the light distribution as 

initial guesses. The starting value for bSIE is determined from the separation between a 

lensed image and its counter-image. Depending on the configuration of the lensing features, 

one or multiple source components are considered to ensure a reasonably good fit.

Figure 3.2 compares the axis ratios and position angles of the light distribution to 

those of the mass distribution for the grade-A subsample. The top panel displays the 

ratios of the minor-to-major axis ratio as a function of the lensing velocity dispersion aSIE 

which is consistent with 1.0 with a rms scatter of 0.2. No correlation with the velocity 

dispersion (an approximation of the total mass) is observed. The bottom panel visualizes the 

difference in the position angle AP.A. =  P.A.-P.A.* of lenses with respect to the axis ratios. 

(AP.A.) =  -6 °  with a rms spread of 34°. Clearly, as qSIE ^  1, the position angles become 

ill-determined and the scatter increases significantly. However, in general, the hypothesis of 

light tracing mass is valid in terms of both the match of isophotal and isodensity contours 

and the position-angle alignment and indicates little external perturbing potential. In 

general, our SIE lens models with multiple parameterized sources can successfully recover 

the overall lensing features as well as small details.

3.3 .3  Lens M odeling: G rade-C  Lenses

In comparison with “grade-A” lenses with multiple images or even complete Einstein 

rings, the systems we refer to as “grade-C lenses” (i.e., without counter-images) are less 

informative about the mass structure of the foreground galaxy (in addition to being less 

visually striking). However, while these grade-C lenses do not provide accurate lens mass 

measurements, the do provide accurate lens-mass upper limits. Furthermore, as will be seen 

later, grade-C systems are relatively less massive, and hence, the upper limits that they 

provide are an essential element of our program to extend strong-lensing science to lower 

lens masses. Indeed, the inclusion of such single-image systems to a lens ensemble analysis 

makes the selection function less sharply dependent on lens galaxy mass as compared to 

the grade-A lens sample alone.

Nevertheless, in most previous gravitational lensing studies, grade-C lens systems (and 

the upper mass limits that they provide) have been ignored because of the difficulty or 

impossibility of obtaining definite lens mass models. (A significant counterexample is the use 

of lensing ”flexion” to constrain mass models in systems that allow this technique: Goldberg 

and Leonard (2007).) This difficulty is particularly pronounced within pure imaging surveys 

for lenses, because background galaxies with no clear multiple imaging can easily be confused 

with satellite galaxies of the foreground lens. For the case of the S4TM program, however,
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Figure 3.2: Axis ratio and position angle comparisons between the light and mass 
distributions. Panel (a): Ratio between the minor-to-major axis ratio determined from SIE 
model fitting qSIE and that measured from light distribution q*. Panel (b): Discrepancy in 
the position angle determined from SIE model fitting P.A. and that measured from light 
distribution P.A.*. In both panels, the shaded gray regions indicate their rms spreads (see 
text for details).
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we have a strong prior for the identification of singly imaged background galaxies due to 

the original spectroscopic detection of a second redshift along the line of sight.

In this work, we explicitly incorporate grade-C lenses into our analysis, by first deter

mining their associated Einstein-radius upper limits, and subsequently incorporating these 

upper limits into our ensemble analysis of the scaling relations of the lens population. Our 

approach to the first step is to explore a sequence of lens models of incrementally increasing 

Einstein radius until we find the value at which an unobserved counter-image is predicted 

by the model. In detail, for each grade-C lens, at each trial Einstein radius, we fix the P.A. 

and axis ratio qSIE to values derived from the light distribution, fit for the source as we do 

for the grade-A subsample, and record the best-fit x 2 value. The special requirement of 

fixing P.A. and qSIE stems from the fact that the fitting code can converge to unphysical 

lens models with very small axis ratios and small lensing strength for grade-C systems. 

As shown previously by Koopmans et al. (2006b), Bolton et al. (2008b), Barnabe et al. 

(2011) and confirmed again by the grade-A subsample in the S4TM survey (Figure 3.2), 

the hypothesis of a mass quadrupole following the light quadrupole is generally valid, and 

the idea of fixing P.A. and qSIE is well-motivated. Figures in the Appendix show the x 2 

curves for 18 S4TM and 15 SLACS grade-C lenses. To decide the upper limit, we use the x 2 

curve with respect to the trial Einstein radius as a guide and search for a point after which 

the model starts to predict counter-images that should have been observed and the slope of 

the x 2 curve changes significantly. We also tested an objective method of determining the 

upper limits by choosing the point at which A x2 =  144 with respect to the minimum value. 

The results reported below do not change significantly with this alternative procedure.

3 .3 .4  C om bined Sam ple

The Einstein-radius upper limits derived for grade-C lenses can be combined with 

Einstein-radius measurements for grade-A lenses to perform unbiased analyses of the mass 

structure of ETGs across a wider range of galaxy masses. In the following sections, we 

combine these measurements with stellar velocity dispersions and broadband photometry 

to constrain the mass-density profile and dark-matter fraction of ETGs as a function of 

galaxy mass.

Combining the S4TM survey and the SLACS survey generates a data set including 98 

(40+58) grade-A and 33 (18+15) grade-C ETG lens systems. The mean redshift for the 

foreground lenses is (zL) =  0.18 and (zS) =  0.58 for the background sources. The average 

Einstein radius in arcsecond (bSIE), the average Einstein radius in physical units (RE;n) and 

the total 2-D projected mass (MEin) for grade-A and grade-C subsamples are summarized
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in Table 3.1. Figure 3.3 shows the distribution of the Einstein radius bSIE and total 2-D 

enclosed mass MEin for all the 131 lenses. The distributions and median values of the 

stellar masses (derived from the HST F814W photometry assuming a Chabrier IMF and 

the fiducial stellar-population model of Section 5 below) for various subsamples are also 

plotted in Figure 3.4. Note that the S4TM lenses are generally less massive compared to 

the SLACS lenses and grade-C lenses are generally less massive than grade-A lenses.

3.4 Mass Structure Analysis
In this section, we combine our Einstein-radius measurements and upper limits with lens- 

galaxy stellar velocity dispersions measured from SDSS spectroscopy in order to constrain 

the mass-density profile of ETG lenses as a function of lens-galaxy mass. The inclusion 

of new S4TM systems and grade-C lenses allows us to explore a broader range of galaxy 

masses than previous studies.

3.4.1 V elocity -D isp ersion  P roxy

To investigate the degree of central concentration of ETG mass profiles, we employ an 

observational proxy defined by the ratio of stellar velocity dispersion to “lensing velocity dis

persion” ctsie, defined in relation to the observable parameter bSIE through Equation (3.1). 

It was suggested by Kochanek (1994) that this ratio, later denoted as f SIE =  ct*/ctsie , 

should be approximately unity for isothermal mass models, greater than unity for models 

more centrally concentrated than isothermal, and less than unity for models less centrally 

concentrated. Successive studies have confirmed this idea and showed that f SIE can be 

used as an empirical indicator of the mass-density slope (Kochanek et al., 2000b; Treu and 

Koopmans, 2002, 2004; Treu et al., 2006; Koopmans et al., 2006b; Bolton et al., 2008b; 

Auger et al., 2010). We take this approach in the current work in order to investigate 

physical trends and their significance in the simplest possible manner, and defer a more 

detailed and self-consistent joint analysis of gravitational lensing and stellar kinematics to 

future papers.

As mentioned above, our measurements or upper limits for ctsie come directly from 

our lens-modeling constraints on the Einstein radius for grade-A and grade-C lenses. The 

other ingredient for our present analysis is the stellar velocity dispersion ct*, which is the 

standard deviation of velocities of stars within a galaxy. This quantity is determined 

spectroscopically by measuring the broadening of the galaxy spectrum due to the luminosity- 

weighted superposition of Doppler-shifted absorption lines from individual stars. Instead 

of adopting the preexisting SDSS stellar velocity-dispersion values calculated using a set
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Table 3.1: Average values of the Einstein radius in arcsecond, physical units, and the total 
projected mass for grade-A and grade-C lens samples.

Lens Sample (bsm) ( - R 'E in ) ( l o g i o ( M E i n / M 0 ) )

Grade-A 1.11" 3.36 kpc 11.14
Grade-C1 O CO 2.42 kpc 10.87

* Note that all the numbers are upper limits for grade- 
C lenses.
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Figure 3.3: Distribution of the predicted Einstein radii bSIE and total two-dimensional 
enclosed masses MEin for all the modeled lenses. Plotted in gray are grade-A lenses, with 
40 from the S4TM Survey (squares) and 58 from the SLACS Survey (diamonds). Grade-C 
lenses are in black with left arrows indicating these are upper limits. Overplotted are the 
projected histogram distributions of bSIE and MEin, respectively, for various subsamples.
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details).
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of stellar spectra templates derived from ELODIE stellar spectrum library (Prugniel and 

Soubiran, 2001) with wavelength coverage 4100A-6800A, we generate a new set of stellar 

templates from the Indo-US library (Valdes et al., 2004) patched and extended by selected 

synthetic spectra in POLLUX database (Palacios et al., 2010), covering the full wavelength

(2012a,b). The resulting velocity dispersions aap are then corrected to values within one 

half of the half-light radius Rhalf/2 (a quantity comparable to the Einstein radius) following 

a compromise prescription between Jorgensen et al. (1995), Mehlert et al. (2003b), and 

Cappellari et al. (2006a) as

from a core-Sersic fit (Graham et al., 2003) to the surface brightness distribution of each 

lens galaxy as explained in Brownstein et al. 2014 (in preparation). Figure 3.5 shows the 

distribution of all the lenses in terms of their log10 a* and log10 aSIE.

Our primary interest here is in the physical scaling relation between a* and aSIE that 

encodes the variation of the mass-density profile within the ETG lens population. In the 

formalism of statistics, we treat this as a conditional probability density function (PDF) 

of a* given aSIE. In order to deduce the parameters of this conditional PDF correctly, we 

must also account for the marginal PDF of aSIE alone within the sample. The product of 

the conditional and marginal PDF’s gives the joint PDF of a* and aSIE together, which we 

infer from the sample data according to the procedure described in this section.

3.4 .2 .1  M eth od ology

We parameterize the mean scaling relation between log10 a* and log10 a SIE as

with a slope a and intercept b. To constrain the parameters of this relation, we use the 

hierarchical Bayesian method (see e.g., Shu et al., 2012; Bolton et al., 2012b) with all 

the ingredients summarized in Table 3.2. This method makes full use of all the observed 

information, deconvolves the observational uncertainties, and offers unbiased estimations 

of population “hyperparameters” that we are interested in. The hierarchical Bayesian 

approach also allows for straightforward inclusion of Einstein-radius upper limits in the 

analysis.

Here we describe all the ingredients in the hierarchical Bayesian analysis. x, y represent

range of observed spectra. More details about this procedure can be found in Bolton et al.

(3.4)

where 1.5" is the angular radius of the SDSS fiber. The half-light radius Rhalf is derived

3.4 .2  H ierarchical B ayesian  A nalysis

log10 a* =  a x log 10 asiE +  b (3.5)
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Figure 3.5: Distribution of log10 o'* and log10 ^SIE for all the modeled lenses. Filled circles 
with left arrows indicating the upper limits represent grade-C lenses, with 18 from the S4TM 
survey (red) and 15 from the SLACS survey (chocolate). 40 S4TM and 58 SLACS grade-A 
lenses are shown by green and blue squares, respectively.
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Table 3.2: Ingredients for the hierarchical Bayesian analysis.

Symbol Definition
x Parameter 1: log10 ctsie

y Parameter 2: log10 ct*
Xi Data 1: derived value of log10 ctsie for lens i
V% Data 2: measured value of log10 ct* for lens i
a Hyperpar. 1: slope of logw CT*-logw ctsie
b Hyperpar. 2: intercept of log10 CT*-log10 ctsie
5 Hyperpar. 3: intrinsic scatter in log10 ct*
m Hyperpar. 4: mean in log10 ctsie
s Hyperpar. 5: intrinsic width in log10 ctsie

0 Vector of hyperparameters
Pr(xi |x) Likelihood function of x given xi
Pr(Vi|V) Likelihood function of V given Vi

Pr(y, x |0, H ) Joint PDF of parameters given 0
Pr(y|x, a, b, 5, H ) PDF of parameter V given x, a, b, and 5

Pr(x m, s, J f ) Marginal PDF of parameter x
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the two physical parameters log10 aSIE, log10 a*, and Xj, yi are the corresponding observed 

values for the ith lens galaxy. The five hyperparameters (compacted as 0) we want to 

determine are i) a: the slope of log10 a*-log10 us ie  relation; ii) b: the intercept; iii) b: the 

intrinsic scatter in log10 a*; iv) m: the mean in log10 aSIE distribution; and v) s: the intrinsic 

width in log10 aSIE distribution. Pr(y|yi) is the likelihood function of y given yi , which can 

be written as

Prfe.l;,) = (3.6)
V2nbj 2bi

Pr(xi |x) is the likelihood function of x given xi . Under the assumption that the Einstein 

radii for grade-A lenses are accurately determined through the lens modeling, the resulted 

likelihood functions of x can be well-described by various Dirac delta functions

P rA(xi|x) =  b(x -  Xi) (3.7)

while for grade-C lenses, since only upper limits are estimated, the probability of having 

x greater than the measured value xi is assumed to be 0. Therefore, we introduce the 

Heaviside step functions as the likelihood functions of parameter x in the following manner

PrC (xi |x) =  [1 — H  (x — xi)] (3.8)

Note that in principle, P rC(xi |x) can not be normalized. However, as will be shown later, 

it is always combined with other Gaussian-like PDFs that drop rapidly at large values so 

that the normalization is no longer an issue. The joint PDF of parameters y and x given 0 

and a hypothesis H , Pr(y,x|°, H ) ,  is equal to

Pr(y, x|°, H ) =  Pr(y|x, a, b, b, H  )Pr(x|m, s, H ) (3.9)

where Pr(y|x, a, b, b, H ) is the conditional PDF of y given x and three hyperparameters 

and Pr(x|m ,s, H ) is the marginal PDF of x. Followed by the parameterized model stated 

by Equation (3.5), Pr(y|x, a, b, b, H ) can be expressed as

Pr(y\x, a, b, b, J f )  = —L ^ x p f - ^  + b ~  } (3.10)
V2nb 2b

with an assumed intrinsic scatter b in y. Pr(y|x, a, b, b) is of physical interest as it quantifies 

the relation between y and x and can be adopted in related studies. The last piece is the 

marginal PDF of x, which is characterized by a Gaussian with mean m and intrinsic scatter 

s:

Pr(.r|m, s, J f 1) =  J— exp[——— ^ —] (3-11)
V2ns 2s

Following the same strategy used by Shu et al. (2012), the likelihood function of hyper

parameters 0 given the observed data {y}, {x} and a hypothesis H  is defined as
N N

L (° IM , {x}, H ) =  P r(y i,x i|° ,) =
i=0 i=0 

In general, y and x are independent variables and Pr(yi, xi |y, x) can be split as

J J  Pr(yi, xi |y, x) Pr(y, x|°, H ) dxdy
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L(0|{y}, {x}) =  Y[ f f Pr(yi|y)Pr(xi|x)Pr(y,x|0, H )d x d y  
i = 0 ^
N f  ['

= f t  Pr(yi |y) Pr(xi |x) Pr(y|x, a, b, 5, H  )P r(x |m ,s, H ) dxdy (3.12)
i=0

The posterior PDF of the hyperparameters that we are interested in is simply related to 

the likelihood via the Bayes ’ rule as

<->
from which we can infer the relation between log10 a* and log10 aSIE.

3 .4 .2 .2  M arginal P D F  o f x

To determine the mean m and intrinsic scatter s for the marginal PDF of x, we write

out the likelihood function of m and s as
n  n  ^

L (m , s|x, H ) =  Pr(x|m, s, H ) =  ]^[ Pr(xi |m, s, H ) = ^ \  Pr(xi |x) Pr(x|m, s, H ) dx
i=0 i=0 -tx  

which is a product of two parts corresponding to grade-A and grade-C lenses, respectively.
N a  /* ̂  N C p  ̂

L (m ,s|x, H )  =  ^  /  ^(x — xi)P r(x |m ,s, H ) d x  x ^  / [1 — H(x — x j )]Pr(x |m ,s, H ) dx 
i=0-J- rc> j=0-J- ^

. „ \ /2t t s  2s 2 . „i=0 j=0
where $(x) is the cumulative distribution function (CDF) of the standard normal distribu

tion. In a format of the more convenient log-likelihood, we have
N a  /  \ 2  N c

In X(m , 4 f >j r )  = |_ A U U ,(^ r , )_ f ;  f e ~ m) ] + j r
i=0 2s j=0 s 

in which the first two terms come from pure grade-A lens subsample and the last term is 

contributed by grade-C lenses.

Exploration of the 2D m-s space yields a log-likelihood distribution which can be

converted to the posterior PDF of m and s through the Bayes ’ rule as
, L (m ,s|x, H )P r (m ,s , H )

p * " - »!*■■*•>= 1 ' J 3J4)
A flat prior Pr(m, s, H ) in m and s is assumed for simplicity and the evidence P r(x |H ) is 

a normalization constant. Plotted in Fig. 3.6 are the resulted posterior probability distribu

tion contours for m and s (solid black lines). For comparison, the posterior PDF for the pure 

grade-A lens subsample is over-plotted in dashed gray lines. The contours represent 68%, 

95%, and 99.7% confidence levels, respectively. It is suggested from the maximum-likelihood 

estimation (MLE) that, for the grade-A lens subsample, the best-estimated values are 

m =  2.391 ±  0.010 and s =  0.068 ±  0.007 (all the quoted error bars are the averages of 

the upper and lower bounds). By including grade-C lenses, it pulls down the mean by 0.029
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Figure 3.6: The two-dimensional distribution of the posterior PDF of m and s for the 
combined sample (grade A+B lenses; solid black lines) and pure grade-A sample (dashed 
gray lines). Contours represent the 68%, 95%, and 99.7% confidence levels, respectively. 
The triangle and the plus symbols each indicate the peak points in the posterior PDFs for 
these two samples.
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dex to mbest =  2.362 ±  0.012  as expected since grade-C lenses are relatively less massive and 

the derived log10 ctsie values are slightly smaller. Also, the distribution becomes broader 

with an intrinsic scatter sbest =  0.086 ±  0.009.

3 .4 .2 .3  H yperparam eter D eterm in ation

Finally, by substituting mbest and sbest back to Equation (3.12), we can write the

likelihood function as
N „

L  a  n  Pr(vi|y) Pr(xi|x) Pr(y|x, a, b, H ) Pr(x|mbest, Sbest) dxdy a  L a  x L c
i=0

The full computation is outlined in the Appendix. Eventually, we have

ln-s* =  ln J ?A +  In J f c  =  - W i n -  D 5  +  S>) +  ^  +  ( j ‘ ~  ™ l’” ' )2] +
j= 0 2 2(6i +  6 ) 2Sbest

S T  n r ^ Sbesta(axj +  b -  Vj) +  (xj -  mbest)(6j2 +  62)
2 ^ 0 n $ ( ---------------/ —  / -------) -

- ln ( S2esta2 +  . 2 +  . 2) - ^ - ;  ^ ) } (3.15)

One issue we found was that the slope a and intercept b correlate with each other 

extremely strongly and resulted in extremely narrow confidence regions. An easy solution 

to that is to re-phrase Equation (3.5) as

log 10 ct* =  a' x (log 10 ctsie -  mbest) +  (b' +  mbest) (3.16)

The likelihood function has exact the same form as in Equation (3.15) but with a and 

b replaced by a' and b' — a'mbest +  mbest appropriately. Similar to what we have done 

previously, the posterior PDF of the hyperparameters is related to this new likelihood 

function as

Pr((9'|V, x) a  L ( 0 '|j/, X) (3.17)

Note that here we change d to d' .

Known as f SIE, the ratio of ct* to ctsie has been used as an empirical estimator of the 

logarithmic mass-density slope y' (Treu et al., 2009; Auger et al., 2010). Using the ct*-ctsie 

relation found above, by definition, we have
f s lE  =  a * =  10'y_‘T =  _  iQ(a/-l)(.T-mbest)+6/ (3.18)

CTSIE
The physical interpretation of hyperparameters a' and b' then become straightforward. If a' 

is exactly unity, fSIE (or equivalently the logarithmic mass-density slope y ') is independent 

of ct*, an indicator of the mass of lens galaxies. A less-than-unity a' indicates an anti

correlation between 7 ' and ct*, namely galaxies with smaller/larger ct* are more/less centrally 

concentrated. b' is related to the f SIE value at the mean ctsie value (ctsie w 230 km/s).
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The mass-density profile is (approximately speaking) isothermal if b' =  0, sub-isothermal if 

b' < 0 , and super-isothermal if b' > 0 .

Marginalizing over the 5' dimension, the 2D posterior PDF of a' and b' is shown in 

Figure 3.7. Once again, there are two sets of contours for grade-A subsample (dashed gray 

lines) and the combined sample (solid black lines) with the best-estimated values indicated 

by a plus and a triangle symbol separately. The marginal PDFs of a' and b' are obtained 

by marginalizing over either b' or a' and shown in Fig. 3.8. The best-estimated values for a' 

and b' and the uncertainties are extracted from simple Gaussian fits to the corresponding 

marginal PDFs, and summarized in Table 3.3.

We see that for the grade-A lens subsample, the overall mass-density profile is essentially 

consistent with a mass-independent model at about 1.04a (P(a' < 1.0) =  85.086%), as 

found in previous SLACS studies (e.g., Bolton et al., 2008b; Auger et al., 2010). However, 

the inclusion of grade-C systems in the analysis significantly shifts this result and provides 

evidence for a mass-dependent density profile at about 4a (P(a' < 1.0) =  99.996%). The 

sense of this trend is for lower mass (i.e., lower velocity-dispersion) ETGs to have steeper 

mass-density profiles and higher mass ETGs to have shallower profiles.

Consulting the empirical relation between the mass-density profile slope 7 ' and the 

observable / sie from Auger et al. (2010), we find that a value of b' =  -0.0338 corresponds 

on average to an isothermal profile (7 ' =  2). Considering the best-fit value for b' for 

the grade-A subsample, we find that it is somewhat inconsistent with isothermal at about 

2 .6<7 . Including grade-C systems as well, the best b' value is more strongly inconsistent 

with isothermal at 4.8<r. In both cases, the offset is in the sense of having a slightly 

super-isothermal profile at the central lensing velocity-dispersion of the samples, consistent 

with previous SLACS findings.

It is worth noting that we only assign upper limits of Einstein radii to grade-C lenses. 

This procedure will by nature tend to tilt the log10 a* — log10 osIE relation and bias the 

mass-density estimation to a steeper profile. However, the observed change in the slope is 

too huge to be caused purely by the upper-limit treatment and therefore, is connected to 

lens-galaxy mass. Additionally, the connection between / sie and the density slope is rather 

empirical and may not be valid throughout the whole sample. So a more robust way of 

estimating the total mass-density profile is demanded.
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Figure 3.7: The posterior probability density distributions of (a/,b/) for the combined 
sample (grade A+C lenses, solid black contours) and pure grade-A subsample (dashed gray 
contours). 68%, 95%, and 99.7% confidence levels are plotted accordingly. The triangle 
and the plus symbols each represent the best-estimated values for a' and b' for these two 
samples. The horizontal line (b' =  0) corresponds to an isothermal mass-density profile 
at ctsie w 230 km/s, and the vertical line (a' =  1) corresponds to a velocity-dispersion- 
independent mass-density profile.
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Figure 3.8: The marginal PDFs of a' and b' for the combined sample (grade-A+C 
lenses, solid black curves) and pure grade-A lens sample (dashed gray curves). Dotted 
lines corresponds to the peak positions in the marginal PDFs.

Table 3.3: The best-estimated values of the two hyperparameters a' and b' derived from 
the corresponding marginal PDFs for grade-A sample (2nd row) and grade A+C sample 
(3rd row). By including grade-C lenses, the slopes become significant shallower.

Lens Sample “ best ^best.
Grade A 0.93 ± 0 .0 7 —0.022 ±  0.005

Grade A + C 0.78 ±  0.05 -0 .0 1 1  ± 0 .0 0 4
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3.5 Stellar Masses and Initial Mass Function
In addition to allowing measurements of the shape of the lens mass-density profile, 

strong lensing data can be combined with photometry and stellar-population diagnostics 

to constrain the dark-matter fraction and/or stellar IMF in the lens (e.g. Treu et al., 2010; 

Ferreras et al., 2010; Spiniello et al., 2011; Grillo and Christensen, 2011; Spiniello et al., 

2012; Sonnenfeld et al., 2012; Brewer et al., 2014). For this purpose, we estimate stellar 

masses of lens galaxies based on scaling of SSP models to HST I-band photometry under a 

range of stellar-population assumptions, and adopting either a Chabrier or Salpeter IMF. 

This simplicity is motivated by uniformity, since although multiband HST photometry is 

available for many of the SLACS lenses, all the new S4TM systems currently have I-band 

data alone. High-resolution HST imaging is essential to masking the contribution from 

lensed background sources when performing lens-galaxy photometric modeling (Brownstein 

et al. 2014 in preparation). For this reason, we disregard multiband SDSS photometric 

magnitudes in our analysis.

To translate photometry into stellar masses, we make use of SSP models obtained with 

the Flexible Stellar Population Synthesis (FSPS: Conroy et al., 2009; Conroy and Gunn, 

2010). Without colors or narrow-band indices, we must necessarily make assumptions about 

population parameters such as the formation time after the Big Bang tform, metallicity, and 

dust in the FSPS code. Since all the lens galaxies are by selection ETGs at relatively low 

redshifts, we adopt a reference model with typical values of tform = 4 Gyrs, solar metallicity, 

and no dust (Gallazzi et al., 2006; Carson and Nichol, 2010). We cross-check our stellar 

mass estimations with the values obtained by Auger et al. (2009) from multiband HST 

photometric data and a Bayesian stellar population analysis approach for 52 confirmed 

SLACS lenses in common and find good agreement with no bias observed. To quantify the 

systematic uncertainty of the simple treatment, we also consider lower- and upper-bound 

models. Our lower-bound model is dust-free and metal-poor (log10 Z/Z© =  -0.30), while 

our upper-bound model is dusty and metal-rich (the optical depth for the dust attenuation 

t =  0.95, log10 Z/Z© =  0.20)1. The level of the resulting systematic variation in estimated 

stellar mass is around 0.5 dex. Figure 3.9 shows the stellar masses of the 130 lenses from 

both the S4TM survey (filled symbols) and the SLACS survey (open symbols) for the 

reference model as a function of the stellar velocity dispersion. In accordance with the 

well-known Faber-Jackson relation (FJR, Faber and Jackson, 1976), galaxies with higher

1The definitiona and physical meaning of the dust param eter can be found in Charlot and Fall (2000); 
Conroy et al. (2009).
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Figure 3.9: Stellar masses M* of the 130 lenses inferred from the SPS analysis for the 
two IMFs as a function of the stellar velocity dispersion. Filled symbols are for the S4TM 
lenses and open symbols for the SLACS lenses. Colors represent the redshifts of the lens 
galaxies. Gray error bars represent the systematic variations (see text for details on how 
to determine the error bars). The correlation of scatter with redshift is primarily driven by 
Malmquist bias in the parent samples.
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velocity dispersions also have higher stellar masses on average.

We next examine the relationships between the projected dark-matter fraction within 

one half of the half-light radius / dm defined as / dm = 1 — M*(< Rhalf/2)/M Rhalf/2 and 

the total mass inferred from lensing, the stellar mass, the lensing velocity dispersion, the 

stellar velocity dispersion, the half-light radius, and the ratio of the Einstein radius to the 

half-light radius. The half-light radius Rhalf is determined by the core-Sersic fit as the radius 

within which the enclosed light is one half of the total profile light. The stellar mass within 

one half of the half-light radius M*(< Rhalf/2) is interpolated according to the underlying 

core-Sersic profile under the assumption of a constant stellar-mass-to-light ratio for each 

galaxy. And the total mass within one half of the half-light radius MRhalf/2 is interpolated 

according to an isothermal density profile in which M (< R) rc R. In Fig. 3.10, circiles 

correspond to predictions by the model of tform = 4 Gyrs, solar metallicity and dust-free for 

the two IMFs, respectively. The colors encode the redshifts of lens galaxies and downward 

arrows indicate the upper-limits for grade-C lenses. Gray error bars show the systematic 

variations in / dm throughout the parameter space as explained above. From Fig. 3.10. 

we see general trends toward higher dark-matter fractions in galaxies with higher masses, 

larger velocity dispersions, and bigger sizes, consistent with detections by Auger et al. (2010) 

using confirmed SLACS lenses. In all cases, the intrinsic scatter in / dm is appreciable. Of 

particular note, by implying a negative dark-matter fraction, the data strongly disfavor a 

Salpeter IMF for large fraction of the lenses, especially for those with total masses within 

one half of the half-light radius MRhalf/2 less than approximately 1010'8M©, or equivalently 

with stellar veolocity dispersions ct* smaller than approximately 180 km/s. This confirms 

a similar finding from Brewer et al. (2012) based on a much smaller number of spiral lens 

galaxies.

We have several avenues to improve the stellar-mass estimation. First of all, the 

significant scatter and systematic variation in / dm and the IMF that we have not taken 

into account here will weaken any observed trends. A proper way to handle them is 

heavily required. On the lensing side, a simple SIE model for the total mass distribution 

as considered in this work, although a good approximation, is not able to distinguish the 

contributions from dark and baryonic matter. Furthermore, the known mass-density-profile- 

IMF degeneracy (Treu et al., 2010; Oguri et al., 2013) can not been taken care of based on 

the current data. On the SPS side, age, metallicity, dust, and other parameters in the SPS 

models need to be better constrained. Also, it has been studied that the SPS technique 

highly relies on several IMF-sensitive spectral features such as NaI, CaII, FeH, TiO, and
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Figure 3.10: Relations between the dark-matter fraction within the Einstein radius 
fdm and log 10 MRhal f , log 10 M*Chabner, log 10 ctsie, log 10 ct*, log 10 Rhalf, and RsiE/Rhalf• The 
arrows indicate the upper-limits of fdm, log10 MRhalf/2, log10 ctsie, and RSIE/R half, for grade- 
C lenses and colors represent the redshifts of the lens galaxies. Gray error bars represent 
the systematic variations. Either a Chabrier or Salpeter IMF is considered.
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CaH1 (Conroy and van Dokkum, 2012; Spiniello et al., 2014). Improper interpretations in 

the SPS model, or lack of coverage of these features in the observed spectra, can lead to 

significant systematics in constraining the IMF (Conroy and van Dokkum, 2012; Spiniello 

et al., 2014).

3.6 Discussion and Conclusion
In this paper, we report the discovery of 40 strong gravitational lenses with clear 

and definite multiple images (classified as “grade-A” ) and another 18 single-image lenses 

(classified as “grade-C” ) from the S4TM survey (HST Program ID 12210 , Brownstein et 

al. 2014 (in preparation)), which by design selects lens galaxies with lower masses and 

smaller Einstein radii compared to the previous SLACS survey. Along with findings in the 

SLACS survey, we construct a statistically significant and more complete ensemble of over 

100 gravitational lenses, including 98 grade-As and 33 grade-Cs. This combined sample 

probes ETGs with a mean lens redshift of (zL) =  0.18 and total enclosed mass within the 

Einstein radius M Ein as low as 1.34 x 1010M o . All lenses have been modeled individually 

and measurements/upper limits of the Einstein radii have been obtained for grade-A/C lens 

galaxies appropriately.

3.6.1 Discussion
We have discovered clear evidence for the dependence of the total mass-density profile 

on galaxy velocity dispersion, in the sense that less massive (lower velocity-dispersion) lens 

galaxies have more centrally concentrated (super-isothermal) profiles. We have obtained 

this result by performing a hierarchical Bayesian analysis of the relation between log10 a* 

and log10 aSiE for the combined lens ensemble. The inclusion of grade-C lenses is essential 

to this discovery: the significance of the trend is about 4-a when including grade-A and 

grade-C lenses together in the analysis, but only about 1-a (i.e., consistent with no trend) 

when analyzing grade-A lenses alone. This can be attributed both to the fact that the 

grade-C lenses extend the mass baseline of the measurement to lower masses, and to the 

fact that excluding grade-C lenses will bias the sample towards higher values of aSIE at 

fixed a*.

A trend of mass-density profile Y  upon the surface stellar mass density X* =  M * /(2 n R ff) 

has been found in Auger et al. (2010), Dutton and Treu (2013), and Sonnenfeld et al. 

(2013) using either SLACS lenses or lenses from the Strong Lensing Legacy Survey (SL2S, 

Gavazzi et al., 2012). In particular, they found that galaxies with denser stellar mass 

densities have steeper profiles. Since the stellar velocity dispersion can be approximated as
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o f rc M */R eff rc S*Reff, the y '-ct* relation and t/-E* relation suggest that as our lens galax

ies grow their mass, they become spatially less concentrated (smaller £*) and dynamically 

“hotter” (larger ct*). This can be understood in terms of the expectations from baryonic 

physics within DM halos. Dissipative gas processes lead to higher baryon densities in the 

center of DM halos, and also steepen the DM halo profile through the effect of adiabatic 

contraction (AC: e.g., Blumenthal et al. 1986). Energetic feedback processes from SN and 

AGN tend to heat gas and counteract central condensation. These processes compete 

against each other in their effect on the mass distribution in DM halos. For less massive 

galaxies, the impact of feedback is less significant as compared to AC and hence leads to a 

more centrally concentrated halo. The importance of feedback increases as galaxies become 

more massive, resulting in shallower density profiles. Metallicity, environment, and other 

processes are also responsible for this competition. In order to determine whether the effect 

is regulated primarily by velocity dispersion or by stellar density, multiband data sufficient 

for detailed stellar-population analysis will be required for the full S4TM sample.

We have applied a simplified SPS analysis to the HST I-band photometric data to 

estimate the stellar masses of the lens galaxies assuming either a Chabrier or a Salpeter 

IMF. Age, metallicity, and dust have been chosen to match the typical values for passively 

evolving ETGs at low redshifts. A clear correlation between the projected dark matter 

fraction and the total mass is observed for both IMFs, consistent with previous findings 

(e.g., Tortora et al., 2009; Auger et al., 2010; Cappellari et al., 2012; Conroy et al., 2013; 

Brewer et al., 2014). There are two possible interpretations of this result: as a true increase 

in dark-matter fraction with velocity dispersion, or as a trend in the stellar IMF with 

velocity dispersion. The first interpretation aligns with the overall expectation of decreased 

star-formation efficiency with increasing halo mass for halos above ~  108 M 0 (e.g., Behroozi 

et al., 2010). This interpretation could also explain our observed trend in dark-matter 

profile slope: for a fixed stellar profile shape, an increased fractional mass contribution from 

a more spatially extended DM halo will result in a shallower total-mass density profile. 

Alternatively, a trend towards a more bottom-heavy IMF in more massive galaxies can 

cause the apparent effect of an increased DM fraction when a single IMF is assumed across 

all masses (e.g., Treu et al., 2010; van Dokkum and Conroy, 2010; Strader et al., 2011; 

Sonnenfeld et al., 2012; Spiniello et al., 2012; Ferreras et al., 2013; La Barbera et al., 2013; 

Geha et al., 2013; Conroy et al., 2013; Tortora et al., 2013; Spiniello et al., 2014). The 

Salpeter IMF is in any event disfavored at the low-mass end (M Rhalf/ 2 <  1010'8M 0 ), since 

it results in unphysical negative DM fractions.
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3.6.2 Conclusion and Future Work
To conclude, in this paper,

1. We report the discovery of 40 new grade-A and 33 new grade-C ETG lenses from the 

S4TM and SLACS surveys. Besides the measurements for grade-A lenses, upper limits 

of the Einstein radii for grade-C lenses are determined for the first time. Combining 

with 58 grade-A ETG lenses from the SLACS survey, we construct an unbiased ETG 

lens ensemble with wider mass coverage than previous strong-lens samples;

2. Applying a hierarchical Bayesian method which utilizes both the measurements and 

upper limits of the Einstein radii, we study the correlation between log10 ct* and 

log10 ctsie, and find a less-than-unity slope of 0.78 ±  0.05 which corresponds to a 

significant (w4ct) dependence of total mass-density profile on the lens mass in the 

sense that more massive ETGs possess shallower profiles (as quantified by the ratio of 

ct* to ctsie which serves as a proxy for the logarithmic mass-density profile slope Y ). 

We have shown that this trend is only significant when grade-C lenses are included (the 

slope is 0.93 ±  0.07 for the grade-A only subsample) which, highlights the importance 

of grade-C lenses to enabling a wider and less biased coverage of lens masses;

3. Stellar masses of lens galaxies are estimated based on their HST I-band photometry 

and SPS models assuming either a Chabrier or Salpeter IMF. The resulting DM 

fractions within one half of the half-light radius / dm for each IMF model are found to 

be strongly correlated with the lens mass/velocity dispersion in the sense that more 

massive ETGs have larger DM fractions, or alternatively mass-dependent IMFs (or 

a combination of both effects). A Salpeter IMF is ruled out for ETGs with mass 

less than 1010'8M© or velocity dispersion smaller than 180 km/s by implying negative 

f DM.

The analysis of our new S4TM lens sample in combination with other lens samples 

can be improved with spatially resolved long-slit or integral field spectroscopy in order to 

determine the two-dimensional stellar kinematics of the lenses, which can in turn enable 

detailed lensing-plus-dynamical modeling to better constrain the mass-density profile for 

individual galaxies and eventually break the mass-sheet degeneracy (Barnabe et al., 2009a; 

McKean et al., 2010; van de Ven et al., 2010; Newman et al., 2011; Barnabe et al., 2011; 

Dutton et al., 2011). Multiband photometry or spectroscopy covering a wide wavelength 

range from near ultra-violet (NUV) to near infrared (NIR) for the lens galaxies would 

similarly yield better constraints on the age, metallicity, dust, and other parameters in the
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lens-galaxy SPS models. Finally, more sophisticated lens models with separate components 

for dark matter and stars would also improve upon our current single-component total-mass 

models (e.g., Gavazzi et al., 2007; Dutton et al., 2011; Barnabe et al., 2012; Vegetti et al., 

2010, 2012). With uniform data on a comprehensive lens sample from the SLACS, S4TM, 

and BELLS surveys covering a wide range in lens redshift (0.1 <  z <  0.7) and total 

enclosed mass (1010M© <  MEin <  1012M©), we can fully explore the variation of ETG mass 

structure across galaxy mass and cosmic time through a joint analysis of strong lensing, 

stellar dynamics, and stellar populations.



CHAPTER 4

JOINT ANALYSIS OF STRONG LENSING 
AND STELLAR KINEMATICS^

In this chapter, I outline in detail the idea of a joint analysis of strong GL and two

dimensional stellar kinematics as a powerful technique to constrain the mass-density pro

files of lens galaxies and separately study the luminous and dark components. Applying 

this joint analysis by Bolton et al. (2012b) to a combined lens sample discovered by the 

SLACS and BELLS Surveys over the redshift interval from 0.1 to 0.6, we detected a 

significant redshift dependence of the logarithmic total mass-density slope Y  with magnitude 

d(Y;)/d z  =  -0 .60  ±  0.15. This 4a evolution trend toward shallower mass profiles at higher 

redshifts unravels the significant role of off-axis major dry mergers during the process of 

galaxy assembly over the past 6 Gyrs.

4.1 Introduction
The total mass-density profile of ETGs is a highly instructive fossil record of galaxy 

formation and evolution. DM-only simulations find that the mass distribution can be well- 

fitted by a universal “NFW” profile (Navarro et al., 1996, 1997). However, tension arises 

when comparing to various observational facts (Moore et al., 1999b; Graham et al., 2006; 

Navarro et al., 2010), the solution of which lies in the physical processes brought by the 

baryons reside in real galaxies, such as adiabatic contraction, heating mechanisms, and 

other energetic feedbacks (Gnedin et al., 2004; Nipoti et al., 2004; Gustafsson et al., 2006; 

Romano-Dlaz et al., 2008; Abadi et al., 2010; Governato et al., 2010; Duffy et al., 2010; 

Martizzi et al., 2012; Velliscig et al., 2014). A detailed study of the mass structure of ETGs 

permits examination and quantification of the effects of baryonic physics.

Strong GL studies have already found that the total mass-density profile in the central 

regions of massive ETGs at low redshift (z <  1) can be well-described by a simple power-

method implemented by Yiping Shu, applied in the cited paper— Bolton A. S., Brownstein, J. R., 
Kochanek, C. S. , Shu, Y ip in g , Schlegel, D. J., Eisenstein D. J., Wake, D. A., Connolly, N., Maraston, 
C., Arneson, R. A., Weaver, B. A., “ The BOSS Emission-Line Lens Survey.II. Investigating Mass-density 
Profile Evolution in the SLACS+BELLS Strong Gravitational Lens Sample,” 2012, ApJ, 757, 82.
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law model (Koopmans et al., 2006b; Gavazzi et al., 2007; Koopmans et al., 2009; Bolton 

et al., 2012b). However, for a general power-law density profile other than the SIE model, 

the essential deflection angle for gravitational lens modeling can only be approximated by 

rather expensive numerical approaches. Additionally, when considering GL signals alone, 

the known mass-profile, mass-sheet, and families of other degeneracies severely prevent an 

accurate determination of the true mass-density profile (e.g., Gorenstein et al., 1988; Saha, 

2000; Wucknitz, 2002; Treu et al., 2010; Liesenborgs and De Rijcke, 2012; Schneider and 

Sluse, 2013). On the other hand, the two-dimensional stellar kinematics can in principle 

unravel the mass structure of ETGs because the motion of any individual star within the 

galaxy is purely governed by its gravitational potential and the bulk effect is characterized 

by the Jeans’ equations (Jeans, 1915; Binney and Tremaine, 1987). However, in reality, this 

technique is limited by the projection effect and insufficient observational power.

The joint analysis of strong GL and two-dimensional stellar kinematics has been shown 

to be a promising technique to break some of the known degeneracies and lead to a tighter 

constraint on the total mass-density profile in the central regions of massive ETGs (Treu 

and Koopmans, 2002, 2004; Grillo et al., 2008; Koopmans et al., 2009; Ruff et al., 2011; 

Barnabe et al., 2011; Spiniello et al., 2011). However, the lack of a significant lens sample 

with a wide redshift coverage and an appropriate analyzing tool has strongly limited the 

thorough exploration of the mass structure. In this work, we took advantage of a combined 

lens sample obtained by the SLACS (Bolton et al., 2008a) and BELLS (Brownstein et al., 

2012) Surveys using the same selection technique and implemented a Bayesian approach to 

investigate the mass structures of individual lens galaxies and any evolution trend across 

the entire lens-galaxy population.

4.2 Dynamical Modeling
Following the notations in Binney and Tremaine (1987), the distribution function (DF) 

f  (r, v, t) of stars within a galaxy satisfies the continuity equation

§ £ + £ £ < * • / > = »  (“ > a=1
where w =  (r, v), w =  (v, - V $ )  and $  is the gravitational potential. This equation can be 

further simplified a s

% + fy ‘§k = ° (4'2) a=1
because v  and x  are independent variables and $  does not depend on vj. Equation 4.2 is 

known as the “collisionless Boltzmann equation.”
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In a spherical coordinate system, the collisionless Boltzmann equation becomes 
d /  d /  ve d /  vs d /  , v(? + v2 d /  1 2 d $  d / . ,
"777 +  tVTj I 7777 H : 77"T +  ( 7\ )t7 I (v^ cot 0 — ---- 7̂77) 77 (4-3)dt dr r d0 r sin0 r dr dvr r r d0 dve

1 , _ 1 d$ . d /
—  (*V*V> +  vqv^ cot 61 +  — 7 ^ - )  ̂ 7— =  0 r sin 0 dvs

For a spherical symmetric system, it is reduced to
d /  d /  ,v2 +  vS d $ , d /  1, 2  ̂ « /« + ‘''ft7 + (~  d7 W  + r l”* (:°te  ~ VrV dv^

1 f J- +a\df  n--{VrV'p +  Vev  ̂cot 9)-q^ - =  0

Define the velocity moments as

v (r)vr2iv2j v2fc =  J  v * v 2j  v2fc /  (r, v, t) d3v (4.5)

where v(r) is the spatial density of stars and also the normalization factor

v(r) =  J  / (r, v, t )d 3v. (4.6)

Note that any odd velocity moment actually vanishes. Multiplying Equation 4.4 by vr and

integrating over d3v, we get the three-dimensional spherical Jeans equation as
d - 2v2 — v2 — vS d$

--[v{r)v'2\ -\-------------------- -v (r )  =  - v —  (4.7)
dr r dr

We assume an Osipkov-Merritt (Osipkov, 1979; Merritt, 1985b,a) parameterization of the 

anisotropy $

m  =  i - %  (4 .8 )
v;

and the velocity moments are invariant under rotation about the galactic center, namely

v2 =  v| (4.9)

Then the spherical Jeans equation becomes
d -  2$ -  d$

-r-[v{r)v*\ H------[v{r)v%\ =  - v —  (4.10)
dr r dr

which is the building block of our dynamical modeling as it connects the gravitational 

potential to the observable radial stellar velocity dispersion. Note that there are 4 unknowns 

v(r), $ (r), M (r), and v2 in total in the spherical Jeans equation, but only projected two

dimensional luminosity and velocity-dispersion distributions can be measured. It implies 

that we can not obtain a unique mass model M (r) without making further assumptions on 

the anisotropy $ (r), which is the well-known “mass-anisotropy” degeneracy.

One feasible solution is to assume a constant anisotropy parameter, namely $  does not 

depend on the radius r. Then we can solve the spherical Jeans equation (Equation 4.10)
p ̂

v (r)^2(r )r 2̂  =  /  G M (<  r ')v (r ')r /2^-2 dr' (4.11)
J r

Note that here I replace the radial velocity moment v2 by the radial velocity dispersion 

ur (r) defined as

^ ( r )  =  v2 — vr 2 (4.12)
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under the assumption that the mean radial velocity is zero for a spherical symmetric velocity 

distribution. The three-dimensional luminosity density v(r) is related to the observed two

dimensional surface brightness density /(R )  by the Abel transform
1 f  ~  d /(R ) dR

* r) =  - « l  Ait ( 4 ' 1 3 )
So given a particular total mass-density profile, one can try to work out the integral on the

right-hand side of Equation 4.11 to obtain or (r). Then the line-of-sight velocity dispersion

profile a|(R) is given by

(4 ,4 )

4.3 Application to Lens Galaxies
The application of the above method that I implemented was done by Bolton et al. 

(2012b). In what follows, I summarize the procedures and findings in that work. The lens 

sample includes 79 confirmed grade-A lenses discovered by the SLACS (57, Bolton et al., 

2008a) and BELLS (22, Brownstein et al., 2012) Surveys, two high-resolution HST imaging 

follow-ups on spectroscopically selected lens candidates from the Sloan and BOSS surveys, 

respectively. It is a quite homogeneous sample in the sense that all the lens systems were 

selected in exactly the same way and lens galaxies have comparable stellar masses. In terms 

of redshift, SLACS lenses are relatively nearby, and BELLS lenses are the high-redshift 

counterpart with 0.3 <  zL <  0.7.

For each lens, we obtain the line-of-sight stellar velocity dispersion oi from the observed 

galaxy spectrum based on the method explained in Chapter 2 and Bolton et al. (2012a). 

However, in this work, instead of using the ELODIE eigenspectra, we generate a new set 

of stellar templates from the Indo-US library (Valdes et al., 2004) patched and extended 

by selected synthetic spectra in POLLUX database (Palacios et al., 2010), covering the 

full wavelength range of observed spectra. We restrict to A-K stars when generating the 

eigenspectra and only use the first five principal components as the velocity-dispersion 

template basis. At each trial velocity-dispersion value, we perform a least-squares fitting 

to the observed lens galaxy spectrum and record the best-fit chi2. Eventually, we obtain 

a x2(oj) function for each galaxy, which will be further used to constrain the logarithmic 

density slope y'.

The surface-brightness distribution of each lens galaxy is modeled by the so-called 

“Nuker” profile described in (Lauer et al., 1995)

J(R) =  2{l3-^ / aIbA ^ [ l  +  ( i ° ] ( 7 - /J ) / °  (4.15)
R Rb

which is a broken power law with break radius Rb and sharpness of transition characterized
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by a. The best-fit parameters are obtained by optimizing the point-spread-function (PSF) 

convolved Nuker models to best fit the HST I-band reduced imaging data inside a circular 

region of 6V centered on the lens galaxy. The robustness of this Nuker model was verified 

by comparing the results obtained by assuming different surface-brightness profiles and 

weighting schemes.

The total mass-density profile is chosen to be a simple power-law model following 

Koopmans et al. (2006b, 2009)

p(r) =  por-7 ' (4.16)

The strong-lensing observations allow us to eliminate p0 in the power-law model by requiring 

that the total mass within the Einstein radius for each lens should be

M {<  DdeB i n )  =  Ein (4-17)

Adopting these ingredients into the spherical Jeans equation, we obtain the line-of-sight 

velocity dispersion profiles for each lens galaxy as

I {R)  Jr vV2 — R2
Note that for simplicity, we assume the anisotropy parameter 0  =  0. To compare with ob

servations, we convert a|(R, 7 ') to the luminosity-weighted line-of-sight velocity dispersion 

within the observational apertures Rap (1.5" in radius for SLACS lenses and 1" in radius 

for BELLS lenses) as
2 l 0RaP W (R )/(R )a 2(R ,7 ,)2nR dR(7Dred(7 ) =  -------- r------------- --------------------  (4.19)

J0 PW (R )I(R )2 ttR c\R
where W (R ) is the window function which takes care of the blurring due to the 1.8" seeing. 

It is worth noting that apred(7 /) depends on the specific mass profile used and therefore 

depends on the logarithmic density slope 7 '.

4.4 Mass Structure Evolution
To explore the mass structure evolution among the lens galaxies, we parameterize the 

conditional PDF of 7 ' at a given z as a Gaussian form
1 „ r [7' -  (Y0 +  Yz(z -  ° .25))]2Pr(7 /|z, Sj) =  /— _ exp {------------------- ^ --------’-------- } (4 2 °)

with y0 the mean value at z =  0.25, Yz the evolution magnitude of the mean 7 ', and 

sY the intrinsic scatter in 7 '. To quantify these parameters based on the joint analysis 

of GL and stellar kinematics as outlined in the previous sections, we again apply the 

hierarchical Bayesian method in which y0, yz , and sY are the hyperparameters that need to 

be determined. The likelihood function of the hyperparameters for the entire lens population 

is
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L (7 o ,7 z ,s 7|d) =  Pr(d|7o,7z, s7) = H i Pr(di|Y0,Yz, s7) 

=  Ui I Pr(di i v )Pr(Y|7o,7zj sy)d V (4-21)

The first term in the integral Pr(di |7 /) is the conditional PDF of data di given 7 ' which comes 

from comparing the observed line-of-sight stellar velocity dispersion CTi to the predicted value 

for a particular 7 ' value CTpred

of the hyperparameters is assumed to be uniform in 70 , yz, and log10 sY. So the posterior 

PDF of the hyper parameters is proportional to the likelihood function

Bolton et al. (2012b) first derived the best-estimated 7 ' values for individual galaxies 

based on the observed (CTi) and predicted CTpred and plotted them in Figure 4.1. The black 

diamonds represent SLACS lenses at lower redshifts and blue squares represent BELLS 

lenses at higher redshifts. It is clear that the logarithmic density slope of a lens galaxy 

is correlated with its redshift. The solid line represents the best-fit relation from a linear 

regression and the four gray lines show the amounts of variation by allowing ± 1ct change 

in the best-fit slope and the zero-point of this linear relation.

We discretized Equation 4.21 by using a gridded range of 7 ' values 1.1 <  7 ' <  2.9 with 

a step-size of 0.02 and obtained the posterior PDF of the hyperparameters. Figure 4.2 

visualizes the projected line-of-sight velocity dispersion ct|| of a particular lens as a function 

of the power-law index 7 ' and radius R. Figure 4.3 shows the confidence regions of the 

marginal posterior PDFs of 70 and Yz for the entire lens-galaxy population based on the 

joint analysis of strong GL and stellar kinematics. Black and gray contours are the results 

assuming a Nuker profile or a de Vaucouleurs profile, respectively. First of all, we can see 

that the two surface-brightness profiles yield almost the same posterior PDFs. Secondly, 

there is a very significant deviation (4-5ct) from nonevolution mass structure for this lens 

sample, toward the trend that lens galaxies at lower redshifts have steeper mass-density 

profiles in their central regions. Taken at the face value, it seems like this work is in tension 

with previous finding of little redshift evolution of the mass-density profile from studies 

using only SLACS lenses (e.g., Koopmans et al., 2006b; Gavazzi et al., 2007). However, it 

can be easily seen from Figure 4.1 that this disagreement is due to the insufficient redshift 

coverage in SLACS lenses. By including high-redshift BELLS lenses, the anticorrelation

X2(q,Pred(7/))
2

Pr(70,7z,s7|d) =  L (7 0 , Yz, s7|d) (4.24)
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redshift z

Figure 4.1: Best-estimated y ' values for individual galaxies as a function of lens redshift. 
Black diamonds are for SLACS lenses while blue squares are for BELLS lenses. The four red 
crosses indicate four lens galaxies with computed stellar velocity dispersions either greater 
than 316 kms-1 or less than 158 kms-1 . The meanings of all the lines are explained in the 
text. Credit: Figure 2 in the referred publication: “The BOSS Emission-Line Lens Survey. 
II. Investigating Mass-density Profile Evolution in the SLACS+BELLS Strong Gravitational 
Lens Sample,” Bolton, A.S., et al., 2012, ApJ, 757, 82. Reproduced by permission of the 
AAS.
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Figure 4.2: Projected line-of-sight velocity dispersion ay of a particular lens galaxy as a 
function of the power-law index y ' and radius R.
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7o (<7 > at z = 0.25)

Figure 4.3: Marginal posterior PDFs of the mean and redshift evolution hyperparameters 
obtained by a hierarchical Bayesian analysis. Black contours are the results assuming a 
Nuker profile for the surface-brightness distribution while gray contours are for the de 
Vaucouleurs profile-based results. The horizontal dashed line indicates null evolution in the 
logarithmic density slope y ' and the vertical dashed line indicates an isothermal profile with 
y ' =  2. Credit: Figure 2 in the referred publication: “The BOSS Emission-Line Lens Survey. 
II. Investigating Mass-density Profile Evolution in the SLACS+BELLS Strong Gravitational 
Lens Sample,” Bolton, A.S., et al., 2012, ApJ, 757, 82. Reproduced by permission of the 
AAS.
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becomes much more significant. Finally, using strong GL as a mass constraint, solving 

the spherical Jeans equation, and comparing with the observed luminosity-weighted stellar 

velocity dispersion nail down the magnitude of the redshift-evolution of mean logarithmic 

slope to be Yz =  d(Y ')/dz =  -0 .60  ±  0.15.

4.5 Discussions
The detailed discussions of this work such as the selection effects and physical inter

pretations can be found in Bolton et al. (2012b). Here I just want to emphasize that this 

joint analysis of strong GL and stellar kinematics has been shown by various studies to be 

a very effective approach to better constrain the mass structure of ETGs in their central 

few kpcs’ regions. However, it is clear that currently, this method is a highly simplified 

implementation of the dynamical model. In order to extend to a more general form, we 

need to treat the anisotropy @ as a free parameter. Also if the two-dimensional stellar 

velocity dispersion profile of a lens galaxy can be measured by long-slit or integral field 

unit (IFU) instruments, we can directly compare it with the predicted two-dimensional 

line-of-sight velocity dispersion profile to get a much better understanding of the anisotropy 

and the mass structure, as compared to that obtained by using a single aperture-integrated 

velocity dispersion value. It has been suggested by Agnello et al. (2013) and Richardson 

and Fairbairn (2014) that the joint use of projected virial theorem can tightly constrain 

the anisotropy or even completely break the mass-anisotropy degeneracy. Furthermore, 

a more detailed lens model other than the simple SIE model is demanded for removing 

the mass-profile degeneracy and other associated biases. It is now obvious that the total 

mass-density profiles of most early-type lens galaxies are not isothermal. So assuming an SIE 

profile during the lens modeling in general introduces a bias in the estimation of the Einstein 

radius (especially for systems without rings) and hence in the estimation of the total mass. 

It is also worth decomposing the total mass distribution into a stellar component and a dark 

component, or even considering DM substructures for a more detailed characterization of 

the mass structure (e.g., Vegetti et al., 2012; Barnabe et al., 2012; Schneider and Sluse, 

2013; Suyu et al., 2013). Multiband photometry or spectra of lens galaxies can be further 

used to yield a better constraint on the stellar mass based on stellar population synthesis 

(SPS) models (e.g., Spiniello et al., 2011; Dutton et al., 2013b; Conroy et al., 2013; Brewer 

et al., 2014; Spiniello et al., 2014).



CHAPTER 5

SUMMARY AND FUTURE WORK  

5.1 Summary
In this dissertation, I investigated the properties and evolutions of the “mass sector” in 

our universe using a hierarchical Bayesian method. The theme of this dissertation is two

fold. Firstly, I studied the evolution of the luminous mass-component, i.e., massive early- 

type galaxies which are the most-luminous, end-product of hierarchical galaxy-formation 

processes. The other half of the dissertation focused on the characterization of the dark 

mass-component known as the mysterious dark matter.

I used a dynamical probe to unravel the evolution trend of ETGs. The luminosity- 

weighted line-of-sight stellar velocity dispersion o*, which quantifies the standard deviation 

of the velocities of stars within a galaxy, is a direct probe of the gravitational poten

tial/dynamical mass and is strongly correlated with the size and surface brightness of the 

galaxy through the FP. The enormously large LRG sample observed by the BOSS Survey 

provided a perfect playground for galaxy evolution studies. I obtained the stellar velocity 

dispersions from the observed spectra using a velocity-dispersion extraction code specially 

customized for this low SNR data. Then instead of using the point-estimations of velocity 

dispersion for individual galaxies, I performed a hierarchical Bayesian analysis to explore 

the properties of the entire galaxy population. Binning the sample in the redshift-luminosity 

space and parameterizing the conditional PDF of log10 o* as a Gaussian distribution with 

mean m and intrinsic scatter s, I detected a strong evolution trend in the intrinsic scatter 

s for the CMASS sample (0.4 <  z <  0.8) in the direction that LRGs at higher z have larger 

s values (Figure 2.10), which indicates that they are more dynamically diverse. Also, the 

mean m of the CMASS sample correlates linearly with galaxy magnitude with a varying 

slope, which is interpreted as a mass-dependent star-formation history. On the other hand, 

the LOWZ sample does not show much variation in either the intrinsic scatter or the mean 

(Figure 2.8). Further investigation is needed to quantify the selection effect.

To study the dark component, I relied on both the strong gravitational lensing technique 

and single stellar population models. I discovered 73 new gravitational lens systems in total
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from the SLACS and S4TM Surveys with 40 S4TM grade-A lenses, 18 S4TM grade-C lenses, 

and 15 SLACS grade-C lenses. A customized lens modeling code was used to determine 

the upper limits of the Einstein radii for the 33 grade-C lenses. The relation between the 

observed stellar velocity dispersion a* and the lensing velocity dispersion aSIE was studied 

via a hierarchical Bayesian method and used to estimate the logarithmic total mass density 

slope y ' empirically. We detected a significant (4a) anticorrelation between y ' and a* 

(Figure 3.8), which can be explained by baryonic physics such as adiabatic contraction, 

gravitational heating, and energetic feedbacks. I performed core-Sersic fits to the observed 

HST I-band surface brightnesses of the lens galaxies, based on which the stellar masses were 

estimated according to SSP models with two commonly used IMFs —  the Salpeter and the 

Chabrier IMFs adopted. The dark-matter fraction fdm within one half of the half-light 

radius was found to be correlated with the galaxy mass, stellar velocity dispersion, and 

half-light radius (Figure 3.10). That was interpreted as more massive ETGs possess larger 

fractions of DM in their central regions as a result of the competition among different 

cooling and heating mechanisms. Another interesting finding was that the Salpeter IMF is 

substantially disfavored by our lens sample especially at the low-mass end, as it predicted 

more stellar masses than the total masses constrained by gravitational lensing.

5.2 Future Work
According to the ACDM paradigm, the universe is composed by a cosmological constant 

term (dark energy), a dark component (DM), and a luminous component (stars and the 

gas and dust in the interstellar and intergalactic medium). Understanding the nature of 

these fundamental building blocks and the way they interact to form the “visible” universe 

is crucial to decode both the physics of galaxy formation and the nature of the dark matter 

that galaxies assemble on. Here I will discuss two future projects in detail that provide 

vital insight on the darkness and light in the universe using the powerful tool of strong 

gravitational lensing (GL). On the dark side, DM substructures will be uncovered by a 

sophisticated lens modeling technique and permit the exploration of the nature of DM 

particles. On the luminous side, the stellar initial mass function (IMF) will be thoroughly 

studied via a joint analysis of GL, stellar dynamics (SD), and stellar population synthesis 

(SPS) models. The probed universality/variation of the IMF reveals the controlling factors 

in galaxy formation and evolution processes.
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5.2.1 For The Darkness —  A Grand Lens Model

Despite the remarkable success of ACDM paradigm in describing the large-scale structure 

of the Universe and in explaining numerous observational results, the nature of the DM 

itself, which accounts for more than 80% of the mass in the universe, is still an unsolved 

fundamental question in astrophysics and physics. One notable issue that remains challeng

ing for over a decade is the missing satellite problem (MSP), which is the significant excess 

in the number of DM subhalos predicted by numerical cosmological simulations compared 

to that of the observed satellite galaxies in the Local Group (Klypin et al., 1999; Moore 

et al., 1999a). The lack of observed satellite galaxies indicates either a suppression in the 

galaxy formation process in subhalos, or more importantly, an insufficient understanding of 

DM particles. For instance, the dynamic friction and tidal stripping owing to the central 

galaxy will enhance the subhalo disruption. Also if the dark matter particles were warm 

(WDM) instead of cold, the free-streaming due to thermal motion of particles would smear 

out small-scale structure while persisting the overall success on large scales (Bode et al.. 

2001). Consequently, properties like the abundance and mass function would be different 

from ACDM predictions.

However, the detection of DM substructure has been substantially limited by its dark fea

ture as most astronomical detections heavily rely on the object’s electromagnetic radiation. 

Luckily, there is the gravitational lensing effect, which is the convergence of the background 

light under the influence of the gravity of the foreground massive object (Einstein, 1936). As 

a pure gravitational phenomenon, GL is the perfect tool to study substructures within DM 

halos. The current schemes of detecting substructures through GL rely on independently 

modeling observational anomalies, including the flux-ratio anomaly, time-delay anomaly, 

and astrometric anomaly.

Figure 5.1 provides an illustration on how these schemes work using a mock lens system. 

The lens and the source are put at the average redshifts of lens systems discovered in 

the SLACS for The Masses (S4TM) Survey (She et al. 2014 to be submitted). In this 

illustration, we adopt a substructure with mass 1E—4 of the lens mass. In building a realistic 

simulation, we use the sky noise, point spread function (PSF), and image configuration of a 

real S4TM lens. Adding the substructure significantly affects the positions and brightnesses 

of the arcs (top) and results in up to 10% change in the flux ratio (bottom left) and a few 

days difference in the arrival time which can not be explained simultaneously otherwise.

Although many valuable results have been discovered by the above techniques (Mao 

and Schneider, 1998; Moustakas and Metcalf, 2003; Keeton et al., 2003; Kochanek and
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Figure 5.1: Illustration of the effects of a DM substructure on various observables. Panel 
(a): the lensed images without and with the consideration of the substructure and their 
difference; Panel (b): the unperturbed lensed images overlaid by the contours of the ratio 
of magnifications normalized by the value at the brightest peak; Panel (c): the same image 
overlaid by the contours of the differences (in days) in the arrival time with respect to the 
value at the brightest peak.
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Dalal, 2004; Koopmans, 2005; Keeton and Moustakas, 2009; Vegetti et al., 2012), each has 

limitations if applied individually. The flux-ratio anomaly is only sensitive to perturbations 

from substructures on scales comparable to that of the source or larger. The time-delay 

measurements usually require instruments with supreme spatial resolution and time reso

lution, which can only be achieved by space-based satellites such as the proposed OMEGA 

mission (Moustakas et al., 2008). More importantly, as discussed by Keeton (2009), these 

different observables might have different dependence on the mass function and spatial 

distribution of substructures. As for the SK, although there are studies combining it with 

GL to put constraints on the total mass density profile and its evolution across cosmic time 

(Koopmans and Treu, 2003b; Barnabe et al., 2009b; Bolton et al., 2012c), substructures 

have not been included at all.

The Grand Lens Model that I propose will simultaneously fit all the available observables. 

However, it is not simply integrating all the existing methods into a whole. Instead, it is 

a specially designed, fully pixelized lens model. One extraordinary advantage of a fully 

pixelized model is that we are no longer restricted by the few analytically solvable profiles 

which might not be appropriate for describing the substructures. Also, it has the potential 

to even probe substructures in the sources. Furthermore, this model will work with the 

two-dimensional mass distribution rather than the potential so that the interpretation of 

the substructure distribution is extremely straightforward. The lensing potential can be 

reconstructed via the direct integration method (Saha and Williams, 1997) or fast Fourier 

transform (FFT) method (Wayth and Webster, 2006) as needed, from which the surface 

brightness, flux-ratio, and time-delay are derived. The SK information is predicted by 

the Jeans’ equation to help breaking the mass-sheet degeneracy. The goodness of the fit 

is determined according to a penalty function and the significance of various models is 

characterized by the likelihood function in the framework of Bayesian statistics. A Markov- 

Chain Monte Carlo (MCMC) computation can be used to estimate relevant uncertainties.

To date, there are nearly 400 galaxy-galaxy and 100+ galaxy-QSO lensing events un

covered by various discovery programs. However, only a small fraction of galaxy-QSO 

systems have time-delay measurements and the resolution is typically insufficient. So 

a revisit of the known lens systems is quite necessary and will surely lead to a vast 

number of discoveries of substructure. The proposed the Observatory for Multi-Epoch 

Gravitational-Lens Astrophysics (OMEGA) mission is the ideal tool for this purpose as it 

can track the variability of gravitationally-lensed quasars in six broad-band filters covering 

the wavelength range from near-ultraviolet (NUV) to the near-infrared (NIR) in a very fast
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manner (hours to days) and obtain detailed 2-dimensional spectroscopy in a relatively slower 

manner (days to weeks). This will provide unprecedentedly high-resolution measurements in 

the time-delay (~  0.5%) and relative fluxes (subpercent level), which are crucial in probing 

the extremely weak signals caused by DM substructures as shown in Figure 5.1. The detailed 

SK information can also be extracted from the ultra-deep, 2-dimensional spectroscopy of 

the lensing galaxy and get compared with the dynamical prediction to further constrain the 

mass profile. Surveys enabled by the next-generation telescopes such as the James Webb 

Space Telescope and the Large Synoptic Survey Telescope will discover thousands of new 

gravitational lenses for future follow-ups and extend the study to a much wider range in 

galaxy redshift and mass.

Applying the Grand Lens Model to the hundreds and potentially thousands of lens 

systems, I expect to detect substructures in most of the lens systems with their positions, 

masses, and mass-density profiles well-determined. Besides the case-by-case study where the 

signals are typically noisy and uncertain, I will apply a hierarchical Bayesian method (Shu 

et al., 2012) to deconvolve observational uncertainties and explore the intrinsic behaviors of 

the abundance, spatial distribution, and mass function of substructure using the entire lens 

population. Further comparisons with cosmological simulation predictions will revolutionize 

our understanding of DM particles, including the collisional nature, thermal nature, and 

particle nature (e.g., Natarajan et al., 2002; Dalal and Kochanek, 2002; Kaplinghat, 2005).

5.2.2 Project II. For The Light —  Starlight +  Lensing
The other project that I propose is to further the study of the stellar initial mass 

function (IMF) using a combination of GL, stellar dynamics (SD) and stellar population 

synthesis (SPS) to test its universality/variation with the help of the comprehensive sample 

of gravitational lenses.

Apparently, the spectral energy distribution (SED), colors, and many other luminous 

observables of the stellar population and thus galaxies are strongly related to the stellar 

IMF, which is an empirical relation quantifying the relative fraction of stars as a function 

of the stellar mass at the time when the whole population formed. Having knowledge 

of the stellar IMF is also important for understanding galaxy evolution. Salpeter (1955) 

first quantified the IMF of main-sequence stars in the solar neighborhood as a power-law 

function with an exponent of -2 .35. To date, the most commonly used forms of IMF are the 

Kroupa IMF (Kroupa, 2001) and the Chabrier IMF (Chabrier, 2003), two variations from 

the Salpeter IMF (Salpeter, 1955) at the low-mass end. However, a vigorous discussions 

has been going on for over 50 years as to whether or not the stellar IMF is universal and
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what kinds of variables control the variation (Trager et al., 2000; Gilmore, 2001; Dave, 2008; 

Bastian et al., 2010).

The classical method of inferring the IMF is from the present-day star counts assuming 

certain stellar evolution history. Obviously, that can only be done in very nearby galaxies. 

For distant galaxies in which individual stars can not be resolved, two independent modeling 

techniques have been widely used recently. The first one relies on the SPS models by 

varying IMF, age, metallicity, and other parameters to explain the observed spectra or 

broad-band colors. The other technique is a dynamical probe by fitting the projected 

two-dimensional SD predictions to the observed SK measurements to derive the mass-to- 

light ratio for comparison. Although these two techniques have recently revealed some 

strong pieces of evidence that the stellar IMF is not universal, but rather depends on 

the properties and formation history of the galaxy itself (Cappellari et al., 2012; Conroy 

et al., 2013), potential systematic uncertainties still exist. The SPS technique highly relies 

on the surface-gravity-sensitive spectral features NaI, CaII, and FeH at 0.82^m, 0.86^m, 

and 0.99^m to break the degeneracy between low-mass stars and dark matter. Improper 

interpretations in the SPS model, or lack of coverage of these features in the observed 

spectra, can lead to up to 50% change in the mass-to-light ratio normalization (Conroy and 

van Dokkum, 2012). The dynamical probe requires assumptions on the DM halo distribution 

which is very model-dependent. Even by including GL constraint, a degeneracy between the 

IMF and DM density profile still prohibits unambiguous disentanglement of the luminous 

and dark components (Treu et al., 2010). Furthermore, those studies mainly focus on nearby, 

very massive early-type galaxies and substructures have not been taken into account at all.

In this project, I will extend the study to galaxies with a wider range of redshift, mass, 

and morphology. Additionally, I will perform two analyses using SD+GL and SPS to inde

pendently estimate the stellar masses, the combination of which will largely break existing 

degeneracies and yield tighter constraints. The Grand Lens Model will separate the mass 

distribution into the dark smooth component, dark substructure, and luminous component 

and utilize both the lensing signals and detailed two-dimensional SK measurements to 

break the mass-anisotropy, mass-sheet degeneracies, and determine the mass composition 

as described in the first project. On the other hand, multiband photometry or ideally spec

troscopy covering a wide wavelength range from NIR to NUV for lens galaxies will permit 

the determinations of stellar mass for a range of IMFs through the SPS analysis (Conroy 

et al., 2009). In this process, carefully disentangling the light from the background sources 

is required to minimize the possible color bias which affects the stellar mass estimations.
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Age, metallicity, dust, and other parameters in the SPS analysis should be marginalized 

over. Stellar masses obtained by the two methods can get compared and this joint analysis 

will determine the stellar IMF on a galaxy-to-galaxy base.

Figure 3.10 shows the discovery of a clear correlation between the DM fraction fdm 

and the total enclosed mass MEin determined by GL within the Einstein radius for over 

100 confirmed galaxy-galaxy lenses in the Sloan Lens ACS (SLACS) Survey and the S4TM 

Survey (Shu et al. 2013 to be submitted). Stellar masses are calculated by the SPS technique 

based on the background-corrected magnitudes assuming different IMFs. Given the single 

HST band photometry, we have to make assumptions on the age, metallicity, and dust. The 

symbols on the figure correspond to a typical model with a formation time of 4 Gyrs, solar 

metallicity, and no dust and error bars indicate the extreme values of fdm by varying the 

age, metallicity, and dust. Although the systematic uncertainties are huge, the hard limits 

on the total mass provided by GL (fdm >  0.0) clearly favors a Kroupa IMF for this set of 

galaxies. Deep, multiband photometry will allow a full exploration of the parameter space 

and permit more accurate estimations on the stellar mass.

On the observational side, as mentioned before, only a small fraction of the known 

lens systems have high signal-to-noise ratio (SNR) spectroscopy and detailed, robust two

dimensional SK measurements outer to large enough radii. The OMEGA  mission will 

substantially bridge this gap in the next 3 years. Meanwhile, as a pioneer project, I propose 

to do spectroscopic follow-ups for a sample of lens systems (~  100) selected from the Sloan 

Lens ACS Survey, S4TM Survey and BOSS Emission Line Lens Survey to cover a wide 

range in the lens redshift (0.1 <  z <  0.7) and total enclosed mass (1010M© < M Ein < 

1012M©). The spectroscopic and SK information can be collected by instruments with 

long-slit spectrograph or Integral Field Spectrograph (IFS), the Keck telescopes for example. 

The joint analysis on this well-chosen sample will test the detected correlation between the 

stellar IMF and galaxy mass and unravel any variation of the IMF across cosmic time. 

Finally convolving with the ultra-deep, comprehensive lens sample available in the near 

future, I expect to find unambiguous evidence for the correlation/variability of the stellar 

IMF using the hierarchical Bayesian method.



APPENDIX

BAYESIAN INFERENCE AND EXTRA  
FIGURES

Here we derive the procedure to calculate the likelihood function of the hyperparameters 

L (#| {y }, {x } , H ). Using the fact that the product of two Gaussian distributions is a scaled 

Gaussian distribution as

We obtain
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Going through some math, we obtain
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Figures below are the reduced chi-square curves as a function of the Einstein radius and 

the lens models for all the 33 (18+15) grade-C lenses from S4TM and SLACS surveys.
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Figure A .1 : The reduced chi-square x? as functions of trial Einstein radius bsiE for all the 
18 grade-C lenses with no counter-images in the S4TM survey. The vertical dashed lines 
indicate the locations of the upper limits of Einstein radii. (Please refer to the context for 
details about how to determine the upper limits.)
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Figure A .3 : Lens models for 18 newly discovered grade-C gravitational lenses from S4TM 
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