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ABSTRACT 

 

According to a UN report, more than 50% of the total world’s population resides 

in urban areas and this fraction is increasing. Urbanization has a wide range of potential 

environmental impacts, including those related to the dispersion of potentially dangerous 

substances emitted from activities such as combustion, industrial processing or from 

deliberate harmful releases. This research is primarily focused on the investigation of 

various factors which contribute to the dispersion of certain classes of materials in a 

complex urban environment and improving both of the fundamental components of a fast 

response dispersion modeling system – wind modeling and dispersion modeling. 

Specifically, new empirical parameterizations have been suggested for an existing fast 

response wind model for street canyon flow fields. These new parameterizations are 

shown to produce more favorable results when compared with the experimental data. It is 

also demonstrated that the use of Graphics Processing Unit (GPU) technology can 

enhance the efficiency of an urban Lagrangian dispersion model and can achieve near 

real-time particle advection. The GPU also enables real-time visualizations which can be 

used for creating virtual urban environments to aid emergency responders. The dispersion 

model based on the GPU architecture relies on the so-called “simplified Langevin 

equations (SLEs)” for particle advection. The full or generalized form of the Langevin 

equations (GLEs) is known for its stiffness which tends to generate unstable modes in 

particle trajectory, where a particle may travel significant distances in a small time step. 
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A fractional step methodology has been used to implement the GLEs into an existing 

Lagrangian random walk model to partially circumvent the stiffness associated with the 

GLEs. Dispersion estimates from the GLEs-based model have been compared with the 

SLEs-based model and available wind tunnel data. The GLEs-based model is more 

dispersive than the SLEs-based model in both the lateral and vertical directions. It is 

observed that for the present test case, the GLEs-based model performed relatively better 

than the SLEs-based model. 
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1. INTRODUCTION 

 

Recently, the world has seen rapid growth in urbanization (Rotach 2001). Rapid 

growth of urban areas can impact a myriad of activities, including those related to 

industry and transportation. This trend raises concerns about environmental deterioration. 

The dispersion of pollutants along with accidental discharges threatens urban air quality. 

Deliberate or accidental release of a harmful material in urban areas, where population 

density is high, is also of major concern. This research is primarily focused on the 

investigation of the various factors which contribute to the dispersion of certain classes of 

toxic material in a complex urban environment. 

The threat of an accidental or deliberate release of a chemical or biological agent 

in densely populated urban areas has led to the development of a number of urban fast 

response transport and dispersion models. These models are characterized by short 

computational turnover times and account for the effects of buildings and other structures 

present in urban flow fields. Fast response models are particularly useful for emergency 

response scenarios where quick dispersion estimates are required to act appropriately, and 

for vulnerability assessments of urban areas where a wide range of model inputs must be 

investigated in a limited amount of time (Brown 2004).  

Airborne releases of toxic gases and aerosols may occur in cities and cause great 

harm to the general population.  Recent field experiments (Allwine et al. 2002; Allwine et 
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al. 2004; Hanna et al. 2004) and computational fluid dynamics modeling (DeCroix and 

Brown 2002; Coirier and Reich 2003; Pullen et al. 2005; Hanna et al. 2006) of tracer 

releases in built-up city centers indicate that buildings significantly alter transport and 

dispersion.   Near street level, for example, the plume may travel several blocks in a 

direction opposing the prevailing wind and many blocks laterally. This topological 

dispersion can lead to secondary sources and significantly alter the rate of lateral 

dispersion (Belcher 2005). A ground-level source can rise several hundred meters in 

depth in less than a block when caught in the updraft just downwind of a tall building 

(Hanna et al. 2006).  Buildings also alter the timing of the transport and dispersion, 

generally resulting in much longer residence times as compared to open terrain (Hanna 

2006; Doran et al. 2006 ).   

For applications where quick turnaround time is required (e.g., an emergency 

response to a chemical accident in a city) or where thousands of simulations must be 

performed in a few days or less (e.g., a vulnerability assessment of a particular urban 

site), computational fluid dynamics (CFD) modeling is currently not fast enough. While 

“on demand” CFD calculations are not practical for these applications, there are a number 

of research groups investigating the use of computational fluid dynamics (CFD) models 

for fast response applications.  Ideas range from coarse resolution simulations using drag 

(Lim et al. 2001; Chan et al. 2004) to library approaches where a large number of cases 

are precomputed and results for specific cases are interpolated from the library (Smith 

and Brown 2002). Another approach to speed up a CFD model is to run a simulation 
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where the pressure Poison equation is not solved for complete convergence (Gowardhan 

et al. 2010).  

For many years, “urbanized” Gaussian plume models have been used for rapid 

turnaround applications using urban-specific vertical and lateral plume spread parameters 

(McElroy 1969).  Evaluation studies have shown that at distances greater than about one 

kilometer from the source and/or for low density urban areas, Gaussian models perform 

fairly well when comparing maximum concentrations that are unpaired in space (Hanna 

et al. 2003; Venkatram et al. 2004).  Since Gaussian plume models only use a single 

averaged wind speed and wind direction as input, they cannot represent the complex 

three-dimensional wind and concentration fields that develop within the urban core 

around buildings.  To better account for the effects of buildings on near source transport 

and dispersion, a number of researchers have developed simple fast-running models to 

account for the lateral displacement of a plume centerline due to off-axis channeling 

(Theurer et al. 1996) and to compute the concentration fields around a single isolated 

building (Genikhovich and Snyder 1994; Wilson and Chui 1994; Ramsdell and Fosmire 

1995; Schulman et al. 2000) and within a street canyon (Dabberdt et al. 1973; Yamartino 

et al. 1989; Eerens et al. 1993; Berkowicz 2000). These models are capable of predicting 

dispersion for isolated buildings, two building street canyons, or for idealized building 

arrays, but not for the complex arrangements and shapes of buildings that occur in real 

cities.   

Over the past ten to fifteen years, there has been a considerable amount of effort 

placed in developing urban transport and dispersion models that run relatively fast but 
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account for the effects of groups of arbitrary shapes and arrangements of buildings in an 

approximated way. Hall et al. (2000) describe a Gaussian puff model called the Urban 

Dispersion Model (UDM) for use on neighborhood to city scales (~10 m to 10 km).  The 

model accounts for building wake cavity mixing and some along street channeling, but 

does not compute a 3D flow field around the buildings.  When a puff intercepts a 

building, it is instantaneously placed in the lee of the building in the cavity and puffs are 

then emitted over time from the cavity.  Brook et al. (2003) have evaluated the model 

against idealized building arrays in the lab and field as well as against outdoor urban field 

experiment data. Another well known, but non-peer-reviewed modeling system, called 

MIDAS-AT, computes 3D wind fields around building complexes using potential flow 

theory with dispersion modeled using a traditional three-term boundary-layer random-

walk model (http://www.absconsulting.com/midas/).  The potential flow approach allows 

for channeling of the flow down streets, but does not allow for important rotational flow 

phenomena such as street canyon vortices that form between buildings or recirculating 

cavities that develop downwind of an isolated building.  

Röckle (1990) derived a unique model that computes flow around buildings using 

empirical equations and mass conservation.  Röckle’s methodology was incorporated into 

the ABC and ASMUS models which were intended for dispersion applications at 

industrial sites and have undergone several evaluation studies (Gross et al. 1994; Gross 

1997).  The ABC and ASMUS models accomplished transport and dispersion through a 

K-theory Eulerian diffusion model.  A small number of urban wind models have been 

developed based on the Röckle approach which have all utilized Lagrangian random-
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walk models to accomplish transport and dispersion (Kaplan and Dinar 1996; Moussafir 

et al. 2004; Wang et al. 2005). The Los Alamos National Laboratory (LANL) in 

collaboration with various universities has also utilized the Röckle concept. Over the past 

seven years, a dedicated team of researchers has worked to carefully evaluate the model, 

improve the original flow algorithms and implement new algorithms.  The wind model 

has been modified to work with complex arrangements of buildings, including the ability 

to stack buildings on top of one another to create semirealistic city center layouts.  The 

wind model, QUIC-URB (Singh et al. 2008; Gowardhan et al. 2010), is part of the Quick 

Urban & Industrial Complex (QUIC) dispersion modeling system which contains an 

“urbanized” random-walk model called QUIC-PLUME (Williams et al. 2004) and a 

graphical user interface called QUIC-GUI (Nelson et al. 2006). QUIC-PLUME is unique 

in that it contains a nonlocal mixing scheme and more drift terms than the traditional 

random-walk model in order to account for the inhomogeneous turbulence associated 

with urban flows (Williams et al. 2004).  QUIC has been applied to neighborhood-scale 

problems in such places as New York City, Washington DC, Chicago, Oklahoma City 

and Salt Lake City (see for example: http://www.lanl.gov/orgs/d/d4/atmosphere/chbio 

.shtml).  

This dissertation attempts to further improve/advance the two important 

components of urban fast response dispersion modeling - wind modeling and dispersion 

modeling. Improvements have been suggested for the QUIC-URB wind model’s 

empirical parameterizations for complex urban building configurations. New street-

canyon parameterizations have been suggested which help in better mimicking the mean 

http://www.lanl.gov/
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flow field in presence of complex building configurations. An attempt has been made to 

further advance the current state of fast response dispersion modeling by utilizing 

commodity graphics hardware, in what is called general purpose computation on graphics 

processing units (GPU) to achieve real-time simulation and visualization of large 

numbers of particles simulated using a so-called “simplified” Lagrangian random-walk 

model (simplified to horizontally homogenous flows). This research investigates the 

feasibility of a novel application of an existing fast response Lagrangian dispersion 

modeling system to achieve real-time simulation and visualization of an urban plume that 

a user can interact with in a virtual environment (VE) through the utilization of 

commodity graphics hardware. This GPU-based fast response dispersion model (GPU 

Plume) can also be used for virtual reality applications and emergency training purposes. 

The simplified Lagrangian random-walk model, employed in the GPU Plume, does not 

solve the full or generalized form of Langevin equations (GLEs) (Rodean 1996; Yee and 

Wilson 2007) for advecting particles due to the stiffness associated with the GLEs and 

large number of terms present in the GLEs. The simplified form of Langevin equations 

(SLEs) solves the equations for an assumed horizontally homogenous flow field, which 

drastically reduces the number of terms in the equations. This dissertation attempts to 

incorporate and validate the GLEs into an existing Lagrangian random-walk model using 

a fraction step method (Yee and Wilson 2007) to partially circumvent the stiffness 

associated with the GLEs. 

As part of this work, a Lagrangian dispersion model based on the GPU 

architecture has been developed and evaluated against the available analytical solutions, 
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wind-tunnel data and an existing Lagrangian dispersion model, QUIC Plume, for its 

performance and accuracy of results. A Lagrangian random-walk model using the GLEs 

has also been developed and validated against the available analytical solutions, wind-

tunnel data and QUIC-Plume.  This research can be divided into three components: (1) 

development and evaluation of a new street canyon empirical parameterization for the 

wind model, QUIC-URB; (2) development and evaluation of a Lagrangian dispersion 

model based on the GPU-based architecture; (3) development and evaluation of a 

Lagrangian dispersion model based on the GLEs using a fractional step method (Yee and 

Wilson 2007). 

 

1.1 QUIC-URB - an improved street canyon parameterization 

The QUIC-URB diagnostic wind model generates a mass consistent spatially 

explicit mean wind field in urban areas with complex building configurations. Based on 

the work done by Röckle (1990) and Kaplan and Dinar (1996), QUIC-URB uses 

empirical parameterizations to specify the flow field physics on a gridded domain and 

enforces mass consistency on the initial flow field to obtain a final flow field (Singh et al. 

2008; Gowardhan et al. 2010).  

Chapter 2 describes the QUIC-URB fast response urban diagnostic wind 

modeling tool and evaluates it against wind-tunnel data for a 7 x 11 cubical building 

array (Brown et al. 2001) and a wide building street canyon (Kastner-Klein and Plate 

1999). Röckle-type wind models, such as QUIC-URB, do not solve transport equations 

for momentum or energy; rather, they rely heavily on empirical parameterizations and 
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mass conservation. In the model-experiment comparisons, two empirical building flow 

parameterizations are tested within the QUIC-URB model: our team’s implementation of 

the standard Röckle (SR) algorithms and a set of modified Röckle (MR) algorithms. The 

MR model attempts to build on the strengths of the SR model and introduces additional 

physically-based but simple parameterizations that significantly improve the results in 

most regions of the flow for two wind-tunnel test cases considered for its evaluation. The 

MR model produces vortices in front of buildings, on rooftops and within street canyons 

that have velocities that compare much more favorably to the experimental results.  

 

1.2 GPU-based Lagrangian dispersion model-GPU Plume 

There are a number of existing fast response dispersion models using various 

approaches to achieve the fast response goals (Gross et al. 1994; Kaplan and Dinar 1996; 

Gross 1997; Hall et al. 2000; Moussafir et al. 2004; Wang et al. 2005; Singh et al. 2008). 

These approaches can be broadly classified into Gaussian plume models (Robins 2001), 

Gaussian puff models (Sykes and Gabruk 1997), Eulerian models (Baik et al. 2003) and 

Lagrangian models (Kaplan and Dinar 1996; Wilson and Sawford 1996; Williams et al. 

2004). Gaussian plume models (or “urbanized” Gaussian plume models) are used in 

urban areas by modifying standard input parameters such as the vertical and lateral 

dispersion functions to account for the effects of buildings (Robins 2001). Gaussian 

models are simple and generally produce results very quickly. They utilize a single wind 

direction and wind speed to estimate dispersion and transport of a contaminant. While 

these models have been shown to predict certain statistics such as maximum normalized 
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concentrations well (Hanna et al. 2003), complicated flow features encountered in urban 

areas such as varying wind directions and wind speeds limit the range of applicability of 

“urbanized” Gaussian plume models. Gaussian puff models (Sykes and Gabruk 1997), on 

the other hand, take temporally varying wind direction and variable wind speeds into 

account for describing dispersion and transport of a contaminant. These models are 

limited by their inability to capture the localized complex flow features encountered in 

the urban areas due to the presence of buildings and other structures (Coirier et al. 2005). 

In Eulerian transport and dispersion models, the conservation equations of mass and 

momentum along with an appropriate form of the scalar transport equation are solved to 

obtain dispersion estimates. These models are computationally intensive and are limited 

by their long turnaround times and nonclosure issues due to their nonlinear advection 

terms (Deardorff 1978; Wilson and Sawford 1996). 

 Lagrangian dispersion models, on the other hand, solve a much simpler form of 

mass conservation equation (Wilson and Sawford 1996). Particles with finite mass are 

advected under the influence of the instantaneous winds (Williams et al. 2004). The time 

derivative following the “marked” particles implicitly includes the nonlinear advection 

terms, without any approximations. The approximations which are required in the 

Lagrangian framework are only associated with the velocity field (e.g., turbulent stresses, 

velocity probability density function, see Thomson (1987)). Concentration evolution is a 

completely separate and exact process (Wilson and Sawford 1996). The concentration 

field is altered only due to the redistribution of the “marked” particles. The Lagrangian 
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approach is also very flexible as it is grid free and allows the user to run models both 

forward and backward in time (Yee and Wilson 2007). 

Lagrangian particle dispersion models, coupled with a diagnostic wind model 

(such as QUIC-URB), have proved to be very successful for quickly describing mean 

concentration profiles around built-up urban areas (Kaplan and Dinar 1996; Bowker et al. 

2007; Singh et al. 2008; Gowardhan et al. 2010). These models have a quick turnaround 

time and are therefore suitable for the emergency response applications. For applications 

such as modeling environmental flows in virtual environments, fast response models 

based on the Lagrangian approach are particularly useful. The Lagrangian framework 

provides a more natural approach to simulate particle dispersion (Thomson 1987) and 

therefore is preferred over high-order closure models owing to its ease and range of 

applicability. This approach can be easily extended to various real-life scenarios, such as 

simulating emission due to traffic, multiple sources of emission, variable particle size etc. 

which make it a preferred choice for virtual environment applications. 

Effective visualizations and real-time computations are an integral part of a 

virtual reality system. To accomplish these goals, GPU Plume is developed on GPU-

based architecture. GPUs have quickly developed from video game technology to open 

up new avenues for enhancing simulation performance and visualization of engineering 

and science applications. GPUs provide highly parallel and inexpensive data paths for 

processing geometry and pixels. In this research, a GPU-based Lagrangian dispersion 

model, GPU Plume, is developed and tested against an analytical solution, a CPU 

implementation of the Lagrangian dispersion model (QUIC-Plume) and wind-tunnel data 



11 

 

 

 

for dispersion around a single hi-rise building. Chapter 3 discusses this unique 

implementation and GPU Plume is shown to provide results that are similar in accuracy 

to the CPU model, but with computation times that are up to two orders of magnitude 

smaller. In addition, the challenges associated with the implementation of Lagrangian 

dispersion models onto the GPU architecture are also discussed. 

 

1.3 Solving the generalized form of the Langevin equations  

(GLEs) using a fractional step method 

Due to a large number of terms and stiffness (due to varied rate and time 

constants in the simulation) associated with the GLEs, advection in the GPU Plume 

model is accomplished by utilizing the Langevin equations simplified for the horizontally 

homogenous flows (Rodean 1996; Williams et al. 2004). That is, the Langevin equations 

are substantially reduced for flows having velocity gradients only in the vertical direction 

(e.g., atmospheric boundary layer). For the complex flow field found in the urban areas, 

the coordinate system is aligned with the mean velocity vector at each grid cell, using 

coordinate transformation (see Chapter 4 for details) to partially accommodate the 

horizontally homogenous assumptions (Williams et al. 2004). However, we hypothesize 

that these assumptions may not be valid for complex flow field found in the urban areas. 

Therefore, the full or generalized form of Langevin equations, GLEs without the 

horizontally homogenous assumptions, may be required for complex flow field 

encountered in the urban areas. The GLEs are considered to be stiff (Yee and Wilson 

2007). The stiffness in the GLEs can be partially circumvented by using a fractional step 
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method (Yee and Wilson 2007), which is described in Chapter 4. Chapter 4 outlines the 

three steps associated with the fractional step method in detail and discusses how the 

fractional step method helps in revealing the unstable modes present in a particle’s 

trajectory before the advection process begins. The challenges associated with the 

implementation of the GLEs are also discussed in Chapter 4. Chapter 4 details the current 

implementation of the GLEs and evaluates its results against available analytical 

solutions and a wind-tunnel test case for a 7 x 11 cubical array of buildings (Snyder and 

Lawson 1996). The concentration estimates from the GLEs-based model match the 

experiment data favorably in comparison with the SLEs-based model for this test case. 

The GLEs-based model seems to be more dispersive than the SLEs-based model. The 

increased lateral and vertical dispersion may be partially attributed to the presence of a 

large number of terms in the GLEs-based model.  
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2. QUIC-URB: FAST RESPONSE URBAN WIND MODEL  

 

2.1 Introduction 

QUIC-URB is a diagnostic wind model which generates a mass consistent 

spatially explicit mean wind field in urban areas with complex building configurations. 

Based on the work done by Röckle (1990) and Kaplan and Dinar (1996), QUIC-URB 

uses empirical parameterizations to specify the flow field physics on a gridded domain 

and enforces mass consistency on the initial flow field to obtain a final flow field   (Singh 

et al. 2008; Gowardhan et al. 2010).  

In this chapter, the QUIC-URB wind model is described in detail, including the 

standard Röckle (1990) empirical parameterizations used for describing the flow physics 

around buildings. The standard Röckle empirical parameterizations are then evaluated 

against mean velocity measurements obtained from a wind-tunnel experiment of flow 

around a 7 x 11 array of cubes (Snyder and Lawson 1996). The shortcomings of the 

standard Röckle parameterizations are highlighted and a new street canyon algorithm for 

flow normal to street canyons is presented and compared against the standard Röckle 

model and the wind-tunnel experimental data. The new street canyon parameterization is 

also evaluated against wind-tunnel data obtained for a street canyon region formed 

between two wide buildings (Kastner-Klein and Plate 1999).  
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Although a number of evaluation studies have been performed looking at the 

performance of Röckle-style modeling systems using concentration measurements from 

tracer experiments, relatively few detailed evaluations have included high resolution 

wind measurements. This chapter evaluates the new empirical parameterizations 

implemented in the wind model for upwind cavity, rooftop recirculation and street 

canyon flow fields against wind-tunnel data at fairly high spatial resolution for an 

incident flow normal to a 7 x 11 array of cubes. This section is followed by detailed 

description of the QUIC-URB model including the standard Röckle empirical 

parameterizations. The results section presents a comparison between the QUIC-URB 

model and the velocity measurements of 7 x 11 cubic array of buildings as well as a wide 

buildings street canyon data set using both the standard Röckle algorithms and our new 

empirical parameterizations. 

 

2.2 QUIC-URB model description 

The modeling strategy adopted in QUIC-URB was originally developed by 

Röckle (1990) and uses a 3D mass consistent wind model to explicitly resolve time-

averaged wind fields around buildings. The mass consistent technique is based on 

Sherman (1978) 3D complex terrain diagnostic wind model.  The basic methodology 

involves generating an initial wind field ( kwjviuV oooo ˆˆˆ ++=


)  that includes various 

empirical parameterizations to account for the physics of flow around buildings and then 

forcing this velocity field to be divergence free subject to the weak constraint such that 

the variance of the difference between the initial velocity field and mass consistent final 

velocity field ( kwjviuV ˆˆˆ ++=


) is minimized. This is done using a general variational 
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analysis formalism originally developed by Sasaki (1958, 1970a,b) in which Eq. (2.1) is 

minimized. 
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In Eq. (2.1), λ  are Lagrange multipliers (with units of inverse time) and iα  are 

Gaussian precision moduli (weighting factors with units of inverse velocity). As noted by 

Kaplan and Dinar (1996), iα  are variables that enhance or restrict the correction of the 

wind components with respect to each other. In QUIC-URB, single building tests (Bagal 

2005) confirmed that for most cases, 1=iα  produces optimal results in neutral stability 

flows.  

The velocity field is updated using the Euler-Lagrange equations whose solution 

minimizes Eq. (2.1). Namely, 
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                    (2.2a) 
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                                          (2.2b) 
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2

∂λ
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                                          (2.2c) 

 

These equations are subject to the boundary conditions 0/ =n∂∂λ  at a solid 

boundary (where n is the outward normal direction) and   λ = 0  at inflow/outflow 

boundaries. An equation for λ  is obtained by differentiating Eqs. (2.2) and substituting 
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the result into the continuity equation for the final velocity field, 0=⋅∇ V


 (Sherman 

1978). This procedure results in the following Poisson equation that can easily be solved 

for λ  using the specified boundary conditions: 
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In QUIC-URB, Eq. (2.3) is solved using a simple iterative successive over-

relaxation or SOR solver (Press et al. 2007) on a nonuniform staggered grid where 

velocities are face center values and Lagrange multipliers are cell-centered quantities.  

The ability of the QUIC-URB model to produce accurate wind fields around 

buildings is dependent on the empirical wind parameterizations. These parameterizations 

introduce rotation into the flow field and without these parameterizations, the method is 

essentially a potential flow solver. The upwind boundary-layer profile may be specified 

as a power-law, log-law, urban canopy or user-specified profile. This profile is applied 

uniformly in portions of the domain that are not affected by building flow features. For 

problems in which the flow varies spatially outside of the urban area (e.g., complex 

terrain), multiple data profiles or point measurements can be assimilated to produce a 

spatially-varying wind field (Booth and Pardyjak 2006).  As described by Gowardhan et 

al. (2010), for isolated buildings, QUIC-URB utilizes a number of empirical building 

algorithms for determining the initial wind fields of the vortex regions associated with the 

building rooftop (Bagal et al. 2004b; Pol et al. 2006), the upstream recirculation zone 

(Bagal et al. 2004a) and the downwind recirculation cavity and the velocity deficit wake 
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(Röckle 1990). Details of these models are given in Gowardhan et al. (2010), but here 

few points relevant to this test case are highlighted.  The standard Röckle upstream 

recirculation zone model is an elliptical volume with all initial velocity field components 

specified to be zero. For flow normal to a building face, the improved QUIC-URB model 

separates the region upstream of the building into two elliptical regions: a displacement 

zone where the velocities are reduced and a recirculation zone where the velocities are 

specified to form a vortex. The original Röckle formulation did not contain a rooftop 

recirculation parameterization to account for separation at the leading edge of a building. 

The complete details of the improved QUIC-model are described in Gowardhan et al. 

(2010) for both normal and off-angle winds. For normal incident winds, a rooftop vortex 

region is specified following Wilson (1979). The velocity field in the vortex is applied 

uniformly across the width of the rooftop, and takes on a maximum negative value just 

above the building rooftop and then increases monotonically to the upstream boundary 

layer velocity at the top of the cavity zone. The improved QUIC-model includes a rooftop 

recirculation region with logic to determine when a rooftop recirculation cavity is 

necessary. This is quite important for groups of buildings. For example, in the 7 x 11 test 

case presented here, only the buildings in the first row have a rooftop recirculation zone. 

For flow normal to a building face, the rooftop algorithm logic always applies a rooftop 

cavity if the building is isolated and far from other buildings or if the building is greater 

in height than the nearby upwind building. 
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2.2.1 Standard Röckle street canyon model 

In this section, our implementation of the Röckle (1990) street canyon (SC) 

algorithm for urban flows with multiple buildings (hereafter referred to as SR for 

standard Röckle model) is described. The empirical SC algorithm accounts for the 

generation of a classical SC vortex that forms between two closely spaced buildings (Oke 

1987). While 3D SC flow is extremely complicated, it is convenient (and conventional) 

to break the flow into three phenomenological flow regimes based on the spacing 

between the buildings: isolated roughness flow, wake interference flow and skimming 

flow (Hussain and Lee 1980).  Following the notation in Fig. 2.1, these regimes roughly 

correspond to cubical building ratios of spacing (S) to building height (H) of about: 

5.2/ >HS , 5.2/4.1 << HS  and 4.1/ <HS , respectively (Oke 1987). Because the 

wake interference flow regime is unsteady and difficult to parameterize, Röckle assumed 

that the canyon flow could be simply modeled by two flow regimes: skimming and 

isolated flow.  

The decision criteria used to determine which flow regime to implement is based 

on a nondimensional building spacing parameter that is a function of street canyon and 

building geometries. In our implementation, canyon flow is parameterized by two flow 

regimes similar to Kaplan and Dinar (1996): skimming (when ( )HWHS /15.025.1/ +<  

for 2/ <HW  and 55.1/ <HS  for 2/ ≥HW ) and isolated flow 

( )HWHS /15.025.1/ +> , where W is the crosswind width of the building.   In the 

isolated flow regime, parameterizations for the upwind, rooftop and wake cavities are 

applied in the same manner as for the case when there are no other buildings in the 

domain.  In the skimming regime, a reverse flow is imposed between the buildings below 
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roof level (see Fig. 2.1a and 2.1b). The imposed reverse flow interacts with the boundary 

layer flow at the sides of the street canyon to form two counter-rotating vortices. The 

streamwise and wall normal initial velocity specification for the reverse flow within the 

canyon is given by 
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and the vertical component is given by 
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Here, xcan is the distance from the backwall of the upwind building, and the other 

parameters are defined in Fig. 2.2.  

For flow that is not normal to the SC, the velocity component normal to the axis 

of the SC is specified by Eq. (2.4) and the component parallel to the SC is left unchanged, 

resulting in a “channeling velocity.” The delineation of the SC zone is shown in Fig. 2.1c. 

The next section describes the SR model evaluation against the wind-tunnel data and 

highlights the various shortcomings present in the SR model. 
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2.3 Evaluation of the standard Röckle model against a 7 x 11 

building array wind-tunnel data set 

2.3.1 Wind-tunnel experiment description 

The wind-tunnel data used here for validation are from the work of Brown et al. 

(2001).  The experiments were carried out in a 3.7 m wide, 2.1 m high and 18.3 m long 

open-return meteorological wind-tunnel at the U.S. Environmental Protection Agency's 

Fluid Modeling Facility (Snyder 1979). The cubical building array examined in this study 

consisted of eleven rows of blocks in the streamwise direction and seven columns of 

blocks in the crosswind direction (Fig. 2.3). The building array was oriented 

perpendicular to the inflow wind.  The blocks were of equal height, width and length (H 

= W = L = 150 mm) and were spaced S = H apart in the along-wind and crosswind 

directions. As discussed above, with a space-to-height (S/H) ratio of unity, the 7 x 11 

array of cubes should be in the skimming flow regime (Oke 1987). The building models 

were immersed in a simulated 1.8 m deep neutral atmospheric boundary layer which was 

created using spires near the tunnel entrance (Irwin 1981) and floor roughness elements. 

Using a length scale equal to H and a reference velocity of 3 ms-1 at z = H, the Reynolds 

number was approximately 30,000, well above the critical value required for Reynolds 

number independence (Castro and Robins 1975; Snyder 1981). The building height was 

less than 10% of the boundary-layer depth, similar to the ratio in real downtown areas. 

While no specific scale ratio was chosen, a representative value would be 250:1; hence, 

the building models would correspond to full-scale buildings on the order of 30 to 40 m 

in height. 
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A hot-wire anemometer with an X-array sensor was used to measure the mean 

velocity and turbulence intensity profiles of the approach flow in the absence of any 

buildings.  To account for reversed flow and high turbulence intensity within the building 

array, measurements were made with a pulsed-wire anemometer (PWA, Bradbury and 

Castro (1971)). All PWA measurements were obtained using a pulsing rate of 10Hz and 

an averaging time of 120 seconds at each measurement location.  More information on 

the experiment can be found in Lawson et al. ( 2000) and Brown et al. (2001).  

 

2.3.2 Description of the model test case 

In the section that follows, the standard Röckle (SR) model is compared to the 

wind-tunnel data described in Section 2.3.1. Matching the inlet profile proved to be 

somewhat difficult because a 500 mm smooth wall gap existed between the upstream 

roughness elements and the start of the 7 x 11 array in the wind-tunnel. In this region, the 

experimental data showed the development of an internal boundary layer that QUIC-

URB is unable to simulate. Hence, the inlet profile was specified at x/H = -3.3 such that 

the solution matched the experimental data at x/H = -1.5 as closely as possible. To match 

the data, the inlet velocity profile was specified to be logarithmic with a roughness length 

of 2 mm and a reference velocity Uref = 2.82 ms-1 at the building height (H = 0.15 m). 

Figure 2.4 shows the comparison of the velocity profile from the model and the 

experimental data at x/H = -1.5. The profile is described well with the logarithmic fit 

shown (2.2% RMS error). The boundary conditions on the velocity at the inlet, outlet and 

along the top of the domain are Dirchlet and specified by the initial logarithmic profile. 

While QUIC has a variable grid resolution capability, the simulations were run with a 



26 
 

uniform grid resolution of 0.015 m such that the buildings were resolved with 10 cells in 

each direction. Simulations were also run at double and half of this resolution and the 

results for the finer grid were quite similar (< 1% difference in RMS error) to the 0.015 m 

grid.  

The experimental measurements were made in a subset of the 7 x 11 array. The 

region where measurement comparisons have been made to the simulations is highlighted 

in Fig. 2.3a. Experience with the type of diagnostic urban wind model discussed here 

indicates that the last column of buildings on either side of the array does not affect the 

simulated centerline velocities. Hence, these buildings have been omitted from the 

simulations and the building array of 5 x 5 (25 buildings) shown in Fig. 2.3b was used for 

all of the simulations. The domain size used for the simulations was 2.295 m x 1.650 m x 

0.450 m (153 x 110 x 30 in grid cell units). The test case presented here took ~26 seconds 

to run on a 2.4 Ghz Intel Core 2 Duo Processor with 2 GB of random access memory 

(RAM).  

 

2.3.3 Standard Röckle model evaluation – 7 x 11 array 

In this section, the performance of the SR model is evaluated qualitatively by 

comparing general flow features.  Figure 2.5a shows a velocity vector comparison 

between the experimental data and the SR model in the vertical plane along the centerline 

at the beginning of the building array. The SR model does a reasonably good job of 

predicting the location of the stagnation point on the upwind face of the first-row building 

( 7.0~/ Hz ).  The experimental data reveal a small, but well-defined recirculation zone 
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upstream of the first building, whereas the SR model results in a large unorganized cavity 

with no well-defined features (Fig. 2.5a and Fig. 2.5b). 

The experimental data suggest that a recirculation zone may exist above the 

rooftop of the first building (Fig. 2.5a). As expected, the SR model - which does not 

contain a rooftop recirculation scheme - overestimates the streamwise velocity above the 

rooftop.  

Looking at the flow in the first street canyon (Fig. 2.5a), the SR model produces 

somewhat stronger downdrafts and backflow as compared to the experimental data. 

Moreover, the center of the SC vortex simulated by our implementation of the SR model 

is raised well above the height yielded in the experimental data. The SR scheme results in 

winds that too quickly revert to the purely horizontal flow above the canyon, whereas the 

measurements show a significant downward component at the midpoint of the canyon.   

Figure 2.5c depicts the wind patterns in the first canyon near ground level at z/H = 0.2.  

The SR scheme generates counter-rotating vortices in agreement with the measurements; 

however, the modeled winds are too strong and the vortex centers are too close to the 

street canyon ends as compared to the experimental data.  

 

2.4 Modified Röckle street canyon model 

To address the various shortcomings present in our implementation of the SR 

model, a modified Röckle street canyon model (hereafter referred to as MR for modified 

Röckle model) has been developed and evaluated prior to incorporating it into the 

operational version of the QUIC modeling system. Our implementation of the SR model 

does not account for diffusion of streamwise momentum into the SC from aloft, resulting 
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in a sharp transition between the street canyon velocity and the air aloft.   It also tends to 

overpredict the velocities within the central part of the canyon. The modified SC 

algorithm for the skimming flow regime suggested here extends the Röckle model to 

include parameterizations that more effectively approximate the physics observed in field 

and wind-tunnel data. As shown in Fig. 2.2 and 2.6, the SC is broken up into three 

physically-based regimes: (i) a central canyon region dominated by the classical SC 

vortex, (ii) a vertical turbulent diffusion region associated with the transport of 

momentum into and out of the canyon from above, and (iii) a horizontal turbulent 

diffusion region associated with the lateral transport of momentum into and out the 

canyon.  The vertical and horizontal diffusion regions are defined by triangular prisms or 

wedges that extend from the leeward edge of the upstream building. Conceptually, the 

flow within each of these wedges is modeled as a single stream shear layer (or mixing 

layer). The width of the mixing region within plane mixing layers is well known to grow 

linearly with distance downstream of the start of the layer and to have a velocity profile 

that takes on a hyperbolic tangent shape (Pope 2000). We use these physically-based 

concepts to develop a model for the mixing region at the edges of the SC.  

As illustrated in Fig. 2.2, the vertical wedge is a right-angled wedge with length S, 

and maximum height, S
Sxvw

can
2.0=

=
δ  (Pope 2000). The vertical wedge extends across 

the entire width W of the street canyon.  Within the wedge, the velocity is specified to 

behave similar to a classical single-stream shear layer and is given by the following 

hyperbolic tangent model (Morris and Foss 2003):  
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Here, the vertical wedge depth cancanvw xx 2.0)( =δ  is a linear approximation to the 

depth of the shear layer. roofU  is a reference velocity in the streamwise direction obtained 

by generating a displaced logarithmic profile over the canyon. The displacement height 

(d) is taken as the height of the shortest building making up the street canyon and the 

reference wind direction is given by the local wind direction at the center of the canyon at 

rooftop level of the shortest building. We recognize that typical measured values of the 

displacement height are closer to d/H ~ 0.7 (Jackson 1981); however, for modeling 

simplicity, we use d/H = 1. Within the wedge, the vertical winds are specified to be zero. 

Currently, for flow that is not normal to the SC, the MR model is identical to the SR 

model described above.  

Similarly, the lateral wedge is also a right-angled wedge with maximum width 

S
Sxlw

can
2.0=

=
δ . The streamwise velocity in the shear layer is specified using the 

following hyperbolic tangent model: 
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In Eq. (2.7), ( )zuo
bl  is the upstream boundary layer velocity that is unaffected by 

buildings and 3.0=γ  is a velocity reduction correction factor that has been empirically 

determined with the present 7 x 11 data set to account for the SR model’s overprediction 

of the strength of the velocities in the canyon.  ( )[ ]2canSCcanlw xyY δ−= , 
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( ) ( )canlwcanSC xWx δδ 2−=  and cancanlw xx 2.0)( =δ , where )( canlw xδ  is the width of the 

lateral wedge. As in the vertical wedge, the vertical component of the velocity is set to 

zero. 

As shown in Eqs. (2.4) and (2.5), the original SR model does not explicitly 

parameterize a lateral variation in the wind speed within the street canyon. Including a 

lateral diffusion wedge provides a smooth transition of the flow between the wedge and 

the street canyon interior (see cross hatched region in Fig. 2.2) that approximates the 

momentum diffusion process.  This lateral diffusion is accomplished by modeling the 

along-wind component of the velocity within the street canyon core to incorporate lateral 

variation: 
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In Eq. (2.8), γ is the same velocity reduction factor from Eq. (2.7) and is applied 

throughout the canyon. FSC is a continuously-varying function that reduces the velocity in 

the lateral direction with distance from the center of the canyon and is given by: 
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The empirical coefficient p is a parameter that was adjusted to improve the final 

comparison with the 7 x 11 data set. The best match to the experimental data was 

obtained with the exponent p set to 0.25.  Note that the algorithms are applied in 
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sequential order: the central SC is calculated first, then the lateral wedge and finally the 

vertical wedge; in this process, the velocities computed with the later algorithms 

overwrite the earlier ones in regions of overlap. 

Another change that we have made to our implementation of the SR algorithm is a 

modification to the criteria to determine the existence of a street canyon; it is now based 

on the single building wake recirculation cavity length formula of Fackrell (1984), 

namely 
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Here, S* is the length of recirculation cavity in the wake of an isolated building, L 

is the streamwise length of the upwind building in the lateral direction and W is the width 

of the building in the crosswind direction.  If *SS < , then a street canyon vortex flow 

parameterization is implemented; otherwise, the building is assumed to be isolated and 

cavity and wake algorithms are utilized (Kaplan and Dinar 1996).   

 

2.4.1 Modified Röckle model evaluation – 7 x 11 array 

In this section, the performance of the MR model is evaluated both qualitatively 

by comparing general flow features and quantitatively through point-by-point mean 

velocity comparisons. This write-up focuses on specific regions of the flow field 

beginning with the region just upwind of the first row of the 7 x 11 cube array, followed 
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by the rooftop zone, and ending with the flow in the first street canyon.  The next section 

begins by looking at the overall flow patterns around the first two rows of buildings.  

 

2.4.1.1 General comparison of the mean flow field 

Figure 2.7a shows a velocity vector comparison between the experimental data 

and the MR model in the vertical plane along the centerline at the beginning of the 

building array. Similar to the case of the SR model, the MR model does a reasonably 

good job of predicting the location of the stagnation point on the upwind face of the first-

row building ( 7.0~/ Hz ). Upwind of the first building, the MR upwind cavity algorithm 

significantly improved the results by producing a smaller recirculation cavity, which is in 

agreement with the experimental data.  The plan view in Fig. 2.7b illustrates the flow 

structure improvement of the MR model over the SR model (Fig. 2.5b).  The MR scheme 

agrees well with the strength and direction of the winds that were measured on the front 

side near ground level at 2.0/ =Hz .  The SR scheme (Fig. 2.5b), however, shows an 

overly large region of near-zero winds upwind of the building that disagrees with the 

measurements.  

While the experimental data do not show the recirculation region expected along 

the rooftop of the first building (possibly due to a lack of spatial resolution of the 

measurements), the velocities decay substantially and show vertical velocity components. 

As compared to the SR model (Fig. 2.5a), the MR model (Fig. 2.7a) improves the results 

by producing a rooftop recirculation zone and more realistic updrafts and downdrafts. 

Figure 2.7a shows that the rooftop recirculation scheme is correctly turned off on row 2 

(and beyond) through logic integrated into the MR model.  
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As compared with the SR model (Fig. 2.5a), the SC vortex computed by the MR 

model (Figure 2.7a) matches the wind-tunnel data better by reducing the SC vortex 

strength. The MR street canyon model predicts the center of the vortex to be slightly 

closer to the experimental data due to the wedge scheme that mimics diffusion of winds 

from aloft, although it is still shifted to the right compared to the data. Both the SR as 

well as the MR schemes produce winds that revert to purely horizontal flow too quickly, 

while the measurements show a significant downward component at the midpoint of the 

canyon.   Figures 2.5c and 2.7c depict the wind patterns in the first canyon near ground 

level at z/H = 0.2.  Both the SR and MR schemes generate counter-rotating vortices in 

agreement with the measurements.  As compared to the SR scheme (Fig. 2.5c), the MR 

scheme (Fig. 2.7c) matches the strength of the wind and the vortex location better, in part 

due to the lateral diffusion wedges and the lateral velocity gradient described above.  

 

2.4.1.2 Upstream flow field 

Figure 2.8 shows a velocity profile comparison of the normalized a) streamwise 

and b) vertical velocities upstream of the building along the centerline of the domain. The 

streamwise and vertical velocity measurements show that the upwind recirculation zone 

starts at about 5.0~/ −Hx . As shown in the Fig. 2.7 vector plot, the MR model predicts 

the upwind extent to be 7.0~/ −Hx . It is clear from Fig. 2.8 that the upwind cavity zone 

computed by the SR model is apparent much further upstream (x/H = -1.0), where near 

zero velocities are found between the ground and z/H ~ 0.25. At this upwind distance, 

both the experimental data and the MR model show a logarithmic behavior in the 

streamwise velocity. 
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At 5.0/ −=Hx , the SR model predicts a near-zero streamwise velocity between 

the ground and 5.0~/ Hz  (Fig. 2.8a).  The experimental data and the MR model, 

however, continue to show a positive velocity gradient in this region, although the MR 

model shows more reduction in wind speed compared to the measurements. Above 

5.0~/ Hz , the experimental data, the SR model and the MR model are all in agreement. 

At 25.0/ −=Hx and -0.1, the SR model continues to produce near-zero streamwise 

velocities below z/H = 0.6.  In contrast, the experimental data and the MR model show 

reverse flow near the ground. At 1.0/ −=Hx , significant reverse flow is still not 

apparent near the ground in the SR model results. It is interesting to note that at this 

distance, the MR model has a smoother transition into the boundary-layer flow above the 

building height, likely due to upstream propagation of the effect of the rooftop 

recirculation found in the MR model.  Unphysical kinks in both the SR and MR model-

produced streamwise velocity profiles at x/H = - 0.1 and -0.5 are found at the transition 

between the upwind cavity zone and ambient flow due to a lack of momentum diffusion 

in Röckle-style models. 

The upstream vertical velocity profiles at 1/ −=Hx demonstrate that the SR 

model slightly overestimates the vertical velocity from 1/3.0 << Hz , whereas the MR 

model and the experimental data are near-zero and in much better agreement. A small 

kink in the vertical velocity profiles (also seen in the u velocity in Fig 2.8a) is observed in 

both the SR and MR model near z/H~0.6 at 5.0/ −=Hx  as a result of insufficient model 

diffusion between the interface of the recirculation zone and the boundary layer. Both the 

SR and MR models underestimate the magnitude of the vertical velocities near the 

ground at 25.0/ −=Hx  and -0.1, but both models are in general agreement with the 
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experimental results above the stagnation point location, where a strong updraft is 

observed. 

Table 2.1 summarizes the RMS error difference between the MR and SR models 

for the available experimental data upwind of the first building. The average error in the 

MR model is approximately 60% of the SR model. 

 

2.4.1.3 Rooftop flow field 

Figure 2.9 shows model-produced and measured vertical profiles of the 

normalized a) streamwise and b) vertical velocities at the rooftop of the first building 

along the centerline of the domain. As the upwind flow strikes the front building, the 

flow separates from the rooftop. The separated flow reattaches near the end of the rooftop 

forming a recirculation region. As noted earlier, the SR model does not simulate a 

recirculation region on the rooftop. Hence, the streamwise velocity profile in Fig. 2.9a 

confirms that the SR model overestimates the streamwise velocities above the rooftop, 

while MR model produces better agreement with the experimental data for the u velocity 

at all streamwise locations due to the rooftop recirculation algorithm. At x/H = 0.3, 0.5 

and 0.7, the MR model shows a slight increase in the streamwise velocity at about z/H ~ 

1.25 above the rooftop compared to the SR model, but there is not enough experimental 

data to corroborate this feature.  Further downstream (x/H = 0.7 and 0.9) just above the 

rooftop (z/H = 1.1), the MR model overpredicts the strength of the recirculation.  It is 

interesting to note that at this resolution, the experimental data do not actually show any 

reverse flow.   



36 
 

Vertical velocities along the rooftop are shown in Fig. 2.9b. The SR model 

underestimates the vertical velocities (updraft strength) above the rooftop at x/H = 0.1 

and 0.3, whereas the experimental data and the MR model are in fair agreement. At x/H = 

0.5, 0.7 and 0.9 the SR model predicts slightly positive vertical velocities, while the data 

show a downdraft. The MR model produces a very small slightly positive vertical 

velocity at x/H = 0.5, while the measurements show a very small negative velocity near 

the rooftop. The MR scheme predicts the vertically velocity very well at x/H = 0.7, but 

overpredicts the strength of the downdraft at the end of the building (x/H = 0.9). 

Figure 2.10 shows a comparison of vertical profiles of normalized streamwise 

velocity above the rooftop of the second building along the centerline of the domain. Due 

to the shielding effect and advection from the rooftop of the first building, the flow 

striking the second building does not form a recirculation region above the rooftop. The 

flow forms a wall-normal logarithmic layer on the rooftop of the second building. The 

streamwise velocity comparison in Fig. 2.10 shows that the SR model slightly 

overestimates the velocities above the rooftop, while the MR model generates velocities 

that agree better with the experimental data. As shown in Table 2.1, the average RMS 

error of the MR model is roughly half that of the SR model for the available profiles.  

 

2.4.1.4 Street canyon flow field 

Figure 2.11 shows a comparison of vertical profiles of normalized a) streamwise 

and b) vertical velocities in the first SC along the centerline of the domain. As 

demonstrated earlier in Fig. 2.5a, our implementation of the SR model produces a SC 

vortex with an elevated core, a region of streamwise flow above the vortex core that is 
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too small and a region of backflow below the vortex core that is too large compared to 

the measurements. As shown in Fig. 2.11a, the SR model is in reasonably good 

agreement with the experimentally measured streamwise velocity within the SC below 

z/H ~ 0.6 at all locations, although at x/H = 1.25 and 1.5, the SR model slightly 

overestimates the magnitude of backflow in the canyon.  Near z/H~1, the SR model 

results in a strong shear in streamwise velocity due to the lack of downward diffusion of 

streamwise momentum from aloft. The MR model is in excellent agreement with the 

streamwise velocity data in the canyon and is in better agreement than the SR model near 

the building height (z/H~1). The streamwise velocities calculated using the MR model 

yield a smoother transition from the canyon flow to the boundary-layer flow aloft due to 

the incorporation of the wedge diffusion parameterization.  

The vertical profiles of the vertical velocities shown in Fig. 2.11b at x/H = 1.1 and 

1.25 indicate that both models overestimate the vertical velocities, although the MR 

model performs better in the vicinity of the canyon top. Near z/H ~ 1, both models give 

rise to vertical velocities of opposite sign compared to the experimental data. This is a 

result of an overprediction of the height of the center of the canyon vortex as illustrated in 

the vector plots in Figs. 2.5 and 2.7. At x/H = 1.5, the SR and MR models generate near 

zero w velocities as opposed to the negative velocities obtained in the experiment. This is 

a result of the models predicting a more symmetric vortex about the canyon center, while 

the experimental data indicate the center of the vortex is shifted slightly upstream.  Both 

the SR and MR models overestimate the w velocity within the canyon at x/H = 1.75 and 

1.9. A significant improvement is seen in the results of the MR model at x/H =1.75 and 
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1.9 compared to the SR model, where the w velocity follows the experimental results 

more closely between z/H ~ 0.6 and z/H ~ 1.6.  

Figures 2.5c, 2.7c and 2.12-2.15 show velocity vector and profile plots within and 

just outside of the first street canyon for three different horizontal planes above the 

ground (z/H = 0.2, 0.5 and 0.8). Figure 2.5c and 2.7c show the plan view of the model-

computed and measured velocity vectors at z/H = 0.2 for the SR and MR models, 

respectively. The SR model’s SC parameterization significantly overestimates the 

magnitude of the backflow in the SC near the ground (Fig. 2.5c). This result stems partly 

from the strong lateral flux of momentum into the street canyon from the street 

intersection ( 1/ >Hy ) and partly from the lack of a laterally-varying velocity reduction 

factor in the SR model. The SC parameterization in the MR model accounts for the 

advection and diffusion from the intersections as well as from above the SC; this shifts 

the center of the vortices well inside the SC (see Fig. 2.7c). The MR model shows a 

significant improvement in simulating the strength and direction of the mean flow 

measured in the canyon.   

Figure 2.12 shows a comparison of lateral velocity profiles of normalized a) 

streamwise and b) crosswind velocities in the first SC at z/H = 0.2. As shown in Fig. 

2.12a, the SR model creates a strong streamwise velocity gradient near the sides of the 

SC, while the lateral diffusion associated with the MR model produces a smoother profile 

that is in better agreement with the experimental data in the interior of the canyon and 

outwards into the intersection ( 5.0/ >Hy ). The SR model slightly underestimates the 

streamwise velocities near the center of the canyon at x/H = 1.25 and 1.5, while at x/H = 

1.1, 1.75 and 1.9, the SR model is in agreement with the experimental data.  However, 
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the curvature of the SR velocity profile is opposite to the MR model and the experimental 

data in the canyon. 

The crosswind velocity profiles in Fig. 2.12b show that the MR model captures 

the lateral flow better than the SR model at z/H = 0.2. As explained earlier, the SR model 

significantly overestimates the magnitude of the crosswind velocity from 

8.0/2.0 << Hy  at x/H = 1.1 and 1.25. Downstream of the canyon center, an opposite 

trend in the crosswind velocity profile is observed in the SR model at x/H = 1.75 and 1.9. 

The SR model agrees with the experimental data in the interior of the canyon 

( 2.0/ <Hy ) at x/H = 1.1 and 1.25. The magnitude of the lateral velocity computed by 

the MR model is in better agreement with the measurements at all the streamwise 

locations, but of opposite sign from 75.1/1.1 << Hx . 

Figures 2.13 and 2.14 show plan view comparisons of the velocity vectors at z/H 

= 0.5 and z/H = 0.8, respectively, from the (a) SR and (b) MR models with the 

experimental data. The plots clearly illustrate the behavior of the wall normal vortices 

formed in the SC.  Similar to the z/H = 0.2 case, the SR model significantly overpredicts 

the magnitude of the velocities within the SC and poorly predicts both the streamwise and 

lateral locations of the center of the wall normal vortices.  Again, due to the lack of 

lateral diffusion into the street canyon associated with the SR model, the simulated 

velocity vectors near the end of the SC do not match the experimental results in direction 

or magnitude. The MR model, however, significantly improves the direction as well as 

magnitude of velocity vectors at the lateral ends of the SC compared to SR simulation. 

The downstream centers of the lateral vortices in the experimental data show a systematic 

shift upstream with height above the canyon floor. This behavior is similar to the 
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“rainbow vortex” identified in the wake of an isolated cube by Hunt et al. (1978). This 

phenomena, which is associated with the change in flow direction near x/H = 1.5 (in the 

z/H=0.8 slice), is a result of downward diffusion of momentum that is better captured in 

the MR model than in the SR model. 

Figure 2.15 shows a comparison of the lateral velocity profiles of the normalized 

streamwise velocities in the first SC at (a) z/H = 0.5 and (b) z/H = 0.8. The comparison of 

the models with the experimental data is quite similar to the descriptions given above for 

z/H = 0.2 with overly strong shear at the lateral edges of the canyon and incorrect 

prediction of the curvature of the velocity profile. However, the underestimation of the u 

velocity by the SR model within the SC becomes much more pronounced higher up in the 

canyon and further downstream, while the MR model agrees quite well with the 

experimental data. As shown in Table 2.1, the average RMS error in the SC for the MR 

model is slightly less than half that of the SR model for the available profiles. 

 

2.4.2 Wide building test case 

2.4.2.1 Wind-tunnel experiment 

As a second evaluation test case, a wide building street canyon experimental data 

set was utilized. The data were obtained by researchers in the Institute of 

Hydromechanics at University of Karlsruhe (for details, see Kastner-Klein and Plate 

(1999); Kastner-Klein (1999)). The researchers used a 2 m wide by 1 m high test section 

in a neutrally stratified atmospheric boundary layer wind-tunnel. Two building rows were 

mounted on the floor of the test section surrounded by homogenously distributed 

roughness elements. The street canyon was oriented normal to the incident wind.  The 
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buildings were wide with widths ten times the building height (i.e., W=10H; H=L), and 

the distance between the buildings was S=H (see Fig. 2.16). The boundary layer flow was 

generated by employing vortex generators at the tunnel entrance and roughness elements 

on the floor. According to Kastner-Klein and Plate (1999), the inlet mean velocity profile 

can be described by a power law with an exponent of 0.23. The Reynolds number for this 

flow was approximately 56,000 with a reference velocity of 7 ms-1 at a reference height 

(H) of 0.12 m. The measurements were taken using Laser-Doppler velocimetry (LDV) 

and a single hotwire. 

 

2.4.2.2 Description of the test case 

Following Kastner-Klein and Plate (1999), a power law profile with an exponent 

of 0.23 was specified as the inlet velocity profile for running the SR and MR models. 

Similar to the 7 x 11 building array test case, the velocity boundary conditions at the 

inlet, outlet and along the top of the domain were Dirchlet and specified by the initial 

power law profile. The simulations were run with a grid resolution 0.012 m such that the 

buildings were resolved with 10 cells in each direction. The domain size used for the 

simulations was 0.960 m x 1.680 m x 0.240 m (80 x 140 x 20 in grid cell units).  

 

2.4.2.3 Model-measurement comparison 

Unfortunately, this wide building data set did not included measurements 

immediately upstream or along the rooftop of the buildings; hence, this section only 

discusses the comparison between the results obtained from the SR model, MR model 
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and the wind-tunnel experiment in the street canyon region between the two wide 

buildings.  

Figure 2.17 shows a velocity vector comparison between the experimental data, 

the a) SR and b) MR models in the vertical plane along the centerline of the domain. Like 

the 7 x 11 array test case, the SR model produces stronger downdrafts and backflow as 

compared to the experimental data for the wide building case. The center of the SC 

vortex computed using the SR model is raised well above the height of the vortex center 

indicated by the experimental data. The MR model predicts the center of the vortex to be 

slightly closer to the experimental data due to the wedge scheme that mimics the 

diffusion of winds from aloft, although it is still higher than the experimental data.  

Figure 2.18 shows a comparison of vertical profiles of normalized a) streamwise 

and b) vertical velocities in the SC along the centerline of the domain. As in the 7 x 11 

test case, the SR model produces a SC vortex with an elevated core and a region of 

streamwise flow above the vortex core that does not penetrate far enough down into the 

canyon. As shown in Fig. 2.18a, the SR model is in reasonably good agreement with the 

experimentally-measured streamwise velocity within the SC below z/H ~ 0.6 at all 

locations. Near z/H~1, the SR model produces large streamwise velocity gradients due to 

the lack of downward diffusion of streamwise momentum from aloft. Similar to the SR 

model, the MR model is in agreement with the streamwise velocity data within the 

canyon. The MR model, however, is in better agreement than the SR model near the 

building height (z/H~1). The MR model yields a smoother transition of streamwise 

velocities from the canyon to the boundary-layer flow aloft due to the incorporation of 

the wedge diffusion parameterization.  
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The vertical profiles of the vertical velocities shown in Fig. 2.18b at x = -0.25 

indicate that both models slightly underestimate the vertical velocities below z/H~0.4. 

The MR model performs slightly better than the SR model from 0.6<z/H<1.4. In addition, 

the SR model overpredicts the updraft close to the height of the building (z/H~1.0). At 

x/H = 0, both the models underestimate the vertical velocity within the canyon, yielding 

similar results; however, the SR model performs better than the MR model above the 

street canyon region. This is likely the result of an overly intense rooftop recirculation 

region on the upwind building.  At x/H = 0.25, both models slightly overestimate the 

vertical velocities below z/H~0.4. The MR model performs better than the SR model 

from 0.6<z/H<1.4, where the SR model overpredicts the downdraft velocities. 

Figure 2.19 shows a comparison of lateral profiles of normalized streamwise 

velocities over half of the SC at z/H = 0.25. As shown in Fig. 2.19, the SR model creates 

a strong streamwise velocity gradient near the sides of the SC due to the absence of 

lateral diffusion, while the MR model produces a smoother profile that is in better 

agreement with the experimental data at the sides of the canyon (y/H~-5.0). Both models 

are in agreement with the experimental data within the SC; however, they overestimate 

the streamwise velocity outside of the canyon (y/H<-5.0). The MR model performs 

slightly better than the SR model outside of the canyon. Similar to the 7 x 11 array case, 

the curvature of the SR velocity profile is opposite to the MR model and the experimental 

data in the canyon.  As summarized in Table 2.2, the RMS error of the MR model is 

about ~30% less than the error associated with the SR model. While this is not quite as 

good as the results from the 7 x 11 array, it represents a substantial improvement.  
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2.5 Conclusions 

Transport and dispersion in urban environments is extremely complicated.  

Buildings alter the flow fields and deflect the wind, causing updrafts and downdrafts, 

channeling between buildings, areas of calm winds adjacent to strong winds, and 

horizontally and vertically rotating-eddies between buildings, at street corners and other 

places within the urban canopy (see review by Hosker (1984)).  This makes it very 

difficult to devise fast response urban dispersion models that will work at the street 

canyon to neighborhood scales.   

(Röckle 1990) developed a methodology for quickly computing 3D wind fields 

around buildings using an empirical-diagnostic approach. The Röckle modeling strategy 

is a unique and potentially powerful tool because it rapidly produces spatially-resolved 

wind fields in urban areas that can be used to drive urban dispersion models. Röckle-type 

models do not solve transport equations for momentum or energy; rather, they rely 

heavily on empirical parameterizations and mass conservation. In this chapter, we 

evaluate a fast-running wind model that is based on the Röckle formulism called QUIC-

URB using wind measurements from two wind-tunnel data sets: an idealized 7 x 11 

cubical building array and a wide building street canyon. In the model-experiment 

comparison, we test two empirical building flow parameterizations within the QUIC-

URB model: the standard Röckle (SR) algorithms and the modified Röckle (MR) 

algorithms.  

To our knowledge, this is the most rigorous comparison of a Röckle-type wind 

model in the literature. The results indicate that our implementation of the SR model 

produces wind fields that are in reasonable agreement with experimental data within the 
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urban street canyon; however, the velocities are generally too strong and the location of 

vortex centers in various planes are shifted toward the edges of the street canyon where 

the wind shear is highest. Upstream of the first building, the SR model produces a 

recirculation cavity that is larger than experimentally expected and poorly predicts the 

velocities in this region. Above the buildings along the rooftop, the SR does not account 

for the potential of rooftop recirculation.  

The MR model attempts to build on the strengths of the SR model and introduces 

additional physically-based but simple parameterizations that significantly improve the 

results in most regions of the flow in the 7 x 11 array and wide street canyon. The MR 

model produces vortices within street canyons that have velocities that compare much 

more favorably to the experimental results with the vortices shifted inward away from the 

edges of the street canyon. This is largely accomplished by modeling the effect of 

advection and momentum diffusion from outside the street canyon into the street canyon 

on the sides and from aloft. Upstream of the first building, a reduced velocity 

displacement zone and simple trigonometric vortex parameterization produce greatly 

improved results. Above the first rooftop, the rooftop recirculation zone improves the 

results. In addition, logic that removes the recirculation zone from downstream buildings 

produces physically realistic results in groups of buildings. 

We expect that these improvements in the wind field will result in improved 

dispersion calculations in built environments. As a final note, we stress the importance of 

testing multibuilding parameterizations under a wide range of nonidealized conditions. 

Since it is quite rare that buildings in real cities take on the form that the original 

parameterizations were developed from, the model may not yield physically reasonable 
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results when generalized. Hence, it is imperative to rigorously evaluate the model for a 

wide range of scenarios. This is one of the greatest challenges in utilizing Röckle type 

wind models. 
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Figure 2.1: Schematic showing the various flow regions and initial velocity field 
(prior to mass conservation) associated with the Röckle parameterizations in the 
a) horizontal plane for normal flow b) vertical plane for normal flow c) horizontal 
plane for off angle flow. 
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Figure 2.1: Continued. 
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Figure 2.2: Schematic showing the notation and local coordinate system for the 
modified Röckle (MR) street canyon model (a) side view (b) plan view. 
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Figure 2.3: Schematic of the 7 x 11 building array used in the wind tunnel study. 
a) The shaded area represents the region where the simulations have been 
compared to the experimental data in the text. b) Schematic of the 5 x 5 building 
array used in the QUIC-URB simulations. 
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Figure 2.3: Continued. 
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Figure 2.4: Inflow profile comparison between the experimental data and the 
logarithmic velocity profile used to initialize QUIC-URB at x/H = -1.5. 
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2m/s a) 

Figure 2.5: The SR model (gray) velocity vector comparison at the a) centerline b) 
upstream c) street canyon region with the experimental data (black). 
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Figure 2.5: Continued. 
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Figure 2.6: Schematic illustrating the flow regions and initial velocity fields 
associated with the MR street canyon parameterization in the a) horizontal b) 
vertical plane. 
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2m/s a) 

Figure 2.7: The MR model (gray) velocity vector comparison at the a) 
centerline b) upstream c) street canyon region with the experimental data 
(black). 
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Figure 2.7: Continued. 
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a) 

Figure 2.8: Centerline profiles of a) streamwise b) vertical velocities at five 
streamwise locations upstream of the building - experimental data (open circles), 
SR (dashed line) and MR (solid line). 

b) 
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a) 

Figure 2.9: Centerline profiles of a) streamwise b) vertical velocities at five 
streamwise locations on the rooftop of the first building - experimental data 
(open circles), SR (dashed line) and MR (solid line). 
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Figure 2.10: Centerline profiles of streamwise velocities at five streamwise 
locations on the rooftop of the second building - experimental data (open circles), 
SR (dashed line) and MR (solid line). 
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a) 

Figure 2.11: Centerline profiles of a) streamwise b) vertical velocities at five 
streamwise locations in the first street canyon - experimental data (open circles), 
SR (dashed line) and MR (solid line). 
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Figure 2.12: Lateral profiles of the a) streamwise b) crosswind velocities at five 
streamwise locations at z/H=0.2 in the first street canyon experimental data 
(open circles), SR (dashed line) and MR (solid line). 
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Figure 2.13: Plan view velocity vector comparison of the a) SR (gray) b) MR 
(gray) with the experimental data (black) at z/H=0.5 in the first street canyon. 
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a) 

Figure 2.14: Plan view velocity vector comparison of the a) SR (gray) b) MR 
(gray) with the experimental data (black) at z/H=0.8 in the first street canyon. 
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a) 

Figure 2.15: Lateral profiles of the streamwise velocity at five streamwise locations 
at a) z/H=0.5 b) z/H=0.8 in the first street canyon - experimental data (open 
circles), SR (dashed line) and MR (solid line). 
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Figure 2.16: Schematic of the wide building street canyon used in the 
QUIC-URB simulations. 
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Figure 2.17: Centerline velocity vector comparison of the a) SR (gray) b) MR 
(gray) model with the experimental data (black). 
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a) 

Figure 2.18: Centerline profiles of a) streamwise b) vertical velocities at three 
streamwise locations in the wide street canyon - experimental data (open circles), 
SR (dashed line) and MR (solid line). 
 

b) 
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Figure 2.19: Lateral velocity profiles of streamwise velocities at three streamwise 
locations in the wide street canyon - experimental data (open circles), SR (dashed 
line) and MR (solid line). 
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Table 2.1: Cumulative average RMS error for the two models compared to the 7 x 
11 experimental data.  

 
%Error (RMS) 

 Upstream Rooftop Street Canyon Total 
Standard 
Röckle 

10.4 13.7 20.2 17.2 

Modified 
Röckle 

6.1 7.2 9.5 8.4 

 
 

Table 2.2: Cumulative average RMS error for the two models compared to the wide 
building experimental data.  

 
%Error (RMS) 

 Street Canyon 
Standard Röckle 23.9 
Modified Röckle 16.9 
 

 



 
 

 

 

 

3. SPEEDING UP URBAN FAST RESPONSE LAGRANGIAN 

 DISPERSION SIMULATIONS USING VIDEO 

 GAME TECHNOLOGY 

 

3.1 Dispersion modeling for virtual urban environments on 

 Graphics Processing Units 

This chapter explains the implementation of a Graphics Processing Unit (GPU)-

based fast response Lagrangian dispersion model which can also be used for virtual 

reality applications. For simulating real-world dispersion scenarios in virtual 

environments, it is imperative for the modeling system to run in near real-time. 

Generally, performance of a Lagrangian dispersion model is dependent upon the number 

of particles released in the simulation, domain size and resolution. The Lagrangian 

dispersion model employed for virtual environment applications must be computationally 

efficient and capable of advecting large number of particles to ensure stationary statistics. 

To completely immerse the user into a virtual environment, the user must be provided 

with a visual outlet that depicts interactive images of a 3D urban landscape along with the 

evolving contaminant field. Hence, real-time dispersion calculations must take place in 

the background while the visual outlet displays changes in the visible particles within the 

domain. This is different from more typical dispersion model computations where 
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variables (such as particle position data, concentration estimates, etc.) are available to the 

user after a set number of iterations or even after the simulation has completed. 

In order to meet the computational and visualization goals of this project, the 

GPU on commodity graphics hardware has been utilized. GPUs typically take care of the 

processing needed to render images onto the computer screen. The faster this is done, the 

better the graphics are that can be displayed. The video game industry has been driving 

the performance of graphics cards in order to display better and better graphics. GPUs are 

vector processors that contain highly parallel stream processors, used to display real-time 

3D graphics. These stream processors have been designed to work well with 

computations that are SIMD (single-instruction, multiple-data) computations. They are 

normally used for the SIMD operation of rendering images by coloring the pixels of the 

screen in parallel to display the image. On the most current GPUs, there are up to 240 

stream processors (and rapidly increasing) capable of calculating 64-bit floating-point 

operations.  

Researchers have taken notice of the GPU and started taking advantage of their 

computational power in order to solve problems that are not necessarily related to 

computer graphics. Because of this, General Purpose computation on Graphics 

Processing Units (GPGPU) has started, which is a way of using the GPU to solve non-

graphics problems. Many scientific problems and simulation applications have already 

been solved and developed using the parallel stream processors of the GPU. Some 

examples of these are numerically solving the Navier-Stokes equations (Scheidegger et 

al. 2005), solving multigrid problems (Goodnight et al. 2005), solving dense linear 

systems (Galoppo et al. 2005) and cloud dynamics (Harris et al. 2003). A particle system 
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has been designed to run entirely on the GPU, simulating a million particles at interactive 

rates (Kipfer et al. 2004). This particle system is similar to our GPU particle system, with 

the difference being that our GPU particle system involves more complicated physics and 

has been developed to serve as a tool for engineers. Another particle dispersion model 

has been developed that visualizes dispersion in urban environments using a Lattice 

Boltzmann Model (Feng et al. 2004). It uses the GPU to accelerate the simulation; 

however, it does not run in real-time. 

When solving a problem using a graphics card, the approach has to be designed to 

fit into the framework of the GPU architecture. Flexible functionality is provided to the 

GPU architecture through the use of vertex, geometry and fragment processing units 

called shaders. These shaders are low-level programs written using specialized languages 

similar to C, such as the OpenGL Shading Language or Cg, to overwrite stages of the 

graphics-processing pipeline. They were originally designed for graphics programmers to 

have more control over their applications to create better graphics and increase 

performance. Detailed explanations of shaders and the graphics processing pipeline can 

be found in Shreiner et al. (2007) and Rost (2006). 

The main memory structure on the GPU is a texture, which are available in one, 

two and three dimensions. A texture is an array of vectors, where each vector, called a 

texel, is a color defined by a red, green, blue and alpha value, which is normally used as 

the colors for texturing geometry in graphics (Shirley and Marschner 2009). When 

thinking of textures as just an array of vectors, there is no reason why the values for the 

vectors may not be represented as information other than a color, such as the position of a 

particle. A texture can then be used to store data, where a fragment shader can then be 
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programmed to operate on the values of the texture in parallel. This is done by drawing 

geometry associated with the texture that stores the data to be operated on. The drawing 

can be done with the graphics state set so that there is a one to one mapping between a 

pixel and a texel. This makes it so that the code in the fragment shader is applied to each 

texel of the texture. Then instead of letting the output values of the fragment shader be 

displayed as pixel colors on a screen, they are stored as output values into the texels of 

another texture.  

Solving problems on the GPU does not mean that data and operations occur solely 

on the GPU. In graphics programming, the data representation of graphics is created on 

the CPU and sent to the GPU, which then stores and processes the data to display on the 

screen. GPGPU also works in this same way. However, it is a good idea to limit the 

amount of data transfers between the CPU and GPU. The reason for this is locality of 

data. Processors work faster if data are stored locally, avoiding extra time taken to fetch 

data. Data are transferred between the CPU and GPU across the GPU “bus”. The bus will 

act as a bottleneck if large amounts of data are being sent across it, because of 

insufficient bus width. This means that large amounts of data are unable to go across at 

the same time.  

In this chapter, an implementation of a Lagrangian dispersion model onto the 

GPU is discussed. The goals of this work are: (i) to implement an urbanized Lagrangian 

dispersion model onto the GPU framework, (ii) to validate the model against the several 

simple analytical solutions, the original CPU implementation and wind-tunnel data for a 

single building test case, (iii) to understand the issues and challenges associated with this 
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type of GPU implementation and (iv) to understand and exploit the performance gains 

that can be realized through such an implementation. 

 

3.2 Methodology 

As discussed earlier (Chapter 1), the Lagrangian approach presents a logical way 

to describe the atmospheric dispersion phenomena for virtual environment applications. 

Therefore, as part of this work, a Lagrangian dispersion model, GPU Plume, based on the 

GPU architecture has been developed. “GPU Plume” is based on QUIC-Plume (Williams 

et al. 2004), the dispersion model of the Quick Urban and Industrial Complex (QUIC) 

dispersion modeling system. The QUIC dispersion modeling system was primarily 

developed to address accident releases and to respond to the threat of a terrorist releasing 

dangerous agents in a city. It is comprised of a diagnostic wind model - QUIC-URB 

(Singh et al. 2008), a Lagrangian dispersion model - QUIC-Plume (Williams et al. 2004) 

and a visualization tool, QUIC-GUI. The QUIC-URB wind model generates a mass 

consistent spatially explicit mean wind field in an urban area with complex building 

configurations. QUIC-URB (Singh et al. 2008) is based on the work done by Röckle 

(1990) and Kaplan and Dinar (1996). Empirical parameterizations are used to specify the 

wind field on a gridded domain and mass consistency is enforced on the flow field 

around the buildings (Singh et al. 2008).  

 GPU Plume requires a mean wind field and fluctuating components of the 

velocity to accomplish the particle advection process. The mean wind field is obtained 

from the diagnostic wind model, QUIC-URB. The fluctuating component of the velocity 

is obtained by solving the three-dimensional (3D) Langevin equations (Rodean 1996; 
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Wilson and Sawford 1996). The Langevin equations are a function of turbulence intensity 

at the location of the particle, drag experienced by the particle and random forcing due to 

the small-scale turbulent eddies on the particle equations (Rodean 1996; Wilson and 

Sawford 1996). To solve the Langevin equations, turbulent stresses associated with the 

flow field are required. The turbulence quantities are estimated from the mean wind field 

by employing a velocity gradient-driven mixing length turbulence model (Williams et al. 

2004). 

Before describing the details of the GPU implementation, it is useful to 

conceptualize the basic methodology. Figure 3.1 illustrates the difference in particle 

advection between the GPU and CPU implementations of QUIC-Plume. For the GPU 

implementation, the particle positions are represented in 3D space using 3D coordinates, 

which are stored in a 2D texture. The GPU is programmed to perform the advection of 

multiple particles at once. The number of particles that it can process at the same time 

increases with the amount of stream processors available in the hardware. On the most 

current hardware, there are up to 240 stream processors available. (However, this does 

not ensure the GPU will operate on 240 particles at once.) For the CPU implementation, 

the particles are stored in a 2D array. A CPU can only calculate the advection of one 

particle at a time (assuming it is a single core processor).  

Figure 3.2 is an example of how a 2D texture is represented on the GPU. Each 

colored square is an individual texel, which represents an attribute for one particle, 

storing up to four values. This figure shows that there are 16 particles being represented 

in the simulation using 4 x 4 2D textures. The size and dimension of these textures will 

increase when the number of particles being simulated is more (i.e., one million particles 
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could be represented using a 1000 x 1000 2D texture). The order of the numbering shown 

here is important, because it shows how the texture is created from a set of data (which is 

stored in a 1D array on the CPU). To create one of these textures, a 1D array is used that 

stores all the values for the texture in a “line”. Then the dimensions specified determine 

the layout for the texture. In Figure 3.2, the 1D array used to create a texture is of size 64, 

(16 texels x 4 values per texel) with the values, for each of the texels, placed in the array 

in the numbering shown. To clarify, the first four values for texel 0 are placed one after 

another in the array, the four values for texel 1 are placed one after another following the 

four values of texel 0 and this process continues for each texel. Then by specifying a 

width and height value of four, the texture is created with the layout for the texels shown 

in Figure 3.2. This layout is important in order to access the values of a particular texel 

using what are called texture coordinates. The texture coordinates give the location for a 

specific texel in a texture similar to the way values of an array are accessed using indices. 

In Figure 3.2, the texels of these 2D textures can be accessed using two texture 

coordinates: one being the row number and the other the column number. 

The movement of particles in a Lagrangian dispersion model is largely based on 

domain data variables that are stored on a 3D grid. The wind field is a domain data 

variable in which each grid cell stores a velocity vector. Domain data, such as the wind 

field, could be easily loaded into a 3D texture making it trivial to determine which cell of 

the domain the particle is in. However, using a 2D texture to store the domain data 

provides better performance since GPUs tend to be optimized for working with 2D 

textures. A simple mapping can determine the cell location in the 2D texture using the 3D 

coordinates of a particle. Figure 3.3 illustrates how the three-dimensional domain data 
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can be stored into a 2D texture. Each colored block represents one layer of the domain. 

The domain is split up into layers at each height level of the domain grid. Each layer is 

made up of nx by ny cells. The variables nx, ny and nz are the domain dimensions in the 

x, y and z directions, respectively. The width and height of the 2D texture are even 

integers made to be equal and are determined by trying to minimize the dimension, while 

being able to fit all the layers. This is done to minimize the amount of space used for the 

texture. Each layer of the domain is taken and placed side by side in the 2D texture. The 

order starts at the bottom of the domain and places each layer from left to right. When 

room is run out of in one row of the 2D texture, the next layer is placed on top of that row 

on the left. Particles must then be mapped to a texel in the 2D texture. Details of the 

process are described in Norgren (2008). 

 

3.3 Implementation of the GPU Plume dispersion model 

3.3.1 Data management for GPU Plume 

Table 3.1 summarizes the data storage for GPU Plume. As described above, the 

3D wind field generated by the QUIC-URB wind model is converted into a 2D field that 

is compatible with the GPU architecture. This 2D field is stored in a texture (wind 

texture). Each node of this texture stores a U, V and W component of the mean velocity as 

three of the four values to be stored on each node of texture. The turbulence field 

estimated from the mean wind field is also stored in three turbulence textures. 

The mean wind field and turbulence stresses describe the conditions prevailing in 

the domain that drive particle dispersion. To solve for the particle motion, the initial 

conditions are also specified. The initial positions of the particles to be released in the 
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simulation are distributed randomly within the source. For example, for a spherical 

source, the initial positions of the particles are scattered randomly within the radius of the 

sphere. The initial positions of all the particles are stored in one particle position texture. 

Because the GPU does not allow for new positions (after advection) to be stored back 

into the same textures as the previous positions, a second particle position texture is 

required. Each node of the particle position texture stores the x, y and z location of each 

particle as three of its four values and the state of the particle (active or inactive) as its 

fourth value.  

GPU Plume also requires initialized fluctuating components of velocity associated 

with each particle. That is, the fluctuating component of velocity (u’, v’ and w’) should be 

initialized for each particle before the very first advection step. This is accomplished by 

employing the following equations (Williams et al. 2004): 

 

,ranu Xu σ=′           (3.1) 

,ranv Xv σ=′           (3.2) 

,ranw Xw σ=′           (3.3) 

 

where, uσ , vσ  and wσ  are the standard deviations of wind velocity in the x, y and z 

direction, respectively. The standard deviation of wind in the respective directions is 

obtained from the turbulence model. ranX  is a normally distributed random number with 

zero mean and a standard deviation of unity. The u’, v’ and w’ are also stored in the prime 

textures. Similar to the particle positions, two textures are needed for the velocity 

fluctuations: one for the previous time step and one for the current time step. To estimate 
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the random forcing on the particles, Langevin equations also require normally distributed 

random numbers for the advection process; therefore, the generated normal random 

numbers (with zero mean and standard deviation of one) are stored in the random texture. 

 

3.3.2 Utilizing stream processors for advection on the GPU 

3.3.2.1 Mathematics behind the advection process -  

The Langevin equations 

To advect particles with the mean wind along with their respective fluctuating 

components, the following equations are employed (Williams et al. 2004): 

 

x = xp + U∆t +
′ u p + ′ u 

2
∆t ,        (3.4) 

y = yp + V∆t +
′ v p + ′ v 

2
∆t ,        (3.5) 

t
ww

tWzz p
p ∆

′+′
+∆+=

2
.        (3.6) 

 

where x, y and z represent the current position of the particle and the subscript ‘p’ refers 

to the previous positions. U, V and W are the mean winds in x, y and z direction, 

respectively, and u′  , ′ v  and ′ w  are the fluctuating components of the instantaneous 

wind. The time step is represented by ∆t .  

The fluctuating components of the wind are obtained from the following 

equations (Williams et al. 2004): 
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′ u = ′ u p + du ,          (3.7) 

′ v = ′ v p + dv ,           (3.8) 

′ w = ′ w p + dw .          (3.9) 

 

where the subscript ‘p’ refers to the previous fluctuating component of the velocity. As 

described earlier, the fluctuating components of the velocities are stored in a 2D texture. 

After each advection step, u’, v’ and w’ are updated with their new values in the prime 

texture. 

The small incremental changes in the fluctuating component of the velocity are 

denoted by du, dv and dw, respectively, and are obtained by solving the 3D Langevin 

equations. As pointed out earlier, the Langevin equations are a function of turbulence 

intensity at the location of the particle, drag experienced by the particle and random 

forcing due to the small-scale isotropic turbulent motion of the particle (Wilson and 

Sawford 1996). Mathematically, the Langevin equations are represented as follows 

(Rodean 1996): 
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In the above equation, oC  is a Universal constant (~5.7, Pope (2000)), ε  is the 

mean rate of kinetic energy dissipation, the tensor ( ) ( ) 1det/ −== ijijijij Adj τττλ  is the 
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inverse matrix of the symmetric Reynolds stress tensor ijτ  and ( )tdWi  is uncorrelated, 

normally distributed variable with means of zero and standard deviations of one. The 

total velocity is denoted by iu , whereas iU  and iu′  represent the mean velocity and the 

fluctuating components of the total velocity, respectively.  

     

3.3.2.2 Concentration estimation 

For concentration estimates, the volume of interest in the domain is divided into 

cuboids known as sampling boxes. Concentrations are estimated by dividing the total 

mass (in grams) of particles present in the sampling box by volume of the sampling box. 

If the total mass released in the entire simulation is m grams and total number of particles 

released is totN , then mass of each particle is totNm  grams. The concentration at any 

time step is given by, 

 

totN
mn

box the of Volume
box sampling a in particles of mass totalC

V
== ,    (3.11) 

 

where, n is the total number of particles present in the sampling box and V  is the volume 

of the box. 

For an averaging time of T  seconds, the average concentration in a sampling box 

(i, j, k) is given by,  

 

∫=
T

kjiavg dttC
T

C
0

),,( )(1 , 
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where, dt  is the sampling time after which particles are summed up in a sampling box. 

Substituting Eq. (3.11) in the above equation yields,  

 

∫=
T

tot
kjiavg dt

N
tnm

T
C

0
),,( V

)(1         (3.12) 

 

For discrete data, the integral is replaced by summation and Eq. (3.12) becomes, 

 

∑= dt
N

tnm
T

C
tot

kjiavg
)(

V
1

),,( .        

  

Since T  and V  are constant, the above equation reduces to simply, 

 

∑=
tot

kjiavg NT
dttnmC

V
)(

),,(         (3.13) 

 

where concentration is given in the units of 3mg . 

 

3.3.2.3 GPGPU advection implementation 

The simulation was created using the OpenGL API (Shreiner et al. 2007) along with 

the C++ programming language, and OpenGL’s Shading Language (Rost 2006) (used to 

program the GPU). For the purposes of GPU Plume, our shader programs perform the 

advection computation, operating on 2D input textures to produce updated particle 
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position textures. For example, a Lagrangian dispersion model updates the position of the 

particles at each time step; therefore, at each time step, the shader program (for 

advection) acts on the particle position texture to update the particle positions stored in 

the particle position texture. 

The Langevin equations are solved in the shader program to accomplish the 

advection steps. All of the textures (wind texture, prime texture, particle position texture, 

random texture, turbulence field textures) along with other simulation parameters (source 

parameters, building parameters, dispersion parameters) are made available to the shader 

programs through OpenGL commands. To accomplish particle advection, the velocity 

and turbulence fields local to the particle position are obtained through a GPU texture 

lookup function. That is, the velocity field (U, V and W) closest to the particle position is 

obtained by indexing a particle’s position. A similar procedure is used to obtain the 

turbulence field around the particle. The shader program explicitly solves the 3D 

Langevin equations for the small incremental changes (du, dv and dw) to the fluctuating 

component of the velocity (u’, v’ and w’), respectively.  By employing the 3D Langevin 

equations along with the Eqs. (3.1) through (3.9), the new position of each particle is 

obtained for each simulation time step. 

    

3.3.2.4 Treatment of particle reflection by building walls 

 and ground surface 

Reflection is required when the estimated next position of a particle is either 

inside a building or under the ground surface. A billiard ball type reflection approach has 

been utilized for walls as well as ground reflection of a particle. As reflection is 
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extremely common in graphics operations, GPUs inherently support reflection 

calculations with built-in functions such as normalize, distance and reflect. normalize 

returns a vector of unit length in the same direction as the input vector, distance 

automatically calculates the length of a vector between two specified points and reflect 

returns the reflection direction for a vector coming into a surface with a specified outward 

point normal. To implement the reflection encoding, a 2D texture (celltype texture) 

containing information about building and ground cells in the domain is loaded on to the 

GPU memory. Using the current positions of the particle, the celltype texture provides 

run-time information to determine if the particle requires reflection or not by examining 

if the particle is within a building (or below ground). If a particle requires reflection, the 

particle is reflected appropriately by employing plane and line intersection equations 

(Norgren 2008). 

 

3.3.2.5 Random number generator 

Random numbers with a normal distribution are required at each advection step 

for solving the Langevin equations. The Box-Muller algorithm has been used to generate 

the normal random numbers from the uniformly distributed pseudo-random numbers 

available in the standard C++ (or C) library function (Press et al. 2007). The normally 

distributed random numbers (with values between 0 and 1 with a standard deviation of 

unity) are then stored in the random texture that is the same size as the particle position 

texture and is available to the shader program for particle advection. At each advection 

step, the required random numbers are obtained by sampling the normally distributed 

random texture. The sampling or indexing of the texture is done by randomly selecting 
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two unique offset indices (using the standard C++ uniform random variable library 

function) that define a location in the random texture. 

 

3.4 Model evaluation 

The performance of the GPU Plume model has been evaluated against three test 

cases. The primary goal of these validations was to test GPU Plume against its CPU 

implementation for its efficiency and the accuracy of the results. 

 

3.4.1 Test case-I: Continuous release in uniform flow 

In this test case, the performance of GPU Plume has been tested against QUIC-

Plume (single precision CPU implementation) and an existing analytical solution for an 

elevated continuous point source release in a uniform flow. The normalized concentration 

profiles from the GPU Plume and QUIC Plume calculations have been compared against 

the classical Gaussian solution (Seinfeld and Pandis 1998) for a steady state, horizontally 

homogenous, neutral atmospheric stability, constant wind speed and constant eddy 

diffusivity (see Singh et al. (2004) for details). For this test case, the Langevin equation 

model was simplified for the horizontally homogenous and constant eddy diffusivity 

conditions (Willemsen et al. 2007), 
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The plume parameters required to run the test case have been described in detail 

by Singh et al. (2004). 
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To obtain near statistically stationary concentration estimates, 100,000 particles  

were continuously release from a spherical source (0.2 m diameter) at a height H= 70 m. 

The rate of emission was 100 particles per second with a time step of 1 second (dt = 1 

second) for a duration of 1000 seconds. The uniform wind speed was U=2 ms-1, with a 

friction velocity of u*=0.18 ms-1. The concentration was averaged over 800 seconds with 

a starting time of 200 seconds after the beginning of the release. Number of sampling 

boxes in x, y and z directions were 20, 50 and 50, respectively, over a domain size of 100 

m x 100 m x 100 m. The source was specified to be at x=20 m, y=50 m and z=H=70 m. 

Figure 3.4 shows the lateral concentration profiles at two streamwise locations 

(x/H=0.964 and x/H=1.179). The concentration is normalized ( QCUhC /2* = ) for the 

comparison purposes. The lateral profiles are in agreement with the analytical solution. 

Our objective was to compare the GPU Plume with the QUIC Plume (CPU 

implementation). The GPU Plume solution is nearly identical to the QUIC Plume 

solution with small statistical variations resulting from different random number 

generators. Similar trends have been observed in the vertical profiles (Figure 3.5). 

In addition to the validation studies, simulations were run to analyze the 

performance benefit realized by using the GPU for the advection process. Figure 3.6 

shows the comparison between the average time taken by GPU Plume and QUIC Plume 

for advecting N particles (averaged over 1000 advection steps). For all of the results 

reported, the simulations were run on a 2.4 Ghz Intel Core 2 Duo Processor with an 

NVIDIA GeForce 8800 GTS video card with 128 stream processors and 32-bit precision. 

GPU Plume shows a significant improvement in performance as compared to QUIC 

Plume. GPU Plume shows a speed up of two orders of magnitude when 100,000 particles 
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are released in the simulation (~250 times faster). Using the GPU, for the present test 

case, 3.3M particles can be simulated in real-time. However, with visuals turned on, a 

little less than 1M particles can be simulated in real-time.  

 

3.4.2 Test case-2: Dispersion around an isolated cube 

For this test case, an idealized continuous point source upstream of an isolated 

cubic building is tested (Figure 3.7). The concentration estimates were compared against 

the QUIC Plume dispersion model.  

A spherical source of radius 0.1 m was placed 20 m upstream of an isolated 

cubical building (H=10 m). The source was located at x=5 m, y=25 m and z=3 m in a 

domain of 100 m x 50 m x 20 m in x, y and z directions, respectively. The wind field was 

generated by the wind model of the QUIC dispersion modeling system (QUIC-URB) 

with a logarithmic velocity profile upstream of the cube. The reference velocity for the 

velocity profile was specified to be 3 ms-1 at 10 m above the ground with a roughness 

length of 0.1 m. A total of 50,000 particles were released for 1000 seconds for this test 

case. The concentration averaging time was 1000 seconds. In order to assure that both 

CPU and GPU simulations had similar turbulence fields, GPU Plume utilized the 

turbulence parameters obtained from the QUIC Plume model to run this simulation. 

The Langevin equations for 3D inhomogeneous turbulent flow have 67 terms for 

each component of the fluctuating velocity (assuming stationary conditions). The number 

of terms for each component of the fluctuating velocity can be drastically reduced by 

making boundary layer (BL) assumptions of horizontal homogeneity ( 0=∂∂=∂∂ yx ) 
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and zero mean lateral and vertical flow ( 0== WV ). Therefore, Eq. (3.10) with BL 

assumptions becomes, 
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For the present test case, the Langevin equations in GPU Plume were simplified 

by making BL assumptions. The QUIC Plume dispersion model also utilizes the 

simplified equations with the BL assumption. However, to partially accommodate the 

horizontal homogeneity, the QUIC Plume dispersion model utilizes local streamline 

coordinate transformation in the direction of the total mean wind (Näslund et al. 1994; 

Williams et al. 2004). The local streamline coordinate transformation is not implemented 

in the GPU Plume model. Due to this difference in the implementation of the GPU Plume 

and QUIC Plume, the results from the GPU Plume and QUIC Plume do not match 

exactly; however, the concentration profiles follow each other quite well.  
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Figure 3.8a shows the lateral concentration profiles at three streamwise locations. 

At x=9.75 m and z=2.5 m (Figure 3.8a), the GPU Plume is in very good agreement with 

the QUIC Plume. Both GPU Plume and QUIC Plume show the peak concentration at 

y/H=2.5, inline with the source location. 

Figure 3.8b shows the lateral concentration profile at x=57.25 m and z=2.5 m. The 

entrainment of the plume behind the building resulted in two peaks at y/H~1.5 and 3.5. A 

concentration peak is also observed at the centerline of the building in the lateral 

direction. The GPU Plume and QUIC Plume concentration profiles match well; however, 

GPU Plume shows less lateral dispersion. We believe that the lack of dispersion is due to 

the slightly different implementations of the GPU Plume and QUIC Plume. Specifically, 

QUIC Plume utilizes local streamline coordination transformation (Williams et al. 2004) 

which is not implemented in the current version of GPU Plume.  

Figure 3.8c shows lateral concentration comparison at x=85.75 m and z=2.5 m. 

The concentration profiles are in agreement with each other. Figure 3.9a & b shows 

vertical concentration profiles at two streamwise locations downstream of the building 

(x=57.25 m and x=85.75 m with y=24.01 m). The concentration profiles (Figures 3.8c, 

3.9a and 3.9b) show similar results except for some differences due to the differences in 

the implementations of the GPU Plume and QUIC Plume along with the differences in 

random number generators. 

Figure 3.10 shows the performance analysis of the GPU Plume with respect to the 

QUIC Plume (single processor CPU implementation). Figure 3.10 shows a comparison 

between the average time taken by GPU Plume and QUIC Plume for advecting N 

particles (averaged over 1000 advection steps). GPU Plume again shows two orders of 
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magnitude speed up in the performance. GPU Plume is in fact 180 times faster than 

QUIC Plume for a release of 200,000 particles. The uniform flow test case (see Section 

3.4.1) showed that GPU Plume is ~250 times faster than QUIC Plume. The added 

textures to store 3D turbulence data and the reflection algorithm integrated in GPU Plume 

for this test case resulted in the performance penalty of less than a factor of two. Here 

again, the simulations were run on a 2.4 Ghz Intel Core 2 Duo Processor with an 

NVIDIA GeForce 8800 GTS video card.  

 

3.4.3 Test case 3: Dispersion in the lee-side of a  

Hi-Rise building 

For this test case, GPU Plume was validated against a wind-tunnel experiment of 

dispersion in the lee side of a tall building (Hi-Rise). The experiment was conducted at a 

USEPA meteorological wind-tunnel by Ohba et al. (1993). A small spherical source was 

placed near the surface on the lee side of the building as shown in Figures 3.11 and 3.12. 

The concentration and wind measurements were made in the x-z plane on the downwind 

side of the building. The height of the building was 3 times the length and width of the 

building (L=W=0.2 m, H=0.6 m). The mean wind field was obtained from the QUIC-

URB wind model. The inlet/initial profile was specified to be a power law profile with an 

exponent of 0.295 and a reference velocity of 3.5 ms-1 at the height of the building. For 

further details, see Williams et al. (2004) and Ohba et al. (1993). The turbulence 

parameters required to run the GPU Plume model were obtained from the QUIC Plume 

model. 
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Figure 3.13a shows vertical concentration profiles at the centerline of the building 

at x/H=0.042. Both GPU Plume and QUIC Plume overestimate the ground level 

concentrations; however, GPU Plume is slightly closer to the experimental data (black 

open circles). As pointed out earlier, the differences between GPU Plume and QUIC 

Plume are due to the different implementation of the model. At x/H=0.17 (Figure 3.13b), 

both models produced similar results and agree well with the data. Both models show a 

peak normalized concentration of 700; however, data are unavailable at that height. 

Figure 3.13c shows the normalized concentration profile at x/H=0.42. Both models 

underestimate the ground level concentration; however, GPU Plume performs slightly 

better than QUIC Plume as the distance from the ground increases. At x/H=0.58 (Figure 

3.13d), QUIC Plume slightly underestimates the ground level concentration; however, 

GPU Plume overestimates the ground level concentration. GPU Plume follows the 

experimental data well as the distance from the ground increases; however, QUIC Plume 

underestimates the normalized concentration as distance from the ground increases. 

 

3.5 Discussion and summary 

Fast response atmospheric dispersion models are valuable tools that can aid first 

responders in making decisions regarding accidental or deliberate releases of chemical or 

biological agents in complex urban environments. When implemented on the GPU, the 

real-time performance of these models also makes them suitable for applications 

involving the display of dispersion phenomena in urban virtual environments. To our 

knowledge, this is the first attempt to integrate a fast response dispersion model into an 

urban virtual environment running in real-time. The results indicate that by using the 
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GPU, a substantial performance benefit can be obtained in the advection process of the 

dispersion model. The performance of GPU Plume is two orders of magnitude faster than 

its CPU implementation, while preserving computational accuracy. The concentration 

profiles obtained from GPU Plume are in good agreement with the CPU implementation 

with small variations attributed to the differences in the GPU and CPU implementations. 

The single building algorithm does show a small performance penalty over the uniform 

flow case and is associated with the added memory textures and reflection algorithm. 

While not shown here, tests of up to 35 buildings in a domain indicate the penalty for 

added buildings is less than that of the CPU implementation. For example, for a 500,000 

particle simulation, the CPU simulation takes about 34% longer to run a 35 building 

simulation compared to a single building simulation, while the GPU only takes about 

12% longer (Norgren 2008). This improved performance may be a result of the efficient 

built-in reflection algorithms on the GPU. 

The immediate benefit of real-time visualization, obtained by rendering the 

dispersion data on the screen, is a novel approach for probing the evolving dispersion 

field, which further enables one to qualitatively understand the dispersion phenomena 

better. The visualization aspect of GPU Plume is a powerful tool that also enables the 

user to view the turbulence contours and the evolving concentration field in real-time. 

Figure 3.14 shows an example of such a visual where the user’s head and hand positions 

and orientations are tracked to provide interaction with the particle simulation data. In 

Figure 3.14, the user is rotating a contour plane of a turbulence variable in real-time 

during the simulation. Additional details regarding the integration of the simulation into a 

virtual environment can be found in Willemsen (2008) and Norgren (2008).  An 
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additional exploitation of the benefits of real-time visualization of GPU Plume is 

modification of simulation parameters and models during the simulation. This will allow 

users to receive immediate feedback regarding changes in material properties, building 

positions and physical submodels. 

Some of the memory limitations associated with the GPU Plume simulations 

deserve more explanation. The number of particles available for simulation is limited by 

the size of 2D textures and the amount of memory on the graphics card. The maximum 

size of a 2D texture is 8192 x 8192 on an NVIDIA Geforce 8800, theoretically meaning 

that the amount of particles that can be simulated is about 64 million. However, in 

practice, the number of particles is also limited by the amount of memory available on 

the graphics card. For example, if the number of particles being simulated is 1 million, 

there will be five 1000 x 1000 2D textures (previous_positions, new_positions, 

previous_velocities, new_velocities and the random_values texture). Each of these 

textures store 32‐bit floats and are 15.25 MB (1000*4*32/(8*10242)). These five 71 

textures together hold 76.3 MB. Then there will also be five textures holding domain data 

(new and old particle positions, new and old velocity data and random numbers). If the 

domain is 100 x 100 x 50, then each of these textures holds approximately 7.63 MB, 

combining to 38.1 MB. These ten textures are the textures required to run the core 

simulation, which requires 114.4 MB. However, there are additional textures required to 

color the particles, store building information, draw the isosurfaces, etc., along with 

additional memory used for displaying the visualization. If the amount of particles to 

simulate increases to 4 million using the same domain, 343.28 MB would be required. 

The present GPU simulations are stable with 4 million particles on an NVIDIA GeForce 



97 
 

  

8800 GTS with 640 MB of memory. 16 million particles would require 1221 MB, which 

is well over the size of the NVIDIA GeForce 8800 Ultra that has the largest amount of 

memory available at 768 MB. If the amount of memory available was not an issue, 

textures of size 8192 x 8192 could be used to simulate over 16 million, and additional 

textures could also be used to simulate even more particles by operating on each texture 

individually each time step. 

Programming the GPU is currently a nontrivial task, but does provide increased 

performance over CPU implementations. Programming GPUs is likely to become easier 

as higher level languages are developed to access the graphics hardware. Graphics card 

manufacturers, such as NVIDIA, are developing additional tools to help program these 

cards using C APIs (Application Programming Interfaces) to access the hardware. As 

part of our continued work, we are now investigating how NVIDIA’s CUDA (Compute 

Unified Device Architecture) framework might compare in performance and 

functionality to our current implementation. For our future work, we plan to optimize our 

system for increased functionality, including support for generalized building structures, 

greater than 10 million particles, and multi-GPU configurations. Multi-GPU 

arrangements may help with speeding up the advection of an increased number of 

particles since the work could be spread across the set of GPUs. 
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Figure 3.1: Illustration contrasting a Lagrangian particle model’s advection 
calculation on (a) a GPU and (b) a standard CPU. 
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Figure 3.2: Rectangular 2D textures that store particle position and velocity 
data. Each colored square can hold up to four attributes such as the x, y and z 
locations of a particle and a flag that specifies weather the particles is in the 
computational domain. Parallelism is achieved by programming the GPU to 
operate on the 2D textures. 
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Figure 3.3: Storage of 3D domain data in a 2D texture. 
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Figure 3.4: Lateral concentration profile comparison between GPU Plume, 
Gaussian Solution and QUIC Plume at a) x/H=0.625 b) x/H=0.982. 
 

b) 

a) 
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a) 

Figure 3.5: Vertical concentration profile comparison between GPU Plume, 
Gaussian Solution and QUIC Plume at a) x/H = 0.625 b) x/H=0.982. 
 

b) 
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Figure 3.7: Screen-shot of a continuous point source release upstream of an 
isolated cube.  

Source 

Wind direction 

Figure 3.6: Comparison of the average time required to advect N particles in 
GPU Plume and QUIC Plume without visualization.  
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a) 

Figure 3.8: Lateral concentration profile comparison between GPU Plume and 
QUIC Plume at a) x=9.75 m b) x=57.25 m c) x=87.75 and z=2.5 m. 
 

b) 
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Figure 3.8: Continued. 
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a) 

Figure 3.9: Vertical concentration profile comparison between GPU Plume and 
QUIC Plume at a) x=57.25 m b) x=85.75 m and z=2.5 m. 
 

b) 
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Figure 3.11: Schematic of the Hi-Rise building test case. Arrow indicates the 
inflow wind direction. 

Source 

Figure 3.10: Comparison of the average time required to advect N particles in 
GPU Plume and QUIC Plume without visualization.  
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Figure 3.12: Schematic showing source immersed in the streamline pattern in a 
plan view of the Hi-Rise building test case. 

Source 
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a) 

Figure 3.13: Vertical concentration profile comparison between GPU Plume, 
QUIC Plume and Hi-Rise experimental data at a) x/H=0.04 b) x/H=0.17 c) 
x/H=0.42 d) x/H=0.58 and centerline of the building. 

b) 
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c) 

Figure 3.13: Continued. 

d) 
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Figure 3.14: Screen-shot showing user’s view while interacting with a 
turbulence contour in real-time. 
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Textures RValue GValue BValue Alpha 

Wind u v W Dissipation(ε ) 

turbulence (1) z∂∂ 11τ  z∂∂ 22τ  z∂∂ 33τ  z∂∂ 13τ  

turbulence (2) zu ∂∂  *u  - - 

turbulence (3) 11λ  22λ  33λ  13λ  

particle position  x y Z Active/inactive 

prime  u’ v’ w’ - 

random 1st  RN* 2nd RN* 3rd RN* - 

celltype x y Z Free/surface cell 

 

Table 3.1: Textures used in the GPU Plume along with the four values stored at 
each node. Note that there are two position and prime textures that are for the 
current and previous time steps. 
*Random number 
 



 

 

 

4. INTEGRATING THE GENERALIZED FORM OF LANGEVIN 

 EQUATIONS INTO AN URBAN LAGRANGIAN 

 DISPERSION MODEL 

 

4.1 Introduction 

In the previous chapter, an emergency response dispersion modeling system based 

on a semi-empirical approach on a Graphics Processing Unit (GPU)-based architecture 

was discussed. The GPU-based architecture helps in enhancing simulation efficiency in 

terms of computational time while maintaining the accuracy of the results. Another 

important advantage of utilizing GPU-based architecture is the ability to achieve real-

time visualization. The current GPU Plume model utilizes the simplified Langevin 

equations (SLEs) (Rodean 1996) based on the assumptions of a horizontally homogenous 

flow (i.e., gradients of velocity are only in the vertical direction). The SLEs drastically 

reduce the number of terms in the Langevin equations for each component of the 

fluctuating velocity, and hence are relatively easy to compute. To apply these SLEs to a 

complex flow field encountered in urban areas, the coordinate system must be aligned in 

the direction of the streamlines to partially accommodate the horizontally homogenous 

flow assumptions (Williams et al. 2004). Figure 4.1 illustrates the procedure to align the 

coordinate system in the direction of the streamlines. 

 The x-y-z coordinate system (original coordinate system) is first rotated in the x- 
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y plane by an angle of ψ  in the direction of the mean wind and the new coordinate 

system formed is identified as x’-y’-z’. The x’-z’ plane is then rotated to x’’-z’’ by an 

angle φ  such that the x’’ direction is aligned with the mean velocity vectorU


. The new 

coordinate system x’’-y’’-z’’ is the final coordinate system where the velocity gradients 

are assumed to be only in the vertical direction (z’’). The positive z’’ direction in the x’’-

y’’-z’’ coordinate system is the direction of maximum mean velocity gradient, 
''z

U
∂
∂


. This 

approach renders the gradients in the crosswind and streamwise direction to be zero; 

therefore, the number of terms in the full or generalized form of Langevin equations 

(GLEs) can be drastically reduced (Rodean 1996). 

The GLEs are considered stiff (i.e., existence of unstable modes where a particle 

may travel significant distances over a small time step) due to the presence of a wide 

range of rate constants or time scales in the simulation (Yee and Wilson 2007). The SLEs 

drastically reduce the number of terms in the GLEs; therefore, the SLEs are considered 

less unstable; however, unstable modes still exist in the SLEs (Yee and Wilson 2007).  

The above approach of simplifying the GLEs may not be valid for the complex 

flow field present in urban areas. We hypothesize that to fully describe the dispersion in 

urban areas, the 3D generalized Langevin equations (3D GLEs) (Thomson 1987; Rodean 

1996; Wilson and Sawford 1996; Yee and Wilson 2007) must be utilized without the 

horizontally homogenous assumptions. 

 This chapter discusses challenges associated with the implementation of the 

GLEs into an existing Lagrangian random-walk dispersion model. The preliminary 

results obtained from two idealized baseline test cases to validate the performance of the 

3D GLEs Lagrangian dispersion model against available analytical solutions for simple 
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flows are presented. A third test case is presented for a more realistic urban setup where 

dispersion estimates from the 3D GLEs model are compared with a wind-tunnel 

experiment for a 7 x 11 cubical array of buildings (Brown et al. 2001). 

 

4.2 Methodology 

As discussed earlier in Chapter 3, the Langevin equations require a mean wind 

field and a mean turbulence field to make dispersion estimates. The mean wind field for 

this model was obtained from the QUIC-URB wind model and mean turbulence field was 

obtained by utilizing a turbulence model based on the mixing length theory (see Williams 

et al. (2004)). 

To partially circumvent the stiffness in the GLEs, the 3D GLEs Lagrangian 

dispersion model utilizes a fractional step methodology (FSM) outlined by Yee and 

Wilson (2007). The following section outlines the basic methodology for solving the 

GLEs using the FSM. For further details on the solution method, please refer to Yee and 

Wilson (2007). 

 

4.3 Fractional step method 

This section is included for the sake of completeness. For complete derivation and 

further details on the FSM, please refer to Yee and Wilson (2007). The notation used by 

Yee and Wilson (2007) is followed here to explain the FSM. The matrices are denoted by 

bold upper case symbols with the only exception of U , which is used to denote 

Lagrangian fluctuating velocity vector. The bold lower case symbols represent the 

vectors. Einstein notation is also being used where kji ,,  can take values of 1, 2 or 3. 
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The GLEs can be written in the index (Einstein) notation as follows(Yee and 

Wilson 2007), 

 

( ) ( ) ikjijkjijii dCdtUUTUTTdU ξε 21
0

)2()1()0( +++=       (4.1) 

 

Eq. (4.1) is written in terms of three expressions which are classified in terms of 

their relationship to the fluctuating component of velocity, represented by iU . The first 

expression, )0(
iT  (ms-2, with a tensor rank of 1), is considered as a constant term in iU . 

The second expression, )1(
ijT  (s-1, with a tensor rank of 2), is linear in terms of iU  and the 

third term )2(
ijkT  (m-1, with a tensor rank of 3) is nonlinear in terms of iU . The last 

expression, ( ) idC ξε 21
0 , represents the contribution of random fluctuation to the motion 

of a particle. The random Gaussian variate with mean equal to zero and variance equal to 

dt  is represented by )(td iξ . 

The above expressions can be further written in terms of the turbulence stresses 

as, 

 

l
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i x

R
T
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2
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The turbulent stress tensor is denoted by ijR ( 22 −sm ) in the above equations. The 

dissipation of turbulent kinetic energy is represented by ε  and oC is a universal constant 

for Lagrangian structure function (Rodean 1996; Pope 2000). The matrix inverse of the 

stress tensor ijR  is represented by 1−
ljR  and ku is the mean velocity. 

In the 3D GLEs model, the particles are advected at each time step ( t∆ ) by using 

the mean wind velocity and the fluctuating components of velocity in the respective 

directions. The advection is accomplished by employing the following equation, 

 

( ) ( ) [ ] tUutxttx iiii ∆++=∆+        (4.5) 

 

In the above equation, the mean wind velocity ( iu ) is obtained at position ( )txi . 

The fluctuating components of the velocity ( iU ) are obtained by solving the GLEs. 

The FSM involves three steps. In each step, an intermediate fluctuating 

component of the velocity is evaluated which is used as an input for the next step. These 

three steps can be symbolically expressed as, 

 

( )( )ttUU ∆ℑ= ,1
*          (4.6) 

( )tUU ∆ℑ= ,*
2

**          (4.7) 

( ) ( )tUttU ∆ℑ=∆+ ,**
3         (4.8) 

 

An intermediate fluctuating component of the velocity is obtained from the first 

step ( *U ) and is used as an input to the second step. The result from the second step 
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( **U ) is used to evaluate the final step to obtain the fluctuating component of the velocity 

(U ) at the time step ( )tt ∆+ . 

The first two steps are obtained analytically for a finite time step t∆  (see Yee and 

Wilson (2007) for details). That is, there is an analytical mapping available for the 

functions 1ℑ  and 2ℑ  (discussed later). The last step employs the simple forward Euler 

method to evaluate the fluctuating component of the velocity. 

The FSM is applied by “splitting” the fluctuating component of velocity 

increments as follows: 

 

)3()2()1(
iiii dUdUdUdU ++=         (4.9) 

 

where, 

 

( ) ( ) iojijii dCdtUTTdU ξε 21)1()0()1( ++=       (4.10) 

dtUUTdU iiiiii )()(
)2(

))()((
)2( =         (4.11) 

dtUUTdU kjijki
)2()2( =  for  { }kjikji ==/],,[       (4.12) 

 

In Eq. (4.10), )1(
idU  is evaluated from the constant and linear terms ( )0(

iT  and 

jij UT )1( ) along with the nondeterministic random fluctuation term. The )1(
idU  combines 

the complete memory and random terms of the GLEs and a part of drift terms (Rodean 

1996) which is constant and linear in terms of iU . Eq. (4.10) evaluates )2(
idU  from the 
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nonlinear drift term ( )()(
)2(

))()(( iiiii UUT ) where the bracket )(i represents that there is no 

summation over the enclosed indices. That is, Eq. (4.11) only evaluates the nonlinear 

drift terms for{ }kji ==  (diagonal terms).  For all other cases (non-diagonal drift terms), 

Eq. (4.12) evaluates the nonlinear terms in iU . 

The above decomposition into three steps is performed since analytical mapping 

for the first two steps (Eqs. (4.10) and (4.11)) is available which helps in circumventing 

the unstable modes in the GLEs and hence solves the stiffness problem encountered in 

solving the GLEs. No analytical mapping is available for the last step (Eq. (4.12)); 

therefore, this step does not guarantee the circumvention of the existing unstable modes. 

Hence, the FSM only partially addresses the stiffness problem encountered in the 3D 

GLEs. 

 

4.3.1 First step: Integration of constant and linear terms 

In the first step, the contributions from the constant and linear terms in iU  are 

obtained by an analytical mapping function 1ℑ . Eq. (4.10) can be rewritten as (using 

matrix notation), 

 

wBUAaU 10 ddtdtd ++=         (4.13) 

 

where, 
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0a            (4.14) 
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( ) k
k

il
ljijo u

x
R

RRC
∂
∂

+−≡ −− 11

2
1

2
1 ε1A        (4.15) 

( ) ijoC δε 21≡B           (4.16) 

 

and 

 

( )321 ,, ξξξ dddd ≡w            

 

For employing the analytical mapping function 1ℑ , the eigenvalues of matrix 

1A are obtained by eigenvalue-eigenvector decomposition as, 

 

SSA1 Λ=             

 

where, 

 










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


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00
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00

λ
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λ
         (4.17) 

 

and S  is the corresponding eigenvector matrix. The eigenvectors in the S  matrix are 

normalized to have a unit length. 

According to Yee and Wilson (2007), for general cases, the 1A  matrix is not 

always symmetric, i.e., if the second term ( k
k

il
lj u

x
RR
∂
∂−1

2
1 ) in 1A  is non-zero, then the 1A  
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matrix is nonsymmetric. For a nonsymmetric matrix, the presence of real eigenvalues is 

not always guaranteed. There may be some cases where rather than having a single real 

eigenvalue, we may get two complex eigenvalues occurring as a complex conjugate pair. 

The complex eigenvalues for the 1A  matrix indicate the presence of resonant or 

oscillatory modes in the dynamical system (Yee and Wilson 2007). Also, the presence of 

positive eigenvalues (signifying that a particle’s velocity is not relaxing towards its mean 

velocity) indicates an unstable system where the particles may experience unstable modes 

during their trajectory.  

Experience with a number of test cases suggests that the cases where the 1A  

matrix has complex eigenvalues are extremely rare (Yee and Wilson 2007). Complex 

eigenvalues may occur for the cases where turbulence field is not realizable (Vreman 

1994). In some rare cases where the turbulence field is realizable and still the eigenvalues 

of the 1A  matrix are complex, the second term of the 1A  matrix can be dropped to yield 

a symmetric 1A  matrix which guarantees real eigenvalues (although this is an extreme 

step and would certainly violate the well-mixed criterion for the 3D GLEs (Thomson 

1987) as few drift terms are neglected – drift terms are essential for maintaining well-

mixed criterion). 

The presence of positive eigenvalues may also cause unstable modes in the 

trajectory of a particle. Due to these unstable modes, a particle may change its position 

significantly over a small time step. For simple test cases, where velocity gradient is in a 

different direction than the mean flow direction (e.g., boundary layer flows, where 

velocity gradients are in vertical direction and mean flow is in horizontal direction), 
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unstable modes due to this first step of the FSM are not present. In such cases, the second 

term ( k
k

il
lj u

x
RR
∂
∂−1

2
1 ) will always be zero, rendering the 1A  matrix to be symmetric.  

To further investigate the potential reasons for the presence of positive 

eigenvalues, another simple test case of a spatially developing shear layer was performed. 

In this test case, the velocity gradients were present in the crosswind direction due to the 

presence of a shear layer. The shear layer “grows” with increase in the streamwise 

distance relaxing the cross-stream shear layer velocity gradients. This arrangement 

ensures that the velocity gradients are present in both streamwise and cross-stream 

directions (Bell and Mehta 1990; Pope 2000). As the velocity gradients (and hence 

turbulence stress gradients) are present in the direction of mean flow (streamwise 

direction), the second term ( k
k

il
lj u

x
RR
∂
∂−1

2
1 ) of the 1A  matrix is non-zero, rendering 1A  to 

be a nonsymmetric matrix.  

This plane mixing layer grows with the streamwise distance; therefore, the 

velocity profile varies as we move in the streamwise direction. In our test case, initially, 

the ratio between the two velocities that drove the shear layer was 0.6 (U1=9 ms-1, U2=15 

ms-1 with 6.0
2

1 =
U
U ). Figure 4.2 shows the velocity profile comparison of the test data 

with the velocity profile used as an input for the 3D GLEs model at a streamwise distance 

(velocity profile remains similar for every streamwise distance as the data are plotted 

with similarity parameters). The normalized ordinate and abscissa for Figure 4.2 are 

defined by the following similarity parameters, respectively, 
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δ
η 0yy −
=             

12

1#

UU
UUU
−
−

=  

 

In the above equations, 0y  is the centerline of the mixing layer and δ  is the 

mixing layer thickness which grows as the streamwise distance increases. 

Figure 4.3 shows the mixing length turbulence model’s output against the test 

data for this test case. The results indicate that the turbulence model is in good agreement 

with the test data.  

The 1A  matrix, for this test case, produced negative eigenvalues for the most part 

except at some locations at 2−<η  and 2>η  where some of the eigenvalues were 

positive. Further investigation revealed that, in regions where eigenvalues are positive, 

the product of kinetic energy dissipation and the universal constant ( ε0C ) is less than the 

gradient of the turbulent (
x

R
∂
∂ 11 ) stresses.   

Figure 4.4 shows the comparison of the gradient of a turbulent stress (
x

R
∂
∂ 11 ) in 

streamwise direction with the product of kinetic energy dissipation and the universal 

constant ( ε0C ). For the most part, ε0C  is greater in magnitude than the turbulence stress 

in the streamwise direction, rendering negative eigenvalues at these locations. However, 

at some regions near 2−<η  and 2>η , the gradient of turbulent stress is more than the 

ε0C , rendering positive eigenvalues for the 1A  matrix (see Figure 4.5). The magnitude 

of the positive eigenvalues is found to be close to zero for the most part for this test case.  
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As discussed earlier, the positive eigenvalues can be avoided if we neglect the 

second term of the 1A  matrix. As the second term of 1A  is a drift term and drift terms are 

imperative for maintaining well-mixed criteria (Thomson 1987; Rodean 1996), this 

extreme step certainly leads to the violation of well-mixed criterion. In the present model, 

the positive eigenvalues are accommodated by forcing the fluctuating component of the 

velocity during the advection process to be less than some multiple of standard deviation 

of velocity at that location. This technique has been used by various dispersion modelers 

to circumvent a significant (and unphysical) change of position of a particle during a 

small time step to avoid instabilities in a particle’s trajectory (Yee and Wilson 2007). 

For calculating the first intermediate fluctuating component of the velocity ( *U , 

see Eqs. (4.6)) through the mapping function 1ℑ , the following transformation is 

performed, 

 

USU 1−=rot             

 

with a reverse transformation, rotSUU = , Eq. (4.13) can be rewritten as, 

 

wBSaSUU 1
0

1 ddtdtd rotrot −− ++Λ=        (4.18) 

 

Eq. (4.18) can be integrated exactly over a time step t∆ , to yield (see Yee and 

Wilson (2007) for details), 

 

( ) ( )ttUtU rot
i

rot
i ∆+= 0            
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( ) ( )( ) ( )tt
k

tU ii
i

i
i

rot
i γλ

λ
λ +∆−−∆= exp1exp0,        (4.19) 

 

In Eq. (4.19), rot
iU 0,  is the velocity at time 0t  which is obtained by USU 1−=rot  

transformation and 0aSk 1−=≡ ik . The stochastic forcing term ( )tiγ  has the following 

form, 

 

( ) ( ) ( ) ( ) ( )∑ ∫ −∆= −

j

t

t
jiiiji sdstSCt

0

expexp121
0 ξλλεγ      (4.20) 

 

The stochastic random forcing term can be obtained by generating a Gaussian 

random number with mean zero and with a variance defined as, 

 

( ) ( ) ( ) ( )( ) ijji
ji

ji t
C

tt δλλ
λλ
ε

γγ 1)(exp0 −∆+
+

>=<      (4.21) 

 

where ijδ  is the Kronecker delta function. 

The intermediate velocity vector ( *U ) is finally obtained by rotating Eq. (4.19) by 

S  ( rotSUU = ). 

The steps outlined above enable us to integrate the first (linear and constant terms 

inU ) part of the GLEs exactly. If eigenvalues of the 1A  matrix are negative, then there 

will not be any unstable mode in the particle trajectories. The analytical mapping of the 

first part also ensures that there will not be any numerical instability as solution is 
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obtained from an analytical expression without employing any finite difference scheme 

such as Euler scheme. It should be noted that the time step ( t∆ ) should be smaller than 

the characteristic time scale (Yee and Wilson 2007) of the problem. Otherwise, the 

particle may travel a significant distance in a single time step. 

 

4.3.2 Second step: Diagonal part of the nonlinear terms 

The intermediate velocity vector obtained from the first step ( *U ) is used as an 

input for the second step. In the second step, the diagonal part of the nonlinear terms is 

integrated using the following analytical expression, 

 

( ) ( )
tUg

U
ttUtU

ii

i
ii ∆−

=∆+≡ *0

*0

0 1
       (4.22) 

 

where 
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)(1
)(2

1

i

li
ili x

R
Rg

∂

∂
= −  

Please note that the indices in bracket )(i  indicate that there is no summation over 

these indices. Eq. (4.22) defines the second mapping function 2ℑ  to update the 

intermediate fluctuating component of the velocity from *U  to **U . 

It should be noted that Eq. (4.22) may cause unstable modes if 

)sgn()sgn( *0
ii Ug = . That is, the velocity vector tends to increase in magnitude to 

potentially cause unphysical changes in the particle position (Yee and Wilson 2007). If 

)sgn()sgn( *0
ii Ug −= , the particle’s velocity contracts towards zero, enabling the particle 

velocity to relax towards the mean flow thereby circumventing the unphysical jumps in 
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particle trajectory. To avoid these unstable modes, the time step can be restricted such 

that the velocity update falls in a preset range. If the time step is chosen such that, 









=∆ *0

33
*0

22
*0

11

1,1,1min
UgUgUg

ft , where f  is a constant having value between 0 and 

1, then the amplification from  *U  to **U  can be limited by the factor 
f−1

1 . 

 

4.3.3 Third step: Off-diagonal part of the nonlinear terms 

The off-diagonal part of the nonlinear terms is evaluated in the third step. There is 

no analytical solution for this step; therefore, the simple Euler forward method (similar to 

QUIC-Plume’s SLEs model (Williams et al. 2004)) is utilized for obtaining the 

fluctuating component of the velocity using **U  obtained from the second step. 

 

4.4 Model evaluation 

The performance of the 3D GLEs model has been evaluated against two idealized 

test cases and a wind-tunnel test case for a 7 x 11 cubical array of buildings described by 

Brown et al. (2001). The primary goal of these validations was to ensure that the 

performance of the 3D GLEs model was acceptable with the newly implemented GLEs 

when compared with the available analytical solutions and the test data.  

 

4.4.1 Test case-I: Continuous release in uniform flow 

In this test case, the performance of the 3D GLEs model has been tested against 

an existing analytical solution for an elevated continuous point source release in a 

uniform flow and the QUIC Plume model. The normalized concentration profiles from 
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the 3D GLEs model computations have been compared against the classical Gaussian 

solution (Seinfeld and Pandis 1998) for a steady state, horizontally homogenous, neutral 

atmospheric stability, constant wind speed and constant eddy diffusivity (see Singh et al. 

(2004) for details). For this test case, the turbulence model of 3D GLEs was simplified 

for the horizontally homogenous and constant eddy diffusivity conditions (Willemsen et 

al. 2007). The plume parameters required to run the test case have been described in 

detail by Singh et al. (2004). 

To obtain near statistically stationary concentration estimates, 100,000 particles 

were continuously released from a spherical source (0.2 m diameter) at a height, H=70 m. 

The rate of emission was 100 particles per second with a time step of 1 second (dt = 1 

second) for a duration of 1000 seconds. 

The uniform wind speed was, U=2 ms-1, with a friction velocity of, u*=0.18 ms-1. 

The concentration was averaged over 800 seconds with a starting time of 200 seconds 

after the beginning of the release. The physical domain was broken up into 20, 50 and 70 

sampling boxes in x, y and z directions, respectively, over a domain size of 100 m x 100 

m x 140 m. The source was specified to be at x=20 m, y=50 m and z=H=70 m. 

Figures 4.6 and 4.7 show the lateral concentration profiles at two streamwise 

locations (x/H=0.393 and x/H=0.464) for the 3D GLEs model, QUIC Plume and the 

Gaussian analytical solution. The concentration has been normalized ( QCUHC /2* = ) 

for comparison purposes. The lateral profiles from both the 3D GLEs model and QUIC 

Plume model are in good agreement with the analytical solution. Similar trends have been 

observed in the vertical profiles (Figures 4.8 and 4.9).  
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For this test case, the second term of the 1A  matrix in the 3D GLEs model was 

always zero as the turbulence stresses were uniform throughout the domain. As 1A  was a 

symmetric matrix for this test case, the eigenvalues for the 1A  matrix were always 

negative, implying the absence of the unstable modes for the first step in the calculation 

process. The updates to the fluctuating component of velocity from the second and third 

step were zero due to the absence of the gradients in the turbulence stresses. 

  

4.4.2 Test case-II: Continuous release in a power-law 

 boundary layer flow 

In this test case, the performance of the 3D GLEs model has been tested against 

an existing analytical solution for a continuous point source release in a boundary layer 

flow and the QUIC Plume model. The emission source was relatively close to the ground 

(H=4 m) to allow reflection of the emitted particles off of the ground.  

The normalized concentration profiles from the 3D GLEs model computations 

have been compared against the classical non-Gaussian solution (Brown et al. 1993) and 

the QUIC Plume model for a steady state, horizontally homogenous, neutral atmospheric 

stability, power law wind profile and power law eddy diffusivity (see Singh et al. (2004) 

for details). The plume parameters required to run the test case have been described in 

detail by Singh et al. (2004). 

To obtain near statistically stationary concentration estimates, 100,000 particles 

were continuously release from a point source. The rate of emission was 100 particles per 

second with a time step of 1 second (dt = 1 second) for a duration of 1000 seconds. The 

power law exponent for the velocity profile was 0.15 with a reference velocity, U=5.90 
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ms-1 at a reference height, H=4 m. The concentration was averaged over 800 seconds 

with a starting time of 200 seconds after the beginning of the release. The number of 

sampling boxes in the x, y and z directions were 18, 51 and 20, respectively, over a 

domain size of 100 m x 100 m x 20 m. The source was specified to be at x=20 m, y=50 m 

and z=H=4 m. 

Figures 4.10 and 4.11 show the lateral concentration profiles at two streamwise 

locations (x/H=10.97 and x/H=19.31) for the 3D GLEs model, the QUIC Plume model 

and the non-Gaussian analytical solution. The concentration is normalized 

( QCUHC /2* = ) for comparison purposes. The lateral profiles from both the 3D GLEs 

model and the QUIC Plume model are in agreement with the analytical solution at both 

the streamwise locations. However, the QUIC Plume model slightly overpredicts the 

concentration at the centerline of the profiles. Similar trends have been observed in the 

vertical profiles (Figures 4.12 and 4.13). The QUIC Plume model overpredicts the peak 

concentration value (z/H=1) and the ground level concentration at both the streamwise 

locations.  

In this test case, the turbulence stress gradients were present due to the presence 

of velocity gradients in the vertical direction. The mean flow was in the horizontal 

direction; therefore, the second term of the 1A  matrix in the 3D GLEs model was zero, 

yielding a symmetric matrix. The eigenvalues for the symmetric 1A  matrix were always 

negative, implying the absence of unstable modes in particle trajectory. The second and 

third steps may yield unstable modes for a few particles for this test case; however, no 

unstable mode was detected during the simulation. 
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4.4.3 Test case-III: Dispersion estimates in street canyons  

of a cubical array of buildings 

For this test case, dispersion data from a wind-tunnel experiment for a 7 x 11 

cubical array of buildings is compared against the 3D GLEs model and the QUIC Plume 

model for dispersion estimates within the street canyons. The wind-tunnel experiment has 

been explained in Chapter 2 and further details can be obtained from Brown et al. (2001). 

Please refer to Figures 2.3a and 2.3b (Chapter 2) for details on the placement of the cubic 

buildings within the domain.  

The wind-tunnel experiment was conducted in a USEPA Meteorological Wind 

Tunnel.  For dispersion estimates, a high purity ethane (C2H6; CP grade; minimum purity 

99.5 mole percent) tracer was used in the experiment (Lawson et al. 2000), which was 

slightly heavier than the air (molecular weight 30). This tracer may be regarded as 

neutrally buoyant owing to the high turbulence level and the release rate of the tracer 

(Lawson et al. 2000). A perforated plastic sphere of 10 mm diameter was used for 

continuously releasing the tracer at ground level behind the first centerline building of the 

7 x 11 cubical building array. 

As explained in Chapter 2, various shortcomings in the street canyon 

parameterizations of the diagnostic wind model, QUIC-URB, were addressed by using 

the so-called “modified” Röckle model. The mean wind field generated by the modified 

Röckle model has been used for driving both the 3D GLEs and the QUIC Plume model 

for this test case. The coordinate system, grid resolution, inflow profile and the boundary 

conditions used for driving the wind model has been explained in Chapter 2. 
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A local mixing length turbulence model was used to drive the 3D GLEs 

dispersion model. The local mixing length model is based on the classical Reynolds 

averaged Navier-Stokes equation modeling given by (e.g., Wilcox (2006)): 
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where, 

 U= mean velocity (ms-1), 

 P= mean pressure (Nm-2), 

 ρ = density (kgm-3), 

 ν = viscosity (m2s-1), 

 jiuu = Reynolds stress, 
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1 = strain rate tensor. 

Eq. (4.23) represents the classic “closure” problem. There are 10 unknowns (3 

velocity components, pressure and 6 Reynolds stresses) in this equation; however, there 

are only 4 equations (including continuity equation). To obtain closure of Eq. (4.23), the 

Reynolds stresses ( jiuu ) must be modeled. Employing the turbulent viscosity hypothesis 

by Boussinesq (1877), we obtain (Pope 2000), 

 

ijTijji Skuu νδ 2
3
2

−=         
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where, 

 k = kinetic energy (m2s-2), 

 ijδ = Kronecker delta, 

 Tν = turbulent viscosity (m2s-1). 

For high Reynolds number flows, the molecular viscosity, ν , is neglected and the 

turbulent viscosity can be specified using Prandtl’s mixing length hypothesis as (Pope 

2000), 

 

( ) 212 2 ijijmT SS=ν          

 

and, 
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where, m  is the mixing length (m) and c is a constant ≈0.55 (Pope 2000). In classical 

wall bounded flow problems, the mixing length, m , is related to the distance to the wall. 

For building flow, m  is obtained from the distance to the closest surface, i.e., (Williams 

et al. 2004), 

 

minLclm = .          
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Here, lc  is an unknown model constant and minL  is the minimum distance to a 

surface. The value of lc  is specified to be 0.4 (Pope 2000).  The minimum distance to the 

surface, minL , is obtained by solving the point-plane distance equations (Shirley and 

Marschner 2009). 

The above formulations suggest that the normal stresses ( 11τ , 22τ  and 33τ ) are 

isotropic, therefore 11τ = 22τ = 33τ . However, the experimental data (Castelli et al. 2001) 

suggest that for a normal boundary layer flow (i.e., far away from buildings), 11τ  is 

greater than 22τ  and 33τ . To accomplish 11τ > 22τ > 33τ , constants (2.5)2, (1.6)2 and (1.3)2 

are multiplied with 11τ , 22τ  and 33τ , respectively, as follows: 

 

11
2

11 )5.2( ττ =  

22
2

22 )6.1( ττ =  

33
2

33 )3.1( ττ =  

 

These constant values are obtained from the test case II for the boundary layer 

flow. Other researchers have reported these constants to be close to the above stated 

values; for example, Castelli et al. (2001) reported these constants to be (2.5)2, (1.8)2 and 

(1.3)2 for 11τ , 22τ  and 33τ , respectively. 

Since the turbulence model is a local mixing model, it relies heavily on the 

magnitude of the local velocity gradients for turbulence estimates. This is problematic in 

the core of a street canyon where velocity gradients can be small (see Figure 2.7, Chapter 

2) and the model predicts negligible turbulence. With this model, particles tend to closely 
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follow the mean wind near the source until they are ejected out of the first street canyon 

without much mixing within the canyon. To enhance the mixing, a nonlocal turbulence 

mixing coefficient Csc~0.3 was added to the diagonal elements of the stress tensor 

( 2211 ,ττ  and 33τ ) to account for processes such as turbulent advection of turbulence into 

the central portion of the street canyon. The result of this modification was to augment 

the magnitude of the turbulence within the street canyons (and match the experimental 

data within the canyons better) while maintaining the influence of the velocity gradients 

in the stress tensor. The nonlocal mixing coefficient, Csc, may not be valid for general 

applicability as this may yield unreasonable results unless verified extensively with more 

experimental data.  Figure 4.14 compares the 3D GLEs model, the QUIC Plume model 

and the wind-tunnel data for the normalized )( 11τσ =U  (normalized by reference 

velocity, U=2.82 ms-1, i.e., UUU σσ =* ) profiles at x/H=1.15, x/H=1.55 and x/H=1.95 at 

the centerline (y/H =0) within the first street canyon.  At x/H = 1.15, both the QUIC 

Plume and the 3D GLEs models overestimate the *
Uσ  within the canyon (~z/H<1). The 

3D GLEs model overestimates  *
Uσ  above the street canyon also (~z/H>1) but stays much 

closer to the test data (Root Mean Squared (RMS) error =0.16) as compared with the 

QUIC Plume model. The QUIC Plume model overestimates *
Uσ  at ~z/H<1.7 (possibly 

due to QUIC-Plume’s nonlocal mixing model) and then underestimates *
Uσ  for ~z/H>1.7 

(RMS error =0.23). At x/H=1.55, the *
Uσ  for the 3D GLEs model stay closer to the wind-

tunnel data within the canyon; however, it exhibits a sharp increase in *
Uσ  at ~z/H=0.95 

(RMS error =0.43). The QUIC Plume model slightly overestimates *
Uσ  within the 
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canyon and exhibits an increase in *
Uσ  at ~z/H=1.05 (RMS error = 0.16). This sharp 

increase in *
Uσ  for both the models may be related to the presence of the vortex center 

close to x/H=1.55. At x/H=1.95, the 3D GLEs model (RMS error = 0.06) predicted the 

*
Uσ  profile stay closer to the wind-tunnel data at almost all the vertical heights as 

compared with the QUIC Plume model (RMS error = 0.2).  

Figure 4.15 compares the 3D GLEs model, the QUIC Plume model and the wind-

tunnel data for the *
Uσ  profiles at x/H=2.15, x/H=2.35, x/H=2.55 and x/H=2.75 at the 

centerline (y/H=0) over the rooftop of the second centerline building. All the profiles 

show that the 3D GLEs model is in better agreement with the wind-tunnel data as 

compared with the QUIC Plume model. The RMS errors for the 3D GLEs model are 

0.051, 0.052, 0.053 and 0.056 for x/H=2.15, 2.35, 2.55 and 2.75, respectively. For the 

QUIC Plume model, the RMS errors are 0.26, 0.28, 0.28 and 0.26, respectively.  

Figure 4.16 compares the 3D GLEs model, the QUIC Plume model and the wind-

tunnel data for the *
Uσ  profiles at x/H=1.15, x/H=1.55 and x/H=1.95 at z/H=0.2 within 

the first street canyon. At x/H=1.15, the 3D GLEs model and the QUIC Plume model 

slightly overestimate the *
Uσ . At the edges of the street canyon (y/H~=± 0.5), the 3D 

GLEs model shows sharp increase in the *
Uσ  due to the presence of strong velocity 

gradients (RMS error = 0.83). The QUIC Plume model stays closer to the wind-tunnel 

data and shows a relatively mild increase in *
Uσ  at the edges of the canyon (RMS error = 

0.3). Similar trends in *
Uσ  profiles are observed at x/H=1.55 with the 3D GLEs model 

(RMS error = 1.5) showing sharp increase in *
Uσ  at the edges of the canyon. The QUIC 

Plume model (RMS error = 0.3) stays closer to the wind-tunnel data at this streamwise 
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distance. At x/H=1.95, the 3D GLEs model stays closer to wind-tunnel data for the most 

part within the canyon and does not overestimate *
Uσ  close to the edges of the canyon 

(RMS error = 0.09). The QUIC Plume model overestimates *
Uσ  at the edges of the 

canyon and slightly overestimates *
Uσ  within the canyon (RMS error = 0.3). Both the 

models underestimate *
Uσ  within the street channel.  

A total of 100,000 particles were released continuously for 1000 seconds (i.e., Q 

= 100 particles/sec) from a spherical source with 10 mm diameter to obtain near 

statistically stationary concentration estimates for both the 3D GLEs model and the QUIC 

Plume model. A release of double the number of particle (200,000) did not show 

appreciable change in concentration field from a release of 100,000 particles in both the 

QUIC Plume and the 3D GLEs models. The concentration was averaged over 900 

seconds with a starting time of 100 seconds after beginning the release. The number of 

sampling boxes in x, y and z directions was 60, 55 and 25, respectively, over a domain 

size of 153 m x 110 m x 30 m. The source was placed behind the first centerline building 

of the 7 x 11 cubic building array at x/H = 0.067, y/H = 0 and z/H = 0.067  to be in 

agreement with the wind-tunnel experiments. 

Figures 4.17 and 4.18 show the horizontal concentration contours (normalized on 

log scale) for both the 3D GLEs model and the QUIC Plume model respectively at 

z/H=0.3. The contour plots show that the 3D GLEs model exhibit more lateral dispersion 

compared to the QUIC-Plume model at this height with almost double the downstream 

plume width. The wake of the last building along the center row (downstream) shows 

lack of mixing (very low concentration) in the QUIC Plume model as compared with the 

3D GLEs model. At planes located further above the ground (z/H=0.54 and 0.78 in 
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Figures 4.19, 4.20, 4.21 and 4.22) similar trends are observed. At z/H=1.02 (Figures 4.23 

and 4.24), the 3D GLEs model shows slightly higher concentrations at the roof top of the 

first centerline line building (upstream of the source) as compared with the QUIC Plume 

model. Similar trends are observed at z/H=1.26 (Figures 4.25 and 4.26). QUIC Plume 

shows higher concentrations at the upstream walls of all the centerline buildings at 

z/H=0.78 (see Figure 4.27). The vertical concentration profiles at the upstream walls of 

the four (downstream) buildings (x/H=1.9, 3.9, 5.9 and 7.9) indicate that the QUIC Plume 

model shows higher concentrations at ~z/H = 1 as compared with the 3D GLEs model 

(Figure 4.27). 

Figures 4.28 and 4.29 show centerline vertical slices of plume concentration 

(normalized and log scaled) at y/H=0 for the 3D GLEs model and QUIC Plume, 

respectively. The 3D GLEs model shows more vertical dispersion compared to the QUIC 

Plume model along the centerline. As also observed in the horizontal contours, QUIC 

Plume does not show enough mixing in the wake of the last centerline (downstream) 

building as compared with the 3D GLEs model. The 3D GLEs model tends to predict 

higher concentrations near the center of the downstream street canyons (second, third and 

fourth street canyons); however, the QUIC Plume model tends to predict higher 

concentrations close to the upstream of the roof top of the downstream street canyons 

(see Figure 4.27). The 3D GLEs model shows higher concentration at the rooftop of the 

first centerline (upstream of the source) building as compared with the QUIC Plume 

model. Similar trends are observed at the midpoint between the centerline and an edge of 

the street canyon at y/H=0.2 as shown in Figures 4.30 and 4.31.  Figure 4.32 and 4.33 

show vertical slices of the concentration contours at the center of the street channel 
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(y/H=1) for the 3D GLEs model and QUIC Plume, respectively. The 3D GLEs model 

shows enhanced mixing and more vertical dispersion of the plume as compared with the 

QUIC Plume model in the street channel. It is also evident from the horizontal contour 

slices (Figures 4.18 and 4.20) that the QUIC Plume model does not exhibit much 

dispersion laterally in the adjoining street channels and restricts the plume in the lateral 

direction to the centerline buildings. Figure 4.32 show that the 3D GLEs model mixes the 

plume well within the street channel. Figure 4.33 shows lack of mixing in the street 

channel in the QUIC Plume model.  

The dispersion estimates from the 3D GLEs model are compared with the wind-

tunnel data at the center for the first three centerline street canyons (see Figure 2.3). The 

dispersion estimates from the QUIC Plume model with nonlocal mixing (Williams et al. 

2004) are also included for the comparison. 

Figure 4.34 shows vertical concentration profile comparison of wind-tunnel data 

with the 3D GLEs model and the QUIC Plume dispersion model at the center of the first 

centerline street canyon (x/H =1.5). The concentration profiles from the QUIC Plume 

model and the 3D GLEs model are normalized using the following equation: 

 

Q
CUHC

2
* =  

 

In the above equation, *C  is the normalized concentration with U (=2.82 ms-1) as 

the reference velocity at the building height of H =10 m. The concentration is 

represented by C  and Q  is the release rate (100 particles/sec).  
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In Figure 4.34, the normalized concentration of the test data increases from a 

minimum at the ground level to a maximum near the building height (z/H = 0.867) and 

then decreases with increase in the height. The 3D GLEs model slightly underpredicts the 

concentration at the ground level but shows an increase in the concentration with a 

maximum concentration at ~z/H=0.78. The 3D GLEs model shows a dip in the 

concentration profile at ~z/H=0.9 and then an increase in the concentration at ~z/H=1.02. 

The concentration then decreases with increase in height. The QUIC Plume model 

overestimates the concentration at the ground level and shows two maxima at ~z/H=0.3 

and ~z/H=1.14. A minimum concentration was predicted at ~z/H=0.9 by the QUIC Plume 

model. The concentration decreases with height after the second maximum at ~z/H=1.14 

in the QUIC Plume model. Both the 3D GLEs and the QUIC Plume models show a 

concentration dip at ~z/H=0.9 with two maxima. The presence of the vortex center close 

to ~z/H=0.9 may have resulted in this concentration dip. Overall, the 3D GLEs model 

performs better than the QUIC Plume model for this concentration profile with an RMS 

error 1.47 as compared to the RMS error of 1.74 in the case of the QUIC Plume model. 

Figure 4.35 shows the concentration profile along the centerline of the second 

street canyon (i.e., y/H=0) at x/H=3.5. Both the 3D GLEs and the QUIC Plume models 

underestimate the concentration at the ground level; however, the 3D GLEs model 

predicts the concentrations to be closer to the wind-tunnel concentrations. The QUIC 

Plume model underpredicts the concentration up to a height of ~z/H=1.02 and then shows 

a sharp increase at ~z/H=1.14. The concentration profile of the 3D GLEs model stays 

closer to the experimental data below ~z/H=0.5 compared with QUIC Plume. The 3D 

GLEs model shows a sharp increase in the concentration profile at ~z/H=0.78 and then a 
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dip which bring the concentration profile closer to the test data. A sharp increase in the 

concentration profile of the 3D GLEs model is again seen close to ~z/H=1.02. Overall, 

the 3D GLEs model performed better than the QUIC Plume model for this concentration 

profile with an RMS error of 0.27 as compared with the RMS error of 0.32 in the case of 

the QUIC Plume model. 

Figure 4.36 shows a concentration profile at the center of the third street canyon 

at x/H=5.5. Both the 3D GLEs and the QUIC Plume model underestimate the 

concentration at the ground level. The QUIC Plume model underestimates the 

concentration below ~z/H=1.02 and exhibit a sharp increase in the concentration at 

~z/H=1.14. The concentration profile of the 3D GLEs model exhibits two sharp increases 

in the concentration at ~z/H=0.78 and ~z/H=1.02. Overall, the 3D GLEs model 

performed comparable to the QUIC Plume model for this concentration profile with an 

RMS error of 0.173 as compared with an RMS error of 0.186 in the case of the QUIC 

Plume model.  

Figure 4.37 shows a paired scatter plot of the above vertical concentration profiles 

at x/H=1.5, 3.5 and 5.5. The wind-tunnel concentration data are represented on the 

abscissa and the predicted concentration by the QUIC Plume model (open circles - o) and 

3D GLEs model (filled circles - ●) is represented on the ordinate of the scatter plot.  

The scatter plot shows that both the models underestimate the concentration 

values for the most part. Most of the predicted concentrations by both the models fall 

within a factor of 2. The QUIC Plume model shows more scatter in both underestimation 

and overestimation of the concentrations as compared with the 3D GLEs model. 
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Figure 4.38 shows the normalized concentration profile of the test data compared 

against the 3D GLEs model and the QUIC Plume model within the street channel at 

y/H=1 and x/H=1.5. Both the models underestimate the concentration, predicting almost 

zero concentrations at all heights, signifying the lack of lateral dispersion into the channel 

by both the models at x/H=1.5.  At x/H=2.5 and y/H=1 (Figure 4.39), both the models still 

underestimate the concentrations; however, the 3D GLEs model shows slightly more 

lateral dispersion into the street channel as compared with the QUIC Plume model.  

Figure 4.40 shows the normalized concentration comparison at x/H=3.5 and 

y/H=1. At this streamwise distance, the 3D GLEs model shows significant lateral 

dispersion in comparison with the QUIC Plume model. The 3D GLEs model is in good 

agreement with the test data above ~z/H>1.02 for the vertical dispersion; however, it 

underestimates the concentration below ~z/H<1. The QUIC Plume model underestimates 

the concentrations at all heights.  

Figure 4.41 shows the normalized concentration profiles comparison at x/H=5.5 

and y/H=1. The 3D GLEs model shows significant lateral and vertical dispersion as 

compared with the QUIC Plume model. The QUIC Plume model underestimates the 

concentrations at all heights. The 3D GLEs model overestimates the concentrations above 

~z/H >1.35 and underestimates it below ~z/H<1.35.  

 

4.5 Discussion and summary 

Due to the presence of a large number of terms in the GLEs, a simplified version 

of the Langevin equations (SLEs) is employed in most of the main stream dispersion 

models such as the QUIC Plume dispersion model (Williams et al. 2004) discussed in this 
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chapter. The presence of unstable modes due to the stiffness of the GLEs has also been a 

problem for the direct implementation of the GLEs into a Lagrangian dispersion model. 

Although unstable modes also exist in the SLEs, the SLEs are considered slightly stable 

due to the drastic reduction in the number of terms in the SLEs. This chapter discussed 

the implementation of the GLEs with a fractional step method (FSM) which partially 

solves the stiffness problem exhibited by the GLEs (Yee and Wilson 2007). The FSM 

decomposes the GLEs into three steps and the first two steps are solved analytically, 

circumventing the unstable modes. The third step is performed using the Euler forward 

method, which does not guarantee the absence of the unstable modes as no analytical 

mapping is available for the third step. 

The analytical mapping functions used in the first two steps of the FSM helps in 

revealing the existence of potential unstable modes in the particle trajectory before the 

advection process even begins in the dispersion model. For example, in the first step of 

the FSM, the eigenvalues of the 1A  matrix are computed. The presence of positive 

eigenvalues indicates the existence of the unstable modes in the particle trajectory. In the 

dispersion model, the eigenvalues of the 1A  matrix are computed before the particle 

advection process starts. Therefore, if the eigenvalues are positive, the dispersion modeler 

can further investigate the potential weaknesses in the turbulence model and the 

background wind field. One the other hand, in the Euler forward method (unlike 

analytical integration functions), no such information is available to the dispersion 

modeler beforehand to identify the potential unstable modes. Therefore, it is 

recommended to use the analytical mapping functions for solving the SLEs also rather 

than explicitly using the Euler forward method to integrate the SLEs (in conjugation with 
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coordinate rotation in the mean wind direction for accommodating horizontally 

homogenous assumptions). 

The Gaussian and non-Gaussian test case results demonstrated that the 3D GLEs 

implementation with the FSM works well for these simple test cases. For the Gaussian 

test case, the second and third steps of the FSM yield zero due to the absence of the 

velocity as well as turbulence stress gradients. Also, the first step of the FSM yielded a 

symmetric 1A  matrix due to the absence of the drift terms (as no velocity and turbulence 

stress gradients exist). Therefore, there was no possibility of the existence of the unstable 

modes in the Gaussian test case. This information is available to the dispersion modeler 

before the actual advection of the particle starts in the dispersion model.  In the non-

Gaussian test case, the second and third step did not yield zero values due to the presence 

of the velocity and turbulence stress gradients. The 1A  matrix for the non-Gaussian test 

case was symmetric, as the second term of the 1A  matrix was zero (see Eqs. (4.15)) for 

this case. The second and third steps did not yield unstable modes for this test case 

possibly due to the simplicity of this case. 

Another simple test case of a spatially varying shear layer was used to investigate 

possible unstable modes associated with the positive eigenvalues of the 1A  matrix. The 

turbulence model used for this test case yielded favorable results when compared with the 

experimental data. This test case demonstrated that whenever the model computed 

product of 0C  and dissipation )(ε  is less than the gradient of the turbulence stress, the 

unstable modes may exist during the advection process. These unstable modes may yield 

rogue trajectories where a particle may travel significant distance within a small time 

step. To prevent these rogue trajectories, the dispersion modelers normally limit the size 
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of the fluctuating component of the velocity by some multiple of the standard deviation 

of the wind in the respective directions (Yee and Wilson 2007). The QUIC Plume model 

uses 4.0 as a limiting factor and the 3D GLEs model uses 2.5 as the limiting factor to 

limit the unphysical rogue trajectories. The last test case of a more realistic urban setup (7 

x 11 cubical array of buildings) yielded positive eigenvalues for the 1A  matrix at some 

regions close to the cubical buildings. The values of the positive eigenvalues were 

however close to zero for most part. Part of the reason for the existence of the positive 

eigenvalues may be the background wind field and a simple turbulence model. Personal 

communication with Dr. Yee confirmed the existence of positive eigenvalues even for the 

wind fields obtained from CFD (Computational Fluid Dynamics) models, which are 

considered more accurate than the diagnostic wind models like QUIC-URB.  

All the test cases considered for validation of the 3D GLEs model yielded good 

results in comparison with the test data as well as the SLEs-based model QUIC Plume. 

The improved wind model used to drive the 7 x 11 test case in both the 3D GLEs and 

QUIC Plume model was in good agreement with the test data (see Chapter 2). The 

turbulence model used to drive the 3D GLEs was a local mixing length model with an 

addition of a constant 0.3 to enhance the turbulence within the street canyons. The 

constant 0.3 was added to match the turbulence level within the street canyons with the 

test data. Although this addition raised the turbulence level at the edges of the street 

canyons, the turbulence levels within the street canyons matched the test data well. The 

vertical turbulence profiles also showed a good match with the test data. The QUIC 

Plume model uses its nonlocal mixing length model (Williams et al. 2004) for driving the 

7 x 11 test case. The concentration contours showed that the 3D GLEs model exhibits 
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more lateral and vertical dispersion as compared with the QUIC Plume model. The plume 

in the street channels (adjoining centerline buildings) was well-mixed in the case of the 

3D GLEs model, indicating enhanced lateral dispersion exhibited by the 3D GLEs model 

in comparison with the QUIC Plume model. In emergency scenarios, underestimating the 

concentrations would be worse than overestimating as people may not be evacuated from 

the “unsafe” places which the model declares “safe” due to the underestimation of the 

concentrations. The differences in the lateral and vertical dispersion of the 3D GLEs 

model and the QUIC Plume model may be partially attributed to the increased number of 

terms present in the 3D GLEs model. The different turbulence models used to drive the 

models may also lead to different lateral and vertical dispersion. The concentration 

profiles showed that the 3D GLEs model performs relatively better than the QUIC Plume 

model for the most part.  The paired scatter plot also indicates that the 3D GLEs model 

was in good agreement with the test data.  

The future work will include more validation studies of the 3D GLEs model and 

implementation of the 3D GLEs model on a GPU-based architecture to realize real-time 

run times. As the FSM is capable of providing insights into the unstable modes before the 

actual advection of the particles, these insights may be utilized to further improve the 

diagnostic wind model and turbulence models to better suit the needs of a Lagrangian 

dispersion model based on Langevin equations. 
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Figure 4.1: Schematic outlining the procedure to rotate the coordinate system in the 
direction of the mean wind (adapted from Williams et al. (2004)). 
 

 

Figure 4.2: Velocity profile comparison between the test data and the velocity 
profile used as an input for the 3D GLEs model. 
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Figure 4.4: Comparison between the relative magnitude of turbulence stress 
gradient in streamwise direction and the magnitude of ε0C . 

Figure 4.3: Comparison between the turbulence stresses from the 3D GLEs mixing length 
model with the test data. 
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Figure 4.6: Lateral normalized concentration profile comparison between the 
3D GLEs model, QUIC Plume model and the Gaussian Solution at x/H=0.393. 
 

Figure 4.5: Comparison between the relative magnitude of turbulence stress 
gradient in streamwise direction and the magnitude of ε0C  (zoomed in). 
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Figure 4.8: Vertical normalized concentration profile comparison between the 3D 
GLEs model, QUIC Plume model and the Gaussian Solution at x/H=0.393. 

Figure 4.7: Lateral normalized concentration profile comparison between the 3D 
GLEs model, QUIC Plume model and the Gaussian Solution at x/H=0.464. 
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Figure 4.10: Lateral normalized concentration profile comparison between the 3D 
GLEs model, QUIC Plume model and the non-Gaussian Solution at x/H=10.97. 
 

Figure 4.9: Vertical normalized concentration profile comparison between the 3D 
GLEs model, QUIC Plume model and the Gaussian Solution at x/H=0.464. 
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Figure 4.12: Vertical normalized concentration profile comparison between the 3D 
GLEs model, QUIC Plume model and the non-Gaussian Solution at x/H=10.97. 
 

Figure 4.11: Lateral normalized concentration profile comparison between the 3D 
GLEs model, QUIC Plume model and the non-Gaussian Solution at x/H=19.31. 
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Figure 4.14: *
Uσ  vertical profile comparison between the 3D GLEs model (-), the 

QUIC Plume model (- -) and the wind-tunnel data (o) at x/H=1.15, 1.55 and 1.95 and 
centerline (y/H=0) within the first street canyon. 
 

Figure 4.13: Vertical normalized concentration profile comparison between the 3D 
GLEs model, QUIC Plume model and the non-Gaussian Solution at x/H=19.31. 
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Figure 4.15: *
Uσ  vertical profile comparison between the 3D GLEs model (-), the 

QUIC Plume model (- -) and the wind-tunnel data (o) at x/H=2.15, 2.35, 2.55 and 
2.75 and centerline (y/H=0) at the rooftop of the second centerline building. 
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Figure 4.16: *
Uσ lateral profile comparison between the 3D GLEs model (-), the 

QUIC Plume model (- -) and the wind-tunnel data (o) at x/H=1.15, 1.55 and 1.95 at 
z/H=0.2 within the first street canyon. 
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Figure 4.17: Horizontal concentration contour at z/H=0.3 for the 3D GLEs model. 

Figure 4.18: Horizontal concentration contour at z/H=0.3 for the QUIC Plume 
model. 



161 
 

Figure 4.20: Horizontal concentration contour at z/H=0.54 for the QUIC Plume 
model. 

Figure 4.19: Horizontal concentration contour at z/H=0.54 for the 3D 
GLEs model. 
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Figure 4.22: Horizontal concentration contour at z/H=0.78 for the QUIC Plume 
model. 

Figure 4.21: Horizontal concentration contour at z/H=0.78 for the 3D GLEs 
model. 
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Figure 4.24: Horizontal concentration contour at z/H=1.02 for the QUIC Plume 
model. 

Figure 4.23: Horizontal concentration contour at z/H=1.02 for the 3D GLEs 
model. 
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Figure 4.25: Horizontal concentration contour at z/H=1.26 for the 3D GLEs 
model. 

Figure 4.26: Horizontal concentration contour at z/H=1.26 for the QUIC Plume 
model. 
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Figure 4.28: Vertical concentration contour at y/H=0 for the 3D GLEs model. 
 

Figure 4.27: Vertical concentration profile comparison of the 3D GLEs model (-) 
and the QUIC Plume model (- -) close to the rooftops of the downstream street 
canyons at y/H=0. 
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Figure 4.31: Vertical concentration contour at y/H=0.2 for the QUIC Plume 
model. 

Figure 4.30: Vertical concentration contour at y/H=0.2 for the 3D GLEs model. 

Figure 4.29: Vertical concentration contour at y/H=0 for the QUIC Plume model. 
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Figure 4.33: Vertical concentration contour at y/H=1 for the QUIC Plume 
model. 

Figure 4.32: Vertical concentration contour at y/H=1 for the 3D GLEs model. 
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Figure 4.34: Vertical normalized concentration profile comparison between the 
3D GLEs model, QUIC Plume model and the test data at the center of the first 
street canyon (x/H=1.5) and the centerline (y/H=0). 
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Figure 4.35: Vertical normalized concentration profile comparison between the 3D 
GLEs model, QUIC Plume model and the test data at the center of the second street 
canyon (x/H=3.5) and centerline (y/H=0). 
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Figure 4.36: Vertical normalized concentration profile comparison between the 3D 
GLEs model, QUIC Plume model and the test data at the center of the first street 
canyon (x/H=5.5) and centerline (y/H=0). 
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Figure 4.37: Paired scatter plot of the wind-tunnel concentration data and the 
predicted concentrations by the 3D GLEs model and the QUIC Plume model. A 
factor of 2 is represented by (- -), a factor of 5 is represented by (-.) and a factor of 
10 is represented by (...). 
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Figure 4.38: Vertical normalized concentration profile comparison between the 3D 
GLEs model, QUIC Plume model and the test data at x/H=1.5 and y/H=1 (center of 
the street channel). 
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Figure 4.39: Vertical normalized concentration profile comparison between the 3D 
GLEs model, QUIC Plume model and the test data at x/H=2.5 and y/H=1 (center of 
the street channel). 
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Figure 4.40: Vertical normalized concentration profile comparison between the 3D 
GLEs model, QUIC Plume model and the test data at x/H=3.5 and y/H=1 (center of 
the street channel). 
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Figure 4.41: Vertical normalized concentration profile comparison between the 3D 
GLEs model, QUIC Plume model and the test data at x/H=5.5 and y/H=1 (center of 
the street channel). 
 
 
 
 
 



 
 

 

 

 

5. CONCLUSIONS 

 

The buildings and other structures present in an urban area alters the flow field 

significantly by causing updrafts and downdrafts, channeling between buildings, areas of 

calm winds adjacent to strong winds, and horizontally and vertically rotating-eddies 

between buildings, at street corners, and other places within the urban canopy (see review 

by Hosker (1984)).  This makes it very difficult to devise fast response urban dispersion 

models that will work at the street canyon to neighborhood scales.  

The methodology developed by Röckle (1990) to quickly compute a 3D wind 

field around buildings using an empirical-diagnostic approach is unique and a powerful 

tool. Röckle-type models do not solve transport equations for momentum or energy; 

rather, they rely heavily on empirical parameterizations and mass conservation. The MR 

(the so-called “modified” Röckle) model attempts to build on the strengths of the SR 

(standard Röckle) model and introduces additional physically-based but simple 

parameterizations that significantly improve the results in most regions of the flow in the 

7 x 11 array and wide street canyon. The MR model produces vortices within street 

canyons that have velocities that compare much more favorably to the experimental 

results with the vortices shifted inward away from the edges of the street canyon. This is 

largely accomplished by modeling the effect of advection and momentum diffusion from 

outside the street canyon into the street canyon on the sides and from aloft. 
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We expect that these improvements in the wind field will result in improved 

dispersion calculations in built environments. We stress the importance of testing 

multibuilding parameterizations under a wide range of nonidealized conditions. Since it is 

quite rare that buildings in real cities take on the form from which the original 

parameterizations were developed, the model may not yield physically reasonable results 

when generalized. Hence, it is imperative to rigorously evaluate the model for a wide 

range of scenarios. This is one of the greatest challenges in utilizing Röckle type wind 

models. 

The fast response urban wind model enables the fast response atmospheric 

dispersion modeling as the mean wind field is readily available for the dispersion 

estimates. These dispersion models are valuable tools that can aid first responders in 

making decisions regarding accidental or deliberate releases of chemical or biological 

agents in complex urban environments. Chapter 3 demonstrates that dispersion models 

implemented on the GPU (Graphics Processing Unit) enables real-time performance of 

these models and also makes them suitable for applications involving the display of 

dispersion phenomena in urban virtual environments. To our knowledge, this is the first 

attempt to integrate a fast response dispersion model into an urban virtual environment 

running in real-time. The results indicate that by using the GPU, a substantial 

performance benefit can be obtained in the advection process of the dispersion model. 

The performance of GPU Plume is two orders of magnitude faster than its CPU 

implementation, while preserving computational accuracy. The concentration profiles 

obtained from GPU Plume are in good agreement with the CPU implementation with 

small variations attributed to the differences in the GPU and CPU implementations. The 
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single building algorithm does show a small performance penalty over the uniform flow 

case and is associated with the added memory textures and reflection algorithm.  

The immediate benefit of real-time visualization, obtained by rendering the 

dispersion data on the screen, is a novel approach for probing the evolving dispersion 

field, which further enables one to qualitatively understand the dispersion phenomena 

better. The visualization aspect of GPU Plume is a powerful tool that also enables the 

user to view the turbulence contours and the evolving concentration field in real-time. An 

additional exploitation of the benefits of real-time visualization of GPU Plume is 

modification of simulation parameters and models during the simulation. This will allow 

users to receive immediate feedback regarding changes in material properties, building 

positions and physical submodels.  

Programming the GPU is currently a nontrivial task, but does provide increased 

performance over CPU implementations. Programming GPUs is likely to become easier 

as higher level languages are developed to access the graphics hardware. Graphics card 

manufacturers, such as NVIDIA, are developing additional tools to help program these 

cards using C APIs (Application Programming Interfaces) to access the hardware. As part 

of our continued work, we are now investigating how NVIDIA’s CUDA (Compute 

Unified Device Architecture) framework might compare in performance and 

functionality to our current implementation. For our future work, we plan to optimize our 

system for increased functionality, including support for generalized building structures, 

greater than 10 million particles, and multi-GPU configurations. Multi-GPU 

arrangements may help with speeding up the advection of an increased numbers of 

particles since the work could be spread across the set of GPUs. 
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The GPU Plume model utilizes the simplified Langevin equations (SLEs) for 

transport and dispersion of a release due to the presence of a large number of terms in the 

full or generalized form of Langevin equations (GLEs). The presence of unstable modes 

due to the stiffness of the GLEs has also been a problem for the direct implementation of 

the GLEs into a Lagrangian dispersion model. Although unstable modes also exist in the 

SLEs, the SLEs are considered slightly stable due to the drastic reduction in the number 

of terms in the SLEs. The GLEs can be implemented using a fractional step method 

(FSM) which partially solves the stiffness problem exhibited by the GLEs (Yee and 

Wilson 2007). The FSM decomposes the GLEs into three steps and the first two steps are 

solved analytically, circumventing the unstable modes. The third step is performed using 

the Euler forward method, which does not guarantee the absence of the unstable modes as 

no analytical mapping is available for this third step. 

The analytical mapping functions used in the first two steps of the FSM helps in 

revealing the existence of potential unstable modes in the particle trajectory before the 

advection process even begins in the dispersion model. For example, in the first step of 

the FSM, the eigenvalues of the 1A  matrix (see Chapter 4) are computed. The presence 

of positive eigenvalues indicates the existence of the unstable modes in the particle 

trajectory. In the dispersion model, the eigenvalues of the 1A  matrix are computed before 

the particle advection process starts. Therefore, if the eigenvalues are positive, the 

dispersion modeler can further investigate the potential weaknesses in the turbulence 

model and the background wind field. On the other hand, in the Euler forward method 

(unlike analytical integration functions), no such information is available to the 

dispersion modeler beforehand to identify the potential unstable modes. Therefore, it is 
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recommended to use the analytical mapping functions for solving the SLEs also rather 

than explicitly using the Euler forward method to integrate the SLEs (in conjunction with 

coordinate rotation in the mean wind direction for accommodating horizontally 

homogenous assumptions). 

The Gaussian and non-Gaussian test case results demonstrated that the 3D GLEs 

implementation with the FSM works well for these simple test cases. For the Gaussian 

test case, the second and third steps of the FSM yield zero due to the absence of the 

velocity as well as turbulence stress gradients. Also, the first step of the FSM yielded a 

symmetric 1A  matrix due to the absence of the drift terms (as no velocity and turbulence 

stress gradients exist). Therefore, there was no possibility of the existence of the unstable 

modes in the Gaussian test case. This information is available to the dispersion modeler 

before the actual advection of the particle starts in the dispersion model.  In the non-

Gaussian test case, the second and third step did not yield zero values due to the presence 

of the velocity and turbulence stress gradients. The 1A  matrix for the non-Gaussian test 

case was symmetric, as the second term of the 1A  matrix was zero (see Eqs. 4.15) for 

this case. The second and third steps did not yield unstable modes for this test case 

possibly due to the simplicity of this case. 

Another simple test case of a spatially varying shear layer was used to investigate 

possible unstable modes associated with the positive eigenvalues of the 1A  matrix. The 

turbulence model used for this test case yielded favorable results when compared with the 

experimental data. This test case demonstrated that whenever the model computed 

product of 0C  and dissipation )(ε  is less than the gradient of the turbulence stress, the 

unstable modes may exist during the advection process. These unstable modes may yield 
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rogue trajectories where a particle may travel a significant distance within a small time 

step. To prevent these rogue trajectories, the dispersion modelers normally limit the size 

of the fluctuating component of the velocity by some multiple of the standard deviation 

of the wind in the respective directions (Yee and Wilson 2007). The QUIC Plume model 

uses 4.0 as a limiting factor and the 3D GLEs model uses 2.5 as the limiting factor to 

limit the unphysical rogue trajectories. The last test case of a more realistic urban setup (7 

x 11 cubical array of buildings) yielded positive eigenvalues for the 1A  matrix at some 

regions close to the cubical buildings. The values of the positive eigenvalues were 

however close to zero for the most part. Part of the reason for the existence of the positive 

eigenvalues may be the background wind field and a simple turbulence model. Personal 

communication with Dr. Yee confirmed the existence of positive eigenvalues even for the 

wind fields obtained from CFD (Computational Fluid Dynamics) models, which are 

considered more accurate than the diagnostic wind models like QUIC-URB.  

All the test cases considered for validation of the 3D GLEs model yielded good 

results in comparison with the test data as well as the SLEs-based model QUIC Plume. 

The improved wind model used to drive the 7 x 11 test case in both the 3D GLEs and 

QUIC Plume model was in good agreement with the test data (see Chapter 2). The 

turbulence model used to drive the 3D GLEs was a local mixing length model with an 

addition of a constant 0.3 to enhance the turbulence within the street canyons. The 

constant 0.3 was added to match the turbulence level within the street canyons with the 

test data. Although this addition raised the turbulence level at the edges of the street 

canyons, the turbulence levels within the street canyons matched the test data well. The 

vertical turbulence profiles also showed a good match with the test data. The QUIC 
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Plume model uses its nonlocal mixing length model (Williams et al. 2004) for driving the 

7 x 11 test case. The concentration contours showed that the 3D GLEs model exhibits 

more lateral and vertical dispersion as compared with the QUIC Plume model. The plume 

in the street channels (adjoining centerline buildings) was well-mixed in the case of the 

3D GLEs model, indicating enhanced lateral dispersion exhibited by the 3D GLEs model. 

The centerline concentration profiles showed that the 3D GLEs model performs 

comparable or better than the QUIC Plume model for the most part. The concentration 

profiles in the street channel indicate that the test data exhibit more lateral dispersion 

close to the ground as compared with both the 3D GLEs model and the QUIC Plume 

model. The paired scatter plot also indicates that the 3D GLEs model was in good 

agreement with the test data. 

The future work will include more validation studies of the 3D GLEs model and 

implementation of the 3D GLEs model on a GPU-based architecture to realize real-time 

run times. As the FSM is capable of providing insights into the unstable modes before the 

actual advection of the particles, these insights may be utilized to further improve the 

diagnostic wind model and turbulence models to better suit the needs of a Lagrangian 

dispersion model based on Langevin equations. 
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