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ABSTRACT 

 

 This dissertation focuses on the study of surface biomolecular interactions using 

second harmonic generation (SHG) spectroscopy, surface SHG imaging (SSHGI), and 

SH correlation spectroscopy (SHCS). The binding kinetics and energetics of four biotin-

bound proteins, avidin, streptavidin, neutrAvidin, and anti-biotin antibody were 

compared and data revealed significant differences in their apparent binding affinities and 

nonspecific binding. Specifically, protein-protein interactions were found to play an 

important role in the apparent binding affinity, making the streptavidin-biotin interaction 

the most energetically favorable. The details of the binding properties of these frequently 

employed tether/linker protein-biotin complexes provide valuable information for 

biosensors, immunoassays, and medical diagnostics.  

 As most biosensor platforms are designed for high throughput detection, the 

resolution and planar wave-front of the SSHGI system was thoroughly analyzed. It was 

demonstrated that the coherent plane wave generated by SHG followed Gaussian beam 

propagation, enabling SSHGI to image without a lens system at rather long distances. 

Lens-less imaging simplifies the detection method, increases photon collection 

efficiency, and increases the detection area. These advantages could potentially make 

SSHGI a simple, label-free high throughput detection method for surface biomolecular 

interactions. 

 The versatility and sensitivity of SHG were further probed by coupling SHG 



iv 
 

with correlation spectroscopy, a statistical fluctuation time-dependent method. SHCS was 

established as a viable and valuable option for the detection of surface binding kinetics 

for small molecule and protein-ligand interactions at the surface of lipid bilayers. First, 

the simple binding kinetics of a small molecule, (s)-(+)-1,1’-bi-2-napthol (SBN), 

incorporating into a lipid bilayer was determined using SHCS and results were 

statistically similar to those obtained from a traditional binding isotherm. Next, SHCS 

was used to examine the binding kinetics of a more complex interaction between the 

multivalent proteins, cholera toxin subunit b (CTb) and peanut agglutinin (PnA), and a 

GM1 doped lipid bilayer. SHCS was able to obtain the binding kinetics for these surface 

biomolecular interactions with more efficiency, less analyte, and less sensitivity to mass 

transport effects.  

Cumulatively, the studies of this dissertation showcase SHG, SSHGI, and SHCS 

as valuable label-free detection methods with incredible sensitivity for investigation of 

surface biomolecular interactions.  
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CHAPTER 1 

 

INTRODUCTION 

 

 Biomolecular interactions play an important role  in several bioanalytical fields 

including chromatography,1-3 immunoassays,4,5 biosensors,6-8 and medical diagnostics.9,10 

For example, protein-biotin complexes are often used as a tether/linker on biosensor 

platforms,6 protein-carbohydrate interactions are utilized for the differentiation of cells 

via the glycoprotein/glycolipid expression,11 and antibody-antigen pairs are employed for 

detection of viruses, bacteria and drugs.7 The high affinity and high specificity of these 

protein-ligand pairs increase the sensitivity and efficiency of these bioanalytical 

techniques such that trace amounts of contaminants, drugs, antibodies, and biomarkers 

are detectable.4-8,12,13 The significant role of protein-ligand pairs makes it extremely 

important to examine their binding properties at a surface. A more detailed understanding 

of these crucial biomolecular interactions will provide valuable insights for better 

biosensor development, drug design, and medical diagnosis.  

A variety of analytical techniques have been employed for investigating protein-

ligand and other biomolecular interactions at a surface. Some of the more common 

techniques utilized include fluorescence,14-16 enzyme linked immunosorbent assays 

(ELISA),13,17 surface plasmon resonance (SPR),7,18,19 quartz crystal microbalance 

(QCM),20,21 and confocal Raman Microscopy.22,23 Fluorescence has particularly shown 
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incredible sensitivity in detecting biomolecular interactions at surfaces with the ability to 

detect fg/cm2 quantities and even, more remarkably, single-molecule interactions.14,16 

Other fluorescence studies have examined these biomolecular interactions at the surface 

of planar supported lipid bilayers (PSLBs) and liposomes,24,25 which mimic the fluidity 

found in cellular membranes and allow for precise control of the ligand density.26 

Although the high sensitivity, versatility, and ability to use biologically relevant 

platforms makes fluorescence an attractive and useful technique for investigating surface 

biomolecular interactions, its major obstacle lies in the fact that an external fluorophore 

label is often required. The time consuming and complex process of chemically attaching 

a label is often problematic, leading to changes in charge, hydrophobicity and altered 

binding energetics.27 Additionally, photobleaching of the attached fluorophore can 

complicate the analysis of biomolecular binding kinetics.28  

ELISA is probably even more widely utilized for detection of biomolecular 

interactions than fluorescence, especially for the analysis of biosensors and 

immunoassays where high-throughput detection is required.29 ELISA typically involves 

the immobilization of an antigen and at least one antibody specific for that antigen. The 

specific antibody can either be covalently linked to a signal inducing enzyme or itself be 

detected by an enzyme-linked secondary antibody. The many commercially available and 

relatively affordable ELISA kits make detection of these antibody-antigen interactions 

relatively straightforward and simple. Although ELISA was the first widely used medical 

screening method to detect viruses and proteins in blood serum and urine samples,13,17,29  

problems can arise from passive adsorption and competitive binding of contaminants.30   

Several label-free techniques capable of detecting surface biomolecular 
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interactions have been shown to circumvent some of the difficulties associated with 

indirect detection through an external label. SPR is one of the most widely used label-free 

techniques for detecting surface biomolecular interactions. SPR is an optical technique 

where the detected changes in the refractive index are related to the change of adsorbed 

mass on the sensor surface, which allows real-time detection of surface biomolecular 

interactions.18,31 Although SPR has proven to be a valuable biosensing detection method 

capable of detecting protein-ligand interactions, protein-DNA interactions, and protein 

conformational changes,18,19,32,33 it requires a metal surface that must be chemically 

modified in order to attached biomolecules. The chemical activation of the sensor surface 

is often nonspecific and can lead to multiple coupling sites on the immobilized 

biomolecule, resulting in some partially or fully blocked binding sites that may cause 

complex binding energetics.31  

In the label-free detection method, QCM, sensor surfaces are not limited to metal 

and can be pure quartz, alleviating some of the obstacles seen with SPR. QCM detects 

changes in mass by measuring the decrease in the resonance frequency of a quartz crystal 

as molecules are adsorbed.21 Several modifications to the QCM technique, such as 

dissipation and electrodeless QCM,21 have allowed detection of a variety of biomolecular 

interactions, including aggregations of peptides, protein-ligand interactions, and antibody 

binding to an immunosensor.21 Although both SPR and QCM do not require a label while 

still typically having a limit of detection on the order of ng/cm2 to pg/cm2,19-21,34 both 

techniques lack the chemical specificity of spectroscopic methods, which may limit their 

application.  

Confocal Raman microscopy is a spectroscopic and label-free technique that is 
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capable of providing detailed chemically specific information. Although confocal Raman 

microscopy is more prevalently used in examining the composition of cells,35 viruses36 

and bacteria37 rather than the binding of these biomolecules, it has been utilized to detect 

surface biomolecular interactions22,23,38 including protein-ligand interactions and drug-

membrane interactions.21,22,34 However, the inherently weak scattering of Raman often 

requires signal amplification by using a metal surface or an increase in acquisition time.23  

Another spectroscopic and label-free alternative for detecting surface 

biomolecular interactions is second harmonic generation (SHG). SHG has been widely 

used as a valuable surface science technique ever since Bloembergen and coworkers 

demonstrated that the lack of inversion symmetry found at interfaces produced optical 

SHG.39 This incredible surface specificity makes SHG capable of detecting both large 

proteins and small drug or antigen molecules, making it particularly well-suited for 

detecting a variety of biomolecular interactions at a surface. SHG has monitored the 

conformational changes of biomolecules tethered to a surface,40 protein adsorption at 

liquid/solid interfaces,41,42 and peptide and small molecule interactions with a PSLB.43 In 

these studies, SHG was found to have a limit of detection on the order of pg/cm2 to 

fg/cm2.44,45 The combined surface specificity, high sensitivity, chemical specificity and 

label-free nature of SHG make it a very attractive technique to examine surface 

biomolecular interactions.  

 This dissertation details the study of several biomolecular interactions at the 

surface of PSLBs examined using SHG. The general principles of the SHG process under 

a counter-propagating geometry are presented in Chapter 2 with an emphasis on the 

properties that make SHG particularly suitable for investigating surface biomolecular 
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interactions. Specifically, the surface specificity from symmetry constraints and high 

sensitivity from resonant enhancement are detailed. The ability of SHG to detect surface 

biomolecular interactions is applied in Chapter 3 to the investigation of the binding 

properties of four biotin-bound protein pairs at the surface of a biotinylated PSLB.  The 

proteins, avidin, streptavidin, neutrAvidin, and anti-biotin antibody are all commonly 

used in bioanalytical applications as tether/linkers designed to capture the biomolecule of 

interest.
4,6,9,46

 Although avidin and its two analogs, streptavidin and neutrAvidin, are 

often used interchangeably on the platforms of biosensors, little work exists that 

compares their relative binding affinities and properties. Investigation of these biotin-

protein interactions under identical experimental conditions allows a more detailed and 

informative comparison of the relative binding properties to be made. The equilibrium 

binding affinities of all three proteins were extracted from a traditional binding isotherm 

measured by SHG and used to determine the relative energetics for each protein binding 

to a biotinylated lipid bilayer. Other properties known to affect the energetics of protein-

ligand binding, such as interactions between the protein molecules and nonspecific 

binding of the protein, were also investigated in Chapter 3. From the shape of the binding 

isotherm at low protein concentrations and use of a cooperativity binding model 

developed by Zhao and coworkers, the effective protein-protein interactions and their 

energetic contributions to the overall binding affinity were determined.
15

 The findings 

presented in Chapter 3 not only showcase SHG as a valuable surface specific, label-free, 

and highly sensitive technique for the detection of surface protein-ligand interactions, but 

also provide important new insights into these biotin bound protein complexes commonly 

used in several bioanalytical applications.  



6 
 

As most bioassays and biosensors require high throughput detection, SHG 

imaging was recently used to examine drug-membrane interactions at the surface of a 

multicomponent lipid bilayer array;
47

 however, the SHG imaging properties have not yet 

been fully explored.  Chapter 4 is dedicated to thoroughly examining the properties of 

surface second harmonic generation imaging (SSHGI). Specifically, the implications of 

the coherent plane-wave nature of SHG are investigated. Theoretically, if a planar wave 

front exists, there is no need for a lens to be used in the imaging system and the beam 

should propagate according to Gaussian beam propagation theory.
48

 Since Gaussian beam 

propagation theory depends on the size of the imaged object,
48

 an SHG active molecule, 

(s)-(+)-1,1’-bi-2-naphthol (SBN), incorporated into a lipid bilayer was imaged for various 

image sizes at several object-detector distances without the aid of a lens system. Using 

Gaussian beam propagation theory the resolution and confocal length of the counter-

propagating lens-less SSHGI system was determined. Removing the lens has the potential 

to simplify the detection method, raise photon collection efficiency, and expand the field-

of-view. These advantages would allow greater throughput and could make lens-less 

SSHGI a potentially valuable detection method for biosensors and medical diagnostics. 

Additionally, the analysis of the coherence length and propagation of the emitted SH 

output provides important details of the parameters and properties of SHG. More 

importantly, the analysis of the coherence of SHG was critical for the development of 

coherent second harmonic correlation spectroscopy (SHCS), a statistical fluctuation time 

dependent method, whose general principles are developed in Chapter 5.  

Correlation spectroscopy has been used as an analysis method since the early 

1950s when Van Hove first utilized the spontaneous fluctuations seen in coherent neutron 
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scattering to determine the dynamic properties of the sample.
49

 Photon correlation 

spectroscopy or dynamic light scattering has been around for nearly as long,
50

 but today 

the most popular correlation spectroscopy is fluorescence correlation spectroscopy 

(FCS).
51,52

 Since its inception in 1972, FCS has been utilized for investigating 

translational, diffusional and rotational coefficients,
53-55

 as well as surface binding 

dynamics
51,56

 and conformational dynamics of biomolecules.
57

 Although FCS still 

remains at the forefront of correlation spectroscopy, other methods, such as Raman 

correlation spectroscopy and coherent x-ray correlation spectroscopy,
58,59

 have recently 

been used to study dynamic surface processes. SHCS was demonstrated in the 1990s by 

Zhao and coworkers for a limited investigation of diffusion and orientational fluctuations 

seen in lipid bilayers;
60,61

 however, it was never implemented as a method to study 

surface biomolecular interactions.  

In Chapter 6 the first implementation of SHCS in measuring surface binding 

kinetics is demonstrated in the investigation of SBN intercalating into a lipid bilayer. The 

local fluctuations of the measured SH signal were used to extract the binding kinetics of 

SBN intercalation into a 1,2-dioleoyl-sn-glycero-3-phosphocoline (DOPC) bilayer. The 

kinetic rates as well as the calculated equilibrium binding constant obtained from the 

correlation studies are compared with those obtained from a conventional binding 

isotherm in order to validate the findings obtained through SHCS. The primary advantage 

of using SHCS is that both the absorption and desorption rate can be determined in the 

same experiment with only data collection of a single concentration of analyte. The 

results of these studies demonstrate that SHCS can be used to provide accurate kinetic 

and thermodynamic binding data in lieu of conventional isotherm studies, especially 
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where time and analyte are scarce.   

As an extension of this simple binding system, SHCS was used to investigate 

more complex multivalent protein-ligand interactions in Chapter 7. Multivalent proteins 

have been extremely useful for detection and separation of biomolecules on biosensors 

and immunoassays.62-64 Their high affinity and specificity are some of the properties that 

make these multivalent proteins valuable bioanalytical tools.65,66 In Chapter 7, the 

binding kinetics of two commonly used multivalent proteins, cholera toxin subunit b 

(CTb) and peanut agglutinin (PnA), to a GM1 doped DOPC lipid bilayer were 

investigated using SHCS. The adsorption and desorption rates, as well as the binding 

affinity, for 3 bulk protein concentrations were determined using SHCS and compared to 

those obtained using a typical binding isotherm. As opposed to the traditional binding 

isotherm, SHCS was able to examine the binding kinetics as a function of protein 

concentration for these multivalent protein-ligand complexes. The findings of this study 

provide additional insight into the complex interactions between multivalent proteins and 

their ligands, as well as emphasize the advantages of SHCS for examining these complex 

yet technologically important protein-ligand complexes.  

Collectively, the studies presented in this dissertation demonstrate that SHG is a 

valuable label-free detection method for biomolecular interactions at a surface and that 

SHCS is an extremely useful fluctuation analysis method that increases the versatility of 

SHG spectroscopy. The findings from these studies provide indispensable insights for 

important bioanalytical applications including biosensor development, drug design and 

medical diagnostic devices. 
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CHAPTER 2 

 

GENERAL PRINCIPLES OF SECOND HARMONIC GENERATION 

 

2.1 Introduction 

Second harmonic generation (SHG) was first demonstrated from a crystalline 

quartz sample in 1961 by Franken and coworkers.1 Taking advantage of Franken and 

coworkers’ observation that SHG is only produced in noncentrosymmetric media, 

Bloembergen and coworkers demonstrated that a similar lack of an inversion center 

found at interfaces can also produce optical SHG.2 Bloembergen’s discovery of the 

ability of SHG to probe chemical and physical properties of interfaces led to the wide use 

of SHG as a valuable surface science technique spanning several disciplines, such as 

physics, chemistry, biology, and materials science.3-7 In particular, surface SHG has been 

used to examine various properties of interfaces including the surface structures of 

metals,5 the structural symmetry of a semiconductor’s surface layer,4 the effective surface 

charge density on an electrode due to adsorption of ions,6 the conformational changes of 

biomolecules tethered to a surface,7 and protein adsorption at liquid/solid interfaces.8,9  

As the theory of SHG has already been described in detail elsewhere,1-3,10-12 this chapter 

will discuss the general principles of SHG that make it an elegant label-free and surface 

specific technique for examining interactions of biomolecules at a surface.  
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2.2 General Principles of SHG 

SHG is a second order nonlinear optical process where two input photons of the 

same frequency interact spatially and temporally to produce a third photon at twice the 

frequency. The symmetry constraints of second order nonlinear optical processes make 

SHG forbidden in centrosymmetric media where there is an inversion center, such as bulk 

solutions of molecules. However, at interfaces where there is a necessary break in 

inversion symmetry SHG is allowed. This particular property, along with resonant 

enhancement, affords SHG the ability to detect a submonolayer of molecules interacting 

at an interface without any contribution from the bulk solution. With these inherent 

properties, SHG is a highly sensitive surface specific technique that is well-suited for 

investigating a variety of biomolecules at a surface.  

 

2.3 Symmetry Constraints and Surface Specificity 

As a second order nonlinear optical process, SHG is only allowed when there is a 

break in inversion symmetry. For example, at a surface there is no inversion center, 

allowing an SHG response to be produced. When the two input photons at frequency ω 

are spatially and temporally overlapped the output SH response at 2ω is governed by an 

induced nonlinear polarization given by,  

                                                   
( )(  )       

( )
                                                 (2.1)  

where χijk is the second order susceptibility tensor which characterizes the interactions of 

the two incoming electric fields, Ej and Ek, with the molecules at the surface. The 

subscripts of χijk indicate the output, i, and input fields, j and k. Since the output and input 

fields can be designated by any of the Cartesian coordinates, x, y, z, there are 27 possible 
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contributing elements to the susceptibility tensor. However, since the input fields have 

the same frequency and are interchangeable the number of possible tensor elements is 

reduced to 18 terms. As such the induced polarization for each of the Cartesian 

coordinate directions can be expressed as follows:  

   [
  (  )
  (  )

  (  )
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    (2.2) 

Although there are 18 possible contributing tensor elements for SHG, the 

symmetry dependence of the susceptibility tensor will lead to many zero or vanishing 

elements. For example, in centrosymmetic media where there is an inversion center and 

all directions are symmetric and equal, the resulting value of χijk in opposing directions 

has to also be equal,3,13 

                                                             
( )
         

( )                                                (2.3) 

Furthermore, since χijk is a third rank tensor describing the interactions of three fields, two 

input and an output field, changing the direction of all three fields will necessarily change 

the sign of the corresponding susceptibility tensor,3,13  

                                                             
( )
          

( )                                             (2.4) 

For both of these requirements shown in Equations 2.3 and 2.4 to be satisfied, χijk will 

have to be zero. This means that in media where there is an inversion center, such as a 

bulk solution, there will be no contributing elements to produce an SHG response.  

On the other hand, at surfaces where the inversion symmetry is broken, there are 

some nonzero or nonvanishing tensor elements that lead to an SHG response. For 
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example, the surfaces used in the studies described in the following chapters have C∞υ 

symmetry. At a surface with a C∞ rotation axis z ≠ - z, but x ≡ - x and y ≡ -y, which 

means that the surface is symmetric about the surface normal. Under these symmetry 

conditions Equation 2.4 must still be satisfied, but Equation 2.3 is only applicable when 

there is a change in either the x or y direction.3,13 As such, there are three nonvanishing 

tensor elements that contribute to the observed SH response seen at a surface with C∞υ 

symmetry, χzzz, χzii, and χizi (i = x or y).13
 These unique symmetry constraints of χijk make 

SHG a highly surface specific technique as all tensor elements vanish in bulk solution 

where there is an inversion center.   

 

2.4 Counter Propagating SHG Induced Nonlinear Polarization 

 In the previous section it was shown that at a surface there are three non-

vanishing  ( ) tensor elements contributing to the induced polarization of the SH 

response. The induced polarization can now be written in terms of the Cartesian 

components x, y and z for these nonvanishing  ( ) elements as follows:12 

                             (  )          ( )   ( )          ( )   ( ),                    (2.5a) 

                             (  )          ( )   ( )          ( )   ( ),                   (2.5b) 

          (  )          ( )   ( )         ( )   ( )         ( )   ( ),   (2.5c) 

where Ex, Ey, and Ez are applied electric field vectors in the Cartesian coordinate system 

for the two input photons. Since the two input photons have the same frequency in SHG, 

the above susceptibility tensor elements χxzx and χyzy, and χzxx and χzyy are degenerate.  

In the following chapters, a counter-propagating SHG geometry is employed 

where not all of the polarization components contribute to the SH response. A schematic 
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of the counter propagating setup used is shown in Figure 2.1. Counter-propagating SHG, 

as developed by Kriech and Conboy,12 consists of the two input photons approaching the 

sample from opposing directions to produce the SH output along the surface normal in 

the z direction. Since the two input photons are equal in magnitude, but opposite in the x 

direction, the x component of the electric field vectors cancel each other out, Ex1(ω) = -

Ex2(ω), and the induced polarization in the x direction, Px(2ω), becomes zero.12 

Furthermore, the induced polarization in the z direction, Pz(2ω), vanishes as this is the 

propagation axis of the SH output. As a result, the only nonlinear polarization component 

that contributes to the SH response in counter-propagating SHG is the y component, 

Py(2ω). The remaining nonlinear polarization component (Eq. 2.5b) can be rewritten in 

terms of the interfacial coordinate system by using the following transformations for the 

electric field vectors: 

                                               ( )         ( )                                             (2.6a) 

                                          ( )         ( )    ( ).                                      (2.6b) 

where E is the magnitude of the electric field and is equal to the square-root of the 

intensity of the input beam, I.  fy and fz are the transmitted linear Fresnel coefficients in 

the y and z directions of the transmitted electric fields, respectively. θ is the incident angle 

with respect to the surface normal and γ is the polarization angle with respect to the plane 

of incidence defined as the xz plane. After substituting Equations 2.6a-b into Equation 

2.5b, the y component of the induced nonlinear polarization can be written as,  

                                              (  )                        .                                (2.7) 

Although the above equation is the only contributing nonlinear polarization 

component in counter-propagating SHG, it is still not complete. As part of the counter- 
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Figure 2.1. Schematic of counter-propagating SHG where two incident beams (dark gray) 
approach the sample from opposing directions such that the SHG output beam (black) is 
produced normal to the surface.  
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propagating geometry, the incident beam, after reaching the sample surface, is reflected 

back on itself by placing a mirror in its path. As such, the difference between the amount 

of s (perpendicular) and p (parallel) polarized light that is reflected back as the second 

incident beam needs to be taken into account. This correction is calculated by taking the 

difference in the linear Fresnel coefficients for s and p polarized inputs upon reflection 

(   and    ), which are expressed as follows:12  

                                                    
      

√(
  

  
⁄ )
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The induced nonlinear polarization for counter-propagating SHG,     (2ω), can now be 

written as,12 

                                             (  )                         ,                               (2.9) 

where      

               .                                              (2.10) 

 

2.5 Counter-Propagating SH Intensity 

As mentioned in the previous section, counter-propagating SHG has only one 

nonzero induced polarization component propagating in the y direction along the surface 

normal or exactly perpendicular to the plane of incidence. Since the SH output is 

produced normal to the surface in counter-propagating SHG, there are no s and p 

polarized SH intensities produced and the SH output intensity can be described in the 

laboratory frame by,  
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                                              (  )  | ̃    (  )|
 
,                                       (2.11) 

where  ̃ is the nonlinear Fresnel coefficient, which describes the fraction of the SH 

output that is reflected or transmitted in the y direction. The transmitted and reflected 

nonlinear Fresnel coefficients ( ̃ and  ̃ ) in the y direction can be expressed as,10,11  

                                                  ̃    ̃    
         

  

   
     (  

     
  )

 ,                                    (2.12) 

where d is the thickness of the nonlinear medium, c is the speed of light,      is the index 

of refraction of reflected media in the SH beam, and      and      are the reflected and 

transmitted angles of the SH output beam, respectively. In the counter-propagating 

geometry the SH output is produced normal to the surface such that      and      are 90° 

and 270°, which simplifies Equation 2.12. Furthermore, by introducing an effective χ(2) as 

previously described by Dick and coworkers,11 d can be pooled into the corresponding 

tensor element, χyzy, and eliminated from Equation 2.12. With these simplifications,  ̃  for 

the counter-propagating geometry becomes,12 

                                                             ̃    ̃    
   

   
   .                                             (2.13) 

After substituting Equation 2.13 into Equation 2.11, the reflected and transmitted SH 

intensity for the counter-propagating geometry can be written as,12  

                           (  )      (  )   
      (     )

 (    )        
   
     
   

  (  
  )

  .                 (2.14) 

 

2.6 Resonant Enhancement of SH Intensity 

 In section 2.3 the symmetry constraints of χ(2) were used to demonstrated that 

SHG is extremely surface specific and therefore highly sensitive to molecules adsorbed at 
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the surface. As such, χ(2) can also be used to demonstrate how the properties, specifically 

the orientation and electronic transitions, of these adsorbed molecules can lead to 

enhancement in the SH response.  The SH intensity is proportional to the square of χ(2), 

which consists of both a nonresonant portion,    
( ), and resonant portion,   

( ), 

                                                 |    
( )|

 

 |   
( )    

( )|
 

.                                (2.15) 

The behavior of the adsorbed molecules is described by   
( ) and    

( ) is the susceptibility 

term which describes the behavior of the substrate. When a dielectric substrate, such as 

silica, is used    
( )
   and the SH response obtained is solely from the adsorbed 

molecules or    
( ). The resonant susceptibility term is given by,  

                                      (    
( )
)   ∑

⟨ |  | ⟩⟨ |  | ⟩⟨ |  | ⟩

(            )(           )
      .                    (2.16) 

where N is the surface density of molecules, h is Planck’s constant,  is the Cartesian 

coordinate dipole operator,  is the transition linewidth, and a, b and c represent the 

initial, intermediate, and final states, respectively, which are shown in the energy diagram 

depicted in Figure 2.2. The bra-kets in the numerator of Equation 2.16 represent the 

average overall possible dipole orientations of the absorbed molecules. From this it is 

apparent that the more anisotropic the average dipole orientation, the larger   
( ) will 

become and the higher the overall SH intensity will be. In other words, if the adsorbed 

molecules are highly ordered with a narrow orientation distribution over all the nonlinear 

susceptibility tensor elements there will be an increase in   
( ) and the SH intensity. This 

orientation property of   
( ) makes biomolecular surface interactions, as discussed in the 

following chapters, particularly well-suited for investigation using SHG as most    
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Figure 2.2. Energy diagram of SHG where two input photons (j and k) of frequency ω 
interact to produce an output photon (i) at 2ω. 
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biomolecules bind in a highly specific orientation to ligands at a surface. Additionally, 

the isotropic nature of most nonspecific biomolecular binding make SHG less sensitive to 

such nonspecifically adsorbed molecules, making it even easier to monitor biomolecular 

surface interactions. Obviously, if the nonspecific interactions show an ordered 

orientation there will be an SH response.  However, this nonspecific response can be 

subtracted from the specific response by collecting the SH response in the absence of the 

ligand. 

  Another property of the adsorbed molecules that can greatly affect the overall SH 

response is their electronic transitions. It is apparent that when the SH output or the 

fundamental input is in resonance with an electronic transition of the absorbed molecule 

the denominator of Equation 2.16 will approach zero, which leads to in an increase in 

  
( ) and the overall SH intensity. Accordingly, if the incident and SH wavelengths are 

chosen to correspond to the electronic transition of a molecule there will be an 

enhancement in the overall SH intensity, improving the sensitivity of SHG and providing 

the ability to detect a submonolayer of molecules.  

 

2.7 Summary 

 In this chapter the general principles of counter-propagating SHG were discussed. 

The symmetry constraints of the second order nonlinear susceptibility tensor at a surface 

make SHG a highly surface specific technique with no contributions from bulk isotropic 

material. Accordingly, SHG is particularly well suited for probing biomolecular 

interactions at a surface as contributions from biomolecules in bulk solution are 

eliminated and no label is needed. Additionally, the highly ordered orientation of specific 
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biomolecular binding events also make these interactions even more ideal for SHG 

investigation as it can lead to an increase in the overall SH intensity. The SH intensity 

can be further enhanced by using a fundamental or SH frequency that is on resonance 

with the biomolecules being examined, making SHG an extremely sensitive label-free 

technique. As such, the implementation of SHG to determine the surface binding 

properties of various biomolecules in resonance with the SH frequency is discussed in the 

following chapters. 
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CHAPTER 3 

 

COMPARISON OF THE BINDING KINETICS AND ENERGETICS  

OF PROTEINS BOUND TO BIOTINYLATED LIPID  

BILAYERS USING SECOND HARMONIC  

GENERATION SPECTROSCOPY 

 

Reprinted (adapted) with permission from Nguyen, T. T.; Sly, K. L.; Conboy, J. C. Anal. 

Chem. 2012, 84, 201-208. Copyright 2012 American Chemical Society. 

 

3.1 Introduction 

 In the previous chapter, SHG was shown to be a highly surface specific and 

sensitive label-free detection method that readily lends itself to detecting biomolecular 

interactions at a surface. It has already been demonstrated that detection of small 

molecule intercalation into a planar supported lipid bilayer (PSLB) is possible with SHG 

spectroscopy with a limit of detection of 4.5 femtomoles/cm2.1 Additionally, it was 

shown that the molecular chiral emission from a surface can be used as an intrinsic probe, 

allowing counter-propagating SHG to determine the binding properties of a peptide to a 

membrane.2 SHG has also been used to monitor protein adsorption at a solid/liquid 

interface3,4 and association of biomolecules to lipids.2,5,6 The small molecules that have 

been readily monitored by SHG tend to bind in a highly ordered orientation, making 
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these small molecules give rise to a large SH response. On the other hand, even though 

proteins bind to their ligand in an ordered orientation, the large tertiary structures of 

proteins minimize the overall dipole orientation and lower the SH response.  The SH 

signal can however be resonantly enhanced when the SH frequency is on resonance with 

an electronic transition of the proteins. Most proteins have a strong absorbance at 260-

280 nm from the * transition of the tyrosine and tryptophan aromatic rings.7 As 

such, a resonantly enhanced SH signal from surface bound proteins will be obtained if the 

SH output is tuned to a UV wavelength between 260-280 nm. As such, in this chapter it 

is demonstrated that with resonant enhancement, improved filtering and optimization of 

the SH output, SHG is able to detect nM concentrations of several biotin-bound proteins, 

avidin, streptavidin, neutrAvidin, and antibiotin antibody.   

Avidin, streptavidin, neutrAvidin, and antibiotin antibody have all been used in a 

wide variety of bioanalytical applications, including monitoring biomolecule 

conformational changes,8,9 biochip sensor fabrication,10-15  and immunoassays.16,17 

Additionally, as a protein-biotin complex these four proteins have been commonly used 

to tether biomolecules to a surface8,9 or used as a linker to capture biomolecules.10-19 All 

four of these biotin-bound proteins have an extremely high affinity and specificity 

towards biotin and show high stability as a biotin-bound complex. The most common 

biotin-bound protein, avidin, is a tetramer consisting of 4 identical subunits, each of 

which has one binding site for biotin. Avidin has an extremely high binding affinity, Ka  

1015 M-1 to free biotin in solution,20 and forms a stable complex with biotin over a wide 

range of temperatures and pH values.21 However, the basic isoelectric point (pI ~ 10)21 of 

avidin causes a high degree of nonspecific adsorption, especially at physiological pH 
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where positively charged avidin can bind nonspecifically to negatively charged surfaces 

such as cell membranes21 or silica substrates.22 Additionally, avidin is composed of 

multiple carbohydrate groups, specifically four mannose residues and three N-acetyl-

glucosamine residues per subunit,23 which can increase nonspecific binding to 

carbohydrate-binding molecules. This proliferation of nonspecific binding seen with 

avidin complicates its use in bioassays.  As an alternative to avidin, two of its analogs, 

streptavidin and neutrAvidin, have become increasingly popular in biosensors and 

bioassays.10-12 Both streptavidin and neutrAvidin still retain the same high affinity and 

specificity towards biotin24,25 as avidin while presumably lowering the degree of 

nonspecific binding. Streptavidin, which has a similar functional domain to avidin (~ 

33% identical residues),24 is a nonglycosylated protein with a slightly acidic pI of about 

5-6.21 NeutrAvidin is a commercially available deglycosylated form of avidin with a pI of 

6.3.26 The lower pIs and absence of the sugar groups in streptavidin and neutrAvidin are 

the factors that have been postulated to lead to a decrease in nonspecific binding. 

Antibiotin antibody, an immunoglobulin protein that is generated by plasma cells as part 

of the immune response to the antigen biotin, has also been used as a linker in 

biosensors13,19 and immunoassays27,28 as it not only exhibits extremely high specificity (~ 

108 M-1),29 but also exhibits extremely low nonspecific binding.   

Surprisingly, little work to date has compared the specific and nonspecific binding 

affinities of avidin, streptavidin, neutrAvidin, and antibiotin antibody to biotin at surfaces 

despite the use of these proteins in a broad range of biosensing applications. In this 

chapter the kinetics and energetics of the specific and nonspecific adsorption of all four 

proteins to biotinylated lipid bilayers are examined using SH spectroscopy. A typical 
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binding isotherm is collected for each of the four proteins binding to a biotin doped PSLB 

and a pure PSLB.  This allows comparison between the specific and nonspecific binding 

responses. The thermodynamic binding constant is calculated by fitting the data to either 

a typical Langmuir binding model or cooperativity model, which takes into account 

interactions between the incoming protein and already bound protein molecules. A global 

fit of the adsorption of several protein concentrations was used to extract the adsorption 

and desorption rate of the protein-biotin complexes. The adsorption rates for individual 

protein concentrations were also examined to address the possible existence of protein 

concentration dependent binding kinetics from a population of high affinity binders at 

low protein concentrations. Using the same experimental conditions and analysis to 

examine all four proteins allows for a direct comparison of the binding properties of these 

biotin-protein complexes and provides useful information on these tether/linker 

complexes commonly used in several bioanalytical applications.  

 

3.2 Experimental Design 

3.2.1 Materials 

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-(Cap biotinyl) (sodium salt) (biotin-cap-DOPE) were obtained 

from Avanti Polar Lipids and used as received. The structures of the lipids used are 

shown in Figure 3.1. NeutrAvidinTM was purchased from Pierce. Avidin from egg whites, 

streptavidin from Streptomyces avidinii, IgG from rabbit serum and antibiotin antibody 

produced in goat were obtained from Sigma-Aldrich. All water used in the experiments 

was obtained from a NanopureTM Infinity Ultrapure water system with a minimum 

resistivity of 18.2 M-cm. Phosphate buffered saline (PBS) was made from 50 mM  
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1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 

 

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(Cap biotinyl) 

Figure 3.1. The chemical structure of DOPC and biotin-cap DOPE. 
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Na2HPO4∙7H20 and 100 mM NaCl in water and adjusted to a pH of 7.4 using NaOH. The 

proteins were dissolved in PBS pH 7.4 to the desired working concentrations. The 

substrates used for the preparation of the PSLBs were custom manufactured full spectrum 

grade (IR/UV) fused silica prisms (Almaz Optics). The prisms were cleaned by 

immersion in a solution of 70% sulfuric acid and 30% hydrogen peroxide overnight. 

(CAUTION: this solution is a strong oxidant and reacts violently with organic solvents. 

Extreme caution must be taken when handling the solution). Prior to use, the prisms were 

rinsed thoroughly with water and cleaned with Ar plasma (Harrick Scientific Plasma 

Cleaner/Sterilizer) for 3 mins. 

 

3.2.2 Ligand Density 

Although biosensing applications have employed the use of various types of 

surfaces, including functionalized gold,10,11,17,30 glass,8,31 silver nanoprisms,13  PSLBs, 

and liposomes,32 PSLBs were chosen as the platform for the protein binding assays in this 

study due to the ease of preparation and the ability to precisely control the biotin 

density.33 It is important to control the surface density of the ligand as the binding affinity 

of the protein-ligand pair at a surface can be greatly affected.34-36 In fact, Zhao and 

coworkers have shown that a biotin density greater than that necessary to bind a 

monolayer of avidin leads to steric hindrance of any additional avidin and lower affinity 

towards biotin.35 Their study also showed that a doubly bound avidin-biotin complex 

(two biotin molecules for every one avidin molecule) is more stable than the singly bound 

complex.35 This suggests that the optimal biotin density would be one that allows a 

monolayer of avidin to bind bivalently. As such, for this study the biotin density was 
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chosen so that a doubly bound monolayer of the protein would be formed at saturation of 

the binding sites. This density of biotin can be calculated using the area for avidin, 3025 

Å2,21 and the area of a lipid and biotinylated lipid molecule, 70 Å.37 For a monolayer of 

avidin (3.31  1012 molecule/cm2) to bivalently bind to biotin, the biotin density must be 

twice as large; therefore, the density of the biotinylated lipid in the lipid bilayer should be 

about 4.6 mol % [(2  3.31  1012 biotinylated lipid molecule/cm2)/(1.43  1014 lipid 

molecule/cm2)  100%]. The surface density of biotin calculated above is similar to the 

optimal biotin density seen experimentally in previous studies that investigated biotin 

binding to neutrAvidin and streptavidin in PSLBs where protein binding increased with 

biotin density up to 4 mol % and then saturated.38,39 At 4 mol %, two biotin molecules 

can effectively bind to every one protein to form a doubly bound protein-biotin complex 

monolayer on the lipid bilayer surface. When the biotin density is lower than 4 mol %, 

fewer protein-ligand complexes are formed; above 4 mol %, steric hindrance from 

neighboring proteins decreases binding. Consequently, the biotin density chosen for these 

studies was 4 mol % (a monolayer coverage of bivalently bound protein), allowing the 

maximum number of biomolecules to be captured at the surface, which is an aim for 

many bioanalytical applications.  

 

3.2.3 Planar Supported Lipid Bilayer Formation 

All lipids were dissolved in chloroform then evaporated under a gentle stream of 

N2(g) and vacuum dried overnight to remove residual solvent. The small unilamellar 

vesicle (SUV) solutions were formed by resuspending the dried lipids in PBS to a 

concentration of 1 mg/mL by vortexing, followed by bath sonication for 10 - 30 mins 
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until the solution became clear.  

 The prism used as the PSLB substrate was mounted in a custom built flowcell 

(volume of 0.4 mL). A PSLB for each experiment was formed on the silica prism by 

vesicle fusion, which involved incubating the surface with the SUV solution for 20 mins 

at room temperature. The flowcell was then flushed with PBS to remove any free lipids in 

solution.  

 

3.2.4 Ligand-Protein Binding Assays 

PSLBs of DOPC containing 4 mol % biotin-cap-DOPE for avidin, neutrAvidin, 

streptavidin and antibiotin antibody binding were created on a silica prism surface by 

vesicle fusion as described above. Three independent experiments were conducted for 

each protein, except for neutrAvidin
 
and the antibiotin control where a t-test was 

conducted and resulted in the elimination of one data set for a total of two samples. To 

reduce nonspecific adsorption of the proteins, the PSLBs were incubated in 1mg/mL 

monoclonal IgG (pI ~ 6.1 – 6.5)
40

 from rabbit serum in PBS pH 7.4 for 30 mins to block 

any defects that might exist on the lipid surfaces. For the binding of antibiotin antibody 

the IgG surface passivation was unnecessary. The PSLBs were then rinsed thoroughly 

with PBS to remove any free IgG remaining in solution.  

Increasing concentrations of avidin, neutrAvidin
 
and streptavidin ranging from 

9.25 nM to 537.6 nM were injected into the flowcell and allowed to reach equilibrium. 

The same procedure was followed for antibiotin antibody; however, the concentration 

range was much narrower (4 nM to 121 nM).   At each protein concentration, the SH 

intensity was recorded for 5 mins every 30 mins until a steady-state response was 
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achieved. Generally, low concentrations of the proteins required up to 4 hrs to reach 

equilibrium. During this period, at least 1.5 mL (~ 3 times the volume of the flowcell) of 

fresh protein solution was injected every 30 mins to account for the bulk depletion caused 

by surface adsorption of the proteins. It is important to note that protein dilutions were 

freshly prepared prior to each injection to further prevent the proteins from 

nonspecifically adsorbing to the vials and syringes. Thermodynamic measurements were 

made using the SH intensity collected at steady-state equilibrium for each protein 

concentration. Additionally, kinetic measurements were determined for the SH intensity 

collected over time.  

To allow a direct comparison of the SH response from the specific and 

nonspecific binding of the proteins, the SH intensities were normalized with respect to 

each other. After subtracting the SH intensity of the IgG passivated DOPC bilayer, the 

SH response was normalized to the SH intensity of a solution of 10 mM KOH, which was 

injected into the flowcell after each experiment. The 10mM KOH solution provides a 

constant solution composition and pH for which the SH intensity did not vary 

significantly from experiment to experiment. Normalization of the SH intensities from 

the KOH solution provides a convenient means to make quantitative comparisons of the 

SH intensities from the specific and nonspecific binding isotherms of the proteins 

examined in this chapter. 

 

3.2.5 SHG Measurements 

Counter-propagating SHG was employed here. A detailed description of this 

technique can be found in Chapter 2 as well as other publications.
41

 Briefly, a 532 nm 
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laser beam (2
nd

 harmonic output of a Nd:YAG laser, Surelite I, 10 Hz) with a mixed 

polarization state (equal amounts of s and p polarized components) was directed at the 

prism/water interface under total internal reflection. The laser intensity used was 14 

mJ/pulse. The reflected beam was steered back to overlap spatially and temporally with 

the incident beam, generating an SH output at 266 nm. Optical filters were used to 

remove any scattered visible light before the reflected SH signal was collected by a solar-

blind photomultiplier tube (Hamamatsu).  

 The SH intensity shown in equation 2.15 is proportional to the second-order 

susceptibility tensor,     
( ), which is composed of a nonresonant and resonant portion. The 

resonant   
( )

 contribution described in Equation 2.16, illustrates the possible 

enhancement in the SH signal when the incident, ω, or SH, 2ω, frequency is resonant 

with an electronic transition of a molecule at the interface. This enhancement makes it 

possible for SHG to detect the presence of bound proteins to a lipid bilayer if the protein 

has electronic transitions at the frequency of the incident (532 nm) or the SH (266 nm) 

light. As seen in the extinction coefficient spectra of the proteins in Figure 3.2, the SH 

wavelength at 266 nm is in resonance with the * transitions of the protein's 

tryptophan and tyrosine's aromatic rings,
7
 resulting in enhancement of the SH signal 

when the protein is present at the lipid surface. Although the electric-quadrupole response 

from the bulk solution or substrate can contribute to the overall SH signal,42,43 its 

contribution to the measured signal is neglegible if the SH frequency is in resonance with 

the electric-dipole transition of molecules present at the surface.42 Since the SH 

frequency used in this study is resonant with the transitions of the proteins adsorbed to 

the surface, the measured SH intensity is predominantly dipolar in nature with little to no 
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Figure 3.2. Extinction coefficient spectra of avidin (solid gray), streptavidin (dotted 

black), neutrAvidin (solid black), and antibiotin antibody (dash-dot black).
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detectable contribution from the quadrupolar response expected.  

 

3.2.6 Langmuir Adsorption Isotherm Equation 

As mentioned earlier the SH intensity is proportional to the second-order 

susceptibility tensor,     
( ). In this study it can be assumed that the nonresonant  

  

( )  is 

real due to the lack of any electronic resonances from the lipids, water or silica in the 

spectral region of interest, while the resonant  
 

( ) is a complex number due to the 

resonance with electronic transitions in the proteins. For simplification,  
  

( )
 and  

 

( )can 

be expressed as: 

                    
  
( )      

 
( )       ,                            (3.1) 

where A represents the nonresonant response from the background assumed to be positive 

and real, and B and C denote the real and imaginary components of the resonant 

susceptibility due to the proteins, respectively. The SH intensity in Equation 3.1 can then 

be rewritten as: 

       | 
( )|

 
 |   (    )|  (    )  (  )  .  (3.2) 

 Assuming the surface adsorption of the protein follows the Langmuir model, the 

surface density N in equation 3.2 is given by: 

       
      [ ]

    [ ]
 ,                 (3.3) 

where Nmax is the maximum surface density at saturation, Ko is the equilibrium 

association constant and [P] is the bulk protein concentration. Substitution of Equation 

3.3 into equation 3.2 gives: 

           | ( )|
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.                     (3.4)    

 Assuming the value of   is real and positive, the SH intensity due to the 

nonresonant background in the absence of protein adsorption is given by: 

                 
          

   .                              (3.5) 

 Subtracting the background contribution (eq. 3.5) from the measured SH intensity 

(eq. 3.4) and using the relationship between the surface density and SH intensity shown 

in Equations (2.15) and (2.16),        , gives the SH intensity rising solely from 

protein adsorption as: 

               
          

  √    
          

 
√    
     [ ]

    [ ]
 (     ) (

√    
     [ ]

    [ ]
)

 

,   (3.6) 

where √        is the square root of the maximum SH intensity at surface saturation. 

 

3.2.7 Cooperativity Adsorption Isotherm Equation 

A previous study demonstrated that protein-protein interactions can modulate the 

energetics of protein association to a biotinylated surface.
34

 When interactions between 

protein molecules are involved, a cooperative binding model presented by Zhao and 

coworkers
34

 more aptly describes the adsorption data. The cooperative binding model 

expressed as,  

             
(     
⁄ )

  [ ]

   
(     
⁄ )

  [ ]
 ,                                         (3.7) 

assumes the distribution of the biotin-bound proteins follows a square lattice such that  

= 4 where  is the cooperativity coefficient characterizing the protein-protein 

interactions between neighboring protein molecules on the surface.34 This has been 
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shown to be true for the avidin-biotin interaction by crystallography.34 As done for the 

Langmuir adsorption isotherm, the SH intensity in terms of the cooperativity adsorption 

model is obtained by substituting Equation 3.7 into Equation 3.2, giving the following 

expression: 
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. 

       (3.8) 

As before, Ko is the intrinsic binding affinity of the protein to the ligand barring any 

protein-protein interactions.
34

 When   > 1, the binding of a protein to a ligand exhibits a 

positive cooperativity, meaning that the protein-protein interaction enhances the ligand-

protein binding. When  < 1, the protein-protein interaction reduces the ligand-protein 

binding, resulting in a negative cooperativity. The cooperativity model becomes the 

Langmuir model when   = 1.  

 

3.3 Results and Discussion 

3.3.1 Thermodynamics of Avidin, Streptavidin and NeutrAvidin
 

Binding to Biotinylated DOPC Bilayers 

 The binding isotherms for avidin, streptavidin, and neutrAvidin binding to a 4 mol 

% biotinylated DOPC bilayer are shown in Figures 3.3, 3.4, and 3.5, respectively. The 

SH intensity was normalized to a solution of 10 mM KOH as described in Section 3.2.4, 
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Figure 3.3. SHG intensity vs. bulk avidin concentration for avidin binding to a DOPC 

bilayer containing 4 mol % biotin-cap-DOPE (filled circles) and 0 mol % biotin-cap-

DOPE (open circles). The line is the fit to the cooperativity binding model and the error 

bars represent the standard deviation from three independent experiments.  
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Figure 3.4. SHG intensity vs. bulk streptavidin concentration for streptavidin binding to a 

DOPC bilayer containing 4 mol % biotin-cap-DOPE (filled circles) and 0 mol % biotin-

cap-DOPE (open circles). The line is the fit to the cooperativity binding model and the 

error bars represent the standard deviation from three independent experiments. 
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Figure 3.5. SHG intensity vs. bulk neutrAvidin concentration for neutrAvidin binding to 

a DOPC bilayer containing 4 mol % biotin-cap-DOPE (filled circles) and 0 mol % biotin-

cap-DOPE (open circles). The line is the fit to the cooperativity binding model and the 

error bars represent the standard deviation from two independent experiments.  
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which allowed comparison between the proteins. As the protein concentration was 

increased the SH intensity increased until saturation of the binding sites had been 

reached, typically at protein concentrations above 100 nM. All three binding isotherms 

displayed a sigmoidal shape at low protein concentration, indicative of additional 

cooperative interactions.
34

 As such, the binding isotherms were fit to both the typical 

Langmuir model and a cooperativity model where an f-test analysis was used to 

determine the best fit to the data. 

 The Langmuir equation shown in Equation 3.6 can be greatly reduced through 

analysis of the SH intensity obtained from the background response before addition of 

proteins and the SH response after addition of proteins. The cross-term in Equation 3.6 is 

the product of the nonresonant term, A, and the resonant real component, B, of the second 

order susceptibility tensor. This term describes the interference between the background 

(nonresonant) and protein adsorption (resonant) responses where the SH intensity can 

increase through constructive interference or decrease through destructive interference. In 

the data presented here, there is not an initial decrease in SH intensity at the lowest 

protein concentrations where the nonresonant and resonant contributions are presumably 

close to each other. This suggests that there is constructive interference between the 

resonant and nonresonant terms, meaning that the cross-term (2AB) in Equation 3.6 will 

be positive as A and B will have the same sign. Fitting the data in Figures 3.3-3.5 to 

Equation 3.6 with the parameters, B, C, √    
   , and K0 by performing a nonlinear least-

squares regression, the calculated value of B is found to be approximately eight orders of 

magnitude smaller than C, the imaginary portion of the second order susceptibility tensor. 

Consequently, the second term of Equation 3.6 is dominant and the first term can be 
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neglected. Since the scaling factor, (B
2
 + C

2
), which is related to the surface density of 

proteins, can be pooled into √    
    and with the aforementioned simplifications made, 

the Langmuir model can be expressed as:  

             (
√    
     [ ]

    [ ]
)

 

.                              (3.9) 

Similarly, fitting the data to the cooperativity model in Equation 3.8 using the 

fitting parameters B, C, Nmax, Ko and , results in a value of B seven orders of magnitude 

smaller than C. As such, the same simplification as above can be employed for Equation 

3.8, giving the expression for the cooperativity model as:  
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.                           (3.10) 

The binding isotherm data for avidin, streptavidin and neutrAvidin were fit to 

both the Langmuir model (Equation 3.9) and the cooperativity model (Equation 3.10). An 

f-test analysis determined that the cooperativity model fit best and the results of the 

nonlinear least square regression are given in Table 3.1.  

The intrinsic binding affinities, K0, obtained for the adsorption of avidin, 

streptavidin, and neutrAvidin to a 4 mol % biotinylated DOPC bilayer were 8.2  2.4  

10
7 

M
-1

, 4.3  0.9  10
7 

M
-1

 and 2.6  0.01  10
7
 M

-1
, respectively. The Ko obtained in 

this study for avidin and streptavidin are in close agreement with previously published 

values obtained through fluorescence spectroscopy and SPR.
34,44

 The slightly higher 
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Table 3.1. Measured binding kinetics and energetics for avidin, streptavidin, and 

neutrAvidin binding to biotinylated DOPC bilayers including the intrinsic binding 

affinity Ko, cooperativity coefficient , intrinsic free energy Go, free energy due to 

protein-protein interactions, G, total free energy Gtotal, and apparent binding affinity 

Kapp for the proteins. Data were obtained using the cooperativity binding model using the 

assumption that the distribution of the biotin-bound proteins follows a square lattice.
34

 

Protein Ko  10
7 
(M

-1
)  (a.u.) 

Go 

(kJ/mol K) 

G 

(kJ/mol K) 

Gtotal 

(kJ/mol K) 
Kapp  10

7 
(M

-1
) 

Avidin 8.2  2.4 1.2  0.2 - 45  0.8 - 1.7  1.4 - 47  1.7 18  14 

Streptavidin 4.3  0.9 1.8  0.2 - 44  0.5 - 5.7  1.1 - 49  0.6 44  10 

NeutrAvidinTM 2.6  0.01 1.9  0.01 - 42  0.01 - 6.3  0.04 - 49  0.05 23  0.7 
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value of Ko obtain here for streptavidin as compared to the previously reported value is 

most likely due to differences in the biotin density used. At higher ligand densities there 

is often steric hindrance that limits the accessibility of an incoming protein to bind to the 

ligand, leading to a decrease in the predicted Ko.
36

 As such, the higher biotin density used 

in the SPR study of streptavidin on an SPR gold chip surface could have artificially 

lowered the predicted binding affinity.  

Unlike avidin and streptavidin, the binding affinity of neutrAvidin to biotin 

obtained in this study is not consistent with previously published values.
25

 The 

determined Ko for neutrAvidin to biotin by single molecule fluorescence as reported by 

Wayment and Harris was 4.5 orders of magnitude greater, 5.5  0.2  10
11

 M
-1

, than the 

one reported in this chapter. To further analyze this discrepancy between the binding 

affinities the kinetic analysis employed by Wayment and Harris was implemented in this 

chapter and is presented in Section 3.3.3. Results of this analysis suggest that protein 

concentration dependent kinetics may explain the large variance in Ko values. 

 The cooperativity coefficient, , which describes the protein-protein interactions, 

was also determined for each adsorption isotherm by fitting the data to Equation 3.10 and 

is reported in Table 3.1.  The adsorption of avidin, streptavidin and neutrAvidin to biotin 

all exhibited  values greater than one, suggesting the presence of positive protein-

protein interactions.  This result is not surprising as the positive contributions of protein-

protein interactions have been previously reported for avidin binding to an immobilized 

monolayer of arachidic acid doped with a biotinylated lipid.
34

 It is important to note that 

this fluorescence study of avidin binding to biotin found that protein-protein interactions 

were only present if (1) the biotin density was high enough that the distance between 
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adjacent biotin molecules was close enough for a bound avidin to interact with an 

incoming neighboring avidin and (2) the biotin accessibility to avidin had to be increased 

by placing a linker between the biotin and the lipid head group.
34

 Both of these 

requirements are met in this current study, as the biotin density chosen allows a 

monolayer of protein to bind and a biotin-capped lipid is employed. As such, in this study 

a similar positive protein-protein interaction is observed for the adsorption of avidin and 

its analogs to biotin. 

 The cooperativity coefficient for avidin, 1.2 ± 0.2, was smaller than those 

obtained for both streptavidin, 1.8 ± 0.2, and neutrAvidin, 1.9 ± 0.01. Although this 

observation is interesting, it has been previously noted that streptavidin forms larger 

aggregates as compared to avidin and has been suggested that the greater strength of 

interaction between streptavidin molecules as compared to those between avidin 

molecules leads to increased aggregation and domain size.
35,46,47

 Additionally, 

electrostatics may play a role in the observed protein-protein interactions. Avidin has a 

relatively high pI (~10) at the pH of 7.4 used in this study, meaning avidin will be 

positively charged. This could cause an increased electrostatic replusion between avidin 

molecules, whereas both streptavidin and neutrAvidin are nearly neutral at pH 7.4 and 

most likely do not have as much protein-protein replusion as compared to avidin-avidin 

interactions. The greater electrostatic replusion between avidin molecules as compared to 

those between streptavidin molecules or neutrAvidin molecules would decrease the 

positive cooperativity of avidin-avidin interactions and result in a lower observed .  

The role of the protein-protein interactions to the binding mechanism can be 

quantified by evaluating their contributions to the free energy of binding. The binding 



48 

 

 

free energy of the intrinsic protein-biotin interaction without any protein-protein 

interactions can be determined from Ko by the following expression:  

                       ,                 (3.11) 

where R is the gas constant and T is the temperature, which is equal to 25°C. Table 3.1 

lists the calculated     for the three proteins. Neglecting the free energy contributions 

from protein-protein interactions, the avidin-biotin and streptavidin-biotin interaction are 

slightly more energetically favorable than the neutrAvidin-biotin interaction with     

equal to - 45  0.8 kJ/mol, - 44  0.5 kJ/mol, and - 42  0.01 kJ/mol, respectively. 

 Zhao and coworkers previously demonstrated that the free energy contributions 

from the protein-protein interactions,    , could be written as: 

                      () .                 (3.12) 

The results of the calculated    for each of the three proteins was determined and listed 

in Table 3.1. Interestingly,    for the avidin-avidin interactions (- 1.7  1.4 kJ/mol K) 

was approximately 3 times less than that obtained for streptavidin (- 5.7  1.1 kJ/mol K) 

or neutrAvidin (- 6.3  0.04 kJ/mol K), further illustrating the stronger protein-protein 

interactions between streptavidin molecules and neutrAvidin molecules as compared to 

avidin molecules. 

 The total binding free energy,        , for the protein-biotin interaction with the 

contributions from the protein-protein interactions was determined by summing 

Equations 3.11 and 3.12 and the results are given in Table 3.1. The stronger protein-

protein interactions seen between streptavidin molecules and neutrAvidin molecules 

make the         obtained for streptavidin-biotin (- 49  0.6 kJ/mol) and neutrAvidin-

biotin (- 49  0.05 kJ/mol) less than for avidin-biotin (- 47  1.7 kJ/mol), meaning that 
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the later interaction is energetically less favorable in comparison. 

 The calculated         can be used to determine the apparent binding affinity, 

Kapp, upon inclusion of the free energy contributions from the protein-protein interactions 

(results are shown in Table 3.1). It is apparent that the protein-protein interactions 

enhance the binding affinity of all three protein-biotin interactions as Kapp is greater than 

Ko in all three cases. After the contributions from the protein-protein interactions to Ko 

are included, avidin has the lowest Kapp equal to (18  14)  10
7 

M
-1

 while streptavidin 

[(44  10)  10
7 

] and neutrAvidin [(33  0.7)  10
7 

M
-
1] have a relatively stronger Kapp 

towards biotin.  

 

3.3.2 Nonspecific Adsorption of Avidin, Streptavidin,  

and NeutrAvidin to a DOPC Bilayer 

The specificity of avidin, streptavidin, and neutrAvidin towards biotin was further 

probed by nonspecifically adsorbing these proteins to an IgG passivated DOPC bilayer 

that did not contain biotin. The nonspecific adsorption was monitored as increasing bulk 

protein concentrations were allowed to incubate with the surface and the data is shown in 

Figures 3.3-3.5 as open circles. To quantify the nonspecific adsorption the square root of 

the SH intensity obtained at the saturation concentration of 537.6 nM, taken as complete 

surface coverage, was divided by the √     obtained for the nonspecific adsorption at the 

same protein concentration. The calculated % surface coverage due to nonspecific 

adsorption could then be compared between avidin and its analogs. It is important to note 

that nonspecific adsorption might be more disordered and randomly oriented as compared 

to the specific adsorption of the protein, leading to a decrease in the measured SH 



50 

 

 

intensity. If the tryptophan and tyrosine residues probed in this experiment take on a 

more random orientation when the proteins are nonspecifically bound to a IgG passivated 

DOPC bilayer as compared to specifically bound to the biotinylated DOPC bilayer, the 

measured nonspecific adsorption might appear less than what is actually bound. Although 

care should be taken when comparing the nonspecific and specific binding, the trends in 

the observed nonspecific binding measured using SHG in this study are comparable to 

those found in literature.
22

 It is apparent from Figures 3.3-3.5 that neutrAvidin displayed 

the highest degree of nonspecific adsorption, accounting for nearly 40% of the total 

measured surface coverage of neutrAvidin. On the other hand, both avidin and 

streptavidin exhibited negligible nonspecific binding to the IgG passivated DOPC 

bilayer.  Similar results were reported for a study comparing the nonspecific adsorption 

of avidin, streptavidin and neutrAvidin on a negatively charged silica surface where 

neutrAvidin was found to have nearly 3 times more nonspecific adsorption than 

positiviely charged avidin or similarly neutral streptavidin.
22

 It is unexpected that 

neutrAvidin has the highest degree of nonspecific adsorption as its deglycosylation and 

lower pI compared to avidin were modifications intended to decrease its nonspecific 

adsorption (information obtained from Pierce, Rockford, IL, USA). Even more 

interesting is streptavidin, a similarly deglycosylated protein with a similar pI, exhibits 

negligible nonspecific adsorption. Given these observations it is unlikely that the degree 

of glycosylation and pI of the protein are the only properties contributing to nonspecific 

adsorption.   
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3.3.3. Kinetics of Avidin Binding to a 4 mol % Biotinylated DOPC Bilayer 

As mentioned previously the SH intensity was measured over time for each bulk 

protein concentration until a steady-state equilibrium response was reached and the SH 

intensity no longer increased at that protein concentration, after which the next bulk 

protein concentration was injected and the same protocol followed. Monitoring the 

protein adsorption as a function of time allowed the binding kinetics, namely the 

adsorption and desorption rate to be determined. Comparison of the binding affinity 

obtained through the kinetics and that obtained from the previous thermodynamic 

equilibrium measurements will provide more information on whether or not steady-state 

equilibrium was indeed reached for each bulk protein concentration. The avidin-biotin 

interaction exhibits the weakest protein-protein interactions and as such can be fairly 

accurately described by Langmuir kinetics
45

 where the protein adsorption rate (kon) is 

first-order with respect to the bulk protein concentration, Cbulk, and the fraction of 

unbound biotin (1-) while the protein desorption rate (koff) is first-order with respect to 

the fraction of bound protein (). The rate of change in the surface coverage of protein is 

equal to the difference between the adsorption and desorption such that, 

               
  

  
         (   )        .                           (3.13) 

  is the fraction of protein surface coverage equal to the ratio of √     to √    
   . 

Application of Equation 3.13 assumes that the bulk protein concentration is unchanged 

with time. As mentioned in the experimental section Cbulk in replenished throughout the 

course of the adsorption process and can be considered to be nearly constant.  

 The SH intensity was measured continuously as Cbulk was increased in a single 

experiment, meaning all but the first Cbulk did not start at zero surface coverage and the 
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initial   for subsequent protein concentrations is equal to the maximum  of the previous 

bulk protein concentration. To adjust for this,   for each Cbulk is adjusted by setting o at 

t = 0 equal to the maximum   obtained from the previous bulk protein concentration. The 

fraction of surface coverage for avidin binding to a 4 mol % biotinylated DOPC bilayer 

as a function of time for the bulk avidin concentration range of 9.25 nM to 537.6 nM is 

plotted in Figure 3.6. 

 Solving Equation 3.13 for the following boundary conditions, (1) at time t = 0 the 

initial surface coverage fraction is o and (2) at any time t > 0 the fraction of surface 

coverage will equal some fraction . Under these conditions the following expression is 

obtained,  

  
        

             
[     (              ) ]      (              ) ,  (3.14) 

where o is zero for the first protein concentration, after which, o is equal to the 

maximum  measured at the previous bulk protein concentration. 

 The adsorption data for all bulk protein concentrations shown in Figure 3.6 were 

fit simultaneously to Equation 3.14, giving the adsorption and desorption rates equal to 

(9.8  5.3)  10
3
 M

-1
 s

-1
 and (6.0  1.8)  10

-5
 s

-1
, respectively. The binding affinity can 

be calculated by dividing the adsorption rate by the desorption rate to give a K0 equal to 

(16  10)  10
7
 M

-1
. The good agreement between the K0 obtained here and the Kapp of 

avidin ((18  14)  10
7
 M

-1
) obtained through the thermodynamic equilibrium 

measurements suggests that each protein concentration had reached or nearly reached 

steady-state equilibrium. Although at the lowest avidin concentration, it appears to not 

have completely reached a steady-state equilibrium, meaning the obtained binding  
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Figure 3.6. Fraction of surface coverage,  , as a function of time for avidin binding to a 4 

mol % biotinylated DOPC bilayer at the following bulk avidin concentration:  9.25 nM 

(open circles), 18.5 nM (open squares), 37.0 nM (open diamonds), 73.7 nM (open 

triangles), 137.7 nM (solid circles), 273.2 nM (solid squares), and 537.6 nM (solid 

diamonds). The solid lines are the global fit to equation 3.14.  
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kinetics may be slightly distorted.  

 Assuming the calculated binding kinetics of avidin to biotin are roughly indicative 

of the neutrAvidin-biotin interaction, the binding kinetics obtained above can be used to 

address the previously mentioned inconsistency between the K0 obtained for neutrAvidin 

in this study and that obtained by Wayment and Harris. The measured kon for Figure 3.6 

is approximately 4.5 orders of magnitude slower than that obtained by Wayment and 

Harris [(2.1  0.5)  10
8
 M

-1
 s

-1
],

25
 suggesting that the binding affinity observed here is 

much weaker. One plausible explanation is the existence of two binding regimes such 

that at low protein concentrations the protein binds biotin at a higher affinity and at 

higher protein concentrations the protein binds biotin at a lower affinity. The first binding 

regime is consistent with the results of Wayment and Harris and the latter binding regime 

is consistent with the result presented in this chapter. This binding behavior has been seen 

before for multivalent protein-ligand pairs and most likely plays a role on the measured 

binding affinities.
46,47

 Although the lack of a visible bi-phasic binding isotherm suggests 

that the high affinity binders at low protein concentration most likely make up only a 

small population of the total surface coverage or saturate at a much lower protein 

concentration than measured here. Given that the lowest protein concentration used here 

is roughly 3 orders of magnitude greater than the protein concentration studied by 

Wayment and Harris who also used only enough biotin to form less than 10
-6

 of a protein 

monolayer,
25

 it is highly possible the high affinity binders seen by Wayment and Harris 

are no longer detectable at the nM protein concentrations investigated in this study.  

If a small population of high affinity binders is more abundant at low protein 

concentrations it is likely the binding kinetics would be highly dependent on the protein 
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concentration, especially near the shift from high affinity binders to moderate affinity 

binders. As such, it might be more accurate to fit the data in Figure 3.6 individually as 

opposed to simultaneously.  Assuming the desorption rate obtained from Equation 3.14 is 

more or less constant for the protein concentration range examined here, the individual 

adsorption rates for each bulk protein concentration can be determined by using the 

following expression,  

      (     
   ),                       (3.15) 

where a is the amplitude at the maximum fraction of surface coverage and b is equal to 

   [ ]       . Since the adsorption at higher avidin concentrations does not have 

enough data points to fit to Equation 3.15 and the adsorption at the lowest avidin 

concentration does not reach a true steady-state response, only the middle 3 avidin 

concentrations (18.5 nM, 37 nM, and 73.7 nM) were fit to Equation 3.15. The adsorption 

rates were found to decrease from (7  0.9)  10
5
 M

-1
 s

-1
 at 18.5 nM bulk avidin 

concentration to (1.7  0.7)  10
5
 M

-1
 s

-1
 at 37 nM and (5  2)  10

4
 M

-1
 s

-1
 at 73.7 nM. 

Using the desorption rate obtained from the kinetic model the calculated K0 is found to 

decrease from (1.2  0.2)  10
10

 M
-1

 to (3  1)  10
9
 M

-1
 to (9  3)  10

8
 M

-1
 as the bulk 

avidin concentration is increased from 18.5 nM to 37 nM to 73.7 nM. These results 

illustrate that the binding kinetics of the proteins to biotin have a strong dependence on 

the bulk protein concentration, suggesting that a typical binding isotherm or 

simultaneously fitting several bulk protein concentrations may not predict the most 

accurate binding affinity. Additionally, the individual adsorption rates suggest that the 

isotherm models may be more heavily weighted towards the higher protein 
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concentrations that comprise the isotherm as the value of K0 obtained for the highest 

concentration (73.7 nM) examined individually was approaching the K0 predicted from 

the binding isotherm data in Figure 3.3.  

Obviously some error in the predicted K0 for the bulk avidin concentrations 18.5 

nM, 37 nM, and 73.7 nM exists from assuming koff remains completely constant for all 

three concentrations. Comparison of koff obtained in this study using the kinetic model 

and that obtain by Wayment and Harris ((3.8  0.5)  10
-4

 s
-1

)
25

 reveals there is a much 

lower discrepancy between the two measured values for koff as compared to kon, 

suggesting koff may not be as sensitive to the bulk avidin concentration as kon, especially 

when rebinding of the protein is assumed to be negligible. As such, it is most likely a 

valid assumption that koff does not significantly change over the much narrower avidin 

concentration range examined in this chapter.  

 

3.3.4. Binding of Antibiotin Antibody to Biotinylated DOPC 

The binding isotherm for antibiotin antibody binding to a 4 mol % biotinylated 

DOPC bilayer is shown by the solid circles in Figure 3.7. The Ko for the data in Figure 

3.7 was determined to be 1.0  0.4  10
8
 M

-1
 by performing the nonlinear least-squares 

regression to the Langmuir binding model (Equation 3.9). The measured Ko is consistent 

with the value 2.8  0.8  10
8
 M

-1
 obtained by a fluorescence study examining the 

interaction between antibiotin antibody and a 5 mol % biotin doped lipid bilayer.
29

 

The binding isotherm for antibiotin antibody to a biotinylated DOPC bilayer was 

collected under the same experimental conditions as used for avidin, streptavidin, and  
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Figure 3.7. Corrected SHG intensity vs. bulk protein concentration for antibiotin antibody 

binding to DOPC bilayers containing 4 mol % biotin-cap-DOPE (filled circles) and 0 mol 

% biotin-cap-DOPE (open circles). The line is the fit to the Langmuir adsorption 

isotherm. The error bars represent the standard deviation from three independent positive 

experiments and two control experiments.  
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neutrAvidin, allowing for direct comparison between the binding affinities obtained for 

all four proteins. There were no protein-protein interactions seen in the antibiotin 

antibody-biotin interaction, meaning Ko = Kapp. The Kapp found for all four proteins 

binding to a biotinylated DOPC bilayer are similar ~ 10
8 

M
-1

. The binding free energy for 

antibiotin antibody (- 46  1.0 kJ/mol) is also fairly similar to that of avidin and its 

analogs. This observation is interesting as the solution binding affinities for avidin, 

streptavidin, and neutrAvidin (~ 10
15 

M
-1

)
48

 are much higher than the solution binding 

affinity for antibiotin antibody (~ 10
8 

M
-1

).
48

 A previous study examining streptavidin and 

antibiotin antibody binding to biotin attached via a linker to bovine serum albumin also 

noted the similar surface binding affinities between the two protein-biotin complexes.
48

 It 

is possible that the drastically lower binding affinity seen for avidin, streptavidin, and 

neutrAvidin to immobilized biotin as compared to free biotin in solution is a result of 

their binding affinity more strongly depending of the accessibility of biotin as compared 

to antibiotin antibody. Specifically, the binding sites of avidin are located in a deep 

depression near the end of -barrels,
24

 making it much more difficult to bind biotin when 

biotin is immobilized as compared to free in solution. On the other hand, the binding sites 

of antibiotin antibody are located at the end of the Fab segments,
49

 meaning that there is 

less steric hindrance and greater accessibility for biotin to bind whether biotin is free in 

solution or immobilized on a surface. Additionally, the Fab segments of the antibody 

have a much greater flexibility and can move from 0 to 180,
50

 giving the antibody the 

ability to adjust the orientation and spacing of the binding sites in order to facilitate 

antibiotin antibody-biotin binding. The less hindered binding sites on antibiotin antibody 

make its binding affinity less dependent on the biotin accessibility as compared to 
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avidin.
48

 The less accessible binding sites on avidin and its binding affinity having a 

greater dependence on the biotin accessibility are most likely why there is a significant 

decrease from its solution biotin to immobilized biotin binding affinity. The easily 

accessible binding sites of antibiotin antibody and its flexibility to make adjustments in 

orientation allow the binding affinity to be unaffected by the biotin accessibility as 

compared to avidin. As a result, the binding affinities of all four proteins, avidin, 

streptavidin, neutrAvidin, and antibiotin antibody to a biotinylated DOPC bilayer are 

relatively the same. As will be discussed in Chapter 7, the binding affinities reported here 

could be mass transport limited and may also explain why a lower surface binding 

affinity is reported for avidin and its analogs as compared to their solution binding 

affinities. 

The nonspecific binding of antibiotin antibody to a pure DOPC bilayer was also 

monitored for increasing protein concentrations and is shown in Figure 3.7 as open 

circles. It is apparent from the data that there is negligible nonspecific adsorption of 

antibiotin antibody to the DOPC bilayer. It is interesting to note that IgG was not used to 

reduce the nonspecific binding of antibiotin antibody. The reduced nonspecific 

adsorption without additional chemical passivation may make the antibiotin antibody- 

biotin interaction a valuable complex in bioanalytical applications as the time and cost of 

minimizing the nonspecific binding can be avoided without seeing a reduction in binding 

affinity.    
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3.3.5 Limit of Detection of SHG 

A quantitative assessment of the limit of detection (LOD) of SHG was made by 

using the spectroscopic sensitivity determined from the calibrated SH intensity and the 

standard deviation of the measured signal using the following expression,  

                   
 

           
                                                (3.16) 

where σ is the average standard deviation of the background before addition of the 

proteins. The sensitivity is obtained from the calibrated SH intensity measure for each 

protein-biotin binding isotherm and is equal to the slope obtained from plotting the 

surface excess Γ (molecules/cm2) as a function of bulk protein concentration. The 

maximum surface excess is taken as the number of protein molecules that form a 

complete monolayer multiplied by the measured SH intensity at the saturation 

concentration. The surface excess for protein concentrations below the saturation 

concentration are calibrated to the maximum surface excess using the average SH 

intensity detected for that protein concentration. The lowest LOD is found for antibiotin 

antibody (2.4 ng/cm2 or 17 femtomoles/cm2), followed by avidin (5.3 ng/cm2 or 80 

femtomoles/cm2) and streptavidin (4.4 ng/cm2 or 84 femtomoles/cm2), with the highest 

LOD for neutrAvidin (8 ng/cm2 or 133 femtomoles/cm2). It is not surprising that the 

LOD for the proteins examined in this chapter was lower than that obtained by Kriech 

and Conboy for a chiral small molecule,1 as the tryptophan and tyrosine residues giving 

rise to the detected SH intensity for the proteins have a much lower net orientation than 

the highly ordered orientation of the chiral small molecule. The lower net orientation of 

the proteins and lower extinction coefficient at the SH wavelength (266 nm) leads to the 

much lower SH response. Despite the low SH response from the proteins, an LOD on par 
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with other label-free detection methods for surface biomolecular reactions was obtained 

using SHG. It is important to note that several enhancing methods could be used to 

increase the LOD, such as surface enhancement by using a metal surface51,52 or increased 

resonant enhancement by probing the proteins with an SH output closer to the electronic 

transition peak at 280 nm. Even without further signal enhancement, this study 

demonstrates SHG is a valuable label-free technique capable of examining unique 

binding properties of protein-ligand interactions at the surface of PSLBs. 

 

3.4 Summary 

In this chapter the binding of avidin, streptavidin, neutrAvidin, and antibiotin 

antibody to a biotinylated DOPC lipid bilayer was investigated using SHG. The binding 

affinities of avidin, streptavidin and neutrAvidin to a biotin doped lipid bilayer were 

determined. Analysis of the binding isotherms indicated a positive cooperative binding 

behavior where protein-protein interactions enhance the binding between the proteins and 

biotin. Upon calculating the binding free energy, it was determined that streptavidin and 

neutrAvidin binding to biotin are more energetically favorable as compared to the avidin-

biotin interaction. This is primarily a result of the stronger protein-protein interactions 

seen for both streptavidin and neutrAvidin. Comparison of the nonspecific adsorption to a 

pure DOPC bilayer revealed that neutrAvidin has the highest degree of nonspecific 

adsorption while both streptavidin and avidin have negligible amounts of nonspecific 

adsorption. Additionally, the binding affinity of antibiotin antibody was shown to be 

similar to that of avidin, streptavidin, and neutrAvidin. Antibiotin antibody also exhibits 

negligible nonspecific adsorption to a pure DOPC bilayer even without any additional 
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chemical to passivate the surface. The LOD of SHG for the proteins is in the ng/cm
2
 

range, suggesting that SHG is a suitable alternative to other label-free methods for the 

investigation of surface protein-ligand interactions. Furthermore, this chapter presents 

important binding properties of avidin, streptavidin, neutrAvidin and antibiotin antibody 

to biotin, which may prove valuable for biosensing and other bioanalytical applications. 
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CHAPTER 4 

 

SURFACE SECOND HARMONIC LENS-LESS IMAGING 

 

Reprinted (adapted) with permission from Sly, K., Nguyen, T.T., and Conboy, J.C. Opt. 

Express.2013, 20, 21953-67. Copyright 2013 Optical Society of America.  

 

4.1 Introduction 

 In the previous chapter, SHG was shown to be a valuable and sensitive surface 

science spectroscopic technique. Despite the high degree of sensitivity of SH 

spectroscopy seen in Chapter 3, only one interaction could be examined at a time. 

Implementing SHG as an imaging technique would enable high-throughput examination 

to allow direct label-free imaging with time-resolution capabilities.1 In this chapter, the 

unique coherent nature of SH imaging is investigated and used to demonstrate the 

potential of employing lens-less surface SH imaging for biomolecular interactions. 

Hellwarth and Christensen were the first to demonstrate SHG imaging when they 

combined SHG with an optical microscope in 1974.2 SHG has since been used as a 

surface sensitive imaging technique to visualize the uniformity of the interfacial region of 

a metalloporphyrin film,3 the carrier motion at interfaces of organic devices,4 and the 

chirality of surface immobilized small molecules.5 Although SHG imaging has been 

extensively employed in the field of biological tissue imaging,6,7 these studies have 
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utilized the bulk structural symmetry of proteins in tissue or cells to generate the SH 

signal. The reports of surface SHG imaging (SSHGI) of biological interfaces are 

primarily limited to studies that probe SH-active dye molecules to monitor membrane 

potential,8,9 individual liposomes,10 and kinetic transport.11,12 In efforts to reach single 

molecule detection, membrane proteins labeled with a gold nanoparticle have also been 

examined using SHG imaging.13 Recently, a label-free SSHGI study in our lab probed 

drug-lipid interactions at a liquid/solid interface in a high-throughput manner.14 

All of the aforementioned studies convey the versatility of SSHG and its 

effectiveness in imaging, but like most other imaging techniques the previous SSHG 

imaging studies utilized a lens system to reconstruct the surface image from the emitted 

SHG light. In this chapter, it is shown that the long coherence length and plane-wave 

nature of surface SHG minimizes diffraction and therefore makes lens-less SSHG 

imaging possible. Admittedly the idea of removing the lens from an imaging system is 

not new. Electron microscopy without lenses was demonstrated in 1948 by Gabor et al. 

when he used the recorded image of the Fresnel diffraction pattern from an object to 

reconstruct the image of the object;15 however, this lens-less holographic imaging 

technique requires algorithms to reconstruct the image of the object.16 Although advances 

in lens-less holographic microscopy designed to eliminate the need for propagation 

algorithms, such as wavelength multiplexing,16 have been demonstrated, a reconstruction 

and decoding stage is still necessary.  Thus, despite overcoming some of the 

shortcomings of lenses, holographic microscopy inherently only allows for indirect 

imaging. If an optical imaging system could directly image the amplitude distribution 

from a surface without incorporation of an objective lens, it would greatly simplify the 
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imaging process while still avoiding the limitations of lenses. Ideally, the incorporation of 

an objective lens in an optical imaging system should only be necessary to resolve an 

image if diffraction and scattering effects cause divergence of the beam as it travels 

through space.17 When SSHG is produced with the use of a collimated light source with 

limited divergence, a collimated coherent plane-wave is produced. Theoretically, under 

these conditions, the need for an objective lens could be eliminated. 

In order to test the feasibility of lens-less SSHGI, images of various sized lipid 

bilayers containing an SH active molecule were obtained at several distances. According 

to optical beam propagation theory, the transverse amplitude distribution or intensity is 

dependent on the propagation distance and the initial beam width.18 In SSHGI, each 

object behaves as a local emitter of light and produces its own propagating beam where 

the object size can be taken as the initial beam width. Since the object size is related to 

the initial beam width, it will influence how rapidly the transverse amplitude distribution 

spreads as the beam propagates through space.18 Therefore, the behavior of the SHG 

propagating beam from each lens-less image can be characterized by analyzing the 

imaged object beam width as a function of distance using optical beam propagation 

theory. To further demonstrate that minimal divergence is required for imaging without 

an objective lens a comparison to an identically set up lens-less fluorescence imaging 

study where the generated wave-front is instantaneously spherical was also conducted.  

To the best of the authors’ knowledge, this idea of imaging without a lens using 

surface SHG has never been demonstrated and more significantly lens-less imaging has 

never before been demonstrated in the ultraviolet wavelength range. The lens-less SSHG 

imaging method presented in this chapter is considerably simpler than lens-less 
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holographic microscopy. No reconstruction of the object is necessary as the intrinsic 

second harmonic amplitude distribution of the object can be directly imaged, thus only 

requiring an array detector. Additionally, the removal of the microscope and objective 

lens allows more light to be collected, increasing the overall photon collection efficiency 

as it eliminates the amount of light loss through a microscope and aperture. Furthermore, 

without the objective lens the field of view or detection area is no longer limited by the 

magnification of the objective lens, but rather the size of the beam or illumination area.  

The larger detection area possible with lens-less SSHG imaging could increase 

throughput significantly relative to imaging with an objective lens, which in the field of 

biosensors and medical diagnostics would be advantageous. On a more fundamental 

level, the lens-less SSHG imaging method presented in this chapter illustrates the 

differences between coherent and incoherent imaging. Coherent plane-wave imaging was 

thoroughly investigated using Gaussian beam propagation theory to describe the effect of 

the object size and the detector-sample distance on image formation and diffraction. 

Gaussian beam propagation theory was also shown to accurately describe the observed 

lens-less SSHG images.  

 
4.2 Theory of Lens-less SHG Imaging 

In a typical imaging system, diffraction caused by the transverse spreading of the 

light source leads to an unavoidable increase in the imaged object beam width as the 

propagation distance increases.17 For this reason focusing elements, such as a lens, are 

used to reconstruct the image at some distance from the object.17 However, if there were 

minimal transverse spreading and therefore negligible change in the imaged beam width, 
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images could be resolved without the use of a lens. Since transverse spreading results 

when the electromagnetic waves emitted from an object are not parallel, not in phase, or 

not planar, an imaging source that produces parallel waves with constant phase and 

frequency is needed if one wishes to eliminate the need for an objective lens. In other 

words, lens-less imaging is only possible if the imaged light source is a collimated 

(parallel), coherent (in phase) plane wave (constant phase and frequency). Surface SHG 

is a technique that under the proper conditions can generate a plane-wave that is both 

coherent and collimated over a long distance providing the possibility for lens-less 

imaging.   

The SH response from the surface is produced when two light waves of the same 

frequency are spatially and temporally overlapped at the surface.19 The resulting SHG 

emission can be described by:  

           
22 (2)

SH SH wI f f                                    (4.1) 

where ( 2 )
 is the nonlinear susceptibility tensor and 

SH
f and 

w
f are the Fresnel coefficients 

for the SH and incident fields. ( 2 )
 dictates the interaction of the applied electric fields 

 
1

E w and  2 ,E w and the resulting SH field at the surface. Since SHG is a second-order 

nonlinear process in which two photons of the same frequency are spatially and 

temporally overlapped (no relative phase change) to generate a third photon of twice that 

frequency (narrow frequency distribution), there exists a near constant phase and 

frequency in the output and thus coherent plane waves are generated. The two incoming 

electromagnetic waves, A and B, with the same frequency, ω, can be written as:20,21 
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                                              1( , ) exp ( )
A

f x t A i k x t t                                      (4.2) 

                     ( , ) exp ( )
B

f x t B i k x t t                               (4.3) 

where k is the propagation vector, A and B are the amplitude of waves travelling some 

distance x over time t, and 
A

  and 
B

  are the phase factors for wave A and B, respectively. 

Since the frequency distribution of waves A and B is narrow due to the monochromatic 

incident light, then on average 
A

  and 
B

  do not change significantly for a given period. 

Additionally, since the two electromagnetic waves interact in such a way that there is no 

relative phase difference,       0
B A

t t t     , the generated SHG wave can be described 

by: 

                                         
  ( , ) (2 )exp (2 ) 2 .

SH
f x t E i k x t                                    (4.4) 

Due to the incident beams having both a narrow frequency distribution and negligible 

phase difference there is minimal constructive and destructive interference,20 producing 

an SHG output that has a constant relative phase and is therefore coherent. The coherence 

of the electromagnetic waves creates infinite parallel planes of uniform amplitude 

distribution (constant frequency and phase), meaning that the generated surface SHG 

wave has a planar wave-front. However, the above derived expressions are only valid 

under the assumption that the incident waves are plane-waves where the sum of the 

propagation vectors for each of the incident beams are parallel and thus propagate in a 

single direction. If the incident beams were focused on the sample their wave-fronts 

would be near radial due to the large distribution of k vectors. Consequently, in order to 

assure the incident beams are plane-waves having a single propagation direction, they 
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must be highly collimated.  

In the counter-propagating SHG geometry used here (shown in Figure 4.1) where 

the two incident light waves approach the sample from opposing directions there is a 

change of sign in the x component of the propagation vector, which due to the 

conservation of momentum, the generated SH signal is produced normal to the surface. 

Generating the SHG output normal to the surface further eliminates any distortion to the 

wave-front caused by emission at an angle, which helps produce a more planar wave-

front.  

Under the conditions described above, surface SHG generates both a collimated 

and coherent electromagnetic plane-wave where transverse spreading is negligible over a 

significant distance.  In principle, imaging without an objective lens should be possible. 

However, since the generated wave is not stationary it is important to consider the 

behavior of the plane-wave as it propagates through space. A plane-wave of constant 

phase and frequency can persist and propagate along a given direction (z axis) if the plane 

(x-y plane) is also infinitely perpendicular to the propagation axis. From an imaging 

perspective, the objects which generate the SH field will be of finite dimension, and thus 

generation of an infinite plane-wave is not possible.
22

 However, if the object dimension is 

a sufficiently large number of wavelengths there will be a slow rate of transverse 

spreading and the plane-wave approximation can be made. Additionally, since SHG 

produces relatively narrow and highly collimated beams which propagate relatively 

parallel to the optical axis, the paraxial approximation can also be used.
18

 Assuming the 

SHG output from each object has an ideal Gaussian intensity profile (TEM00 Gaussian 

mode) the SHG beam can be described by solutions to the paraxial wave equation for a 
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Figure 4.1. Schematic of the counter-propagating lens-less SHG setup. 
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coherent plane-wave with a Gaussian intensity profile. The solutions to the wave 

equation under these conditions lead to two important beam parameters, the object width 

(  w z ) and the radius of curvature ( ( )R z ), which represent the expansion of the beam 

width with propagation distance and the curvature of the phase front, respectively. 

(shown graphically in Figure 4.2 (A) and (B)).
23

   

The variation of the image width at any plane at some distance z perpendicular to 

the propagation axis can be described as follows,
18

 

                                                     

 

2

0 2

0

1 ,z
w z w

w




 

 
 
 

                                    (4.5) 

where 
0w  is the initial object width and λ is the wavelength. From the above equation it 

can be seen that the divergence of the beam or spreading of the image width is not only 

dependent on the propagation distance, but is also highly dependent on the initial object 

width where small objects lead to a much more rapid transverse spreading of the beam 

and a greater deviation from an ideal plane-wave. The curvature of the phase front of the 

beam at any distance z can be determined by, 

                                                        

22

0( ) 1 .w
R z z

z




 

  
  

   

                   (4.6) 

Equation (4.6) demonstrates that as the distance from the object increases ( )R z becomes 

larger and significant curvature of the wave-front occurs. At sufficiently large distances 

from the object the beam has a spherical wave-front; this drastic deviation from a plane 

wave-front causes classic diffraction. The distance at which the wave-front is no longer 
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Figure 4.2. Schematic diagram of Gaussian beam propagation. (A) Propagating 

wave front showing a near planar wave-front increase in curvature as distance 

increases (B) Propagating beam showing increase in beam width and transverse 

spreading and decrease in intensity as distance increases. (Reconstructed from 

Ref. 17). 
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planar, or collimated, occurs when  w z has increased by
0

2w .
18

 This distance is referred 

to as the Rayleigh range or confocal distance, ,Rz and can be determined by setting 

equation 4.5 equal to 
0

2w  and solving for z to give,
18

       

                                                           
2

0 .
R

w
z z




                                                        (4.7) 

As seen in equation 4.7, the smaller the initial object width, w0, the shorter the collimated 

region.
17

 Past this collimated region where the wave-front is significantly curved, 

diffraction will be evident and imaging without a lens system would not be possible. 

Consequently, the ability to image without a lens is dependent on both the initial object 

size and the object-image distance. 

In order to test the hypothesis that lens-less SSHGI is possible without a lens 

system, SHG images of a lipid bilayer containing an SH active molecule, (s)-(+)-1,1’-bi-

2-naphthol (SBN, 99%),  patterned into various sized line-widths using the United States 

Air Force (USAF) test pattern were obtained at several object-image distances. Imaging 

different sized objects at different distances provides an efficient means of evaluating 

lens-less SSHG imaging using Gaussian beam propagation theory. 

 

4.3 Experimental Design 

4.3.1 Materials 
 

DOPC and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine 

rhodamine B sulfonyl) (rhodamine-cap-DOPE) were obtained from Avanti Polar Lipids 

and used as received. SBN was obtained from Sigma Aldrich and used as received. The 
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structures of rhodamine-cap-DOPE and SBN are shown in Figure 4.3. The structure for 

DOPC was shown in Figure 3.1. All water, PBS buffer and cleaning of the fused silica 

prisms were the same as described in section 3.2.1 of Chapter 3. SBN was dissolved in 

PBS pH 7.4 to the desired working concentration (55 μM).  

 

4.3.2 PSLB Pattern Preparation 

The PSLBs were formed using vesicle fusion as described in section 3.2.3 of 

Chapter 3. Following the rinse with PBS buffer to remove unbound lipids, the 1951 

(USAF) positive resolution test target (chrome pattern on UV transparent glass) 

purchased from Edmund Optics was placed on top of the PSLB gently and taped down 

allowing only a small water layer to remain between the PSLB and test target. The prism 

with the resolution test target attached was placed in an ultraviolet ozone (UVO) cleaner 

(Jelight Co.) with a low pressure mercury vapor grid lamp for 13 mins. The PSLB not 

covered by the chrome pattern was etched by the UV light to form the positive resolution 

test pattern.
24

 After formation of the resolution test pattern, the prism was removed and 

mounted in a custom built flowcell (volume of 0.4 mL) under Ultrapure water. SBN was 

then injected into the flowcell and allowed to adsorb to the patterned DOPC bilayer. SBN 

was chosen because it resonantly enhances the SH emission and preferentially 

intercalates into the DOPC bilayer.
5
 As such, a large SH response is seen where SBN has 

intercalated into the bilayer left from the pattern, while there is minimal SH response 

where the bilayer has been etched away due to the negligible nonspecific adsorption of 

SBN to the silica prism. After intercalation of the SBN into the bilayer, the flowcell was 

flushed with PBS to remove any unbound SBN before images were taken. 
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1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) 
(rhodamine-cap-DOPE) 

 

(s)-(+)-1,1’-bi-2-naphthol (SBN) 

Figure 4.3. Chemical structure of Rh-cap-DOPE and SBN. 

 

 

 

  



79 
 

 

 

4.3.4 SHG Imaging 

Counter-propagating SHG imaging was used to detect the SBN-lipid membrane 

patterned substrate.5 A schematic of the optics and setup is shown in Figure 4.1. The 

second harmonic output (532 nm) of a Nd:YAG laser (Continuum, Surelite I, 20 Hz, 7ns) 

was first directed through a half-wave plate and cube polarizer to adjust the power. The 

laser beam was then sent through a beam shaper (MolTech GmbH, 6 mm π-shaper) to 

create a uniform amplitude distribution across the beam profile while maintaining the 

polarization of the beam. To further homogenize the beam intensity distribution and 

wave-front, a Keplerian telescope was used to bring the beam to a focus. The beam was 

then resized (beam width of ~ 3mm) and collimated over a long distance ~ 2m using a 

Galilean telescope, after which the beam, with an energy of 20 mJ/pulse as measured at 

the sample position, was directed onto the surface of the prism under total internal 

reflection. The reflected beam was steered back on itself so as to spatially and temporally 

overlap with the incident beam. The resulting SHG photons were emitted at 266 nm 

along the surface normal. A UV solar blind filter (OFIL, Ltd, Israel) was used to allow 

light only from the SHG signal to be collected.  

SHG image acquisition was achieved using a CCD camera (Andor, 1024 x 1024 

pixels). Images were taken at 5 different distances from the sample, ranging from 7.6 cm 

to 40 cm. All SHG images were collected for 60 mins to produce the final image. The 

software package Image J (http://rsbweb.nih.gov/ij/index.html) was used to analyze the 

SHG images. After background subtraction of the minimum pixel intensity from the 

images, the images were flat-field corrected using the Image J macro available at the 

Integrated Microscopy Core Facility at the University of Chicago 

http://rsbweb.nih.gov/ij/index.html
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(http://digital.bsd.uchicago.edu/%5Cimagej_macros.html) in order to correct for any 

variations in the illumination beam intensity.  

 

4.3.5 UV Back Illumination Imaging 

UV back illumination images of the 1951 (USAF) negative resolution test target 

(UV transparent glass pattern with a chrome covered background) were collected using a 

low pressure mercury UV pen lamp (Beckman Coulter, Inc.) as the light source. The light 

from the pen lamp was collimated and sent through a fused silica diffuser to create a 

more uniform intensity profile.  A narrow bandpass filter was used to select only the 254 

nm line of the mercury lamp. Images were collected using a CCD camera and analyzed as 

mentioned above. 

 

4.3.6 Total Internal Reflection Fluorescence Imaging 

Total internal reflection fluorescence (TIRF) images where collected using an 

argon-ion laser (Ion Laser Technology) with a 514 nm output.  The PSLBs were imaged 

by incorporating 1 mol % Rhodamine B-capped-DOPE. TIRF imaging were collected 

using a modified Olympus microscope
5
 with a 4 objective (Optics for Research). 

Acquisition of the image was accomplished using a CCD camera (Roper Scientific, 512 x 

512 pixels). Images were then taken without the microscope and objective at the same 

distances as the lens-less SHG images. 

 

 

 

http://digital.bsd.uchicago.edu/%5Cimagej_macros.html
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 4.4 Results and Discussion 

4.4.1 Analysis of Lens-less SHG Imaging 

SSHG images of an SBN-lipid membrane patterned with the 1951 USAF 

resolution test target collected without an objective lens measured at 5 distances ranging 

from 7.6 cm to 40 cm are shown in Figure 4.4 (A-E). The SH signal generated in these 

images are from the SBN that has preferentially intercalated into the DOPC bilayer, 

allowing the pattern to be visualized with negligible signal from the regions void of 

lipids.  For comparison, Figure 4.4 (F) shows a white light image of the positive USAF 

test target line-width groups, 0 and 1, used to pattern the lipid bilayer. In this experiment 

elements 3-6 of group 0 were imaged because their line-widths are in the range of spot 

sizes used in chemical and biological microarrays (280 μm to 397 μm), while the smaller 

elements of group 1 were imaged to demonstrate the limits of the current lens-less SSHG 

imaging system before diffraction effects are seen (140 μm to 250 μm). Figure 4.4 (A) 

shows that all elements of both group 0 and group 1 are discernible at an object to 

detector distance of 7.6 cm. As the distance between the object and detector increases, the 

line-widths become less discernible due to increased transverse spreading of the image 

widths and increased curvature in the wave-front, especially for the smaller line-widths of 

group 1.  

To confirm that the nonuniformity seen in the lens-less SSHG images shown in 

Figure 4.4 is not a result of the lens-less imaging system, an image of the group 0 

elements (397 μm, 355 μm, and 314 μm) was taken using a convex lens to reconstruct the 

image (shown in Figure 4.5). It is apparent in Figure 4.5 that even when a lens is 

employed the line-widths are nonuniform in nature, which suggests the nonuniformity 
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Figure 4.4. Lens-less SSHG images of a patterned DOPC bilayer containing SBN 
using the USAF test target group 0 horizontal lines only (elements 3 through 6) on the 
left and group 1 horizontal and vertical lines (elements 1 through 6) on the right 
corresponding to line-widths of 397 μm, 355 μm, 314 μm, 280 μm, 250μm, 223 μm, 
198.5 μm, 176.5 μm, 157.5 μm and 140.5 μm, respectively.  Images were recorded at 
detector-sample distances of (A) 7.6 cm, (B) 15.2 cm, (C) 22.9 cm, (D) 30 cm, and (E) 40 
cm. A white light image of group 0 and group 1 of the USAF test target is shown in (F).  
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Group 0

345

 

Figure 4.5. SSHG images taken using a convex lens of a patterned DOPC bilayer 
containing SBN using the USAF test target group 0 vertical lines only (elements 3 
through 5) corresponding to line-widths of 397 μm, 355 μm, and 314 μm.  
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seen in the images is not a by-product of the imaging system, but rather an inherent 

artifact of the objects themselves. The nonuniformity of the line-widths is most likely due 

to the nonuniform binding of SBN to the DOPC lipid bilayer and the chemical etching 

process.                     

 Each line from the pattern can be taken as a separate object that generates its own 

SH signal and is described by its own propagating field. The intensity distribution imaged 

for each line-width can then be analyzed separately to determine the dependence of the 

imaged width on the propagation distance using equation 4.5. The image width taken as 

the full width at half maximum (FWHM) of the peak intensity was determined by fitting 

intensity profiles for the short axis of the line-widths, where the intensity was averaged 

along the long axis, to a Gaussian distribution (equation 4.8) for four representative line-

widths (397 µm, 355 µm, 280 µm, and 196 µm).  

                                                  

 
2

0 2
exp

2
.x b

y y A



  

  
  

                                             (4.8)
 

In the above equation 
0

y  is the baseline offset from zero, A is the amplitude at the peak 

center, b is the position (x) at maximum intensity or the peak center, and 2
  is the 

variance from the x value at maximum intensity. The FWHM (2.35σ) was determined for 

the four elements at each distance. The measured FWHM for each of the four 

representative elements of the test pattern was plotted for each distance and the results are 

shown in Figure 4.6.   

The theoretical imaged beam width for each element was calculated from 

equation 4.5 for distances up to 50 cm where w0 was taken as the line-width from the test  
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Figure 4.6. Image beam width as a function of distance for the line-widths of (A) 196μm, 

(B) 280μm, (C) 355, and (D) 397μm. Error bars represent the error between the FWHM 

from the three peaks generated for each element. The dashed line indicates the distance at 

which diffraction occurs and the solid lines indicate the fit to Gaussian beam propagation 

theory according to equation 4.9. 
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target and then compared to the experimentally-determined image widths obtained from 

analysis of the images in Figure 4.4. The experimental and theoretical image widths 

follow the same general exponential increase with increasing distance; however, the 

experimentally determined image widths were seen to increase more rapidly with 

increasing distance. In order to determine how much faster the image widths were 

spreading with distance, the data points where diffraction was not observed (the 7 data 

points to the left of the dashed line in Figure 4.6) were then globally fit to the following 

equation with the resulting fit shown in Figure 4.6, 
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w z w
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                                          (4.9) 

where 
0w  was determined by extrapolating the fit to z=0, and α represents the parameter 

which accounts for the more rapid spreading with distance. The experimentally 

determined image widths were shown to increase 2.33 times faster than that predicted by 

Gaussian beam propagation theory. This more rapid increase in image width with 

increasing distance most likely comes from the imperfect assumption that the incoming 

light waves are perfectly collimated plane-waves. Although much care was taken to 

highly collimate the incoming light beams, it is inevitable that some distortion of the 

wave-front of the incoming beams will exist due to the inherent slightly curved wave-

fronts from the incident laser and the disturbances in the beam parameters  R z and  w z

caused by the lenses used to resize and collimate the incoming beams.
23

 Despite the more 

rapid spreading of the image widths seen here, the data fit well to equation 4.9 for each 

sized line-width at close distances. An interesting observation is then seen for all sized 
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line-widths, a sudden decrease in image width occurs and the data seem to no longer 

follow the fit predicted by Gaussian beam propagation theory. Since diffraction would 

cause a decrease in the expected image width,
25

 the images were analyzed according to 

classic diffraction theory to determine whether or not this drop in image width coincided 

with diffraction effects. The intensity profiles were analyzed according to classic 

Fraunhofer diffraction theory
25

 in one dimension using the following: 

2

0

sin
I I






 
 
 

                                        (4.10) 

            

1
sin

2
kb                                (4.11) 

where I is the intensity, k is the wavenumber, b is the short axis width of the bar and   is 

the angle of the diffracted ray. Fraunhofer diffraction for a single slit was used as the 

object size and separation between adjacent linewidths is much larger than the 

wavelength of light used here and the emitted light source is a collimated plane-wave.25 

The Fraunhofer diffraction model was then compared to the Gaussian beam propagation 

model in examining the image width as a function of distance, results are shown in Figure 

4.7. 

Using the concordance test, the distance at which the Fraunhofer diffraction 

model was found to fit best as compared to the Gaussian beam propagation model 

coincided with the distance at which the sudden decrease in image width occurred for 

each sized line-width. The dashed line in Figure 4.6 indicates where the Fraunhofer 

diffraction model was found to fit best compared to the Gaussian beam propagation 

model. These results are consistent with the predictions that when diffraction occurs the 
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Figure 4.7. Gaussian beam propagation fit (solid lines) and Fraunhofer 
diffraction fit (dashed lines) to the intensity profiles for line-widths of 397 
μm, 355 μm, 280 μm, and 196 μm at detector-sample distances of (A) 7.6 
cm, (B) 15.2 cm, (C) 22.9 cm, (D) 30 cm and (E) 40 cm. The gray graphs 
represent where the Fraunhofer diffraction fit best to the data. 
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image width is much smaller than expected and begins to change linearly with distance. 

Theoretically, the distance at which diffraction occurs is the confocal distance. However, 

even after taking into account the 2.33 times more rapid spreading of the image widths 

seen here, the calculated confocal distance using equation 4.7 of roughly 80 cm, 64 cm, 

39 cm, and 19 cm for the line-widths of 397 μm, 355 μm, 280 μm, and 196 μm, 

respectively, is still ~2.5 times longer than where diffraction is visible in our data. This 

discrepancy can be explained in terms of the degree of curvature of the wave-front. 

Calculating the radius of curvature from equation 4.6 and subsequently the degree of 

curvature at the expected confocal distance the wave-front is found to have a degree of 

curvature of ~38° for each sized line-width; however, the distance at which diffraction is 

apparent in our data has the degree of curvature of between ~19° to 20°. This suggests 

that although theoretically diffraction should not occur until the wave-front has curved 

38°, lens-less imaging is much more sensitive to the curvature of the wave-front and 

diffraction is obvious when there is only a slight deviation from a planar wave-front. 

Despite this lower threshold for the curvature of the wave-front, the similar limit of 

degree of curvature (~20°) seen to produce diffraction effects for all sized line-widths is 

consistent with the predictions of Gaussian beam propagation in which diffraction effects 

are observed at a much closer distance for smaller line-widths as compared to larger line-

widths. This observation is due to the more rapid transformation of the wave-front from 

planar to spherical for smaller objects and is evident in Figure 4.7.  
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4.4.2 UV Back Illumination Imaging Analysis 

In order to further verify that the lens-less SHG images shown in Figure 4.4 result 

from the coherent plane-wave nature of the emitted light, lens-less transmission images 

of the USAF negative pattern (shown in Figure 4.8) were collected using an incoherent 

UV light source to back illuminate the sample. As expected these images had visible 

diffraction even at the closest distance of 7.6 cm for both group 1 and group 0 elements. 

No discernible image is obtained at distances greater than 22.9 cm for group 0 and group 

1, in stark contrast to the SSHG images shown in Figure 4.4. Additionally, the 

background was much brighter due the diffraction and there was rapid transverse 

spreading of the beam, making the line-widths difficult to differentiate. Although this 

incoherent UV back illuminated control demonstrates diffraction was not seen in the 

SHG images at close distances, a more appropriate control to demonstrate the difference 

between coherent and incoherent imaging is to use an emissive incoherent light source 

such as fluorescence imaging to compare to the emissive coherent SHG imaging. 

 

4.4.3 Analysis of Fluorescence Lens-less Imaging 

Lens-less fluorescence imaging was used to image a 1 mol% Rhodamine labeled 

USAF patterned DOPC lipid bilayer at the various distances. As opposed to SHG, 

fluorescence is an incoherent process in which scattering and diffraction of the generated 

electromagnetic waves distort the wave-front at very short distances such that the 

amplitude and phase of the beam vary randomly with respect to time and position 

instantaneously. As a result, the coherence length is significantly shorter, causing 

considerable divergence of the beam and consequently, distortion of the image, making it  
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Figure 4.8. UV back illuminated lens-less imaging of the USAF test target group 
0 horizontal lines only (elements 3 and 4) on the left and group 1 horizontal and 
vertical lines (elements 2 through 5) on the right corresponding to line-widths of 
397 μm, 355 μm, 223 μm, 198.5 μm, 176.5 μm, and 157.5 μm, respectively.  
Images were recorded at detector-sample distances of (A) 7.6 cm, (B) 15.2 cm, 
and (C) 22.9 cm.  
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impossible to resolve an image without the use of a lens system. A 4x objective lens in 

combination with a CCD was first used to verify that the CCD was aligned and the 

pattern was in the detection area; the resulting discernible image is shown in Figure 4.9 

(A). Once the objective was removed, no image was discernible even at the closest 

distance (7.6 cm) as shown in Figure 4.9 (B). These results demonstrate that the 

transverse spreading and radial wave-front caused by the incoherent nature of 

fluorescence necessitates the use of an objective lens to resolve an image, and therefore 

confirms that only a collimated, coherent plane-wave source has the ability to image 

without a lens system. Therefore, even though the experimentally determined confocal 

distance of the SSHG lens-less images deviates from the theoretical confocal distance due 

to the slightly curved wave-fronts of the incoming beams, the SH emission is still 

significantly planar and collimated, giving SSHG the ability to image without a lens 

system. 

The image spreading and ultimately diffraction seen at increasing distances for 

this SSHGI system is not merely classic diffraction, but is a consequence of Gaussian 

beam propagation, which predicts that with increasing distance the beam will become 

less collimated, less coherent, and less planar, causing increased transverse spreading or 

divergence of the beam and diffraction. Despite the more rapid increase in image width 

and shorter confocal distance observed in the lens-less SSHG imaging due to the nonideal 

plane-wave nature of the incoming beams, the image data presented in Figure 4.4 and 

analyzed in Figure 4.6 are consistent with the general predictions of optical beam 

propagation theory for the behavior of a Gaussian plane-wave propagating through space. 

This not only confirms that surface SHG generates a near-collimated, coherent plane- 
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Figure 4.9. Fluorescence imaging of SBN binding to a Rh-
DOPC bilayer. (A) Fluorescence image of group 1 elements 
3 through 6 of the USAF test target using a 4x objective lens. 
(B) Lens-less fluorescence image at 7.6 cm object-image 
shows no visible image.   
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wave at relatively long distances, but also confirms that lens-less SSHG imaging is 

possible as a result of the collimated, coherent plane-wave nature of the process, which 

minimizes transverse spreading and diffraction effects. It is important to keep in mind 

that diffraction is only avoided if the object size is large compared to the wavelength and 

the object-image distance is shorter than the confocal distance.  

 

4.5 Summary 

The work presented in this chapter has demonstrated the capabilities of SSHG 

imaging based on its long coherence length and plane-wave nature to directly image the 

intensity distribution of a patterned SBN-lipid bilayer without a lens system. The SHG 

beam propagated through space according to Gaussian beam propagation theory, which 

was used to analyze the image widths as a function of distance. The distance at which 

lens-less SSHG imaging was able to resolve images without diffraction effects was 

shown to be dependent on the object size. Even though diffraction is readily observed at 

even the closest object-detector distance (7.6 cm) for line-widths of 196 μm, there is no 

observable diffraction for line-widths of 223 μm at this close distance and line-widths of 

397 μm did not show diffraction until ~ 30 cm. Although the experimentally determined 

confocal distance deviated from the theoretical confocal distance, the deviation was 

consistent for all object sizes, indicating that the discrepancy was due to the incoming 

beams having nonideal planar wave-fronts. Lens-less SSHG imaging was also seen to be 

more sensitive to the curvature of the wave-front, producing diffraction effects at a 

degree of curvature of only 20°. However, the complete inability of fluorescence 

imaging, an incoherent emissive process, to resolve an image without an objective lens 
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demonstrated that the SH emission was still significantly planar and coherent and that it 

was this property that permits SSHG lens-less imaging without a lens system. Therefore, 

the inherent properties (highly collimated, coherent plane-wave) of SSHG allow simple, 

direct amplitude distribution imaging without a lens system. Although it is true that 

higher resolution images can be produced when a single lens is used, the noticeable 

differences between the lens-less coherent SSHG imaging and the lens-less incoherent 

fluorescence imaging shown here emphasize the effects the wave-front of the beam have 

on image formation. The initial object size and detector-sample distance are also shown 

to affect imaging. Additionally, being able to image without a lens reduces optical 

aberrations, improves the overall photon collection efficiency and increases the detection 

area, which can be used to increase throughput. In the field of biosensors and medical 

diagnostics where only relative intensities are being used these advantages could be 

extremely beneficial, as larger arrays could be directly imaged and analyzed 

simultaneously. 
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CHAPTER 5 

 

SECOND HARMONIC CORRELATION SPECTROSCOPY 

 

Reprinted (adapted) with permission from Sly, K.L. and Conboy, J.C. Anal. Chem., 2014, 

submitted. 

 

5.1 Introduction 

 In the previous chapters, SH spectroscopy was shown to have the ability to detect 

proteins and small molecules at the surface with incredible sensitivity and specificity 

without the use of an external label. In Chapter 4 it was demonstrated that the coherent 

property of surface SHG allowed imaging of a small molecule intercalating into a lipid 

bilayer without using a lens. More importantly, Chapter 4 provided a detailed analysis of 

the coherence length and properties of counter propagating SH spectroscopy. Despite the 

high sensitivity of SHG seen in the previous chapters, there were bothersome 

shortcomings in the traditional method of data collection. Specifically, the collection of 

binding isotherms required an extremely long acquisition time and the analysis of such 

binding isotherms neglected the dependence of the binding kinetics on bulk protein 

concentration. These obstacles can be easily overcome by coupling the proven surface 

specific and sensitive SH spectroscopy technique with coherent correlation spectroscopy 

for the direct measurement of surface biomolecular kinetics. In this chapter the general 
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principles and important properties of the second harmonic correlation spectroscopy 

(SHCS) process are discussed. 

Correlation spectroscopy (CS) is a well-known statistical analysis method capable 

of extracting dynamic events within a system by correlating a temporally measured 

property of the system. CS has been used to extract correlated dynamics in a variety of 

methods such as neutron scattering,1 dynamic light scattering,2-5 fluorescence 

spectroscopy,6-10 and Raman spectroscopy.11,12 More recently coherent x-ray 

spectroscopy13-16 and nonlinear spectroscopic methods17,18 have been coupled with 

correlation analysis, including second harmonic correlation spectroscopy (SHCS). SHCS 

has been used as a method to determine the diffusion coefficient of aggregate dye 

molecules at a surface17 and long chain para substituted amphiphiles.19  

The theoretical groundwork for all these correlation spectroscopic methods was 

first presented by Van Hove in 1954 in his studies of the coherent scattering of neutrons.1 

Van Hove’s time-dependent correlation function demonstrated that the average time 

variation of the density distribution of a system could be used to determine the correlated 

dynamic time evolution of the particles of the system.1 This time-dependent correlation 

function, based on the expression of the system in terms of a simple Poisson density 

distribution of measured intensities from the scattered particles within the system, only 

requires that (1) the system or state does not change during the scattering process (is 

ergodic) and (2) the mean intensity measured over time remains constant (stationary).1 

These criteria are easily satisfied for any photon process used to measure a system in 

steady-state equilibrium. It is possible to examine a system that is not stationary or 

ergodic using correlation spectroscopy; however, distortions will be seen in the 
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correlation function and special considerations must be taken for a proper analysis. 

Nearly a decade after Van Hove introduced correlation spectroscopy, Pecora 

combined the developed correlation function with Brillouin’s theory of scattered light to 

create photon correlation theory or what is known today as dynamic light scattering 

(DLS).2 Pecora has since written extensively on the theory and analysis of photon 

correlation spectroscopy, including a detailed presentation of various signal to noise 

parameters and ideal instrumentation and system requirements.3 One of the biggest 

obstacles in obtaining meaningful correlation data in DLS has been low signal from weak 

scatterers.3 To overcome this limitation, an increase in the detected power density is 

usually made through increasing the solute concentration or laser intensity. However, 

decreasing the scattering angle or illumination area, which will decrease the measured 

signal, increases the spatial coherence (coherence area) and the signal-to-noise (S/N) of 

the correlation data.3,4 As such, there is a trade-off between the number of molecules in 

the illumination area and the size of the illumination area in order to obtain correlation 

data with low noise while still having fairly large measured signal. Most DLS studies 

have illustrated the importance of increasing the detected signal and maintaining good 

spatial coherence, whether it be from increasing the solute concentration and decreasing 

the scattering angle by using a pinhole before the detector or decreasing the illumination 

area and increasing the intensity of the excitation source.3,4 Using Pecora’s established 

experimental framework for photon correlation spectroscopy, DLS has been used to 

obtain the dynamic time constants for translational,20,21 rotational,22 and intramolecular 

diffusion of macromolecules,23,24 as well as provide information on equilibrium critical 

phenomena of fluid systems.2,25  
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 Even though DLS is well-established, today people first think of fluorescence 

correlation spectroscopy (FCS) when speaking of correlation spectroscopy. Although 

many significant advances have also been seen in FCS, it wasn’t until several years after 

the development of DLS when Magde, Elson and Webb first demonstrated Van Hove’s 

correlation analysis could also be used to examine the instantaneous fluctuations in 

fluorescence intensity and used to determine both the diffusion coefficient and binding 

kinetics of the reversible binding of ethidium bromide to DNA.26 Several groups have 

since made extraordinary advances in developing FCS. Most notably, the detailed 

statistical analysis of FCS by Koppel, Saffarian and Elson,27,28 the examination of 

multiple parameters and their contribution to the correlation data by Thompson and 

coworkers,29,30 and many other studies which have shown the diversity of dynamic 

constants that can be measured using FCS. FCS has provided a means of obtaining the 

rotational and translational diffusion coefficients of species in bulk solution,31 lateral 

diffusion coefficients of biomolecules attached to planar supported lipid bilayers 

(PSLB),32,33 and the binding kinetics of fluorescently labeled biomolecules at surface.10,34 

As in DLS, the temporal fluctuations in the signal are measured and used to obtain the 

correlated dynamic events occurring within the observation volume. However, an 

important fundamental difference between FCS and DLS makes the ideal experimental 

parameters and application of correlation spectroscopy for these two methods very 

different. 

DLS is a coherent process where the signal intensity from individual photons 

produces stationary interference such that the spontaneous fluctuations caused by 

individual photon positional changes can be additive (constructive interference) or 
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subtractive (deconstructive interference) to the measured average density distribution.4 

Experimentally, the stationary interference of the scatterers in DLS makes having a 

higher concentration of molecules advantageous for obtaining higher S/N in the 

correlation data.3,4 With a higher number of molecules in the illumination area, there will 

be an increased probability of interference, causing a greater additive or subtractive effect 

seen from the fluctuations and leading to higher S/N in the correlation data.3 

Additionally, optimal S/N in the correlation data will be obtained if the illumination area 

or the detection area is spatially coherent and equal to the coherence area. For DLS this 

area is relatively small (less than a few microns), meaning that although it is 

advantageous to increase the photon flux the detection area much be kept small to have 

spatial coherence and high S/N of the correlation data. The spatial coherence of the 

excitation source and output signal of a system drastically affects the optimal 

experimental conditions to obtain the best correlation data. 

Recently, the role spatial coherence plays on the S/N of the correlation data has 

been detailed in several studies of x-ray correlation spectroscopy (XPCS) where it was 

shown that having partial coherence or complete incoherence drastically dampens the 

correlation data.13,16,35,36 XPCS is analogous to DLS, as it too uses a coherent excitation 

source and measures the instantaneous complex interference of photons. Similar to DLS, 

it has been shown that better  S/N of the correlation data is observed when the coherence 

area (spatial coherence) is matched to the scattering volume (one coherence area) and 

when the photon flux is large.36 Again, there is a trade-off between the number of 

photons in the scattering volume and degree of spatial coherence (the number of 

coherence areas), with the optimum condition satisfied by having the maximum number 
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of photons in a single coherence area.  

The main difference between DLS and XPCS is the incident wavelength. 

Although both DLS and XPCS use spatially and temporally coherent excitation sources, 

the small wavelengths in XPCS as compared to the larger visible wavelengths of DLS 

generate an signal with longer temporal coherence (coherence length), allowing the 

detector-sample distance to be longer before diffraction occurs and there is loss of 

coherence. The spatial coherence (coherence area) is also extremely small in XPCS (only 

a few microns) which requires the detection area to be small, which is usually achieved 

by sending the scattered light through a pinhole aperture. The smaller wavelengths in 

XPCS also allow dynamics of much smaller length scales down to interatomic spacing to 

be probed.13,16,36 These differences obviously will dictate the most suitable experimental 

parameters (i.e., detector-sample distance and the size of the illumination and detection 

area) and which systems to study using these coherent photon correlation spectroscopic 

(PCS) methods.  

Compared to both DLS and XPCS, the incoherent method FCS is significantly 

different. FCS does not measure the stationary interference of photons and the lack of 

coherence necessitates a very different conclusion regarding the ideal number of 

molecules present in the observation volume. FCS measures the total fluorescence in 

each dwell and the dwell time of individual fluorophores within the observation 

volume.37 If a large number of fluorescent molecules were present then the probability of 

each molecule that enters the observation area fluorescing is small and the probability of 

finding the same molecule in two consecutive dwells becomes even smaller.27,37 Koppel 

demonstrated that the incoherent nature of FCS means that the S/N of the FCS correlation 
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data is dependent on the ratio of photocounts (〈 〉) per number of molecules to (N) 

correlation time (T),     ⁄ 〈 〉      , as opposed to the ratio of photocounts per 

number of coherence areas (  ) to correlation time,     ⁄ 〈 〉       , seen in DLS and 

XPCS. Accordingly, the observation volume and the detection area should ideally be kept 

as small as possible with as few molecules as possible to obtain better S/N of the 

correlation data in FCS.27,28 This is much different from the desired large photon flux in a 

single coherence area in DLS and XPCS. The comparison of these photon correlation 

methods illustrates the importance of coherence, the source of the intensity fluctuations 

(ie. stationary interference or individual fluorophores), and incident wavelength on the 

resulting S/N of the correlation data for DLS, XPCS and FCS.3,4 

One extremely important conclusion to be drawn from the above comparison of 

DLS, XPCS, and FCS is that the coherence of the incident light and output signal plays a 

significant role on the experimental parameters that lead to optimal S/N in the correlation 

data. For example, if the intensity fluctuations arise from the stationary interference of 

photons (as in DLS and XPCS) then increased spatial coherence (coherence area) and 

temporal coherence (coherence length) of the output signal would allow the illumination 

area to be relatively large with a large photon flux. This would be an extremely 

advantages experimental parameter as it would be much simpler to keep the illumination 

area and detection area equal to only one coherence area (or spatially coherent) over a 

long distance before coherence is lost. One such technique that exhibits an output with 

large spatial and temporal coherence is SH spectroscopy. SH spectroscopy is an emissive 

coherent process with a much more spatially and temporally coherent output compared to 

DLS or XPCS. The authors have previously shown that the coherence area of the output 
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is essentially the illuminated area of the sample as long as the incident beams are 

spatially and temporally coherent.38 In Chapter 4, the coherence length (temporal 

coherence) of SH spectroscopy was found to be rather long with a linear relationship to 

the square of the spatially coherent illumination area, meaning the coherence length 

increases with increasing illumination area.38 The incident beams in SHG have a narrow 

frequency distribution, such that when they are spatially and temporally overlapped from 

opposing directions, produce an extremely spatially and temporally coherent SH output, 

much more so than DLS or XPCS, making is possible to have a large spatially coherent 

illumination and detection area. The large spatial coherence eliminates the need for a 

pinhole aperture at the detector used to limit the detection area to one coherence area. 

This is drastically different from incoherent FCS or coherent DLS and XPCS.3,4  

Another advantage of SHCS is its nonlinear nature and directional output allow 

simple heterodyne mixing of the SH fluctuations using the SH mean intensity as a local 

oscillator, which can increase the S/N of the correlation data.4 This type of heterodyne 

mixing has been used in XPCS and shown to increase the S/N of the correlation data.35,36 

Heterodyne mixing has also been used in DLS; however, the source of the local oscillator 

is typically the incident excitation source that is recombined with the signal from the 

scatterers.4 An added benefit of heterodyne mixing in SHCS is that there is a linear 

relationship between the SH heterodyned intensity and density of molecules comprising 

an intensity fluctuation. This linear relationship makes it much simpler to analyze the 

correlation data with the ability to use the already developed FCS correlation functions.  

Furthermore, having the SH mean intensity act as the local oscillator provides a simple 

and straightforward way to increase the S/N of the correlation data assuming the majority 
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of the noise is arising from the detection system shot noise and not from the excitation 

source and optics.35,36 The advantages seen from heterodyning and a larger spatially and 

temporally coherent illumination area, along with the surface specificity and label-free 

nature of SHG, make SHCS an attractive alternative for the direct detection of the 

dynamics of surface biomolecular interactions.  

SHCS has previously been used to determine the translational and rotational 

coefficients of dye molecules and hydrocarbon chain substituted amphilies;17,19,39,40 

however, its use for investigating surface binding kinetics has only just been explored. 

Chapter 6 and Chapter 7 are the first examples to examine the ability of SHCS to 

determine the binding kinetics of a monovalent interaction between the small molecule 

SBN and a DOPC lipid bilayer41 and the more complex interaction between the 

multivalent proteins cholera toxin b subunit (CTb) and peanut agglutinin (PnA) with 

monosialotetrahexosylganglioside (GM1) doped DOPC bilayers. These studies illustrate 

the bothersome shortcomings of traditional adsorption isotherms combined with 

desorption experiments to obtain surface binding kinetics. Specifically, the collection of 

adsorption isotherms at low concentrations requires an extremely long acquisition time to 

reach true steady-state equilibrium and as such are often limited by mass transport. These 

obstacles were easily overcome by coupling the surface specificity and sensitivity of 

SHG with correlation spectroscopy for the direct measurement of surface biomolecular 

kinetics.41 This chapter is designed to expand on the theory of SHCS used in the studies 

presented in Chapters 6 and 7 and to thoroughly describe the correlation function for 

determining surface binding dynamics of a reversible biomolecular reaction. Important 

properties of SHG, such as coherence and heterodyne optical mixing, which play a 
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significant role on the measured S/N of the correlation data will be discussed in detail. 

Additionally, practical experimental considerations including collection time and 

illumination/detection area will be examined. The sample system used here, CTb binding 

to a GM1 doped DOPC lipid bilayer, provides a simple means to investigate the 

dependence of the S/N of the correlation data on various experimental parameters. 

 

5.2 General Principles of SHCS 

The most fundamental approach used to evaluate all correlation methods stems 

from modern statistical mechanics and the many-body theory, which describes the 

collective behavior of a large assembly of interacting particles.4 For any time dependent 

process within a given system, the measurement of a time-dependent real variable can be 

described by a simple probability density distribution where the instantaneous 

fluctuations in the measured intensity would fall between     √  and     √ , giving a 

Poisson distribution in measured intensity.3,4 Similarly, the instantaneous fluctuations in 

the measured SH intensity exhibit a Poisson probability density distribution about the SH 

mean intensity as shown in Figure 5.1. The data in Figure 5.1 were collected over time 

for every pulse of a 20 Hz Nd:YAG laser whose output was frequency doubled to 

produce 532 nm. The surface SHG produced at 266 nm was generated normal to the 

surface after the two incident beams from opposing directions interacted with a surface 

composed of 240 nM CTb binding to a GM1 doped DOPC lipid bilayer. A histogram of 

the measure SH intensity was plotted as Figure 5.1B and using Poisson statistics the 

mean SH intensity of 1.246 was determined.  Mathematical  

The time required for a fluctuation in intensity to change from one extreme to 
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Figure 5.1. Probability density distribution of SH mean intensity. (A) Fluctuations in SH 
intensity measured for every pulse of a 20 Hz laser over time for the binding of 240 nM 
CTb to a GM1 doped DOPC lipid bilayer and its (B) Poisson distribution in SH intensity 
with μ = 1.246. 
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another is dependent on both the dynamic events within the system and the method of 

detection. For DLS the time required is related to the time it takes two molecules to move 

far enough apart to change the relative phase of the scattered light from 0 to π.3 For FCS 

the fluctuations and time needed to fluctuate from one extreme to the other depends on 

the time it takes for a molecule to enter or leave the detection volume either by diffusion 

(lateral and translational) or adsorption and desorption.30,37 The advantage of SHG having 

extreme surface specificity is it is possible to have the time it takes for the intensity to 

fluctuate between the extremes only depend on the time required for a molecule to adsorb 

or desorb from the surface. 

An additional property of the intensity distribution of the fluctuations is that the 

distribution and ensemble average remain the same over the collection time, meaning the 

fluctuations are both stationary and ergodic.4 For such a system, the time-dependent 

correlation function can be expressed as follows:4  

 ( )        
 

 
∫    (    )   ( )  

   

    
                          (5.1)                                  

where   ( ) is the measured SH intensity as a function of time and   (    ) is the 

intensity of an individual spontaneous fluctuation after the time step equal to    The 

normalized correlation function can then simply be defined as, 

          ( )   
〈   (    )   ( )〉

〈  ( )〉 
.                                           (5.2)  

The angle brackets denote the ensemble average. Although the above correlation function 

is true for any stationary and ergodic system, its application and analysis largely depend 

on the detection method and dynamic processes occurring within the system. The 

following sections will describe the correlation function used in terms of detecting 

reversible biomolecular surface binding dynamics and then address some of the most 
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important factors of SHCS that influence the S/N of the correlation data. 

 

5.3 Heterodyning 

In DLS and XPCS the incident light from the laser is often used as a local 

oscillator to amplify the weak scattering, which allows detection of additional molecular 

dynamics that would otherwise not be measureable.3,35 In a similar fashion, in SHCS the 

mean SH intensity can act as a local oscillator amplifying the weak fluctuations through 

heterodyning. The SH intensity can be described by the following expression,  

                                                      |  
     

( )
|
 

                                               (5.3) 

where E0 is the incident electric field and     
( ) is the nonlinear second order susceptibility 

tensor. As mentioned in Chapter 2     
( ) describes the interactions between the incident 

electric fields and the molecules at the surface, which makes it proportional to the 

amplitude of the SH generated electromagnetic wave, and can be expressed as follows, 

         
( )

  〈    〉                                                (5.4) 

where 〈    〉 is the average ensemble molecular hyperpolarizability of the molecules at 

the surface. The SH generated electric field can be separated into a time-independent 

portion and time-dependent portion such that the generated field (ESH) is a function of the 

density of molecules (q) and time (t), which can be expressed as,36  

     (   )    ( )        (   )                                 (5.5) 

Eμ is the SH generated electric field from the population mean, making it the time-

independent portion. The second term (Efluct) is the time-dependent portion, which is 

defined as the fluctuation in the surface density of molecules with time.36 The amplitude 
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of the SH generated electromagnetic wave from the population mean (Eμ) and those due 

to fluctuations associated with surface adsorption/desorption (Efluct) can be described by, 

                                                                    〈    〉                                                  (5.6) 

                                                                       〈    〉,                                           (5.7) 

where Nμ and Nfluct represent the mean number of molecules and the number molecules 

giving rise to the fluctuations, respectively. Eμ and Efluct interfere with each other, which 

results in heterodyning optical mixing where the time-independent Eμ acts as the local 

oscillator. The SH intensity generated when there is a local oscillator present is equal to 

the square of the sum or difference of the amplitudes of the electric fields of the signal 

and the local oscillator. As such, the SH heterodyned output intensity can be expressed 

as, 

                                                  |  〈    〉         〈    〉|
 
 

                                (  〈    〉)
 
  (      〈    〉)

 
          〈    〉

 .                  (5.8) 

In the cross term of the expanded expression there is a linear relationship between the 

overall SH intensity and Nfluct, which is enhanced by Nμ. Although the SH intensity is 

proportional to the square of the number density of molecules (Equations 5.3 and 5.4), a 

linear relationship between the SH intensity and Nfluct will always exist when heterodyne 

optical mixing is present. Given the linear relationship between the SH intensity and the 

number of molecules comprising an instantaneous fluctuation, the general correlation 

functions for linear spectroscopic methods can be applied to SHCS.  

Optical heterodyning is very advantageous and provides a simple way to increase 

the measured intensity from individual fluctuations; the larger the mean SH intensity, the 

larger the measured fluctuations. Additionally, this also means that a larger mean 
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intensity or larger number of molecules will be more desirable in SHCS and provide 

more resolvable correlation data. This heterodyne effect has been extensively used with  

XPCS and shown to decrease the noise in the correlation data as the local oscillator 

intensity is increased.4,35 It is important to note that the correlation function can be 

distorted by heterodyne optical mixing, such that the heterodyne correlation function is 

given as,4  

                                  ( )         ( )     
   ( )  ,                                  (5.9) 

where C1 and C2 are constants related to the contributions from the fluctuation intensity 

and local oscillator intensity. The first term is the heterodyne term and second term is the 

intensity fluctuation term. If the local oscillator intensity is much larger than the intensity 

from the fluctuations, which is normally the case, the heterodyne term will dominate and 

the correlation function will just be G(τ) expressed in Equation 5.2.
4  

Experimentally, in SHCS heterodyning allows the number of molecules giving 

rise to the fluctuations, Nfluct, to be very small compared to the mean number of molecules 

while still being detectable (assuming most noise in the correlation data arises from 

detection system shot noise). Similarly in DLS and XPCS, when the local oscillator 

intensity is much greater than the intensity from the fluctuations, the fluctuations are still 

detectable and there is an improvement in the S/N of the correlation data.3,35 This is 

drastically different from FCS, or other incoherent correlation spectroscopies, where the 

mean fluorescence signal can overwhelm the fluorescence intensity measured for an 

fluctuation if the number of molecules is too large.27 This difference comes from the fact 

that the S/N of the correlation data is dependent on the spatial coherence of the detection 

area. In FCS this means the S/N is dependent on the number of molecules while in the 
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coherent processes of DLS, XPCS, and SHCS the S/N is dependent on the number of 

coherence areas sampled. The advantage of heterodyne mixing in SHCS is that it 

provides a rather simple way to increase the S/N of the correlation data by increasing the 

mean intensity, whether the intensity is increased by increasing the number of molecules 

within the illumination area or increasing the power of the excitation source.   

 

5.4 Correlation Function for Surface Binding Kinetics 

In order to extract any meaningful information from the correlation data, 

knowledge of the dynamic processes taking place within the observed system must be 

known. When investigating the reversible binding of a surface biomolecular interaction, 

the possible contributing dynamic processes include diffusion in and out of the detection 

area and adsorption and desorption of the molecules to the surface. In FCS, it has been 

repeatedly demonstrated that the instantaneous intensity fluctuations can indeed describe 

both of these dynamic events.8,29,37 The correlation function is the sum of the 

contributions from surface-bound molecules [C] and molecules in solution [A], which is 

given by the following expression: 

                        ( )       ( )      ( )     ( )      ( )                       (5.10) 

where the last two terms can be neglected if the dynamic time constants from diffusion 

and surface binding are significantly different and rebinding of previously surface-bound 

molecules is negligible. Additionally, the surface specificity of SHCS allows the second 

term of Equation 5.10,    ( ), to be neglected as it contains only contributions from 

molecules in solution. Additionally, the only term contributing to SHCS correlation data 

is    ( ), which contains the contributions from surface-bound molecules, including 
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translational/rotational diffusion and chemical binding kinetics. The contributions from 

rotational and translational diffusion may be neglected if the rates occur at a different 

time scale than surface binding, similar to why the last two terms of Equation 5.10 can be 

neglected under the condition of differing time scale of events. The time scales of 

rotational/translation diffusion and surface binding can be separated where only 

contributions from surface binding are contributing if the time step (τ) is much slower 

than the rotational diffusion rate or the illumination area is sufficiently large that the 

translational diffusion rate would occur at a much longer time scale compared to the 

surface binding rates.8,37 Given that the measured intensity fluctuations are only a result 

of dynamics that occur on the time scale greater than τ, only high repetition rate lasers 

(kHz and MHz) are able to detect the nanosecond time constants of the rotational 

diffusion of molecules.33,42 Using a much longer time step of 50 ms from a 20 Hz laser 

(as used here and in the following chapters) these extremely fast rotational dynamics 

would be impossible to detect. Even large μm sized particles, whose rotational time 

constants are relatively slower (a few milliseconds in water)40 are still too fast to be 

detected using a 50 ms time step.  

The time scale of translational diffusion (1/Rt) is dependent on the diameter of the 

illumination area (d), such that        ⁄ .43 The translational diffusion of  the surface-

bound protein examined here is rather slow (a time scale of 106 s)32 given the rather large 

illumination area (1 mm2) used in this study, meaning that the translational diffusion 

would only be present at much longer time scales than the binding kinetics examined here 

which exhibit time constants on the order of a few seconds.32 As such, it is highly 

improbable that the measured fluctuations in SH intensity on the time scale of a few 
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seconds with a time step of 50 ms and a 1 mm2 illumination area are due to either 

translational or rotational diffusion. Under these conditions, the correlation data in SHCS 

are only a function of the surface binding kinetics. This situation is similar to the case in 

FCS where there are no diffusive contributions, which has been thoroughly developed by 

Starr and Thompson.29  

As mentioned in the previous section there is a linear dependence of the SH 

intensity with respect to N from the instantaneous fluctuations due to the heterodyne 

optical mixing. As long as the heterodyned contribution is large there will be no 

distortion to the correlation function and it will resemble that of any linear ergodic system 

as discussed in the previous section.4 The developed theory for FCS in the limit of no 

bulk diffusive contributions can then be applied to SHCS. The only condition being that 

the transport rate due to translational diffusion on the surface is much slower than the 

reaction rate of binding, which as mentioned earlier is almost always the case for large 

illumination areas.8 Assuming a typical reversible biomolecular interaction where the 

average solution concentration of molecules, A, are in dynamic equilibrium with 

unoccupied surface binding sites with an average density B, and interact to produce an 

average density of surface-bound complexes, C, the reaction mechanism can be written 

as,  

                         
off

on

k

k
 ,                                            (5.11) 

with the adsorption and desorption rate given by kon and koff, respectively. The 

equilibrium binding constant, Ka, which describes the complete reaction, can then be 

determined using: 
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                                               (5.12) 

When the observation area is very large and the reaction time constant is much less than 

the diffusion time constant, the dynamics are reaction rate limited and the correlation 

function will have the form of a first order exponential decay with the time constant equal 

to the reaction rate, Rr, written as,34  

          ( )   ( )          .                                    (5.13) 

Since the detectable change in the measured SH intensity is related to the change in 

bound molecules, the rate of reaction of Equation 5.13 can be described as, 

                                             ,                                      (5.14) 

where [A] is the concentration of the analyte in bulk solution. In SHCS, the number of 

molecules observed on the surface is always much greater than the number of molecules 

observed in solution with the number of molecules observed in solution equal to zero.  

Under these conditions the correlation function at time zero, G(0), is described by,34 

                                                               ( )  
 

     
,                                                  (5.15)  

where the concentration of bound complexes at the surfaces is represented by [C]. 

Knowing that Equation 5.12 is also equal to [C]/[A][B] and that the total surface density 

of binding sites is equal to the concentration of the bound and unbound sites, [C] + [B], 

Equation 5.15 can be more meaningfully expressed as, 

                                                              ( )  
 

  
  

 

     
,                                            (5.16) 

where Ns is a normalization constant related to the surface density of adsorbed analyte. 

Combining Equations 5.13, 5.14, and 5.16 gives the normalized time dependent 

correlation function, G(τ), for a reversible biomolecular interaction that is reaction rate 
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limited and can be written as,8  

                     ( )   
 

  
  

    

      
    [ (            ) ],                      (5.17) 

Using Equation 5.17, both the adsorption and desorption rate can be retrieved from the 

measured fluctuations in SH intensity for a single analyte concentration; however, to 

uncouple these parameters a separate measurement of the desorption rate is beneficial. 

Alternatively, if there are no concentration dependent binding kinetics, such as in a 

narrow range of [A], collecting correlation data for multiple bulk concentrations can also 

be used to provide the adsorption and desorption rate with decreased error.  

 

5.5 Coherence 

In DLS and XPCS the area of detection is often kept small; however, this is not to 

reduce the number of molecules in the detection area, as is the case in FCS.3,4 Instead, the 

area is reduced in both DLS and XPCS to limit the detection area to one coherence area 

in order to satisfy the requirement that spatial coherence be maintained at the detector in 

order to maximize the fluctuations measured.3 Each fluctuation in intensity takes place at 

a point in the scattered field and if another fluctuation occurs at a different point that is 

far away, outside one coherence area, the illumination area and detection area become 

spatially incoherent and it is much more difficult to correlate the fluctuations as they arise 

from multiple spatially incoherent intensity maxima and minima. Consider the case of 

DLS in which a scattering pattern from two molecules a distance of d apart produces an 

interference pattern. A maximum in intensity will occur every multiple of  
 
    , where 

θ is the angle separating the two molecules.3 If the detection area is larger than the 

angular separation between intensity maxima, then there will be many maxima and 
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minima in intensity (or multiple coherence areas) detected simultaneously. Consequently, 

the measured fluctuations are much less than those measured from a smaller detection 

area only containing one intensity maximum (or one coherence area).3 This is primarily 

why it is necessary to reduce the portion of the sample which is illuminated or reduce the 

detection area in scattering processes that have small spatial coherence areas. In 

incoherent FCS, the illumination area is reduced to limit the number of molecules as 

fluctuations in intensity are the sum of many independent fluorophores each essentially 

representing its own coherence area. As such, smaller illumination areas will have fewer 

coherence areas (or fluorophores), resulting in improved S/N of the correlation data.28 

Although there is a need to maintain the detection system such that only one coherence 

area is sampled for both  FCS and DLS, the parameter that determines the optimal size of 

the illumination or detection area is quite different. The single most important factor that 

governs the choice of the illumination or detection area is the coherence of the scattered 

field. In FCS where there is no spatial coherence between fluctuating florophores, the 

limitation of the illumination area is dependent on the number of florophores within it. 

On the other hand, both DLS and XPCS rely on the spatial coherence of the scattered 

field such that the size of the detection area is determined by the number of coherence 

areas and not the number of molecules within the illumination/detector area.  

Similarly, the illumination area of coherent SHCS is determined by the spatial and 

temporal coherence of the SH output. However, the emissive coherent nature of SHG 

gives it a large coherence area with a relatively long coherence length under the proper 

experimental conditions described in Chapter 4.38 The spatial coherence of the SH output 

is essentially equal to the overlapped area of the two spatially coherent incident beams. 
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This is quite different from DLS or XPCS where the spatial coherence is dependent on 

the angular separation between molecules and the incident wavelength, more akin to 

diffraction seen from a slit experiment. This is primarily due to the emissive process of 

SHCS as compared to the nonemissive scattering processes of DLS and XPCS. The large 

spatial coherence from the emissive SH output allows the illumination area and detection 

area to be kept large without decreasing the S/N of the correlation data. Additionally, 

using a counter-propagating SHG setup (as described in Chapter 2)44 produces an 

extremely temporally coherent output where any distortion in the wavefront of the 

generated SH output is minimized as it is produced normal to the surface and not at an 

angle. This is not found in either DLS or XPCS as the scattered light necessarily comes 

out at an angle and loses its temporal coherence over a much shorter distance. The 

emission of the SH output normal to the surface allows the output to maintain its large 

spatial coherence over a long distance. In other words, the SH output is both extremely 

spatially and temporally coherent. The temporal coherence can be described by the length 

over which the SH output remains spatially coherent. This distance known as the 

confocal distance is dependent on illumination area and can be calculated for a 

propagating Gaussian beam by,45  

        
   

 

  
,                                                     (5.18) 

where w0 is the detection area width, λ is the wavelength of the SH output and α 

represents the inherent nonideality of the incident beam from a plane-wave calculated in 

Chapter 4 to be equal to 2.33.38 Consider a spatially coherent illumination area whose 

diameter is ~ 1 mm, using Equation 5.18 the expected coherence length would be ~ 5 m. 

As long as the detector is within this distance and the detection area is kept the same as 
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the spatially coherent illumination area, the detected intensity generated is from a 

spatially and temporally coherent plane-wave with a Gaussian intensity profile with only 

one intensity maximum.  This situation is consistent with keeping the detection area 

smaller than one angular separation in DLS or XPCS in order to maintain spatial 

coherence and minimize the number of simultaneously detected intensity maxima. For 

practical purposes, the detector-sample distance in the SHCS studies presented here and 

in the following chapters was well-below the coherence length, usually only ~ 5 cm, 

providing an extremely spatially and temporally coherent wavefront at the detector.  

The dependence of the coherence length on the size of the illumination area was 

shown in Chapter 4 to follow Equation 5.18 for SH emission produced using a counter-

propagating optical arrangement. The coherence length was determined using lens-less 

surface SHG imaging (SSHGI) by incorporating the SHG active small molecule SBN 

into various sized DOPC PSLBs patterned using the USAF resolution test target.38 The 

lens-less SSHG image of two different sized linewidths, 355 and 397 μm, is reproduced 

here from Figure 4.4 and shown in Figure 5.2A. For comparison a white light image of 

the same linewidths of the test target are shown in Figure 5.2D. The lens-less SSHG 

images show no diffraction and are readily resolvable at the detector-sample distance of 7 

cm used to obtain the images. However, at further detector-sample distances diffraction 

was seen, indicating the loss of spatial coherence at that distance. As mentioned in 

Chapter 4, for the linewidths of 355 and 397 μm shown in Figure 5.2A, the coherence 

length was found to be approximately 64 and 80 cm, respectively. The distance 

dependence of the coherence length was found to follow Equation 5.18 where larger 

illumination areas (or linewidths) maintained spatial coherence over a greater distance 
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compared to smaller illumination areas. It is important to note that as the illumination 

area decreases, the temporal coherence or coherence length also decreases, as illustrated 

in Equation 5.18. This means that if the detector position is kept constant while the 

illumination area is decreased there would be a decrease in the measured fluctuations in 

intensity due to the decreased coherence. Chapter 4 not only demonstrates the large 

spatial coherence of the SH output (equal to the size of the illuminated area at distance 

zero), but also demonstrates that the temporal coherence is longer the larger the 

illumination area. For SHCS, the longer temporal coherence for large illumination areas 

means the illumination area can be kept much larger as compared to DLS and XPCS. 

DLS and XPCS are scattering processes where the incident light interacts with the 

sample to generate nonemissive scattering. This is akin to back illuminating the USAF 

test target with an excitation light source as shown in Figure 5.2B for linewidths 355 and 

397 μm (reproduced from Figure 4.8). These images are less discernable due to the loss 

of coherence and resulting diffraction at the same detector-sample distance (7 cm) used in 

Figure 5.2A. As with any diffraction or scattering experiment if a pinhole aperture at the 

detector was used to minimize the detection area to one coherence area than the image 

would be discernable and exhibit minimal diffraction. Comparing the images in Figure 

5.2A and 5.2B it is apparent that the coherent properties of the system are significantly 

different for an emissive (SHCS) or scattering (DLS and XPCS) process where the 

former exhibits much greater spatial and temporal coherence.  

An image of the same linewidths shown in Figure 5.2 was also obtained using 

lens-less fluorescence imaging, an incoherent emissive process (reproduced from Figure 

4.9 and shown in Figure 5.2C). The lack of any discernable features seen in the lens-less  
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Figure 5.2. Comparison of coherence area and length between (A) lens-less SH imaging, 
(B) back illumination UV imaging, and (C) lens-less fluorescence imaging. (D) is a white 
light image of the USAF test target group 0 elements 3 (397 μm) and 4 (355 μm). 
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fluorescence image suggests that when there is complete incoherence, even if it is an 

emissive process, the linewidths cannot be resolved. Clearly, spatial coherence is 

necessary to resolve any image and temporal coherence is necessary to image at longer 

distances. The images in Figures 5.2A-C visually exhibit the difference between emissive 

(SHCS) and scattering processes (DLS and XPCS), as well as spatially coherent (SHCS) 

and incoherent processes (FCS). An emissive coherent process generates a much more 

spatially coherent output than a nonemissive process. Even though the excitation source 

is coherent, scattering processes, such as DLS and XPCS, are susceptible to diffraction if 

the detection area is larger than one coherence area. An emissive incoherent process, such 

as FCS, drastically limits the size of the illumination area to include as few molecules as 

possible as there is effectively no coherence area. The result of SHG having greater 

coherence for larger illumination areas suggests that minimization of the illumination 

area in order to improve spatial coherence, as seen in DLS or XPCS, is not as necessary 

or beneficial in SHCS. 

 

5.6 Correlation Function Signal-to-Noise 

There are a variety of factors that contribute to the S/N detected in the correlation 

data. The most significant of these is the shot noise of the detection system.3,4 Most of the 

shot noise from the detection system is unavoidable; however, the majority of the noise 

from the detection system is uncorrelated and can simply be removed from the 

correlation data by removing the first data point or filtering the high frequency detection 

system noise.42 Fluctuations in the laser intensity can also distort the correlation data. 

However, as a suitable laser can be tuned to produce a high quality TEM00 mode beam 
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and if a pinhole aperture is used to spatially filter the output of the laser, the noise 

contributions due to spatial inhomogeneities in the beam can be significantly reduced. 

Additionally, the noise from a suitable “background” sample can be monitored and 

correlated to determine if any correlated noise exists from the laser, background matrix or 

detection system. This will be shown in more detail in the following chapters where the 

correlation data from a pure DOPC bilayer (the background matrix) does not exhibit any 

correlation, indicating there were no correlated contributions from either the background 

matrix, laser optics or detector system. It is important to note that extreme care must be 

taken to align the cavity of the laser and optimize the beam intensity distribution, as these 

parameters greatly affect the noise of the correlation data and can prevent resolvable 

correlation data from being obtained. Maintaining the laser so it is stable means that most 

of the noise seen in the correlation data will be due to the detection system shot noise. 

The detection system noise is constant regardless of the system being probed,3,4 meaning 

that heterodyne optical mixing between the SH mean intensity and the intensity 

fluctuations (discussed earlier) will lead to an increase in the S/N of the correlation 

data.35 As shown earlier, using heterodyne mixing an increase in the SH mean intensity 

will increase the measured intensity fluctuations, leading to an increase in the S/N of the 

correlation data.  

In Equations 5.3 and 5.4 it was shown that the square-root of the SH mean 

intensity, √   , is linearly proportional to Nµ. Since the cross-term in Equation 5.8 is the 

dominant contributing term to the correlation data, it can be concluded that the S/N of the 

correlation data is linearly proportional to Nµ, or in other words is linearly proportional to 

the √   . Experimentally, this is can be shown by collecting correlation data for the same 
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system at multiple excitation power intensities, which would increase the measured SH 

mean intensity while keeping the system otherwise unchanged (i.e., same number of 

molecules, same illumination area, same detection area). Here, data for the binding of 

240 nM CTb to a GM1 doped DOPC bilayer were collected over time (for at least 2 hrs) 

for every pulse of a 20 Hz Nd:YAG laser. Correlation data were obtained using three 

different laser powers (15 mJ/pulse, 21 mJ/pulse, and 25 mJ/pulse), which lead to an 

increase in the measured SH mean intensity. The S/N of the correlation data was 

calculated by taking the ratio of the amplitude of the correlation data at time zero to the 

standard deviation at long time. Plotting the S/N of the correlation data as a function of 

the √    shows that there is indeed a linear relationship (shown in Figure 5.3). The data 

in Figure 5.3 not only illustrate there is an increase in the correlation data S/N as the SH 

mean intensity is increased, but also show that heterodyning does in fact lead to a linear 

relationship between the correlation data and N. It is important to note that the S/N ratio 

approaches 1 as √    approaches 0; this stems from the fact that in the absence of any 

correlated fluctuations there will always be uncorrelated detection system noise in the 

correlation data where the signal (the magnitude of the correlation data) is equal to the 

noise (the standard deviation in the long time). 

 It is obvious from Equations 5.3 and 5.4 and Figure 5.3 that the most 

straightforward way to increase the overall SH intensity and S/N of the correlation data is 

to either increase the total density of molecules, N, or increase the overall power 

generated from the incident electric fields. This is similar to what is seen in DLS and 

XPCS; however, the larger spatially and temporally coherent output seen in SHCS as 

opposed to either DLS or XPCS makes it unnecessary to decrease the illumination or 
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Figure 5.3. Plot of the S/N of the correlation data for 240 nM CTb binding to a GM1 
doped DOPC bilayer as function of √   . The three laser powers used to collect the data 
were 15 mJ/pulse, 21 mJ/pulse and 25 mJ/pulse. 
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detection area in order to increase the S/N of the correlation data. To demonstrate the S/N 

of the correlation data is not improved when either the illumination or detection area is 

decreased, correlation data for 240 nM CTb binding to a GM1 doped DOPC bilayer were 

collected for a 1 mm2 detection area and a 0.6 mm2 detection area (data shown in Figure 

5.4). The detection area was adjusted by placing an aperture in front of the detector and 

opened to either 1 mm2 and 0.6 mm2. From the data in Figure 5.4 it is apparent that the 

larger detection area of 1 mm2 (Figure 5.4A) has less noise in the correlation data as 

compared to the smaller 0.6 mm2 detection area (Figure 5.3B). The calculated S/N of the 

correlation data for Figure 5.4A and 5.4B are 11.2 and 6.4, respectively. Although the 

reaction rate for both sets of correlation data is the same, it is clear decreasing the 

detection area does not lead to better S/N of the correlation data and in fact leads to a 

significant decrease in the S/N of the correlation data. Additionally, it is interesting to 

note that for the smaller (0.6 mm2) detection area the collection time of the correlation 

data was 3 times longer (6 hrs) than the larger (1 mm2) detection area and it still has more 

noise. This is consistent with Koppel’s prediction that the S/N of the correlation data is 

proportional to 〈 〉       .28 Since the correlation data shown in both Figures 5.4A and 

5.4B are within one coherence area (  ) or spatially coherent and the photocount (〈 〉) 

significantly decreases from Figure 5.4A (1 mm2) to 5.4B (0.6 mm2) the collection time 

( ) necessarily had to be increased for Figure 5.4B to maintain the same S/N as Figure 

5.4A. 

 Although increasing the density of molecules within the illumination area (Figure 

5.3) or increasing the illumination area (Figure 5.4) will increase the SH intensity and the 

S/N of the correlation data, the collection time also significantly impacts the S/N of the 
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Figure 5.4. Correlation data as function of detection area for 240 nM CTb to a 1 mol % 
GM1 doped DOPC bilayer using a detection area of (A) 1 mm2 and (B) 0.6 mm2.  
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correlation data.28 This is especially true when detecting small fluctuations within a large 

number of molecules. The S/N of the correlation data is dependent on the photocount, the 

number of coherence areas, and the collection time (  ⁄  〈 〉       ). If the 

illumination area is already spatially coherent (one coherence area) and the photocount is 

as high as possible, then adjusting the collection time is necessary to improve the S/N of 

the correlation data. The contribution of the additional noise to the correlation data due to 

the finite collection time can be expressed as,3,28 

      
 

  √ .                                                       (5.19) 

Equation 5.19 illustrates the importance of choosing an appropriate collection time to 

obtain reasonable S/N. To improve the S/N of the correlation data, the collection time 

needs to be long enough to collect a large enough number of dynamic events. For a large 

density of molecules this time may be relatively long. For example, FCS experiments 

have on average 103 molecules in the detection area whose diffusion dynamics occur on a 

time constant below a few milliseconds. This means resolvable correlation data can be 

obtained in less than a few mins.32,37,42 The average collection time for FCS experiments 

of this type is typically well below a minute with the longest collection time found to be 

10-15 min for longer dynamic rates. On the other hand, for a density of molecules on the 

order of 106 or greater, the collection time required to obtain resolvable correlation data is 

much longer, on the order of hrs. This can be seen in Figure 5.5A-C, which shows the 

correlation data obtained for three collection times for the same sample. In Figure 5.5A-

C, the binding of 240 nM CTb to a GM1 doped DOPC lipid bilayer was analyzed using 

SHCS with a calculated surface density of 8.8 x1011 molecules. The intensity fluctuations 

were monitored for over 2 hrs and then analyzed by taking a 10 min segment of data 
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Figure 5.5. Correlation data as a function of collection time from measured intensity 
fluctuations collected for every pulse of a 20 Hz laser over time for the binding of 240 
nM CTb to a GM1 doped DOPC lipid bilayer for a collection time of (A) 10 min, (B) 1 
hr, and (C) 2 hrs.  
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(Figure 5.5A), an hr segment of data (Figure 5.5B) and finally for the entire 2 hr data 

collection. (Figure 5.5C).   

It is apparent that the shortest collection time (~10 min) is not long enough to 

extract the dynamics of the system as there are not enough dynamic events collected to be 

detectable; however, as the collection time is increased more dynamic events are 

collected. Additionally, as predicted by Equation 5.19 an increase in the S/N of the 

correlation data is seen as the collection time is increased. It is also important to note that 

the time constant of the dynamics shown in Figure 5.5A-C is on the scale of seconds, 

much longer than typical FCS diffusion experiments, which requires additional collection 

time to retain the same S/N.28 For the data in Figure 5.5A-C the calculated S/N increases 

from 3.7 at a collection time of 10 min to 8.8 for 1 hr and 11.2 for 2 hrs of collection 

time. Plotting the experimental S/N versus T1/2 produces a linear relationship as predicted 

by Equation 5.19 (shown in Figure 5.6), illustrating that the correlation data in Figures 

5.5A-C are in fact from correlated molecular dynamics not merely from system noise. 

Clearly, the S/N is drastically affected by the collection time and must be significantly 

large when there is a large density of molecules in a large detection area in order to 

produce resolvable correlation data where there are enough dynamic events to make the 

intensity fluctuations detectable.   

 Another interesting observation related to the S/N in the SHCS setup employed 

here and the following chapters is that although the illumination area was kept rather 

large ~ 1 mm2, only about 8% of the total area was actually responsible for the detected 

SH intensity. This was determined by taking an image of the illumination area using a 

CCD camera and integrating for 5 mins (this was the minimum integration time required 
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Figure 5.6. S/N of  the correlation data as a function of the square-root of collection time 
from measured intensity fluctuations collected for every pulse of a 20 Hz laser over time 
for the binding of 240 nM CTb to a GM1 doped DOPC lipid bilayer.  
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to visualize the illumination area). The resulting image is shown in Figure 5.7 with the 

imaged beam area equal to 1.4 mm2. Here again, the same binding system used in Figure 

5.1 was used. By subtracting the background noise from the detector (outside the 

illumination area) and then calculating the number of photons above the background 

threshold, the percent of the total area above the background could be calculated. For 

Figure 5.7 the contribution area above background was ~0.12 mm2, which accounts for 

only 8% of the total illumination area. Thus, although in a beam area of ~ 1 mm2 covered 

with a monolayer of protein whose diameter is ~14 nm there will be roughly 1011 protein 

molecules, only 8% will contribute to the measured SH intensity. It is important to note 

that this percentage is likely much smaller for the instantaneous SH intensity measured 

from the fluctuations as the image in Figure 5.7 was averaged for 5 mins and the 

fluctuations are only measured for the laser pulse duration of ~7 ns. 

 

5.7 Summary 

 The general principles of correlation spectroscopy coupled with SHG were 

presented here. The advantages of the coherence and heterodyning possible with SHG 

and its contributions to the correlation data were thoroughly described. The large spatial 

and long temporal coherence of the SH output make it possible to have a large 

illumination and detection area without decreasing the S/N of the correlation data. In 

other incoherent correlation spectroscopies and scattering techniques the coherence area 

is nonexistent or small and as such the illumination/detection area must be kept small in 

order to improve the S/N of the correlation data. An additional advantage of SHCS is the 

enhancement in the measured SH intensity from the fluctuations by the mean SH 
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Figure 5.7. SHG image of the beam area with the 8% of photons responsible of detected 
SH intensity illuminating above the background.  
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intensity. This heterodyning effect increases the S/N of the correlation data as the mean 

intensity is increased while the majority of the noise, which comes from the detection 

system, remains constant. Sufficient collection time can also be adjusted to increase the 

S/N of the correlation data. Carefully choosing the proper parameters allows the 

instantaneous fluctuations in SH intensity to be detected and correlated to extract surface 

dynamic processes. The incredible surface specificity and label-free nature of SHCS 

make it extremely useful in extracting the binding kinetics of surface biomolecular 

interactions and will be utilized to this end in the following chapters. 
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CHAPTER 6 

 

INVESTIGATION OF SMALL MOLECULE-MEMBRANE  

KINETICS USING SECOND HARMONIC  

CORRELATION SPECTROSCOPY 

 

Reprinted (adapted) with permission from Sly, K. L.; Mok, S.-W.; Conboy, J. C. Anal. 

Chem. 2013, 85, 8429-8435. Copyright 2013 American Chemical Society. 

 

6.1 Introduction 

 In Chapter 3 SH spectroscopy was used to determine the binding kinetics and 

thermodynamics of proteins adsorbing to a biotinylated DOPC lipid bilayer using a 

conventional binding isotherm. Since the protein concentrations were in the low nM 

range and required data for several protein concentrations, collection of the binding 

isotherm required a significant amount of time to reach binding saturation and a 

significant amount of analyte. In this chapter the method of SHCS, which was developed 

in Chapter 5, is shown to provide equivalent information on surface binding kinetics and 

thermodynamics as conventional binding isotherms, but with the advantage of requiring 

less time and analyte as only one analyte concentration is needed to accurately determine 

the binding kinetics.  

As mentioned in Chapter 5, SHCS is a statistical method that uses the local 
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fluctuations of the measured SH signal to determine the binding kinetics and 

thermodynamics of molecules at a surface, similar to photon correlation spectroscopy and 

FCS. Also noted in Chapter 5, FCS is the one of the most recognized forms of correlation 

spectroscopy, where fluctuations in the fluorescence signal from a sample of fluorescent 

molecules are used to characterize the correlated molecular processes that give rise to 

these fluctuations.1 Most notably, FCS has been used to analyze lipid and protein 

diffusion,2,3 protein aggregation,4,5 simulated muscle contractions,6 and surface binding 

kinetics of fluorescently labeled biomolecules.7-13 For example, the reversible binding of 

fluorescently labeled IgG to albumin-coated surfaces and planar supported lipid bilayers 

(PSLB) doped with Fc receptors,7,8 rhodamine 6G association to C18 functionalized 

surfaces,9,10 and DNA hybridization at a water/glass interface have all be investigated 

using FCS.13 In these studies the temporal fluctuations in the fluorescence signal were 

measured from a small observation volume created using total internal reflection and 

correlated to obtain information about the dynamics of interfacial binding. The properties 

of FCS, namely its incoherent nature and contributions from diffusion of molecules in 

solution, were discussed in Chapter 5 and shown to drastically affect the resulting 

collection and interpretation of the correlation function. Specifically, fluorescence 

correlation data are complicated by fluorescence arising from species in solution, 

background fluorescence, and photobleaching.  These contributions to the measured 

correlation function confound the analysis of the surface dynamic processes.14 Small 

solution volumes and low analyte concentrations, down to single-molecule detection 

level, have been used to circumvent these issues, but the barrier to a meaningful 

correlation function then becomes the time required to collect enough dynamic molecular 
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events.14  

Chapter 5 describes how the application of correlation spectroscopy to a label-

free, surface specific and coherent technique such as SHG would eliminate observable 

fluctuations from molecular diffusion in solution and ameliorate problems associated 

with the degradation of fluorophores without having to necessarily reduce the number of 

molecules in the observation area. In this sense SHCS was shown to be more akin to DLS 

and XPCS than FCS; however the much larger coherence area observable in SHCS 

compared to DLS or XPCS makes limiting the detection area even more unnecessary. For 

SHCS the only contributions to the measured temporal fluctuations in the signal will arise 

from surface associated species, given the time interval is much longer than the time 

constant for rotational diffusion and the surface binding dynamics are much faster than 

translational diffusion. This greatly simplifies the correlation function of SHCS and 

eliminates obstacles due to fluorescent molecules in bulk solution as shown in Chapter 5. 

In the previous chapter it was mentioned that there have been a few instances where 

SHCS had been implemented to determine the translational and rotational diffusion 

coefficients of large dye molecules
15-17

 and clay particles;
18

 however, SHCS has yet to be 

utilized to determine the binding kinetics of surface biomolecular interactions. As such, 

in this chapter SHCS is used to ascertain the binding kinetics and thermodynamics of a 

small molecule associating with a PSLB for the first time.  

To demonstrate the feasibility of SHCS to effectively determine the binding 

kinetics of a molecule to a surface, the SHG active small molecule, SBN, associating 

with a DOPC PSLB is examined. The results obtained from SHCS are compared to a 

classical binding isotherm experiment to verify the accuracy of the kinetic and 
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thermodynamic values retrieved from the SHCS analysis. Using SHCS, both the 

adsorption and desorption rates are simultaneously determined using only one steady-

state concentration in a much shorter time period as compared to the conventional 

isotherm study. Thus, SHCS provides a more efficient and comprehensive method for 

studying molecular interactions at a surface without the need for an exogenous label. 

 

6.2 SHCS Theory 

The SHCS theory and correlation function describing surface biomolecular 

interactions is detailed in Chapter 5 and will be used for the study presented in this 

chapter. As mentioned in Chapter 5, it is beneficial to have a high SH intensity and as 

shown in Chapter 2 the SH intensity can be enhanced when the incident, ω, or SH, 2ω, 

frequency is resonant with an electronic transition of a molecule at the interface. In this 

chapter a fundamental wavelength of 532 nm is used such that the resulting SH 

wavelength is 266 nm, which is in resonance with the electronic transition of the small 

molecule SBN (shown in Figure 6.1). The signal enhancement from this resonance also 

has the added benefit of allowing detection down to nM concentrations of SBN.
23,24

  

The small molecule SBN, investigated in this study, has previously been shown to 

reversibly bind to a lipid bilayer.19 Due to the reversible binding of SBN to a lipid bilayer 

and the finite number of binding sites on the PSLB, typical bimolecular reversible 

binding at a surface can be assumed.19 As such, the correlation function developed in 

Chapter 5 and expressed in Equation 5.17 can be used to analyze the SHCS data obtained 

in this study.  
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Figure 6.1. Extinction coefficient spectra of SBN. 
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6. 3 Experimental Design 

6.3.1 Materials 

DOPC from Avanti Polar Lipids and SBN from Sigma-Aldrich were both used as 

received. Other materials used in this study, such as the water, PBS buffer and fused 

silica substrates were described in detail in section 3.2.1. SBN was dissolved in PBS pH 

7.4 to the desired working concentrations (0.43 nM to 20 μM for the isotherm studies and 

55 μM for the autocorrelation studies). The PSLBs used in this study were formed using 

vesicle fusion as described in section 3.2.3. 

 

6.3.2 SHG Measurements 

The counter-propagating SHG setup used for these experiments has been 

described in detail in Chapter 2.
20

 In this chapter, the second harmonic output (532 nm) 

of a Nd:YAG laser (Continuum, Surelite II, 20 Hz, 7ns pulse) was directed towards a 

prism/water interface under total internal reflection. The laser intensity at the sample was 

24 mJ/pulse and the beam size was ~ 1 mm
2
 in diameter. The reflected beam was steered 

back on itself to overlap spatially and temporally with the incident beam, resulting in an 

SH emission at 266 nm along the surface normal. Two notch filters (Semrock) were used 

to allow only light from the SHG signal through before collection by a solar-blind 

photomultiplier tube (Hamamatsu).  

 

6.3.3 SHCS Measurements 

Autocorrelation experiments of SBN association to a DOPC bilayer were 

performed using a concentration well above the SBN saturation concentration, 55 μM, 
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after a steady-state response had been reached. Single pulse data collection was recorded 

so that the time interval was dictated by the 20 Hz laser (50 msec.). Each data set was 

collected for 100 s such that there were 2,000 data points. For one experiment five data 

sets were consecutively collected totaling 10,000 data points. Twenty-five data sets from 

5 separate experiments were each cross-correlated with itself and then averaged to form 

the correlation function.  

 

6.3.4 Adsorption Isotherm Measurements 

For the standard binding isotherm of SBN adsorption to a DOPC bilayer, three 

independent binding experiments and three control experiments were conducted. For 

these experiments, increasing concentrations of SBN ranging from 0.43 nM to 20.02 μM 

were injected and allowed to reach equilibrium between the bulk solution and bilayer. To 

compensate for the bulk SBN depletion, an injection of the same SBN concentration was 

made every 5 to 10 mins until a steady-state response was reached. Typically, the lowest 

concentrations required between 1 to 2 hrs to reach equilibrium. The SH intensity was 

recorded using time averaging of 100 samples per data point at 10 min intervals for 3 to 5 

mins to allow kinetic measurements to be made as a function of time. Isotherm 

measurements were made using only the SH intensity collected at steady-state 

equilibrium for each SBN concentration. To compare multiple data sets, a two-point 

normalization to a 10 mM KOH solution and a solution of PBS pH 7.4 was performed on 

the measured SH intensity, followed by subtraction of the background signal before 

addition of SBN. 
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6.4 Results and Discussion 

6.4.1 Binding Kinetics of SBN Association to DOPC Using SHCS 

The SH signal collected for every pulse of the 20Hz laser as a function of time for 

a bulk solution concentration of 55 μM SBN intercalating into a DOPC bilayer is shown 

in the inset of Figure 6.2A. The fluctuations in the SH signal primarily arise from 

uncorrelated photon shot noise, but some of the fluctuations arise from correlated 

dynamic molecular events occurring at the surface. To extract the correlated events, the 

fluctuations in the SH signal were autocorrelated. The measured fluctuations from the 

mean SH signal were assumed to be linear with the surface density of molecules, N, as 

discussed in Chapter 5. Analysis of the square root of the SH intensity deviations (data 

not shown) confirms this assumption to be accurate, and in fact produces the same 

autocorrelation function. The normalized autocorrelation, G(τ), from 25 data sets of SBN 

intercalating into a DOPC bilayer is shown in Figure 6.2A, where every 10
th

 data point is 

shown for ease of visualization. The first point of the correlation function has been 

removed as it contains the contributions from photon shot noise.
10

 Autocorrelation was 

also performed on 20 data sets of a pure DOPC bilayer in order to verify there was indeed 

no correlation in the SH signal obtained from the bilayer alone or from photon shot noise 

on the time scale of the molecular dynamic events on the surface, as this would contribute 

to the correlation seen for the association of SBN to the DOPC bilayer. The resulting 

correlation function from the pure DOPC bilayer is shown in Figure 6.2B with the raw 

collected SH signal fluctuations shown in the inset.  

The DOPC correlation function was normalized to the magnitude of the 

correlation function obtained for SBN associating to DOPC in order to compare their  
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Figure 6.2. Autocorrelation data for A) SBN intercalating into a DOPC bilayer with fit to 

Eq. 6.7 indicated by the solid line and B) a pure DOPC bilayer normalized to the 

correlation function shown in A for comparison. Insets are representative examples of the 

measured fluctuations in SH signal that were used for the autocorrelation analysis. 
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relative magnitudes. No correlation from the DOPC bilayer or from photon shot noise 

was observed. This means the observed autocorrelation in Figure 6.2A is solely due to the 

surface binding kinetics of SBN to DOPC. The autocorrelation data of SBN intercalating 

into a DOPC bilayer, Figure 6.2A, were fit to Equation 5.17 with the parameters of Ns, 

kon, and koff and the results are given in Table 6.1. The adsorption and desorption rates 

from the nonlinear least-squares regression fit of Equation 5.17 are           

           and                   respectively. Using Equation 5.12 the equilibrium 

binding constant, K0, is calculated to be                     The large error seen in 

the predicted desorption rate is due to the high degree of correlation between the fitting 

parameters, Ns and koff. To decouple the fitting parameters correlation data for multiple 

SBN concentrations could be measured and globally fit to obtain the kon, and koff or an 

independent desorption of SBN from the DOPC bilayer can be obtained to determine koff . 

Here, the desorption of SBN from a DOPC bilayer was monitored over time after 

flushing the flowcell with excess PBS buffer (data shown in Figure 6.3). The resulting 

measured desorption rate is                   . This rate determined from the 

desorption of SBN from the DOPC bilayer is statistically the same as the rate determined 

using the normalized correlation function in Equation 5.17, as well as the calculated K0 of 

                 . The good agreement between the independently determined koff 

value and that determined from SHCS demonstrates the ability of SHCS to accurately 

determine the adsorption and desorption rates simultaneously for molecules associating to 

a surface. Since these experiments were designed to show the feasibility of SHCS to 

determine surface binding kinetics, only one concentration well above the detection limit 

was used. However, a rough estimate of the sensitivity of SHCS can be made for the data 
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Table 6.1. Measured binding kinetics for SBN association to DOPC using SHCS  and a 

typical binding isotherm including the surface adsorption rate (kon), desorption rate (koff) 

and equilibrium binding constant (K0). 

 

 

 

kon (            koff (          Ka (         

SHCS                        

Isotherm                        
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Figure 6.3. Desorption of SBN from a DOPC bilayer with a fit to an exponential decay 

indicated by the solid black line.  
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 using the known sensitivity of the PMT detector, the measured background signal 

(before SBN has been added), the incident laser power at the surface and the known 

maximum surface excess of SBN,                           published by Conboy 

and Kriech.
19

 The calculated limit of detection for SBN is      femtomoles. This limit 

of detection is on the same order of magnitude as that obtained by Conboy and Kriech for 

SH spectroscopy.
19

 It is important to remember this is only an approximation and as 

mentioned before the sensitivity of SHCS has not fully been investigated. Methods to 

improve the signal-to-noise ratio will significantly lower the limit of detection, and were 

discussed in Chapter 5. 

The surface binding kinetics obtained here using SHCS were also compared to 

those obtained by Kriech and Conboy.
19

 Although the adsorption rate,           

       , reported by Kriech and Conboy is on the same order of magnitude as the 

adsorption rate obtained using SHCS, the desorption rate obtained using both SHCS and 

a simple desorption experiment is two orders of magnitude lower than the previously 

reported rate of                   .
19

 The discrepancy in koff makes the calculated K0 

value obtained in the current study an order of magnitude higher than the value,      

              reported by Kriech and Conboy.
19

 There are a few experimental 

differences, such as the type of lipid used and the incubation time allotted for SBN to 

bind to the PSLB, which could explain some of the difference between the koff  reported 

here and the koff reported by Kriech and Conboy. However, the primary source for the 

discrepancy between the desorption values is most likely related to the substantial 

decrease in the limit of detection (~2 orders of magnitude smaller) of the SHG 

spectroscopy set up used here. The calculated limit of detection of the SHG apparatus 
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used in this chapter is 0.040   0.005 femtomoles compared to 4.5 femtomoles reported 

by Kriech and Conboy.
19

 The lower limit of detection seen here is a result of our notch 

filters having ~60% higher transmission efficiency at the SH wavelength of 266 nm and 

higher rejection in the visible region of the spectrum than those used by Kriech and 

Conboy. The lowest solution concentration of SBN that was detectable in this chapter 

was 43 nM (shown in Figure 6.5 inset), whereas Kriech and Conboy were only able to 

detect as low as 1 μM.
19

 The ability to detect a lower concentration than 1 μM in the case 

of SBN associating to DOPC is extremely important as the resulting fit to the binding 

isotherm is drastically affected. It is important to note that the deviation from a linear 

response at very low bulk concentrations (< 50 nM) seen in the inset of Figure 6.5 is a 

result of approaching the limit of detection and not a deviation from a Langmuir isotherm 

as is apparent in the complete isotherm shown in Figure 6.5. Since 1 μM is at the very 

end of the linear region of the isotherm where the adsorption and desorption rates are 

highly dependent on the slope, there are not enough data to adequately determine the 

binding kinetics. In order to obtain more accurate binding kinetics, lower concentrations 

within the linear region of the binding isotherm must be obtained, as is possible in these 

studies. 

 

6.4.2 Binding Kinetics of SBN Association to DOPC  

Using an SHG Binding Isotherm 

 In order to have a more accurate comparison for the SBN binding kinetics 

obtained using SHCS, an independent binding isotherm was obtained. The data were 

collected as a function of time at 10 min intervals for bulk SBN concentrations ranging 
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from 0.5 µm to 20.02 µm. To ensure that steady-state equilibrium had been reached at 

each concentration, multiple injections of the same concentration were made until there 

was no additional increase in SH signal. Although much lower concentrations (down to 

43 nM) could be detected, it was unnecessary to start at such a low concentration as the 

concentration of 0.5 μM gave enough data in the linear region of the binding isotherm to 

obtain an accurate fit. The adsorption and desorption rates of SBN intercalating into a 

DOPC bilayer can be determined by assuming a Langmuir binding model where the SBN 

adsorption rate is first-order with respect to both the bulk SBN concentration, Cbulk, and 

the fraction of the unbound binding sites, (1-θ), and the desorption rate of SBN is first 

order with respect to the fraction of bound SBN, θ. The rate of change in the bound SBN 

is then given by Equation 3.13. The fraction of bound SBN, θ, is taken as the measured  

√     divided by measured SH intensity at the saturation concentration, √    
   . The 

SHG data for SBN intercalating into a DOPC bilayer in terms θ versus time for the 

concentration range of 0.50 μM to 20.02 μM are plotted in Figure 6.4. Since the SHG 

isotherm data were collected by consecutively increasing the bulk SBN concentration 

until saturation was reached in a single experiment without any desorption step in 

between consecutive concentrations, the initial time of each concentration was set to zero 

by setting the initial fraction of bound SBN equal to the calculated θ for the previous 

SBN concentration at saturation, as shown in Figure 6.4. The adsorption and desorption 

rate of the data were determined by simultaneously fitting all data in Figure 6.4 to 

Equation 3.14 as the same boundary conditions were used in this study as the one 

presented in Chapter 3. 

The adsorption and desorption rates obtained from the nonlinear least-squares 
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Figure 6.4. Fraction of surface coverage, θ, as a function of time for SBN intercalating 

into a DOPC bilayer measured at the following SBN bulk concentrations: 0.5 μM (open 

circles), 1.01 μM (closed circles), 2.01 μM (open diamonds), 4.0 μM (closed diamonds), 

8.05 μM (open squares), 16.06 μM (closed squares), and 20.02 μM (open triangles). The 

solid lines represent the global fits to Eq. 3.14.  
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regression fit to Equation 3.14 are                      and                 , 

respectively, giving a K0 of                   (shown in Table 6.1). The values for 

kon, koff, and K0 obtained using the kinetic isotherm data are in good agreement with those 

obtained using SHCS.  

  Next, a thermodynamic equilibrium binding isotherm was obtained by taking 

only the SH intensity value for each concentration at steady-state equilibrium (the last 

data point for each concentration in Figure 6.4). The thermodynamic binding isotherm 

obtained for SBN intercalating into a DOPC bilayer is shown in Figure 6.5. The SH 

intensity increases with increasing concentration of SBN until it reaches saturation of  

the binding sites in the PSLB. The SH intensity is normalized and the errors are from 3 

separate experiments. Assuming a Langmuir binding model, the SH signal can be 

expressed by Equation 3.9. The equilibrium binding constant, K0, determined from the fit 

to Equation 3.9 is                  . This value is in good agreement with the K0 

obtained using SHCS.  

 

6.4.3 Comparison Between SHCS and SHG Binding Isotherms 

The good agreement between the results obtained from SHCS and those measured 

via a classic adsorption isotherm, demonstrates the validity of using SHCS to determine 

the binding kinetics of molecules at a surface. Additionally, the time required to collect 

the SHCS data was much shorter than the time required to collect the binding isotherm 

data. For example, the autocorrelation data collection took less than 2 hrs, whereas one 

binding isotherm of SBN took 6 hrs to complete. Moreover, multiple injections of SBN 

were not necessary over the course of the collection of the SHCS data as compared to the 
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Figure 6.5. SH intensity of SBN intercalated into a DOPC bilayer versus bulk SBN 

concentration. The solid line is the fit to the Langmuir model (Equation 3.9) and the error 

bars represent the standard deviation from the SHG measurement. Inset is an enlargement 

of the bulk SBN concentrations in the nM region. 
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isotherm data where an injection was made every 10 mins to compensate for bulk SBN 

depletion and to allow kinetic information to be determined. Another advantage of SHCS 

is the simultaneous determination of both the adsorption and desorption rates using only a 

single concentration of analyte. It is true that determining the desorption rate in a separate 

experiment provides a statistically better fit to the correlation data; however, since the 

desorption rate determined separately was within error of the desorption rate from SHCS, 

it is still possible to determine both the adsorption and desorption rate using a single 

analyte concentration with SHCS given Ns can be approximated. Alternatively, if 

additional SBN concentrations were also examined using SHCS, a global fit to all 

concentrations would provide a statistically better fit to the correlation data and more 

accurate kinetic information could be obtained without requiring the desorption rate to be 

determined separately. In addition to the advantages over conventional isotherm studies, 

SHCS also offers several advantages over the more commonly used FCS method. The 

most obvious advantage is that no exogenous label is required to obtain the data. This 

eliminates many obstacles seen with FCS, such as problems associated with 

photobleaching, and the unavoidable contribution from solution phase species to the 

observed fluctuations. In addition, the ability of SHCS to only detect the molecules 

bound to the surface simplifies the correlation function used to retrieve the binding 

kinetics as compared to FCS because diffusion of molecules in solution can be neglected, 

which leaves only the surface binding kinetics of molecules contributing to the 

fluctuations seen in the SH signal. These advantages make SHCS an attractive and 

efficient method to directly determine the binding kinetics of molecules at a surface. 
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6.5 Summary 

In this chapter the binding kinetics of SBN intercalating into a DOPC planar 

supported lipid bilayer were investigated using both a traditional binding isotherm and 

SHCS. The adsorption and desorption rates, as well as the equilibrium binding constant, 

determined using both methods were statistically identical within the 99% confidence 

interval. These results demonstrate the validity of using the surface specific, label-free 

and coherent method of SHCS to examine biomolecular interactions at a surface. 

Although the desorption rate was obtained a priori in order to decouple the 

autocorrelation fitting parameters and reduce the error in the resulting values, it is not 

wholly necessary. As mentioned earlier, collection of autocorrelations for several SBN 

concentrations could also provide the kon, and koff as well as provide any dependence the 

binding kinetics might have on bulk concentration. This approach is more thoroughly 

discussed in Chapter 7. The lower total analyte quantity required and the reduced time to 

obtain the surface binding kinetics makes SHCS an attractive analytical tool for many 

bioanalytical systems where analyte and time are often scarce. Moreover, the surface 

specificity, label-free nature, and large coherence length of SHCS eliminate some of the 

challenges seen in FCS due to fluorophores and diffusion of molecules in bulk solution. 

Since the only contribution to the fluctuations in SH is from surface associated 

molecules, SHCS data analysis is greatly simplified. The simplicity and efficiency of 

SHCS makes it a new and valuable technique to directly and precisely ascertain the 

binding kinetics of molecules at a surface without a label.  
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CHAPTER 7 

 

DETERMINATION OF MULTIVALENT PROTEIN-LIGAND  

BINDING KINETICS USING SECOND HARMONIC  

CORRELATION SPECTROSCOPY 

 

Reprinted (adapted) with permission from Sly, K. L. and Conoby, J.C. Anal. Chem. 2014, 

85, 11045-1105. Copyright 2014 American Chemical Society. 

 

7.1 Introduction 

 In Chapter 6, SHCS accurately detected the binding kinetics of the small molecule 

SBN intercalating into a DOPC bilayer. This simple monovalent system demonstrated the 

potential of using SHCS to examine surface binding kinetics for a single analyte 

concentration. To further probe the sensitivity and scope of SHCS, in this chapter a more 

complex binding system involving multivalent protein-ligand interactions at the surface 

of PSLBs is investigated using SHCS. As mentioned in Chapter 3, the binding kinetics of 

multivalent protein-ligand interactions often show a dependence on the bulk protein 

concentration. The ability of SHCS to examine the surface binding kinetics for a single 

analyte concentration allows multivalent protein-ligand interactions to be examined in 

more detail. As such, in this chapter the binding kinetics of two multivalent protein-

ligand pairs for several protein concentrations are determined using SHCS.   
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Multivalent protein binding interactions have attracted much attention in 

biomolecule detection, biological separations, biosensors and immunological assays.
1-6

 

Multivalent protein-ligand interactions have shown stronger binding, reduced non-

specific interactions, and increased aggregation on surfaces relative to monovalent 

interactions.
4,5,7,8

 Multivalent protein-carbohydrate interactions in particular have a 

significant biological role in cell trafficking and recognition,
9
 pathogen attachment and 

uptake,
1,10

 and tumor cell differentiation based on glycolipid/glycoprotein expression.
11,12

 

Although the diverse cellular and analytically beneficial binding properties have led to 

much research on multivalent protein-ligand interactions, there is still much that is not 

understood about their complex binding properties, especially at surfaces.
4
  

Most multivalent protein-carbohydrate interactions continue to be analyzed with 

simple binding models that operate under the assumption that binding is reversible and 

each binding event occurs independently without ligand-ligand or protein-protein 

interactions.
4,13

 Many studies have shown the interactions between multivalent proteins 

and carbohydrates are indeed cooperative in nature
7,8

 with strong ligand-ligand and/or 

protein-protein interactions that affect the apparent binding affinity. Only a few studies 

have examined the binding affinities as a function of ligand density
7
 and even fewer 

studies have investigated the dependence of the binding affinity on protein 

concentration.
14

 These previous studies suggest that multivalent protein-carbohydrate 

interactions are far more intricate than simple binding models alone can predict. The 

ability to more efficiently and precisely measure the binding kinetics of these multivalent 

protein-carbohydrate interactions will provide further understanding of the binding 

properties of these complex interactions. Such information would allow for more 
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effective design of biosensors and drugs that utilize multivalent protein-ligand 

interactions. Two proteins that can be used as archetypes to examine the influences of 

protein concentration, cooperative behavior, and electrostatics on the complex binding 

properties of multivalent protein-ligand interactions are cholera toxin (CT) and peanut 

agglutinin (PnA). CT and PnA are both commonly used in biosensors and medical 

diagnostics due to their highly specific interaction with the most abundant ganglioside in 

cell membranes, GM1, making further investigation of the binding properties of these 

multivalent interactions particularly biologically valuable.   

 CT, a pathogen secreted from the bacterium Vibrio Cholerae, is an AB5 cytotoxin 

composed of a central A subunit surrounded by five identical B subunits that form a 

pentameric ring.
7
 It is the CT B subunit (CTb) that is responsible for binding to the cell 

surface via the pentasaccharide moiety of the ganglioside GM1.
15

 Following the 

attachment of the B subunits to the cell membrane, the toxic A subunit enters the cell and 

causes an elevated level of cAMP in the small intestines that leads to fluid loss.
22

 A 

myriad of techniques including fluorescence,
2,3,7

 SPR,
16,17

 ELISA,
1
 and differential 

scanning calorimetry,
8
 have been implemented to examine the specific binding kinetics of 

the CTb-GM1 interaction. Although most of the studies have shown CTb exhibits almost 

no nonspecific interactions to membranes without GM1, the reported specific binding 

affinities range from 10
6
 M

-1
 to 10

11
 M

-1
.
2,3,7,16,17

 Some of this disparity may be attributed 

to experimental differences such as ligand density, incubation time, and mass transport 

limitations. Several studies have found the Hill-Waud model, a cooperative binding 

model that accounts for cooperative behavior between ligand molecules, to more 

accurately describe the CTb-GM1 interactions as compared to the more common 
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Langmuir model.
2,7

 However, many studies which examine the CTb-GM1 at low nM 

concentrations in order to determine the cooperative behavior require extremely long 

incubation periods to obtain an accurate steady-state response. As such, inconsistent and 

lower binding affinities are often measured because the data obtained was limited by 

mass transport.
18

 A method that can measure CTb binding to GM1 for several CTb bulk 

concentrations after steady-state equilibrium has been reached would eliminate mass 

transport effects and provide the binding kinetics as a function of bulk CTb 

concentration. 

Similar to CTb, the multivalent carbohydrate binding lectin PnA has been 

extensively used in bioanalytical assays; however, its binding properties to various 

carbohydrate moieties are usually only qualitatively examined and have been less 

frequently quantified. Peanut agglutinin (arachis hypogaea agglutinin) is a tetrameric 

lectin that binds specifically to terminal D-galactosyl groups.
6,19

 This carbohydrate-free 

protein is known for its anti-T activity and is routinely used in serology to monitor 

polyagglutinability.
6,20,21

 Its high specificity for galactosyl groups with a decrease in 

affinity from Galβ1,3GalNAc to GalNH2 to Gal, has made PnA a useful aid in 

characterizing the specific glycoprotein/glycolipid expression on the cell surface of 

malignant cancer cells.
6,12

 The widespread use of PnA as a biochemical tool for 

carbohydrate separation has made it the subject of much research.
4,13,19

 Techniques such 

as carbon NMR,
19,22

 ELISA,
5,23

 fluorescence,
20

 and ultraviolet difference spectroscopy
24

 

have been used to determine the binding properties of PnA to various carbohydrate 

groups, gangliosides, and glycolipids. However, very few of these studies have moved 

beyond the traditional Langmuir binding model used to determine the thermodynamic 
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binding affinity for monovalent interactions and, to the authors’ knowledge, there is no 

study on the dependence of the binding kinetics on bulk PnA concentration. While 

previous studies have shown the highly specific nature of the PnA-GM1 interaction, 

investigating the binding kinetics of PnA to GM1 as a function of PnA concentration 

would provide additional valuable information on the intricate binding properties of this 

multivalent binding complex.   

In this chapter the multivalent interactions of CTb and PnA to GM1 doped into a 

PSLB are investigated using SHCS. PSLBs were chosen as the binding platform as they 

mimic the native cell surface where GM1 is present, reduce nonspecific binding and allow 

precise control over the GM1 density.
25

 The SHCS technique used for these studies offers 

the advantage of determining the binding kinetics at individual protein concentrations 

using minimal analyte and, most importantly, under steady-state equilibrium to reduce 

mass transport effects. SHCS has previously been used to determine the diffusion of large 

dye molecules and amphiphilic head groups of long hydrocarbon chains.
26-28

 In Chapter 6 

SHCS was used to accurately determine the binding kinetics of the small molecule SBN 

intercalating into a PSLB.
29

 The study presented in this chapter is the first to extend the 

SHCS technique to the detection and investigation of protein binding at a surface. Using 

SHCS to measure the binding kinetics separately for several bulk protein concentrations, 

as well as examining the cooperative and electrostatic contributions of these multivalent 

protein-ligand interactions, provides additional insight for their use in biosensors, medical 

diagnostics and drug development. 
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7.2 Experimental Design 

7.2.1 Materials 

DOPC, Rh-DOPE and GM1 from ovine brain were purchased from Avanti Polar 

Lipids and used as received. The structure of DOPC is shown in Figure 3.1, Rh-DOPE is 

shown in Figure 4.3 and the structure of GM1 is shown in Figure 7.1. Immunoglobulin G 

from Rabbit serum (IgG), Cholera Toxin B Subunit from Vibrio cholera (CTb), and 

arachis hypogaea from peanut agglutinin (PnA) were obtained from Sigma-Aldrich. The 

water, PBS buffer, and fused silica prisms are the same as described in section 3.2.1. 

Both CTb and PnA were dissolved in PBS pH 7.4 to the desired working concentrations 

(0.22 nM to 240 nM for CTb and 0.43 μM to 12.02 μM for PnA).  

 

7.2.2 PSLB Formation 

The DOPC lipids used in these experiments were dissolved in chloroform and 

doped with GM1 that had been dissolved in a 1:1 chloroform:methanol mixture. The GM1 

density was chosen such that there would be a monolayer of protein at the surface when 

the binding sites had been saturated (1 mol % for CTb and 5 mol % for PnA). PSLBs of 

GM1 doped DOPC were formed on a silica prism using vesicle fusion as described in 

section 3.2.3. Excess PBS was flushed through the flowcell to remove any unbound lipids 

in solution. To screen any possible defects on the bilayer and prevent nonspecific binding 

of the proteins, the PSLBs were incubated with IgG for 30 mins and then rinsed with PBS 

to remove any unbound IgG in solution. 
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Figure 7.1. Chemical structure of GM1 ganglioside. 
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7.2.3 SHG Measurements 

Counter-propagating SHG was used for these experiments and is described in 

detail in Chapter 2. The second harmonic output used in this chapter is the same as that 

described in section 6.3.3 with the same energy per pulse, beam diameter, notch filters 

and detector. The SH intensity is described by Equations 2.15 and 2.16, which illustrate 

the possible enhancement in SH intensity when the incident (ω) or SH (2ω) frequency is 

resonant with an electronic transition of a molecule at the surface. With this resonant 

enhancement, very low concentrations of molecules at the surface can be detected using 

SH spectroscopy. This means that if the analyte being detected has an electronic 

transition at the frequency of the SH light there will be a lower limit of detection (LOD) 

and increased sensitivity.30 Here, a fundamental wavelength of 532 nm is used such that 

the resulting SH wavelength is 266 nm, which is in resonance with the electronic 

transition of the tryptophan and tyrosine residues in the proteins used in this chapter 

(shown in Figure 7.2). The signal enhancement from this resonance allows detection 

down to low nM concentrations of CTb and μM concentrations of PnA, giving LODs of 

0.20 ± 0.03 fg/cm2 and 9.1 ± 1.2 pg/cm2, respectively. These LODs are similar to those 

reported using fluorescence and lower than those reported using QCM to monitor the 

binding of these proteins to immobilized ligand surfaces.7,13  

 

7.2.4 SHCS Data Collection 

SHCS has been described in detail in Chapter 5.  Similar to Chapter 6, the 

fluctuations in the SH signal are measured as a function of time and autocorrelated to 

determine the reaction rate of the surface binding kinetics occurring within the detection  
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Figure 7.2. Extinction coefficient spectra of CTb (gray) and PnA (black). 
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area. SHCS data were collected for the proteins associating to GM1 doped into a DOPC 

bilayer at three separate bulk protein concentrations after steady-state equilibrium had 

been reached. Data were collected for every pulse of the laser so that the time interval 

between data points was dictated by the 20 Hz (50 ms) repetition rate of the laser. The 

fast Fourier transform multiplied by its complex conjugate was determined for 20 data 

sets each consisting of 5,000 data points. Once averaged the inverse Fourier transform 

was performed to obtain the correlation time constant of the data. To extrapolate the 

reaction rate, including the adsorption and desorption rate, for the binding kinetics of 

CTb-GM1 and PnA-GM1, the normalized correlation function for a typical reversible 

biomolecular interaction described in Equation 5.17 was used. 

 

7.2.5 SHG Adsorption Isotherm Data Collection 

Binding isotherms of the proteins associating to GM1 doped in DOPC bilayers 

were performed in duplicate for CTb and triplicate for PnA. Any changes in the laser 

power between experiments were compensated for by performing a two-point 

normalization to a 10 mM KOH solution and a solution of PBS pH 7.4, followed by 

subtraction of the background SH intensity before any protein was added. The SH 

intensity was monitored over time as increasing concentrations of the proteins were 

injected and allowed to reach equilibrium between the bulk solution and bilayer. The 

depletion of the bulk protein concentration as proteins bound to the surface was offset by 

injecting a fresh solution of the same protein concentration every 10 mins until a steady-

state response was reached. For the lowest concentration of CTb it required up to 14 hrs 

to reach steady-state equilibrium. Since the lowest concentration of PnA was in the μM 
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range the time required to reach equilibrium was shortened to 2 hrs. Each data point 

collected was averaged for 100 samples and integrated using a boxcar. To prevent 

damage to the bilayer from exposure to the laser, the SH intensity was recorded at 5-10 

min intervals for 2-3 mins and then blocked. The thermodynamic equilibrium binding 

constant was determined from an isotherm consisting of only the SH intensity collected at 

steady-state equilibrium for each protein concentration.  

 

7.2.6 Hill-Waud Adsorption Isotherm Equation 

The SH intensity is proportional the sum of the real and imaginary portions of the 

resonant susceptibility tensor as shown in Equation 3.2. If there are multiple identical 

binding sites and ligand-ligand interactions, the surface adsorption of the protein is 

described by the Hill-Waud model where the surface density N in equation 3.2 is given 

by, 

       
      

 [ ] 

     
 [ ] 

 ,                              (7.1) 

where Nmax is the maximum surface density at saturation, K0 is the equilibrium binding 

constant, [P] is the bulk protein concentration, and n is the Hill coefficient, which 

describes the affinity of the protein for its ligand when another ligand is already bound. 

When n > 1 there is an increase in the affinity of the protein for its ligand once another 

ligand is bound (positive cooperativity) and when n < 1 there is a decrease in the affinity 

of the protein for its ligand once another ligand is bound (negative cooperativity).
7
  

Using the relationship between the surface density and the SH intensity,      

  , and subtracting the background SH intensity,     
          , designated as A, the SH 

intensity from the adsorption of a protein in terms of the Hill-Waud model can be 
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expressed by the following:  
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(7.2) 

Since the SH signal is on resonance with an electronic transition of CTb and PnA (Figure 

7.2), B is much smaller than the imaginary portion of the resonant susceptibility tensor, 

making (B
2
 + C

2
) much greater than the cross-term   √    

          
.
31

 Additionally, (B
2
 

+ C
2
) relates to the surface density of molecules and can therefore be combined with 

√    
    . Using these simplifications, the SH intensity in terms of the Hill-Waud model is 

expressed as, 

                                               (
√    
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 [ ] 

)

 

.                                           (7.3) 

 

7.3 Results and Discussion 

7.3.1 Binding Kinetics of CTb-GM1 Using SHCS 

The binding affinity for CTb and PnA binding to GM1 were examined as a 

function of bulk protein concentration using SHCS. After an appropriate incubation time 

for a steady-state response to be reached the SH signal was collected for every pulse of a 

20 Hz laser as a function of time for 3 bulk concentrations of CTb (0.5 nM, 13 nM, and 

240 nM) binding to a 1 mol% GM1 doped DOPC lipid bilayer (data shown as insets of 

Figures 7.3A, 7.4A, and 7.5A). The SH signal was cross-correlated with itself to extract  
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Figure 7.3. Autocorrelation data for 0.5 nM CTb binding to (A) 1 mol % GM1 doped into 

a DOPC bilayer (B) a pure DOPC bilayer. The solid black line represents the fit to 

Equation 5.17. The nonspecific CTb correlation function in (B) has been normalized to 

the specific binding autocorrelation data in (A).  
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Figure 7.4. Autocorrelation data for 13 nM CTb binding to (A) 1 mol % GM1 doped into 

a DOPC bilayer (B) a pure DOPC bilayer. The solid black line represents the fit to 

Equation 5.17. The nonspecific CTb correlation function in (B) has been normalized to 

the specific binding autocorrelation data in (A).  
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Figure 7.5. Autocorrelation data for 240 nM CTb binding to (A) 1 mol % GM1 doped 

into a DOPC bilayer (B) a pure DOPC bilayer. The solid black line represents the fit to 

Equation 5.17. The nonspecific CTb correlation function in (B) has been normalized to 

the specific binding autocorrelation data in (A).  
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the correlated molecular binding kinetics. As most of the fluctuations seen in the SH 

signal are uncorrelated noise, these high frequency contributions (filtered at 15 times the 

Nyquist limit) and the first point of the autocorrelation were removed.
32

 The resulting 

normalized correlation data, G(τ), from the average of 20 data sets for each of the 3 CTb 

concentrations binding to a 1 mol% GM1 doped DOPC lipid bilayer are shown in Figures 

7.3A, 7.4A and 7.5A. SHCS data were also collected for the nonspecific binding of CTb 

where each of the 3 CTb concentrations was exposed to a DOPC bilayer that did not 

contain GM1. The normalized correlation data of 20 averaged data sets are shown for 

each of the 3 CTb concentrations binding to a pure DOPC bilayer in Figures 7.3B, 7.4B, 

and 7.5B. To allow comparison between the noise of the specific and nonspecific 

correlation data, the time zero point of the autocorrelation of the nonspecific binding of 

CTb was normalized to the time zero point of the correlation data of the specific binding 

of CTb to a 1 mol% GM1 doped DOPC bilayer for each of the respective CTb 

concentrations. It is important to note that before normalization the magnitude of the 

noise of the nonspecific binding correlation data remained the same for all three 

nonspecific correlation data as the mean SH intensity is the same with no apparent 

increase in signal as protein is added. It is apparent from the nonspecific autocorrelation 

data that there is no appreciable nonspecific binding as there is no correlation seen, 

meaning the correlated events giving rise to G(τ) in Figures 7.3A, 7.4A, and 7.5A all 

arise from the specific binding interactions between CTb and 1 mol% GM1. The lack of 

correlated events in Figures 7.3B, 7.4B, 7.5B when GM1 is not present in the bilayer also 

emphasizes that correlated proportional noise from the laser and/or vibrations from the 

optics are not contributing to the observed correlations seen in Figures 7.3A, 7.4A, and 
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7.5A as these contributions would be seen in the nonspecific correlation data if they were 

present.
33,34

 Additionally, in Chapter 6 the specific correlation function of SBN 

intercalating into a DOPC bilayer displayed a much longer time constant (~6 times) than 

seen here, which would presumably be the same if the same source (laser or optics) were 

contributing to the correlated events.
29

 In Chapter 6 it was also shown that the correlation 

function of a pure DOPC bilayer without addition of any molecule displayed no 

correlated events, further demonstrating the absence of correlated proportional noise or 

correlated noise from the bilayer.
29

  

SHCS has previously been used to measure the translational and/or rotational 

diffusion of dye molecules and hydrocarbon chain substituted amphiphiles on surfaces.
26-

28
  In order to rule out the possibility of rotational and translational motion on the 

observed dynamics presented in Figures 7.3A, 7.4A and 7.5A, the time scale of such 

events was considered for the experimental conditions used in this chapter. For example, 

an FCS study of the rotational diffusion of antimicrobial peptides found that the 

correlation function time constant was nanoseconds.
35

 This is much faster than the 50 ms 

time interval used in this chapter, meaning the correlation data collected here are 

insensitive to these fast dynamics as described in detail in Chapter 5. In another FCS 

study the translational diffusion of CTb bound to GM1 doped lipids was investigated and 

the correlation function time constant of 6 ms was reported for a spot size of 50 nm.
36

 

Using fluorescence recovery after photobleaching (FRAP) Kelly and coworkers 

determined the diffusion coefficient of CTb in a lipid bilayer to be 0.12 ± 0.03 μm
2
/sec.

36
 

Assuming Brownian diffusion, CTb would be expected to take a time, t, to diffuse a mean 

squared distance, r, according to t = r
2
/4D. For the spot size used in this chapter of ~ 1 
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mm
2
 it would take CTb approximately 2.5 × 10

6
 sec to diffuse through the illumination 

area. Consequently, this much slower rate compared to the binding kinetics observed in 

Figures 7.3A, 7.4A, and 7.5A would not contribute to the correlation data presented here.  

The correlation data for the specific binding of CTb to 1 mol% GM1 doped into a 

DOPC bilayer were fit to Equation 5.17 with the parameters kon, koff, and Nc. The results 

of the nonlinear least squares regression of the data in Figures 7.3A, 7.4A, and 7.5A to 

Equation 5.17 are shown in Table 7.1. The measured adsorption rate decreased with 

increasing protein concentration from 1.0 ± 0.1 × 10
9
 M

−1
s

−1
 when only 0.5 nM CTb is 

present to 1.5 ± 0.01 × 10
8
 M

−1
s

−1
 for 13 nM CTb to 3.5 ± 0.2 × 10

6
 M

−1
s

−1
 for 240 nM 

CTb. The decrease in the adsorption rate with increasing CTb concentration seen in the 

SHCS data might be explained in terms of electrostatics using the electrostatic map of 

CTb shown in Figure 7.6. The binding plane surface of CTb is positively charged and 

would be greatly attracted to the negatively charged terminal sialic acid of GM1, leading 

to the rather fast adsorption rate seen here for low concentrations of CTb. However, as 

more CTb is bound to the surface, the neutral top plane of bound CTb would be exposed 

to incoming CTb molecules and essentially screen the negatively charged sialic acids at 

the membrane surface. The attraction between the negative sialic acid and the binding 

plane of CTb would lessen as more CTb binds, which would lead to a slower rate of 

adsorption as the concentration of CTb increased.  

The results seen for the 240 nM CTb-GM1 interaction are similar to the kon value 

reported in  an SPR study by Kuziemko and coworkers (1.27 × 10
6
 M

−1
s

−1
)
16

 where the 

binding of 120 nM – 240 nM CTb to a 5 mol % GM1 doped lipid bilayer was 

investigated, suggesting that SHCS can accurately predict the adsorption rate for the  
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Table 7.1. Measured binding kinetics for CTb binding to a GM1 doped DOPC bilaer 

using SHCS including the adsorption rate (kon), desorption rate (koff), and equilibrium 

binding affinity (K0).  

 [CTb] (nM) kon (× 10
8
 

M
−1

s
−1

) 

koff (× 10
−5

 s
−1

) K0 (× 10
12

 

M
−1

) 

SHCS 0.5 10 ± 1 3.6 ± 0.5  28 ± 5 

 13 1.50 ± 0.01  3.2 ± 0.4  4.7 ± 0.7  

 240  0.035 ± 0.002  2.5 ± 0.2  0.14 ± 0.01  
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Figure 7.6. Electrostatic potential map of CTb (PDB: 1PZJ) calculated in Python 
Molecular Viewer from Scripps MGL tools assuming a 150 mM salt concentration37 for 

the binding plane (A) and top plane (B) where red indicates negative potential, white is 

neutral and blue is indicative of positive potential.  
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CTb-GM1 complex. It is important to note that the authors’ in the SPR study took 

extreme precaution to make sure mass transport did not limit or affect the binding 

kinetics and as such collected their CTb-GM1 binding data under steady-state 

conditions.
16

 The SHCS was not only collected after steady-state equilibrium had been 

reached (up to 16 hrs at 0.5 nM CTb), but also the SHCS analysis of the kinetics is 

inherently minimally affected by mass transport as the diffusion of the protein molecules 

to the surface occurs at a much longer time scale (10
-8

 cm
2
 s

-1
)
38

 compared to the binding 

kinetics. As has been done in FCS, the difference in time scale can be used to separate 

out the contributions from binding kinetics and diffusion.
39-41

 The SHCS data and the 

data collected by Kuziemko and coworkers produce similar adsorption rates as both were 

collected under steady-state conditions where mass transport did not affect the measured 

binding kinetics. 

The desorption rate for CTb concentrations of 0.5 nM, 13 nM, and 240 nM 

obtained from the fit to Equation 5.17 were 3.6 ± 0.5 × 10
−5

 s
−1

, 3.2 ± 0.4 × 10
−5

 s
−1

, and 

2.5 ± 0.2 × 10
−5

 s
−1

, respectively. The desorption rates were all in good agreement with 

each other and did not significantly change with CTb concentration. To further verify the 

SHCS results a desorption experiment for all 3 CTb concentrations was performed by 

flowing excess PBS buffer through the flowcell and monitoring the SH intensity over 

time (data shown in Figure 7.7). It is important to note that the slight shift in the 

desorption data are a result of an electronic baseline shift and not from the desorption of 

CTb from GM1. The desorption rate of CTb from GM1 was found to remain relatively 

constant with increasing CTb concentration from 3.07± 0.02 × 10
−5

 s
−1

 at 0.5 nM CTb to 

3 ± 1 × 10
−5

 s
−1

 at 13 nM to 3.6 ± 0.8 × 10
−5

 s
−1

 at 240 nM. Additionally, all desorption  
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Figure 7.7. SH intensity vs. time of the desorption of CTb bulk concentration 0.5 nM (A), 

13 nM (B), and 240 nM (C). Solid lines are the fits to an exponential decay.  
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rates are close to those predicted using SHCS. The good agreement of the SHCS 

desorption rates and those obtained through a separate desorption experiment confirm the 

ability of SHCS to predict accurate binding kinetics for surface protein-ligand 

interactions. To further verify the predicted kon obtained using SHCS and to decouple the 

closely related fitting parameters of Equation 5.17, the values obtained from the separate 

desorption experiment were fixed as koff in 5.17 and the nonlinear regression was run with 

only two parameters, kon and Ns. The results produced the same values (within error) for 

kon and Ns as those shown in Table 7.1, which were determined for the three parameter fit, 

albeit with smaller error. Thus, although it is not wholly necessary to determine the 

desorption rate separately to obtain accurate binding kinetics using SHCS, it does lower 

the error and is a simple way to confirm the SHCS predicted binding kinetics, especially 

when Ns can only be approximated. 

 The equilibrium binding affinity was calculated from the adsorption and 

desorption rates determined from the SHCS data in Figures 7.3A, 7.4A, and 7.5A using 

Equation 5.12 and the results are shown in Table 7.1. The K0 decreased with increasing 

CTb concentration from 2.8 ± 0.5 × 10
13

 M
−1

 at 0.5 nM CTb to 4.7 ± 0.7 × 10
12

 M
−1

 at 13 

nM CTb to 1.4 ± 0.1 × 10
11

 M
−1

 at 240 nM CTb. The K0 determined here for 240 nM 

CTb binding to GM1 is in good agreement with the SPR study by Kuziemko and 

coworkers for the CTb-GM1 interaction conducted under steady-state equilibrium for the 

CTb concentration range of 120 nM to 240 nM, 2.6 × 10
11

 M
−1 

(Kd = 4.61 × 10
−12

 M),
16

 

suggesting that the SHCS measured binding kinetics are true steady-state equilibrium 

values. Additionally, similar concentration dependent protein-ligand binding kinetics 

have been reported in the literature. For example, at low wheat germ agglutinin (WGA)   
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protein concentrations (20pM to 10 μM) WGA experienced a much higher affinity for its 

ligand than at higher WGA concentrations (5- 200 μM).
4,42

 This is consistent with the 

results seen here obtained via SHCS where the lowest CTb concentration has the highest 

binding affinity for GM1. The good agreement with steady-state literature binding kinetic 

values and previously reported binding affinity trends demonstrates SHCS can be used to 

accurately measure multivalent protein-ligand interactions at the surface with negligible 

mass transport affects. 

 

7.3.2 Binding Kinetics of CTb-GM1 Using an SHG Adsorption Isotherm 

To further examine the CTb – GM1 complex, a steady-state equilibrium isotherm 

was collected for the CTb bulk concentration range of 0.22 nM to 13 nM and data are 

shown in Figure 7.8 (solid circles). Each concentration was allowed to reach steady-state 

equilibrium before the next concentration was equilibrated with the surface. The data 

collection took a total of 49 hrs to complete as the lower concentrations took between 12-

14 hrs to reach steady-state equilibrium. Nonspecific binding of CTb to a pure DOPC 

bilayer was also examined and plotted in Figure 7.8 (open circles). It is apparent from the 

data in Figure 7.8 that there is negligible nonspecific binding observed over the entire 

CTb concentration range examined, which is consistent with the data determined using 

SHCS. A study by Shi and coworkers where the binding of CTb to 1 mol % GM1 doped 

into a lipid bilayer was examined using fluorescence found the CTb-GM1 interaction fit 

best to the Hill-Waud cooperative model.
7
 As such, the data in Figure 7.8 (solid circles) 

were fit to both the Langmuir model (Equation 3.9) and the Hill-Waud model (Equation 

7.3). The data in Figure 7.8 were found to statistically fit best to the Hill-Waud model 



 

 

 

184 

 

 

 

 

 

 

 

 

Figure 7.8. SH intensity versus bulk CTb concentration binding to 1 mol% GM1 doped 

into a DOPC bilayer recorded at steady-state equilibrium (solid circles) and to a pure 

DOPC bilayer (open circles). The solid line represents the fit to the Hill-Waud binding 

model. The error bars represent the standard deviation from two independent 

experiments. 
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using an f-test analysis. The resulting K0 was 3.2 ± 0.3 × 10
9
 M

−1
 with a Hill coefficient 

of 2.0 ± 0.5. These results indicate that there is a positive cooperative interaction between 

ligand molecules and that once one ligand is bound there is an increased affinity for the 

protein to bind to the neighboring ligand molecules. Although both the K0 and n 

determined here are statistically the same as those reported by Shi and coworkers, K0 = 

3.2 ± 0.7 × 10
9
 M

−1 
(Kd = 0.31 ± 0.05 × 10−

9
 M)  and n = 1.9,

7
 the K0 is much lower than 

that obtained using SHCS. This discrepancy between the isotherm data and the SHCS 

data most likely is due to the influence of mass transport on the binding kinetics obtained 

from the isotherm data of CTb binding to GM1.  Although CTb was allowed to incubate 

with the surface for an extended period of time (up to 12 hrs) and the bulk protein 

solution was replaced every 5 to 10 mins, true steady-state equilibrium is likely to have 

not been obtained, especially at the lowest CTb concentrations were small changes in 

signal were harder to distinguish. It is true that continuous flow would reduce mass 

transport effects even more; however, given the incubation time required at the lower 

CTb concentrations and the amount of analyte needed, such an experiment would be 

unreasonable in terms of the time required to perform the analysis and the cost of 

materials. Furthermore, a similar mass transport investigation has already been performed 

by Kuziemko et al. at higher CTb concentrations and has shown the binding kinetics are 

drastically affected by flow rate. In the work presented by Kuziemko and coworkers, 

which reported the same binding kinetics as SHCS for 240 nM CTb, multiple flow rates 

were investigated and an optimal flow rate was chosen such that the binding kinetics of 

CTb to GM1 showed no limitation on mass transport.
16

 The good agreement between the 

steady-state equilibrium results obtained by Kuziemko and coworkers and those obtained 
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using SHCS, suggests that the SHCS data are void of mass transport effects and provide 

more precise results for the binding of CTb to GM1 as compared to the isotherm study, 

which is likely mass transport limited. Additionally, as mentioned earlier, SHCS has the 

ability to determine the binding kinetics without contributions from diffusion even when 

collection is not done under true steady-state equilibrium conditions as these two events 

occur at different time scales and will appear as two separate decays in the correlation 

data.
39,41

  

 

7.3.3 Binding Kinetics of PnA-GM1 Using SHCS 

In addition to the CTb-GM1 binding study, SHCS was also used to determine the 

binding kinetics of the multivalent binding protein, PnA, to 5 mol % GM1 doped into a 

DOPC lipid bilayer. The data collected for PnA concentrations of 0.43 μM, 3 μM, and 12 

μM binding to a 5 mol % GM1 doped DOPC bilayer are shown in the insets of Figure 

7.9A, 7.10A and 7.11A. The normalized correlation data obtained from the average of 20 

data sets are shown for each of the 3 PnA concentrations in Figures 7.9A, 7.10A and 

7.11A. As before, the first point of the correlation data and high frequency contributions 

(15 times the Nyquist limit) have been removed as they contain the contributions from 

the photon shot noise of the detection system. Autocorrelation was also performed on the 

average of 20 data sets for the PnA concentrations 0.43 μM, 3 μM, and 12 μM binding to 

a pure DOPC bilayer without the ligand GM1, shown in the insets of Figures 7.9B, 7.10B 

and 7.11B. The normalized correlation data of the nonspecific binding of PnA to DOPC 

are shown in Figures 7.9B, 7.10B and 7.11B. The nonspecific autocorrelation data were 

normalized to the corresponding specific autocorrelation data to allow comparison of the  
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Figure 7.9. Autocorrelation data for 0.43 μM PnA binding to (A) 5 mol % GM1 doped 

into a DOPC bilayer and (B) a pure DOPC bilayer. Solid black line is the fit to Equation 

5.17. The nonspecific PnA correlation function (B) was normalized to the specific 

binding correlation function (A).  
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Figure 7.10. Autocorrelation data for 3 μM PnA binding to (A) 5 mol % GM1 doped into 

a DOPC bilayer and (B) a pure DOPC bilayer. Solid black line is the fit to Equation 5.17. 

The nonspecific PnA correlation function (B) was normalized to the specific binding 

correlation function (A).  
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Figure 7.11. Autocorrelation data for 12 μM PnA binding to (A) 5 mol % GM1 doped 

into a DOPC bilayer and (B) a pure DOPC bilayer. Solid black line is the fit to Equation 

5.17. The nonspecific PnA correlation function (B) was normalized to the specific 

binding correlation function (A).  
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relative magnitudes of the specific and nonspecific correlation functions. Here again, 

noting that before normalization the noise of all three nonspecific correlation data were 

relatively the same and oscillated about the same mean SH intensity. There is no 

correlation seen in Figures 7.9B, 7.10B and 7.11B, suggesting that there is negligible 

nonspecific binding of PnA to a pure DOPC bilayer for all PnA concentrations studied. 

As such, the correlated events seen in the data shown in Figures 7.9A, 7.10A and 7.11A 

are solely from the specific binding of PnA to 5 mol % GM1. 

The normalized autocorrelation data of the specific binding of PnA to 5 mol% 

GM1 doped into a DOPC bilayer for the 3 bulk PnA concentrations were fit to Equation 

5.17 with the fitting parameters kon, koff and Ns and the results from the nonlinear least-

squares regression are shown in Table 7.2. The measured adsorption rates decreased from 

3.7 ± 0.3 × 10
6
 M

−1
s

−1
 to 3.9 ± 0.3 × 10

5
 M

−1
s

−1
  to 1.1 ± 0.1 × 10

5
 M

−1
s

−1
 as the bulk PnA 

concentration decreased from 0.43 μM to 3 μM to 12 μM. The desorption rates 1.0 ± 0.2 

× 10
-3 

s
−1

, 2.2 ± 0.2 × 10
-3

 s
−1

  , 2.7 ± 0.2 × 10
-3

 s
−1

 for the bulk PnA concentrations 0.43 

μM, 3 μM, and 12 μM, respectively, did not change (within experimental error) with 

increasing PnA concentration.  The concentration dependent binding kinetics seen for 

PnA-GM1 are similar to that seen for the CTb-GM1 study discussed earlier and can 

similarly be explained in terms of high affinity binders at low concentrations as well as 

electrostatics. PnA (pI ~ 6)
43

 has a slightly negative charge at neutral pH and GM1 

contains a negatively charged terminal sialic acid that could repel the PnA molecules. 

The electrostatic repulsion between the negatively charged PnA molecules and the 

negatively charged immobilized GM1 could cause a reduction of the rate of additional 

protein molecules binding to the surface and lead to the slower adsorption rate observed  
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Table 7.2. Measured binding kinetics for PnA binding to a GM1 doped DOPC bilayer 

using SHCS including the adsorption rate (kon), desorption rate (koff), and equilibrium 

binding affinity (K0).  

 [PnA] (μM) kon (× 10
5
 

M
−1

s
−1

) 

koff (× 10
−3

 

s
−1

) 

K0 (× 10
8
 M

−1
) 

SHCS 0.43 37 ± 3 1.0 ± 0.2  37 ± 8  

 3.0 3.9 ± 0.3 2.2 ± 0.2 1.7 ± 0.2  

 12.2 1.1 ± 0.1 2.7 ± 0.2 0.41 ± 0.05  
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at higher PnA concentrations.  

In addition to the adsorption and desorption rates, the equilibrium binding  

affinity, K0, was calculated for each PnA concentration using Equation 5.12 and the 

results are shown in Table 7.2. The highest K0, 3.7 ± 0.8 × 10
9
 M

−1
, was observed for the 

0.43 μM PnA-GM1 interaction, followed by 1.7 ± 0.2 × 10
8 

M
−1 

for 3 μM PnA and 4.1 ± 

0.5 × 10
7
 M

−1
 for 12 μM PnA. This decrease in K0 with increasing PnA concentration 

suggests that the electrostatic repulsion between the negatively charged PnA molecules 

and the negatively charged immobilized GM1 reduce the binding affinity at higher PnA 

concentrations. The K0 values obtained using SHCS are much higher than those typically 

reported for PnA binding to GM1.
6,13

 In a study that monitored the binding of PnA to a 

4.8 mol% GM1 doped lipid bilayer on the surface of a gold electrode using QCM, the K0 

(8.3 × 10
5
 M

−1
) was found to be 34 orders of magnitude smaller than that found using 

SHCS.
13

 However, in the QCM study the K0 was determined using a typical binding 

isotherm for the bulk PnA concentration range of ~0.25 μM to 6 μM.
13

 For a more direct 

comparison a similar binding isotherm was collected here for PnA binding to a 5 mol % 

GM1 doped DOPC lipid bilayer using SH spectroscopy. 

 

7.3.4 Binding Kinetics of PnA-GM1 Using an SHG Adsorption Isotherm 

The SH signal was monitored over time and increased as the bulk PnA 

concentration increased from 0.22 μM to 12.2 μM, shown in Figure 7.12 (triangles). To 

keep the experimental parameters the same as those in the QCM study multiple injections 

were not made and each protein concentration was allowed to only incubate for ~30 min. 

Due to the slightly negative charge of PnA at pH 7.4 (pI ~ 6)
43

 the data in Figure 7.12  
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Figure 7.12. SH intensity versus bulk PnA concentration binding to 5 mol% GM1 doped 

into a DOPC bilayer recorded at steady-state equilibrium (solid circles), at non steady-

state equilibrium (triangles), and to a pure DOPC bilayer (open circles). Lines represent 

the fits to the Frumkin binding model (solid) and Langmuir model (dashed). The error 

bars represent the standard deviation from three independent experiments. 
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were fit to the Frumkin model, which accounts for any electrostatic interactions between 

charged protein molecules, as well as the typical Langmuir model (Equation 3.9). An f-

test was performed to determine which model statistically fit best to the data with a 

confidence level of 95%. The Frumkin model has been previously expressed in terms of 

SH intensity and can be written as,
44

  

                                       (
√    

     [ ]   (  √       )

     [ ]   (  √       )
)

 

.                                     (7.4) 

The above equation is similar to the Langmuir model with the additional electrostatic 

term g. The g coefficient describes the electrostatic interactions between the charged 

protein molecules on the surface, where g < 0 indicates a repulsive electrostatic 

interaction between protein molecules and g > 0 indicates an attractive electrostatic 

protein-protein interaction.
44

 The nonequilibrium, single solution isotherm in Figure 7.12 

(triangles) was found to statistically fit best to the Langmuir model (Equation 3.9). The 

K0 determined from the nonlinear least squares fit to Equation 3.9 for PnA binding to a 5 

mol % GM1 doped DOPC bilayer was found to be 5.4 ± 0.7 × 10
5
 M

−1
. This K0 is similar 

to that reported by Jansoff and coworkers for the QCM study,
13

 but still 2 to 3 orders of 

magnitude lower than that measured by SHCS. 

  Since the previous isotherm is most likely mass transport limited, an isotherm 

collected under quasi-continuous flow for PnA binding to a 5 mol % doped DOPC 

bilayer was also determined. To account for the depletion of bulk protein concentration as 

PnA molecules bound to the surface, multiple injections were made every 5-10 mins at 

each PnA concentration measured ranging from 0.22 μM to 12.2 μM until a steady-state  
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equilibrium had presumably been reached, data shown in Figure 7.12 (solid circles). A 

discrepancy between the isotherm collected with a single solution of PnA and that 

collected using a quasi-continuous flow is particularly apparent at lower PnA 

concentrations (Figure 7.12).  This suggests that the single solution isotherm data were 

indeed not collected under steady-state conditions, and therefore gave an underestimated 

K0 value. The data in Figure 7.12 (solid circles) were fit to both Equation 3.9 (Langmuir 

model) and Equation 7.4 (Frumkin model) and found to statistically fit best to the 

Frumkin model. The determined K0 from the nonlinear least-squares fit to Equation 7.4 

was 3.0 ± 0.2 × 10
6
 M

−1 
with a g value of – 536 ± 50 J/mol. This K0 is ~6 times greater 

than that seen for the isotherm not conducted under steady-state conditions as well as that 

reported by Jansoff and coworkers.
13

 Although this K0 is still ~ 1 order of magnitude 

lower than that obtained for the highest PnA concentration (12 μM) using SHCS, the 

difference in the K0 values obtained from the quasi-continuous flow isotherm and the 

single injection isotherm illustrates the tremendous importance of allowing low protein 

concentrations sufficient incubation time with the surface in order to reach steady-state 

equilibrium, which in the case of PnA took up to 2 hrs at low concentrations.  

To further probe the effects of mass transport on the predicted K0, separate 

adsorption and desorption experiments were performed for PnA concentrations of 0.43 

μM, 3 μM and 12 μM. The SH intensity was monitored over time as each bulk PnA 

concentration was adsorbed to 5 mol % GM1 doped into a DOPC bilayer.  After a fresh 

protein solution was injected to replenish the bulk protein concentration, the SHG 

intensity was collected every 5-10 mins for 2-3 mins until steady-state equilibrium had 

been reached (data shown in Figure 7.13A). Once steady-state equilibrium had been  
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Figure 7.13. SH Intensity vs. time for (A) the adsorption and (B) desorption of PnA under 

quasi-continuous flow at a bulk protein concentration of 0.43 μM (circles), 3 μM 

(triangles), and 12 μM (squares). Solid lines are fits to Equation 3.15 (A) and an 

exponential decay (B).  
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reached, the PnA was desorbed by flushing a copious amount of buffer over the surface 

and collecting the SH signal every 15 s (data shown in Figure 7.13B). The adsorption 

data (Figure 7.13A) were fit to an exponential rise model described in Equation 3.15 

while the desorption data (Figure 7.13B) were fit to an exponential decay to obtain koff. 

The desorption rates for PnA concentrations of 0.43 μM, 3 μM and 12 μM were 2.2 ± 0.7 

× 10−3 s
−1, 2.4 ± 0.1 × 10−3 s

−1, and 4.1 ± 1.2 × 10−3 s
−1, respectively. Using these 

desorption rates and the calculate rate from the fits to data in Figure 7.13A to Equation 

3.15, the adsorption rates for PnA concentrations of 0.43 μM, 3 μM and 12 μM were 

calculated as 1.4 ± 0.5 × 103 M−1
s

−1, 5.8 ± 0.4 × 102 M−1
s

−1, and 1.5 ± 0.4 × 102 M−1
s

−1, 

respectively. Although the adsorption rates are not identical to those measured using 

SHCS, all three of the desorption rates are in good agreement with those measured by 

SHCS. Interestingly, the same inverse relationship between the binding kinetics and PnA 

concentration is apparent in both the adsorption data and the SHCS data.  The 

discrepancy between the adsorption rates obtained using SHCS and those obtained from 

monitoring the adsorption over time might be due to experimental design. The data 

obtained using SHCS are collected after steady-state equilibrium has already been 

reached. For the adsorption experiment, there is no protein present at time zero and when 

PnA is first introduced into the flowcell there is not only a “lag time” for the protein 

molecules to diffuse to the surface,9  but also depletion of the bulk concentration as PnA 

binds to GM1. Although the depletion of the bulk concentration is replenished every 5 

mins with a fresh protein solution, this might not be fast enough to exchange the 

depletion of protein molecules in the interfacial layer near the surface before the protein 

concentration of the interfacial layer has dropped below the bulk protein concentration.  
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To validate this hypothesis, the SH intensity from the adsorption of PnA to GM1 

was monitored over time as a continuous flow of protein solution was flowed over the 

surface at a rate of 3 mL/min (data shown in Figure 7.14). Under continuous flow 

conditions there is a decrease in the time it takes to reach a steady-state response as 

compared when multiple injections are made over time. The kon for the continuous flow 

adsorption were calculated to be 1.4 ± 0.4 × 10
4
 M

−1
s

−1
, 1.1 ± 0.1 × 10

3
 M

−1
s

−1
,  and 8.8 ± 

2.6 × 10
2
 M

−1
s

−1
 for PnA concentrations 0.43 μM, 3 μM and 12 μM, respectively. The 

fact that kon increases for each PnA concentration when the fresh protein solution is 

continuously flowed over the surface as compared to adding fresh protein solution 

incrementally over time is evidence that mass transport is influencing the measured kon, 

leading to a lower predicted adsorption rate than what actually exists. Additionally, kon 

increases by a greater percentage at lower PnA concentrations than at higher PnA 

concentrations when switching from multiple injections to continuous flow collection, 

further suggesting the adsorption of PnA is mass transport limited. For the SHCS data, 

this mass transport effect on the binding kinetics is not present and as a result the 

calculated binding kinetics are drastically different from those calculated using binding 

isotherms where there are mass transport effects. The results of PnA-GM1 adsorption 

conducted under a continuous flow of varying flow rates suggest that the quasi-

continuous flow isotherm in Figure 7.12 is still mass transport limited. As such, the 

predicted K0 from the quasi-continuous flow isotherm is still lower than that determined 

by SHCS.  

Despite the mass transport effects on the binding isotherms, one characteristic 

apparent from the quasi-continuous flow isotherm that was not seen in the single                      
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Figure 7.14. SH Intensity vs. time for the continuous flow adsorption of PnA to GM1 for 

0.43 μM (bottom), 3 μM (middle), and 12 μM (top) PnA bulk concentration. Solid lines 

are fits to Equation 3.15. 
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injection isotherm is that there is repulsion between the PnA molecules resulting in a 

better fit to the Frumkin model and a negative g value. The large negative g value 

suggests that there is a large electrostatic repulsion between the charged protein 

molecules at the surface, which could hinder binding and slow the adsorption rate as the 

concentration of PnA increases. Although this electrostatic repulsion between charged 

PnA molecules is reasonable considering the negative pI ~ 6 of PnA,
43

 the electrostatic 

potential map was also calculated to further quantify the charge distribution of the surface 

residues of PnA and is shown in Figure 7.15. Essentially, the entire solution exposed 

surface of PnA is negative which explains the rather high electrostatic repulsive constant 

calculated using the Frumkin model. Additionally, the highly negative PnA surface 

would be repelled by the negative sialic acid terminus on GM1, which explains the 

decreasing adsorption rate with increasing PnA concentration as measured by SHCS.  

 

7.3.5 Binding Kinetics of PnA-GM1 at an Above  

Saturation PnA Concentration Using SHCS  

The importance of incubation time and mass transport limited kinetics was also 

demonstrated in a lectin iodination study by Emerson and Juliano
 
where PnA binding to 

the N-acetyl galactose receptors on Chinese hamster ovarian (CHO) cells for the PnA  

concentration range of 10 to 60 μM was allowed to incubate with the surface for twice 

the amount of time as the QCM study (at least 1 hr) and a K0 of 4.5 ± 1 × 10
6
 M

−1
 was 

found.
4
 Although the obtained K0 is similar to that obtained in the quasi-continuous flow 

isotherm, it is important to note that the iodination study was conducted for a much 

higher PnA concentration range and could contribute to the obtained binding kinetics.  
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Figure 7.15. The electrostatic potential map of PnA (PDB: 2PEL) calculated in Python 
Molecular Viewer from Scripps MGL tools assuming a 150 mM salt concentration37 
where red represents negative charges.  
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In the same iodination study by Emerson and Juliano the interaction of wheat 

germ agglutinin (WGA) to CHO cell receptors for the bulk WGA concentration range of 

5 – 200 μM was investigated and found to have a binding affinity of 1.6 × 10
6
 M

−1
;
4
 

however, a similar iodination study by Stanley and Carver reported a K0 of ~ 2 orders of 

magnitude greater for the bulk WGA concentration range of 20 pM to 10 μM.
42

 These 2 

iodination studies suggest that the binding affinities of lectins are highly dependent on 

protein concentration, which is also consistent with the data from the SHCS studies 

presented here. To compare Emerson and Juliano’s results obtained under steady-state 

equilibrium, SHCS was performed on 60 µM PnA (the highest concentration used by 

Emerson and Juliano) binding to a 5 mol % GM1 doped DOPC bilayer. The SHCS data 

was filtered 15x the Nyquist limit to reduce the proportional noise and were fit to 

Equation 5.17 with the fitting parameters kon, koff and Ns  (data shown in Figure 7.16). The 

resulting adsorption and desorption rate are 3.1 ± 0.3 × 10
4
 M

−1
s

−1
 and 3.7 ± 0.5 × 10

-3 

s
−1

, respectively, giving a K0 of 8.4 ± 1.4 × 10
6
 M

−1
. The K0 obtained for the SHCS of 60 

µM PnA-GM1 is similar to that obtained by Emerson and Juliano. Since Emerson and 

Juliano allowed PnA to incubate with the surface longer at a much higher concentration 

as compared to the QCM study, it is likely that the results have minimal mass transport 

effects and is most likely why the binding constant of the iodination study is consistent 

with that obtained using SHCS for 60 µM PnA.  

The results from this chapter emphasize the tremendous importance of conducting 

kinetic measurements under steady-state equilibrium conditions. The agreement between 

the data for 60 μM PnA binding to GM1 measured by SHCS and the iodination study 

conducted under conditions minimizing mass transport effects suggests that SHCS  
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Figure 7.16. Autocorrelation data for 60 μM PnA binding to a 5 mol % GM1 doped 

DOPC bilayer with fit to Equation 5.17 indicated by the red line. 
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measures binding kinetics that are not mass transport limited. The importance of 

eliminating mass transport was also seen from the comparison of the binding kinetics for 

CTb binding to GM1 measured using SHCS and an SPR study where the flow rate was 

such that data were collected under steady-state conditions. The incubation time was also 

shown to significantly affect mass transport and the measured binding affinity as seen 

from the PnA-GM1 isotherms conducted under different incubation times and flow rates. 

An inherent advantage of SHCS over the typical binding isotherms used to quantify 

protein-ligand interactions is that the nature of the SHCS analysis allows the binding 

kinetics to be determined with negligible mass transport effects as diffusion occurs at a 

much different time scale, meaning the reported SHCS binding kinetic values are 

inherently void of mass transport effects. Therefore, the adsorption rate determined using 

SHCS is not artificially lowered by nonequilibrium conditions and provides an accurate 

adsorption rate for multivalent protein-ligand interactions at a surface.    

 

7.4 Summary 

In this chapter, the binding kinetics of the multivalent protein-ligand interactions 

between PnA-GM1 and CTb-GM1 were investigated using both SHCS and a traditional 

equilibrium binding isotherm. The adsorption and desorption rates and overall binding 

affinity for 3 separate protein concentrations were determined using SHCS, while the 

cooperative binding behavior and electrostatics of the multivalent protein-ligand 

interactions were investigated using binding isotherms. The results demonstrate the 

complexity of multivalent protein-ligand interactions and suggest the binding kinetics are 

dependent on the bulk protein concentration. Due to the extremely high sensitivity of 
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SHG, a sigmoidal behavior at low PnA concentrations was detectable, suggesting there is 

an electrostatic repulsion between the charged PnA protein molecules. Both the PnA-

GM1 and CTb-GM1 studies demonstrate the importance of eliminating the influence of 

mass transport on the binding kinetics.  More importantly, this chapter illustrates that by 

combining SHCS with conventional isotherm studies, additional information of the 

complex interactions between multivalent proteins and ligands can be obtained. While a 

binding isotherm can provide useful information on the electrostatics and cooperative 

binding behavior of the multivalent protein-ligand interaction, it overlooks the 

concentration dependence of the binding kinetics. On the other hand, using SHCS to 

examine the binding kinetics of multivalent protein-ligand interactions at a surface 

provides extremely valuable information on the binding kinetics as a function of protein 

concentration. Furthermore, SHCS requires much less time and analyte to determine the 

binding kinetics for a single concentration as compared to isotherm studies. The results of 

this chapter provides further understanding of the binding kinetics of two important 

multivalent protein-ligand interactions, which provides greater insight into what 

parameters should be considered (protein concentration, mass transport, and cooperative 

interactions) when using such multivalent protein-ligand complexes in biosensors, 

immunoassays, and other biomedical diagnostics.    
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CHAPTER 8 

 

CONCLUSION 

 

 In this dissertation SHG was shown to be a highly sensitive, surface specific, and 

label-free method capable of elegantly examining the binding dynamics of biomolecular 

interactions at the surface of PSLBs. First, the properties of counter-propagating SHG 

were detailed in Chapter 2. The SH output is only produced where the inversion 

symmetry is broken, such as at a surface, making SHG incredibly surface specific. 

Additionally, increased signal enhancement was shown to be possible by tuning the SH 

output wavelength to be on resonance with an electronic transition of the molecule being 

probed. These two properties, the surface specificity and high sensitivity, give SHG the 

ability to detect trace amounts of analyte without the use of a label. After establishing the 

various properties of SHG that make it well-suited for investigating surface biomolecular 

interactions, namely the surface specificity, high sensitivity, and label-free nature, the 

binding kinetics and energetics of four biotin bound proteins, avidin, streptavidin, 

neutrAvidin and anti-biotin antibody, were investigated using SHG in Chapter 3. 

Analysis demonstrated the presence of protein-protein interactions in avidin and its 

analogs, streptavidin and neutrAvidin. Streptavidin and neutrAvidin were shown to have 

the strongest protein-protein interactions possibly due to their neutral pH. The stronger 

protein-protein interactions seen in streptavidin increased the intrinsic binding affinity by 



210 
 

an order of magnitude and made the streptavidin-biotin interaction most energetically 

favorable among the three avidin protein molecules. Even more remarkably, the 

examination of the nonspecific binding of avidin, streptavidin and neutrAvidin to a pure 

DOPC bilayer indicated that neutrAvidin, a commercially made avidin analog designed 

to reduce nonspecific binding, had the highest degree of nonspecific adsorption with 

streptavidin exhibiting the lowest degree of nonspecific adsorption. Interestingly, the 

binding affinity of anti-biotin antibody to biotin at a surface was shown to be the same 

order of magnitude as the avidin molecules while exhibiting negligible nonspecific 

binding to a pure DOPC bilayer. Additionally, in the case of anti-biotin antibody, the 

surface did not need to be passivated with IgG to reduce the nonspecific binding. The 

detailed comparison of the binding kinetics and thermodynamics of these commonly used 

protein-ligand pairs in several bioanalytical applications offers important information to 

be carefully considered when designing biosensor or immunoassay platforms.  

 In Chapter 4, the plane wave nature and coherence of SSHGI was characterized 

using Gaussian beam propagation theory. Through comparison with the incoherent 

technique of fluorescence imaging, it was demonstrated that the coherent plane wave 

inherent to SSHGI allows imaging to be performed without the incorporation of a lens 

system. Although the SHG output beam followed Gaussian beam propagation theory, it 

did deviate from an ideal plane wave more rapidly than theoretically predicted, by a 

factor of 2.3. This divergence from theory was consistent for all object sizes examined 

and therefore indicates it is most likely due to some experimental limitation that remains 

the same throughout each experiment, such as not having perfect collimation of the 

incident beams. Despite this deviation from theory, SSHGI was able to resolve images of 
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objects as small as 196 μm at object-detector distances of 7 cm and objects of 397 μm at 

object-detector distances as far as 30 cm without using a lens. The emissive incoherent 

fluorescence imaging technique could not resolve images without a lens even at the 

closest object-detector distances. These findings indicate the unique ability of coherent 

plane wave processes, such as SSHGI, to image without a lens system. Eliminating the 

lens can simplify the detection scheme, raise collection photon efficiency, and increase 

the area of detection, allowing greater throughput imaging to be conducted. The coherent 

nature of SHG not only proved to be paramount to lens-less SSHGI, but also extremely 

beneficial to the implementation of SHCS.  

 The coherence of SHG, a statistical fluctuation technique, had a significant impact 

on the development of the SHCS theory and experimental parameters for data collection 

as shown in Chapter 5. The coherent property of SHCS makes it possible to have a large 

illumination/detection area with a large number of molecules, which increases the overall 

SH intensity and heterodyne effect, leading to increased S/N of the correlation data. 

SHCS was first utilized in the analysis of the binding properties of SBN intercalating into 

a DOPC bilayer, which was the first application of SHCS for the detection of surface 

biomolecular interactions. Agreement of results obtained from a traditional SHG binding 

isotherm and those obtained using SHCS, within the 99% confidence level, confirmed the 

ability of SHCS to accurately determine surface binding kinetics of biomolecular 

interactions. SHCS offers the advantage of obtaining both the adsorption and desorption 

rate for one concentration of SBN, meaning the data collection time was reduced and less 

analyte was required. These results firmly establish SHCS as a new label-free fluctuation 

correlation method with high sensitivity and surface specificity, capable of monitoring 
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surface biomolecular dynamics.  

In addition to the simple monovalent interaction of SBN to DOPC, the binding 

kinetics of CTb and PnA to GM1 were also examined using SHCS. The binding kinetics 

of these multivalent protein-ligand pairs were found to exhibit a dependence on the 

concentration of protein. The adsorption rates of both CTb-GM1 and PnA-GM1 decreased 

with increasing protein concentration while the desorption rates remained relatively the 

same. Ultimately, this led to an increase in binding affinity as the protein concentration 

was decreased, suggesting that at low protein concentrations there may exist a population 

of high affinity binders. The concentration dependent kinetics were not apparent in 

typical binding isotherms as they average over multiple concentrations and neglect the 

evolving binding kinetics as protein concentration is changed. Furthermore, SHCS was 

shown to be less sensitive to mass transport effects as these dynamics appear at different 

time constants as compared to the time constants of the surface binding dynamics studied 

here. On the other hand, the binding kinetics determined using typical binding isotherms 

were extremely sensitive to mass transport effects and could cause the measured binding 

affinity to vary by several orders of magnitude if the binding kinetics were not measured 

at steady-state equilibrium. It took several hrs (12-14 hrs for CTb-GM1) to reach near 

steady-state equilibrium at low protein concentrations and as such SHCS was 

tremendously advantageous as it did not require true steady-state equilibrium to be 

reached and could be accomplished in a much shorter time frame. In addition to the 

valuable insight obtained regarding the complexity of these multivalent protein-ligand 

interactions using SHCS, this study further established the potential applicability of 

SHCS as a label-free detection method for the study of more complex surface 
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biomolecular interactions.  

As a whole, this dissertation exhibits the remarkable sensitivity of SHG. Table 8.1 

lists the limits of detection reached for the biomolecules examined throughout this 

dissertation. It is apparent that by simply using resonant enhancement, SHG has the 

ability to detect down to fg/cm2. Additionally, combining SHG with correlation 

spectroscopy allowed surface biomolecular binding kinetics to be determined with great 

efficiency and less analyte. These properties make SHG and SHCS valuable label-free 

techniques capable of examining more intricate properties of surface biomolecular 

interactions with increased sensitivity and proficiency.  
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Table 8.1. Limit of detection of biomolecules investigated using SHG. 

 SHG 
Molecule femtomoles/cm2 pg/cm2 (*Unless 

otherwise noted) 

SBN             *            
fg/cm2 

Streptavidin                 
Cholera Toxin B                    
Neutravidin                   
Avidin                   
Peanut 
Agglutinin 

                    

Anti-biotin                  
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