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ABSTRACT 

 

Prior evidence from several research areas suggests that performance 

improvements can accrue during intervals that preclude further practice of a procedural 

skill; however, the mechanism underlying this improvement is unclear.   In order to test 

competing explanations for such improvement, the author investigated the effects of 

varying the cognitive demands of a secondary task interpolated into a course of cognitive 

skill practice.   The moderately complex skill task that was used presented electrical 

circuitry operations (logic gates) and their corresponding rules, which participants 

learned first through declarative instruction and thereafter through multiple blocks of 

procedural practice.  The interpolated task was either a cognitively demanding working 

memory (WM) test or a noncognitively demanding period spent listening to binaural 

alpha-wave beats over headphones.  Three theory-based explanations for skill 

improvement during the interpolated task, or gap facilitation, were tested: memory 

consolidation, release from proactive interference (PI), and mental rest.  Each explanation 

makes unique predictions regarding parameters of a power function used to describe the 

trajectory of each participant’s skill performance before and after the interpolated tasks.  

Evidence favored release from PI as being responsible for the observed gap facilitation 

effects.  Findings are interpreted with respect to learning theory that predicts performance 

decline with time away from practice and in light of prior explanations of evidence to the 

contrary. 
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CHAPTER 1 

INTRODUCTION 

 In the course of practicing a computerized cognitive skill, participants in a 

previous experiment in my research encountered a midsession break filled by an 

unrelated associative task.  After the break, these participants exhibited immediate 

improvement in performance of the original skill, an outcome unpredicted by prominent 

theories of skill acquisition.  Extensive practice of a skill typically produces systematic 

performance changes evidenced by steady reductions in both response time (RT) and 

errors (Newell & Rosenbloom, 1981), while time away from practice (i.e., offline) results 

in a temporary decrement in performance attributable to a loss of strength in inactive 

memory elements (Anderson, Fincham, & Douglass, 1999).  This loss of memory 

strength is manifested in longer RT and/or a drop in accuracy level and appears as a 

perceptible scallop in the negatively accelerated learning curve after resumption of 

practice.  As such, the observed short-term skill improvement following a gap injected 

into a practice session will be dubbed gap facilitation and demands an explanation.   

 Although gap facilitation is inconsistent with cognitive theories of skill 

acquisition, it is not unprecedented; at least three plausible explanations for the observed 

effect exist.  The first explanation is memory consolidation.  During the gap period in the 

previous experiment (hereinafter referred to as the pilot), participants engaged in an 

implicit associative learning task.  The nontaxing, noninterfering nature of the 
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interpolated activity could have allowed memory representations of the declarative rules 

and initial procedural compilations of the previously practiced skill to freely consolidate.  

The result of this offline stabilization of newly acquired skill representations would be 

behaviorally evidenced through the dependent measures. 

 As a second explanation, it is possible that improvement in performance 

immediately following the break was due to a release from proactive interference (PI) 

that had built up during the initial skill practice blocks.  As participants rapidly and 

repeatedly solved three-part sequences of highly overlapping problems, both the 

increased activation and enhanced memory strength for a just-solved item could have 

interfered with retrieval of the memory trace for the next item.  Such interfering 

influences could have caused a gradual slowing of improvement in RT in the practice 

blocks, but it presumably would have dissipated during the interpolated task. 

 Mental rest is the third plausible explanation for unpredicted gap facilitation 

following the interpolated task in the pilot.  Task fatigue has been found to build quickly 

under conditions of sustained focus and rapidly repeating stimuli such as existed in that 

experiment (Gunzelmann, Moore, Gluck, Van Dongen, & Dinges, 2011).  Perhaps, after 

switching away for a short time from the attentional demands of their cognitive skill 

practice and engaging in a simpler task, participants found their stores of energy and 

motivation replenished.  Upon resuming procedural practice, their immediately enhanced 

performance evidenced the benefit of cognitive rest.   

 These potential explanations for facilitated performance after a gap are neither 

mutually exclusive nor exhaustive.  Any one of the phenomena, or a combination of 

them, could be responsible for the observed skill improvement.  Despite the likely 
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complexity of the underlying cause, an understanding of this phenomenon is worth 

pursuing because of potentially important implications both for theory and application.  

The findings could contribute to theory because prominent memory models of skill 

learning do not predict gap facilitation.  Moreover, any training manipulation that 

improves performance, especially if it is relatively simple to implement, has potential 

application to the design of real world skill training.  The purpose of this research, then, 

is to better understand the underlying cognitive processes that might precipitate—and 

sustain—gap facilitation.   

 



 
 

 

 

 

CHAPTER 2 

LITERATURE REVIEW 

 This dissertation study required participants to acquire a cognitive skill through 

procedural practice in order that the effects on performance of diverse interpolated tasks 

could be investigated.  As such, this literature review consists of two parts.  First, I 

review pertinent literature related to cognitive skill acquisition, including the phases of 

learning hypothesized to enable skilled performance, prominent theories of how 

procedural knowledge is represented in memory, and the power law of practice.  Second, 

I explore three cognitive constructs that could be responsible for anticipated gap 

facilitation effects: memory consolidation, release from PI, and mental rest.   

Cognitive Skill Learning 

Skill in general has been conceptualized as “goal-directed, well-organized 

behavior that is acquired through practice and performed with economy of effort” 

(Proctor & Dutta, 1995, p. 18).  Cognitive skill, the type under investigation in this 

experiment, involves symbolic goals and is presumed acquired when an individual 

demonstrates the ability to solve problems or perform tasks in the intellectual domain 

(VanLehn, 1996).  This type of skill is usually distinguished from skill in the perceptual-

motor domain, in which goals such as playing the piano or hitting a golf ball are 

nonsymbolic (Rosenbaum, Carlson, & Gilmore, 2001).  Despite the obvious differences 

in their expression, however, cognitive and perceptual-motor skills are psychologically 
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more alike than different, as least in their acquisition (Bartlett, 1958; Rosenbaum et al., 

2001).  Newell (1991) went so far as to assert that traditional distinctions between skill 

categories are essentially matters of heuristic convenience.  As a result, principles that 

hold in one domain are presumed to hold in the other for the present purposes, unless 

otherwise noted. 

 Another distinction typically drawn in discussions of skill acquisition is between 

declarative knowledge and procedural knowledge.  Declarative knowledge reflects 

factual, verbalizable information, while procedural knowledge reflects a set of skills a 

person is capable of performing (Proctor & Dutta, 1995).  Unlike the debatable 

differences between cognitive and perceptual-motor skill acquisition, the declarative-

procedural knowledge distinction is widely accepted and vital because most, if not all, 

prominent models of skill acquisition posit distinct memory mechanisms within each.  

Typically, learners are understood to progress from accessing slow, WM-intensive 

representations (i.e., declarative knowledge) to employing fast, nonattention-demanding 

representations (i.e., procedural knowledge) through extensive practice (e.g., Anderson, 

1982, 1983; Fitts & Posner, 1967; Logan, 1988; Newell & Rosenbloom, 1981).   

 Finally, cognitive skills are presumed to exist along a continuum from simple to 

complex.  Simple skills, such as perceptual and classification tasks, consist of few basic 

components and can be developed quickly under conditions of relatively modest practice; 

by contrast, complex skills, such as those used to solve complicated mathematics 

problems, require integration of multiple components and many repetitions before 

expertise can be developed (Johnson, 2013).  In a seven-component conceptualization of 

task difficulty, Gilbert, Bird, Frith, and Burgess (2012) contrast more- and less-



  6 

 
 

demanding tasks based, in part, on the requisite executive function involvement.   More 

difficult tasks are defined as those requiring the transformation of internal representations 

germane to task performance, in a manner independent of concurrent sensory input, while 

simpler tasks may be executed based on comparatively direct stimulus-response 

associations.  As such, the level of complexity of the cognitive skill used in this 

experiment may be envisaged as somewhere in the middle of the spectrum: simple 

enough that participants can proceed through the essential phases of learning in the 

allotted time (1 hr), but complex enough to allow for investigation of changes in 

knowledge representation following a potentially impactful interpolated task.     

Phases of Learning 

In experimental settings, determining a subject’s capability in a particular skill is 

based in large part upon the level of fluency (i.e., expertise) the person has gained in an 

activity like mirror tracing or puzzle solving within a given practice period (Rosenbloom, 

Laird, & Newell, 1993).  Expertise develops gradually, but participants have been 

described as passing through three phases of learning: cognitive, associative, and 

autonomous (Fitts, 1964). 

 The first learning phase is called cognitive because it describes the stage when 

declarative processes are employed by the learner to explicitly understand a novel task 

and what is required to perform it correctly.  Working memory and attentional 

requirements are initially high, and performance feedback is generally provided.  The 

associative phase unfolds as inputs and appropriate actions are adjoined more directly, 

thus lessening the need for verbal mediation (Proctor & Dutta, 1995).  Errors, while still 

present in the associative phase, are rapidly decreasing, as is the time required to perform 
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the action.  The final, autonomous phase evidences procedural learning and is marked by 

the lessening of attentional requirements, a reduction of influence from outside 

interference, and cognitive processes and responses that appear to be triggered 

automatically rather than deliberately.   

 This description of the phases of learning is included here because participants in 

this experiment, during a single experimental session, transformed from novices to 

skilled performers of a moderately complex cognitive task by progressing sequentially 

and systematically through each phase.  It was crucial that participants developed at least 

a moderate level of skill at the task—as evidenced by decreasing individual RT and high 

levels of accuracy—in order that gap effects of any kind resulting from the break were 

detectable.    

Knowledge Representations in Selected Theories of Skill Acquisition 

Several prominent theories of skill acquisition describe memory mechanisms that 

enable the development of expertise through practice.  Arguably the most comprehensive 

model for learning—and the one that will be adopted for the present discussion—is 

John R. Anderson’s Adaptive Control of Thought (ACT) framework (e.g., 1983, 1993; 

Anderson et al., 2004).  This production-system architecture envisions cognitive skill as 

composed of production rules organized around sets of goals.  The ACT model has, 

across all its modifications, maintained a distinction between declarative and procedural 

knowledge.  Declarative knowledge, roughly corresponding to Fitts’ (1964) cognitive 

phase, is flexible; it takes the form of chunks and represents factual, mostly reportable 

information.  Procedural knowledge, contained in productions which are efficient for 

specific usage, is only manifested by performance, analogous to the associative and are 
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encoded, then strengthened with repeated use. 

 Newell and Rosenbloom’s Chunking Theory of Learning (1987) is based on 

similar underlying principles as those incorporated in ACT.  Separate pieces of general 

knowledge of the environment are acquired and organized into basic structures also 

referred to as chunks.  Chunks vary as to composition, size, and function (e.g., primitive, 

internal-processing, perceptual, motor, etc.), but all are capable of coalescing into higher-

level chunks.  Depending upon the structure of the task environment, it is these higher-

level chunks that are conducive to streamlined (faster) processing with practice. 

    In a different conceptualization of skill acquisition, Logan’s (1988) instance 

theory of automaticity envisions skilled performance as being associated with a specific 

type of cognitive processing.  According to instance theory, every knowledge 

representation underlying performance is a separable instance from practice which links a 

specific stimulus to a specific response.  New practice events are initially processed using 

a general algorithm, but with each repetition of the associated process, a separate memory 

trace is laid down.  As the number of traces associated with a particular problem type 

grows, memory strength manifests as instance retrieval rather than a re-instantiation of 

the algorithm.  Automaticity, as evidenced by speeded processing, is deemed achieved 

when performance is based fully on instance memory retrieval, regardless of the number 

of prior repetitions.  In essence, a learning mechanism develops which transitions slower, 

rule-based processing into faster, memory-based processing—the observable 

consequence of which is rapid and relatively effortless performance.   

The power law of practice.  Most theories of skill acquisition predict that the time 

needed to accomplish a task decreases systematically in proportion to the number of trials 
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raised to some power (Van Lehn, 1996), not that performance will improve while the 

learner is offline.  Sheer amount of practice has been shown to accurately account for 

performance time improvements in a variety of skills, from rolling cigars to solving 

geometry proofs (Newell & Rosenbloom, 1981).  Observed improvements in skill are 

accurately fitted by general power functions of the form: 

     T = a(N + E)
-b

,           [1] 

where T is performance time at a given practice event, a is initial performance time, N is 

the number of practice events, E is the number of trials constituting prior experience (E ≥ 

0), and b is the learning rate (0 ≤ b < 1).  Given the nearly universal fit of this function to 

both cognitive and motor skill learning data, Newell and Rosenbloom declared it the 

power law of practice.  Even under Logan’s (1988) instance theory of automaticity, as 

skill performance transitions from algorithm-based retrieval to memory-based retrieval, it 

is presumed to be governed by the power law.  

 Memory mechanisms that account for the reliable fit of power functions to human 

performance data are integral to theories of skill acquisition.  According to the Adaptive 

Control of Thought—Rational (ACT-R; Anderson, 1993) framework adopted here, the 

strength of a memory representation is a function of the number of learning repetitions, 

the time elapsed since the last repetition, and a forgetting rate.  With extensive practice, 

knowledge representations of to-be-learned stimuli evolve from a slow, declarative 

format into a fast, procedural format which can be more speedily accessed.  Improvement 

is steady and systematic and could theoretically continue without an asymptote if not for 

physical limitations.  Of primary importance, no theory that explains power law learning 

predicts that a gap during practice (i.e., a time lag between sets of practice events) would 
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result in improved performance.  On the contrary, a gap in practice necessarily reduces 

memory strength as a function of the decay rate, which in turn increases performance 

time.  

Strength decay.  Performance degradation over time away from practice is an 

outward manifestation of forgetting (Anderson & Schunn, 2000), which is thought by 

some to follow a power function just as skill acquisition does (Rubin & Wenzel, 1996).  

If the gap effect observed after an interpolated task is a decrement in skill performance 

rather than an improvement, strength decay will be a potential explanation.   

 Ebbinghaus (1885/1964) speculated that forgetting occurs as a function of time, a 

notion that evolved into decay theory in general, and the law of disuse in particular 

(Thorndike, 1905).  Gates (1930) concurred, asserting that trained mechanisms passively 

weaken when left inactive.  However, time is rarely spent in a vacuum, a necessary 

condition were decay alone to be conclusively accepted as the root of forgetting (Dewar, 

Cowan, & Della Sala, 2007).  Indeed, cognitive neuroscientists have recently observed 

that even when individuals are left undisturbed, their minds are not inactive.  The human 

brain’s default mode network is actively engaged in problem solving, reflecting on the 

past, imagining future events, and considering others' thoughts and feelings, for example 

(Buckner, Andrews-Hanna, & Schacter, 2008).  As such, researchers have long 

recognized that interpolated events and altered stimulating conditions are the key 

influences in the production of forgetting (McGeoch, 1932).  The detrimental force acting 

on memory under such circumstances, McGeoch argued, was interference, not decay. 

 If performance ability of a skill declines because a learner is offline—whether due 

to disuse, some type of interference, or a combination of the two—the resultant upswing 
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(i.e., worsening) in the RT learning curve could be because the production strength for 

the newly learned information weakened during the gap in practice.  Anderson and 

colleagues (1999) proposed this and conducted a series of cognitive skill acquisition 

experiments to investigate the utility of a strength accumulation equation designed to 

predict both power law practice and power law retention over various lengths of time (up 

to 400 days).  In five experiments they consistently noted a spike in RT as participants 

returned to the learning task, regardless of the length of retention interval.  Adopting a 

phrase from past researchers (e.g., Adams, 1961; Postman, 1961; Schmidt, 1988), they 

described the initial slowing after a break as a warm-up decrement.  Warm-up decrements 

disappeared after only a few trials as practice resumed, however, because the delay 

increments, though large, are rapidly added to the base strength.  With enough continuous 

practice, absolute skill level would approximate the proficiency level attained if no break 

were interpolated.  Of importance here, the ACT-R theory predicted a decrement in 

performance due to forgetting during time away from practice, rather than a performance 

benefit.   

Influences Contributing to Gap Effects during Skill Learning 

 Skill does not develop instantaneously but rather is acquired over time as a 

function of some amount—usually a great deal—of practice.  Indeed, the power law of 

practice virtually guarantees performance improvement of the repeated behavior as long 

as there is consistency in task demands and practice steadily occurs (within physical 

limits).  Unfortunately, faculties necessary for continuous effort (e.g., stamina, attention, 

muscle strength, motivation) are unstable and limited, requiring replenishment at regular 

intervals.  Periods of nonpractice (breaks, gaps, or time spent offline) are inevitable, 
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therefore, and standard fare in studies of skill acquisition.  This is especially true during 

attainment of complex motor skills, when demands on fatigue-prone physical abilities are 

high.  Constraints also operate on cognitive skill acquisition, however, where mental 

fatigue can reduce activation, decrease motivation, and ultimately stunt task performance 

(Lorist & Faber, 2011).  Fortunately, interpolating a gap into a course of skill practice 

does not always deter learning, though the power law of practice would predict 

otherwise.  In some circumstances, performance actually improves after a break.  

Subsequent sections of this review describe evidence and theory related to three cognitive 

constructs associated with gap facilitation effects; specifically, memory consolidation, 

release from PI, and mental rest. 

Memory Consolidation 

Consolidation is defined as a hypothetical process during which a memory item 

stabilizes into a long-term form (Dudai, 2012).  The first suggestion that memories 

consolidate following learning emerged from recall experiments conducted by German 

psychologists Muller and Pilzecker (1900).  This teacher-student duo is credited with 

initiating scientific usage of the term konsolidierung, or consolidation.  Their subjects, 

who had studied lists of nonsense syllables, often lamented that repetitions of the trigrams 

subsequently entered their minds unbidden.  This led to the hypothesis, borrowed from 

psychopathology, that newly formed memories perseverate, or continue to be processed 

apart from the experimental task, before achieving long-term storage.  Muller and 

Pilzecker went so far as to speculate, quite presciently, that perseveration was the result 

of “transitive activity in the brain that encoded associative memory” (p. 78).   

 Laboratory evidence has expanded on Muller and Pilzecker’s (1900) findings over 
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the past century, but often without a consensus of opinion among researchers as to 

conclusions drawn.  For example, memory consolidation was presented by Peterson 

(1966) and Landauer (1969) as an explanation for increased retrievability of a memory 

trace over a time, but this explanation for short-term spacing effects was frowned upon 

during the 1970s when the zeitgeist favored voluntary control processes; consolidation is 

presumed to occur involuntarily (Hintzman, 1974; Melton, 1969).  More recently, 

however, accumulating neural evidence suggests that the brain continues to process 

information even when practice stops, with changes taking place that serve to both 

strengthen and modify newly learned skill (e.g., Robertson, Pascual-Leone, & Miall, 

2004).  Memories of all kinds undergo postencoding stabilization processes through 

which they become more resistant to interference (Stickgold, 2005; Walker, 2005).  

Memory for just-learned material is often enhanced during sleep (Jenkins & Dallenbach, 

1924), and certain psychopharmacological agents with sedative properties (e.g., alcohol, 

benzodiazepines) have been found to improve memory for information studied 

immediately prior to their consumption (Wixted, 2004).   

 With regard to specific skill types, perceptual-motor performance has been found, 

under at least some circumstances, to improve during a break between training and test 

(Marshall & Born, 2007).  This finding has been taken to imply that representations 

associated with proceduralized skill are not fully formed at acquisition (Walker, 2005).  

Walker proposed that memory formation occurs during at least two stages of 

consolidation: stabilization, believed to occur during wake, and enhancement, believed to 

occur during sleep.  In a study investigating the role of the primary motor cortex in 

postencoding stabilization processes, brain researchers (Muellbacher et al., 2002) trained 
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subjects in a ballistic pinch test (i.e., accelerated, forceful index finger-thumb pinches to 

the beat of a metronome).  Following a 15-min retention interval during which they 

rested, Group 1 performed as well at test as they had before the break.  Rather than rest, 

Group 2 immediately underwent 15 min of repetitive transcranial magnetic stimulation 

(rTMS), an intervention known to disrupt local neuronal activity.  When tested, Group 2 

had regressed to prepractice levels.  Group 3 wakefully rested for 6 hr following training, 

then underwent rTMS.  These subjects evidenced no interference effect from rTMS when 

tested immediately after the stimulations, exhibiting the same performance levels they 

had achieved at the end of the training session.  This study suggests that motor memory is 

time dependent (as opposed to sleep dependent), rapidly transforming from a labile to a 

stable state.  In the absence of immediate interference, ability level of this motor skill 

maintained without further practice. 

    In an oft-cited perceptual learning study, Karni and Sagi (1993) investigated the 

role of attention in detecting, versus discriminating, the visual orientation of embedded 

objects.  These researchers required participants to determine, at ever-decreasing 

stimulus-to-mask onset asynchronies, the directional orientation of a tiny, briefly 

presented (10 ms) target array situated within a sea of similar, differently oriented 

stimuli.  A consistent pattern of learning emerged across 19 training sessions, but the 

gains came between, not within, sessions spaced 1-3 days apart.  According to Karni and 

Sagi, “Where perception completely fails on the initial session, there is > 90% correct 

discrimination on the following day” (p. 250).   

To further scrutinize the time course of the observed perceptual skill 

improvement, Karni and Sagi (1993) repeated the test procedure in probe sessions which 
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varied in number (1-3) and schedule (from 20 min to 10 hr posttraining) across the 9 

participants.  For example, 1 subject was probed three times, on a 20 min-2 hr-6 hr 

schedule, while another was tested once, at the 1-hr point.  All were retested between 20-

30 hr after initial training.  No increase in visual discrimination skill was observed in any 

participant between 20 min and 8 hr after cessation of training (the latent phase).  At the 

8-hr point, 2 participants did show improvement, and on the following day, all 

participants evidenced large skill gains.  Importantly, the additional practice opportunities 

experienced by some did not induce larger long-term gains, suggesting that training 

which occurred during the latent phase was superfluous.  Rather, learning was deemed 

driven by sensory capability acquired during the initial practice session.  These 

researchers concluded that texture discrimination learning involves a consolidation 

process which likely arises during the practice session, then subsequently underlies 

enhanced perceptual sensitivity hours after the session ends. 

Current neuropsychological evidence from animal studies suggests that the 

hippocampal circuit—the initial site of memory encoding, known to be highly plastic—

repeatedly reactivates circuits associated with new learning prior to memory storage in 

the neocortex (Carr, Jadhav, & Frank, 2011).  Reactivation, or awake replay, occurs 

during short periods when exploration is suspended and is predictive of subsequent 

memory strength.  Importantly, such mental replay occurs outside of behavioral 

repetition, thus providing a possible mechanism underlying improvement during offline 

periods in human learning experiments.   

 In one test of the awake replay phenomenon in humans, Dewar, Alber, Butler, 

Cowan, and Della Sala (2012) assessed recall of story units after participants either 
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wakefully rested (i.e., sat quietly) or played a visual game on the computer during an 

interpolated gap.  Memory for the verbal material was enhanced when the retention 

interval was uncluttered with additional external stimuli.  Moreover, the observed 

memory improvement maintained for 7 days beyond the original exposure to verbal 

prose.  Earlier, Dewar, Garcia, Cowan, and Della Sala (2009) showed that retention of 

verbal information by amnesic patients was improved as a function of delay length before 

an interfering task that was introduced following learning.  Once again, immediate but 

not delayed mental activity disrupted memory formation for these individuals.  Both the 

Dewar et al. findings and the Carr et al. (2011) animal learning evidence are consistent 

with Wixted’s (2004) argument that everyday memory formation is hindered by 

subsequent mental exertion as opposed to mental quietude.  In light of the gap 

improvement observed in the pilot experiment, this further suggests that memory strength 

for newly learned cognitive skills could be influenced by the nature of interpolated 

activity during practice. 

 Evidence of consolidation processes is not found across all memory systems or 

learning conditions, however.  Robertson, Pascual-Leone, and Press (2004) practiced 

participants on the serial RT task, then tested them for both implicit and explicit sequence 

learning.  Implicit learning did not occur during a 15-min retention interval but was 

exhibited to a significant degree over either 12 hr of wake or a 12-hr period that included 

sleep.  (Interestingly, explicit sequence learning occurred only after the sleep period, not 

after the 12 hr without sleep.)  Using a finger-tapping task, Hotermans, Peigneux, de 

Noordhout, Moonen, and Maquet (2006) noted an increment in posttraining skill after 

gaps of 5 min and 30 min, but not after 4 hr.  In an imagery study, Debarnot, Clerget, and 
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Olivier (2011) replicated the boost in finger-tapping learning after a 30-min break both 

for subjects who engaged in physical practice and those who merely imagined themselves 

performing the movements.  Unfortunately, none of these researchers specified what was 

done during the break; we know only that participants were not practicing the skill.  In 

each of these cases, gap facilitation is attributed to time-dependent (as opposed to sleep-

dependent) consolidation processes.   

Release from PI 

The second underlying mechanism hypothesized to affect skilled performance 

during training is PI, the disruptive influence of past processing on current processing 

(Kroll, Bee, & Gurski, 1973; Underwood, 1957).  Under the PI scenario, interference 

accumulates over massed procedural practice but subsequently dissipates when practice 

stops, allowing for improved performance upon resumption of training.  However, the 

typical paradigm for detecting PI effects involves declarative rather than procedural 

learning via the sequential presentation of lists of to-be-remembered information.  During 

testing, memory for the earlier lists studied would be stronger than memory for later lists, 

evidencing that previously acquired memory traces proactively interfered with access to 

new information.   

 PI is a considerable source of forgetting (Nairne, Neath, & Serra, 1997), errors, 

and confusion (Wickens, Born, & Allen, 1963) in short-term retention.  In a critique of 

empirical research on interference effects in list learning, Underwood (1957) asserted 

that, though retroactive interference is frequently identified as the culprit behind 

forgetting in experiments, PI is actually the predominant cause.  Retroactive interference 

occurs when new material hinders retrieval of old material, but in laboratory studies of 
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verbal learning participants are typically subjected to repeated cycles of memorization 

due to differing conditions and counterbalancing.  The result is that they end up 

memorizing many lists, raising the possibility that previous lists do the interfering, not 

new lists.  In an analysis of 14 studies of this type, Underwood found that the greater the 

number of previous lists learned, the more likely forgetting would be observed.  In other 

words, “the greater the number of previous lists learned, the greater the proactive 

interference” (p. 53, italics in original).  In the procedural learning portion of my pilot 

study, participants repeatedly and speedily solved block after block of highly overlapping 

problems which, especially initially, required explicit recollection, then application, of 

verbal rules.  It seems plausible that the greater the number of previous items solved, the 

greater the PI operating on each successive item.  The analog in verbal research is the 

number of previously learned lists, with magnitude of PI increasing consistently as the 

number of prior lists increases (Underwood, 1945). 

 Though the target of Underwood’s (1957) salvo was not cognitive skill 

acquisition but list memorization research, his observations recommend release from PI 

as a potential explanation for observed gap facilitation effects if basic principles of 

accumulation and dissipation of interference hold across domains.  As to accumulation of 

interference, a well-established principle of PI is that a positive relationship exists 

between amount of PI accrual and degree of similarity between consecutive activities 

(Underwood, 1945; Wickens, Born, & Allen, 1963), materials, and situations 

(Underwood, 1957).  In a recent test of whether implicit memory is immune to the 

disruption of interference, Lustig and Hasher (2001) declared that not only was the 

answer to their question no, but that similarity between target and nontarget items is a 
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critical boundary condition.  This may be due to competition for retrieval cues between 

newly and previously encoded memory representations (Anderson & Bjork, 1994; 

Anderson & Neely, 1996) and suggests a content-specific character to PI.  Participants in 

the pilot study solved numerous similar, and therefore confusable, practice items in a 

single experimental context, presumably resulting in mostly shared retrieval cues for the 

rules and thus inviting a build-up of PI.  Additionally, magnitude of PI accrual is known 

to be inversely related to length of retention interval (Postman & Keppel, 1977).  As the 

delay between learning episodes increases, the dominance of recent learning decreases.  

To-be-learned items in the pilot study were presented at a rapid pace, with intertrial 

intervals of 1 s, creating circumstances ripe for the accumulation of PI. 

  A construct akin to proactive interference is present in the behavioral domain.  

The learning theories of Hull (1943, 1951) and Kimble (1948, 1949) hypothesize that 

even as an effortful response—primarily of a motor nature, for these researchers—to a 

stimulus is occurring, a corresponding tendency to avoid repeating the response accrues.  

In his two-factor theory of inhibition, Kimble explains that this avoidance is a drive and 

is termed reactive inhibition.  Reactive inhibition is positively correlated with amount of 

effort expended and resembles fatigue in the sense that rest is necessary to dissipate it.  

However, rest in this context is an active goal response which is automatically initiated 

when a critical amount of reactive inhibition has accumulated.  During resting periods, 

built-up reactive inhibition dissipates as a simple decay function of time, only to rebuild 

as the behavior which precipitated it, or work, resumes.  Thus, a work-rest cycle ensues 

which eventually reaches a state of equilibrium.  All the while, habit strength for the 

ongoing response increases with repetition, resulting in improvement in the dependent 
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measures.  Thus, both reactive inhibition and PI predict decrements in performance over 

practice and a performance benefit from a break due to the dissipation of task- or content-

specific interference. 

Ammons (1947) systematically investigated the work-rest cycle, but he referred to 

reactive inhibition as temporary work decrement.  To test the effects of experimenter-

imposed resting periods on procedural practice of a motor skill, this researcher utilized 

the pursuit rotor task and a large sample of female undergraduate participants (N = 510) 

to explore 35 interrelations between amount of prerest practice (5 levels, from 30 s to 17 

min) and duration of rest break (7 levels, from 30 s to 360 min).  He calculated 

improvement after rest, or reminiscence (a phenomenon originally identified by Ballard, 

1913; see also Eysenck & Frith, 1977) due to dissipation of temporary work decrement, 

as the gain on the first postbreak trial over the expected level on that same trial had no 

rest been interpolated (from Buxton, 1943).  All groups realized some amount of this 

version of gap facilitation, with maximal gains experienced by subjects who practiced for 

8 min before resting.  Task-specific fatigue dissipated for about 20 min after rest, with 

90% of the recovery occurring within 5 min of discontinuing practice.  Ammons 

attributed performance gains to a dissipation of the temporary work decrement. 

With regard to the rate at which interference (or inhibition or decrement) 

dissipates, Underwood (1945) noted that PI effects were exceedingly transitory in his list-

learning task, dispersing after only one trial (i.e., list).  Adams and Dijkstra (1966) 

scheduled 3-min intertrial intervals in a simple linear motor response task to allow for 

appreciable trial-to-trial trace decay, while Peterson and Peterson (1959) found virtually 

no recall of conditioned elements (consonant syllables) after 18 s.  Taken together, these 
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studies suggest that in the pilot experiment, disengaging from procedural learning 

midway through practice and engaging in a different task for 12 min was likely ample 

time for interference effects to ebb. 

Mental Rest 

Researchers as far back as Ebbinghaus (1885/1964) have studied the adverse toll 

prolonged mental work takes on cognitive functions such as memory, judgment, and 

reasoning.  Often the culprit task characteristic is sheer length of time on task, with 

periods of sustained effort in a single cognitive task leading to declines, or vigilance 

decrements, in performance that are an increasing function of task duration (Davies & 

Parasuraman, 1982).  In an extreme example of the time-on-task effect, Arai (1912) 

examined cognitive fatigue by subjecting herself to a 4-day ordeal during which she 

mentally solved 4-digit multiplication problems (one multiplier and one multiplicand) 

from 11:00 a.m. to 11:00 p.m. without food or break.  Quite understandably, she noted 

progressive lessening of her abilities, with time taken to solve one problem more than 

doubling by the end of a 12-hr session.  Interestingly, her subjective opinion was that “the 

apparent loss in efficiency (was) due to physical weariness and consequent boredom 

rather than to loss in mental capacity to perform the task” (Huxtable, White, & McCartor, 

1946, p. 2).   

 More relevant here, however, is another task characteristic known to accelerate 

the build-up of mental fatigue: high level of demand on intellectual functioning.  

According to Ackerman (2011), “cognitive fatigue effects are typically associated more 

with tasks that require high levels of effort than with tasks that have low levels of effort” 

(p. 14).  For example, cognitive task performance deterioration has been observed after 
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only 10 min of continuous perceptual concentration (Dinges & Powell, 1985), and 

decrements in event-related potential (ERP) data have been noted after sustained work 

durations of no more than 20 min (Kato, Endo, & Kizuka, 2009; Van Dongen, Maislin, 

Mullington, & Dinges, 2003).  Conversely, virtually no performance decrement was 

perceptible after 6 hr of reading text (Carmichael & Dearborn, 1947) or adding single-

digit numbers (Kaneko & Sakamotor, 2001).  In these cases, the determining factor in the 

formation of fatigue appears to be level of requisite mental effort, not time on task.  

Cameron (1973) noted that, especially in the physical realm, a relatively short period of 

time spent on a highly demanding task should result in an accumulation of fatigue similar 

to that produced by a minimally demanding task engaged in for a longer period of time.   

 Mental fatigue effects precipitated by continuous demands on attentional 

resources can be ameliorated by making the demands intermittent instead (Ackerman, 

2011).  Indeed, a brief rest period is sufficient to allow for the dissipation of the effects of 

performance declines after periods of practice (Cameron, 1973).  A motor study by 

Adams (1955) provides an apt example of a level-of-demand manipulation.  He varied 

the amount of cognitive effort required during a break activity to investigate elemental 

responses in pursuit rotor learning.  Noting that a subject’s score on any complex 

psychomotor task is essentially a composite score representing skill attainment across 

more than a few component responses, he manipulated an interpolated task to impact the 

visual response component.  Subjects were assigned to one of five break activities which 

varied as to the amount of continuous visual and physical effort required, and the 

opportunity to rest.  Pertinent here is the finding that all the groups enjoyed substantial 

postbreak skill increases regardless of break type or length of rest (either 10 or 15 min).  
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Additionally, the more restful the break activity, the more postbreak time on target (i.e., 

skill improvement) participants achieved.  Of course, performance improvements in a 

psychomotor task following a break could be from physical in addition to mental rest, 

and presumably this would not be a contributing factor in gap facilitation for a cognitive 

skill. 

 As noted earlier, ostensibly different processes underlying gap facilitation might 

operate together and be difficult to distinguish.  Nevertheless, to the extent possible, the 

current research attempts to test the independent contributions of consolidation, release 

from PI, and mental rest. 

 



 
 

 

 

CHAPTER 3 

PILOT EXPERIMENT 

 The purpose of the pilot study was to investigate the effect of interpolating a 

simple associative task midway through multiple blocks of practice of a moderately 

complex cognitive skill.  The results precipitated the present experiment, which utilized a 

variant of the same learning task and different interpolated tasks designed to test 

alternative explanations for observed gap facilitation. 

Method 

Participants and Design 

Participants were drawn from the Educational Psychology Department subject 

pool during the 2011-2012 school year at the University of Utah.  Of the original 73 

subjects, 22 (30%) were eliminated due to either high error rates during learning or poor 

model fits (described later).  The final sample (N = 51) included 40 females and 11 males 

ranging in age from 18 to 52 years. 

The between-groups design, shown in Table 3.1, had two conditions, NoGap and 

Gap, which differed only as to the temporal placement of the interpolated task, Digit 

Symbol, in relation to blocks of skill practice.  The experiment was programmed using E-

Prime (Schneider, Eschman, & Zuccolotto, 2002), and most subjects finished in less than 

1 hr while seated at a computer.   
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Learning Task 

Participants learned to perform a sequential processing skill in which they made 

judgments involving electrical circuitry operations called logic gates.  Logic gates have 

been used extensively by others investigating cognitive skill acquisition (e.g., Carlson, 

Khoo, Yaure, & Schneider, 1990; Carlson, Sullivan, & Schneider, 1989; Gitomer, 1988; 

Kyllonen & Woltz, 1990) and have high utility in the university laboratory setting 

because college students outside of engineering fields are, as a rule, ignorant of them. 

To become skilled at solving logic gates, participants began by learning 

declarative rules for two gates, AND (A) and OR (O), through verbal instructions, single-

gate practice, and individual-item corrective feedback.  The wording of the rules was as 

follows: 

AND rule:  If BOTH inputs are 1, then the output is 1.  Otherwise, the output is 0. 

OR rule:  If EITHER input is 1, then the output is 1.  Otherwise, the output is 0. 

The gate symbols themselves were brackets for A, <   >, and parens for O, (   ) (see 

Carlson & Yaure, 1990, for a similar gate symbol variation).  Inside the brackets and 

parens were binary inputs, always some combination of 0 and 1.  Depending upon the 

type of gate (A or O) and the combination of inputs (0-0, 0-1, 1-0, or 1-1), an output of 

either 0 or 1 was determined for each gate.  In all, participants practiced eight unique 

visual presentations of single gates.  Pair practice (sequences of A-O and O-A) preceded 

three-gate (“trio”) practice (sequences of A-O-A and O-A-O).  The goal for participants 

was to become skilled at solving trio items (one of which is depicted in Figure 3.1 in a 

three-screen sequence). 

To successfully perform each trio trial, the learner was required to execute the 
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following multistep process:  

1.  Upon viewing Screen A, determine, then type, the output to the first gate based 

on gate type and displayed inputs. 

2.  At the appearance of Screen B (note that the contents of Screen A are still 

visible in B), mentally replace the asterisk in the second gate with the output from 

the first gate. 

 3.  Determine and type the output to the second gate. 

4.  When Screen C appears, mentally replace the asterisk in the third gate with the 

output from the second gate. 

 5.  Determine and type the final output to the trio.   

None of the typed outputs appeared on the screen, nor was immediate trio feedback given 

during the procedural practice blocks.  RT and errors for each individual gate were 

collected, and summary feedback was displayed at the end of each block.  The bulk of the 

experiment consisted of procedural practice of a total of 256 trio items organized into two 

sets of eight blocks of 16 trio items.  Each of the 32 unique trio items possible (2 trio 

sequences x 16 different input combinations) was seen every 2 blocks in randomized 

order per subject.  

Gap Task 

The Digit Symbol task served as the interpolated activity for all participants.  The 

version used was a computerized, partially verbal variation of the Digit Symbol 

Substitution Test contained in the Wechsler Adult Intelligence Scale (WAIS-III, 1997).  

In this speeded, associative, “look-up” task, each trial displayed digits 1 through 6 paired 

with one of six nonwords (consonant-vowel-consonant, or CVC, format) immediately 
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beneath, as shown in Figure 3.2. 

 In Digit Symbol, the same digit and nonword were always paired (e.g., 6 and tib), 

but the horizontal serial order of the pairs changed randomly on every trial.  The ever-

present display across the top of the screen comprised an answer key, of sorts, to which 

subjects could always “look up,” thus providing an “errorless” learning paradigm.  Near 

the center bottom of the screen on each trial, a horizontally oriented digit and CVC 

appeared, sometimes as paired at the top (a “like” pair, as in Figure 3.2) and at other 

times paired differently (a “different” pair; e.g., 6 and mef).  In a two-choice response 

format, participants pressed “D” or “L” for different or like, respectively, under 

instructions to respond “as quickly and accurately as possible.”  It was considered mildly 

demanding, at best, because the answers were always shown.  To discourage deliberate 

memorization of the stimulus pairs (and thus maintain the implicit nature of the task), the 

amount of time allowed for responding in each of the eight blocks gradually decreased 

from a maximum of 6 s per display in the first practice block to 3 s in the final two 

blocks.   

 As shown in Table 3.1, participants in the Gap group engaged in the Digit Symbol 

task after they had completed eight blocks of trio practice, with one re-orienting screen 

appearing at the beginning of the second set (Blocks 9-16) of practice blocks.  

Participants in the NoGap group engaged in Digit Symbol at the outset, then completed 

two eight-block sets of trio items.  The sets were separated by a single screen informing 

participants that eight more blocks of practice would follow.   
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Results 

Figure 3.3 displays the mean RT data by trial block for both groups.  Above each 

trial block are three vertically stacked data points.  Each point represents the mean RT for 

Gate 1, 2, or 3 of the 16 trio items occurring during a given block.  Average response 

latency declined for all three gates with continual practice, but an interesting pattern of 

RT is associated with the ordering of gate latencies within a block.  During Set 1 for both 

groups, participants typically took the longest to solve Gate 2.  This is possibly because 

determining the answer to this second gate required participants to carry forward an 

intermediate solution, 1 or 0, from Gate 1, a process which was not necessary for solving 

Gate 1.  With practice, the predictability of this Gate 1 advantage lessens for the Gap 

group, and largely disappears for the NoGap group.  Gate 3 RT, however, are often the 

fastest across both groups.  This observation is potentially due to the anticipation of rule 

transitions inherent in implicit sequence learning developed across practice blocks (see 

Carlson & Shin, 1996; Woltz, Gardner, & Gyll, 2000).  

Accuracy data were not included in the analyses because, after eliminating 11 

subjects (5 from the Gap group and 6 from the NoGap group) due to error rates greater 

than 30%, there was no difference in mean accuracy between the groups (NoGap = .952, 

Gap = .949, F < 1). 

Modified Power Function 

The overall shape of both learning curves was nonlinear, as expected, but closer 

inspection revealed an immediate drop in RT (i.e., improvement) in the Gap group 

between Blocks 8 and 9, when that group stopped practicing and engaged in Digit 

Symbol.  To quantify the apparent facilitative (in this case) effects of the break, the 
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power function was altered from its original form to include an additional parameter m:  

T = a*(N+m*Set)
-b

,           [2] 

where T, as before, is performance time at a given practice event, a is initial performance 

time, N is the number of practice events, or blocks, and b is the learning rate (b < 0).  

Parameter m (theoretically, -∞ ≤ m ≤ ∞) accounts for learning, or memory strength, 

accrued outside of current practice events (N).  “Set,” coded as either 0 or 1, separates 

Practice Blocks 1-8 (Set 0) from Practice Blocks 9-16 (Set 1) and ensures that m is 

allowed to be estimated only with respect to trial blocks following the interpolated task 

manipulation (i.e., when Set = 1).  Thus, m is conditional upon the break.  Such an 

alteration is not unprecedented; the power function has been changed as needed to clarify 

performance time improvements with practice (Newell & Rosenbloom, 1981).  

(Parameter E is absent in the modified function because prior experience with the task 

was not allowed among the participants.  Additionally, an asymptote parameter was not 

included due to the modest amount of practice provided.)   

Analysis of Individual Data 

Some researchers have noted that, when attempting to determine a functional 

relationship for groups of subjects, the mean curve is often insufficient for describing 

individuals (Estes, 1956; Heathcote, Brown, & Mewhort, 2000; Sidman, 1952). 

Consequently, each participant’s mean RT for each of the three gate responses across the 

16 blocks (48 data points) was fitted with the modified power function described above.  

The model fit most participants’ data well.  However, as noted earlier, data from 11 

subjects (4 from the Gap group and 7 from the NoGap group) were poorly fit by the 

power function.  Given the goal of comparing model parameters between groups, 
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participants for whom the model did not fit (i.e., those with fits of R
2
 < .3) were 

eliminated from subsequent analyses.  Of the remaining 51 subjects, the mean R
2
 was .62 

(range .35 to .88).   

Estimated values of m for those interrupted by the interpolated task were within a 

plausible range (M = 12.72, SD = 14.56).  In other words, an m value of 12.72 indicates 

that Gap participants gained, on average, the equivalent of almost 13 “blocks worth of 

practice” from the break.  (A positive m value reflects improvement, while a negative m 

value reflects a decrement.)  This average 12.72-block increment roughly corresponds to 

the 165 ms mean change between Blocks 8 and 9 for the Gap group shown in Figure 3.3.  

By contrast, the NoGap group’s mean m parameter was smaller (M = 3.27, SD = 6.24), 

roughly corresponding to their 36 ms mean change from Block 8 to 9. The mean m values 

differed significantly between the two groups, F(1, 49) = 8.95, p = .004, ηp
2
 = .15. 

Postbreak Performance 

Note in Figure 3.3 that the fit for the means of the Gap group does not fully 

capture their data because of their slight increase in RT during Practice Blocks 9-16.  

Another relevant aspect of Figure 3.3 is that participants in the Gap group, despite the 

boost in their scores at Block 9, realized no net skill improvement thereafter (mean linear 

slope of final eight blocks = -.003).  However, the NoGap group steadily improved 

(linear slope of final eight blocks = -.161), resulting in an interaction of the linear effect 

of block and condition following the break, F(1, 49) = 15.43, p < .000 , ηp
2
 = .24 .  There 

was no main effect of group for the final four practice blocks, F(1, 49) =  1.15, p = .29.   
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Discussion 

For participants in the Gap group, switching to a different activity in the middle of 

procedural practice of a cognitive skill resulted in a disproportionate amount of skill 

improvement upon resumption of practice relative to the NoGap group, as quantified by 

parameter m (12.72 and 3.27 blocks of postbreak advancement, respectively).  The reason 

for the improvement, or gap facilitation, is not understood, but three potential 

explanations are posited here: (a) memory consolidation of the gates rules occurred 

during the break in practice, thus strengthening memory traces for the nascent cognitive 

skill; (b) participants experienced a release from PI which had built up during the first 

eight blocks of similar—and therefore confusable—trio items, allowing for faster 

postbreak responding; and (c) participating in a nondemanding activity during a short gap 

in practice blocks enabled participants to mentally rest from effortful, rule-based learning 

and perform with renewed vigor after the break. 

 A fourth plausible explanation for gap facilitation was considered, then rejected, 

in the formulation of the dissertation study.  Under this supposition, the rapid cadence of 

the Digit Symbol interpolated task instantiated in Gap group participants a speeded 

response set which carried over to the second set of procedural practice blocks.  For the 

NoGap subjects, Digit Symbol came first; any momentum that may have built up from 

speeded responding likely dissipated during the slow-paced instructional portion of the 

learning task.   

A statistical test was performed (on Gap group data only) to explore this 

alternative explanation for gap facilitation.  First, if the speeded response set explanation 

were operating, mean RT from the last few blocks of the interpolated task, Digit Symbol 
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Blocks 6, 7, and 8, should add to the predicted mean RT performance on immediate 

postbreak Practice Blocks 9, 10, and 11 beyond what is predicted by mean RT from 

prebreak Practice Blocks 6, 7, and 8.  This, however, was not the case.  Though Digit 

Symbol Blocks 6, 7, and 8 correlated significantly with Practice Blocks 9, 10, and 11, 

r(26) = .49, p = .011, the correlation between prebreak Practice Blocks 6, 7, and 8 and 

postbreak Practice Blocks 9, 10, and 11 was much higher, r(26) = .90, p < .001.  Checked 

another way, mean RT in Practice Blocks 6, 7, and 8 alone significantly predicted mean 

RT in Practice Blocks 9, 10, and 11, b = .73, t(26) = 8.33, p < .001; adding the influence 

of mean RT in Digit Symbol 6, 7, and 8 contributed virtually nothing to the model, b = -

.02, t(26) = .08, p = .84.
1
  In addition, smaller pilot experiments not reported here 

evaluated the gap effect from different interpolated tasks that did not emphasize RT.  

Participants with these nonspeeded break tasks showed similar gap facilitation effects.  

Based on these findings, the speeded response set explanation for gap facilitation was not 

considered further. 

   

                                                             
1 The simple correlation between mean RT for eight blocks of Digit Symbol and gap change m 

was r(51) = .18, p = .209.
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  Table 3.1 

 

  Design of Pilot Experiment 

 

Experimental 

Groups 

Tasks 

Part 1 Part 2 Part 3 

NoGap Digit Symbol task Practice Blocks 1-8 Practice  Blocks 9-16 

Gap Practice Blocks 1-8 Digit Symbol task 

 

Practice  Blocks 9-16 
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Screen A 

 

           Screen B 
   

          Screen C  

 
 

 

 

 
 

 

 
 

Figure 3.1. A sample O-A-O trio ítem. 

Notes. The item is depicted on three separate, sequential slides, as shown to 

participants. Screen A contains the first (OR) gate, Screen B displays the addition 

of the second gate (AND, in this example), and Screen C adds the second OR gate, 

representing one complete practice ítem. 
 

  

( 0 1 )  

Type the output, 1 or 0 

( 0 1 ) < * 0 > 

( 0 1 ) < * 0 > ( * 1 ) = ? 
Type the output, 1 or 0 

Type the output, 1 or 0 
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Figure 3.2. A single trial of Digit Symbol. Figure 3.2. A single trial of Digit Symbol. 
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Figure 3.3. Mean RT for logic gate blocks by gate position and gap group.   

Notes. Dashed lines indicate the interval during which the NoGap group continued 

practicing but the Gap group switched to Digit Symbol.  Lines of best fit are in 

accordance with the modified power function fitted to mean group data.   

 



 
 

 

 

 

CHAPTER 4 

OVERVIEW OF THE EXPERIMENT 

 Inasmuch as none of the three plausible explanations for gap facilitation described 

earlier were uniquely supported by data from the pilot study, this research project was 

conducted to investigate the effects of varying the cognitive demands of the activity 

interjected into the logic gates skill practice.  Two gap activities were selected, one 

designed to minimize cognitive demand with an activity conducive to rest and the other 

to increase cognitive demand by requiring engagement in an effortful WM activity over 

the same period.   

To the extent the desired effects were achieved, this experimental manipulation 

differentiated between the three explanations because each makes a unique prediction 

regarding the impact of restful versus effortful activity during the break.  Specifically, if 

mental rest is the cause of gap facilitation, the group that was instructed to rest during 

their break would exhibit a temporary burst of faster RT afterward, while the group that 

performed an effortful task would exhibit slower RT relative to continuous power law 

learning.  If memory consolidation is responsible for gap facilitation, the absence of 

cognitive demand associated with the restful group would invite recently formed 

memories to undergo early stabilization processes; thereafter, this group would exhibit an 

enduring postbreak benefit to performance.  For the group whose WM demands 

precluded consolidation processes from ensuing during the break, however, postbreak RT 
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would not differ from what would be expected under continuous power law learning.  

Lastly, under the release from PI explanation, postbreak performance would be affected 

by the fact that a gap activity took place but would be unaffected by the nature of the gap 

activity.  The inhibitory potential of PI is postulated to spontaneously dissipate with the 

passage of time as soon as the activity which produced it ceases, but to build again as the 

same activity resumes (Hull, 1951).  Thus, performance gains would be short-lived.   

 From the preceding explication of predicted postbreak performance patterns, it is 

apparent that not only immediate but sustained gap effects needed to be measured.  

Persistence of learning was thought to be better quantified in this experiment than in the 

prior study due to the estimation of one additional parameter, b2, in the already-modified 

power function model, when the other parameters were fixed: 

        T = a*(N+(m*Set))
(b+(b2*Set))

,          [3] 

where T represents performance time at a given practice event, a is initial performance 

time, N is the number of practice events (in this case, blocks), m is gap change between 

Blocks 8 and 9, and b is the learning rate (b < 0).  After being estimated when the other 

parameters are fixed, b2 is added to learning rate b and reflects the possible change in the 

trajectory of learning during postbreak Practice Blocks 9-16.  “Set,” coded as either 0 or 

1, separates Practice Blocks 1-8 (Set 0) from Practice Blocks 9-16 (Set 1) and enables the 

incremental estimation of targeted parameters with respect to trial blocks before or 

following the interpolated task manipulation.  All predictions and associated statistical 

procedures and tests are explained in detail at the conclusion of the Method chapter 

(Chapter 5). 

The to-be-learned skill task entailed the sequential, three-step application of two 
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rules for electrical circuitry operations (i.e., logic gates), a variant of the task utilized in 

the pilot study.  (As before, nonnaïve subjects were excluded.)  The experimental 

manipulation of interest occurred during a break injected midway through skill practice.  

The break was filled by either a cognitively demanding (CD) N-Back WM task or a 

purportedly relaxing, noncognitively demanding (NCD) listening activity.  The rationale 

for each of these new gap tasks is given next. 

CD Gap Task: N-Back 

Participants in the CD group performed the N-Back task as a break activity due in 

part to its extensive use as a WM task.  N-Back is considered demanding because 

participants must continuously update an ever-changing rehearsal set while providing 

regular responses to displayed items (Kane, Conway, Miura, & Colflesh, 2007).  

Originally conceptualized as a paced tasked and designed to investigate very short-term 

retention (Kirchner, 1958) , this continuous-recognition paradigm has proven useful in 

experimental research (Jaeggi, Buschkuehl, Perrig, & Meier, 2010) and, more recently, in 

neuroimaging studies involving techniques such as functional magnetic resonance 

imaging (fMRI; Owen, McMillan, Laird, & Bullmore, 2005). 

 In a standard N-Back configuration, familiar stimuli (e.g., positive integers) are 

presented at a fixed rate and location on a computer screen, and participants are required 

to indicate with a keypress whether the currently displayed stimulus matches the stimulus 

shown N positions back or not.  Cognitive demands increase with increases in required 

attention and task arousal, in general (Kahneman, 1973), and are positively correlated in 

this task with N (typically 0, 1, 2, or 3).  Therefore, I utilized 2- and 3-Back variations to 

induce a high level of mental effort in participants.  To avoid perceptual overlap with the 
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logic gates symbols, alphabet letters were displayed rather than numbers. 

NCD Gap Task: Binaural Beats 

Although relaxing music is frequently the stimulus of choice in empirical research 

comparing cognitive processing under varying emotional states (e.g., Chafin, Roy, Gerin, 

& Christenfeld, 2004; Scheufele, 2000), any prior exposure to a musical selection is 

known to activate specific contents of semantic and episodic memory (Eschrich, Munte, 

& Altenmuller, 2008; Jancke, 2010).  To circumvent this extraneous variability, I used 

nonmelodic auditory modulations called binaural beats in an attempt to induce a relaxed 

state in participants assigned to the NCD condition.   

 Binaural beats are produced when two tones of similar—but not identical—

frequency are presented separately and simultaneously into each auditory channel 

through stereophonic headphones.  Each ear hears only one frequency, but the brain 

produces a composite signal, or beat, with an amplitude frequency that is the difference 

between the two that were heard.  Hypothetically, the binaural beat “entrains the brain 

toward a desired frequency” (Lavallee, Koren, & Persinger, 2011, p. 352) by stimulating 

synchrony with electroencephalographic (EEG) activity.  Thus, a binaural beat frequency 

can be selected so as to stimulate an associated EEG state.  For example, suppose a pure 

tone of 410 Hz were introduced into one ear and a pure tone of 400 Hz into the other ear 

at the same moment.  Inside the listener’s head, an auditory beat with amplitude 410-400, 

or 10, Hz would be generated and, through entrainment, produced throughout the rest of 

the brain (Padmanabhan, Hildreth, & Laws, 2005).   

 The applicable literature on binaural beats is small and somewhat varied.  

Researchers depending solely on subjective measures of participants’ emotional states 
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after listening to recordings have found decreased presurgery anxiety (Padmanabhan et 

al., 2005) but minimal impact on insomnia (Alexandru, Robert, Viorel, & Vasile, 2009).  

Others have either succeeded at finding (e.g., Kasprzak, 2011; Lavallee et al., 2011; 

Schwarz & Taylor, 2005) or failed to find (e.g., Brady & Stevens, 2000; Wahbeh, 

Calabrese, Zwickey, & Zajdel, 2007) evidence of entrainment in EEG readings.  In one 

study that may be of particular interest here, Lane, Kasian, Owens, and Marsh (1998) 

combined a self-report measure of mood with an accuracy score.  Over 3 days, 

participants completed the same computerized vigilance task (similar to 1-Back) three 

times while listening to what they thought were the same nondescript sounds.  On two of 

the days, however, the sounds were masking binaural beats in either the delta/theta range 

(associated with drowsiness) or the beta range (associated with alertness).  Scores on 

subjective measures of confusion/bewilderment and fatigue/inertia were significantly 

higher (i.e., worse) when participants had listened to the delta/theta beats.  Behaviorally, 

subjects were significantly better at both detecting targets and avoiding false alarms when 

they had listened to beta-wave beats.    

 As a result of the foregoing investigation into binaural beat technology, NCD 

participants were exposed to a recording of alpha-wave beats overlaid with ethereal 

tones.  Alpha waves oscillate at a range of about 8-13 cycles/sec and are present during 

deep relaxation.   

 

 



 
 

 

 

 

 

CHAPTER 5 

METHOD 

Participants and Apparatus 

Participants were drawn from the Department of Educational Psychology subject 

pool and from the University of Utah student population at large.  They received course 

credit or $20 ($5 after Session 1 and $15 after Session 2), respectively, for participating 

in the experiment.  Of the original 172 subjects, 32 (18.6%) were eliminated due to either 

high error rates during learning or poor model fits (described later).  The final sample (N 

= 140) included 98 females and 42 males ranging in age from 18 to 69 years (M = 23.62).  

Participants performed the experimental task on microcomputers with SVGA 

monitors and standard keyboards.  Programming of the experimental task was completed 

with E-Prime software (Schneider et al., 2002).  The software achieves millisecond 

timing of response latency.  Participants were required to wear the stereophonic 

headphones, which were provided, throughout the experiment. 

Design and Procedure 

 The between-groups design is depicted in Table 5.1.  Subjects were randomly  

assigned to one of four experimental conditions: CD-Gap and NCD-Gap (the Gap 

groups), or CD-NoGap and NCD-NoGap (the NoGap groups).  The N-Back and binaural 

beats interpolated activities are referred to as break or gap tasks for all groups, even 
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though they were performed at the beginning of the experiment (i.e., prior to any 

learning) for the NoGap groups.  The NoGap groups were included in the experimental 

design under the assumption that their skill improvement across 16 uninterrupted blocks 

of practice would provide a measure of typical, power-law skill improvement against 

which the Gap groups could be compared. 

 Participants in all experimental conditions learned to solve logic gates problems 

via the same instructional and training formats used in the pilot.  However, rather than 

limit the skill practice to two trio sequences (A-O-A and O-A-O), this experiment utilized 

four different sequences out of the eight possible three-gate combinations.  Trios A-O-O, 

A-A-O, O-A-A, and O-O-A were selected for skill acquisition because they balance the 

occurrence of each gate at each serial position and eliminate sequences that have three 

identical gates in a row.   

Practice Blocks 

The remainder of the experiment consisted of procedural practice of a total of 256 

trio items organized into two sets of 8 blocks of 16 different trios each.  Each of the 64 

unique trio items possible (4 trio sequences x 16 different input combinations) was seen 

every four blocks in randomized order per subject, and thus was solved four times.  As 

before, none of the outputs appeared on the screen as they were typed, and summary error 

and latency trio feedback was displayed at the end of each block to facilitate motivation 

in subjects across repeated blocks of practice. 

After the first set of eight practice blocks, Blocks 1-8 (Set 1), Gap group 

participants engaged in their respective gap tasks, CD (N- Back) and NCD (binaural 

beats), before completing the second set of eight Practice blocks, Blocks 9-16 (Set 2).  
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The two NoGap groups completed their gap tasks at the beginning of the experiment and 

consequently moved through Sets 1 and 2 with only one re-orienting slide between 

Blocks 8 and 9 that simply informed them of eight more blocks of the same task.  Both 

gap tasks were of precisely the same duration to ensure a consistent length of time across 

all subjects regardless of condition. 

N-Back Gap Task 

Trials were presented in blocks of 30 and consisted of one centered letter per 

screen, which appeared for 500 ms, then disappeared.  Participants were instructed to 

respond to each trial by pressing a key marked yes or a key marked no, depending on 

whether the current letter was identical to that seen N frames earlier.  (N was restricted to 

either 2 or 3 in this experiment.)  The next trial began 2000 ms after the disappearance of 

a stimulus regardless of whether the participant responded or not (i.e., a new trial began 

every 2500 ms). Consequently, an entire block lasted 1:15 min.   

A sample subset of six trials in a 2-Back series is depicted in Figure 5.1.  In this 

example, participants should respond no to the first three trials and yes to the fourth trial 

because the fourth stimulus shown, D, is the same letter as was shown 2 slides back.  The 

last two trials in this example would again require no responses.  In a given block of 30 

trials, there were between five and 10 trials requiring yes responses.  Response accuracy 

for all trials is the measure of interest.  Failure to respond before the next stimulus is 

presented was counted as an error.  As feedback, participants were provided with mean 

accuracy and latency scores at the end of every block.   

The 2-Back level of N-Back occurred first for all CD participants and consisted of 

three blocks.  Before beginning, participants viewed a series of 12 instructional slides that 



  45 

 
 

unfolded on a timed basis and were accompanied by an audio recording explaining the 

currently presented image.  Three blocks of 3-Back items followed, which mirrored the 

2-Back blocks in every way except during the instructional portion, when yes responses 

were described as being required if a stimulus was the same as the one appearing “3 

screens back.”  The ratio of yes responses to no responses at both N-Back levels was 1:2 

in Block 1, 1:4 in Block 2, and 1:5 in Block 3 (adapted from Kane et al., 2007).  At the 

conclusion of 3-Back, participants viewed one re-orienting screen before resuming trio 

practice.  The entire N-Back task, including instructions and three blocks each of 2-Back 

and 3-Back, lasted exactly 14:40 min. 

Binaural Beats Gap Task 

To facilitate relaxation in the NCD condition, participants were first informed that 

they were about to engage in a different activity in which “the expectation is that you 

rest.”  The goal of the manipulation was relaxation, so participants heard the instruction 

to “free yourself from the cares of the day.”  No other direction was given as to what the 

content of their thoughts should or should not be during the break.  They were asked to 

push their keyboard out of the way, don a set of dark goggles located nearby, and put 

their head down as a recording of binaural alpha-wave beats began playing quietly over 

their headphones.  At 5-min intervals, a quiet, overlaid voice informed them of the time 

remaining for resting.  At the conclusion of the beats period, participants were told to 

remove their goggles, replace their keyboard, and resume trio practice.  As with the 

NoGap groups, there was one re-orienting screen informing them of eight more blocks of 

practice.  The entire nondemanding break, including instructions and listening portion, 

lasted 14:40 min. 
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Fatigue Ratings 

As a manipulation check of whether the interpolated N-Back and listening tasks 

were perceived as cognitively demanding and noncognitively demanding, respectively, 

self-report ratings of fatigue were administered at the conclusion of Session 1.  

Participants were asked to retrospectively rate, on a scale from 1 (not at all fatigued) to 9 

(extremely fatigued), how mentally fatigued they felt at four points in time: Time 1—upon 

arriving at the lab, Time 2—at  the beginning of the nonlogic gates gap task (N-Back—the 

CD task, or listening to binaural beats—the NCD task), Time 3—at the end of the gap 

task, and Time 4—at the end of the experiment.   

Retention Phase 

Six to 8 days after participating in Session 1, subjects earned additional course 

credit, or the bulk of their pay, by returning to the same location to complete the retention 

portion.  After one brief welcome screen but no review information whatsoever, 

participants solved four more blocks of 16 randomly presented trio items as a test of how 

well they had retained their recently acquired skill.  All 64 unique trio sequences and 

stimulus combinations—seen four times each in the Session 1 practice blocks—were 

seen once in the retention phase.  RT and accuracy feedback were given at the end of the 

fourth retention block only, concluding the second and final session of the experiment. 

Hypothesized Result Patterns 

Based on the nature and temporal placement of the interpolated tasks, at least four 

patterns of RT change could have been manifested that correspond to the previously 

discussed explanations for gap effects.  These are depicted in the quadrants of Figure 5.2.  

Note that all plots are identical until Practice Block 8 because, although participants in 
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the NoGap groups had already experienced a gap activity, the learning task instructions 

and initial practice blocks did not differ between groups.  

Quadrant 1: Strength Decay 

There should be no difference between the two Gap groups under this 

explanation.  According to the power law of practice, memory strength for to-be-learned 

material decreases during periods of nonpractice.  Both the CD- and NCD-Gap groups 

disengage from the same learning task for the same amount of time after the same eight 

blocks of practice and thus should undergo the same amount of forgetting during their 

break, regardless of the character of the break activity.  Forgetting would result in higher 

(i.e., worse) initial postbreak RT, but negative effects should be short-lived as memory 

strength accrues anew with practice.  At the conclusion of Practice Block 16, RT for both 

Gap groups would be close to, but nonetheless slower than, the NoGap groups.  The 

NoGap group should suffer no loss in RT between Blocks 8 and 9 because they 

experience no interruption of their practice.  Although this prediction is inconsistent with 

the facilitation found in the pilot study, it represents the expectation of a pure power law 

prediction of memory strength accrual and decline with a gap in practice. 

Quadrant 2: Mental Rest 

If mental rest during the break is responsible for gap facilitation, the NCD-Gap 

group should enjoy a drop (i.e., a speeding) in RT following their relaxing interpolated 

activity.  The CD-Gap group, which performs a WM task presumed to be more taxing 

than continued skill practice, should experience a corresponding negative effect on 

postbreak RT.  However, if having a chance to mentally rest causes gap facilitation, the 

implication is that the learning task was tiring to some degree.  As such, any positive 
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effects from resting would be temporary as participants’ fatigue increases again during 

Practice Blocks 9-16, resulting in a postbreak learning rate that slows relative to that of 

the NoGap groups. 

Quadrant 3: Memory Consolidation 

If memory consolidation is responsible for gap facilitation, it should manifest as 

significantly faster RT in Practice Block 9 only for participants in the NCD-Gap group.  

This group’s period of mental quietude ostensibly would allow for various elements of 

recently encoded information to strengthen to a greater extent than was possible for the 

CD-Gap participants, who were required to manage a heavy WM load during the break.  

CD-Gap participants should experience no offline stabilization of logic gates learning and 

may evidence a small initial decrement in performance (i.e., slower RT) due to 

nonpractice before resuming prebreak learning rates.  Importantly, the memory 

consolidation explanation for gap facilitation predicts no change in the rate of learning 

(b) of NCD participants after the break.  Though the trajectory of NCD-Gap participants’ 

postrest learning curve appears in Figure 5.2 to have flattened (i.e., weakened), this is an 

accurate depiction of an unchanged learning rate.  It merely reflects the increasingly 

asymptotic character of their learning curves after they realize m blocks of improvement 

during the gap activity.  A consolidation benefit would be a persistent increment to 

strength that steadily grows with continued practice.  

Quadrant 4: Release from PI 

If release from PI is the reason for gap facilitation upon resumption of procedural 

learning, both the NCD- and CD-Gap groups should be identically affected.  Each 

discontinues practice to engage in an activity dissimilar to the learning task, theoretically 
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allowing interference from repetitions of the practiced items to dissipate.  The immediate 

positive effects should be short-lived, however, as PI once again builds up during the 

second set of practice blocks.  By the end, RT should be similar to those of the NoGap 

groups, as was the case for the mental rest prediction for the NCD-Gap group in Quadrant 

2.   
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Table 5.1 

Design of Experiment 

Note. CD = cognitively demanding; NCD = noncognitively demanding.  
a
The horizontal 

dashed line separates the two groups that were considered likely to be (and were) 

combined. 
  

Condition Task 1 Task 2 Task 3 Retention 

CD-Gap 

Gates instruction and 

Set 1 
(Practice Blocks 1-8) 

2- and 3-Back 

Set 2 

(Practice Blocks 
9-16) 

Practice 

Blocks 17-20 

NCD-Gap 

Gates instruction and 

Set 1 
(Practice Blocks 1-8) 

Binaural beats 

Set 2 

(Practice Blocks 
9-16) 

Practice 

Blocks 17-20 

NoGap-CD
a 

 

NoGap-NCD 

2- and 3-Back 

 

Binaural beats 

Gates instruction 

and Set 1 
(Practice Blocks 1-8) 

Set 2 

(Practice Blocks 

9-16) 

Practice 

Blocks 17-20 
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Figure 5.1. Sample series of six separate trials at the 2-Back level. 
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Figure 5.2. Four hypothesized result patterns. CD = Cognitively demanding; NCD = 

noncognitively demanding; PI = proactive interference. Vertical line indicates insertion 

of the interpolated task after Block 8 for the two Gap conditions. 
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CHAPTER 6 

RESULTS 

Accuracy and RT for correct responses in the learning task, as well as self-report 

fatigue ratings of the entire experimental session, were collected from the final sample of 

140 participants for Session 1.  Of these, 136 returned between 6 and 8 days later for a 

check of retention.   

Gap Tasks 

 Error data were analyzed from the two experimental groups that performed the N-

Back WM task either before or during a break in procedural learning.  No group 

differences in error rate (M = 11.8%, SD = 5.7 and M = 11.9%, SD = 6.4, respectively) 

were found based on task order, F(1,68) < 1.  Nonetheless, participants committed 

significantly more errors during the 3-Back portion (M = 13.8%, SD = 6.2) than during 

the 2-Back portion (M = 10.0%, SD = 8.3), F(1,68) = 14.97, p < .001, η
2

p = .18, 

regardless of the temporal placement of this gap activity, F(1,68) = 1.85, p = .178.  This 

finding attests to the graduated difficulty level as N increases in the N-Back task.  

Moreover, N-Back error scores were positively correlated with initial procedural learning 

RT, as expressed in the a parameter, for both those whose WM was taxed before (CD-

NoGap group, r(33) = .383, p = .023) and during a break in (CD-Gap group, r(33) = .407, 

p = .015) the procedural learning practice blocks.  Thus, those who performed better on 
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the N-Back task also began the logic gates portion of the experiment with faster 

responses.  N-Back performance did not have a statistically significant correlation with 

other power function parameters.  No data were collected during the binaural beats gap 

activity.    

  The main question of interest in the fatigue data was whether, as per the design, 

participants who experienced the N-Back task (CD) would rate their gap period (between 

Time 2 and Time 3) as more tiring than participants who listened to binaural beats (NCD) 

during the same period.  Figure 6.1 depicts the group differences that lend support to the 

notion that the manipulation achieved the desired effect.  Significant differences between 

the CD and NCD groups were observed, F(1, 137) = 8.441, p = .004, η
2

p = .06.  Perhaps 

more importantly, there was a strong interaction between time and gap activity, for those 

who had their break before any logic gates learning, F(1, 68) = 30.201, p < .001, η
2
p = 

.17, or between Blocks 8 and 9, F(1, 68) = 56.957, p < .001, η
2
p = .46.  As seen in both 

panels of Figure 6.1, the groups performing the N-Back task reported an increase in 

fatigue from the break activity, and the groups listening to binaural beats reported slightly 

less fatigue.   

Learning Task 

 As noted previously, data from 140 participants (N = 35 per group) were included 

in the final analysis after 32 of the original 172 participants (18.6%) were disqualified 

due to high error rate and/or poor fit to the power function model in Set 1.  Exclusions 

were distributed equally across the four experimental groups as follows:  CD-Gap group 

= 8; NCD-Gap group = 7; CD-NoGap group = 10; and NCD-NoGap group = 7, 2 
(3,  N 

= 172) = .597, p = .897.  
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To determine whether participants learned to correctly solve logic gates items, 

error rates during procedural learning were computed.  Overall errors did not differ 

between groups, F(3, 136) < 1, and were low (M = 2.5%, SD = 1.7) after 16 participants 

who committed over 20% errors (M = 37.9%, SD = 8.5) were eliminated.  Given the 

exceedingly low error rate of the majority of participants, and the fact that chance 

accuracy was 50%, committing more than 20% errors was extreme.  In addition, high 

error rates were generally associated with atypically fast responses that resulted in 

unrealistic power function parameter estimates. 

The parameter estimates (a, b, m, and b2) derived from fitting each individual 

participant’s RT data to the modified power function were the primary measures by 

which the hypotheses of this experiment were tested.  Under the assumption that 

procedural learning could be inferred if and only if an individual’s data fit this model, it 

was deemed imperative to include only participants whose performance during initial 

practice (Blocks 1 through 8) was reasonably well represented by the power function.  As 

such, disqualification of any participant was based solely on error and model fit data 

extracted prior to the gap manipulation and any evaluation of the hypotheses.  I computed 

R
2 

as the index of model fit for each person’s data during Set 1 and disqualified 16 

participants whose R
2  

< .25 (above and beyond those with error rates > 20%).  The 

average model fit of these 16 participants was R
2
 = .097compared to the average Set 1 R

2  

= .614 of the remaining 140 subjects.  For 6 of the 16, the model was entirely 

inappropriate (R
2  

= 0).  The decision to eliminate these participants with poor model fits 

reflected the assumption that parameter estimates extracted from data which bear little 

resemblance to the model would be meaningless.     
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Described in detail in the next section, the primary analyses of these experimental 

data involved not aggregate comparisons but contrasts of individual participants’ 

parameter estimates.  That said, averaged group RT are depicted in Figure 6.2 because 

they provide a holistic sense of the course of learning for all participants subjected to 

each experimental condition.  The plot serves as a gauge for determining at a glance how 

well the obtained results may or may not conform to any one of the four hypothesized 

result patterns.  Note that, inasmuch as the two NoGap groups did not differ in any of the 

parameters (see following), they are combined in Figure 6.2.   

Power Function Model 

Parameter estimates a, b, m, and b2 were derived from individual data sets of 48 

values per participant.  Each value represented the mean block RT for correct responses 

to 16 first, second, or third gates in a given block.  Means were computed after trimming 

outlying RT values for individual responses within a block.  Because the variability of 

trial RT within participants showed a strong tendency to decrease with practice, a 

gradually decreasing criterion for trimming was implemented based on each individual’s 

standard error of estimate (from standard error * +/- 5.5 in Block 1 to standard error * +/- 

2.5 in Blocks 9 through 16).  The goal was to include all but the most extreme data 

points.  On average, 10 out of 768 total data points were eliminated per subject.   

 Individual model fits were estimated with the SPSS nonlinear regression 

procedure using a three-step process:   

1. A two-parameter model (comparable to Equation 1, p. 8) was estimated for 

the first eight practice blocks (Set 1) only.  This first step derived a measure of 

initial performance level a and nonlinear rate of change b. 
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RT = a * (Block)
-b               

[4] 

2. Gap change m was next estimated after previously derived a and b values 

were inserted into the second model (compare Equation 2, p. 27).  

Importantly, for this step all 16 practice blocks were included, with Set coded 

as 0 and 1 for Blocks 1-8 and 9-16, respectively. 

        RT = a * (Block + m * Set)
-b

           [5] 

3. Finally, derived a, b, and m values were inserted into the complete model 

(compare Equation 3, p. 36) to estimate the final parameter b2.  This 

parameter only affects Blocks 9-16 (again, Set is coded as 0 for Blocks 1 

through 8 and as 1 for Blocks 9 through 16).  It sums with learning rate b and 

was included in the model to reflect any change in postbreak learning rate. 

    RT = a * (Block + (m * Set))
(b + (b2 * Set))

         [6] 

Mean parameter estimates by group appear in Table 6.1.  The values correspond 

generally to the learning functions seen in Figure 6.2 and thus afford a cross-check of the 

representativeness of both the parameter estimates and the plot.  For example, mean 

parameter a values approximate RT in Block 1.  As can be seen in Table 6.1, the a values 

differ little by condition.  As such, the depiction of a in Figure 6.2 shows three lines 

clustered together near the same point as learning begins.  Mean b parameter values 

reflect the nonlinear rate of improvement, with larger negative values indicating faster 

learning. Also notable in Table 6.1 and Figure 6.2, the rate of improvement did not differ 

substantially between conditions.  Mean m values reflect an increment in the block 

variable corresponding to the performance level expected by power law learning.  For 

example, note the largest mean value of 12.0 for the CD-Gap group.  This value indicates 
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that those participants gained, on average, the equivalent of 12 “blocks worth of practice” 

while they were not practicing.  Said another way, the skill level (as determined by RT) 

they exhibited at Block 9 is the level they would have been expected to reach, according 

to their mean power law learning rate b, at Block 21.  Finally, mean b2 values reflect an 

adjustment to learning rate b for the latter practice blocks only.  All b2 values are 

extremely small and positive, indicating that, according to this index, there was little 

slowing of the original learning rate b.  The more positive the b2 value, however, the 

more slowing being observed. 

Reliability Estimates 

To estimate split-half reliability for the parameter estimates, all participants’ 

power law parameters (a, b, LNm, and b2) were recalculated separately for odd- and 

even-numbered trials.  Parameters were estimated using the same procedure as described 

earlier for the nonsplit sets of data.  Using the Spearman-Brown adjustment, rxx’ for 

parameter a = .97, b = .79, m = .55, and b2 = .48.  The relatively low reliability 

coefficients for m and b2 provide support for a decision to reexamine gap change and the 

postbreak slope trajectory with different, more reliable variables.  As will be described 

below, a natural log transformation of m values has both practical and theoretical 

justification, and the reliability estimate for this transformation of m was higher, rxx’ = 

.72.  Also described below, an alternative method of estimating the power function rate 

for Blocks 9-16 produced a more reliable index of postbreak trajectories, , rxx’ = .80.      

Tests of Parameters 

For each parameter or transformed equivalent, three 1-degree of freedom planned 

orthogonal contrasts tested the viability of the four hypothesized result patterns depicted 
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in Figure 5.2.  In each case, the first contrast compared the Gap groups to the NoGap 

groups (referred to as the Gap-NoGap contrast), the second compared the two Gap 

groups, CD-Gap versus NCD-Gap (the Gap contrast), and the third compared the two 

NoGap groups, CD-NoGap versus NCD-NoGap (the NoGap contrast).   

 Parameter a.  Given that a represents initial performance level in the logic gates 

learning task, differences in group means for this parameter would likely suggest a failure 

of the random assignment to equate participants in the four conditions at the outset or, 

alternatively, that the activities of the NoGap groups affected their initial learning 

performance.  As recorded in Table 6.1 and depicted in Figure 6.2, no preexisting 

differences in a were expected or found when group means were compared via the three 

contrasts: Gap-NoGap, F(1, 136) = .13, p = .721; Gap, F(1, 136) < 1; and NoGap, F(1, 

136) = < 1. 

Parameter b.  Statistically significant mean differences between groups on 

parameter b would be indicative of diverse rates of skill acquisition in the logic gates 

task.  As with parameter a, however, the means of parameter b were similar across the 

four groups, according to the three contrasts [all F(1, 136) < 1].  Because the two groups 

that experienced no break between Blocks 8 and 9 (i.e., the NoGap groups) did not differ 

as to their a and b parameters, as noted earlier, their data are depicted by a single line in 

Figure 6.2.  This merging of NoGap groups was anticipated and facilitates juxtaposing 

this figure showing observed performance with the hypothetical result patterns displayed 

in Figure 5.2.  Furthermore, the equivalence of a and b parameters for Gap and NoGap 

groups allowed for hypotheses about m and b2 parameter differences to be tested without 

consideration for initial learning differences due to gap task placement in the session. 
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Parameter m.  Gap effects, encapsulated by m and conceptualized in the metric of 

block, are interpreted as facilitative when m values are positive and detrimental when m 

values are negative.  Statistical tests of group differences in the magnitude and/or 

direction of gap change estimator m were evaluated against the predictions of the four 

hypothesized result patterns.  The two predictions depicted in Figure 5.2 that most 

resemble the actual mean learning curves are those of memory consolidation and release 

from PI.  Accordingly, the Gap-NoGap and Gap contrasts were most instrumental in 

distinguishing between these explanations.  The consolidation hypothesis predicted a 

significant Gap contrast; the release from PI hypothesis predicted a nonsignificant Gap 

contrast but a significant Gap-NoGap contrast.     

In order to accurately test the significance of the contrasts for parameter m, a 

natural log transformation was performed on the estimated values. This was done in part 

to reduce a strong positive skew in the distribution, and, as reported earlier, the reliability 

of log transformed m was markedly better than that for m.  Equally important, logarithmic 

transformations are used routinely when statistical analyses involve the power function; 

indeed, in their seminal article from 1981, Newell and Rosenbloom use the phrases log-

log linear learning law and the power law of practice interchangeably.  Means and 

confidence intervals for LNm are shown in Figure 6.3.  Significant mean differences were 

evidenced for LNm values with the Gap-NoGap contrast, F(1, 136) = 15.47, p < .001, η
2
p 

= .10, but not with the Gap contrast, F(1, 136) = 1.09, p = .299, or the NoGap contrast, 

F(1, 136) = 2.02, p = .157.  [Incidentally, when the contrasts were tested with the 

(untransformed) m parameter estimates, the same conclusions were drawn: Gap-NoGap 

contrast, F(1, 136) = 8.56, p = .004, η
2

p = .061; Gap contrast, F(1, 136) = 1, p = .32; 
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NoGap contrast, F(1, 136) = 1.56, p = .214.] 

As shown in Figure 6.3, the two Gap groups’ large LNm scores relative to those of 

the NoGap groups, regardless of which gap activity they participated in, suggest that 

simply switching to a different task for 15 min after Set 1 brought about faster RT in 

Block 9; the mental effort demanded during the interpolated task did not seem to matter.  

This conforms well with predictions by the release from PI explanation.  Meanwhile, the 

comparatively small LNm scores of the NoGap groups conform with the incremental, 

gradually asymptoting improvement predicted by the power function under conditions of 

uninterrupted practice.  

Set 2 learning rate.  The b2 parameter serves as an adjustment to learning rate b 

during postbreak Practice Blocks 9-16, or Set 2.  As was the case with the LNm 

parameter, the Gap-NoGap and Gap contrasts were most useful with b2 for distinguishing 

between consolidation and release from PI predictions.  The consolidation explanation 

predicts no difference in slowing with respect to either contrast, whereas the release from 

PI explanation predicts significantly more slowing for Gap compared to NoGap groups, 

and no difference between Gap groups.  No differences between any of the groups were 

found when the b2 parameter was tested in accordance with the three planned contrasts: 

Gap-NoGap, F(1, 136) = 1.96, p = .164; Gap, F(1, 136) = 1.74, p = .189; and NoGap, 

F(1, 136) = < 1.   

The result of this statistical analysis of b2 was surprising given the appearance of 

the Set 2 learning curves in Figure 6.2.  This, along with low reliability estimate reported 

earlier, brought into question the utility of this parameter as the primary index of Set 2 

learning rate adjustment.  Consequently, to evaluate participants’ performance during the 
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second half of their learning experience, I conducted a post-hoc analysis in which the 

slope of Blocks 9 through 16 was computed in log-log coordinates.  The transformed 

variable, Set2b, is useful because the linear slope computed from the log of RT regressed 

on the log of Block represents the rate parameter of the power function.  As such, the 

individual values of Set2b can be conceptualized as, and contrasted with, the b learning 

rate parameter, but representing Set 2 learning.  The Set2b index allows for testing 

performance trends in Blocks 9 through 16 with a power function metric, and, in contrast 

to the b2 parameter, it is estimated independently of the other three parameters in the 

modified power function.   

Reexamination of Set 2 data using the post hoc Set2b variable aligned more 

closely with the learning curve trajectories depicted in Figure 6.2.  Respective means and 

confidence intervals are shown in Figure 6.4, and, for comparison purposes, means and 

confidence intervals for b parameter estimates reported earlier are also shown.  Once 

again, the b parameter reflects the learning rate estimated for Blocks 1 through 8 only and 

was never compared statistically to the Set2b parameter, though they appear on the same 

plot.  As such, when interpreting Figure 6.4, note that the more similar the b and Set2b 

mean values within any group, the less the learning rate changed in the later blocks.   

When analyzed with the three orthogonal contrasts, significant Set2b Gap-NoGap 

differences were found, F(1, 136) = 47.43, p < .001, η
2

p = .26.  As is evident in Figure 

6.4, the Gap groups both slowed considerably, failing to sustain the dramatic RT 

reductions they realized immediately after their breaks.  In addition, these two groups’ 

patterns of slowing differed from each other, F(1, 136) = 16.12, p < .001, η
2

p = .11, 

though the effect size was small.  This difference was not predicted by the release from 
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PI explanation.  The NoGap groups did not differ as they maintained their power 

function-shaped improvement after Block 9, as would be expected, F(1, 136) = 1.92, p = 

.168.   

Session 2: Retention Blocks 

Participants returned 6 to 8 days after their initial learning session to be tested on 

their memory for logic gates rules and procedures.  No review information whatsoever 

was given as the four retention blocks of 16 items each began.  It should be noted that 

there were no group differences in mean RT across Blocks 13 through 16, the last four 

blocks of practice prior to the week-long retention interval, F(3, 136) < 1, allowing for a 

straightforward interpretation of the retention results.   

The comparison of primary theoretical interest at retention was the Gap contrast.  

Under the memory consolidation hypothesis, this comparison would have been 

significant in favor of the NCD group due to the stabilization of their learning during the 

wakeful resting period.  The Gap-NoGap contrast was also potentially informative 

because it compares groups receiving spaced practice in Session 1 (both Gap groups) 

with groups receiving massed practice (both NoGap groups).  Though this research was 

not designed to test the well-established spacing effect (for reviews, see Cepeda, Pashler, 

Vul, Wixted, & Rohrer, 2006; Dempster, 1988), the format aligns closely with a typical 

description of just such an investigation: “A spacing experiment should involve mult iple 

periods of study devoted to the same material, separated by some variable time gap, with 

a final memory test administered after an additional retention interval measured from the 

second exposure” (Cepeda, Vul, Rohrer, Wixted, & Pashler, 2008, p. 1095).  As such, 

results of a group comparison of mean accuracy and latency scores would be predicted to 
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favor the Gap groups. 

Figure 6.5 presents means for both RT and errors by condition for the retention 

session.  All groups can be seen to have retained the logic gates production rules in 

memory extremely well.  Overall mean error rates were low and similar across 

conditions, with no differences found according to the Gap-NoGap contrast, F(1, 132) = 

1.4, p = .239; the Gap contrast, F(1, 132) = 2.49, p = .117; or the NoGap contrast, F(1, 

132) < 1.  With regard to latency, the contrast of both initial RT performance (Ret-a) and 

the linear slope of RT (Ret-b) for Blocks 17, 18, 19, and 20 were computed in log-log 

coordinates.  As with the error data, overall mean RT across conditions indicated that all 

groups retained the logic gates skill at a high level.  No group differences were found 

according to any of the contrasts either for Ret-a or for Ret-b, [all F(1, 132) < 1 except 

the NoGap contrast, F(1, 132) = 1.6, p = .207].   

It is important to note that, although participants in this study failed to exhibit a 

decrement to their performance after either interpolated activity during Session 1, they 

did so upon returning for Session 2 one week later.  The scallop up in RT at the 17
th
 

practice block (Block 1 in Figure 6.5) is evidence of the decay theorized to occur over 

longer lags in skill learning architectures such as ACT-R (Anderson, 1993).  However, 

after just one retention block, all groups’ mean RT approximated that of the final practice 

blocks in Session 1.  This rapid recovery from warm-up decrement observed after the 

lengthier break between practice sessions is similar to that noted in other studies of 

cognitive skill acquisition (e.g., Anderson et al., 1999; Woltz, Gardner, & Bell, 2000).   
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Table 6.1 

Means of Power Function Parameters and Overall Model Fit 

 

Parameter        

  

 

Group          a            b              m      b2                R
2
 

 

CD-Gap  1881 (754)        -.255 (.08)         12.0 (13.6)     .00317 (.0036)       .74 (.11) 

NCD-Gap  1861 (872)        -.274 (.08)           9.1 (12.9)     .00180 (.0037)       .79 (.09) 

CD-NoGap  1785 (663)        -.258 (.09)           2.8 (8.4)       .00111 (.0050)       .68 (.15) 

NCD-NoGap    1868 (680)        -.268 (.10)           6.4 (12.9)    .00180 (.0049)        .73 (.12) 

 

Note. Standard deviations are in parentheses.  a = initial performance level; b = learning 

rate; m = gap change; b2 = postgap trajectory; CD = cognitively demanding; NCD = 

noncognitively demanding. 

  



  66 

 
 

 

 

 

 

 

 Figure 6.1. Mean self-reported fatigue ratings of gap activity by group and temporal 

 placement of break. 
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Figure 6.2.  Learning curves of the two Gap groups and combined NoGap groups. CD = 

cognitively demanding; NCD = noncognitively demanding.  Vertical line indicates insertion of 

the gap task after Block 8 for the two Gap conditions.  NoGap groups experienced the gap 

tasks before Block 1. 
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Figure 6.3. Means (with 95% confidence intervals) of transformed gap change parameter m. 

LNm =  log of m parameter; CD = cognitively demanding; NCD = noncognitively 

demanding. 
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Figure 6.4. Means (with 95% confidence intervals) of transformed learning rate parameters. 

b =  learning rate; Set2b = log of linear slope from Blocks 9 through 16; CD = cognitively 

demanding; NCD = noncognitively demanding. 
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Figure 6.5. Means (with 95% confidence intervals) for Retention Blocks 17-20.  CD = 

cognitively demanding; NCD = noncognitively demanding. 

 



 
 

 

 

 

CHAPTER 7 

DISCUSSION 

Based on the nature and temporal placement of two distinct gap tasks, the present 

experiment investigated three explanations for predicted skill improvement during a 

break in skill practice, or gap facilitation: memory consolidation, release from PI, and 

mental fatigue.  Specific patterns of RT change were hypothesized a priori to correspond 

to the explanations for gap effects (see Figure 5.2), and facilitation was indeed observed 

in both groups who briefly interrupted the course of their skill practice, and to an 

indistinguishable degree.  After statistically analyzing data with three planned contrasts 

that reflected prediction differences, the results support the theoretical view that release 

from PI was primarily responsible for the gap improvement.  Each of the explanations 

will presently be addressed in light of the observed experimental outcomes.   

Tests of the Four Hypothesized Result Patterns 

Strength Decay 

The results were not consistent with forgetting as an explanation for observed 

performance following a within-session break for the two Gap groups.  According to 

Anderson’s (1993) ACT-R theory that incorporates power law learning, memory strength 

for to-be-learned material decreases during periods of nonpractice.  Inasmuch as both 

Gap groups disengaged from the same learning task for the same amount of time after the 
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same eight blocks of practice (i.e., during Set 1), both would have undergone the same 

amount of forgetting during the break, regardless of the character of their break activity.  

Forgetting would have been manifested in higher (i.e., worse) initial postbreak RT and 

negative m parameters for both groups.  This was not the case with the short-term test 

performed here.  All m parameter estimates were positive, disqualifying strength decay as 

accounting for observed performance by any of the participants.  Nevertheless, though 

this finding disconfirms memory strength decay as a mechanism affecting skill 

acquisition during relatively brief breaks from practice, evidence of performance 

decrements from delays over 1 day (as between Blocks 16 and 17, in this study)   

supports the importance of this mechanism for longer time intervals (Anderson et al., 

1999).  It is possible that, in the case of cognitive skill learning, decay effects require a 

longer period of time offline to affect the strength of recently acquired procedural 

learning productions. 

Mental Rest 

Under this explanation, participants in the two Gap groups should have exhibited 

opposite performance patterns at Block 9.  Those in the NCD-Gap group should have 

seen a drop in RT due to experiencing a period of mental quietude after Block 8, and 

those in the CD-Gap group should have seen a rise in RT due to experiencing a period of 

fatigue-producing mental effort.  While it is true that the NCD-Gap participants’ RT 

showed a marked decline following the break, the CD-Gap group showed an equally 

dramatic decline upon resumption of trio practice.  These findings disqualify mental rest 

as an explanation for the current gap effects.  However, the possibility remains that a 

general mechanism of mental rest could be instrumental in extensive practice of more 
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demanding cognitive skills.  

Memory Consolidation 

Neither of the two outcomes deemed suggestive a priori of providing evidence for 

the memory consolidation explanation came to fruition.  The first necessary outcome was 

that only the NCD-Gap group should experience gap facilitation; the second was that the 

postbreak learning rate (as estimated by the Set2b parameter) of said group should be 

comparable to its prebreak rate (described by parameter b.)  Actual results were quite to 

the contrary.  Both Gap groups experienced gap facilitation, and neither Gap group 

resumed its prebreak learning rate.  These findings eliminate memory consolidation as a 

possible explanation for gap facilitation following a relatively short break in the practice 

of this skill. 

Release from PI 

The observed outcomes comport with release from PI as the explanation for gap 

facilitation.  Both the CD-Gap and NCD-Gap groups demonstrated increased skill (as 

indicated by their relatively large, positive LNm values) after their gap activities, as was 

predicted under this explanation.  The magnitude of initial improvement was also 

temporary, which fits with the characteristic of procedural PI to accumulate anew with 

resumption of the same activity which had precipitated its initial occurrence.  The Set 2 

learning rate for both Gap groups was slower than that for both NoGap groups.  The 

comparative trajectory of the Gap groups’ postbreak learning was less well predicted, 

however.  Both Gap groups were expected to behave identically during Set 2, but RT 

increased at a faster rate for participants who endured the effortful break activity.  This is 

difficult to reconcile with a simple release from PI model.  It raises the possibility that 
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residual mental fatigue from the CD break activity played a role in general performance 

declines or even the susceptibility of participants to PI.     

Implications of the Findings 

These results hold implications for at least four issues related to cognitive skill 

acquisition, each of which will be addressed in turn.  First, in finding that temporarily 

discontinuing practice of a nascent cognitive skill did not thwart immediate postbreak 

skill performance, the outcome mirrors similar but limited findings from the motor 

domain and may constitute an exception condition to the power law of practice and the 

expected detrimental effect of time (Anderson et al., 1999).  Second, failure to find 

significant differences in the magnitude of gap facilitation between the CD- and NCD-

Gap groups, despite the dissimilarity of their break tasks, must be reconciled with recent 

empirical evidence for offline memory consolidation during periods of wakefulness.  

Third, the release from PI that appears to have been instrumental in these experimental 

results should be conceptualized as a distinctly procedural memory phenomenon, as 

opposed to the notion of PI typically embodied in verbal learning research.  Finally, 

engaging in a 15-min break had a detrimental effect on the postbreak learning trajectory 

of subjects in the Gap groups, their prior gap facilitation effects notwithstanding.  These 

results prompt questions as to whether interrupting the practice session of the Gap groups 

in pursuit of offline learning was worth it, especially considering that subjects across all 

groups performed with a high degree of accuracy, and indistinguishable latencies, on 

their four-block retention test 1 week later. 
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Implications Related to Power Law Learning 

The observation of enhanced procedural skill performance following a stoppage 

of practice in this experiment is consistent with results from the pilot study.  The finding 

is not consistent, however, with a well-established tenet of the power law of practice, 

articulated succinctly by Anderson and Schunn (2000) with respect to the ACT-R theory:  

“…performance continuously improves with practice and continuously degrades 

with…time” (p. 12).   

Anderson’s (1993) skill acquisition theory may be applied to the procedural 

learning exhibited in the present experiment.  As participants engaged in continuous 

practice of logic gates trio items (i.e., A-O-O, A-A-O, O-A-A, and O-O-A sequences), 

the component productions which were repeatedly encountered would be expected to 

grow in strength, making them easier to access and more resistant to forgetting.  After 

spending time offline during their break, Gap group participants’ latencies would be 

expected to increase as a function of the decrease in production strength associated with a 

period of nonpractice.  Such longer latencies would appear as perceptible scallops up in 

the learning curve (for an example over 24-hour delays, see Anderson et al., 1999).  

However, engaging in a 15-min diversionary activity after Block 8 not only failed to 

immediately degrade these participants’ performance, but average RT improved 

significantly thereafter.  Participants solved logic gates trios during Block 9—

immediately after their break—as quickly as their individual power function model 

estimates predicted they would at Block 18.  In effect, they advanced themselves a 

substantial 10 blocks of practice by taking a break.  This result stands in stark contrast to 

the performance decrement predicted to occur under such a circumstance. 
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Examples of exceptions to continuous power function-shaped learning are 

relatively scarce in the literature but are not without precedent.  A flurry of research in 

the mid-20
th

 century incorporated the pursuit rotor learning task to investigate motor skill 

development and regularly demonstrated reminiscence, as indicated by within-session 

performance improvements apart from practice.  Gains were primarily attributed to 

reduction of temporary work decrement (e.g., Ammons, 1947), dissipation of inhibitory 

potentials (e.g., Hull, 1943; Kimble, 1949), and extinguished conditioned inhibition in 

massed-then-spaced practice (e.g., Denny, Frisbey, & Weaver, 1955).  More recently, 

Hotermans et al. (2006) observed a transient boost in finger-tapping performance in 

certain of their experimental groups that were tested at various intervals (e.g., 5 min, 30 

min, 4 hr, 24 hr) after the end of a practice session.  No indication was given as to what 

activities participants engaged in during the retention interval, but this research team of 

neuropsychologists speculated that the short-term improvement reflected a temporary 

postpractice period during which motor memory was activated.   

The foregoing short list of exceptions to uninterrupted power law learning is 

surely not exhaustive but does serve to demonstrate the veracity of Robertson, Pascual-

Leone, and Miall’s (2004) observation that few procedural tasks have demonstrated 

offline performance improvement, especially after wakeful periods.  These authors 

further note that skill improvement without practice cannot be considered a general 

feature of motor learning, specifically, until a greater variety of procedural tasks are 

tested.       

Another implication of the results of this study for power law learning addresses 

challenges to the very use of the word “law” in association with learning curves well 
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fitted by the power function.  Although Newell and Rosenbloom’s (1981) basic 

premise—that learning through practice is most often best described by the power 

function—has been widely adopted (Logan, 1992), there are dissenters.  Heathcote, 

Brown, and Mewhort (2000) “repealed” the power law, declaring that evidence in support 

of using the power function is flawed because it relies almost universally on fits to 

averaged data.  To make their case that the exponential function in general (and their 

APEX version, in particular) should instead be the default option for describing skilled 

performance, they fit a variety of functions to data representing over 7,910 individual 

learning series from 475 separate subjects.  They found the exponential function to 

provide a better fit in 82.2% of cases and to account for a greater proportion of the 

variance in every case.  Among the reasons cited for these findings are two that may be 

relevant here: first, the power function’s hyperbolically decreasing learning rate 

parameter is inaccurate compared with the exponential function’s constant estimation of 

the learning rate; second, the power function has a tendency to underestimate the 

asymptote and, consequently, produce a bias in its favor.  

To check their assertion that the exponential function is superior to the power 

function for fitting individual data, I calculated a model fit for each participant for the 

two-parameter power function, T = BN
-α

, and for the two-parameter exponential function, 

T = Be
-αN

, both as delineated by Newell and Rosenbloom (1981).  This was accomplished 

using the same 48-value individual data sets as were employed earlier to estimate the 

subsequently contrasted parameters, but only after performing a log transformation of 

each RT.  The log RT-log block linear relationship was estimated for the power function 

and the log RT-block for the exponential function.  The average R
2
 was .69 for the power 
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function and .61 for the exponential function, with the power function providing a 

superior description of individual logic gates learning curves for 92% of participants.    

 This outcome is in contrast to the analyses reported by Heathcote et al. (2000) for 

fitting individuals’ learning curves.  One reason for this discrepancy could lie in the 

correspondence between the fundamental shape properties of the two functions in 

question and specific learning tasks.  A visual comparison of prototypes of both the 

power and exponential functions reveals the power function to have a steeper initial slope 

and a quicker flattening of the performance curve as blocks progress relative to the 

exponential function.  Describing the variation in the algorithms that precipitates this 

fundamental shape difference, Heathcote et al. (2000) noted that “the defining 

characteristic of an exponential function is a constant RLR (relative learning rate, notated 

α) at all levels of practice.  For the general power function, by contrast, RLR is a 

hyperbolically decreasing function of practice trials” (p. 187).  This difference in the way 

the two functions derive the learning rate parameter (designated as b herein) may be 

especially germane to the present case.  Throughout the procedural learning portion, 

participants were repeatedly confronted with binary-choice response items that were 

highly similar (i.e., 0,1 inputs encased in either brackets or parens), presented at a 

unrelenting pace (M ≈ 1.15 sec/gate) and with infrequent feedback.  The average 

participant solved trios of such items continuously for approximately 15 min per Set, 

presumably ample time for PI from highly similar items to amass and retard the learning 

process.   

To the extent that the foregoing accurately describes a typical participant’s 

experience in the present experiment, the steep-then-asymptotic character of power 
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curves may provide the better match to actual performance because rapidly building 

interference prevents the steady, more gradual slowing of RT described by Heathcote et 

al. (2000) as definitional to the exponential function.  On the other hand, with tasks that 

by nature take longer to perform (such as solving geometry proofs), have a greater variety 

of item content, are slower in pace, or are regularly broken up with new instructions or 

feedback, interference may present less of a threat.  In these cases, the slightly gentler 

slowing inherent to the exponential function may better describe the learning curve.  This 

possible explanation of power versus exponential function fits to individual learning data 

as a function of PI will be addressed subsequently in future research directions. 

Implications Related to Memory Consolidation Processes 

The outcomes of this study suggest that memory representations for the 

productions associated with the logic gates procedural skill did not undergo memory 

consolidation as the NCD-Gap participants listened to binaural beats.  This finding is 

somewhat surprising in light of recent perceptual-motor evidence described by 

neuropsychologists (e.g., Carr et al., 2011; Karni & Sagi, 1993; Muellbacher et al., 2002; 

Walker, 2005).  With animals as subjects, these researchers observed that labile, task-

related neural traces were replayed in the hippocampus during periods of immobility or 

brief pauses in (usually maze) exploration.  They hypothesized the level of reactivation to 

be “a potential contributor to both consolidation and retrieval” (p. 147) because newly 

learned memory patterns were found to be correlated with subsequent performance on a 

related memory task.  Given this evidence, it seemed plausible in the present experiment 

that nascent neural traces of logic gates productions in NCD-Gap participants might 

similarly replay during their brief rest.  If consolidation reflecting hippocampal replay did 
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occur to a meaningful extent during the binaural beats break, the behavioral measure of 

learning used here was not sensitive enough to detect evidence of reinforced circuits.   

It is possible that memory consolidation was not observed in this experiment due 

to my choice of gap activities.  Both gap tasks, binaural beats and N-Back, were chosen 

specifically for their potential to elicit (or not) immediate-onset memory consolidation 

effects, if there were to be any.  Based in large part on the verbal memory studies of 

Dewar et al. (2009, 2012), the presumption was that memory consolidation processes 

would commence “when the time that follows new learning is devoid of further stimuli” 

(2009; p. 627), akin to the brief pauses associated with hippocampal replay.  The binaural 

beats break task was supposed to provide as close an approximation of a stimuli-free 

environment as possible, given the constraints of a multisubject lab setting: limited 

external visual stimulation (due to the wearing of dark goggles); continuous presentation 

of neutral, purportedly alpha brain-wave-entraining auditory input through headphones; 

and physical relaxation (head down on the desk).  In the Dewar et al. (2012) version of 

the restful break, elderly participants sat alone in a dark, quiet room after hearing one of 

two short stories.
2
   

The result of the Dewar et al. (2012) subjects’ 10-min rest break was better recall 

of story units when a passage was followed by a 10-min rest period versus a stimuli-filled 

break activity (a Spot-the-Differences visual detection task).  Even more impressive, the 

superior recall persisted when participants were retested 1 week later.  These authors 

attributed the long-term memory enhancement to a consolidation process that began 

                                                             
2 Example of the contents of a short story participants in the study by Dewar et al. (2012) heard: 

Anna Thompson of South Boston, employed as a cook in a school cafeteria, reported at the police station 

that she had been held up on State Street the night before and robbed of $56.00.  She had four small 

children, the rent was due, and they had not eaten for two days.  The police, touched by the woman’s story, 

took up a collection for her. (Wechsler, 1997) 
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immediately after encoding and that was fostered by the participants’ interference-free 

mental environment at the time.  One does wonder, however, if participants thought about 

the most recent story at least a little bit during their wakeful resting break.  The context of 

the entire experience for these older subjects was a memory study, after all.  Only 3 of 14 

(21%) admitted to having done so in the Dewar et al. postsession interview; nonetheless, 

it is difficult to rule out the possibility that some amount of covert rehearsal of the story 

units took place in that solitary, silent environment immediately following the 

presentation of a story. 

Another possible reason for the failure to find evidence of memory consolidation 

in the present experiment could be that my choice of the binaural beats break task was 

simply a poor one for inducing restfulness, that the quiet room manipulation more 

effectively produced an interference-free mental environment.  That said, participants in 

this experiment did indicate in their end-of-session self-report fatigue ratings that they 

felt less fatigued after the NCD break than they felt prior to it.  Nonetheless, they may 

have devoted attentional resources, either inside or outside of awareness, to the novel, 

pulsating sounds, the discomfort of the lab chair, their upcoming exam in a difficult class, 

or a host of other distractions rather than letting their minds wander freely.  It is also 

possible that my choice of wavelength was incorrect.  I chose alpha beats because they 

supposedly stimulate the brain waves associated with relaxation, but perhaps gamma, 

delta, theta, or beta waves would have been better at eliciting a restful subconscious state 

in the listeners.  It is further possible that alpha beats were the appropriate choice but that 

the expected entrainment failed to occur for some reason.  This should not have mattered, 

though.  Quiet listening should have been much more relaxing than engaging in the 2- 
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and 3-Back task during the gap, regardless of the beat wavelength. 

Another possible explanation for the failure to find evidence of memory 

consolidation was the temporal length of the break.  It is possible that, at 15 min, the 

break was too long or too short to capture the effect.  This seems unlikely, however, 

because others have found improvements after 3 min (in an implicit SRT task; Heuer & 

Klein, 2003) and 5 min (in a finger-tapping task; Hotermans et al., 2006).   In the latter 

case, the gain was also evidenced by another experimental group they did not test until 30 

min later.   

Finally, it should be noted that, though none of the specific studies cited as 

evidence supporting consolidation involved acquiring a mental skill, the commonalities 

between motor- and cognitive-skill domains described by Rosenbaum et al. (2001) made 

the possibility of a shared consolidation mechanism seem likely.  It seems plausible, as 

well, that at least some of the prior motor evidence deemed suggestive of offline memory 

stabilization processes might have actually reflected the consequences of rest or release 

from PI, to the extent those alternative explanations were not carefully evaluated.  

Implications Related to Release from PI 

Release from PI appears to have been the cause of gap facilitation in this study, 

but the process must be considered in an atypical way to be applicable here.  Most often 

in the cognitive literature, PI is discussed in the context of verbal, declarative memory, as 

when previously learned material (e.g., lists of words) disrupts one’s memory for more 

recently learned items (Anderson & Neely, 1996).  However, in procedural learning of 

the type participants engaged in here, theories from both the behavioral and cognitive 

domains can be understood to support the notion that deleterious effects of PI were a 
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function of mere event recurrence.   

According to Hull’s (1951) negative drive theory, procedural learning is 

envisioned as habit-building, or the continual strengthening of conditioned responses that 

inherently involves practice, or repetition, of an activity.  Concomitant with the 

incrementally increasing strength of a skill or habit due to ever-intensifying stimulus-

response reaction potentials, however, is the inhibitory potential (also referred to as 

temporary work decrement by Ammons, 1947, and as reactive inhibition by Kimble, 

1949) resulting from each evoked reaction.  This variously named response deterrent 

“inhibits to a degree according to its magnitude the reaction potential to that response” 

(Hull, 1951; p. 74, italics added).  In other words, repetition of an activity is accompanied 

by an innate drive to stop repeating the specific activity.  In summary, PI due to reactive 

inhibition accumulates during the repetitive learning trials necessary for proceduralizing a 

skill.  A cessation of practice allows for dissipation of the content-specific interference.  

Thereafter, improved performance of the skill is evidenced upon resumption of training.   

From the cognitive domain, Anderson’s (1983, 1993) ACT architectural 

framework similarly envisions procedural interference as associated with event 

recurrence, but the recurrence of highly similar events corresponds to overlapping 

condition-action productions.  In this context, the lingering presence in WM of one 

production (or potentially more) has the potential to disrupt the performance of another 

production if conditions and actions are similar.   True procedural interference, as 

described by Singley and Anderson (1989), is a logical consequence of a pattern 

matching process made more complicated due to the nature of procedural learning.  A fan 

effect, of sorts (Anderson, 1974), occurs when a set of conditions in WM activates 
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multiple productions and thereby lengthens the time required for any single production to 

be matched and, subsequently, to fire.  In a similar vein, Schneider’s (1987) 

connectionist/control architecture predicts PI to build—and thereafter slow learning—as 

a result of the concurrent storage of multiple patterns in a single set of connection 

weights.  As formulated in both these cognitive architectures, the accumulation of 

procedural PI is theorized to be closely related to the level of similarity of the to-be-

learned content and the rapidity with which it is presented.   

In accordance with the previous explications, the series of events involved in the 

execution of each of 768 distinct gate responses (i.e., deciphering the symbols, re-

instantiating the corresponding rule, determining the correct output, pressing the 

appropriate response key, and holding the 0 or 1 answer in WM to be incorporated into 

the next gate) appears to have induced a build-up of PI.  Unfortunately, the only way to 

eliminate the interference, and the attendant slowing of RT, was to stop practicing.  Or, 

viewed more positively, the only thing necessary to eliminate the interference was to stop 

practicing because the interference was content-specific.  The interference built up 

during—indeed, because of—the execution of the logic gates task; hence, all that was 

necessary for interference to dissipate was the cessation of the logic gates task.  The task- 

or content-specific nature of the accumulated inhibition is key here because it explains 

why both the CD and NCD groups experienced gap facilitation: both groups stopped the 

learning task.  The diverse character of the two breaks did not differentiate postgap 

performance because the two groups did not vary with respect to what was requisite for 

release from PI to occur.   

Though the results of this experiment did not support the mental rest explanation 
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for gap facilitation effects, this mechanism may have affected the results in an 

unanticipated way.  Had mental rest been operating during the break, the diverse quality 

of the two gap tasks should have differentiated the Gap groups’ second-half performance.  

The cognitively effortful nature of the N-Back task should have exacerbated any fatigue 

the CD-Gap participants developed during Set 1 and left them feeling more worn out at 

its conclusion than they were when it began.  It seems highly unlikely they would have 

performed at an m = 12 level during Block 9 had fatigue been operating.  It is possible, 

however, that cognitive fatigue did take a delayed toll on these participants.  Their 

postgap rate of learning slowed more than that of the NCD-Gap group, suggesting that 

perhaps by the time they were well into Set 2, their overall cognitive stamina was 

compromised due to the taxing nature of their experimental condition.  

Finally, a potential link can be drawn between the hippocampal replay mechanism 

described in relation to memory consolidation and the release from PI explanation for gap 

facilitation.  Neural researchers theorize that there is a period—especially one of 

quiescence—after a learning episode ceases during which newly formed memory 

representations are unstable and thus ripe for hippocampal replay to occur.  This replay is 

thought to eventually result in stronger memory traces (Carr et al., 2011).  The results of 

this experiment suggest that, concurrent with that uncluttered period, unstable, 

interference-laden memory representations undergo a release process from the disruptive 

effects of inhibitive forces that have been acting on the fragile productions (in the case of 

procedural learning).  Perhaps hippocampal replay and release from PI can work in 

concert to stabilize newly acquired memory representations.  This is an alternative 

explanation to that of fatigue for the Set 2 learning rate difference between CD-Gap and 
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NCD-Gap participants.  It is conceivable that release from PI was instrumental in both 

groups as a function of suspending logic gates practice, but that only the NCD-Gap 

participants experienced conditions conducive to consolidation and therefore showed 

slower buildup of PI when practice resumed.   

Limitations 

The results of this experiment provided one plausible answer to a narrow question 

related to cognitive skill acquisition.  The answer was that release from PI was the mental 

mechanism operating when temporary cognitive skill improvement was observed after a 

15-min break in procedural practice.  The question was narrow in that the conclusions 

drawn can only be said to apply, at least at the present time, to rapidly solved two-choice 

items of a moderately complex, cognitive nature that are learned declaratively first, then 

practiced to a high level of fluency within a 1-hour lab experiment.  Thus, there are limits 

to the generalizability of the current findings beyond the single-session instructional 

regimen, the difficulty level of the learning task, the choice and timing of break activities, 

and the week-long retention interval, among other things.   

As with most studies, this one has elicited retrospection about the specific 

hypotheses tested, design choices, and other basic issues.  Though, as stated in the 

Introduction, there are probably myriad explanations for gap facilitation effects, only 

memory consolidation, release from PI, and mental rest were singularly conjectured here 

as being potentially influential.  Observed skill improvement following a gap in blocks of 

practice may, however, reflect the combined influence of two or more mechanisms, likely 

resulting in outcome patterns distinct from the four described earlier.  Furthermore, a 

targeted mechanism may actually be operating but remain undetectable due to 
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characteristics of the experimental design.   

Future Research and Contribution 

 One compelling question introduced earlier regards the ongoing debate in the 

cognitive psychology community as to the presumed superiority of the power function 

over the exponential function for describing learning curves.  Heathcote et al. (2000) 

conceded that the foregoing statement is true for aggregate data but claimed it is false for 

data analyzed at the individual level.  However, the present data set, comprised of 

multiple parameter estimates derived from the individual data files of 140 participants, 

proved to be better fit by the two-parameter power function than the two-parameter 

exponential function in a post-hoc reexamination of the data.  I speculated that this was 

the case because of the nature of the learning task.  Practicing logic gates trio items 

invites interference to accumulate quickly, hindering performance and, resultantly, 

causing learning curves to flatten, as per the power function.  If so, a circumstance in 

which interference was minimized should result in a more gradual learning curve, as per 

the exponential function.   

To test the influence of rapidly accruing versus minimally occurring interference, 

a study similar to the present one could be designed that included a condition in which 

interference was not permitted to build to any significant degree.  Using the same logic 

gates task as was used here, three groups could be compared that differed in the 

opportunity for PI and the timing of the PI release opportunities.  The first group would 

experience no break in learning, just as the NoGap groups did in this experiment.  This 

control group should demonstrate power law learning given the current findings.  The 

second group would be comparable to the current Gap groups, but with one key 
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difference.  The gap activity would be neither CD nor NCD, per se, but would instead be 

a simple verbal task of the type used in the pilot experiment.  Participants assigned to this 

group would engage in procedural practice of logic gates interrupted by a single block of 

a relatively simple but engaging verbal task between Blocks 8 and 9.  The third, 

interference-minimizing group would experience a small gap between each block that 

involved solving 1/16 of the verbal gap task items.  If my hypothesis that exponential and 

power function fits depend on PI, the third group’s individual data would exhibit the 

shape of the more gradual, less asymptotic exponential function curve because 

performance would be less contaminated by interference effects.  Perhaps even more 

intriguing to observe, however, would be the effects of the third group’s steady learning 

pace on both transfer and long-term retention of the skill (see Carlson & Yaure, 1990).      

Another direction for future research spawned by the present study would further 

investigate the lack of evidence of memory consolidation.  A line of recent procedural 

learning research from the neuropsychological community (Hauptmann & Karni, 2002; 

Hauptmann, Reinhart, Brandt, & Karni, 2005) conceptualizes the construct I termed gap 

facilitation as delayed performance gains.  Importantly, these gains are manifested only 

after the point in an individual’s skill improvement—a different point for each person—at 

which asymptotic performance is observed.  It is at this leveling-off, or saturation, point 

in the learning curve that memory consolidation processes are purportedly triggered 

which enable performance gains to continue to accrue over time even if practice ceases.  

Conversely, if practice ends prior to a subject’s reaching his or her individually 

determined saturation point, no delayed learning gains would be expected.  An in-depth 

analysis of individual attainment of asymptotic performance was neither hypothesized 
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nor investigated in this experiment, but it could be fodder for future research.  

Finally, despite the limitations acknowledged earlier, the research questions 

investigated here related to the impact of breaks in procedural practice of a cognitive skill 

could potentially influence cognitive skill acquisition theory because prominent models 

of learning do not predict skill improvement apart from practice.  The findings could also 

contribute to memory literature by offering a rare investigation into the time-course of 

consolidation processes during a break in cognitive (as opposed to motor) skill learning 

over wakefulness (as opposed to over sleep).This line of research could potentially 

provide empirical evidence for utilizing strategically orchestrated breaks during periods 

of instruction.  Unfortunately, regardless of instructional setting, there is little evidence at 

the present time that practitioners are devoting attention to the temporal spacing of 

learning (Pashler, Rohrer, & Cepeda, 2006).  Thus, theoretical progress in this direction 

has potential application to the design of real-world skill training. 
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