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ABSTRACT 

 
Water is the elementary component of life on Earth, and quantifying this resource 

is critical to understanding ecosystem viability on planetary, continental, and local scales. 

In a simplified partition of the Earth’s freshwater resources, 75% is ice at the north and 

south poles, 25% is groundwater, and 0.01% exists in lakes and streams. Mean transit 

time is a robust description of groundwater volume within the discrete aquifers that 

together make up the 25% of Earth’s freshwater. Mean transit time can be estimated 

using environmental tracer concentrations in springs and gaining streams. That is because 

springs and streams are locations where groundwater flow paths naturally converge. 

Converging flowpaths create discharge that is a flow‐weighted mixture of water from the 

contributing aquifer. The age of that flow-weighted mixture is a good measure of the 

mean transit time of water as it discharges from the contributing aquifer. Mean transit 

time can be directly used to estimate the volume of groundwater storage in the aquifer. 

Although simple in principle, there are several important topics that need to be 

considered when collecting and dating a broad mixture of flow paths. They include 1) the 

necessity for a basic conceptual perception of the investigated aquifer, 2) the non-

conservative aspect of most age-dating environmental tracers once exposed to the 

atmosphere, and 3) the importance of estimating a transit-time distribution. These 

specific topics are discussed in this dissertation.  
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CHAPTER 1 

 
INTRODUCTION 

 
Sometime during 2011 human population exceeded 7,000,000,000. Ignoring all 

other facets, this number makes our species extremely sensitive to any alteration in the 

planet’s biological, climatic, and hydrologic systems. Even small changes in reproduction 

and diversity of plants/animals, patterns/amounts of precipitation, or groundwater stored 

in aquifers, could have acute impact on significant numbers of people. We can no longer 

migrate to more favorable locations. We require resources from every location on the 

globe. We rely on the transport of goods across the oceans. We depend on an overall 

level of both social and Earth system stability. 

There are a limited number of temporal and spatial datasets that describe the 

stability of Earth systems. They include ice cores, tree rings, quaternary geochronology, 

and pollen. The premise of this research is that the average age of water where it 

discharges or exits from the aquifer (MTT; mean transit time) is a useful description of 

groundwater resources. MTT represents the average time it takes for water to move from 

locations where the aquifer is recharged to areas where the aquifer discharges, and 

quantifies the relative difference between aquifer volume and the amount of actively 

flowing groundwater. In the extreme case where an aquifer has no active recharge or 

discharge, groundwater is stagnate and MTT is essentially infinite. If flow-through is 

relatively small compared to total volume of water stored in the aquifer, the average time 
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water spends in (i.e., transit time of water through) the aquifer volume is long. As flow-

through increases relative to the aquifer volume, MTT decreases. The relationship 

between MTT, volume, and flow-through is described as: MTT = [aquifer water-

volume]/[groundwater flow-through rate] (modified from Cook and Boulke, 2000). 

The utility of MTT for groundwater-resource evaluation is that the ratio of water-

volume to flow-through describes negative feedback, or stability of the flow system. 

Stability in this sense is the rate or pattern of change in aquifer discharge in response to 

changes in aquifer recharge. The implication when MTT is long is that flow-through is 

small relative to the aquifer volume. That creates stability because something large 

(aquifer volume) is altered by something small (flow-through). The stress induced by a 

change in flow is small and it will take a long time for the aquifer to realign to a new 

equilibrium. Conversely, the same flow change in a smaller volume aquifer (short MTT) 

represents a relatively larger stress which will be transferred across the aquifer in less 

time. Declines in water-levels and stream baseflow created by a 5-year drought in a 

groundwater resource with a 30-year MTT will take longer to manifest themselves than 

in a groundwater resource with a 10-year MTT. 

To avoid being misinformed by aquifer characterizations embedded in MTT, 

there are several important attributes that need to be considered. They are 1) the 

qualitative natural of MTT, 2) that aquifer stability does not preclude mass balance, and 

3) the differences between unconfined and confined aquifers response. Although MTT is 

a defined quantity, the description of groundwater-resource stability conveyed by MTT is 

qualitative. A system with a 30-year MTT will take longer to respond to a change in 

flow-through than a system with a 10-year MTT. Intuitively, the stability in the 30-year 
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MTT could be described as “it might take 10 to 20-years for the system to respond to a 5-

year drought.” However, the 10 to 20 year timeframe is an educated guess and cannot be 

quantified solely on the value of the system MTT. 

The second attribute is that regardless of system MTT, mass balance will be 

maintained. Any increase or reduction in recharge will over time result in an equal 

increase/reduction in system discharge. MTT addresses how an input signal is processed 

through the groundwater system. If recharge is reduced by 50% for 5-years, it may take 

20-years for that to manifest itself in discharge, but total reduction in discharge must in 

due course equal the total reduction in recharge. Regardless of MTT, water is not created 

nor destroyed within the aquifer. 

The third attribute is the flow characteristic differences in unconfined and 

confined aquifers. In unconfined aquifers the physical process that creates stability is 

draining and filling of pore space. With confined aquifers, stability is created by 

deformation (or strain) of the pore space caused by changes in pressure. For unconfined 

aquifers, aquifer-volume is the total pore-space and alteration of flow-through is related 

to either filling or draining of pore space. A lot of pore space and relatively small flow 

creates long MTT and connotes stability. In confined aquifers, aquifer volume also 

describes pore space. The physical process that creates buffering is not fill/drain, it is 

deformation (or strain) of pore space caused by changes in pressure. Pressure changes 

and accompanying strain propagate through aquifers more rapidly than filling and 

draining of pore space. However, transport velocities are for the most part independent of 

whether flow is unconfined or confined. As a point of review, the conceptual relationship 

between MTT, velocity, aquifer volume, and flow-through is when aquifer volume 
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increases and flow-through remains constant, then average velocity decreases and MTT 

increases. The bottom line is that when using MTT, an independent assessment of the 

degree of confinement needs to be made. A 30-year MTT in a confined aquifer does not 

imply the same level of stability as a 30-year MTT in an unconfined aquifer. On the other 

hand, a confined aquifer with a 30-year MTT does suggest more stability than a confined 

aquifer with a 10-year MTT. 

The most effective method of determining MTT for a meaningful portion of a 

groundwater flow system is to collect and age-date water at locations where a broad 

mixture of flow paths converge. Natural convergence occurs along gaining streams and at 

regional springs. Stream baseflow and regional springs are often utilized for municipal 

water-supplies; populations depend on these discharge features for drinking water and 

understanding their responses is of greater consequence. Although simple in principle, 

there are topics that need to be considered when collecting and dating a broad mixture of 

flow paths. Specific issues addressed in this research include the 1) necessity for a basic 

conceptual perception of the investigated aquifer, 2) the nonconservative aspect of most 

age-dating environmental tracers once exposed to the atmosphere, and 3) the importance 

of estimating a transit-time distribution. 

To interpret an MTT from a flow-weighted mixture of water to a reasonable 

estimate of the “true” MTT, it is necessary to have some conceptual understanding of 

aquifer processes. If a spring represents localized/focused recharge that is transported 

along a fault zone to a spring orifice, some concept of the flow regime is helpful in the 

interpretation of results. Although MTT still represents the volume to flow-through ratio, 

and thereby stability, a localized recharge process is likely more susceptible to alteration 
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(or impact) than a more spatially distributed recharge process. In the case of streams, 

substantial amounts of hyporheic exchange along a gaining or neutral stream reach can 

act to slow-down the equilibration of dissolved-gas age-dating environmental tracers to 

atmospheric concentrations. This is positive from a standpoint of defining MTT, and does 

not alter the relationship between MTT and stability. Still, it can lead to overestimating 

both the amount and concentration of dissolved-gas, in groundwater. Artificial 

persistence of dissolved-gas in stream water can also lead to over-estimating the length of 

a gaining stream reach and possibly the spatial extent of the aquifer contributing to 

streamflow. Both of these examples are given to emphasize that the methods presented 

cannot be blankly applied. Each hydrologic system has specific features that need to be 

taken into consideration. 

As with the physical attributes of a groundwater system, dissolved-gas age-dating 

tracers are also unique when exposed to the atmosphere (i.e., as along gaining streams 

and surface-water originating at springs). However, all dissolved-gas concentrations 

change once the groundwater they are dissolved in is exposed to the atmosphere  When 

groundwater is exposed to the atmosphere dissolved-gas concentrations begin to 

equilibrate with atmospheric concentrations (e.g., sulfur hexafluoride concentrations 

increase; helium-3 concentrations decrease). If gas exchange is rapid and the amount of 

groundwater inflow (or gain) to the stream or at a spring is small, surface-water will 

equilibrate with the atmosphere and have a “modern” age. Alternatively, if exchange is 

slow and inflow large, the gas signal in surface water will be representative of 

groundwater concentrations. The effects of gas equilibration can be reconciled by 

simulating gas-transport within the stream water domain. To simulate a correction for 
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atmospheric equilibration, the inflow and gas-exchange rates need to be measured. The 

likelihood of successfully correcting for equilibration can be estimated by the ratio of 

gas-exchange velocity to specific discharge. Rapid exchange and small amounts of 

groundwater inflow result in larger ratios, whereas slow exchange and large inflow create 

smaller ratios. The research discussed in this dissertation suggests that as the ratio 

approaches 15 to 20, the uncertainty in estimating MTT from stream/spring-water 

concentrations makes it unlikely that a meaningful quantification of MTT can be made. 

If the age-dating environmental tracer is not lost by gas-exchange, then the 

concentration of the tracer in stream/spring water represents a weighted concentration in 

accordance with the amount of water transported along the flow paths that converge at 

the location. To convert this flow-weighted concentration to MTT, the relationship 

between the amounts of flow associated with each flow path needs to be established. The 

relationship between flow amounts and transit time is summarized by a transit-time 

distribution. To illustrate, consider the convergence (or mixing) of 4 hypothetical 

groundwater flow paths. The 1st flow path contributes 40% of the flow and is 1,000 

meters (m) long. The 2nd flow path is 2,200 m long and contributes 30% of the flow; the 

3rd path is 4,000 m long and contributes 20% of the flow; and the 4th flow path is 7,000 m 

long and contributes the remaining 10% of flow. If groundwater flow velocity is 200 

meters/year (m/yr) then the transit times are 5-yr, 11-yr, 20-yr, and 35-yr. Weighting 

transit times by the corresponding flow percentages, the calculated MTT is 13-yr. The 

example illustrates how MTT is calculated when individual flow paths are characterized. 

In a real-world situation, there is seldom explicit information on flow amounts and age-

tracer concentration for individual flow paths. The aggregated samples are collected and 
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a single flow-weighted age-tracer concentration is quantified. The concentration is 

converted to an apparent age using the appropriate age-equation. If the relationship 

between concentration and age (the age-equation) is linear, and the tracer input function 

is linear, the apparent age of the mixed sample will be the same as the MTT determined 

by explicitly considering the transit-time distribution (as per the hypothetical example). If 

the concentration/age relationship or the age-dating tracer input functions are nonlinear, 

the age-equation will not reproduce the MTT. The flow-weighted mean, when used in a 

nonlinear equation does not equate to the apparent age that is calculated when individual 

flow concentrations are converted to an apparent age and then flow-weighted. In the non-

linear case, flow amounts and age-tracer concentrations for individual flow paths need to 

be assessed by assigning a theoretical transit-time distribution and adjusting the 

parameters of that distribution (usually MTT and/or dispersion) until a reasonable match 

between simulated and measured concentrations is achieved. 

Choosing a transit-time distribution requires some rudimentary understanding of 

the spatial distribution of groundwater recharge, geometry, and confining characteristics 

of the aquifer system (Cook and Bolke, 2000, Fig. 1.2; Bethke and Johnson, 2002). These 

factors control flow-path configuration/exchange and thereby flow-path transit times. 

Recharge that is fairly evenly distributed across an unconfined aquifer of constant 

thickness tends to create a distribution of transit times similar to the hypothetical example 

presented in the previous paragraph. Most of the water has relatively shorter transit times 

and progressively less water has progressively longer transit times (commonly referred to 

as an exponential age model). When recharge occurs at a discrete location, such as a 

losing stream reach, the transit-time distribution is created mainly by dispersion along the 
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flow paths. Each of these examples is altered when aquifer thickness is variable and/or 

confining layers are present. Constraining or refining knowledge of the transit-time 

distribution by vertically profiling groundwater age at a single horizontal location within 

the aquifer (i.e., at a multiple depth completion monitoring well). The groundwater age 

with depth relationship determined from vertical profiling does not, however, result in a 

MTT. MTT is quantified from dating groundwater at a discharge location where flow 

paths converge at fixed horizontal locations within the aquifer system. Dispersion-

dominated and exponential transit-time distributions result in unique vertical age profiles.  

The development, implications, and simulation of various theoretical transit-time 

distributions using a lumped parameter approach are described by Malezoski and Zuber, 

1983; Kirchner and others, 2000; and Sukow, 2012. The common transit-time distribution 

choices are piston-flow, dispersion, exponential, gamma, or some mixture. For all these 

distributions groundwater transit times are described with either one or two parameters, 

which represents a considerable simplification of the complex flow patterns that exist in 

most real-world aquifer systems. Nonetheless, the lumped-parameter approach is a useful 

first-cut method of estimating 1) aggregated aquifer characteristics, 2) transit-time 

distributions, and 3) the conversion of age-tracer concentrations to MTT. 

A more sophisticated approach is direct simulation of flow, transport, and age-

tracer concentration using finite-difference or finite-element methods (e.g., MODFLOW, 

MTSDMS, MODFLOW-GWT, SEAWAT, SUTRA, and OTIS). However, reliably 

calibrated models of flow and transport are a major undertaking that usually cannot be 

justified solely to interpret environmental age-tracer concentrations. However, if an 

existing numerical model of groundwater flow exists (constructed and calibrated for other 
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hydrologic assessments) it is fairly straightforward to piggy-back on a transport 

simulation (e.g., MT3DMS, MODFLOW-GWT, SEAWAT). These transport simulators 

use various forms of the advection/dispersion equation to compute transport. In these 

codes, porosity is the most important control on simulated transport velocity; the role of 

water volume and the concept of aquifer flushing are not explicitly calculated. With the 

confined-box model previously described, the increased MTT was simulated by 

increasing porosity of the confined layers to compensate for the increased water volume 

that is evoked by increased specific storage. This points out that for both confined and 

unconfined systems, the porosity values need to align with the best estimates of pore-

space and compressional storage. Under confined conditions the porosity needs to be 

adjusted to reflect the change is storage volume created by the compressibility of water. 

If this is not done, the simulated transport velocity will be incorrect. Goode (1990) 

describes the adjustment for specific yield incorporated in MODFLOW-GWT, however, 

the code does not adjust for confined storage. The usual reason given for setting porosity 

equal to specific yield in transport simulations is lack of measured porosity data. As it 

turns out, porosity and specific yield plus compressional storage should be equal to 

ensure the concept of total water-volume, through-flow rates, and flushing are honored. 

Ironically, specific yield and specific storage parameters in most numerical flow 

simulations are sensitive to observed water-level fluctuations. Greater fluctuations force 

calibration to lower specific yield and storage values. Lower specific yield and storage 

equates to less water-volume; greater fluctuations indicate less stability. Less total water-

volume decreases MTT. This supports the concept of MTT as being directly proportional 

to stability. 
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The issues of transit-time distributions and the nonconservative nature of age-

tracers can be mitigated by direct sampling of groundwater. The primary reason for 

utilizing natural discharge locations is the convergence of a broad mixture of flow paths. 

A degree of that convergence can also be utilized by strategically placing shallow 

piezometers (or other flow path isolating sampling devices) in transverse and longitudinal 

transects at or along the discharge locations. Samples from the piezometers represent a 

subset of converging flowpaths for which the apparent ages are not as sensitive to the 

transit-time distribution. Gas-exchange is also not as significant in piezometer samples. 

These advantages are offset by the labor associated with infrastructure (device) 

installation, multiple sample collection/analysis, infrastructure maintenance, and the 

potential of missing portions of the overall flow convergence. Deeper monitoring wells, 

from which a vertical profile of aquifer water-volume age can be determined, are also 

useful. These type of wells are best placed somewhere up-gradient of natural discharge. 

Drilling monitoring wells through the vertical extent of an aquifer is expensive and 

requires significant manpower and equipment. In all cases, device sampling is not flow-

weighted nor is it as simple as stream/spring-water sampling. If possible, the combination 

of device and stream/spring-water sampling would be the most comprehensive approach 

for identifying the MTT of an aquifer. 

The first component of work presented in this dissertation addresses the suitability 

of gaining streams, specifically hyporheic exchange along Red Butte Creek, as it pertains 

to MTT. Red Butte Creek is located in the Wasatch Mountains directly east of Salt Lake 

City, Utah. The second component describes gas-exchange characteristics of the age-

dating environmental tracer chloroflourocarbon-12 at the Sixmile System. The Sixmile 
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System is a regional spring and gaining stream located at the terminal end of the Tooele 

Valley groundwater basin, about 40 kilometers west of Salt Lake City, Utah. The last 

component describes quantification of MTT for the Fischa-Dagnitz system, which is 

located in the southern Vienna Basin, Austria. The transit-time distribution and effects of 

gas-exchange are estimated. MTT estimates are compared to an independent measure of 

groundwater MTT derived from a 40-year tritium time-series that exists for the system. 

  



 

 

 
 
 
 
 

CHAPTER 2 

 
HYPORHEIC TRANSIENT STORAGE EXCHANGE, TRANSIT 

TIME, VOLUME AND HYDRAULIC CHARACTERISTICS, 

RED BUTTE CREEK, UTAH 

 
2.1 Abstract 

To quantify stream/aquifer interaction and transient storage along a 4,900 meter 

reach of Red Butte Creek, stream discharge was measured using both tracer-dilution and 

area-velocity discharge measurements. The experiment was carried out in late fall 2003 

when the stream was at baseflow and riparian evapotranspiration was minimal. On the 

basis of previous experience at similar streams, sodium bromide was injected for 50-

hours, which was considered ample time for tracer to fully exchange through all transient 

storage zones and reach steady-state concentrations. Concentration time-series collected 

at 4 sites along the stream showed the expected early-time tracer breakthrough consistent 

with average stream velocity. However, later-time tracer concentrations slowly increased 

over time after initial breakthrough and clearly indicated transient conditions with respect 

to tracer transport. This is caused by 1) hyporheic exchange that exceeds gaged stream 

discharge; 2) exchange mean transit times on the order of 200 – 300-hours, and 3) a 

hyporheic transient storage volume that is 30-times more than the stream-channel 

volume. Recognizing stream-system response due to large-scale hyporheic processes 

prevents misinterpreting downstream tracer dilution as groundwater inflow. At Red 
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Butte, the results changed our concept of groundwater flow in the drainage basin. Rather 

than basin-scale groundwater flow, active groundwater recharge and flow appears to be 

limited to upper altitude areas of the basin. The pattern of exchange and extended transit 

times clearly illustrates that downstream transport occurs within the hyporheic zone. 

These conditions extend the timeframe for biogeochemical reactions as well as water 

availability during late summer and fall. The amount of hyporheic storage at Red Butte 

has the potential to extend runoff recession by several months. The “age” of hyporheic 

water needs to be considered when interpreting riparian evapotranspiration, system 

response to precipitation runoff events, and the mean transit time of groundwater in a 

drainage basin. 

 
2.2 Introduction 

Most water in streams originates with headwater precipitation, runoff, and 

springs, and is transported as open-channel flow to higher-order streams, reservoirs, and 

lakes. In addition to open-channel physics, water transport is also influenced by more 

nuanced processes of stream/aquifer interaction and transient storage. These processes 

are commonly quantified by looking at the spatial and temporal distribution of injected 

soluble, conservative tracers (i.e., stream-tracer test). When the nuances begin to 

dominate water transport, the implementation and interpretation of stream-tracer tests 

need to be modified. This paper describes those modifications as they relate to 1) tracer 

mass-balance, 2) concentration time-series, and 3) numerically simulating tracer 

transport. 

To quantify stream/aquifer interaction and transient storage along 4,900 meters of 

Red Butte Creek, Utah, a stream-tracer test was conducted. Red Butte is an upland 
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catchment located in the Wasatch Mountains east of Salt Lake City, Utah (Fig. 2.1). The 

test was done in late fall during a period of steady streamflow and after riparian leaf-drop. 

Based on previous experience from similar streams, sodium bromide (NaBr) was injected 

for 50-hours. The injection time was considered ample for complete exchange of tracer-

laden water through the stream and hyporheic transient storage volumes [STS and HTS; 

Briggs, et al., 2009]. In conjunction with injection, area-velocity stream discharge 

measurements (Qvel, liters per minute) were made at 13 locations along the reach. 

Results showed significant tracer dilution but no net gain in streamflow. Biased 

by the expectation that exchange times would be less than 50-hours, the findings were 

initially interpreted as stream-gain from an underlying aquifer (which dilutes tracer) 

offset by an equal amount of stream-loss to the aquifer (which resulted in no net gain). A 

more comprehensive examination of the data substantiated that water exchange was 

balanced but steady-state conditions with respect to stream tracer concentrations (Cstr, 

milligrams per liter) were not obtained. Although stream-gain does dilute tracer, it does 

not create transient Cstr conditions. Instead the transient conditions are attributed to 

exchange processes with HTS that exceed 50-hours.  

It has been known for some time that transient storage has significant affects on 

overall stream and near-stream biogeochemistry [Finley, 1995]. However, the volume 

and transit-times quantified at Red Butte Creek exceeds what is normally encountered in 

mountain catchments. The scale of transient storage at Red Butte likely has broader 

implications, in terms of late summer water availability to riparian areas, stream/aquifer 

interactions in downstream reaches, and streamflow amounts/timing during spring 

snowmelt and precipitation runoff events. The existence of significant transient storage 
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must be accounted for during any analysis of the mean transit time of water in a drainage 

basin. 

 
2.3 Site Description 

The Red Butte Creek watershed has an area of 18.8 square kilometers (Fig. 2.1) 

with an altitude range of 1,646 to 2,524 m [Mast and Clow, 2000, p. 85]. The watershed 

is part of the U.S. Geological Survey (USGS) National Benchmark Hydrologic Network. 

Streamflow has been recorded since 1964 at gaging station 101072200 (Red Butte Creek 

at Fort Douglas near Salt Lake City). Average 1964-2006 streamflow is 7,360 L/min; 

baseflow is estimated at 3,740 L/min. A relatively narrow canyon bottom, and steep 

heavily vegetated hillsides characterize the drainage basin. Unconsolidated stream-

channel deposits exist along the canyon bottom. Lower elevation hillside vegetation 

consists mainly of grass-forb communities, Gambel oak, and bigtooth maple [Ehleringer 

and others, 1992]. Fir and aspen trees are found at the upper elevations of the drainage 

basin. The predominate soil type is mollisol; these soils are well drained and range in 

depth from 50 to 150 centimeter [Woodward, 1974]. Consolidated rocks underlying the 

soils consist of limestone, shale, siltstone, sandstone, and quartzite [Mast and Clow, 

2000, p. 87]. The consolidated rock forms the northern limb of a syncline; the axis of the 

syncline is approximately parallel to Red Butte Creek [Van Horn and Crittenden, 1987]. 

The creek flows across 4 small fault zones. Most precipitation in the drainage occurs as 

snowfall during the months of March and April; the driest month is July [Mast and Clow, 

2000, p. 85]. 
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2.4 Stream-Tracer Test 

During October 2003, NaBr was continuously injected into Red Butte Creek for a 

period of 50 hours. The bromide mass-load of injection (Mload-inj, milligrams per minute) 

was 4,663 mg/min with a variation of +/- 2 %.  Water samples were collected over time 

at 4 sites located 276, 1,902, 3,564 and 4,900 m downstream of the injection location. 

Single samples were collected from the stream at 29 additional locations. Samples were 

filtered (less than 0.45 micrometer) and analyzed for Br by ion chromatography to the 

nearest 0.05 mg/L. Simultaneous with the stream sampling, Qvel was measured at 13 

locations using an Acoustic-Doppler Velocity (ADV) meter. Streamflow was gaged at 

1,190 L/min during the tracer experiment, at U.S. Geological Survey streamflow gaging 

station 101072200, located 4,900 m downstream of the injection site. Along the study 

reach, Parleys Creek is the only tributary stream and there are no surface-water diversions 

(Fig. 2.1). 

 
2.5 Methods 

Fundamental to interpreting the Red Butte dataset is understanding that 

streamflow was not changing with respect to time (steady state) and Cstr was changing 

with respect to time (transient) during the 50-hour test. When streamflow is in steady 

state, transient Cstr conditions that exceed initial breakthrough are caused by retention of 

tracer mass in HTS. The HTS exchange, transit-time distribution, volume, and the 

physical attributes that create the observed responses can be characterized by examining 

Qvel and Cstr of the stream, mass-load in the stream (Mload-str, milligrams per minute), and 

dilution-gaged discharge (Qdil, liters per minute). 

Characterizing HTS on the basis of transient Cstr data requires partitioning 
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temporary and permanent tracer-mass loss. Temporary mass-loss is created by retention 

and dispersion in HTS and STS. Permanent mass-loss is created by stream water down 

welling into the underlying aquifer. When steady state Cstr is not obtained during the 

injection period, the amount of temporary mass-loss can only be estimated. Estimation is 

done using the pattern and total net loss/gain along the reach. A pattern of upstream loss 

followed by downstream gain is easily conceptualized as HTS exchange. Stream water 

down wells into the hyporheic zone, travels downstream in the zone, and up-wells back 

into the stream. Upstream loss to an underlying aquifer followed by downstream gain 

from a separate hydraulically isolated source, is difficult to conceptualize. This geometry 

almost inevitably leads to flowpaths that cross one another: crossing flowpaths is not 

possible in a flow regime induced by potential-energy differences (i.e., groundwater 

flow). Exclusive gain or loss, or upstream gain followed by downstream loss is more 

characteristic of stream/aquifer interaction resulting in permanent mass-loss. In addition 

to the pattern of loss/gain, the net loss/gain also helps separate HTS exchange from 

stream/aquifer interaction. A small difference in Qvel between upstream and downstream 

locations (after accounting for tributaries and diversions) is an indicator of HTS 

exchange. Even if there is some hyporheic flow underneath Qvel measurement locations, 

net HTS exchange for reaches that are several times longer than the “average” hyporheic 

flowpath, will be essentially at or near zero. On the other hand it would be unlikely to 

expect gain from and loss to underlying aquifers to be balanced. However, for all cases 

where steady-state Cstr conditions are not obtained during a stream-tracer test, 

determining the amounts of temporary and permanent mass-loss is qualitative. 

Partitioning depends to some degree on a combination of physical observations, geologic 
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setting, and subjective hydrologic judgment. 

 
2.5.1 Water Exchange 

Given the inherent uncertainties associated with Cstr observations that do not 

reach steady state, it is possible to make reasonable estimates of HTS exchange. To do 

this, mass-load in the stream (Mload-str, milligrams per minute), and the implications in 

terms of gross water-loss (watergross-loss, liters per minute) and gross water-gain (watergross-

gain, liters per minute) are examined. For stream locations where both Qvel and Cstr are 

known, Mload-str is calculated as: 

 

 

M load−str = Qvel * Cstr  (1) 

 
Stream reaches where Mload-str decreases indicate areas of watergross-loss. The 

amount of watergross-loss is estimated using the maximum Cstr (maxCstr) measured along the 

reach and the change in mass load (∆Mload-str = upstrMload-str – dnstrMload-str) as: 

 

 

watergross−loss = ∆M load−str
maxCstr

 (2) 

 
∆Mload-str is positive along reaches where water and tracer is lost (either 

temporarily or permanently). Once watergross-loss is estimated, the net exchange of water is 

measured by the change in area-velocity discharge (∆Qvel = upstrQvel – dwnstrQvel ) and 

watergross-gain is estimated as: 

 

 

watergross−gain = −∆Qvel + watergross−loss (3) 

 
The negative sign is required because ∆Qvel becomes negative when downstream 
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flow is greater than upstream flow.  

Because Mload-str, watergross-loss, and watergross-gain are dependent on Cstr, when Cstr is 

not in steady state, calculated values of mass load and gross loss/gain depend on the 

elapsed time when Cstr is measured. In the HTS context, steady state and transient are 

defined for Cstr conditions after initial tracer breakthrough (created by STS and open-

channel velocity). Independent of transient or steady-state Cstr, along a losing stream 

reach the relative change in Cstr between measurement locations is zero. Even though the 

relative change is constant, tracer mass is being removed from the stream (Qvel decreases 

in eqn 1). The tracer mass is permanently lost if outflow is to an underlying aquifer, and 

temporarily lost if outflow is HTS exchange. Along gaining reaches, successive Cstr 

decreases downstream during transient conditions. However, unlike losing reaches, 

decreases vary over time depending on whether gain is from an aquifer or HTS exchange. 

When gain is from an aquifer (or tributaries) the decrease in Cstr with distance is 

independent of time. When gain is due to HTS, Cstr will shift from decreasing to 

increasing as HTS progresses toward complete exchange with tracer-laden water. This 

difference is due to the fact that tracer mass returns to the stream in the HTS scenario. 

 
2.5.2 Transit Times and Volume 

As stated, streamflow and Qvel were in steady state and Cstr in transient state 

during the stream-tracer test. Assuming Cstr is zero prior to injection, the time required for 

Cstr to reach the steady-state concentration (Css in milligrams per liter) describes the 

longest tracer transit-time through the study reach. The Cstr time-series at a fixed 

sampling location along the stream is a reasonable estimate of cumulative transit-time of 

tracer in the STS and HTS volumes between injection and sample locations. Steady state 
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occurs when Cstr reaches a steady or plateau concentration at a fixed location over time. 

This signifies that STS and HTS volumes have completely exchanged with tracer-laden 

water. A typical Cstr time series (Fig. 2.2A) consists of a breakthrough, shoulder, and 

plateau. Initial breakthrough is controlled primarily by STS. The shoulder shape is set by 

HTS [Harvey and Wagner, Fig. 5, 2000], and the plateau concentration is a function of 

aquifer and tributary inflow to the stream.  The breakthrough slope is steep, indicating 

little hydrodynamic dispersion; the shoulder indicates greater amounts of dispersion 

created by porous-media flow into, through, and out of HTS. Figure 2.2B shows a 

schematic of a Cstr time series created by exchange and dispersion with large HTS 

volumes. Large HTS creates a systematic and long-term concentration increase after the 

initial breakthrough and shoulder phase; this is due to longer transit times with larger 

amounts of dispersion. 

To evaluate HTS transit times, the Cstr time series in Fig. 2.2B is separated at the 

point where the slope changes from steep to shallow (Fig. 2.3A). Separation is done with 

the intent to simplify the interpretation of results and implies isolation between STS and 

HTS. In reality, storage of water in these zones occurs simultaneously. Time-series 

separation is possible because HTS transit times are significantly longer than STS transit 

times. The time-point of separation is interpretative and does not have a formal 

mathematical definition. Minimum hyporheic transit time (tHTS,min) and the maximum 

transit time (tHTS,max) define the shortest and longest flowpaths (Fig. 2.3B). The HTS 

mean transit time (MTTHTS, time) is defined as the elapse time for ½ of the HTS volume 

to exchange with tracer-laden water, and is estimated as the time when the ratio of Cstr to 

Cstr at tHTS,max equals 0.50. 
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Concentration can be equated to transit time for the unique conditions created by 

continuous injection of tracer. That condition is no tracer in the flow system at start of 

injection (zero-time) and complete inundation of the flow system at steady-state 

concentration. The transport time imposed by all system processes and mechanisms 

between injection and monitoring locations are then represented in the Cstr time series, 

and the time-series becomes a de-facto plot of cumulative-flow and transit-time. This 

method of defining MTTHTS is valid given steady-state exchange and concentration at all 

locations of inflow to the hyporheic zone. During baseflow periods with no precipitation, 

steady-state exchange is a realistic assumption. However, instream dispersion and STS 

invalidate the assumption of steady-state inflow concentrations. This problem is 

minimized when HTS transit times are significantly longer than STS breakthrough, but in 

all cases becomes more substantial with distance downstream of the injection location. 

Despite these limitations, the 0.5Cstr provides a framework for estimating MTTHTS. Using 

the qualified MTTHTS estimate, the HTS volume (VolHTS, cubic meters) can be calculated 

as: 

 

 

VolHTS = MTTHTS * watergross−gain  (4) 

 
2.5.3 Physical Attributes 

The geometry, hydraulic properties, and transport characteristics required to 

create water exchange and transit times/volume are quantified with the One-Dimensional 

Transport with Inflow and Storage (OTIS) model [Runkel, 1998] and MODFLOW-GWT 

[Harbaugh and others, 2000; Konikow and others, 1996]. The simulations are calibrated 

by matching observed Cstr time series. OTIS formulates exchange and retention in terms 
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of mass transfer; MODFLOW-GWT directly replicates flowpaths, hyporheic hydraulics, 

and downstream transport in the subsurface. 

The calibration parameters in OTIS are stream cross-sectional area (Astr, square 

meters), stream longitudinal dispersion coefficient (Dstr, square meters per second), 

storage-zone cross-sectional area (As, square meters), and 4) exchange coefficient (α, 

second-1). Although empirical, parameters are obtained directly from stream response to 

tracer injection and are related to physical characteristics of the stream system. Transient 

storage is mathematically described as mass-transfer between two volumes of water. The 

first volume is the open-channel and the second represents pools, eddies, and the porous 

subsurface [Runkel, 1998]. The second pool volume is the sum of STS and HTS volumes. 

Solving the mass-transfer equation in terms of the decay constant n (time-1) results in: 

 

 

CTS (t) = Cstr 1− e−nt( ) where n = α Astr

As
 (5) 

 
where CTS is tracer concentration of water in transient storage and t is time. The 

reciprocal of the decay-constant multiplied by the natural log of 2 (~0.693) is the time 

required for CTS = 0.5Cstr. The time is when ½ of the open-channel pool has exchanged 

with the transient storage pool; in OTIS the water exchange is perpendicular to the 

direction of streamflow. In this paper all transient-storage water exchange is assumed to 

have a downstream transport component. With that in mind, the decay-constant 

reciprocal is considered an indicator of the mean transit time of water flowing 

downstream through the transient-storage volume (MTTTS, time) and is described as: 
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MTTTS =
ln(2)

n
  or  

MTTTS =
As

αAstr
* ln(2)

 (6) 

 
Parameter estimation is constrained by maintaining a combination of As, α, and 

Astr that complies with MTTHTS determined with eqn 4. Whether or not the observed Cstr 

time-series can be simulated while adhering to the constraint is a measure of how 

plausible MTTHTS (eqn 4) is. If a reasonable match is obtained, then As in combination 

with porosity (η), can be used to estimate the cross-sectional area of the stream-channel 

deposits (Ah, square meters) [Harvey and others, 1996] through which water exchange is 

occurring: 

 

 

Ah = As
η  (7) 

 
In MODFLOW-GWT observed Qvel and Cstr at the injection location, and the 

average stream gradient are fixed; no underlying or regional-scale aquifer is included in 

the model domain. Calibration parameters include geometry of the hyporheic zone, 

spatial variability and absolute values of horizontal and vertical hydraulic conductivities, 

porosity, and longitudinal and transverse dispersivities. MODFLOW-GWT explicitly 

simulates the downstream transport of water exchanging through the hyporheic zone. 

Therefore a simulated MTTHTS can be determined by tracking the modeled breakthrough 

of an arbitrary transport species with unit concentration. MTTHTS being defined when C = 

0.5Co occurs.  
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2.6 Results 

Results of the stream-tracer test at Red Butte Creek are unique for two reasons: 1) 

steady-state conditions with respect to the tracer was not obtained within the expected 

time frame, and 2) near the end of tracer injection there still remained a large discrepancy 

between Qvel and Qdil at the downstream end of the study reach. Time-series data 

collected at 276, 1,902, 3,564, and 4,900 m downstream of the injection location show 

that Cstr continued to increase during the entire 50-hour tracer injection period (Fig. 

2.4A). The injection Mload-str was held constant for the duration of the test at 4,663 

milligrams per min (mg/min). The first arrival of bromide at 4,900 m occurred 19 hours 

after the start of injection. Qvel measurements showed a net increase in streamflow of 220 

L/min between the injection location and 4,900 m: this includes 253 L/min of tributary 

inflow from Parleys Creek (Fig. 2.4B). For the same reach Qdil increased by 5,063 L/min. 

Qdil is calculated as: 

 
 

 

Qdil = injection M load−str( )∗ 1
Cstr

 (8) 

 
Within the subreach between 279 and 988 m Qvel measurements showed a net 

stream-loss of 415 L/min. This is followed by a net stream-gain of 453 L/min for the sub-

reach between 1592 to 1902 m. The gain from 3,564 to 3,793 m is tributary inflow from 

Parleys Creek. The Cstr profile, collected during the last 12-hours of injection, shows a 

systematic dilution of tracer along the entire study reach (Fig. 2.4C). 

Stream discharge measured at the USGS gaging station located at 4,900 m varied 

from 1,100 to 1,270 L/min during the 2 weeks prior to and the week of the stream-tracer 

test. There are no detectable patterns in streamflow variability and variation is considered 
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noise in the gaged record. Streamflow is judged constant prior to and during the test at an 

average value of 1,190 L/min. 

 
2.7 Interpretation 

Interpretation of Red Butte Creek HTS was done using the described methods. As 

a starting point it was assumed that stream/aquifer interaction along the study-reach was 

minimal during the 50-hour stream-tracer test. This conclusion was reached on the basis 

of the pattern of gain and loss from the stream, as delineated by Qvel. Accounting for 

Parleys Creek inflow, the change in Qvel between upstream and downstream ends of the 

study reach is less than 5% of total discharge. This is within the range of measurement 

error and interpreted as essentially balanced. Therefore if there is any stream/aquifer 

interaction the watergross-gain equals the watergross-loss, which seems unlikely. The pattern of 

upstream loss followed by downstream gain also supports the concept of minimal 

stream/aquifer interaction. If upstream loss was not the same water that accounts for 

downstream gain, the aquifer receiving upstream losses would need to be isolated from 

the aquifer discharging downstream gains. Although fault zones likely influence 

exchange along the study reach, it is difficult to conceptualize isolated groundwater flow 

systems at a scale of 4,900 m. For the purpose of this analysis the definition of hyporheic 

flow by Harvey and Wagner [2003] as losing and returning to the study reach of interest, 

is utilized. 

The idea of minimal stream/aquifer interaction changes the concepts of 

groundwater recharge and flow in the Red Butte catchment.  Originally we assumed 

groundwater recharge was spatially distributed, as a function of precipitation, across the 

catchment area. In addition, we assumed groundwater discharge occurred along the entire 
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reach of the stream (Fig. 2.5A). Now groundwater recharge and active groundwater flow 

are considered focused in the upper altitude areas of the catchment. Groundwater 

discharge is limited to higher-altitude springs (Fig.2.5B). Streamflow originates at the 

springs and changes in streamflow reflect HTS exchange.  

 
2.7.1 Water Exchange 

Using the Cstr profile in combination Qvel measurements, watergross-loss, watergross-

gain,  and Mload-str were calculated for 11 subreaches (Table 2.1). The sum of watergross-gain 

is 1,673 L/min. Because Cstr values used to determine watergross-gain was not in steady 

state, it is uncertain how much of the exchange is due to HTS processes. However, it is 

certain that transient storage processes are occurring. At Red Butte Creek the absence of 

any large-scale open-channel retention and the time-scale of transient Cstr specifically 

indicates HTS processes. Stream/aquifer and tributary exchange is in steady state and is 

not the cause of transient Cstr. HTS exchange is occurring, it is just uncertain as to how 

much. As mentioned, the pattern of stream loss/gain and ∆Qvel both indicate that 

exchange is entirely related to HTS. Considering uncertainty in both data and methods of 

interpretation, a probable HTS exchange and associated uncertainty is 1,650 +/- 200 

L/min. 

For several of the subreaches watergross-loss is negative, indicating an increase in 

tracer mass-load. A portion of inflow to the stream from the HTS volume contained 

tracer, thus some HTS exchange along the reach was completed during the elapsed time 

between start of tracer injection and stream sample collection. For these reaches, the 

amount of watergross-gain represents exchange that did not occur within the elapsed time. 

For these reaches the sum of watergross-loss and watergross-gain (using absolute value for 
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watergross-loss ) is the total exchange. Watergross-gain values can never be negative because 

tracer mass is diluted, never lost due to HTS exchange or aquifer inflow. 

Tracer dilution due to tributary inflow from Parleys Fork is automatically 

canceled out of the exchange determination. Tributary inflow decreases Cstr (because of 

dilution) in direct proportion to the increase in Qvel. So there is no change in calculated 

mass-load (eqn 1). Using eqn 2 with maxCstr (which occurs above the Parleys Fork) the 

effect of tracer dilution is removed from the gross loss/gain calculations (eqns 2 and 3). 

 
2.7.2 Transit Times and Volume 

HTS transit times along Red Butte Creek were quantified using the Cstr time-

series collected at 276, 1,902, 3,564, and 4,900 m. The time series were separated using 

the method shown in Fig. 2.3. The times where slope changes occur are listed in Table 

2.2 The STS portion of the curve was subtracted from the total elapse times shown for the 

observed Cstr time series. Because steady state was not reached during the 50-hour test, 

the values of MTTHTS and tHTS,max were determined by extrapolation. 

Maintaining the assumption of no groundwater interaction, Mload-str at the 4 sites 

will eventually equal the injection Mload-str (4,663 mg/min). This is true only because Qvel 

at the 3 sites above Parleys Creek are all about 1,000 L/min (at the gage Qvel is 1,000 

L/min plus Parleys inflow). So there is likely very little HTS exchange that is occurring 

directly underneath the sites. Not having prior knowledge, this was a fortunate 

happenstance. To estimate the time when Mload-str at the 4 sites equals injection Mload-str, 

the HTS portions of the curve were exponentially extrapolated until Cstr resulted in a 

Mload-str of 4,663 mg/min. The exponential extrapolation implies an exponential transit-

time distribution for HTS exchange. Rearranging eqn 8 and using the Qvel at each of the 
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locations, the required Cstr to equalize Mload-str are listed in Table 2.2 The exponential time 

constant was determined separately for each time series by minimizing the sum of 

squared differences between the observed and simulated Cstr values; observations only 

exist for a 47-hour or less time-span (Fig. 2.4A). Once the shape of the exponential curve 

is established, tHTS,max was manually adjusted until the Cstr values that result in a mass-

load of 4,663 mg/min, were obtained (Table 2.2). The time required for Cstr to reach 1/2 

the required concentration represents a “best” estimate of MTTHTS. Using eqn 4, MTTHTS, 

and the watergross-gain the estimated VolHTS for the study reach is 24,100 m3. 

The transit time and volume determined from data at the 4 stream locations 

represents the aggregation of HTS effects for successively longer portions of the stream 

reach. For example, the MTTHTS for the 1st reach (279 m of stream) is estimated at 165-

hours. At the 2nd reach (1,902 m of stream) estimated MTTHTS is 220-hours. The 220-

hour time is an aggregate of transit times for both the first 279 m of stream and the 

additional 1,623 m of stream. Estimated MTTHTS should increase (or remain neutral) at 

each successive downstream location. 

If all flow in Red Butte Creek were to infiltrate into and re-emerge from HTS 

within each subreach, then HTS would be a serial process only. The transit-time 

distribution of successive subreaches could be added. Since not all flow in the creek 

exchanges into HTS at any given subreach, the HTS process has both a serial and parallel 

component. An elemental volume of water that exchanges through successive subreaches 

has a serial transit time. Simultaneous transport of multiple elemental volumes (e.g., 1 

elemental volume is moving through the 1st subreach HTS at the same time another 

elemental volume is transporting through the 2nd subreach) is a parallel process. The Cstr 
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time-series aggregates these effects. A unique separation of the serial and parallel effects 

is not possible, but estimates can be made with the numerical methods discussed in the 

next section. Regardless of serial or parallel tracer transport, it is not possible for MTTHTS 

to decease with downstream distance. 

Given the fact that MTTHTS cannot decrease, the estimated change in transit time 

from 220- to 205-hours between 1,902 and 3,564 m is not correct. The source of error is 

likely due to extrapolation. A subjective estimate based on relative differences and 

absolute values of successive MTTHTS is that the probable MTTHTS along the reach from 

1,902 to 3,564 m is 10 to 20-hours. The minor increase in MTTHTS along the 4th reach is 

also considered an indication of HTS transit times on the order of 10 to 20-hours. Despite 

these slight inconsistencies, MTTHTS for the entire study reach is estimated at 240-hours.   

VolHTS is dependent on both MTTHTS and watergross-gain (eqn 4), and systematically 

increases with distance downstream (Table 2.2). From the injection location to 1,902 m 

larger VolHTS is indicated because MTTHTS gets longer and watergross-gain increases 

downstream. For the stream below 1,902 m, MTTHTS becomes slightly longer and 

increasing VolHTS is controlled mainly by the increase in exchange. Basically, exchange 

appears to occur along the entire study reach, but below 1,902 m exchange times become 

significantly less than upstream of 1,902 m. 

 
2.7.3 Physical Attributes 

To quantify the physical attributes of the hyporheic zone along Red Butte Creek, 

the computer program OTIS was used to simulate in-stream transport and tracer retention 

created by the aggregated effects of STS and HTS. The OTIS simulation includes the 

entire 4,900 m study reach. Tracer exchange and transport through the hyporheic zone 
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were examined using MODFLOW-GWT. The MODFLOW-GWT simulation was 

designed to look specifically at hyporheic transport and the domain is sized to match 

transport lengths of 50 to 100 m. The entire study reach is not simulated, nor is in-stream 

transport and STS. 

 
2.7.3.1 Stream Transport and Concentration Time-Series 

On the basis of mass-load and concentration time-series concentration 

considerations, hyporheic exchange and MTTHTS are estimated at 1,650 L/min and 240-

hours, respectively. These values are assessed by numerically simulating the observed 

conditions. OTIS was calibrated in a stepwise manner to the measured Cstr time-series 

data for locations at 276, 1,902, 3,564, and 4,900 m below the injection location (Fig. 

2.6A). The stream was separated into 4 reaches that correspond to the monitoring 

locations (Table 2.3). Tributary inflow from Parleys Creek is simulated; no additional 

inflow or outflow was simulated. Each reach was discretized into 5 m sections. Astr was 

adjusted to control timing slope of the breakthrough. Dstr was used to control early-time 

plateau concentration. As was increased to reduce plateau concentrations and α was 

increased to reduce the initial concentration of the plateau. Once a reasonable solution 

was established, the parameters were finalized using UCODE (Poeter and others, 2005) 

to minimize the sum of squared differences between the observed and simulated Cstr 

values. The solution was constrained by the extrapolated MTTHTS determined with eqn 6 

and listed in Table 2. OTIS treats transient storage as a single entity, as corresponding to 

the observed time-series (time-series separation is interpretive, not observed). As such, As 

includes both STS and HTS. For Red Butte Creek, where open-channel retention is a 

minor element of the observed transient conditions, MTTTS derived in eqn 6 is considered 
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equivalent to MTTHTS. The best fit to observed Cstr was achieved using the parameter 

values listed in Table 2.3. Plots of simulated and observed Cstr values are shown on Fig. 

2.6A. 

In general, the OTIS simulation is a reasonable representation of observed 

conditions. For all but the 2nd reach, the simulated plateau slope is somewhat greater than 

observed. Steeper slope means simulated tracer retention in transient storage is shorter 

than observed. A better fit to observations is possible but only if the MTT constraint is 

exceeded; the current solution is at or near the upper limit (Table 2.3). Considering that 

OTIS aggregates the serial and parallel aspects of tracer transport, total MTTTS are the 

simulated values, and represent the aggregated time for the upstream reaches. Individual 

reach MTTTS are calculated as the difference between successive reaches. Simulated 

MTTTS for the study reach is 274-hours, which is about 15% longer than the 240-hour 

MTTHTS based on time-series separation and extrapolation. Using eqn 7 with the average 

As value (12.6 m2) and a porosity of 0.20, Ah is estimated at 63 m2. 

Using the calibrated OTIS simulation, the injection period was lengthened until 

tracer concentration reached a steady-state value at 4,900 m (Fig. 2.6B). The projected 

time to reach steady state is approximately 2,100 hours (87 days) and illustrates both the 

extended time frame to achieve complete exchange, and that ½ of the transient storage 

volume is exchanged within the first 10% of the longest transit time.  

 
2.7.3.2 Hyporheic Transport and Exchange 

To estimate hyporheic zone hydraulic and transport parameters, the observed 

tracer response along the 1st and 2nd reach of the stream (0 to 1,902 m) was simulated 

using MODFLOW-GWT. Parameters were estimated by minimizing the difference 
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between simulated concentrations and the observed Cstr time-series at 276 and 1,902 m. 

Also, the difference between estimated and simulated exchange is minimized (Table 2.2). 

Matching the observed Cstr implicitly means that the MTTHTS values listed in Table 2.3 

are reasonably simulated. When exchange is also reproduced, then VolHTS is matched 

(eqn 4). Assuming that η ranges between 0.10 and 0.30, the relationship VolHTS/η was 

used to ascribe an initial model domain that is 22 m wide, 12 m thick, and 500 m long. 

The domain is essentially a long rectangular box; grid cells are 2 m on a side (8 m3). The 

active area of the model is adjusted to create estimated exchange, η is adjusted to control 

transport velocities. To ease display and manipulation of parameters, the model is sized 

to approximate the physical dimensions of hyporheic transport, not the actual stream 

length. 

The stream is simulated using the Streamflow Routing Package (SFR; Niswonger 

and Prudic, 2003). SFR simulates for mixing with inflowing waters of varied 

concentration; it does not simulate stream transport (as does OTIS). Two stream 

segments are used; the initial concentration for the 1st segment is specified at the injection 

amount of 4.81 mg/L. Input to the 2nd segment is the simulated Cstr time-series output 

from the 1st segment; this reproduces the aggregated effects of serial and parallel 

transport created by successive HTS exchange with the stream. The flow field is 

simulated at steady state; tracer transport is simulated for 314.5-hours (13 days), using 2-

transport stress periods. Two transport stresses were used to account for in-stream 

transport times, which are not explicitly simulated. 

The model domain is split by a vertical swath of inactive cells creating 2 sub-

domains with lengths of 100 and 398 m (Fig. 2.7A). The subdomains represent hyporheic 
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circulation between the injection location and 276 m, and 276 to 1,902 m, respectively. 

The inactive cells force all hyporheic exchange to return to the stream boundary at the 

location of the vertical swath. Initially horizontal and vertical hydraulic conductivities 

(Kh and Kv, meters per day), and streambed conductivity (Kstr, meters per day) were 

adjusted to try and match the 463 and 586 L/min of estimated hyporheic water exchange 

(Table 2.1). The next calibration step was adjusting η, and dispersivity to match the 

observed Cstr time series for 276 and 1,902 m. Since flow is in steady state, simulated Cstr 

at 100 and 500 m is a function of the initial stream-boundary concentration (4.81 mg/L), 

and the simulated amount of tracer mass re-emerging from HTS. As a consequence, the 

change in Cstr at 100 and 500 m is controlled by the amount of exchange with HTS, and 

the transit time of water through the HTS volume. 

Modeling objectives are to simulate exchange amounts and flowpath lengths that 

result in a reasonable match to observed Cstr time-series. Individual parameter values 

were not constrained nor varied on a cell-by-cell basis. The observed Cstr time series at 

276 m can be reproduced with flowpath lengths of 100 m (Figs. 2.7 and 2.8A). The 

observed Cstr time series at 1,902 could not be reproduced with 400 m flowpaths; 

simulated transit times are too long. Inactivating model cells to create a series of 50 m 

long HTS circulation cells, (Fig. 2.7B) a replication of observations was realized (Fig. 

2.8B). For both reaches the simulated water exchanges are about 60% of the estimated 

values (Tables 2.1 and 2.4). The simulated MTTHTS values are about 75% of the 

extrapolated values (Tables 2.2 and 2.4). Additional calibration could likely decrease the 

mis-fit between simulated and estimated/extrapolated values. However, the visual fit to 

the observed time-series is good, particularly at 276 m (Fig. 2.8A). 
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2.8 Discussion and Conclusions 

After 50-hours of tracer injection Red Butte Creek Cstr did not reach steady-state 

conditions along the 4,900 m study reach. Given that streamflow and injection were in 

steady state, the transient Cstr conditions are created by HTS with transit times that 

exceed 50-hours. The transient conditions require modification to the standard methods 

used to define the hyporheic zone interaction. This paper describes those modifications as 

they relate to 1) gross-water exchange, 2) transit times and volume, and 3) hydraulic 

characteristics of the HTS. 

For stream locations where both Qvel and Cstr were quantified, Mload-str was 

calculated and used to quantify watergross-loss from the stream and watergross-gain to the 

stream. Results show water exchange into and out of HTS is 1.5-times greater than 

stream discharge (1,650 versus 1,190 L/min). The Cstr time series, which were collected 

at 4 stream locations, were separated into STS and HTS components, to qualify transit 

times. The HTS component was exponentially extrapolated until Cstr resulted in a Mload-str 

equal to the injection Mload-str (4,663 mg/min). The time required for Cstr to reach 1/2 the 

concentration required for mass balance was considered a “best” estimate of MTTHTS. In 

addition to mass balance and time-series separation, numerical simulations of stream and 

hyporheic transport were simulated using OTIS and MODFLOW-GWT. Using MTTHTS 

derived from time-series separation, OTIS can successfully reproduce observed Cstr time-

series, which adds credibility to estimated/extrapolated values. MODFLOW-GWT also 

reproduces the observed time series. 

There are inconsistencies between estimates of exchange, transit times, and 

volume, using the various methods of interpretation. Exchange determined from mass 
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balance is about 1.5 times more than estimated by MODFLOW-GWT. MTTHTS and 

VolHTS extrapolated from time-series separation and mass balance are also about 1.5 

times more than indicated by MODFLOW-GWT simulations. Also, MTTHTS from 

extrapolation does not get progressively longer with downstream distances. MODFLOW-

GWT simulation also shows that observed conditions require extremely permeable 

stream-channel deposits, with hydraulic conductivities of up to 200 m/d. 

When considering that the tracer-test conducted in Red Butte Creek was not 

designed to quantify large HTS, the methods introduced in this paper quantify a 

reasonable framework of hyporheic-zone characteristics. The amount of HTS exchange is 

on the order of 1,200 to 1,600 L/min; MTTHTS is at least 200-hours; VolHTS is in the range 

of 20,000 m3; and HTS flowpaths occur on the scale of 10 to 100 m. It also appears that 

most of the HTS is located in the upper 2,000 m of the study reach. To speculate, the 

large HTS estimated for Red Butte Creek might be related to observed tufa structures 

coupled with the landslide/mass wasting features that exist in the canyon. This could 

create spatially limited but high conductivity zones underneath the creek that could create 

large HTS and water exchange at a spatial scale of 50 to 100 m. 
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Figure 2.1     Location map of the study area, Red Butte Creek in the Wasatch Mountains, 
Salt Lake County, Utah.
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Figure 2.2     Hypothetical stream concentration time series for A) a stream with typical 
hyporheic storage, and B) a stream with large hyporheic transient storage.
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Figure 2.3     Hypothetical stream concentration time series A) separation into 
stream-transient-storage and hyporheic-transient-storage components, and B) hyporheic 
transient storage time series with minimum, maximum, and mean transit times.
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Figure 2.4     Graphs showing A) stream-water bromide concentration time-series at 4 
fixed locations, B) area-velocity discharge at 12 locations, and C) dilution discharge and 
stream-water concentration profiles, Red Butte Creek in the Wasatch Mountains, Salt 
Lake County, Utah.

Br
om

in
de

 c
on

ce
nt

ra
tio

n,
 in

 m
ill

ig
ra

m
s/

Li
te

r

Time, in hours

A

B

0

1.0

2.0

3.0

0 20 40 60 80

276 meters

1,902 meters

3,564 meters

4,900 meters

0

500

1,000

1,500

0 1,000 2,000 3,000 4,000 5,000

D
is

ch
ar

ge
, i

n 
lit

er
/m

in
ut

e

Distance, in meters

C 0

2.0

4.0

6.0

0

2,000

4,000

6,000

0 1,000 2,000 3,000 4,000 5,000

D
is

ch
ar

ge
, i

n 
lit

er
/m

in
ut

e

Distance, in meters

Br
om

in
de

 c
on

ce
nt

ra
tio

n,
 

in
 m

ill
ig

ra
m

s/
Li

te
r

41 



A

B

Figure 2.5     Schematic diagrams showing the A) original, and B) revised conceptual 
models of groundwater flow, Red Butte Creek in the Wasatch Mountains, Salt Lake 
County, Utah.
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Figure 2.6     Plots of A) OTIS results and observed time-series concentrations at 4 
monitoring location, and B) OTIS simulation to steady-state concentration at 4,900 
meters, Red Butte Creek in the Wasatch Mountains, Salt Lake County, Utah.
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Figure 2.7     MODFLOW-GWT A) model domain in plan view, B) simulated flowpaths 
in cross-sectional view, and C) simulated streamflow, Red Butte Creek in the Wasatch 
Mountains, Salt Lake County, Utah.
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Figure 2.8     MODFLOW-GWT simulated concentration time series and observed stream 
concentration time series at A) 276 m and B) 1,902 m, Red Butte Creek in the Wasatch 
Mountains, Salt Lake County, Utah.
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CHAPTER 3 

 
DETERMINATION OF FLOW-WEIGHTED AVERAGE 

GROUNDWATER CHLOROFLOUROCARBON-12 

CONCENTRATIONS FROM STREAM WATER 

SAMPLES: A CASE STUDY AT THE SIXMILE 

 SYSTEM, TOOELE VALLEY, UTAH 

 
3.1 Abstract 

The Sixmile System is a regional groundwater discharge location within the 

Tooele Valley groundwater basin, Utah. The concentration of a dissolved constituent in 

the discharging water represents a flow-weighted average of all groundwater flowpaths 

that are converging at the location. Because chloroflourocarbon-12 is a volatile 

constituent, determining its concentration consists of accurately measuring specific-

discharge and the gas-exchange characteristics, then numerically simulating gas 

transport. The Sixmile System consists of Sixmile Spring and 593 m of the 1st order 

stream that originates at the spring. Combined discharge of the system at 593 m is 82.9 

L/sec. Bromide dilution quantified specific discharge of groundwater to the stream below 

the spring ranging from 1.2 x 10-4 to 1.1 x 10-5 m/sec. On the basis of a gas-injection 

tracer test, the average gas-exchange velocity of chloroflourocarbon-12 in the stream is 

estimated at 0.48 m/d. Observed chloroflourocarbon-12 concentrations (CCFC-12) in stream 

water varied from 0.91 to 1.37 pmoles/kg of water, which is below the air-equilibration 
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value of 2.25 pmoles/kg of water. Using the groundwater inflow, gas-exchange velocity, 

and observed stream-water concentrations, the groundwater inflow CCFC-12 was estimated 

by simulating gas transport. The best fit to observed conditions results from a simulated 

groundwater-inflow CCFC-12 of 1.16 pmoles/kg of water; the 95% confidence interval is 

0.94 to 1.37 pmoles/kg of water. This is considered the flow-weighted average CCFC-12 of 

groundwater discharging at the Sixmile System. To assess the validity of the simulated 

concentration, 10 piezometers were installed along the study reach and sampled for 

chloroflourocarbon-12. The piezometer samples ranged in CCFC-12 from 0.31 to 1.38 

pmoles/kg of water. Those concentrations, when weighted by the groundwater inflow in 

accordance to groundwater inflow amounts, resulted in a flow-weighted average CCFC-12 

of 1.08 pmoles/kg of water. The level of agreement between the simulated and directly 

measured groundwater concentrations suggest that for a stream setting where the ratio of 

gas-exchange velocity to specific discharge of groundwater is less than 0.13, a good 

estimate of the flow-weighted average groundwater CCFC-12 can be derived from stream 

samples. Furthermore, the fact that only one stream-water CCFC-12 falls outside the 95% 

confidence interval of the simulated groundwater inflow implies that for a ratio of 0.13, 

gas-exchange has only a minor influence on the stream-water concentrations. 

 
3.2 Introduction 

Locations where groundwater flowpaths converge and discharge to the surface 

(e.g., springs and gaining streams) provide useful and robust observational data. Flow and 

water-quality attributes represent and respond to forcing processes/mechanisms that have 

been averaged or smoothed by aquifer heterogeneities. Chloroflourocarbon-12 is a gas 

dissolved in water that has the potential to quantify an apparent age for groundwater. The 
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CCFC-12 (pmoles/kg of water) of spring and gaining stream waters is a flow-weighted 

average that can be equated to the mean transit time (MTT) of the discharging 

groundwater. Spring discharge identifies the flux of water, the range of transit times 

describes the spatial distribution of recharge, and MTT quantifies the volume of 

groundwater storage, within the contributing area [Cook and Bohlke, p. 9, 2000). The 

complicating factor of sampling volatile gases such as chloroflourocarbon-12 from 

stream water is that concentrations are not conserved. As soon as groundwater discharges 

and is exposed to the air-water interface, dissolved chloroflourocarbon-12 begins to 

equilibration with the atmosphere and the groundwater signal begins to degrade. 

To correct for atmospheric equilibration, gas-exchange velocities and the rate of 

groundwater inflow to a stream need to be quantified. Gas-exchange velocities are 

specific for a given gas and stream morphology and are quantified by injecting the gas at 

concentrations several orders of magnitude above ambient levels, into the stream and 

measuring downstream concentration changes. Groundwater inflow can be measured by 

dilution of a soluble conservative tracer as a function of downstream distance. Using the 

gas-exchange and groundwater inflow information, the one-dimensional advection-

dispersion equation can be numerically solved for the gas concentrations of inflowing 

groundwater that would create a unique profile of stream water gas concentrations. The 

experiment described in this paper tests the validity of the gas-exchange correction 

methodology by comparing corrected gas concentrations to groundwater CCFC-12 

determined directly from sampling a series of in-stream piezometers. 
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3.3 Study Area and Methods 

Sixmile Spring and the associated 1st order stream are located in Tooele Valley, 

approximately 45 km west of Salt Lake City, Utah (Fig. 3.1). The Sixmile System is one 

of 4 regional groundwater discharge locations at the northern terminal end of the Tooele 

Valley groundwater basin [Stolp and Brooks, 2009]. Average groundwater flow through 

the basin is about 7.5 x 107 m3/yr; average discharge of the Sixmile System is about 3.5 x 

106 m3/yr. The initial 593 m of the Sixmile System was investigated in terms of 

groundwater inflows and gas exchange. 

The investigation of groundwater inflows and gas exchange consisted of the 

following elements: 

• Measure the specific discharge of groundwater to the stream (q, in m/sec), 

• Quantify the chloroflourcarbon-12 gas-exchange velocity (kCFC-12, cm/hr), 

• Measure the profile of stream water CCFC-12 along the study reach 

• Using q and kCFC-12, simulate gas transport to reproduce observed stream water 

CCFC-12 by adjusting groundwater inflow CCFC-12, 

• Sample a set of in-stream piezometers and directly measure groundwater CCFC-12, 

• Compare the flow-weighted average groundwater inflow CCFC-12 estimated from 

simulation of gas transport to the flow-weighted average determined from direct 

measurements of groundwater CCFC-12. 

The specific discharge of groundwater was quantified by injecting a known mass-

rate of bromide, (Mload,Br, in mg/min) into the stream until concentrations along the study 

reach come to steady state. Steady state was evaluated by collecting a time series of 

stream samples at the downstream end of the study reach, starting 1-hr after the start of 
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injection and ending 24-hrs after the end of injection. Once at steady state, the stream was 

sampled at 10 locations and the observed bromide concentration (CBr, in mg/L) profile 

used to determine inflow. At 593 m the stream was sampled at 6 discrete points to assess 

the level of bromide mixing. Samples were analyzed using an ion chromatograph with 

detection limit of 50 parts per billion (ppb) and an accuracy of about 5% for values 

greater than 250 ppb. Using the One-Dimensional Transport with Inflow and Storage 

(OTIS) model [Runkel, 1998] a steady-state calibration to the observed CBr profile was 

obtained by specifying groundwater inflows. The mis-fit between simulated and observed 

CBr was minimized with UCODE [Poeter and others, 2005]. The simulation accounts for 

background CBr, which is 1 mg/L at Sixmile. 

The kCFC-12 was quantified by the same methodology as described for 

groundwater inflow. Instead of bromide, chloroflourocarbon-12 was injected into the 

stream by diffusion through silicon tubing and sampled at the same 10 locations. Samples 

were analyzed using a gas chromatograph at the University of Utah Dissolved Gas Center 

with detection limit of about 0.005 pmoles/kg and an accuracy of about 3% for values 

above 0.1 pmoles/kg.  Using a modified version of OTIS that includes gas exchange, the 

observed gas concentrations were simulated by adjusting a gas-exchange coefficient. 

Specific groundwater inflow for each segment is fixed according to the amounts 

determined from bromide dilution. The groundwater inflow CCFC-12 does not influence 

simulation results because it is several orders-of-magnitude less than stream CCFC-12 

concentrations created during gas-injection. The gas-exchange coefficient was optimized 

using UCODE to simulate gas concentrations for the stream water that are a reasonable 

facsimile of the observed values. 
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One year after the injections, ambient stream water CCFC-12’s were measured from 

8 stream samples collected along the 593 m reach. For stream samples, glass sample-

bottles were held under the surface and actively flushed for 90 seconds with a small 

pump. During collection the samples were not allowed to come into direct contact with 

the atmosphere. 

Using the previously defined gas-exchange coefficient and groundwater-inflow, 

observed ambient stream water CCFC-12 was simulated using the modified OTIS simulator. 

A single parameter representing CCFC-12 of inflowing groundwater was adjusted to 

minimize the mis-fit between simulated and observed stream water CCFC-12; optimization 

was done using UCODE. Because groundwater inflow is incorporated into the 

simulation, the solution represents the flow-weighted average CCFC-12. 

In conjunction with ambient stream sampling, groundwater was also sampled 

from 10 piezometers completed at various depths and locations along the study reach 

(Fig. 3.2). For piezometers with water levels below the stream-air interface, samples were 

collected using a peristaltic pump equipped with tubing having a low gas permeability. 

For piezometers with water levels above the interface (flowing), water was routed 

through copper tubing into a bucket from which samples were collected. Using the CBr 

determined q, the CCFC-12’s measured for individual piezometers are flow-weighted as: 

 

 

CCFC −12 =
(CCFC −12 i

* qi )
i =1

n
∑

qii =1

n
∑

 (1) 

 
The qi attributed to individual piezometers was assigned in accordance to location 

within the qi profile of the stream. The validity of gas-exchange corrected stream-water 



54 

 

CCFC-12 is measured by how similar it is to the direct measurement of groundwater CCFC-12.

  
3.4 Results 

Tracer tests, piezometer installation, and water sampling experiments at Sixmile 

were done between July 2005 and August 2006. During bromide injection, steady-state 

conditions along the stream were reached in about 9-hours. The CBr profile ranged from 

4.5 to 2.3 mg/L and identified 54.6 (L/sec) of groundwater inflow (Table 3.1). During 

CFC-12 injection, concentrations varied from 31,792 pmoles/kg at 50 m to 10,594 

pmoles/kg at 593 m (Table 3.1); the computed kCFC-12 is 0.48 m/day. In May-September 

2006 stream water CCFC-12 ranged from 0.91 to 1.37 (pmoles/kg) and groundwater CCFC-12 

concentrations of samples collected at 10 piezometers ranged from 0.31 to 1.39 

pmoles/kg (Table 3.1). The flow-weighted average groundwater inflow CCFC-12 is 1.16 

pmoles/kg; the flow-weighted piezometer derived groundwater inflow CCFC-12 is 1.08 

pmoles/kg. A simple average of stream water CCFC-12 is 1.22 pmoles/kg. 

 
3.5 Interpretation 

The determination of groundwater inflow and q was done using OTIS to simulate 

the observed CBr profile along the study reach (Fig. 3.3). The minimum mis-fit to 

observed conditions was achieved with UCODE. Initially 9 inflow amounts (a stream 

segment between each of the observation locations) were adjusted to fit the 10 CBr 

observations. This approach results in an excellent fit to the observations but the 95% 

confidence interval is large. The 95% confidence interval is a statistic that is related to the 

number of observations (CBr) used to determine a parameter value (groundwater inflow). 
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When the ratio of observations to parameters is essentially 1, confidence that the 

parameter value is similar to the “true” value, is not high. On the basis of area-velocity 

discharge measurements that indicate 2/3 of inflow occurs along the upper 350 m of the 

study reach, the stream discretization was reduced from 9 segments to 2 segments (0 to 

350 m and 350 to 593 m). The resulting inflows and 95% confidence intervals are 1.6 x 

10-4 m3/sec-m (1.2 x 10-4 to 2.0 x 10-4 m3/sec-m) and 3.1 x 10-5 m3/sec-m (0.0 to 1.3 x 10-

5 m3/sec-m). The 95% confidence intervals is an interval statistic that implies if a series of 

Br injections were conducted at Sixmile under identical hydrologic conditions, 95% of 

those hypothetical tests would quantify an inflow that falls within the 95% CI. Using a 

stream width and length, q for the 2 segments are 1.2 x 10-4 to 1.1 x 10-5 m/sec, 

respectively. Total estimated inflow to the Sixmile System is estimated at 82.9 L/sec, 

28.3 L/sec from the spring orifice and 54.6 L/sec as groundwater inflow below the spring.  

The estimated kCFC-12 at Sixmile was derived by dissolving chloroflourocarbon-12 

into the stream water at 4 orders of magnitude above background. Although high stream 

concentrations were obtained, the amount of gas released into the environment was 

estimated at less than 100 grams. Using 10 CCFC-12 observations, the modified version of 

OTIS was used to determine a single gas-exchange coefficient for the study reach. As 

with groundwater CCFC-12, a better match to observations can be obtained by assigning 

coefficients to individual stream segments, but the level of confidence in the values 

become marginal. Using a single parameter, the lowest sum of squared residuals obtained 

by UCODE occurs with a gas-exchange coefficient of 3.0 x 10-5 sec-1 with a 95% 

confidence interval of 0.9 x 10-5 to 1.4 x 10-5 sec-1 (Fig. 3.4). When multiplied by an 

average stream depth of .185 m the gas-exchange velocity for the Sixmile System is 5.6 x 
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10-6 m/sec. 

To derive the flow-weighted groundwater inflow CCFC-12, a final OTIS simulation 

was performed using previously estimated groundwater inflows and gas-exchange 

coefficient. Inflow CCFC-12 is adjusted to minimize the mis-fit between observed and 

simulated stream-water CCFC-12. Using a single parameter to describe inflow for the entire 

stream reach, a concentration of 1.16 pmoles/kg gave the best fit to observed conditions. 

The 95% CI is 0.94 to 1.37 pmoles/kg (Fig. 3.5). This derived inflow concentration is in 

close agreement with the 1.08 pmoles/kg determined from direct sampling of 

groundwater at 13 piezometers (Table 3.1). The piezometer estimate is biased to the 

upper 250 m of the study reach, from which 12 of the 13 samples were collected. The 

upper piezometer values were flow weighted using 1.2 x 10-4 m/sec, the lower-reach 

piezometer was weighted using 1.1 x 10-5 m/sec. 

The ambient stream-water CCFC-12’s in August 2006 were significantly less than 

the air-equilibration value of 2.25 pmoles/kg along the entire 593 m study reach (Fig. 

3.5). The degree to which stream-water concentrations are not at air-equilibration 

suggests that the groundwater signal can be recovered with a high level of certainty. Just 

the simple average of stream water CCFC-12, 1.22 pmoles/kg, gives an answer within the 

95% CI, without any consideration of gas-exchange, and is only 0.14 pmoles/kg above 

the groundwater concentration measured in the piezometers. The kCFC-12/q ratio is a 

measure how successfully the groundwater signal can be recovered. At Sixmile the ratio 

is 0.13, which means the processes that contribute to loss of a groundwater signal are 

almost an order of magnitude weaker that those that create the signal. This is evident by 

both the degree that ambient stream-water CCFC-12’s are below air equilibration and the 
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nearly constant concentration profile of the reach (Fig. 3.5). 

The concept of k/q is generalized in Fig. 3.6, where groundwater concentration 

and resulting stream-water concentration (both normalized to the air-equilibrated 

concentration) are plotted as a function of k/q. The k/q lines are generated by OTIS using 

generic values of k and q. The critical factor controlling the slopes is the relative 

differences between k and q (expressed in the ratio), not the absolute values of k and q. 

 
3.6 Conclusions 

The experiment at Sixmile was designed to evaluate methods of determining the 

concentration of dissolved gases of waters that emerge from natural discharge locations. 

The gas concentrations are a flow-weighted average for the contributing area and can be 

used to quantify groundwater storage. The complicating factor is that dissolved gases are 

nonconservative at natural discharge locations, where groundwater becomes exposed to 

the atmosphere.  

The experiment consisted of measuring discharge and the gas-exchange velocity 

and stream-water CCFC-12. That information was then used to simulate gas transport and 

the flow-weighted groundwater inflow CCFC-12. The simulated groundwater concentration 

was nearly identical to the concentrations measured in and averaged from 13 piezometers 

located along the study reach. Although results support the efficacy of the method, the 

experiment is not a robust measure for all streams. This is due to the extremely favorable 

conditions at the Sixmile System in which the stream is so strongly gaining. The most 

important conclusion from the experiment is that groundwater gas concentrations are 

essentially equivalent to stream concentrations when the processes affecting loss of the 

gas signal are nearly an order of magnitude less than those creating the signal. The 
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conditions at Sixmile are not common for most gaining stream reaches, but are very 

likely at distinct spring orifices. 
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Figure 3.1     Location of the Sixmile System within the Tooele Valley groundwater basin, 
Tooele County, Utah. 
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Figure 3.2     Sample locations at the Sixmile System, Tooele County, Utah.
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Figure 3.3     Observed and simulated bromide concentration profiles during solute-tracer 
injection at the Sixmile System, Tooele County, Utah.
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Figure 3.4     Observed and simulated chloroflourocarbon-12 concentration profiles 
during gas-tracer injection at the Sixmile System, Tooele County, Utah.
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Figure 3.5     Observed and simulated chloroflourocarbon-12 concentration profiles at the 
Sixmile System, Tooele County, Utah. 
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Figure 3.6     The relationship between the concentration of a dissolved gas in groundwa-
ter and stream water as a function of k/q. 
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[1] Springs and gaining streams are locations where groundwater flow paths naturally
converge and discharge as a flow‐weighted mixture of water from the contributing aquifer.
The age of that water is therefore a good measure of the mean transit time (MTT) of
the contributing aquifer. The question examined in this paper is whether tritiogenic
helium‐3 and tritium (3Hetrit–

3H) can be used to estimate MTT in these settings. To answer
that question two factors must be considered: (1) the loss of 3He from discharging
groundwater as it becomes exposed to the atmosphere, and (2) the accuracy with which
MTT can be determined from flow‐weighted 3Hetrit–3H concentrations. These concepts
were tested at the Fischa‐Dagnitz system (springs and emerging stream), which is part of
the southern Vienna Basin aquifer. Conducting a gas tracer test, gas exchange coefficients
(l) were established for helium‐4 (4He) and krypton‐84 (84Kr), and derived for helium‐3
(3He) and neon‐20 (20Ne). By simulating measured groundwater inflow and gas transport in
the stream, groundwater inflow concentrations for 3He, 4He, 20Ne, and 84Kr were estimated.
Correcting for the various sources of He, the tritiogenic helium‐3 (3Hetrit) concentration of
inflowing groundwater was estimated at 8.3 tritium units (TU). The flow‐weighted
groundwater concentration of 3H, determined from 22 stream water samples, was estimated
at 9.8 TU. Assuming that the relationship between flow amount and transit
time at Fischa‐Dagnitz is characterized by a hybrid dispersion–exponential age model,
the 3Hetrit–

3H ratio (8.3/9.8 = 0.85) defines a MTT of 8 years. The validity of this estimate
was evaluated by comparison to a long‐term 3H time series that exists for Fischa‐Dagnitz.
The likely range of MTT’s derived from the measured 3H time series is 11 to 14 years.

Citation: Stolp, B. J., D. K. Solomon, A. Suckow, T. Vitvar, D. Rank, P. K. Aggarwal, and L. F. Han (2010), Age dating base
flow at springs and gaining streams using helium‐3 and tritium: Fischa‐Dagnitz system, southern Vienna Basin, Austria, Water
Resour. Res., 46, W07503, doi:10.1029/2009WR008006.

1. Introduction

[2] A fundamental description of groundwater flow is
mean transit time (MTT). MTT is defined as the average
travel time required for water to move from areas of
recharge to areas of discharge. MTT is a robust attribute of
a groundwater system [Haitjema, 1995] that is correlated to
the evolution of water quality, resilience to climatic varia-
tions, and the development of best management practices.
Equally important, MTT is directly related to the rate of
recharge and storage volume in an unconfined aquifer [Cook
and Böhlke, 2000]. Seasonal changes in water levels and
streamflow describe groundwater system response to changes
in fluid flow. These changes can then be converted into
estimates of fluid flux and storage volume if aquifer char-

acteristics are well constrained. On the other hand, MTT is
directly related to fluid flow and storage volume. Under-
standing flow and storage is particularly useful for allo-
cation and prioritization of water resources. The difficulty in
quantifying MTT is collecting and successfully dating water
samples that represent a reasonable flow‐weighted mixture
of all flow paths that exist within the aquifer.
[3] At locations where flow paths naturally converge and

discharge to the surface, the water is a flow‐weighted
mixture of all flow paths that exist in the contributing
aquifer. Groundwater age of the mixture quantifies a mean
time that it takes for water to move through the contributing
aquifer. Locations of converging flow paths include springs
and gaining streams. Potential approaches to derive the age
of water at natural discharge areas include (1) 3H time series,
(2) stable isotope time series, and (3) age dating tracers such
as CFCs, SF6, and the 3Hetrit–

3H ratio. When the temporal
variability of 3H in precipitation (aquifer recharge) can be
compared with temporal patterns of 3H in spring and stream
water at base flow, the offset in discernible events like the
1963 3H peak is a powerful way of evaluating MTT [Dincer
et al., 1974]. This requires time series for both recharge and
discharge; unfortunately relatively few of these coupled 3H

1Geology and Geophysics Department, University of Utah, Salt Lake
City, Utah, USA.

2Isotope Hydrology Section, International Atomic Energy Agency,
Vienna, Austria.

3Center for Earth Sciences, University of Vienna, Vienna, Austria.
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time series exist. The seasonal variation of stable isotopes of
hydrogen and oxygen in precipitation can also be measured
in streams and potentially provide a method for estimating
MTT. However, longitudinal dispersion tends to average
out input periodicity making it increasingly difficult to
derive MTTs greater than 3 to 5 years. McGuire and
McDonnell [2006] present a comprehensive review of
techniques and issues associated with estimating transit
times for catchments.
[4] Even if an ideal tracer existed (one that accumulates in

groundwater at a uniform rate and is chemically inert
[Kazemi et al., 2006]), determining the travel time of a flow‐
weighted mixture of water (and thereby MTT) is inherently
complex. Although not ideal, groundwater dating using
dissolved gases has become relatively common in recent
years [Busenberg and Plummer, 1992; Cook and Solomon,
1997; Solomon and Cook, 2000]. When water is exposed
to the atmosphere (as occurs at natural discharge areas) the
dissolved gases in the water begin to equilibrate toward
atmospheric concentrations. If gas exchange across the air‐
water interface is rapid, groundwater discharging to the
spring or stream would fully equilibrate with the atmosphere
and have a “modern” apparent age. Alternatively, if exchange
is slow, a gas signal that represents groundwater inflow will
be present in spring and stream water (see Appendix A1).
The effects of gas equilibration (exchange) can be quan-
tified by simulating gas transport using one‐dimensional
advection/dispersion. Boundary conditions include the
dissolved‐gas inflow concentrations (via groundwater) and
gas exchange across the water/air interface.
[5] Another aspect of dating mixed water is that if the

relationship between concentration and age (i.e., the age
equation) is nonlinear, then using the arithmetic mean
concentration (although flow‐weighted) of the tracer in the
age equation will not give the mean age. This condition is
true regardless of other nonlinearities created by the tracer
input function (e.g., the 3H bomb peak) or the age structure

within the aquifer (e.g., dispersion or exponential distribu-
tion of age). The discrepancy between MTT and mean
apparent age (derived from the age equation using the mean
concentration) is minor when the range of travel times in the
aquifer is small. Most age equations can be reasonably
approximated by a linear function over short time intervals.
The discrepancy becomes more significant as the range of
travel times (and nonlinearity) increases.
[6] The central question examined in this paper is whether

3Hetrit and
3H concentrations in well‐mixed spring/stream

water can be used to make a meaningful estimate of the
MTT in the contributing groundwater system. We investi-
gated this at Fischa‐Dagnitz where a long‐term time series
of 3H concentrations provides an independent appraisal of
MTT.

2. Study Area

[7] The Fischa‐Dagnitz system consists of three distinct
springs, located within about 200 m of each other, and the
first‐order stream that begins at the springs. There is no
existing stream channel upgradient of the springs and no
perennial or obvious ephemeral stream tributaries along the
study reach. The stream eventually flows into the Piesting
River (Figure 1). The spring and stream are part of the
southern Vienna Basin aquifer, and are located approxi-
mately 35 km south of Vienna, Austria. Previous authors
[Rank and Papesch, 2003] suggest that recharge for the
spring is infiltration from the Schwarza River, located about
20 km to the south (Figure 1). Infiltration is into a gravel
deposit that is of sufficient permeability that the Schwarza
River does not flow beyond the infiltration section during
summer, fall and winter months. Infiltration includes snow-
melt runoff (in the spring) along the entire infiltration reach
and base flow (in late summer, fall, and winter) along the
upper end of the infiltration reach. Near and to the north of
the Fischa‐Dagnitz system perennial flow exists in various

Figure 1. Diagram showing the general hydrology of the southern Vienna Basin.
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gaining streams including the Leitha River (Figure 1). This
analysis of the Fischa‐Dagnitz contributing aquifer includes
a spatially distributed recharge component that originates
from precipitation and irrigation within the southern Vienna
Basin.

3. Methods

[8] Assigning a 3Hetrit–
3H based MTT to water issuing

from springs and along strongly gaining streams is a multi-
step process. Initially water and gas samples must be col-
lected at orifices and/or along the gaining stream. Next, the
gas exchange characteristics for the stream need to be estab-
lished by conducting a gas tracer test. Once exchange
coefficients are known, the stream water concentrations are
corrected for exchange with the atmosphere. The corrected
concentrations are assumed to represent the flow‐weighted
mean of groundwater discharging at the spring or gaining
stream. The last step consists of assigning a transit time
distribution to the contributing aquifer, which is based on
recharge‐discharge geometry. The MTT of the transit time
distribution is then adjusted until a reasonable match
between simulated and estimated 3Hetrit and

3H concentra-
tions is achieved. Overall error in MTT comes from uncer-
tainty associated with estimating concentrations and the
transit time distribution within the contributing aquifer.
[9] In Fall 2006, dissolved‐gas samples were collected

from the Fischa‐Dagnitz system and nearby monitoring
wells to quantify the naturally occurring concentrations of
3He, 4He, nitrogen (N2), neon (20Ne), argon (40Ar), and
krypton (84Kr); sample locations are shown in Figure 2. The

sample reach extends from Fischa Spring (FS‐1) to the
bridge at Grossmittler Road (F‐19), and is 1,899 m long.
Gas samples were collected using passive diffusion sam-
plers. Samplers were suspended at the approximate center of
the water column and allowed to equilibrate; equilibration
takes about 24 h. Temperature, total dissolved gas pressure,
and dissolved oxygen were measured at sample locations
using a HydroLab 4a sonde. In conjunction with gas sam-
pling, stream water was collected in 500 ml bottles for
analysis of 3H.
[10] Groundwater inflow was quantified by measuring

stream discharge at numerous locations along the study
reach. An Acoustic Doppler Velocimeter (ADV) was used
to measure the average streamflow velocity at 4/10th distance
up from the stream bottom. At each discharge location the
stream was subdivided into 20 to 25 vertical sections and a
velocity measured for each vertical section. A cross‐sectional
area was assigned to each section on the basis of stream
depth and distance between successive sections. Stream
discharge was obtained by summing the flow (velocity *
area) for all vertical sections. Groundwater inflow was cal-
culated as the difference in streamflow between successive
discharge measurements.
[11] Gas exchange characteristics for Fischa‐Dagnitz

were determined by injecting He and Kr into the stream. The
gases were plumbed via nylon tubing (which has a low gas
diffusion coefficient) through a flowmeter to the stream. At
the stream, the gas was routed through silicone tubing (which
has a high gas diffusion coefficient) placed on the stream
bottom. Additional nylon tubing was attached to the end of the
silicone tubing to route gas back from the stream to a valve

Figure 2. Sampling and discharge measurement locations in the Fischa‐Dagnitz system.
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that created backpressure. Beyond the valve gas was vented
to the atmosphere. Venting creates flow through the tubing
and flushes out any back‐diffused gases from the stream. The
gas flow‐through rate averaged 20 cm3/sec. Using silicone
tubing with an outside diameter of 9.5 mm and a wall thick-
ness of 3.2 mm, tubing lengths of 1.8 and 5.3 m were used for
He and Kr, respectively. Lengths were calculated using Fick’s
first law and estimated values of 4.3 e‐8 and 3.2 e‐7 m2/sec
for the effective diffusion coefficient of He and Kr in sili-
cone. The effective diffusion coefficient is the product of the
solubility of a gas into silicone and the molecular diffusion
of gas through silicone. Tubing length and backpressure
were designed to increase He and Kr by about 1 order of
magnitude above air‐equilibration values.
[12] Atmospheric exchange of the elevated concentra-

tions of He and Kr was simulated with a modified version
of the One‐dimensional Transport with Inflow and Storage
(OTIS) model [Runkel, 1998]. The modified version simu-
lates gas exchange across the air‐water interface as a first‐
order process:

dCstr

dt
¼ � Catm � Cstr�simulatedð Þ ð1Þ

where l [1/t] is the gas exchange coefficient [Wanninkhof
et al., 1990], Catm [L3/M] is the air‐equilibrated gas con-
centration, and Cstr‐simulated is the simulated gas concentra-
tion in the stream. The stream was discretized into segments
that correspond to distances between successive discharge
measurements. Groundwater inflow was assigned to each
segment in accordance with estimated groundwater inflow
amounts. All other model parameters were varied for the
stream as a whole; parameters were not adjusted for indi-
vidual segments. Model parameters that affect Cstr‐simulated

are lambda (l) and the gas concentration of inflowing
groundwater (Cin). Elevated gas concentrations created by
injection reduce OTIS sensitivity to Cin and increase sen-
sitivity to l. To that end a rough estimate of Cin was made
(it has little effect on calibration to the elevated gas tracer
concentrations) and fixed in the model. Lambda was
adjusted until a reasonable match between Cstr‐simulated and
the measured gas concentrations in the stream (Cstr‐measured)
were obtained. The match was measured as:

sigma ¼

Xnsample
i¼1

Cstr�measuredi � Cstr�simulatedið Þ2
 !0:5

nsample
ð2Þ

[13] Gas concentration is in ccSTP/g and nsample is the
number of sample sites. Using the elevated gas concentra-
tions, l’s were estimated for the isotopes 4He and 84Kr.
[14] Using l’s for 4He and 84Kr, the gas‐exchange

mechanisms for Fischa‐Dagnitz were computed. The fol-
lowing relationship between the l’s and aqueous diffusion
coefficients (D[L2/t]) [Jähne et al., 1987] was assumed:

�4He

�84Kr
¼ D4He

D84Kr

� �n

ð3Þ

[15] The D’s were corrected for the temperature of stream
water [Jähne et al., 1987]. The exponent n[unitless] can
range from 0.5 to 1.0 and describes the role of turbulent

flow and diffusion exchange across the air‐water interface.
A value of 0.5 describes exchange dominated by turbulent
flow; a value 1.0 describes exchange by molecular diffusion.
Intermediate values of n indicate that both mechanisms
contribute to exchange. Solving for n using 4He and 84Kr, a
form of equation (3) (specific to Fischa‐Dagnitz) was then
used to determine l’s for 3He and 20Ne.
[16] After l’s were quantified, the modified version of

OTIS was used for a second objective, which is determining
the 3He, 4He, 20Ne, and 84Kr concentrations of inflowing
groundwater. Note that Cin values for

4He and 84Kr used in
the gas tracer test simulations are rough estimates that
have little effect on the determination of l’s. Model dis-
cretization for the second objective (determining Cin’s) is
the same as assigned for the gas tracer simulations. The
fundamental difference for the second objective is that l’s
were held constant at values determined from the gas tracer
test. Further Cin’s were adjusted to minimize the difference
between simulated and naturally occurring (measured) gas
concentrations in stream water. The Cin’s of

3He, 4He, 20Ne,
and 84Kr are then used to estimate 3Hetrit with the atmo-
spheric excess‐air component derived from the Closed
system Equilibrium (CE) model [Aeschbach‐Hertig et al.,
2000]. In conjunction with 3H measured directly from stream
water, a 3Hetrit–

3H ratio can be calculated for the flow‐
weighted mixture of groundwater that exists in the stream.
[17] Gas samples collected prior to and during injection

were analyzed at the University of Utah Dissolved Gas
Center with replicate samples processed at the Isotope
Hydrology Laboratory of the International Atomic Energy
Agency (IAEA). Extracted gases were inlet to a cryogenic
and chemical getter cleanup system followed by analysis
using a sector‐field mass spectrometer for helium isotopes
and a quadrupole mass spectrometer for 20Ne, 40Ar, and
84Kr isotopes. Tritium samples were analyzed at the Isotope
Hydrology Laboratory of the IAEA.

4. Results

[18] Naturally occurring 3He and 4He concentrations
(prior to the gas tracer test) along the Fischa‐Dagnitz system
were measured at 9 locations. Excluding samples collected
directly from the springs, gas concentrations systematically
decrease in the downstream direction (Table 1). At Fischa‐
Dagnitz, where groundwater discharge occurs along the
length of the stream, water at the spring orifices are probably
not as well mixed as the stream water. Twenty‐two tritium
samples were collected at 18 locations; the mean tritium
concentration (rounded) was 9.8 TU. The gas samples have
small amounts of excess air, as indicated by delta‐neon
(DNe) ranging from 15 to 24%. Mean gas concentrations of
3H, 4He, and 84Kr in groundwater at the nearby monitoring
wells are 10.8 TU, 5.54 e‐8 ccSTP/g, and 5.08 e‐8 ccSTP/g,
respectively (Table 1). The analytical error in gas and 3H
analysis is 1% and 3%, respectively.
[19] Stream discharge increases from 54 L/s at Fischa‐

Dagnitz spring (FS‐1) to 679 L/s at the Grossmittler Road
bridge, 1,899 m downstream (Figure 3). Stream discharges
were measured at 12 locations (Table 2). Increased stream-
flow is due solely to groundwater inflow; there are no sur-
face water tributaries along the study reach. Groundwater
inflow along the upper 300 m of stream is about 1.5 L per
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Table 1. Gas Concentration in Water Samples Collected at the Fischa‐Dagnitz Stream and Nearby Monitoring Wells, Southern Vienna
Basin, Austria, European Union

Sample Name

Location
Number
Used on
Figure 1

Sampling
Date

Distance
Downstream

(m)
N2

(ccSTP/g)

40Ar
(ccSTP/g)

84Kr
(ccSTP/g)

20Ne
(ccSTP/g)

4He
(ccSTP/g)

3He
(ccSTP/g) R/Ra

a
Tritium
(TU)

Samples Collected Prior to Gas Tracer Test or Above Injection Location
Fischa Spring #1 FS 10/3/06 12 0.0159 4.14E‐04 5.24E‐08 1.91E‐07 4.84E‐08 7.16E‐14 1.070 9.4
Fischa Spring #1b FS 10/5/06 12 0.0178 4.03E‐04 5.24E‐08 1.89E‐07 4.94E‐08 7.31E‐14 1.069 9.4
Fischa Spring #2 S #2 10/1/06 – 0.0163 4.36E‐04 5.59E‐08 2.06E‐07 5.44E‐08 9.28E‐14 1.233 9.6
deadend spring DE 10/1/06 – 0.0167 4.10E‐04 5.41E‐08 1.97E‐07 4.81E‐08 7.30E‐14 1.098 9.9
F‐200 F‐3 10/1/06 181 0.0154 4.25E‐04 5.25E‐08 1.96E‐07 5.15E‐08 8.57E‐14 1.201 9.9
F‐700 F‐12 10/1/06 652 0.0174 4.23E‐04 5.27E‐08 1.93E‐07 4.94E‐08 7.95E‐14 1.163 10.0
F‐900 F‐14 10/1/06 838 0.0169 4.14E‐04 5.44E‐08 1.91E‐07 4.85E‐08 7.47E‐14 1.114 9.8
F‐1100 F‐16 10/1/06 1030 0.0173 3.89E‐04 5.04E‐08 1.86E‐07 4.61E‐08 6.90E‐14 1.081 9.5
F‐1300 F‐17 10/1/06 1229 0.0179 4.17E‐04 5.19E‐08 1.88E‐07 4.74E‐08 7.27E‐14 1.108 9.7
Grossmittler Bridge F‐19 10/1/06 1887 0.0177 4.24E‐04 5.40E‐08 1.94E‐07 4.77E‐08 7.12E‐14 1.078 9.7

Samples Collected During Gas Tracer Testc

F‐250 F‐4 10/5/06 241 0.0181 4.19E‐04 9.81E‐08 2.01E‐07 6.03E‐08 8.31E‐14 0.996 9.9
F‐300 F‐5 10/5/06 280 0.0180 4.25E‐04 8.66E‐08 1.99E‐07 5.89E‐08 8.58E‐14 1.052 9.9
F‐350 F‐6 10/5/06 330 0.0162 4.23E‐04 8.52E‐08 1.99E‐07 5.86E‐08 8.22E‐14 1.014 9.9
F‐400 F‐7 10/5/06 322 0.0171 4.16E‐04 8.34E‐08 1.99E‐07 5.65E‐08 8.00E‐14 1.023 9.9
F‐450 F‐8 10/5/06 442 0.0162 4.50E‐04 8.56E‐08 2.11E‐07 5.91E‐08 8.66E‐14 1.059 9.9
F‐500 F‐9 10/5/06 403 0.0166 4.16E‐04 8.15E‐08 1.99E‐07 5.50E‐08 8.02E‐14 1.053 9.9
F‐600 F‐11 10/5/06 578 0.0149 4.27E‐04 8.05E‐08 2.03E‐07 5.55E‐08 8.19E‐14 1.066 9.9
F‐700 F‐12 10/5/06 652 0.0150 4.14E‐04 7.98E‐08 1.99E‐07 5.38E‐08 7.93E‐14 1.065 10.0
F‐800 F‐13 10/5/06 741 0.0164 4.04E‐04 7.39E‐08 1.89E‐07 5.07E‐08 7.07E‐14 1.007 10.0
F‐950 F‐15 10/5/06 882 0.0179 4.14E‐04 7.49E‐08 1.93E‐07 5.16E‐08 7.39E‐14 1.034 9.8
F‐1100 F‐16 10/5/06 1030 0.0180 4.08E‐04 7.13E‐08 1.90E‐07 5.00E‐08 7.18E‐14 1.038 9.5
F‐1300 F‐17 10/5/06 1129 0.0171 4.01E‐04 6.80E‐08 1.84E‐07 4.83E‐08 6.98E‐14 1.043 9.7

Samples Collected From Nearby Monitoring Wells
Well F W‐3 10/6/06 0.0159 3.66E‐04 4.77E‐08 1.87E‐07 4.59E‐08 6.72E‐14 1.057 10.5
Well 379 W‐2 10/6/06 0.0182 4.09E‐04 5.26E‐08 2.20E‐07 5.93E‐08 1.05E‐13 1.277 11.3
Well 233 W‐1 10/6/06 0.0160 4.06E‐04 5.27E‐08 2.14E‐07 5.68E‐08 9.63E‐14 1.225 11.0
Well TH2 W‐4 10/6/06 0.0188 4.02E‐04 5.02E‐08 2.25E‐07 5.95E‐08 1.05E‐13 1.280 10.5

aR is the ratio of 3He/4He in the water sample; Ra is the ratio of 3He/4He in air.
bSample collected during the gas tracer test. Fischa Spring #1 is located about 180 m upstream of the gas injection point.
cInjection of Helium and Krypton.

Figure 3. Graph showing stream discharge at various distances downstream from Fischa‐Dagnitz
spring.
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second per linear meter of streambed and accounts for about
70% of the total flow measured at the bridge. The remaining
30% of gains (0.12 L per second per linear meter of
streambed) occurs along the lower 1600 m of stream. Dis-
charge is typically assigned an accuracy based on the
opinion of the individual making the measurement [Wilberg
and Stolp, 2004]. Discharge measurements along the Fischa‐
Dagnitz stream were considered “good,” which means an
error of ±5%.
[20] Helium and Kr gas was injected for a period of

96 h at a location about 180 m downstream of Fischa‐
Dagnitz spring. Diffusion samplers were deployed within
4 h of the start of injection and collected 93 h after the
start of injection. Twelve samples were collected and results
are listed in Table 1. The 4He concentration in stream water
61 m below the injection location was 6.03 e‐8 ccSTP/g.
This is 1.4 times above the air‐equilibrated value of 4.5 e‐
8 ccSTP/g. Elevated 84Kr was 9.81 e‐8 ccSTP/g at 61 m,
which is a factor of 2 above the air‐equilibrated value (4.9 e‐
8 ccSTP/g). These concentrations indicate that effective dif-
fusion coefficients for 4He and 84Kr are approximately 2.0 e‐9
and 3.2 e‐8 m2/sec. Ideally some combination of longer tubing
lengths (40 to 50 m) and/or higher injection system back-
pressure should have been used to achieve the desired con-
centrations of 1 order of magnitude above air equilibration.

5. Interpretations and Discussion

5.1. Gas Exchange Characteristics

[21] Gas exchange characteristics (l and n) for Fischa‐
Dagnitz were quantified by calibrating the modified version
of OTIS to the elevated values of 4He and 84Kr created
during the gas tracer test. The calibration was done by set-
ting Cin for

4He and 84Kr equal to the mean concentrations
of the 4 monitoring wells. Ideally, gas concentrations would
have been elevated to the point where simulation results
were insensitive to Cin and dependent only on l. At gas
concentrations obtained during the tracer test (a factor of 2
or less), simulation results are dependent on both Cin and
the measured change in gas concentration relative to dis-
tance below the gas injection location. Fixing Cin simplifies
the calibration process but increases uncertainty associated
with the derived l’s for 4He and 84Kr (Table 3). To deter-

mine l’s for 3He and 20Ne, equation (3) was used with n
equal to 0.5 (see Appendix A2).

5.2. Groundwater Inflow Concentrations

[22] Once l’s for 3He, 4He, 20Ne, and 84Kr were estab-
lished, the modified OTIS simulator was used to model Cin’s
for each of the gases. The l’s values were fixed for each of
the gases and the Cin’s adjusted to minimize the difference
between simulated and measured (naturally occurring) gas
concentrations in stream water. The Cin’s that result in
minimum sigma values are listed in Table 3; comparison of
measured and simulated stream water concentrations are
shown in Figures 4 and 5. With the Cin’s listed in Table 3,
the estimated inflow concentration of 3Hetrit is 8.3 TU. The
3Hetrit amount (3He resulting from 3H decay) was separated
from total 3He in the water sample by subtracting out
atmospheric and terrigenic sources. The excess air portion
of atmospheric 3He was estimated using the CE model. The
3H concentration, 9.8 TU, was calculated as the mean of
22 stream water samples. We consider these concentrations
of 3Hetrit and

3H to be reasonable estimates of the flow‐
weighted mean for groundwater discharging at Fischa‐
Dagnitz.

5.3. Transit Time Distribution

[23] A fundamental assumption of this paper is that Cin’s
for 3Hetrit and

3H are the most suitable values for estimating
MTT of the aquifer contributing water to Fischa‐Dagnitz.
However, the flow‐weighted mean 3Hetrit and 3H con-
centrations were not translated to a mean apparent age using
the standard age equation [Schlosser et al., 1989]. Because
the age equation is nonlinear, evaluating the equation using
mean concentration (although flow weighted) does not map
to the mean of the function (in this case the mean apparent
age). Instead, a transit time distribution of the discharging
groundwater was estimated and used to evaluate MTT. In
most cases, data are not available to clearly define a transit
time distribution; as a result, sources of recharge, water
budgets, and recharge‐discharge geometry need to be used
to make a first‐order estimate of the distribution. That type
of broad‐scale quantification often contains a large degree
of uncertainty. The choice of transit time distribution can be
constrained by vertical age profiling of the aquifer water
(see Appendix A3).

Table 2. Stream Discharge Measurements for the Fischa‐Dagnitz Stream, Southern Vienna Basin, Austria, European Union

Location Name

Location
Number
Used on
Figure 1 Date

Distance Down
Stream From

Fischa Spring #1
(m)

Stream
Width
(m)

Mean
Stream Depth

(m)

Stream
Cross‐Sectional

Area (m2)

Mean Velocity
of Stream Water

(m/sec)

Stream
Discharge

(L/s)

F‐12 F‐1 9/29/06 16 2.5 0.17 0.43 0.13 54
F‐100 F‐2 9/30/06 62 2.8 0.28 0.78 0.25 193
F‐200 F‐3 9/30/06 176 3.9 0.30 1.17 0.33 389
F‐325 (Pegel) F‐6 9/30/06 318 2.9 0.40 1.18 0.41 487
F‐400 F‐8 9/30/06 359 4.3 0.26 1.14 0.51 575
F‐500 F‐10 9/30/06 462 5.0 0.27 1.36 0.36 487
F‐600 F‐11 10/3/06 574 5.6 0.15 0.86 0.61 527
F‐700 F‐12 10/3/06 670 5.0 0.32 1.63 0.31 498
F‐800 F‐13 10/3/06 742 5.4 0.29 1.55 0.32 493
F‐1100 F‐16 10/6/06 1040 5.4 0.24 1.30 0.46 603
F‐1550 F‐18 10/6/06 1531 6.8 0.24 1.63 0.37 606
Grossmittler Bridge F‐19 10/3/06 1899 10.9 0.34 3.70 0.18 679
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Figure 4. Measured and simulated 4He and 84Kr values in
stream water, Fischa‐Dagnitz system.

Table 3. Parameters Used in One‐Dimensional Transport With Inflow and Storage (OTIS) Simulations of Gas Exchange for the Fischa‐
Dagnitz Stream, and Gas Concentrations Used in the Closed System Equilibrium (CE) Model to Calculate Apparent Age, Southern
Vienna Basin, Austria, European Union

Gas

Upstream
Boundary
Inflow
(L/min)

Upstream
Boundary Gas
Concentration
(ccSTP/g)

Air‐Equilibration
Concentration

at 230 m and 11.2°C
(ccSTP/g)

Groundwater
Inflow

Concentration,
Cin (ccSTP/g)

Gas
Exchange
Coefficient
Range,
l (1/s)

Aqueous
Diffusion
Coefficient
at 11°C
(cm2/s)a

Gas
Exchange
Coefficient,
l (1/s)b

OTIS Simulation of Gas Tracer Testc

Helium‐4 (4He) 419d 6.03 e‐8d 4.5 e‐8d 5.54 e‐8d 4.9 to 5.8 e‐4e 5.80 e‐5 5.8 e‐4
Krypton‐84 (84Kr) 419d 9.81 e‐8d 4.9 e‐8d 5.08 e‐8d 2.7 to 3.6 e‐4e 1.24 e‐5 2.7 e‐4
Helium‐3 (3He) not simulated not simulated not simulated not simulated not simulated 6.67 e‐5f 6.2 e‐4
Neon‐20 (20Ne) not simulated not simulated not simulated not simulated not simulated 3.07 e‐5 4.2 e‐4

OTIS Simulation of Natural Conditionsg

Helium‐3 (3He) 0d 7.25 e‐14d 6.2 e‐14d,h 9.7 e‐14e same as above
Helium‐4 (4He) 0d 4.89 e‐8d 4.5 e‐8d 5.3 e‐8e same as above
Neon‐20 (20Ne) 0d 1.90 e‐7d 1.8 e‐7d 2.1 e‐7e same as above
Krypton‐84 (84Kr) 0d 5.24 e‐8d 4.9 e‐8d 5.5 e‐8e same as above

CE Simulationi

Helium‐3 (3He) 9.7 e‐14
Helium‐4 (4He) 5.3 e‐8
Neon‐20 (20Ne) 2.1 e‐7
Krypton‐84 (84Kr) 5.5 e‐8
Tritiogenic helium‐3 (3Hetrit) 2.1 e‐14j

aDiffusion coefficients modified from Cook and Herczeg [2000, Appendix 4] using the temperature correction formulation from Jähne et al. [1987].
bDetermined using equation (3) and n = 0.5.
cOTIS simulations of the gas tracer test were done to determine gas exchange coefficients.
dFixed parameters.
eCalibration parameters.
fCalculated as D4He * 1.15; [Jähne et al., 1987].
gOTIS simulations of natural conditions were done to determine gas concentrations of inflowing groundwater.
hCalculated as 4He * Ra; Ra = 1.384 e‐6.
iCE simulation was done to determine the atmospheric excess‐air component of helium‐3 of inflowing groundwater.
jEquivalent to 8.3 TU.

Figure 5. Measured and simulated 20Ne and 3He concen-
trations in stream water, Fischa‐Dagnitz system.
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[24] For Fischa‐Dagnitz, the primary source of recharge
(approximated at 70%) is conceptualized as coming from
the Schwarza River; the remaining recharge is estimated to
originate from precipitation and irrigation. Discharge is at
the springs and emerging stream. The transit time distribu-
tion for groundwater originating at the Schwarza River should
be reasonably well represented by a dispersion model; pre-
cipitation and irrigation result in an exponential age structure
[Cook and Böhlke, 2000]. This concept of aquifer recharge
results in a hybrid dispersion‐exponential distribution of
transit times at the springs and emerging stream. Parameters

of the hybrid age model are the exponential and dispersion
MTTs, a dispersion parameter (Pd) [Kreft and Zuber, 1978],
and the mixing ratio between the two models. Details of the
hybrid age model are given in Appendix A4.

5.4. Mean Transit Time

[25] To characterize a MTT for Fischa‐Dagnitz from the
flow‐weighted 3Hetrit–

3H concentrations, the hybrid age
model was run for MTTs that range from 1 to 20 years. For
each simulated MTT the hybrid model outputs corresponding
3Hetrit and

3H concentrations for 2006, the year for which
flow‐weighted mean concentrations were estimated. The
MTT and corresponding 3Hetrit–

3H ratios for 2006 are plotted
on Figure 6. Hybrid age model output was calculated using
FlowPC [Maloszewski and Zuber, 1996] using average
annual 3H concentration in precipitation at Gloggnitz, Austria
(Figure 7) as input.
[26] The hybrid age model parameters were constrained

by scaling the dispersion and exponential components of
flow by 0.7 and 0.3, respectively. Mean transit times of
the dispersion and exponential components were fixed at a
ratio of 2:1, to maintain traveltime consistency. This ratio
reflects the 20 km flow-path length of groundwater origi-
nating from the Schwarza River, and the 10 km average flow‐
path length of groundwater recharged across the spatial
extent of the contributing aquifer. The simulated 3Hetrit–

3H
concentration ratio for 2006 is comparable to the estimated
ratio (8.3 TU/9.8 TU = 0.85) for a MTT of 8 years (Figure 6).
Using flow‐weighted and exchange‐corrected gas con-

Figure 6. The 3Hetrit‐
3H ratio derived from the hybrid age

model for a range of MTT’s.

Figure 7. Time series of tritium in stream water of the Fischa‐Dagnitz system, and tritium in precipi-
tation at Gloggnitz, Austria.
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centrations, 8 years is the best estimate of MTT for the
contributing aquifer.

6. Method Verification Using the Measured
3H Time Series

[27] A long‐term time series of 3H concentrations in
stream water at Fischa‐Dagnitz makes it possible to inde-
pendently assess transit times and compare to MTT derived
from stream water 3Hetrit–

3H. Analysis of the 3H time series
was done using the same hybrid age model outlined in the
previous section and detailed in Appendix A4.
[28] When the 8 year MTT derived from fitting the esti-

mated 2006 stream water 3Hetrit–
3H ratio is used to model

3H, simulated values exceed measured values by a factor of

2 (Figure 8). The simulated 3H peak occurs in 1966; the
measured peak occurs between 1970 and 1974. The shape
and timing of the simulated peak is set by the short MTT
and modest dispersion (Table 4). The measured and simu-
lated 3H time series are nearly identical when the composite
MTT is increased to 14 years, but simulated 3Hetrit for 2006
is a factor of 3 greater than the estimated amount of 8.3 TU
(Table 4). Increasing MTT broadens the transit time distri-
bution which in turn causes 3Hetrit derived from the bomb‐
peak to be incorporated into the total simulated for 2006.
There are several likely reasons for the difference between
estimated and simulated 3Hetrit. The first is diffusive loss of
3He across the water table (see Appendix A5), which will
cause a decrease in measured values in stream water.
Another reason may be that gas exchange across the air‐

Figure 8. Results from the hybrid age model simulations.

Table 4. Parameters Used in FlowPC Simulations of the Tritium Output Time Series for the Fischa‐Dagnitz Stream, Southern Vienna
Basin, Austria, European Union

Model Option

Model Parameters Resultsa

Composite
MTT (years,
rounded)

Dispersion
Component

Exponential
Component

Sigmab

(TU)

3H in
2006c

(TU)

Tritiogenic
3He in
2006d

(TU)

Tritiogenic
3He‐3H ratioe

(unitless)
MTT
(years) Pd Fraction

MTT
(years) Fraction

Hybrid model using
parameters determined
from stream‐derived
3Hetrit‐

3H concentrations

8 9 0.2 0.7 4.5 0.3 not applicable 7.6 6 0.79

Hybrid model fit to the 3H
time series

14 16 0.2 0.7 8 0.3 3.7 9.2 25.5 2.77

Hybrid model fit to the 3H
time series and the 3He
concentration in 2006

11 13 0.1 0.7 6.5 0.3 7.4 7.8 10 1.28

aTritium half‐life used in calculations is 12.32 years.
bBased on the difference between measured and simulated 3H concentrations for Fischa‐Dagnitz stream water (see equation (2)).
cMeasured value of 3H in stream water at Fischa‐Dagnitz is 9.8 TU.
dEstimated value of 3Hetrit of inflowing groundwater at Fischa‐Dagnitz is 8.3 TU.
eEstimated tritiogenic 3He ‐ 3H ratio at Fischa‐Dagnitz is 0.85.
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water interface is more rapid than estimated by l and the
applied correction is not correct. The most likely reason is
that the transit time distribution (i.e., the hybrid age model)
does not properly characterize all transport mechanisms
within the contributing aquifer.
[29] Using a MTT of 11 years and a Pd = 0.1, the simu-

lated 2006 3Hetrit is reduced to 10 TU; however the simu-
lated 3H peak exceeds the measured peak by about 55 TU.
The simulated 3H peak occurs in 1973, which is reasonably
close to the measured 1970–74 peak (Figure 8 and Table 4).
The hybrid age model with an 11 year MTT represents a
compromise that allows for an “acceptable” level of misfit
between the simulated and measured 3H time series, and
3Hetrit in 2006.

7. Concluding Remarks

[30] The methodology developed at Fischa‐Dagnitz,
though not without intricacies, is a reasonable approach to
quantifying MTT. To summarize, estimates of gas exchange
and groundwater inflow are used to simulate gas transport in
the stream, and ultimately determine the flow‐weighted
groundwater inflow concentrations of 3Hetrit. In combination
with measured stream water 3H concentrations, and using a
conceptually based estimate of the age structure in the
aquifer, a MTT of the contributing aquifer was quantified.
[31] It was clear from the onset that conditions at Fischa‐

Dagnitz are favorable for determining groundwater inflow
concentrations. Groundwater inflow along the stream is on
the order of 1 L per second per linear meter of streambed,
suggesting that stream water concentrations probably
require minimal correction for gas exchange.
[32] Once the inflowing groundwater concentration of

3Hetrit was determined, a distribution of transit times for
the contributing aquifer was established on the basis of
known and estimated recharge sources. Using the transit
time distribution, the 3Hetrit–3He concentrations were used
to estimate an 8 year MTT for the contributing aquifer. For
conditions at gaining streams and springs, where water is
well mixed and the distribution of transit times is expected
to be broad, application of the standard age equation does
not yield a meaningful estimate of MTT. This is due to the
nonlinear nature of the age equation.
[33] The 8 year MTT estimate derived from gas‐exchange

corrected concentrations compares to the 14 year MTT that
best describes the 3H time series data that exists for Fischa‐
Dagnitz. Considering both 3H time series data and estimated
3Hetrit concentration in 2006, the 11 year MTT results in an
acceptable misfit between simulated and measured values.
The misfit illustrates inherent uncertainty associated with
estimating transit time distributions of heterogeneous natural
systems. Accepting a worst‐case error (where 14 years is
the “true” MTT), the 8 year gas‐exchange corrected MTT
still provides a valuable constraint on fluid flow and storage
volume within the contributing aquifer. Overall, the meth-
ods presented in this paper should be tested at other springs
and gaining streams to fully determine utility and value.

Appendix A
A1. Method Applicability

[34] The chance of successfully sampling stream water
such that the measured 3He can be corrected to a ground-

water inflow concentration depends on the amount of
inflowing groundwater and gas‐exchange at the air‐water
interface. Groundwater inflow to the stream transports 3He
above solubility equilibrium into the stream system while
gas exchange transports 3He out of the stream system. When
inflow is large relative to gas‐exchange, groundwater gas
concentrations are preserved in the stream, and the possibility
of successfully correcting for gas exchange and deriving
representative Cin’s is good.
[35] The physical processes of inflow and exchange can

be described as the ratio of the gas exchange velocity (k) to
specific discharge (q). The gas exchange velocity is the
product of l and average stream depth [Wanninkhof et al.,
1990]; specific discharge is the measured groundwater
inflow divided by the streambed area (stream length times
width). Rapid gas exchange and small amounts of ground-
water inflow results in large k/q values whereas slow
exchange and large inflow result in small k/q values. In
streams where k/q is small, the methods described in this
paper can be applied.
[36] This concept is illustrated in Figure A1 where ground-

water concentrations (normalized to the air‐equilibrated
concentration) and resulting stream water concentration (also
normalized) as a function of gas transport are graphed. The
k/q lines in Figure A1 where generated using OTIS with
spatially constant values for k and q; this approach is a
simplification that does not account for changes in stream
width and depth caused by increased stream flow. Steady
state conditions were simulated; this means the mass inflow
of tracer gas from groundwater is matched by the mass out-
flow of gas due to exchange with the atmosphere. Ground-
water inflow rates for the upper reach of Fischa‐Dagnitz
stream and the l for 3He (Figure 3 and Tables 2 and 3)
results in a k/q equal to about 1. For the lower reach (284 to
1,899 m) where groundwater inflow is less, k/q equals 22.
Comparisons on Figure A1 shows that when k/q is equal
to 1, and the concentration of inflowing groundwater is
twice the air‐equilibrated concentration (Cin/Catm is 2.0 on
the x axis), the stream concentration (Cstream) is 1.87 times
more then the air‐equilibrated concentration. This means that
if Cin is 12.4 e‐14 ccSTP/g (twice the air‐equilibrated value),
stream concentration would be 11.5 e‐14 ccSTP/g. The
exchange correction required to recover the groundwater
signal is relatively minor. When k/q becomes larger, the
correction also becomes larger. For a k/q = 20, Cstream/Catm

is 1.38 when Cin/Catm is 2.0; a 12.4 e‐14 ccSTP/g ground-
water signal would appear as a stream concentration of
8.6 e‐14 ccSTP/g. When the exchange correction is larger
the associated uncertainty also becomes larger. In this way
the k/q ratio is an indirect qualifier of uncertainty. As k/q
becomes larger the error associated with exchange‐corrected
gas signals also becomes larger. The methods discussed in the
paper are more reliable when k/q is smaller.
[37] Because k/q describes the likelihood of successfully

quantifying the gas concentration of inflowing groundwater,
the ratio should be used as an initial screening tool. If stream
conditions indicate that k/q > 20, the gas signal will be
largely lost to the atmosphere. For Fischa‐Dagnitz, the 3He
signal is preserved because of large groundwater inflows
along the upper stream reach. Also implied by the k/q ratio
is that for age tracers with smaller k values (e.g., due to
lower diffusion coefficients, for example CFCs or 85Kr) age
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information could be preserved along stream reaches with
lesser amounts of groundwater inflow.

A2. Gas Exchange

[38] To correct for gas exchange across the air‐water
interface, l’s for 3He, 4He, 20Ne, and 84Kr need to be quan-
tified. A probable range of l values for both 4He and 84Kr
were determined by injecting He and Kr into stream water
and simulating gas transport. Using temperature corrected‐
diffusion coefficients for 4He and 84Kr (Table 3), and the
corresponding l ranges, equation (3) was solved for n. The
combination of l’s that gives a value of n within the pre-
scribed limit of 0.5 to 1.0 are 5.8 e‐4/sec and 2.7 e‐4/sec for
4He and 84Kr, respectively (Table 3). The value of n is 0.51.
The value is at the lower‐prescribed limit (n = 0.5) and
implies turbulent flow as the only gas‐exchange mechanism
at Fischa‐Dagnitz. Imposing n at the lower limit is not ideal
and increases the level of uncertainty already associated
with l values. Despite these limitations, equation (3) was

also used to derive l values for 3He and 20Ne (no gas
tracer test was conducted for 3He and 20Ne). The diffusion
coefficient used for 3He is 1.15 times more than the 4He
coefficient [Jähne et al., 1987]. The l values for 3He and
20Ne, imposing the n = 0.51 constraint, are 6.2 e‐4/sec
and 4.2 e‐4/sec.

A3. Vertical Age Profiling

[39] Collecting and dating water from discrete flow paths
at a fixed horizontal location can help to better define the
age distribution that exists within the contributing aquifer.
Discrete sampling can be done by constructing a nested set
of monitoring wells that are open to progressively deeper
intervals of the aquifer. The goal is to obtain discrete samples
that represent a minimal number of flow paths. Figure A2
shows generalized vertical age profiles invoked by various
age models. Each profile of age as a function of depth is
distinct and can therefore be used to constrain the choice of
age model used to estimate a MTT.

Figure A2. Generalized diagram of vertical age profiles for various age distributions within an aquifer.

Figure A1. The relationship between the concentration of a volatile tracer (e.g., 3He) in groundwater
and stream water as a function of stream gas transport. The value k is the gas exchange velocity (L/t)
and q is the specific discharge of groundwater into the stream.
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A4. Transit Time Distribution

[40] Recharge sources for Fischa‐Dagnitz are based on
known areas of river infiltration, land use, and climatic
conditions. Previous work identified significant groundwater
recharge from the Schwarza River and essentially no spa-
tially distributed recharge due to precipitation and irrigation
[Rank and Papesch, 2003]. For the transit time distribution
used in this analysis, irrigation and precipitation (which
averages about 65 cm/yr) were considered sources of
groundwater recharge to the contributing aquifer. Total
recharge is considered equal to the measured stream dis-
charge at Grossmittler Road (679 L/s).
[41] The amount of spatially distributed recharge was

calculated using the surface expression of the contributing
area, and an infiltration rate of 10%. Longitudinal length of
the contributing area is defined by the distance to the
Schwarza River (20 km). Transverse length is based on
distances to the Piesting and Leitha Rivers, which are
located about 5 km to the northwest and southeast of Fischa‐
Dagnitz, respectively (Figure 1). The two rivers and Fischa‐
Dagnitz likely create a series of groundwater divides that are
assumed to evenly split the distances between them. This
idealized situation would limit the traverse extent of the
Fischa‐Dagnitz contributing area to roughly 5 km (2.5 km to
the northwest and 2.5 km to the southeast) and the total
surface expression to 100 km2. Using the 10% infiltration
rate, the total amount of spatial recharge is about 200 L/sec,
which is roughly 30% of measured discharge at Grossmittler
Road. The remaining 70% of recharge is attributed to losses
from the Schwarza River.
[42] Using this proportion, the hybrid age model was

constrained by weighting flow of the dispersion and expo-
nential components by 0.7 and 0.3, respectively. The hybrid
age model was additionally constrained to maintain internal
traveltime consistency by fixing the ratio of MTT for the
dispersion and exponential components at 2:1. The ratio is
based on flow path lengths. For the dispersion component
the length is 20 km. For the exponential component the
average length is estimated at 10 km. This represents a
simplified average that assumes an even spatial distribution
and is based on the longest dimension of the contributing
area. Fixing the MTT ratio prevents simulating an expo-
nential MTT that is greater than the dispersion MTT. The
dispersion parameter Pd was fixed at 0.2, which creates a
moderate amount of dispersion. The transit time distribution
output (3H and 3Hetrit concentrations for 2006) was com-
puted using FlowPC with the dispersion model (DM) and
exponential model (EM) options [Maloszewski and Zuber,
1996]. FlowPC does not include a hybrid EM/DM option;
results were obtained by postprocessing (weighting and
summing) results of individual DM and EM simulations.

A5. Diffusive Loss of 3He

[43] When analyzing well‐mixed spring/stream water that
originates from an unconfined aquifer, the effects of gas loss
due to diffusion across the water table should be considered.
The loss of 3He, and therefore 3Hetrit, will result in apparent
age estimates that are younger than the actual ages. The loss
can be estimated using the characteristic diffusion length:

z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4D3He t

p ðA1Þ

where z is the distance below the water table at which the
3He concentration would be 16% of air‐equilibrated con-
centration, D is the aqueous diffusion coefficient for 3He,
and t is time. With D = 6.67 e‐9 m2/sec and t = 10 yr,
diffusive losses of more than 16% of 3He would only affect
the upper 1 to 2 m of the aquifer. In the case of Fischa‐
Dagnitz, where the contributing aquifer is approximately
100 m thick, diffusive loss of 3He is not considered sig-
nificant. If aquifer thickness is on the order of 10 to 30 m, or
the sample represents only water from the upper portions of
an unconfined aquifer, the effects of diffusive loss may need
to be accounted for.
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CHAPTER 5 

 
CONCLUSIONS 

 
The three components of work presented in this dissertation point out 1) the 

importance of understanding the basic hydrology of the stream or spring that is being 

sampled to determine mean transit time, 2) with favorable conditions, the non-

conservative nature of age-dating environmental tracers can be mitigated, and 3) with 

careful measurement and interpretation, the original premise of being able to quantify a 

mean transit time at springs and gaining streams, is possible. The described methodology 

holds the potential that with a limited investment of time, effort, and fairly simple field 

instrumentation and infrastructure, mean transit time of water resources can be obtained. 

The information can then be used in conjunction with existing anecdotal and measured 

data to make 1st order estimates of water resource stability, sensitivity, permanence, and 

resilience. This could be of most value in developing countries where historic records and 

rigorous quantification of water resources may not exist. 

Several additional areas of research would be useful to further develop mean 

transit time investigations. The most important would be testing the concept of an inverse 

correlation between streamflow variability and mean transit time. Does a stream with 

greater annual variations in baseflow represent a drainage basin with less groundwater 

storage shorter mean transit times? This could be done by estimating mean transit time, 

by the described methods, at a number of preselected drainage basins with a broad range 
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of streamflow variability. Variability would be identified from existing streamflow 

records. 

Another valuable research area would be testing and developing more robust 

methods of estimating the transit time distribution. The distribution of groundwater age 

reveals information on the spatial distribution of recharge within a contributing area, 

which is also a powerful description of the water resource. This could be done using 

shallow piezometers to longitudinally and vertically profile a converging flowfield, 

which occurs at springs and gaining streams, the same types of areas discussed in this 

dissertation. Both discharge and piezometer water would be sampled for a suite of age-

dating environmental tracers. In complement, the discharging groundwater would be 

continuously monitored for temperature, specific conductance, and discharge. These 

investigations should be conducted for basins that have been previously described with a 

calibrated numerical groundwater flow model. The model could then be used to simulate 

tracer transport to the discharge area. Deconvolving the mixed samples is the opposite of 

the techniques described in this paper that measure mixed sample to determine a mean 

transit time. Using the opposite technique would be an important contrast to derived 

values of mean transit time. The distributions of ages will also further understanding of 

the mixing process and the influence of young verses old groundwater.  

A third area of interest is how the environmental tracers used in this study could 

be used to delineate groundwater inflow to larger volume streams where injected tracer or 

successive velocity discharge measurement techniques may not be viable. In this case the 

nonconservative nature of the tracers becomes advantageous. Where groundwater inflow 

occurs, the tracer signature would be exhibited in terms of concentrations that are not at 
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air-equilibration values. With distance downstream from groundwater inflow, where the 

stream may be neutral or losing, the tracer signature would dissipate to the air 

equilibration value. The disadvantage is that inflows that are small relative to streamflow 

might evoke so little concentration change that it cannot be measured. The advantage of 

using the tracers is that they can be measured with a high level of accuracy and the 

background concentration will always trend toward the known air-equilibration 

concentration. 




