
FLOWOPS: OPEN ACCESS NETWORK

MANAGEMENT AND OPERATION

by

Matt Strum

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

School of Computing

The University of Utah

December 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276264437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© Matt Strum 2013

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

The thesis of Matt Strum has

been approved by the following supervisory committee members:

Robert Ricci , Co-Chair August 20 2013
Date Approved

Jacobus Van der Merwe , Co-Chair May 10, 2013
Date Approved

Sneha Kumar Kasera , Member May 10, 2013
Date Approved

and by Alan Davis , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Arguably, the inherent complexity of network management makes it the top concern

for network operators. While true for all networks, network management complexity is

significantly exacerbated in open access networks where, unlike more monolithic “closed

access networks,” services are provided by different service providers on a shared network

infrastructure that is operated by a separate network owner/operator. The intricate respon-

sibilities of the role players in this environment, combined with the lack of automation

in current network management and operation practices, conspire to prevent open access

networks from reaching their true potential. In this thesis, we present our work on the

FlowOps framework to address these concerns.

FlowOps is a network management and operations framework that provides structured,

automated network management for heterogeneous open access network environments. In

FlowOps, we are exploring the use of a production rules system to realize automated net-

work management and operations. This rule-based approach enables us to accurately model

dependencies and relationships of devices and role players in an open access network.

FlowOps enables the automation of network configuration and fault management tasks in

both traditional and software-defined networks. We present a prototype implementation

of FlowOps and demonstrate its utility for network operators, service providers, and end

users.

For my wife Jolin.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

ACKNOWLEDGMENTS . viii

CHAPTERS

1. INTRODUCTION . 1

1.1 Thesis Statement . 3
1.2 Contributions . 4
1.3 Organization . 4

2. BACKGROUND . 5

2.1 Production Rule Systems . 5
2.2 Drools Rules Engine . 5
2.3 Related Work . 8

3. MOTIVATION . 11

3.1 FlowOps for Dynamic Open Access Networks . 11
3.2 Open Access Networks . 14

3.2.1 Network Operator . 15
3.2.2 Users . 15

3.2.2.1 End Users . 15
3.2.2.2 Service Providers . 16

4. FLOWOPS ARCHITECTURE . 17

4.1 FlowOps Components . 17
4.1.1 Knowledge Store . 17
4.1.2 Abstraction Layers . 17
4.1.3 Driver Engine . 19
4.1.4 Rules Engine . 20

4.2 FlowOps Operation . 20
4.2.1 Allocation, Provisioning, and Deletion . 20
4.2.2 Views and Alerts . 21

5. IMPLEMENTATION . 23

5.1 Driver Engine . 23
5.2 Supported Services . 24
5.3 API . 24

5.4 Rules Techniques . 25

6. EVALUATION . 26

6.1 Environment . 26
6.2 Emulation . 26
6.3 Configuration . 27
6.4 Fault Management . 28
6.5 Performance . 29

6.5.1 Methodology . 29
6.5.2 Drools Rules Fired and Total Facts . 30
6.5.3 Timing . 33
6.5.4 Hot Spots . 35

7. CONCLUSIONS . 37

7.1 Summary of Contributions . 37
7.2 Performance . 37
7.3 Future Work . 38

REFERENCES . 39

vi

LIST OF FIGURES

1.1 Closed vs. Open Networks . 2

3.1 FlowOps workflow for Dynamic Open Access Networks 12

3.2 Actors . 13

4.1 FlowOps Overview . 18

4.2 Abstraction Layers . 18

4.3 Allocation . 21

4.4 Alerts . 22

6.1 Environment . 27

6.2 Fired rules on allocation. 31

6.3 Total facts on allocation. 31

6.4 Fired rules on provision. 31

6.5 Total facts on provision. 32

6.6 Fired rules on deletion. 32

6.7 Total facts on deletion. 32

6.8 Allocation timing benchmarks. 33

6.9 Provisioning timing benchmarks. 34

6.10 Deletion timing benchmarks. 35

ACKNOWLEDGMENTS

First off, I would like to thank Robert Ricci for working with me for so many years and

providing me the opportunity to be a part of this project. Equally important, I would not

be on this project without Jacobus (Kobus) Van der Merwe, who joined the Flux Research

Group just in time to start this project and offer me the chance to build the foundation of

what appears to be an important step in the right direction.

I cannot forget my wonderful parents, who guided me to learn self-discipline and the

importance of always improving oneself. My wife and best friend, Jolin, stood by my side

as I worked feverishly to complete my thesis and always motivated me to get work done.

Last but not least, I would like to thank EntryPoint LLC for funding the project as well

as Jeff Christensen and Robert Peterson for providing feedback along the way.

CHAPTER 1

INTRODUCTION

Managing networks, especially shared networks, is challenging. Network operators

have to worry about fault management, changing configurations without affecting existing

services, adding new features, user setup and removal, etc. Many of these problems com-

monly require human intervention due to a lack of integrated and automated management

tools that have knowledge in all aspects of the network. For example, the tools that detect

errors may not have any knowledge of what services and users are affected. A problem

may go unnoticed until a customer calls and reports a problem after which a technician

must diagnose the issue. There are tools which can assist in these types of scenarios, but

most lack the sophistication for truly automated network management.

Traditional network devices have contributed largely to this problem. Each vendor

creates proprietary management configuration interfaces which use different terms and

support different feature sets. This causes the need for domain experts to read through

pages of explanation of how to configure and manage each network device they deal with.

Software-defined networking (SDN) is poised to solve many of the frustrations plaguing

traditional networks. Instead of completely different control interfaces like those available

in traditional networks, SDN solutions extract the control plane and place the logic in a

centralized controller which communicates with network devices using a common protocol

to configure the data path. While optimizing the control plane has been the focus so far,

much work is still needed to provide integration and automation between tools to provide

a richer framework allowing network operators to more efficiently manage all aspects of

their network.

On top of choosing what control interfaces to use, network operators also must choose

protocols for networking at the edges and within the backbone. These decisions can

influence what network devices the network operator must buy or be influenced by what is

available already since network devices often only support a subset of available protocols.

2

Protocols deployed in the infrastructure determine what services can be configured through

the network, which makes this choice a highly important one.

Setting up and actively managing networks is extremely complicated and the abundance

of control interfaces and protocols heavily contribute to the problem. If a network operator

wants to allow external service providers to configure services within their own infras-

tructure, these complications quickly multiply due to multitenant environment challenges.

Networks where service providers separate from the network operator are able to configure

services through the network are called open access networks. Closed networks, like

those deployed by cable companies, have services provided only by the network operator.

Figure 1.1 visualizes the differences between closed and open networks. A management

framework which solves the issues seen in closed networks is already extremely useful,

so one which also provides the ability to run an open access network becomes even more

valuable.

Open access networks are often part of government broadband initiatives and typically

involve home owners buying a physical network connection to the operator network. This

low latency, high capacity connection then effectively becomes part of the home’s amenities

and the home owner separately orders networking services from (potentially a number

of different) service providers that operate on this infrastructure. Many municipalities

and some private companies are moving to provide high-speed network infrastructure to

users while encouraging innovation by allowing any company to provide services at any

supported network layer [25].

We argue that the inherent complexity of roles and responsibilities in open access

networks, combined with the lack of automated network management in these environ-

ments, prevents open access networks from being the enabler of innovation they were

Internet

TV

Phone

Open

Access

NetworkVs.

Closed

Access

Network

Internet

TV

Phone

End User

Service

Provider

TV

Phone
Internet

Network

Operator

Service

Provider

Service

Provider

End User

Network

Operator

Figure 1.1. Closed vs. Open Networks

3

envisioned to be. Without automation, open access networks degenerate to more complex

versions of their “closed access network” counterparts. In contrast, with automated network

management and operations, we envision open access networks to enable the realization of

new services and applications that can truly exploit the capabilities of low latency and high

capacity access networks.

1.1 Thesis Statement
Our thesis is: an automated network management and operations framework built on a

production rule system can capture the dependencies and relationships of both the network

infrastructure and the role players in open access network environments.

FlowOps is the framework we designed to test this thesis. It enables network operators

to: (i) operate an open access network in an automated, sustainable manner; (ii) reason

about various levels of abstraction of the network; and (iii) provide a streamlined, unified,

value-added experience to users. FlowOps relies on a layered abstraction model of the

open access network environment that allows it to reason and react to events at different

levels of abstraction and to propagate relevant information into other layers as needed. At

a high level, the underlying hardware should not matter so long as the network can support

the abstractions service providers desire to provide services. Therefore, the infrastructure

could consist of traditional switches, SDN-enabled switches, or a combination of the two.

Towards this goal, we present in this thesis our work on the FlowOps framework.

At its core, FlowOps is a network management and operations framework that provides

structured, automated network management for heterogeneous open access network envi-

ronments. However, FlowOps also forms the basis for our vision of a “truly open, dynamic

open access network,” in which becoming a service provider becomes a simple on-demand

event, thus lowering the barrier to entry. In particular, FlowOps models the dependencies

and relationships of both the network infrastructure and role players in an open access

network, thus allowing for the automation of network management functions within the

broader business context of open access networks.

Our approach to realizing the FlowOps framework is informed by the observation

that network management and operations tasks involve applying domain-specific logic

to realize network management objectives based on information derived from the current

(dynamic) state of the network [10]. This definition cleanly maps to a classic description of

4

production rules systems in which production rules are used to reason about and represent

knowledge of the domain, and to apply those rules to a working memory of assertions (or

facts) representing the volatile state of the system [9]. As such, in FlowOps, we use a

production rule system as the basis for our approach.

1.2 Contributions
In this work, we make the following contributions: (i) we designed FlowOps as a

network management and operations framework targeted at open access networks; (ii) we

explored the use of a production rule system as the base technology for the FlowOps

framework; and (iii) we developed a prototype of the FlowOps framework and demonstrate

its utility in an example open access network environment with a network operator, service

provider, and end users along with various scenarios to demonstrate the utility of our

system.

We have written and submitted a currently unpublished manuscript [32] to a conference

from which this thesis borrows content.

1.3 Organization
Chapter 2 gives background and explores work that has been done in the network

management and operations field.

Chapter 3 explains the motivation behind the framework, including a high-level overview

of how actors interact with FlowOps.

Chapter 4 describes the architecture designed to provide the management and opera-

tions support in our framework.

Chapter 5 provides information and insight into the prototype we developed based on

the FlowOps architecture.

Chapter 6 presents both a qualitative and quantitative evaluation of our prototype to see

if FlowOps makes network management easier and to explore performance of the current

code base.

Finally, Chapter 7 summarizes our contributions and provides some insights into future

work.

CHAPTER 2

BACKGROUND

2.1 Production Rule Systems
Production rule systems (or rule-based systems) provide a practical way to capture

domain knowledge in a set of production rules and to have those rules operate on the

state of the system in question, represented as assertions (or “facts”) [9]. The “working

memory” in which the facts are stored acts like a database, except that it is more volatile as

it can change during the operation of the system.

Our key observation is that this abstraction neatly maps onto the generic network man-

agement and operations problem: (Human) network operators apply domain knowledge to

perform network management and operations tasks within a network, using information

about both the desired and the observed state of the network. This state can dynamically

change as conditions in the network change or as a result of actions performed by the

operators. Based on this observation, we decided to use a production rule system as the

base technology for the FlowOps automated network management framework. We provide

a brief overview of the open source production rule system we used in our implementation

in the next section.

2.2 Drools Rules Engine
Drools [3] is a Java-based production rule system that manages a working memory

of facts and rules that fire based on existing (or nonexisting) facts and their properties.

The Java host initializes Drools by loading rules and creating either a stateful or stateless

knowledge session. Stateful knowledge sessions allow facts to be inserted after which rules

can be run once to receive results. State is not persistent so the host can always add facts

and run the rules without worrying about what state anything is in. This is useful for doing

tasks like simple calculations or activities where a result is needed without any dependence

on previous results. Stateful knowledge sessions, on the other hand, keep state across calls

to fire rules.

6

In evaluating how to go about creating a network management framework, the Drools

engine appeared to be the foundation upon which FlowOps should be built. The ability

to write many different co-existing rules which are triggered based on properties found

in facts provides an interesting opportunity to explore what this paradigm offers and if a

management framework could benefit. Here is an example rule:

1 rule ‘‘Enable a port’’
2 when
3 enableCmd : EnablePort()
4 port : Port(id == enableCmd.portId, !enabled)
5 then
6 port.enable();
7 update(port);
8 retract(enableCmd);
9 end

The “when” section (lines 3–4), also called the left-hand side (LHS), is analogous to the

WHERE statement in an SQL query. When the “when” section becomes true, the “then”

section (lines 6–8), also called the right-hand side (RHS), will be run. In our example,

the port is enabled, the Drools engine is notified that the port object has changed, and the

EnablePort command is removed.

Rules may be much more complex, with large “when” sections that test over groups

of facts with certain properties and nested conditions. In the case that multiple rules are

triggered at the same time, Drools consults a “salience” value assigned to each rule to

determine the order in which they run, and the outcome of the earlier rules may change

facts in such a way that the lower-salience rules no longer need to execute. Rules very

often “chain”—when a rule runs, its side effects can include addition, deletion, or updates

to other facts, which can, in turn, cause other rules to fire. For example, consider the

following rule:

1 rule ‘‘Check carrier on port’’
2 when
3 port : Port(enabled)
4 not(CarrierCheck(portId == port.id))
5 then
6 insert(port.carriercheck());
7 end

This rule provides a way to check for carrier on a port once it has been enabled: the rule

7

fires only if information about carrier on the port is not already available. The carriercheck()

function could, in turn, cause other rules to be fired if carrier is not detected, such as running

additional diagnostics on the port or altering the appropriate parties. Other rules could also

invalidate the CarrierCheck() object, which would cause the carriercheck() function to be

run again.

A naive approach to determining what rules need to be fired would be to loop through

all of the rules and check each rule against all of the facts. RETE [20] has served as the

best algorithm for determining what rules should should run in a time-efficient manner and

is what Drools employs to trigger rules. The main idea behind RETE is that a network

of nodes allows for tests against objects to only be done once and only when the object

is added, removed, or updated. The network consists of three main types of nodes. The

top-most nodes are object types. If an object of a certain type is changed, a flow will pass

through the node. Under the type nodes are conditional nodes which allow flow through

them based on if the condition passes. For the “Enable a port” rule above, a type node

of EnablePort would need to be triggered. Next a conditional node testing the “enabled”

property of Port exists. If other rules test for the same property, they would share the flow

instead of adding more nodes. At the bottom exist the rule nodes themselves. All of the

condition nodes from the LHS feed into the rule node which is triggered if all condition

nodes are activated. All of the rule nodes which are activated are added into an agenda

where they can be sorted and run in order. Speed is increased greatly at the expense of

memory which becomes a problem in extremely large cases.

Information can flow into and out of Drools in several ways. Rules can insert, update,

and remove facts, as seen in the examples above. The host running Drools can also insert,

update, and remove facts.

There are more specialized methods for the host to insert facts into special “entry-

points” which are logically separate from the main store, allowing only rules explicitly

listening to those entry-points to be fired. This allows FlowOps to behave differently

when, for example, a port goes offline because an administrator explicitly disabled it (an

intentional action) as opposed to being reported by the switch itself (indicating a possible

failure in the network). Here is an example of the LHS of two rules which are triggered

based on what entry-point is used to insert the fact which triggers the rule:

8

1 rule ‘‘Port was reported down by the switch’’
2 when
3 portDown : PortDown(port_id : id) from entry-point

‘‘switch-status’’
4 port : Port(id == port_id)
5 then
6 ...
7 end
8

9 rule ‘‘Port was reported down by an operator’’
10 when
11 portDown : PortDown(port_id : id) from entry-point

‘‘manual-status’’
12 port : Port(id == port_id)
13 then
14 ...
15 end

Either scenario may cause a different chain of rules to fire to handle the same fact

change differently. Similar to entry-points being used to insert facts, channels are used to

send information from the RHS of a rule to the host. The host program can specify channel

handlers which listen for objects being inserted into the channel. Sending an object through

a channel is done using the following semantics:

1 ...
2 then
3 channel["email-handler"].send(new EmailMessage(email, "Port " +

port_id + " is down!"));
4 ...

Here the host program would need to have a channel listener set for the “email-handler”

channel.

2.3 Related Work
Our work is inspired by the conceptual model presented in KnowOps [10]. KnowOps

presents a framework which embeds a knowledge base to support network management and

operations. KnowOps unifies PACMAN [13], which enables network management work-

flow tasks, and COOLAID [11], which uses a declarative language to capture knowledge

from domain experts and documents. DECOR [12] presents a database-oriented automated

network management system. FlowOps extends these ideas with a layered architecture

9

suitable for abstracting services for network operators and users along with a framework

geared towards open access networks.

PRESTO [17] presents a model to update network device configurations by transform-

ing templates from a higher-level language into device-specific configurations through

configlets. These templates do not benefit from having a shared knowledge-base and rule

engine which exists in FlowOps to reason from desired characteristics to configurations in

the network for broader problems.

In FlowOps, we make use of a production rule system as the foundation for our frame-

work. Rule-based approaches have been applied to specific problems in network and

systems management. For example, the Eucalyptus cloud platform [29] mentions the use

of a production rule system as part of their cloud control architecture, although details are

not provided. A production rule system has been proposed as part of an intrusion detection

approach in networked systems [26]. A policy description language has been proposed [33]

to perform configuration changes of a specific network element (a software voice switch),

based on a set of rules defined in their language. A rule-based approach has been applied

to realize high-level process automation in a network operations context [23]. To the

best of our knowledge, however, FlowOps is unique in applying a rule-based approach

to both “read and write” network management tasks (i.e., network configuration and fault

management) in a single framework.

Conceptually related to our work, a Knowledge Plane [14] has been proposed as an

approach in which AI and cognitive system methods are used to build high-level models

to provide services in other parts of the network. The principles described in this work

are related to FlowOps. The 4D [21] architecture uses a decision plane which maintains a

network-wide view and controls network elements and is similarly conceptually related to

FlowOps. In our work, however, we take a more pragmatic approach and focus on open

access networks as a particular problem domain of interest.

Network federation [22] has been suggested which focuses on the interfaces between

network operators instead of the framework used to manage each network. FlowOps

focuses on supporting allocations at multiple network operators with federation done man-

ually through tools; however, it is feasible that similar federation methods like those de-

scribed could be employed to give FlowOps a more robust solution for services spanning

10

multiple networks.

Network troubleshooting and analysis is a rich area of ongoing research under the gen-

eral network management umbrella and a thorough coverage of related work is beyond the

scope of this paper. For example, a Generic Root Cause Analysis platform (G-RCA) [34]

was designed for service quality management in large IP networks by supporting cus-

tomized rules which can be used to analyze network events. Another example is the

NICE (Network-wide Information Correlation and Exploration) system [27], which en-

ables troubleshooting of chronic network conditions by detecting and analyzing statistical

correlations. We note, however, that these works are complementary to FlowOps which

will simplify the creation of such network management tools that can benefit from the

FlowOps network-wide visibility and abstractions.

Finally, the open access network abstractions that we explore in FlowOps is related to

the ChoiceNet project [31]. This project describes a network architecture which would

enable a network operator to expose different layers where users can configure services

depending on their needs. The concepts described mirror our choice in FlowOps of ex-

posing separate service layers so that users are free to innovate at different layers of the

architecture. The framework described focuses heavily on the mechanisms used by users

to provision services while the details of how that happens within the infrastructure and

how management tasks like fault management work are touched on but not described in

detail.

CHAPTER 3

MOTIVATION

As we described earlier, open access networks are often built on fiber-to-the-home

technology, thus providing a network with the inherently attractive features of high capacity

and low latency. The services offered by service providers on current open access networks

often degenerate to a choice between a small number of “regular” internet service providers

(ISPs). Although a high capacity, low latency connection is in and of itself attractive with

such service offerings, there appears to be a lack of services and applications that fully

exploit these capabilities. Such services could be interactive IPTV, home security and au-

tomation, smart grid utilities, medical monitoring, virtual private networks, and emergency

services. It is our contention that this lack of innovative services and applications is a direct

consequence of the lack of automation in the network management and operations in open

access networks. In short, the burden of entry to becoming a service provider is too high.

Below we describe our vision for a more open or dynamic open access network, in which

there is a low barrier to entry in becoming a service provider.

3.1 FlowOps for Dynamic Open Access Networks
We illustrate how FlowOps enables the concept of a dynamic open access network with

the aid of a scenario where an end user orders a service that a service provider then sets up.

For our scenario, we assume that the network operator has already built out the network

infrastructure. This involves: (i) deploying a fiber infrastructure to form the backbone of

the network; (ii) deploying network equipment in this backbone to handle transporting

packets between users; and (iii) running data lines out to users including homes, data

centers, etc. The network operator must keep inventory of network devices and access

methods to bootstrap the environment. Once the infrastructure is built out and FlowOps

has been configured with the appropriate access methods, users would be allowed to start

allocating resources for services over the open access network. The basic workflow for

12

an end user to request services within such a dynamic open access network is depicted in

Figure 3.1 and described below.

In step 1, end users browse services available on their network that are offered by

service providers. In a dynamic open access network, we envision there to be many

service providers, offering services at various granularities and time scales. Some service

will undoubtedly resemble current ISP style “static” and “heavyweight” services, with

customer/provider relationships existing over an extended period of time. However, we also

expect services (or networked applications) being offered at relatively small granularities

and over shorter time scales. For example, the end user to end user “LAN party” depicted

in Figure 3.2 might be created on the fly for the duration of a gaming event. We expect the

FlowOps architecture to facilitate the creation of innovative services that can exploit the

inherent capabilities of a low latency, high capacity dynamic open access network.

Once the end user has selected a service, the order is sent to the service provider in step 2

in Figure 3.1 to be fulfilled. The service provider must then determine what resources are

needed to realize the requested service. End points included in the order are determined

2. Order service

Service

Provider

Network

Operator

End

User

4. Allocate Network

 Operator resources

3. Receive order

1. Browse services

Order
ser

Resources

6. Provision

8. Notify ready

Reserve

Resources

needed

re

Reserve

R

R

re

9. Use service

5. Allocate resources

 under our control

R R

Figure 3.1. FlowOps workflow for Dynamic Open Access Networks

13

End
User B

End
User C

Network

Operator

Service

Provider

B

InternetService

End
User A

Internet

LAN

Party

Service

Provider

A

oadcast

TV

TV
Service

Figure 3.2. Actors

by the end user and the service provider. End users are free to choose what endpoints a

service uses or allow any appropriate free endpoints be used. Service providers are also

free to configure services through generic or specific end points where they are connected

into the network. For example, they could provide different services from separate ports

or load balance services between ports. The step to reserve end points includes mapping

generic points to available points since the reservation requires knowledge of exactly where

services need to be configured.

Simple services only require configuration in the network operator’s network. More

complex services may require configuration of resources under the control of the service

provider as well. Figure 3.1 depicts a service that requires resources to be configured in

both the network operator and service provider networks. Resources must first be allocated

in all networks which means they are promised but not yet given to the requestor so that

the service provider knows the service is fully realizable end-to-end. Step 4 starts the

allocation process for resources in the network operator’s network. If and only if resources

are successfully allocated there, the resources will also be allocated in the service providers

network in step 5, which results in a full allocation. If all allocations work, then the service

provider can provision the resources in step 6 to realize the service. Once the service

has been successfully provisioned, the end user is notified that the service is usable and

the service provider can monitor the service using automated fault management and other

available service support capabilities provided by the network operator.

A key point of the presented scenario is that interactions between end users, service

providers and the network operator are completely automated and programatic. In this

manner, adding and removing service providers, and adding and removing services pro-

14

vided by such providers become automated actions resulting in a dynamic open access

network. In the remainder of this paper, we describe details of the FlowOps architecture

and implementation as the basis for such a dynamic open access network environment.

Having a unified method to specify users and edge points and handle allocation and fault

management simplifies matters for all users but especially service providers who may deal

with multiple network operators to cover large areas. Automated tools could handle most

of the steps in the workflow. Having such an ability is a great boon to all users involved.

3.2 Open Access Networks
Open Access Networks (OANs) are most commonly realized as high capacity, low

latency Fiber-to-the-Home (FTTH) networks. There are many examples of publicly

owned OANs [25], including Utah’s Utopia [7], Stockholm’s Stokab [19], and Amster-

dam’s CityNet [5]. Some private organizations have also built out OANs, including

Reggefiber [15], Quadracom [1], and MBC’s network [2].

Figure 3.2 depicts the role players in an open access network. The network operator

owns and operates the OAN and facilitates slicing (or sharing) of the network between

different users. Users are all other actors who wish to provide or receive services. Users can

be categorized as end users who primarily receive services provided by service providers.

End users and service providers are both users having equal ability to provide or receive

services from other users; however, we will use these terms to denote a user’s primary

purpose. For example, in Figure 3.2, Service Provider A provides broadcast TV service

to End User B and Service Provider B facilitates Internet connectivity to End User C. End

User A and End User B have set up a “LAN party” without the intervention of a service

provider, demonstrating that end users and service providers have the same abilities to

configure services with other users. We note that open access networks in general do not

provide the latter type of service abstraction. This is a simple example of the “richer”

service abstractions that we wish to enable with the FlowOps approach.

Roles in an OAN are relative to each other since any single actor may have multiple

roles. A service provider who offers services in a network operator’s network may need to

configure their own network and could be running FlowOps as their own network operator.

15

3.2.1 Network Operator

A network operator is primarily interested in running their network in such a way to

minimize time and effort needed to manage the network while providing the most value

to users. A layered model allows the network operator to reason at various levels on how

management works in various scenarios. A standard API gives users a common interface

to allocate and provision services to connect with other users. The vertical integration

from user down to device configuration provide value-added management opportunities for

better fault handling and auditing. Network operators and users use the same management

software with the only difference being what they are allowed to see and do.

3.2.2 Users

Users are all actors other than the network operator. They can configure services

through points where they are connected through other points on the network where other

users are connected. The network manager’s primary job is to enable users to be able to

provide and consume services from each other. Most users would be categorized as either

a consumer (end user) or a producer (service provider) even though consumers could also

act as producers and vice-versa. OANs are a great opportunity to explore what happens

when every user can receive or provide services just like any other user.

3.2.2.1 End Users

End users, in general, are only interested in ordering services and having them work.

In an OAN, they would most likely order services through a portal where they can discover

what is available. Allowing users to find all services easily should help drive innovation and

quality where service providers must compete with each other through features, quality, and

support instead of relying on being able to spend more money than each other for visibility

or access.

Equipment needed on end user premises depends on the network design of the network

operator and potential secondary equipment needed by service providers. A common

practice for network operators is to install a Network Interface Device (NID) at each site,

which acts as a demarcation point between the responsibility of the network operator and

end user. In a FTTH environment, fiber enters the NID where the signal is converted and

different wiring exits into the premise.

16

3.2.2.2 Service Providers

Service providers have two main tasks: develop a sustainable service which other users

want and support getting that service out to as many users as possible. Modern service

providers are either low-level providers of Internet connectivity or high-level providers of

over-the-top services available to any user connected to the Internet.

In an OAN, service providers can straddle the line between being a low-level or high-

level provider due to having control over the network being used.

Service providers can provide and optimize services any layer available for allocating.

They are responsible for describing the network needed between them and their customers.

A service provider may have connections at a data center into the OAN where all of their

services are configured to pass through. When they provision a service in the OAN, they

may also need to configure their side for everything to work. Because the tasks in both

networks are very similar, it may be advantageous for service providers to run an instance

of FlowOps for their own network as well. If both actors use FlowOps, tools could be

used to stitch services requiring configuration in both networks. When service providers

deal with multiple network operators or collaborate with other service providers, common

management techniques like those available in FlowOps provides great value.

Service providers might be interested in getting priority connections to ensure behavior

like high bandwidth, high priority, or low latency or lower priority connections for lower

prices. Priority would enable services to be able to kick off or throttle back other lower

priority services. An example would be an emergency 911 call getting priority over IPTV.

CHAPTER 4

FLOWOPS ARCHITECTURE

An overview of the FlowOps architecture is depicted in Figure 4.1. All actors interact

with FlowOps through a common API that provides all of the functionality needed to

configure and manage services. The Knowledge Store is where all state is kept and updated

as services get configured, faults occur, etc. Abstraction layers keep the state manageable,

allowing complex high-level definitions to be mapped to low-level details. Inside the

Knowledge Store, the Rules Engine enables model dynamics by detecting changes and

reacting to them. Underneath the Knowledge Store is a Driver Engine that translates

messages to and from devices using their control interfaces. Through the various layers

in this model, complex high-level tasks such as setting up a new service can be translated

into raw configurations and low-level errors can propagate up to be detected and dealt with.

4.1 FlowOps Components
4.1.1 Knowledge Store

Information needed to drive the model needs to be accessible in a structured manner.

All entities from our model, like actors, services, infrastructure, etc. are added into the

Knowledge Store as facts. The Knowledge Store is the “brains” of FlowOps, containing the

facts and rules needed to make decisions. Our model lives and reacts within the Knowledge

Store in the layers we have defined.

4.1.2 Abstraction Layers

Figure 4.2 shows the layered model employed in FlowOps. Abstraction layers provide

simplified management of the entire system at different levels, including a business layer

for actors and other high-level entities interacting with the system, a service layer exposing

reservable resources, a network operator layer that maps the services into the backbone

network defined by the network operator, and an infrastructure layer representing the phys-

ical devices deployed by the network operator. A layered model provides the following

18

Network Operator
Service

Providers

Knowledge

Store /

Rules

Engine

Driver Engine

ACME Driver OpenFlow Driver

Infrastructure

Abstraction Layers

OpenFlow

SwitchACME

Switch ACME

Switch

OpenFlow

Switch

Users

API

End
Users

Figure 4.1. FlowOps Overview

Infrastructure

Layer
Switch

Business

Layer
Service Provider

Network Operator

End User

Service

Layer

Provided Service

Network

Operator

Layer Hop Link

Backbone Service

Port

Port

Provided VLAN

Provided Ethernet

Backbone VLAN

Figure 4.2. Abstraction Layers

benefits: (i) separation between desired resources vs. how those resources actually get

implemented; (ii) supporting allocating, provisioning, and monitoring received resources;

and (iii) offering relevant views and alerts to each actor.

• Business Layer: Relationships between the different role players are captured in the

top layer of our model. Alerts for actors are kept here as well.

• Service Layer: Provided services are described in the service layer. A desired service

could be a VLAN from point A to point B or a LAN with multiple endpoints. This

layer simply defines what services can be provided in the network and leaves the

implementation details to the network operator layer.

• Network Operator Layer: Provided services like the VLAN or LAN examples above

19

need to be mapped onto the backbone infrastructure. This mapping is dependent on

how the network operator runs the backbone network. One network operator might

provide VLAN and LAN service abstractions through configuring a actual VLAN

through the backbone network while another may create a VPN over an IP network.

Users need not be concerned with how the network operator provides the service

so long as their desired networks act correctly. The network operator layer should

be chosen based on available infrastructure and technologies needed to realize the

services available in the service layer.

• Infrastructure Layer: The infrastructure layer consists of the hardware components

under the network operator’s control, like switches, wires, gateways, routers, etc.

4.1.3 Driver Engine

If the Knowledge Store is the brain for the model, the Driver Engine is the “brawn.”

After configurations for infrastructure devices are generated, the Driver Engine takes re-

sponsibility to apply network configuration changes to network devices. Drivers configure

devices through appropriate control interfaces like CLI, NETCONF [18], OpenFlow [28],

etc. In addition, the Driver Engine also updates the facts in the Knowledge Store when

states and settings change or errors are generated in the network. It is crucial that the Driver

Engine keep the Knowledge Base consistent so that rules are not applied to facts which no

longer represent the state of the network. We note that abstracting interaction with the

network devices in the Driver Engine implies that it is the only part of our architecture

that needs to “know” about the actual underlying hardware in the network. Specifically,

the different layers of the model represented in the Knowledge Store can deal with net-

work equipment in an abstract manner, leaving it up to the Driver Engine to realize that

abstraction on the actual hardware.

Up until now, the abstractions have been generic enough that we havent cared how

the Driver Engine actually propagates infrastructure settings to the hardware. Is the Driver

Engine a SDN controller? Is it just software that manages traditional switches? The answer

is the Driver Engine is whatever the network operator needs it to be. The model is abstract

because at a high level, it really does not matter which is used. Hardware choice may have

implications on what is possible to provide when configuring the infrastructure, but at a

high level, you should only have to specify what is needed in the infrastructure without the

20

need to know how it gets done.

A SDN-based driver would allow the abstraction model to be very closely tied to the

flows which are allowed through switches. For example, instead of writing out state to

switches proactively, the driver could just react when packets are sent through the network.

When a packet is seen without any flows installed for the switch, the driver could query

the Knowledge Store to determine what to do. Of course, the driver could also proactively

install such commands on switches as services are provisioned so it is just a choice of

implementation. In either case, the driver would need to actively edit or remove flows from

switches as services are deleted or modified.

A driver which hosts traditional switches would need to proactively program the switches

in the network according to the abstraction state. Most current network operators would

need to use this style of driver since SDN-based networks are not yet widely deployed.

4.1.4 Rules Engine

Every entity in our model can be thought of as a fact that is stored and accessible to the

rules engine. Rules enforce constraints defined in the system and can be defined to be fired

when new facts are entered into the system (e.g., when there is a new user), when facts are

removed (e.g., when a user leaves), or when facts change (e.g., when the status of a port

changes). Rules act as glue between the layers in our model. Many events and facts need

to be communicated between layers.

4.2 FlowOps Operation
4.2.1 Allocation, Provisioning, and Deletion

The basic user actions needed in the model are allocate, provision, and delete. Alloca-

tion is the process in which an actor reserves a resource, e.g., as described in the example

scenario in Section 3.1 and depicted in Figure 3.1. If an allocation is successful, the network

operator has promised that it will, for the valid length of the allocation promise, honor

the request if provisioned. After allocation, no configuration has actually made it to the

infrastructure. Provisioning an allocated resource realizes the reservation and instantiates

it. Deleting an allocated or provisioned resource frees the resource. In addition to these

basic actions, update is available to change resources on-the-fly without the need to delete

and then re-allocate resources.

21

Figure 4.3 displays how an allocation travels through each abstraction layer in our

model. When an allocation is made by an actor in the business layer, a provided service

fact is added to the Knowledge Store. Rules detect when a desired service is requested for

allocation and maps it to a supported backbone service in the network operator layer or

fails if no mapping is possible. If the network operator uses VLANs in the backbone to

offer services, then rules map desired services to a backbone VLAN. Rules in the network

operator layer configure a path through the network and ensure no existing configuration

conflicts with the service. Once the configuration is prepared for each network device along

the path, the Driver Engine translates the configuration for each specific device when the

service is provisioned.

4.2.2 Views and Alerts

An important use of FlowOps is enabling actors to diagnose problems and audit their

services to ensure they are getting what they require. While the network operator has

complete access, users are given limited views based on their services. These views can

include measurement results, path information, etc. It is left up to the network operator to

decide what should be included in a view. Along with views, users are able to receive alerts

about important changes in their views like connectivity issues and planned maintenance.

Allocate Ethernet service

Knowledge

Store

Infrastructure

Layer

Service

Layer

Network

Operator

Layer

Ethernet service

Backbone VLAN

If: No con icts exist

Then: Allocation is valid

If: Ethernet service requested

Then: Allocate backbone VLAN

Insert Allocation Fact(s)

Service ProviderEnd User Ethernet service

Backbone

service

Bob:Eth

ServiceProvider:Eth

Bob:Eth:1

Hop

API

Service Provider

OpenFlow

Switch
OpenFlow

SwitchACME

Switch

ACME

Switch

Figure 4.3. Allocation

22

Having clear views into the network is important so that problems can be tracked by all

affected entities.

Figure 4.4 displays how an alert propagates from a switch to interested actors through

the model. Errors reported by a device are translated and added into the Knowledge Store

by the Driver Engine, which knows how to deal with each device. The error is mapped

to the specific port, switch, etc. that is able to connect the error to dependent backbone

services. Provided services that depend on the affected backbone services receive alerts

about the error. Actors can be contacted based on the severity of the problem, or the

system could try to fix the problem automatically by rerouting services. Similar to fault

management, planned maintenance can be dealt with in a similar manner. If a switch needs

to be taken down for a brief period, for example, an alert could be sent notifying all services

depending on that switch far before the change occurs giving time to reroute services.

SNMP Trap: Port down

Insert Event: Port Down

Network OperatorUsers

Knowledge

Store

Infrastructure

Layer

Business

Layer

Service

Layer

Network

Operator

Layer
Hop Alert

Port Alert

Port Down

Provided Service Alert

Backbone VLAN Alert

If: Port Down Alert thown

Then: Throw Alerts on a ected services

If: Backbone VLAN broken

Then: Fix if possible, alert results

If: Provided service interrupted

Then: Alert actors

Driver Engine

ACME Driver

ACME

Switch

Figure 4.4. Alerts

CHAPTER 5

IMPLEMENTATION

We implemented the Knowledge Store, Rules Engine, Driver Engine, and API of the

FlowOps architecture. We used the open source production rule system Drools [3] as the

basis for our implementation. Everything is written in Java except for the rules, which are

a hybrid of the Drools rules language and Java. FlowOps initializes the Knowledge Store

using configuration files with basic properties of the expected network, i.e., the switches

and other equipment FlowOps is expected to communicate with. The Knowledge Store

is initialized as Drools stateful knowledge session. Rules are loaded separately from the

Knowledge Store and are currently compiled into FlowOps, although they could be loaded

externally to support a more pluggable model in which network operators could create, edit

or load custom rules. An internal HTTP server is started which supports the user commands

available in the API.

5.1 Driver Engine
The Driver Engine is initialized by assigning hardware types to their respective drivers.

We implemented a driver that supports configuring OpenFlow-enabled switches. We opted

to use Floodlight [4], an open source OpenFlow controller written in Java, which allows

installing static flows on OpenFlow-enabled switches through a RESTful API. Our driver

translates Driver Engine commands to install or remove configurations into RESTful calls

to Floodlight. Floodlight is started separately from FlowOps and the only interaction with

FlowOps is through the static flow pusher API. Because we use the static flow pusher, our

driver creates network configurations that do not utilize any learning based on network ad-

dresses. This results in a hub-like network where packets are sent to all possible destination

paths.

24

5.2 Supported Services
We chose a number of basic network abstractions as example services to demonstrate

the utility of FlowOps. Our implementation uses VLANs, the most common slicable

method available in switches, in the backbone for services. Supported provided services

include LANs and VLANs. Provided LANs are mapped to backbone VLANs where the

edge points remove the VLAN before exiting the OAN. Provided VLANs are mapped

directly to backbone VLANs and allow the user to define whether a tag should exit at

any end point or not. Supported topologies for both LANs and VLANs include E-LINE

(point-to-point), E-TREE (root-to-leaf), and E-LAN (many-to-many). These topologies

are defined by the Metro Ethernet Forum [8] and are used to allow network operators to

provide a common environment.

5.3 API
A common API is provided as a RESTful service integrated in FlowOps so that all

actors can develop useful, shareable tools which interact with the resources. Actors who

run FlowOps, like the network operator, allow themselves and other actors to perform

management and operations functions. Through the API, each actor may have a separate

view based on what they should or should not be able to access. Alerts that bubble up, like

a port-down event, eventually make it to alerts for provided services which relevant actors

are able to see and react to.

The API as exposed in our implementation allows for unauthorized calls to view general

information in the Knowledge Store. Most calls require a token to be set in the HTTP

header that designates the user making the call. This provides access to user views and

accountability when dealing with resources. Available API calls to work with resources

include allocate which requires a resource specification document (RSPEC) [6], provision

and delete with the reservation ID from the allocation step, and update with an updated

RSPEC. State can be queried using the API functions for all to view all facts, provided

to see provided services, backbone for services in the network operator layer, slivers for

all configured resources, hostedon with an ID of an infrastructure device to view services

configured through it, and connectables to view connectivity points, actors, and alerts.

We wrote a python library which makes it easy to specify variables like the caller ID,

RSPEC, reservation id, etc.

25

5.4 Rules Techniques
We utilized many features available in the Drools rules engine to implement our model

more efficiently. For example, initially we found ourselves writing many rules that were

more or less duplicates of each other with very minor differences. Salience values allowed

us to consolidate our rules. For example, one rule is written which is the default behavior

at any layer of the model, while rules for specific conditions that require modified behavior

from this default could be created with a higher salience value.

For example, an allocation is valid if all dependent lower allocations are successful.

That is a very simple statement which can be applied at any level of our model. There

might be certain allocations which need more policies applied to determine if the allocation

worked or not. In that case, a higher salience value could be set on a rule with more specific

triggers like allocation on a certain hardware type.

We needed to get information in and out of the model. Initially, simply inserting

or updating facts and calling a function to run all rules and then checking the facts we

were interested in was enough. However, as our model developed, this simple interaction

quickly became cumbersome. We made use of channels and entry points as a means to

enter information into and extract information from the Knowledge Store. FlowOps uses

channels to handle asynchronous workflows where something like a provision command

can be inserted into the knowledge store and the framework can wait until a message is

sent back saying whether the provision worked or not.

CHAPTER 6

EVALUATION

6.1 Environment
We designed an example environment consisting of a network operator, service provider,

and several end users, as shown in Figure 6.1, where we could evaluate FlowOps. The

network operator has e.g., switches enabling connectivity through e.g., points where users

connect into the network along with backbone switches connecting these e.g., points to-

gether. For simplicity, any reference to the network operator’s network will simply be

referred to as the Open Access Network (OAN). e.g., switches could be a large commercial

switch in a data center where service providers connect or Network Interface Devices

(NIDs) on the houses of end users. The service provider has its own network with a switch

connected to one port on one of the network operator’s e.g., switches. Attached to this

switch are hosts that offer services if networks are provisioned from them into end points

in the OAN. Three end users (Alice, Bob, and Carl) are connected each to a NID found

on the e.g., of the OAN. NIDs have a fixed connection into the OAN and many open end

points where the end user can connect to and configure services through. In our simple

model, these open end points where the user can connect to are Ethernet ports. Both the

network operator and service provider have a configuration file which specifies all of the

information needed to initialize their own instances of FlowOps, including information like

lists of equipment and actors.

6.2 Emulation
We performed an initial evaluation by running FlowOps on a host machine while con-

nected to an emulated network environment using Mininet [24] inside a virtual machine.

Mininet supports creating virtual instances of OpenFlow-enabled switches and connecting

them together to emulate a real network environment. In our emulated environment, each

switch is a separate instance of Open vSwitch [30], a software switch that supports the

27

Bob

Carl

Network

Operator

Alice

Backbone

Switch

Backbone

Switch

Backbone

Switch

Network

Interface

Device

Network

Interface

Device

Network

Interface

Device

Backbone

Switch

Service

Service

Provider

Edge

Switch

ServiceService

Figure 6.1. Environment

OpenFlow protocol. These switches are controlled via a Floodlight OpenFlow controller,

which in turn is driven by FlowOps Driver Engine. (We leave extensions to the Driver

Engine to support legacy switches as future work.)

The switches are told a certain IP address where they should expect an OpenFlow

controller which we run on the host machine. We give the script the configuration files

for the network operator and service provider since we need to simulate the entire network.

Next, we run Floodlight, an OpenFlow controller, on the host machine after which the

switches connect and listen for instructions. Lastly, two copies of FlowOps are executed

on the host: one with the configuration file for the service provider and one for the network

operator. Any individual actor who runs FlowOps will only have control over equipment

owned by them, which means a new instance of FlowOps is required for each actor hosting

their own infrastructure. Once the FlowOps instances has started after the network has been

instantiated, we are ready to run experiments.

6.3 Configuration
Our first experiments demonstrate that FlowOps supports creating usable networks

using the architecture described and implemented for the environment we prepared. These

examples demonstrate that FlowOps is able to operate an OAN in an automated manner

28

based on external users asking for slices of the network resulting in reasoning in the various

abstraction layers of our model. Services successfully configured include: (i) Ethernet

E-LAN between Alice, Bob, and Carl. None of the users need special equipment that

understands VLANs. A LAN party is one example of what the users could do in this

scenario. (ii) VLAN E-LINE between the service provider and Bob. Because the service

provider only has access on one port into the OAN, it must use VLANs to differentiate

services as it sends packets. Bob’s end point is configured to remove the VLAN so that

his equipment has no need to understand VLANs. The service provider could use this to

provide Internet, VoIP, etc. to individual users. (iii) VLAN E-TREE between the service

provider as the root to all the users as leaves. Similar to the VLAN E-LINE, a VLAN is

needed for the service provider to specify which packets belong to what service after which

the tag can be removed before it reaches the end user equipment.

6.4 Fault Management
We created a bottom-to-top test demonstrating that higher-level entities are able to deal

with low-level problems like ports going down. For simplicity, we created a simulated

driver which does not perform any configuration commands (acting as a no-op) and added

a simple API we could call which would simulate port up/down events which would get

added into the Knowledge Store. These examples demonstrate some of the value-added

features available through FlowOps by putting hooks into our model where fault manage-

ment can be automated by attempting to fix problems and notifying respective parties of

affected services. The following scenarios were tested: (i) Port down in a path which can

be rerouted. In this case, the alert propagates from the port up to the backbone VLAN. At

that point, a new route is generated and installed and the alert propagates up, informing

provided services depending on the backbone VLAN that a problem was detected and a

new route was installed. (ii) Port down in a path where no other possible path exists. Since

no other route exists, the port down event propagates all the way up where the user and/or

the network operator can decide what to do next.

29

6.5 Performance
6.5.1 Methodology

To gauge behavior, we ran various experiments to observe the system over time. We

were interested in evaluating system characteristics related to our main actions: (i) allocate;

(ii) provision; and (iii) delete. Each has a different set of rules which fires using different

facts and patterns. Since the behavior of each call might be related to what calls were

previously made, we used various call sequences including:

• Calling allocate then delete multiple times (e.g., ADADAD).

• Calling allocate then provision multiple times (e.g., APAPAP).

• Calling allocate, provision, then delete multiple times (e.g., APDAPD).

• Calling allocate multiple times, then provision multiple times, then delete multiple

times (e.g., AAPPDD).

• Calling allocate multiple times, then delete multiple times, then repeating (e.g., AAD-

DAADD).

See Table 6.1 for the list of call orders we were interested in within the call sequences.

For simplicity, figures will refer to the shorthand used for the orders where A, P, and D

refer to allocate, provision, and delete, respectively, and a capital case letter is used for the

specific calls being evaluated. Since the underlying infrastructure could have a large impact

in behavior, we tested using three very different topologies: (i) One short with 100 users

and 4 service providers connected to 1 switch with a total of 104 network devices; (ii) One

massive with a backbone ring of switches connected to e.g., switches which each connect

to multiple users or service providers for a total of 122 network devices; and (iii) One

long with many backbone switches in a ring each connected to only one user with 204

total network devices. Evaluating calls on the LONG topology were very long so fewer

data points were taken for it. We observed the following information for each call made:

(i) how long it took to complete; (ii) how many total facts were in the Knowle.g., Store; and

(iii) how many rules fired. In addition to recording data related to each individual call, we

profiled the entire application to give us a good idea where most of the time was taken. A

combination of all of this information gave us insight into how and why FlowOps performs

the way it does.

30

Table 6.1. Call sequence orders.
Call Order Description

Allocate

AA back-to-back
aaddAA after a complete cycle of allocating and deleting
adAdA after deleting
apApA after provisioning
apdApdA after provisioning and deleting

Provision
aaPP after a complete cycle of allocating
aPaP after allocating
adPadP after deleting and allocating

Delete

aDaD after allocating
apDapD after allocating and provisioning
aaDD after a complete cycle of allocating
aappDD after a complete cycle of allocating and provisioning
aaddaaDD after a complete cycle of allocating, deleting, and allocating again

6.5.2 Drools Rules Fired and Total Facts

Initially, we speculated that the number of total facts or rules fired would follow closely

with how long each API call took. To test our speculation, we recorded how many rules

fired during each API call and how many facts were in the system when the call was made.

As expected, the topology heavily impacted the number of rules fired and total facts.

Figures below (6.2 for rules fired during and 6.3 for total global facts after) show data

collected for each allocate call: (i) back-to-back (e.g., AA); (ii) after deleting (e.g., adAdA);

(iii) after provisioning and deleting (e.g., apdApdA); (iv) after provisioning (e.g., apApA);

and (v) after a complete cycle of allocating and deleting (e.g., aaddAA).

There are also figures (6.4 for rules fired and 6.5 for total facts) showing data for indi-

vidual provision calls made: (i) after a complete cycle of allocating (e.g., aaPP); (ii) after

allocating (e.g., aPaP); and (iii) after deleting and allocating (e.g., adPadP).

The remaining figures (6.6 for rules fired during and 6.7 for total global facts after) show

data collected for each delete call: (i) after allocating (e.g., aDaD); (ii) after allocating and

provisioning (e.g., apDapD); (iii) after a complete cycle of allocating (e.g., aaDD); (iv) after

a complete cycle of allocating, deleting, and allocating again (e.g., aaddaaDD); and (v) after

a complete cycle of allocating and provisioning (e.g., aappDD).

The number of rules fired tend to stay constant. It would be expected that the fired rules

would stay constant until paths length change; however the multithreaded property causes

31

20.4
20.6
20.8

21
21.2
21.4
21.6
21.8

22

Ru
le

s fi
re

d

Iteration
AA (SHORT) adAdA (SHORT)

apdApdA (SHORT) apApA (SHORT)

aaddAA (SHORT)

0

50

100

150

200

250

Iteration

apApA (LONG) apdApdA (LONG)

adAdA (LONG) Allocate all (LONG)

aaddAA (LONG)

34

36

38

40

42

44

46

Iteration
AA (MASSIVE) apApA (MASSIVE)

adAdA (MASSIVE) apdApdA (MASSIVE)

aaddAA (MASSIVE)

Figure 6.2. Fired rules on allocation.

0

500

1000

1500

2000

2500

Iteration

apApA (LONG) apdApdA (LONG)

adAdA (LONG) Allocate all (LONG)

aaddAA (LONG)

0
500

1000
1500
2000
2500
3000
3500

Iteration

AA (MASSIVE) apApA (MASSIVE)

adAdA (MASSIVE) apdApdA (MASSIVE)

aaddAA (MASSIVE)

0

500

1000

1500

2000

To
ta

l f
ac

ts

Iteration

AA (SHORT) adAdA (SHORT)

apdApdA (SHORT) apApA (SHORT)

aaddAA (SHORT)

Figure 6.3. Total facts on allocation.

8.4
8.6
8.8

9
9.2
9.4
9.6
9.8
10

10.2

Ru
le

s fi
re

d

Iteration
aaPP (SHORT) aPaP (SHORT)
apdaPdaP (SHORT)

0

5

10

15

20

25

Iteration
aaPP (MASSIVE) aPaP (MASSIVE)
apdaPdaP (MASSIVE)

0

20

40

60

80

100

120

140

Iteration

aaPP (LONG) aPaP (LONG)
apdaPdaP

Figure 6.4. Fired rules on provision.

the fluctuations you see where the number of fired rules varies slightly. The large jump in

the number of rules fired in the middle and right graph in Figure 6.2 is due to the change

in path length. Rules are fired for each hop along the path in an allocation. Again, because

there are more hops in the allocated path, more rules are fired in delete (Figure 6.6) and

provision (Figure 6.4) as well.

The total number of facts followed trends according to the behavior of the API calls.

32

0
200
400
600
800

1000
1200
1400
1600

To
ta

l f
ac

ts

Iteration
aaPP (SHORT) aPaP (SHORT)
apdaPdaP (SHORT)

0

500

1000

1500

2000

2500

Iteration
aaPP (MASSIVE) aPaP (MASSIVE)
apdaPdaP (MASSIVE)

1520
1540
1560
1580
1600
1620
1640
1660
1680
1700
1720
1740

Iteration

aaPP (LONG) aPaP (LONG)
apdaPdaP

Figure 6.5. Total facts on provision.

0

2

4

6

8

10

12

Ru
le

s fi
re

d

Iteration

aDaD (SHORT) apDapD (SHORT)
aaDD (SHORT) aaddaaDD (SHORT)
aappDD (SHORT)

0

5

10

15

20

25

Iteration
aDaD (MASSIVE) apDapD (MASSIVE)
aaDD (MASSIVE) aaddaaDD (MASSIVE)
aappDD (MASSIVE)

0

20

40

60

80

100

120

140

Iteration

aDaD (LONG) apDapD (LONG)

aaDD (LONG) aaddaaDD (LONG)

aappDD (LONG)

Figure 6.6. Fired rules on deletion.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

To
ta

l f
ac

ts

Iteration

aDaD (SHORT) apDapD (SHORT) aaDD (SHORT)

aappDD (SHORT) aaddaaDD (SHORT)

0

500

1000

1500

2000

2500

3000

3500

Iteration

aDaD (MASSIVE) apDapD (MASSIVE) aaDD (MASSIVE)

aappDD (MASSIVE) aaddaaDD (MASSIVE)

0

500

1000

1500

2000

2500

Iteration

aDaD (LONG) apDapD (LONG) aaDD (LONG)

aaddaaDD (LONG) aappDD (LONG)

Figure 6.7. Total facts on deletion.

33

Since allocate calls always insert new facts, the total facts always grow, as shown in

Figure 6.3. Delete and provision calls only change the state in existing facts inserted in

allocate, which explains the flat lines visible in Figure 6.5 and 6.7. The cases where the

total facts are increasing are due to the allocate calls being made between each call.

6.5.3 Timing

The graphs showing the time taken for each API call are split up into three groups, one

for each API call (allocate, provision, and delete). Each group is split up into rows and

columns. Columns show the same calls and sequences on the different topologies. The

range of values differs greatly based on the topology so make sure to note the changes to

the Y-axis range in each graph. Rows display the sequences of calls which have the same

increasing or decreasing trend.

Figure 6.8 displays the number of seconds each allocate call took, based on its relation

to other API calls. The first row shows timing results for allocation calls made: (i) back-

to-back (e.g., AA) and (ii) after a complete cycle of allocating and deleting (aaddAA). The

second row shows timing results for allocation calls made: (i) after deleting (e.g., adAdA);

(ii) after provisioning (e.g., apApA); and (iii) and after provisioning and deleting (e.g.,

apdApdA).

An interesting trend in these numbers is that the allocation time increases based only

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Se
co

nd
s p

er
 c

al
l

Iteration
AA (SHORT) aaddAA (SHORT)

0

10

20

30

40

50

60

Iteration
AA (MASSIVE) aaddAA (MASSIVE)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

Se
co

nd
s p

er
 c

al
l

Iteration
apApA (SHORT) adAdA (SHORT)

apdApdA (SHORT)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

Iteration
apApA (MASSIVE) adAdA (MASSIVE)

apdApdA (MASSIVE)

0

20

40

60

80

100

120

Iteration

Allocate all (LONG) aaddAA (LONG)

0

10

20

30

40

50

Iteration

apApA (LONG) adAdA (LONG)

apdApdA (LONG)

Figure 6.8. Allocation timing benchmarks.

34

on the number of active allocations. The top row shows consecutive allocations, which

means that each allocation increases the total allocated services. The first data set shows 40

allocations while the second shows 40 allocations made after 40 allocations were already

made and deleted. Since deleted services only have their state changed to delete, the

number of facts grows even as allocations are deleted. This means that even though the two

different allocation sequences from the first row have a different number of total facts in the

system, there is no obvious increase in time with more total facts pointing to the observation

that active allocations are the main variable which influence how long an allocation call

takes. Row two, on the other hand, has provision and delete calls between the allocate calls

which means the total number of active allocations stays at zero since all allocations are

provisioned or deleted which moves them to a different state. Putting all of this information

together, we speculate that the major cause of performance degradation seen is due to how

Drools handles insertion or updates of facts given a set of rules which potentially have

complicated conditions when facts change related to those conditions.

Figure 6.9 shows the number of seconds each provision call took in various sequences

of API calls. The first row shows timing results for calls made: (i) after a complete cycle of

allocating (e.g., aaPP) and (ii) after allocating (e.g., aPaP). The second row shows timing

0

20

40

60

80

100

120

Iteration

aaPP (LONG) aPaP (LONG)

0

10

20

30

40

50

60

70

80

Iteration
aaPP (MASSIVE) aPaP (MASSIVE)

0

0.1

0.2

0.3

0.4

0.5

0.6

Se
co

nd
s p

er
 c

al
l

Iteration
aaPP (SHORT) aPaP (SHORT)

0

5

10

15

20

25

30

35

40

Iteration

apdaPdaP

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Iteration
apdaPdaP (MASSIVE)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Se
co

nd
s p

er
 c

al
l

Iteration
apdaPdaP (SHORT)

Figure 6.9. Provisioning timing benchmarks.

35

results for calls made: (i) after deleting and allocating (e.g., adPadP).

Provision calls follow the same timing trends as Allocate calls. The first row shows

provision calls back-to-back demonstrating that time increases as more provisioned ser-

vices exist. The second row includes delete calls between the provisions so the number of

provisioned services stays at zero with no increases in time to provision new services.

Figure 6.10 displays the number of seconds each delete call took in a sequence of

API calls. Delete calls were timed: (i) after allocating (e.g., aDaD); (ii) after allocating

and provisioning (e.g., apDapD); (iii) after a complete cycle of allocating (e.g., aaDD);

(iv) after a complete cycle of allocating and provisioning (e.g., aappDD); and (v) after a

complete cycle of allocating, deleting, and allocating again (e.g., aaddaaDD).

A major difference in the timings for delete calls is that the time never decreases. The

main cause of this is that facts related to deleted services never go away in the current

implementation of FlowOps. Given that the number of facts for deleted services only

increases, it makes sense that the trend for deletion calls is always increasing. This could

be remedied by simply removing facts for deleted services instead of changing the state

and keeping the facts around.

6.5.4 Hot Spots

Using JProfiler [16], we determined which functions were taking the most amount of

time. Two tests were run during different API calls to get the maximum coverage. In one

test which ran for two minutes, the hot spots were:

• 42% (56s): org.drools.reteoo.BaseLeftTuple.getSubTuple

• 18% (24s): org.drools.reteoo.NotNode.assertLeftTuple

0

0.2

0.4

0.6

0.8

1

1.2

Se
co

nd
s p

er
 c

al
l

Iteration
aDaD (SHORT) apDapD (SHORT)
aaDD (SHORT) aaddaaDD (SHORT)
aappDD (SHORT)

0

50

100

150

200

250

300

Iteration

aDaD (LONG) apDapD (LONG)

aaDD (LONG) aappDD (LONG)

aaddaaDD (LONG)

0

10

20

30

40

50

60

70

80

90

Iteration
aDaD (MASSIVE) apDapD (MASSIVE)

aaDD (MASSIVE) aaddaaDD (MASSIVE)

aappDD (MASSIVE)

Figure 6.10. Deletion timing benchmarks.

36

• 15% (20s): org.drools.reteoo.BaseLeftTuple.hashCode

• 8% (11s): org.drools.core.util.LinkLinked$LinkedListFastIterator.next

In another test which ran for four and a half minutes, the hot spots were:

• 13% (28s): java.lang.Object.hashCode

• 11% (23s): org.drools.reteoo.BaseLeftTuple.getSubTuple

• 8% (18s): org.drools.reteoo.BaseLeftTuple.hashCode

• 7% (16s): org.drools.common.TupleStartEqualsConstraint.isAllowedCachedLeft

• 6% (13s): org.drools.reteoo.BaseLeftTuple.equals

Going further down the list, Drools functions accounted for a large majority of the time

taken during API calls. The functions appear to be related to those used to test condition

nodes within the graph used by the RETE algorithm. Although a relatively small number

of rules get fired, the conditions which lead to those rules being fired appear to be what

takes the most amount of time as the number of facts and complexity of rules is large. As

noted above, performance degrades the most when many facts exist (e.g., many provisioned

services) which have complicated conditional statements in the rules

CHAPTER 7

CONCLUSIONS

FlowOps is not only an abstract concept to improve network management and oper-

ations but is implemented and demonstrated to work in a reasonable time for the size of

networks we are targeting at this point. Having knowledge at all layers in the model allows

the framework to reason and work to create a value-added experience through integration

of abstract, high-level definitions all the way down to bare-metal and back up.

7.1 Summary of Contributions
To summarize the contributions made, FlowOps:

• Includes a Knowledge Store which implements our layered model.

• Uses a Rules Engine to support handling tasks which flow through the layers of the

Knowledge Store.

• Configures and handles faults through a Driver Engine with drivers for simulating

faults or configuring OpenFlow-based switches.

• Was shown to successfully support configuration and fault management in an Open

Access Network environment consisting of many users with multiple types of ser-

vices.

• Performs reasonably fast on networks with a small number of switches.

7.2 Performance
All production systems must peform in a reasonable amount of time to be useful.

FlowOps performance noticably starts to degrade as the number of network devices in-

creases. Our evaluation determined that most of the time taken for API calls is due to the

production rules system evaluating the conditions which trigger rules. For use with larger

networks, the rules will need to be rewritten so that the time taken to evaluate all of the

conditionals is minimal.

38

7.3 Future Work
More work will be needed to demonstrate that FlowOps can support multiple traditional

switches using different drivers. Our tests and simulations so far have dealt with OpenFlow-

enabled switches. The implementation will most likely need to be expanded to support

more functions needed to bootstrap and manage these devices.

Network management is an extremely complex task and involves dealing with a vast

field of issues and mixed environments. The initial implementation of FlowOps deals with

the most important tasks: configuration and fault management. More types of provided

and backbone services need to be added. For example, FlowOps should be able to sup-

port backbone networks using more than just VLANs like Multiprotocol Layer Switching,

Provider Backbone Bridging, etc. Supporting these extra network types would certainly

make FlowOps more robust and prove the usefulness in more scenarios.

Creating innovative services which run on top of the Open Access Network environ-

ment could further demonstrate the usefulness of FlowOps so that service providers and

end users have incentives to migrate to a network operator providing such an environment.

The API has demonstrated useful for configuring and managing services as well as

viewing state in the Knowledge Store. However, a more user-friendly service would be

needed when deployed. A portal could be designed which interacts with the network

operator and service providers using the described API in the background after users point

and click through a series of pages.

Performance is currently a mixed bag. Networks tend to only have provisioned or

deleted services at any point. Allocated services are temporary and quickly provisioned,

deleted, or timed out so production systems should not encounter performance issues re-

lated to having many simultaneous allocations. On the other hand, provisioned services will

grow over time which would be the bottleneck in our current system. Future enhancements

related to lower API call times should be focused on handling multiple existing provisioned

services.

REFERENCES

[1] Building a nationwide open-access network. http://www.bbpmag.com/
2011mags/marchapril11/BBP_MarApr_NationwideOpenAccess.
pdf.

[2] Cooperative model for innovative open-access telecommunications network in
rural virginia. http://www.usda.gov/oce/forum/2008_Speeches/
PDFPPT/Hudgins.pdf.

[3] Drools, the business logic integration platform. http://www.jboss.org/
drools/.

[4] Floodlight. http://www.projectfloodlight.org/floodlight/.

[5] How amsterdam was wired for open access fiber.
http://arstechnica.com/tech-policy/2010/03/
how-amsterdam-was-wired-for-open-access-fiber/.

[6] Resource Specification (RSpec). http://groups.geni.net/geni/wiki/
GeniRspec.

[7] UTOPIA wikipedia page. http://en.wikipedia.org/wiki/Utah_
Telecommunication_Open_Infrastructure_Agency.

[8] Mef technical specification mef 6.1 - ethernet services definitions, phase 2.

[9] BRACKMAN, R. J., AND LEVESQUE, H. J. Knowledge Representation and Reason-
ing. Morgan Kaufmann, 2004.

[10] CHEN, X., MAO, Y., MAO, Z., AND VAN DER MERWE, J. KnowOps: towards an
embedded knowledge base for network management and operations. In Proceedings
of the 11th USENIX conference on Hot topics in management of internet, cloud, and
enterprise networks and services (Hot-ICE11), Berkeley, CA, USA (2007), pp. 7–7.

[11] CHEN, X., MAO, Y., MAO, Z., AND VAN DER MERWE, J. Declarative configu-
ration management for complex and dynamic networks. In Proceedings of the 6th
International COnference (2010), ACM, p. 6.

[12] CHEN, X., MAO, Y., MAO, Z., AND VAN DER MERWE, J. DECOR: DEClarative
network management and OpeRation. ACM SIGCOMM Computer Communication
Review 40, 1 (2010), 61–66.

[13] CHEN, X., MAO, Z., AND VAN DER MERWE, J. PACMAN: a Platform for
Automated and Controlled network operations and configuration MANagement. In
Proceedings of the 5th international conference on Emerging networking experiments
and technologies (2009), ACM, pp. 277–288.

http://www.bbpmag.com/2011mags/marchapril11/BBP_MarApr_NationwideOpenAccess.pdf
http://www.bbpmag.com/2011mags/marchapril11/BBP_MarApr_NationwideOpenAccess.pdf
http://www.bbpmag.com/2011mags/marchapril11/BBP_MarApr_NationwideOpenAccess.pdf
http://www.usda.gov/oce/forum/2008_Speeches/PDFPPT/Hudgins.pdf
http://www.usda.gov/oce/forum/2008_Speeches/PDFPPT/Hudgins.pdf
http://www.jboss.org/drools/
http://www.jboss.org/drools/
http://www.projectfloodlight.org/floodlight/
http://arstechnica.com/tech-policy/2010/03/how-amsterdam-was-wired-for-open-access-fiber/
http://arstechnica.com/tech-policy/2010/03/how-amsterdam-was-wired-for-open-access-fiber/
http://groups.geni.net/geni/wiki/GeniRspec
http://groups.geni.net/geni/wiki/GeniRspec
http://en.wikipedia.org/wiki/Utah_Telecommunication_Open_Infrastructure_Agency
http://en.wikipedia.org/wiki/Utah_Telecommunication_Open_Infrastructure_Agency

40

[14] CLARK, D., PARTRIDGE, C., RAMMING, J., AND WROCLAWSKI, J. A knowledge
plane for the internet. In Proceedings of the 2003 conference on Applications, tech-
nologies, architectures, and protocols for computer communications (2003), ACM,
pp. 3–10.

[15] DAVIDS, J. The reggefiber model. http://www.slideshare.net/INCA_
NextGen/reggefiber.

[16] EJ TECHNOLOGIES. Jprofiler. http://www.ej-technologies.com/
products/jprofiler/overview.html.

[17] ENCK, W., MOYER, T., MCDANIEL, P., SEN, S., SEBOS, P., SPOEREL, S.,
GREENBERG, A., SUNG, Y., RAO, S., AND AIELLO, W. Configuration manage-
ment at massive scale: system design and experience. Selected Areas in Communica-
tions, IEEE Journal on 27, 3 (2009), 323–335.

[18] ENNS, R. Netconf configuration protocol.

[19] FELTEN, B. Stockholms stokab: A blueprint for ubiquitous fiber connectivity?
Available at SSRN 2114138 (2012).

[20] FORGY, C. L. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial intelligence 19, 1 (1982), 17–37.

[21] GREENBERG, A., HJALMTYSSON, G., MALTZ, D., MYERS, A., REXFORD, J.,
XIE, G., YAN, H., ZHAN, J., AND ZHANG, H. A clean slate 4d approach to network
control and management. ACM SIGCOMM Computer Communication Review 35, 5
(2005), 41–54.

[22] HAYASHI, M., MATSUMOTO, N., NISHIMURA, K., AND TANAKA, H. Design of
network resource federation towards future open access networking. In AICT 2011,
The Seventh Advanced International Conference on Telecommunications (2011),
pp. 130–134.

[23] KALMANEK, C. R., MISRA, S., AND YANG, Y. R. Guide to reliable internet
services and applications. Springer, 2010.

[24] LANTZ, B., HELLER, B., AND MCKEOWN, N. A network in a laptop: rapid pro-
totyping for software-defined networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks (2010), ACM, p. 19.

[25] LEHR, W., SIRBU, M., AND GILLETT, S. Broadband open access: Lessons from
municipal network case studies. In Proceeding of the TPRC conference (2004).

[26] LINDQVIST, U., AND PORRAS, P. A. Detecting computer and network misuse
through the production-based expert system toolset (p-best). In Security and Privacy,
1999. Proceedings of the 1999 IEEE Symposium on (1999), IEEE, pp. 146–161.

[27] MAHIMKAR, A., YATES, J., ZHANG, Y., SHAIKH, A., WANG, J., GE, Z., AND EE,
C. Troubleshooting chronic conditions in large ip networks. In Proceedings of the
2008 ACM CoNEXT Conference (2008), ACM, p. 2.

http://www.slideshare.net/INCA_NextGen/reggefiber
http://www.slideshare.net/INCA_NextGen/reggefiber
http://www.ej-technologies.com/products/jprofiler/overview.html
http://www.ej-technologies.com/products/jprofiler/overview.html

41

[28] MCKEOWN, N., ANDERSON, T., BALAKRISHNAN, H., PARULKAR, G., PETER-
SON, L., REXFORD, J., SHENKER, S., AND TURNER, J. Openflow: enabling
innovation in campus networks. ACM SIGCOMM Computer Communication Review
38, 2 (2008), 69–74.

[29] NURMI, D., WOLSKI, R., GRZEGORCZYK, C., OBERTELLI, G., SOMAN, S.,
YOUSEFF, L., AND ZAGORODNOV, D. The eucalyptus open-source cloud-
computing system. In Cluster Computing and the Grid, 2009. CCGRID ’09. 9th
IEEE/ACM International Symposium on (2009), pp. 124–131.

[30] PFAFF, B., PETTIT, J., KOPONEN, T., AMIDON, K., CASADO, M., AND SHENKER,
S. Extending networking into the virtualization layer. Proc. HotNets (October 2009)
(2009).

[31] ROUSKAS, G. N., BALDINE, I., CALVERT, K., DUTTA, R., GRIFFIOEN, J.,
NAGURNEY, A., AND WOLF, T. Choicenet: Network innovation through choice.

[32] STRUM, M., RICCI, R., VAN DER MERWE, J., CHRISTENSEN, J., AND PETER-
SON, R. Flowops: Open access network management and operation. Unpublished
manuscript.

[33] VIRMANI, A., LOBO, J., AND KOHLI, M. Netmon: network management for the
saras softswitch. In Network Operations and Management Symposium, 2000. NOMS
2000. 2000 IEEE/IFIP (2000), pp. 803–816.

[34] YAN, H., BRESLAU, L., GE, Z., MASSEY, D., PEI, D., AND YATES, J. G-rca:
a generic root cause analysis platform for service quality management in large ip
networks. In Proceedings of the 6th International COnference (2010), ACM, p. 5.

	ABSTRACT
	LIST OF FIGURES
	Acknowledgments
	CHAPTERS
	=10000=10000=0Introduction
	-18pt
	Thesis Statement
	Contributions
	Organization

	=10000=10000=0Background
	-18pt
	Production Rule Systems
	Drools Rules Engine
	Related Work

	=10000=10000=0Motivation
	-18pt
	FlowOps for Dynamic Open Access Networks
	Open Access Networks
	Network Operator
	Users
	End Users
	Service Providers

	=10000=10000=0FlowOps Architecture
	-18pt
	FlowOps Components
	Knowledge Store
	Abstraction Layers
	Driver Engine
	Rules Engine

	FlowOps Operation
	Allocation, Provisioning, and Deletion
	Views and Alerts

	=10000=10000=0Implementation
	-18pt
	Driver Engine
	Supported Services
	API
	Rules Techniques

	=10000=10000=0Evaluation
	-18pt
	Environment
	Emulation
	Configuration
	Fault Management
	Performance
	Methodology
	Drools Rules Fired and Total Facts
	Timing
	Hot Spots

	=10000=10000=0Conclusions
	-18pt
	Summary of Contributions
	Performance
	Future Work

	REFERENCES

