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ABSTRACT

In this dissertation, our aim is to contribute to the understanding of edge properties

of two-dimensional (2D) carbonic materials, including graphene and organometallic frame-

works. A set of modeling and simulations, using first-principles density functional theory

(DFT), tight-binding (TB) method, and molecular dynamics (MD) method, have been

performed to (1) investigate the structural edge stability of graphene from both thermo-

dynamic and kinetic points of view and (2) explore the existence of nontrivial electronic

edge states, which carry nonzero topological invariant, in 2D organometallic frameworks.

Specifically, this dissertation comprises the following four chapters of topics: (1) chemical

versus thermal folding of graphene edges; (2) quantum manifestations of graphene edge

stress and edge instability; (3) prediction of a two-dimensional organic topological insulator;

(4) prediction of a large gap flat Chern band in a two-dimensional organic framework.

Our work presented in the first two chapters not only has explained certain experimental

observations on graphene edges, but also has been confirmed by other researchers’ findings,

both experimentally and theoretically. The studies shown in the last two chapters predict

the existence of quantum spin Hall phase, a physical phenomenon that has been an exciting

area of recent research in condensed matter physics, in 2D organometallic frameworks, a

class of materials that are used to be mostly of interest to chemists. Therefore, we hope

that these new findings could lead to a marriage of condensed matter physics and organic

chemistry to foster an interdisciplinary research field, which will broaden the scientific and

technology impact of topological materials.
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CHAPTER 1

INTRODUCTION TO EDGE STABILITY

OF GRAPHENE AND TOPOLOGICAL

EDGE STATE OF 2D MATERIALS

1.1 Introduction

Graphene is the first stable, truly two-dimensional (2D) material system consisting of

a single layer of carbon atoms arranged in a hexagonal lattice. It attracted tremendous

attention right after the first relatively large isolated graphene sheet was peeled off from

graphite by using a Scotch-tape [1,2]. As a new playground for researchers with different

backgrounds, its stability is fundamental and critical. Within the past few years, many

results have been accumulated to approach the stability of graphene from different perspec-

tives, which fall into the two general types: long-range crystalline order in 2D structure

and stability of the free edges. As the first 2D membrane structure with only one atomic

layer of thickness ever known to mankind [2], graphene provides an ideal testbed [3,4] for

the classical Mermin-Wagner theorem on the existence of long-range crystalline order in

2D [5-7]. As the thinnest and strongest object ever obtained [8], graphene also becomes

the best specimen to study the stability of the free edges of 2D nano-structures. Moreover,

identifying unprecedented electronic properties of graphene is not only of scientific interest

but also of technological significance. Graphene could be well described by a simple tight

binding (TB) model with the nearest-neighbor hopping on a hexagonal lattice. By solving

this TB model, the E − k relation is found to be conically linear around six Dirac points

(three K and K’ points each) and form the so-called Dirac cone. Electrons and holes within

the Dirac cone are called Dirac fermions, which are massless just like photons. The massless

Dirac fermions [2,9,10], together with superior thermal [11] and electrical [12] conductance,

enable graphene to be promising for many applications. On the other hand, through study

of nontrivial topological states in graphene, Kane and Mele established the theoretical

foundation for a 2D topological insulator or quantum spin Hall (QSH) phase [13,14]. Their
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work has started a totally new research field of topological insulators in condensed matter

physics. However, people later found that the QSH effect in graphene is too small to be

observed in experiment due to a very weak spin-orbit coupling (SOC) of carbon atoms

[15-19]. To overcome this problem, our research group led by Prof. Liu at University of

Utah has recently used metal ions with strong SOC and organic ligands to reassemble the

2D atomic layer thick structure of graphene and proposed the concept of a 2D organic

topological insulator (OTI) [20-22]. These proposed 2D OTIs were predicted to have robust

topological states at their edges and high tunability. In the following part of this chapter,

more detailed information about the edge stability of graphene and the topological edge

states in the graphene-like 2D organometallic framework will be provided. Anyone who

wishes to go into depth of graphene and topological insulators is recommended to read

several excellent review articles [23-26].

1.2 Edge Stability of Graphene

The early work done by Landau, Mermin, and Wagner [5-7] has revealed that both

crystallographic and magnetic long-range ordering in a 2D lattice is theoretically impossible

at any finite temperature. In order to stabilize a 2D lattice, flexural phonons or out-of-plane

displacements must be present [3]. Some recent attention has also been paid to the relation

between the structural stability and electronic properties of graphene and people found that

electronic properties of graphene strongly depend on the morphology of graphene [27-29],

especially the structural properties of graphene edges [30-35].

As an ultrathin 2D structure only one atom thick, graphene has low bending rigidity. The

edges of suspended graphene could generally warp and fold easily due to large out-of-plane

thermal fluctuations at finite temperature [4,35-38]. Graphene with a folded edge could have

enhanced electronic conductivity [35] or exhibit quantum Hall (QH) phase [39]. Suspended

graphene synthesized in experiments usually has this folded edge structure. A suspended

free-standing graphene edge has been observed by transmission electron microscopy (TEM)

to fold over, forming a structure similar to one-half of a single-walled carbon nanotube

(SWCNT) [4,36]. Using high-resolution TEM, Liu et al. [38] have further shown that

both armchair and zigzag edges of graphene exhibit a folded edge state. Moreover, in situ

observation of multilayer graphene has demonstrated that both the armchair and zigzag

edges can form folded structures spontaneously at about 2400 K [37]. On the other hand,

a theoretical study using a coarse-grained hierarchical multiscale model has shown that the

folded edges are thermodynamically stable beyond a critical folded length [40], and a kinetic
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Monte Carlo simulation was consistent with the observed spontaneous folding process at

high temperature (∼2400 K) [37].

Moreover, the edges of graphene are under intrinsic nonzero edge stress and can also be

externally stressed, either stretched [8,41-45] or compressed [46], and form rippled structure

[47]. Effects of strain within graphene edges is equivalent to that of a local magnetic field

[48-50], which could play an important role in the transport properties of graphene [39,51]

and introduce QH phase into graphene [52]. These results indicate that one could utilize

strain to tune the properties of graphene. However, due to the one atomic layer thickness,

graphene undergoes buckling instability under compressive stress [53]; on the other hand;

it is the strongest material in the world and could sustain extremely large tensile strain

without breaking [8].

1.3 Topological Edge States in 2D Organometallic
Frameworks

Usually, quantum states of matter, i.e., superconductor and magnetic order, can be

described by some of their general properties, i.e., dimensionality and symmetry of order

parameter. This principle is called the Landau-Ginzburg theory in condensed matter

physics. However, the new quantum state discovered in 1980, which is called the QH state,

posed a question about the generality of the Landau-Ginzburg theory. In the experiment

conducted by von Klitzing et al. [54], the two-dimensional electron gas in a strong magnetic

field showed a precise quantization of Hall conductance

σxy = N
e2

h
(1.1)

on the edges while it is insulating in the bulk. In this system, the quantization of the

cyclotron orbits of electrons results in the famous Landau quantization, in which the energy

can be expressed as the following quantized form

En = (n+ 1/2)~ωc (1.2)

where ωc is the cyclotron frequency. When only the N Landau levels are filled, an energy gap

separating occupied and empty states would occur, which leads to an insulator. However, if

such a system has an external electric filed applied, then the cyclotron orbits would deform

and result in metallic edges with the quantized conductance as described above.
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This system is different from the ordinary insulator and cannot be described within

the Landau-Ginzburg theory and was later explained by Thouless et al. [55] by linking

the Hall conductivity, which is given by the Kubo formula, and a topological invariant,

which is called the Chern number. In mathematics, the Chern number is used to answer

the question of whether two ostensibly different vector bundles are the same or not. This

can be understood in analogy to the genus of 2D orientable surface g, which represents the

maximum number of cutting along nonintersecting closed simple curves without rendering

the resultant manifold disconnected. For example, a disc has g=0, while a coffee mug with

a handle, has g=1. Genus of a surface will sustain unless a hole closes or opens on it. It

turns out that we can understand the Chern number physically in the picture of the Berry

phase [56] of the electron wavefunctions in the reciprocal space. By integrating the Berry

curvature around the entire Brillouin zone, the Chern number should take integer values in

units of e2/h, independent of material details. Also, unless a bandgap closes or opens, the

Chern number will not change with the variation of a Hamiltonian.

In order to realize QH phase in a material without net magnetic field applied, Haldane

[57] proposed a model and applied it to the lattice of graphene, which was called single

layer graphite at that time in 1988, and found nonzero Hall conductance in the lattice.

The basic idea in Haldane’s model is to break the time reversal symmetry in order to lift

the degeneracy at the Dirac point. By including next-nearest-neighbor hopping, a gap is

introduced to the graphene lattice by breaking the time reversal symmetry and a QH state

was then established.

Then, after the experimental discovery of graphene [1], Kane and Mele [14] revisited the

Haldane model and imagined a new situation that the time reversal symmetry restored but

with the spin included. In a gapped system with time reversal symmetry, which exhibits a

smoothly deformable but nonzero energy gap and a Chern number of zero, the existence of

an edge state inside the gap should meet the requirement of the Kramers’ theorem that all

eigenstates at point k=0 and k=π/a, which are called the time reversal symmetry invariant

momenta, should have at least twofold degeneracy. For such a system without SOC, the

requirement of the Kramers’ theorem is always satisfied because states with different spins

are degenerate. But for such a system with SOC, the degeneracy will be lifted at these

two points mentioned above. Pairs of these separated states are called Kramers pairs. If

there is only one Kramers pair, the edge states of spin-up and spin-down cannot open a

gap without violating the Kramer’s theorem and will form a 1D Dirac cone within the bulk

gap. But if there are two Kramers pairs, the edge states of spin-up and spin-down are
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fourfold degenerated at the k=0 point. After opening a gap at this point, the requirement

of degeneracy is still fulfilled. Therefore, the time-reversal-symmetry-conserved systems

with odd or even Kramers pairs can be characterized by a new topological invariant with

1 or 0, respectively, which is called the Z2 number. Sheng et al. [58] demonstrated that,

for a 2D topological insulator with perpendicular spin, its Chern number, which is defined

as the sum of Chern integers for both spin-up and spin-down bands, must be zero in order

to protect the time reversal symmetry. But the spin Chern number, which is defined as

the difference between the Chern integers, has a nonzero value. This rule could be used to

identify 2D topological insulators from the ordinary insulators.

The Kane-Mele model [14] indicates that graphene should host the QSH phase. However,

as mentioned above, carbon has very weak SOC, which results in unobservable QSH effect

in graphene. To enhance the QSH effect in graphene, one obvious method is to introduce

a heavy metallic element into graphene either by substitution or insertion. But it is very

difficult, if not impossible, to synthesize such a 2D structure with adequate concentration

of heavy metal atoms. Recently, the concept of OTI was proposed by our group [20-

22,59], in which heavy metal atoms are linked by planar organic (carbonic) ligands to

form well-crystallized 2D structure. The existence of nontrivial edge states inside the SOC

gap [21,22] and flat Chern band [20] is theoretically demonstrated in 2D organometallic

frameworks formed by metal atoms and benzene rings. A recent experimentally synthesized

organometallic framework [60] is also predicted to be an OTI [59].

1.4 Summary

This dissertation is organized as follows. In Chapter 2, we present results of MD

simulation of the edge folding process of both suspended single-layer (SLG) and double-layer

graphene (DLG). In this study, we have investigated the kinetics of the graphene edge folding

process. The lower limit of the energy barrier is found to be 380 meV/Å (or about 800

meV per edge atom) and 50 meV/Å (or about 120 meV per edge atom) for folding the

edges of intrinsic clean SLG and DLG, respectively. However, the edge folding barriers can

be substantially reduced by imbalanced chemical adsorption, such as of H atoms, on the

two sides of graphene along the edges. Our studies indicate that thermal folding is not

feasible at room temperature (RT) for clean SLG and DLG edges and is feasible at high

temperature only for DLG edges, whereas chemical folding (with adsorbates) of both SLG

and DLG edges can be spontaneous at RT. These findings suggest that the folded edge

structures of suspended graphene observed in some experiments are possibly due to the
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presence of adsorbates at the edges.

In Chapter 3, we further investigate the effects of quantum electronic edge stress on the

stability of graphene edge, which provides new insights to the understanding of mechanical

stability of graphene in addition to the prior study using the classical MD method. We

have performed first-principles calculations of graphene edge stresses, which display two

interesting quantum manifestations absent from the classical interpretation: the armchair

edge stress oscillates with a nanoribbon width, and the zigzag edge stress is noticeably

reduced by spin polarization. Such quantum stress effects in turn manifest in mechanical

edge twisting and warping instability, showing features not captured by empirical potentials

or continuum theory. Edge adsorption of H and Stone-Wales reconstruction is shown to

provide alternative mechanisms in relieving the edge compression and hence to stabilize the

planar edge structure.

In Chapter 4, we predict the existence of novel quantum transport properties at the

edge of a newly synthesized π-conjugated carbonic 2D lattice. TIs are a class of materials

exhibiting unique quantum transport properties with potential applications in spintronics

and quantum computing. To date, all of the experimentally confirmed TIs are inorganic

materials. Recent theories predicted the possible existence of OTI in 2D organometallic

frameworks. However, those theoretically proposed structures do not naturally exist and

remain to be made in experiments. Here, we identify a recent experimentally made 2D

organometallic framework, consisting of π-conjugated nickel-bis-dithiolene with a chemical

formula Ni3C12S12, which exhibits nontrivial topological states in both a Dirac band and a

flat band, therefore confirming the existence of OTI.

In Chapter 5, we examine the tunability of edge states of 2D organometallic frameworks

by using a different metal atom and molecular ligand than those of the lattice studied in

Chapter 4. The recent theoretically predicted topological states and flat Chern band (FCB)

in 2D organometallic frameworks could penetrate several areas in condensed matter physics,

organic chemistry, and materials science. The high tunability of such 2D frameworks

by using different metal atoms and molecular ligands could greatly expand the family of

topological materials and significantly ease the process of designing of such materials with

specific properties. Here, we proposed a design of a 2D organometallic lattice, consisting

of π-conjugated thallium ions and benzene ring with a chemical formula Tl2Ph3, which

exhibits nontrivial topological states with a large gap in both a nearly flat band around the

Fermi level and a Dirac band. We note that the Tl2Ph3 lattice has the largest spin orbit

coupling (SOC) gap among all the theoretically proposed organic topological insulators so
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CHAPTER 2

CHEMICAL VERSUS THERMAL

FOLDING OF GRAPHENE

EDGES

2.1 Introduction

Graphene has attracted much recent interest due to its fascinating physical and chemical

properties [1].One fundamental question for graphene is its thermal and chemical stability,

since this has important implications for its practical applications. As an ultrathin two-

dimensional structure only one-atomic-layer thick, graphene can undergo large out-of-plane

thermal fluctuations [2]. The presence of free edges makes the graphene susceptible to

edge defects and chemical impurities [3] as well as to mechanical edge warping and twist-

ing instability [4-6]. Furthermore, several recent experiments [7-10] have observed folded

graphene edges, which raises several interesting questions: (1) Are the folded edges an

intrinsic or extrinsic property of graphene edge stability? (2) What is the kinetic energy

barrier associated with the folding process? (3) How does the folding process depend on the

chemical environment? Our aim here is to answer these fundamental questions by comparing

the thermal and chemical folding processes at graphene edges, using molecular simulations.

It is worth pointing out that understanding the graphene edge folding process is not only

of scientific interest, but also of technological importance. For example, one very recent

experiment has shown that the transport properties of open and closed graphene edges are

very different, with the closed edge exhibiting a much higher conductivity [11].

A suspended free-standing graphene edge has been observed by transmission electron mi-

croscopy (TEM) to fold over [7, 8], forming a structure similar to one-half of a single-walled

carbon nanotube (SWCNT). Using high resolution TEM, Liu et al. [9] have further shown

that both armchair and zigzag edges of graphene exhibit a folded edge state. Moreover, in

situ observation of multilayer graphene has demonstrated that both the armchair and zigzag

edges can form folded structures spontaneously at about 2400 K [10]. On the other hand,

a theoretical study using a coarse-grained hierarchical multiscale model has shown that the
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folded edges are thermodynamically stable beyond a critical folded length [12], and a kinetic

Monte Carlo calculation was consistent with the observed spontaneous folding process at

high temperature (∼2400 K) [10]. Recently, quantum molecular dynamics simulations

also uncovered the roles of edge reconstruction, carbon vacancies, and interstitials in the

thermal folding process of double-layer graphene (DLG) at high temperature (1000 K),

which explained why the closed edge structure forms under Joule heating only if the sample

is not irradiated by high-energy electrons [13]. Another simulation studied folding of a

Y-shape graphene ribbon at high temperature [14].

Although previous theoretical studies [10, 12, 13] have confirmed folding of single-layer

graphene (SLG) and DLG edges at high temperatures, the kinetics associated with the

graphene edge folding process, which determine the feasibility of edge folding at different

temperatures (including room temperature) and in different chemical environments, remains

unexplored. Most importantly, the energy barriers associated with the folding processes of

both SLG and DLG edges remain unknown. We noticed that the graphene preparation

methods used in Refs. [7-9] all involved initial working in solution without subsequent

purification steps. For example, the graphene membranes prepared by Meyer et al. [7]

were treated in water, isopropanol, acetone, and liquid carbon dioxide, while Liu et al.

[9] used heat treatment of graphite powder dispersed in ethanol by ultrasonication before

dropping the resulting graphene onto a grid. Thus, these graphene membranes may be

polluted by adsorbates, which may chemically assist the graphene edge folding processes

[14]. Therefore, besides thermal folding of clean graphene edges, i.e., a thermally activated

process, chemical folding of graphene edges with adsorbates, i.e., a chemisorption-assisted

process should be considered. In particular, we must determine the energy barriers for

thermal versus chemical folding of graphene edges, to assess the feasibility of graphene edge

folding processes at different temperatures and in different chemical environments.

2.2 Methodology

We have carried out extensive molecular dynamics simulations to derive the limiting

kinetic energy barriers for edge folding processes of both SLG and DLG, using a modified

form of the bond-order potential due to Brenner et al. [15] and a similar setup as before

[14]. Our own Lennard-Jones (L-J) potential parameters [14] were developed to give a

∼42 meV/atom interlayer cohesive energy for graphite, in accordance with experiment

[16]. We studied H adsorption as a simple model system for chemical folding, using a new

bond-order term for C-H to give a H adsorption energy of ∼0.9 eV on graphite, as predicted
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by first-principles calculations [14]. (The original Brenner potential predicted a H adsorption

energy about 1.7 eV higher.) For all the MD simulations, periodic boundary conditions were

only employed in the direction along the edge. The simulations were performed at T = 150

K in order to suppress thermal fluctuations. We note that because the edge folding energy

barrier comes mainly from bending energy, involving no chemical bond breaking/formation

energy, it can be well described by a classical potential. Thus, we opted to use a classical

potential instead of a first-principles method to derive the folding energy barrier in order to

save computational time. In the unfolding process, there will be bond breaking associated

with van der Waals interlayer interactions. So one may expect our calculated unfolding

barriers to be less accurate than the calculated folding barriers, but this will not affect our

conclusions on edge folding feasibility, which is solely determined by the folding barriers.

2.3 Thermodynamic Driving Force for Edge Folding

Before exploring the kinetics associated with the graphene edge folding process, we first

study the thermodynamic driving force for edge folding because the folded edge structure

can be more stable than the flat edges. Figure 2-1 illustrates the energy minimization

simulations to show the stability of the folded graphene edge. We generate an edge-folded

SLG sheet with an overlapping length l and folding length L, as shown in Figure 2-1a.

Then, we release the folded edge by moving the upper portion toward the right along the

+x-direction to reduce l in steps of 1 Å (from Figure 2-1a1 to Figure 2-1a3), and the

potential energy is calculated at each step, as shown in Figure 2-1b. The folded edge energy

per edge length relative to the unfolded edge is

Ee = γi × l + γb (2.1)

where γi and γb are the interlayer van der Waals (vdW) bonding energy of the overlapping

portion and the bending energy of the folding portion, respectively. γb is a constant because

the shape of the folding portion remains the same with almost constant L = 22 Å, as l is

reduced (see Figures 2-1a1-3). In calculating the potential energy as a function of l in Figure

2-1b, the energy of the flat SLG is set as the zero point of the energy (shown in Figure 2-1b

as a black dashed line).

The data show a nice linear relation as expected, and the interlayer bonding energy

obtained from the linear fitting (the slope of the red solid line in Figure 2-1b) gives γi ≈ 15

meV/Å2, or about 42 meV/atom, consistent with the L-J potential used. The Ee value at l

= 0 gives the bending energy γb ≈ 306 meV/Å, or about 625 meV/atom. By extrapolation,
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Figure 2.1. Energy minimization simulation of the edge-folded SLG. (a) Structures of
the edge-folded SLG with different lengths of overlap portion. L and l are overlapping
length and folding length, respectively. The grey balls are carbon atoms. The red dashed
line represents the reference plane for measuring l and L. (b) The folded edge energy as a
function of folding length. Dotted line: energy of flat graphene (set to be zero). Solid line:
linear fit to the data (solid black squares). The inset shows the fine structure of the E-l
curve.
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the folded edge of the SLG is seen to be more stable than the flat edge if l > 20 Å, when

the energy gain from the interlayer vdW bonding of the overlapping portion overcomes the

energy cost from the bending of the folding portion. In addition, the potential energy is

microscopically affected by the atomic stacking of the overlapping portion, which leads to

a periodic fluctuation of the Ee − l curve, as shown in the inset of Figure 2-1b.

2.4 Kinetic Barriers for Thermal Folding

Even though the folded edge structure can be thermodynamically more stable than the

flat edge, the folding process may still be prohibited by a large kinetic barrier, especially

for a thermally activated process. Next, we derive the energy barriers for the edge folding

processes. We note that we do not attempt to directly simulate the folding process of a

graphene edge, because the process is too complex and requires much too long a simulation

time. So, instead, we will use MD simulation as an effective method to derive the limiting

kinetic barriers for edge folding. We consider that the folding starts locally at one place

then spreads around the whole edge (like a zipping effect). The initial local folding is

thus the rate-limiting step and the barrier, which should be defined by energy per length,

largely determines the overall folding probability because the remaining edges have much

smaller barriers per length. However, it is very difficult (if not impossible) to determine

this rate-limiting barrier because it may not have a unique value, but rather depend on

how the folding process actually occurs and change with edge length. On the other hand,

we can establish the lower-bound of this barrier by assuming the edge folds collectively, or

in other words, as soon as the initial folding starts somewhere, the remaining edges follow

immediately, as we have done here.

For convenience, the unfolding process of SLG, which is the reverse process of folding,

is simulated in order to obtain the energy barrier of folding as shown in Figure 2-2. First,

the atomic positions in a folded SLG edge are relaxed for 30 ps (Figure 2-2a1). Then,

a horizontal force is applied (the force is applied every 30 ps and sustained for 0.2 ps

periodically) on all the carbon atoms in the upper portion (both the overlapping and folding

portions) of the folded edge along the +x-direction. The long simulation time of ∼30 ps is

used to make sure that local equilibration is reached each time after the force is applied, so

as to obtain the lowest energy configuration at a given folding position (i.e., the degree of

fold), and hence to guarantee that the lowest barrier is obtained, in the unfolding process

as well as in the folding process.

The energy per edge atom as a function of time during the unfolding process is shown
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Figure 2.2. Unfolding process of SLG. (a) Structures of SLG during classical molecular
dynamics simulation of the unfolding process (from 1 to 4). (b) The folded edge energy as a
function of time during the unfolding process (black and red solid lines represent armchair
and zigzag edges, respectively). The energy of the flat SLG is set to be zero.
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in Figure 2-2b. Initially, Ee increases due to a decrease in the interlayer bonding vdW

energy by virtue of the reduction in the area of the overlapping portion, and subsequently

decreases due to the decrease in bending energy associated with unfolding the folding

portion. Finally, the SLG sheet becomes flat (Figure 2-2a3). The energy barriers for

edge folding of the SLG (in reference to the flat edge, Figure 2-2a4) are approximately 360

meV/Å (or 780 meV/atom) and 380 meV/Å (or 830 meV/atom) for armchair and zigzag

edges, respectively; these values are about 30 times larger than the thermal energy per atom

at room temperature (RT, ∼26 meV/atom).

The folded-edge structure can also be obtained by bonding of the top and bottom edges

of the DLG (Figure 2-3). In this case, both edges undergo a much smaller bending to form

the folded edge than in the SLG folding process, and hence the energy barrier is expected

to be lower. To obtain the energy barrier, a DLG with open edges is first relaxed for 30

ps (Figure 2-3a1); periodic forces of opposite directions are then applied vertically on the

edge atoms along the z-direction to push them toward each other (Figure 2-3a2) to form

the closed-edge structure (Figure 2-3a3). The change in potential energy is calculated and

shown in Figure 2-3b. The energy barriers for DLG to form the closed edge structures are

about 55 meV/Å (or 120 meV/atom) for both armchair and zigzag edges.

Given the energy barrier, according to transition-state theory, the possibility of edge

folding P follows

P ≈ νe−Eb/kBT (2.2)

where Eb, kB , ν, and T are the energy barrier, Boltzmann constant, attempt frequency,

and temperature, respectively. ν is related to the vibrational frequency of edge atoms.

Since the edge atoms have to vibrate in a collective manner in order to fold, the attempt

frequency is expected to be much smaller than the single atom vibration frequency (the

typical order of the atomic vibration frequency is ∼1013 s-1). At RT, the e−Eb/kBT factor

is about ∼10-14 for the folding of SLG, and ∼10-2 for the folding of DLG. Consequently, at

RT the probability of thermal edge folding of both SLG and DLG is very small. But at high

temperatures, thermal folding of DLG is feasible. This is consistent with the experiments

of Huang et al. who observed spontaneous edge folding of DLG at kBT≈200 meV [10] and

quantum molecular dynamics results at kBT≈90 meV [13].
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Figure 2.3. Folding process of DLG. (a) Structures of DLG during classical molecular
dynamics simulation of the folding process (from 1 to 4). (b) The folded edge energy as
a function of time during the folding process (black and red solid lines represent armchair
and zigzag edges, respectively). The energy of the flat DLG is set to be zero.
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2.5 Kinetic Barriers for Chemical Folding

Next, we explore the chemisorption-assisted edge folding process (chemical folding)

since, as discussed above, atomic and molecular adsorbates are probably involved in the

experimental folding process. It has been shown that chemisorption of H atoms leads to

a change in the hybridization of the carbon atom where H is adsorbed from sp2 to sp3

[14]. If H atoms are adsorbed only on one side of graphene (or on both sides with different

coverage), then they will introduce a tensile stress in the graphene sheet providing a driving

force for rolling up the edge of graphene [14]. Assuming one-side adsorption, the stress

increases with H coverage and goes up to 800 meV/Å2 [14] at the experimental upper limit

of H coverage on a graphite surface [17]. Recent experiments have also achieved scrolling

up of flat graphene by atom/molecule adsorption [18, 19]. To test the feasibility of chemical

folding of graphene edges, for simplicity, we use H atoms adsorbed on one side of graphene

in order to explore the effect of adsorbates. We first derived the energy barrier as a function

of H coverage (Figure 2-4), from the energy curves like those in Figures 2-2 and 2-3 for the

process without H (the Ee − l curve for the SLG edge folding at 5% H coverage is shown

in Figure 2-5 as an example). Our results show that the energy barrier of folding decreases

significantly as H coverage increases. At ∼14% H coverage, the energy barrier vanishes,

which means that the edge of SLG can fold spontaneously at this H coverage or higher.

Furthermore, we performed MD simulations to directly observe the chemical folding

process. First, a sheet of SLG without adsorbate is relaxed for 30 picoseconds. Then

hydrogen atoms at ∼50% coverage [20] are absorbed on the bottom side of suspended

graphene with a random distribution. Driven by the stress induced by hydrogen adsorption,

the edge begins to bend up and finally forms the folded structure.

Similarly, a DLG is relaxed for 30 picoseconds, and then 30% H coverage [20] is in-

troduced at the near-edge region of both layers. The edge of the upper layer bends down

while the edge of the bottom layer bends up and they meet and bond together to form

a closed structure. Finally, the curved portion expands to release strain energy until

∂Estrain/∂L = −∂EvdW /∂L, where Estrain and EvdW are the bending strain energy and

the interfacial vdW bonding energy, respectively (a movie showing this process is available

in the ESM). These results demonstrate that the edge of graphene may fold spontaneously

with sufficiently high one-side (or imbalanced two-side [21]) hydrogen adsorption at room

temperature, indicating a spontaneous chemical folding process. It is interesting to see that

chemical adsorption of H promotes the edge folding of DLG, while in contrast, vacancies

and impurities inhibit the edge folding of DLG [13].
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Figure 2.5. The energy barrier for SLG edge folding at 5% H coverage.
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Although we have only studied H adsorption here, other adsorbates may have the same

effect. One basic condition is for the adsorbates to induce a tensile surface stress and fold

the graphene by converting the C bonding configuration from sp2 to sp3. One example is

F, which has previously been shown to fold graphene nanoribbons into nanotubes [14]. We

also note that if graphene is on a substrate other than graphite, our approach will work

best with a very weak interaction between graphene and the substrate, such as the van der

Waals type of interaction found for graphite itself.

2.6 Conclusion

In conclusion, we have derived for the first time the kinetic energy barriers for bending

of SLG and DLG edges to form a closed edge structure. Based on the energy barriers,

we conclude that thermal edge folding of SLG is generally not feasible, while thermal edge

folding of DLG is feasible at high temperature but not at room temperature. However, edge

folding barriers can be greatly reduced by imbalanced chemisorption of atoms or molecules

(as demonstrated for H) on the two sides of graphene, which may even lead to spontaneous

edge folding of both SLG and DLG at room temperature. Our findings indicate that the

formation of suspended graphene with folded edges as observed in some experiments at

room temperature [7-9] may involve assistance by adsorbates.
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CHAPTER 3

QUANTUM MANIFESTATIONS OF

GRAPHENE EDGE STRESS AND

EDGE INSTABILITY: A

FIRST-PRINCIPLES

STUDY

3.1 Introduction

Graphene, a two-dimensional (2D) single layer of carbon atoms, has exhibited unique

electronic properties [1] and potential applications in electronic devices [2]. Earlier studies

have focused on characterizing the unusual electronic and transport properties of graphene,

particularly as a massless Dirac fermion system [1,2]. Some recent attention has been shifted

to the structural stability of graphene [2-5]. On one hand, as a 2D membrane structure,

graphene provides an ideal testing ground [3,4] for the classical Mermin-Wagner theorem

on the existence of long-range crystalline order in 2D [6,7]. On the other hand, the free

edges of graphene are amenable to edge instabilities [5,8-10]. The graphene edge stability is

defined by two fundamental thermodynamic quantities: edge energy and edge stress. The

edge of a 2D structure can be understood in analogy to the surface of a 3D structure [11,12]:

the edge (surface) energy accounting for the energy cost to create an edge (surface) defines

the edge (surface) chemical stability; the edge (surface) stress accounting for the energy

cost to deform an edge (surface) defines the edge (surface) mechanical stability. First-

principles calculations showed that chemically, the armchair edge is more stable with a lower

energy, while the zigzag edge is metastable against reconstruction [8]. Empirical-potential

calculations showed that both intrinsic edges are under compressive stress, rendering a

mechanical edge twisting and warping instability [10].

Usually, stress and mechanical instability are understood as phenomena of classical

mechanics, but they are expected to be affected by quantum effects which become prominent

at nanoscale. So far, however, quantum effects have been mostly shown for electronic
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structure and energetic quantities of low-dimensional nanostructures. Here, we demonstrate

an interesting example of quantum manifestations of mechanical quantities in graphene

edge stress. Using first-principles calculations, we predict that the armchair edge stress in a

nanoribbon exhibits a large oscillation with ribbon width arising from quantum size effect,

while the zigzag edge stress is reduced by spin polarization. Such quantum effects on edge

stress in turn manifest in graphene edge mechanical instability, with “quantum” features

that apparently cannot be described by empirical potentials or continuum theory.

3.2 Intrinsic Edge Stress of Graphene

Our calculations were performed using the density functional theory (DFT) method as

implemented in the VASP code [13]. The supercell technique was adopted to model the

graphene nanoribbons (GNR), with a vacuum layer > 15Å. We used a plane-wave energy

cutoff of 500 eV and optimized structure until the atomic forces converged to < 10meV/Å.

The edge energy is calculated as Eedge = (Eribbon − Eatom)/2L, where Eribbon is the total

energy of the graphene nanoribbon, Eatom is the energy per atom in a perfect graphene,

and L is the length of edge. The edge stress is calculated as σedge = σxx/2, where σxx

is the diagonal component of supercell stress tensor in the x-direction (defined along the

edge), which is calculated using the Nielsen-Martin algorithm [14]. All other components of

stress tensor vanish. We note that DFT is suitable for calculating ground-state properties

of lattice energies and stresses, to which the nonlocal many-body effects are not important.

Figure 3.1 shows the edge energy and edge stress of armchair edges as a function of ribbon

width from ∼3.5 to 48Å. One notices that both edge energy and edge stress oscillate with the

increasing width having a period of 3 but out of phase with each other. The oscillations are

originated from the quantum confinement effect, as seen in the similar oscillations of electron

band structures [15-18]. The oscillation of edge energy decays quickly with the increasing

width and converges to ∼1.0 eV/Å, which agrees well with the previous first-principles

values [8]. In contrast, the oscillation of edge stress decays much slower with a mean value

of ∼−1.45 eV/Å (using a negative sign as the convention for compressive stress). The much

larger oscillation in edge stress than in edge energy is possibly caused by the fact that edge

stress equals to the derivative of edge energy with respect to strain so that stress is much

more sensitive to the width-dependent quantum confinement effect. There is also a slight

revival effect in the stress oscillations at ∼40Å width, whose origin is not clear and needs

further study.

Figure 3.2 shows the edge energy and edge stress of GNR zigzag edges as a function of
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Figure 3.1. The armchair edge stresses and edge energies of graphene nanoribbons as a
function of ribbon width. Inset: schematics of the nanoribbon; the rectangle marks one
unit cell (supercell) of the ribbon.
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Figure 3.2. The AFM and PM zigzag edge stresses and edge energies of graphene
nanoribbons as a function of ribbon width. Inset: schematics of the nanoribbon; the
rectangle marks one unit cell (supercell) of the ribbon.
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ribbon width from ∼5.0 to 85 Å. In this case, both edge energy and edge stress show very

weak width dependence and converges quickly, again consistent with their corresponding

electronic-structure behavior [15-18]. However, the zigzag edge is known to have an antifer-

romagnetic (AFM) ground state [17]. The AFM edge energy is calculated to be ∼1.2 eV/Å,

about 0.2 eV/Å lower than the paramagnetic (PM) edge energy [8,9,19]. Thus, we have

calculated the spin dependence of edge stress and found that spin polarization reduces the

compressive stress from ∼ −0.7 eV/Å in the PM edge to ∼ −0.5 eV/Å in the AFM edge.

Our first-principles stress calculations confirm qualitatively the recent empirical-potential

results [10] that both edges are under compressive stress. However, there are also some

significant differences. Two quantum manifestations of edge stress stand out, which are

absent from the empirical prediction. One is the quantum oscillation of armchair edge

stress, and the other is the spin reduction of zigzag edge stress. The physical origin of edge

energy and edge stress is associated with the formation of one dangling bond on each edge

atom. The repulsive interaction between the dangling bonds is believed to be one origin

for the “compressive” edge stress. In addition, in the armchair edge, it is well-known [20]

that the edge dimers form triple −C≡C− bonds with a much shorter distance ∼1.23 eV/Å

(according to our calculation) adding extra compressive stress to the edge, while in the

zigzag edge, spin polarization further reduces the compressive stress. Consequently, the

armchair edge has a much larger compressive stress ∼ −1.45 eV/Å than the zigzag edge

∼ −0.5 eV/Å, in contrast to the empirical prediction of a smaller compressive stress in the

armchair edge (∼ −1.05 eV/Å) than in the zigzag edge (∼ −2.05 eV/Å) [10].

The quantum effects in edge stress will in turn modify the mechanical edge instability.

The compressive edge stress means the edge has a tendency to stretch. If we apply a uniaxial

in-plane strain to a nanoribbon along the edge direction, the strain energy can be calculated

as [10]

Estr = 2τeLε+ EeLε
2 +

1

2
EsAε2 (3.1)

Here, A is the ribbon area, L is the edge length, τe is the edge stress, Ee is the 1D edge

elastic modulus in a 2D nanoribbon, in analogy to the 2D surface elastic modulus in a 3D

nanofilm [21], and Es is the 2D sheet elastic modulus. Since τe is negative, for small enough

tensional strain ε (positive), the negative first term (linear to ε) in Eq. 3.1 can always

overcome the positive second and third terms (quadratic to ε) to make Estr negative. So,

the ribbon is unstable against a small amount of stretching along the edge direction.
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Fitting first-principles calculations, by manually deforming the sheet and ribbon along

the edge direction, to Eq. 3.1, we obtained Es ≈21.09 eV/Å2, Ee(armchair)≈3 eV/Å and

Ee(zigzag)≈24 eV/Å with τe already calculated directly (see Figs. 3.1 and 3.2). Our Es

value is in good agreement with the experiment [22] and empirical result [10], but Ee is

notably different from the empirical results [10].

Another effective way to stretch the edge of a 2D sheet is by out-of-plane edge twist-

ing and warping motions, which are barrierless processes. For example, assuming a si-

nusoidal edge warping with displacement µe = asin(2πx/λ) of amplitude a and wave-

length λ, which decays exponentially into the sheet as e−y/l (see inset of Figure 3.3),

where l is the decay length, Shenoy et al. have shown that minimization of strain en-

ergy leads to characteristic length scales of such warping instability as / ≈ 0.23λ and

a ≈
√
(−λτe)/(1.37Eb + 14.8Ee/λ). Using their empirical-potential values of τe, Ee, and

Es, they estimated that the warping magnitude of the armchair edge is smaller than that

of the zigzag edge, and both are larger than typical thermal fluctuations [10].

Our first-principles predictions, however, are different in several ways. First, absent

from empirical prediction, the quantum oscillation of the τe of the armchair edge gives rise

to an oscillating armchair edge warping amplitude for a given wavelength as a function of

nanoribbon width, as shown in Figure 3.3(a). Second, the mechanical undulation of zigzag

edges induced by compressive edge stress is comparable to thermal fluctuations [3,4], as

shown in Figure 3.3(b), and hence, the two are difficult to distinguish.

Because the compressive edge stress is partly originated from the dangling bond, natu-

rally, we may saturate the dangling bonds to relieve the compressive stress. We have tested

this idea by saturating the edge with H that indeed confirmed our physical intuition. For

the armchair edge in a 1nm wide ribbon, we found H saturation changes the edge stress

from −1.42 eV/Å to −0.35 eV/Å; for the zigzag edge in a 2.0 nm wide ribbon, it changes

the edge stress from −0.42 eV/Å to +0.13 eV/Å. Thus, the H edge saturation, or saturation

by other molecules in general, is expected to relieve the edge compression and even reverse

the compressive stress in a zigzag edge to tensile.

3.3 Edge Reconstruction and Adsorption

Surface reconstruction has long been known as an effective mechanism in relieving surface

stress [23]. Thus, we have also investigated possible edge reconstructions in relieving the

edge compressive stress. The Stone-Wales (SW) defect [24] appealed to us because a SW

defect in 2D is equivalent to a dislocation core in 3D that is known as a common stress

relief mechanism. Figure 3.4(a) shows the calculated armchair edge stress along with edge
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Figure 3.3. Ripple amplitude along graphene edge (a) Armchair edge ripple amplitude
versus ribbon width for λ=50Å. Inset: Schematics of ripple formation along the armchair
and zigzag edge. (b) Armchair and zigzag edge ripple amplitude as a function of λ. Light
blue band shows the typical range of thermal fluctuation.
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Figure 3.4. Edge reconstruction as a stress relief mechanism: (a) The armchair edge
stresses (with linear fit) and edge energies as a function of edge SW defect concentration.
(b) The optimized ribbon structure at the 50% SW defect concentration.
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energy as a function of one type of SW defect (7-5-7 ring structure) concentration. Figure

3.4(b) shows an example of the optimized edge structure at the 50% defect concentration.

The edge stress increases linearly from compressive to tensile with the increasing SW defect

concentration. The most stable edge structure is at ∼25% defect concentration where the

edge stress is very small and slightly compressive. A small stress value indicates that this

chemically stable edge structure (with the lowest edge energy) is also most mechanically

stable against deformation.

Figure 3.5(a) shows the ground state AF zigzag edge stress along with edge energy

as a function of another type of SW defect (5-7 ring structure) concentration. Figure

3.5(b) shows an example of the optimized edge structure and spin charge density at the

50% defect concentration. The edge stress increases linearly from compressive to tensile

with the increasing defect concentration, the same as the case of the armchair edge [Figure

3.4(a)], but the edge energy decreases monotonically with the most stable edge having 100%

of defects, in agreement with a recent first-principles calculation [8]. The initial compressive

edge stress (∼ −0.5 eV/Å) is completely reversed to a large tensile value of ∼1.2 eV/Å in

the most stable edge. Also, the 100% defected edge becomes non-spin-polarized. In general,

the zigzag edge spin decreases continuously with the increasing SW defect concentration,

similar to the behavior found previously for other types of defects [25].

3.4 Conclusion

In conclusion, quantum effects have been widely shown for electronic structures and ener-

getic quantities of low-dimensional nanostructures. We demonstrate, in addition, quantum

manifestations of mechanical quantities in graphene edge stress. We show that quantum

confinement can lead to stress oscillations, and spin polarization can reduce stress, which

in turn “quantum mechanically” modifies the edge twisting and warping instability. We

further show that H edge saturation and SW edge reconstruction cannot only improve

the “chemical” stability of graphene edges by lowering the edge energy, but also enhance

their “mechanical” stability by converting compressive edge stress towards tensile and hence

stabilizing the planar edge structure. Our first-principles findings, which cannot be captured

by classical methods, provide new insights into the understanding of mechanical stability

of graphene. We expect the quantum manifestation of mechanical properties such as stress

to exist generally in many low-dimensional nanostructures.

Indeed, after the original work of graphene edge stress, our group has developed a

rigorous theoretical framework underlying a new concept of “quantum electronic stress
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Figure 3.5. Edge reconstruction as a stress relief mechanism: (a) The zigzag edge stresses
(with linear fit) and edge energies as a function of SW defect concentration. (b) The
optimized ribbon structure and spatial distribution of spin density (charge density difference
between spin-up and spin-down states in units of µBÅ

−2) of the AFM ground state at the
50% SW defect concentration.
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(QES)” [27], based on density functional theory, which describes the lattice stress purely

induced by electronic excitation and perturbation in the absense of lattice strain. Junyi Zhu

studied QES induced by charge doping (electrons or holes) in semiconductors and proposed

a strategy to enhance doping by strain [28,29]. Miao Liu studied surface QES induced by

quantum size effect in metal nanofilms [30,31], similar to edge stress discussed here.
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CHAPTER 4

PREDICTION OF 2D ORGANIC

TOPOLOGICAL INSULATOR

4.1 Introduction

The concept of topological order in condensed matter physics provides a new perspective

for understanding the origin of different quantum phases and has generated intense recent

interest in searching for nontrivial topological materials, so-called topological insulators

(TIs)[1-13]. The defining signature of a 2D (3D) TI is its nontrivial bulk band topology

around a global SOC gap with corresponding topological edge (surface) states within the

SOC gap. These characteristic edge (surface) states have a topological origin, which are

protected from elastic backscattering and localization, and hence hold potential for appli-

cations in spintronics and quantum computation devices. To date, all of the experimentally

confirmed TIs are based on inorganic materials[1-13]. Recently, theories have predicted the

possible existence of OTI in 2D organometallic frameworks[14-16], but those theoretically

proposed structures remain to be synthesized in the experiments.

In this work, we report the identification of nontrivial topological states in an exper-

imental sample of 2D organometallic framework, Ni3C12S12 lattice (Figure 4.1), recently

synthesized by Kambe et al. [17]. First-principles calculations of band structure, edge

state, Chern number, and spin Hall conductance are performed to reveal the nontrivial

topology in this lattice structure. A single-orbital tight-binding (TB) model is also given

to illustrate its SOC gap opening mechanism.

4.2 Methodology

First-principles calculations are carried out within the framework of the Perdew-Burke-

Ernzerhof generalized gradient approximation using VASP [18]. All the calculations are

performed with a plane-wave cutoff of 500 eV on the 7×7×1 Monkhorst-Pack k -point mesh.

The vacuum layer is 15 Å thick to ensure decoupling between neighboring slabs. During

structural relaxation, all atoms are relaxed until the forces are smaller than 0.01 eV/Å.
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Figure 4.1. Atomic structure of the Ni3C12S12 lattice. The solid lines show the unit cell,
and the dashed lines outline the kagome lattice.
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4.3 Topological Edge States in Ni3C12S12 Lattice

Figure 4.1 shows the optimized 2D Ni3C12S12 lattice structure, which adopts a kagome

lattice. The optimized lattice constant is found to be L=14.63 Å, in good agreement with

the experimental value (14∼15Å) [17]. Figure 4.2a shows the band structure of Ni3C12S12

lattice with SOC around the Fermi level. We can clearly see the typical kagome bands as

shown previously in a TB model [19], consisting of one flat band above two Dirac bands

(top three red bands in Figure 4.2a, all of the bands are spin degenerated), which are well

separated from the other black bands. Figure 4.2b shows the zoom-in band structures of

the three kagome bands. The band gap of the Dirac band is ∆1=13.6 meV, while the band

gap between the flat band and the top branch of the Dirac band is δ2=5.8 meV. Both ∆1

and ∆2 vanish in the absence of SOC from the first-principles calculations.

We then checked the edge states of the Ni3C12S12 lattice, since the existence of topolog-

ical edge states is an important signature of the 2D TIs. The edge states of the Ni3C12S12

lattice is calculated by using the Wannier90 package [20], in which a TB Hamiltonian in the

basis of the maximally localized Wannier functions (MLWFs) is fitted to the first-principles

band structures. Using these MLWFs, the edge Green’s function of the semi-infinite lattice

is constructed using the recursive method [21] and the local density of state (LDOS) of

the edge is calculated. This method provides a direct connectivity between the edge states

and the bulk states. The LDOS of a semi-infinite Ni3C12S12 lattice is shown in Figure 4.2c

and d for spin-up and spin-down components, respectively, where one can see the nontrivial

topological edge states that connect the bulk states and form a 1D Dirac cone in both SOC

gaps (∆1 and ∆2). In addition, the spin-up and spin-down edge states have inverse group

velocity, which will propagate along opposite directions along the edge, as required for the

2D TI states.

We stress that the kagome bands of the Ni3C12S12 lattice represent a real material

system that realizes the single-orbital TB model on a kagome lattice as proposed by Tang

et al. [19]. The corresponding model Hamiltonian in the reciprocal space can be expressed

as follows:

H =


E0 2t1 cos k1 2t1 cos k2

2t1 cos k1 E0 2t1 cos k3

2t1 cos k2 2t1 cos k3 E0

± i2λ1


0 cos k1 − cos k2

− cos k1 0 cos k3

cos k2 − cos k3 0

 (4.1)

where −→a1 = (L/2)x̂, −→a2 = (L/2)[(x̂+
√
3ŷ]/2, −→a3 = −→a2 −−→a1, kn =

−→
k · −→an, and L is the lattice

constant. E0 is the on-site energy, t1 is the nearest-neighbor hopping parameter, λ1 is the
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Figure 4.2. Band structure of the Ni3C12S12 lattice. (a) 2D band structure of the
Ni3C12S12 lattice along the high symmetry directions. (b) The zoom-in kagome bands
around two SOC gaps. (c and d) The semi-infinite edge states for the spin-up and spin-down
components, respectively. Overlapping c and d would give the 1D edge Dirac band in both
SOC gaps as in Figure 4.4b.
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nearest-neighbor intrinsic SOC and +(−) refers to the spin-up (spin-down) bands. The

corresponding fitting parameters for the Ni3C12S12 lattice are E0 = 0.59 eV, t1 = −0.07

eV, and λ1= 0.0035 eV, which show very good agreement with the first-principles results

(Figure 4.3a). The TB model analysis indicates that the SOC gaps (∆1 and ∆2) in the

Ni3C12S12 lattice are opened due to the intrinsic SOC of d-orbits of Ni atoms, given the

inversion lattice symmetry that excludes the Rashba SOC effect.

To further confirm the nontrivial topology of the Ni3C12S12 lattice, the Chern number

(C) and spin Chern number (Cs) are calculated using the Kubo formula [22,23] as follows:

C =
1

2π

∫
BZ

d2
−→
k Ω(

−→
k ) (4.2)

Ω(
−→
k ) =

∑
n

fnΩn(
−→
k ) (4.3)

Ωn(
−→
k ) = −

∑
n′ ̸=n

2 Im
⟨Ψnk | νx | Ψn′k⟩⟨Ψn′k | νy | Ψnk⟩

(εn′k − εnk)2
(4.4)

Cs =
1

2π

∫
BZ

d2
−→
k Ωs(

−→
k ) (4.5)

Ωs(
−→
k ) =

∑
n

fnΩ
s
n(
−→
k ) (4.6)

Ωs
n(
−→
k ) = −

∑
n′ ̸=n

2 Im
⟨Ψnk | jx | Ψn′k⟩⟨Ψn′k | νy | Ψnk⟩

(εn′k − εnk)2
(4.7)

where n is the band index, Ψnk are the eigenstate of eigenvalue εnk of band n, fn is the

Fermi distribution function, νx/y is the velocity operator, jx is the spin current operator
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Figure 4.3. Evidences of topological states in the Ni3C12S12 lattice. (a) A comparison
between first-principles and single-orbital TB band structures for the flat (I) and Dirac (II
and III) bands. (b) Same as a for the quantized spin Hall conductance within the energy
window of the two SOC gaps. (c) Spin Berry curvatures in the reciprocal space for flat (left
column) and Dirac bands (right two columns). The dashed lines mark the first Brillouin
zone.
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defined as (szνx + νxsz)/2, and sz is the spin operator. The Chern number and spin Chern

number are defined as

C = C↑ + C↓ Cs =
1

2
(C↑ − C↓) (4.8)

From Eqs. (4.2)-(4.8), the Chern number of each band with different spins is calculated,

as marked in Figure 4.3a. For both spins, the flat band and the bottom Dirac band have

a nonzero Chern number (±1), while the top Dirac band has a zero Chern number. Thus,

within the SOC gap of ∆1 or ∆2, the Chern number is zero, but the spin Chern number is

−1, indicating that the Ni3C12S12 lattice is topologically nontrivial.

The coexistence of two TI states, one from Dirac band and the other from flat band, at

different energies can manifest in transport measurement. The spin Hall conductance can

be obtained from the spin Chern number as

σSH
xy =

e

4π
(C↑ − C↓) (4.9)

Figure 4.3b shows the calculated spin Hall conductance as a function of energy using

the first-principles and single-orbital TB method, which has a quantized value (−2e/4π)

within the energy window of both SOC gaps.

We also compare the calculated spin Berry curvature in Figure 4.3c, showing very good

agreement between the first-principles method and the single-orbital TB model. The spin

Berry curvature of the flat band is mainly around the Γ point (Figure 4.3c, left column),

while that of the Dirac bands is around the K point (Figure 4.3c, right two columns). This

again confirms that the Ni3C12S12 lattice represents a real organometallic lattice to realize

the original kagome model proposed by Tang et al. [19], which has an interesting flat band

with nonzero Chern number. By including many-body interactions in such a nontrivial flat

band, the fractional quantum Hall effect can also be realized [24].

4.4 Tunability of Ni3C12S12 Lattice

One distinct advantage of organic topological materials is their high tunability by using

different metal atoms and molecular ligands. In addition to examining the experimentally

made Ni3C12S12 lattice, we also tested the Au3C12S12 lattice by replacing Ni with Au to

demonstrate the tunability of such lattices. The optimized lattice constant of Au3C12S12

lattice is found to be L=15.09 Å. Its band structure with SOC and semi-infinite edge states

are shown in Figure 4.4a and b, respectively. Overall, the band structure and topology of
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Figure 4.4. Topological states in the Au3C12S12 lattice. (a) Band structure of the
Au3C12S12 lattice. (b) The semi-infinite Dirac edge states (both spin-up and spin-down
components) within the SOC gaps.
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the Au3C12S12 lattice are physical same as those of the Ni3C12S12 lattice, except that the

Fermi level is now located in between the flat band and the Dirac point and the SOC gaps

are larger with ∆1=22.7 meV and ∆2=9.5 meV.

We note that the Fermi level is not in the SOC gaps in both lattices, so doping is needed.

This requires doping one electron (or one hole) per unit cell in the Au3C12S12 lattice and

two (or four) electrons in the Ni3C12S12 lattice, respectively, which corresponds to a doping

concentration of ∼ 5×1013 cm−2 to ∼ 2×1014cm−2. In our first-principles calculations, the

doping effect can be studied by removing (or adding) electrons from (or to) the lattice, and

meanwhile adding a homogeneous background charge neutrality, as done before for other

proposed OTIs [14]. In experiments, the doping effect can be achieved by the electrostatic

gating. Recent experiment has demonstrated that the doping concentration in graphene

can be achieved up to 4×1014cm−2 for both electrons and holes by using a solid polymer

electrolyte gate [25].

Our predicted 2D OTI would offer several advantages over their inorganic counterparts.

First of all, they should be less sensitive against oxidation, which would strong simplify the

device fabrication. Furthermore, the possibility to implement a wide variety of metal ions

and organic ligand will enable specific tailoring of the electronic properties of OTI. Our

recent work has already demonstrated such possibility to tune an OTI made of Bi2C18H12

lattice into a magnetic OTI by substituting Bi with Mn atoms, and a quantum anomalous

Hall effect having an odd Chern number is shown to be realizable in this magnetic OTI

[16]. Therefore, it is reasonable to anticipate similar magnetic OTIs to be realized in

the Ni3C12S12 lattice by substituting Ni with other transition metal elements with large

exchange energy.

4.5 Conclusion

In conclusion, using first-principles calculations, we identify a real OTI material in a

recent experimentally synthesized 2D organometallic framework, which provides a viable

approach for searching new TIs in organic materials. We envision that more OTIs will be

discovered in the future, which will greatly broaden the scientific and technological impact

of TIs.
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CHAPTER 5

PREDICTION OF LARGE GAP FLAT CHERN

BAND IN A TWO-DIMENSIONAL

ORGANIC FRAMEWORK

5.1 Introduction

The recently proposed flat Chern band (FCB) in two-dimensional (2D) structures [1-3] is

featured with both exotic dispersion and topological order, which are signatures of graphene

[4,5] and topological insulator [6,7], respectively. By definition, the bandwidth of a FCB is

smaller than both the energy gap between the FCB and other bands and the interaction

energy scale [1-3]. Kinetic energy of carriers in the FCB is strongly suppressed. As a

consequence, strong Coulomb interaction between carriers is expected in addition to the

topological frustration that together spawn unprecedented topological strongly correlated

electronic states [8-10]. Moreover, a nontrivial Chern variant is required for FCB, which is

the fundamental difference between FCB and the narrow band in heavy fermion compounds.

A flat band with nontrivial Chern variant is a consequence from a well-balanced effect of

lattice hopping, SOC, and ferromagnetism. Because of the rigorous criteria, except for

the theoretical model proposed in Ref [1-3], no real material has been proposed until very

recent when the concept of organic topological insulator was first proposed [11,12]. Based on

the same theme, a two-dimensional organometallic framework so-called indium-phenylene

organometallic framework (IPOF) was designed to realize FCB as well [13]. However, due

to the weak SOC within indium ions, the IPOF has a fairly small SOC gap, which is around

30 meV. In this work, we present a first-principles design to enlarge the SOC gap of a 2D

organometallic framework with nontrivial FCB by replacing indium with thallium, which

has stronger SOC than IPOF while maintaining the symmetry and topology of IPOF.

5.2 Methodology

Our first-principles calculations are carried out within the framework of the Perdew-

Burke-Ernzerhof generalized gradient approximation using VASP [14]. All of the calcula-
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tions are performed with a plane-wave cutoff of 600 eV on the 11×11×1 Monkhorst-Pack

k-point mesh. The vacuum layer is chosen to be 20 Å thick to ensure decoupling between

neighboring slabs. During structural relaxation, all atoms are relaxed until the forces are

smaller than 0.01 eV/Å.

5.3 Large Gap Topological Edge States in
Tl2Ph3 Lattice

Figure 5.1 shows the optimized 2D atomic structure of the Tl2Ph3 lattice, which adopts

a hexagonal lattice by binding p-orbital heavy elements (Tl) with organic ligands (para-

phenylene groups). The dashed yellow lines show the unit cell, which contains two Tl ions

and three paraphenylene groups and has a lattice constant of 12.70 . It is worth noting that

the Tl2Ph3 lattice resembles the already synthesized organic framework with only Tl ions

replaced by boroxine rings [15,16].

Figure 5.2b shows both the band structure on a path intersecting several high symmetry

points as labelled in Figure 5.2a and atomic-orbital projected density of states (APDOS)

of the Tl2Ph3 lattice without SOC. The band structure indicates that the Tl2Ph3 lattice

is a nonmagnetic insulator with a band gap of about 2.5 eV. The four signature bands

indicated by Ref [13] can be clearly seen in the valence zone near Fermi level, consisting

of two nearly flat bands sandwiching two dispersive bands with a Dirac cone formed at

the K point. The top and bottom flat bands are nearly flat in the whole Brillouin zone

with a narrow bandwidth of 12 meV and 33 meV, respectively. The flat bands and the

dispersive bands touch each other at the Γ point. Moreover, there are also six bands within

the range between the top and bottom flat bands, which come from the pz orbitals of C and

Tl atoms. Comparing Figure 5.2b with the results shown in Ref [13], the most significant

difference is that the Dirac cone at the K point formed by the two dispersive bands is now

well separated from the six pz bands. We expect that a SOC gap will open at the Dirac

cone and a nontrivial semi-infinite edge states will be found within the gap.

Then, we include SOC in the first-principles calculation, and the results are shown in

Figure 5.2c. Comparing Figure 5.2c with Figure 5.2b, the degenerated Γ and K points of

the four bands are now split, which result in finite gap at these points. The band gap of

the Dirac band is ∆23=255 meV, while the direct and indirect band gap between the top

flat band and the top branch of the dispersive bands is ∆12
dir=284 meV and ∆12

ind=143 meV,

respectively. The separation between the top and bottom flat bands is ∆14=1.3 eV. Also,

in the presence of SOC, the bandwidth of the top and bottom flat bands increases from 12

meV and 33 meV to 140 meV and 89 meV, respectively. We note that all the bands are
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Figure 5.1. Atomic structure of the Tl2Ph3 lattice. The dashed yellow lines show the unit
cell.
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Figure 5.2. Band structure of the Tl2Ph3 lattice. (a)The first Brillouin zone and high
symmetry points. (b) Band structure and atomic-orbital projected DOS of the Tl2Ph3
lattice without SOC. (c) Band structure with SOC. (d) band structure with SOC and one
hole doped per unit cell. The blue solid lines represent our first principles results and the
red dashed lines are results from the tight banding model (Eqs. 5.9) with parameters: (a)
t1=0.63; (b) t1=0.63, λ=0.05 eV; (c) t1=0.63 eV, λ=0.13 eV and M=0.1 eV.
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spin degenerated due to the time-reversal and inversion symmetry.

Because of the large DOS at the Fermi level of the partially filled flat band, even an

arbitrarily small Coulomb interaction will drive the system into a ferromagnetic ground

state at specific filling factors [17,18]. We can separate the spin-up and spin-down bands by

simply introducing one hole into the unit cell, while maintaining the charge neutrality with

a compensating homogenous background charge. Figure 5.2d shows the band structure

of the hole-doped Tl2Ph3 lattice. The degenerated spin-up and spin-down components

are split, with the Fermi level aligns in between the spin-polarized flat bands. The total

energy of Tl2Ph3 lattice in ferromagnetic ground state is 30 meV lower than that in the

spin-unpolarized state. And as discussed in Ref [13], external Zeeman field can provide

additional stabilization to the ferromagnetic Tl2Ph3 lattice. The spin splitting U is about

228 meV, which represents the strength of the on-site Coulomb interaction. We reiterate

in Table 5.1 several key energy scales associated with the FCB in the Tl2Ph3 lattice and

compare them with the results of the IPOF [13].

Now, we will check the edge states of a semi-infinite Tl2Ph3 lattice by calculating the

momentum-resolved edge DOS because the number of chiral edge modes circulating around

the boundary is an important signature of the nontrivial flat band. We calculated the edge

states by using the Wannier90 package [19], in which a tight binding (TB) Hamiltonian in the

basis of the maximally localized Wannier functions (MLWFs) is fitted to the first-principles

band structures. Using these MLWFs, the edge Green’s function of the semi-infinite lattice

is constructed using the recursive method [20], and the local density of state (LDOS) of

the edge is calculated. This method provides a direct connectivity between the edge states

and the bulk states. The LDOS of a semi-infinite Tl2Ph3 is shown in Figure 5.3b and

c for spin-up and spin-down components, respectively, where one can see the nontrivial

topological edge states that connect the bulk states and form a 1D Dirac cone in both SOC

Table 5.1. Comparison of some energy scales between Tl2Ph3 lattice and IPOF system

Property Symbol Value in Tl2Ph3 lattice Value in IPOF system [13]

Bandwidth W 140 meV(Figure 5.3a) 60 meV
Spin splitting U 228 meV(Figure 5.2d) 100 meV
Energy gap ∆12

dir 284 meV(Figure 5.3a) 90 meV
∆12

ind 143 meV(Figure 5.3a) 30 meV
∆23 255 meV(Figure 5.3a) N/A
∆14 1.3 eV(Figure 5.2c) 1.4 eV
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Figure 5.3. Evidences of topological states in the Tl2Ph3 lattice. (a) Band structure of
Tl2Ph3 lattice near Fermi level. (b and c) The semi-infinite edge states for the spin-up and
spin-down components, respectively. Overlapping these two figures would give the 1D edge
Dirac band in both SOC gaps.
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gaps (∆12 and ∆23).

To further confirm the nontrivial topology of the Tl2Ph3 lattice, the Chern number (C)

and spin Chern number (Cs) are calculated using Kubo formula [21,22] as follows:

C =
1

2π

∫
BZ

d2
−→
k Ω(

−→
k ) (5.1)

Ω(
−→
k ) =

∑
n

fnΩn(
−→
k ) (5.2)

Ωn(
−→
k ) = −

∑
n′ ̸=n

2 Im
⟨Ψnk | νx | Ψn′k⟩⟨Ψn′k | νy | Ψnk⟩

(εn′k − εnk)2
(5.3)

Cs =
1

2π

∫
BZ

d2
−→
k Ωs(

−→
k ) (5.4)

Ωs(
−→
k ) =

∑
n

fnΩ
s
n(
−→
k ) (5.5)

Ωs
n(
−→
k ) = −

∑
n′ ̸=n

2 Im
⟨Ψnk | jx | Ψn′k⟩⟨Ψn′k | νy | Ψnk⟩

(εn′k − εnk)2
(5.6)

where n is the band index, Ψnk are the eigenstate of eigenvalue εnk of band n, fn is the

Fermi distribution function, νx/y is the velocity operator, jx is the spin current operator

defined as (szνx + νxsz)/2, and sz is the spin operator. The Chern number and spin Chern

number are defined as

C = C↑ + C↓ Cs =
1

2
(C↑ − C↓) (5.7)

From Eqs. 5.1-5.7, the Chern number of each band with different spins is calculated,

as marked in Figure 5.3a. For both spins, the top flat band and the lower Dirac band
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have a nonzero Chern number (±1), while the upper Dirac band has a zero Chern number.

As a consequence, within the SOC gap of ∆12 and ∆23, the Chern number is zero, but

the spin Chern number is −1, which demonstrates that the Tl2Ph3 lattice is topologically

nontrivial. The coexistence of two TI states, one from the Dirac band and the other from

the topmost flat band, at different energies can manifest in transport measurement. The

spin Hall conductance can be obtained from the spin Chern number as

σSH
xy =

e

4π
(C↑ − C↓) (5.8)

Figure 5.4a shows the calculated spin Hall conductance as a function of energy using the

first-principles method, which has a quantized value (-2e/4π) within the energy window of

both SOC gaps.

The four bands of the Tl2Ph3 lattice can be described by using the same tight-binding

model proposed for IPOF [13], from which we can obtain a better understanding about the

FCB in the Tl2Ph3 lattice. The corresponding effective Hamiltonian can be expressed as

follows:

H =



0 0 Vxx Vxy

0 0 Vxy Vyy

V ∗
xx V ∗

xy 0 0

V ∗
xy V ∗

yy 0 0

+ σzλ



0 −i 0 0

i 0 0 0

0 0 0 −i

0 0 −i 0

+ σzM (5.9)

in which σz = ±1 is the spin eigenvalue, Vxx = 1
2(1 + eik·a1), Vxy =

√
3
6 (1 − eik·a1), and

Vyy = 1√
6
(1 + eik·a1 + 4eik·a2); a1,2 is the lattice vector. There are three parameters in

the model: the next-nearest-neighbor (NNN) hopping parameter t1, the spin-orbit coupling

strength λ, and the spontaneous magnetization M . By fitting the three parameters to the

DFT results, the dispersion of the four pxy bands can be well reproduced, as is shown in

Figure 5.2b, c, and d. The TB model analysis indicates that the SOC gaps (∆12 and ∆23)

in the Tl2Ph3 lattice are opened due to the intrinsic SOC of pxy orbitals of Tl atoms, given

the inversion lattice symmetry that excludes the Rashba SOC effect.

5.4 Conclusion

In conclusion, we predicted the existence of a flat band with topological quantum number

around Fermi level in a 2D organometallic framework. Our study indicates that the Tl2Ph3
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Figure 5.4. Hall conductance and the Berry phase in the Tl2Ph3 lattice. (a) Quantized
spin Hall conductance within the energy window of the two SOC gaps. (b and c) Spin Berry
curvatures in the reciprocal space for flat (b) and Dirac bands (c). The dashed line marks
the first Brillouin zone.
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lattice has the largest SOC gap among all the OTIs proposed so far [1113,23], which

is comparable to that in typical large gap inorganic topological insulator [24,25]. The

flat and Dirac bands are mainly originated from pxy orbitals of Tl atoms and the SOC

between the pxy orbits result in the large SOC gap. Our findings proved the potential for

measurement of topological edge states of 2D OTI at room temperature and could accelerate

the experimental search for OTIs.
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