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ABSTRACT

Current solutions for switching between cellular networks and WiFi, such as those pro-

vided by Google and Samsung, do not work well in many scenarios. For example, a Samsung

Galaxy S4 smartphone connected to a WiFi network remains in the WiFi mode for more than

5 minutes, even when the Internet connectivity beyond the first hop is unavailable. Therefore,

there is a strong need for an efficient and automated switching mechanism between WiFi and

cellular networks that has wide applicability.

We design an adaptive, energy-efficient methodology to switch between WiFi and cellular

networks to provide robust Internet connectivity. When using a WiFi network, we utilize a

combination of active and passive monitoring techniques to detect unavailability of Internet

connectivity via WiFi. When using the cellular network, we design two algorithms, namely

the dormant probing algorithm, and a variable heartbeat probing algorithm, to detect the

availability of Internet connectivity via WiFi. We implement the algorithms and mechanisms

we design on smartphones. We also implement the capability of simultaneously accessing

WiFi and cellular networks on smartphones. We evaluate our design and implementation

using an Internet availability simulator which is based on a two-state continuous time Markov

chain. Our experimental results show that we are able to detect unavailability of Internet

connectivity beyond the first hop when using WiFi and switch to the cellular network fairly

quickly. Furthermore, with the variable heartbeat algorithm, we are able to switch back to

WiFi within 60 seconds of Internet connectivity becoming available, 90% of the time, with

minimal probing overhead.
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CHAPTER 1

INTRODUCTION

The use of smartphones for various data applications is growing at a tremendous rate.

Over 700 million smartphones were sold in 2012 and the number crossed a billion in 2013 [1].

Smartphones, typically, have wireless access to the Internet by means of network interfaces

including WiFi, 3G, or LTE. Cisco’s Virtual Networking Index reports that the global mobile

data traffic reached 1.5 exabytes per month at the end of 2013 [2].

Ubiquity, high speed, and affordability are three primary features that smartphone users

expect from their Internet connection. WiFi is a desirable choice for Internet access for

smartphone users since it offers high-speed connectivity either for free or at low prices.

However, WiFi coverage is limited and might not be available, especially when a user is on

the move. On the other hand, cellular networks, while offering wider coverage, provide lower

data rates, consume higher power compared to WiFi, and are more expensive. Therefore, a

cellular data user, optimally, would like to switch back to a WiFi connection as soon as one

is available. Unfortunately, most existing devices determine the availability of the Internet

through WiFi by examining the strength of the signal received from the WiFi access points.

They do not necessarily check the connectivity beyond the first hop.

Internet connectivity can become unavailable beyond the first hop (Figure 1.1) during

arbitrary times of the day. We have observed this behavior in cable provider networks

(e.g., the Comcast network). Grover et al. [3] report that the median duration of Internet

downtimes in developing countries is 30 minutes and the median duration between downtimes

is less than a day. During these periods of unavailability, users might need to manually switch

to a different WiFi access point or to a cellular network. Now, once a user switches to the

cellular network, it must manually switch back to the WiFi network often to check whether

the Internet connection via WiFi is available or not. As noted above, the user would like

to switch back to WiFi to save smartphone power, to obtain a higher data rate, or to save

money. This manual switching between WiFi and cellular networks can lead to Internet

disconnection for a certain amount of time, wastage of power, and user frustration. Thus, an
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Figure 1.1: Loss of Internet connectivity beyond the cable modem

automated solution is highly desirable.

Current solutions for switching between cellular networks and WiFi, such as those pro-

vided by Google and Samsung [4], do not work well in many scenarios. As an example, a

Samsung Galaxy S4 smartphone connected to a WiFi network remains in the WiFi mode for

more than 5 minutes, even when the Internet connectivity beyond the first hop is unavailable.

Therefore, there is a strong need for an efficient and automated switching mechanism between

WiFi and cellular networks that has wide applicability. We propose an automated and

efficient mechanism for switching between WiFi and cellular networks while providing robust

Internet connectivity.

1.1 Thesis Statement

In this master’s thesis, we design an efficient way to switch between WiFi and cellular

networks, thereby providing robust Internet connectivity, while minimizing any associated

overheads.

1.2 Thesis Contributions

• We design an adaptive, energy-efficient methodology to switch between WiFi and

cellular networks to provide robust connectivity. When using a WiFi network, we utilize

a combination of active and passive monitoring techniques to detect unavailability

of Internet connectivity via WiFi. When using the cellular network, we design two
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algorithms, namely the dormant probing algorithm and a variable heartbeat probing

algorithm, to detect the availability of Internet connectivity via WiFi.

• We implement the algorithms and mechanisms we design on smartphones. We also

implement the capability of simultaneously accessing WiFi and cellular networks on

smartphones.

• We evaluate our design and implementation using an Internet availability simulator

which is based on a two-state continuous time Markov chain.

1.3 Thesis Overview

The rest of the thesis is organized as follows. We describe the related work and our

initial experiments to demonstrate the problems with current implementations of switching

between WiFi and cellular networks in Chapter 2. In Chapter 3, we detail our design ideas on

the adaptive pinging mechanism when a smartphone is connected to a cellular network and

would like to switch to a WiFi network, and the passive and active monitoring techniques

used when the smartphone is connected to the WiFi network and should switch to the cellular

network when the Internet connectivity is not available beyond the WiFi access point. In

Chapter 4, we provide our implementation details and present evaluations of our design and

implementation. Chapter 5 concludes this thesis.



CHAPTER 2

RELATED WORK

The challenge of providing ubiquitous, high-speed, and affordable Internet connectivity

to smartphones has gained much importance and attention in the last decade. Anantha-

narayanan et al. [5] proposed to increase WiFi performance using Bluetooth signals and

cell-tower information, while Ravindranath et al. [6] discuss methods to improve WiFi

performance based on sensor hints.

Existing implementations are available in Android smartphones to make the Internet

connectivity better. Google Android [4] has options to avoid poor WiFi connection (less

signal strength) implemented with the help of a WiFi watchdog mechanism, which focuses

on last-hop Internet connectivity. This work proposes that whenever the RSSI values are

lower than a threshold, the smartphone gets disassociated from the access point, thereby

providing connectivity to Internet via cellular networks.

Samsung smartphones have a custom services layer of Android OS. Version 4.1 is enabled

with an option that checks for availability of Internet connection via WiFi and reports if it is

not available. From version 4.3 onwards, it also switches to the cellular network and switches

back to WiFi. However, there are lot of problems associated with such solutions in terms of

correctness and efficiency (elaborated in Section 2.2.1).

Network Connectivity Status Indicator (NCSI) in Microsoft’s Windows operating systems,

is a network awareness module that reports when the Internet Connectivity via an interface is

not available. At certain time intervals, an HTTP GET and a DNS Query are sent to preset

websites [7]. Based on the response, appropriate notifications are provided to the user. We

conduct experiments with NCSI to understand how it behaves and one of the observations is

that there are cases where it takes as long as 3 minutes to detect unavailability of the Internet

connectivity and notify the user. Complete results are reported in Section 2.3. Our efficient

methodologies will detect unavailability of the Internet connectivity faster than NCSI.
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2.1 Initial Experiments

We design experiments with the intent to understand the behavior of existing solutions

and to evaluate their performance. Specifically, we conduct experiments with Android

smartphones under six possible scenarios, and also experiment with Microsoft’s NCSI.

2.2 Experimenting With Android Smartphones

2.2.1 Scenarios for experimentation

We identify the following six possible scenarios and observe the change in behavior of

existing systems in response to the onset of events.

1. Initially, WiFi is on and Internet connectivity is available via a cable modem; sub-

sequently, we disconnect the cable from the cable modem, thereby losing network

connectivity beyond the first hop.

2. After 1, restore the Internet connectivity via WiFi by plugging the cable into the

modem.

3. Connect to a WiFi access point with no Internet connectivity.

4. Switch to WiFi from the cellular network. Initially, WiFi is switched off in the smart-

phone and cellular network is used.

5. Perform 4, but Internet connectivity via WiFi is not available.

6. Perform 5 and after some delay, restore the network connectivity beyond the first hop.

2.2.2 Results of experiments on different versions of Android

To understand the behavior of different versions of Android which are being used with

popular smartphones in the market, we experiment with the following smartphones: Samsung

Galaxy S3, S4, Google Nexus 4. The results are shown in Table 2.1.

Some of the behaviors recorded in Table 2.1 were traced back to the relevant portion of

the source code1 that causes them. One of the main reasons for LG Nexus with Android 4.3

performing poorly is that the WiFi watchdog monitor’s state changes are triggered by RSSI

going below a certain threshold. All of our experiments were carried out from a location that

had a good signal strength. For Samsung’s smartphones, the source code is not available and

the results are based only on the experiments we conduct.

1Source code of Android 4.3 is publicly available.
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We observe that Samsung S3 notifies the user that there is no Internet connectivity, but

does not switch to the cellular network. Samsung S4 has a modified version of the service

layer provided by stock Android and hence, it performs better than the others but fails

under two conditions and does not perform strongly in one case. As an example, when

Internet connectivity via WiFi is not available (case 1), in some instances, S4 takes more

than 5 minutes to switch to the cellular network and in other instances, it just stays in

WiFi. When it switches to the cellular network, it adds the WiFi access point into a poor

connection list and notifies the user that it avoided a poor Internet connection. In case 5,

when we turn on WiFi without having Internet connectivity beyond the first hop while being

in the cellular network, it checks for the Internet connection and since it is not available, the

smartphone does not associate with the access point and adds the WiFi access point into a

poor connection list. At this moment, when we enable connectivity beyond the first hop in

WiFi, the smartphone stays in the cellular network (case 6).

2.3 Experimenting With Microsoft NCSI

Microsoft’s Network Connectivity Status Indicator (NCSI) [7] is a part of the network

awareness module in the Windows operating systems. Network Awareness collects network

connectivity information and makes it available through an application programming interface

(API) to services and applications on a computer. NCSI can identify if there is connectivity

to the Internet, including the ability to send a DNS request and get it resolved. NCSI is

designed to be responsive to network conditions, hence it examines the connectivity of a

network in a variety of ways. For example, NCSI tests connectivity by trying to connect to

http://www.msftncsi.com, a minimal web site that exists only to support the functionality

of NCSI.

To understand how NCSI performs under changing Internet conditions, we perform ex-

periments with both wired and wireless network connections and the results tend to be the

same. Wireshark traces of packets are captured for over 60 minutes in a laptop with Windows

operating system. Here are some observations based on wireshark traces:

• While connecting to a wired network or a wireless access point, an HTTP GET and a

DNS request is sent and the user is notified when there is no reply.

• For the first couple of minutes, there seem to be periodic requests being sent to verify

Internet connectivity, following which they cease.

• After Internet is disconnected, there are cases where it takes as long as 3 minutes to

detect unavailability of the Internet connection.
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So, the existing solutions do not work properly and we design solutions to detect the

unavailability of Internet connectivity via WiFi (while using WiFi) and availability of Internet

connectivity via WiFi (while using cellular network) faster than the existing solutions.



CHAPTER 3

DESIGN

In this chapter, we present our design methodology.1 Our primary design goals are

efficiency (sending less probes, utilize less resources), robustness (smartphone connected to

the Internet whenever it is available), and minimizing the energy cost (minimizing the amount

of time spent in cellular networks).

3.1 Overview

Our design includes an adaptive probing mechanism utilizing a combination of passive

monitoring and active probing techniques for checking Internet connectivity and switching

between WiFi and cellular networks as required.

Initially, a smartphone can either be using a WiFi or a cellular network. While using WiFi,

we passively monitor the Internet connectivity periodically (say, every n1 seconds) and if there

is a necessity to do a ping, it will be sent to check the availability of Internet connectivity (more

in Section 3.2). If the Internet connectivity is not available, the smartphone is switched to the

cellular network, otherwise, it goes to sleep and continues passive monitoring. While using

the cellular network, Internet connectivity via WiFi is checked periodically (say, every n2

seconds) without disrupting the connectivity via cellular network. If the Internet connectivity

via WiFi is available, the smartphone is switched back to WiFi, otherwise, it goes to sleep

mode and tries again after n2 seconds. The values of n1 and n2 should be different because

the duration of time Internet connectivity via WiFi is not available is different from the

duration of time it is available. Also, the value of n2 will change based on the nature of

connectivity (more in Section 3.3).

We start by explaining our probing technique for detecting Internet disconnectivity while

being connected to the WiFi network, followed by our adaptive probing technique for detect-

ing Internet availability via WiFi when the cellular network is being used.

1We have used Google’s Android OS in our design, methodologies, and examples
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3.2 Probing While Using WiFi Network

To detect unavailability of Internet connectivity via WiFi, a reliable server must be pinged.

Time interval between the pings is an important parameter of our design. Pings can be sent

at a periodic interval or sent adaptively based on the quality of the connection.

We propose a solution that uses a combination of passive monitoring and active probing

techniques. We start with the passive monitoring technique by monitoring the network

statistics and if there is some anomalous behavior observed with the statistics, we send a

ping to the reliable server for checking Internet connectivity.

The process is explained in Algorithm 1. Passive monitoring is done by checking the

network statistics. Network-related statistics are written into a file /proc/net/snmp in the

Android file system. This file has counters for outgoing, incoming, and retransmitted TCP

segments and outgoing and incoming UDP datagrams apart from many other counters.

Whenever the Internet connectivity is not available and one of the applications in the

smartphone tries to use the network, the number of outgoing segments increases but not the

incoming segments. After a certain interval, even the retransmitted segments increase as the

application tries to retransmit the packets. This increase in the outgoing and retransmitted

segments and no change in the incoming segments is an anomalous condition, indicating that

the Internet connectivity might not be available. To verify if the Internet connectivity is

available or not, we ping a reliable server.

If there is no change in incoming and outgoing segments, we go to sleep mode and passively

monitor again after n1 seconds. If this continues for r consecutive intervals, a ping will be sent

to a reliable server. This is because there might be push notifications,2 which might be missed

if the Internet connectivity is not available and WiFi network is being used. If the Internet

connectivity is not available, we switch to the cellular network as explained in Section 3.4.1.

We describe the selection of values for the parameters n1 and r in Section 4.2.5.1.

3.3 Probing WiFi While Using Cellular Network

When Internet connectivity via WiFi is not available, we switch to the cellular network

if it is available. If there is no cellular connection, the switch will not be done.

Cellular data are expensive and also drain the battery quicker than being in WiFi.

Therefore, as and when Internet connectivity via WiFi is available, we should switch back to

WiFi. Also, the user must not see any disruption while we test the availability of Internet

connectivity via WiFi.

2Cloud services can send notification messages directly to apps on mobile devices. These messages are
called push notifications.
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Algorithm 1: Detecting unavailability of Internet connectivity while in WiFi

1 initialization;
2 InternetAvailable=True;
3 while InternetAvailable && connectedToWiFi do
4 read network counters;
5 if (increase in outgoingCounter or retransmittedCounter) && no change in

incomingCounter then
6 ping google.com;
7 if ping not succeeded then
8 InternetAvailable = False;

9 else if no change in counters ‘r’ consecutive times then
10 ping google.com;
11 if ping not succeeded then
12 InternetAvailable = False;

13 else
14 change in counters, traffic flowing normally, don’t do anything

15 sleep ‘n1’ seconds;

16 switch to cellular network

One advantage with Android smartphones is that both WiFi and cellular network can

be used at the same time (though this is not the usual case and seldom used). We will

exploit this advantage and test availability of Internet connectivity via WiFi, even while the

cellular network is used by applications on the smartphone, so that the user does not notice

anything unusual. This process of testing Internet connectivity via WiFi while being in the

cellular network is explained in Section 3.4.2.1. If there is no WiFi connectivity available,

the smartphone will not be connected to any WiFi access point and we will not be doing

anything until the WiFi connection is available.

We propose two different adaptive probing approaches for testing Internet connectivity

via WiFi, namely dormant adaptive probing and variable heartbeat adaptive probing. In the

dormant adaptive algorithm, we sleep for a long time before checking the availability of

Internet connectivity via WiFi (hence the name dormant), while in the variable heartbeat

algorithm, we check for availability of connectivity from time to time.

3.3.1 Dormant adaptive probing algorithm

Algorithm 2 explains this approach. The first time we switch into the cellular network, we

ping via the WiFi network every t seconds (frequent probing), and obtain the disconnection

time (estimated time) xold seconds, when the Internet connectivity via WiFi is available (see

Figure 3.1). For subsequent switches, we sleep for estimatedTime seconds and then probe.

On success, x (sample time) is the new disconnection time (Figure 3.2), and on failure, sleep
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Algorithm 2: Dormant adaptive probing algorithm while in cellular network

1 initialization;
2 InternetAvailable = False
3 if switchingForFirstTime then
4 switchingForFirstTime = False
5 probe every t seconds, xold = disconnectionTime

6 else
7 sleep xold and probe
8 if probe success then
9 x = xold

10 else
11 timeInCellular = xold
12 while !InternetAvailable do
13 sleep t seconds
14 timeInCellular += t
15 if probe success then
16 x = timeInCellular
17 InternetAvailable = True

18 if timeInCellular < xold then
19 reduce t by r seconds
20 //calculate EWMA (exponential weighted moving average)
21 xold = (1− α) ∗ x+ α ∗ xold
22 switch to WiFi

another t seconds and probe again (Figure 3.3).

If the Internet connectivity via WiFi is available after the estimated time (xold) for s

consecutive switches, reduce sampleTime (x) by r seconds. Then, calculate the exponential

weighted moving average (EWMA) xold (estimatedTime) of x and past history using this

equation,

estimatedT ime = (1− α) ∗ sampleT ime+ α ∗ estimatedT ime

The value of α is chosen in such a way that the extreme values does not affect the

estimated time. With this dormant algorithm, it might take a very long time to detect

the availability of Internet connectivity via WiFi. This is because, at certain instances, the

estimated disconnection time can be very high and the algorithm will be in the sleep mode

for a long time. So we came up with another version of this algorithm called the variable

heartbeat adaptive probing algorithm as explained below.

3.3.2 Variable heartbeat adaptive probing algorithm

One of the problems with the dormant algorithm is that the algorithm sleeps for the entire

estimated time before a probe is sent to check the Internet connectivity via WiFi. But during
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Figure 3.1: Frequent probing in dormant adaptive algorithm: On the first switch into the
cellular network, we probe frequently. Here, every blue dot represents a probe and interval
between probes is 30 seconds. Internet connectivity via WiFi is available at 420 seconds and
that will be the estimatedTime.

Internet Available

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

Time in seconds

Figure 3.2: Probing in dormant adaptive algorithm: Estimated time from Figure 3.1 is 420
seconds and hence, we sleep for 420 seconds before checking for Internet connectivity via
WiFi. Internet connectivity via WiFi is available at 250 seconds and since we detect at 420
seconds, the sample time is 420 seconds.

Internet Available

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540

Time in seconds

Figure 3.3: Probing in dormant adaptive algorithm: After sleeping for the estimated time
(420 seconds), if Internet connectivity via WiFi is not available, we resort to frequent probing
and probe every 30 seconds in this example. We detect the availability of Internet connectivity
via WiFi at 510 seconds and this is the sample time.
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the sleep time, if the Internet connectivity via WiFi is available, we fail to detect it.

To overcome this problem, we need an algorithm which starts by sleeping t seconds and

increases multiplicatively till the estimated disconnection time or a particular threshold. To

put it formally, everything is similar to the dormant algorithm, but instead of sleeping for

the entire estimated time (xold), we sleep for t seconds, increase multiplicatively, on reaching

a threshold, increment by t seconds and try again. For example, if estimatedTime is 420

seconds and t is 30 seconds, the algorithm will probe periodically at t = 30, 90, 210, 240,

270, 300, ... etc. sleeping between the probes (Figure 3.4). Here, the threshold is half of

estimatedTime and once sleep time reaches 210, we just sleep for 30 seconds every time, but

do not increase multiplicatively because we want to switch back to WiFi as soon as Internet

connectivity is available. Algorithm 3 explains this approach. We describe the selection of

values for the parameter t in Section 4.2.5.2.

3.4 Switching Between WiFi and Cellular Networks

There are some design problems associated with switching between WiFi and cellular

networks. In this section, we explain them and provide solutions. The two main problems

are:

Threshold 
Reached

Internet Available

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450

Time in seconds

Variable Heartbeat Dormant

Figure 3.4: Variable heartbeat adaptive algorithm - comparison with dormant probing
algorithm: Here, the estimatedTime is 420 seconds. While the dormant probing algorithm
sleeps for the entire 420 seconds and then probes, the variable heartbeat algorithm probes
at 30, 90, 210 seconds. Threshold is half of estimatedTime and is set as 210. Once the
threshold is reached, we probe frequently till Internet connectivity via WiFi is available. In
this example, Internet connectivity via WiFi is available at 250 seconds, and the variable
heartbeat algorithm detects at 270 seconds, while the dormant probing algorithm detects at
420 seconds.
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Algorithm 3: Variable heartbeat adaptive probing algorithm while in cellular network

1 initialization;
2 InternetAvailable = False
3 if switchingForFirstTime then
4 switchingForFirstTime = False
5 probe every t seconds, xold = disconnectionTime

6 else
7 sleep for t seconds and probe
8 while !InternetAvailable do
9 timeInCellular += t

10 if probe success then
11 x = timeInCellular
12 InternetAvailable = True

13 else
14 if t < xold/2 then
15 t *= 2
16 else
17 //use initial value of t

18 sleep for t seconds

19 if timeInCellular < xold then
20 reduce t by r seconds
21 //calculate EWMA (exponential weighted moving average)
22 xold = (1− α) ∗ x+ α ∗ xold
23 switch to WiFi

1. Switching to the cellular network from the WiFi network.

2. While being connected to the cellular network, determining whether WiFi has recovered

or not and determining it without disconnection.

Solutions to these problems are described below:

3.4.1 Switching to the cellular network

After identifying that the Internet connectivity via WiFi is not available, we need to switch

to a different network if it is available. Usually in Android-based smartphones, cellular data

can never be switched on by a user if WiFi is on and if it is connected to an access point.

Hence, in order to switch to cellular data, we turn off WiFi and turn on cellular data, so that

the smartphone uses the cellular network.
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3.4.2 Determining availability of Internet connectivity via
WiFi without disconnecting from the cellular network

While in the cellular network, to determine whether Internet connectivity via WiFi is

available or not, we need to have both WiFi and cellular network interfaces on at the same

time. This is to ensure that the smartphone is not disconnected from the cellular network

when the availability of Internet connectivity via WiFi is determined.

3.4.2.1 Accessing both WiFi and cellular data at the same time

Officially, simultaneous access of WiFi and cellular data is not supported by Google

Android. There are three existing approaches to perform this simultaneous access. First,

[8] explains an approach which works only on a rooted smartphone. Second, [9] suggests

an approach of hacking the Android source code, and third is an approach by which Java’s

reflection can be used to modify the behavior in run time [10].

The problem with the second approach is that the source code must be changed by

removing the condition which enables only one interface to be active at a time. Another

problem is that, since the changes are done in the source code, it must be compiled and

installed on the smartphone and also with new releases, code must be changed, compiled,

and installed. The problem with the third approach is that it is not supported by most

vendors and may break anytime.

Hence, out of these three approaches, the first [8] approach is the most feasible one, so

this is used to make WiFi and cellular data work at the same time. Note that there is no

API support for this approach.

Android OS removes the WiFi kernel module once WiFi is switched off. So in order to test

the availability of Internet connectivity via WiFi, every step that is performed by Android

when WiFi is turned on should be performed, i.e., loading the kernel module, bringing up the

interface, associating the smartphone with an access point, getting an IP address using DHCP,

etc. Once these steps are performed, WiFi will be turned on (more details in Section 4.1.1).

While all the applications on the smartphone use the cellular network, only our application

uses WiFi to test the availability of Internet connectivity. We perform these steps every time

we want to check for Internet connectivity via WiFi and once we perform the check, we revert

the steps to remove the WiFi module and if the Internet connectivity via WiFi is available,

we switch on WiFi through the API.



CHAPTER 4

IMPLEMENTATION AND EVALUATION

In this chapter, we discuss our implementation, the evaluation methodology, and present

the results of our evaluation. We start by giving the implementation details, followed by the

questions which we answer through this evaluation, experimental setup, the metrics, factors

varied, and the results.

4.1 Implementation

We implement the algorithms and the switching mechanism described in Chapter 3 in

HTC Nexus one smartphones powered by the CyanogenMod1 version 7 operating system.

Busybox2 tools, which configures various utilities like iwconfig, insmod etc., is installed to be

used in the smartphone.

We write an Android application that starts a background service which realizes the

passive and active monitoring techniques described and switches between the WiFi and

cellular networks appropriately. The Android SDK (Software Development Kit) provides

APIs for common wireless networking functions like switching the WiFi interface on and off,

but does not provide APIs for keeping both the WiFi and cellular interfaces on at the same

time. We spawn a separate process from the application which enables the WiFi interface

when the cellular network is active, as described below in Section 4.1.1.

1CyanogenMod is a customized, aftermarket firmware distribution for several Android smartphones, which
is designed to increase performance and reliability over Android-based ROMs released by vendors and carriers
such as Google, T-Mobile, HTC, etc. CyanogenMod also offers a variety of features and enhancements that
are not currently found in these versions of Android [11].

2BusyBox is a software application that provides many standard Unix tools, much like the larger GNU
Core Utilities. BusyBox is designed to be a small executable for use with the Linux kernel, which makes it
ideal for use with embedded devices. It has been self-dubbed “The Swiss Army Knife of Embedded Linux.”
Some of the utilities used here are iwconfig, insmod, and rmmod [12].
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4.1.1 Concurrent WiFi and cellular access

As mentioned in Section 3.4.2.1, both the WiFi and cellular interfaces can be accessed at

the same time. Below, we list the steps we do to use both the interfaces simultaneously.

1. Switch off WiFi in the smartphone and switch on cellular data. Once cellular data use

is initiated, we need to enable the WiFi interface (eth0).

2. Load the WiFi driver module into the smartphone. The driver is platform-dependent

and is usually located in the directory /system/lib/modules.

busybox insmod /system/lib/modules/bcm4329.ko firmware_path = /system/ve

ndor/firmware/fw_bcm4329_apsta.bin

3. Use wpa supplicant3 to bring up the WiFi interface. This will connect the smartphone

to the access point.

wpa_supplicant -B -Dwext -ieth0 -c/data/misc/wifi/wpa_supplicant.conf

-B option is used to run the daemon in the background and wext is the generic wireless

extensions driver for Linux.

4. Use the dhcpd daemon to get an IP address from the access point. This also installs

default routes via WiFi.

dhcpcd eth0

5. Now both the interfaces are enabled and the smartphone will have two default routes

(one via WiFi and another via the cellular network). We delete the default route via

WiFi so that the cellular network will be used by applications on the smartphone while

we test the Internet connectivity via WiFi.

ip route del default via 192.168.2.1 dev eth0

ip route add <reliable-server-ip-address> via 192.168.2.1 dev eth0

Here, 192.168.2.1 is the first hop IP address from the smartphone.

3wpa supplicant is an implementation of IEEE 802.11i supplicant. wpa supplicant is designed to be a
“daemon” program that runs in the background and acts as the backend component controlling the wireless
connection.
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4.2 Evaluation and Results

4.2.1 Questions answered by this evaluation

These are the questions we answer through this evaluation.

1. How well will the system detect disconnections of Internet via WiFi?

2. Which of the variable heartbeat or dormant adaptive algorithms detects the availability

of Internet connectivity via WiFi faster?

3. How many probes are sent?

4.2.2 Experimental setup

Figure 4.1 shows our experimental setup. We configured a laptop running Ubuntu 13.04

to create a wireless hotspot. The laptop is connected to the Internet via the Ethernet and

the wireless card is used to create the WiFi hotspot. In Ubuntu, hotspots are run with the

help of iptables4 forwarding rules. We will be running the Internet availability simulator in

this laptop. The Internet availability simulator will remove forwarding rules and adds rules

to drop the packets when it transitions into the Off state and, when transitioning into the

On state, the forwarding rules are added and the packet drop rules are deleted. Smartphones

running our code are connected to the Internet through this WiFi hotspot.

The Internet availability simulator logs every transition into the On and Off states; our

Android application also logs all the switches between WiFi and cellular networks. For one

of the metrics, the time taken to detect the availability of Internet connectivity via WiFi

by our algorithm, we find the difference between the time when the algorithm switches to

the WiFi network from the cellular network and the time when the Internet availability

simulator transitions into the On state. For accurate measurements, time is synchronized5

with pool.ntp.org before the experiments in both the smartphones and in the laptop running

Ubuntu. Smartphones also run the traffic generator application to generate periodic traffic.

Since passive monitoring is used in our algorithm, ping will not be sent until we observe

anomalous stats. We need an application on the smartphone which generates traffic, so that

anomalous stats will be detected when Internet connectivity is not available. We have written

4Iptables is used to set up, maintain, and inspect the tables of IPv4 packet filter rules in the Linux kernel.
Several different tables may be defined. Each table contains a number of built-in chains and may also contain
user-defined chains.

5We use ‘Smart time sync’ application on Android and ntpdate command on Ubuntu to synchronize the
time.
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Figure 4.1: Experimental setup

an Android application that requests a web page every 60 seconds [13] and this application

is run during the experiments.

4.2.3 Internet availability simulator - On-Off model

In order to evaluate the algorithms, we need data on Internet availability. Measuring

Broadband America [14] is a program to monitor the cable broadband connections, conducted

by the FCC6. From this program, we obtained the data on Internet availability. On analyzing

them, we observed that there were lots of false positives (Internet not being available for a

large duration of time) and this was confirmed through email exchanges with the people

behind this program.

Hence, to evaluate our system, we use an Internet availability simulator. In this section, we

explain the fault model for the Internet we have designed based on the two-state continuous

time Markov chain {Xt} where Xt ∈ {0, 1} ([15], [16]). Whenever Internet connectivity is

available, the simulator is in the On state (state 0) and if not, the simulator is in the Off

state (state 1). The simulator stays in the On state with a particular probability p1 and

transitions to the Off state with a probability 1 − p1. The simulator stays in the Off state

with a probability of p2 and transitions to the On state with probability (1− p2). We model

6FCC is Federal Communications Commission.
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this as a Poisson process, where the time interval between the decisions on whether or not to

perform state transitions is exponentially distributed. We use this two-state Markov chain

because it provides the capability to model bursts of Internet unavailability while the other

models do not. We can define how much time the simulator stays in the Off state. These

probabilities p1 and p2 are calculated based on the given time interval between the decisions,

total unavailability percentage, and the bursts of Internet unavailability. Figure 4.2 shows

the simulator we design.

To calculate these probabilities p1 and p2, we need to know the transition rates between

the states. The transition rates of Markov Chain {Xt} is given by this infinitesimal generator

matrix Q,

Q =

[
−µ0 µ0
µ1 −µ1

]
where, µ0 is the transition rate from state 0 to 1 and µ1 is the transition rate from state 1

to 0. The stationary distribution associated with this Markov chain are π = (π0, π1), where

π0 = µ1/(µ0 +µ1) and π1 = µ0/(µ0 +µ1). Let pi,j(t) denote the probability that the process

is in state j at time t+τ , given that it was at state i at time τ , pi,j(t) = P (Xt+τ = j|Xτ = i).

It is given by,

pi,j(t) =


µ1(1− exp(−(µ0 + µ1))t)/(µ0 + µ1) i = 1, j = 0

µ0(1− exp(−(µ0 + µ1))t)/(µ0 + µ1) i = 0, j = 1

(µ0 + µ1(1− exp(−(µ0 + µ1))t))/(µ0 + µ1) i = 1, j = 1

(µ1 + µ0(1− exp(−(µ0 + µ1))t))/(µ0 + µ1) i = 0, j = 1

(4.1)

The inputs to this model are the Internet unavailability probability p, bursts of Internet

unavailability b, and the time interval between the decisions λ. Bursts of Internet unavail-

ability b is given by this equation,

b = E(X) =
∞∑
i=1

1− P (X ≤ i) = π1
1

1− p1,1(∆)
(4.2)

With these, the transition rates µ0 and µ1 are given by the following equations,

µ0 = −pλ ln(1− 1

b
) (4.3)

µ1 = µ0
1− p
p

(4.4)
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Figure 4.2: Two-state continuous time Markov chain - On-Off model

We use Python to implement the simulator, it takes p, λ, and b as input parameters and pi,j

is calculated at time t, which is the time interval between two decisions which is modeled to

be exponentially distributed.

In order to verify the correctness of the model, we run tests with various Internet un-

availability and bursts of unavailability and verify that the resulting values match with the

expected values. We choose the time interval between the decisions to be really low in the

order of 5ms (λ = 200). This low value for interval will help us determine the correctness of

the system faster than the higher values.

4.2.4 Metrics and factors used

4.2.4.1 Metrics

These are the metrics we use for this evaluation.

• Time to detect the availability of Internet connectivity via WiFi (when in the cellular

network).

• Number of probes sent (overhead due of probing).

4.2.4.2 Factors varied

• Internet unavailability time: 1%, 10%, 20%, and 30%.

• Bursts of Internet unavailability: 20x and 40x the time between decisions.

• Time interval between decisions: 30, 60, and 120 seconds.

Typically, Internet unavailability time and bursts of unavailability are smaller than this.

Since it is practically infeasible to evaluate our algorithms in a reasonable amount of time

with such smaller unavailability time, we choose a larger value.
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4.2.5 Selection of values of parameters in the algorithm

In this section, we explain how we determine the different parameters in our algorithm to

be used in the experiments.

4.2.5.1 Selection of n and r for probing while using WiFi network

While using the WiFi network, we use a combination of active and passive monitoring

techniques to detect unavailability of Internet connectivity via WiFi. Passive monitoring is

performed every n seconds and if there is no change in the network statistics for r consecutive

intervals, we send a ping to the reliable server. These values n and r will be tunable

parameters in our design/implementation. Qian et al. [13] reports that the frequency of

push messages from the smartphone applications is dominated by a value of 60 seconds.

Hence, we use 30 seconds as n and r as 2, i.e, we passively monitor the network counters

every 30 seconds and if there is no change in statistics for 2 consecutive intervals, we send

a ping to the reliable server. However, as the characteristics of the applications change, the

parameters can be changed.

4.2.5.2 Selection of t for probing WiFi while using
cellular network

While using the cellular network, we probe the WiFi network and the dormant and

the variable heartbeat algorithms use a parameter t, which will be varied according to the

connectivity of the network.

Qian et al. [13] reports that the periodic transfers in mobile data are prevalent in today’s

smartphone traffic and that the value of 60 seconds dominates the periodicity, which is used by

many of the popular smartphone applications (like Facebook, Pandora etc.). These periodic

transfers are caused by multiple factors such as polling (even though cloud-based push services

are available, there are applications out in the market which use polling and some poll every

20 seconds), keep-alive messages for push-based services, advertisement transfers (some are

refreshed every 15 seconds), and user-behavior measurement.

There would be a periodic transfer every 60 seconds and this will lead to the cellular

network interface going into a high power mode for few seconds during the transfer of data,

and then, it goes through the tail phase (transition from high to low power mode), which is

around 11.5 seconds for LTE. So switching to WiFi as soon as the Internet connectivity via

WiFi is available is good for performance.

We experiment with two values (30, 45 seconds) of t with our variable heartbeat algorithm

under two different unavailability times (10% and 30% Internet unavailability time) and

measured the detection time of Internet availability via WiFi. Figure 4.3 shows the CDF of
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Figure 4.3: Experiment with different values of t with the variable heartbeat algorithm

this experiment. As we can see, with t as 30, the algorithm performs well with both 10%

and 30% unavailability, and with t as 45 seconds, detection of Internet availability via WiFi

takes a long time. Also, the Semi-Interquartile range for the values with 45 seconds is higher

than 30 seconds. Hence, we choose 30 seconds as the value of t for our evaluation.

4.2.5.3 Selection of value for α to be used in EWMA

We choose the value of α to be used in the calculation of the exponential weighted moving

average in such a way that extreme values do not affect the estimated disconnection time.

We start with the value of 0.875 used by TCP in the congestion control algorithm and also

experiment with different values like 0.8 and 0.95 and observe that these values of α do not

affect the results. Hence, we use 0.875 as the value of α.

4.2.6 Experiments and results

We run the experiments with 10%, 20% and 30% unavailability time and bursts of Internet

unavailability as 20X and 40X the time between decisions. Two smartphones are used, one
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running the variable heartbeat algorithm and the other running the dormant algorithm. We

used a time interval between decisions as 60 seconds7 in the Internet availability simulator.

Each experiment was run for 6 hours so that the Internet availability simulator could make

enough transitions (at least 10) between On and Off states. These are the results of the

experiments.

4.2.6.1 Detection of unavailability of Internet connectivity

Figures 4.4 and 4.5 show all the transitions the smartphone has performed between WiFi

and cellular networks as the simulator moved between the states On and Off in one of our

experiments (30% unavailability and bursts of Internet unavailability as 20X the time between

decisions). We detect almost all the instances when Internet connectivity via WiFi is not

available but a few times there was no traffic in and out of the smartphone and passive

monitoring did not observe anomalous statistics. The algorithm switches into the cellular

network sometimes when Internet connectivity via WiFi is available; this is because of DHCP

timeout, an IP address is not being assigned (we retry once) and ping fails.
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Figure 4.4: Internet connectivity simulator vs connection in Android - 30% unavailability
and bursts of Internet unavailability as 20X the time between decisions

7We experiment with different values for time interval between decisions and observed that, with time
intervals less than 60 seconds (say 10 or 30), the duration of time the simulator stays in On and Off at many
instances is very small and these quick transitions between On and Off states will not be useful in evaluating
our algorithm.
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Figure 4.5: Internet connectivity simulator vs connection in Android - Sample 45 minutes
zoomed in from Figure 4.4 to show the good performance of variable heartbeat over dormant
algorithm.

4.2.6.2 Time to detect the availability of Internet
connectivity via WiFi

Figures 4.6, 4.7, and 4.8, show the Cumulative Distribution Function (CDF) of the

detection time of Internet availability via WiFi (The graphs are of different scales). As

seen in the graph, the variable heartbeat adaptive algorithm performs much better than

the dormant algorithm. With 10% unavailability, the variable heartbeat algorithm is able

to detect the Internet availability via WiFi in less than 40 seconds (90% of the time) and,

with 20% and 30% unavailability, detection happens in less than 75 seconds (90% of the

time). Figure 4.9 shows the CDF of the detection times from all the unavailability results

combined. 90% of the time, we detect Internet availability via WiFi within 60 seconds. We

use 30 and 120 seconds as the time interval between decisions and the results are shown in

Figures 4.10 and 4.11. Here too, the variable heartbeat algorithm detects the availability of

Internet connectivity via WiFi faster than the dormant algorithm and the existing solutions.

We also evaluate the algorithms with an ad-hoc Internet availability simulator and obtain

similar results.

Poor performance of the dormant algorithm is attributed to the longer sleep times with

longer downtime of Internet connection. Figure 4.5 shows the difference between variable

heartbeat and dormant algorithms. As we can see from the figure, the Internet connectivity
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Figure 4.6: Detection time of Internet availability via WiFi (in seconds) for 10% unavail-
ability and bursts of Internet unavailability as 20X and 40X the time between decisions
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Figure 4.7: Detection time of Internet availability via WiFi (in seconds) for 20%
unavailability and bursts of Internet unavailability as 20X and 40X the time between
decisions
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Figure 4.8: Detection time of Internet availability via WiFi (in seconds) for 30% unavail-
ability and bursts of Internet unavailability as 20X and 40X the time between decisions
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unavailability as 40X the time between decisions
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simulator has transitioned into On state at 15:39:50, the variable heartbeat algorithm detects

availability of Internet connectivity via WiFi at 15:41:07 while the dormant algorithm detects

at 15:45:36.

With the 1% Internet unavailability, the simulator transitions into the Off state only for

2 times in 9 hours and the total duration in the Off state is 195 and 174 seconds. While the

variable heartbeat algorithm detects the availability of Internet connectivity via WiFi in 18

and 13 seconds, the dormant algorithm takes 4 and 44 seconds. We also observed that at

arbitrary times, while switching between networks, DHCP IP address assignment via WiFi

fails.

4.2.6.3 Probe overhead

Table 4.1 shows the median number of probes8 sent by the dormant and the variable

heartbeat algorithm run with different unavailability time for 6 hours. As we can see from

the table, the dormant algorithm sends much less probes compared to the variable heartbeat

algorithm. This is because the dormant algorithm sleeps for a long time, thereby probing less

and because of that, it spends more time in the cellular network. Since it is in WiFi network

for less time than the variable heartbeat algorithm, the number of probes is less in WiFi as

well.

The maximum probes of 148 and 197 sent by the variable heartbeat algorithm while in

WiFi and cellular, respectively, is due to the fact that the Internet unavailability in that run

was 30% and the Internet connectivity went down a high number of times and the duration of

downtimes were also longer. Also, while using WiFi, we send a probe only when the passive

monitoring observes any anomalous behavior with the statistics. However, the amount of

probe traffic is relatively very small (maximum traffic observed is ∼37KB) when compared

to the total traffic sent by the smartphone in a period of 6 hours.

We could further reduce the frequency of probing while in the cellular network by not

probing when the smartphone is in idle state (no traffic in and out of smartphone). We leave

this for future work.

4.2.6.4 Performance when Internet via WiFi is always
available and always not available

When Internet via WiFi is always available, our passive monitoring technique will be in

action. With the traffic flowing in and out of the smartphone, we just periodically observe

8We send 3 pings per probe. In our experiments, we observe that with good Internet connectivity,
sometimes only 1 reply is obtained for 3 ping requests. Hence, we send 3 pings per probe and not less.



31

Table 4.1: Median number of probes sent for 10, 20 and 30% unavailability with tests run
for 6 hours (minimum, maximum in brackets )

Algorithm WiFi Cellular

Dormant 29 (22, 42) 81 (33, 148)

Variable Heartbeat 41 (25, 45) 107 (40, 197)

the statistics. But when there is no traffic in and out of the smartphone, we probe a reliable

server (once per minute in our experiments). So, in the worst case that the smartphone is

completely idle, we probe every minute.

When Internet via WiFi is not available for the entire time, we detect the unavailability

and switch to the cellular network. In the cellular network, once we reach the estimated time

by adaptively sleeping, we probe every 30 seconds in our experiments. But this situation

occurs only when the Internet via WiFi is not available. If there is no WiFi access point

in the surroundings or if the smartphone is not able to connect to any access point, our

algorithm will not be activated at all.

4.2.7 Energy overhead

We detect the availability of Internet connectivity via WiFi within 60 seconds 90% of the

time. Existing solutions do not detect the availability of Internet connectivity via WiFi at all

and stay in the cellular network. This leads to an increased energy usage and we give some

examples to show how much energy is saved by our approach. We account only for the power

used by the network elements.

Based on the power model and measured values from [17], we calculate the power used in

the following scenarios.

• Suppose the smartphone is idle for the entire period of time, only beacon messaging

or paging will be done. If the smartphone uses LTE, energy spent per minute is 27850

mW. If the smartphone uses WiFi network, energy spent per minute is 15040 mW.

Hence, we save a lot more energy than the existing solutions by switching to WiFi

whenever its appropriate.

• Suppose the smartphone transmits and receives at a throughput of 1Mbps, the smart-

phone using LTE uses 1778.4 mW for the data transfer and a base power of 1060 mW

to be in the connected state, while the smartphone using WiFi uses 553 mW for the

data transfer and base power of 119.3 mW. To calculate these values, we used the power

model equation from [17],

P = αutu + αdtd + β (4.5)
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where, P is the power, tu is the upload throughput, and td is the download throughput.

αu, αd, β are the best fit parameters for the power model given by Table 4 in [17].

• Suppose that the smartphone transmits and receives at the highest throughput possible

provided by the carriers (16.65Mbps upload and 7.43Mbps download by AT & T [18]),

the smartphone using LTE uses 5410.5 mW for the data transfer and a base power of

1060 mW to be in the connected state, while the smartphone using WiFi uses 4518

mW for the data transfer and base power of 119.3 mW.

Here is an example on how much energy we save over the existing solutions. In Figure 4.12,

the simulator stays in the On state for 25 minutes, then transitions into the Off state and

stays for 15 minutes before transitioning back into the On state. With the values used in our

passive monitoring algorithms, we detect the unavailability of Internet connectivity via WiFi

within 60 seconds and hence, at the 26th minute, our algorithm switches the smartphone into

the cellular network, while the existing smartphones take more than 5 minutes to detect the

unavailability of Internet connectivity via WiFi. The variable heartbeat algorithm detects

the availability of Internet connectivity via WiFi within 60 seconds, 95% of the times and

hence, we switch to WiFi network at the 41st minute and stay in WiFi while the existing

smartphones does not detect the availability of Internet connectivity via WiFi and stays in

cellular network.

Table 4.2 shows the energy saved by the variable heartbeat algorithm over the existing

solutions. As we observe from Figure 4.12, total time unnecessarily spent in the cellular

network by our variable heartbeat algorithm is 1 minute and 19 minutes by the existing

solutions. Since the existing solutions spend more time in the cellular network, more energy

is consumed. In this example, the variable heartbeat algorithm saves ∼ 2500J .

Also, we measure the energy overhead for enabling and disabling WiFi while in the cellular

network. We take battery measurements using standard Android APIs and observe that, for

enabling and disabling WiFi 100 times while being in the cellular network, ∼ 2% of battery

is used. As the number of times enabling and disabling WiFi increases, battery usage also

increases considerably. For example, for enabling and disabling 500 times, ∼ 14% of battery

is used.
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Figure 4.12: Example to demonstrate the energy saved by the variable heartbeat algorithm
over existing solutions

Table 4.2: Energy overhead because of extra time spent in cellular network (Assuming
smartphones are transmitting and receiving at a constant throughput of 1Mbps)

Algorithm Time in WiFi after
Internet connectivity
becomes available

Unnecessary time in
cellular network

Energy used

Variable Heartbeat 19 minutes 1 minute 936.3 J

Existing solutions 0 minutes 20 minutes 3405 J

4.2.8 Summary of results

A summary of our results is presented below.

• We appropriately switch between WiFi and cellular networks, thereby providing robust

Internet connectivity.

• The variable heartbeat algorithm is better than the dormant algorithm and the existing

solutions.

• We are able to detect the availability of Internet connectivity via WiFi faster, while the

existing solutions do not do it. Hence, we save a lot of energy.

• The number of probes sent is much less when compared to the traffic sent by the

smartphones.
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• To our surprise, during the evaluations, we observed a bug with the Android smart-

phones, where DHCP fails at random instances. Hence, there is no IP address assigned

and we might need to retry and/or switch off the interface and turn it on again to

acquire an IP address.



CHAPTER 5

CONCLUSION

This thesis aims to address the challenge of providing an efficient and automatic switching

between WiFi and cellular networks, when the Internet connectivity beyond the first hop is

unavailable. Our initial experiments show that the existing solutions are inefficient and

that they do not work well in many scenarios. To detect the unavailability of Internet

connectivity via WiFi, we have come up with a solution which utilizes a combination of

active and passive monitoring techniques. Once we detect the unavailability and switch to

the cellular network, we need to switch back to WiFi as soon as possible, since cellular

networks consume higher power. We have designed two algorithms, namely the dormant and

variable heartbeat adaptive algorithms, that adaptively check if the Internet connectivity via

WiFi is available or not. For probing the WiFi network while in the cellular network, we

enable the simultaneous access of both the interfaces. We have built a prototype solution

which realizes the algorithms designed that allows an Android smartphone to switch from

one type of network to another depending on the status of Internet connectivity through the

WiFi network. We have evaluated our algorithms with the Internet availability simulator

designed based on the two-state continuous time Markov chain. Our results show that we

are able to detect unavailability of Internet connectivity beyond the first hop and switch to

the cellular network. With the variable heartbeat algorithm, we are able to switch back to

WiFi within 60 seconds of Internet connectivity being available (90% of the time), and we

are efficient in probing as well.
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