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ABSTRACT

Computational simulation has become an indispensable tool in the study of both basic 

mechanisms and pathophysiology of all forms of cardiac electrical activity. Because the 

heart is comprised of approximately 4 billion electrically active cells, it is not possible to 

geometrically model or computationally simulate each individual cell. As a result com­

putational models of the heart are, of necessity, abstractions tha t approximate electrical 

behavior at the cell, tissue, and whole body level. The goal of this PhD dissertation was to 

evaluate several aspects of these abstractions by exploring a set of modeling approaches in 

the field of cardiac electrophysiology and to develop means to evaluate both the amplitude 

of these errors from a purely technical perspective as well as the impacts of those errors in 

terms of physiological parameters.

The first project used subject specific models and experiments with acute myocardial 

ischemia to show that one common simplification used to model myocardial ischemia—the 

simplest form of the border zone between healthy and ischemic tissue—was not supported 

by the experimental results. We propose a alternative approximation of the border zone 

tha t better simulates the experimental results.

The second study examined the impact of simplifications in geometric models on simu­

lations of cardiac electrophysiology. Such models consist of a connected mesh of polygonal 

elements and must often capture complex external and internal boundaries. A conforming 

mesh contains elements that follow closely the shapes of boundaries; nonconforming meshes 

fit the boundaries only approximately and are easier to construct but their impact on 

simulation accuracy has, to our knowledge, remained unknown. We evaluated the impact 

of this simplification on a set of three different forms of bioelectric field simulations.

The third project evaluated the impact of an additional geometric modeling error; 

positional uncertainty of the heart in simulations of the ECG. We applied a relatively novel 

and highly efficient statistical approach, the generalized Polynomial Chaos-Stochastic Col­

location method (gPC-SC), to a boundary element formulation of the electrocardiographic 

forward problem to carry out the necessary comprehensive sensitivity analysis. We found 

variations large enough to mask or to mimic signs of ischemia in the ECG.
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CHAPTER 1

INTRODUCTION

One of the fundamental goals of science and engineering is to understand the behavior 

of complex systems well enough that one can capture it in a quantitative model that 

replicates known behaviors and ideally even predicts unknown behaviors. Economists try 

(largely unsuccessfully) to predict changes to the world’s markets, climatologists try to 

predict the effects of pollutants on climate, and engineers try  to predict how a new part 

or design will perform before it is manufactured. These models allow us to optimize a 

process so tha t it can improve the final outcome. One example of the highly successful 

use of simulation in biomedicine is the Nobel Prize winning research of Hodgkin and 

Huxley, who developed a numerical model that encompassed a newfound understanding 

of the mechanisms of the action potential in neurons [1, 2, 3]. The fact that this model 

generated realistic action potentials tha t responded with fidelity to changes in parameters, 

e.g., variations in ion concentrations, achieved more than to validate the numerical accuracy 

of the model. It provided supporting evidence for the qualitative assumptions of the then 

unknown structure of ion channels tha t were the real intellectual contribution of these 

investigators. Subsequent breakthroughs in measurement were required to provide the 

complete proof for these ideas [4].

The medical field employs its own form of modeling; physicians want to predict the 

impact of a procedure before administering it to a patient. The basis for such modeling 

and predictions are statistical models derived from clinical trials combined with personal 

experience to select the cure tha t has the best chance of succeeding for each individual 

patient. In recent years a new idea of what has become known as “personalized medicine” 

has emerged, in which the prevention, diagnosis, and treatm ent of disease are customized to 

individual genes, proteins, cellular environment, or tissue structure. Rather than grouping 

patients into categories in order to determine the correct procedure, personalized medicine 

customizes the procedure for the individual. One emerging branch of personalized medicine, 

and the overall context of this dissertation, uses a traditional engineering approach of 

computational modeling to customize medical diagnosis and treatm ent for an individual.
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The result, known as “patient specific modeling” or, more generally, as “subject specific 

modeling,” represents a powerful convergence of engineering technology, physiology, and 

medical information. This dissertation represents an example of this convergence as it 

applies to the specific field of cardiac electrophysiology.

While such patient specific models have great potential to improve medical care, their 

use in clinical settings is still emerging. It remains technically challenging and time con­

suming to create precise, subject specific models and they often still lack the accuracy 

and/or validation to be trusted in critical situations. While, at least from an engineering 

perspective, it seems tha t improving simulation accuracy and decreasing construction and 

simulation times are at odds with one another, one of our goals has been to propose technical 

solutions tha t can achieve both objectives. Thus, this dissertation focuses on using subject 

specific models to answer clinically compelling questions about cardiac electrophysiology in 

a computationally efficient and practical manner.

There is also a larger technical context for this specific application of subject specific 

modeling. It represents an example of the broader topic of image based computational 

modeling and simulation, which has spawned its own generalized technical framework and 

an associated set of computational tools. One novel initiate, known as the “Physiome,” 

seeks through international collaborations to create a framework for multiscale and multi­

physics models of the entire organism[5, 6, 7, 8]. Our specific, medical goals from cardiac 

bioelectricity will both benefit from access to these broader algorithms and tools, just as 

they will also hopefully contribute to this larger initiative and motivate new developments 

tha t are of general utility.

1.1 B ackground
Cardiovascular disease is the leading cause of death in the world accounting for 31.5% 

of all deaths in women and 26.8% in men [9]. While the heart is a mechanical pump, its 

ultimate failure, both acutely and in the final phases of prolonged disease, is most frequently 

caused by problems in electrical conduction. Over the last 50 years, enormous investments 

in research have resulted in dramatic advancements in understanding the electrical currents 

and potentials that control the heart and its behavior. Researchers such as Hodgkins and 

Huxley pioneered the field of cellular electrophysiology of the nervous system using the 

giant squid to study the flow of ions in and out of cells [1]. Out of their Nobel Prize 

winning insights has come a formalism still used today, to describe mechanistically and 

to simulate numerically the biophysics of ion channels and cells across all the electrically
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active organs of the body. While a great deal is known about the cell and even cell-to-cell 

interactions in the heart, many of the mechanistic explanations of whole-heart behavior 

such as electrical conduction abnormalities, clinically known as “arrhythmias,” remain 

controversial or unknown. Such whole-heart electrical conduction disorders are difficult 

to study experimentally because they are complex, containing a large number of uncon­

trolled parameters that act simultaneously and heterogeneously over a three-dimensional 

structure tha t changes electrically and mechanically over several different time scales. To 

capture this complexity, many researchers are turning to computational models to assist in 

understanding the basic mechanisms of heart pathologies. These models not only answer 

fundamental questions about cardiovascular disease, but have potential to be used as a 

diagnostic or procedure planning tool in clinical settings.

The primary goal of this dissertation is to better understand the application, utility, and 

limitations of computational modeling in the specific setting of subject specific, whole organ 

and whole organism cardiac electrophysiology. Some of the approaches have even broader 

utility as they relate to simulations based on subject specific anatomical models using fairly 

common numerical methods for solving partial differential equations. Overall, this study fits 

into a context of generalized image based modeling and multiscale simulation. Such com­

putational models are deterministic, tha t is, they can provide a very subject and situation 

specific basis for interpretation of clinical signals and parameters tha t originates in explicit 

mechanisms rather than statistical correlations. Other benefits of computational modeling 

and simulation include their ability to explore scenarios noninvasively with complete control 

of all included parameters, and to integrate levels of structural and physiological complexity 

tha t are beyond the unaided ability of any single person or even single laboratory [10, 11, 12].

The technical requirements for useful computational models can prove a daunting obsta­

cle, especially in the clinical setting. The creation of such models is very labor intensive and 

requires a unique skill set tha t is not always available in a biomedical research or clinical 

setting. In many instances, the time it takes to create and execute a model is too long 

for realistic use as a diagnostic tool. Also, computational models often rely on detailed 

and subject-specific mathematical descriptions of anatomy and tissue properties tha t may 

be difficult or impossible to obtain, especially in a clinical setting, thus necessitating very 

broad approximations. The resulting inaccuracies may reduce the quality of the simulation 

results to the point tha t the simulation is no longer useful as a clinical tool.

However, recent technical and computational advances are now enabling new progress 

in automating and accelerating the modeling and simulation of patient specific data. In
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the context of modeling the heart, advances in medical imaging, image processing, geo­

metric mesh generation, and computational acceleration have led to image based modeling 

techniques that support the creation of highly detailed subject-specific and physiologically 

accurate models tha t can be compared directly to experimental results [10, 12, 11, 13]. While 

the complete capabilities to carry out such computational studies exist only in a relatively 

small number of laboratories, several groups, including ours, have made progress in making 

the programs, data, and knowledge available to others [14, 15, 13, 16, 17, 18, 19, 20], thus 

increasing the opportunities for validation and use of these approaches to broad areas of 

biomedicine.

The research in this thesis consists of a series of projects seeking to advance the state 

of image based modeling in cardiac electrophysiology by taking advantage of both recent 

breakthroughs in computational science and access to unique validation data specific to 

myocardial ischemia. We have compared our subject specific simulations directly to exper­

imental data. Such comparisons allowed us to refine physiological assumptions about the 

underlying pathology, evaluate the appropriateness of geometric modeling simplifications, 

and explore stochastic approaches to account for parameters tha t are not available in clinical 

settings. The focus of the applications of this simulations research has been on early stages 

of myocardial ischemia, which is a reflection of both availability of highly detailed data from 

experiments and the importance of this pathophysiology in medicine, which is described in 

detail in Chapter 2. The study of myocardial ischemia is also well matched to simulation 

across scales because it has cellular and even subcellular origins whose consequences alter 

whole-heart behavior and are reflected in electrical signals acquired from the body surface.

Out of this intersection of mathematical, computational, physiological, and medical 

domains, we have pursued three specific aims, each of which has advanced the state of 

knowledge and contributed to both technical and biomedical science.

A im  1: The first aim of this research was specific to the challenges of modeling 

myocardial ischemia at the scale of the whole heart. Such models are multiscale in that they 

must include aspects of cellular and tissue electrophysiology and pathophysiology but must 

also approximate and simplify their details in order to achieve a tractable formulation at 

the level of the whole heart. It is obviously not feasible to carry out simulations in subject 

specific geometric models of the heart and torso by combining a cellular model for every 

cell in the relevant organs of the body. The general approach to such multiscale modeling 

is then to find approximations for each scale of behavior that capture the details and the 

key control parameters of the finer level scale below. Thus our first specific aim was to



identify viable and acceptably accurate approximations of the bioelectric fields that arise 

in the heart during acute myocardial ischemia and thus provide an organ scale model of a 

behavior that has already been the topic of intense scrutiny at the cellular and subcellular 

scales. The approach of most previous models of ischemia has been to alter concentrations 

of ions based on experimental observations [21, 22] and then generate abnormal action 

potentials from cardiac membrane models [23, 24]. Our previous approach has been to 

simplify the bioelectric sources during ischemia into a border zone between healthy and 

ischemic tissues in which the sources reside [25, 26]. In this study, we set out to examine 

those assumptions using both more detailed simulations than would be clinically useful as 

well as direct measurements from ischemic hearts.

Our findings suggest tha t the modeling assumptions about the ischemic border zones 

used in many previous studies are overly simplified and that they do not reproduce key 

features of the electric potentials that we were able to measure in the heart. We also suggest 

new approximations of the border zone that produce more accurate simulation results and 

tha t are supported by experiment data.

A im  2: The second aim of this thesis was to address another assumption of the typical 

computer simulations of ischemia and other electrophysiological behaviors—the formulation 

of the polygonal meshes used to carry out the simulations. Simulations of realistic tissue 

include not only assumptions about the electrophysiology but also about the anatomy (or 

geometry in the technical context). In particular, most heart models contain multiple 

regions of different tissue types or tissues in different states, e.g., ischemic versus healthy. 

The precise shape of the interfaces between these regions can be very difficult to capture in a 

geometric model even when they are known from imaging. In many cases, researchers create 

polygonal mesh models that only approximate the boundaries instead of fitting them to any 

level of detail. To evaluate the consequences of such simplifications, we compared the impact 

of meshing algorithms on several different settings of modeling cardiac electrophysiology.

The main finding of this study was tha t geometric approximations tha t resulted in 

jagged, inaccurate surfaces between materials generated errors large enough to change 

the simulation results and their physiological interpretation. By comparison, meshes that 

followed actual boundaries more precisely, “boundary conforming,” produced more accurate 

results at much lower resolution than the non-boundary conforming meshes.

A im  3: The third and final aim of this thesis was to evaluate the role of coarse 

scale geometric error on the projection of electrical currents from the heart onto the body 

surface. W ith change in posture, the heart can shift, rotate, and swing in a variety of

5
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directions within the thorax. The consequences of such changes in position of the heart on 

the electrocardiogram have been observed [27, 28] but never comprehensively quantified, 

a task well suited to simulation approaches. The goal of Aim 3 was thus to quantify the 

sensitivity of body surface potentials to realistic heart motion for which we used stochastic 

methods.

The findings from this study confirmed tha t heart motion due to changes in posture or 

respiration can be large enough to mask and mimic myocardial ischemia as detected from 

the body surface. It also indicated types of motion that are not likely to be significant 

sources of error in the ECG recordings. One practical consequence of these findings is that 

the statistical approaches provide a means of creating compensatory algorithms to remove 

the errors due only to heart and body position from the interpretation of ECGs.

In summary, the three aims of this dissertation were to:

1. Evaluate the current approximation of transmembrane potentials of acute myocardial 

ischemia used in static bidomain simulations specifically the configuration of the 

ischemic border zone between healthy and ischemic myocardium.

2. Quantify the magnitude of errors introduced into cardiac bioelectric models using 

nonboundary conforming meshes to represent diseased regions of the heart.

3. Statistically quantify the effect of natural variations in heart position on the electro­

cardiographic forward problems providing clinically relevant statistics about the effect 

of heart position on ECG recordings.

All these aims share the common goal of improving subject specific modeling, particu­

larly in the case of myocardial ischemia. The results and conclusions serve to explore the 

accuracy—both physiologically and computationally—of the fundamental understanding 

of the electrical consequences of myocardial ischemia and they also expand the general 

framework needed to incorporate unknown parameters tha t are commonly found in clinical 

settings of image based analysis. While there are always many more details to validate and 

explore, these findings provide an important step towards establishing the feasibility and 

reliability of clinically relevant, patient specific simulations.

1.2 Organization of the Dissertation
This dissertation is broken into seven chapters. Chapter 2 summarizes the background 

electrophysiology and computational methods necessary to appreciate the subsequent chap­

ters. Chapter 3 provides an overview of the image based modeling pipeline from a general
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context, but also offers some insights into specific challenges unique to cardiac modeling. 

Chapter 4 is a journal paper in preparation for the Journal of Cardiac Electrophysiology 

tha t deals with the electrical border zone assumption between ischemic and nonischemic 

tissue. Chapter 5 is a paper at the International Meshing Roundtable 2013 that deals with 

boundary conforming meshes in computational electrophysiology simulations. Chapter 6 is 

a reprint of a published paper in the Annals of Biomedical Engineering [29]. It deals with 

using the general Polynomial Chaos Stochastic Collocation (gPC-SC) method to quantify 

the effects of heart motion on the detection of myocardial ischemia with ECG. Chapter 

7 concludes the manuscript by discussing the implications of the results presented and 

outlining future directions for this research.



CHAPTER 2

CARDIAC ELECTROPHYSIOLOGY 

OVERVIEW

The heart is a pump tha t moves blood throughout the body in order to deliver oxygen 

and nutrients to all of the living tissues and remove metabolic waste products. However, the 

heart also depends on electrical conduction to stimulate and coordinate the contraction of 

the myocardium (heart muscle). To understand the complex electrical activity of the heart, 

excitation and conduction mechanisms must be evaluated at multiple scales: cellular, tissue, 

and whole body.

2.1 Cellular Electrophysiology
W ithin the body there are two types of electrical conduction, passive and active. Passive 

conduction of electrical currents arises when ions flow throughout the tissues of the body. 

In contrast, some cells such as neurons and muscle cells are considered active electrical 

conductors, i.e., they are capable of generating currents and maintaining electric potentials 

at the cost of metabolic energy. The source of electrical currents within the tissues is ions, 

typically potassium (K +), calcium (C a2+), sodium (N a+), and chloride (Cl- ), rather than 

the electrons tha t flow in other conductors [30]. The driving force for the flow of ions 

across the membranes of active cells is the potential difference between the intracellular to 

extracellular spaces, known as the “transmembrane potential,” which is primarily controlled 

by the concentration gradients of ions and the conductivity of the cell membrane [31]. 

Because active conduction through cardiac muscle tissue (myocardium) is the mechanism 

tha t controls both normal heart behavior and is involved in virtually all cardiac pathologies, 

the following discussion will focus on the basic mechanisms tha t control this process.

2.1.1 Cell Membranes
The cell membrane (sarcolemma) of a cardiac myocyte is mainly comprised of phospho­

lipids, cholesterol, glycolipids, and membrane proteins. However, for the basic understand­

ing of conduction only the phospholipids and membrane proteins are necessary. The cell



membrane separates the cell interior from the extracellular fluid with a phospholipid bilayer, 

i.e., a double layer of molecules. Phospholipids are a molecule comprised of a hydrophilic 

head group and a hydrophobic tail group. As a result of these different levels of attraction 

to water, hydrophilic head groups point towards the aqueous solution, intracellular and 

extracellular, while the lipid tails assemble in the middle of the membrane away from the 

aqueous solutions. The resulting bilayer forms a film around the cell preventing molecules 

such as water and ions from entering or leaving the cell. Ions and certain small molecules can, 

however, cross the membrane through specialized proteins tha t are embedded throughout 

the bilayer. These proteins span the membrane and contain small pore-like structures that 

are known as “ion channels” and function as highly selective gates as seen in Figure 2.1 that 

can regulate the exchange of molecules in and out of the cell [32]. Ion channels are not the 

only proteins embedded in the cell membrane and other types can form energy consuming 

pumps, ion exchangers, and co-transporters, each with their own selectivity and regulatory 

behavior.

Ion channels open in complex voltage, time, and chemically gated manners to allow 

specific ions to cross the cell membrane, i.e., they are typically highly selective and also 

highly sensitive to local conditions. However, they do not provide or consume energy 

and rely upon electrical or chemical gradients to move the ions. The specialized membrane 

proteins provide for the complex maintenance of ion concentrations and for the movement of 

ions that generates active electrical currents. Ion pumps, in contrast, consume energy from 

adenosine triphosphate (ATP) to move ions across the membrane even against electrical

9

Membrane Proteins

F ig u re  2.1: Lipid bilayer with membrane proteins. This figure illustrates the lipid bilayer 
formed by the phospholipids in which the hydrophobic tail groups are insulated against the 
aqueous solution. Specialized membrane proteins embedded in the membrane act as the 
means of transporting ions and small molecules across the membrane.
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or chemical gradients. Ion exchangers move one type of ion in or out of the cell with 

minimal or no direct ATP consumption by utilizing the exchange of a second ion type that 

has a favorable electrochemical gradient [33]. Ion pumps and exchangers are critical to 

active conduction because they maintain the concentration gradients of N a+, Ca2+, and 

K + across the cell membrane which are necessary to produce action potentials.

A central concept in the electrophysiology of the cell is the overall driving force that 

each ion experiences when the associated ion channel is open. This driving force stems from 

the selective permeability of the membrane; under quiescent conditions, the cell membrane 

is relatively highly permeable to potassium ions ( K +) compared to all other ions. These 

ions seek an equilibrium in which differences in their concentration are perfectly balanced 

by an electric potential difference so that there is no net flow of ions. At equilibrium, the 

chemical and electrical gradients are balanced and there is no net driving force. The value 

of the associated electric potential is known as the Nernst potential [34] as follows:

$k =  -  $e =  - R T l n , (2.1)
Zk F  [k]e

where k is the ion type, the [k]’s are the concentrations of this ion, $  is the electric potential, 

and the subscripts specify intracellular or extracellular. R  is the gas constant, T  is the 

absolute temperature, F  is Faraday’s constant, and zk is valence.

As the subscript k in Equation 2.1 suggests, the Nernst potential for each ion depends 

solely on tha t concentration gradient of tha t ion. The driving force felt by an ion therefore 

depends on the difference between the prevailing transmembrane potential, which is the 

same for all ions, and the respective Nernst (or equilibrium) potential for each ion species. 

When for any ion, the membrane potential $ m diverges from the Nernst potential, there is 

a driving force expressed by the equation

$Dk =  ($M -  $k), (2.2)

where $Dk is the driving force on an ion of type k and $m  is the membrane potential.

Under physiological conditions, concentrations of different ions are regulated at levels 

tha t result in a range of quite divergent equilibrium potentials. The actual resting potential 

of a cell then becomes a function of the concentrations of all the charged ions weighted 

by their respective permeabilities, a relationship described by the Goldman-Hodgkin-Katz 

equation:
F =  R T  , PNg[Na]0 +  Pca2+ [Ca2+]o +  P k [K]o +  Pci[Cl]i

F  n PNa[Na]t +  Pca2+ [Ca2+]i +  Pk[K ]i +  PGi[Cl]0 ( . )
where the P ’s are the permeabilities of the different ions indicated by the subscript. For

mammalian cardiac cells, intracellular K + is high and N a + and Ca2+ are low (In the case
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of Ca2+ , three orders of magnitude lower!) compared to their extracellular values and 

the resulting resting transmembrane potential is approximately -80 mV. At this resting 

membrane potential, thus any opening of ion channels will change the permeability of the 

membrane and allow ions to flow according to their respective driving forces.

2.1.2 Action Potentials

When the membrane potential of a cell depolarizes (becomes less negative) to the point of 

exceeding a threshold, the result is a complex sequence of ion channel openings and closings 

tha t results in what is known as an “action potential.” An action potential is the behavior of 

a cell that characterizes it as an active generator. It consists of both a depolarization phase, 

increasing transmembrane potential, and repolarization phase, transmembrane potential 

returning to a resting state. An action potential is elicited when the cell is stimulated— 

typically from adjacent, already depolarized cells—and the resting membrane potential 

becomes more positive than an ion-channel specific threshold, opening voltage gated ion 

channels, first the N a+ and then C a2+ [35, 36]. This sequence of openings results in a rapid 

influx of positively charged ions into the cell, leading to further depolarization in a positive 

feedback action. The end of this positive feedback occurs when, after a few milliseconds, 

Na+  channels quickly inactivate and K  + channels open, which results in the flow of K+ 

out of the cell, balancing the effect of the ongoing influx of Ca2+ to produce a relatively 

stable “plateau” phase of the action potential. Eventually the Ca2+ current also inactivates 

and is overwhelmed by the K  + currents, thus restoring the membrane potential. The active 

ion pumps and exchangers then work to return the Na+, Ca2+, and K  + concentrations to 

their original states. A typical cardiac action potential is illustrated in Figure 2.2.

2.1.3 Tissue Electrophysiology

At the tissue level, electrical activation spreads across the myocardium like a wave. 

The mechanisms tha t control the spread of this activation wave are tied to the electrical 

properties of the underlying myocytes and their electrical connectivities. When healthy 

and fully recovered from a previous excitation, each myocyte in the heart is capable of 

producing an action potential when stimulated. An excited myocyte provides the stimulus 

for neighboring myocytes, causing a chain reaction of activation from one myocyte to the 

next. This cell to cell stimulation is possible due to the fact tha t the intracellular space of 

a myocyte is connected to the intracellular space of neighboring myocytes through highly 

conductive membrane proteins called gap junctions [37, 34]. When a single cell is stimulated,
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F ig u re  2.2: The schematic representation of the action potential produced by a human 
cardiac myocyte. The figure shows the traditional shape and duration of an action potential 
along with an indication of the ionic currents tha t contribute to the depolarization and 
repolarization of the cell. In addition, the phases of the action potential are indicated by 
the numbers in the black boxes.



ions rush into that cell, elevating the intracellular potential. At the same time, some of 

the positively charged ions will flow across gap junctions into unstimulated cells tha t are 

at lower intracellular potentials. This movement of charge increases the transmembrane 

potential of neighboring cells causing them to excite and produce their own action potentials. 

The myocytes remain activated until repolarization occurs. The cells are not able to be 

stimulated again over a short period of time known as the refractory period during which 

the ion channels and concentrations return to their resting states.

Tissue structure and the shape of the individual cardiac myocytes play an important 

role in the electrical conduction of the heart. Myocytes are elongated brick shaped cells 

tha t connect end to end with other myocytes via gap junctions [37], creating functional 

fibers composed of cells with similar orientation. Because of this structure, the intracel­

lular conductivity along the myocyte, or fiber, is much larger than transverse to the fiber 

direction. This anisotropy of conductivity is also present in the extracellular space but to 

a lesser extent. The net result for cardiac tissue is highly anisotropic spread of activation, 

with higher propagation speeds along the fiber direction than across it [38].

2.2 Whole Heart Electrophysiology and the ECG
The properties outlined above describe the behavior of myocardium throughout the 

heart. However, they do not explain the initiation of the heart beat nor the fine control of 

timing and synchronization that results in forceful expulsion of blood. The initial stimulus 

for excitation in the heart comes from specialized autorythmic or pacemaker cells that 

periodically produce action potentials without external stimulation. Additional specialized 

cells, known collectively as the “conduction system,” are responsible for the subsequent 

timing and synchrony of the spread of excitation through the heart. Summarized, these 

specialized conduction fibers distribute excitation first through the atria, then through the 

atrio-ventricular (AV) node, with some delay, to the ventricles. The Purkinje network 

of very rapidly conducting fibers then spreads excitation along much of the septum that 

separates the left and right ventricles to the lower tip (apex) of the heart. As a result 

of the actions of the conduction system, excitation of the working ventricles occurs over 

a relatively short time, passing from the apex toward the base of the heart and from the 

endocardial (inner) to the epicardial (outer) surfaces of the ventricles. A more detailed 

description can be found elsewhere [39, 30, 34].

The electrical conduction in the whole heart can be sensed on the body surface in the 

form of the electrocardiogram (ECG). The electrical currents generated in the extracellular
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space of the heart conduct passively through the tissues in the torso until they reach the 

body surface, producing an attenuated and spatially averaged distribution of potentials. A 

schematic of one cardiac cycle of an idealized ECG is shown in Figure 2.3, in which each 

distinct waveform is labeled as P, Q, R, S, or T. Each waveform relates to the activation or 

repolarization of some part of the heart. The P wave is caused by the spreading activation 

over the atria, while the Q, R, and S waves are caused by the activation of the ventricles. 

The T wave is a result of the repolarization of the ventricles [30].

The information contained in the waveforms of an ECG makes it a valuable and ex­

tremely widespread tool for clinicians to diagnose electrical conduction problems in the 

heart. However, while the ECG is inexpensive and noninvasive, its diagnostic utility 

varies dramatically for different abnormalities. In particular, the diagnosis of early cardiac 

ischemia is challenging because the resulting changes in the ECG can be very subtle. 

Moreover, the same changes may also arise from both serious maladies and harmless ir- 

regularities,i.e., specificity of diagnosis can be limited. A further source of uncertainty are 

the recent findings from our group and others suggesting that many previous mechanistic 

assumptions are incomplete or incorrect [40, 41, 42, 43]. This persistent uncertainty of ECG 

based diagnosis and the enormous clinical impact of myocardial ischemia (the physiology of

R
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F ig u re  2.3: The schematic representation of a human ECG recorded on the body surface. 
The figure indicates the individual waveforms and their associated names.
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a heart attack) provide strong motivation for much of the technical research carried out for 

this dissertation. Most of the examples used in subsequent simulation and modeling studies 

described below come from experimental and clinical studies of ischemia, which we describe 

in more detail in the next section.

2.3 Myocardial Ischemia
While myocardial ischemia has many definitions [44] and a complex and only incom­

pletely understood etiology, it reflects fundamentally an imbalance of energy supply and 

demand in the heart and is responsible for an enormous proportion of heart disease and 

death. The heart relies on high-energy phosphates (HEP) to meet the metabolic demand 

of a continuously contracting myocardium [37]. To provide such energy, a steady supply 

of oxygen is needed for respiration in cell organelles called mitochondria that produce 

HEP through oxidative phosphorylation. When the supply of oxygen is insufficient, the 

myocardium still produces small amounts of HEP through anaerobic glycolysis along with 

the byproduct lactate. This reduction of HEP and the accumulation of metabolic products 

then alter the electrical conduction in the heart and reduce contractile function. Blood 

supplied through the coronary arteries carries this oxygen to the tissues of the heart and 

also provides a means of removal of metabolic byproducts and thus maintains healthy 

homeostasis. A useful definition of myocardial ischemia is a condition in which the metabolic 

demand of cardiac myocytes exceeds the supply of nutrients and oxygen received from the 

blood supply. Ischemia arises because of substantially (> 80%) or fully occluded coronary 

arteries and in most Western countries myocardial ischemic disease is the leading cause of 

death and places significant strain on the hospital systems [9]. Heart tissue that is subject 

to complete ischemia (a full occlusion of a coronary artery or “myocardial infarction”) for 

extended amounts of time eventually dies and becomes necrotic and then scarred and prone 

to ventricular arrhythmias [45]. The limited ability of myocardial cells to survive without 

adequate blood flow makes the disease not only deadly, but also very time sensitive, driving 

the need for rapid detection techniques.

Even though the last century has seen many advances in detecting and locating regions 

of myocardial ischemia, rapid diagnosis of this condition remains unsatisfactory. Many of 

the techniques, such as blood tests and angiograms, provide reliable diagnostic capabilities 

of myocardial damage or compromised vessel lumen, respectively. However, they cannot 

localize the ischemia with precision and require considerable time and expense. More­

over, due to the time sensitive nature of ischemia, techniques tha t provide rapid feedback
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and minimal invasiveness are necessary. ECG signals, in particular what are known as 

“ST-segment elevations and depressions,” have become important indicators of myocardial 

ischemia, despite an incomplete understanding of their physiological mechanisms and clinical 

interpretations [46]. Using ECG morphologies to diagnose ischemia has been insufficient in 

many instances and has accuracy rates as low as 70% [47].

To appreciate the source of errors in ECG based diagnosis of myocardial ischemia, it 

is necessary to first review the putative mechanistic link between metabolic imbalance 

at the tissue/cell levels and the resulting changes in body surface potentials. The ST 

segment of the ECG corresponds to a time interval during the cardiac cycle in which the 

ventricles have completely depolarized and all of the myocytes are in the plateau phase 

of their action potentials. This interval is visible in the ECG as the time between the 

end of the QRS complex and the start of the T wave and during this time there are 

only small differences in transmembrane potential between cells and thus no driving force 

between intracellular spaces of neighboring cell and very little current flowing through the 

heart. The consequences in the ECG are very small amplitude voltages during this time. 

However, in ischemic regions, the action potentials of cells display elevated (more positive) 

resting membrane potentials as well as decreased (less positive) peak potentials. Thus, 

during the plateau phase, there is a significant difference in potential between the ischemic 

cells and healthy cells. This potential difference causes currents, sometimes referred to 

as “injury currents,” to flow between the healthy and ischemic regions [48, 40, 49, 50] 

as seen in Figure 2.4. Because both the healthy tissue and ischemic region are at two 

different potentials but relatively homogenous within each region, the boundary between 

the two regions is where the injury currents are formed. This is known as the electrical 

border zone and will be the topic of detailed study in Chapter 4 of this thesis. These 

injury currents propagate through the rest of the body and when they are directed away 

from a measurement electrode, tha t electrode records a negative potential or depression. 

In contrast, when the current flows towards an electrode, the electrode records a positive 

potential or elevation. In this context, an ST-elevation/depression indicates the direction 

of current flow and can sometimes be mechanistically tied to a pathophysiology. However, 

such interpretations are plagued by difficulty and ambiguity, in part because the ischemic 

regions may form isolated islands within the myocardium and are also quite dynamic in 

time [51]. As a result, the rate of errors in the detection of especially transient and exercise 

induced ischemia remain high [52, 53]. There have been several proposed mechanisms for 

ST-depressions supported by computational models, yet none of these have been adequately



F ig u re  2.4: The schematic representation of the injury currents tha t arise during 
nontransmural and transmural ischemic episodes. The schemata on the left indicates a 
nontransmural ischemic region tha t results in ST-segment depression, while the schematic at 
right shows a transmural ischemic region that results in ST-elevation. The action potentials 
in the center indicate the typical action potential from ischemic tissue.

confirmed experimentally [50, 54, 49, 55, 56, 40, 57].

Despite the incomplete mechanistic understanding, ECG based methods are still widely 

used to identify ischemia. The rate of success in detecting ischemia is higher in the case of 

what is known as ST-segment elevated myocardial infarctions, STEMI [58], which correlate 

clinically with completely occluded arteries leading to ischemia and eventually infarction 

tha t is “transm ural,” i.e., throughout the full thickness of the heart wall. Detection is 

significantly more difficult in the earlier stages or transient forms of ischemia, which often 

express themselves as non-STEMI or NSTEMI [59]. Transient ischemia can be due to partial 

occlusion of the coronary vasculature tha t cannot keep up with increased demand due to 

stresses such as exercise or during surgery. It can also be a result of transient occlusions 

of arteries due to vasospasms. ST-segment depressions are a frequent clinical marker of 

NSTEMI but they are rather unreliable and a poor basis for localizing the ischemic zone [60]. 

Though STEMI and NSTEMI are thought to share similar pathophysiology, they have been 

shown to respond differently to therapy, though the reason for this difference is unclear [32].
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The generally unsatisfying diagnostic precision of ST-segment based detection of is­

chemia along with the poor mechanistic understanding of the relationship between injury 

currents and the resulting elevations and depressions in the ECG, underscores the need for 

subject specific computational models. Simulation generally provides the quantitative test 

bed to evaluate the entire set of features tha t are thought to contribute to the ischemic 

ECG. Subject-specific models capture the specific anatomy and structure of the heart and 

torso of each subject thereby reducing the role of geometric uncertainty in the simulations 

based on these models.

2.4 Computational Electrophysiology - 
Cellular Level

Closely linked to the experimental discovery of the electrophysiology of the cells and 

tissues of the heart is a series of mathematical, numerical, and computational models for 

the behavior of the heart across all scales. We begin a brief overview of cardiac simulation 

with models of the cell and then progress through myocardial tissue models to simulations 

of the whole heart.

The membranes of electrically active cells can be modeled as relatively simple parallel 

circuits consisting of resistive and capacitive components. The lipid bilayer of the membrane 

acts as a capacitor and the ion channels are represented as highly nonlinear resistive 

elements. The equilibrium (Nernst) potential associated with each ion species is represented 

as a battery. The challenge of such models lies in describing the nonlinear behavior of the 

ions channels and their complex voltage, time, and chemical dependence. Hodgkin and 

Huxley were the first to formulate this approach based on measurements from the squid 

giant axon and pioneered the field of computational electrophysiology [1]. This formalism 

is often expressed as an equivalent circuit (Figure 2.5). The basic structure of this circuit 

has served as the dominant formalism for membrane biophysics for the past half century 

and has been expanded with additional elements to capture more complex structure and 

behaviors but never abandoned. Even the most contemporary models of cardiac membranes 

owe their origins to this basic approach.

Using this equivalent circuit models the total membrane current can be written as 

—̂*
= Cm + ($m -  ^N a)G N a t + (*m -  ^  )G tm,t+ ($m -  $ l ) G l  , (2.4)

where $ m is the transmembrane potential, the $ i0n’s are the Nernst potentials of the 

various ions and the Gion’s are the membrane conductances; Im is the total membrane
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F ig u re  2.5: Hodgkin-Huxley equivalent circuit diagram of a squid giant axon. The diagram 
shows the initial model tha t included ionic channels with gating variables for Na+  and 
K  + to model the cellular dynamics of an action potential. The third arm represents the 
cumulative conductivity of various “leakage” currents in the membrane.
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current. In the original formulation, the conductivities were modeled as simple first order 

kinetic equations of state (each ion channel transitions between its open and closed state 

with transition probabilities tha t capture the dependencies on time, voltage, and chemical 

environment). The voltage and time dependencies are established by fitting experimental 

results to appropriate differential equations. In more modern formulations, the channel 

opening and closing probabilities can be described in more detail as having multiple open 

and closed states, with transitions between states determined by stochastic probabilities. 

Numerically, such behavior can be captured with Markov models [61]. For example, an ion 

channel with two states, open and closed, would have a Markov model as shown in Figure 2.6. 

This formulation results in the following differential equation for the probability L that the 

ion channel will be in tha t conformational state.

dL
—  =  a L(1 -  L) -  pLL  (2.5)

The rate constants a L and fiL are derived from experimental data tha t describe the 

rate at which ion channels open and close as a function of voltage, time, or even ionic 

concentration.

In the Hodgkin-Huxley formalism [62], the membrane conductances Gion are functions 

of the state variables m, h and n as seen in Eqns 2.6-2.8.

GNa(^ m it) =  GNa maxm  h (2.6)

Gk  ($m, t) =  GK maxn4 (2.7)

Gl  =  const (2.8)

The state variables can be defined by the Markov models in Eqns 2.9-2.11.

a
1 -  L L

13
F ig u re  2.6: Markov model with two states. The schematic represents an ion channel with 
an open and closed state along with the rate constants a  and .
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dm
—  =  a m(1 -  m) -  pmm  (2.9)
dt
dh

=  a h(1 — h) — Pkh (2.10)

-n
—  =  a n (1 -  n) -  PnU (2.11)

The rate constants can then be curve fitted to experimental data, from which come 

Eqns 2.9 and 2.10, which show the rate constants for the gating variable m .

a  =  0.1(25 -  V ') 1 (2 12.
am =  e0.125-V' m s [ >

4 1
=  V' /18 (2.13)e V /18 ms

Contemporary cell membrane models include dozens of ion channels rather than just 

three and these models also include ion exchangers and calcium handling descriptions. The 

gating variables are not just functions of voltage, but they also may be functions of time and 

ion concentration. New models are still being created for different cell types and pathologies 

and many of them are described in a database known as cellML, in which the models are 

freely available to the scientific community. Common mammalian cardiac models include the 

TenTusscher model [63], the Luo-Rudy dynamic model [64], and the Faber-Rudy model [65] 

shown in Figure 2.7.

2.5 Computational Electrophysiology - 
Tissue Level

The cellular models discussed above are frequently used to study the electrical behavior 

of single cells or small groups of connected cells. However, there are approximately 4 billion 

cardiac myocytes in the heart [66]. If each cell were modeled with dozens of ion channels, 

each containing two to three state variables, the problem would be well out of range of any 

existing computational resources. For this reason, scientists have used the mathematical 

concept of homogenization to describe tissue as a continuum rather then a discrete set of 

individual cells and create new abstractions for tissue level modeling. The method most 

relevant to this dissertation and considered by computational electrophysiologists the best 

compromise between physiological and anatomical fidelity and computational resources is 

the “bidomain” model.



2.5.1 Bidomain Modeling
To go beyond a single small segment of membrane to a whole axon (the nervous system 

equivalent of a myocardial fiber), Hodgkin and Huxley [62] proposed what was the equivalent 

of an electrical cable model to simulate action potential propagation along a nerve. The 

equivalent in cardiac tissue are models of single or multiple, connected cables to simulate 

two- and three-dimensional behavior in cardiac tissue [67, 68]. This formulation can be 

further extended by completely integrating the extracellular and intracellular spaces of the 

tissue into what is known as the bidomain approximation [69]. The bidomain assumes 

two continuous domains tha t are fully overlapping in space, but coupled together through 

membrane currents as illustrated in Figure. 2.8.

In the bidomain, the intracellular and extracellular spaces are modeled as two continu­

ously conductive domains and described by the following forms of Poisson’s equations:

V ■ ^ iV $t =  p 4  (2.14)

and

v  ■ ^eV$e =  - p im , (2.15)

where the subscript i and e denote the intracellular and extracellular domains and p is 

the surface to volume ratio. The two domains are coupled such tha t current, p i m leaving 

one domain must enter into the other domain. The difference in potential between the two 

domains is the transmembrane potential and is defined as

$m =  $ t -  $e (2.16)

The current flowing through the membrane is the same as described above for cell 

membranes, i.e.,
d $ tr^m,t =  P  u $ m +  (2 17)Im Cm ^  +  I ion +  1 stim, (2.17)

which contains a capacitance term, Cm, along with the current from membrane ion channels, 

I ion, and stimulus current I stim, which is either externally applied or from neighboring cells.

Combining Eqns. 2.14-2.16, we can rearrange the terms to solve for the extracellular 

potential, $ e, in terms of the transmembrane potential, $ m, as

V ■ (<j i +  CTe)V$e =  - V  ■ a iV $m (2.18)

The term $ m depends on time and must be solved over an entire cardiac cycle; however, 

in many instances it is possible to approximate the transmembrane potentials for different
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I,,Na Ik ,ATP iKr I,s !K i iKp
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F ig u re  2.7: A schematic diagram adapted from the cellML repository of the Faber-Rudy 
cardiac cell model. The diagram depicts the ion channels and exchanges mathematically 
included in this model. The model is freely available to the scientific community in the 
cellML database.

Extracellular

Membrane

Intracellular

F ig u re  2.8: Schematic of the bidomain formulation. The bidomain can be pictured as a 
continuous representation of both intracellular and extracellular spaces as resistor network 
coupled by an approximation for membrane currents. Adapted from Roth (1992)
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disease states at a single instance in time based on experimentally derived data. When the 

transmembrane potential represents a single instance in time, the result is called the “static 

bidomain” or a “single time point bidomain.” This approximation is best suited to time 

instances in which the transmembrane potentials are not changing rapidly or approximate 

steady state conditions. During activation there are two intervals tha t are considered steady 

state or close to steady state such tha t these approximations are appropriate. True steady 

state conditions occur between cardiac cycles. However, the ST segment is the time point 

tha t corresponds to the plateau phase of the ventricular myocytes and during this phase, 

the transmembrane potentials change very slowly, approximating a steady state. Over this 

interval, all of the ventricular myocytes have activated, but have not yet begun to repolarize.

The resulting simplification of the full bidomain equations above leads to an elliptical 

equation tha t requires solving a Laplace’s equation over a complex spatial domain, e.g., 

the heart. Solving over anything but the simplest domains requires numerical methods, 

either the boundary element method (BEM) or the finite element method (FEM) [70]. The 

FEM has an advantage over other approaches in tha t it allows for the anisotropy of the 

myocardial fibers to be included in the model. Anisotropy is accounted for in both domains 

by varying the conductivities relative to the muscle fiber orientation. The FEM approach 

requires a geometric representation of the entire volume of the solution domain and any 

surrounding tissues [71] and constructs what is known as a stiffness matrix using a fairly 

standard approximation known as the Galerkin method [70]. Once the stiffness matrix has 

been created, the system of equations can then be solved using iterative Krylov-subspace- 

based solvers [72] such as the conjugate gradient (CG) and the minimal residual (MINRES) 

methods [73].

W ithout a static approximation of the membrane potential, it is necessary to solve a 

more complete form of the bidomain equations tha t include a cellular model to calculate 

the current crossing the cell membrane, Im:

This form of the equations leads to a parabolic problem and requires initial conditions 

such that it can be solved over time. Numerical integration schemes, such as the Forward- 

Euler method, are used to iteratively solve for the transmembrane potential through time [74, 

75], where the membrane currents are calculated from a cellular model as follows:

(2.19)

^  ( - v  ■ a t V ^ m +$ £ ) )  -  p ( t ion+ is)
PCm

(2.20)



The extracellular potential is then solved as a separate step and plugged back into the 

Eqn. 2.20 for subsequent iterations as follows:

V ■ (ai +  ae)Vtr+5t =  - V  ■ atV^m+St (2.21)

2.6 Computational Electrophysiology - 
Whole Body Level

To extend the simulations of cells and then tissues to generate body-surface potentials 

requires a further level of homogenization and simplification into what are known as “volume 

conductor” problems. In this case, there is a bioelectric source, which are simplifications of 

the currents generated by the whole heart, and a volume that is electrically conductive. 

Thus it is necessary to know and represent both the source and the realistic volume 

conductor, including its shape and (typically inhomogeneous and potentially anisotropic) 

conductivity, again in a numerical approximation tha t captures necessary details and re­

mains computationally tractable. The formulation we have just described is a form of 

“forward problem,” i.e., the source the volume conductor are known and the goal is to 

estimate remote (in this case body-surface) electric potentials. As in many areas of physics, 

one can also formulate the associated inverse problem tha t uses remote measurements, such 

as body-surface electrocardiograms, to locate the electrical current sources from the heart, 

given knowledge of the volume conductor and the choice of source model formulation.

2.6.1 Electrocardiographic Forward Problems
The biophysical background of the forward problem begins with the generalized version 

of Ohm’s law as follows:

Ji =  -a iV & i,  (2.22)

where Ji is the current density in region i, ai is the conductivity tensor, and V $ i is the 

potential gradient. Taking the divergence of the both sides of this equation results in the 

base formulation of the spread of current through a volume conductor described by either 

Poisson’s or Laplace’s equation as:

V ■ (aV $) =  - i v  =  V ■ J i (2.23)
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and

respectively.

V ■ (aV $) =  0, (2.24)



Eqn. 2.24, Laplace’s equation, describes a condition in which there are no sources or 

sinks within the volume. The boundary conditions for this model are derived from the 

physiology of the problem. Ischemia produces current sources within the heart which can 

be modeled as Dirichlet boundary conditions, i.e., known potentials on the heart surface. 

Any boundary with air, a nonconductor, leads to Neumann boundary conditions,

(j V $) ■ n  =  0 (2.25)

in which no current flows out of (or into) the body.

When the heart is a source embedded within the volume conductor, the conditions at 

its boundary can be described as:

( jiV $ i)  ■ ni =  ( j j V $ j ) ■ n j (2.26)

i.e., the normal component of the current at the boundary is conserved.

There are many different volume conductor models based on these simple equations, 

each employing a different cardiac source model formulation. Perhaps most complete but 

also most computationally challenging is a formulation tha t couples the bidomain model 

of the heart within the torso volume conductor and solves the entire problem as one large, 

coupled system.

2.6.2 Inverse Problems
The purpose of the inverse problem in electrocardiography is to locate the electrical 

source tha t corresponds to a physiological event based on body-surface electrical potentials. 

The components of the inverse problem are the source description, geometry of the volume 

conductor, conduction tensors, forward solution, and inversion method or regularization. 

Although every inverse problem is based in some way on a forward problem, the focus of 

this research is entirely on refining a forward problem so tha t further discussion of this 

inverse problem is well outside the scope. For more details, see, e.g., [76, 77].
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CHAPTER 3

IMAGE BASED MODELING PIPELINE

While there is rich variety in the diversity of applications of computational modeling, 

for example, aerospace, climatology, and biomedicine [78, 11, 79], there is also a common 

set of specific technical techniques or steps tha t many modeling applications share. In 

particular, many simulations rely on structure or anatomy and the ability to mathematically 

represent the three dimensional shape of the object being simulated. For example, to 

simulate the stress produced in a beam when placed under loading conditions, one must 

first mathematically represent the shape of the beam in order to solve the equations that 

model stress; an I-beam produces a very different stress profile from a rectangular beam. 

Early models used geometry based on simple shapes such as rectangular boxes, cones, and 

spheres to approximate more complex objects. This approximation not only makes for 

simple representations of shape, but also allows the physics based equations to be solved 

analytically rather than numerically. However, this method is limited to fairly simple 

geometries and is not sufficient in many domains. For such situations, it is necessary 

to create more complex geometric models and to employ numerical approximations of the 

underlying equations. Numerical methods such as finite elements (FE), finite differences 

(FD), and the boundary element method (BEM) are approaches tha t allow engineers to 

simulate over much more complex geometries [80, 70]. However, this flexibility also comes at 

a cost; numerical approximations such as these rely on tessellating or tiling complex surfaces 

by representing them as many small, simple polygons such as triangles and quadrilaterals 

for surfaces and tetrahedra, hexahedra, and prisms for volumes. Thus a real, continuous or 

smoothly shaped object becomes approximated by the union of many small elements and 

the resulting geometric model is generally referred to as a mesh or a grid. The human torso 

mesh in Figure 3.1 is an example of such a discretized geometric model. Just as the object 

or shapes are discretized into many small elements, the equations describing the behavior 

of interest are also solved many times for each of the elements in the mesh. This general 

formulation is common across many application domains and is essential for solving realistic 

problems such as bioelectric activity in the heart and torso.
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F ig u re  3.1: A mesh of a human torso with each color representing a different tissue 
type. The figure is a cross-section of a human torso in which each tissue is tessellated 
using tetrahedral elements constructed using what is known as a “stenciling” algorithm. 
The outermost, red region represents space outside the torso, the green represents the skin, 
the dark purple the subcutaneous fat layer, and the lighter purple the viscera and internal 
connective tissues. The dark blue regions are from bones, the light blue and green major 
vessels, and the yellow a region of the heart. (Courtesy of Jonathan Bronson)
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There are many ways to mathematically describe geometry from which the tessellation 

will be created, but there are two general and common approaches. The first is to explicitly 

build the geometry with a computer aided design (CAD) system tha t approximates the 

underlying shapes using bezeir/spline surfaces tha t are stitched together in order to form 

complex volumes [81]. The second approach is to capture the geometry using an imaging 

modality such as magnetic resonance imaging (MRI) or computational tomography (CT) 

and then carry out segmentation of the regions of interest. Many engineering disciplines 

rely heavily on geometry from CAD systems. However, in biomedical engineering, image 

based modeling is much more prevalent [11]. This choice results in part from the availability 

of image data and imaging facilities used to diagnose and treat patients. More importantly, 

it is difficult, if not impossible, to obtain measurements of internal tissues and structures 

in living subjects without using some form of imaging technique. This widespread use 

of medical imaging has led to the development of tools and techniques that specialize in 

converting image data into suitable computational models for simulation.

The creation of the geometric model is just one step in a pipeline or workflow that 

is common to many simulation scenarios, a sequence tha t we describe as “image based 

modeling and simulation” and convey schematically in Figure 3.2. The pipeline begins 

with images and contains all the necessary steps, which we describe below in more detail. 

While the implementation of each step can be more or less challenging depending on the 

nature and scale of the specific application, the elements share common features, which also 

facilitates at least some level of common algorithms and software. Another commonality to 

many applications is the need for refinement based on specifics of the boundary conditions 

or initial results, as indicated by the arrows and upstream connections in the figure. The 

following sections outline the steps of the image based modeling pipeline and discuss some 

of the considerations in relation to model creation for each step.

3.1 Image Acquisition
There are many factors to consider when designing an imaging protocol for compu­

tational modeling. Many of the decisions made at the imaging step affect downstream 

processing and can greatly limit their efficacy. The type of tissue being imaged, the level of 

structural detail being captured, and the tolerable dose of radiation are all factors tha t play 

a significant role when designing a protocol. While part of the decision depends solely on 

the anatomy being imaged, a large part is also dependent on the simulation requirements 

such as the level of spatial detail tha t is needed to accurately simulate the physics. Below
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F ig u re  3.2: Image based modeling and simulation pipeline. The sequence of steps common 
to many problems in modeling and simulation begins with images, requires the construction 
of a geometric model, the application of boundary conditions, and the solution of sets of 
equations by means of numerical approximation and computational solvers. Feedback is a 
required element as the outcome of some stages can drive refinement of upstream elements 
of this pipeline. (Courtesy of Rob MacLeod)



we will summarize some of the important imaging parameters that are specific to cardiac 

electrophysiology as well as outline some of the strengths and weaknesses of different imaging 

modalities.

One of the greatest limitations of image data is that it stores continuous and often 

smooth shapes on a discrete grid [82], thus sacrificing some level of detail. Each pixel 

of the resulting image, or “voxel” of the resulting volume, is assigned an intensity value 
that depends on the quantity capture by the particular imaging modality. Images that 
are suitable for creating geometric models must encode in their voxels some form of tissue 

characteristic, e.g., tissue density for x-ray based images or water content for MRI. As a 
result, each voxel of the same material has a similar intensity and jumps in voxel intensity 

signify boundaries between tissue regions (or organs). An important consequence of the 
limited resolution of any imaging modality occurs at the material boundaries where multiple 

materials meet. Voxels containing information derived from a mixture of materials have 

intensities that are a weighted average over all the tissues within the voxel, also known as 
“partial volume effects” [83]. The result of this discretization error is that sharp boundaries 

become blurred and that smooth boundaries become discretized or “stair stepped.” One 

consequence of inadequate sampling resolution and partial voluming arises when algorithms 

that create continuous surfaces cannot follow regions of high curvature and create holes in 

thin features such as pleural or pericardial linings in the thorax or even the walls of chambers 

in the heart.
An additional challenge arising from resolution is overlapping intensity ranges between 

tissue types, i.e., voxels from what are two different tissue types show intensity values 

that are not clearly separable. Overlap can arise due to noise in the image or from 

intrinsic limitations or specific settings of the scanning modality [82]. For example, in 
MRI, inhomogeneities in the magnetic field result in variations in image intensity over the 

entire field of view, such that one tissue may have a value in the center of the field of view 

that overlaps with that of another tissue further away from the center [82]. In some cases 

contrast agents can improve tissue differentiation. However, this is not always possible or 

may cause unwanted side effects [84]. While optimizing raw image quality is always the 
best strategy for achieving high quality geometric models, there are also image processing 

strategies that can facilitate the identification of tissue regions and boundaries, a process 
known as “segmentation” that we will describe in more detail below.

Imaging the heart has additional challenges because in a living organism it is not fixed 

in place. With every cardiac beat, the heart rotates and shortens and then returns to its
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original position. This motion couples with respiratory motion that shifts the heart up 

and down as much as 2 centimeters during breathing [29]. To account for these types of 

motion, scans must be taken very rapidly or gated to the cardiac cycle and even respiratory 
phase. Breath holds are utilized to control respiratory motion for shorter scans whereas 

longer scans must also be gated to the respiratory and cardiac cycles. Gating the scan can 
significantly increase the total scan time, which, in turn, enhances the probability of motion 

artifacts due to postural changes of the patient. Cardiac motion also makes some already 

lengthy scans, such as diffusion tensor imaging (DTI), so long that they are not currently 

possible on living subjects [85].
There are many imaging modalities used clinically, though CT and MRI, as seen in 

Figure 3.3, are preferred for constructing geometric models because of their high resolution, 

consistent registration, and generally high image quality. In contrast, ultrasound based 
imaging has a very poor signal to noise ratio while nuclear medicine has very poor spatial 

and temporal resolution, even though both are very valuable clinically for their ability to 

capture functional details rather than anatomy [82]. The choice between CT and MRI is 

often based on the type of tissue being imaged and seeks to balance the improved spatial 

and temporal resolution of CT against its ionizing radiation burden as well as the need for 

contrast agents to capture soft tissue. CT images bone and other dense material very well, 

whereas MRI has higher contrast between soft tissues and is generally more versatile. CT 

scans run an order of magnitude faster and provide several times higher spatial resolution 
than MRI, but require exposure to ionizing radiation [82]. An additional limitation of MRI, 

especially the higher field systems (3 Tesla and above), is that patients with implantable 
defibrillators or pacemakers cannot be placed inside the large magnetic fields of an MRI with 

complete safety so that patients with these devices must receive CT scans. The versatility 

of MRI arises through a combination of contrast agents, typically based on gadolinium, and 

variations in the pulse sequences that are under software control and provide for a very 

wide range of accommodation to different tissues and tasks[86].

Because of the relative advantages of both modalities, the ideal scenario is to combine 

multiple scans that each focus on a different aspect of the anatomy. However, in a typical 
clinical setting it is rare that scans are taken solely for modeling purposes so that a single 

modality at moderate technical quality is adequate. While the resulting scans do not 
represent all that the state of the art has to offer, they are often adequate for extraction of 

tissues and hence the construction of geometric models.
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Figure 3.3: MRI and CT axial slices of a human torso MRI scan.
The figure at left shows an MRI slice of a human torso in the axial direction showing 

many of the tissues within the torso. The figure on the right is a CT slice with the bones 
and heart clearly identifiable due to the use of a cardiac contrast injection.

3.2 Segmentation
Segmentation is the process of identifying tissues and structures within an image and 

giving each pixel (2D) or voxel (3D) a label which associates that unit of the image with a 

particular tissue. Figure 3.4 shows an example of a segmentation of a torso model prepared 

and visualized using Seg3D [19], a custom, interactive program created at the SCI Institute 

of the University of Utah. The result of segmentation is what is known as a “label map” 

a discrete version of the original images in which each voxel receives a “label” identifying 

its tissue type. The number of labels is much smaller than the number of possible voxel 

intensities so that a label map is also a very compressed version of the original images. 

The process of identifying tissues types within an image can be subjective as well as very 
time consuming. A typical workflow (described in more detail below) is to first filter, e.g., 

improve contrast or otherwise sharpen boundaries between tissues, the images to allow either 
automated or user driven identification of boundaries to be more dependable. Achieving 

segmentations of acceptable quality for subsequent geometric model construction can rarely 
be fully automated as boundaries can be intermittent or too subtle for consistent success 

with current image processing algorithms. Human guidance then becomes necessary and 
quality of segmentation ultimately depends on the skill and experience of the user.

3.2.1 Image Preprocessing
Before segmentation, it is often necessary to use smoothing spatial filters to remove from 

image noise and small intensity artifacts that are either the result of imaging errors or reflect
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Figure 3.4: A segmented torso MRI scan produced by Seg3D. The figure shows the 
graphical display of Seg3D with a segmentation of a human torso in which every color 
represents a separate tissue type. The label maps are written to file as integer values 
representing each tissue.
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heterogeneities in the tissue. Smoothing spatial filters not only remove noise but they also 
close tiny gaps in lines and edges, which can be important when interpreting the image 

and applying subsequent model construction algorithms [87]. The workflow presented here 

relies heavily on median [87] and Gaussian anisotropic filters [88], which blur or average 

the image, but also attempt to preserve important features such as edges. These filters are 

particularly useful to remove what is known as “speckle noise” and other small variations 
within a material while still preserving the salient features of the image.

3.2.2 Automated Segmentation Algorithms

Fully automated segmentation usually relies on a priori knowledge of the object repre­
sented by the image. Atlases of average shape representations are built into such segmen­

tation routines, which then try to minimize the variation between the specific case and the 

atlas while identifying material boundaries [89, 90]. Such approaches can be very powerful 

in settings in which variation between subjects is relatively small and have shown great 

utility in brain segmentation [91, 92, 93]. However, when there is even modest natural 

variation between subjects, e.g., the human torso or the heart, the resulting larger variance 

in the atlas means reducing the utility of such approaches.
In the workflow presented here, semiautomated routines were used to segment the 

cardiac MRI and CT images. The most basic method utilized in our segmentations was 
thresholding. Image thresholding identifies similar regions of the image, presumably the 

same tissue type, based on defining a range of intensity values. Thresholding is useful 

in images with very good contrast between materials so that each intensity value range 
uniquely reflects one particular material. However, in many instances, thresholding alone 

was not sufficient. More typically, intensity values are not unique to one material, i.e., 

there is overlap between intensity ranges representing different tissues. In these cases, 
more sophisticated segmentation techniques such as water-shedding [94] and neighborhood 

connected methods [95] were used to identify the tissues of interest.

3.2.3 Manual Segmentation
Manual segmentation was often necessary either as a means of identifying regions within 

images that were too challenging for automated approaches or as a means of editing 

or correcting automatic or semiautomatic segmentations. The process was completely 

manipulated by the user and fortunately a rich set of approaches and tools existed to 
assist in the otherwise time consuming operations required for manual segmentation. For
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example, one can select multiple voxels at a time using a variety of selection tools such 
as paint brush or contour drawing tools, some of which are common to graphical drawing 

programs [96]. In Seg3D the approach is based largely on painting of regions, sometimes 
constrained by a mask created either from a previous automated edge detection or from an 

adjacent slice in the image volume [19].

3.3 Physiological Data Acquisition
In addition to anatomical features, it is often necessary to collect spatially distributed 

signals or parameters from the physiology that is the actual goal of the simulations. Es­

pecially in simulations based on anatomical substrate, these physiological data may also 

be associated with specific locations in space and thus it is necessary to align or register 
the physiological with the anatomical information. In the case of the heart, for example, 

there are often electrical potentials and what are known as “activation times” measured 

at discrete locations on the heart. Other examples from biomedicine and beyond include 

properties such as flow, electrical or thermal conductivity, stiffness, magnetic field strength, 
and many more, all of which are subsequently used in the simulations.

In order to associate such measured data with the correct spatial locations of the 

anatomy, sensor locations must be recorded using a variety of techniques. Common ex­

amples include magnetic tracking or navigation systems [97, 98], in which the interaction 
between a magnetic field and the measurement device allow localization of the sensor, and 

mechanical digitization [99, 100], in which an arm or a other form of mechanical or electro­
magnetic linkage records the spatial location of the sensor relative to a common coordinate 

system. Both systems record the spatial locations of the sensors in a coordinate system 

that is independent of that of the imaging system, thus requiring subsequent alignment or 
registration of the two geometric frames of reference (see next section).

3.4 Registration
Registration is the process of transforming two or more sets of spatially organized data 

into the same coordinate space [101]. In the context of the image based modeling pipeline, 

the data is comprised of surfaces, discrete measurement points, and images. Figure 3.5 shows 
a typical example, in which heart anatomy (from MRI) and coronary vasculature (from 

CT) are merged with what are known as “plunge needle” recording devices for capturing 

electric potentials within the volume of the heart (from mechanical digitization) [102, 103]. 
While there are subtle differences between registering points, surfaces, and images, the



37

Figure 3.5: Three different data types registered into the same space. The grey 
transparent surface represents the surface of a canine heart obtained from an MRI scan. 
The yellow vessels are the coronary vasculature of the same heart, but obtained through 
a CT scan. The blue spheres represent locations at which electrical signals were recorded, 
where the locations were obtained using a digitizer.

basic principles are the same. Registration techniques can be organized into two categories, 

features-based and area-based methods [104]. For our workflow, only feature-based methods 

were used and will be discussed here. More comprehensive descriptions of registration 

techniques can be found in other texts [104].

3.4.1 Feature-Based Registration

Feature-based registration uses landmarks, often anatomically obvious locations that are 
invariant over time and are identifiable in all the different modalities to be registered. The 

resulting transformations used to align the landmarks can be rigid and linear [105], or can 

also scale or even distort and morph the geometry with nonlinear [106] transformations 
depending on the requirements of the registration. In many applications the required 

landmarks are distinct features such as roads, rivers, and intersections or more generally 

points, lines, and edges, that are easily identified either automatically or manually [104]. 

However, in medical images it is often difficult to find structures or landmarks that are 

easily identifiable between images. Such detection of landmarks often requires medical
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experts to identify anatomical correspondence points which can be particularly challenging 

in three-dimensional images, a source of error in the resulting geometric models. Where 

feasible, it is often advantageous to fix markers to the body that are visible across image 
and feature identification modalities.

3.4.2 Application to Cardiac Modeling
In cardiac imaging, the vasculature of the heart, particularly the bifurcation points of the 

major arteries, offer easily identifiable landmarks that can be used as correspondence points. 

Acquisition of these locations requires use of contrast agents but these exist for both MRI 

and CT. Vascular catheters as well as direct access with digitizers in experimental settings 

provide means of locating these bifurcations. However, the challenge of detailed registration 
of cardiac information lies in the fact that the heart is not a rigid body and deforms over 

time. Often, acquisition of electrical sensor based data occurs across the entire cardiac cycle 
whereas the MRI and CT images are captured at a single time point in the cycle. For this 

reason, nonrigid transformations are often needed to map measurement data to image data.

3.5 Surface Meshing
The creation of discrete polygonal geometric models or meshes is the next step in the 

image based modeling pipeline [11]. In this section we describe surface meshing as separate 

from volume meshing because there are distinct technical challenges to each. However, 

in some algorithms, surface and volume meshing are not separate processes. Surface 

meshing requires identifying and tessellating the boundaries between materials, as well 

as the outermost enclosing boundary, from a segmentation or label map of the underlying 

tissues. Surfaces that are smooth in reality are represented in the label map as discrete 

approximations. Thus, the challenge becomes converting this discrete, often distorted or 

“stair stepped” representation to a discrete representation that most closely approximates 
the smoothness of the original surface.

These challenges are compounded when three or more materials converge, as often occurs 

in living tissues [107]. In many cases, this process is broken into two steps, first creating 

a smooth representation of the boundaries and then representing these surfaces as discrete 
triangle or quadrilateral elements.

As discussed previously, segmentation is a necessary step in order to identify the various 

tissues within the image; however, for many types of segmentation, this process removes 

information necessary to reconstruct isosurfaces that approximate the smoothness of the
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original surfaces. When an image is segmented, it represents images as a very small number 

of different tissue types, effectively reducing the original number of discrete image intensities 

(on the order of thousands) to the order of 10 different labels. Many segmentation tools, such 

as Seg3D, produce “hard” boundaries between labels, in that there is no transition between 

labels, but each label defines a discrete region. A direct consequence is that an isosurface 

derived from such a representation must cross at the midpoint between two labels, thus 
capturing and preserving the stair-stepped artifacts based the underlying grid. In contrast, 
a “soft” boundary, which has values that transition from one side of the interface to the 

other, leads to an isosurface that utilizes interpolation to give subelement resolution of the 

boundary location. The difference between these methods is illustrated in Fig 3.6.

While there are some applications that produce “soft” segmentations, most produce hard 

segmentations; in our modeling pipeline, we dealt exclusively with the latter type of label 

maps. The challenge then becomes how to use the coarsely resolved label map to generate 

a suitably smooth estimate of the boundaries. For this step we have used a smoothing op­
eration, e.g., Laplacian smoothing [108, 109], curvature limited smoothing [110], or surface 

fitting techniques [111]. The resulting surfaces are smooth and are adequate representations 

for some applications, such as visualization. However, many simulations are sensitive to the

Figure 3.6: A comparison of isosurfaces between a “hard” segmentation and the raw 
data. The figure at left is the isosurface generated from the segmented data, showing 
the stair-stepped artifacts. The figure at right shows the smoother isosurface that can be 
produced from the raw image data.



shape of the elements used in the mesh and require further refinement. Elements with 

very sharp angles can produce poor numerical results [112] and there is no guaranty of well 

shaped elements from the previous steps. Some approaches iteratively evaluate the mesh 

and adjust poorly shaped elements [113, 114], while others utilize the smooth surfaces to 
create an entirely new mesh.

One approach to remeshing the smooth isosurfaces that have poorly shaped elements 
is to utilize a scalar field representation known as “indicator functions” [115]. In this 

technique, the scalar field represents the distance of each node to the nearby intended 

surface. Nodes on one side of the surface will have a positive distance and those on the other 

side negative while the zero-crossing of the distance field defines the location of the surface. 
By using an interpolation function across each grid element, the zero crossings can be 

located anywhere within the element. The indicator function can then be meshed utilizing 

algorithms that produce well shaped elements, such as variational methods that optimize 

the node locations [116, 115], or stenciling methods [117] with bounds on the permissible 
angles between faces of the element. The custom software from the SCI institute known as 

BioMesh3D [118] implements these strategies and Figure 3.7 contains a result from MRI 
images of the human skull and brain.

3.6 Volume Meshing
In simulations based on the finite element method (FEM) or visualizations of three­

dimensional structure or associated function, a surface definition of geometry is not suffi­

cient. The volume defining the space also needs to be tessellated into small three-dimensional 

elements, an aim typically achieved with hexahedra, tetrahedra, prisms, or pyramids [119]. 
Different element types have different computational properties and the choice of element 

type is dictated by simulation or visualization requirements. Tetrahedral meshing is perhaps 

the most versatile and can be used to capture complex and irregular geometries, while 

hexahedral elements are more efficient for certain computations [119, 120], particularly 
in mechanical simulations, despite the resulting poor rendering of many shapes. The 

construction of tetrahedral and hexahedral meshes involves very different algorithms and 

will be considered separately below.

3.6.1 Tetrahedral Mesh Construction

Volume meshing with tetrahedral elements is well understood and has stable and robust 

technical solutions with moderate computational cost. In cases in which surfaces are already
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Figure 3.7: A smooth surface representation of a brain and skull. A variational meshing 
algorithm, Biomesh3D, produced the smooth surface representations of the brain, white 
and grey matter, CSF, and skull based on an MRI image of a head. Some of the tissues are 
clipped away in order to visualize the inner tissues.
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meshed with triangles in a piecewise linear complex [121], constrained Delaunay-based 

algorithms [122] produce tetrahedra with optimal aspect ratios. Figure 3.8 contains an 
example of such a mesh with color indicating the different tissue regions captured in this 

very detailed and highly realistic mesh. Other techniques for tetrahedral meshing include 

stencil based approaches, which are very fast and can produce very uniformly shaped and 

sized elements [117].

3.6.2 Hexahedral Mesh Construction
Hexahedral meshes can be much more challenging to generate than those based on 

tetrahedra. The level of difficulty depends on the underlying shape (or label mask) and 

there are specific shapes that lend themselves to this type of meshing, for example, spheres

Figure 3.8: A cross-section through a volumetric tetrahedral mesh of a human head. 
The figure shows the inner tetrahedral mesh of a human head, where each color represents 
a different tissue type. The tetrahedral elements were produced using a Delaunay-based 
algorithm.
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and rectangles, for which there exist predefined templates [123]. In some instances, a single 

face of an object can be meshed with quadrilateral elements and then the resulting two­
dimensional mesh “lofted” or revolved through the three-dimensional object to define the 

hexahedral elements [124]. Other techniques are based on Octree approaches [125, 126] that 

subdivide cubes until there is sufficient resolution, creating irregular cells at the boundaries. 

Poorly shaped elements at the boundary are then adjusted using a variety of techniques [127] 

such as point insertion, edge/face flipping [128], smoothing [108, 109], and pillowing [129].
In some applications, for example, characterizing the complete electrical and mechanical 

behavior of the heart, the same label map may be the source of both a tetrahedral mesh for 

electrical simulations and a hexahedral mesh for subsequent computations of contraction 
and the two must be coupled to pass results between them [130, 131].

3.7 Boundary Conditions and Material Properties
Tissue types or, more generally, materials are defined in a mesh by assigning material 

properties to each element. For example, electrical simulations use the conductivity of 

each tissue while mechanical deflection problems need the modulus of elasticity of each 
material. The boundary between materials is an important interface because there is usually 

a sharp transition in material properties which can produce ill-conditioned matrices that 

are difficult to solve. One practice typically used to mitigate the associated numerical 

instabilities is to “smudge” or blur the boundary between these materials. Although the 

result is a system of equations that is easier to solve, the technique introduces errors, 
particularly when a sharp transition is a defining feature of the phenomena being modeled. 

The need to preserve sharp features and borders or to incorporate true discontinuities of 
material properties drive the need for meshing techniques that produce what are known as 

“boundary fitting” [123] material interfaces which accurately and smoothly represent the 
intended material interfaces.

In cardiac electrophysiology the gradients that arise at the tissue interfaces are very 
important to many conduction abnormalities. The interfaces between pathological tissue 

and heathy tissue are locations that are susceptible to arrhythmias and may even produce 

electrical currents, “injury currents,” that can be detected on the body surface to diagnose 

the underlying pathology (see previous chapter). Hence, it is particularly important to 
model these interfaces correctly both from a physiological and a computational standpoint.



CHAPTER 4

BORDER ZONE APPROXIMATIONS 
USED IN BIDOMAIN SIMULATION 

OF MYOCARDIAL ISCHEMIA

4.1 Introduction
Myocardial ischemia is one of the leading causes of mortality in most Western countries 

[9] and affects approximately 6 million people in the United States alone. It is defined as a 

condition in which the metabolic demand of cardiac myocytes exceeds the supply of nutrients 
and oxygen received from the blood supply. In humans, myocardial ischemia arises primarily 

due to partially occluded coronary arteries, which supply the oxygen needed to metabolize 

energy in the tissues of the heart. The blood flow through the coronary arteries also provides 

a means of removing metabolic byproducts and thus sufficient blood flow is necessary to 

maintain healthy homeostasis. Heart tissue that is subject to complete ischemia (a full 
occlusion of a coronary artery or “myocardial infarction” ) for extended amounts of time 

eventually dies and becomes necrotic, or scarred, and prone to ventricular arrhythmias [45]. 
The limited ability of myocardial cells to survive for more than approximately one hour 

without adequate blood flow makes the disease not only deadly, but also very time sensitive, 
driving the need for rapid detection techniques.

To help fill this need for rapid detection, Electrocardiographic (ECG) based diagnostics 

methods are ubiquitously used to diagnose myocardial ischemia, however, their precision 

is limited. The ECG indicates acute ischemia from deflections of the ST segment. These 

deflections, whether elevations, or depressions, are indicative of injury currents that arise at 
the border of ischemic and healthy myocardium. While clinical interpretations indicate that 

there are pathophysiological differences between an elevation (ST elevated myocardial in­
farction, or STEMI), and a depression, (non-ST elevated myocardial infarction or NSTEMI), 

there is an incomplete understanding of the electrophysiological mechanisms that cause the 

two pathologies [46, 58, 59]. In the case of NSTEMI, the accuracy of ECG based diagnostic 

methods is especially inadequate, as low as 70% [47]. A mechanistic understanding of
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the factors that give rise to ST elevation and depression would improve the diagnosis of 
myocardial ischemia.

A first step toward understanding the mechanisms behind ST elevation and depression 

is a precise characterization of the injury current sources. Injury currents arise at the 

boundary of ischemic tissues because of heterogeneity in the membrane potentials between 
the relatively piecewise homogeneous ischemic and healthy myocardium. However, direct 
measurement of the transition from ischemic to normal potentials is challenging even in 

animal studies, often lacking the necessary spatial resolution. Consequently, there are few 

reports upon which to base realistic source models that include these boundary zones.

Simulation provides the most reproducible and controlled means of evaluating the impact 

of injury currents on electrocardiographic potentials but here, too, results are unsatisfactory. 

Simulations based on the bidomain approach in myocardial tissue [132] have been used to 

evaluate the relationship between acute ischemia and bioelectric potentials on the epicardial 

surface [40, 55, 56, 50, 54, 57]. While informative, these results have so far failed to establish 
a clear and unambiguous link between the locations of the ST depressions on the epicardium 

and the location or extent of the responsible ischemic zone(s) [40, 55, 56]. Most reports 

have concluded that more sophisticated models are needed, i.e., those that include realistic 
heart geometry and physiologically accurate ischemic transmembrane potentials, to better 

represent the distribution of epicardial potentials during ischemia [56, 55].

A particular feature of simulations of acute ischemia, and possibly a major source of 
error, is the precise spatial representation of the border zone between ischemic and healthy 
myocardium. Realistic heart models of ischemia include three distinct regions: an ischemic 

region embedded within healthy myocardium separated by a border zone [40, 55, 56, 50, 54, 

57]. Advances in cardiac imaging allow for excellent descriptions of the heart geometry as 
a whole, but no imaging modality captures with the necessary submillimeter precision the 

region between the diseased and healthy tissues, especially in the setting of acute ischemia, 
in which the ischemic conditions are dynamic and the location of the border zone unstable. 

Medical imaging modalities are not sensitive to the metabolic or electrical changes that 

arise during acute ischemia but rather depend on the structural changes that arise only 
after myocardial infarction and scar formation. Only functional imaging using intramural 

potential recording techniques are capable of capturing acutely ischemic regions and their 

spatial resolution is generally limited to multiple millimeters [51]. Perhaps as a result of 
these limitations in imaging, border zones have been represented simplistically in previous 

models of acute ischemia. However, as we will show, the configuration of the border zone



in a model of acute ischemia can have profound impact on the resulting cardiac potentials, 

thus demanding very careful choice of assumptions.
A general limitation of previous simulations of acute ischemia has been in the shape 

and location of the ischemic regions. Rather than using measurements from experiments, 
researchers have typically defined the shape of the ischemic region and border zone based 

on a highly simplified notion of the pathophysiology of the disease. Generally, the ischemic 

zone has been modeled as a prism or trapezoidal region that has a wider base at the 

subendocardium and extends transmurally toward the epicardium with an extent represen­

tative of the degree of ischemia [56, 50, 54, 55]. In this formulation, the ischemic region 

contains homogeneously depressed membrane potential amplitude and the border zone is 
relatively thin (3 mm or less) with a transmembrane voltage that varies smoothly and often 

linearly between ischemic and healthy regions. The basis for the shapes employed comes 
not from experiments with induced acute ischemia, but rather from postmortem studies of 

infarcts. This approach assumes that regions of what becomes scar and fibrosis correspond 
precisely to the acute ischemic zones [133]. Acute ischemia, however, is a dynamic condition, 

depending on local conditions of supply and demand and levels of perfusion. As a result, 

the boundary may be constantly shifting and the border zone could be expected to vary in 

its thickness and in the local values of the transmembrane voltage [134].

The goal this study was to examine the consequences of a range of assumptions about the 

ischemic border zone and to compare computed and measured epicardial potentials under 

these assumptions. We have created subject specific models from ischemia experiments 
that allow direct comparison with measurements. Rather than fixing the border zone, its 

parameters were adjustable and were varied to reproduce the measured epicardial potentials. 

Postmortem MRI and diffusion tensor imaging (DTI) scans provided the basis for geometric 
models of the whole heart, while measurements of ST potentials from the same hearts using 

up to 450 transmural electrodes determined the location of ischemic regions. In this way we 

could define ischemic zones based on electrical recordings, albeit with less spatial precision 

than the medical imaging of the whole heart.

Using a model that only consisted of the three traditional regions—ischemic zone within 
an otherwise healthy heart separated by a standard border zone—it was not possible to 

reproduce measured epicardial potentials. To account for heterogeneity of potentials in a 
more realistic border zone, we added an additional region between ischemic and healthy 

tissues that represented partial ischemia. In this way, the fully ischemic region transitioned 
smoothly to a less ischemic region and then to the healthy tissue using a much sharper
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transition. This more complex arrangement produced epicardial potentials that were much 

closer to those measured in the experiments. These simulation results coupled with our 
high resolution extracellular potential measurements indicated that the commonly used 

simplification of the electrical boarder zone was not sufficient to reproduce accurate injury 

currents in our subject specific model and that a more sophisticated approximation was 

required.

4.2 Methods
To achieve our goal of evaluating the role of the border zone in the generation of elec­

trocardiographic fields from acute myocardial ischemia, we carried out both experimental 

and subject specific simulation studies based on the same animal models. Recordings of 
extracellular potentials at high resolution from both the epicardial surface and a part of the 

myocardial volume provided detailed electrical images while high field MRI was the source of 

anatomical images from which we created the subject specific geometric models. Simulations 
were based on the bidomain technique implemented in a finite element formulation.

4.2.1 Experimental Preparation

We induced controlled episodes of acute regional myocardial ischemia in an open chest 
canine preparation by cannulating the left anterior descending (LAD) artery and adjusting 

the flow of blood with a digital rotary pump routing blood from one of the carotid arteries. 
To increase metabolic demand, we paced the heart from the right atrial appendage using 

a bipolar clip electrode with a pacing interval set to span the full range of values that 

was capable of capturing the heart. Gas anesthesia, artificial ventilation, and monitoring of 
arterial blood gases according to a protocol approved by the University of Utah Institutional 

Animal Care and Use Committee ensured a humane and stable preparation. Electric 
measurements were by means of an 247-electrode sock placed around the ventricles of the 

heart and up to 45 fiberglass plunge electrode needles with 10 electrodes per needle placed 

through the anterior aspects of the left and right ventricles to cover a volume that included 

both ischemic and normoxic regions. Time signal (electrogram) acquisition was by means 
of a 1024 channel recording unit with a 1 KHz sampling rate and 12-bit resolution. After 

inserting the needles, 1 hour was given for the preparation related injury currents to subside. 
The set of LAD flow rate values used included 23 ml/min, 16 ml/min, and 9 ml/min, while 

the heart rate pacing interval was reduced from 380 ms to 230 ms by increments of 30 ms for 

every flow rate. Recording occurred in epochs of 5 seconds captured approximately every 30



seconds beginning from before onset of each ischemia protocol and continuing throughout 

the ischemic period and for 5 minutes after restoration of normal flow.

4.2.2 Geometric Model Creation
Upon sacrifice of each animal, the excised heart was scanned with a 7 Tesla small animal 

scanner (BioSpec from Bruker Corp) for an anatomical scan with approximately 450 micron 

resolution in all directions and a diffusion tensor imaging (DTI) scan to identify the fiber 

directions [135]. Needle and sock electrodes were digitized and registered to correspondence 

points in the MRI scans. The software package Seg3D [19] was used to segment heart tissue 

using thresholding and water-shedding algorithms as well as manual fine adjustments. To 
convert the segmentations into smooth polygonal surface models, we used the SCIRun 

simulation environment [136], specifically, Marching Cubes and Taubin mesh fairing [137] 

algorithms. The Biomesh3D [138] and Tetgen [139] packages then converted the surfaces into 

boundary conforming, tetrahedral meshes containing approximately 1.5 million elements. 
The DTI imaging provided a means to estimate local myocardial fiber orientation, which 

was mapped to the geometric model.
A key aspect of the geometric model was the border zone between healthy and ischemic 

zone, which was the focus of the study. To define the ischemic zone, we first interpolated the 
measured electrograms from the intramural needle electrodes and then defined a threshold 

for the ST-segment potentials, which are well known to deviate from their baseline values 

during ischemia [140]. Interpolation of the electrograms from the needle electrodes was 

based on a volumetric Laplacian smoothing [141]. The ischemic border zone corresponded 

to an isosurface of the reconstructed ST-segment potential distribution at an elevation two 

standard deviations above baseline conditions, approximately 11 mV. We chose a time 

instant at 40% of the duration of the ST-segment based on the root mean squared (RMS) 
of all the recorded electrograms during a single, representative beat captured during the 

intervention. To establish the sensitivity of the results to the selection of the time point 

during the ST segment, we repeated all analyses with potentials measured at 30% and 50% 
of the ST-segment duration with insignificant variations.

4.2.3 Simulation

The goal of the simulation was to compute epicardial potentials based on a fixed ischemic 

zone but variable border zone assumptions and then compare the results to measurements 
from the same heart under the same conditions. The numerical approach for these simula­
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tions was based on a static bidomain approximation [54, 49] described by Equation 4.1

V ■ (Mi +  Me)V$e =  - V  ■ M tV ^ m, (4.1)

where Mi and Me are intracellular and extracellular anisotropic conductivity tensors and 

$ e and are the extracellular and transmembrane potentials. The transmembrane 
potential is equal to the difference between the intracellular and the extracellular potentials 

($ m =  $ i -  $ e). For ischemic regions, this difference was set at -30 mV in accordance 

with previous studies [54]. In order to compare the measured voltages to the simulated 

voltages, it was necessary to ensure that both sets of voltages were reported relative 

to the same reference potential. The reference potential of the simulated voltages was 
adjusted to match that of the measured voltages by integrating the potentials over both 

data sets and subtracting the difference. All simulations were implemented in the SCIRun 

problem-solving environment [136], which solves differential Equation 4.1 using a finite 

element method [142]. The normalized conductivity values came from a computational 

approach by Stinstra et al. [49] that took ischemic conditions into account. For convenience, 

all ratios were normalized to an extracellular longitudinal conductivity, aei, of 1 as seen in 
Table 4.1.

4.2.4 Modeling of Border Zone
The hypothesis of this study was that the configuration of the border zone, i.e., the 

profile of the transmembrane potential between healthy and ischemic regions, can have 

profound impact on the computation of epicardial potentials. To provide a flexible, param­

eterized description of the potentials across the border zone, we used a Gaussian blurring 

approached base on the following equation:

-t2
G(t) =  30e 2<̂2, (4.2)

Table 4.1: Bidomain normalized conductivity values. In the bidomain simulations, only 
the conductivity ratios change the calculation of the electric field, thus, for convenience, all 
ratios were normalized to an extracellular longitudinal conductivity, ael, of 1.

Healthy Ischemic
Intracellular longitudinal conductivity 1 1
Intracellular transverse conductivity 0.05 0.05
Extracellular longitudinal conductivity 1 0.5
Extracellular transverse conductivity 0.333 0.25



where G(t) is the potential at distance t starting from the thresholded boundary (edge of 
the ischemic region) and moving towards the healthy myocardium. The variance of the 

Gaussian distribution was the variable that controlled the overall width of the border zone. 
This methodology of defining a Gaussian border zone is what is traditionally found in the 

literature and will be referred to in this manuscript as a “simple” border zone. As a proposed 
alternative to this simple border zone, we explored a more complex profile representing the 

transmembrane potentials as four regions rather than three (ischemic, transition, border, 

and healthy). Figure 4.1 shows the two models; the key differences are the addition of a 
transition zone, (TZ) which was also modeled with a Gaussian function but with a much 

larger variance, and a truncation of the border zone, essentially creating a two-phase zone, 
with each phase showing a different spatial potential gradient. When the transition region 

was included in the model, it spanned across what was defined in the simple border zone 

as the boundary of the ischemic and border zones. The start of the transition was offset 
into the ischemic region a fixed distance which was optimized from the data. Whereas the 

location of the border zone was determined by shifting the Gaussian function such that the 

complex border zone terminated at the same location as the simple border zone as seen in 

Figure 4.1.

4.2.5 Computation of Transmembrane Potentials
The overarching goal of this study was to evaluate approximations of transmembrane 

potentials during acute ischemia, particularly in the border zone, used in bidomain simu­
lations. Our unique measurement arrangement of capturing both the epicardial potentials 

and the intramural potentials within the ischemic region provided for two different means 

of evaluating these approximations. First, we constructed a model of ischemia based on the 
measured ischemic zone and an imposed distribution of transmembrane potentials through 

the border region to calculate epicardial potentials, as described above. The input to the 
simulation then becomes a measured spatial description of the ischemic region and an 

assumed or im posed transmembrane potential transition through the edges of the 

ischemic region. The output was the set of extracellular potentials on the epicardial surface.
However, the same bidomain equation 4.1 can be rearranged to directly solve for 

from the measured $ e, which provided a means of testing our assumptions about the 

effects of ischemia on transmembrane potentials. Here, the input to the simulation was 
the set of measured extracellular potentials, $ e from the intramural needles. In this 

formulation, there is no assumption about the spatial distribution of the transmembrane

50



51

Distance (mm)

Figure 4.1: Potential profile across border zone. The schematic illustrates both the 
simple and complex methods for defining the border zones where dashed blue line (simple 
BZ) shows the transition from -30 mV transmembrane potential to 0 mV using a Gaussian 
function with a variance of about 3. The green solid line (complex BZ) shows a gradual 
transition region along with a sharp border zone. The x-axis is the distance in mm from 
the center of the border zone.
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potentials. Instead, the output of the simulations are the resulting which we refer to 

as the “computed transmembrane potentials.” These potentials were compared directly to 
the assigned approximation of the transmembrane potentials used in the first model.

To carry out this comparison of the computed transmembrane border zone profile with 

the approximated profile, we sampled the computed transmembrane potentials as a function 
of distance along lines that ran from the fully ischemic region to the healthy region of the 

heart. The trajectory of these lines was normal to the surface bounding the fully ischemic 

tissue and these lines were sampled at increments of 200 microns, as illustrated in Figure 4.2. 

We examined these profiles separately and also as averages created across manually selected 

regions with similar profiles and as a single average that included all the profiles, as described 

by the equation

where $ i;j is the potential at point j  of profile i, as indicated by the points Pi,j in Figure 4.2.

(4.3)

P  m,0

m,n

Figure 4.2: Diagram of the border zone profile calculations. The electrical potential was 
sampled normal to ischemic boundary, indicated by the solid curving line, such that it could 
be evaluated as a set of spatial profiles and then averaged across all profiles.
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The precision of the computed transmembrane potentials clearly depends on the quality 

and especially the spatial sampling density of the intramural electrode measurements. The 

resulting field may be overly smoothed due to the interpolation across an undersampled 

border region, though the use of the “wave equation based” interpolation method [143, 141], 

which incorporates assumptions specific to the spread of activation, mitigates such errors. 

To address this concern, a second method was implemented to assure that the calculations 
were not biased by the sampling density. In this method, calculated transmembrane poten­
tials were only considered directly at the electrode locations, eliminating any errors from 

interpolation. However, it was no longer possible to calculate a profile of the transmembrane 

potential through the border zone. Instead, each calculated transmembrane potential was 

plotted as a function of distance from its associated electrode to the boundary of the ischemic 
region. In this way a statistical profile was calculated for the transmembrane potential as 

a function of distance.

4.3 Results
In the following sections are the results describing how we identified and approximated 

the border region in our bidomain simulations. They also include the sensitivity of the 

simulation to changes in the border zone width and the effects of including a transition 

region. The last section shows the computed transmembrane profiles across the border 

zone which can be compared to our approximated profile.

4.3.1 Approximation of the Ischemic Region
The motivation for adding a second component to the border zone approximation came 

from our inability to match the observations of the measured epicardial potentials using 
only the simple border zone. In these measurements the elevated extracellular potentials in 

the center of the ischemic region transitioned smoothly to those in the healthy tissue-there 

was no evidence of two distinct regions, such as what is used in the simple border zone 
approximation where the border zone is a simple transition from one homogeneous region 

a second homogenous region. Instead, we found that there were gradients even within the 

ischemic region which required one type of transition and a second transition was needed 
to model the border zone. Both transitions in the transmembrane profile were necessary in 
order to achieve in the extracellular space both a smooth gradient in the ischemic region 

flanked by distinct negative regions.

Figure 4.3 shows the measured and interpolated ST-40 potentials from the needle data
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Figure 4.3: Measured ischemic potentials. A. Shows an early stage of ischemia just 
becoming transmural. This corresponds to a flow rate of 16 ml/min and pacing interval 
of 320 ms. The scale was truncated at 11 mV to better highlight the region considered 
ischemic. The maximum extracellular potential was 18 mV. B. Shows a fully developed 
ischemia corresponding to a period later in the same ischemic episode with a flow rate of 
16 ml/min and pacing interval of 230 ms. The maximum extracellular potential was 26 mV.

at two different stages during the same ischemic episode. For this experiment, we defined an 

ischemic threshold potential of 11 mV, over the baseline value. The resulting isopotential 
surface represented the outer boundary of an ischemic region. Under the assumptions of the 
simple border zone, this also formed the inner surface of the surrounding border zone, the 

origin of the Gaussian function described above. Under the assumptions of the two-phase 
or complex model, the added transition zone (TZ) extended back into the ischemic region 

10 mm from this isosurface.

4.3.2 Border Zone Sensitivity

The major goal of this study was to compare measured epicardial potentials with 

simulated values based on measured ischemia zones and a subject specific geometric model. 
By replicating all other parameters of the experiments in the simulations, we were able to 

isolate the role of the border zone in the simulations, treating border-zone parameters as free 

variables. We then varied these parameters to establish their impact and then attempted 
to identify values that generated accurate epicardial potentials. For this sensitivity study, 
we used the simple border zone approximation in which the key parameter that controls 

the thickness and potential profile of the border zone is the value of the variance assigned



the Gaussian distribution.
The selection of the border zone width had a highly nonlinear impact on the amplitude 

and the distribution of the epicardial potentials. For example, for a border zone with 

variance less than 2, sharper than the blue curve seen in Figure 4.1, the maximum elevation 
and minimum depression on the epicardial surface were highly sensitive to changes in the 

border zone as seen in Figure 4.4. A variance of 2 corresponded to a border zone width 
of about 3 mm, which is commonly used in bidomain models of ischemia. The resulting 

sharp transition produced depressions that were localized at the edges of the border zone. 
In contrast, the smoother transition of the border, for example, with a border zone width of 

10 mm, created depressions that were diffused across a larger area that was not specifically 

localized over the border zone. The diffused and acute voltage depressions resulting from 
the width of the border zone are shown in Figure 4.5.

4.3.3 Matching the Simulation with the Experimental Data

To simplify the presentation of the results we divided the simulations into three groups: 

narrow border zones (less than 3 mm), wide border zones (10-15 mm), and simulations 

with transition regions (10 mm) and a sharp border zones (3 mm). The simulations 
performed with a narrow border zone showed regions of steep epicardial potential gradients 

located approximately above the subepicardial ischemic zone that were not replicated in the
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Figure 4.4: Simulated maximum and minimum epicardial potentials. The graph on the 
left shows the minimum epicardial potential predicted from the simulation as the border 
was varied based on the variance of a Gaussian distribution. The right-hand graph is the 
corresponding maximum epicardial potential
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Figure 4.5: Simulated ischemic regions compared to experimental data. The row of the 
figure shows simulations of epicardial potentials for a nontransmural ischemic zone with both 
a sharp border zone (left) and a smooth border zone (middle) compared to the experimental 
data (right).

experimental data, as seen in Figure 4.5. Wider border zones produced less severe gradients 

over the ischemic region than did the narrow border zones, but also produced homogeneous 

epicardial potential elevations. The amplitude of the ST elevations was also lower with 
the wider border zones than with the narrow but was still higher than experiments for the 

nontransmural ischemia stage. The relation of amplitudes reversed in the case of transmural 

ischemia with the experimental maximum values 18% and 9% higher than the simulations 

with wide and narrow border zones, respectively.
The third set of simulations, which used a transition zone as well as the border zone, 

resulted in field gradients that were closer in magnitude and distribution to those in the 

measured data. Figure 4.6 shows a simulation that included a transition region of 10 mm 

and a border zone of 3 mm. Not unexpectedly, the simulated epicardial potentials were 
generally smoother than the measured values; they were derived from ischemia sources that 

were, themselves, smoothed and also truncated by the limited resolution and coverage of 

the needle electrode measurements.

4.3.4 Computed Transmembrane Potentials
In addition to approximating the transmembrane profile across the border zone, we 

were able to use the bidomain equation, 4.1, to directly solve for the transmembrane 

potentials from our experimentally recorded extracellular potentials. The mean profile 

across all the lines normal to the ischemic boundary is shown in Figure 4.7. Figure 4.8 

shows similar profiles but computed for 8 different regions selected from the full border



57

Figure 4.6: Measured versus simulated epicardial potentials using a transition region. A. 
Shows measured extracellular potentials during the ST segment of an ischemia protocol. B. 
Shows the simulated epicardial potentials from a subject specific model that corresponds to 
the same time point as the measured data, i.e., that is based on the same ischemic volume 
source.

zone. Profiles from lines that ran in the transmural direction (normal to the epicardial 

surface) showed sharp transitions, e.g., Regions 7 and 8 in Figure 4.8. Conversely in the 

axial and transverse directions (tangent to the epicardial surface), there appeared to be 
regionally heterogeneous distributions of gradients within the border zone (e.g., Regions

1, 2, and 3 in Figure 4.8). The spatial organization of the different profile types (smooth 
vs. abrupt) varied from experiment to experiment and did not appear to have any relation 

to local fiber orientation as determined from diffusion weighted MRI. It is also important 
to note that the threshold between the ischemic zone and the border zone was determined 

experimentally from extracellular potentials to be approximately 11 mV. This corresponded 

to a transmembrane potential of -22 mV, i.e., all transmembrane values above 22 mV fell 
within the ischemic zone.

As another approach to representing the profile of the potential across the border 

zone, we computed the transmembrane potentials at the locations corresponding to the 

measurement sites of the needle electrodes. We then computed the average potential for all 

the nodes at the same distance, within a prescribed delta, from the surface of the ischemic 

zone and plotted the results as a function of this distance, similar to a kernel regression. 

Figure 4.9 contains an example of such a plot.
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Figure 4.7: Mean transmembrane potentials calculated from plunge needle recordings. 
The transmembrane potentials were calculated from the recorded extracellular potentials. 
The graph shows the mean potential distribution normal to the border zone.
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Figure 4.8: Regional variation of border zone profiles. The plot divides the border zone 
profile into 8 distinct regions that exhibited relatively homogeneous border zone profiles. 
Both sharply and smoothly varying border zones were seen across different regions.
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Distance to Ischemic Boundary (mm)

Figure 4.9: The calculated transmembrane potentials at electrode locations as a function 
of distance from the ischemic boundary. The transmembrane potentials at the electrode 
locations were binned into groups as a function of distance. The square dots indicate the 
mean value of the bin along with standard deviation bars. The solid line shows the width 
of each bin.

4.4 Discussion
The goal of this study was to examine the typical assumptions about the border zone 

between healthy and ischemic myocardium, making use of simulation and measurements 

from a highly instrumented animal heart. Measurements of this region are challenging as 
they require a dense array of electrodes to probe at millimeter or better resolution a very 

specific volume of the heart (the ischemic border zone) without a priori knowledge of its 

location. An additional challenge is that the boundaries of the ischemic region change 
dynamically as they are a complex function of perfusion and metabolic need. We used 
measurements from intramural needle electrodes to identify within a few millimeters the 

region of ischemia, captured simultaneously the associated epicardial potentials, and then 

used post mortem MR imaging to create a detailed geometric model of the anatomy of
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the same heart. From these elements, we created a modeling framework that allowed 
implementation of different border zone assumptions and then a comparison between the 

computed and measured epicardial potentials. The degree of agreement between these 
potentials on the cardiac surface became the figure of merit in evaluating the accuracy of 

the modeling assumptions.

4.4.1 Approximation of the Ischemic Region

A novel feature of this study was the use of intramural needle electrodes to establish 

realistic and subject specific boundaries for the ischemic zone. The location, shape, and 

continuity of the ischemic zones reconstructed from the plunge needle electrodes varied 
significantly from the ischemic zones seen in simulation studies reported in the literature 

[56, 50, 54, 55]. Most simulations assume that the ischemic region is one continuous group 
of similarly ischemic cells and that nontransmural ischemia occurs in regions anchored to 

the endocardium. In contrast, the data from our experiments typically showed a small 

central region of maximum ST segment potential elevation that gradually transitioned to 

lower elevations and eventually to normal levels. This gradual transition made it difficult to 
define a discrete border zone that narrowly separated the ischemic zone from surrounding 

well perfused tissue. The locations of the ischemic zones also varied from the endocardium, 

a finding based on numerous experiments and reported elsewhere[51].
This fundamentally different idea of the transition of extracellular potential within an 

ischemic region and border zone was not only important to the understanding of ischemia, 

but also to research regarding the simulation and mechanistic exploration of arrhythmias. 

The heterogeneity of conduction seen in the border of infarcts and ischemic regions is 

thought to be a major factor in the development of reentrant circuits. In infarcted tissue 

that has healed to form more or less patchy scar, this heterogeneity appears to be localized 
to a very narrow border, whereas ischemic regions appear from our results to have much 

larger regions of continuously varying electrical heterogeneity. The larger scale of the 

heterogeneous behavior is important because reentrant propagation is dependent on both 

the speed of conduction and the path length of any activation wave front that cycles back 

to encounter sufficiently recovered tissue. Large regions of compromised conduction would 

cause conduction slowing and create larger areas for reentrant circuits to form. These 
observations may provide insight into the conditions that create well characterized early 

vulnerable periods to arrhythmias and sudden death following acute ischemia [144, 145].



4.4.2 Border Zone Sensitivity
Varying the border zone width and profile showed that the simulated epicardial po­

tentials were highly sensitive to the rate of transition of membrane potential. Previous 

simulations [56, 55, 40] have failed to match the potential distributions seen in experimental 

data, a finding largely attributed to the anisotropy ratios chosen in the bidomain models. 

However, our results indicate that the border zone width and profile are important factors 
in determining the magnitude and shape of the elevations and depressions of ST segments 

on the epicardial surface. Sharper border zone transition regions produced more localized 

and severe depressions. Sharp transitions were not only a function of the explicitly modeled 

border zone width, but also could arise due to geometric discontinuities such as corners [146]. 
In fact, any feature in the ischemic source or the border zone that produced a sharp 

transition had a significant affect on the epicardial potential distribution. This finding 

suggests a source of artifact in any simulation that uses geometry with sharp corners, such 
as rectangular or rectilinear ischemic zones, which are obviously very approximate, but also 

may lead to disproportionately large errors just because of their sharp features.

We were unable to match the measured epicardial potential distribution with simulated 

values using the traditional, linear varying, or even Gaussian blurring of a single border 

zone regardless of border zone width. This finding, along with the absence of a distinct 

ischemic border in the measured needle electrode data, led us to propose and evaluate 
an additional transition region in the bidomain model. Inclusion of this transition region 

created epicardial field gradients similar to those seen in measurements with in the ischemic 

region itself. However, the transition region did not reproduce the localized depressions that 
flank the ischemic region seen in the experimental data. It was found that a combination 
of a transition region in conduction with a sharp border zone produced the most realistic 

gardens 1 mV/mm within the ischemic zone while still producing very localized depressions. 

We do not assume that our solution is unique, but is one possible distribution that led to 
more accurate simulations.

A source of uncontrolled error in the simulations was the assumption that our needle- 

electrode recordings captured all the relevant ischemic regions. The measured epicardial 
potentials reflect the integral of all ischemia sources while the simulated equivalents were 

based only on the ischemic zones detected within the volume spanned by the needle elec­

trodes.
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4.4.3 Computed Border Zone
Our findings, both experimental and simulation, suggest that to capture the role of 

the border zone in electrocardiography requires a more complex description than has been 

reported to date. Moreover, our findings suggest that even relatively minor alterations in 

the border zone produce substantial changes in epicardial potentials. Using the measured 
extracellular potentials to estimate the transmembrane potentials we found both sharp and 
smooth potential transitions across the borders, depending on the orientation of border 

relative to the heart surface. The computed border zone did not completely agree with any 

of the approximated versions, even those that produced very reasonable simulated epicardial 

potentials. In particular, a large regional heterogeneity existed in the computed electric 

potential gradients, which was independent of the conductivity anisotropy, suggesting the 
existence of an additional feature missing from the model, perhaps the underlying micro- 

vascular structure.

There is considerable indirect evidence to support our simulation based observation that 
the border zone is broader than typically assumed and is highly nonlinear in space. Results 

from Johnson et al. [134] suggest that the distribution of potassium ions across the border 
zone in ischemic hearts is highly variable based on location, further supporting the idea 

that the transmembrane potential across the border zone would be similarly heterogeneous. 

An important limitation of all reports studies of the distribution of ions within the border 

zone is the poor sampling resolution across the border zone [147, 148, 149]. While there are 
important differences from the setting of acute ischemia, findings from healed infarctions also 

provide evidence to support the suggestion of large heterogeneity of the border zone. These 
studies suggest that the border zone, while very narrow (2-3 mm), comprises interdigitation 

of necrotic and healthy cells forming very complex conditions for spread of activation [150] 

and even very thin islands of healthy cells within the necrotic regions [151]. Such findings 

suggest a common feature of both acute and chronic settings of a supply of nutrients and 

oxygen that is very heterogeneous across this region.

4.4.4 Clinical Implications
This study was driven by experimental findings in a canine model of acute ischemia, 

in which collateral circulation is known to produce responses different from human hearts. 

However, the fundamental electrocardiographic principles are the same across species and 

so there is an opportunity to identify implications of these results to clinical diagnostic use 
of the ECG in the setting of acute ischemia. ST-segment depression in the ECG is thought
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to signify early stages of ischemia. However, many aspects of the mechanisms of ST segment 
depression and elevation remain unclear. In order to characterize the bioelectric source of 

ischemic potentials, we (as others before us) have focused attention on the heart and left 

the generation of associated body-surface potentials as a separate problem. Body-surface 

potentials are uniquely and linearly determined from epicardial potentials [152] so that 

the fundamental links between myocardial source and extracardiac signal can be addressed 
based on epicardial potentials.

Experimental studies have produced conflicting results in determining the cause of the 

potential depressions seen on the epicardial surface [40, 57, 54]. A persistent challenge has 

been to achieve reproducible nontransmural ischemia across subjects. One consequence has 

been consistently poor correlation between the location of the elevations and depressions 
relative to the ischemic region in early stages of ischemia. In addition to the experimental 

studies, computational models have been used to reproduce epicardial depressions, but in 

general their results correlate poorly to experimental or clinical data [57]. In our studies, 
as the border zone width was increased, the amplitude of the depressions decreased and the 

depressed regions were spread out over a much larger region. At very large border widths, 

it was difficult to identify any regions of depression on the epicardial surface making it 

improbable that depressions would be detectable on the torso surface. In contrast, a narrow 

border region produced very focal depressions with large amplitudes that might well project 

to the torso surface. For this reason, we conclude that to accurately model the distribution 

of elevations and depressions on the epicardial surface simulations must include accurate 
representations of complex border regions. Previous research has not considered border zone 

heterogeneities as a possible explanation for the confounding results often seen in epicardial 

potential distributions.

These findings lead to the natural extension of our model to be used in electrocardio­
graphic inverse problems in which the objective is to localize the ischemic source potentials 

within the heart based on measurements from the torso surface. [153, 154] The inverse 
problem in this setting is highly underdetermined and many solutions satisfy the mathe­

matics of the problem. One solution is to place additional constraints upon the nature and 
distribution of source potentials in the heart. Our findings that the border of the ischemic 

region contains heterogeneous gradients and strongly influences the location and magnitude 

of the depressions and elevations on the epicardial surface could be used to improve the 

constraints used in the inverse problem.

Subject specific modeling of acute ischemia validated against measurements of epicardial
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potentials has revealed a gap in our understanding of the electrical consequences of myocar­

dial ischemia. It appears that the border zone between healthy and ischemic tissue is a 
vital parameter in understanding and simulating the injury currents that arise during an 

ischemic episode. Measurements and simulations support the assertion that the border zone 

is complex and consists of both sharp and smooth electrical potential profiles which help 

dictate the epicardial surface potential distributions and presumably the torso potential 
distributions as well. Additional studies are needed to explain why this heterogeneity arises 

and how it can be used to improve ECG diagnostic techniques.
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CHAPTER 5

BOUNDARY CONFORMING MESHING 
IN ELECTROPHYSIOLOGY

5.1 Introduction
Recent improvements in computing continue to fuel a rapid increase in the use of patient 

specific models to help predict and study disease [11, 15]; however, technical challenges 

impede achieving the full potential of this technology. One example of rapid progress 
is in the field of electrocardiology, in which bioelectrical activity can be modeled, both 

within the active myocardium and through the surrounding passive volume conductor, 

using efficient implementations of the mesh-based computational strategies of finite and 

boundary elements. While the use of such models in clinical cardiology settings is growing, 

for example, in such domains as ventricular arrhythmias [155], implantable cardioverter 

defibrillator (ICD) placement [156, 157], and detecting atrial activation sequences [158, 159], 

these approaches have yet to achieve widespread clinical application.
Each stage of the typical simulation pipeline [11] presents decisions that trade off fidelity 

to reality against computational cost. Even with the dramatic increases in computational 

resources available to biomedical scientists, these decisions can be difficult and critical. The 

decisions start with the spatial and temporal sampling of image acquisition, and even the 

selection of imaging modality. For example, MRI has moderate spatial resolution, poor 

time resolution but is sensitive to soft tissue types. Spatial resolution can be improved over 
the standard clinical settings, but only with an increase in imaging time, often complicated 

by the need for breath holding in compromised patients or ECG gating during unstable 
heart rhythms. Computed tomography, in comparison, has severalfold better resolution 

in space and time but requires contrast agents to identify soft tissues and also involves 
potentially harmful ionizing radiation. The choice of modality is typically a compromise 

between these features, driven by the needs of the simulation, which in computational 
cardiology is made even more complex because the heart has high spatial complexity with 

internal boundaries between different chambers and tissue types, as well as relatively rapid 
contractile motion. The final challenge with image preparation comes with segmentation of



the regions of interest within the body and organs to be simulated—to decide how many 
and which regions of varying properties are required.

The focus of this study was the next stage in the simulation process, the conversion of 

segmented images to meshes, which tessellate the domain of interest, as well as the associ­

ated numerical methods used to solve the problem of interest. As with the other decisions 

required in carrying out biomedically or clinically useful simulations, the selection of mesh 

type, resolution, and features can be complex and involve compromises. Ultimately, the 

selections depend on the specific setting and problem, as well as the expected constraints of 

available computational resources and acceptable compute time. Specific to computational 
cardiology is the need to capture the complex shape of the heart including many small 

features such as papillary muscle and endocardial surface irregularities or myocardial walls 

that can be as thin as 2 mm. Simulations of cardiac bioelectricity can also involve the entire 

torso, i.e., features like the thorax and its internal structures, e.g., bone, lungs, muscle, fat, 

and other soft tissues.
Representing these tissues in a computer model is challenging not only due to intricate 

or small external features, but also due to the complex internal interfaces formed as two 

or more tissues (generically, materials) share points, edges and surfaces. When only two 
materials are involved in the segmentation, the interface between them is by definition 

a manifold surface, i.e., at least locally it resembles the surface of a sphere in that it 
separates two regions. However, when three materials interface, the interfaces of each pair 

of materials come together in a “T” -shaped, nonmanifold configuration. And if more than 
three materials come together in the same region, the complexity of their interfaces grows, 

creating more sophisticated nonmanifold interfaces. These types of complex interfaces create 

special challenges for meshing algorithms, which typically assume only two materials. To 

bypass this difficulty, some meshing techniques simply ignore or approximate such complex 

internal material boundaries in a way that preserves simple topology. Such methods are 
“nonconforming” because the vertices of the mesh are not forced to align with the material 

interfaces. Figure 5.1 illustrates the difference between conforming and nonconforming 
internal boundaries in a model. One consequence of nonconforming approaches to meshing 

is that each element is assigned tissue properties based only on the location of its centroid 
(or some other measure of its center of mass) relative to but not aligned with the original 

material boundary, which creates a more or less jagged representation of the actual interface.

The influence of mesh quality—spatial resolution and fidelity to the original surface(s)— 
on simulation accuracy is a critical facet of evaluating the utility of a simulation. It is of
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Figure 5.1: A comparison of conforming and nonconforming meshing at a boundary 
between two material types. The solid red line represents the original boundary between 
the two materials. Figure A shows a meshing algorithm that does not attempt to preserve 
the interface during the tessellation of the volume, but reconstructs the boundary post­
tessellation. Figure B shows a conforming mesh that attempts to preserve the boundary by 
placing nodes directly on the interface.

special importance when the shape and/or composition of the underlying tissues are critical 

contributors to the physiology under study, which is almost always the case in studies 

of electrophysiology in the heart. It is unrealistic to generalize about the sensitivity of 

simulations to their underlying mesh because each simulation is so vastly different. Here we 

focus on a specific aspect of mesh quality, the extent to which the mesh respects external and 

internal tissue boundaries, in the specific setting of simulating tissue or whole-heart cardiac 
electrophysiology. We have shown in previous research that simulating cardiac electrical 
potentials through a finite element volume with nonconforming boundaries produces local 

concentrations of current resulting in electrical potential elevations and depressions that 

were not exhibited when simulating with conforming meshes [160]. The magnitude and 

the spatial extent of these concentrations were dependent on the resolution of the mesh 
and the rate of change in electrical potential over the boundary. Even with highly refined 

mesh resolution, the magnitude of the local errors reached 9-12%. These results raised 

broader questions as to the appropriate representation of boundaries for simulations of 
cardiac bioelectricity, for example whether the local artifactual increases in current density 

near the jagged surfaces of nonconforming meshes (Figure 5.2) are large enough to change 
the meaning or interpretation of the simulated results.

The guiding hypothesis for this study was that conforming boundaries produce signifi­
cantly more accurate results at much lower resolutions compared to nonconforming bound­

aries, and that the errors resulting from nonconforming meshes are large enough to alter the 

interpretation of simulation results. In addition to verifying this hypothesis, we were able to
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Figure 5.2: Discrete currents at a material interface. Figure A: shows the same mesh as 
in Figure 5.1 and the local concentration of current that will form at the jagged interface 
between two materials with varied conductivity; these currents can result in artificial 
extrema and hence errors. Figure B: such unintended current concentrations would not 
occur with the smooth interface created by the conforming mesh.

show that simply refining the mesh resolution has only limited effect on removing artifacts 

from nonconforming boundaries, and therefore, that conforming meshes often produce more 

accurate results at much lower mesh resolutions (and reduced computational cost). This 
hypothesis was tested on three separate common numerical methods in cardiac bioelectric 

simulations: volume conductor, bidomain, and reaction-diffusion bidomain. Errors from 

nonconforming meshes were particularly evident in simulations of pathophysiology that 

were highly dependent on internal tissue boundaries, such as modeling the effects of discrete 
regions of damaged heart tissue. The results indicate that while creating conforming meshes 

is more challenging and time consuming, it is often necessary to capture local electrical 

behavior in the heart such as regional myocardial ischemia or focal ectopic activity. At 

the same time, the complexity and computational cost of conforming meshing may not be 

justified when simulating features that are more global in nature, such as the activation 

time of a multimaterial model of the whole heart.

The goal of all simulations of cardiac electrophysiology at the tissue and whole-heart 
scale is to incorporate relevant behavior from the smaller scales, i.e., cellular, membrane, 
and molecular, into a tractable formulation that can capture the meaningful aspects of 

electrical activity observable at this scale. It is impossible to predict whole-heart behavior 

as a direct ensemble of the approximately 10 billion cardiac myocytes in the heart yet 
it is essential for a whole heart model to capture variations in action that are based in 

the cell or membrane. Thus, successful cardiac tissue simulation approaches approximate, 
often through homogenization, behavior at one scale while still driving it from concepts and 

influence from a smaller scale. The three simulation approaches described below differ in
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how they carry out this approximation and which assumptions they include. Because of 

this diversity of approach, it is reasonable to assume that the impact of mesh structure may 
affect each method differently. In order to explore the role of mesh structure on at least 

a small sampling of applications, we also selected three timely simulation problems from 

cardiac electrophysiology.

5.1.1 Modeling Defibrillation - Volume Conductor
The goal of this first example of simulating cardiac bioelectricity is to estimate the 

electric potential throughout the human torso following an electrical shock applied to 

reset uncoordinated activation in the heart. Physically, this situation corresponds to a 

volume conductor problem within a single, passive domain which is assumed to have 

inhomogeneous (or piecewise homogeneous) and potentially anisotropic conductivity. The 

associated electrical source consists of a discrete set of electrodes, which are embedded at 
two or more locations within the volume conductor.

The goal of this volume conductor example is to simulate the action of implantable 

cardiac defibrillators (ICDs), which are a commonly used device for patients who are at 

risk of severe cardiac arrhythmias. When the device detects electrical propagation that 

it identifies as life threatening, it produces a shock that is intended to shock the heart 
and return it to normal sinus rhythm. In most patients, ICD implantation is a routine 

operation using standard locations for the ICD and its electrodes. However, in a small 

but important population, the standard procedure is not possible. Most notably in small 
children or children with congenital heart defects the absence of a standard procedure forces 

physicians to adapt the operation for each patient. Recent reports from our group have 

shown that patient specific models of the thorax can assist in deciding the best locations 

for the device [161, 157]. These models represent tissues with passive electrical conduction 
and are well suited to the monodomain formulation.

5.1.2 Modeling Acute Myocardial Ischemia - Single Time
Point Bidomain

In contrast to the essentially passive volume conductor in the previous example, the 
bidomain represents an electrically active region comprised of two continuous volume con­

ductors that provide independent pathways for current to flow. The two domains correspond 

to the intracellular and extracellular spaces, which occupy the same physical space and are 

coupled by the electrically active membrane, as described by differential equations that 

capture the associated physics. In the heart, current flows through both the intracellular



and extracellular spaces, driven by ionic currents generated by the cellular membrane and 

described by differential equations that model their behavior. In the simplest form of the 

bidomain, a subset of potentials is known, e.g., transmembrane potentials, and the goal 

becomes to compute the remaining unknowns, e.g., extracellular potentials.

The cardiac bidomain typically also describes temporal behavior corresponding to the 
membrane action potential resulting in the propagation of electrical activation. Our group 

has previously developed a simplified, static version of the bidomain, in which we assume a 
known distribution of transmembrane potential corresponding to what is known as regional 

myocardial ischemia [25] as described in Chapter 2. Ischemia is a tissue level phenomenon 

that results in whole-heart currents that are detected on the body surface as abnormal 

elevations and depressions in the ECG. Ischemic conditions arise relatively slowly in the 

heart and and the resulting currents persist through approximately 100 mS of each heart 

beat. Thus, they represent relatively static electrophysiological conditions suitable for this 
simplified simulation approach. Motivation for simulation comes from the fact that while 
ST segment shifts are very commonly used clinical indicators, their underlying mechanisms 

are poorly understood, especially when the region of tissue involved does not span the full 

thickness of the heart [162]. By carrying out the simulation under static assumptions, it is 

possible to select a single time instant or short interval during the ST segment and supply 
approximate transmembrane potentials and then evaluate the effects of variations in location 

and extent of the ischemic tissue on the electric potentials throughout the heart [26, 163].

5.1.3 Modeling Cardiac Activation and Repolarization - 
Reaction Diffusion Bidomain

In the complete time-dependent form of the bidomain, a cardiac myocyte is excited 

and current begins to flow across the cell membrane, diffusing into the extracellular and 

intracellular spaces, subsequently exciting neighboring cells. This chain reaction produces 
a wave that propagates through the myocardium. One way to describe this behavior 

mathematically is as a reaction diffusion bidomain simulation that consists of two steps. 
First there is a reaction, in this case, current crossing the cell membrane modeled as a set 

of differential equations. In the subsequent diffusion step, the ions move more or less freely 
through each continuous domain, which is approximated by a partial differential equation. 

The whole system is solved iteratively over time to simulate the excitation wave.
A full bidomain approach is required in simulations of the heart that incorporates both 

spatial and temporal features, i.e., when the electrical state of the heart depends on time
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evolution of propagating waves. This generality of approach also makes the time evolving 

bidomain suitable for capturing a full range of cardiac behavior, with special focus on 

abnormal heart rhythms or “cardiac arrhythmias” [10, 24]. The bidomain approach includes 
details of myocardial structure, electrical conductivity in both intracellular and extracellular 

domain, and the behavior of the cellular membrane but is also capable of high efficiency 
so that it has become the dominant approach for carrying out simulations across enormous 

ranges of scale and for subject specific settings [164, 10].

5.1.4 Boundary Conforming Meshing
One feature of all these applications of simulation that is common to a wide range of 

disciplines is the need to create subject specific geometric models in the form of nodes and 

polygons that support the application of numerical methods. Mesh generation is a challeng­
ing problem which we define here as creating in some automated way a tiling/tessellation 

(a mesh) of some simulation domain using simple geometric shapes such as tetrahedra, 
pyramids, or hexahedra. Popular approaches for mesh generation consist of tetrahedral 

meshes constructed with stenciling [117], optimization of vertex locations [116, 115], and 

iterative refinement [113, 114].
To represent geometric structures faithfully, one goal of mesh generation is to create 

conforming meshes, in which the mesh seeks to represent surfaces, both within the volume 

and on the outer surfaces, with great fidelity. Achieving this goal requires careful choice of 

node density and location and element orientation [165, 166, 167]. The resulting threefold 
tradeoff in mesh construction is between the fidelity of these surfaces to the original internal 

boundaries, preservation of the quality of the resulting mesh elements, and the often 

considerable computational cost of the algorithms that identify and preserve their shape. 

While somewhat ambiguously defined, the quality of mesh elements is determined by 
factors like the aspect ratios, which should generally meet some prescribed constraints. 

For example, an isotropic prescription of quality would prefer “round” elements (e.g., 

equilateral triangles, cube-like hexes) over long, thin elements with acute angles between 

edges. Contemporary approaches to mesh generation address this concern by integrating 

element and simulation quality, measured through an adjoint estimation of error that guides 

mesh construction and also refinement with respect to error metrics [168].

In this study we leveraged a variational meshing algorithm, BioMesh3D [138], to create 
both conforming and nonconforming meshes from the same image data. BioMesh3D creates 
meshes by first distributing particles on the surfaces to which the mesh must conform [115],



using variation to drive an energy minimization process to find ideal placements for the 

particles. These particles are then treated as mesh vertices, and the remaining mesh 

elements are constructed using a three-dimensional Delaunay triangulation (tetrahedral- 

ization) implemented in the open source software, TetGen [139]. For this study, we created 
meshes that both conformed to and ignored various shapes of internal boundaries in a 

series of simulations from cardiac electrophysiology and examined carefully the resulting 

errors. Our goal was to establish the extent and the nature of the improvements that result 
from creating meshes that conform faithfully to internal tissue boundaries in this domain 

of bioelectric field simulation.

5.2 Methods
The three cardiac bioelectric simulations described above were used to test the er­

rors associated with nonconforming versus conforming meshes created with a range of 

resolutions. The gold standard for the simulations was a conforming mesh created at 

the highest resolution that was tractable; error metrics quantified both global and local 

variation. A further test was based on differences in the quantitative results as well as 
the interpretation of those results in the context of the simulation goals. For example, in 

the case of defibrillation, we evaluated the change in required shock strength, and for the 
simulation of ischemia, the change in the epicardial elevations and depressions. For the 

reaction diffusion models we compared the patterns of the spread of activation for different 
meshing strategies.

5.2.1 Mesh Generation
As described in Section 1, it is necessary to evaluate sources of error at each stage in 

the simulation pipeline and for this study, we focused on the transition from segmented 

images to computational mesh. Segmented images are discrete voxel representations of 

continuous and usually smooth geometry of organs and parts of the body captured at the 

resolution of the imaging modality. The simplest of all reconstructions would be to assume 
each voxel represented a hexahedral, resulting in a mesh that matched the original image 

but with surfaces that had a ragged or stair-stepped profile. However, in most biological 

tissues the true boundaries are not stair-stepped but are smooth. Consequently, creating 
smooth surfaces is a goal of most image based meshing algorithms such as marching cubes, 
Laplacian smoothing, curvature limiting smoothing, or spline based surface fitting. Our 

goal was not to evaluate the quality of fit between the smoothed surface and the original
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anatomy, but to determine the extent of the error introduced into the results of simulations 

by representing an anatomically smooth surface as a nonboundary fitting, or nonconforming 

volume mesh. Creating a ground truth for realistic simulations is challenging because of 

a lack of both analytical representations of realistic anatomy and analytical solutions to 

simulations of interest. Instead, we first built a very high resolution, smooth representation 

of each geometry and used the resulting simulation results as the standard for comparison.
Both the conforming and nonconforming meshes were then based upon the smoothed 

reference geometry. There are many different meshing techniques that are considered 

nonconforming; however, in this study we focused on unstructured tetrahedral meshes that 

conformed to the exterior surface but not the internal boundaries. The nonconforming 
meshes were created by filling the volume defined by the exterior conforming surface with 

Delaunay tetrahedra at prescribed resolutions, but ignoring the internal interfaces. After 

the mesh was generated, the elements were grouped by material type based on the location 
of each element relative to the reference surfaces. In contrast, the conforming meshes were 
generated in a way that preserved the internal boundaries of the reference geometry.

To formally describe the conforming meshes, we define a volumetric mesh M  =  (V, E, F, C) 

to be a collection of vertices, V , edges, E, faces, F , and volumetric cells, C and let £  be a 

surface embedded in three dimensions. In this context, M  is called conforming if it explicitly 

represents £  with the following conditions:

1. A subset of mesh vertices, Vs lie on £.

2. A set of mesh faces (in our context, triangular faces of tetrahedra) approximate £. In 

particular, these triangles will have their vertices as part of Vs and the plane of each 
of these triangles will be an approximation of the tangent space of £  at each vertex 

of the triangle.

While there are stricter definitions of conformality, for example those that require a 
homeomorphism between £  and the triangular faces which approximate it [166], applying 

such requirements would be unrealistic since the true £  is not known, but rather only ap­
proximated from the image data. Thus, we think of conforming meshing as both requiring a 

geometric approximation in terms of distances to the surface boundaries as well as requiring 

the tangent space of the surfaces to be well approximated by the linear elements. Within 
this framework of conforming meshing, the specific geometric model and the numerical 

approach was different for each of the three examples, as described below.
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5.2.2 Simulation of Cardiac Defibrillation

5.2.3 Geometric Model

In this example case, the biomedical goal is to predict the success of defibrillation from 

implantable cardiac defibrillators (ICD) using patient specific modeling and operator guided 

placement of the device [161, 156, 157]. To create the necessary patient specific geometric 

models, we used MRI scans of an entire torso from which we segmented, using both manual 

and automated approaches in Seg3D [19], the lungs, muscle, fat, bone, heart, blood, and 
connective tissues [169]. Realistically shaped meshes of the ICD generator and ICD shock 
electrode were manually oriented in the torso geometry under the left clavicle and in the 

right ventricle, respectively, using the SCIRun software framework [136]. SCIRun also 

provided the tools to create nonconforming meshes as structured tetrahedral grids with 

mesh refinement around the ICD generator and ICD shock electrode [156] while we used 

Biomesh3D [138] to create the conforming meshes, which also included refinement around 

the ICD and electrodes.

5.2.4 Simulation
For the simulation of defibrillation, we used the monodomain approach, which seeks 

to solve equations of electric potentials within a volume conductor under assumptions of 

passive electrical behavior. Such assumptions hold strictly in the torso volume outside the 
heart and while they are a simplification within the heart they are valid under the conditions 

of the very rapid external shock applied to the heart. Poisson’s equation describes potentials 

resulting from a current density source and can be written as

V ■ aV $ =  Iv, (5.1)

where a is the conductivity, Iv is the source current density, and $  is the electrical potential. 

An additional Neumann boundary condition reflecting the fact that currents do not leave 

the body can be written as

V $  ■ N  =  0, (5.2)

where N  is the surface normal.

The ICD generator and electrodes were modeled as source and sink voltages within the 
torso. The potential difference needed to achieve 95% of the myocardium over 5 V/cm 

gradient (critical mass hypothesis) [170] was used as the metric to compare the overall 

accuracy of simulations from different mesh types.
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5.2.5 S ta tic  S im ulation  o f A cu te  M yocardial Ischem ia

5.2 .6  G eom etric M odel
The geometric model used for the simulation of electrocardiographic fields that arise 

during acute myocardial ischemia consisted of the heart and blood that were derived from an 

MRI of the same canine heart as used in the associated experimental study. The goal of these 

studies was to determine from measurement of intramyocardial potentials the distribution of 

ischemic regions in the heart and then simulate from them the heart surface potentials and 

eventually the ECG [43, 171]. In addition to representing the blood and the myocardium, 

these models contained one or more ischemic regions modeled as seen in Figure 5.3. The 

shape and location of these regions were derived from the three-dimensional distributions 

of extracellular potentials captured during ischemic phases of the experiment. Simulations 

based on cardiac tissue also require a description of local muscle fiber direction, which was 

acquired using diffusion tensor MRI and applied to each mesh as anisotropic conductivity 

tensors assigned to each element. The magnitude of these tensors was assigned based on 

microdomain simulations of ischemia by Stinstra et al. [49].

5.2 .7  Sim ulation
To simulate the electric potential on the surface of the heart from regions of acute is­

chemia within the ventricles, we used a simplified, static version of the bidomain formulation 

described previously [26, 163, 160], which can be written as

V ■ (ai +  CTe)V$e =  - V  ■ (5.3)

where $ e and $ m are the extracellular and transmembrane potentials, and ae and ai are the 

extracellular and intracellular conductivities, respectively. The ischemic region was modeled 

as having reduced action potential amplitude, expressed as a 30 mV potential difference 

between ischemic and healthy tissue during the plateau phase of the action potential (ST 

segment of the ECG). The blood was modeled by setting the intracellular conductivity to 

zero and the extracellular conductivity to 4 times that of the myocardium [49]. Neumann 

boundary conditions were applied to the outer surface of the heart, which simulated the 

open chest conditions of the experiments.

5.2 .8  P ropagation  M odeling  

5.2 .9  G eom etric M odel
The simulation of propagation made use of the same geometry of the heart, blood, and 

ischemic regions as the ischemia model, but made use of a reaction diffusion simulation
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Myocardium

Figure 5.3: Model used to simulate myocardial ischemia. The model includes three 
regions: normal myocardium, blood, and ischemic myocardium and the figure shows the 
high quality visualization possible from meshes that conform to the material boundaries.

to predict the spread of cardiac electrical activity. Such a simulation requires a much 

more refined spatial resolution so that a full scale model of the heart would include tens of 

millions of nodes, beyond the scope of most computational resources. To reduce the size of 

the models to produce tractable simulations, we scaled the size of the geometry by a factor 

of 0.4, reducing the number of nodes by an order of magnitude.

The number of elements and nodes required to achieve a particular mesh resolution 

depends on the total surface area and volume of the geometry. For example, if the edge 

length of a hexahedral is cut in half, the result is eight new hexahedral and thus a cubic 

relationship. Tetrahedra are similar, but because they are not necessarily structured, the 

exponential relationship to the number of elements is very dependent upon the shape of the 

geometry being tessellated. Because hearts naturally vary in size and shape, and in our case 

due to a scaling factor, the total number of elements and nodes make very poor descriptors



of mesh resolution. We have chosen instead to report the results in terms of average edge 

length which has an exponential relationship with the number of elements.

5.2.10 Sim ulation

To create realistic simulations of the spread of excitation in the heart, the full version of 

the time evolving bidomain [71] is the most commonly used approximation approach and has 

been implemented in widely available software (e.g., CHASTE [172] and CARP [12]). This 

formulation also represents a reaction-diffusion system, expressed as the following system 

of coupled equations

V ■ fo V $ i) =  (HmV  ■ (^eW e) =  -U rn  (5.4)

where $ e, $ m, ae, and <Ji are defined as above and Im is the ionic current flowing through 

the membrane. The transmembrane current was solved using the Faber Rudy model [173]. 

To predict changes in the spread of excitation in response to ischemia, we modified the 

ionic concentrations and the ionic currents according to Jie et al. [24] and as described in 

Table 5.1.

5.2.11 E valuation  o f Error

The error was calculated by comparing each simulation to that generated using the 

smoothed reference conforming mesh. The global error was determined by taking the

Table 5.1: Normal and ischemic values and scale factors used in the membrane model of 
the bidomain simulation
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Normal Tissue Ischemic Tissue
[K+]o (nM) 5.4 15.0
[No+]i (nM) 10.0 15.0
[ATP]i (nM) 6.8 5.0
iNa Scale 1.0 0.5
IcaL Scale 1.0 0.5
iNaCA Scale 1.0 0.2
iNaK Scale 1.0 0.3
Iover Scale 1.0 0.65

lealcSeiI-e 1.0 0.05
Iup Scale 1.0 0.9
Icab Scale 1.0 1.3
InsCa Scale 1.0 1.7



root mean squared error over the entire mesh. The maximum error was also reported for 

each simulation, representing a more local error measurement. These errors were recorded 

through a range of mesh resolutions as defined by edge length. In addition to the RMS and 

the maximum error, at each material boundary the mean and maximum error were reported 

as a function of distance. In the case of the reaction diffusion simulations, the RMS error 

was calculated at each time step and then averaged for the whole time series.

The errors in the simulations were also evaluated as to their possible influence on the 

interpretation of the results. These parameters included, change in predicted shock value in 

the defibrillation models, change in the epicardial elevations and depressions of the ischemia 

models, and change in activation patterns and times for the reaction diffusion models.

5.3 Results
5.3.1 D efibrillation  - V olum e C onductor

The distribution of potential gradients (which correspond to electric field and hence 

current density) for the conforming and nonconforming models were noticeably different 

near the heart, as seen in Figure 5.4. The color-coded potentials from the two cross sections 

show gradients that were much sharper in the nonconforming mesh. It also contained 

more concentrated low voltage regions whereas the conforming mesh produced a smoother 

distribution of voltages. These difference were quantified in the final calculation of the total 

voltage required to reach the critical mass threshold. The nonconforming mesh predicted a 

9% higher required voltage than the conforming mesh in order to reach this threshold.

Within the defibrillation model, the maximum error was as large as 15% near the 

stimulating electrode surface, while the mean error was less than 4% over the entire range 

as seen in Figure 5.5. As the mesh resolution increased, the maximum errors also decreased. 

However, the mean errors only decreased slightly (by 1%) as mesh resolution increased.

5.3.2 Ischem ia ST  Segm ent - N on tim e Series B idom ain

Electrical potentials for the conforming meshes were smoothly distributed throughout 

the myocardium and on the epicardial surface Figure 5.6. The nonconforming meshes had 

regions that looked more discontinuous and resulted in small patches of elevations and 

depressions not seen in the results from conforming meshes. These patches created errors 

even on the epicardial surface Figure 5.6 that were as large as 2 mV which is 30% of the 

largest elevations seen on the surface. Errors of this magnitude are large enough to change 

whether an elevation or depression is considered ischemic, or just natural variation. The
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Figure 5.4: Cross-section through the torso model showing simulation of defibrillation. 
Panel A: shows color coded potentials from a simulation using a nonconforming mesh of an 
ICD shock. Panel B: shows results at the same cross section from a stimulation of the same 
ICD and shock settings on a conforming mesh of the same geometry.

F igure 5.5: Voltage profile as a function of distance from nonconforming surfaces. The 
mean voltage bounded by the mean error and the maximum error measured as distance 
from each node in the model normal to the closest boundary boundary.
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Figure 5.6: Solved bidomain simulation of epicardial potentials during acute ischemia 
with the location of maximal errors. A: Is a voltage map on the epicardial surface due to 
injury currents of an ischemic region within the myocardium simulated with a conforming 
mesh while B: shows the location an magnitude of errors that arise when a nonconforming 
mesh is used.

location of the errors is collocated with the region being analyzed. Further away from 

the nonconforming surfaces bounding the ischemic zone, both meshes produced smooth 

distributions of voltage. However, the voltage maps were altered even at a distance when 

there were significant current concentrations near the ischemic zone boundaries, a situation 

to be expected as the so called “leakage” currents from ischemia arise at these boundaries.

Figure 5.7 shows both root mean squared (RMS) errors and the maximum errors as 

functions of edge length. The potentials in this simulation ranged from 30 mV to -10 mV 

making the maximum errors of 10 mV very significant. Regions with the largest errors were 

located along to border between the ischemic and healthy tissue. Due to the proximity of 

the ischemic region to the epicardial surface (as low as 3-4 mm), many of the local errors 

appeared on the epicardial surface directly above the ischemic region. The errors resulted 

in small elevations of 4 mV and depressions of 5 mV in the coarser nonconforming meshes. 

These errors improved with mesh resolution, but persisted until very high resolution meshes 

of 0.8 mm edge length or smaller. The maximum errors were substantial for both types 

of meshes at very low resolution. However, the error in the conforming meshes decreased 

very rapidly with improved resolution while there were only slight improvements in the 

nonconforming meshes.

Other nonconforming boundaries were much smaller sources of error than those sur-
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Figure 5.7: RMS and max error in conforming and nonconforming ischemia models. The 
graph on the left indicates the RMS error for both a set of conforming and nonconforming 
meshes at varied resolutions. The graph on right indicates the maximum error seen in the 
same set of simulations.



rounding the ischemic regions. The errors at the blood boundaries caused voltage shifts 

of up to 5% over the gold standard. The maximum errors at these boundaries showed 

slight improvements with increased mesh resolution, reducing the error to just over 3%. 

Current densities at blood boundaries were much smaller than those over the ischemic zones, 

consistent with the observation that the largest errors arise near regions of concentrated 

sources.

Globally, the conforming meshes produced an RMS error of at least 0.2 mV better than 

nonconforming meshes over the entire range of mesh resolutions which did not improve 

as the meshes became more refined. A second way to consider these results is that a 

nonconforming mesh with an average edge length of 0.65 mm would give the same accuracy 

as a conforming mesh with a larger edge length of 1 mm. For such models, this improvement 

would represent the difference between 1.7 million and 0.49 million nodes.

5.3 .3  R eaction  D iffusion B idom ain

Figure 5.8 shows the RMS error of potentials during activation as a function of model 

resolution for the spread of activation of a heart beat under conditions of localized ischemia 

and suggests that there is no clear difference in performance between conforming and 

nonconforming meshes for this problem. The maximal errors indicated more substantial 

sensitivity to mesh choice than RMS as they showed values as large as 18 mV, which all 

occurred along the activation front, whereas errors along the material boundaries were an 

order of magnitude smaller, much like the errors found in the static bidomain simulations 

found in Figure 5.7, suggesting once again that regions of high source strength respond 

most strongly to choice of mesh type.

Figure 5.9 shows the first 200 ms of the RMS curves of the simulated electrograms 

for two different mesh resolutions. The RMS curves produced by the lower resolution 

meshes had decreased slopes and increased widths of the activation wave form, which is 

indicative of conduction slowing. This trend held through all mesh resolutions, confirming 

that the propagation velocity does change across mesh resolutions, but also that there is 

very little difference between the conforming and nonconforming meshes when they had 

similar resolutions. The activation times computed for both mesh types were very similar, 

within 3% demonstrating that there was no clear advantage to one or the other. These 

findings suggest that the selection of mesh type plays no substantial role in simulation 

accuracy.
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Figure 5.8: RMS error from reaction diffusion bidomain simulation of the spread of 
activation. The RMS error over the entire activation of the ventricles comparing conforming 
with nonconforming meshes as a function of mesh resolution (edge length).
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T im e (ms)

Figure 5.9: Extracellular RMS electrograms from a reaction diffusion bidomain simulation 
for each time step. This figure shows for two different mesh resolutions, the RMS error in 
voltage as a function of time for beats computed using both conforming and nonconforming 
meshes.

5.4 Discussion
The goal of these studies was to evaluate the benefits to simulation accuracy associated 

with finite elements meshes designed to reproduce internal boundaries with high fidelity. 

Such conforming meshes involve more elaborate algorithms and lengthier computation times 

than nonconforming or nonboundary fitting meshes, and their value for visualizing the 

structure of the underlying anatomy and the simulation results is clear because of the smooth 

surfaces their tetrahedral elements can produce. What is not, to our knowledge, established 

is the extent and nature of any benefits to simulation accuracy of meshes that conform to 

both external and internal surfaces. A completely general answer to this question is unlikely 

and so we have selected to evaluate three different and common simulation strategies in 

an application domain of interest in medicine. In contrast to previous evaluations based 

on more or less arbitrary indices of mesh quality, we focused instead on the results of the 

bioelectric field simulations produced by these meshes. Our results suggest that even within 

this single domain of cardiac electrophysiology, the choice of meshing strategy yields diverse



impact depending on the goals of the simulation.

The hypothesis that nonconforming meshes could lead to artifacts that significantly 

affect the results of simulations was supported for both the defibrillation and the static 

bidomain studies but less convincing for the spread of activation in the reaction-diffusion 

simulation using the full bidomain. In the first two cases, overall errors were higher when 

using nonconforming meshes. Moreover, the errors were largest in regions with large local 

sources, which were the tissues that were of direct interest to users of the simulations. In the 

case of simulating defibrillation, the spatial gradient of electric potential is the parameter 

thought to predict successful outcome; nonconforming meshes produced errors specifically 

in the gradients within the heart that would lead to an almost 10% increase in the predicted 

voltage required for successful defibrillation. Similarly, for the static simulation of ischemia, 

the errors related to meshing strategy were largest in regions of the heart that also have the 

largest impact on the ST-segment shifts in the body-surface ECG that are most relevant 

for diagnosis.

In contrast to the other cases we examined, the reaction diffusion bidomain simulation 

did not show a clear preference for either mesh type, at least in part due to the strong 

dependency of the simulations on parameters common to both conforming and noncon­

forming meshes, primarily the spatial resolution in the region of the activation wave front. 

The transition from resting to fully stimulated cells at the wave front extends over only 

approximately 1 mm so that simulations of propagation require substantially sub-millimeter 

mesh resolution. At this fine scale, the differences between conforming meshes driven by 

fixed anatomical surfaces and nonconforming meshes based on imaging orientation disappear 

and so do not play a role in simulation error. A further critical structural factor of cardiac 

tissue is the anisotropic nature of current flow along the long axis of heart cells and the 

fibers they form. While it is possible to imagine a conforming meshing strategy based on 

fiber orientation, our conforming meshes sought instead to respect larger scale anatomical 

boundaries and so would be unlikely to perform any better than a nonconforming mesh 

with regard to anisotropy.

While these results lack a clear conclusion regarding the relationship between the specific 

application and the role of meshing parameters, there are some generalities that emerge 

from our findings. Errors from nonconforming meshes were large in cases in which the 

shapes of bioelectric sources were poorly captured compared to what was possible with a 

conforming mesh. Examples of this scenario included the shape of the implantable cardiac 

defibrillator (ICD) electrode in the defibrillation model and the ischemic region in the

86



87

bidomain simulation of reduced myocardial perfusion. The second case of marked differences 

between conforming and nonconforming meshes arose when nonconforming boundaries were 

in close proximity to the areas of the models most relevant for subsequent analysis and 

interpretation of the results. For example, in the simulation of the bioelectric effects 

of myocardial ischemia, the outer (epicardial) surface was at once a structure of great 

anatomical relevance (and hence a driver of conforming meshing) and at the same time a 

place where measurements and hence analysis of electric potentials occurs in experiments 

and occasionally even clinical practice [174]. A lack of fidelity to this surface, as in 

nonconforming meshes, could be expected to lead to highly relevant localized errors, which 

our results were able to substantiate. In contrast, in the case of simulating the spread 

of activation in a bidomain model of the ventricles, there was little relationship between 

anatomical structure and the wave front and hence little benefit to a conforming meshing 

approach based on gross anatomical elements.

Algorithmic and computational cost are key drivers in any discussion of meshing (or 

modeling) strategies and they must be part of the interpretation of our results. We 

found no case of a conforming mesh of similar resolution producing worse results than 

a nonconforming mesh and thus it would be tempting to propose conforming meshing as 

a general strategy. However, in many cases, nonconforming meshes can take seconds to 

generate compared to hours for comparable conforming meshes of the same size. Not 

conforming to the boundaries allows for computationally efficient meshing strategies such 

as regular grids to be implemented. Conversely, in two of the simulations presented here, 

a conforming mesh could produce the same quality results as a larger, more finely resolved 

nonconforming mesh. In the case of the ischemia model, an edge length of 0.65 mm in 

the nonconforming mesh was equivalent to a conforming mesh with an edge length of 

1 mm which would reduce the number of nodes in the model from 1.7 million to 0.49 

million. Computational speedup depends on specifications of the computer used. However, 

we observed improvements that were at least proportional to the reduction in size of the 

model and often much greater, particularly for the larger meshes. The smaller meshes also 

decreased the time and memory needed to process and visualize the computed solutions.

The models used in this study were all derived from MRI images but the conclusions 

are largely agnostic to the imaging modality. The typically higher resolution of computed 

tomography (CT) over MRI will, of course, result in more finely resolved surface boundaries, 

assuming they can be visualized either through the radio opacity of materials or contrast 

agents. However, the segmentation step that is an essential step in image based modeling
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provides a means to normalize for image resolution through techniques such as smoothing 

or interpolation. Thus, within the specific questions of the impact of conforming and 

noncomforming mesh structure, it is fair to assume our findings will apply to models derived 

from any imaging modality capable of resolving the boundaries of interest.

An important finding of this study was that nonconforming meshes performed just as well 

as the conforming meshes in the reaction-diffusion bidomain simulations. Reaction-diffusion 

simulations, and the bidomain approach specifically, already represent a simplification, 

typically a mathematical homogenization, that seek to achieve the efficiency necessary to 

carry out simulations of large structures, for example, the whole heart rather than just a 

small, presumably representative block of tissue. They are intrinsically a compromise driven 

by computational resources so that any improvement in memory usage or calculations 

is critically important. nonconforming meshes are always faster to create and to refine, 

and often show advantages in numerical approximations. Of specific current interest are 

their potential advantages in the application of parallel algorithms, either CPU or GPU 

(graphical processing unit) based [175]. It is somewhat reassuring that nonconforming 

meshes performed very well in our comparisons with conforming meshes of similar size in 

this setting.

One observation that can tie our findings to the more traditional evaluation based on 

mesh quality metrics is that element shape tends to improve as the mesh resolution becomes 

finer because the elements better approximate regions of high curvature. To reduce the 

impact of this limitation, element quality of conforming meshes, as measured by the scaled 

Jacobian, was monitored during the mesh creation so that all poorly shaped elements could 

be improved. In an effort to reduce the differences in element quality between conforming 

and nonconforming meshes we used the same Delaunay based meshing algorithm to create 

both and produced similar mesh element qualities at each resolution.

In conclusion, these experiments suggest a complex and application dependent role of 

mesh structure on simulation accuracy. This study has demonstrated settings in which 

conforming meshes outperformed nonconforming meshes of similar size but at least one 

major application domain in which there was no difference in simulation accuracy. Sim­

ulation scientists are faced with many decisions in creating functional pipelines and our 

findings suggest that careful selection of mesh generation approaches, perhaps preceded 

by numerical experiments, may be necessary in order to optimize these decisions for the 

available computational resources and desired simulation scope and accuracy. It appears 

unlikely that selecting the closest software to hand, or even the algorithms that have proven
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utility in one setting, will yield the best compromise in a new application domain.
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CHAPTER 6

CARDIAC POSITION SENSITIVITY

The cardiac position sensitivity study builds upon the previous two chapters in that it 

takes the epicardial potentials during an ischemic episode and projects them onto the torso 

surface. The purpose of this study was two fold. First was to quantify sensitivity of the 

motion of the heart due to postural changes on the ECG detection of myocardial ischemia. 

The second purpose was to develop a framework for using a relatively novel stochastic 

method, the general Polynomial Chaos-Stochastic Collocation (gPC-SC), in bioelectric 

simulations. The following research is published in the Annals of Biomedical Engineering 

and thus appears here in the format in which it was published with their permission.
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Abstract—The electrocardiogram (ECG) is ubiquitously 
employed as a diagnostic and monitoring tool for patients 
experiencing cardiac distress and/or disease. It is widely 
known that changes in heart position resulting from, for 
example, posture of the patient (sitting, standing, lying) and 
respiration significantly affect the body-surface potentials; 
however, few studies have quantitatively and systematically 
evaluated the effects of heart displacement on the ECG. The 
goal of this study was to evaluate the impact of positional 
changes of the heart on the ECG in the specific clinical 
setting of myocardial ischemia. To carry out the necessary 
comprehensive sensitivity analysis, we applied a relatively 
novel and highly efficient statistical approach, the generalized 
polynomial chaos-stochastic collocation method, to a bound­
ary element formulation of the electrocardiographic forward 
problem, and we drove these simulations with measured 
epicardial potentials from whole-heart experiments. Results 
of the analysis identified regions on the body-surface where 
the potentials were especially sensitive to realistic heart 
motion. The standard deviation (STD) of ST-segment 
voltage changes caused by the apex of a normal heart, 
swinging forward and backward or side-to-side was approx­
imately 0.2 mV. Variations were even larger, 0.3 mV, for a 
heart exhibiting elevated ischemic potentials. These varia­
tions could be large enough to mask or to mimic signs of 
ischemia in the ECG. Our results suggest possible modifica­
tions to ECG protocols that could reduce the diagnostic 
error related to postural changes in patients possibly 
suffering from myocardial ischemia.
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INTRODUCTION

T he s ta n d a rd  e lec trocard iog ram  (E C G ) records 
body-surface p o ten tia ls  a t  the  lim bs an d  p reco rd ia l 
a rea  o f  th e  chest an d  prov ides rem ote  m easu rem en ts o f 
the  electrical activ ity  o f the  heart. I t  is a  pow erful 
d iagnostic  an d  m o n ito rin g  to o l fo r p a tien ts  exhibiting 
card iac  pa thophysio log ies such as rh y th m  d is tu r­
bances, acu te  m yocard ial ischem ia, a n d  in farction . 
D esp ite  its u tility , a  fun d am en ta l w eakness o f  the  E C G  
is the  fac t th a t  it  is a  rem ote  m easurem ent, cap tu ring  
card iac  electrical activ ity  a t  the  body  surface. A s a  
result, a  n u m b er o f  fac to rs  th a t  a re  n o t re la ted  to 
in trinsic  card iac  activ ity  can  affect the  signals recorded  
a t  the  body-surface lead  positions an d  th u s induce 
e rro rs  in clinical ev a lu a tio n .1,2,12 T he goal o f  our 
research  w as to  cap tu re  an d  qu an tify  those  fac to rs an d  
the ir influence on  the  clinical use o f  the  EC G .

In  a  healthy  h eart, the  ST segm ent represen ts the 
tim e betw een com plete v en tricu lar depo la riza tio n  an d  
the  beginning o f  repo lariza tion . D u rin g  th is tim e 
in terval, the  m yocard ium  is relatively isopo ten tia l, 
w ith  p o ten tia l differences th a t  are  sm all com pared  to 
those  th a t  arise  during  ac tiv a tio n  an d  repo la riza tio n . 
In  a  h e a rt experiencing m yocard ia l ischem ia, there  is a t 
least one region o f  underperfused  tissue th a t  has 
decreased  ac tion  p o ten tia l am plitude  an d  an  increased 
resting  m em b ran e  p o ten tia l. T he resu lting  po ten tia l 
difference betw een the  healthy  an d  ischem ic tissue 
du ring  the  ST segm ent causes in ju ry  curren ts , w hich 
are  th en  detected  on  the  body  surface as ST elevations 
o r depressions 6,11,18,21 D u rin g  m ovem ent o f the  heart 
due, fo r exam ple, to  changes in p o stu re , the  p o sitio n  o f 
these electrical sources also changes, thus changing the 
am plitude and  o rientation  o f  the associated body-surface
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p o ten tia ls. O u r results suggest th a t  such changes can 
po ten tia lly  m ask  the  in ju ry  curren ts. Conversely, even 
in a  h ealthy  heart, there  are  sm all spatia l varia tio n s in 
ac tion  p o ten tia l am plitude  du ring  the  p la teau  phase 
th a t  generate  card iac  cu rren ts an d  body-surface 
p o ten tia ls  usually  below  clinically m eaningfu l th resh ­
olds. T o  acco u n t fo r varia tions in ST po ten tia ls  across 
patients and  im prove sensitivity o f  the E C G  during 
patien t m onitoring, it is com m on clinical practice to  use a 
baseline recording to set patien t specific thresholds against 
which subsequent variations are com pared.2’11’26’30

P o sitional changes o f  the  h ea rt w ith  p o stu re  an d  
resp ira tio n  can  a lte r E C G  signal am plitude  an d  m o r­
p ho logy  in w ays th a t  influence clinical decision m a k ­
ing. T h o u g h  the  h ea rt is anch o red  a t  its base by 
relatively rigid tissue, the  apical end  o f  the  h e a rt can  
sh ift p o sitio n  significantly w ith in  the  to rso  due to  
sim ple m ovem ents o f  the  p a tien t, e.g., lying dow n or 
ro lling  over. In  th e  clinical con tex t, such positional 
shifts can  affect the  ST-segm ent a n d  R -w ave am pli­
tu d e22; how ever, these p aram eters  a re  also com m on 
ind ica to rs o f  m y ocard ia l ischem ic in ju ry .6,11,18,21 P os­
tu ra l changes can  be m inim ized an d  co n tro lled  during  
E C G  record ing  fo r d iagnostic  an d  acu te  evaluation  
purposes, b u t n o t during  con tin u o u s p a tie n t m o n ito r­
ing. E ven seem ingly insignificant m ovem ents during  
such m on ito rin g  can  resu lt in dev iations from  the 
baseline E C G  p a tte rn  th a t  are  sufficient to  unneces­
sarily trigger p a tie n t d istress a la rm s.2,11,26,30

In  E C G  in te rp re ta tio n , one can  identify  tw o types o f  
e rro rs  th a t  resu lt from  these h e a rt an d  body  po sitio n  
changes. T he first category  includes erro rs  th a t  m im ic 
disease induced  changes, i.e., th a t  create  false positive 
resu lts .11 T he second category  includes fac to rs th a t 
h ide underly ing  disease o r d e terio ra ting  card iac  func­
tio n  an d  th u s p rec ip ita te  false negative results, a  situ­
a tio n  know n as ‘‘e lectrocard iograph ica lly  silent 
ischem ia’’.8,22 S ilent ischem ia is m uch  m o re  difficult to 
de tec t an d  is also  o f  g rea ter clinical concern  as failure 
to  de tec t a  tru e  in ju ry  has such a  high im pact on 
p a tie n t well being. T he settings in w hich such erro rs  are 
o f  the  grea test concern  include the  em ergency room  
a n d  in tensive care units, w here p a tie n t m on ito rin g  is 
c o n s tan t an d  the  consequences o f  hes ita tio n  can  be 
costly.

P revious research  has described the  effects o f  h ea rt 
p o sitio n  on to rso -su rface  p o ten tia ls  b u t has lacked 
com prehensive sta tistical quan tification . M acL eod  
e t al. used a  realistically  h u m an-shaped , electrolytic 
to rso  ta n k  to  m easu re  the  body-surface an d  ep icardial 
p o ten tia ls  from  healthy  can ine h earts located  a t  vari­
ous positions along th ree  o rth o g o n a l d irections w ithin 
the  ta n k .24 T hey concluded th a t  changes in  h ea rt 
p o sitio n  o f  only a  few  centim eters w ere sufficient to  
p ro d u ce  changes in ST-segm ent p o ten tia ls  th a t  could

m im ic acu te  m yocard ia l ischem ic injury. In  a  separa te  
study using the  sam e ap p ro ach  b u t w ith  a  h ea rt 
experiencing acu te  m yocard ia l ischem ia, the  g roup  
show ed th a t  sim ple ro ta tio n  o f  the  h ea rt position  
p ro d u ced  E C G  w aveform s w ith o u t the  characteristic  
featu res o f  ischem ic in ju ry  an d  p ro p o sed  a  possible 
m echanism  fo r clinically silent ischem ia.22 B o th  these 
studies also included sim ulation  o f  geom etric m odels 
derived from  the  to rso  ta n k  to  p red ic t to rso  po ten tia ls  
from  ep icard ial sources m easu red  during  the  experi­
m ents. A  lim ita tion  o f  these studies w as th a t  they 
included only on  a  sm all n u m b er o f  specific instances, 
i.e., the  h e a rt w as p laced  in a  series o f  fixed locations. 
C om plete  sensitivity analyses, by co n trast, shou ld  
include a  com prehensive sta tistical descrip tion  o f  the 
dependence o f  th e  ou tcom e on  v aria tions o f  all 
p a ram eters  o f  interest. Such a  study based  on experi­
m en ts w ou ld  be proh ib itively  expensive an d  p lagued  
w ith  m ethodolog ica l challenges. Even sim ulation , 
w hich provides a  m ore trac tab le  fram ew ork fo r sensi­
tivity analysis, can  becom e prohibitive in com puta tional 
cost if each test requires m ore th a n  a  few seconds to 
com plete.

M any  m eth o d s exist fo r s im ula tion  based  assessm ent 
o f  sensitivity an d  the ir  u tility  depends on the  com ­
plexity  o f  th e  underly ing  system. T he best k now n  an d  
sim plest is the  M o n te  C arlo  ap p ro ach , w hich  sam ples 
the  en tire p a ram e te r  space an d  o ften  results in p ro ­
hibitive co m p u ta tio n a l cost. A  sim plification o f  this 
a p p ro ach  k now n  as ‘‘b ru te -fo rce’’ m ethods reply on 
h ighly under-sam pling  the  p a ram e te r  space an d  in te r­
po la tin g  betw een the  resu lts .29 A n o th e r  varia tio n  is th a t 
w h a t is know n  as ‘‘range find ing’’ experim ents, in which 
the  o u te r  extrem es o f  the  p a ram e te r  lim its are  evaluated  
a n d  assum ed to  rep resen t the  to ta l varia tio n  across the 
p a ram e te r  range. A s w e will show , varia tio n  o f  the 
E C G  w ith  h e a rt p o sitio n  is n o t linear an d  the  m axim um  
im pacts do  n o t occur a t  the  extrem es o f  the  param eters, 
th u s preclud ing  ran g e  finding an d  underm in ing  b ru te- 
force app roaches. A  m ore sophisticated  v aria tion , 
k now n  as the  ‘‘generalized po lynom ial chaos-stochastic  
co llocation ’’ (gPC -SC ) m e th o d 33,34 is effectively a 
sam pling m e th o d  w hich  exploits assum ptions co n ­
cerning the  m athem atica l n a tu re  o f  the  stochastic  field 
o r p rocess o f  in terest— assum ptions w hich  are  often 
justified  m athem atica lly— to  m inim ize the  n u m b er o f 
sam ples th a t  a re  needed  fo r the  co m p u ta tio n  o f  accu ­
ra te  statistics. T his ap p ro a c h  has fo rm ed  th e  basis o f 
prev ious studies by o u r g ro u p 15,16 an d  o f  the  results 
described here.

In  th is study, we carried  o u t a  m athem atica lly  
ro b u st sensitivity ev aluation  using gPC -SC  to  p red ic t 
the  effects o f  changes in h e a rt location  an d  o rien ta tio n  
on  body-surface e lec trocard iograph ic  po ten tia ls  
have gone beyond  sim ple case-study strategies to  a
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system atic an d  q u an tita tiv e  ap p ro a c h  th a t  p rov ides a  
sta tistical m etric  o f  p a ram e te r  sensitivity w hich  could  
lead  to  clinical im provem ents fo r  E C G  based  diagnosis 
a n d  m onito ring . T he findings su p p o rt a n d  enhance 
previously  rep o rted  results from  to rso  ta n k  experi­
m en ts by M acL eo d  e t a t 22,24

METHODS

T he e lec trocard iograph ic  fo rw ard  p ro b lem  solves 
fo r body-surface po ten tia ls  given a  set o f  k now n  car­
d iac sources an d  the  shape a n d  conductiv ity  o f  the 
in tervening volum e co n d u c to r .19 O f the  possib le  source 
m odels, a rguab ly  the  m o st com plete an d  m o st un ique 
rep resen ta tio n  o f  card iac  activ ity  is the  tim e sequence 
o f  ep icard ial vo ltages,5 w hich  leads to  a  quasi-s tatic  
ap p ro x im atio n  o f  M axw ell’s equ a tio n s expressed as 
the  follow ing classic L ap lace p rob lem :

V  ■ ( r ( i )V u ( x ) )  =  0, x  £  X

u ( x ) = u o ( x ) ,  x  £  Ch  (1)

n ■ r (x )V u (x )  = 0 ,  x  £

w here X denotes th e  to rso  dom ain , consisting  o f  the 
volum e in ternal to  the  to rso  surface, r T, an d  external 
to  the  h e a rt surface, r H. u(x) is the  po ten tia l, w hich 
obeys D irich let b o u n d ary  cond itions, u0(x), on the 
h e a rt surface an d  a  N eu m an n  zero-flux con d itio n  on 
r T. T he electrical conductiv ity , r (x ) ,  is th a t  o f  the 
volum e condu c to r, assum ed  hom ogeneous in the 
experim ents w ith  the  electrolytic to rso  tan k . The 
o u tw ard  facing  n o rm al w ith  respect to  the  to rso  is 
den o ted  n.

Geometric M odel

T he geom etric m odel consisted  o f  tr ian g u la r 
elem ents th a t  represen ted  the  h e a rt an d  to rso  ta n k

et at.

surfaces, as dep icted  in F ig. 1. T he h e a rt surface co n ­
ta ined  670 po in ts, o f  w hich  247 w ere th e  locations o f 
e lectrodes th a t  recorded  card iac  electrical p o ten tia ls  in 
can ine experim ents o f  acu te  ischem ia. A  surface 
L ap lac ian  in te rp o la tio n  w as used  to  reco n stru c t the 
values fo r the  rem ain ing  p o in ts .28 T he ta n k  surface 
consisted  o f  771 nodes an d  1538 tr ia n g u la r  elem ents. 
F igu re  1 show s the  relative po sitio n  o f  the  reference 
h e a rt location  w ith in  the  to rso  tan k , as well as the 
c o o rd in a te  axes o f  the  geom etry. A n  M R I o f  a  healthy  
a d u lt w as used as a  reference fo r the  p lacem ent o f  the 
h e a rt in the  to rso . T he conductiv ity  o f the  to rso  w as 
m odeled  a fte r  th e  experim ental setup o f  M acL eod  
et at 22,24,25 w ith  a  hom ogeneous value o f  500 X-cm, 
app ro x im atin g  the  average conductiv ity  o f  th e  torso . 
The coord in a te  system  w as set so th a t  th e  x-axis co r­
responded  to  the  la tera l (left/right) d irection , the  y-axis 
to  the  d o rsa l/v en tra l d irection , a n d  the  z-axis to  the 
cran ia l/cau d a l direction.

N um erical M ethods

To solve E q. (1) we used th e  well k now n  b o u n d ary  
elem ent m e th o d  (B E M ),7 w hich  has been successfully 
app lied  to  a  range o f  e lec trocard iog raph ic  p ro b - 
lem s.4,10,23,32 T he resu lt is a  tran sfo rm a tio n  opera to r, 
F X : mH !  vT, th a t  links ep icard ial to  to rso  po ten tia ls, 
u T £  mT : T ( r T) !  R. In  o rd er to  evaluate  variations 
in to rso  p o ten tia l resu lting  fro m  uncerta in ties in the 
po sitio n  o f  the  heart, we so ugh t so lu tions to  the  fo r­
w ard  p ro b lem  fo r various positions o f  r H w ith in  X. 
w e  assum ed linear v a ria tio n  o f  the  p o ten tia l over the 
elem ents th a t  m ak e  up b o th  surfaces13 so th a t  the 
tran sfo rm a tio n  o p e ra to r  F X w as a  m atrix  th a t  tra n s­
fo rm ed  the  h ea rt po ten tia ls , uH, to  the  to rso-surface  
po ten tia ls , u T. T he  B E M  requ ires co m p u ta tio n  o f 
w eighted solid  angles betw een each co llocation  p o in t 
an d  every tr ia n g u la r  e lem ent in all surfaces an d  we

F IG U R E  1. Extrem es of motion of the to rso  tank and cardiac sources. The torso  surface is  grey  and the epicardial surface red in 
the m ost central location. The card iac location extremes are sh ow n  in green and blue for a p ivoting motion in both x  and y  
directions around a vector centered at the base  of the heart.
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em ployed the  analy tical fo rm ulas fo r solid angles given 
by de M u n c k 10 an d  the  tran sfo rm  m atrix  construction  
schem e p resen ted  by B arr et a l.5 B ecause the  solid 
angles change in  response to  affine tran sfo rm a tio n s  o f 
the  h e a rt surface, the  tran sfo rm a tio n  o p e ra to r, F X. 
m u st be recom puted  fo r each un ique  coord inate  
tran sfo rm a tio n  resulting  from  a  new  h e a rt surface 
location.

E xperim enta l M ethods

A ll experim ental d a ta  w ere tak en  from  previous 
studies th a t  h ad  the  ap p ro v a l from  the  In s titu tio n a l 
A n im al C are  an d  U se C om m ittee  a t  the  U niversity  o f  
U ta h  a n d  confo rm ed  to  G u ide  fo r the  C are  an d  U se o f  
L a b o ra to ry  A nim als (N IH  Pub. N o  85-23, R evised 
1996). E p icard ia l po ten tia ls  used in  the  sim ulations 
w ere tak en  d irectly  from  experim ents o f  isolated, 
in stru m en ted  canine hearts  suspended  in the  h u m an ­
shaped  to rso  tank . V ariab le  degrees o f  ischem ia w ere 
induced  by restric tion  o f  b lo o d  flow th ro u g h  th e  left 
an te r io r  descending co ro n ary  a rte ry  a n d  the  ep icard ial 
p o ten tia ls  w ere recorded  using 247 electrodes covering 
the  ventricles.24,25 W e used ep icard ial po ten tia ls  from  
the  ST segm ent o f  the  E C G  during  represen ta tive  beats 
u n d er b o th  co n tro l an d  ischem ic conditions.

Im aging o f  Cardiac Position

I t  w as essential fo r these studies to  set the  varia tion  
o f  spa tia l p a ram e te rs— h eart m o tio n  arising  fro m  res­
p ira tio n  an d  changes in  p o stu re— to  physiologically  
realistic values. W e ob ta in ed  m agnetic  resonance 
im ages (M R Is) fo r a  tes t subject during  n o rm al respi­
ra tio n  in th ree positions; supine, p rone , an d  lying on 
the  rig h t side. O ne set o f  d a ta  con ta in ed  im ages th a t 
w ere card iac  gated  an d  acqu ired  du ring  b rea th  holds. 
T o  quan tify  a  resp ira tio n  induced  card iac  m o tio n , a  
second set o f  scans recorded  u ngated , cine M R I in 
supine an d  the  rig h t side positions. T he scans w ere 
reg istered  to g e th er in  o rd er to  m easu re  the  changes in 
h e a rt o rien ta tion .

F ro m  these im ages, we derived the  follow ing con­
stra in ts : (1) apical m o tio n  in  the  axial p lan e  restric ted  
to  a  m axim um  end-to -end  dev ia tion  o f  6 cm , achieved 
th ro u g h  a  pendulum -like  sw inging m o tio n  a b o u t a  
p o in t n ea r  the  cen ter o f  the  base o f  the  heart; (2) ver­
tical tran s la tio n  lim ited  to  a  dev ia tion  o f 2 cm; (3) 
ro ta tio n a l p ivo ting  o f the  h e a rt ab o u t a  vertical axis, 
lim ited  to  a  dev ia tion  o f  20°. A  final assum ption  w as 
th a t  all positions have an  approx im ate ly  equal likeli­
h o o d  so th a t  we could  assum e un ifo rm  p robab ility  
density  functions fo r each  p a ram e te r  o f  m o tion . This 
assum ption  im plies th a t, w ith in  physio logical ranges, 
all values o f swing, ro ta tio n , an d  vertical tran sla tio n

are  equally  likely to  occur. I t  does n o t suggest th a t  the 
tim e the  h ea rt spends in  each p o sitio n  is equal, ju s t th a t 
there is no a priori know ledge o f  w hich  positions the 
h e a rt is likely to  assum e w ith in  the  specific constrain ts .

M odeling U ncerta in ty  in H eart Position

To carry  o u t a  com prehensive an d  qu an tita tiv e  
sensitivity analysis o f  the  ro le o f h e a rt p o sitio n  on the 
E C G  requ ires a  com bination  o f  sim ulation  to  com pute  
body-surface po ten tia ls  from  card iac  sources, as well 
as an  efficient strategy  to  cap tu re  sta tistical v a ria tio n  in 
the  m odel variables. T he sim ulation  m odel, described 
below , is a  so lu tion  to  the  fo rw ard  p ro b lem  o f elec­
tro ca rd io g rap h y  based on  source po ten tia ls  on the 
o u te r (epicardial) surface o f  the  h e a r t.5 Im plem ented  as 
a  b o u n d ary  elem ent discrete m odel, th is app ro ach  
allow s efficient m ovem ent in h e a rt position , w hich  is 
the  p a ram e te r  space to  explore. T o  cap tu re  the  sta tis­
tical v aria tion , w e em ployed the  gPC -SC  m eth o d  fo r its 
efficiency an d  ap p ro p ria te  assum ptions a b o u t the 
underly ing  system.

T o form alize th is process m athem atica lly , we let 
(v, A , i )  be a  com plete con tinuous p ro b ab ility  space 
th a t  expresses varia tio n  in the  h e a rt position , w here v 
is th e  event space consisting  o f outcom es co rre spond­
ing to  h ea rt position , A  C 2v is the  r -a lg e b ra  used to 
define m easu rab le  events, an d  i  is the  p robab ility  
m easu re  expressing th e  d is trib u tio n  from  w hich  o u t­
com es are  draw n. W e can  now  express the  h ea rt 
po sitio n  as a  fun c tio n  o f fo u r un ifo rm  independen t 
ran d o m  variables ~ =  ( f 1, f 2, f 3, f 4), w hich co rrespond  
to  swing ab o u t x -axis, swing ab o u t y -axis, ro ta tio n  
ab o u t the  long axis o f  th e  heart, an d  tran sla tio n  along 
the  z -axis, respectively, as seen in Fig. 2 . T he term  
swing refers to  the  pend u lu m  type o f  m ovem ent m ade 
by the  h e a rt as it p ivo ts a ro u n d  its base. T he ran d o m  
field o f in terest (and  in p articu la r, its sta tistical ch a r­
ac teriza tion) in th is study is the  to rso -su rface  po ten tia l. 
The h e a rt po sitio n  can  be com pletely expressed in 
term s o f  ~, an d  because the  to rso -su rface  p o ten tia l is a  
d irect consequence o f  h e a rt position , the  to rso  
p o ten tia l can  also be expressed as a  function  o f  ~. W e 
can  deno te  the  to rso  p o ten tia l by f ( n ) .  W e a re  in te r­
ested in com pu ting  statistics on  the  ra n d o m  field f(n )  
w ith  the  m ean  o f  the  field given by m e a n f )  =  E f(  f)] 
an d  the  variance by v a r f )  =  E[(f(f)  — m e a n f ) ) 2].

The stochastic  co llocation  ap p ro a c h  selects a  col­
lection  o f  sam ple p o in ts  fo r the  ran d o m  field an d  
applies a  set o f co rrespond ing  w eights th a t  acco u n t fo r 
the  p ro b ab ility  density  function  characteristics o f  the 
set from  w hich  the  po in ts  (o r ou tcom es) are  draw n. In  
th is case, each  co llocation  po in t, nj, represen ted  a 
p a rticu la r  h ea rt p o sitio n  selected from  the  ou tcom e set. 
A t each co llocation  p o in t we com puted  the  to rso
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Swing front 
to back

Swing side 
to side

Rotate along 
heart axis

Translate up 
and down

F IG U R E  2. M o d e s of motion. n  =  sw in g  front to back, n2 = sw in g  side  to side, n3 = rotation a long  the long ax is of the heart, and 
n4 = translation a long  the z-axis.

p o ten tia l field, f(~ j) , by trad itio n a l E C G  fo rw ard  
so lu tion  techn iques (described above). U nlike tra d i­
tio n a l M o n te  C arlo , in  w hich  very large num bers o f  
co llocation  p o in ts  are  requ ired  to  com pu te  accu ra te  
sta tistics, only a  lim ited  n u m b er o f  sam ples are  neces­
sary by utilizing the  sm oothness assum ption  to  select 
p o in ts  an d  w eights w ith o u t loss o f  accuracy (achieving 
as m uch  as 400 tim es speed-up in tes t sim ulations).

S ta tistica l A nalysis

O nce so lu tions (to rso  po ten tia ls) w ere com pu ted  fo r 
each h e a rt po sitio n  d ic ta ted  by the  co llocation  sam ­
pling, the  sta tistics o f  these so lu tions w ere given by the 
follow ing expressions:

m e a n f )  =  E f ( t )

v a r f  =  E [(f(t) -  m e a n f ) )

X  w f(  n )  
j=1

(2)

! X  wj f  j  -  m e a n f ) )2
j=1

variab le , a n d  Wj deno tes the  w eights. F o r  th is study, we 
u tilized  second-order Sm olyak co llocation  p o in ts  an d  
w eights fo r independen t an d  unco rre la ted  un ifo rm  
d istribu tions, w hich  requ ired  q =  5 p o in ts  fo r a  single 
ra n d o m  dim ension, q =  13 p o in ts  fo r tw o, q =  25 
p o in ts  fo r three, a n d  q =  41 p o in ts  fo r fo u r ran d o m  
dim ensions.31,33,35 T he p o in ts  an d  w eights w ere based 
on  S m olyak’s first a lg o rith m  an d  m ore details are 
availab le  elsew here,36 including d iscussion  o f  fu rth er 
sta tistics th a t  can  be com pu ted  beyond  m ean  an d  
variance using the  co llocation  app ro ach . A s in o th er 
app lica tions, la rger values o f  s ta n d a rd  dev ia tion  (STD ) 
a t  p a rticu la r  p o in ts  on  the  to rso  surface ind ica ted  a  
larger sensitivity o f  the  E C G  a t  those  p o in ts  to  varia ­
tions in  the  associated  m odes o f  card iac  swing, ro ta ­
tion , o r  transla tion .

R ange Finding Evaluation

S tochastic C o llocation  m eth o d s are  an  effective too l 
fo r a  specific class o f  num erical p rob lem s because the 
gPC -SC  relies on  the  underly ing  p ro b ab ility  d istrib u ­
tio n  being con tinuous. M oreover, if  v a ria tions w ith in  
the  p a ram e te r  space p ro d u ce  nearly  linear results, then  
the  ad d ed  com plexity  o f  the  co llocation  m ethods m ay 
n o t be justified  an d  a  range finding ap p ro a c h  m ay  be 
sufficient. T o evaluate  the  u tility  o f  the  range finding 
a p p ro ach  to  sensitivity analysis in th is p rob lem , we 
carried  o u t sim ulations o f th e  E C G  a t  lead  V 4 for 
d ifferen t ranges o f  card iac  m o tio n  constra in ed  as 
described above. F o r  each o f  20 positions uniform ly 
spaced betw een the  extrem es, w e com pu ted  a  fo rw ard  
tran sfo rm  m atrix  an d  app lied  ep icard ial po ten tia ls  
from  the  ST segm ent. T he results w ere p lo tted  to 
d em o n stra te  the  response o f  the  system  fo r one sam ple 
p aram eter.

RESULTS

F igure  3 show s a  reconstructed  E C G  from  th e  V 4 
location  from  ep icardial p o ten tia ls  reco rded  during  
co nd itions th a t  p ro d u ced  ischem ia. T he resulting ele­
v ation  o f  the  ST segm ent is obvious, as is th e  large 
am plitude  o f  the  E C G  (approx im ately  5 m V  peak  to 
p eak  fo r th e  Q R S  com plex). T he am plitude  o f  E C G s 
from  the  experim ental p re p a ra tio n  w as determ ined  by 
the  conductiv ity  o f  the  electro ly te ta n k  in w hich  the 
h e a rt w as p laced, an d  they cou ld  n o t perfectly  replicate 
the  conditions in hum ans. T he figure also  show s the 
tim e p o in t used to  cap tu re  ST-segm ent shifts (40%  o f 
the  tim e betw een the  Q R S  an d  T  w aves) based  on  the 
ro o t m ean  square (R M S) curve o f  the  m easu red  elec­
trogram s. A ll subsequen t d isplays o f  body-surface 
po ten tia ls  m ap s w ere based  on the  value recorded  a t 
th is tim e po in t. T he E C G  also show s the  typical, 
sh ifted  ischem ic ST segm ents relative to  a  T Q  segm ent

2
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th a t  w as ad justed  fo r each b ea t to  define a  flat baseline, 
as is cu stom ary  w ith  E C G  recordings.

F igu re  4 con ta ins the  resu lts o f  the  range finding 
evalu a tio n  fo r the  V 4 po sitio n  a n d  h e a rt swing in tw o 
o rth o g o n a l d irec tions. T he shape o f  the  resulting 
curves show s th a t  v a ria tio n  o f  E C G  am plitude  is nei­
th e r  linear n o r m o n o to n ic  over the  range o f  m o tio n . 
M oreover, the  p eak  v aria tions do  n o t arise a t  either 
extrem e o f  m o tio n , b u t som ew here in the  m iddle o f  the 
range. These resu lts suggest th a t  sim ple schem es like 
range finding o r  b ru te  force will cap tu re  only p a r t  o f

Time (mS)

F IG U R E  3. Reconstructed E C G  for precordial lead V 4. The 
E C G  sign a l w a s reconstructed u sin g  the B E M  from epicardial 
potentials captured during the late phase  of a 180-s ep isode  of 
elevated heart rate and reduced coronary b lood  flow. The red 
line indicates the time of 40%  of the S T  segm ent, the time 
instant used  for all subsequent d isp lay s of body  su r ­
face-potential m aps below.

the  tru e  v a ria tio n  an d  th a t  a  com prehensive sensitivity 
analysis is justified .

F igu re  5 depicts an  exam ple o f  ST-segm ent to rso  
po ten tia ls  com pu ted  from  m easu red  epicard ial p o te n ­
tials. T he baseline m ap  represents the  to rso  po ten tia ls  
com pu ted  from  ep icard ial p o ten tia ls  du ring  con tro l 
conditions, i.e., w ith o u t induced  ischem ic injury. The 
ischem ic ta n k  po ten tia ls  show  the  obvious changes th a t 
arise fro m  using m easu red  h e a rt p o ten tia ls  recorded  
d u ring  an  episode o f  induced  acute ischem ia. The 
low er row  o f  the  figure con ta ins com pu ted  tan k  
po ten tia ls  from  ischem ic ep icard ial p o ten tia ls, fo r the 
tw o extrem e p o sitions o f  one m ode o f  h ea rt m o tio n : 
f ro n t/b ack  swing (±17 .5°) as seen in Fig. 1. T he to rso  
po ten tia ls , com p u ted  a t  m axim um  backsw ing, w ould  
be difficult to  d istinguish  fro m  those  com pu ted  from  
co n tro l conditions show n a t  to p  left panel— a  case th a t 
cou ld  resu lt in a  false negative d iagnosis.

w h ile  F ig . 5 show s to rso  po ten tia ls  from  the 
extrem e positions o f  a  single m ode o f  m o tio n , the  STD  
m ap s show n in F ig . 6  p rov ide  a  m o re  com prehensive 
re p o rt o f  the  sensitivity th ro u g h o u t the  en tire  range o f 
m o tio n  fo r all p a ram eters. F o r  exam ple, the  SD  m ap  
fo r sw inging fro n t- to -b ac k  in the  case o f ischem ia 
show s large STD s fo r leads V 2, V 3, an d  V 4 w ith  values 
o f  0.40, 0.37, an d  0.29 m V , respectively, an d  only 
m o d era te  SD values fo r V 1 an d  V 5 a t  0.11 and
0.17 m V . F igure  6  also  con ta ins the  q u an tita tiv e  
results fo r each o f  the  m odes o f  m o tio n  an d  fo r b o th  
ischem ic an d  nonischem ic epicard ial po ten tia ls .

o b se rv a tio n s  from  th is figure sum m arize general 
findings ab o u t the  effect o f  hea rt po sitio n  on  the  E C G . 
F o r  exam ple, the  p reco rd ia l areas— an d  hence the 
p reco rd ia l electrodes (V 1- V 6)— w ould  be specifically 
sensitive to  sw inging a ro u n d  e ither o f  the  x  o r  y-axes,
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F IG U R E  4. Sam p lin g  of the front-to-back sw in g  and the side-to-side sw in g  on the record ings of precordial lead V4. The left figure 
sh o w s the effects of 20 sam ple  po ints for front-to-back heart with a m axim um  value at -6.5°. At right, the figure dem onstrates the 
case  of side-to-side cardiac sw in g in g  motion. Both figu res illustrate the nonlinear nature of the parameter space.
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Baseline Non-ischemic BSP map Ischemic BSP map

Ischemic BSP map - Forward Swing Ischemic BSP map - Backward Swing

F IG U R E  5. Effect of heart position  shift on S T  se gm e nts  
during ischem ic injury. The top left panel depicts the torso  
potentials for the baseline condition obtained from the epi­
cardial potentials with norm al b lood  flow. Top  right panel 
sh o w s the torso  potentials obtained from  epicardial potentials 
recorded during acute ischemia. The bottom  row sh o w s  the 
to rso  potentials in response  to the ischem ic heart sw in g in g  
forward and backward to reasonable p hysio logica l lim­
its, ±17.5°.

i.e., an te ro -p o s te rio r  o r  la tera l m ovem ent o f  the  apex. 
M oreover, co m binations o f  an te ro -p o s te rio r  swing an d  
vertical tran sla tio n  caused som e o f the  largest STDs, 
ind ica ting  very h igh  sensitivities to  th is type o f  m otion . 
Such m o tio n  w ould  occur w hen a  p a tie n t ro lls over in 
bed  o r  sits up  an d  th en  lies b ack  dow n. T ran sla tio n  in 
the  vertical (z) axis, p e rh ap s as expected, p roduced  
changes above an d  below  the  p reco rd ia l areas an d  thus 
w ould  be b e tte r detected in  the  lim b leads. T his type o f  
m o tio n  w as eviden t during  resp ira tio n  b u t p roduced  
very low  STD s. P ivo ting  m o tio n s a ro u n d  the  long axis 
o f  the  h e a rt p ro d u ced  sim ilarly low  varia tio n s in tan k - 
surface po ten tia ls. T hus, it appears p articu larly  
unlikely th a t  p ivo ting  o f  the  h ea rt ab o u t the  long axis 
o r  tran sla tio n s a long  the  z-d irec tion  w ou ld  be sufficient 
to  p ro d u ce  significant erro rs  in the  E C G  during  
ischem ia. H ow ever, the  STD s o f  the  to rso  po ten tia ls 
due  to  sw inging m o tio n s w ere large en ough  a t  0.3 m V 
o r m ore, th a t  it w ould  be possib le to  m easu re  sub ­
stan tia l ST-segm ent elevations in leads V 3 an d  V 4, even 
fo r the  case o f  nonischem ic ep icard ial po ten tia ls  (upper 
row  of F ig. 5). Such a  resu lt suggests the  possib ility  o f  
a  false positive detec tion  o f  ischem ic injury.

et al.

DISCUSSION

T he goal o f  the  study w as to  evaluate  the  ro le o f 
positio n a l changes o f  the  h e a rt in th e  setting o f  acute 
m yocard ia l ischem ia th ro u g h  sta tistical sensitivity 
analysis using the  gPC -SC  m ethodology . This 
a p p ro ach  prov ides advan tages over o th e r  m ethods 
rep o rted  in the  setting  o f  e lec trocard iog raphy .3,9,20 W e 
have also show n th a t  the  p a ram e te r  sensitivity o f  the 
p rob lem  is ne ither linear n o r m o no ton ic , th u s ju stify ­
ing the  need fo r an  unb iased  sta tistical ap p ro ach  like 
the  gPC-SC. S tatistical m eth o d s p rov ide detailed 
q u an tita tiv e  results, including the  spatia l m aps o f  STD  
fo r any  d is trib u tio n  o f  p a ram e te r  v aria tion , exam ples 
o f  w hich  a p p e a r in Fig. 6 . o u r  results b o th  su p p o rt 
an d  refine previously  rep o rted  clinical findings and  
suggest specific h e a rt m o tio n s th a t  are  likely to  cause 
su bstan tia l e rro rs  in E C G  m o n ito rin g  a n d  diagnosis.

T he resu lts sum m arized  in  Figs. 5 and  6  illustrate  
b o th  the  pow er o f  the  gPC -SC  ap p ro ach  an d  its u tility  
in q uan tify ing  com plex relationsh ips. W e evaluated  the 
tw in  hypotheses th a t  shifts in h e a rt po sitio n  can  cause 
(a) false positive o r  (b) false negative m o n ito ring  erro rs 
an d  could p red ic t w hich  E C G  leads w ould  be m o st 
susceptible to  such erro rs. N o  prev ious studies have 
p rov ided  th is level o f  spatia l de ta il o r  a  p robab ilis tic  
m etric  o f  th e  e rro r  possib le from  such a  v a ria tio n  in 
system  p aram eters. T he STD  m aps are  a  novel m eans 
to  sum m arize p a ram e te r  sensitivity in e lec trocard iog­
raphy . T hey rep resen t the  spatia l ex ten t an d  m agn itude  
o f  possib le shifts in  po ten tia ls  induced by v a ria tio n  in 
one o r m o re  m odes o f  h e a rt m ovem ent. Ju s t as one 
o ften  assigns tw o or th ree tim es the  STD  (for a  
G au ssian  d istrib u tio n ) to  encom pass the  full ex ten t o f 
v aria tio n  th a t  is likely in  a  single ran d o m  variable, one 
can  p ic tu re  tw o o r  th ree  tim es the  abso lu te  values o f 
the  stand ard -d ev ia tio n  to rso  m aps as the  app rox im ate  
range o f  abso lu te  varia tio n  possib le  fo r  a  given set o f 
card iac  p o ten tia ls  an d  m ode(s) o f  m o tion .

T he resu lts o f  the  sensitivity study ind icate  th a t 
som e m odes o f  h ea rt m o tio n  are  capab le o f  b o th  
obscuring  ST elevations as well as m im icking them . 
R o ta tio n  a ro u n d  the  long axis o f  the  h e a rt is a  com ­
p o n e n t o f  n o rm al card iac  co n trac tio n ; tran s la tio n  up 
an d  dow n m im ics a  m a jo r  co m p o n en t o f  resp ira to ry  
m o tion . N e ith e r  m ode o f  m o tio n  p ro d u ced  significant 
v aria tions in the  E C G , w ith  STD  less th a n  0.1 m V , 
suggesting th a t  if  such findings cam e from  a  realistic, 
p a tie n t based  m odel, they  need n o t be o f  concern  to 
clinicians. In  co n trast, the  m o tio n s o f  sw inging fron t- 
to -b ack  an d  side-to-side b o th  p ro d u ced  STD s o f m ore 
th a n  0.3 m V , larger th a n  the  ST shifts o f  0.2 m V  th a t 
are  considered  clinically significant. Such swinging 
occurs, fo r exam ple, w hen a  subject lies dow n, sits up, 
o r leans fo rw ard . A n d  while p o stu ra l changes can
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Baseline Non-ischemic Standard Deviations maps

Swing front Swing side Rotate along Translate up Swing front to back
to back to side heart axis and down rotate and translate

0.00 0.08 0.15 0.22 0.30 mV

Ischemic Standard Deviations maps

Swing front Swing side Rotate along Translate up Swing front to back
to back to side heart axis and down rotate and translate

F IG U R E  6. Standard  deviation of tank-surface potentials resulting from heart position shift during ischemia. The top row sh ow s  
the S D  from the motion of a heart with control epicardial potentials. The bottom row sh o w s the S D  of tank surface potentials from  
the motion of a heart with ischem ic epicardial potentials. Co lored  dots indicate locations of standard  lim b and precordial leads.

readily  be co n tro lled  in an  em ergency ro o m  o r o th er 
acu te  setting, they  rep resen t a  m o re  elusive p rob lem  for 
critical care, in w hich m on ito rin g  con tinues over hours 
o r  days a n d  p a tie n t m o tio n  is com m on . w i th  know l­
edge o f  the  specific resu lts o f  p o stu ra l changes, one 
cou ld  im agine clinical tests in  w hich  a  p a tie n t w ere 
a rticu la ted  in w ays th a t  could  increase the  sensitivity to  
ischem ia; th u s the  test sensitivity an d  specificity m igh t 
be im proved. C onversely, m echanical sensors on a  
critically  ill p a tie n t could  reco rd  p o stu ra l changes an d  
a d ju s t E C G  m o n ito rin g  to  acco u n t fo r the  associated  
changes in E C G  sensitivity a n d  reduce th e  incidence o f  
false positives, as o th e r  have p ro p o sed .27

In  o rd e r  fo r card iac  m o tio n  to  create  false positive 
findings o f  ST-segm ent shifts in the  E C G , it is neces­
sary th a t  there exist du ring  the  p la te a u  p hase  o f  the 
ac tion  p o ten tia l a t  least sm all card iac  p o ten tia l differ­
ences th a t  p ro jec t to  the  to rso  surface. Even during  the 
nom inally  isopo ten tia l p e rio d  o f  th e  p la teau  phase, 
there  exist differences in voltage across the  h ea rt 
because o f  varia tions in ac tion  p o ten tia l am plitude  an d  
tim ing. Such differences create  cu rren ts th a t  are  small

b u t detectab le  on  the  card iac  surface an d  the  body 
surface, as reflected by the  need to  set th resho lds fo r 
clinically m eaningfu l ST-segm ent p o te n tia ls .17

T he ST D  represen ts a  sta tistical expecta tion  o f  the 
possib le range o f  the  q u an tity  o f  in terest, in th is case 
E C G  po ten tia ls. I t  does n o t ind icate  w hich  specific 
values o f  the  system  p aram eters, in th is case h ea rt 
m o tio n , will generate  extrem es o f  th a t  range. In  som e 
cases, basic b iophysical re la tionsh ips will p rov ide  the 
necessary in tu itio n  to  explain, fo r  exam ple, enhance­
m en t o f  a n te rio r  body-surface p o ten tia ls  w hen the 
h e a rt m oves closer to  the  f ro n t o f  the  chest. B u t fo r 
o thers (e.g., th e  sw inging m o tio n  w e have explored), 
the  m axim um  dev ia tion  o f  the  body-surface po ten tia ls  
occurs n o t a t  th e  extrem es o f  m o tio n , b u t som ew here 
in the  m idrange. T he SD  m ap s ind icate  the  ex ten t o f 
possib le v aria tions b u t fu rth e r  ex p lo ra tion  is necessary 
to  identify  the  ac tu a l p a ram e te r  values (heart position) 
th a t  w ould  create  such varia tio n s.

W e have assum ed a  un ifo rm  d istrib u tio n  o f  the  in p u t 
p aram eters  o f  the  sim ulation , the  h ea rt-m o tio n  values, 
because there is no  d a ta  availab le  to  suggest o therw ise.
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T he un ifo rm  d is trib u tio n  assum es th a t  any  p a rticu la r  
value o f  h e a rt ro ta tio n , swing, o r tran sla tio n  is equally  
likely to  occur, b u t n o t th a t  the  h e a rt spends equal tim e 
in each  position . o n e  n o tab le  fea tu re  o f  the  gPC -SC  
m eth o d  is th a t  it su p p o rts  any  assum ed p robab ility  
density  function . I f  d a ta  becam e available  o r one 
w ished to  test o th e r  assum ptions a b o u t th e  d istrib u tio n  
o f  h e a rt positions, th is in fo rm atio n  could be included 
by using the  ap p ro p ria te  p ro b ab ility  density  function .

o u r  ap p ro ach  does n o t acco u n t fo r the  im pact o f  
v aria tio n s in h e a rt po sitio n  an d  o rien ta tio n  u p o n  the 
ep icard ial po ten tia ls  because these po ten tia ls  are 
assum ed to  be co n stan t regardless o f  the  h e a rt po si­
tion , an  assu m p tio n  supp o rted  by p rev ious experi­
m en ta l studies from  m em bers o f  o u r g ro u p .24 The 
gPC -S C  ap p ro a c h  presen ted  here could, how ever, be 
easily m odified to  include such changes in th e  source 
p o ten tia ls. o u r  fo rm u la tio n  also d id n o t accoun t fo r 
consequences o f  the  defo rm atio n  o f  the  h e a rt during  
p o stu ra l changes. H ow ever, such effects w ould  likely 
increase the  variab ility  o f  the  system , an d  o u r conclu­
sions w ould  becom e a  conservative estim ate o f the 
v a ria tio n  caused by positio n a l changes.

T he prim ary  objectives o f  th is study were to  describe a  
q u an tita tiv e  sensitivity ap p ro ach  th a t has n o t been 
rep o rted  previously fo r th is p rob lem  an d  then  carry  o u t a  
study using card iac  po ten tia ls m easured  from  a  to rso  
ta n k  experim ent in o rd er to  augm en t prev ious q u a lita ­
tive analyses.24 T he advan tages o f  th is ap p ro ach  com ­
p ared  to  one based  on  artificial o r estim ated  card iac 
sources em bedded  in  a  realistic o r  p a tien t specific hum an  
to rso  m odel are  tw ofold. F irs t, the  card iac sources 
available  from  experim ents, a lth o u g h  from  an  anim al 
m odel, are  highly realistic an d  cap tu re  no rm al and  
ischem ic cond itions th a t arise during  physiologically 
realistic conditions. Secondly, the  volum e cond u c to r in 
these sim ulations w as based on  a  very accu ra te  (w ithin
5 m m ) m easu rem en t o f  a  rigid electrolytic ta n k  an d  the 
h ea rt position  in the  tan k , th u s preserving a  geom etric 
accuracy  rare ly  achievable even from  m edical im aging o f 
a  h um an  subject. M oreover, the  conductivity  o f  the 
volum e co n d u c to r in such an  experim ental p rep a ra tio n  
can  be set very precisely, rem oving an  ad d itional source 
o f  am biguity  th a t  arises in a  p a tien t specific m odel.

T h is ap p ro ach  also p resen ts lim ita tions to  in ter­
p re ting  the  results o f  such a  study, especially w hen 
ex trapo la ting  to  the  clinical dom ain . T he m odel o f  the 
electrolytic ta n k  is hom ogeneous an d  th u s the  effects o f  
o rgans o r  o th er v aria tions in tissue conductiv ity  can ­
n o t be evaluated . Sim ilarly, changes in the  shape o f  
b o th  the  in te rn a l o rgans an d  the  to rso  as a  w hole due 
to  resp ira tio n  o r  changes in  p o stu re  are  n o t included in 
a  m odel based  on  a  rigid, hom ogeneous to rso  tan k . A  
m odel th a t  d id include all these varia tions w ould  also 
d epend  on  m an y  approx im atio n s , e.g., conductiv ity

values an d  d isto rtio n s o f  soft tissue shape during  car­
d iac an d  resp ira to ry  m o tio n  an d  p o stu ra l changes. A  
q u an tita tiv e  an d  sta tistical p a ram e te r  sensitivity eval­
u a tio n  u n d e r such cond itions w ould  requ ire  a  sophis­
tica tio n  o f  m odel co nstruction  an d  v a ria tio n  th a t 
w ould  likely be proh ib itive. T here are  very few repo rts  
o f  card iac  sim ulations th a t  even include card iac  co n ­
trac tio n  an d  none to  o u r know ledge th a t  include res­
p ira tio n  and  p o stu ra l changes. N o  m a tte r  w hich 
m odeling  p a rad ig m  o r level o f  realism  one w ishes to 
pursue , the  fram ew ork  o f  gPC -SC  can  accom m odate  
an d  p rov ide a  m eth o d  fo r q u an tita tiv e  sensitivity 
analysis as long as bound aries  am ong the  h e a rt and  
o th er o rgans in  the  th o rax  are  respected.

O ne in d ica tion  o f  the  physio logical reasonab leness o f 
o u r resu lts com es from  a  co m parison  w ith  previously  
rep o rted  experim ents,24 in  w hich a  canine h e a rt w as 
suspended in th e  sam e, h u m an  shaped, electrolytic tank . 
V aria tio n s in due  to  positional changes h e a rt position
6 cm  side-to-side.24 T he gPC -SC  m eth o d  com puted  
sim ilar resu lts w ith  ST D s o f  up  to  0.25 m V , as show n in 
F ig. 5 . A  differen t study by G arc ia  e t al. m easu red  ST60 
an d  T -w ave am plitude  as a  fun c tio n  o f  body  position  
a n d  found  large v aria tions am ong p a tie n ts .14 The 
m axim um  va ria tio n  o f  to rso  po ten tia ls  af te r  a  positional 
change from  the  left side to  supine, w as 188 i V  fo r  the 
ST segm ent a n d  686 i V  du ring  th e  T  wave. T he results 
sim ulated  fo r the  gPC -SC  m ethod , 350 i V  STD  fo r  the 
T  w ave an d  250 i V  STD  fo r the  S T 60 am plitude , were 
well w ith in  th is range fo r the  T -w ave am plitude, a n d  ju s t 
outside th e ir  extrem es fo r S T 60. I t  is reasonab le  to 
expect th a t  o u r m odeling  ap p ro ach  w ould  corre la te  
b e tte r w ith  the  ta n k  experim ents, w hich  m ak e  the  sam e 
assum ptions o f  geom etry  an d  tissue conductiv ity , th an  
w ith  the  resu lts o f  p a tie n t studies.

T hese results an d  o u r prev ious studies o f  the  effects o f 
v aria tions in tissue conductiv ities15 su p p o rt the  fu rther 
use o f  the  gPC -SC  techn ique— an d  p a ram e te r  sensitivity 
studies in general— fo r th is p rob lem  dom ain . T here  is a  
c lear need to  im prove the  d iagnostic  robustness o f  the 
E C G , especially in the  setting o f  em ergency an d  critical 
care m edicine, an d  o u r results p o in t to  sources o f  vari­
a tio n  th a t  are  large enough  to  explain  a t  least som e o f 
the  erro rs  th a t  arise in clinical p ractice. These findings 
also suggest som e possib le m eans o f  ad justing  cu rren t 
prac tice  to  accom m odate  fo r h e a rt m o tio n , o r even to 
use explicit m ovem ents to  reveal o therw ise sub thresho ld  
abnorm alitie s in E C G  m etrics.
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CHAPTER 7

CONCLUSIONS

Computational modeling and simulation is a powerful tool that has great potential 

to help improve understanding of mechanisms and eventually diagnosis and treatment of 

cardiac disease. The results from these three projects illustrate that there are still significant 

technical challenges to overcome before many of these simulations can be clinically useful. 

Each of the findings we have presented addresses a different technical aspect of modeling 

with a focus on the spatial or geometric assumptions of subject specific modeling of cardiac 

bioelectric fields. Each study also underscored the potential for modeling and simulation 

to address aspects of importance to the study and clinical application of bioelectric fields.

The first study presented in this dissertation explored the role in simulations of my­

ocardial ischemia of the border zone, i.e., the transition from normal to under-perfused 

tissue in the heart. The results of this study suggest that even subtle features like the 

spatial profile of the transition of transmembrane potential across the border zone can have 

dramatic impact on the accuracy of simulations. One novelty of the study was the use of 

high resolution three-dimensional measurements and subject specific modeling techniques 

to compare simulations directly to the experimental results. With this paradigm, we could 

evaluate existing bioelectric source models of ischemia and then propose improvements 

that resulted in a better match to measured heart-surface potentials. These improvements 

represent more than a mathematical or numerical refinement in that they also suggest 

novel physiological insights into ischemic disease. Our findings suggest that the transition 

between healthy and ischemic tissues is more complicated and spatially heterogeneous 

than previously reported which, in turn, suggests the need for a more refined evaluation 

of ECG recordings especially of nontransmural acute ischemia. There are many reports 

of the nonspecific interpretation afforded by ST depression on the body surface and our 

findings suggest that the spatial organization of the boundary between ischemic and healthy 

tissue could contribute substantially to this vagueness. Thus what started as a technical 

consideration of the best way to represent one aspect of the simulation domain has become 

a stimulus to consider a set of much more physiological questions regarding the ischemic
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substrate.

These specific findings that the ischemic border zone is a complex, heterogeneous bound­

ary lead naturally to the second study in this dissertation, the numerical counterpart of 

the role of boundary representations in discrete geometric models used for simulation. In 

the boundary conforming mesh study, we found that simply increasing the resolution and 

degrees of freedom of the geometric model for three different problems did not always 

improve the solution. The answer to the apparent paradox appears to be that more 

sophisticated solutions, such as meshing algorithms that can conform to internal material 

interfaces, greatly improve the accuracy even of very coarse meshes. This technical solution 

allowed us to create more accurate simulations while also reducing computational cost.

The third study also followed logically from the previous two in that one needs a means 

of evaluating the effects of uncertainty in all aspects of the geometric assumptions or 

simplifications of a realistic numerical model. The variety of forms of this uncertainty 

and the additive, and possibly nonlinear, effects of multiple sources of uncertainty require a 

sophisticated approach. We found such an approach in the polynomial chaos and stochastic 

collocation techniques we applied to forward problems of electrocardiography. Using this 

very generalizable approach we found that many simulation parameters, even those that 

are not accessible to direct measurement, can be explored using stochastic modeling. From 

this study we demonstrated a framework that utilizes a relatively novel stochastic method 

to quickly and accurately account for the variation seen in modeling parameters. This 

framework is adaptable for many numerical approaches and we were able to apply it to 

the boundary element methods for use in the cardiac surface based formulation of the 

forward problem in electrocardiography. The novel contributions of this study included a 

quantitative assessment of the impact of realistic movements of the heart on the ECG and 

specifically on features of the ECG used clinically to monitor patients with ischemia. As 

with the other studies, this one underscored the utility of simulation in the clinical use of 

bioelectric field monitoring and interpretation.

7.1 Computational Mesh Requirements for 
Bioelectric Field Problems

Throughout this dissertation we have generated volumetric (for finite elements) and 

surface (for boundary element) meshes to solve a range of cardiac bioelectric problems. One 

of the primary conclusions of this work is that what constitutes a high quality mesh is highly 

problem specific. In this section we discuss the meshing requirements of three different
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types of problems in the setting of cardiac electrophysiology: high resolution/propagation 

modeling, medium resolution/electric fields, low resolution/inverse problems.

7.1.1 P ropagation  M odels

The first consideration for constructing high quality meshes in the context of propagation 

models was to determine the appropriate mesh resolution needed to accurately describe 

the spatial domain. Modeling electrical propagation through the heart requires a very high 

resolution mesh, with internodal spacing well below 1 mm. For a human heart, for example, 

a 0.2 mm resolution produces a model with on the order of 80 million nodes which must 

be solved over tens of thousands of iterations to simulate a single cardiac cycle. The highly 

resolved models are necessary to capture the very sharp gradient that result at the activation 

front that propagates through the heart. Simulations based on such very large models have 

huge computational costs and take weeks to months to solve without the aid of very large 

supercomputers.

In these simulations the conduction velocity of the propagating wave is dependent on 

both the distance between nodes and the associated conductivity. It is common practice to 

adjust the conductivity of a specific tissue type in order to “tune” the conduction velocity of 

the model to what is seen in literature. However, this approach assumes that there is a fairly 

uniform spacing between nodes. Even small irregularities in node space or element shape 

can cause portions of the advancing wave to accelerate or decelerate becoming significant 

source of error. In addition, the meshing study in Chapter 5 indicated that meshes that did 

not accurately represent the smoothness of a boundary between tissues could be another 

source of error. However, the errors arising from the changes in conduction velocity were 

an order of magnitude larger than those seen due to nonconforming boundaries.

The results from Chapter 5 indicate that creating boundary conforming geometry is 

not the only meshing consideration that affects the simulation accuracy. In the reaction 

diffusion bidomain models inconsistent distances between nodes, or varied edge lengths, had 

a much larger impact on the simulation than did the conforming boundaries. In this case well 

shaped and uniformly sized elements or even structured grids could be used to produce more 

accurate simulations even though the boundaries are nonconforming. Simplified meshes 

such as structured meshes have many advantages over unstructured meshes such as they 

are much easier to create and easier to solve computationally. These simplifications result 

in dramatically improved computational times without an increased computational error.



7.1.2 Sim ulation  o f S ta tic  B ioe lectr ic  F ields

This section focuses on the meshing requirements for calculating electrical fields at a 

single time instance which can differ from those in the preceding section due to a quite 

different set of constraints and requirements. Examples of this sort of problem include the 

static bidomain, monodomain, or simple volume conductor problems. Typical of this cate­

gory of problems is that the spatial domain is usually large compared to tissue simulations 

but that they contain no explicit time dependence, i.e., no propagation or evolving source. 

Even if the source does change with time, the problem is linear so that it needs only to be 

fully solved once. As a result, computational efficiency is slightly less important compared 

to capturing details of the spatial domain and any heterogeneities it contains.

In general these problems do not require the very high resolution of the propagation 

models. As with most numerical solutions of problems over space, the resolution require­

ments depend on the size of gradients that arise. Typically, in such whole heart or volume 

conductor simulations, the node spacing is on the order of 0.7-1.5 mm, sufficient to simulate 

the electric field over the entire heart. In some cases, such as modeling cardiac defibrillation, 

local refinement must be performed around the shock electrodes in order to account for the 

large gradients that occur at such interfaces, where the rest of the model can be relatively 

coarsely resolved.

In addition to resolution, we found that modeling many diseases, such as ischemia or 

infarction, requires accurate geometric representations of the interface between diseased and 

healthy tissues. In these cases, boundary conforming meshes are critical to the underlying 

mesh structure. More generally, we found that boundary conforming meshes produced more 

accurate simulations in all cases and were particularly important when either the interface 

was between a source and a volume conductor or the area of interest in the simulation was 

at or near a material interface.

7.1.3 M esh R equirem ents for Solving B ioelectr ic  
Inverse P roblem s

As a category, inverse problems differ substantially from the forward problems discussed 

so far. Inverse problems are almost always based on an associated forward problem but 

require either multiple (often many) iterations of that forward problem or the application of 

constraints to deal with their often ill-posed nature. In both the high and medium resolution 

forward models described above there is a relatively clear tradeoff between accuracy and 

computational cost, however, for inverse simulations this is not necessarily the case. In

105
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inverse problems, the trade off is much less predictable because, for example, increasing the 

number of nodes generally worsens the conditioning of the resulting matrix that has to be 

solved (inverted) numerically, thus reducing accuracy. As a result, the trade off is between 

accurately representing the geometry and using the fewest nodes possible.

The altered numerical constraints also drive altered meshing priorities. In this case, 

the meshing algorithms need to preserve major geometric features and produce well shaped 

elements while also minimizing the number of nodes being used, which is a relatively rare set 

of requirements for meshing algorithms. As a result, mesh decimation algorithms are often 

employed after the original mesh is constructed; in some cases, heavy manual guidance is 

required to achieve suitable mesh quality. In both instances the results are not as optimal 

as a carefully designed meshing algorithm could produce. The resulting meshes share the 

weaknesses of being costly to construct and of having no quantifiable guarantees of quality 

or precision.

7.2 Future Work
The field of patient-specific modeling is advancing very quickly as is the more general 

field of personalized medicine. With these advances, especially in the use of image based 

modeling, clinical applications are slowly emerging [157, 176]. As in all application domains, 

in the field of electrocardiology there remain technical challenges to widespread acceptance 

and use of simulation approaches. The following sections address some of these outstanding 

challenges.

7.2.1 B order Zone

In this work we developed a new description of the electrical changes that occur during 

myocardial ischemia. While this description is already very important in modeling the 

forward problem, its largest impact could emerge in the setting of mathematical inverse 

calculations to identify and locate early stages of myocardial ischemia from the body 

surface. Inverse solutions represent a powerful tool to noninvasively detect and also localize 

myocardial ischemia within the heart itself, a goal that has driven (and frustrated) electro- 

cardiographers for 50 years [140]. Electrocardiographic inverse problems are highly ill-posed 

and require additional constraints to limit the solutions to be physiologically reasonable. 

Our new definition of ischemic border zones represents both a novel, parameterized source 

formulation and also a highly realistic constraint in this highly relevant inverse problem.

The simulation results indicating the requirement for the inclusion of a transition region
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and a complex heterogeneous border zone, suggesting that the complexity of the perfusion 

system and metabolic needs in the ischemic zone may likely be the key to understanding 

epicardial potential distributions during nonftransmural ischemia. To further investigate 

this hypothesis requires better solutions to a few technical challenges in both imaging of 

the microvasculature and registration techniques of the electrical plunge needles to the 

anatomical scans. Currently, we do not capture sufficient resolution to accurately identify 

the microvasculature. One approach that provides at least the potential for measurements of 

perfusion is the use of fluorescent microspheres, which could become part of our experimental 

protocol. Using this technique we could study the changes in perfusion to the heart at the 

scale of perhaps multiple millimeters to centimeters and correlate regional perfusion levels 

with our electrical measurements. A further modification to the experiment protocol would 

be to exchange the plunge needles for imaging markers detectable in MRI and CT scans in 

order to reduce errors that arise from the heart changing shape between the time of needle 

extraction and imaging.

7.2.2 M u ltim ateria l B ound ary E lem en t M odels

In Chapter 6 we explored the role of uncertainty in heart position on the electrical 

potentials on the body surface. In this study the heart was placed in an electrolytic phantom 

that approximated the average electrical conductance of the torso. However, in the body 

there are large heterogeneities in conductivities between the heart and the body surface that 

we did not account for. In particular, the lungs have a very small conductivity and have 

been shown to effect the forward BEM simulation. Future work is needed to understand the 

motion of the lungs relative to both body position and during respiration. Once a suitable 

model is created, the gPC-SC method could also account for the variations to body surface 

potentials due to the motion of the lungs.

7.2.3 F iber A pp roxim ation

The orientation of local muscle fibers in the heart indicates the orientation of anisotropic 

conductivity of the myocardium and so is an essential element of tissue levels simulations. 

For our simulations, the fiber information of the heart was obtained postmortem using 

MRI diffusion weighted imaging or diffusion tensor imaging (DTI). As discussed previously, 

DTI scans of a beating heart are not currently feasible. Even in the eventual application 

of such simulations to human subjects, the recent project has minimized the impact of 

this limitation. Two approaches to estimating subject specific fiber orientation that show



considerable promise are rule based methods and fiber atlases [177].

Despite this progress, what remains unclear is the sensitivity of various simulations to er­

rors in fiber orientation. Given the current level of abstraction in state of the art simulations, 

researchers need to assess whether fully patient specific tensor fields are necessary or if atlas 

morphing is sufficient. To address this incomplete state of knowledge, the first step would 

be a sensitivity study similar to the study described in Chapter 6 on the effect of variation 

in heart position using the gPC-SC method. Because the sensitivity to conductivity tensors 

could be highly dependent on the type of simulation, two highly relevant candidates would 

be an ischemia model and a propagation model. Each study would include generating rule 

based fibers and parameterizing the assignment of helical angle to each element. It would 

then be possible to assign reasonable uncertainties to the fiber orientations in the form of 

probability distribution functions and then determine the statistical consequences to the 

simulation potentials or activation times.

7.2.4 A u tom ation  for M odel C reation

Personalized medicine and patient-specific modeling have the potential to revolutionize 

the health care industry. In the context of the heart, simulation is emerging as a relevant 

tool in procedures such as ventricular ablations [178, 155]and implantation of implantable 

cardioverter defibrillators (ICD) [157, 179]. Many other simulations have potential for 

clinical applications but are limited by technical challenges such as construction of the 

geometric model and completing the simulations in a time frame that is useful to clinicians. 

Other engineering disciplines such as the aerospace industry have faced similar challenges, 

and have developed technical solutions such as parametric models attached to automated 

meshing and simulation routines (e.g., AutoModeler), where details of the desired mesh, 

boundary conditions, and type of simulation reside as properties of the CAD model. A 

new geometry can be created by selecting an appropriate template from a database and 

then updating the parameters to “fit” the model to the specific case and then launching 

the meshing and simulation routines. Similar approaches could have promise in many 

biomedical domains, especially as more and more image based atlas projects describe human 

and animal anatomy in parameterized formulations.

A hallmark of early studies in cardiac simulation has been the huge cost to create 

appropriate geometric models. As a result, many research groups have turned to one of the 

very few existing models of the heart such as the Auckland dog heart[180], Oxford rabbit 

ventricles[181], or the visible human heart geometry[182]. Of these three only the Auckland
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dog heart is parametric, i.e., can change shape based on input parameters. The research 

presented here shows that in many instances appropriate geometric approximations can be 

made without compromising accuracy. We also have developed a framework for evaluating 

the consequences of different approximations. The combination of viable, shape statistical 

methods to create atlases of organs like the heart and the error estimation framework that 

we have applied support the need for and the feasibility of a focused effort to develop a 

shared resource of cardiac geometric models.

There exist many technical challenges in translating this technology into clinical settings; 

however, with the advances in computing power, imaging technology, and understanding of 

basic physiology, patient-specific models may soon become a reality.
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