
NEW PROBLEMS IN EXPLORING DISTRIBUTED DATA

by

Mingwang Tang

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

May 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276264395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © Mingwang Tang 2015

All Rights Reserved

T h e U n i v e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Mingwang Tang

has been approved by the following supervisory committee members:

Feifei Li , Chair 10/02/14

Date Approved

Jeffrey M. Phillips , Member 10/02/14

Date Approved

Suresh Venkatasubramanian , Member 10/02/14

Date Approved

Mohamed F. Mokbel , Member 10/02/14

Date Approved

Tingjian Ge , Member 10/02/14

Date Approved

and by Ross Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

In the era of big data, many applications generate continuous online data from dis-

tributed locations, scattering devices, etc. Examples include data from social media, finan-

cial services, and sensor networks, etc. Meanwhile, large volumes of data can be archived

or stored offline in distributed locations for further data analysis. Challenges from data

uncertainty, large-scale data size, and distributed data sources motivate us to revisit several

classic problems for both online and offline data explorations.

The problem of continuous threshold monitoring for distributed data is commonly

encountered in many real-world applications. We study this problem for distributed proba-

bilistic data. We show how to prune expensive threshold queries using various tail bounds

and combine tail-bound techniques with adaptive algorithms for monitoring distributed

deterministic data. We also show how to approximate threshold queries based on sampling

techniques.

Threshold monitoring problems can only tell a monitoring function is above or below a

threshold constraint but not how far away from it. This motivates us to study the problem of

continuous tracking functions over distributed data. We first investigate the tracking prob-

lem on a chain topology. Then we show how to solve tracking problems on a distributed

setting using solutions for the chain model. We studied online tracking of the max function

on “broom” tree and general tree topologies in this work.

Finally, we examine building scalable histograms for distributed probabilistic data. We

show how to build approximate histograms based on a partition-and-merge principle on a

centralized machine. Then, we show how to extend our solutions to distributed and parallel

settings to further mitigate scalability bottlenecks and deal with distributed data.

I dedicate this thesis to my family, who gives me all-enduring and selfless love on my way

through PhD study.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . viii

LIST OF TABLES . x

ACKNOWLEDGEMENTS . xi

CHAPTERS

1. INTRODUCTION . 1
1.1 Motivation and Background . 1
1.2 Dissertation Outline . 4

2. THRESHOLD MONITORING FOR DISTRIBUTED
PROBABILISTIC DATA . 5
2.1 Introduction . 5
2.2 Problem Formulation . 7
2.3 Baseline Methods . 8

2.3.1 Compute Pr[Y > γ] Exactly . 8
2.3.2 Filtering by Markov Inequality . 9

2.4 Improved Methods . 10
2.4.1 Improved Bounds on Pr[Y > γ] . 10
2.4.2 Improved Adaptive Threshold Monitoring . 13

2.5 Sampling Methods to Estimate the Threshold . 15
2.5.1 The Random Sampling Approach . 16
2.5.2 Random Distributed ε-Sample . 18
2.5.3 Deterministic Distributed ε-Sample . 19
2.5.4 A Randomized Improvement . 21
2.5.5 Practical Improvements . 22

2.6 Extension . 23
2.6.1 Weighted Constraint . 23
2.6.2 Handling Multiple (γ, δ) Thresholds . 23

2.7 Experiments . 24
2.7.1 Datasets and Setup . 24
2.7.2 Effect of γ . 27
2.7.3 Effect of δ . 28
2.7.4 Effect of g . 29
2.7.5 Effect of τ . 30
2.7.6 Sampling Methods . 31
2.7.7 Integrated Methods . 32

2.8 Related Work . 34
2.9 Conclusion . 35

3. DISTRIBUTED ONLINE TRACKING . 36
3.1 Introduction . 36

3.1.1 Key Challenge . 38
3.1.2 Our Contributions . 39

3.2 Problem Formulation and Background . 39
3.2.1 Performance Metric of an Online Algorithm 41
3.2.2 State-of-the-art Method . 42

3.3 The Chain Case . 44
3.3.1 Baseline Methods . 44
3.3.2 Optimal Chain Online Tracking . 46

3.4 The Broom Case . 49
3.4.1 A Baseline Method . 50
3.4.2 Improvement . 50
3.4.3 The BROOMTRACK Method . 55

3.5 The General Tree Case . 57
3.6 Other Functions and Topologies . 60

3.6.1 Other Functions for f . 60
3.6.2 Other Topologies . 62

3.7 Experiment . 63
3.7.1 Datasets and Setup . 63
3.7.2 Chain Model . 65
3.7.3 Broom Model . 65
3.7.4 General Tree Topology . 68
3.7.5 Other Functions . 70

3.8 Related Work . 71
3.9 Conclusion . 72

4. SCALABLE HISTOGRAMS ON LARGE PROBABILISTIC DATA 74
4.1 Introduction . 74

4.1.1 Overview . 75
4.2 Background and State of the Art . 77

4.2.1 Uncertain Data Models . 77
4.2.2 Histograms on Probabilistic Data . 78
4.2.3 Efficient Computation of Bucket Error . 80

4.3 Approximate Histograms . 81
4.3.1 A Baseline Method . 81
4.3.2 The PMERGE Method . 82

4.3.2.1 Partition . 82
4.3.2.2 Merge . 82
4.3.2.3 Fast Computation of Bucket Error . 83
4.3.2.4 Complexity Analysis . 84
4.3.2.5 Approximation Quality . 84

4.3.3 Recursive PMERGE . 86
4.4 Distributed and Parallel PMERGE . 89

4.4.1 The Partition Phase in the Value Model . 89
vi

4.4.2 The Partition Phase in the Tuple Model . 91
4.4.3 Recursive PMERGE and Other Remarks . 91

4.5 Parallel-PMERGE with Synopsis . 91
4.5.1 Sampling Methods for the Value Model . 92

4.5.1.1 The VS Method . 92
4.5.2 Sketching Methods for the Tuple Model . 93

4.5.2.1 The TS (Tuple Model Sketching) Method 93
4.6 Experiments . 96

4.6.1 Datasets and Setup . 96
4.6.2 Centralized Environment . 97

4.6.2.1 Effect of m . 97
4.6.2.2 Effect of n . 98
4.6.2.3 Effect of B . 98
4.6.2.4 Comparison with the Baseline . 99

4.6.3 Distributed and Parallel Setting . 100
4.6.3.1 Effect of Size of the Cluster . 100
4.6.3.2 Scalability . 102

4.6.4 Distributed and Parallel Synopsis . 103
4.6.4.1 Comparing Effects of Synopsis in Both Models 103

4.7 Related Work . 104
4.8 Conclusion . 105

5. OTHER WORKS . 106

6. CONCLUSION . 108

REFERENCES . 110

vii

LIST OF FIGURES

1.1 Distributed streaming data in applications . 1

1.2 Shipboard Automated Meteorological and Oceanographic System. 2

2.1 (a) Attribute-level uncertain tuple model. (b) The flat model. 7

2.2 The Improved method. 13

2.3 The Iadaptive method. 15

2.4 The RS estimator . 16

2.5 The MRS estimator . 17

2.6 The RDεS method. 18

2.7 The DDεS method. 20

2.8 Distributions of E(Xi,t) for WD, WS, SS, and TEM, where i ∈ [1, g] and
t ∈ [1, T]. (a) WD. (b) WS. (c) SS. (d) TEM. 25

2.9 Communication: vary γ. (a) Messages. (b) Bytes. 27

2.10 Response time: (a) vary γ. (b) vary δ. 28

2.11 Communication: vary δ. (a) Messages. (b) Bytes. 28

2.12 Communication: vary g. (a) Messages. (b) Bytes. 29

2.13 Response time: (a) vary g. (b) vary τ . 29

2.14 Communication: vary τ . (a) Messages. (b) Bytes. 30

2.15 Performance of the sampling methods: vary κ (sample size per client). (a)
Precision. (b) Recall. (c) Communication: bytes. (d) Response time. 32

2.16 Performance of the sampling methods: vary datasets. (a) Precision. (b)
Recall. (c) Communication: bytes. (d) Response time. 33

2.17 Performance of all methods: vary datasets. (a) Communication: messages.
(b) Communication: bytes. (c) Response time. (d) Precision and recall. 34

3.1 Track f(t) = f(f1(t), f2(t), · · · , fm(t)). (a) broom model. (b) general-tree. . 40

3.2 Special cases: g(t) ∈ [f(t)−∆, f(t)+∆]. (a) chain topology (b) centralized
seting. [87, 89]. 40

3.3 Tree online tracking. (a) simple tree. (b) general tree. 57

3.4 Other topologies. (a) observer at relay node. (b) graph topology. 63

3.5 f1(t) for TEMP and WD, for t ∈ [1, 1000]. (a) TEMP. (b) WD. 64

3.6 Performance of chain tracking methods on TEMP. (a) vary ∆. (b) vary h. (c)
vary N . (d)cost(method)/cost(offline). 66

3.7 Performance of broom tracking methods on TEMP. (a) vary m. (b) vary ∆.
(c) vary h. (d) vary N . 67

3.8 General-tree: vary p. (a) TEMP. (b) WD. 68

3.9 General-tree: vary ∆. (a) TEMP. (b) WD. 69

3.10 General-tree: vary H . (a) TEMP. (b) WD. 69

3.11 General-tree: vary F . (a) TEMP. (b) WD. 70

3.12 Track sum on broom and general tree. (a) Broom. (b) General-tree. 71

3.13 Track median on broom and general tree. (a) Broom. (b) General-tree. 71

4.1 An example of PMERGE: n = 16,m = 4, B = 2. 84

4.2 Binary decomposition and local Q-AMS. (a) binary decomposition. (b) local
Q-AMS. 94

4.3 Vary m on the tuple model. (a) m vs running time. (b) m vs approximation
ratio. 98

4.4 Approximation ratio and running time: vary n. (a) Tuple model: running
time. (b) Value model: running time. (c) Tuple model: approximation ratio.
(d) Value model: approximation ratio. 99

4.5 Approximation ratio and running time: vary B. (a) Tuple model: running
time. (b) Value model: running time. (c) Tuple model: approximation ratio.
(d) Value model: approximation ratio. 100

4.6 Comparison against the baseline method. (a) Running time: WorldCup. (b)
Approximation ratio: WorldCup. (c) Running time: SAMOS. (d) Approxi-
mation ratio: SAMOS. 101

4.7 Time: vary number of slave nodes. (a) Tuple model. (b) Value model. 101

4.8 Scalability of the parallel approximate methods. (a) Tuple model: vary n.
(b) Value model: vary n. (c) Tuple model: vary B. (d) Value model: vary B. 102

4.9 Effects of using synopsis. (a) Communication. (b) Approximation ratio. 104

ix

LIST OF TABLES

3.1 Input instance I1 and behavior of A. 53

3.2 A′ on input instance I1. 54

3.3 A on input instance I2. 54

3.4 A′′ on input instance I2. 55

4.1 Example for tuple model . 78

4.2 Example for value model . 78

ACKNOWLEDGEMENTS

More than five years has passed since the first day I began my PhD study in the US. I

am very lucky to experience two kinds of academic style from both Florida State University

(FSU) where I spent my first two years of PhD study and University of Utah where the end

of my PhD journey will be. I would like to first thank to cs faculties in FSU, who help me

to build a solid knowledge in core courses in computer science.

I would like to express my gratitude to my advisor Feifei Li, who gives me a great

guidance on my research study. From our academic discussions, I have learned so much

toward doing research, for instance, how to mathematically formalize a problem definition

and how to approach the problem from different views and others. He is a very forthright

person and will point out my shortcomings to help me to realize the places where I need to

improve. I would never be able to reach the closing of this journey without his guidance, ad-

vices and even criticisms. I would like to thank Feifei for being my advisor and supporting

my PhD studies. Also, I would like to thank Prof. Jeff Phillips, who broadened my views

and research skills from our collaborations. I thank Prof. Suresh Venkatasubramanian for

his insightful comments for my presentations in our data group meeting. I also want to

thank Prof. Mohamed F. Mokbel and Prof. Tingjian Ge for serving on my supervisory

committee.

Finally, I thank NSF for funding me for my PhD research projects.

CHAPTER 1

INTRODUCTION

The goal of this dissertation research is to design, implement, and evaluate novel data

exploration techniques on distributed data to support scalable data analytics and decision-

making systems. Therefore, we have studied three closely related problems in this thesis:

(I) how to continuously monitor distributed probabilistic data against a probabilistic thresh-

old; (II) how to continuously track function changes over distributed data; (III) how to build

scalable histograms on large probabilistic data.

1.1 Motivation and Background
Data exploration tasks aim to retrieve relevant information from a large dataset, which

becomes more challenging in the era of big data. In many applications, large volumes of

data are generated from scattering devices or distributed sources continuously. Examples

include data collected from network intrusion detection systems, measurements from large

sensor networks, and locations and application data from location-based services, as shown

in Figure 1.1.

Therefore, exploring distributed data in an online fashion becomes critical for further

data analytics and decision-making applications. A natural example is continuous dis-

tributed monitoring, where a function of distributed observations is continuously moni-

Figure 1.1: Distributed streaming data in applications

2

tored against a user-specified threshold and an alarm will be generated when the threshold

constraint is violated.

In the distributed setting, it is always desirable, sometimes even critical, to reduce the

communication cost for a number of reasons [3, 15–17, 26, 55, 56, 63, 86]. For instance, in

sensor networks, transmitting messages consumes valuable on-board battery resources of

sensor nodes, which in fact determines the lifetime of these networks. From the network

infrastructure’s point of view (e.g., ISP), transmitting the monitoring data to perform the

distributed computation is impractical, which will seriously affect the network bandwidth.

An emerging challenge for monitoring distributed data is uncertainty, which is inher-

ently introduced when massive amounts of data are generated in distributed sources. For

instance, measurements in a sensor network are inherently noisy; data integration systems

produce fuzzy matches. A motivating example in our thesis is the Shipboard Automated

Meteorological and Oceanographic System (SAMOS) project [70].

We have observed that in SAMOS: 1) meteorological data are observed from research

vessels, ships, and towers which are naturally distributed; 2) ambiguity, errors, imprecise

readings, and uncertainty are present in the real-time data collected, due to hazardous con-

ditions, coarse real-time measurement, and multiple readings for the same observation; 3)

large amounts of data (e.g., wind speed, temperature, humidity, etc.) need to be processed

in less than a minute continuously.

It is useful to represent data in SAMOS (as well as other applications previously dis-

cussed) using distributed probabilistic data. For instance, a common practice in SAMOS is

for each ship/tower to buffer data for each interval (e.g., 5 minutes) and send one represen-

tative for data in an interval. Clearly, modeling data in a given interval using probabilistic

data, such as a probability distribution function (pdf), is no doubt a viable and attractive

solution (especially when we want to also account for the presence of uncertainty and errors

(a)

Data

Applications

Ships

Towers
satellite,

radio frequency Applications

(b)

Figure 1.2: Shipboard Automated Meteorological and Oceanographic System.

3

in the raw readings).

Existing techniques of threshold monitoring on deterministic distributed data [18, 48,

52, 74] cannot be directly applied to distributed probabilistic data as in the SAMOS sys-

tem. This motivates us to investigate a novel threshold monitoring problem on distributed

probabilistic data. We extend threshold queries to probabilistic data by considering a

probabilistic-threshold semantics [10, 22, 77]. The goal of this part of our dissertation is

to efficiently explore distributed data with uncertainty and produce an alarm when a true

threshold crossing has happened with a high probability. One design principle we have

applied in tackling computation and communication cost on distributed probabilistic data is

utilizing tail-bound filters in the monitoring instance. Then, techniques of threshold mon-

itoring for distributed deterministic data could be used to further reduce communication

cost.

Online threshold monitoring can only tell whether the observing function of distributed

data are above or below a threshold but not how far it is from the threshold. It is useful

to continuously tracking various functions of distributed data. For instance, SAMOS users

may be interested in continuously tracking the maximum of current temperature readings

for a number of ships from a region in proximity. Such examples can be easily found

in location-based services. Recent studies [87, 89] focused on the online tracking problem

with only one observer and one tracker, which has limited application to multiple observers

in distributed locations. To this end, we have studied the problem of tracking functions of

distributed data (each data source can be described by an arbitrary function) continuously

in an online fashion. To achieve 100% accuracy for continuous online tracking of arbitrary

functions, any change of an observing function will lead to a message to the tracker, which

simply generates excessive communications. Similar to the strategies in [87, 89], we relax

the requirement by allowing a maximum error of ∆ for the function under tracking by

the tracker. We first investigated the tracking problem on a chain topology, where the

observer connects to the tracker through multiple relay nodes. Following that, we studied

the tracking problem where distributed observers connect to the tracker through a “broom”

tree model and a general-tree topology.

At the back end, distributed data often converge in a data warehouse, where in-depth

data explorations and analysis are possible. The challenge is large data size and uncertainty

4

caused by data integration or distributed data sources, as we see in SAMOS data. Data

summary techniques, e.g., histograms, provide an effective venue for exploring large prob-

abilistic data. Recently, histograms on probabilistic data have been proposed to work with

probabilistic datasets [12–14]. However, existing studies suffer from limited scalability

and do not adapt to large-scale data size and distributed data sources. This motivates

us to study scalable histograms on large probabilistic data. We address this problem

by building scalable histograms on large probabilistic data using a partition and merge

principle. We also extend our solutions to distributed and parallel settings to mitigate

scalability bottlenecks and deal with distributed data.

1.2 Dissertation Outline
The rest of this dissertation is organized as follows. In Chapter 2, we study the prob-

lem of threshold monitoring for distributed probabilistic data. One outstanding challenge

is that answering queries on probabilistic data is in #P-complete complexity. We first

leveraged tail-bound techniques to help assert the threshold violations and combined them

with techniques for threshold monitoring on distributed deterministic data to further reduce

communication cost. When the tail bounds fail to make a decision, we propose effective

sampling methods to approximate threshold queries. In Chapter 3, we study the problem

of distributed online tracking. We first investigated optimal tracking on chain topologies,

which gives us more insights for distributed online tracking on a general-tree topology.

With large probabilistic data, building a succinct synopsis, e.g., histograms, becomes mean-

ingful for data exploration and data management tasks. We study the scalable histogram

construction on probabilistic data in Chapter 4 in an effort to support large-scale datasets

and distributed and parallel processing on large probabilistic data. Finally, we conclude

and discuss some open problems in Chapter 6.

CHAPTER 2

THRESHOLD MONITORING FOR DISTRIBUTED

PROBABILISTIC DATA

2.1 Introduction
When massive amounts of data are generated, uncertainty is inherently introduced at

the same time. For instance, data integration produces fuzzy matches [28, 77]; in mea-

surements, e.g., sensor readings, data are inherently noisy, and are better represented by a

probability distribution rather than a single deterministic value [10, 25, 37, 77]. In a lot of

these applications, data are generated at multiple sources, and collected from distributed

networked locations. Examples include distributed observing stations, large sensor fields,

geographically separate scientific institutes/units, and many more [54, 83]. A concrete

example is the SAMOS project, as we mentioned in Chapter 1.

Meanwhile, as numerous studies in managing and exploring distributed data have shown,

a primary concern is monitoring the distributed data and generating an alarm when a

user-specified constraint is violated. A particular useful instance is the threshold-based

constraint, which we refer to as the distributed threshold monitoring (DTM) problem and

which has been extensively studied in distributed deterministic data [18, 48, 52, 74]. An

application scenario is shown in Example 1.

Example 1. Suppose each distributed site continuously captures temperature readings (one

per system-defined time instance); the goal is to monitor them continuously and raise an

alarm at the coordinator site whenever the average temperature from all sites exceeds 80

degrees at any time instance.

Similar applications are required in exploring distributed probabilistic data. The notion

of distributed threshold monitoring on probabilistic data is a critical problem, such as in

the SAMOS system. The most natural and popular way of extending threshold queries to

6

probabilistic data is probabilistic-threshold semantics [10,22,77], which introduces another

threshold on the probability of the query answer in addition to the threshold on the score

value of the results. Consider the following example that extends Example 1:

Example 2. Suppose readings in each site are now represented as probabilistic data (e.g.,

as we have just discussed for data in SAMOS), the goal is to monitor these readings

continuously and raise an alarm at the coordinator site whenever the probability of the

average temperature from all sites exceeding 80 degrees is above 70% at any time instance.

We refer to them as the distributed probabilistic threshold monitoring (DPTM) problem.

This variant is a robust alternative to DTM, more robust than the median, in that even if all

sites report low-probability noise which skews their distributions, DPTM will only raise an

alarm if a true threshold has been crossed, or what may have been noise occurs with high

enough probability that it cannot be ignored. For the same reasons and motivations of its

counterpart, the DTM problem, a paramount concern is to reduce the communication cost,

measured by both the total number of messages and bytes communicated in the system.

For example, on SAMOS, cutting down the communication cost would allow for the trans-

mission of more accurate or diverse measurements. Due to the inherent difference in query

processing between probabilistic and deterministic data, techniques developed from DTM

are no longer directly applicable. This also brings up another challenge in DPTM, reducing

the cpu cost, since query processing in probabilistic data is often computation-intensive,

which is even worse in distributed probabilistic data [54].

We step up to these challenges and present a comprehensive study to the DPTM problem.

Specifically:

• We formalize the DPTM problem in Section 2.2.

• We propose baseline methods in Section 2.3, which improve over the naive method

of sending all tuples at each time instance.

• We design two efficient and effective monitoring methods in Section 2.4 that leverage

moment generating functions and adaptive filters to significantly reduce the costs.

• When an exact solution is not absolutely necessary, we introduce novel sampling-

based methods in Section 2.5 to further reduce the communication and the cpu costs.

• We extensively evaluate all proposed methods in Section 4.6 on large real data ob-

tained from research vessels in the SAMOS project. The results have shown that our

7

monitoring methods have significantly outperformed the baseline approach. They

also indicate that our sampling method is very effective when it is acceptable to

occasionally miss one or two alarms with very small probability.

We discuss some useful extensions in Section 2.6, survey the related work in Section

4.7, and conclude in Section 4.8.

2.2 Problem Formulation
Sarma et al. [71] describe various models of uncertainty. We consider the attribute-level

uncertain tuple that has been used frequently in the literature, and suits the applications for

our problem well (e.g., data in SAMOS).

Each tuple has one or more uncertain attributes. Every uncertain attribute has a pdf for

its value distribution. Correlation among attributes in one tuple can be represented by a joint

pdf. This model has a lot of practical applications and is most suitable for measurements

and readings [25, 50]. Without loss of generality, we assume that each tuple has only one

uncertain attribute score. Let Xi be the random variable for the score of tuple di, where Xi

can have either a discrete or a continuous pdf, with bounded size (see Figure 2.1(a)). Since

each pdf is bounded, we assume that for all Xi’s, |Xi| ≤ n for some value n where |Xi| is
the size of the pdf for Xi, which is the number of discrete values Xi may take for a discrete

pdf, or the number of parameters describing Xi and its domain for a continuous pdf.

Given g distributed clients {c1, . . . , cg}, and a centralized server H , we consider the flat

model for the organization of distributed sites as shown in Figure 2.1(b); e.g., SAMOS uses

the flat model. At each time instance t, for t = 1, . . . , T , client ci reports a tuple di,t with a

score Xi,t. We assume that data from different sites are independent. Similar assumptions

were made in most distributed data monitoring or ranking studies [18,39,48,52,54,62,74].

tuples attribute score
d1 X1

d2 X2

· . . .
dt Xt

(a)

H

c1 c2 cg

(b)

Figure 2.1: (a) Attribute-level uncertain tuple model. (b) The flat model.

8

Without loss of generality and for the ease of explanation, we assume that Xi,t ∈ R+. Our

techniques can be easily extended to handle the case when Xi,t may take negative values as

well.

Definition 1 (DPTM). Given γ ∈ R+ and δ ∈ [0, 1), let Yt =
∑g

i=1Xi,t, for t = 1, . . . , T .

The goal is to raise an alarm at H , whenever for any t ∈ [1, T] Pr[Yt > γ] > δ.

In our definition, DPTM monitors the sum constraint. Monitoring the average constraint

is equivalent to this case, as well as any other types of constraints that can be expressed as

a linear combination of one or more sum constraints.

As argued in Section 4.1, the goal is to minimize both the overall communication and

computation costs, at the end of all time instances. We measure the communication cost

using both the total number of bytes transmitted and the total number of messages sent.

Lastly, when the context is clear, we omit the subscript t from Yt and Xi,t.

2.3 Baseline Methods
At any time instance t, let X1, . . . , Xg be the scores from c1 to cg and Y =

∑g
i=1 Xi.

To monitor if Pr[Y > γ] > δ, the naive method is to ask each client ci to send his score Xi

to H , which is clearly very expensive.

2.3.1 Compute Pr[Y > γ] Exactly

The first challenge is to compute Pr[Y > γ] exactly at H . We differentiate two cases.

When each Xi is represented by a discrete pdf, clearly, we can compute Y1,2 = X1 +X2 in

O(n2) time by a nested loop over the possible values they may take. Next, we can compute

Y1,2,3 = X1 + X2 + X3 = Y1,2 + X3 using Y1,2 and X3 in O(n3) time, since in the worst

case the size of Y1,2 is O(n2). We can recursively apply this idea to compute Y = Y1,...,g

in O(ng) time, then check Pr[Y > γ] exactly. But note that in this approach, since we did

not sort the values in the output (to reduce the cost), in each step the discrete values in the

output pdf is no longer sorted.

A better idea is to compute Y1,...,g/2, and Yg/2+1,...,g separately, which only takesO(ng/2)

time. Then, by using the cdf (cumulative distribution function) of Yg/2+1,...,g, we can

compute Pr[Y > γ] as follows:

Pr[Y > γ] =
∑
∀y∈Y1,...,g/2 Pr[Y1,...,g/2 = y] · Pr[Yg/2+1,...,g > γ − y].

9

Computing the cdf of Yg/2+1,...,g takes O(ng/2 log ng/2) in the worst case: as discussed

above, discrete values in Yg/2+1,...,g are not sorted. After which, finding out Pr[Yg/2+1,...,g >

γ − y] for any y takes only constant time. Hence, this step takes O(ng/2) time only (the

size of Y1,...,g/2 in the worst case). So the overall cost of computing Pr[Y > γ] exactly at

H becomes O(ng/2 log ng/2).

When some Xi’s are represented by continuous pdfs, the above process no longer

works. In this case, we leverage on the characteristic functions of Xi’s to compute Y

exactly. The characteristic function [6] of a random variable X is:

ϕX(β) = E(eiβX) =

∫ +∞

−∞
eiβxfX(x)d(x),∀β ∈ R,

where i is the imaginary unit and fX(x) is the pdf of X . Let ϕi(β) and ϕ(β) be the

characteristic functions of Xi and Y , respectively; a well-known result is that ϕ(β) =∏g
i=1 ϕi(β) [6]. Furthermore, by definition, ϕi(β) and ϕ(β) are the Fourier transform of

the pdfs for Xi and Y , respectively. Hence, an immediate algorithm for computing the pdf

of Y is to compute the Fourier transforms for the pdfs of Xi’s, multiply them together to

get ϕ(β), then do an inverse Fourier transform on ϕ(β) to obtain the pdf of Y . After which,

we can easily check if Pr[Y > γ] > δ. The cost of this algorithm depends on the cost of

each Fourier transform, which is dependent on the types of distributions being processed.

Note that using this approach when all pdfs are discrete does not result in less running time

than the method above: since the size of Y in the worst case is O(ng) (the pdf describing

Y), this algorithm takes at least O(ng) time in the worst case, even though we can leverage

on fast Fourier transform in this situation.

We denote the above algorithms as EXACTD and EXACTC, for the discrete and contin-

uous cases, respectively.

2.3.2 Filtering by Markov Inequality

By the Markov inequality, we have Pr[Y > γ] ≤ E(Y)
γ

. Given that E(Y) =
∑g

i=1 E(Xi),

if each client Xi only sends E(Xi), H can check if E(Y)
γ

< δ; if so, no alarm should be

raised for sure; otherwise, we can then ask for Xi’s, and apply the exact algorithm. We dub

this approach the Markov method.

We can improve this further. Since E(Y) =
∑g

i=1 E(Xi) and our goal is to monitor

10

if E(Y) < γδ by the Markov inequality, we can leverage on the adaptive thresholds

algorithm for the DTM problem in deterministic data [48] to monitor if
∑g

i=1 E(Xi) < γδ

continuously, which installs local filters at clients and adaptively adjusts them. Specifically,

γδ is treated as the global constraint; at each time instance, client ci can compute E(Xi)

locally which becomes a “deterministic score”. Thus, the algorithm from [48] is applicable.

Whenever it cannot assert an alarm at a time instance t, clients transmit Xi’s to H and

the server applies the exact algorithm (only for that instance). This helps reduce the

communication cost and we dub this improvement the Madaptive method.

2.4 Improved Methods
We now improve on these baseline techniques. We replace the Markov Inequality

through more complicated to apply, but more accurate, Chebyshev and Chernoff bounds

(Improved). Then, we redesign Improved to leverage adaptive monitoring techniques de-

signed for DTM (Iadaptive).

2.4.1 Improved Bounds on Pr[Y > γ]

We first leverage on the general Chebyshev bound:

Pr[|Y − E(Y)| ≥ a
√

Var(Y)] ≤ 1/a2 for any a ∈ R+,

which gives us the following one-sided forms:

Pr[Y ≥ E(Y) + a] ≤ Var(Y)

Var(Y) + a2
,∀a ∈ R+ (2.1)

Pr[Y ≤ E(Y)− a] ≤ Var(Y)

Var(Y) + a2
,∀a ∈ R+. (2.2)

When γ > E(Y), setting a = γ − E(Y) in (4.2) leads to:

Pr[Y > γ] < Pr[Y ≥ γ] ≤ Var(Y)

Var(Y) + (γ − E(Y))2
. (2.3)

As such, when γ > E(Y), if Var(Y)
Var(Y)+(γ−E(Y))2

≤ δ, we definitely do not have to raise an

alarm.

When γ < E(Y), we can set a = E(Y)− γ in (4.4) to get:

Pr[Y ≤ γ] ≤ Var(Y)

Var(Y) + (E(Y)− γ)2
. (2.4)

11

This implies that,

Pr[Y > γ] = 1− Pr[Y ≤ γ] > 1− Var(Y)
Var(Y)+(E(Y)−γ)2

. (2.5)

Hence, when γ < E(Y), as long as 1− Var(Y)
Var(Y)+(E(Y)−γ)2

≥ δ, we should surely raise an

alarm.

Given these observations, in each time instance, clients send E(Xi)’s and Var(Xi)’s to

H , which computes E(Y) and Var(Y) locally (given that Xi’s are independent from each

other, Var(Y) =
∑g

i=1 Var(Xi)). Depending whether E(Y) > γ or E(Y) < γ, H uses

(4.5) or (2.5) to decide to raise or not to raise an alarm for this time instance. Nevertheless,

this approach may still incur expensive communication and computation when E(Y) = γ,

or (4.5) ((2.5), resp.) does not hold when E(Y) > γ (E(Y) < γ, resp.). It is also limited in

the fact that H can only check either to raise an alarm or not to raise an alarm, but not both

simultaneously, as E(Y) > γ and E(Y) < γ cannot hold at the same time.

We remedy these problems using the general Chernoff bound and the moment-generating

function [6]. For any random variable Y , suppose its moment generating function is given

by M(β) = E(eβY) for any β ∈ R, then:

Pr[Y ≥ a] ≤ e−βaM(β) for all β > 0,∀a ∈ R (2.6)

Pr[Y ≤ a] ≤ e−βaM(β) for all β < 0,∀a ∈ R (2.7)

Here, a can be any real value (positive or negative). Suppose the moment generating

function of Xi and Y is Mi(β) and M(β), respectively, then M(β) =
∏g

i=1Mi(β) [6].

Hence, when the checking based on either (4.5) or (2.5) has failed, for any β1 > 0 and

β2 < 0, the server requests ci to calculate and send back Mi(β1) and Mi(β2). He computes

M(β1) and M(β2), and by setting a = γ in (2.6) and (4.7), he checks if:

Pr[Y > γ] ≤ Pr[Y ≥ γ] ≤ e−β1γM(β1) ≤ δ, and (2.8)

Pr[Y > γ] = 1− Pr[Y ≤ γ] > 1− e−β2γM(β2) ≥ δ. (2.9)

When (2.8) holds, he does not raise an alarm; when (2.9) holds, he raises an alarm; only

when both have failed, he requests Xi’s for the exact computation.

Calculating Mi(β) at a client ci is easy. For a lot of parametric continuous pdfs, closed-

12

form expressions exist for their moment generating functions, or, one can use numeric

methods to compute Mi(β) to arbitrary precision for other continuous pdfs. For discrete

pdfs, Mi(β) =
∑

x∈Xi e
βx Pr[Xi = x].

Another key issue is to figure out the optimal values for β1 and β2 in (2.8) and (2.9)

to make the corresponding bound as tight as possible, which is to minimize e−β1γM(β1)

and e−β2γM(β2) in (2.8) and (2.9), respectively. The central limit theorem states that the

mean of a sufficiently large number of independent random variables will be approximately

normally distributed, if each independent variable has finite mean and variance [6]. For

a normal distribution with mean µ and variance σ2, its moment generating function is

eβµ+ 1
2
σ2β2

for any β ∈ R. Hence, let Y ′ = 1
g
Y , then Y ′ can be approximated by a normal

distribution well, and we can approximate its moment generating function as:

MY ′(β) ≈ eβE(Y ′)+ 1
2

Var(Y ′)β2

,∀β ∈ R. (2.10)

Note that Y = gY ′, (2.8) and (2.10) imply that for any β1 > 0:

Pr[Y ≥ γ] = Pr[Y ′ ≥ γ

g
] ≤ e−β1

γ
gMY ′(β1)

≈ e−β1
γ
g eβ1E(Y

g
)+ 1

2
Var(Y

g
)β2

1 by (2.10)

= e
β1
g

(E(Y)−γ)+ 1
2g2

Var(Y)β2
1 (2.11)

Hence, we can approximate the optimal β1 value for (2.8) by finding the β1 value that

minimizes the RHS of (2.11). Let f(β1) be the RHS of (2.11) and take its derivative w.r.t.

β1:

f ′(β1) = e
β1
g

(E(Y)−γ)+ 1
2g2

Var(Y)β2
1 (

E(Y)− γ
g

+
Var(Y)

g2
β1).

Let f ′(β1) = 0; we get β1 = g(γ−E(Y))
Var(Y)

. Furthermore, we can show that the second order

derivative of f(β1),f ′′(β1), is always greater than 0 (we omit the details for brevity). That

said, f(β1) (hence, the RHS of (2.11)) takes its minimal value when β1 = g(γ−E(Y))
Var(Y)

. Using

a similar analysis, we can derive the optimal β2 value. However, a constraint is that β1 > 0

and β2 < 0. That said, also with the observation that f(β1) (the corresponding function

for β2) is monotonically increasing when β1 >
g(γ−E(Y))

Var(Y)
(β2 <

g(γ−E(Y))
Var(Y)

, respectively), let

θ > 0 be some small value,

13


β1 = g(γ−E(Y))

Var(Y)
, β2 = −θ if γ >

∑g
i=1 E(Xi),

β1 = θ, β2 = g(γ−E(Y))
Var(Y)

if γ <
∑g

i=1 E(Xi),

β1 = θ, β2 = −θ otherwise,
(2.12)

will help achieve tight bounds in (2.8) and (2.9).

This yields the Improved method, shown in Figure 2.2.

2.4.2 Improved Adaptive Threshold Monitoring

The Improved method needs at least g messages per time instance; to reduce this, we

again leverage on the adaptive thresholds algorithm developed for work on DTM [48].

Consider (2.8) and (2.9), when we can continuously monitor if:

e−β1γ
g∏
i=1

M(β1) ≤ δ, or 1− e−β2γ
g∏
i=1

M(β2) ≥ δ (2.13)

efficiently, whenever the first inequality in (2.13) holds at a time instance t, H knows for

sure that Pr[Y > γ] ≤ δ at t and no alarm should be raised at this time instance; whenever

Algorithm Improved(c1, . . . , cg, H)
1. for t = 1, . . . , T
2. let Xi = Xi,t and Y = Yt =

∑g
i=1Xi;

3. each ci computes E(Xi) and Var(Xi) locally,
and sends them to H;

4. H sets E(Y) =
∑

E(Xi), Var(Y) =
∑

Var(Xi);
5. if (γ > E(Y) and Var(Y)

Var(Y)+(γ−E(Y))2
≤ δ)

6. raise no alarm; continue to next time instance;
7. if (γ < E(Y) and 1− Var(Y)

Var(Y)+(E(Y)−γ)2
≥ δ)

8. raise an alarm; continue to next time instance;
9. H sets β1 and β2 according to (2.12);
10. H broadcasts β1, β2 to all clients, and asks them

to compute and send back Mi(β1)′s and Mi(β2)′s;
11. H sets M(β1) =

∏
iMi(β1), M(β2) =

∏
iMi(β2);

12. if (e−β1γM(β1) ≤ δ)
13. raise no alarm; continue to next time instance;
14. if (1− e−β2γM(β2) ≥ δ)
15. raise an alarm; continue to next time instance;
16. H asks for Xi’s, applies EXACTD or EXACTC;

Figure 2.2: The Improved method.

14

the second inequality in (2.13) holds at t, H knows for sure that Pr[Y > γ] > δ at t and an

alarm should be raised. Monitoring the first inequality in (2.13) is the same as monitoring

if
g∑
i=1

lnMi(β1) ≤ ln δ + β1γ. (2.14)

We can treat (ln δ + β1γ) as the global constraint, and at time t, let Vi = lnMi(β1) be

the local deterministic score at client ci; this becomes the exactly same formulation for the

DTM problem. We now apply the adaptive thresholds algorithm for constraint monitoring

from [48] to monitor (2.14). We denote this monitoring instance as J1. At any time t, if J1

raises no alarm, H knows that no alarm should be raised at t, since by implication (2.14)

holds, and hence Pr[Y > γ] ≤ δ.

Monitoring the 2nd inequality in (2.13) is to monitor if
g∑
i=1

lnMi(β2) ≤ ln(1− δ) + β2γ. (2.15)

By treating (ln(1− δ) + β2γ) as the global constraint, at time t let Wi = lnMi(β2) be the

local deterministic score at client ci; then we again apply [48] to monitor (2.15). Denote

this monitoring instance as J2. Constrasting J1 to J2, when J2 does not report an alarm at

t, it means that (2.15) holds, which implies that Pr[Y > γ] > δ, so H needs to raise an

alarm.

One choice is to let H run both J1 and J2. However, when Pr[Y > γ] deviates from

δ considerably, one of them will almost always raise alarms, which results in a global poll

and adjusting the local filters [48]. So the total communication cost will actually be higher

than running just one. A critical challenge is deciding which instance to run. A simple

and effective method is to make this decision periodically using recent observations of

Pr[Y > γ] and δ.

Suppose we set the period to k, and the current time instance is t. For any i ∈ [t− k, t),

let ei = 1 if Pr[Yi > γ] > δ and 0 otherwise; and e =
∑t−1

i=t−k ei. If e ≥ k/2, then in a

majority of recent instances Pr[Yi > γ] > δ, hence (2.15) is more likely to hold and J2 is

most likely not going to raise alarms and is more efficient to run. If e < k/2, in a majority

of recent instances Pr[Yi > γ] < δ, (2.14) is more likely to hold and J1 is most likely not

going to raise alarms and is more efficient to run.

15

Another question is how to set the β1 and β2 values in (2.14) and (2.15). Since they

are derived directly from (2.13), which are originated from (2.8) and (2.9), the same way

of setting them as shown in (2.12) will likely result in tight bounds, thus less violations

to (2.14) and (2.15), making J1 and J2 efficient to run, respectively. However, this does

require H to ask for E(Xi)’s and Var(Xi)’s in every time instance, defeating the purpose

of using the adaptive thresholds algorithm to reduce the number of messages. To remedy

this, we let H reset the optimal β1 and β2 values for the two adaptive thresholds instances

periodically in every k time instances, for a system parameter k.

The complete algorithm, Iadaptive, is shown in Figure 2.3.

2.5 Sampling Methods to Estimate the Threshold
In either of the previous methods, when the algorithm fails to definitively indicate

whether an alarm should be raised or not, then likely Pr[Y > γ] is close to δ. If H

Algorithm Iadaptive(c1, . . . , cg, H, k)
1. initialize (without starting) two adaptive thresholds

instances J1, J2 [48]: J1 monitors
∑

i Vi ≤ ln δ + β1γ,
and J2 monitors if

∑
iWi ≤ ln(1− δ) + β2γ;

2. H sets β1 to a small positive value, e = 0, starts J1;
3. for t = 1, . . . , T
4. let Xi = Xi,t, Y = Yt =

∑
Xi;

5. ci computes Vi = lnMi(β1), or Wi = lnMi(β2);
6. if (J1 is running and raises no alarm)
7. H raises no alarm; continue to line 11;
8. if (J2 is running and raises no alarm)
9. H raises an alarm; e = e+ 1; continue line 11;
10. H asks for Xi’s, applies EXACTD or EXACTC,

sets e = e+ 1 if an alarm is raised;
11. if (t mod k == 0)
12. stop the currently running instance Jx;
13. each ci sends E(Xi) and Var(Xi) to H;
14. reset β1 in J1 and β2 in J2 according to (2.12);
15. if (e ≥ k/2) set x = 2 else set x = 1;
16. H sets e = 0, starts Jx, broadcasts setup

information of Jx, and new β1 and β2 values;

Figure 2.3: The Iadaptive method.

16

needs to be sure that the (γ, δ) threshold is crossed, all of Xi have to be retrieved, and the

exact algorithms in Section 2.3.1 are applied. But in a lot of situations, this is expensive

and impractical, due to both the communication and computation costs involved. Since

uncertainties naturally exist in probabilistic data, it is very likely that users are willing

to approximate the conditions under which the server raises the alarm, if approximation

guarantees can be provided.

2.5.1 The Random Sampling Approach

A natural choice and standard approximation is to leverage random sampling. We first

introduce the RS algorithm in Figure 2.4.

Lemma 1. The RS estimator satisfies E(p̂(γ)) = Pr[Y > γ], and Pr[|p̂(γ)−Pr[Y > γ]| <
ε] > 3

4
.

Proof. Let ε′ = ε/2, then κ in line 1 is 1/ε′2. Clearly, by lines 2-5, S is a random sample

of Y with size 1/ε′2. Suppose Y ’s distribution is represented by a multi-set P of elements

P = {y1, . . . , yN} for some imaginary, sufficiently large value N ∈ Z+. Let r(γ) be the

number of elements in P that is larger than γ, then Pr[Y > γ] = r(γ)/N .

Let p = 1/(ε′2N); we then define N i.i.d. random variables Z1, . . . , ZN , such that

Pr[Zi = 1] = p and Pr[Zi = 0] = 1 − p. We associate Zi with yi ∈ P . Then, S can

be viewed as being created by the following process: for each i ∈ [1, N], insert yi into

S if Zi = 1. For any γ, s(γ) in line 6 is a random variable determined by the number of

elements in P larger than γ (each sampled with probability p) in S. There are precisely r(γ)

such elements in P , and we denote them as {y`1 , . . . , y`r(γ)}, where y`i ∈ P . This means

Algorithm RS (c1, . . . , cg, t, H, ε)
1. let Xi = Xi,t, Y = Yt =

∑g
i=1 Xi, S = ∅, κ = 4/ε2;

2. for i = 1, . . . , g
3. send random sample Si = {xi,1, . . . , xi,κ} of Xi to H;
4. For any j ∈ [1, κ], H inserts

∑g
i=1 xi,j into S;

5. let s(γ) be the number of elements in S greater than γ;
6. return p̂(γ) = s(γ) · ε2

4
;

Figure 2.4: The RS estimator

17

that: s(γ) =
∑r(γ)

i=1 Z`i . Since each Zi is a Bernoulli trial, s(γ) is a Binomial distribution

B(r(γ), p). Immediately, E(s(γ)) = p · r(γ). Hence, E(p̂(γ)) = E(ε′2N s(γ)
N

) = 1
p
p·r(γ)
N

=

Pr[Y > γ], and

Var(
s(γ)

p
) =

1

p2
Var(s(γ)) =

1

p2
r(γ)p(1− p)

<
r(γ)

p
= r(γ)ε′2N ≤ (ε′N)2.

Also, E(s(γ)/p) = r(γ). By Chebyshev’s inequality: Pr[
∣∣∣ s(γ)
p
− r(γ)

∣∣∣ ≥ 2ε′N] ≤ 1
4
,

which implies that: Pr[1
N

∣∣∣ s(γ)
p
− r(γ)

∣∣∣ ≥ 2ε′] ≤ 1
4
. Given ε = 2ε′ and p = 1/(ε′2N),

s(γ)
pN

= s(γ)ε2

4
, we have Pr[

∣∣∣ s(γ)ε2

4
− Pr[Y > γ]

∣∣∣ ≥ ε] ≤ 1
4
. Immediately, Pr[|p̂(γ)−Pr[Y >

γ]| < ε] > 3
4
.

We can boost up Pr[|p̂(γ) − Pr[Y > γ]| < ε] to be arbitrarily close to 1 by the MRS

(median RS) Algorithm in Figure 2.5.

Theorem 1. MRS returns p̂j(γ) s.t. Pr[|p̂j(γ) − Pr[Y > γ]| < ε] > 1 − φ, for any

ε, φ ∈ (0, 1); it uses 32 g
ε2

ln 1
φ

bytes.

Proof. By Lemma 1, each Ii outputs 1 with probability at least 3
4

in line 3 in Figure 2.5.

Let h = 8 ln 1
φ

; by the common form of the Chernoff Bound [58], Pr[
∑h

i=1 Ii <
h
2
] <

e−2h(3
4
− 1

2
)2 = φ. Pr[

∑h
i=1 Ii <

h
2
] is exactly the probability of less than half of Ii’s being

0. Since Ij is the median in I (line 4), there is at least (1 − φ) probability that Ij = 1. By

line 3, in this case, we must have |p̂j(γ)−Pr[Y > γ]| < ε. The communication in bytes is

straightforward.

Algorithm MRS (c1, . . . , cg, t, H, ε, φ)
1. run 8 ln 1

φ
independent instances RS (c1, . . . , cg, t, H, ε);

2. let p̂i(γ) be the ith RS’s output for i ∈ [1, 8 ln 1
φ
];

3. set Ii be 1 if |p̂i(γ)− Pr[Y > γ]| < ε, and 0 otherwise;
4. let Ij be the median of I = {I1, . . . , I8 ln 1

φ
};

5. return p̂j(γ);

Figure 2.5: The MRS estimator

18

Lastly, if p̂(γ) returned by MRS is greater than δ, H raises an alarm at t; otherwise, no

alarm is raised. It approximates Pr[Y > γ] within ε with at least (1− φ) probability, using

O(g/ε2 ln(1/φ)) bytes, for any ε, φ ∈ (0, 1).

2.5.2 Random Distributed ε-Sample

Instead of using the standard random sampling approach as shown in Section 2.5.1, we

can leverage on a more powerful machinery in our analysis to derive a new algorithm with

the same guarantee w.r.t. a fixed pair of thresholds (γ, δ), but it is simpler to implement

and works better in practice. Later, in Section 2.6, we also show that it can handle multiple

pairs of thresholds simultaneously without incurring additional costs.

We can approximate the probabilities of raising an alarm by a Monte Carlo approach

where H asks each ci for a sample xi from Xi. He then computes a value y =
∑g

i=1 xi; this

is a sample estimate from the distribution over Y , so Pr[Y > γ] = Pr[y > γ]. Repeating

this to amplify success is the random distributed ε-sample (RDεS) algorithm in Figure 2.6.

Theorem 2. RDεS gives E(v/κ) = Pr[Y > γ] and Pr[|v/κ − Pr[Y > γ]| ≤ ε] ≥ 1 − φ,

using O(g
ε2

ln 1
φ
) bytes.

Proof. First, it is clear that in line 7 for any j ∈ [1, κ], yj =
∑g

i=1 xi,j is a random sample

drawn from the distribution of Y . Hence, E(v) = κ · Pr[Y > γ].

We next leverage on the concept of VC-dimension [82]. Let P be a set of points, or

Algorithm RDεS (c1, . . . , cg, H, t, ε, φ)
1. Xi = Xi,t, Y =

∑g
i=1Xi, Si = ∅, v = 0, κ = 1

ε2
ln 1

φ
;

2. for i = 1, . . . , g
3. for j = 1, . . . , κ
4. ci selects some value xi,j from Xi, into Si, at

random according to its underlying distribution;
5. ci sends Si to H;
6. for j = 1, . . . , κ
7. if (yj =

∑g
i=1 xi,j > γ) v = v + 1;

8. if (v/κ > δ) H raises an alarm;
9. else H raises no alarm;

Figure 2.6: The RDεS method.

19

more generally a distribution. Let I be a family of subsets of P . Let P have domain R

and let I consist of ranges of the form of one-sided intervals (x,∞) for any x ∈ R. The

pair (P, I) is a range space and we say a subset X ⊂ P shatters a range space (P, I) if

every subset Xs ⊆ X can be defined as I ∩ X for some I ∈ I. The size of the largest

subset X that shatters (P, I) is the VC-dimension of (P, I). For one-sided intervals I, the

VC-dimension for a range space (P, I) using any set P is ν = 1.

An ε-sample for a range space (P, I) is a subset Q ⊂ P that approximates the density

of P such that:

max
I∈I

∣∣∣∣ |I ∩ P ||P | −
|I ∩Q|
|Q|

∣∣∣∣ ≤ ε. (2.16)

A classic result of Vapnik and Chervonenkis [82] shows that if (P, I) has VC-dimension ν

and if Q is a random sample from P of size O((ν/ε2) log(1/φ)), then Q is an ε-sample of

(P, I) with probability at least 1− φ.

Every yj in line 7 can be viewed as a random point in P , the distribution of values for

Y . The ranges we estimate are one-sided intervals ((γ,∞) for any γ ∈ R and they have

VC-dimension ν = 1). If we let κ = O((1/ε2) ln(1/φ)), DTS gets exactly an ε-sample and

guarantees that |v/κ− Pr[Y > γ]| ≤ ε with probability at least 1− φ.

2.5.3 Deterministic Distributed ε-Sample

The sizes of samples in RDεS could be large, especially for small ε and φ values, which

drive up the communication cost (measured in bytes). We introduce another sampling

algorithm, the deterministic distributed ε-sample (DDεS) method, to address this problem,

which is shown in Figure 2.7.

Let X̃i represent Si in the DDεS algorithm. Clearly, X̃i approximates Xi. Let Ỹ =∑g
i=1 X̃i, i.e., for any u ∈ (1, . . . , κ)g (as in lines 6-8), insert

∑g
i=1 xi,ui into Ỹ ; by the

construction of the DDεS, it is easy to see that:

Pr[Ỹ > γ] = v/κg. (2.17)

To analyze its error, consider the distribution Y 6=j =
∑g

i=1,i 6=j Xi. Note that Y =

Y 6=j +Xj . We can claim the following about the random variable Ỹj = Y 6=j + X̃j:

Lemma 2. If X̃j is an ε-sample of (Xj, I) then |Pr[Ỹj > γ] − Pr[Y > γ]| ≤ ε with

20

Algorithm DDεS (c1, . . . , cg, H, t, ε, φ)
1. Xi = Xi,t, Y =

∑g
i=1Xi, Si = ∅, v = 0;

2. ε′ = ε/g, κ = 1/ε′;
3. for i = 1, . . . , g
4. ci selects κ evenly-spaced xi,j’s from Xi into Si, s.t.

Si = {xi,1, . . . , xi,κ}, and
∫ xi,j+1

x=xi,j
Pr[Xi = x]dx = ε′;

5. ci sends Si to H;
6. let (1, . . . , κ)g define a g-dimensional space where each

dimension takes values {1, . . . , κ};
7. for each u ∈ (1, . . . , κ)g //u is a vector of g elements
8. if (

∑g
i=1 xi,ui > γ) v = v + 1;

9. if (v/κg > δ) H raises an alarm;
10.else H raises no alarm;

Figure 2.7: The DDεS method.

probability 1.

Proof. The distribution of the random variable Ỹj has two components Y 6=j and X̃j . The

first has no error, thus,

Pr[Ỹj > γ] =
1

|X̃j|
∑
x∈X̃j

Pr[x+ Y 6=j > γ]

Each x ∈ X̃j shifts the distribution of the random variable Y 6=j , so part of that distribution

that is greater than γ for xi ∈ X̃j will also be greater than γ for xi+1 ∈ X̃j (since xi+1 > xi

by definition). Let yi = γ − xi denote the location in the distribution for Y 6=j where xi

causes y ∈ Y 6=j to have Ỹj > γ. Now for y ∈ [yi, yi+1] has y + xl ≤ γ if l < i and

y + xl > γ if l ≥ i. So y ∈ [yi, yi+1] only has error in Pr[y + x > γ] (where x is either

drawn from Xj or X̃j) for x ∈ [xi, xi+1]. Otherwise, for x ∈ [xl, xl+1], for l < i has

Pr[y + x > γ] = 0 and for x ∈ [xl, xl+1], for l > i has Pr[y + x > γ] = 1. Since for any i∫ xi+1

x=xi
Pr[Xj = x] ≤ ε (because X̃j is an ε-sample of (Xj, I)), we observe that:

∫ yi+1

y=yi
Pr[Y 6=j = y] 1

|X̃j |

∑
x∈X̃j | Pr[y + x > γ]− Pr[y +Xj > γ] | dy

≤ ε

∫ yi+1

y=yi

Pr[Y 6=j = y]dy. Thus, we use that

21

Pr[Ỹj > γ] =

∫
y

Pr[Y 6=j = y]
1

|X̃j|
∑
x∈X̃j

Pr[y + x > γ]dy

to conclude that∣∣∣Pr[Y > γ]− Pr[Ỹj > γ]
∣∣∣ ≤∑|X̃j |i=0 ε

∫ yi+1

y=yi
Pr[Y 6=j = y]dy ≤ ε.

This bounds the error on Y with Ỹj where a single Xj is replaced with X̃j . We can now

define (Ỹj)l = Ỹj −Xl + X̃l =
∑g

i=16=j,lXi + X̃j + X̃l, and then apply Lemma 2 to show

that if X̃l is an ε-sample of (Xl, I) then

|Pr[(Ỹj)l > γ]− Pr[Ỹj > γ]| ≤ ε.

We can apply this lemma g times, always replacing one Xi with X̃i in the approximation

to Y . Then the sum of error is at most εg. This implies the following theorem.

Theorem 3. If for each ci constructs X̃i as an (ε/g)-sample for (Xi, I) then for any γ

|Pr[Ỹ > γ]− Pr[Y > γ]| ≤ ε with probability 1.

Finally, by the definition of ε-samples on one-sided intervals (refer to (2.16) and the

fact that in our case I consists of (γ,∞)’s), it is easy to see that:

Lemma 3. Using g/ε evenly spaced points, each Si in DDεS gives X̃i that is an ε/g-sample

of (Xi, I).

Combining with (2.17), we have:

Corollary 1. DDεS gives |Pr[Ỹ > γ]− Pr[Y > γ]| ≤ ε with probability 1 in g2/ε bytes.

2.5.4 A Randomized Improvement

We can improve the analysis slightly by randomizing the construction of the α-samples

for each Xi. We choose xi,1 ∈ X̃i (the smallest point) to be at random so that Pr[xi,1 =

x] = 1
α

Pr[Xi = x | x ≤ xα] where xα is defined so
∫ xα
x=−∞ Pr[Xi = x]dx = α. Then each

xi,j still satisfies that
∫ xi,j+1

x∈xi,j Pr[Xi = x]dx = α. This keeps the points evenly spaced, but

randomly shifts them.

22

Now we can improve Theorem 3 by modifying the result of Lemma 2. We can instead

state that the error caused by X̃i

Hi = (Pr[Ỹj > γ]− Pr[Y > γ]) ∈ [−α, α].

Because the random shift of X̃i places each xi,j ∈ X̃i with equal probability as each point

it represents in Xi, then for I ∈ I we have that

E

[
|I ∩ X̃i|
|X̃i|

]
= E

[|I ∩Xi|
|Xi|

]
and hence for any γ E[Pr[Ỹj > γ]] = E[Pr[Y > γ]]. Thus, E[Hi] = 0 and for all i

∆ = max{Hi}−min{Hi} ≤ 2α. Since the Hi are independent, we can apply a Chernoff-

Hoeffding bound to the error on Ỹ . So,

Pr[|Pr[Ỹ > γ]− Pr[Y > γ]| ≥ ε] = Pr[|
g∑
i=1

Hi| ≥ ε]

≤ 2 exp(−2ε2/(g∆2)) ≤ 2 exp(−ε2/(2gα2)) ≤ φ,

when α ≤ ε/
√

2g ln(2/φ). This implies that:

Theorem 4. If each X̃i is of size (1/ε)
√

2g ln(2/φ) and is randomly shifted, for any γ

Pr[|Pr[Ỹ > γ]− Pr[Y > γ]| < ε] > 1− φ.

This gives a better bound when the acceptable failure probability φ satisfies 2 ln(2/φ) <

g. We can modify DDεS according to Theorem 4 to get the αDDεS method:

Corollary 2. αDDεS guarantees Pr[|Pr[Ỹ > γ]−Pr[Y > γ]| < ε] > 1−φ for any ε, φ, γ

in (g/ε)
√

2g ln(2/φ) bytes.

2.5.5 Practical Improvements

Whenever a sample is required at any time t, for both RDεS and DDεS algorithms when

the local sample size |Si| at t has exceeded the size required to represent the distribution

Xi, client ci simply forwards Xi to the server and the server can generate the sample for Xi

himself. This is a simple optimization that will minimize the communication cost.

For the DDεS algorithm (in both its basic version and the random-shift version), a

23

drawback is that its computation cost might become expensive for larger sample size or

a large number of clients. In particular, executing its lines 7-10 requires the calculation

of κg sums. In practice, however, we have observed that the DDεS algorithm can still

give accurate estimation if we test only a small, randomly selected subset of possible

combinations of local samples, instead of testing all κg combinations, i.e., in line 7, we

randomly select m < κg such u’s and in line 9 we test v/m instead.

2.6 Extension
2.6.1 Weighted Constraint

Suppose the user is interested in monitoring Y =
∑g

i=1 aiXi, for some weights {a1, . . . , ag},
∀ai ∈ R+. All of our results can be easily extended to work for this case. The Im-

proved and Iadaptive methods can be adapted based on the observations that: 1) E(Y) =∑g
i=1 aiE(Xi) and Var(Y) =

∑g
i=1 a

2
i Var(Xi); 2) M(β) =

∏g
i=1 Mi(aiβ). The RDεS

and DDεS algorithms can also be easily adapted. For any sample j, instead of checking

if
∑g

i=1 xi,j > γ, they check if
∑g

i=1 aixi,j > γ, in line 7 and 8 of Figures 2.6 and 2.7,

respectively. The exact methods can also be extended easily. The discrete case is trivial,

and the continuous case leverages on the observation that ϕ(β) =
∏g

i=1 ϕ(aiβ).

2.6.2 Handling Multiple (γ, δ) Thresholds

The other nice aspect of RDεS and DDεS is that after the server has gathered the samples

Si’s from all clients and he wants to check another threshold pair (γ′, δ′), he already has

sufficient information. H re-executes lines 6-9 of RDεS or lines 6-10 of DDεS, with the

new threshold pair (γ′, δ′). The estimation of Pr[Y > γ′] is again within ε of δ′ with at

least probability 1 − φ and 1 for RDεS and DDεS, respectively, i.e., the same error ε and

the failure probability φ (or 0) cover all possible pairs (γ, δ) simultaneously in RDεS (or

DDεS). This is especially useful if there was a continuous set of threshold pairs Γ × ∆

such that any violation of (γ, δ) ∈ Γ×∆ should raise the alarm. Then RDεS and DDεS are

sufficient to check all of them, and are correct within ε with probability at least (1−φ) and

1, respectively, without additional costs.

This also means that RDεS delivers stronger guarantee than the basic random sampling

method in Section 2.5.1. For the basic random sampling method approach, a second pair of

thresholds (γ′, δ′) is a separate, but dependent problem. We can also estimate Pr[Y > γ′] >

24

δ′ with ε-error with failure probability φ using the same sample as we used for estimating

Pr[Y > γ] > δ. But now the probability that either of the thresholds has more than ε error

is greater than φ. Using union bound, we need a sample size of about O(1
ε2

log 1
εφ

) from

each client to monitor 1
ε

pairs of thresholds simultaneously, which is more than the sample

size O(1
ε2

log 1
φ
) required by RDεS.

Small additional samples are also required for αDDεS to monitor multiple pairs of

thresholds simultaneously.

2.7 Experiments
All algorithms were implemented in C++. We used the GMP library when necessary

in calculating the moment generating function Mi(β). We simulated the distributed clients

and the server, and executed all experiments in a Linux machine with an Intel Xeon E5506

cpu at 2.13GHz and 6GB memory. Since the flat model is used, server-to-client commu-

nication is broadcast and client-to-server communication is unicast. The server-to-client

broadcast counts as one message, regardless the number of clients. Every client-to-server

transmission is one separate message, which may contain multiple values or a pdf. Score

and probability values are both 4 bytes.

2.7.1 Datasets and Setup

We used real datasets from the SAMOS project [70]. Raw readings from the research

vessel Wecoma were obtained which consist of approximately 11.8 million records ob-

served during a 9-month interval in 2010, from March to November. Each record con-

sists of the current time and date, and the wind direction (WD), wind speed (WS), sound

speed (SS), and temperature (TEM) measurements which are observed roughly every second

(sometimes in less than a second). The wind direction measures the directional degree of

the wind. The wind speed and sound speed are measured in meters per second and the

temperature is in degrees Celsius. We observed that some measurements were erroneous or

missing, e.g., a temperature of 999 or -999 degrees Celsius. Currently in SAMOS, to reduce

communication and processing costs, records are grouped every τ consecutive seconds (the

grouping interval), then replaced by one record taking the average readings of these records

on each measurement respectively, which obviously loses a lot of useful information.

Instead, we derive pdfs (one per measurement) for records in one grouping interval

25

and assign these pdfs to an attribute-level probabilistic tuple. There are different ways to

derive a pdf for a measurement attribute, for example, [24, 25, 50], which is not the focus

of this work. Without loss of generality and to ease the presentation, we simply generate a

discrete pdf based on the frequencies of distinct values for a given measurement attribute:

the probability of a distinct value is proportional to its frequency over the total number of

records in the current grouping interval.

Four measurements lead to four datasets WD, WS, SS, and TEM, each with one prob-

abilistic attribute. We were unable to obtain additional datasets of large raw readings

from other research vessels, since in most cases they did not keep them after reporting

the average readings per grouping interval. As a result, we simulate the effect of having

multiple distributed vessels by assigning to each vessel tuples from a given dataset. Tuples

are assigned in a round robin fashion to ensure and preserve the temporal locality of

observed measurements.

0 100 200 300 400
0

50

100

150

200

250

300

E(X
i,t

)

c
o
u
n
ts

WD

(a)

0 10 20 30 40
0

500

1000

1500

2000

2500

E(X
i,t

)

c
o

u
n

ts

WS

(b)

335 340 345 350
0

2000

4000

6000

8000

10000

12000

14000

E(X
i,t

)

c
o

u
n

ts

SS

(c)

5 10 15 20 25 30 35
0

2000

4000

6000

8000

E(X
i,t

)

c
o
u
n
ts

TEM

(d)

Figure 2.8: Distributions of E(Xi,t) for WD, WS, SS, and TEM, where i ∈ [1, g] and
t ∈ [1, T]. (a) WD. (b) WS. (c) SS. (d) TEM.

26

The default values of key parameters are: τ = 300, g = 10, δ = 0.7, and γ is set to

a value for a given dataset such that over all T instances, there should be approximately

30% alarms raised by an exact algorithm. The domains (in R) of WD, WS, SS, and TEM are

[0, 359], [0, 58.58], [335.25, 355.9], and [5.88, 41.3], respectively. These datasets also give

us quite different distributions, allowing us to investigate different algorithms thoroughly.

To illustrate this, we plot the distributions of E(Xi,t) where i = [1, g] and t = [1, T] in the

default setup in Figure 2.8. E(Xi,t) also presents interesting (but quite different) temporal

patterns and significant temporal changes in 4 datasets, which is also quite natural given

that they precisely represent the large, real raw readings of different measurements at sea

for a long period. Due to the space constraint, we omit these figures. That said, the default

γ value is 230g, 17g, 343g, and 19g for WD, WS, SS, and TEM. Xi,t also has quite different

sizes in 4 datasets. Under the default setup, the average size of Xi,t is 41.15, 204.84,

20.5, and 20.98 for WD, WS, SS, and TEM, respectively (they also change when we vary τ ,

obviously). Under the default setup, T = 3932.

For each experiment, we vary one of the key parameters while keeping the others fixed

at their default values. For any sampling method, the default sample size per client is

κ = 30. In the Iadaptive method, k = 0.3T by default. For communication costs and

running time, since T may vary, we report the average cost of one time instance which is

obtained by dividing the corresponding total cost by T . Note that, we calculate the total

running time by counting the server’s running time plus the maximum running time of one

client at each time instance. This ensures that the average running time reflects the expected

response time at each round (since clients are running in parallel at distributed sites).

When mostXi,t have large variances, sampling methods have the worst approximations.

In our datasets, Var(Xi,t) in WD are consistently large (much larger than other datasets)

which least favors our methods. WD also has a medium average distribution size and a wide

range of values (which makes it the most interesting for a monitoring problem). Thus, we

use WD as the default dataset. For our problem, the naive solution is to run EXACTD every

time instance, which is clearly much worse than the two baseline methods, Madaptive and

Markov. Between the two, Madaptive is always better. Hence, we only show the results

from Madaptive as the competing baseline.

27

2.7.2 Effect of γ

Figure 2.9 shows the communication costs of Madaptive, Improved, and Iadaptive

when we vary γ from 1500 to 3100. Both the number of messages and bytes reduce

for all algorithms while γ increases, since probabilistic tail bounds become tighter for

larger γ values. Nevertheless, Figure 2.9(a) indicates that Iadaptive communicates the

least number of messages, and Figure 2.9(b) shows that Improved sends the least number

of bytes. Improved employs the most sophisticated combination of various lower and upper

bounds (on both sides of E(Y)), thus it has the largest number of “certain” instances where

retrieving Xi,t’s can be avoided, which explains its best communication cost in bytes.

Furthermore, it maintains low bytes for all γ values (a wide range we have tested), meaning

that its pruning is effective on both sides of E(Y). However, Improved does require at

least one, to a few, message(s) per client at every time instance, as shown in Figure 2.9(a).

When reducing the number of messages is the top priority, Iadaptive remedies this problem.

Figure 2.9(a) shows in most cases, it uses only half to one-third the number of messages

compared to Madaptive and Improved. In fact, it sends less than one message per client per

time instances in most cases.

Figure 2.10(a) shows the response time of these methods when γ varies. Clearly, all

methods take less time as γ increases, since there are less instances where they need

to call the EXACTD method (which is costly). Improved and Iadaptive are much more

efficient than Madaptive. The dominant cost in Madaptive and Improved is the calls to

EXACTD, while the dominant cost in Iadaptive is the calculation of the moment generating

1500 2000 2500 3000
0

4

8

12

16

γ

n
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

Madaptive Improved Iadaptive

(a)

1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

γ

n
u
m

b
e
r

o
f
b
y
te

s

Madaptive Improved Iadaptive

(b)

Figure 2.9: Communication: vary γ. (a) Messages. (b) Bytes.

28

1500 2000 2500 3000
10

−4

10
−3

10
−2

γ

re
s
p

o
n

s
e

 t
im

e
 (

s
e

c
s
)

Madaptive Improved Iadaptive

(a)

0.5 0.6 0.7 0.8 0.9
10

−4

10
−3

10
−2

δ

re
s
p

o
n

s
e

 t
im

e
 (

s
e

c
s
)

Madaptive Improved Iadaptive

(b)

Figure 2.10: Response time: (a) vary γ. (b) vary δ.

function at the client. This explains why the response time of both Madaptive and Improved

improves at a faster pace than that in Iadaptive when γ increases, since this mainly reduces

the number of calls to EXACTD, but Iadaptive still needs to calculate moment generating

functions. Nevertheless, Iadaptive is still more efficient than Madaptive in all cases. When

γ = 3100, Iadaptive takes less than 0.001 second, and Improved takes close to 0.0003

second.

2.7.3 Effect of δ

When δ changes from 0.5 to 0.9 in Figure 2.11, Madaptive benefits the most where both

its messages and bytes are decreasing, since its global constraint is linearly dependent on

δ, leading to a linearly increasing global constraint. Nevertheless, Iadaptive still uses much

fewer messages and bytes than Madaptive, and Improved uses the least number of bytes, in

0.5 0.6 0.7 0.8 0.9
0

4

8

12

16

δ

n
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

Madaptive Improved Iadaptive

(a)

0.5 0.6 0.7 0.8 0.9
0

500

1000

1500

2000

2500

3000

δ

n
u
m

b
e
r

o
f
b
y
te

s

Madaptive Improved Iadaptive

(b)

Figure 2.11: Communication: vary δ. (a) Messages. (b) Bytes.

29

all cases. In terms of the response time, Figure 2.10(b) shows that their trends are similar to

what we have observed in Figure 2.10(a): Improved and Iadaptive are more efficient than

Madaptive.

2.7.4 Effect of g

We next investigate the impact of the number of clients; Figure 2.12 shows the results

on communication. Not surprisingly, we see a linear correlation between the number of

messages and g in Figure 2.12(a) where Iadaptive consistently performs the best. Figure

2.12(b) shows that all methods send more bytes as g increases; nevertheless, both Improved

and Iadaptive send many fewer bytes than Madaptive.

All methods take a longer to respond on average in Figure 2.13(a) for larger g values,

due to the increasing cost in executing EXACTD. However, the cost of Madaptive increases

5 10 15 20

5

10

15

20

25

30

g

n
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

Madaptive Improved Iadaptive

(a)

5 10 15 20
0

1000

2000

3000

4000

5000

g

n
u
m

b
e
r

o
f
b
y
te

s

Madaptive Improved Iadaptive

(b)

Figure 2.12: Communication: vary g. (a) Messages. (b) Bytes.

5 10 15 20
10

−4

10
−3

10
−2

10
−1

g

re
s
p

o
n

s
e

 t
im

e
 (

s
e

c
s
)

Madaptive Improved Iadaptive

(a)

150 300 450 600 750 900
10

−5

10
−4

10
−3

10
−2

τ

re
s
p
o
n
s
e
 t
im

e
 (

s
e
c
s
)

Madaptive Improved Iadaptive

(b)

Figure 2.13: Response time: (a) vary g. (b) vary τ .

30

at a faster pace than other methods, since it makes many more calls to EXACTD. On

the other hand, both Improved and Iadaptive are highly efficient, even though EXACTD

becomes quite expensive for large g values, since they avoid calling EXACTD in most cases.

Even when g = 20, both of them only take less than 0.005 seconds to respond.

2.7.5 Effect of τ

When τ changes, Figure 2.14 shows the communication of various methods. Figure

2.14(a) shows that Iadaptive reduces messages when τ increases, while the other two

methods sends more messages. Larger τ values lead to larger pdfs, i.e., more values in

Xi,t but each taking smaller probability value, which make the bounds based on the moment

generating functions tighter. But other bounds become looser, sinceXi,t becomes relatively

more uniform for larger pdfs. Hence, Iadaptive, relying only the moment generating

function bounds, is performing better for larger τ values, while others degrade slowly,

in terms of number of messages. In terms of number of bytes, all methods send more bytes

for larger τ values, which is easy to explain: whenever a call to EXACTD is necessary,

Xi,t’s need to be communicated and they become larger for larger τ values. Nevertheless,

both Iadaptive and Improved are still much more effective than Madaptive, e.g., even

when τ = 900 (15 minutes grouping interval), Improved only sends about 1000 bytes

per time instance. Figure 2.13(b) shows that all methods take a longer time to respond,

since EXACTD becomes more expensive due to the increase in the pdf size. Improved and

Iadaptive are clearly faster than Madaptive. When τ = 900, both of them still only take

less than 0.005 second to respond.

150 300 450 600 750 900
6

8

10

12

14

16

τ

n
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

Madaptive Improved Iadaptive

(a)

150 300 450 600 750 900
0

500

1000

1500

2000

2500

3000

3500

τ

n
u

m
b

e
r

o
f

b
y
te

s

Madaptive Improved Iadaptive

(b)

Figure 2.14: Communication: vary τ . (a) Messages. (b) Bytes.

31

2.7.6 Sampling Methods

The RDεS method offers similar (and even stronger, see Section 2.6.2) theoretical guar-

antee than the basic random sampling method in Section 2.5.1. Its performance in practice

is also better. Thus, we focus on studying RDεS, DDεS, and its randomized improvement,

denoted as αDDεS. Note that we have incorporated the practical improvements introduced

in Section 2.5.5; m = 2 for both DDεS and αDDεS (which has achieved sufficient accuracy

for both methods).

In this set of experiments, we compare sampling methods against the EXACTD method

by running them over all T time instances. We use the precision and recall metrics to

measure the approximation quality of sampling methods. Here, precision and recall are

calculated w.r.t. the set of true alarms among the T instances, i.e., suppose there are a set

A of 300 true alarms over T = 1000 time instances; an approximate method may raise a

set B of 295 alarms out of the 1000 instances, with 5 false positives and 10 false negatives.

Then, its precision is 290/295 and its recall is 290/300.

Figures 2.15(a) and 2.15(b) show that all sampling methods improve their precisions

and recalls when the sample size per client κ increases. Theoretically, both αDDεS and

DDεS should always have better precisions and recalls than RDεS given the same sample

size. However, since we have incorporated the practical improvement to αDDεS and DDεS

to cut down their computation cost, RDεS might perform better in some cases. Nevertheless,

Figures 2.15(a) and 2.15(b) show that in practice, given the same sample size, αDDεS

achieves the best precision while DDεS has the best recall; and αDDεS always outperforms

RDεS. When κ = 30, they have achieved a precision and recall close to or higher than 0.98.

The sample size required in practice to achieve good accuracy for all sampling methods is

clearly much less than what our theoretical analysis has suggested. This is not surprising,

since theoretical analysis caters for some worst cases that rarely exist in real datasets. In all

remaining experiments, we use κ = 30 by default.

Figures 2.15(c) and 2.15(d) show that sampling methods result in clear savings in com-

munication (bytes) and computation costs. They are especially useful in saving response

time, which is 1-2 orders magnitude faster than EXACTD and the gap expects to be even

larger for larger pdfs or more clients. Note that all sampling methods have the same

communication cost given the same sample size (hence, we only show one line for all

32

0 20 40 60
0.92

0.94

0.96

0.98

1

κ

p
re

c
is

io
n

RDεS DDεS αDDεS

(a)

0 20 40 60
0.95

0.96

0.97

0.98

0.99

1

κ

re
c
a

ll

RDεS DDεS αDDεS

(b)

0 20 40 60
0

1000

2000

3000

4000

κ

n
u
m

b
e
r

o
f
b
y
te

s

EXACTD Sampling Methods

(c)

0 20 40 60
10

−5

10
−4

10
−3

10
−2

κ

re
s
p
o
n
s
e
 t
im

e
 (

s
e
c
s
)

EXACTD RDεS DDεS αDDεS

(d)

Figure 2.15: Performance of the sampling methods: vary κ (sample size per client). (a)
Precision. (b) Recall. (c) Communication: bytes. (d) Response time.

of them in Figure 2.15(c)). Also, they result in the same number of messages as EXACTD.

We have also tested the sampling methods using all 4 datasets under the default setup,

and the results are shown in Figure 2.16; the trends are clearly similar to what we have

observed in Figure 2.15. Note that WS has quite large pdfs, thus, EXACTD becomes very

expensive on this dataset in terms of both bytes communicated and running time, making

sampling methods more valuable under these situations (several orders of magnitude more

efficient than EXACTD).

2.7.7 Integrated Methods

Lastly, we integrate our sampling methods with Madaptive, Improved, and Iadaptive to

derive the MadaptiveS, ImprovedS, and IadaptiveS methods, where in any time instance a

call to EXACTD is replaced with a call to a sampling method. In particular, we use αDDεS as

the sampling method since it achieves the best trade-off between efficiency and accuracy as

shown in last set of experiments. We tested these methods, along with their exact versions,

on all datasets using the default setup. The results are shown in Figure 2.17. The trends are

33

0.97

0.98

0.99

1

p
re

c
is

io
n

WD WS SS TEM

RDεS DDεS αDDεS

(a)

0.97

0.98

0.99

1

re
c
a
ll

WD WS SS TEM

RDεS DDεS αDDεS

(b)

0

5000

10000

15000

20000

n
u
m

b
e
r

o
f
b
y
te

s

WD WS SS TEM

EXACTD
Sampling Methods

(c)

10
−5

10
−3

10
−1

10
1

re
s
p
o
n
s
e
 t
im

e
 (

s
e
c
s
)

WD WS SS TEM

EXACTD

RDεS

DDεS

αDDεS

(d)

Figure 2.16: Performance of the sampling methods: vary datasets. (a) Precision. (b)
Recall. (c) Communication: bytes. (d) Response time.

clear: 1) The approximate versions have outperformed the corresponding exact versions in

both communication and response time consistently; 2) Our methods have outperformed

the baseline methods, Madaptive, and MadaptiveS in all cases, by significant margins; 3)

Iadaptive and IadaptiveS are the best exact and approximate methods in saving the number

of messages, and Improved and ImprovedS are the best methods in saving the number of

bytes. For example, Iadaptive and IadaptiveS use less than one message per client per

time instance on all datasets; Improved and ImprovedS use less than 1000 and 100 bytes

per time instance, respectively, on WS that has an average pdf size of 204.84; 4) Iadaptive,

IadaptiveS, Improved, and ImprovedS are efficient to run. In particular, IadaptiveS and

ImprovedS are extremely fast, e.g., Figure 2.17(c) shows that they take less than 10−3 and

10−4 seconds to respond, respectively, in all datasets. 5) αDDεS is highly effective. Figure

2.17(d) shows that MadaptiveS, ImprovedS, and IadaptiveS have almost perfect precisions

and recalls on all datasets (more than 0.996 in all cases). Note that their precisions and

34

0

5

10

15

20

n
u

m
b

e
r

o
f

m
e

s
s
a
g

e
s

WD WS SS TEM

Madaptive, MadaptiveS
Improved, ImprovedS
Iadaptive, IadaptiveS

(a)

10
1

10
2

10
3

10
4

n
u
m

b
e
r

o
f
b
y
te

s

WD WS SS TEM

Madaptive, MadaptiveS
Improved, ImprovedS
Iadaptive, IadaptiveS

(b)

10
−6

10
−4

10
−2

10
0

10
2

re
s
p
o
n
s
e
 t
im

e
 (

s
e
c
s
)

WD WS SS TEM

Madaptive, MadaptiveS
Improved, ImprovedS
Iadaptive, IadaptiveS

(c)

0.996

0.997

0.998

0.999

1

p
re

c
is

io
n
 a

n
d
 r

e
c
a
ll

WD WS SS TEM WD WS SS TEM

precision recall

MadaptiveS ImprovedS IadaptiveS

(d)

Figure 2.17: Performance of all methods: vary datasets. (a) Communication: messages.
(b) Communication: bytes. (c) Response time. (d) Precision and recall.

recalls are clearly better than using sampling methods on every time instance; since many

alarms will already be caught certainly by Madaptive, Improved, and Iadaptive, only a tiny

fraction of undecided cases will be then decided by the sampling methods.

2.8 Related Work
To our knowledge, aggregate constraint monitoring on distributed data with uncertainty

has not been explored before.

That said, ranking and frequent items queries were studied on distributed probabilistic

data in [54,83]. Monitoring centralized uncertain data for top-k and similarity queries were

studied in [38, 49, 84]. On the other hand, due to their importance and numerous applica-

tions, constraint and function monitoring with thresholds on deterministic distributed data

were examined extensively, e.g., [18,39,48,52,62,74]. In our study, we have leveraged on

the adaptive thresholds algorithm for the deterministic (sum) constraint monitoring from

35

[48]. This choice is independent from the design of our adaptive algorithms for the DPTM

problem: any adaptive algorithms for the (sum) constraint monitoring in deterministic data

can be used in our Iadaptive method.

Our study is also related to aggregation queries in probabilistic data, e.g., [45, 46,

60, 69, 76, 81]. However, monitoring both score and probability thresholds on aggregate

constraints continuously over distributed probabilistic data is clearly different from these

studies. Probabilistic threshold queries in uncertain data are also relevant [11, 22, 66, 68],

as they are also concerned with the probability thresholds on the query results, but they

mostly focus on one-shot query processing over centralized, offline probabilistic data.

Lastly, the basic sampling method MRS in Section 2.5.1 can be viewed as a standard

extension of the random sampling technique [58, 82]. The RDεS and DDεS methods are

related to VC-dimensions and ε-samples [82] as we already pointed out. The design

principle behind the RDεS method, i.e., using a Monte Carlo approach, has also been used

for general query processing in probabilistic data (e.g., [33, 44, 66] and more in [77]). The

DDεS and αDDεS are based on several intriguing insights to the distinct properties of our

problem.

2.9 Conclusion
We studied the threshold monitoring problem over distributed probabilistic data. We

focused on continuously monitoring threshold constraint over the sum function of dis-

tributed probabilistic data and explore a number of novel methods that have effectively and

efficiently reduced both the communication and computation costs. Extensive experiments

demonstrate the excellent performance and significant savings achieved by our methods,

compared to the baseline algorithms. Many interesting directions are open for future work.

Examples include but are not limited to how to extend our study to the hierarchical model

that is often used in a sensor network, how to continuously monitor a function value (e.g.,

max, min, median) of distributed data, and how to handle the case when data from different

sites are correlated.

In the next chapter, we are going to study the distributed online tracking problem, which

is exploring continuously functions tracking on a general-tree topological model.

CHAPTER 3

DISTRIBUTED ONLINE TRACKING

3.1 Introduction
The increasing popularity of smart mobile devices and the fast growth in the deploy-

ment of large measurement networks generate massive distributed data continuously. For

example, such data include, but are not limited to, values collected from smart phones

and tablets [8], measurements from large sensor-based measurement networks [26,55,86],

application data from location-based services (LBS) [73], and network data from a large

infrastructure network.

Tracking a user function over such distributed data continuously in an online fashion is

a fundamental challenge. This is a critical task in many useful applications in practice. For

example, it is a common task for users to continuously track the maximal (minimal) value of

the temperature readings from a number of measurement stations. Similar examples can be

easily found in location-based services and other distributed systems. This problem is also

useful in the so-called publish/subscribe systems [9, 27], where a subscriber (tracker) may

register a function (also known as a query) with a publisher (observer). Data continuously

arrive at the publisher. The publisher needs to keep the subscriber informed about the value

of her function f , when f is continuously applied over the current data value. When

a subscriber’s function of interest depends on data values from multiple publishers, it

becomes a distributed tracking problem.

It is always desirable, sometimes even critical, to reduce the amount of communication

in distributed systems and applications, for a number of reasons [3, 15–17, 26, 55, 56, 63,

86]. Many devices rely on on-board battery and incur high power consumption when they

communicate, e.g., in sensors and smart phones. Hence, reducing the number of messages

they need to send helps extend their battery time. Another reason is to save the network

bandwidth. From the user’s point of view, less communication often leads to economic

37

gains, e.g., most smart phones have a monthly budget for their data plan, or for nodes in

remote areas in a large measurement network, communication via satellites come with a

high price tag. From the network infrastructure’s point of view (e.g., ISP such as Comcast),

too much communications from any application could significantly congest their network

and slow down the performance of the network (keep in mind that there could be many user

applications running at the same time that share the available network bandwidth).

To achieve 100% accuracy for continuous online tracking of arbitrary functions, the

solution is to ask all stations to always send their readings back to a centralized coordinator

(the tracker), from which various functions can be easily computed and then tracked. This

baseline approach, unfortunately, generates excessive communications: every new reading

from any station must be forwarded to the tracker to ensure the correctness of the output

values of the function being tracked.

But the good news is that, in many application scenarios, exact tracking is often unnec-

essary. Users are willing to trade-off accuracy with savings in communication. In some

applications, approximation is often necessary not just for reducing communication, but

also for policy constraints, e.g, due to privacy concerns in location-based services [4] and

law requirements.

To formalize this accuracy and communication trade-off, we refer to a distributed site

that continuously receives data from a data source as an observer, and the centralized site

that wants to track a function (or multiple functions) computed over data from multiple,

distributed data sources as the tracker. Without loss of generality, we assume that the

tracker is tracking only one function, which is f . Clearly, f ’s output is a function of time,

and is denoted as f(t) for a time instance t. More precisely, it is a function of multiple data

values at time instance t, one from each observer. Based on the above discussion, producing

the exact values of f(t) continuously for all time instances is expensive. Thus, the tracker’s

goal is to maintain an approximation g(t), which is his best knowledge of f(t) at any

time instance t using a small amount of communication (accumulated so far). Focusing on

functions that produce a one-dimensional output, we require that g(t) ∈ [f(t)−∆, f(t)+∆]

for any t ∈ [0, tnow], for some user-defined error threshold ∆.

Under this set up, when ∆ = 0, g(t) always equals f(t) and the baseline exact solution

is needed, which is communication-expensive. On the other hand, in the extreme case when

38

∆ = +∞, g(t) can be a random value, and effectively there will be no communication

needed at all. These two extremes illustrate the possible accuracy-communication trade-off

enabled by this framework.

3.1.1 Key Challenge

It is important to note that our problem is a continuous online problem that requires

a good approximation for every time instance. This is different from many distributed

tracking problems in the literature that use the popular distributed streaming model, where

the goal is to produce an approximation of certain functions/properties computed over the

union of data stream elements seen so far for all observers, from the beginning of the

time until now. It is also different from many existing work on monitoring a function over

distributed streams, where the tracker only needs to decide if f(t)’s value has exceeded a

given (constant) threshold or not at any time instance t.

When there is only one observer, our problem degenerates to a centralized, two-party

setting (observer and tracker). This problem has only been recently studied in [87, 89]

where they have studied both one-dimensional and multidimensional online tracking in

this centralized setting. They have given an online algorithm with O(log ∆) competitive

ratio, and shown that this is optimal. In other words, any online algorithm for solving

this problem must use at least a factor of O(log ∆) more communication than the offline

optimal algorithm. Note that, however, this problem is different from the classic problem

of two-party computation [85] in communication complexity. For the latter problem, two

parties Alice and Bob have a value x and y, respectively, and the goal is to compute some

function f(x, y) by communicating the minimum number of bits between them. Note

that in online tracking, only Alice (the observer) sees the input; Bob (the tracker) just

wants to keep track of it. Furthermore, in communication complexity both inputs x and

y are given in advance, and the goal is to study the worst-case communication; in online

tracking, the inputs arrive in an online fashion and it is easy to see that the worst-case

(total) communication bound for online tracking is meaningless, since the function f could

change drastically at each time step. For the same reasons, our problem, distributed online

tracking, is also different from distributed multiparty computation.

39

3.1.2 Our Contributions

In this work, we extend the online tracking problem that was only recently studied

in [87, 89] to the distributed setting with common aggregation functions (e.g., MAX), and

investigate principled methods with formal theoretical guarantees on their performance

(in terms of communication) when possible. We design novel methods that achieve good

communication costs in practice, and formally show that they have good approximation

ratios.

Our contributions are summarized below.

• We formalize the distributed online tracking problem in Section 3.2 and review the

optimal online tracking method from [87, 89] in the centralized setting.

• We examine a special extension of the centralized setting with one observer but many

relaying nodes, known as the chain case. We study the chain model in Section 3.3

and design a method with O(log ∆) competitive ratio. We also show that our method

has achieved the optimal competitive ratio in this setting.

• We investigate the “broom” model in Section 3.4 by leveraging our results from the

chain model, where there are m distributed observers at the leaf-level and a single

chain connecting them to the tracker. We design a novel method for MAX function

and show that our method has very good approximation ratio among the class of

online algorithms for the broom model.

• We extend our results to the general-tree model in Section 3.5, which is an extension

of the broom model. We again show that our method has good approximation ratio

among the class of online algorithms for the general-tree model.

• We discuss other functions and topologies in Section 3.6.

• We conduct extensive experiments to evaluate the effectiveness of our methods in

practice in Section 4.6. We used several real datasets and the results have confirmed

that our methods are indeed superior compared to other alternatives and baseline

methods.

3.2 Problem Formulation and Background
Formally, there are m observers {s1, . . . , sm} at m distributed sites, and a tracker T .

Thesem observers are connected to T using a network topology. We consider two common

40

topologies in this work, the broom topology and the general-tree topology, as shown in

Figure 3.1. Observers always locate at the leaves, and the tracker always locates at the

root of the tree. Both topologies are constructed based on a chain topology, as shown in

Figure 3.2(a), and the centralized setting studied in [87, 89] is a special case of the chain

topology, as shown in Figure 3.2(b). A relay node does not directly observe a function (or

equivalently data values) that contribute to the computation of f , but it can receive messages

from its child (or preceding) node(s), and send messages to its parent (or succeeding) node.

It is important to note that our general-tree topology has already covered the case in

which an intermediate replay node u may be an observer at the same time, who also

observes values (modeled by a function) that contribute to the computation of function

f . This is because we can always conceptually add an observer node s directly below (and

connected to) such an intermediate node u. Let s report the data values that are observed

by u; we can then only view u as a relay node (while making no changes to all other

connections to u that already exist). More details on this issue will be presented in Section

f1(t) f2(t) fm(t)

g(t) ∈ [f(t)−∆, f(t) + ∆]

s1 s2 sm

tracker T

h relay
nodes

(a)

f1(t)f2(t)

fm(t)

g(t) ∈ [f(t)−∆, f(t) + ∆]

s1 s3

sm

tracker T

s2 fi(t)

si

f3(t)

maximum h

relay nodes in
a path from
any si to T

(b)

Figure 3.1: Track f(t) = f(f1(t), f2(t), · · · , fm(t)). (a) broom model. (b) general-tree.

f(t)

observer h relay nodes

g(t)

tracker

(a)

f(t)

observer

g(t)

tracker

(b)

Figure 3.2: Special cases: g(t) ∈ [f(t)−∆, f(t) + ∆]. (a) chain topology (b) centralized
seting. [87, 89].

41

3.6.

That said, in practice, a relay node can model a router, a switch, a sensor node, a

computer or computation node in a complex system (e.g., Internet, peer-to-peer network),

a measurement station in a monitoring network, etc.

Each observer’s data value changes (arbitrarily) over time, and can be described by a

function. We dub the function at the ith observer fi, and its value at time instance t fi(t).

The tracker’s objective is to continuously track a function f that is computed based on the

values of functions from all observers at time instance t, i.e., its goal is to track f(t) =

f(f1(t), f2(t), . . . , fm(t)) continuously over all time instances. Since tracking f(t) exactly

is expensive, an approximation g(t) is allowed at the tracker T , subject to the constraint

that g(t) ∈ [f(t)−∆, f(t) + ∆] for any time instance t ∈ [0, tnow].

∆ ∈ Z+ is a user-defined error threshold that defines the maximum allowed error in

approximating f(t) with g(t). The goal is to find an online algorithm that satisfies this

constraint while minimizing the communication cost.

Note that depending on the dimensionality for the outputs of f(t), as well as f1(t), f2(t),

. . ., and fm(t), we need to track either a one-dimensional value or a multidimensional value

that changes over time. This work focuses on the one-dimensional case. In other words,

we assume that f(t), and f1(t), . . . , fm(t) are all in a one-dimensional space.

3.2.1 Performance Metric of an Online Algorithm

There are different ways to formally analyze the performance of an online algorithm.

For an online problem P (e.g., caching), let I be the set of all possible valid input

instances, and A be the set of all valid online algorithms for solving the problem P .

Suppose the optimal offline algorithm for P is offline. Given an input instance I ∈ I,

and an algorithm A ∈ A (or offline), we denote the cost of running algorithm A on I as

cost(A, I). In our setting, the cost is the total number of messages sent in a topology.

A widely used metric is the concept of competitive ratio. Formally, for an algorithm

A ∈ A, the competitive ratio of A [59], denoted as cratio(A), is defined as:

cratio(A) = max
I∈I

cost(A, I)

cost(offline, I)
.

Another popular metric is to analyze the performance of an algorithm A compared to

42

other algorithms in a class of online algorithms. Formally, we can define the ratio of A on

an input instance I as follows:

ratio(A, I) =
cost(A, I)

cost(A∗I , I)
,

where A∗I is the online algorithm from the class A that has the lowest cost on input I , i.e.,

A∗I = argminA′∈A cost(A′, I).

Lastly, we can quantify an algorithm A’s performance by considering its worst case

ratio, i.e.,

ratio(A) = max
I∈I

ratio(A, I).

Note that the definitions of ratio(A, I) and ratio(A) are inspired by the classic work that

has motivated and defined the concept of “instance optimality” [29]. In fact, if ratio(A) is

a constant, then indeed A is an instance optimal online algorithm.

Clearly, we always have, for any online problem P and its online algorithmA, cratio(A) ≤
ratio(A).

3.2.2 State-of-the-art Method

Prior work has studied the online tracking problem in the centralized, two party setting

[87,89], as shown in Figure 3.2(b). They studied both one-dimensional tracking and multi-

dimensional tracking, defined by the dimensionality of the output value for the function

f(t) at the observer. Since we focus on the one-dimension case, here we only review the

one-dimension tracking method from [87, 89]. Finding a good online algorithm for this

seemingly very simple setup turns out to be a very challenging problem.

Consider the simple case where the function takes integer values at each time step, i.e.,

f : Z→ Z, and the tracker requires an absolute error of at most ∆. The natural solution is

to let the observer first communicate f(t0) to the tracker at the initial time instance t0; then

every time f(t) has changed by more than ∆ since the last communication, the observer

updates the tracker with the current value of f(t). However, this natural solution has an

unbounded competitive ratio compared with the offline optimal method. Consider the case

where f(t) starts at f(0) = 0 and then oscillates between 0 and 2∆. The above algorithm

will communicate for an infinite number of times while the offline optimal solution only

43

needs to send one message: g(0) = ∆.

This example demonstrates the hardness of the online tracking problem. For functions

in the form of f : Z→ Z, Yi and Zhang proposed the method in Algorithm 1, and showed

the following results.

Theorem 5. (from [87, 89]) To track a function f : Z → Z within error ∆, any online

algorithm has to send Ω(log∆ · OptHist) messages in the worst case, where OptHist

is the number of messages needed by the optimal offline algorithm. And, OPTTRACK is

an O(log ∆)-competitive online algorithm to track any function f : Z → Z within ∆.

Furthermore, if f takes values from the domain of reals (or any dense set), the competitive

ratio of any online algorithm is unbounded.

Theorem 5 establishes the optimality of the OPTTRACK method, since it shows that any

online algorithms for centralized online tracking (between two nodes) has a competitive

ratio that is at least log ∆, and OPTTRACK’s competitive ratio O(log ∆) has met this lower

bound.

Note that the negative results on real domains and other dense domains do not rule out

the application of OPTTRACK in practice on those cases. In practice, most functions (or

data values for a sequence of inputs) have a fixed precision, e.g., any real number in a 64-bit

machine can be described by an integer from an integer domain with size 264.

To the best of our knowledge, and as pointed out in [87, 89], no prior work has studied

the distributed online tracking problem as we have formalized earlier in this section.

Algorithm 1: OPTTRACK (∆) (from [87, 89])
1 let S = [f(tnow)−∆, f(tnow) + ∆] ∩ Z
2 while S 6= ∅ do
3 let g(tnow) be the median of S;
4 send g(tnow) to tracker T ; set tlast = tnow;
5 wait until |f(t)− g(tlast)| > ∆;
6 S ← S ∩ [f(t)−∆, f(t) + ∆]

44

3.3 The Chain Case
We first examine a special case that bridges centralized and distributed online tracking.

Considering the tree topology in Figure 3.1, it is easy to observe that each observer is

connected to the tracker via a single path with a number of relay nodes (if multiple paths

exist, we simply consider the shortest path). Hence, online tracking in the chain topology as

shown in Figure 3.2(a) is a basic building block for the general distributed online tracking

problem. We refer to this problem as the chain online tracking.

The centralized online tracking as reviewed in Section 4.6.2 and shown in Figure 3.2(b)

is a special case of chain online tracking, with 0 relay node.

3.3.1 Baseline Methods

For a chain topology with h relay nodes, a tempting solution is to distribute the error

threshold ∆ equally to all relay nodes and apply (h + 1) independent instances of the

OPTTRACK algorithm. Suppose we have h relay nodes {n1, . . . , nh}, an observer s, and a

tracker T . Let n0 = s and nh+1 = T , for every pair of nodes {ni−1, ni} for i ∈ [1, h + 1],

we can view ni as a tracker and its preceding node ni−1 as an observer, and require that ni

tracks ni−1’s function be within an error threshold of ∆
h+1

.

Let yi(t) be the function at ni for i ∈ [1, h + 1], then yi(t) is the output of running

OPTTRACK with an error threshold ∆
h+1

, where ni−1 is the observer, yi−1(t) is the function

to be tracked, and ni is the tracker. Since n0 = s and y0(t) = f(t), we have two facts:

(1) y1(t) ∈ [f(t)− ∆
h+1

, f(t) + ∆
h+1

] for any time instance t.

(2) yi(t) ∈ [yi−1(t)− ∆
h+1

, yi−1(t) + ∆
h+1

] for any i ∈ [2, h+ 1] and any time instance t.

Since the tracker T is simply node nh+1, thus, g(t) = yh+1(t). Using the facts above,

it is easy to verify that g(t) will be always within f(t) ± ∆ as required. We denote this

method as CHAINTRACKA (chain-track-average).

We can generalize CHAINTRACKA to derive other similar methods. Instead of dis-

tributing the error threshold uniformly along the chain, one can distribute a random error

threshold ∆i to node ni for i = 1, . . . , h + 1, subject to the constraint that
∑h+1

i=1 ∆i = ∆.

We denote this method as CHAINTRACKR (chain-track-random). Using a similar argu-

ment, CHAINTRACKR also ensures that g(t) at T is always within f(t)±∆.

Unfortunately, these seemingly natural solutions do not perform well, even though

45

they are intuitive extensions of the optimal online tracking method between two nodes

to multiple nodes.

Given any valid algorithm A for chain online tracking, let yi(t) be the best knowledge

of f(t) at node ni at any time instance t, for i = 1, . . . , h + 1. The first observation on a

chain topology is given by the following lemma.

Lemma 4. For an algorithm A (either online or offline) that solves the chain online track-

ing problem, we must have yi(t) ∈ [f(t) −∆, f(t) + ∆] for any i ∈ [1, h + 1] in order to

reduce communication while ensuring correctness. This holds for any t ∈ [0, tnow].

Proof. Consider any such algorithm A, the statement trivially holds for i = h + 1, since

node nh+1 is the tracker T and g(t) = yh+1(t). By the requirement of the chain online

tracking problem, g(t) must be within [f(t)−∆, f(t)+∆] at any time instance t ∈ [0, tnow].

Next, we show that at any time instance t, yi(t) must be within [f(t)−∆, f(t) + ∆] for

any i ∈ [1, h].

Assume that at some time instance t ∈ [0, tnow], we have |yi(t) − f(t)| = δ at node

ni and δ > ∆. Let εi+1 be the tracking error threshold between ni and ni+1 when running

a tracking procedure between nodes ni and ni+1. Then, we must have |yi+1(t) − yi(t)| ≤
εi+1. Hence, |yi+1(t) − f(t)| ≤ δ + εi+1. Apply the same argument repeatedly at nodes

ni+1, ni+2, . . . , nh+1, we can show that at nh+1, it must be |yh+1(t) − f(t)| ≤ δ + εi+1 +

· · · + εh+1. That said, if δ > ∆, it could lead to |yh+1(t) − f(t)| = δ > ∆, because the

best (minimal) tracking errors for subsequent nodes in ni+1, . . . , nh+1 are 0; they cannot be

negative values.

Thus, the assumption that there exists a t and node ni such that |yi(t)− f(t)| = δ > ∆

must be wrong.

Lemma 4 formalizes a very intuitive observation on a chain topology. This result helps

us arrive at the following.

Lemma 5. Both CHAINTRACKA and CHAINTRACKR’s competitive ratios are +∞ for

the chain online tracking problem.

Proof. We prove the case for CHAINTRACKA. The proof for CHAINTRACKR is similar

and omitted for brevity.

46

Consider a function f at the observer s (which is node n0) whose values always change

no more than ∆ around a constant a. In other words, f(t) ∈ [a − ∆, a + ∆] for any time

instance t.

By the construction of CHAINTRACKA, we must have:

(1) yi(t) ∈ [f(t)− i
h+1

∆, f(t) + i
h+1

∆] for any i ∈ [1, h];

(2) g(t) = yh+1(t) ∈ [f(t)−∆, f(t) + ∆].

Consider an adversary Alice that tries to explore the worst case for CHAINTRACKA.

Suppose that t0 is the initial time instance. Alice first sets f(t0) = a − ∆. It takes h + 1

messages to let nh+1 learn a valid value for g(t0) at time t0. By the facts above, it must be

yi(t0) ∈ [a−∆− i
h+1

∆, a−∆ + i
h+1

∆] for any i ∈ [1, h].

Alice then sets f(t1) = a + ∆. Now yi(t0) is more than ∆ away from f(t1) for any

i ∈ [1, h]. By Lemma 4, such yi(t0)’s are not allowed, hence, any node ni cannot simply

set yi(t1) = yi(t0). Instead, every node ni needs to receive an update message to produce

a valid tracking value yi(t1). This leads to h messages. Again, based on the design of

CHAINTRACKA, yi(t1) ∈ [a+ ∆− i
h+1

∆, a+ ∆ + i
h+1

∆].

Alice sets f(t2) = a−∆, by a similar argument, this will again trigger hmessages. She

repeatedly alternates the subsequent values for f between a+∆ and a−∆. CHAINTRACKA

pays at least h messages for any t ∈ [t0, tnow], which leads to O(htnow) messages in total.

However, the offline optimal algorithm on this problem instance only needs to set g(t0) =

yh+1(t0) = a at t0, which takes h+ 1 messages, and keeps all subsequent g(ti) the same as

g(t0).

Hence, cratio(CHAINTRACKA) = htnow/(h+ 1) = tnow = +∞.

3.3.2 Optimal Chain Online Tracking

Recall that the centralized, two-party online tracking (simply known as online tracking)

is a special case of chain online tracking with no relay nodes, i.e., h = 0. The OPTTRACK

method in Algorithm 1 achieves an O(log ∆)-competitive ratio for the online tracking

problem. Furthermore, it is also shown thatO(log ∆) is the lower bound for the competitive

ratio of any online algorithms for online tracking [87, 89]. Yet, when generalizing it to

chain online tracking with either CHAINTRACKA or CHAINTRACKR, the competitive ratio

suddenly becomes unbounded. The huge gap motivates us to explore other alternatives,

47

which leads to the optimal chain online tracking method, CHAINTRACKO (chain-tracking-

optimal).

This algorithm is shown in Algorithm 2, and its construction is surprisingly simple:

allocate all error threshold to the very first relay node!

Basically, CHAINTRACKO ensures that y1(t) is always within f(t)±∆ using the OPT-

TRACK method. For any other relay node ni for i ∈ [2, h+ 1], it maintains yi(t) = yi−1(t)

at all time instances t. The tracker T maintains g(t) = yh+1(t) (recall node nh+1 is the

tracker node). In other words, g(t) = yh+1(t) = yh(t) = · · · = y2(t) = y1(t) for any t.

Lemma 6. CHAINTRACKO’s competitive ratio is O(log ∆) for chain online tracking with

h relay nodes.

Proof. While running algorithm OPTTRACK between the observer s and node n1, we

define a round as a time period [ts, te], such that S = [f(ts) − ∆, f(ts) + ∆] at ts and

S = ∅ at te from line 1 and line 2 in Algorithm 1. By the proof of Theorem 5 in [87, 89],

we know that OPTTRACK will communicate O(log ∆) messages in a round. Thus, by the

construction of Algorithm 2, CHAINTRACKO has to communicate O(h log ∆) messages

in this round.

For a round [ts, te], consider any time instance t ∈ [ts, te]. Lemma 4 means that yi(t) ∈
[f(t)−∆, f(t) + ∆] for any i ∈ [1, h+ 1] in the offline optimal algorithm. Suppose node

ni receives no message in this round, then it must be the case that:

yi(x) ∈ ∩xt=ts [f(t)−∆, f(t) + ∆] for any x ∈ [ts, te]. (3.1)

Consider the set S(x) at node n1 at time x, where S(x) is the set S at time x in

Algorithm 1. By the construction of Algorithm 1, S(x) = ∩t[f(t)−∆, f(t)+∆] for a subset

of time instances t from [ts, x] (only when |f(t)−g(t)| > ∆, S ← S∩[f(t)−∆, f(t)+∆]).

Algorithm 2: CHAINTRACKO (∆, h)
1 Let the tracking output at a node ni be yi(t).
2 Run OPTTRACK (∆) between observer s and the first relay node n1, by running n1

as a tracker.
3 for any node ni where i ∈ [1, h] do
4 Whenever yi(t) has changed, send yi(t) to node ni+1 and set yi+1(t) = yi(t).

48

Clearly, we must have:

∩xt=ts [f(t)−∆, f(t) + ∆] ⊆ S(x) for any x ∈ [ts, te]. (3.2)

By the end of this round, S(te) becomes ∅ by the definition of a round, which means

that ∩xt=ts [f(t)−∆, f(t) + ∆] has become ∅ at some time x ≤ te by (4.4). But this means

that (4.2) cannot be true. Hence, our assumption that node ni receives no message in this

round must be wrong. This argument obviously applies to any node ni for i ∈ [1, h + 1],

which implies that an offline optimal algorithm must have sent at least h + 1 messages in

this round.

Thus, cratio(CHAINTRACKO) = ((h+ 1) log ∆)/(h+ 1) = log ∆.

CHAINTRACKO is optimal among the class of online algorithms that solve the chain

online tracking problem, in terms of its competitive ratio. Specifically, O(log ∆) is the

lower bound for the competitive ratio of any online algorithms for chain online tracking.

Let C-OPT(h) be the number of messages sent by the offline optimal algorithm for a chain

online tracking problem with h relay nodes.

Lemma 7. Any online algorithms for chain online tracking of h relay nodes must send

Ω(log ∆ · C-OPT(h)) messages.

Proof. Suppose A is an online algorithm for chain online tracking with h relay nodes. The

approximations of f(t) at different nodes are y1(t), y2(t), . . . , yh(t), yh+1(t), respectively

(note that nh+1 is the tracker T , and g(t) = yh+1(t)).

Consider an adversary Alice, who maintains an integer set R such that any y ∈ R at

time instance t is a valid representative for the value of f(t), for t ∈ [ts, te]. Note that a

round is defined as a period [ts, te], such that R = [f(ts)−∆, f(ts) + ∆] at ts and R = ∅ at

te. Let di be the number of integers in R after the i-th update sent out by algorithm A from

the observer. Initially, R = [f(ts)−∆, f(ts) + ∆] and d0 = 2∆ + 1.

In each round [ts, te], we will show that there exists a sequence of f(t) values such that

A has to send Ω(log ∆ · C-OPT(h)) messages, but the optimal offline method has to send

only C-OPT(h) messages.

Consider a time instance t ∈ [ts, te] after the i-th update sent by algorithm A. Let

49

x be the median of R. Without loss of generality, suppose more than h+1
2

values among

{y1(t), y2(t), . . . , yh+1(t)} are in the range [min(R), x], let Y≤(t) be the set of such values

and z = max(Y≤(t)).

Alice sets f(t + 1) = z + ∆ + 1. It is easy to verify that f(t + 1) − yi(t) > ∆ for

any yi(t) ∈ Y≤(t). Hence, any node ni, such that yi(t) ∈ Y≤(t), must receive an update at

(t + 1) to ensure that yi(t + 1) ∈ [f(t + 1) −∆, f(t + 1) + ∆] by Lemma 4. This means

that A has to send at least h+1
2

messages (the size of Y≤(t)) from t to t+ 1.

After the (i + 1)-th update sent out by A from the observer, R has to be updated as

R← R∩ [f(t+ 1)−∆, f(t+ 1) + ∆], i.e., R = [z+ 1, x+ (di−1)/2] and its size reduces

by at most half at each iteration when A sends out an update from the observer. It is easy to

see that di+1 ≥ (di − 1)/2. Using the same argument, we will get a similar result if more

than h+1
2

values of {y1(t), . . . , yh+1(t)} are in the range [x,max(R)]. In that case, we set

f(t+ 1) = z −∆− 1 where z = min(Y≥(t)).

That said, it takes at least Ω(log ∆) iterations for R to be a constant, since R’s initial

size isO(∆) and its size reduces by at most half in each iteration. WhenR becomes empty,

Alice starts a new round. By then, an offline optimal algorithm must have to send at least

one update from the observer to the tracker (as g(t) must hold a value from R to represent

f(t) for t ∈ [ts, te]), which takes at least O(h) messages. Hence, in any such round [ts, te],

when R = ∅ at te, C-OPT(h) = O(h), but A has to send at least Ω(h+1
2

log ∆) messages,

which completes the proof.

3.4 The Broom Case
A base case for distributed online tracking is the “broom” topology, as shown in Figure

3.1(a). A broom topology is an extension of the chain topology where there arem observers

(instead of only one) connected to the first relay node. Similarly as before, we denote the

ith relay node as ni, and n1 is the first relay node that connects directly to m observers. In

fact, a broom topology reduces to a chain topology when m = 1.

Since there are m functions, one from each observer, an important distinction is that

the function to be tracked is computed based on these m functions. Specifically, the goal

is to track f(t) where f(t) = f(f1(t), . . . , fm(t)) for some function f at T subject to

an error threshold ∆. Clearly, the design of online tracking algorithms in this case will

50

have to depend on the function f . We focus on the max aggregate function in this work,

and discuss other aggregate functions in Section 3.6. Hence, in subsequent discussions,

f(t) = max(f1(t), . . . , fm(t)) and g(t) must be in the range [f(t)−∆, f(t) + ∆] at T , for

any time instance t.

3.4.1 A Baseline Method

A baseline method is to ask T to track each function fi(t) within fi(t)±∆ for i ∈ [1,m]

using a function gi(t). The tracker computes g(t) = max(g1(t), . . . , gm(t)) for any time

instance t. For the ith function, this can be done by using the CHAINTRACKO method for

a chain online tracking instance, where the chain is the path from observer si to tracker

T . Given that gi(t) ∈ [fi(t) − ∆, fi(t) + ∆] for all i ∈ [1,m], it is trivial to show that

g(t) ∈ [f(t)−∆, f(t) + ∆]. We denote this approach as the m-CHAIN method.

3.4.2 Improvement

Recall that CHAINTRACKO allocates all error threshold to the first relay node n1 in its

chain; all other relay nodes simply forward every update arrived at n1 (from observer s)

to T . Hence, in the m-CHAIN method, it is n1 that actually tracks g1(t), . . . , gm(t) and n1

simply passes every update received for gi(t) through the chain to T . This clearly generates

excessive communication. In light of this, we consider a class Abroom of online algorithms

for broom online tracking as follows:

1. Every node u in a broom topology keeps a value yu(t) which represents the knowl-

edge of u about f(t) in the subtree rooted at u at time t. For a leaf node u (an

observer), yu(t) is simply its function value fu(t).

2. Each leaf node u’s function is tracked by its parent v within error ∆ using gu(t),

i.e., |gu(t) − fu(t)| ≤ ∆ for every time instance t. Note that gu(t) does not need

to be fu(t). Specifically, a leaf u sends a new value gu(t) to its parent v only when

|gu(last)− fu(t)| > ∆, where gu(last) is the previous update u sent to v.

Note that in both broom and tree models, we do not analyze the competitive ratio

(cratio) of their online algorithms. The reason is that in a broom or a tree topology, since

the offline optimal algorithm offline can see the entire input instance in advance, offline can

“communicate” between leaf nodes for free. These are observers that are distributed in the

online case. As a result of this, there always exists an input instance where the performance

51

gap between an online algorithm and offline is infinitely large.

Hence, in the following discussion, we will analyze the performance of an online

algorithm using the concept of ratio as defined in Section 3.2.1 with respect to the class

Abroom.

In a broom topology, we use yi(t) to denote yu(t) for a node u that is the ith relay node

ni.

Lemma 8. Any algorithm A ∈ Abroom must track functions f1(t), . . . , fm(t) with an error

threshold that is exactly ∆ at the first relay node n1 in order to minimize ratio(A).

Proof. Assume that the claim does not hold. This means there exists an algorithm A ∈
Abroom that allows node n1 to track at least one function fi(t) using an error threshold δ

that is less than ∆. Without loss of generality, consider i = 1. In this case, we can show

that ratio(A) = +∞ by constructing an input instance I as follows.

In this instance I , fj(t) = −2∆ for j = 2, . . . ,m and any time instance t; f1(t) =

(−1)t mod 2∆. In other words, f1(t) alternates between −∆ and ∆ and all other functions

are set to a constant −2∆. In this case, clearly, f(t) = max(f1(t), . . . , fm(t)) = f1(t) for

all time instances t. But since the error threshold allocated to n1 for f1 is δ < ∆, A needs

to send +∞ number of messages when t goes +∞, no matter how it designs its online

tracking algorithm between n1 and s1.

But the optimal online algorithm for this particular instance only needs to send (m +

h + 1) number of messages in the first time instance. This algorithm A∗I sets g1(t1) =

f1(t1) + ∆, and gi(t1) = fi(t1) for all i > 1 at the first time instance t1. It then asks

each observer si to only send an update to n1 if and only if at a time instance t, fi(t)

has changed more than ∆ from its last communicated value to n1. At any time instance,

n1 sends y1(t) = max(g1(t), . . . , gm(t)) to T , through the chain defined by n2, . . . , nh, if

y1(t) is different from the last communicated value from n1 to T . It is easy to verify that

this algorithm belongs to Abroom and it works correctly on all possible instances. On the

above input instance, at the first time instance t1, it will send g1(t1) = 0, and g2(t1) =

· · · = gm(tm) = −2∆ to n1 from observers s1, . . . , sm (n1 also forwards only y1(t) = 0 to

T). But it will incur no more communication in all subsequent time instances. Hence, its

communication cost is (m+ h+ 1).

52

Thus, on this input instance I , ratio(A, I)/ratio(A∗I , I) = +∞. As a result, ratio(A) =

+∞.

Note that the optimal algorithm for a particular input instance may perform badly on

other input instances. The definition of ratio is to quantify the difference in the worst case

between the performance of an online algorithm A against the best possible performance

for a valid input instance.

Lemma 8 implies that yu(t) at every relay node u must be tracked by its parent node

exactly, since all error thresholds have to be allocated to the first relay node n1.

That said, whenever yi(t) changes, the message will be popped up along the chain to

the tracker T . Formally,

Lemma 9. Whenever yi(t) 6= yi(t− 1) at node ni for any i ∈ [1, h], any A ∈ Abroom must

send an update from ni to ni+1, and this update message must be yi(t).

Proof. This lemma is an immediate result of the above discussion.

Lemmas 8 and 9 do not imply that Abroom does not have many choices, because there

are still many possible tracking strategies between n1 and the m leaf nodes (observers).

But these two lemmas do help us reach the following theorem.

Theorem 6. For any algorithm A in Abroom, there exists an input instance I and another

algorithm A′ ∈ Abroom, such that cost(A, I) is at least h times worse than cost(A′, I), i.e.,

for any A ∈ Abroom, ratio(A)= Ω(h).

Proof. For simplicity and without loss of generality, it suffices to prove the theorem for

m = 2, i.e., a broom topology that has only 2 observers at the leaf level. We denote the

two observers as s1 and s2, respectively. For an algorithm A ∈ Abroom, we will play as an

adversary to construct two bad input instances I1 and I2 with respect to A.

Initially, we set f1(t1) = ∆. Suppose in algorithm A s1 sends a value x1 to n1. Note

that x1 must be an integer in [0, 2∆]. When x1 > 0 we will construct input instance I1;

otherwise we will construct instance I2 for x1 = 0.

Table 3.1 shows the construction of I1 and the behavior of A on I1. At time t1, we

set f2(t1) = x1 + 3
2
∆ and s2 sends a value x2 to n1. Clearly, x2 is strictly larger than

53

Table 3.1: Input instance I1 and behavior of A.

Time instance f1(t) g1(t) f2(t) g2(t) y1(t)

Initialization

t1 ∆ x1 x1 + 3
2
∆ x2 x2

t2 x1 + ∆ x1 � 0 � 0 x1

Round

t2i+1 x1 + ∆ x1 x1 + 3
2
∆ x2 x2

t2i+2 x1 + ∆ x1 � 0 � 0 x1

x1 since x2 ≥ x1 + ∆
2

. Hence, at node n1, g1(t1) = x1 and g2(t1) = x2. We have

y1(t1) = max(g1(t1), g2(t1)) = x2 and it will be propagated all the way up to the tracker at

the root node by Lemma 9.

At time t2, we update f1(t2) = x1 + ∆ and f2(t2) to a value that is� 0. Note that s1

sends no message to n1 since |x1 − f1(t2)| ≤ ∆; meanwhile, s2 needs to send an update

message that is� 0 to n1 because |g2(t1)− f2(t2)| > ∆ and f2(t2)� 0. Now, y1(t2) will

be set back to x1 which will be propagated up to the tracker T .

The rest of I1 is constructed in rounds. Right before each round, we always ensure that

y1(t) = x1 and g2(last)� 0. Each round i contains two time instances t2i+1 and t2i+2. In

a round i, we keep f1’s value at x1 + ∆ and alternate the values of f2 between x1 + 3
2
∆

and some value that is � 0. Specifically, at time t2i+1, s2 will send a value x2 to n1 and

g2(t2i+1) will be set to x2. But s1 will not send any message and g1(t2i+1) will still be x1.

Because |x2 − (x1 + 3
2
∆)| ≤ ∆, clearly, x2 > x1. Hence, y1(t2i+1) = x2, and by Lemma

9, y1(t2i+1) = x2 will be propagated up to the tracker. At the following time t2i+2, s2 sends

another update message to n1 that sets g2(t2i+2) to be� 0, and s1 again sends no update

message and g1(t2i+2) is still x1. Hence, y1(t2i+2) goes back to x1. Again, this update on

y1(t) will be propogated up to the tracker according to Lemma 9.

In summary, for every time instance in a round, A will incur h messages. Hence,

cost(A, I1) equals O(htnow).

Next, we show the existence of another algorithmA′ inAbroom which only sendsO(h+

tnow) messages on the same input I1.

At time t1, A′ sends g1(t1) = 0 from s1 and g2(t1) = x1 + ∆ from s2 to n1, for

f1(t1) = ∆ and f2(t1) = x1 + 3
2
∆, respectively. Hence, y1(t1) = x1 + ∆ and it will be

54

propagated up to the tracker at the root.

At time t2, f1(t2) = x1 +∆. This forces s1 to send a new update message to n1 because

|f1(t2) − g1(t1)| = |x1 + ∆ − 0| > ∆ (note that while constructing I1, we assumed that

x1 > 0). At this time, A′ sends g1(t2) = x1 + ∆ for tracking f1(t2) = x1 + ∆. On

s2, f2(t2) � 0 which also forces an update message g2(t2) � 0 to be sent to n1. But

y1(t2) = max(g1(t2), g2(t2)), which still equals y1(t1) = x1 + ∆! Thus, y1(t2) = x1 + ∆

does not need to sent up to the tracker along the chain.

In subsequent rounds, A′ is able to maintain y1 = x1 + ∆ with respect to I1 in each

round, as shown in Table 3.2. That said, it only takes two messages for updating g2(t) at n1

in each round. Therefore, cost(A′, I1) = h+ 4 + 2× r for r rounds, which is O(h+ tnow)

since each round has two time instances. This means that cost(A′, I1) = O(h+ tnow).

Similarly, we can construct a bad input instance I2 for algorithm A when x1 = 0, as

shown by Table 3.3. And for this input instance, there exists another algorithmA
′′ inAbroom

that only takes (h+ 3 + 2× r) = O(h+ tnow) messages on input I2, as shown by Table 3.4.

Table 3.2: A′ on input instance I1.

Time instance f1(t) g1(t) f2(t) g2(t) y1(t)

Initialization

t1 ∆ 0 x1 + 3
2
∆ x1 + ∆ x1 + ∆

t2 x1 + ∆ x1 + ∆ � 0 � 0 x1 + ∆

Round

t2i+1 x1 + ∆ x1 + ∆ x1 + 3
2
∆ x1 + ∆ x1 + ∆

t2i+2 x1 + ∆ x1 + ∆ � 0 � 0 x1 + ∆

Table 3.3: A on input instance I2.

Time instance f1(t) gs1(t) f2(t) gs2(t) y1(t)

Initialization

t1 ∆ 0 ∆ + 1 x2 x2

t2 ∆ � 0 � 0 0

Round

t2i+1 ∆ ∆ + 1 x2 x2

t2i+2 ∆ � 0 � 0 0

55

Table 3.4: A′′ on input instance I2.

Time instance f1(t) gs1(t) f2(t) gs2(t) y1(t)

Initialization

t1 ∆ 1 ∆ + 1 1 1

t2 ∆ � 0 � 0 1

Round

t2i+1 ∆ ∆ + 1 1 1

t2i+2 ∆ � 0 � 0 1

That said, for any algorithm A ∈ Abroom, there always exists an input instance I and an

algorithm A′ ∈ Abroom, such that cost(A, I) = O(htnow) and cost(A′, I) = O(h + tnow).

In other words, ratio(A) = Ω(h).

Theorem 6 implies that there does not exist an “overall optimal” algorithm A in Abroom

that always achieves the smallest cost on all input instances from I. Such an algorithm A

would imply ratio(A) = 1, which contradicts the above.

Next, we present an online algorithm whose performance is close to the lower bound

established by Theorem 6.

3.4.3 The BROOMTRACK Method

We design the BROOMTRACK algorithm in Algorithm 3. Similarly as before, nh+1

refers to the tracker T and g(t) = yh+1(t).

Algorithm 3: BROOMTRACK (∆, m, h)
1 run m instances of OPTTRACK (∆), one instance per pair (si, n1). note that si is the

observer at the ith leaf node and n1, the first relay node, behaves as a tracker in
OPTTRACK, for i ∈ [1,m];

2 let gj(t) be the tracking result at n1 at time t for fj(t);
3 for any time instance t do
4 if no update in any OPTTRACK instances at n1 then set y1(t) = y1(t− 1) else
5 set y1(t) = max(g1(t), g2(t), . . . , gm(t));

6 for i = 1, . . . , h do
7 if t = 0 or yi(t)! = yi(t− 1) then
8 send yi(t) to ni+1 and set yi+1(t) = yi(t);

9 else set yi(t) = yi(t− 1)

56

The idea of Algorithm 3 is inspired by the same principle we explored in the design

of CHAINTRACKO for chain online tracking, which is to ask the first relay node to do

all the tracking, and the remaining relay nodes simply “relay” the updates sent out by

n1. Specifically, n1 tracks each function fi from observer si with error threshold ∆, and

monitors the maximum value among these tracking results; n1 takes this value as y1(t), his

tracking result for f(t). Other than the first time instance t = 0, only a change in this value,

when y1(t) 6= y1(t− 1), will cause a communication through the entire chain, to send y1(t)

to the tracker T and set g(t) = y1(t). Otherwise, every node in the chain, including the

tracker, simply sets yu(t) = yu(t − 1) without incurring any communication in the chain

(from n1 to T).

The correctness of BROOMTRACK is obvious: |gi(t)− fi(t)| ≤ ∆ for any i and t. And,

at the tracker T , for any time instance t, g(t) = y1(t) and y1(t) = max(g1(t), . . . , gm(t))

immediately lead to |g(t)− f(t)| ≤ ∆, for f(t) = max(f1(t), . . . , fm(t)).

Theorem 7. With respect to online algorithms inAbroom, ratio(BROOMTRACK) < h log ∆.

Proof. Given an input instance I ∈ I, we denote Mi as the number of messages between

si and n1 for tracking function fi up to tnow by algorithm BROOMTRACK. Thus, n1 will

receive
∑m

i=1Mi messages from s1, . . . , sm. In the worst case, all of them get propagated

up from n1 to the root. So cost(BROOMTRACK, I) ≤ h
∑m

i=1Mi.

On the other hand, for any algorithm A (A 6= BROOMTRACK) in Abroom, it takes at

least Mi

log ∆
messages between si and n1 to track fi(t) on the input I by Theorem 5. Further,

A needs to propagate at least one message through the chain at the first time instance. Thus,

cost(A, I) ≥ h+
∑m
i=1Mi

log ∆
. Hence, for any I ∈ I, the following holds:

ratio(BROOMTRACK, I) ≤ h
∑m

i=1Mi

h+
∑m
i=1Mi

log ∆

< h log ∆.

Hence, ratio(BROOMTRACK) < h log ∆.

Similarly, we can show that m-CHAIN’s ratio is O(h log ∆) with respect to online

algorithms in Abroom.

Corollary 3. ratio(m-CHAIN) = O(h log ∆).

57

3.5 The General Tree Case
In a general tree topology, every leaf node is still an observer, but it is no longer

necessary for all leaf nodes to appear in the same level in the tree. Furthermore, they do not

need to share a single chain to the tracker T . We still assume that there arem observers and

the tracker T locates at the root. Similarly as before, every non-leaf node (except the root

node) is considered a relay node. Using a simililar definition as that for the class Abroom in

the broom model, we can define Atree as the class of online algorithms for the tree online

tracking problem.

A trivial case is shown in Figure 3.3(a). Any leaf node (an observer) is connected

through a path to the tracker at the root, and no two paths share a common node except

the root node. Every such path is a chain, hence, we can run the m-CHAIN method in this

case. It is easy to show that m-CHAIN method is an instance optimal online method for this

simple case, with respect to the class Atree. In other words, its ratio is O(1) with respect to

Atree. The following discussion excludes this trivial case.

So in the general case, an observer at a leaf node is still connected to the tracker through

a single path. But a path may join another path at a non-root node u. We call such node u

a “merging node”. Let pi be the ith path connecting observer si to T . A path pi may join

another path pj at a merging node u, as illustrated in Figure 3.3(b). The common part of pi

and pj is a chain from u to T , and is denoted as pi,j for any such i, j. Note that a path pi

may join with multiple, different paths at either one or more merging node(s), as shown in

Figure 3.3(b). We use (p−p′) to denote the subpath in a path p that is not a part of another

path p′.

f2(t)
s1

s2

tracker T

f1(t)
f3(t)

s3

(a)

si

tracker T

sj

pi − pi,j

pj − pi,j

pi,j

merging node u

(b)

Figure 3.3: Tree online tracking. (a) simple tree. (b) general tree.

58

When two paths pi and pj share a merging node u, they form a generalized broom

model in the sense that u connects to si and sj through two separate chains, (pi − pi,j) and

(pj−pi,j), respectively, and u itself connects to T through a single chain (that is pi,j). When

both si and sj are directly connected under the merging node u, paths pi and pj become

exactly a broom model (with two observers).

Given this observation, inspired by Theorem 6, we first have the following negative

result.

Corollary 4. There is no instance optimal algorithm for Atree.

Proof. Since we have excluded the trivial case in the tree model, a tree topology must

have at least two paths pi and pj that share a merging node u. The paths pi and pj form a

generalized broom model as discussed above. Suppose path pi,j consists of h relay nodes.

By Theorem 6, for any algorithm A ∈ Atree, there always exists an input instance I and

another algorithm A′ ∈ Atree, such that the cost of A on I on path pi,j is at least h times

worse than the cost of A′ on I on path pi,j . The cost of A on I on path (pi − pi,j) and path

(pj − pi,j) is at best the same as the cost of A′ on I on these two paths.

Also inspired by the above observation, we can extend the idea behind BROOMTRACK

to derive the TREETRACK method for tree online tracking. It basically runs a similar

version of BROOMTRACK on all generalized broom models found in a tree topology. This

algorithm is shown below.

The correctness of TREETRACK is established by the following result.

Lemma 10. Consider a node u. suppose y1, . . . , y` are the most recent updates of its

` child nodes. let z be the most recent update sent from u to its parent node. Define

y = max{y1, . . . , y`}. If y 6= z, then u must send an update to its parent node, and this

update message must be y.

Proof. Without loss of generality, assume that y = yi. The jth child node of u is referred

to as the node j, and its function is denoted as fj .

We prove the theorem by induction. First, consider the base case when u only has leaf

nodes as its child nodes (i.e., u only has observers as its child nodes). We first show that u

must send an update to its parent.

59

Algorithm 4: TREETRACK (∆, a general tree R)
1 for any non-leaf node u in R with an observer si as a leaf node directly connected

under u do
2 run an instances of OPTTRACK (∆) between u and si, where u is the tracker and

si is the observer;
3 for any non-leaf node u in R at any time instance do
4 let y1, . . . , y` be the most recent updates of its ` child nodes;
5 let z be the most recent update of u to its parent;
6 set y = max{y1, . . . , y`};
7 if y 6= z then
8 send y as an update to u’s parent node in R

9 g(t) at tracker T is the maximum value among the most recent updates T has
received from all its child nodes.

case 1: y > z: For node i, set fi to y + ∆. For node j 6= i, if yj ≥ y − 2∆, then set fj

to y −∆.

case 2: y < z: For node i, set fi to y −∆. For node j 6= i, if yj ≥ y − 2∆, then set fj

to y −∆.

With some technicality, we can show that in both cases: (1) y ∈ [f(t) −∆, f(t) + ∆]

where f(t) = max(f1(t), . . . , f`(t))); and (2) z /∈ [f(t) − ∆, f(t) + ∆]. Hence, node u

must send an update to its parent. Now suppose that node u sends an update y′, but y′ 6= y.

case 1: y > y′: For node i, set fi to y + ∆. For node j 6= i, if yj ≥ y − 2∆, then set fj

to y −∆.

case 2: y < y′: For node i, set fi to y −∆. For node j 6= i, if yj ≥ y − 2∆, then set fj

to y −∆.

It is easy to show that y′ is not in [fi(t)−∆, fi(t)+∆], but by construction f(t) = fi(t).

So the update cannot be such y′.

Now consider the case where u is a node such that the statement holds for all its

descendants. We will show that the statement also holds for u. First, we show that u

must send an update.

The fact that the statement holds for all the descendants of u implies that each yj must

be the most recent update of some leaf node in the jth subtree of u (rooted at u’s jth child

node). Let v be the leaf node corresponding to yi.

case 1: y > z. For v, set fv to y + ∆. For any leaf node w 6= v, if yw ≥ y − 2∆, then

60

set fw to y −∆.

case 2: y < z. For v, set fv to y −∆. For any leaf node w 6= v, if yw ≥ y − 2∆, then

set fw to y −∆.

Using a similar argument as that in the base case, we can show that u must send an

update to its parent. Now suppose that node u sends an update y′, but y′ 6= y.

case 1: y > y′. For v, set fv to y + ∆. For any leaf node w 6= v, if yw ≥ y − 2∆, then

set fw to y −∆.

case 2: y < y′. For v, set fv to y −∆. For any leaf node w 6= v, if yw ≥ y − 2∆, then

set fw to y −∆.

Again by a similar argument as that in the base case, we can show that such y′ cannot

be the update message.

Lastly, we denote hmax as the max length (the number of relay nodes in a path) of any

path in a general tree.

Corollary 5. ratio(TREETRACK) = O(hmax log ∆) with respect to Atree.

Proof. Given an input instance I and any algorithm A ∈ Atree, suppose the number of

messages between a leaf node (an observer) si and its parent node as Mi. It is easy to

see that cost(TREETRACK, I) ≤ hmax
∑m

i=1Mi. Meanwhile, any algorithm A′ in Atree

satisfies cost(A′, I) ≥ hmax +
∑m
i=1Mi

log ∆
as a direct application of Theorem 5. Thus,

ratio(TREETRACK, I) ≤ hmax
∑m

i=1 Mi

hmax +
∑m

i=1Mi/ log ∆
< hmax log ∆.

Therefore, ratio(TREETRACK) = O(hmax log ∆).

3.6 Other Functions and Topologies
3.6.1 Other Functions for f

It is trivial to see that all of our results hold for min as well. That said, for any

distributive aggregates on any topology, our methods can be extended to work for these

aggregates. A distributive aggregate can be computed in a divide-and-conquer strategy, i.e.,

f(f1(t), . . . , fm(t)) = f(f(fa1(t), . . . , fai(t)), f(fai+1
(t), . . . , fam(t))), where {(a1, . . . , ai),

(ai+1, . . . , am)} represents a (random) permutation and partition of {1, . . . ,m}. Other than

61

max and min, another example is sum. In online tracking, since we assume that the number

of observers is a constant, hence, tracking average is equivalent to tracking sum (because

the count is a constant).

So consider sum as an example, we can extend m-CHAIN to both broom and tree

models, by allocating ∆/m error for each chain. BROOMTRACK and TREETRACK can

be extended as well, by: (1) allocating error thresholds only to a chain connecting to a

merging node; (2) and making sure that the sum of error thresholds from all chains to all

merging nodes equals ∆. The rest of the algorithm is designed in a similar fashion as that

in BROOMTRACK and TREETRACK, respectively. It is easy to see that, no matter how

many merging nodes there are, there are exactly m such chains. So a simple scheme is to

simply allocate the error threshold ∆ equally to any chain connecting to a merging node.

Of course, the ratio of these algorithms needs to be analyzed with respect to the class of

online algorithms for sum, which will be different from that in the max case. Such analyses

are beyond the scope of this paper, and will be studied in the full version of this work.

More interestingly, our methods can be extended to work with holistic aggregates

(aggregates that cannot be computed distributively) in certain case, such as any quantiles in

a broom topology. Specifically, we can modify both m-CHAIN and BROOMTRACK for max

to derive similar m-CHAIN and BROOMTRACK methods for distributed online tracking

with any quantile function in a broom topology. Suppose f(t) = φ(f1(t), . . . , fm(t)),

where φ(S) represents an φ-quantile from a set S of one-dimension values for any φ ∈
(0, 1). When φ = 0.5, we get the median function.

The only change needed for m-CHAIN is to change f = max to f = φ-quantile at the

tracker, when applying f over g1(t), . . . , gm(t).

For BROOMTRACK, the only change we need to make is in line 6 in Algorithm 3, by

replacing max with φ-quantile, i.e., y1(t) = φ(g1(t), . . . , gm(t)). The following lemma

ensures the correctness of these adaptions.

Lemma 11. Let y1(t) = φ(g1(t), . . . , gm(t)) and f(t) = φ(f1(t), . . . , fm(t)). If |gi(t) −
fi(t)| ≤ ∆ for all i ∈ [1,m], then it must be |y1(t)− f(t)| ≤ ∆.

Proof. We prove this with contradiction, and we illustrate the proof using median (φ =

0.5). Other quantile functions can be similarly proved. To ease the discussion for quantiles,

62

we assume no duplicates. Cases with duplicates can be easily handled with a proper tie-

breaker. Let us say f(t) = fi(t) for some i.

Suppose this is not true, then it must be |y1(t)− fi(t)| > ∆. Without loss of generality,

let us say y1(t)− fi(t) > ∆. This means that y1(t) > gi(t), since |gi(t)− fi(t)| ≤ ∆.

There are two cases. First, consider m is an odd number. Since fi(t) is the median of

f1(t), . . . , fm(t), there must be m−1
2

functions f`1 , . . . , f`(m−1)/2
in f1(t), . . . , fm(t), such

that f`i(t) < fi(t).

Consider f`i(t) for any i ∈ [1, (m− 1)/2], the facts that |g`i(t)− f`i(t)| ≤ ∆, f`i(t) <

fi(t) and y1(t)− fi(t) > ∆ imply that g`i(t) < y1(t).

But now there are (m+1)/2 functions (g`1 , . . . , g`(m−1)/2
, and gi(t)), from g1(t), . . . , gm(t),

that are less than y1(t), which contracts that y1(t) is the median of g1(t), . . . , gm(t).

The other case when m is an even number can be argued in the same fashion, as long

as median is properly defined (as either the (m− 1)/2th value or the (m+ 1)/2th value in

the sorted sequence).

Furthermore, using similar arguments, we can show a similar lower bound and upper

bound, as that for the max case, on the ratio of these algorithms with respect to the class of

online algorithms for tracking a quantile function in the broom model.

For the general-tree model, the m-CHAIN method still works for tracking any quantile

function (since the tracker T tracks f1(t), . . . , fm(t) within error ∆ with g1(t), . . . , gm(t)).

However, the TREETRACK method no longer works. The fundamental reason is that one

cannot combine quantiles from two subtrees to obtain the quantile value of the union of the

two subtrees. A similar argument holds against combining the tracking results from two

subtrees in the case of quantile online tracking.

3.6.2 Other Topologies

As we already mentioned in Section 3.2, the general tree topology can be used to cover

the cases when a relay node also serves as an observer at the same time. The idea is

illustrated in Figure 3.4(a). A conceptual observer s′ can be added as a leaf-level child

node to such a relay node u. Our algorithms and results are carried over to this case. The

only difference is that there is no need to run OPTTRACK between s′ and u. Instead, u gets

g′(t) = f ′(t) for free, where f ′(t) is the function at s′ (the function at u when he acts as an

63

observer). This is useful when intermediate nodes in a network or a distributed system also

observe data values of interest to the computation of f being tracked.

Lastly, our results from the general tree topology also extend to a graph. On a graph

topology G, a distributed online tracking instance has a tracker T at a node from the graph,

and m observers on m other nodes on the graph. We can find the shortest path from an

observer si to T on the graphG, for each i ∈ [1,m], where the length of a path is determined

by the number of graph nodes it contains. Then, a general tree topology can be constructed

(conceptually) from thesem shortest paths by merging any common graph node from these

paths into a single parent node with proper child nodes. T is the root node, and each

observer is a leaf node. An example is shown in Figure 3.4(b). It can be shown that

the two instances are equivalent in the context of distributed online tracking (when the

communication is measured by the number of messages sent from one node to another). y

3.7 Experiment
All algorithms were implemented in C++. We simulated various distributed topologies,

and executed all experiments in a Linux machine with an Intel Core I7-2600 3.4GHz CPU

and 8GB memory. Note that every single communication between two directly connected

nodes u and v contributes one message.

3.7.1 Datasets and Setup

We used two real datasets. The first dataset is a temperature dataset (TEMP) from a

national atmosphere observation network. It contains temperature measurements from Jan

1997 to Oct 2011 from 26,383 distinct stations across the United States. We randomly

select a subset of stations as the observers and treat readings from a station as the values of

f ′(t) f ′(t)

replace

s′
u

u

(a)

u1

u2

u3

u4

u5

u5

u3u2u1

u4

(b)

Figure 3.4: Other topologies. (a) observer at relay node. (b) graph topology.

64

the function for that observer.

The second dataset is wind direction measurements (WD) from a sea weather obser-

vation network. The wind direction measures the directional degree of the wind. Raw

readings from research vessels were obtained which consist of approximately 11.8 million

records observed during a 9-month interval in 2010. We partition the records into chunks,

then randomly select a subset of chunks and treat the readings from each chunk as the

values of an observer’s function.

In all datasets, the readings are sorted by the time value they arrived. These two datasets

provide quite different distributions. To illustrate this, we plot the function values of the

function from an observer using a small sample (1000 time instances) in Figure 3.5.

We use TEMP as the default dataset. The default values of key parameters are: the

number of time instances N = 5000; the number of relay nodes in a chain or a broom

topology by default is h = 2. The default aggregate function f is max. For any function

fi, we compute its standard deviation (std) with respect to t ∈ [1, N]. We set τ =

avg(std(f1), . . . , std(fm)) for f = max. We then set the default ∆ value to 0.6τ . For

the broom model, we set the default number of observers at m = 15, i.e., the number of

leaf nodes connecting to the first relay node.

Note that leaf nodes can sit on different levels in a general tree topology. To produce a

tree topology, each child node of an internal node with fanout F becomes a leaf node with

probability p. We stop expanding nodes when they reach the tree level that equals the tree

height H . We set F = 3, p = 0.5 and H = 4 as default values when generating a general

tree topology.

For each experiment, we vary the values for one parameter while setting the other

1 250 500 750 1000
280

300

320

340

360

time instance

T
em

p
er
a
tu
re

(a)

1 250 500 750 1000
10

15

20

25

30

35

40

time instance

W
in
d
d
ir
ec
ti
o
n

(b)

Figure 3.5: f1(t) for TEMP and WD, for t ∈ [1, 1000]. (a) TEMP. (b) WD.

65

parameters at their default values. We report the average total number of messages per time

instance in a topology for different methods. This is denoted as “msgs per time instance”

in our experimental results.

3.7.2 Chain Model

Figure 3.6(a) shows the communication cost when we vary ∆ from 0.2τ to τ . Clearly,

the communication cost reduces for all methods as ∆ increases, since larger ∆ values

make a tracking algorithm less sensitive to the change of function values. CHAINTRACKO

outperforms both CHAINTRACKA and CHAINTRACKR for all ∆ values by an order of

magnitude. Compared with the cost of the offline optimal method, denoted as offline,

CHAINTRACKO performs well consistently. Averaging over the whole tracking period,

offline needs 0.015 message per time instance and CHAINTRACKO takes only 0.056 mes-

sage per time instance when ∆ = 0.6τ .

Figure 3.6(b) shows the communication cost as h increases from 0 to 4. Note that

when h = 0 the chain model becomes the centralized setting (one observer connects to

the tracker directly). Not surprisingly, all methods need more messages on average as the

chain contains more relay nodes while h increases. Among the three online algorithms,

CHAINTRACKO gives the best performance for all h values. Meanwhile, we verified that

its competitive ratio is indeed independent of h, by calculating the ratio between the number

of messages sent by CHAINTRACKO and offline.

We then vary the number of time instances N from 1000 to 10,000 in Figure 3.6(c).

We observe that the communication cost of all methods first decreases and then increases

around N = 5000. This is explained by the dynamic nature of functions values over time,

due to the real datasets we have used in our experiments.

Figure 3.6(d) shows the ratio between the cost of a method and the cost of offline, on

both TEMP and WD datasets. Clearly, on both datasets, CHAINTRACKO has significantly

outperformed both CHAINTRACKA and CHAINTRACKR. The cost of CHAINTRACKO is

very close to the cost of offline.

3.7.3 Broom Model

Figure 3.7(a) shows the communication cost as we vary m the number of observers

in a broom topology from 5 to 25. We see that BROOMTRACK outperforms m-CHAIN

66

0.2 0.4 0.6 0.8 1

10
−3

10
−2

10
−1

10
0

10
1

∆(×τ)

m
sg
s
p
er

ti
m
e
in
st
a
n
ce

offline ChainTrackA

ChainTrackR ChainTrackO

(a)

0 1 2 3 4
10

−3

10
−2

10
−1

10
0

h

m
sg
s
p
er

ti
m
e
in
st
a
n
ce
.

offline ChainTrackA

ChainTrackR ChainTrackO

(b)

1000 3000 5000 7000 10000
10

−3

10
−2

10
−1

10
0

N :time instances

m
sg
s
p
er

ti
m
e
in
st
a
n
ce

offline ChainTrackA

ChainTrackR ChainTrackO

(c)

1

5

10

15

20

25

c
o

s
t(

m
e
th

o
d
)/

c
o
s
t(

o
ff

lin
e

)

TEMP WD

ChainTrackO
ChainTrackA
ChainTrackR

(d)

Figure 3.6: Performance of chain tracking methods on TEMP. (a) vary ∆. (b) vary h. (c)
vary N . (d)cost(method)/cost(offline).

for all m values and the gap enlarges for larger m values. In particular, when m = 15

m-CHAIN takes on average 2.64 messages per time instance while BROOMTRACK takes

only 1.04 messages per time instance, in a broom topology with 15 observers and 2 relay

nodes. Note that if we were to track function values exactly, this means that we will need

45 messages per time instance!

In the following, we use m = 15 as the default value in a broom topology.

Figure 3.7(b) shows the communication cost when we change ∆ from 0.2τ to τ . For all

∆ values, BROOMTRACK has outperformed m-CHAIN by more than 3 times consistently.

Again, for similar reasons, a larger ∆ value always leads to less communication.

We change h, the number of relay nodes in a broom topology, from 0 to 4 in Figure

3.7(c). When h = 0, there is no relay node and all observers are directly connected to the

tracker itself. Therefore, BROOMTRACK and m-CHAIN give the same communication

cost when h = 0. We see that m-CHAIN suffers from the increase of h much more

67

5 10 15 20 25
0

1

2

3

4

m

m
sg
s
p
er

ti
m
e
in
st
.

BroomTrack m-Chain

(a)

0.2 0.4 0.6 0.8 1
10

−1

10
0

10
1

10
2

∆(×τ)

m
sg
s
p
er

ti
m
e
in
st
a
n
ce

BroomTrack m-Chain

(b)

0 1 2 3 4
0

1

2

3

4

5

h

m
sg
s
p
er

ti
m
e
in
st
a
n
ce

BroomTrack m-Chain

(c)

1000 3000 5000 7000 10000
0

1

2

3

N : time instances

m
sg
s
p
er

ti
m
e
in
st
a
n
ce

BroomTrack m-Chain

(d)

Figure 3.7: Performance of broom tracking methods on TEMP. (a) vary m. (b) vary ∆. (c)
vary h. (d) vary N .

significantly compared to BROOMTRACK, and BROOMTRACK scales very well against

more relay nodes. In particular, its number of messages per time instance only increases

slightly from 0.88 to 1.20 when h goes from 0 to 4. Again, if we were to track all functions

exactly, when the broom has 4 relay nodes and 15 observers, we will need 75 messages per

time instance!

We vary N from 1000 to 10,000 in Figure 3.7(d). It shows that the average number of

messages per time instance is quite stable and only decreases slightly when N goes beyond

5000 for both BROOMTRACK and m-CHAIN methods. This is caused by the change in the

distribution of function values with respect to the time dimension.

Similar results were also observed on WD dataset, and they have been omitted for

brevity.

68

3.7.4 General Tree Topology

We first vary p, when generating a tree topology, from 0.1 to 0.9 in Figure 3.8. The

corresponding number of observers in the trees that were generated ranges from 27 to

7. Note that larger p values tend to produce less number of observers, since more nodes

become leaf nodes (observers) early and they stop generating subtrees even though the

height of the tree has not been reached yet in the tree generation process. Not surprisingly,

the communication cost of both methods reduces as p increases on both datasets. Averaging

over the whole tracking period, when p = 0.5 TREETRACK takes 1.28 messages per time

instance while m-CHAIN takes 2.21 messages per time instance on TEMP dataset. This

particular tree has 15 leaf nodes (observers) and 22 nodes in total. In the same tree topology,

if we were to track function values exactly, we will need 41 messages per time instance! On

WD dataset, both methods need even less number of messages per time instance, as shown

in Figure 3.8(b). We set p = 0.5 as the default value in general-tree topologies.

Figure 3.9 shows the communication cost when we vary ∆ from 0.2τ to τ . Again,

TREETRACK outperforms m-CHAIN for all ∆ values on both TEMP and WD datasets. In

particular, these results show that TREETRACK is very effective in tracking changes of

function values in a tree. For example, Figure 3.9(b) shows that TREETRACK takes on

average 0.07 message per time instance when ∆ = 0.6τ on WD dataset.

Next, we grow the size of a tree by increasing H , the height of a tree, from 2 to 6 in

Figure 3.10. Note that the number of nodes in a general tree increases exponentially in

terms of H . Therefore, both methods show an increase in communication cost as H in-

0.1 0.3 0.5 0.7 0.9
0

1

2

3

4

p

m
sg
s
p
er

ti
m
e
in
st
a
n
ce

TreeTrack m-Chain

(a)

0.1 0.3 0.5 0.7 0.9

0

0.2

0.4

0.6

0.8

p

m
sg
s
p
er

ti
m
e
in
st
a
n
ce

TreeTrack m-Chain

(b)

Figure 3.8: General-tree: vary p. (a) TEMP. (b) WD.

69

0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

∆(×τ)

m
sg
s
p
er

ti
m
e
in
st
a
n
ce

TreeTrack m-Chain

(a)

0.2 0.4 0.6 0.8 1

0

5

10

15

∆(×τ)

m
sg
s
p
er

ti
m
e
in
st
a
n
ce

TreeTrack m-Chain

(b)

Figure 3.9: General-tree: vary ∆. (a) TEMP. (b) WD.

2 3 4 5 6

0

2

4

6

8

10

12

H

m
sg
s
p
er

ti
m
e
in
st
a
n
ce

TreeTrack m-Chain

(a)

2 3 4 5 6

0

2

4

6

8

H

m
sg
s
p
er

ti
m
e
in
st
a
n
ce

TreeTrack m-Chain

(b)

Figure 3.10: General-tree: vary H . (a) TEMP. (b) WD.

creases on both datasets. Nevertheless, we still see a significant performance improvement

of TREETRACK over m-CHAIN as H increases on both WD and TEMP datasets. Also note

that even though the communication cost increases as a tree grows higher, TREETRACK is

still very effective. For example, when H = 6, we have a general tree of 91 nodes and 61

of them are leaf nodes (observers). Tracking these functions exactly would require more

than 300 messages per time instance. But in this case, TREETRACK has sent on average

only 3.6 messages and 4 messages on WD and TEMP datasets, respectively.

We vary the fan-out F from 2 to 4 in Figure 3.11. Not surprisingly, both m-CHAIN

and TREETRACK show an increasing communication cost as F increases on both datasets

since larger F values lead to more nodes in a tree. But the cost of TREETRACK increases

much slowly. And in all cases, TREETRACK performs much better than m-CHAIN, and is

70

2 3 4
0

1

2

3

4

5

F

m
sg
s
p
er

ti
m
e
in
st
a
n
ce

TreeTrack m-Chain

(a)

2 3 4
0

0.5

1

1.5

2

F

m
sg
s
p
er

ti
m
e
in
st
a
n
ce

TreeTrack m-Chain

(b)

Figure 3.11: General-tree: vary F . (a) TEMP. (b) WD.

still orders of magnitude more effective if we compare its cost against the cost of tracking

all functions exactly.

3.7.5 Other Functions

Lastly, we investigate our online algorithms for tracking sum and median aggregate

functions, respectively. We evaluate their performance using the default parameter values

on both datasets, over both broom and tree models. Note that under the default setting, if

we were to tracking function values exactly, we will need 45 messages per time instance in

the broom instance and 41 messages per time instance in the tree instance.

We first explore the performance of our methods for tracking sum function in Figure

3.12, for both broom and tree models. In this case, we define τ = std(f(t)) for t ∈
[1, N], where we calculate the values of f(t) offline based on functions f1(t), . . . , fm(t),

i.e., f(t) =
∑m

i=1 fi(t). Our improved methods (BROOMTRACK and TREETRACK) still

outperform m-CHAIN in communication cost on both datasets.

Figure 3.13 compares the performance of different methods for tracking median func-

tion on both broom and tree models. Figure 3.13(a) shows that BROOMTRACK outper-

forms m-CHAIN in communication cost on both datasets. We evaluate the performance of

m-CHAIN and m-CHAINA in Figure 3.13(b) for general-tree topology since TREETRACK

does not work in this case. Here, m-CHAINA is a m-chain tracking method that calls

CHAINTRACKA for each chain. It confirms our analysis that allocating tracking error to

the first relay node indeed is better than allocating error threshold over different relay nodes

71

0

2

4

6

8

10

m
s
g

s
 p

e
r

ti
m

e
 i
n

s
ta

n
c
e

Temp WD

BroomTrack
m-Chain

(a)

0

2

4

6

8

10

m
s
g

s
 p

e
r

ti
m

e
 i
n

s
ta

n
c
e

Temp WD

TreeTrack
m-Chain

(b)

Figure 3.12: Track sum on broom and general tree. (a) Broom. (b) General-tree.

0

0.5

1

1.5

2

2.5

3

m
s
g

s
 p

e
r

ti
m

e
 i
n

s
ta

n
c
e

Temp WD

BroomTrack
m-Chain

(a)

0

1

2

3

4

5

m
s
g

s
 p

e
r

ti
m

e
 i
n

s
ta

n
c
e

Temp WD

m-ChainA
m-Chain

(b)

Figure 3.13: Track median on broom and general tree. (a) Broom. (b) General-tree.

in a chain, and m-CHAIN performs much better than m-CHAINA on both datasets.

3.8 Related Work
Online tracking is a problem that has only been recently studied in [87, 89], which we

have reviewed in detail in Section 3.2. Only the centralized setting was studied in [87, 89].

In the popular distributed streaming model, the goal is to produce an approximation of

certain functions/properties computed over the union of data stream elements seen so far for

all observers, from the beginning of the time until now, for example, [15–17,40,88]). There

are also variants in the distributed streaming model where a time-based sliding window of

size > 1 with respect to tnow is used [20,21,56,64]). There are many works in the literature

on tracking heavy hitters or quantiles over distributed streams that fall into this model, but

72

the heavy hitters or quantiles identified are computed with respect to the union of all data

values from all observers between 0 and tnow or a sliding window [15–17, 40, 88], which is

very different from our problem.

When f is the top-k function, a heuristic method has been proposed in [3] which

provides no theoretical analysis. In contrast, our work focuses on common aggregation

functions and principled methods with theoretical guarantees on their communication costs.

In distributed settings with multiple observers, to the best of our knowledge and as

pointed out by the prior studies that have proposed the state-of-the-art centralized method

[87, 89], a comprehensive study of the distributed online tracking problem with theoretical

guarantees is still an open problem. Cormode et al. studied a special instance of this

problem, but focused on only monotone functions [18, 19]. On the other hand, several

existing studies explored the problem of threshold monitoring over distributed data [51,53,

75], where the goal is to monitor continuously if f(t) (a function value computed over the

data values of all observers at time instance t) is above a user-defined threshold or not. Note

that, threshold monitoring is different from the online tracking problem, where the tracker

only needs to verify if the function value has exceeded a threshold or not, instead of keeping

an approximation that is always within f(t) ± ∆. The geometric-based methods have

been further explored to provide better solutions to the threshold monitoring problem [34],

and the function approximation problem in the distributed streaming model [32] (which as

analyzed above is different from the online tracking problem).

Lastly, our problem is different from distributed multiparty computation, which was

explained in Section 4.1.

3.9 Conclusion
In this paper, we study the problem of distributed online tracking. We first extend the

recent results for online tracking in the centralized, two-party model to the chain model,

by introducing a number of relay nodes between the observer and the tracker. We then

investigate both the broom model and the tree model, as well as other different tracking

functions. Extensive experiments on real datasets demonstrate that our methods perform

much better than baseline methods. Many interesting directions are open for future work,

including but not limited to formally analyzing the ratios of our methods when extending

73

them to different aggregates, investigating online tracking with an error threshold that may

change over time.

CHAPTER 4

SCALABLE HISTOGRAMS ON LARGE

PROBABILISTIC DATA

4.1 Introduction
In many applications, uncertainty naturally exists in the data due to a variety of rea-

sons. For instance, data integration and data cleaning systems produce fuzzy matches

[28, 77]; sensor/RFID readings are inherently noisy [10, 25]. Numerous research efforts

were devoted to represent and manage data with uncertainty in a probabilistic database

management system [65, 77]. Many interesting mining problems have recently surfaced in

the context of uncertain data, e.g., mining frequent pattern and frequent itemset [1, 5, 80].

In the era of big data, along with massive amounts of data from different application and

science domains, uncertainty in the data is only expected to grow with larger scale.

Histograms are important tools to represent the distribution of feature(s) of interest

(e.g., income values) [43, 67]. Not surprisingly, using the possible worlds semantics [23,

77], histograms are also useful tools in summarizing and working with probabilistic data

[12–14]. Given that answering queries with respect to all possible worlds is in #P-complete

complexity [23], obtaining a compact synopsis or summary of a probabilistic database

is of the essence for understanding and working with large probabilistic data [12–14].

For example, they will be very useful for mining frequent patterns and itemsets from big

uncertain data [1, 5, 80].

Cormode and Garofalakis were the first to extend the well-known V-optimal histogram

(a form of bucketization over a set of one-dimension values) [43], and wavelet histogram

[57] to probabilistic data [13, 14], followed by the work by Cormode and Deligiannakis

[12]. Note that histogram construction can be an expensive operation, even for certain

data, e.g., the exact algorithm for building a V-optimal histogram is based on a dynamic

programming formulation, which runs inO(Bn2) for constructingB buckets over a domain

75

size of n [43]. Not surprisingly, building histograms on probabilistic data is even more

challenging. Thus, existing methods [12–14] do not scale up to large probabilistic data, as

evident from our analysis and experiments in this work.

Thus, this work investigates the problem of scaling up histogram constructions in large

probabilistic data. Our goal is to explore quality-efficiency tradeoff, when such a tradeoff

can be analyzed and bounded in a principal way. Another objective is to design methods

that can run efficiently in parallel and distributed fashion, to further mitigate the scalability

bottleneck using a cluster of commodity machines.

4.1.1 Overview

A probabilistic database characterizes a probability distribution of an exponential num-

ber of possible worlds, and each possible world is a realization (deterministic instance) of

the probabilistic database. Meanwhile, the query result on a probabilistic database essen-

tially determines a distribution of possible query answers across all possible worlds. Given

the possible worlds semantics, especially for large probabilistic data, approximate query

answering based on compact synopsis (e.g., histogram) is more desirable in many cases,

e.g., cost estimations in optimizers and approximate frequent items [5, 12–14, 77, 80, 90].

Conventionally, histograms on a deterministic database seek to find a set of constant

bucket representatives for the data distribution subject to a given space budget of buckets

and an error metric. Building histograms on deterministic databases has been widely

explored and understood in the literature. In probabilistic databases, building the corre-

sponding histograms needs to address the following problems: (I) how to combine the

histograms on each possible world; (II) how to compute the histogram efficiently without

explicitly instantiating all possible worlds.

One meaningful attempt is building histograms that seek to minimize the expected error

of a histogram’s approximation of item frequencies across all possible worlds, using an

error metric, which was first proposed in [13,14]. One concrete application example might

be estimating the expected result size of joining two probabilistic relations based on the cor-

responding histograms, or evaluating queries asking for an expected value approximately.

It is important to note that for many error metrics, this histogram is not the same as

simply building a histogram for expected values of item frequencies; and the latter always

76

provides (much) worse quality in representing the probabilistic database with respect to a

number of commonly used error metrics, as shown in [13, 14]

Based on this definition, a unified dynamic programming (DP) framework of computing

optimal histograms on the probabilistic data was proposed in [13,14] with respect to various

kinds of error metrics. Specifically, for the widely used sum of square error (SSE), it

costs O(Bn2) time where B is the number of buckets and n is the domain size of the

data. Immediately, we see that the optimal histogram construction suffers from quadratic

complexity with respect to the domain size n. For a domain of merely 100, 000 values, this

algorithm could take almost a day to finish and render it unsuitable for many datasets in

practice.

Inspired by these observations, we propose constant-factor approximations for his-

tograms on large probabilistic data. By allowing approximations, we show that it is possible

to allow users to adjust the efficiency-quality tradeoff in a principal manner.

We summarize our contributions as follows. We propose a novel “partition-merge”

method to achieve this objective. We introduce “recursive merging” to improve the effi-

ciency, while the histogram quality achieved will not significantly deviate from the optimal

version. We also devise novel synopsis techniques to enable distributed and parallel execu-

tions in a cluster of commodity machines, to further mitigate the scalability bottleneck. To

that end,

• We review the problem of histogram constructions on probabilistic data in Section

4.2, and highlight the limitations in the state-of-the-art.

• We design PMERGE in Section 4.3, which gives constant-factor approximations and

scales up the histogram construction on large probabilistic data. PMERGE uses a

“partition-merge” approach to realize efficiency-quality tradeoff. It also admits “recursive-

merging” to allow further efficiency-quality tradeoff.

• We extend our investigation to distributed and parallel settings in Section 4.4, and in-

troduce novel synopsis methods to support computation- and communication-efficient

execution of our methods in distributed and parallel fashion in Section 4.5.

• We conduct extensive experiments on large datasets in Section 4.6. The results sug-

gest that our approximation methods have achieved significant (orders of magnitude)

run-time improvement compared to the state-of-the-art approach with high-quality

77

approximation.

4.2 Background and State of the Art
4.2.1 Uncertain Data Models

Sarma et al. [72] describe various models of uncertainty, varying from the simplest

basic model to the (very expensive) complete model that can describe any probability

distribution of data instances.

The basic model is an over-simplification with no correlations. Existing work on his-

tograms on uncertain data [12–14] adopted two popular models that extend the basic model,

i.e., the tuple model and the value model, and compared their properties and descriptive

abilities. The tuple and value models are two common extensions of the basic model in

terms of the tuple- and attribute-level uncertainty [72], that were extensively used in the

literature (see discussion in [12–14]).

Without loss of generality, we consider that a probabilistic database D contains one

relation (table). We also concentrate on the one-dimension case or one attribute of interest.

Definition 2. The tuple model was originally proposed in TRIO [2]. An uncertain database

D has a set of tuples τ = {tj}. Each tuple tj has a discrete probability distribution function

(pdf) of the form
〈
(tj1, pj1), . . . , (tj`j , pj`j)

〉
, specifying a set of mutually exclusive (item,

probability) pairs. Any tjk, for k ∈ [1, `j], is an item drawn from a fixed domain and pjk is

the probability that tj takes the value tjk in the jth row of a relation.

When instantiating this uncertain relation to a possible world W , each tuple tj either

draws a value tjk with probability pjk or generates no item with probability of 1−∑`j
k=1 pjk.

The probability of a possible world W is simply the multiplication of the relevant probabil-

ities.

Definition 3. The value model is a sequence τ of independent tuples. Each tuple gives the

frequency distribution of a distinct item of the form 〈 j : fj = ((fj1, pj1), . . . , (fj`j , pj`j))

〉. Here, j is an item drawn from a fixed domain (e.g., source IP) and its associated pdf fj

describes the distribution of j’s possible frequency values.

In particular, Pr[fj = fjk] = pjk where fjk is a frequency value from a frequency value

domain V; fj is subject to the constraint that
∑

jk pjk ≤ 1 for k ∈ [1, `j]. When it is

78

less than 1, the remaining probability corresponds that the item’s frequency is zero. When

instantiating this uncertain relation to a possible world W , for an item j, its frequency fj

either takes a frequency value fjk with probability pjk or takes zero as its frequency value

with probability 1−∑`j
k=1 pjk. So the probability of a possible world W is computed as the

multiplication of the possibilities of fj’s taking the corresponding frequency in each tuple.

4.2.2 Histograms on Probabilistic Data

Without loss of generality, in both models, we consider the items are drawn from the

integer domain [n] = {1, ..., n} and useW to represent the set of all possible worlds. Let

N be the size of a probabilistic database, i.e., N = |τ |.
For an item i ∈ [n], gi is a random variable for the distribution of i’s frequency over all

possible worlds, i.e,

gi = {(gi(W),Pr(W))|W ∈ W}, (4.1)

where gi(W) is item i’s frequency in a possible world W and Pr(W) is the possibility of

W .

Example 3. Consider an ordered domain [n] with three items {1, 2, 3} for both models,

i.e., n = 3.

The input τ = {〈(1, 1
2
), (3, 1

3
)〉, 〈(2, 1

4
), (3, 1

2
)〉} in the tuple model defines eight pos-

sible worlds in Table 4.1. In contrast, the input τ = {〈1 : (1, 1
2
)〉, 〈2 : (1, 1

3
)〉, 〈3 :

((1, 1
2
), (2, 1

2
))〉} in the value model defines eight possible worlds in Table 4.2.

Consider the tuple model example from above and denote the eight possible worlds

(from left to right) asW1, . . . , W8. It is easy to see that g3(W) = 1 forW ∈ {W4,W6,W7},

Table 4.1: Example for tuple model

W ∅ 1 2 3 1, 2 1, 3 2, 3 3, 3
Pr(W) 1

24
1
8

1
24

1
6

1
8

1
4

1
12

1
6

Table 4.2: Example for value model

W 3 1, 3 2, 3 3, 3 1, 2, 3 1, 3, 3 2, 3, 3 1, 2, 3, 3
Pr(W) 1

6
1
6

1
12

1
6

1
12

1
6

1
12

1
12

79

g3(W) = 2 for W ∈ {W8}, and g3(W) = 0 on the rest. Thus, the frequency random

variable g3 of item 3 is g3 = {(0, 1
3
), (1, 1

2
), (2, 1

6
)} with respect to W in this example.

Meanwhile, it is also easy to see g3 = {(1, 1
2
), (2, 1

2
)} overW in the value model example

from above.

Definition 4. A B-bucket representation partitions domain [n] into B nonoverlapping con-

secutive buckets (sk, ek) for k ∈ [1, B], where s1 = 1, eB = n and sk+1 = ek + 1.

Frequencies within each bucket bk are approximated by a single representative b̂k and we

represent it as bk = (sk, ek, b̂k).

The B-bucket histogram achieving the minimal SSE error for approximating a deter-

ministic data distribution is known as the V-optimal histogram [42]. It can be found using a

dynamic programming formulation in O(Bn2) time [43], where n is the domain size of the

underlying data distribution. We denote this method from [43] as the OPTVHIST method.

To extend histogram definitions to probabilistic data, we first consider a single possible

world W ∈ W for a probabilistic dataset D, where W is a deterministic dataset. Hence,

the frequency vector of W is given by G(W) = {g1(W), ..., gn(W)} (recall that gi(W) is

item i’s frequency in W). Given a B-bucket representation for approximating G(W), the

SSE of a bucket bk in the world W is given as: SSE(bk,W) =
∑ek

j=sk
(gj(W)− b̂k)2. The

SSE of the B-bucket representation in W is simply
∑B

k=1 SSE(bk,W).

Cormode and Garofalakis have extended the B-bucket histogram to probabilistic data

[13, 14] by asking for the minimal expected SSE. Formally,

Definition 5. Given the (uncertain) frequency sequence of random variables {g1, . . . , gn}
as defined in (4.1), the problem seeks to construct aB-bucket representation (typicallyB �
n) such that the expected SSE over all possible worlds is minimized, i.e., the histogram with

the value given by:

H(n,B) = min{EW
[

B∑
k=1

ek∑
j=sk

(gj − b̂k)2

]
} (4.2)

In (4.2), the expectation of the sum of bucket errors is equal to the sum of expectations

of bucket errors [13, 14], i.e.,

80

EW

[
B∑
k=1

ek∑
j=sk

(gj − b̂k)2

]
=

B∑
k=1

EW

[
ek∑
j=sk

(gj − b̂k)2

]
. (4.3)

Consequently, the optimal histogram could be derived by a dynamic programming formu-

lation as follows:

H(i, j) = min
1≤`<i

H(`, j − 1) + min
b̂

(`+ 1, i, b̂), (4.4)

where H(i, j) represents the minimal error from the optimal j-buckets histogram on inter-

val [1, i]; minb̂(` + 1, i, b̂) is the minimal bucket error for the bucket spanning the interval

[`+ 1, i] using a single representative value b̂.

Previous work [13, 14] showed that the cost of the optimal histogram is O(Bn2) and

minb̂(`+ 1, i, b̂) could be computed in constant time using several precomputed prefix-sum

arrays which we will describe in the following subsection. We dub this state-of-art method

from [14] the OPTHIST method.

4.2.3 Efficient Computation of Bucket Error

Cormode and Garofalakis [14] show that, for SSE, the minimal error of a bucket b =

(s, e, b̂) is achieved by setting the representative b̂ = 1
e−s+1

EW [
∑e

i=s gi]. The correspond-

ing bucket error is given by:

SSE(s, e, b̂) =
e∑
i=s

EW [g2
i]−

1

e− s+ 1
EW [

e∑
i=s

gi]
2. (4.5)

In order to answer the minb̂(s, e, b̂) query in (4.4) for any (s, e) values in constant time,

prefix-sum arrays of EW [g2
i] and EW [gi] in equation (4.5) are precomputed as follows

(details can be found in [14]):

A[e] =
e∑
i=1

EW [g2
i] =

e∑
i=1

(VarW [gi] + EW [gi]
2) B[e] =

e∑
i=1

EW [gi] (4.6)

Tuple model: EW [gi] =
∑

tj∈τ Pr[tj = i] and VarW [gi] =
∑

tj∈τ Pr[tj = i](1−Pr[tj =

i]).

Value model: EW [gi] =
∑

vj∈V vj Pr[gi = vj] and VarW [gi] =
∑

vj∈V(vj − EW [gi])
2

Pr[gi = vj]

Set A[0] = B[0] = 0, then the minimal SSE minb̂(s, e, b̂) for both models is computed

81

as:

A[e]− A[s− 1]− (B[e]−B[s− 1])2

e− s+ 1
.

In both models, in addition to the O(Bn2) cost as shown in the last subsection, it also

takes O(N) cost to compute the A,B arrays (N = |τ |, number of probabilistic tuples).

4.3 Approximate Histograms
The state-of-the-art OPTHIST method from [14] is clearly not scalable, when given

larger domain size.

4.3.1 A Baseline Method

A natural choice is to consider computing a B-bucket histogram for the expected fre-

quencies of all items. Note that this histogram is not the same as the desired histogram as

defined in equation (4.2) and (4.3) since in general E[f(X)] does not equal f(E[X]) for

arbitrary function f and random variable X .

However, we can show in our histogram, the SSE error of a bucket [s, e] using b̂ as its

representative is:

SSE(s, e, b̂) = EW [
e∑
i=s

(gi − b̂)2] =
e∑
i=s

(EW [g2
i]− 2EW [gi]̂b+ b̂2).

On the other hand, if we build a B-bucket histogram over the expected frequencies of

all items, the error of a bucket [s, e] using b̄ as its representative is:

SSE(s, e, b̄) =
e∑
i=s

(EW [gi]− b̄)2 =
e∑
i=s

((EW [gi])
2 − 2EW [gi]b̄+ b̄2).

When using the same bucket configurations (i.e., the same boundaries and b̂ = b̄ for ev-

ery bucket), the two histograms above differ by
∑e

j=s(EW [g2
i]−(EW [gi])

2) =
∑e

j=s VarW [gi]

on a bucket [s, e]. Hence, the overall errors of the two histograms differ by
∑

i∈[n] VarW [gi]

which is a constant. Given this and computing the expected frequencies of all items

can be done in O(N) time, computing the optimal B-bucket histogram for them (now

a deterministic frequency vector) still requires the OPTVHIST method from [43], taking

O(Bn2) for a domain of size n, which still suffers the same scalability issue.

82

A natural choice is then to use an approximation for the B-bucket histogram on ex-

pected frequencies (essentially a V-optimal histogram), as an approximation for our his-

togram. The best approximation for a V-optimal histogram is an (1+ε)-approximation [79]

(in fact, to the best of our knowledge, it is the only method with theoretical bound on

approximation quality). But when using approximations, one cannot guarantee that the

same bucket configurations will yield the same approximation bound with respect to both

histograms. So its theoretical guarantee is no longer valid with respect to our histogram.

Nevertheless, it is worth comparing to this approach as a baseline method, which is denoted

as the EF-Histogram method.

4.3.2 The PMERGE Method

Hence, we search for novel approximations that can provide error guarantees on the

approximation quality and also offer quality-efficiency tradeoff, for the histograms from

[13, 14] as defined in (4.2). To that end, we propose a constant approximation scheme,

PMERGE, by leveraging a “partition-merge” principle. It has a partition phase and a merge

phase.

4.3.2.1 Partition

The partition phase partitions the domain [n] intom equally-sized sub-domains, [s1, e1]

, . . . , [sm, em] where s1 = 1, em = n and sk+1 = ek+1. For the kth sub-domain [sk, ek], we

compute the A,B arrays on this domain as Ak, Bk for k ∈ [1,m]. Ak and Bk are computed

using [sk, ek] as an input domain and equation (4.6) for the value and the tuple models,

respectively,

Next, for each sub-domain [sk, ek] (k ∈ [1,m]), we apply the OPTHIST method from

[14] (as reviewed in Section 4.2.2) over theAk, Bk arrays to find the local optimal B-buckets

histogram for the kth sub-domain. The partition phase produces m local optimal B-bucket

histograms, which lead to mB buckets in total.

4.3.2.2 Merge

The goal of the merge phase is to merge the mB buckets from the partition phase

into optimal B buckets in terms of the SSE error using one merging step. To solve this

problem, naively, we can view an input bucket b = (s, e, b̂) as having (e − s + 1) items

83

with identical frequency value b̂. Then, our problem reduces to precisely constructing an

V-optimal histogram instance [43]. But the cost will be O(B(
∑mB

i=1(ei − si + 1))2) using

the OPTVHIST method, which is simply O(Bn2).

A critical observation is that a bucket b = (s, e, b̂) can also be viewed as a single

weighted frequency b̂ with a weight of (e− s+ 1), such that we can effectively reduce the

domain size while maintaining the same semantics. Formally, let Y = mB. A weighted

frequency vector {f1, f2, . . . , fY } on an ordered domain [Y] has a weight wi for each fi. It

implies wi items with a frequency fi at i. The weighted version of the V-optimal histogram

seeks to construct a B-bucket histogram such that the SSE between these buckets and the

input weighted frequency vector is minimized. This problem is the same as finding:

Hw(Y,B) = min{
B∑
k=1

ek∑
j=sk

wj(fj − b̂k)2},

where s1 = 1 and eB = Y . The optimalB buckets can be derived by a similar dynamic pro-

gramming formulation as that shown in equation (4.4). The main challenge is to compute

the optimal one-bucket minb̂(s, e, b̂) for any interval [s, e] now in the weighted case.

4.3.2.3 Fast Computation of Bucket Error

We can show that in the weighted case the minb̂(s, e, b̂) is achieved by setting b̂ =∑e
k=s wkfk∑e
k=s wk

and the corresponding bucket error for the bucket b is as follows: SSE(b, b̂) =∑e
j=swj(f

2
j − b̂2). The prefix sum arrays that need to be precomputed are:

P [e] =
e∑
i=1

wjfj, PP [e] =
e∑
i=1

wjf
2
j , W [e] =

e∑
i=1

wj.

Given these arrays, minb̂(s, e, b̂) is computed as:

PP [e]− PP [s]− (P [e]− P [s])2

W [e]−W [s]
.

Thus, the weighted optimal B-bucket histogram can be derived by filling a Y × B

matrix, and each cell (i, j) takes O(Y) time. Thus, the weighted B-bucket histogram is

computed in O(BY 2) = O(m2B3) time, which is much less than O(Bn2) since both B

and m are much smaller than n.

An example of PMERGE is given in Figure 4.1, where n = 16, B = 2, and m = 4. To

84

1
2
3

1 16

w=2

4

bucket sub-domain boundary

: frequency in W1 : frequency in W2

2 3

w=2

0
domain value

1
2
3

0

7

: weighted frequency

w=3
w=1

w=1
w=3 w=3

w=1

domain value

5 6 8 9 10 11 12 13 14 15

partition phase

merge phase

1 1642 3 75 6 8 9 10 11 12 13 14 15

frequency

Figure 4.1: An example of PMERGE: n = 16,m = 4, B = 2.

ensure clarity, we show only two possible worlds W1 (blue circle) and W2 (green triangle)

from the set of possible worldsW of this database. In the partition phase, each sub-domain

of size 4 is approximated by 2 local optimal buckets. In total, the partition phase has

produced 8 buckets in Figure 4.1. In the merge phase, each input bucket maps to a weighted

frequency as discussed above. For example, the first bucket covering frequencies in [1, 2]

represents a weighted frequency of 1.8 with weight 2. These 8 buckets were merged into

two buckets as the final output.

4.3.2.4 Complexity Analysis

In the partition phase, it takes linear time to compute the corresponding Ak, Bk arrays

within each sub-domain [sk, ek] for k ∈ [1,m], following the results from [14]. The size

of sub-domain [sk, ek] is roughly n/m for k ∈ [1,m]. It takes O(Bn2/m2) to run the

OPTHIST method on Ak, Bk to find the kth local optimal B-bucket histogram. Next, the

merge phase takes only O(B3m2) time as analyzed above. Hence, with m sub-domains

and one merging step, the following result immediately follows:

Lemma 12. PMERGE takes O(N +Bn2/m+B3m2).

4.3.2.5 Approximation Quality

In order to evaluate the absolute value of the histogram approximation error, we adopt

the `2 distance (square root of SSE error) between the data distribution and the histogram

85

synopsis. Next, we show the approximation quality of PMERGE compared to the optimal

B-bucket histogram found by OPTHIST in terms of the `2 distance.

Theorem 8. Let ‖H(n,B)‖2 and ‖HPMERGE(n,B)‖2 be the `2 norm of the SSE error of B-

bucket histogram produced by OPTHIST and PMERGE, respectively, on domain [n]. Then,

‖HPMERGE(n,B)‖2 < 3.17 · ‖H(n,B)‖2.

We denote the probabilistic frequency vector as F = {g1, ...gn} (from either the tuple

or the value model). Let ĝi denote the representative of gi assigned by buckets from the

OPTHIST method. Let ḡi and g̃i be the representative of gi given by the buckets from the

partition phase and the merge phase, respectively, in PMERGE. By definition, we have:

H(n,B) =
∑
W∈W

n∑
i=1

(gi(W)− ĝi)2 Pr(W).

Similarly, the histogram error for PMERGE is

HPMERGE(n,B) =
∑
W∈W

n∑
i=1

(gi(W)− g̃i)2 Pr(W).

By the optimality of the weighted histogram in the merge phase we must have

n∑
i=1

(ḡi − g̃i)2 ≤
n∑
i=1

(ḡi − ĝi)2. (4.7)

Next, for any sub-domain [sk, ek] (k ∈ [1,m]) in the partition phase, the optimality of the

OPTHIST method [13, 14] ensures that PMERGE always produces the optimal B-buckets

histogram for the probabilistic frequency vector Fk = {gsk , gsk+1, . . . , gek}. On the other

hand, there are at most B buckets falling into [sk, ek] to approximate Fk for the optimal

B-buckets histogram produced by running the OPTHIST method on the entire F . Thus, we

have ∑
W∈W

n∑
i=1

(gi(W)− ḡi)2 Pr(W) ≤
∑
W∈W

n∑
i=1

(gi(W)− ĝi)2. (4.8)

Finally, we also have:

Lemma 13. For any a, b, c ∈ R,

86

(a− b)2 ≤ 2(a− c)2 + 2(c− b)2. (4.9)

Combining equations (4.7), (4.8), and (4.9) leads to:

‖HPMERGE(n,B)‖2
2 =

∑
W∈W

n∑
i=1

(gi(W)− g̃i)2 Pr(W)

≤
∑
W∈W

n∑
i=1

(2((gi(W)− ḡi)2 + (ḡi − g̃i)2)) Pr(W) by (4.9)

≤
∑
W∈W

n∑
i=1

(2((gi(W)− ḡi)2 + (ḡi − ĝi)2)) Pr(W) by (4.7)

≤
∑
W∈W

n∑
i=1

(2(gi(W)− ḡi)2 + 4(ḡi − gi(W)2

+ 4(gi(W)− ĝi)2) Pr(W) by (4.9)

=
∑
W∈W

n∑
i=1

(6(gi(W)− ḡi)2 + 4(gi(W)− ĝi)2) Pr(W)

≤ 10
∑
W∈W

n∑
i=1

d(gi(W), ĝi) Pr(W) by (4.8)

= 10 · ‖H(n,B)‖2
2.

Hence, ‖HPMERGE(n,B)‖2 < 3.17 · ‖H(n,B)‖2.

4.3.3 Recursive PMERGE

Note that the problem size of mB in the merge phase of PMERGE may still be too

large to be handled efficiently by a DP method. Fortunately, we can further improve the

efficiency by doing “recursive merging” as follows.

First of all, the partition phase will partition the input domain into m` equal-sized sub-

domains, instead of only m sub-domains, for some integer ` (user specified).

The merge phase now recursively merges them`B buckets from the partition phase into

B buckets using ` iterations. Each iteration reduces the number of input buckets by a factor

of m by applying a sequence of merging steps. Specifically, each merging step merges

mB consecutive buckets (from left to right) from the current iteration into B buckets in

the next iteration, which is done using the same merging step from the standard PMERGE

method (i.e., using the weighted B-bucket histogram idea). We dub the recursive PMERGE

methods RPMERGE.

87

Extending the analysis from Lemma 12 and Theorem 8 gives the following result, w.r.t

the `2 norm of the SSE:

Theorem 9. Using O(N + B n2

m`
+ B3

∑`
i=1 m

(i+1)) time, the RPMERGE method gives a

3.17` approximation of the optimal B-bucket histogram found by OPTHIST.

We prove this by induction. When ` = 1, this translates to the basic PMERGE method

and the result from Theorem 8 implies the base case directly. Now assuming the theorem

holds for some ` > 1, We can show that the result also holds for (`+ 1). The derivation is

similar to the machinery used in proving Theorem 8, albeit subjecting to some technicali-

ties, we omit the details. The running time analysis follows directly from its construction.

To that end, we denote ĝi and g̃i as the representative of gi assigned by the OPTHIST

method and the recursive version of PMERGE of depth `+ 1. We have:

‖H(n,B)‖2
2 =

∑
W∈W

n∑
i=1

(gi(W)− ĝi)2 Pr(W).

Similarly, the histogram error for depth (`+ 1) PMERGE is

HRPMERGE(n,B) =
∑
W∈W

n∑
i=1

(gi(W)− g̃i)2 Pr(W).

For the (`+ 1)th merge phase, it calls m instances of depth ` PMERGE methods, each with

a sub-domain of size n/m. Thus, we also use ḡi and λi as the representative of gi assigned

by the depth ` PMERGE and the OPTHIST methods on such sub-domains. By induction

assumption,

∑
W∈W

n∑
i=1

(gi(W)− ḡi)2 ≤ 10`
∑
W∈W

n∑
i=1

(gi(W)− λi)2. (4.10)

By the optimality of the weighted DP formulation in the (` + 1)th merge phase we must

have:
n∑
i=1

(ḡi − g̃i) ≤
n∑
i=1

(ḡi − ĝi). (4.11)

Also, by the optimality of the OPTHIST method on each size n/m sub-domain we must

have

88

∑
W∈W

n∑
i=1

(gi(W)− λi)2 ≤
∑
W∈W

n∑
i=1

(gi(W)− ĝi)2. (4.12)

Combining equations (4.9), (4.10), (4.11), and (4.12) leads to:

‖HRPMERGE(n,B)‖2
2 =

∑
W∈W

n∑
i=1

(gi(W)− g̃i)2 Pr(W)

≤
∑
W∈W

n∑
i=1

2((gi(W)− ḡi)2 + (ḡi − g̃i)2) Pr(W) by (4.9)

≤
∑
W∈W

n∑
i=1

2((gi(W)− ḡi)2 + (ḡi − ĝi)2) Pr(W) by (4.11)

≤
∑
W∈W

n∑
i=1

(2(gi(W)− ḡi)2 + 4(ḡi − gi(W))2

+ 4(gi(W)− ĝi)2) Pr(W) by (4.9)

=
∑
W∈W

n∑
i=1

(6(gi(W)− ḡi)2 + 4(gi(W)− ĝi)2) Pr(W)

≤
∑
W∈W

n∑
i=1

(6 · 10`(gi(W)− λi)2

+ 4(gi(W)− ĝi)2) Pr(W) by (4.10)

≤
∑
W∈W

n∑
i=1

(6 · 10`(gi(W)− ĝi)2

+ 4(gi(W)− ĝi)2) Pr(W) by (4.12)

= (6 · 10` + 4)
∑
W∈W

n∑
i=1

(gi(W)− ĝi)2 Pr(W)

≤ 10(`+1)
∑
W∈W

n∑
i=1

(gi(W)− ĝi)2 Pr(W) = 10(`+1)‖H(n,B)‖2
2.

Hence, for ` levels, ‖HPMERGE(n,B)‖2 < 3.17` · ‖H(n,B)‖2.

It is important to note that the approximation bounds in both Theorems 8 and 9 reflect

the worst-case analysis. The extreme cases leading to the worst-case bounds are almost

impossible in real datasets. In practice, PMERGE and its recursive version RPMERGE

always provide (very) close to optimal approximation quality (much better than what these

worst-case bounds indicate), as shown in our experiments.

89

4.4 Distributed and Parallel PMERGE

PMERGE allows efficient execution in a distributed and parallel framework. In the

partition phase, each sub-domain can be handled independently in parallel.

The recursive PMERGE offers even more venues for parallelism. In this case, its merge

phase can also run in a distributed and parallel fashion, since each merging step from every

iteration can be processed independently.

Next, we will address the challenge of computing the local Ak, Bk arrays efficiently for

each sub-domain [sk, ek] in a distributed and parallel setting . For both models, we assume

that the underlying probabilistic database has been split into β chunks {τ1, . . . , τβ} and

stored in a distributed file system (DFS). It is important to note that the input data are not

necessarily sorted by the values of the items when stored into chunks in a DFS.

4.4.1 The Partition Phase in the Value Model

Recall that in the value model, fi is a pdf describing item i’s possible frequency values

and their associated probabilities. We first show that:

Lemma 14. In the value model, Pr[gi = v] = Pr[fi = v] for any frequency value v ∈ V
(V is the domain of all possible frequency values).

Let Wi,v be the set of possible worlds in which gi(W) = v (recall gi(W) is item i’s

frequency in W). Clearly, we have Pr(gi = v) =
∑

W∈Wi,v
Pr[W].

Next, let τ ′ = τ−ti (τ is the set of tuples forming the database, and ti = {i, fi} is the ith

tuple describing the possible frequency values for item i), andWτ ′ be the set of all possible

worlds instantiated from τ ′. Clearly, for any W ∈ Wi,v, Pr[W] = Pr[W ′ inWτ ′] · Pr[fi =

v] where W ′ = W − {all items i}. Hence,

Pr(gi = v) =
∑

W∈Wi,v

Pr[W]

=
∑

W ′∈Wτ ′

Pr[W ′] · Pr[fi = v] = Pr[fi = v].

Lemma 14 and equation (4.6) imply that:

Lemma 15. The A,B arrays for the value model also equal: A[j] =
∑j

i=1 E[f 2
i], B[j] =∑j

i=1 E[fi].

90

The ith tuple ti = (i, fi = {fi1, . . . ,fi`i}) of a value model tuple set τ specifies the

possible frequency values of item i. When instantiating a possible world W from τ , gi(W)

must be in the set {fi1, . . . , fi`i} or take a frequency of zero. Given this and Lemma 14, we

have

EW [gi] =
∑
W∈W

gi(W) Pr(W)

=
∑
v∈V

v Pr[gi = v] =

`i∑
j=1

fij Pr[gi = fij]

=

`i∑
j=1

fij Pr[fi = fij] = E[fi].

Similarly, we can show EW [g2
i] = E[f 2

i]. Hence, A,B arrays in equation (4.6) for the value

model can be rewritten as:

A[e] =
e∑
i=1

E[f 2
i], B[e] =

e∑
i=1

E[fi].

Without loss of generality, we assume β “data nodes (aka processes)” to consume the

input data chunks, and also m “aggregate nodes/processes” to produce the local optimal

B-bucket histograms. Each data chunk is processed by one data node in parallel. Each data

node produces m partitions, each of which corresponds to a sub-domain of size (roughly)

n/m, using a partition function h : [n]→ [m], h(i) = (di/dn/mee).

The `th data node processing chunk τ` reads in tuples in τ` in a streaming fashion. For

each incoming tuple (i, fi) found in τ`, it computes two values (E[fi],E[f 2
i]). It then writes

a key-value pair (i, (E[fi],E[f 2
i])) to the h(i)th partition. The h(i)th aggregate node will

collect the h(i)th partitions from all β data nodes, the union of which forms the h(i)th

sub-domain of the entire data.

Thus, the kth (k ∈ [1,m]) aggregate node will have all the key-value pairs (i, (E[fi],E[f 2
i]))

for all i ∈ [sk, ek] in the kth sub-domain, if item i exists in the database; otherwise, it simply

produces a (i, (0, 0)) pair for such i ∈ [sk, ek].

That said, the kth aggregate node can easily compute the Ak, Bk arrays for the kth sub-

domain using Lemma 15. It then uses the OPTHIST method on Ak, Bk to produce the kth

local optimal B-bucket histogram. Clearly, all m aggregate nodes can run independently

91

in parallel.

4.4.2 The Partition Phase in the Tuple Model

In the tuple model, the tuples needed to compute VarW [gi] and EW [gi] for each item i

are distributed over β tuple chunks. Hence, we rewrite equation (4.6) for computing A,B

arrays in the tuple model as follows:

Lemma 16. The A,B arrays in the tuple model can also be computed as:

A[j] =

j∑
i=1

(

β∑
`=1

VarW,`[gi] + (

β∑
`=1

EW,`[gi])
2) B[j] =

j∑
i=1

β∑
`=1

EW,`[gi],

where VarW,`[gi] =
∑

t∈τ` Pr[t = i](1− Pr[t = i]) and EW,`[gi] =
∑

t∈τ` Pr[t = i].

A similar procedure as that described for the value model could then be applied. The

difference is that the `th data node processing chunk τ` emits a key-value pair (i, (EW,`[gi],

VarW,`[gi])) instead, for each distinct item i from the union of all possible choices of all

tuples in τ`. Thus, the kth aggregate node will reconstruct Ak, Bk arrays according to

Lemma (16) and then use the OPTHIST method on Ak, Bk arrays to produce the local

optimal B-bucket histogram for the kth sub-domain in the partition phase.

4.4.3 Recursive PMERGE and Other Remarks

For RPMERGE, we carry out the partition phase for each model using the method from

Section 4.4.1 and Section 4.4.2, respectively. In the merge phase, we can easily invoke

multiple independent nodes/processes to run all merging steps in one iteration in parallel.

In the following, we denote the distributed and parallel PMERGE and RPMERGE methods

as parallel-PMERGE and parallel-RPMERGE, respectively.

4.5 Parallel-PMERGE with Synopsis
A paramount concern in distributed computation is the communication cost. The parallel-

PMERGE method may incur high communication cost for large domain size.

This cost is O(n) in the value model. Given a set τ of tuples in a value model database

with size N = |τ |, τ is stored in β distributed chunks in a DFS. Each tuple will produce a

key-value pair to be emitted by one of the data nodes. In the worst case N = n (one tuple

92

for each item of the domain), thus O(n) cost. On the other hand, this cost is O(βn) in the

tuple mode. The worst case is when possible choices from all tuples in every distributed

tuple chunk have covered all distinct items from the domain [n].

There are only O(Bm) bytes communicated in the merge phase of parallel-PMERGE

for both models, where every aggregate node sendsB buckets to a single node for merging.

Thus, the communication cost of parallel-PMERGE is dominated by the partition phase.

We present a novel synopsis to address this issue. The key idea is to approximate

the Ak, Bk arrays at the kth aggregate node (k ∈ [1,m]) with unbiased estimators Âk, B̂k

constructed by either samples or sketches sent from the data nodes. Since parallel-PMERGE

and parallel-RPMERGE share the same partition phase, hence, the analysis above and the

synopsis methods below apply to both methods.

4.5.1 Sampling Methods for the Value Model

4.5.1.1 The VS Method

One way of interpreting E[f 2
i] and E[fi] is treating each of them as a count of item i in

the arrays Ak and Bk, respectively. Then Ak[j] and Bk[j] in Lemma 15 can be interpreted

as the rank of j, i.e., the number of appearance of items from [sk, ek] that are less than

or equal to j in array Ak, Bk, respectively. Using this view, we show how to construct an

estimator B̂k[j] with the value model sampling method VS. The construction and results of

Âk[j] are similar.

Considering the `th data node that processes the `th tuple chunk τ`, we first define

T1(i, `) = E[f 2
i] and T2(i, `) = E[fi], respectively, if (i, fi) ∈ τ`; otherwise we assign

them as 0. We then define Ak,`, Bk,` as follows, for every k ∈ [1,m]:

Ak,`[j] =

j∑
i=sk

T1(i, `), Bk,`[j] =

j∑
i=sk

T2(i, `), for any j ∈ [sk, ek].

Using τ`, the `th data node can easily compute Ak,`, Bk,` locally for all k and j values.

It is easy to get the following results at the kth aggregate node for any j ∈ [sk, ek]:

Ak[j] =

β∑
`=1

Ak,`[j], Bk[j] =

β∑
`=1

Bk,`[j], for any k ∈ [1,m]. (4.13)

We view Bk,`[j] as the local rank of j from τ` at the `th data node. By (4.13), Bk[j] is

93

simply the global rank of j that equals the sum of all local ranks from β nodes. We also let

Mk =
∑ek

j=sk
E[fj].

For every tuple (i, fi) from τ`, data node ` unfolds (conceptually) E[fi] copies of i, and

samples each i independently with probability p = min{Θ(
√
β/εMk),Θ(1/ε2Mk)}. If a

copy of i is sampled, it is added to a sample set Sk,` where k = h(i), using the hash function

in Section 4.4.1. If ci copies of i are sampled, we add (i, 1), . . . , (i, ci) into Sk,`. The pairs

of values in Sk,` are sorted by the item values from the first term, and ties are broken by the

second term. Data node ` sends Sk,` to the kth aggregate node for k ∈ [1,m].

We define the rank of a pair (i, x) in Sk,` as the number of pairs ahead of it in Sk,`,

denoted as r((i, x)). For any j ∈ [sk, ek] and ` ∈ [1, β], aggregate node k computes an

estimator B̂k,`[j] for the local rank Bk,`[j] as: B̂k,`[j] = r((j, cj))/p + 1/p, if item j is

present in Sk,`.

If an item j ∈ [sk, ek] is not in Sk,`, let y be the predecessor of j in Sk,` in terms of item

values, then B̂k,`[j] = B̂k,`[y] + 1/p. If no predecessor exists, then B̂k,`[j] = 0.

It then estimates the global rank Bk[j] for j ∈ [sk, ek] as:

B̂k[j] =

β∑
`=1

B̂k,`[j]. (4.14)

Lemma 17. B̂k[j] in (4.14) is an unbiased estimator ofBk[j] and Var[B̂k[e]] isO((εMk)
2).

The communication cost is
∑

`,j p = O(min{√β/ε, 1/ε2}) for ` ∈ [1, β] and j ∈
[sk, ek] for aggregate node k in the worst case. Hence, the total communication cost in the

partition phase of PMERGE with VS is O(min{m√β/ε,m/ε2}). Note that {M1, . . . ,Mm}
can be easily precomputed in O(mβ) communication cost.

4.5.2 Sketching Methods for the Tuple Model

4.5.2.1 The TS (Tuple Model Sketching) Method

Observe that we can rewrite equations in Lemma 16 to get:

Ak[j] =

β∑
`=1

j∑
i=sk

VarW,`[gi] +

j∑
i=sk

(

β∑
`=1

EW,`[gi])
2Bk[j] =

β∑
`=1

j∑
i=sk

EW,`[gi]. (4.15)

We can view
∑j

i=sk
VarW,`[gi] and

∑j
i=sk

EW,`[gi] as a local rank of j in a separate

94

local array computed from τ`. Similarly, estimation of the global rank, i.e., the first term of

Ak[j] and Bk[j] in (4.15), can be addressed by the VS method.

The challenge is to approximate
∑j

i=sk
(EW [gi])

2, the second term of Ak[j] in (4.15). It

is the second frequency moment (F2) of {EW [gsk], . . . ,EW [gj]}. Given that each EW [gi] is

a distributed sum and j varies over [sk, ek], we actually need a distributed method to answer

a dynamic F2 (energy) range query approximately on a sub-domain [sk, ek].

The key idea is to build AMS sketches [61] for a set of intervals from a carefully

constructed binary decomposition on each sub-domain locally at every data node.

For a sub-domain [sk, ek] at the kth aggregate node, let M ′′
k =

∑ek
i=sk

(EW [gi])
2. The

leaf-level of the binary decomposition partitions [sk, ek] into 1/ε intervals, where each

interval’s F2 equals εM ′′
k . An index-level (recursively) concatenates every two consecutive

intervals from the level below to form a new interval (thus, the height of this binary

decomposition is O(logd1
ε
e). Figure 4.2(a) illustrates this idea.

Once the (1
ε
− 1) partition boundaries {αk,1, . . . , αk, 1

ε
−1} at the leaf-level were found,

aggregate node k sends them to all β data nodes. Each data node builds a set of AMS

sketches, one for each interval from the binary decomposition (of all levels), over its local

data. We denote it as the local Q-AMS sketch (Queryable-AMS).

In other words, data node ` builds these AMS sketches using {EW,`[gsk], . . . ,EW,`[gek]}
as shown in Figure 4.2(b). Then data node ` sends its Q-AMS sketch for [sk, ek] to the kth

aggregate node, which combines β local Q-AMS sketches into a global Q-AMS sketch

for the kth sub-domain [sk, ek], leveraging on the linearly-mergeable property of each

individual AMS sketch [36,61]. The global Q-AMS sketch is equivalent to a Q-AMS sketch

s e

F2 = εM ′′
k

F2 = 2εM ′′
k

F2 = M ′′
k

EW [gαk,1]
EW [gsk] EW [gek] EW,ℓ[gsk] EW,ℓ[gek]· · · · · ·

F2 = εM ′′
k

EW [gα
k, 1

ε
−1

] EW,ℓ[gαk,1]EW,ℓ[gα
k, 1

ε
−1

]

F2 = 2εM ′′
k

· · ·
· · ·
· · ·

AMS

· · ·
· · ·
· · ·
AMS

AMS

(a) (b)

Figure 4.2: Binary decomposition and local Q-AMS. (a) binary decomposition. (b) local
Q-AMS.

95

that is built from {EW [gsk], . . . , EW [gek]} directly; recall that EW [gi] =
∑β

`=1 EW,`[gi].

For a query range (s, e), sk ≤ s < e ≤ ek, we find the intervals that form the canonical

cover of (s, e) in the global Q-AMS sketch, and approximate (EW [gs])
2 + · · ·+ (EW [ge])

2

by the summation of the F2 approximations (from the AMS sketches) of these intervals.

If (s, e) is not properly aligned with an interval at the leaf-level of an Q-AMS sketch, we

snap s and/or e to the nearest interval end point.

The error from the snapping operation in the leaf-level is at most O(εM ′′
k). By the

property of the AMS sketch [61], the approximation error of any AMS sketch in the global

Q-AMS sketch is at most O(εF2(I)), with at least probability (1 − δ), for an interval I

covered by that AMS sketch. Also F2(I) ≤ M ′′
k for any I in the global Q-AMS sketch.

Furthermore, there are at most O(log 1
ε
) intervals in a canonical cover since the height of

the tree in Q-AMS is logd1
ε
e. Hence, the approximation error for any range F2 query in the

global Q-AMS sketch is O(εM ′′
k log 1

ε
) with probability at least (1 − δ), for ε, δ ∈ (0, 1)

used in the construction of the Q-AMS sketch. Finally, the size of an AMS sketch is

O(1
ε2

log 1
δ
) [36, 61]. Thus, we can show that:

Lemma 18. Given the partition boundaries {αk,1, . . . , αk, 1
ε
−1} for a sub-domain [sk, ek],

for any s, e such that sk ≤ s < e ≤ ek, Q-AMS can approximate (EW [gs])
2+(EW [gs+1])2+

· · ·+ (EW [ge])
2 within an additive error of O(εM ′′

k log 1
ε
) with probability ≥ (1− δ) using

space of O(1
ε3

log 1
δ
).

Each aggregate node needs to send (1
ε
− 1) values per sub-domain to all β data nodes,

and there are m sub-domains in total. So the communication cost of this step is O(mβ/ε).

Then, each data node needs to send outm local Q-AMS sketches, one for each sub-domain.

The communication cost of this step is O(mβ
ε3

log 1
δ
). Hence, the total communication is

O(mβ
ε3

log 1
δ
), which caters for the worst-case analysis.

But the above method and analysis depend on the calculation of the partition boundaries

{αk,1, . . . , αk, 1
ε
−1} for any sub-domain [sk, ek], for k ∈ [1,m]. To calculate this exactly we

need {EW [gsk], . . . ,EW [gek]} at the kth aggregate node, which obviously are not available

(unless using O(nβ) total communication for β data nodes for all sub-domains, which

defeats our purpose). Fortunately, given that VS can estimate each Bk[j] with an ε error

efficiently, each EW [gi] can be estimated as (B̂k[i]− B̂k[i− 1]) by (4.15).

96

4.6 Experiments
We implemented all methods in Java. We test OPTHIST, EF-Histogram, PMERGE,

and RPMERGE methods in a centralized environment without parallelism, and parallel-

PMERGE and parallel-RPMERGE methods (with and without synopsis) in distributed and

parallel settings. The centralized experiments were executed over a Linux machine running

a single Intel i7 3.2GHz cpu, with 6GB of memory and 1TB disk space. We then used

MapReduce as the distributed and parallel programming framework and tested all methods

in a Hadoop cluster with 17 machines (of the above configuration) running Hadoop 1.0.3.

The default HDFS (Hadoop distributed file system) chunk size is 64MB.

4.6.1 Datasets and Setup

We executed our experiments using the WorldCup dataset and the SAMOS dataset. The

WorldCup dataset is the access logs of 92 days from the 1998 World Cup servers, composed

of 1.35 billion records. Each record consists of client id, file type, and time of access etc.

We choose the client id as the item domain, which has a maximum possible domain size of

2, 769, 184. We vary the domain size of client ids from 10, 000 up to 1, 000, 000. Records

in the entire access log are divided into continuous but disjoint groups, in terms of access

time. We generate a discrete frequency distribution pdf for items within each grouping

interval and assign the pdf to a tuple in the tuple model. For the value model, we derive

a discrete pdf for each client id based on its frequency distribution in the whole log with

respect to 13 distinct requested file types and assign the pdf to the tuple with that client id

in the value model. The SAMOS dataset is composed of 11.8 million records of various

atmospheric measurements from a research vessel and we care about the temperature field,

which has a domain size of about 10,000 (by counting two digits after the decimal point of

a fraction reading). In a similar way, we form the tuple model and value model data on the

SAMOS data.

The default dataset is WorldCup. To accommodate the limited scalability of OPTHIST,

we initially vary the value of n from 10, 000 up to 200, 000 and test the effects of different

parameters. The default values of parameters are B = 400 and n = 100, 000. For

RPMERGE, the recursion depth is ` = 2. We set m = 16 and m = 6 as the default

values for PMERGE and RPMERGE, respectively. We then explore the scalability of our

97

methods, up to a domain size of n = 1, 000, 000. The running time of all methods is only

linearly dependent onN , number of tuples in a database. Hence, we did not show the effect

of N ; all reported running times are already start-to-end wall-clock time.

In each experiment, unless otherwise specified, we vary the value of one parameter,

while using the default values of other parameters. The approximation ratios of our approx-

imate methods were calculated with respect to the optimal B-buckets histogram produced

by OPTHIST [13, 14].

4.6.2 Centralized Environment

4.6.2.1 Effect of m

Figure 4.3 shows the running time and approximation ratio when we vary m from 4 to

20 on the tuple model datasets. Recall that PMERGE will produce m sub-domains, while

RPMERGE will produce m` sub-domains, in the partition phase. Hence, RPMERGE gives

the same number of sub-domains using a (much) smaller m value. For both methods,

a larger m value will reduce the size of each sub-domain, hence, reducing the runtime

of the OPTHIST method on each sub-domain and the overall cost of the partition phase.

But a larger m value increases the cost of the merge phase. As a result, we expect to

see a sweet point of the overall running time across all m values. Figure 4.3(a) reflects

exactly this trend and the same trend holds on the value model dataset as well. They

consistently show that m = 16 and m = 6 provide the best running time for PMERGE and

RPMERGE, respectively. Note that this sweet point can be analytically analyzed, by taking

the derivative of the cost function (partition phase + merge phase) with respect to m.

Figure 4.3(b) shows their approximation ratios on the tuple model dataset. The ap-

proximation quality of both methods fluctuates slightly with respect to m; but they both

produce B-buckets histograms of extremely high quality with approximation ratio very

close to 1. The quality is much better than their worst-case theoretical bounds, as indicated

by Theorems 8 and 9, respectively.

The results of varying m from the value model are very similar, and have been omitted

for brevity. Also, we have investigated the results of varying the recursive depth ` from 1

to 3. They consistently show that ` = 2 achieves a nice balance between running time and

approximation quality. For brevity, we ommited the detailed results.

98

4 6 8 12 16 20
10

2

10
3

10
4

value of m

T
im

e
(s
ec
o
n
d
s)

PMerge RPMerge

(a)

4 6 8 12 16 20

1

1.01

1.02

1.03

value of m

A
p
p
ro
x
im

a
ti
o
n
ra
ti
o

PMerge RPMerge

(b)

Figure 4.3: Vary m on the tuple model. (a) m vs running time. (b) m vs approximation
ratio.

4.6.2.2 Effect of n

Figure 4.4 shows the results with respect to n on both value and tuple models. In both

models, the running time of OPTHIST increases quadratically with respect to n. In contrast,

both PMERGE and RPMERGE are much more scalable, and have outperformed OPTHIST

by at least one to two orders of magnitude in all cases. For example, in Figure 4.4(b), when

n = 100, 000, OPTHIST took nearly 14 hours while RPMERGE took only 861 seconds.

RPMERGE further improves the running time of PMERGE by about 2-3 times and is the

most efficient method.

Meanwhile, both PMERGE and RPMERGE achieve close to 1 approximation ratios

across all n values in Figures 4.4(c) and Figure 4.4(d). The approximation quality gets

better (approaching optimal) as n increases on both models.

4.6.2.3 Effect of B

We vary the number of buckets from 100 to 800 in Figure 4.5. Clearly, RPMERGE

outperforms OPTHIST by two orders of magnitude in running time in both models, as seen

in Figures 4.5(a) and 4.5(b). Figures 4.5(c) and 4.5(d) show the approximation ratios in

each model, respectively. The approximation ratio of both PMERGE and RPMERGE slightly

increases when B increases on both models. Nevertheless, the quality of both methods are

still excellent, remaining very close to the optimal results in all cases.

99

10 50 100 150 200

10
2

10
4

10
6

domain size: n (×103)

T
im

e
(s
ec
o
n
d
s)

OptHist PMerge

RPMerge

(a)

10 50 100 150 200

10
2

10
4

10
6

domain size: n (×103)

T
im

e
(s
ec
o
n
d
s)

OptHist PMerge

RPMerge

(b)

10 50 100 150 200

1

1.02

1.04

1.06

1.08

domain size: n (×103)

A
p
p
ro
x
im

a
ti
o
n
ra
ti
o

PMerge RPMerge

(c)

10 50 100 150 200

1

1.0001

1.0002

1.0003

1.0004

domain size: n (×103)

A
p
p
ro
x
im

a
ti
o
n
ra
ti
o

PMerge RPMerge

(d)

Figure 4.4: Approximation ratio and running time: vary n. (a) Tuple model: running
time. (b) Value model: running time. (c) Tuple model: approximation ratio. (d) Value

model: approximation ratio.

4.6.2.4 Comparison with the Baseline

Lastly, we compare the running time and approximation ratios of our methods against

the baseline EF-Histogram method (with ε = 0.1, ε = 0.05 and ε = 0.01, respectively) on

two datasets. Our methods used their default parameter values on the WorldCup dataset.

For the SAMOS dataset, we set n = 10, 000 and B = 100. Clearly, small ε values do help

improve the approximation quality of EF-Histogram, as shown in Figure 4.6(b) and Figure

4.6(d). But our methods have provided almost the same approximation quality on both

datasets, while offering worst-case bounds in theory as well. Note that the EF-Histogram

only provides the (1 + ε) approximation bound with respect to the B-buckets histogram on

expected frequencies, but not on the probabilistic histograms.

Meanwhile, the running time of the EF-Histogram increases significantly (it is actually

quadratic to the inverse of ε value, i.e., 1/ε2), especially on the much larger WorldCup

dataset. In all cases our best centralized method, RPMERGE, has significantly outper-

100

100 200 400 600 800

10
2

10
4

number of buckets: B

T
im

e
(s
ec
o
n
d
s)

OptHist PMerge

RPMerge

(a)

100 200 400 600 800

10
2

10
4

10
6

number of buckets: B

T
im

e
(s
ec
o
n
d
s)

OptHist PMerge

RPMerge

(b)

100 200 400 600 800

1

1.01

1.02

1.03

1.04

1.05

number of buckets: B

A
p
p
ro
x
im

a
ti
o
n
ra
ti
o

PMerge RPMerge

(c)

100 200 400 600 800

1

1.0001

1.0002

1.0003

number of buckets: B

A
p
p
ro
x
im

a
ti
o
n
ra
ti
o

PMerge RPMerge

(d)

Figure 4.5: Approximation ratio and running time: vary B. (a) Tuple model: running
time. (b) Value model: running time. (c) Tuple model: approximation ratio. (d) Value

model: approximation ratio.

formed the EF-Histogram, as shown in Figure 4.6(a) and Figure 4.6(c). Furthermore, the

distributed and parallel fashion of PMERGE and RPMERGE further improves the efficiency

of these methods, as shown next.

4.6.3 Distributed and Parallel Setting

4.6.3.1 Effect of Size of the Cluster

Figure 4.7 shows the running time of different methods when we vary the number of

slave nodes in the cluster from 4 to 16. For reference, we have included the running time

of centralized PMERGE, and RPMERGE. We can see a (nearly) linear dependency between

the running time and the number of slave nodes for both parallel-PMERGE and parallel-

RPMERGE methods. The speed up for both methods is not as much as the increasing factor

of the number of slave nodes used. The reason is that Hadoop always includes some extra

overhead such as job launching and tasks shuffling and IO cost of intermediate HDFS files,

which reduces the overall gain from parallelism.

101

10
2

10
4

10
6

10
8

T
im

e

Tuple Model Value Model

PMerge
RPMerge
EF-Histogram-0.1
EF-Histogram-0.05
EF-Histogram-0.01

(a)

1

1.01

1.02

A
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

Tuple Model Value Model

PMerge
RPMerge
EF-Histogram-0.1
EF-Histogram-0.05
EF-Histogram-0.01

(b)

2

4

6

8

10

T
im

e

Tuple Model Value Model

PMerge
RPMerge
EF-Histogram-0.1
EF-Histogram-0.05
EF-Histogram-0.01

(c)

1

1.0002

1.0004

A
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

Tuple Model Value Model

PMerge
RPMerge
EF-Histogram-0.1
EF-Histogram-0.05
EF-Histogram-0.01

(d)

Figure 4.6: Comparison against the baseline method. (a) Running time: WorldCup. (b)
Approximation ratio: WorldCup. (c) Running time: SAMOS. (d) Approximation ratio:

SAMOS.

4 8 12 16
100

300

500

700

900

number of slave nodes

T
im

e
(s
ec
o
n
d
s)

PMerge RPMerge

Parallel-PMerge Parallel-RPMerge

(a)

4 8 12 16
100

1000

2000

3000

number of slave nodes

T
im

e
(s
ec
o
n
d
s)

PMerge RPMerge

Parallel-PMerge Parallel-RPMerge

(b)

Figure 4.7: Time: vary number of slave nodes. (a) Tuple model. (b) Value model.

102

4.6.3.2 Scalability

Next, we investigate the scalability of RPMERGE (the best centralized method), parallel-

PMERGE, and parallel-RPMERGE on very large probabilistic datasets. We used all 16 slave

nodes in the cluster, and varied either the values of n from 200,000 to 1000,000 when

B = 400, or the values of B from 100 to 800 when n = 600, 000. We omit OPTHIST and

PMERGE methods in this study, since they are too expensive compared to these methods.

Figures 4.8(a) and 4.8(b) show that with recursive merging RPMERGE can even outper-

form parallel-PMERGE as n increases. But clearly parallel-RPMERGE is the best method

and improves the running time of RPMERGE by 8 times on the value model and 4 times

on the tuple model when n = 1000, 000. It becomes an order of magnitude faster than

parallel-PMERGE in both models when n increases.

Figures 4.8(c) and 4.8(d) show the running time when we vary B and fix n = 600, 000.

Running time of all methods increase with larger B values. This is because large B values

200 400 600 800 1000
10

2

10
3

10
4

10
5

domain size: n (×103)

T
im

e
(s
ec
o
n
d
s)

RPMerge Parallel-PMerge

Parallel-RPMerge

(a)

200 400 600 800 1000
10

2

10
3

10
4

10
5

domain size: n (×103)

T
im

e
(×

1
0
2
se
co
n
d
s)

RPMerge Parallel-PMerge

Parallel-RPMerge

(b)

100 200 400 600 800
10

2

10
3

10
4

number of buckets: B

T
im

e
(s
ec
o
n
d
s)

RPMerge Parallel-PMerge

Parallel-RPMerge

(c)

100 200 400 600 800
10

2

10
3

10
4

10
5

number of buckets: B

T
im

e
(s
ec
o
n
d
s)

RPMerge Parallel-PMerge

Parallel-RPMerge

(d)

Figure 4.8: Scalability of the parallel approximate methods. (a) Tuple model: vary n. (b)
Value model: vary n. (c) Tuple model: vary B. (d) Value model: vary B.

103

increase the computation cost of the merging step, especially for recursive PMERGE. Nev-

ertheless, parallel-RPMERGE significantly outperforms both parallel-PMERGE and RP-

MERGE in all cases on both models.

4.6.4 Distributed and Parallel Synopsis

Lastly, we study the communication saving and approximation quality of parallel-

PMERGE and parallel-RPMERGE with synopsis. The default values are n = 600, 000,

B = 400 and ε = 0.002 for VS and ε = 0.1 for TS. We have omitted the results for

the running time of Parallel-PMERGE and Parallel-RPMERGE with synopsis, since they

are very close to that of Parallel-PMERGE and Parallel-RPMERGE, respectively (since the

running time of all these methods are dominated by solving the DP instances in the partition

and merging phases).

4.6.4.1 Comparing Effects of Synopsis in Both Models

Here, we use parallel-PMERGES (parallel-RPMERGES) to denote a parallel-PMERGE

(parallel-RPMERGE) method with a synopsis in either model. In value model, the synopsis

is VS; and in tuple model, the synopsis is TS.

Figure 4.9(a) shows that parallel-PMERGES outperforms parallel-PMERGE and parallel-

RPMERGE by more than an order of magnitude in communication cost for both models.

Parallel-RPMERGES has much higher communication cost than parallel-PMERGES since

the sampling cost in the partition phase has increased by an order of m using m2 sub-

domains (when ` = 2). Nevertheless, it still saves about 2-3 times of communication cost

compared to that of parallel-PMERGE and parallel-RPMERGE for both models.

Figure 4.9(b) shows that parallel-PMERGES and parallel-RPMERGES have excellent

approximation quality on the value model (very close to optimal histograms). They give

less optimal approximations in the tuple model, since Q-AMS in the TS method has higher

variances in its estimated A,B arrays in the tuple model, compared to the estimations on

A,B arrays given by VS in the value model.

The communication cost of all of our synopsis methods are independent of n, whereas

the communication cost of both parallel-PMERGE and parallel-RPMERGE are linearly de-

pendent on n, as shown from our analysis in Section 4.5. This means the synopsis methods

introduce even more savings when domain size increases.

104

10
5

10
6

10
7

C
o
m

m
u
n
ic

a
ti
o
n
 (

b
y
te

s
)

Value Model Tuple Model

Parallel-PMerge
Parallel-RPMerge
Parallel-PMergeS
Parallel-RPMergeS

(a)

1

1.5

2

2.5

A
p

p
ro

x
im

a
ti
o

n
 r

a
ti
o

Value Model Tuple Model

Parallel-PMerge
Parallel-RPMerge
Parallel-PMergeS
Parallel-RPMergeS

(b)

Figure 4.9: Effects of using synopsis. (a) Communication. (b) Approximation ratio.

4.7 Related Work
We have reviewed the most relevant related work in Section 4.2. That said, extensive

efforts were devoted to constructing histograms in deterministic data, motivated by the

early work in [42, 43, 57, 67]. An extensive survey for histograms on deterministic data is

in [41]. There are also numerous efforts on modeling, querying, and mining uncertain data;

see [1,5,77,80]. A good histogram for large probabilistic data is very useful for many such

operations, e.g, finding frequent items, patterns, and itemsets [1, 5, 80, 90].

However, little was known about histograms over probabilistic data until three recent

studies [12–14]. Cormode and Garofalakis have extended the bucket-based histogram and

the wavelet histogram to probabilistic data by seeking to minimize the expectation of bucket

errors over all possible worlds [13, 14], the detail of which can be found in Section 4.2.

Cormode and Deligiannakis then extend the probabilistic histogram definition to allowing a

bucket with a pdf representation rather than a single constant value [12]. A main limitation

of these studies is the lack of scalability, when the domain size of the probabilistic data

increases.

Allowing some approximations in histogram construction is also an important subject

on deterministic data, e.g., [35, 78, 79] and many others. One possible choice is to run

these methods on expected frequencies of all items, and simply use the output as an ap-

proximation to our histogram. But the theoretical approximation bound with respect to

the deterministic data (in our case, the expected frequencies of all items) does not carry

over to probabilistic histogram definition with respect to n random variables (frequency

distributions of every item i). To the best of our knowledge, the (1 + ε) approximation

105

from [79] is the best method with theoretical guarantees for histograms over deterministic

data (in fact, to the best of our knowledge, other methods are mostly heuristic-based

approaches). We did explore this approach as a baseline method in our study.

4.8 Conclusion
In this work, we designed novel approximation methods for constructing optimal his-

tograms on large probabilistic data. Our approximations run much faster and have much

better scalability than the state-of-the-art. The quality of the approximate histograms are

almost as good as the optimal histograms in practice. We also introduced novel tech-

niques to extend our methods to distributed and parallel settings, which further improve the

scalability. Interesting future work include but not limited to how to extend our study to

probabilistic histograms with pdf bucket representatives [12] and how to handle histograms

of other error metrics.

CHAPTER 5

OTHER WORKS

The theme in this dissertation mainly focuses on efficient and scalable methods for ex-

ploring distributed data. Apart from this theme, we have also conducted research for other

problems, which include (I) spatial approximate string search; (II) multiple approximate

keyword routing (MAKR) in GIS data; (III) ranking large temporal data. The main ideas

for these works are summarized as follows.

We have studied the problem of spatial approximate string search [31]. Basically,

we investigated range queries augmented with a string similarity search predicate in both

Euclidean space and road networks. In Euclidean space, we proposed an approximate so-

lution, the MHR-tree, a customized R-tree which embeds min-wise signatures in each node

of the R-tree. The min-wise signature for an index node u keeps a concise representation

of the union of q-grams from strings under the sub-tree of u. Therefore, we can analyze the

pruning functionality of such signatures based on the set resemblance between the query

string and the q-grams from the sub-trees of index nodes. We also discuss how to estimate

the selectivity of a spatial approximate string query in Euclidean space. For queries on road

networks, we proposed a novel exact method, RSASSOL, which significantly outperforms

the baseline algorithm in practice. The RSASSOL combines the q-gram based inverted lists

and the reference nodes based pruning.

We also have conducted research to investigate the shortest path search augmented with

multiple-approximate-keyword similarity constraint [7]. We proposed two progressive path

expansion and refinement algorithms which build up partial candidate paths progressively

and refine them until the complete, exact shortest path is guaranteed. We show that the

MAKR problem is NP-hard. Thus, we proposed several approximate methods and one

of them gives a k approximation ratio for a query set with k keywords. Our approximate

methods gives more scalable performance and nice approximation quality in practice.

107

We investigated aggregate top-k queries on large temporal data in [47]. Objects with

top-k highest scores of specified aggregate function over a query range are returned. Our

range top-k queries are more flexible and meaningful than instant top-k queries [30]. Par-

ticularly, each temporal object is composed by a sequence of line segments to approximate

any temporal function in our work. We proposed novel exact methods using B-tree forest

and interval tree. We also proposed approximate methods by building indexing structures

on carefully constructing break points, where aggregate scores between each consecutive

points has equal aggregation scores (except the last one). Therefore, we can snap query

range to nearest break-point interval and return its top-k list as an approximate result.

CHAPTER 6

CONCLUSION

In this dissertation, we have studied several emerging problems in exploring and man-

aging distributed data with regards to addressing challenges from uncertainty, large data

size, and distributed data sources to support scalable online and offline data exploration

tasks.

One observation is that uncertainty becomes very common in modern real-world ap-

plications when massive amounts of data are generated. Recent research on probabilistic

data management aims to incorporate uncertainty and probabilistic data as “first-class”

citizens in the DBMS. Also, handling data uncertainty correctly and efficiently becomes

critical for data exploration tasks. To this end, we have revisited the classic problem of

threshold monitoring to work on distributed probabilistic data. Correspondingly, we use a

probabilistic threshold which contains both score threshold and probability threshold. We

proposed exact methods of testing threshold violations for both discrete and continuous

probability distribution functions (pdf). We optimized threshold check using sophisticated

combinations of tail bounds and combined them with techniques for threshold monitor-

ing on deterministic data to improve communication and computation cost. Further, we

proposed several sampling methods to estimate threshold crossing to further improve per-

formance without sacrificing estimation quality. A follow-up problem we have addressed in

this dissertation is how to continuous tracking functions of distributed data, instead of only

knowing the threshold crossing information in the monitoring problem. We first investigate

the online tracking on a chain model, where a tracker is connected to an observer through

several relay nodes. Then, we extended online tracking for the max function to “broom”

tree model and general-tree model. Our methods can be easily adjusted to track φ-quantile,

e.g., median, on the broom model. Data summary has received increasing concerns for

handling large dataset for many applications, e.g., exploring data distributions, identifying

109

frequent item sets, etc. Thus, we studied scalable histograms on large probabilistic data

leveraging a general partition-merge principle. We further mitigate scalability bottleneck

by extending our methods to distributed and parallel settings. We also proposed synopsis

based methods to find a trade-off between communication and histogram approximation

quality.

In this dissertation, our proposed techniques can be applied to a more general setting for

distributed and parallel computation. Interesting future work includes exploring monitoring

and tracking more complicate functions and extending our techniques to histograms with

other error metrics or pdf bucket representatives.

REFERENCES

[1] AGGARWAL, C. C., LI, Y., WANG, J., AND WANG, J. Frequent pattern mining with
uncertain data. In SIGKDD (2009).

[2] AGRAWAL, P., BENJELLOUN, O., SARMA, A. D., HAYWORTH, C., NABAR, S.,
SUGIHARA, T., AND WIDOM, J. Trio: A system for data, uncertainty, and lineage.
In VLDB (2006).

[3] BABCOCK, B., AND OLSTON, C. Distributed top-k monitoring. In SIGMOD (2003),
pp. 28–39.

[4] BERESFORD, A. R., AND STAJANO, F. Location privacy in pervasive computing.
IEEE Pervasive Computing 2, 1 (2003), 46–55.

[5] BERNECKER, T., KRIEGEL, H.-P., RENZ, M., VERHEIN, F., AND ZUEFLE, A.
Probabilistic frequent itemset mining in uncertain databases. In SIGKDD (2009).

[6] BILLINGSLEY, P. Probability and measure. Wiley-Interscience, 1995.

[7] BIN YAO, M. T., AND LI, F. Multi-approximate-keyword routing in gis data. In
SIGSPATIAL (2011).

[8] CHANDRAMOULI, B., NATH, S., AND ZHOU, W. Supporting distributed feed-
following apps over edge devices. PVLDB 6, 13 (2013), 1570–1581.

[9] CHANDRAMOULI, B., PHILLIPS, J., AND YANG, J. Value-based notification condi-
tions in large-scale publish/subscribe systems. In VLDB (2007), pp. 878–889.

[10] CHENG, R., KALASHNIKOV, D., AND PRABHAKAR, S. Evaluating probabilistic
queries over imprecise data. In SIGMOD (2003).

[11] CHENG, R., XIA, Y., PRABHAKAR, S., SHAH, R., AND VITTER, J. S. Efficient
indexing methods for probabilistic threshold queries over uncertain data. In VLDB
(2004).

[12] CORMODE, G., AND DELIGIANNAKIS, A. Probabilistic histograms for probabilistic
data. In VLDB (2009).

[13] CORMODE, G., AND GAROFALAKIS, M. Histograms and wavelets on probabilistic
data. In ICDE (2009).

[14] CORMODE, G., AND GAROFALAKIS, M. Histograms and wavelets on probabilistic
data. IEEE TKDE 22, 8 (2010), 1142–1157.

[15] CORMODE, G., AND GAROFALAKIS, M. N. Sketching streams through the net:
Distributed approximate query tracking. In VLDB (2005), pp. 13–24.

111

[16] CORMODE, G., AND GAROFALAKIS, M. N. Streaming in a connected world:
querying and tracking distributed data streams. In EDBT (2008).

[17] CORMODE, G., GAROFALAKIS, M. N., MUTHUKRISHNAN, S., AND RASTOGI,
R. Holistic aggregates in a networked world: Distributed tracking of approximate
quantiles. In SIGMOD Conference (2005), pp. 25–36.

[18] CORMODE, G., MUTHUKRISHNAN, S., AND YI, K. Algorithms for distributed
functional monitoring. In SODA (2008).

[19] CORMODE, G., MUTHUKRISHNAN, S., AND YI, K. Algorithms for distributed
functional monitoring. ACM Transactions on Algorithms 7, 2 (2011), 21.

[20] CORMODE, G., AND YI, K. Tracking distributed aggregates over time-based sliding
windows. In PODC (2011), pp. 213–214.

[21] CORMODE, G., AND YI, K. Tracking distributed aggregates over time-based sliding
windows. In SSDBM (2012), pp. 416–430.

[22] DALVI, N., AND SUCIU, D. Efficient query evaluation on probabilistic databases. In
VLDB (2004).

[23] DALVI, N., AND SUCIU, D. Efficient query evaluation on probabilistic databases. In
VLDB (2004).

[24] DESHPANDE, A., GUESTRIN, C., AND MADDEN, S. Using probabilistic models for
data management in acquisitional environments. In CIDR (2005).

[25] DESHPANDE, A., GUESTRIN, C., MADDEN, S., HELLERSTEIN, J., AND HONG,
W. Model-driven data acquisition in sensor networks. In VLDB (2004).

[26] DESHPANDE, A., GUESTRIN, C., MADDEN, S., HELLERSTEIN, J. M., AND HONG,
W. Model-driven data acquisition in sensor networks. In VLDB (2004), pp. 588–599.

[27] DIAO, Y., RIZVI, S., AND FRANKLIN, M. J. Towards an internet-scale xml
dissemination service. In VLDB (2004), pp. 612–623.

[28] DONG, X., HALEVY, A. Y., AND YU, C. Data integration with uncertainty. In
VLDB (2007).

[29] FAGIN, R., LOTEM, A., AND NAOR, M. Optimal aggregation algorithms for
middleware. J. Comput. Syst. Sci. 66, 4 (2003), 614–656.

[30] FEIFEI LI, K. Y., AND LE, W. Top-k queries on temporal data. The VLDB Journal-
The International Journal on Very Large Data Bases 19, 5 (2010), 715–733.

[31] FEIFEI LI, BING YAO, M. T., AND HADJIELEFTHERIOU, M. Spatial approximate
string search. TKDE 25, 6 (2013), 1394–1409.

[32] GAROFALAKIS, M. N., KEREN, D., AND SAMOLADAS, V. Sketch-based geometric
monitoring of distributed stream queries. PVLDB 6, 10 (2013), 937–948.

112

[33] GE, T., GRABINER, D., AND ZDONIK, S. B. Monte carlo query processing of
uncertain multidimensional array data. In ICDE (2011).

[34] GIATRAKOS, N., DELIGIANNAKIS, A., GAROFALAKIS, M. N., SHARFMAN, I.,
AND SCHUSTER, A. Prediction-based geometric monitoring over distributed data
streams. In SIGMOD (2012), pp. 265–276.

[35] GIBBONS, P. B., MATIAS, Y., AND POOSALA, V. Fast incremental maintenance of
approximate histograms. In VLDB (1997).

[36] GRAHAM CORMODE, M. G., AND SACHARIDIS, D. Fast approximate wavelet
tracking on streams. In EDBT (2006).

[37] GRUENWALD, L., CHOK, H., AND ABOUKHAMIS, M. Using data mining to
estimate missing sensor data. In ICDMW (2007).

[38] HUA, M., AND PEI, J. Continuously monitoring top-k uncertain data streams: a
probabilistic threshold method. DPD 26, 1 (2009), 29–65.

[39] HUANG, L., GAROFALAKIS, M., JOSEPH, A. D., AND TAFT, N. Communication-
efficient tracking of distributed cumulative triggers. In ICDCS (2007).

[40] HUANG, Z., YI, K., AND ZHANG, Q. Randomized algorithms for tracking dis-
tributed count, frequencies, and ranks. In PODS (2012), pp. 295–306.

[41] IOANNIDIS, Y. E. The history of histograms. In VLDB (2003).

[42] IOANNIDIS, Y. E., AND POOSALA, V. Balancing histogram optimality and practi-
cality for query result size estimation. In SIGMOD (1995).

[43] JAGADISH, H. V., KOUDAS, N., MUTHUKRISHNAN, S., POOSALA, V., SEVCIK,
K., AND SUEL, T. Optimal histograms with quality guarantees. In VLDB (1998).

[44] JAMPANI, R., XU, F., WU, M., PEREZ, L. L., JERMAINE, C. M., AND HAAS, P. J.
MCDB: a monte carlo approach to managing uncertain data. In SIGMOD (2008).

[45] JAYRAM, T. S., KALE, S., AND VEE, E. Efficient aggregation algorithms for
probabilistic data. In SODA (2007).

[46] JAYRAM, T. S., MCGREGOR, A., MUTHUKRISHNAN, S., AND VEE, E. Estimating
statistical aggregates on probabilistic data streams. In PODS (2007).

[47] JEFFREY JESTES, JEFF M. PHILLIPS, F. L., AND TANG, M. Ranking large temporal
data. In VLDB (2012).

[48] JEYASHANKER, S., KASHYAP, S., RASTOGI, R., AND SHUKLA, P. Efficient
constraint monitoring using adaptive thresholds. In ICDE (2008).

[49] JIN, C., YI, K., CHEN, L., YU, J. X., AND LIN, X. Sliding-window top-k queries
on uncertain streams. In VLDB (2008).

[50] KANAGAL, B., AND DESHPANDE, A. Online filtering, smoothing and probabilistic
modeling of streaming data. In ICDE (2008).

113

[51] KASHYAP, S. R., RAMAMIRTHAM, J., RASTOGI, R., AND SHUKLA, P. Efficient
constraint monitoring using adaptive thresholds. In ICDE (2008), pp. 526–535.

[52] KERALAPURA, R., CORMODE, G., AND RAMAMIRTHAM, J. Communication
efficient distributed monitoring of thresholded count. In SIGMOD (2006).

[53] KERALAPURA, R., CORMODE, G., AND RAMAMIRTHAM, J. Communication-
efficient distributed monitoring of thresholded counts. In SIGMOD Conference
(2006), pp. 289–300.

[54] LI, F., YI, K., AND JESTES, J. Ranking distributed probabilistic data. In SIGMOD
(2009).

[55] MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND HONG, W. Tinydb:
an acquisitional query processing system for sensor networks. ACM Trans. Database
Syst. 30, 1 (2005), 122–173.

[56] MANJHI, A., SHKAPENYUK, V., DHAMDHERE, K., AND OLSTON, C. Finding
(recently) frequent items in distributed data streams. In ICDE (2005), pp. 767–778.

[57] MATIAS, Y., VITTER, J. S., AND WANG, M. Wavelet-based histograms for selec-
tivity estimation. In SIGMOD (1998).

[58] MOTWANI, R., AND RAGHAVAN, P. Randomized Algorithms. Cambridge Univer-
sity Press, 1995.

[59] MOTWANI, R., AND RAGHAVAN, P. Randomized Algorithms. Cambridge Univer-
sity Press, 1995.

[60] MURTHY, R., IKEDA, R., AND WIDOM, J. Making aggregation work in uncertain
and probabilistic databases. TKDE 23, 8 (2011), 1261–1273.

[61] NOGA ALON, Y. M., AND SZEGEDY, M. The space complexity of approximating
the frequency moments. In STOC (1996).

[62] OLSTON, C., JIANG, J., AND WIDOM, J. Adaptive filters for continuous queries
over distributed data streams. In SIGMOD (2003).

[63] OLSTON, C., LOO, B. T., AND WIDOM, J. Adaptive precision setting for cached
approximate values. In SIGMOD Conference (2001), pp. 355–366.

[64] PAPAPETROU, O., GAROFALAKIS, M. N., AND DELIGIANNAKIS, A. Sketch-based
querying of distributed sliding-window data streams. PVLDB 5, 10 (2012), 992–
1003.

[65] PEI, J., HUA, M., TAO, Y., AND LIN, X. Query answering techniques on uncertain
and probabilistic data: tutorial summary. In SIGMOD (2008).

[66] PEREZ, L., ARUMUGAM, S., AND JERMAINE, C. Evaluation of probabilistic
threshold queries in MCDB. In SIGMOD (2010).

[67] POOSALA, V., IOANNIDIS, Y. E., HAAS, P. J., AND SHEKITA, E. J. Improved
histograms for selectivity estimation of range predicates. In SIGMOD (1996).

114

[68] QI, Y., JAIN, R., SINGH, S., AND PRABHAKAR, S. Threshold query optimization
for uncertain data. In SIGMOD (2010).

[69] ROSS, R., SUBRAHMANIAN, V. S., AND GRANT, J. Aggregate operators in
probabilistic databases. J. ACM 52, 1 (2005), 54–101.

[70] SAMOS. Shipboard Automated Meteorological and Oceanographic System.
http://samos.coaps.fsu.edu.

[71] SARMA, A. D., BENJELLOUN, O., HALEVY, A., NABAR, S., AND WIDOM, J.
Representing uncertain data: models, properties, and algorithms. The VLDB Journal
18, 5 (2009), 989–1019.

[72] SARMA, A. D., BENJELLOUN, O., HALEVY, A. Y., NABAR, S. U., AND WIDOM,
J. Representing uncertain data: models, properties, and algorithms. VLDBJ 18, 5
(2009), 989–1019.

[73] SCHILLER, J. H., AND VOISARD, A., Eds. Location-Based Services. Morgan
Kaufmann, 2004.

[74] SHARFMAN, I., SCHUSTER, A., AND KEREN, D. A geometric approach to moni-
toring threshold functions over distributed data streams. In SIGMOD (2006).

[75] SHARFMAN, I., SCHUSTER, A., AND KEREN, D. A geometric approach to
monitoring threshold functions over distributed data streams. In SIGMOD (2006),
pp. 301–312.

[76] SOLIMAN, M. A., ILYAS, I. F., AND CHANG, K. C.-C. Probabilistic top-k and
ranking-aggregate queries. TODS 33, 3 (2008), 1–54.

[77] SUCIU, D., OLTEANU, D., RÉ, C., AND KOCH, C. Probabilistic Databases.
Synthesis Lectures on Data Management. 2011.

[78] SUDIPTO GUHA, K. S., AND WOO, J. Rehist: Relative error histogram construction
algorithms. In VLDB (2004).

[79] SUDIPTO GUHA, N. K., AND SHIM, K. Approximation and streaming algorithms
for histogram construction problems. TODS 31, 1 (2006), 396–438.

[80] SUN, L., CHENG, R., CHEUNG, D. W., AND CHENG, J. Mining uncertain data with
probabilistic guarantees. In SIGKDD (2010).

[81] TRAN, T. T. L., MCGREGOR, A., DIAO, Y., PENG, L., AND LIU, A. Conditioning
and aggregating uncertain data streams: Going beyond expectations. PVLDB 3, 1
(2010), 1302–1313.

[82] VAPNIK, V., AND CHERVONENKIS, A. On the uniform convergence of relative
frequencies of events to their probabilities. The. of Prob. App. 16 (1971), 264–280.

[83] WANG, S., WANG, G., AND CHEN, J. Distributed frequent items detection on
uncertain data. In ADMA (2010).

http://samos.coaps.fsu.edu

115

[84] WOO, H., AND MOK, A. K. Real-time monitoring of uncertain data streams using
probabilistic similarity. In RTSS (2007).

[85] YAO, A. C.-C. Some complexity questions related to distributive computing (pre-
liminary report). In STOC (1979), pp. 209–213.

[86] YAO, Y., AND GEHRKE, J. Query processing in sensor networks. In CIDR (2003).

[87] YI, K., AND ZHANG, Q. Multi-dimensional online tracking. In SODA (2009),
pp. 1098–1107.

[88] YI, K., AND ZHANG, Q. Optimal tracking of distributed heavy hitters and quantiles.
In PODS (2009), pp. 167–174.

[89] YI, K., AND ZHANG, Q. Multidimensional online tracking. ACM Transactions on
Algorithms 8, 2 (2012), 12.

[90] ZHANG, Q., LI, F., AND YI, K. Finding frequent items in probabilistic data. In
SIGMOD (2008).

	Abstract
	LIST OF FIGURES
	LIST OF TABLES
	Acknowledgements
	CHAPTERS
	=10000=10000=0Introduction
	-22pt
	Motivation and Background
	Dissertation Outline

	=10000=10000=0Threshold Monitoring for Distributed Probabilistic Data
	-22pt
	Introduction
	Problem Formulation
	Baseline Methods
	Compute Pr[Y>] Exactly
	Filtering by Markov Inequality

	Improved Methods
	Improved Bounds on Pr[Y>]
	Improved Adaptive Threshold Monitoring

	Sampling Methods to Estimate the Threshold
	The Random Sampling Approach
	Random Distributed -Sample
	Deterministic Distributed -Sample
	A Randomized Improvement
	Practical Improvements

	Extension
	Weighted Constraint
	Handling Multiple (,) Thresholds

	Experiments
	Datasets and Setup
	Effect of
	Effect of
	Effect of g
	Effect of
	Sampling Methods
	Integrated Methods

	Related Work
	Conclusion

	=10000=10000=0Distributed online Tracking
	-22pt
	Introduction
	Key Challenge
	Our Contributions

	Problem Formulation and Background
	Performance Metric of an Online Algorithm
	State-of-the-art Method

	The Chain Case
	Baseline Methods
	Optimal Chain Online Tracking

	The Broom Case
	A Baseline Method
	Improvement
	The BroomTrack Method

	The General Tree Case
	Other Functions and Topologies
	Other Functions for f
	Other Topologies

	Experiment
	Datasets and Setup
	Chain Model
	Broom Model
	General Tree Topology
	Other Functions

	Related Work
	Conclusion

	=10000=10000=0Scalable Histograms on Large Probabilistic Data
	-22pt
	Introduction
	Overview

	Background and State of the Art
	Uncertain Data Models
	Histograms on Probabilistic Data
	Efficient Computation of Bucket Error

	Approximate Histograms
	A Baseline Method
	The Pmerge Method
	Partition
	Merge
	Fast Computation of Bucket Error
	Complexity Analysis
	Approximation Quality

	Recursive Pmerge

	Distributed and Parallel Pmerge
	The Partition Phase in the Value Model
	The Partition Phase in the Tuple Model
	Recursive Pmerge and Other Remarks

	Parallel-Pmerge with Synopsis
	Sampling Methods for the Value Model
	The VS Method

	Sketching Methods for the Tuple Model
	The TS (Tuple Model Sketching) Method

	Experiments
	Datasets and Setup
	Centralized Environment
	Effect of m
	Effect of n
	Effect of B
	Comparison with the Baseline

	Distributed and Parallel Setting
	Effect of Size of the Cluster
	Scalability

	Distributed and Parallel Synopsis
	Comparing Effects of Synopsis in Both Models

	Related Work
	Conclusion

	=10000=10000=0Other Works
	-22pt
	=10000=10000=0Conclusion
	-22pt
	REFERENCES

