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ABSTRACT

The interest in multimodal transportation improvements is increasing in cities across 

the U.S. Investing in multimodal infrastructure benefits the portion of urban population 

that is unable to drive due to a variety of reasons such as personal preference, age, and 

affordability. It is also well known that active transportation such as walking, biking, and 

taking transit, can improve public health due to increased physical activity, and reduce 

traffic congestion by reducing the average person’s delay. While improved multimodal 

infrastructure and accessibility attracts new users, it can possibly increase their exposure 

to risk from crashes. In urban areas where the “safety in numbers phenomenon” does not 

exist, nonmotorized user vulnerability becomes a predominant risk factor when they are 

involved in a crash, even at lower vehicle speeds.

This dissertation aims to explore the factors that are associated with safety outcomes 

in urban multimodal transportation systems, and develop methods that can be used to 

estimate safety effects of multimodal infrastructure and accessibility improvements. 

Using Chicago as a case study, a comprehensive dataset is developed that significantly 

contributes to the existing literature by including socio-economic, land use, road network, 

travel demand, and crash data. Area-wide analysis on the census tract level provides a 

broader perspective about safety issues that multimodal users encounter in cities. The 

characteristics of a multimodal transportation system are expressed through the presence 

of multimodal infrastructure, street connectivity and network completeness, and



accessibility to destinations for multimodal users. A set of statistical areal safety models 

(SASM) based on both frequentist and Bayesian statistical inference is applied to 

estimate the factors that are associated with total and severe vehicular, pedestrian, and 

bicyclist crashes in urban multimodal transportation systems.

The results show that the current safety evaluation methods need to acknowledge the 

complexity of multimodal transportation systems through the inclusion of diverse factors 

that may influence safety outcomes, particularly for more vulnerable users. The methods 

developed in this research can further be used to expand the current practice of evaluating 

multimodal transportation safety, and planning for city-wide investments in multimodal 

infrastructure and improved accessibility, while being able to estimate the expected safety 

outcomes.
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CHAPTER 1

INTRODUCTION

Transportation shapes the cities, which in return require transportation as the engine of 

their economic, environmental, and social development. This interaction between cities 

and their transportation systems is continuous, where the change of one always requires 

further change of the other. Neglecting this relationship may lead to transportation 

problems commonly faced by urban environments today, mostly resulting from urban 

policies that favor one mode over the other modes of transportation (Jacobs, 1961; 

Mumford, 1961; Vuchic, 1999).

Today, as the population living in the cities continues to increase, transportation and 

mobility are central to sustainable urban development. The concept of “smart cities” 

requires transportation system where “interaction is possible in any direction and at any 

distance” and “streets are not an end in themselves.. .they are a means towards an end” 

(Jacobs, 1961, p. 186; Lynch, 1960, p. 89). Over the course of several decades, these 

concepts that tie cities and transportation together have slowly been transformed into 

policies that prioritize the inclusion of all urban street users.

As cities across the U.S. increase their interest in multimodal transportation 

investments and providing accessibility to multimodal options for all users, there is a 

particular concern regarding the safety effects of these changes, particularly for more 

vulnerable road users. The benefits of improving multimodal infrastructure and



accessibility range from better health outcomes through the use of active transportation 

and reduced air pollution, to better mobility for those who cannot afford driving (United 

Nations [UN] HABITAT, 2014). There is a general understanding that improved 

multimodal transportation systems may lead towards resolving multiple long-term issues 

related to sustainability and efficiency of travels in urban environments.

This movement towards more active and diverse transportation options in cities was 

followed by the development of policy and guidelines for multimodal transportation, and 

the need to extend existing evaluation methods to account for the presence of different 

modes and their impacts on transportation performance. Improved access to multimodal 

transportation attracts new users of alternative transportation modes, and safety of 

multimodal users is still a topic that requires further research. Initiatives for creating more 

sustainable transportation systems are gaining attention on the international scale, and the 

need to reduce fatal road crashes remains in the focus of that effort. Safety emerges as a 

global issue as the UN General Assembly declared the “UN Decade of Action for Road 

Safety 2011-2020” supported by 100 world countries, as “nearly 1.3 million people are 

killed on the world’s roads each year” (World Health Organization, 2010).

In cities across the U.S. that are developing or improving their multimodal 

transportation features, the assessment of safety outcomes of improved multimodality is 

still challenging. The methods of measuring the success and performance of multimodal 

transportation systems are in the early stage of development, particularly in the area of 

multimodal safety evaluations.
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Research Problem Statement

In urban environments, where multimodal transportation thrives, the relationship 

between access to multimodal transportation and safety is complex. Transportation 

funding programs require that investments primarily focus on transportation performance, 

including establishing quantitative transportation safety targets. With this need to 

quantify safety outcomes, evaluation methods need to account for additional factors 

associated with multimodal safety in urban environments.

As cities invest in multimodal infrastructure, accessibility for all users is improving, 

which is a desirable outcome. However, with these improvements, the exposure of 

multimodal users to conflicts with motorized users also increases, and the effects on 

multimodal safety need to be examined. Transportation practitioners would benefit from 

being able to estimate the expected safety effects of investments in multimodal 

transportation and improving multimodal accessibility. In the short-term sense, this 

knowledge would contribute to safety performance-based decision making, while the 

long-term benefits would contribute to safety planning efforts and system-wide 

improvements for multimodal users. The major impediments to gaining this knowledge 

are the following existing limitations:

1) Data comprehensive enough to capture the complexity of multimodal 

transportation systems in urban environments, while considering system-wide 

effects as well as information on factors that potentially have a direct influence on 

safety outcomes;

2) Measures that use the appropriate data to quantify the success of implemented 

multimodal features in terms of their ability to provide access to opportunities for
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all users as well as users’ activity and potential to be involved in conflicts that may 

result in crashes;

3) Methods that draw from complex data and developed measures to estimate safety 

effects for multimodal users, while dealing with the challenges which may arise in 

extensive datasets, being flexible enough to be useful to both researchers and 

practitioners, and enabling transferable application among different scales and 

locations.

The opportunities to address these challenges for advancing knowledge on urban 

multimodal safety are increasing with the emerging number of data sources on 

multimodal users choices and activities, the paradigm shift in transportation performance 

measurement towards more sustainable performance indicators, and the need to put the 

emphasis on the safety of nonmotorized users as their vulnerability becomes a 

predominant risk factor with the enhancement of multimodal transportation options.

Research Objectives

The goal of this research was to explore the factors that influence multimodal safety 

outcomes in urban transportation systems, particularly focusing on the effects that 

improved multimodal infrastructure and accessibility have on safety outcomes for 

pedestrians, bicyclists, and private vehicle users. The defined research goal was 

developed through three major objectives that align with the previously explained 

research problem statement. These major research objectives were defined as the 

following:

1) Develop a dataset consisting of spatially aggregated data to include multimodal 

crash outcomes in urban environments, while capturing system-wide effects that
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are associated with crashes according to the existing urban safety studies, as well 

as detailed information about multimodal infrastructure;

2) Determine how multimodal users exposure can be represented, and develop 

measures that may serve as the indicators of the level of success of multimodal 

transportation system as well as the potential surrogate measures of exposure, 

using the collected data;

3) Explore and apply a set of statistical areal safety modeling (SASM) methods that 

will capture both system-wide effects and measures of multimodal presence in 

urban environments, in order to estimate crash outcomes for pedestrians, bicyclists, 

and private vehicle users.

Following these objectives, the City of Chicago was selected as the analysis location 

due to its developed complete streets initiatives and extensive multimodal transportation 

network features. A dataset was developed to allow for a system-wide analysis selecting a 

census tract as the level of data aggregation. Aggregating the data in this way provided a 

broader perspective about safety issues that multimodal users encounter in cities. The 

system-wide effects captured in this manner include socio-economic features, land use 

characteristics, road network, travel demand, and crashes. In this research, multimodal 

safety outcomes are defined as 1) the expected number of total and severe vehicle-only 

(vehicular crashes); 2) the expected number of total and severe crashes involving 

pedestrians (pedestrian crashes); and 3) the expected number of total and severe crashes 

involving bicyclists (bicyclist crashes). Severe crashes included fatal and severe injury 

crashes for these three types of users.
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Following the defined research objectives, several options were considered to 

represent the exposure of multimodal users, as explained in the Methodology chapter. In 

addition, measures that represent the level of access to multimodal transportation options, 

including data on multimodal infrastructure and measures of multimodal connectivity and 

accessibility, were developed to serve as proxies or surrogates for multimodal exposure.

The final part of the methodological approach in this research was using a set of 

SASM methods to estimate vehicular, pedestrian, and bicyclist total and severe crashes as 

a function of variables used to represent system-wide effects and measures of access to 

multimodal transportation. The SASM methods were based on frequentist statistical 

approach, including generalized linear (GLM) and generalized additive (GAM) models, 

and Bayesian statistical approach used in Full Bayes Hierarchical (FBH) models. These 

different SASM methods were used as a form of validation of the estimated crash 

outcomes for multimodal users in urban environments.

This approach resulted in the ability to incorporate new variables that may influence 

the safety of vulnerable transportation users into the SASM methods, explore different 

SASM methods in terms of their ability to capture the system-wide effects and issues that 

may arise in modeling spatially collected data, and use the estimated relationships and 

provide recommendations for the development of safety evaluation methods for 

multimodal users in urban environments. The research methodology was designed to 

provide some insights to questions related to the variety of factors that may influence 

urban safety in terms of both crash frequency and severity, the relationship between 

access to multimodal transportation and safety, the methods that can be used to 

successfully evaluate urban safety for different user and crash types, the expected number

6
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of crashes under the given set of multimodal transportation features, and 

recommendations about safety improvements in urban multimodal transportation 

systems. The focus of this research was on the methodology, acknowledging that data 

from other urban environments of various sizes should be collected in order to verify 

transferability of findings from this study.

Conceptual Framework

Figure 1 presents the conceptual framework that serves as the core theoretical 

hypothesis of this research that was used to develop the dataset, measures, and research 

methodology. The core hypothesis is that areal units of analysis with different levels of 

access to multimodal transportation, different levels of multimodal exposure, and 

different system-wide characteristics are expected to have different multimodal crash 

outcomes. Previous research on transportation mode choice addresses the relationship 

between multimodal accessibility and exposure, influenced by system-wide effects such 

as socio-economic (SE) features and land use patterns, leaving the statistical modeling of 

this relationship beyond the scope of this research, but still acknowledged by the 

conceptual framework. Key groups of variables and measures for each element of the 

conceptual framework are also presented in Figure 1. Multimodal accessibility is 

represented through the variables that should capture the physical presence of multimodal 

infrastructure (e.g., bus lanes and stops, bike lanes, and bike racks), overall destinations 

accessibility for a variety of modes, and network completeness in terms of the physical 

street network share that serves multiple modes. Multimodal exposure is represented 

through Daily Vehicle Miles Traveled (DVMT), trips generated by pedestrians and 

bicyclists, commuter work trips by mode, and points of conflict between different modes.
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Multimodal 
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f----------------------------\
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Street Connectivity 
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________________________
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Multimodal accessibility 
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System-wide Effects (Socio-Economic Data, Land Use)

Figure 1 Conceptual Framework

System-wide effects are provided through SE variables and land use characteristics. 

Multimodal crash outcomes are represented as defined in the research objectives section 

of this chapter. As previously stated, the conceptual framework served to develop the 

methodological approach that estimates the expected number of total and severe 

vehicular, pedestrian, and bicyclist crashes on the areal analysis level of census tract units 

in the City of Chicago.

Dissertation Outline

This dissertation consists of six chapters. The first chapter introduces the research 

problem, defines the research questions including the conceptual framework, and outlines 

the proposed dissertation chapters. The second chapter presents the literature review 

focused on urban multimodal transportation safety, areal safety studies, and the 

representation of multimodal exposure and accessibility, summarizing the gaps in the 

existing research and including the role that this research could play to fill in those gaps.

Multimodal 
Safety

/
Total & Severe Vehicular 

crashes

Total & Severe Pedestrian 
crashes

Total & Severe Bicyclist 
crashes

Challenge:

Estimation methods and 
crash data issues

Multimodal 
Exposure

Daily VMT 

Trip generation by mode 

Work trips by mode 

Points of conflict

Challenge:

Adequate measures of 
exposure



The third chapter introduces the methodology, including data collection, variables, 

measures, and SASM methods used to estimate the expected number of crashes for 

multimodal users. Chapter 4 presents the results of the crash data analysis, starting from 

preliminary model specifications to final “best models” by crash type. Chapter 5 is 

focused on the interpretation of results presented in Chapter 4. Major contributions of this 

research, recommendations for future research efforts, and research limitations are 

provided in the final chapter.
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CHAPTER 2

LITERATURE REVIEW

This chapter provides the review of previous research conducted in the area of urban 

multimodal transportation safety. The chapter then continues to explain how areal safety 

analysis is used to explore transportation safety for multimodal users, including the levels 

of data aggregation, and the variety of effects captured in areal safety studies. Measures 

of multimodal exposure and accessibility that exist in the literature are addressed, 

including previous research on relationships between multimodal exposure, accessibility, 

and safety. The chapter also covers the review of the methodological approaches applied 

in areal safety studies.

Multimodal Transportation Safety

Transportation mode choice and the presence of multimodal infrastructure are among 

the factors that could influence the future of road safety (Hauer, 2005). Crashes involving 

pedestrians and bicyclists, or vulnerable road users, have become an international 

concern (Wei, Feng, & Lovegrove, 2012), especially in urban environments where these 

road users’ vulnerability if  involved in a crash is a predominant risk factor (Wegman,

2006). The Highway Safety Manual (HSM) (American Association of State and Highway 

Transportation Officials [AASHTO], 2010) recognizes that “increasing the availability of 

mass transit reduces the number of passenger vehicles on the road and therefore a



potential reduction in crash frequency may occur because of less exposure” 

(Transportation Research Board [TRB], 2010). Availability and access to multimodal 

transportation options in urban environments is likely to play a key role in the way safety 

is estimated and evaluated in these environments for motorized and nonmotorized 

transportation modes.

While the majority of the existing quantitative methods in road safety focus on 

vehicular traffic as the most dominant mode of transportation, evaluation of non

motorized safety and related impact factors has been occurring on the zonal and regional 

levels (Quddus, 2008; Siddiqui, Abdel-Aty, & Huang, 2012; Washington et al., 2006; 

Zeng & Huang, 2014). There are several reasons why road safety in general is explored 

on this “macroscopic” level. It is quite common that safety-influencing factors such as 

roadway and roadside geometrics, pavement conditions, and traffic control are best 

explored on the segment or intersection-level (TRB, 2010), but there is an increasing 

interest among researchers to explore some other area-wide factors that can be addressed 

in spatial analysis (Aguero-Valverde, 2013). Also, the current crash modification factors 

(CMFs) have “methodological drawbacks” due to the fact that applied modeling 

techniques do not account for spatio-temporal heterogeneity exhibited by crashes 

(Aguero-Valverde, 2013; Chen & Persaud, 2014; Huang & Abdel-Aty, 2010; Karlaftis & 

Tarko, 1998; Li et al., 2013; Plug, Xia, & Caulfield, 2011). Some other applications of 

crash modeling, such as identifying crash risk hotspots, network screening, and safety 

planning, are becoming more relevant with legislative requirements to incorporate 

multimodal safety performance goals into long-term planning processes (Anderson, 2009; 

Coll, Moutari, & Marshall, 2013; Hauer, 2005; Jiang, Abdel-Aty, & Alamili, 2014;
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Montella, 2010; Nicholson, 1998; Park & Young, 2012; Persaud, Lyon, & Nguyen, 1999; 

Plug et al., 2011; Pulugurtha, Krishnakumar, & Nambisan, 2007; Siddiqui, Abdel-Aty, & 

Choi, 2012; Vieira Gomes, 2013; Washington et al., 2006; Yiannakoulias, Bennet, & 

Scott, 2012). These initiatives also lend themselves to analysis at a spatial level in some 

cases.

Areal Safety Studies

New applications of crash models and the exploration of additional factors that could 

impact traffic safety of a variety of users has led to the development of spatial modeling 

techniques that analyze crashes on a selected level of spatial analysis units (Aguero- 

Valverde, 2013; Vanderbulcke, Thomas, & Panis, 2014; Wang & Kockelman, 2013). The 

first areal safety studies appeared about a decade ago, focusing on country-wide or state

wide data, disaggregated to different spatial units and providing general indications of 

factors associated with crash occurrences (Aguero-Valverde & Jovanis, 2006; Noland & 

Quddus, 2004; Yannis, Papadimitriou, & Antoniou, 2008). Since then, several attempts 

have been made to apply similar statistical crash modeling methods in urban 

environments, both in the U.S. (Moeinaddini, Asadi-Shekari, & Shah, 2014; Ukkusuri et 

al., 2012; Wang & Kockelman, 2013) and Europe (Quddus, 2008).

Crash data in areal studies are aggregated within traffic analysis zones (Siddiqui, 

2012), neighborhoods (Wang & Kockelman, 2013), census-based units (Noland & 

Quddus, 2004; Quddus, 2008), or counties (Aguero-Valverde & Jovanis, 2006; Flask & 

Schneider, 2013; Li et al., 2013; Yannis et al., 2008). Regional safety modeling may raise 

the issue of the Modifiable Areal Unit Problem (MAUP), which could cause changes in 

statistical inference if spatial analysis units change, and can be handled by reducing the
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number of analyzed regions (Xu et al., 2014). Spatial aggregation of crash data may also 

lead to ecological fallacy, when the relationship between aggregated variables is 

attributed to established aggregation methods, the effect which may be corrected by using 

lower levels of aggregation (Davis, 2002). If traffic analysis zones are used to aggregate 

the data, there are indications that “internal” and “near boundaries” crashes need to be 

treated separately (Siddiqui et al., 2012). The existing evaluations at various levels of 

spatial aggregation show that some analysis units such as census tracts are more reliable 

than the others in terms of providing more repeatable estimation results (Ukkusuri et al., 

2012). Procedures to conduct intersection- and segment-level analysis to identify high- 

risk sites with a potential for safety improvement have been well-documented (e.g.,

Wang & Abdel-Aty, 2006; Yu et al., 2014;), but a higher level of spatial aggregation, 

such as that reported in this research, can be used to account for area-wide factors that 

may influence safety outcomes in multimodal environments.

Previous areal safety studies focused on both motorized (Aguero-Valverde, 2013; Li et 

al., 2013; Siddiqui et al., 2012) and nonmotorized crashes (Wang & Kockelman, 2013; 

Quddus, 2008; Shankar et al., 2003), accounting for variables that somewhat represent 

the availability of alternative transportation modes (Wang & Kockelman, 2013; 

Yannakoulias et al., 2012; Quddus, 2008; Schneider, Ryznar, & Khattak, 2004). These 

research efforts were focused primarily on vehicle-only crashes, with the explanatory 

variables limited to roadway mileage, estimated average speeds, and socio-economic data 

(Castro et al., 2013; Siddiqui et al., 2012; Wang et al., 2009). Several recent studies have 

incorporated estimates for pedestrian crashes by including land use-related variables 

(Ukkusuri et al., 2012; Wang & Kockelman, 2013). Relatively few studies have dealt
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with crashes involving bicyclists (Siddiqui et al., 2012; Yannakoulias et al., 2012). 

Limited numbers of these studies focused on urban environments, and accounted for 

more detailed features of multimodal street networks (Moeinaddini et al., 2014; Quddus,

2008).

The Role of Exposure and Surrogate Measures

A typical concern in multimodal transportation safety analysis is determining the 

adequate exposure variables, and this has been addressed by using both surrogate and 

conventional exposure variables depending on data availability. The exposure variables 

in existing areal safety studies include variables such as population (Ukkusuri et al., 

2012), presence of jobs as trip generators (Noland, 2014), network attributes and land use 

data (Shankar et al., 2003), estimated walk miles traveled for pedestrian crashes (Lee & 

Abdel-Aty, 2005; Wang & Kockelman, 2013), estimated bicycle traffic (Vanderbulcke et 

al., 2014), length of road (Noland & Quddus, 2004; Quddus, 2008; Zeng & Huang,

2014), and vehicle miles traveled (Aguero-Valverde & Jovanis, 2006; Li et al., 2013). 

Previous spatial analyses of crashes focused on both motorized (Aguero-Valverde, 2013; 

Li et al., 2013; Siddiqui et al., 2012) and nonmotorized crashes (Quddus, 2008; Shankar 

et al., 2003; Wang & Kockelman, 2013), accounting for variables that somewhat 

represent the availability of alternative transportation modes (Quddus, 2008; Schneider et 

al., 2004; Wang & Kockelman, 2013; Yiannakoulias et al., 2012).

The importance of exposure variables as crucial elements of risk assessment in crash 

prediction models has been recognized in safety research for over two decades (Qin,

Ivan, & Ravishanker, 2005; Zhang, 2008). Measures of exposure were primarily related 

to traffic flow and the amount of road travel, with an assumed linear relationship between
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the exposure and risk (Zhang, 2008). As crash modeling methods advanced, new ways to 

define exposure emerged, and the relationship between the exposure and risk has been 

redefined as more complex, multidimensional concept that can be decomposed in terms 

of both road users and vehicle movements (Elvik, 2009; Zhang, 2008).

The concept of exposure originates from epidemiology and it is essential in road safety 

studies, as it relates to the opportunities for conflicts that may occur between different 

users, and result in a crash outcome (Lam, Loo, & Yao, 2014). The term “exposure” as 

related to road safety dates back to the 1970s when exposure was defined as the “number 

of opportunities for accidents” of a certain type within a given time and in the given area. 

The definition of exposure has varied since to account for different locations, users, and 

measures. A very detailed overview of the way exposure was defined over years is 

provided in (Elvik, 2015).

According to (Elvik, 2015) measures of exposure can be categorized as follows:

1) Activity-based measures of exposure represent the sum of users that may be 

exposed to crashes. These measures are usually continuous variables that include 

Average Annual Daily Traffic (AADT), Vehicle Miles Traveled (VMT), the 

number of vehicles entering the intersection approach, Walk Miles Traveled 

(WMT), and Bike Miles Traveled (BMT).

2) Event-based measures of exposure represent the total number of events within a 

given time in the defined area that may result in crash outcomes. These measures 

are different from the more traditional continuous summary measures based on 

users activity, and include the number of potential conflict points, the number of 

intersection turning movements, and the number of lane changes. Exposure as an
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event is defined as the “occurrence of any event in traffic limited in space and time 

that represents a potential for an accident to occur by bringing road users close to 

each other in time and/or space or by requiring the road user to act to avoid leaving 

the roadway”.

3) Behavior-based measures of exposure represent users behavior that may lead to 

higher exposure to crashes. These measures became possible as real-time 

monitoring technology became available to enable measurements such as the time 

spent following, pedestrian crossing behavior, pedestrian gap acceptance, and 

drivers characteristics.

The linear relationship between exposure and risk has been rejected over time (Hauer, 

1995), and previous research explains how this is due to the human ability to learn from 

experience (Elvik, 2009). As the amount of travel increases, the propensity to be in a 

crash is expected to decrease, because of the human learning process (Elvik, 2009). The 

rate of fatalities is also expected to decrease as a function of motorization level (Smeed, 

1949). Similar “laws of accident causation” include the assumption that higher crash rates 

are associated with more rare events, higher crash complexity, and more limited cognitive 

capacity (Elvik, 2009).

Theoretical relationships between crash risk and exposure commonly use the term 

“crash rates.” The expected number of crashes can be estimated as the product of 

exposure measures and risk factors only when exposure and risk are independent. 

However, operationally and conceptually, it is always expected that exposure to risk is 

somewhat related to risk, which renders the assumption of the independent relationship 

biased. This conclusion, as well as the existence of the composite measures of exposure,
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raised issues with using crash rates to quantify road safety. Unlike the “observed crash 

frequency,” which is the term used to refer to the historic crash data, crash rates refer to 

the number of crashes in relation to a particular measure of exposure. When crash rates 

are used, the number of total, fatal, or injurious crashes is divided by different exposure 

measures such as the population size, the number of licensed drivers, the number of 

registered vehicles, or the number of miles/kilometers driven (Shinar, 2007). The U.S. 

Department of Transportation uses fatalities per million VMT to set traffic safety goals, 

as the number of crashes per total VMT is the most common crash rate used. However, 

the value VMT can only be estimated, and is not perfectly accurate (Shinar, 2007). VMT 

as a summary measure of exposure that is commonly used, is sometimes criticized in the 

literature as the average value of VMT used to predict crash models can rarely be 

considered close to the value of traffic flow near the time of crash occurrence (e.g., on the 

annual level) (Mensah & Hauer, 1998). To compensate for these limitations of using 

VMT as the measure of exposure, it is recommended to analyze safety using multiple 

years of data.

In terms of multimodal exposure and safety, two concepts are defined in the existing 

literature: “safety in numbers” and “hazard in numbers.” Safety in numbers concept 

implies a decline in risk as exposure increases, while hazard in numbers refers to the 

opposite effect when the number of crashes increase even more as the volumes increase. 

Some researchers claim how both effects, safety and hazard in numbers, may co-exist in 

the same dataset, recommending further that the count of the road users number rather 

than rate is used as a measure of exposure in road safety. There is also evidence that 

higher numbers of nonmotorized users result in lower likelihood of these users being
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injured in crashes, as motorists adjust their behavior in the presence of walking and 

biking (Elvik, 2013; Jacobsen, 2003).

As exposure measures progressed from the activity-based to event and behavior-based, 

the measurement process became more complex. Exposure measures also become more 

challenging to obtain as the transportation users group of interest changes from the 

exposure of vehicle occupants to the exposure of multimodal users. Collecting highly 

accurate data on walking and biking remains a challenge, even though significant 

improvements have been made over time. Theory of accessibility has previously been 

used as a proxy for exposure variables in road safety studies. Trip generation elements, 

including estimations of productions and attractions and estimates based on gravity 

theory, were used to quantify the amount of travel within the defined units of spatial 

analysis (Lee & Abdel-Aty, 2013; Noland & Quddus, 2004; Vandenbulcke et al., 2013;). 

With the often limited data on nonmotorized users activity, and the link between 

multimodal accessibility and multimodal exposure, there is a need to further explore if 

measures of accessibility can help overcome the gap in urban multimodal safety research 

due to lack of information on exposure.

Measures of Multimodal Accessibility

With the limitations of the exposure measures related to multimodal users, and the 

growing potential of urban data on multimodal infrastructure and access to transportation 

options, there is a need to further explore whether measures that represent multimodal 

accessibility can help overcome gaps in urban multimodal safety research in terms of 

multimodal trip distances and opportunities for conflicts. Measuring accessibility for 

different modes of transportation is a challenging task, and this field has been developing
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for over four decades, but studies that explore the relationship between accessibility and 

safety are rare.

While current policy makers still use transport system metrics that are mobility 

oriented, partially because they are the most available, these performance metrics are 

excluding some crucial components of urban transportation systems (TRB, 2003). 

Accessibility emerges as the measure that captures more than the speed of travel, 

emphasizing the benefits of the transportation system users. It relates to both 

transportation and land use, as it quantifies how many destinations an individual can 

reach using the given mode of transport within the available time (Handy & Niemeier, 

1997).

The first challenge in accessibility measurement is to define accessibility. While it is 

generally defined as the opportunity to approach, enter, and interact (Burns, 1979; 

Engwicht 1993; Koenig, 1980), in terms of transportation, accessibility definitions are 

more precise. In transportation systems, accessibility is the ease of reaching goods, 

services, activities, and destinations (Alba & Beimborn, 2003; Cervero, 2005; Litman, 

2012). The transportation element of accessibility reflects how ‘easy’ travel is or could be 

between points in space, while the spatial element of accessibility characterizes the 

attractiveness of a trip destination (Handy, 1993). Access can be affected by many 

factors, such as the location of adequate employment options, availability and 

affordability of travel options, and the attractiveness and diversity of opportunities. This 

is why measuring accessibility is a complex task (Litman, 2011).

Several types of accessibility measures related to transportation are developed in the 

existing research. Cumulative accessibility measures evaluate accessibility in terms of the
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number of opportunities or activity locations that can be reached within the given travel 

time from a defined reference location (Black & Conroy, 1977; Handy & Niemeier

1997). Accessibility as a cumulative measure is a function of proximity, connectivity, and 

mobility, and as such, is very useful in transportation planning practice (Handy, 2002).

Gravity-based accessibility measures assign specific weights to the opportunities 

depending on the distance, travel time, and cost required to reach those opportunities or 

activity locations. With gravity-based measures, accessibility increases with proximity 

and affordability of opportunities, and decreases as those opportunities become more 

distant and their costs increase. The available literature emphasizes two disadvantages of 

these measures, as they require assigning weight to a wide range of destinations, and 

there is a need for an impedance factor that represents distance, travel time, and cost of 

the weighted opportunities (El-Geneidy & Levinson; 2006; Hansen, 1959; Papa & 

Coppola, 2012; Scheurer & Curtis, 2007).

Utility-based accessibility measures incorporate traveler preferences, which affect the 

weight of opportunities in terms of access. These measures calculate the utility of the 

chosen opportunity relative to the utilities of alternative opportunities (Ben-Akiva & 

Bowman, 1998; Ben-Akiva & Lerman, 1979; El-Geneidy & Levinson, 2006; Geurs & 

Eck, 2001).

Some measures related to network connectivity in urban areas are also good indicators 

of accessibility, since denser, better connected networks make destinations easier to reach 

and increase the number of reachable destinations in general. One such measure is the 

connectivity index, the number of network links divided by the number of network nodes 

(Ewing, 1996). Higher connectivity indices improve accessibility up to a certain point,
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but it does not always guarantee the optimal transportation performance (Alba & 

Beimborn, 2005; Tasic et al., 2015). The challenge in utilizing a connectivity index as an 

indicator is that there is always a need to balance the level of connectivity in order to 

optimize transportation performance by increasing the number of nonmotorized and 

transit users while avoiding congestion.

The composite accessibility measure incorporates temporal constraints in addition to 

spatial constraints for a more complex measurement approach (Kwan, 1998; Miller,

1999; Wu & Miller, 2001). As public transit has unique characteristics among other 

modes, due to its spatial and temporal constraints, using composite space-time 

accessibility measures is appropriate for developing transit accessibility indicators. One 

of the most powerful techniques for space-time accessibility measurements is the space

time prism (STP). The STP-based accessibility measures determine a “feasible set of 

locations for travel and activity participation,” considering spatial and temporal 

constraints that affect individual’s behavior (Kwan, 1998). Some earlier STP-based 

accessibility measures had the disadvantage of treating travel time as static rather than 

dynamic. After empirical research proved that temporal constraints have a significant 

impact on an individual’s ability to reach desired destinations, the STP-based 

accessibility measurement methods have been updated to account for this (Kwan, 1998; 

Miller, 1999; Wu & Miller, 2001). The STP-based measures incorporate the spatial 

distribution of destinations, uncertainty of origin and destination choices, travel time 

variability as a consequence of transportation network configuration, time needed to 

participate in various activities at various destinations, destination availability in terms of
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temporal constraints or maximum available travel time, and static and dynamic traveler 

delay (Miller, 1991).

Broadening the scope of accessibility to include a wide array of destinations and non

auto modes such as walking, cycling, and transit has been previously proposed as a much 

needed aim among planning initiatives (Tal & Handy, 2012). Even though a well-known 

transportation planning concept, for a long time, accessibility has been evaluated using 

auto-based measures (Handy & Clifton, 2001). The best accessibility measurement 

method should be chosen based on the purpose and a situation that requires such 

measurement (Handy & Niemeier, 1997).

Accessibility for Nonmotorized Modes

The most recent advancements in open-source tools for walkability ratings brought 

attention to the importance of pedestrian accessibility measurements. A large number of 

transportation app developers today focus on developing the best methods to score 

walkability of an area and inform pedestrian users about the shortest, safest, and most 

attractive walking routes in urban environments.

One of the most applied tools for scoring urban walkability is Walk Score, based on 

awarding points to each address depending on distance to destinations. Walk Score uses a 

distance decay function combined with density indicators (e.g., population density, block 

length, intersection density) to grade walkability on a scale of 0 to 100, giving the 

locations within 5-minute walking distance the highest score. Similar to Walk Score is an 

application developed to measure the attractiveness of routes for bicyclists, called Bike 

Score.
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Some other similar apps are also developed for measuring walkability, such as 

Walkonomics which uses eight criteria (including road safety and fear of crime) to 

inform users about the fastest and most attractive routes to destinations. Clean Air Asia 

initiative also developed a Walkability app, which is based on citizens’ walkability audits 

and provides authorities with citizens’ inputs. All these applications were developed 

because today, the transportation industry understands that practitioners need to know 

how feasible walk trips are to become users’ choice, whether they lead to actual final 

destinations or are simply integrated in a multimodal trip. These efforts towards 

quantifying the quality of pedestrian access acknowledge that every trip begins and ends 

with a pedestrian trip, and every bicyclist, transit user, or driver is a pedestrian in the first 

place.

In terms of pedestrian accessibility analysis for scientific purposes, several efforts 

were made towards software development, mostly based on GIS. One such effort is A 

Methodology for Enhancing Life by Improving Accessibility (AMELIA), developed by 

the Center for Transportation Studies at University College London to assess the impact 

of transportation on social inclusion. Another software tool, Accession, was developed by 

Citilabs and the United Kingdom Department for Transport, but it is recognized that it 

handles pedestrian accessibility poorly, mostly due to lack of data (Achuthan, Titheridge, 

& Mackett, 2004).

The prerequisite for good pedestrian accessibility measurements are data (Chin et al., 

2007; Foda & Osman, 2010; Iacono, Krizek, & El-Geneidy, 2010). It is very challenging, 

and in the first place time consuming, to collect data about pedestrian networks, which is 

why most of the studies opt for using street centerline as a proxy for pedestrian network.
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Further, data about crosswalks and sidewalks are very difficult to obtain. A study by 

(Chin et al., 2007) compared street network versus pedestrian network in terms of 

connectedness, using three measures: pedshed, link node ration, and pedestrian route 

directedness. The results indicated that connectivity in conventional neighborhoods 

(curvilinear street network) improved up to 120% when pedestrian networks were 

accounted for. Previous research findings indicate that it is important to account for the 

actual pedestrian network when measuring pedestrian accessibility and connectivity (Tal 

& Handy, 2012).

Another challenge related to acquiring pedestrian data is in obtaining the information 

about movements and destination choices, primarily based on need and utility for 

pedestrians. Even in highly walkable areas, where mixes of land uses and density are 

high, pedestrian trips might not be the choice because destinations that are easy to walk to 

might not be destinations where users are interested in going. Previous studies that 

introduce pedestrian accessibility measurements are based on urban form features 

(Cambra, 2012; Rendall et al., 2011). One of the studies deals with energy consumption, 

where high active mode accessibility means that the transportation system is served with 

minimal energy input (Rendall et al., 2011). The majority of the developed pedestrian 

accessibility measurements are based on cumulative opportunity measures, sometimes 

with the inclusion of impedance to form a gravity-based model, unlike accessibility 

models for private vehicles or public transit where more complex space-time dynamics is 

included in measurement concepts.
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Transit Accessibility

Transit is a unique mode of transportation because of the way it is constrained in terms 

of space and time. In terms of space, it requires transit stop facilities and special road 

design treatments, while in terms of time, transit follows specifically scheduled 

timetables. These spatial and temporal components determine the accessibility of public 

transit systems. Transit accessibility indicates how easy it is for an individual to reach a 

desired destination using public transit. It is important for the existing transit riders, as an 

indicator of the service quality, and for the potential riders as well, as it might be a factor 

in their mode choice (Moniruzzaman & Paez, 2012).

Access to transit is a precondition for all the efforts taken towards multimodal 

transportation systems. Whether an individual will use transit or not depends on many 

factors, including their value of time and available time budget, transit fare price, and 

ratio of car/transit utility (Taylor, 2008). However, in order for transit to be considered as 

an option in mode choice at all, there has to be a feasible transit route leading from given 

origin to desirable destination within the available time frame.

Public transit is considered to be a feasible travel choice when transit stops are 

accessible to and from trip origins/destinations (spatial coverage), and when transit 

service is available at times that one wants to travel (temporal coverage) (Coffel, 2012; 

TRB, 2003). Transit accessibility determines the attractiveness of transit as a mode 

choice. How accessible transit stops are depends on whether the transit users are walking, 

biking, or driving to their nearest stop. The primary factor affecting pedestrian access is 

distance to transit stops. Based on the assumed average walking speed of about 4ft/s, 5 

minutes of walking to transit stops is considered to be acceptable in urban areas, or about 

quarter of a mile in terms of walking distance (AASHTO, 2004; TRB, 2003). Location
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and spacing between transit stops have a significant impact on transit service 

performance and user satisfaction, as they not only ensure reasonable accessibility but 

influence travel time as well (Google, 2013; Miller, 1999). Measuring “the ease of 

access” to transit services in terms of space-time constraints is important for evaluation of 

the existing services, travel demand forecasts, and decision making related to 

transportation investments and land use development (AASHTO, 2004; Coffel, 2012).

Accessibility, Exposure, and Safety

Previous studies clearly indicate that the amount of exposure for all modes of 

transportation depends on accessibility. The indicators of accessibility, in terms of both 

access to destinations and access to transportation infrastructure, influence traveler 

behavior including mode choice and the amount of travel by different modes.

The primary choice of transportation mode is found to be associated with the 

availability of multimodal infrastructure, the proximity of desired destinations, and 

general utility calculated through costs of transport and destination attractiveness. The 

comparison of similar “accessibility” conditions between the U.S. and countries that have 

higher shares of alternative transportation users, however, showed that it is especially 

important to combine physical accessibility to destinations with utility-related measures 

in order to encourage multimodal transportation in the U.S. (Ben-Akiva & Lerman, 1985; 

Bhat et al., 2000; Buehler, 2011; Handy, 2002).

The existing research consistently finds strong relationships between accessibility and 

the amount of travel by different modes. The indicators of accessibility and street 

connectivity impact the amount of VMT, and as the number of destinations within 

walking distance increases the propensity to walk also increases while the VMT and fuel
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consumption decrease. The fundamental characteristics of the street network such as 

street connectivity, network density, and street patterns are found to be significantly 

associated with the choice of transportation mode (Cervero & Kockelman, 1997; Ewing 

& Cervero, 2001; Handy, 1993; Marshal & Garrick, 2010).

The existing literature recognizes the complexity of the relationship between 

accessibility and safety, as well as the need for further research on this topic (Kim & 

Yamashita, 2010; Mondschein, Brumbaugh, & Taylor, 2009; Sathisan & Srinivasan,

1998). A study based on 3 years of crash data from Hawaii that used binomial logistic 

regression to model the relationship between accidents and accessibility found that the 

indicators of accessibility are associated with increases in various accident types in terms 

of severity and mode of transportation. In addition to considering the demographic 

variables, accessibility was represented using road length, bus stops, bus route length, 

number of intersections, and number of dead ends. Data were spatially disaggregated 

using uniform grid cells, and the authors indicated the need to use accessibility indices 

that would take into account travel time and mobility options.

Another study, also based on data from Hawaii, used structural equation modeling to 

establish causal relationships between accessibility and accident severity (Kim, Pant, & 

Yamashita, 2011). Other impact factors such as human factors, vehicle type, road 

conditions were included in the models based on 3 years of crash data disaggregated by 

uniform grid cells using ArcGIS. Accessibility was represented using total street length, 

total bus route length, number of intersections, and number of dead ends in the grid. The 

authors found that accessibility was associated with the reduction of the expected number 

of severe crashes, refining the findings from the previous study based on the same
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dataset. The authors further explain that decreased crash severity in better accessible 

locations makes sense as more accessibility can be associated with lower driving speeds. 

This conclusion somewhat indicates that accessibility has different relationship with 

crash frequency and crash severity, as confirmed in studies that link road safety to land 

use characteristics.

Studies that link land use to road safety include some indicators of accessibility in 

their analysis. These studies acknowledge human-vehicle-roadway factors as the key 

factors that contribute to each accident, but are based on the fact that the built 

environment (and environment in general) leads to particular interactions between the 

drivers, creating certain driving habits and travel behavior that eventually impacts safety 

outcomes (Kim & Yamashita, 2006; Kim & Yamashita, 2007). The so-called “secondary 

variables” indirectly impact traffic safety, and the research that emphasizes the 

importance of these variables is growing. Relationships have been found between the 

development type and intensity and road crashes, indicating that simple differentiation 

between urban and rural areas does not completely capture the impacts of land use on 

safety (Kim et al., 2006). The indicators of accessibility in these studies are also 

categorized among the “D variables” (density, diversity, design, destination accessibility, 

access to transit, parking) in the urban planning literature (Ewing & Cervero, 2001). 

Destination accessibility as one of the seven “D variables” is defined as the “relative ease 

of accessing jobs, housing, and other attractions within the region” (Ewing & Dumbaugh,

2009). This group of studies suggests that the strong association between destination 

accessibility and VMT might indicate that highly accessible areas in urban centers may
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have lower numbers of fatal crashes than highly accessible areas in suburbs (Ewing, 

Pendall, & Chen, 2003; Ewing, Schieber, & Zegeer, 2003; Ewing & Dumbaugh, 2009).

Other Relevant Variables in Areal Safety Studies

The majority of the existing areal safety analyses include some kind of SE variables 

and find them to be significant for area-wide safety outcomes (Aguero-Valverde & 

Jovanis, 2006; Chen, 2013; Flask & Schneider, 2013; Kim et al., 2013; Li et al., 2013; 

Noland & Quddus, 2004; Siddiqui et al., 2012). These studies found that the increase in 

the expected number of crashes is associated with the increase in population, while the 

findings on the relationship between income level and the expected number of crashes 

were contradictory (Aguero-Valverde & Jovanis, 2006; Noland & Quddus, 2004;

Siddiqui, 2012).

Several existing research studies include land use variables in safety outcome 

evaluations, particularly studies that focus on spatial analysis in urban multimodal 

environments (Cho, Rodriguez, & Khattak, 2009; Lee & Abdel-Aty, 2013; Polugurtha et 

al., 2013; Shankar et al., 2003; Ukkusuri et al., 2012; Wang & Kockelman, 2013). Land 

use type and land use mix were found to be significantly correlated with area-wide 

crashes, especially when the effect on nonmotorized crashes is estimated (Polugurtha et 

al., 2013). Residential areas are usually associated with fewer crashes when compared to 

commercial land uses (El-Basyouny & Sayed, 2009).

Crash Analysis Methods in Areal Safety Studies

The majority of the areal road safety studies found that it is appropriate to consider 

spatial correlation among analyzed entities in crash prediction models (Aguero-Valverde, 

2013; Castro, Paleti, & Bhat, 2013; Quddus, 2008; Siddiqui et al., 2012; Wang, Quddus,
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& Ison, 2009; Zeng & Huang, 2014). More recent research involves using Bayesian 

rather than classical statistical inference to develop spatial models for motorized and non

motorized crashes at various levels of spatial aggregation (Aguero-Valverde & Jovanis, 

2006; Huang & Abdel-Aty, 2010; Miaou & Lord, 2003; Miranda-Moreno, Labbe, & Fu,

2007). As concluded in the previous studies, Fully Bayesian models are either consistent 

with negative binomial models (Aguero-Valverde & Jovanis, 2006) or outperform 

models that do not account for the multilevel structure of crash data (Huang et al., 2009; 

Siddiqui et al., 2012; Wang & Kockelman, 2013). Robustness and transferability of 

multilevel models applied in safety analysis are issues that are still scarcely addressed 

(Huang & Abdel-Aty, 2010). These models may be complex for estimation and may not 

be easily transferable to other datasets. The results, particularly related to the underlying 

spatial correlation, may also be difficult to interpret (Lord & Mannering, 2010).

While some of the previous studies handled spatial correlation among analysis units 

by applying Bayesian models, there are studies that opt for less complex modeling 

approaches that rely on classical statistical inference. These studies use Geographically 

Weighted Poisson Regression (Li et al., 2013; Xu et al., 2015), or suggest considering 

negative binomial models with fixed and random effects to account for spatial and/or 

temporal disturbance “spillover effects” in the data (Noland & Quddus, 2004; Shankar et 

al., 1998; Wang et al., 2009). In the case where correlation among observations is 

expected due to spatial or temporal proximity, models with random and fixed effects may 

be considered. Spatial correlation might occur when data from the same regions “share 

unobserved effects” (Lord & Mannering, 2010). In such cases, models with fixed effects 

would account for unobserved heterogeneity by using indicator variables for defined
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regions, while models with random effects account for unobserved heterogeneity across 

spatial or temporal units with the assumption that these effects have certain distributions 

over the spatial/temporal units of analysis (Hausman & Taylor, 1981; Lord & Mannering,

2010). Several previous studies have used fixed and random effects to handle unobserved 

spatial and temporal correlations in crash data (Johanson, 1996; Shankar, 1995; Miaou & 

Lord, 2003; Noland & Quddus, 2004; Porter & Wood, 2013).

Generalized Additive Models (GAM) have been used in relatively few published crash 

studies (Li, Lord, & Zhang, 2009; Xie & Zhang, 2008). The two safety studies using 

GAM that were identified for this literature review focused on the complexity between 

the crash outcomes and explanatory variables (e.g., AADT). One of the studies 

incorporated a smooth function as a cubic regression spline into the additive models, and 

concluded that GAM outperformed generalized linear models (Xie & Zhang, 2008). The 

other study used GAM to incorporate interaction terms into crash modification factors, 

concluding that this approach adequately captured the interactions between geometric 

design and operational features (Li et al., 2009). Other disciplines, such as ecology and 

epidemiology, have used GAM in spatial analysis, taking advantage of the ability of 

smooth functions to account for random spatial effects and spatial correlation in the data 

(Schmidt & Hurling, 2014; Wood, 2006).

Summary of Literature

Based on the reviewed literature on urban multimodal transportation safety, this study 

primarily fills in the research gaps in terms of the data used to estimate areal safety 

models resulting from this research. While previous studies attempt to include area-wide 

effects and the presence of multimodal infrastructure, this study captures the complete
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presence of infrastructure dedicated to all four modes: vehicles, transit, pedestrians, and 

bicyclists. In addition, area-wide effects considered in the previous areal safety studies, 

such as SE data and land use characteristics, are also considered in this analysis.

Further, the measures that characterize general access to multimodal transportation 

options for various transportation users are expanded in this study, to include not only the 

indicators of street connectivity, but also network completeness that captures the presence 

of complete streets on the area-wide level, and multimodal accessibility measures that 

capture access to destinations. Particularly measures of accessibility are developed on a 

very fine-grained level, to capture the ability of pedestrians, and bicyclists to access 

destinations, as well as the ability of transit users to access both transit service and 

destinations while accounting for spatio-temporal variations. These additional measures 

that capture the access and the effectiveness of multimodal infrastructure, contribute to 

the estimated areal safety models, as a proxy for multimodal users exposure and the 

opportunities to be involved in crashes, representing trip opportunities, distances and 

potential conflicts. These measures also contribute to the exiting literature on measuring 

multimodal accessibility, as previous studies did not measure nonmotorized accessibility 

on a scale as large as presented in this research, while this is one of the first studies to 

incorporate spatio-temporal variations in transit service into the measurement of transit 

accessibility.

Looking at the methodologies applied in previous road safety studies, particularly 

areal studies and studies that focus on multimodal transportation, both frequentist and 

Bayesian statistical inference are used to estimate statistical safety models. Areal safety 

studies that focus on more than one user type are rare, with a particularly low number of
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studies focusing on pedestrians, and even lower number of studies focusing on bicyclists 

as vulnerable users. While Bayesian methods have gained a lot of attention over the 

previous decade, this study explores in details methods based on frequentist inference, 

and their potential to serve for areal crash estimation. In addition to GLM, the GAM 

approach is implemented, that has previously been used in very few segment-based road 

safety studies, and has not been explored in areal safety studies.

The data, measures, and methods presented in this research are developed to fill some 

of the existing research gaps in multimodal transportation safety in urban environments, 

and contribute to research and practice efforts focused on designing safer and more 

accessible multimodal transportation systems.
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CHAPTER 3

METHODOLOGY

This chapter describes the methods used to accomplish the research goal and 

objectives related to exploring the factors that are associated with the multimodal 

transportation safety outcomes in urban environments, as defined in the Introduction. 

Methodology described in this chapter is based on the conceptual framework provided in 

Figure 1. The sections of this chapter include the general approach to research 

methodology development, the data collection, description of data, variables, and 

measures, and the SASM methods applied in crash estimation process.

Data collection is described in details, including the site selection, the sources of data, 

and the way data were aggregated and used for the purpose of crash estimation by using 

SASM methods. Variables used in the analysis are divided into four major sections 

covered in this chapter. First, crash data are described, including characteristics of total 

and severe crashes for vehicles, pedestrians, and bicyclists. Second, variables that 

represent multimodal exposure are provided. Third, potential exposure surrogates through 

the representation of access to multimodal transportation are provided. Fourth, variables 

that represent system-wide factors that are found to be associated with crash outcomes in 

the existing research are described. The final section of this chapter is dedicated to the 

description of SASM methods, their application to estimate the expected number of 

crashes for multimodal users, and statistical model diagnostics.



Research Design

The SASM models were estimated using multimodal crash outcomes as the response 

variables; and variables and measures representing exposure, access to multimodal 

transportation, and system-wide effects that may influence safety as the explanatory 

variables. The following equation represents the general formulation of SASM methods 

used to safety as a function of multiple explanatory variables:

A real S a f e t y  =  f (M u lt im o d a l  Exposure +  M ultim odal Access +  S ys tem _w ide  e f f e c t s )  Equation (1)

The SASM framework for estimation of the expected crash number by type and 

severity provided in Equation 1 primarily acknowledges the complexity of urban 

multimodal transportation systems and the variety of factors that may influence safety in 

these environments. The expected number of crashes was estimated on the areal level in 

terms of total and severe crashes for vehicles, pedestrians, and bicyclists.

After establishing the general crash estimation framework, the next research step was 

to determine the location where urban multimodal safety was explored, and to determine 

the level of data aggregation. The review of literature served to establish the gaps in 

current multimodal safety research in urban environments, define the research goal and 

objectives, and establish data needs in order to proceed with the data collection. After 

establishing the data needs and considering the potential data sources, data were collected 

from various sources and aggregated, as will be explained in the following section of this 

chapter.

The data collection and aggregation process resulted in obtaining variables 

representing crashes, exposure, and area-wide effects that may influence multimodal 

safety. In addition, obtained data were utilized to develop measures of access to 

multimodal transportation, from the presence of multimodal infrastructure, to multimodal
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network connectivity and accessibility. These measures were used as the additional 

proxies or surrogates for the multimodal exposure in terms of trip opportunities, 

distances, and potential for conflicts.

Five SASM methods were applied to estimate safety outcomes for multimodal users, 

following the framework from the Equation 1. These SASM methods were evaluated in 

terms of the model specifications, the ability to capture spatial correlation in the data due 

to the spatial aggregation, and the overall model goodness of fit. This research method 

design resulted in recommendations for the future multimodal safety evaluation methods 

in urban environments.

Data Collection

The key elements in the data collection for this research included identifying data 

needs, selecting the analysis site, and determining the areal unit of analysis that was used 

to aggregate the data. The site selection and data collection and organization were 

conducted to acknowledge the growing potential of urban data, accounting for a broad 

array of data sources in urban multimodal transportation systems. Thus the concepts of 

Big Data and Open Data played a significant role in the dataset development, as the 

analysis site was selected to explore the potential of the inclusion of Open Data in the 

dataset, and to allow for the dataset expansion in the future as Big Data on multimodal 

transportation users activities are becoming more and more available.

Site Selection

The search for data involved various cities, mostly from the U.S. and Europe, with 

diverse transportation options in their urban environment, and with solid data sources 

available for urban multimodal research. Since the research methodology was designed to
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conduct areal analysis, the most useful for this purpose were available Geographic 

Information System (GIS) databases, or other datasets that include spatial information.

The City of Chicago Department of Innovation and Technology maintains a very 

detailed database on transportation and urban environment features. Chicago’s robust 

data portal was established in 2010 and hosts over 900 datasets with information on 

various services in the city, in tabular, GIS, and API formats. The portal is developed to 

enable residents to access government data and utilize them to develop tools that can 

improve the quality of life in the city. This is currently one of the “largest and most 

dynamic models of open government in the country” (Thornton, 2013). In addition to 

improving the decision making process by merging various data sources and developing 

an Open Data platform, the City of Chicago is also invested into developing new ways to 

generate and collect urban data.

Apart from the major efforts to develop high fidelity open source data platforms, 

Chicago is also known for its extensive multimodal transportation system. The City has 

developed complete streets design guidelines (City of Chicago, 2013), with “Make Way 

for People” initiative that converts underutilized “excess asphalt” street spaces into active 

public spaces with purpose to increase safety, encourage walking, and support 

community development. Chicago has invested in bicycling infrastructure to become one 

of the best major U.S. cities for biking with over 200 miles of on-street bike lanes.

The City of Chicago is also known for its active safety research not only vehicles but 

bicyclists and pedestrians as well, and a very extensive transit system. Chicago is the first 

major city in the U.S. to adopt a city-wide policy for the investments in safety 

countermeasures that would reduce pedestrian crashes, as a part of the national “Vision
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Zero Network” initiative. All factors described above made Chicago a valid case study 

for the purpose of this research.

Data Sources

This study combined data from several sources, including open data and data obtained 

from multiple transportation agencies, to develop a comprehensive framework for the 

analysis of the relationship between multimodal transportation features and safety in 

urban transportation systems. Data collection included crashes, multimodal transportation 

features, road network features and traffic conditions, land use data, socio-economic 

characteristics, and analysis of spatial features to select the adequate spatial units of 

analysis. Data were obtained from the Illinois Department of Transportation (DOT), 

Chicago Metropolitan Agency for Planning (CMAP), Chicago Transit Authority (CTA), 

City of Chicago, U.S. Bureau of Census, as well as the available open data platforms 

supported by the City of Chicago. Table 1 shows the data sources used to collect the data 

and develop the dataset for this research.
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Table 1 Data Sources, Descriptions, and Formats

| Data Source Year Format
Crash records Illinois DOT, Chicago Crash Browser 2007-2012 csv
Socio-economic characteristics U.S. Bureau of Census, ACS 5-Year Estimates 2008-2012 csv
Land use Chicago Metropolitan Agency for Planning 2010 shp
Road network City of Chicago 2012 shp
Travel demand model Chicago Metropolitan Agency for Planning 2010 csv, shp
Other traffic volume data Illinois DOT 2014 csv
L Train lines, stops and ridership Chicago Transit Authority 2012 csv, shp
Bus lines, stops and ridership Chicago Transit Authority 2012 csv, shp
Bike lanes and bike racks City of Chicago 2012 shp
Sidewalk City of Chicago 2012 shp
Commuter trips to work by means U.S. Bureau of Census, ACS 5-Year Estimates 2008-2012 csv
Spatial units of analysis City of Chicago 2012 shp



Spatial Analysis Units and Data Aggregation

In order to capture multiple factors that could impact crashes in urban environments, 

collected data from Chicago were spatially aggregated. Determining the level of spatial 

data aggregation is an important step in this study, as the choice of spatial analysis units 

could significantly impact the outcomes and types of conclusions that can eventually be 

drawn. The choice of the data aggregation unit ultimately depended on the desired level 

of detail in the final dataset and the data availability. For Chicago, a wide range of spatial 

units was considered, including four planning regions and seven planning districts, 50 

wards, 77 communities, 228 neighborhoods, more than 800 census tracts, more than 2000 

census blocks, and traffic analysis zones.

There are always trade-offs when selecting the appropriate unit of analysis in areal 

safety studies. Compromises in selecting a unit of analysis will often be made on account 

of data availability. Another compromise must be considered between the accuracy of the 

data and the ease of comparison between units of analysis.

Planning regions and districts, or the Central, South, North, and West Side, were too 

large areas for this type of analysis, covering both land uses and parts of the urban 

transportation systems that are too diverse to be aggregated for the dataset formulation. 

Since 1923, the city has been divided into 50 wards led by the City Council 

representatives. However, it was not recommended to use wards for city areas 

comparison, especially over a period of time, since the wards are redistricted every 10 

years related to the population.

Communities in Chicago refer to the work of Social Science Research Committee at 

the University of Chicago, which has unofficially divided the City of Chicago into 77 

community areas. Census data are tied to community areas, and they serve as a basis for a
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variety of urban planning initiatives on both local and regional level. Communities are 

well defined and static, and they were a potential candidate for areal analysis units. Each 

community, however, contains one or more neighborhoods, and in some cases, the 

character of the community was hard to determine due to the number and variety of 

neighborhoods. There are 228 neighborhoods in the available GIS database, but the shape 

and size of these neighborhoods has been varying over time as real estate development 

was changing. So the neighborhoods were not the ideal starting point for this type of 

analysis.

Census tracts are small statistical county subdivisions with relatively permanent 

geography that are updated each decade under the initiative of the U.S. Census Bureau. 

Census tracts are supposed to be somewhat homogeneous and ideally have around 1200 

households (perhaps 2000-4000 people), but, in Chicago, population varies from 0 up to 

16,000. Census tracts in the city of Chicago have remained nearly constant since the 

1920s, but the numbering system has changed. Census tracts in the suburbs have changed 

a great deal over the years, in most cases by splitting. There were 876 census tracts in 

Chicago according to the 2000 census. Census blocks correspond closely to blocks that 

any urban resident would identify. Only limited data are available at the block level, and 

some figures are suppressed to prevent identification of individuals.

Based on the previous discussion, census tracts were selected as the areal units of 

analysis for data aggregation and SASM methods application in this study. Census tracts 

were the most appropriate for spatial analysis in this case due to the data coverage and 

availability, and the convenient link to SE characteristics, which have proven to be 

relevant for safety outcomes. The ranges of spatial units numbers used in the available
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literature indicated that census tracts would be appropriate as well. After merging the data 

needed for the analysis, and eliminating some census tracts due to missing data in the 

geocoding process, a total of 801 census tracts remained in the dataset. Figure 2 provides 

the illustration and the descriptive statistics for the spatial units of analysis considered in 

this analysis, including the selected census tract areas.
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Area Obs Mean Std. Dev. Min Max
Census Tract Area in miles squared 801 .3025424 .4834481 .003204 8.355789

Figure 2 Spatial Units of Analysis Considered in This Study with the Description of 
Census Tract Area as the Selected Unit of Analysis



Response Variables

Crash data for Chicago were available from the Chicago Crash Browser and the 

Illinois DOT. The Chicago Crash Browser is an online database that maps all pedestrian 

and bicyclist crashes in the city. It is an interactive map that allows the choice of a search 

radius, output type (either graph or text), and address in Chicago, for pedestrian and 

bicycle crash search. The Browser right now includes Chicago crash data for the period 

between 2005 and 2012, with crash records where a pedestrian or a bicyclist was the first 

point of impact by an automobile. These records were collected by corresponding law 

enforcement and maintained by the Illinois DOT. Chicago Crash Browser interactive map 

primarily served for preliminary crash data exploration for nonmotorized user crashes.

After using the open-source data to determine the adequate crash data availability for 

multimodal users and confirm that Chicago is the appropriate case study, the Illinois 

DOT served as a main source of crash data for the period from 2005 to 2012. A total of 

764,261 crash records were included in this database, with crashes that involved only 

motorized and both motorized and nonmotorized users. The obtained crash records 

included crash coordinates, county, city, and township codes where crash has occurred, 

year, month, day, and hour when the crash has occurred, vehicle occupant information, 

crash severity information, horizontal and vertical alignment, cross section, road 

functional classification, traffic control, pavement condition, weather and light condition, 

primary and secondary crash causation events, and collision type. These two data sources 

provided very detailed information about crashes that have occurred in Chicago over the 

period of 8 years. Response variables in this research were identified to differentiate 

between safety outcomes for motorized and nonmotorized users, as well as safety
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outcomes in terms of frequency and severity. The response variables that this research 

was focused on included:

• Total vehicle-only crashes (vehicular crashes, all types and severities)

• Fatal and severe injury vehicle-only crashes (severe vehicular crashes, all types)

• Total crashes involving pedestrians (pedestrian crashes, all severities)

• Fatal and severe injury crashes involving pedestrians (severe pedestrian crashes)

• Total crashes involving bicyclists (bicyclist crashes, all severities)

• Fatal and severe injury crashes involving bicyclists (severe bicyclist crashes) 

Crashes were aggregated across the defined 8-year time period (2005 - 2012), and then

disaggregated using the defined areal units of analysis, census tracts in the City of 

Chicago. Table 2 provides the initial descriptive statistics for total and severe crashes for 

a variety of users. This dataset enabled the exploration of pedestrian and bike crashes 

separately, as well as consideration of various levels of crash severities, providing 

information for potential future research efforts. Spatial distribution of crashes is 

provided in Figure 3, while Figure 4 shows histograms and q-q plots of crash data.
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Table 2 Descriptive Statistics for Road Crashes

Variable Description Obs Mean Std.
Dev. Min Max

All Crash Total Crashes 801 393.109 371.431 6 4298
KA_Crash Total Fatal and Sever Injury Crashes 801 10.516 10.446 0 114
VehCrash Vehicle-only Crashes 801 375.176 354.534 5 3920
Veh_KA Vehicle-only Fatal and Severe Injury Crashes 801 8.004 8.465 0 71
PedCrash Crashes Involving Pedestrians 801 17.750 22.528 0 481
Ped_KA Fatal and Severe Injury Crashes Involving Pedestrians 801 2.131 2.555 0 41
BikeCrash Crashes Involving Bicyclists 801 9.528 13.178 0 172
Bike_KA Fatal, and Severe Injury Crashes Involving Bicyclists 801 0.783 1.293 0 12
NMCrash Nonmotorized Crashes 801 27.278 32.640 0 653
NM KA Nonmotorized Fatal and Severe Injury Crashes 801 2.914 3.331 0 53
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a) Vehicle-only Crashes b) Pedestrian Crashes c) Bicyclist Crashes
< 250 < 10 < 10

251 -  500 11 -  50 11 -  25

501 -  1000 51 -  100 25 -  50

1001 -  2000 101 -  250 51 -  100

> 2000 > 250 > 100

a) Severe Vehicle-only Crashes b) Severe Pedestrian Crashes c) Severe Bicyclist Crashes
0 0

1 -10 1 -5 1 -2

5-25 6 -10 3-5

26 -50 11 -25 16-10

> 50 > 25 > 10

0

Figure 3 Spatial Distribution of Crashes by Census Tract in Chicago for Time
Period from 2005 to 2012
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Figure 4 Normal Q-Q Plot, Histograms, and Box Plots for Vehicle-only, Pedestrian, and 
Bicyclist Total and Severe (KA) Crashes, Respectively



Measures of Exposure

This research primarily used measures of exposure that are defined as the activity 

measures that provide an indication about the number of users that may be exposed to 

crashes (Elvik, 2009). Multiple options were explored to determine the measures of 

exposure for vehicular, pedestrian, and bicyclist users, and the adopted measures needed 

to be appropriate for applying SASM methods on the census tract level. These activity- 

based measures of exposure were used in the SASM models in such a way that it was 

assumed that no crashes would occur if there was no exposure.

The challenges of determining adequate variables that would represent vehicular 

traffic volumes and speeds at spatial units’ level are recognized in previous research 

(Noland & Quddus, 2004; Quddus, 2008). The information about traffic volumes and 

conditions is typically used to develop exposure variables vehicular users (Elvik, 2010; 

Hauer, 1995). Several sources of traffic volume data were considered to represent the 

vehicular exposure on the census tract level. The value of VMT can be estimated based 

on the National Travel household Survey data (NTHS), where VMT is based on trip 

distance reported by driver, trip units represented by the number of blocks which are 

further converted to miles, and the number of private vehicles. VMT estimated in this 

manner largely depends on the trip distance that household drivers report in the survey, 

and does not provide adequate road network coverage for the entire Chicago area. An 

alternative source of traffic volume data maintained by Chicago DOT is “Chicago Traffic 

Tracker”, a city-wide real-time traffic information system. The traffic tracker includes 

real-time speed measurements, current outlook on traffic congestion with hourly 

projections for up to 12 hours ahead, Average Daily Traffic (ADT) counts from the year 

2006, signals, red-light cameras, speed cameras, and downtown pedestrian counts from
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the year 2007. The traffic tracker is constantly updated, and allows the selection of a 

specific corridor, intersection, and landmark where volume counts are collected. If this 

research was conducted on the intersection or road segment-level of analysis, traffic 

tracker would have been the optimal source of volume data. Since the tracker provides 

coverage for only certain portions of road network, the network-wide vehicular volumes 

would likely be estimated using the available volumes, introducing the additional source 

of error in the data. In order to provide vehicular volume data for the entire road 

network, the most recent Chicago Air Quality Conformity Analysis conducted by CMAP 

was used. This study by CMAP was completed in the first quarter of 2014, and submitted 

to Federal Highway Administration (FHWA). For the purpose of this study, the vehicular 

volumes for road network segments in Chicago were estimated using the data from the 

travel demand model, specifically the results of traffic assignment. The way dynamic 

traffic assignment is performed involves link volume estimation, while accounting for 

travel survey data, accessibility analysis for a variety of modes, and as close as possible 

calibration of the assignment to match the actual volume counts. The CMAP analysis 

reflects the 2010 Census data, and the analysis years are 2010, 2015, 2025, 2030, and 

2040. Data for the analysis year of 2010 are most suitable for the purpose of this study. 

The dataset includes trip generation inputs and outputs by traffic analysis zone, person 

trips productions and attractions, network assignment including vehicular and transit 

assignment, and detailed link volume data. Using this CMAP study, DVMT for each 

census tract were calculated, based on the validated traffic assignment volumes for the 

year 2010 and the available road network segment lengths.
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Obtaining the data related to nonmotorized users measures of exposure is even more 

challenging than obtaining vehicular users exposure data. Volume count data are rarely 

available for pedestrians and bicyclists, so the exposure measures for these two modes are 

usually replaced with surrogates or estimated. This research used two primary sources of 

data for pedestrian and bicyclist exposure in the form of activity-based exposure 

measures: the percentage of commuter trips to work by different modes were extracted 

from the ACS U.S. Census data, and the estimated number of pedestrian and bicyclist 

trips generated in Chicago based on the CMAP travel demand model. The U.S. Census 

ACS 5-year data provided the estimates for the percentages of commuter work trips by 

means of transportation for drive-alone trips, carpool, public transit, walking, and trips by 

other means of transportation for the period from 2008-2012, providing alternative 

information on mode choice on the census tract level. The CMAP trip generation model 

was based on the data for the year of 2010, just as in the case of traffic assignment model 

used to obtain the values of DVMT on the census tract level. As commuter trips to work 

account for only a portion of total daily trips (usually up to 25 %), the estimated 

pedestrian and bicyclist trips from the CMAP trip generation model were used as the 

primary measure of pedestrian and bicyclist exposure. Generated pedestrian and bicyclist 

trips are estimated for trip generation subzones defined by CMAP, which represent the 

quarter-sections of traffic analysis zones. Trips generated within each subzone were 

aggregated on the census tract level to obtain the summary of generated pedestrian and 

bicyclist trips for each of the 801 census tracts. Descriptive statistics for exposure 

measures are provided in Table 3.
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Table 3 Descriptive Statistics for the Road Network, Traffic, and Multimodal
Transportation Variables



Measures of Multimodal Accessibility

Based on the reviewed literature, the common measures of exposure in road safety do 

not completely capture the presence of multimodal users in urban environments and their 

opportunity to be involved in a crash. The main limitations of activity-based measures of 

exposure is the lack of ability to represent the traveling distances and the opportunities 

for conflicts on the network-wide level. Indicators from accessibility theory are 

sometimes used to improve the representation of multimodal exposure and capture the 

presence of multimodal transportation options and the overall access to multimodal 

infrastructure. The measures of accessibility are incorporated in long-term transportation 

planning, and it is considered that they impact the amount and nature of travel that occurs 

on various levels. This research uses the combination of traditional activity-based 

measures of exposure and multimodal accessibility indicators, in order to develop SASM 

estimates and explore how multimodal infrastructure and accessibility features relate to 

safety on the areal level. These measures of “multimodal accessibility” were developed in 

three categories, to include the following:

1) Multimodal transportation infrastructure availability and connectivity

o Road mileage, density, and functional classification 

o Intersections number, density, and signal control 

o Sidewalk length and density 

o Bike lane length and density 

o Bike racks presence and density 

o Transit lines length and density 

o Transit stops presence and density

2) Street network completeness
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o Percent of network that is complete (e.g., serving all four modes)

o Percent of network serving more than one mode (e.g., drive and walk)

3) Multimodal accessibility

o Pedestrian accessibility

o Bicyclists accessibility

o Transit accessibility

Multimodal Transportation Infrastructure and Connectivity

Road network mileage and functional classification variables are included in the 

reviewed literature, mostly as proxies for exposure. Road network data are provided by 

the City of Chicago open database. Data files take the form of digital geospatial polyline 

features of road centerlines in Chicago. This dataset was originally created in 2010, and 

updated in 2013. The available data files include the information about direction, street 

name, street type, status code (e.g., closed to traffic, private), address range, road class 

values, one-way streets, FIPS codes for municipalities, “from” and “to” elevation levels, 

“from” and “to” intersecting street segments, segment length, and dates when the features 

were created, edited, and updated. The information from this dataset was used for further 

network mileage calculations and street class codes. To account for the diversity of the 

road network in Chicago in terms of capacity and speeds, the percentages of road 

network categorized according to functional classes was determined. The intersection 

numbers, densities, and the percentage of signalized intersections were also calculated for 

each of the analyzed census tracts. The calculation of network connectivity-related 

variables that mostly related to densities of multimodal facilities was conducted
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following the GIS protocols from the previous walkability studies (Oakes, Forsyth, & 

Forsyth, 2012; Schmitz, 2007; Tressider, 2005).

Variables related to multimodal transportation features in Chicago were an important 

addition to the dataset, as they are rarely present in the previous research. These variables 

represent access and availability of multimodal transportation options on a census tract 

level, including public transit, biking, and walking facilities. The City of Chicago and 

Chicago Transit Authority provide the data on bus lines and bus stops, bike lanes and 

bike racks, sidewalks, and parking zones. Indicators of density for bus lanes, bike lines, 

and sidewalks were also developed and included in the dataset.

Figure 5 provides the visualization of multimodal infrastructure in Chicago that was 

included in the dataset. The initial descriptive statistics for road network, traffic, and 

multimodal transportation data is provided in Table 3.

Network Completeness

Additional variables included in the SASM analysis as exposure surrogates relate to 

street network completeness. Apart from capturing the presence of multimodal 

infrastructure, multimodal users activity, and access to destinations, variables related to 

network completeness indicate how different modes relate to each other in urban space, 

and how multimodal networks are layered in the city. Specifically, network completeness 

shows what percent of street network on the census tract level serves all four modes 

(private automobile, public transit, biking, and walking), as well as what types of users 

are served on those parts of the street network that are not “completed”.
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Figure 5 Roadway Network and Multimodal Facilities

This inclusion of network completeness rather than street completeness in the analysis 

provided the opportunity to compare the safety benefits of streets serving all modes 

versus streets that are strategically prioritizing single mode while not excluding other 

modes in terms of access on the network-wide level. The idea of “complete networks 

versus complete streets” was previously discussed by the Congress for New Urbanism, 

where transportation planners and urbanists concluded that it may be more beneficial to 

plan for accessibility for all users on the network-wide level, rather than insisting on 

complete streets even when they are not the most feasible design solution. Table 4 shows 

variables included in this research to capture network completeness. Figure 6 shows 

spatial distribution of DVMT and the percentage of street network serving all four modes 

in each census tract.

Table 4 Descriptive Statistics for Network Completeness

Variable Explanation Obs Mean Std.
Dev. Min Max

NC Car Network Serving Cars only (%) 801 0.030 0.076 0 0.543
NC Car W Network Serving Cars and Pedestrians (%) 801 0.577 0.286 0 1.000
NC CarWT Network Serving Cars, Pedestrians and Transit (%) 801 0.438 0.930 0 1.000
NC Car WB Network Serving Cars, Pedestrians and Bicyclists (%) 801 0.061 0.078 0 0.528
NC Car WTB Network Serving All Modes (%) 801 0.085 0.143 0 1.000
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Daily Vehicle Miles Traveled Percentage of Network Completed

Figure 6 Spatial Distribution of DVMT and the Percentage of the City of Chicago 
Street Network Serving All Four Modes

Accessibility can simply be defined as the ability to reach spatially distributed 

activities within a defined time frame, and it measures the quality of the connection 

between origins and destinations. So in transportation, accessibility can be defined in 

terms of origins or destinations by asking one of the two following questions:

• How many destinations can we reach from a specific origin?

• From how many origins can we reach a specific destination?

Although there is a wide range of performance measures available in the literature, 

measuring accessibility is a challenge because guidelines that link the types of 

accessibility measures to their practical application are still not established. In 

transportation performance measurement, the implementation of any newly developed 

measures is difficult because it needs to be tailored to fit into more traditional



performance evaluation processes. In addition, accessibility in transportation varies 

across the modes of transport, and while access for all modes is a function of 

infrastructure features, nonmotorized modes are much more sensitive to the way activities 

are distributed in space than motorized modes. This research develops cumulative 

accessibility measures for nonmotorized modes, and composite accessibility measures for 

transit mode.

Accessibility for Pedestrian Mode

The accessibility measurement approach for nonmotorized modes is based on a 

previous, smaller scale case study, used to quantify pedestrian and bicyclist accessibility 

(Tasic, Musunuru, & Porter, 2014). For both pedestrian and bicyclist modes, a specific 

destination is considered accessible if there is a connection between the origin and 

destination, if that connection is within a defined distance, and if it is reachable within a 

defined time frame. So the approach developed here recognizes that accessibility is 

provided gradually. The first step is to have points of interest, or origins and destinations 

as they are referred to here, and to provide infrastructure that links the defined origins and 

destinations in a manner appropriate for a particular mode of transport. The factors that 

determine whether the link or a connection between origin and destination is appropriate 

for the specific mode are determined based on the existing Manual on Uniform Traffic 

Control Devices (MUTCD) standards and AASHTO guidelines. If the connection 

between origin and destination is feasible for a particular mode, the second step in 

providing accessibility is deciding how far origins and destinations are from each other. 

The third step is adding a temporal dimension to accessibility by incorporating the speed 

and obtaining travel time for feasible connections and distances for given transportation
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modes. Temporal accessibility is especially relevant from transportation users’ 

perspectives (Beeco & Brown, 2013). In transportation systems, people tend to think in 

terms of time it takes to get to desired destinations, or the acceptable travel time 

(Mahmasanni, Abdelghany, & Kraan, 1998). This way of thinking in terms of time is 

created due to transportation systems’ inherent time variability. Traveling the same 

distances does not always take the same amount of time. This variability depends on the 

environment, geometric design features, mode of transportation, amount of traffic, and 

modal diversity in general. Variability in travel time for equal distances is larger in urban 

environments where multiple transportation modes are present, it is larger on roadway 

segments with grades and curves than on the straight level segments, and there is more 

variability for modes that can achieve higher speeds and travel longer distances. 

Therefore, both spatial and temporal dimensions are important for accessibility 

measurements, and which one is more important depends on the application of those 

measurements (e.g., whether it is deployed for spatial allocation of activities or trip 

planning) and the presence of characteristics that contribute to time variability across 

equal distances. Based on the previous discussion, the accessibility criteria for the quality 

of connections, the distance between origin and destination, and the time needed to reach 

the destination are different for different modes. The approach, assumptions, and 

calculations proposed to measure accessibility in the described Chicago case study 

network are further expanded for pedestrian and bicycle modes.

The first step in a pedestrian accessibility assessment was to define the potential 

origins and destinations in a study area of Chicago. Although data aggregation on the 

census tract level was adopted in this study, origins and destinations were defined on a
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much higher level of aggregation, to capture the actual scale of pedestrian movements in 

Chicago. As the most recent land use data for the year of 2010 became available in the 

form of parcel data, this very detailed dataset was used to define pedestrian origins and 

destinations. Land use parcel data were first cleaned to eliminate parcels that refer to 

vehicular right of way. Then, land use parcels were divided into eight categories 

(residential, commercial, institutional, industrial, transportation/parking, agriculture, open 

space, and vacant/under construction). All land use parcels were used as both origins and 

destinations for pedestrian trips in the city. This resulted in total of 136,134 origins 

defined for pedestrian trips, and just as many destinations. Defining each land use parcel 

as both an origin and a destination, rather than simply defining centroids in each of 801 

census tracts, made the computational process very exhaustive, but significantly 

contributed to more precise measurements of pedestrian accessibility. To author’s 

knowledge, no previous studies measured pedestrian accessibility at a city-wide scale 

using such high level of data aggregation in terms of trip origins and destinations. More 

recent transit accessibility studies used data aggregated at the census block level, also 

providing very detailed measurement of accessibility to jobs, but pedestrian accessibility 

measurements were not the objective of this research (Owen & Levinsom, 2014).

In addition to defining adequate origins and destinations, another challenge in 

calculating pedestrian accessibility was to properly define pedestrian network in the city. 

The available sidewalk area data were used to edit the street network of Chicago and 

include only those streets in Chicago that have sidewalk in the pedestrian accessibility 

analysis. This is a standard way of manipulating the street network data to ensure that 

freeways and ramps are excluded from the final pedestrian network (Forsyth, 2012). This
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approach, however, does not account for all pedestrian paths in the city, as some 

pedestrian routes that cut through parks and public spaces were not incorporated in the 

shortest path search between the origins and destinations. While excluding the off-street 

pedestrian paths from the analysis could be a limitation for this study, using the entire 

street-based pedestrian network provided a good approximation for the possible 

pedestrian routes in the city.

For the defined origins and destinations, an origin destination (OD) matrix was created 

for all possible OD combinations with the following questions assessed for each pair:

• Is there a feasible walking connection between origin and destination?

• Is the distance between origin and destination adequate for pedestrians?

• Is the time needed to reach the destination adequate for pedestrians?

To answer the first question, possible connections between each O-D pair were 

identified as uninterrupted paths between an origin and a destination, on the terrain 

appropriate for pedestrians, with AASHTO guidelines for the adequate path width of 

4.67ft (AASHTO, 2004). One-quarter mile and half a mile distances were adopted as the 

criterion for acceptable walking distances as suggested by the AASHTO Guide for 

Planning and Design of Pedestrian Facilities (AASHTO, 2004). The distances between 

origins and destinations were measured using ArcGIS network analyst tools and 

calculating shortest paths for pedestrians. By applying MUTCD guidelines for average 

pedestrian speed of 4 feet per second to this distance, the one-quarter mile distance 

criterion suggests that visitors are not willing to walk more than 10 minutes to reach their 

destination (MUTCD, 2009). Pedestrian speeds range from 2.5 feet per second to 6 feet 

per second, and the average pedestrian speed is usually related to the age of the
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population in the observed area. The pedestrian speed of 4 feet per second was used to 

determine travel times between origins and destinations. Several time buffers were used 

to account that pedestrians might be willing to walk longer to certain destinations, 

including time frames from 5 minutes to 30 minutes walking time with 5 minute 

increments (MUTCD, 2009).

This study primarily measured cumulative pedestrian accessibility defined as the total 

number of destinations accessible to pedestrians within the defined time frames for all the 

origins located within a particular census tract. In the case of cumulative measures, the 

same weight is used for all destinations, acknowledging this as a limitation that should be 

addressed in potential future research efforts, as all destinations do not have the same 

level of attractiveness, and visitors might be willing to walk longer to some destinations 

than others. In order to standardize the variables, as census tracts vary in size and 

population, the cumulative number of destinations accessible for pedestrians was divided 

by the total number of destinations within each census tract. Cumulative number of 

opportunities for pedestrians was calculated as following:

Where:

Peddk-  total number of accessible destinations in census tract k

dij — destination j accessible from origin i

N -  total number of destinations

oi — origin i within census tract k

Nk -  total number of destinations within census tract

Equation (2)
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Tij -  time needed to reach destination j from origin i 

T -  available time budget (5,10,15,20,25, or 30 minutes)

Figure 7 shows the cumulative pedestrian accessibility, calculated by using the 

Equation 2 for the defined time frames of 5, 10, 15, 20, 25, and 30 minutes of the 

assumed acceptable walking time. As expected, census tracts with the highest number of 

destinations accessible within the defined time frames are mostly located in city center 

and the North side of the city, as these areas have higher densities and more developed 

pedestrian networks. Some census tracts on the South side also show higher cumulative 

pedestrian accessibility, mostly where current multimodal infrastructure investments are 

concentrated. In addition to cumulative pedestrian accessibility, weighted accessibility is 

also calculated by incorporating the travel time impedance function into the equation for 

cumulative accessibility measures:

Where:

Pedak-  weighted pedestrian accessibility in census tract k

dij — destination j accessible from origin i

N -  total number of destinations

oi — origin i within census tract k

Nk -  total number of destinations within census tract

Tij -  time needed to reach destination j from origin i

Figure 7 shows the spatial distribution of destinations accessible within the given 

walking time in the City of Chicago. Both weighted and cumulative pedestrian

Equation (3)



61

-.-■v

® 5 5 k :m:

- r■ >i

A

< 5 

5 - 10 

10 - 15 

15 - 20 

> 20

5 minute W alk Time

< 5 

5 - 10 

10 - 25 

25 - 50 

> 50

10 minute W alk Time 15 mi

< 5 

5 - 50 

50 - 100 

100 - 200 

> 200

■ P t * .
jg S  -

■i-

4ik-7

minute W alk Time

-SUSbIBvSsbb rail ^  ■"Sr.linuil,
{!. iSa î. s
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Figure 7 Destinations Accessible Within the Given Walking Time

accessibility calculated in described manner were used to estimate crash outcomes for 

nonmotorized transportation users in Chicago.

Accessibility for Bicyclists

Accessibility for bicyclists in each census tract was computed similar to pedestrian 

accessibility, but with different standards for the acceptable biking distances and travel 

times. The origins again were defined using all land use parcels (without the parcels 

referring to vehicular right of way areas) in Chicago, and the destinations were defined in 

the same way as origins.
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Defining destinations and origins like this enabled building OD matrices from each 

land use parcel to all other land use parcels in Chicago. In order to be considered 

accessible for biking, there should be an uninterrupted connection between the origin and 

destination, the origin and destination should be within the acceptable distance, and the

A connection was defined as an uninterrupted path between an origin and a 

destination, on the terrain appropriate for bicyclists, but this time with AASHTO 

guidelines for adequate operating spaces for bicyclists (AASHTO, 2012). Based on the 

reviewed literature, acceptable biking distance was defined as 3 miles (Dill, 2008). An 

average biking speed of 15 miles per hour was used for average biking speed as 

suggested by the AASHTO Guide for Planning and Design of Bicycle Facilities 

(AASHTO, 2012). ArcGIS network analyst tools was used to calculate shortest paths 

between origins and destinations for bicyclists, while adopting the identified criteria and 

including weights for intersections along the paths. As for the acceptable biking time for 

most of the cyclists traveling from an origin to a destination, times of 15, 30, 45, and 60 

minutes were adopted. Cumulative number of opportunities for bicyclists were then 

computed by using the following equation:

destination should be reached within the acceptable travel time for bicyclists.

Equation (4)

Where:

Bikedk-  total number of accessible destinations by bike in census tract k

dij — destination j accessible from origin i

N -  total number of destinations
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oi — origin i within census tract k 

Nk -  total number of destinations within census tract 

Tij -  time needed to reach destination j from origin i 

T -  available time budget (15,30,45, and 60 minutes)

The cumulative number of destinations accessible for bicyclists was divided by the 

total number of destinations within the census tract. Based on the described measures of 

non-motorized accessibility, for each census tract in the dataset, it was possible to extract 

the percent of destinations accessible for pedestrians and bicyclists. Figure 8 shows the 

spatial distribution of cumulative bicyclist accessibility in Chicago. When compared to 

Figure 7, Figure 8 shows significantly higher census tract cumulative accessibility for 

bicyclists than for pedestrians, due to obvious differences in the amount of time users are 

willing to spend walking and biking. Even the highest considered biking time budget of 

60 minutes does not render the entire area of the city highly accessible for bicyclists, 

particularly some census tracts alongside the lake Michigan. As expected, the downtown 

area as well as census tracts along the so-called “diagonal” avenues in Chicago show a 

high number of destinations reachable by bike. Similar as for pedestrian accessibility, 

weighted bicycle accessibility is calculated (please see Table 5 for results) by using the 

following equation:

Equation (5)

Where:

Bikeak-  weighted bicyclist accessibility in census tract k

dij — destination j accessible from origin i
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N -  total number of destinations

oi — origin i within census tract k 

Nk -  total number of destinations within census tract 

Tij -  time needed to reach destination j from origin i

This particular approach for nonmotorized accessibility was adopted to not only 

differentiate between the two modes, but to also clarify that even with high level of 

overall network connectedness, accessibility for nonmotorized modes might still be 

limited. This accessibility limitation might occur if the network of pedestrian and 

bicyclist facilities is disconnected with many interruptions and segments for vehicular 

mode only, then due to large distances between origins and destinations, and finally due 

to any traffic conditions that might cause delay for pedestrians and bicyclists on the way 

to their trip destinations.

Transit Accessibility

The framework for measuring transit accessibility adopted here has previously been 

applied on a smaller scale (Tasic, Zhou, & Zlatkovic, 2014). The methodology for transit 

accessibility measurement builds upon the traffic and transit data from the case study 

network, and uses transit network as well as Google Transit Feed Specification (GTFS) to 

perform transit accessibility measurements by calculating the number of accessible transit 

stops from each census tract centroid as a defined origin, as well as the total number of 

destinations that can be accessed by walking from the accessible transit stations. The 

methodology considers network features, acceptable walking time, available time budget,
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transit schedule variability, and spatial constraints as impact factors in accessibility 

measurements.

The City of Chicago road network with nodes, links, census tracts, transit network, 

and transit stations, imported as GIS shapefiles, was used as a basis for transit 

accessibility calculations. Transit accessibility, is defined as the average daily number of 

destinations reachable by transit from each census tract, using both walking and transit 

routes, constrained by spatial characteristics of the case study network and temporal 

dimension determined by transit service and traffic characteristics. In order to execute 

transit accessibility measurements, the transit stations within census tract areas are 

defined as trip origins, while all land use parcels in the city were considered as potential 

destinations. Transit lines and stations data available from CTA were combined with 

Chicago GTFS to provide the information on spatial and temporal distribution of transit 

services. The GTSF from Google includes the following (Google Transit Feed Data, 

2014):

• Calendar that specifies when service starts and ends, including the days of the 

week when service is available

• Calendar dates with possible service exceptions

• Routes or groups of trips displayed to riders as single service

• Shapes or rules for representing transit routes on the maps

• Stop times or arrival and departure times for each individual trip

• Stops or passenger pick up and drop off points

• Trips or sequences of stops for each route
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Particularly important for our accessibility measurements were the stop time records, 

that include a sequence of stops along each trip. Each stop time record contains required 

data such as trip identification, arrival and departure time, stop identification, and stop 

sequence. These data were used to determine how many times within each 15-minute 

period over the course of one day is each transit station accessible within the various 

combinations of time needed to walk to/from a transit station and time needed for a trip 

by public transit. A total of 11,664 transit stations with up to 123 stop time records per 

station were included in the analysis that resulted in average daily accessibility to 

destinations by transit on the census tract level.

While the resulting measures of transit accessibility appear similar to those of 

pedestrian and bicyclist accessibility, using the data on transit stop time and transit 

schedule helped to incorporate daily temporal variations of transit service into census 

tract-level transit accessibility measurements. This inclusion of time-dependent transit 

availability dynamics is the key difference between accessibility measurements for non

motorized modes and transit mode, as transit travel times to destinations vary with both 

space and time.

The idea to combine spatial and temporal changes in transit service in transit 

accessibility measurements is rooted in the composite space-time accessibility measures 

based on Miller’s STP concept (Miller, 1999; Miller, 2011; Wu & Miller, 2001). The 

STP is a set of locations in space and time that are accessible to an individual, given the 

locations and duration of fixed activities, time budget, and transportation speeds. The 

STP-based accessibility measures account for both individual sequence of trips and
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spatio-temporal constraints, calculating the amount of space that an individual can reach 

at specific combinations of times and locations.

In the case of public transit, travel times are not only affected by traffic conditions, but 

also by the time needed to access the transit stop, waiting time which depends on 

familiarity with the timetable, potential stops and transfers, and the time needed to reach 

the destination from the final transit stop. The accessibility models were developed based 

on the dynamic potential path calculations, but also to account for pedestrian 

connectivity, transit stop accessibility, and scheduled service variability as elements that 

specifically relate to transit mode. Instead of using a simple, radius-based service 

coverage, the actual transportation network was used. Walk to transit was adopted as the 

mode used to access transit stations. Calculations and assumptions for different space

time constraints, applied to compute average daily number of destinations accessible by 

transit is as follows:

P T k = I ,  h  I  Equation (6)

Such that:

O i £ N k

T i j  — t i j w a l k  +  t i j t r a n s i t  — T

Where:

PTk-  daily average number of destinations accessible by transit in census tract k 

d^ (walk) — destination j accessible from transit station i b y  walking 

d^ (transit) -  destination j accessible from transit station i by transit 

fit -  frequency of transit stop time records at station i during time period t
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(time period “t” in this case is a 15-minute period) 

n t — total number of time periods t  within a working day 

N -  total number of destinations

Tij -  time needed to reach destination j from transit station i (min) 

t ijwaik — total walk time included in the trip between station i and destination j 

(acceptable walking time includes 5, 10, 15, and 20 minutes in this case) 

t ijtransit — total time spent in public transit between station i and destination j 

(acceptable time spent in public transit does not exceed 120 minutes)

T -  available time budget (up to 120 min)

In order to implement the framework given in Equation 6, for each census tract, the 

number of destinations accessible by public transit combined with walk trips to and from 

each destination is summarized for all transit stations within the census tract. The defined 

origins and destinations with the public transit network of Chicago were uploaded in 

ArcGIS platform for a shortest path calculations between each OD pair for all determined 

constraints related to acceptable time budget. Shortest path is calculated between transit 

stations and destinations accessible within 20-minute walk distance and pairs of transit 

stations located within 120 minutes distance traveled by transit regardless of the number 

of transfers. The accessible number of destinations is then calculated as a sum of all 

destinations accessible by combining walking and public transit within 120 minutes of 

travel time budget. This measure of accessibility is calculated for each 15-minute time 

period during the daily period of the public transit service, resulting in time variable 

transit accessibility for each census tract over the course of a working day. Based on 

these results, the average transit accessibility is then computed for each census tract.
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Weighted transit accessibility is also calculated, using the approach similar to the one 

used for nonmotorized accessibility, based on the travel time impedance:

^ --------  Equation (7)1  _/wa!fc+ î/transit

Where:

PTak-  weighted transit accessibility in census tract k

PTk-  daily average number of destinations accessible by transit in census tract k 

t ijwaik — total walk time included in the trip between station i and destination j 

t ijtransit — total time spent in public transit between station i and destination 

Evaluating public transit is always more complex than any other mode of 

transportation, and selecting adequate accessibility measures is also a challenge. Several 

factors that impact space-time constraints were included in transit accessibility analysis. 

Service variability refers to the frequency of transit service and service span in general. 

Walking distance is the acceptable walking distance to transit stops. Available time 

budget defines the time that individual has to access activity locations from the given trip 

origin.

Table 5 shows the variables that capture transit accessibility and were selected to be 

included in crash statistical modeling described in the following chapter. Transit stop 

frequency as a result of the daily transit schedule in Chicago is provided in Figure 9. The 

total number of transit stop time records in Chicago ranges between a 1000 and 2000 

stops for all transit stations within each 15-minute period over the course of a day. This 

variation in stop frequency influences overall city-wide transit accessibility, in addition to 

the influence that other factors such as walking time and transit travel time have on the 

ability to reach destinations by transit.
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Table 5 Descriptive Statistics for Variables Capturing Destination Accessibility

Variable Explanation Mean Std.
Dev. Min Max

Total Dest Total number o f destinations in the census tract 185 109 0 690

Ped_D5 Total number o f destinations accessible within 5 minute walk time 0 2 0 26

Ped_D10 Total number o f destinations accessible within 10 minute walk time 10 40 0 476

Ped_D20 Total number o f destinations accessible within 20 minute walk time 56 101 0 1143

Ped_A5 Pedestrian weighted accessibility within 5 minute walk 0.00 0.00 0.00 0.00

Ped_A10 Pedestrian weighted accessibility within 10 minute walk 0.00 0.00 0.00 0.00

Ped_A20 Pedestrian weighted accessibility within 20 minute walk 0.00 0.00 0.00 0.01

Bike_D15 Total number o f destinations accessible within 15 minute bike time 589 655 0 4610

Bike_D30 Total number o f destinations accessible within 30 minute bike time 2379 2749 0 19140

Bike_D45 Total number o f destinations accessible within 45 minute bike time 7524 9083 0 62956

Bike D60 Total number o f destinations accessible within 60 minute bike time 13462 17977 0 134399

Bike_A15 Bicyclist weighted accessibility within 15 minute walk 0.00 0.00 0.00 0.03

Bike_A30 Bicyclist weighted accessibility within 30 minute walk 0.02 0.02 0.00 0.13

Bike_A45 Bicyclist weighted accessibility within 45 minute walk 0.05 0.06 0.00 0.43

Bike A60 Bicyclist weighted accessibility within 60 minute walk 0.09 0.12 0.00 0.91

Transit D30 Total number o f destinations accessible by transit within 30 minutes 565 408 0 2798

Transit D60 Total number o f destinations accessible by transit within 60 minutes 1088 772 0 5035

Transit D90 Total number o f destinations accessible by transit within 90 minutes 1657 1173 0 7645

Transit D120 Total number o f destinations accessible by transit within 120 minutes 2197 1567 0 10341

Transit A30 Weighted transit accessibility within 30 minutes o f travel time 4.49 8.38 0.00 187.64

Transit A60 Weighted transit accessibility within 30 minutes o f travel time 8.60 15.91 0.00 361.33

Transit A90 Weighted transit accessibility within 30 minutes o f travel time 13.05 23.99 0.00 547.27

Transit A120 Weighted transit accessibility within 30 minutes o f travel time 17.34 32.54 0.00 751.93
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Figure 9 Daily Changes in Transit Stop Frequency by Station on the Census Tract
Level



Accessibility between each pair of transit stations in the city was calculated as a part of 

average accessibility calculations for public transit mode. These results are provided in 

Figure 10, for different amounts of travel time budget. The percent of accessible transit 

stations is then extracted as a ratio of transit station pairs accessible within a given time 

over the total number of transit station pairs. As expected, the percent of accessible transit 

stations increases as the users travel time budget increases. This is further confirmed with 

the results provided in Figure 11, where transit accessibility dependence on the 

acceptable walking time is given, and the results provided in Figure 12 where transit 

accessibility varies with different amounts of the acceptable travel time spent in transit. 

Incremental accessibility change is given in Figure 13 to show the combined effect of 

changes in time spent on walking to and from a transit station, and time spent in public 

transit, on the percent change in transit accessibility. All these and other factors that may 

influence transit accessibility in urban environments are explained in a more detailed 

manner in a previous study (Tasic et al., 2014). For the purpose of this research, it was 

important to consider a wide range of potential variables that may have the influence on 

safety outcomes, particularly nonmotorized safety outcomes in urban environments. All 

calculated variables related to transit accessibility, however, were not included in the 

final statistical models, and this will further be explained in the Results chapter.

Figure 14 shows spatial distribution of the average daily transit accessibility on the 

census tract level. The results show relatively good coverage of the entire city by transit 

service, where the downtown area of Chicago has the best access to destinations by 

transit, as expected.
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Transit Stop Accessibility

Access Time between Pairs of Transit Stops (min)

Figure 10 Number and Percentage of Transit Stops Accessible Within the Given
Amount of Time Budget
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When comparing these results to bicyclist accessibility, the number of destinations 

accessible by bike appears higher than the number of destinations accessible by transit, 

due to the fact that average time-dependent rather than total cumulative accessibility was 

calculated for transit. While the developed accessibility indicators provide the basis for a 

general multimodal accessibility indicator, calculation of such an indicator would require 

making assumptions about user preference in terms of mode choice that are not strongly 

supported by the data available in this study. As previously stated, the goal of the 

developed indicators is to improve the way multimodal exposure is captured in the safety 

prediction models, and development of a single indicator of multimodal accessibility 

remains a part of future research efforts.

Explanatory Variables Representing System-wide Effects

Additional explanatory variables were developed using the available data on SE 

characteristics and land use data to capture the system-wide effects that may influence 

multimodal safety outcomes in urban environments. The final dataset included roughly 

100 variables considered in the SASM analysis.

Socio-Economic Variables

The SE variables were drawn from the American Community Survey (ACS) 5-year 

estimates of SE and household characteristics for each census tract in the City of Chicago 

(U.S. Bureau of Census). The ACS data were aggregated on the census tract level, 

allowing for a convenient extraction of variables of interest, without any need for the 

additional data manipulation. The selection of the SE variables from the extracted ACS 

data was based on the revised literature on traffic safety modeling in general, and traffic 

safety modeling of spatially collected data.
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The ACS provides single-year and multiyear estimates of SE and housing 

characteristics of an area over a specific time period. The ACS collects survey 

information continuously nearly every day of the year and then aggregates the results 

over a specific time period: 1 year, 3 years, or 5 years. The data collection is spread 

evenly across the entire period represented so as not to over-represent any particular 

month or year within the period. Single-year data are more current, while multiyear data 

are more reliable because of the larger sample size.

The primary uses of ACS estimates are to understand the characteristics of the 

population of an area for local planning needs, make comparisons across areas, and 

assess change over time in an area. Factors that guide users to determine which ACS 

estimate to use where both single year and multiyear estimates are available include 

intended use of estimates, precision of estimates, and currency of estimates. For small 

geographic areas such as census tracts, 5-year ACS estimates are the only option, as 

single-year and 3-year estimates are unavailable.

Both availability and accuracy of SE data from the ACS 5-year estimates influenced 

the decision to use these estimates from the period from 2008 to 2012 and develop the SE 

variables for the purpose of this research. The ACS 5-year data included population, 

social, economic, and housing estimates on a variety of levels, and for this study, data are 

extracted for the Illinois counties Cook and Du Page, for census tracts that belong to 

Chicago. Figure 15 presents the spatial distribution of population density and 

unemployment in Chicago. Descriptive statistics for SE variables is provided in Table 6.
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Figure 15 Spatial Distribution of the Population Density and the Percent 
Unemployed Population in Chicago (U.S. Census ACS 5-Year Data, 2008 - 2012)
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Table 6 Descriptive Statistics for the SE Variables

Variable Description Obs Mean Std. Dev. Min Max

Population Population Size 801 3.402 1.741 0.000 15.740

Pop_Dens Population Density per mile squared 801 18.203 20.206 0.000 485.019

Employed Percent of Employed Population 801 6.759 18.955 0.000 86.000

Unemploy Percent of Unemployed Civil Population 801 14.970 9.459 0.000 51.000

Total_HH Total Number of Households 801 1,296.553 786.911 0.000 9,180.000

HH_M ed Median Household Income 801 48,201.260 24,220.910 0.000 155,500.000

HHI_Mean Mean Household Income 801 65,296.570 35,266.030 0.000 211,891.000

FamI_Med Median Family Income 801 62,689.660 40,894.530 0.000 233,702.000

FamI_Mean Mean Family Income 801 82,579.100 59,415.360 0.000 394,284.000

PerCapInc Average Income per Capita 801 27,786.690 20,029.490 0.000 131,548.000

HH Total Number of Households 801 1,296.553 786.911 0.000 9,180.000

HHSize Average Household Size 801 2.707 0.709 0.000 5.560

FamSize Average Family Size 801 3.446 0.620 0.000 5.200

HHPop Population in Households 801 3,336.594 1,717.642 0.000 15,544.000

ED9 No High School Degree, % 801 9.644 10.061 0.000 51.900

ED9_12 Some High School, % 801 10.460 7.166 0.000 38.400

EDHigh High School Degree, % 801 23.717 11.402 0.000 58.600

EDSomeCol Some College, % 801 18.898 8.292 0.000 48.700

EDAssoc Associate Degree, % 801 5.477 3.236 0.000 34.600

EDBach Bachelor's Degree, % 801 18.820 14.157 0.000 70.200

EDGrad Graduate School Degree, % 801 12.483 12.291 0.000 63.900

EDHighPlus More than High School Degree, % 801 79.396 15.181 0.000 100.000

EDBachPlus More than Bachelor's Degree, % 801 31.303 25.240 0.000 96.900

HousUnits Number of Housing Units 801 1,506.150 890.775 0.000 10,906.000

HousOcc Occupied Housing Units, % 801 84.862 11.109 0.000 100.000

NoVeh Households with no Vehicles, % 801 26.537 15.118 0.000 89.400

Veh1 Households with 1 Vehicle, % 801 43.589 9.508 0.000 81.300

Veh2 Households with 2 Vehicles, % 801 22.558 11.544 0.000 59.100

Veh3plus Households with 3 or more Vehicles, % 801 6.814 5.648 0.000 26.900
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Land Use Variables

Land use has emerged as an important factor to consider in any type of transportation 

analysis, particularly in urban environments. CMAP provided land use data for this 

research, in the form of digital geospatial polygon parcel data that indicate land use in 

northeastern Illinois.

Numerous GIS reference layers and several internet resources are used to support the 

land use inventory that is updated periodically. This research initially used land use data 

for the year 2005, which were available as polygon data that did not account for the right 

of way. After the initial research proposal, new land use data for the year 2010 became 

available for the analysis. Land use data from 2010 are parcel-based, account for the 

transportation right of way, and represent more accurate details on how land use is 

distributed spatially in Chicago. Therefore, this research used the most recent land use 

data for 2010 from CMAP. Land use variables are given in Table 7. Land use diversity 

was calculated as the total number of different land uses within each census tract, where 

eight categories of land uses were established: residential, commercial, institutional, 

industrial, transportation, agriculture, open space, and vacant (under construction). Land 

use entropy (Figure 16) is a measure of land use balance developed and used in previous 

studies (Wang and Kockelman, 2013; Cervero and Kockelman, 1997), and calculated as:

Equation (8)

Where:

pi - the proportion of land use “i" in the census tract area

n - the maximum number of land uses in census tract (in this case n = 8)



Table 7 Descriptive Statistics for Land Use Variables
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Variable Description Obs Mean Std. Dev. Min Max

Figure 16 Land Use Parcels and Land Use Entropy in Chicago



Statistical Areal Safety Modeling Methods

This section of the Methodology chapter is focused on explaining the SASM 

methodology used to estimate multimodal crash outcomes on the census tract level using 

the dataset from Chicago based on the variables described in the previous sections of this 

chapter. The chapter includes the framework used for the application of SASM 

methodology, the description of five different SASM methods, and the diagnostics used 

to evaluate these methods. As shown in Figure 17, the application of SASM methods for 

the previously defined response and explanatory variables started from the traditional 

crash prediction models, and expanded to frequentist and Bayesian methods that account 

for spatial effects potentially present in the data. Due to the fact that data are spatially 

collected and aggregated, adequate tests for spatial auto-correlation were conducted. The 

combination of R, STATA, and ArcGIS was used to execute the SASM methodology 

presented in this section.

Frequentist Approach to Crash Modeling

There are two main approaches to statistical inference used to model crash data over 

the previous decade, frequentist and Bayesian. The key difference between these two 

approaches in in the way unknown parameters are defined and estimated. When 

frequentist statistical inference is used, it is assumed that data are a repeatable random 

sample, the hypothesis is fixed (either true or false), and parameters are considered to 

remain constant during the sampling process. This inferential approach is called 

frequentist because it is focused on the expected frequency with which the data will be 

observed, given the defined hypothesis.

85



86

Response Variables 
(Expected number of crashes}
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Figure 17 Flowchart of Crash Data Analysis Process



Bayesian approach uses probability to describe the unknown parameters, recognizing 

the uncertainty that exists in the knowledge about the parameters that should be 

estimated. Unlike the frequentist approach, Bayesian statistics is focused on determining 

the probability of the hypothesis, given the observed data, so while data are considered to 

be fixed, hypothesis is considered to be random.

Areal safety studies have been conducted using both frequentist and Bayesian 

estimation methods. Particularly over the last 10 years, Bayesian statistics became 

predominant in SASM, due to limitations of frequentist methods to capture spatial 

autocorrelation and heterogeneity of crash data. This research was conducted using both 

frequentist and Bayes SASM. While previous studies mostly use frequentist approach 

based on GLM, this study also explored the potential of GAM to capture the unobserved 

shared effects between analyzed areas (census tracts). In addition, Full Bayes 

Hierarchical (FBH) were also used to see if the estimated parameters obtained from both 

frequentist and Bayesian inference are comparable in terms of values and significance 

levels.

As crash data are positive count data, the primary statistical modeling approach based 

on frequentist inference is Negative Binomial (NB) regression, as a more general 

variation of Poisson regression which can account for overdispersion often present in 

crash data (Hilbe, 2007). The NB model includes an error term, , for which the 

exponent, exp(£j), follows a gamma distribution with parameters (1, a), where a  is the 

overdispersion parameter. The general form of Negative Binomial model is (Hilbe,

2007):

^  =  g(.Po+Pi in(Expii)+^2 in(Exp2i)+S/Pj xij+£{) Equation (9)
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Where:

0; - expected number of crashes for census tract “i”

P0-intercept

Pi - coefficients quantifying the effect of the “j ” explanatory variables characterizing census 

tract “i” on 0;

Expl and Exp2 -  measures of exposure in census tract “i”

x; - a set of “j ” explanatory variables that characterize census tract “i” and influence 0; 

si - disturbance term corresponding to census tract “i”

In the NB model provided in Equation 10, the variance in the number of crashes is:

0j +  tfjS2. The provided general form of the NB model from the Equation 10 can further 

be expanded to capture SASM of the expected number of crashes for vehicular, 

pedestrian, and bicyclist users:

6 veh i =  e (p0 +Pi ln(DVMT) + ^ 2  in(Road)+zJPJ xij+si) Equation (10)

@ped i =  e (@o+Piln(DVMT)+P2 ln(Ped)+'ZjPj xij+si) Equation (11)

Obike i =  e (Po+Piln(DVMT^+p2 WBm+XjPjXi j+et i  Equation (12)

In the case of the SASM method developed for estimating the number of total and 

severe vehicular crashes, both DVMT and length of road (variable “Road”) were used as 

measures of exposure, to capture both the presence of vehicular users and the relationship 

between the road network mileage and DVMT on the census tract level. The SASM 

method used to estimate the expected number of total and severe pedestrian crashes 

(Equation 12) uses both DVMT and the number of generated pedestrian trips in the 

census tract as units of exposure. The SASM method used to estimate the expected 

number of total and severe bicyclist crashes (Figure 13) uses DVMT and the number of
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generated bicyclist trips to represent bicyclist users exposure to crashes in census tracts. 

The ASM methods based on other statistical modeling techniques (GLM, GAM, FBH) 

used the same framework to represent the exposure. The main assumption behind the 

exposure incorporated in the SASM models in this way was that if  the exposure of one of 

the two conflicting modes was zero, it was expected that the number of crashes would be 

zero as well.

The NB models presented in the Equations 10-13 above do not account for the 

presence of spatial autocorrelation in the data, which may be a limitation to adequately 

representing the data generating process, particularly when data are spatially aggregated 

and the number of crashes in one area may depend or be similar to the number of crashes 

in the areas nearby (i.e., a spatial spillover effect). In cases where spatial autocorrelation 

is present, it may increase the variance of estimated parameters, while their standard 

errors may be underestimated by the NB model (Aguero-Valverde & Jovanis, 2006; 

Quddus, 2008). In such cases, the NB model can be modified through an additional term 

that is added to the model to represent spatial random effects in the data.

Detecting Spatial Autocorrelation

The NB model is estimated using the maximum likelihood approach, constructed on 

the basis of the assumption that the observations in the model are independent. This 

assumption does not hold when data are clustered (Anselin, 2013). Clusters appear in the 

case when spatial correlation is present in the dataset, where nearby entities are related 

more than the entities that are far apart (Greene, 2003).

It is previously acknowledged that due to shared spatial effects, crash data have the 

tendency for clustering (Aguero-Valverde & Jovanis, 2006). In addition, the way data are
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organized and aggregated, rarely follows the actual cluster boundaries (Anselin, 2013). In 

the case of the dataset built for the purpose of this research, census tracts are not very 

likely to match the spatial agglomeration of the crashes, contributing to the additional 

bias in the modeling process. Several measures of spatial autocorrelation may be utilized 

to indicate the existence of clusters in the dataset, including Moran’s I, Getis-Ord’s G, 

and Geary’s C (Anselin, 2013). Due to its broad application and the convenience of 

interpretation, Moran’s I was used in this research as the indicator of global and local 

auto-correlation.

Global Moran’s I measures the general tendency to clustering based on location of an 

entity and the values of the selected entity’s attributes. The Global Moran’s Index value 

with z-score and p-value that indicate the significance of the index is calculated as 

follows (Anselin, 2013):

_  n 'Zi=i'L1 j= i W iJz iZj Equation (13)
=  S TV- z?

Where: 

n — total number of entities 

zi — deviation of an attribute from its mean 

wi,j — spatial weight between features i and j

i = l j = l

I —E[I]
Zj =  _ _

Equation (14)



Where:

E[l]  =  —1 / ( n  — 1)

V [ l ] = E [ l 2 ] —E[ l ] 2

The Global Moran’s I is interpreted in terms of its null hypothesis which states that the 

analyzed attribute is randomly distributed among the entities of interest. One of three 

alternative assumptions about the data may be made when Moran’s I test is applied to 

detect spatial autocorrelation: normality, randomization, or no assumptions (Acevedo, 

2013). If the data are a part of a known larger trend, where the values of the variable in 

each region are drawn from the same normal distribution, and the mean and the variance 

are the same for all regions, the normality assumption may be used. If the data are close 

to normally distributed, but the trend is unknown, it can be assumed that all permutations 

of the values of the variable are equally likely, and the randomization assumption may be 

used. When the previous two assumptions cannot be made about the data, Monte Carlo 

simulation of Moran’s I may be used (Acevedo, 2013). While previous studies of crash 

data used Moran’s I to detect and measure spatial autocorrelation, it is rarely indicated 

under which assumptions the test was conducted (Moeinaddini et al., 2014;

Yiannakoulias et al., 2012).

In this research, prior to conducting the Moran test, neighborhood functions between 

census tracts were created using boundary methods. Spatial weights were then assigned 

by using the inverse distance method. Global spatial autocorrelation was detected by 

using a Monte Carlo method, where data are rearranged several hundred times by re

assigning the values of the variable of interest (vehicular, pedestrian, and bicyclist 

crashes) to different spatial units and obtaining several hundred random spatial
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distributions of that variable. Moran’s I is then calculated for each of these arrangements, 

and these simulated values are used to construct a simulated sample distribution. Then the 

observed value of Moran’s I obtained from the original data arrangement is compared to 

this distribution obtained from random sampling, and if it exceeds 95% of simulated 

values, it is very likely that the observed distribution is significantly autocorrelated. In 

this case, the null hypothesis of spatial randomness is rejected.

This test is not two-sided, due to the fact that ranking is used, so either positive or 

negative autocorrelation should be assumed. In this case, the Monte Carlo method was 

applied to the data with the assumption of positive autocorrelation, the most common 

scenario (Acevedo, 2013). As the Monte Carlo test is distribution-free, crash-related 

variables on the census tract level did not need to be transformed. The tests were run with 

1000 simulations and the plotted results are provided in Figure 18 and Figure 19. 

Although the values of the Moran statistics are low and would seem to indicate no spatial 

pattern, the Z-value is high due to low variance and the p-value of the hypothesis test is 

low, indicating that spatial autocorrelation is very likely present in the data. Modeling 

methods explained in the following parts of the paper attempt to account for the presence 

of spatial autocorrelation in the data.

Since the global indicator of spatial correlation shows general tendency to clustering 

in the dataset, local Anselin Moran’s Index was utilized to measure the degree of 

similarity between neighboring census tracts (Anselin, 2013). The calculations were 

based on several different neighborhood definitions for the local Moran’s I calculations. 

The results of the local auto-correlation test should show potential presence of clusters of 

high values, low values, and spatial outliers for vehicular and nonmotorized crashes on
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Vehicle-only Crashes
number of simulations + 1:1000  
statistic = 0.2948 
observed rank = 1000 
p-value = 0.001
alternative hypothesis: greater 
(rejected null hypothesis)

Pedestrian Crashes
number of simulations + 1:1000  
statistic = 0.3344, 
observed rank = 1000, 
p-value = 0.001
alternative hypothesis: greater 
(rejected null hypothesis)

Bicyclist Crashes
number of simulations + 1:1000  
statistic = 0.3743, 
observed rank = 1000, 
p-value = 0.001
alternative hypothesis: greater 
(rejected null hypothesis)

Figure 18 Monte Carlo Simulation of Moran’s I for Total Multimodal Crashes
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Vehicle-only KA Crashes
number of simulations + 1:1000  
statistic = 0.2011 
observed rank = 1000 
p-value = 0.001
alternative hypothesis: greater 
(rejected null hypothesis)

Pedestrian KA Crashes
number of simulations + 1:1000  
statistic = 0.2283, 
observed rank = 1000, 
p-value = 0.001
alternative hypothesis: greater 
(rejected null hypothesis)

Bicyclist KA Crashes
number of simulations + 1:1000  
statistic = 0.2177, 
observed rank = 1000, 
p-value = 0.001
alternative hypothesis: greater 
(rejected null hypothesis)

Figure 19 Monte Carlo Simulation of Moran’s I for Severe (KA) Crashes



the census tract level. Further methods were developed based on the traditional crash 

prediction techniques and these preliminary measurements of spatial dependence. The 

results of local Moran’s Index are provided in Figure 20.

Generalized Linear Models

GLM are a flexible generalization of linear regression models that allow for response 

variables that have distribution other than normal. The previously described negative 

binomial model is considered to be a generalized linear model, and it may take some 

extended forms to accommodate random effects existing in spatially collected crash data. 

Two such forms, negative binomial with fixed effects and with random effects, are 

described in this section of the crash data analysis methodology.

While global Moran’s I indicates the presence of spatial correlation in the data, local 

Moran’s I identifies clusters of census tracts with similar (high or low) crash frequencies 

(Figure 20). These results indicate that crash models need to be developed to account for 

spatial correlation and acknowledge clustering in the dataset. Previous research also used 

local Moran’s I results to spatially aggregate contiguous units of analysis in road safety, 

often for the purpose of identifying crash hot-spots (Huang et al., 2009; Miranda-Moreno 

et al., 2007).

After determining the presence of spatial correlation in the dataset using global 

Moran’s I, the results of local Moran’s I test were utilized to aggregate census tracts into 

higher level spatial categories that would approximately capture the identified clusters 

through the assignment of fixed and random effects to these groups within the NB model 

framework.
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Figure 20 Local Moran’s I Results

This is similar to building neighborhood structure in spatial auto-regression models for 

normal data and the approach has already been used in previous research, but considered 

only models with fixed effects (Wang et al., 2009). The NB model can account for spatial 

correlation if it is formulated in a way that includes an additional parameter that would 

represent the spatial dependence (Greene, 2003). This additional parameter for clustered 

data can be introduced through fixed or random effects panel models (Hilbe, 2007; Lord 

& Mannering, 2010). The fixed effects NB (FENB) model can be estimated as an 

unconditional or conditional model (Hilbe, 2007). The conditional FENB has the ability 

to accommodate a large number of panel units, but it has been questioned by some, as it



does not control for all of its predictors and cannot be considered a “true fixed-effects 

model” (Allison, 2002). Some econometricians have gone as far as recommending that 

the unconditional FENB model be used rather than conditional (Greene, 2003). The 

unconditional FENB is specified by using indicator variables and can be represented as:

$ =  e {Po+XijPj+Pj+iin{ExpiC>+Pj+2 in(Exv2 {)+8 ik) Equation (15)

Where:

0ik — expected num ber of crashes for census tract i in category k

— fixed effect associated with census tract i nested in category k 

The advantage of the FENB model in this context is that it can address situations 

where shared unobserved effects between the entities are correlated with independent 

variables (Allison, 2002; Lord & Mannering, 2010). The spatial FENB allows only the 

constant term to vary between the sub-categories of the data. Its limitation in this context 

is that the fixed effects model can only estimate the parameters associated with effects 

that vary over spatial units (e.g., census tracts) within a defined data cluster. Also, the 

standard errors of the parameters estimated by FENB can be larger (than RENB) if there 

is little variation in the predictor variables across the spatial units. The fixed effects 

model fully removes spatial dependence if the spatial data generating process 

corresponds to the categorical data structure (Anselin, 2013).

Based on the previously presented spatial correlation measures for the described 

dataset (Figure 20), local high and low clusters for the analyzed crashes tend to be 

approximately captured by the areal boundaries of planning districts of the City of 

Chicago. Categorizing census tracts into seven planning districts closely corresponds to 

identified crash clusters from the local Moran’s I analysis. The distinction between the
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Central district and the other planning districts in terms of crash concentration is 

noticeable. This potential categorical structure of the data with the existing planning 

districts as categories and the census tracts as observations led towards exploring the 

FENB model with indicator variables for planning districts as the one possible way to fit 

the data and account for spatial dependence.

Random effects NB models (RENB) are another option for trying to capture the spatial 

level heterogeneity in the dataset. The main assumption with the random effects model is 

that the unobserved shared effects among defined spatial entities are uncorrelated with 

the explanatory variables. If this is the case, the random effects estimator is consistent 

and estimated parameters will have smaller standard errors than the fixed effects model. 

The random parameter in RENB model typically follows Gaussian, inverse Gaussian, or 

preferably gamma distribution (Greene, 2003; Hilbe, 2007). The general form of the 

RENB model is similar to the form of FENB model (Hilbe, 2007):

$ =  e (Po+^ijPj+Pj+iin(Expii)+pj+2 in(Exp2  i)) e ^ik Equation (16)

Where:

n ik — random  effects for observation i nested in category k

Generalized Additive Models

GAM represent another modeling technique that uses frequentist approach in 

estimating model parameters. Generalized additive models were introduced by (Hastie & 

Tibishirani, 1990), as an additive extension of the family of generalized linear models. 

These models were developed with linear predictors, just as generalized linear models, 

but with also including a sum of smoothing functions of explanatory variables. Since a 

smoothing function is a tool for summarizing the trend of a response measurement as a
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function of one or more explanatory variables, generalized additive models allow for a 

more flexible specification of the dependence of the response on the explanatory 

variables (Hastie & Tibishirani, 1990; Wood, 2006). Generalized additive models replace 

the linear form “fa0  +  fa x t” by the additive form “f a  +  % i f (  x{) " (Hastie & 

Tibishirani, 1990). Generalized linear models are estimated by computing the maximum 

likelihood estimates, as an iteratively reweighted least-squares procedure. This procedure 

is modified for the estimation of generalized additive models where the parameters are 

estimated by penalized likelihood maximization (Hastie & Tibishirani, 1990; Wood,

2006). The general additive model structure for the case of negative binomial distribution 

is as follows (Hastie & Tibishirani, 1990):

$  =  e (Po+Y.jfj{ xij)+Ei) Equation (17)

Where:

0 i - expected number of crashes for census tract “i”

P0- intercept

fj - smooth function quantifying the effect of the “j ” explanatory variables characterizing 

census tract “i” on 0 i

x ij - a set of “j ” explanatory variables that characterize census tract “i” and influence 0i

- disturbance term corresponding to census tract “i”

An additive model may have component functions with two or more dimensions 

(Hastie & Tibishirani, 1990). If a smoothing function is used across the locations on 

spatially aggregated data, generalized additive models may be used to represent spatial 

processes in the data and account for spatial variation. While two previous applications of 

additive models in crash studies developed smoothing functions related to explanatory
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variables such as traffic volumes and geometric design (Li, 2009; Xie, 2008), smoothing 

across the locations has only previously been used in epidemiology and ecological studies 

(Schmidt & Hurling, 2014; Wood, 2006). Ecology research uses generalized additive 

models to account for the effects of explanatory variables, as well as spatial 

autocorrelation by including a two-dimensional spatial trend function in the model 

(Wood, 2006). The general form of the model with a spatial trend function is shown in 

Equation 14 (Schmidt & Hurling, 2014; Wood, 2006):

Where:

0i - expected number of crashes for census tract “i”

P0- intercept

Pi - coefficients quantifying the effect of the “j ” explanatory variables characterizing 

spatial unit “i” on 0 i

x ij -  a set of “j ” explanatory variables that characterize census tract “i” and influence 0i

- disturbance term corresponding to census tract “i” 

fi(la ti, loni) -two-dimensional smooth function for modeling spatial trends in census

The essential part of parameter estimation in GAM is estimating a smooth function ft 

by choosing an adequate basis to represent the smooth function as a linear model. In the 

case when a smooth function is assumed to be two-dimensional in order to account for 

spatial dependence as it is in the case of this research, the adequate basis is penalized thin 

plate regression spline, explained in detail in (Wood, 2006). The smoothing function ft

Equation (18)

tract “i



used in this research is estimated by minimizing the following penalized least square 

function:

m i n Y j ( y l —f i) 2 + X! mA( f )  Equation <19>
i

Where:

yi- observed number of crashes in census tract “i”

fi- thin plate regression spline smoothing function for modeling spatial trends in census 

tract “i”

X- smooth term resulting from GAM estimation

Jm,d(f)- penalty function measuring the roughness of the f  estimate

The type of model setting represented in Equation 17 assumes that spatial dependence 

can be handled by including it in the systematic part of the model, similar to modeling a 

lag effect. The additive regression models were fitted with a two-dimensional smoothing 

function of the geographic location of each spatial unit of analysis, to capture the spatial 

autocorrelation and nonlinear effects which could not be captured by the observed 

explanatory variables (Schmidt & Hurling, 2014; Wood, 2006). Whether this approach is 

appropriate to model the existing spatial autocorrelation in the data depends on the 

complexity of spatial dependence. GAM with smoothing splines across the locations 

essentially models the trend in the autocorrelated data while other explanatory variables 

represent the deviation from this trend. The advantage of GAM models is that they allow 

for more complex trends than a simple trend surface. Modeling spatial dependence 

between observations in this manner reduces the possibility of residuals being 

autocorrelated and violating the assumptions of independence. In the cases of datasets 

where the error terms are stronger sources of autocorrelation, alternative methods should
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be applied to ensure that there the estimated coefficients and standard errors are not 

biased.
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Bayesian Approach to Crash Modeling

Bayesian statistical inference offers an alternative to frequentist approach that uses a 

hypothesis testing framework and reports p-values to indicate the significance of 

estimated parameters. Bayesian methods have gained a lot of interest in the area of 

SASM over the previous decade, due to their ability to incorporate prior information in 

modeling process and parameter estimation. Bayesian approach includes modeling of 

both observed data and any unknowns as random variables, providing a comprehensive 

framework for combining prior knowledge with complex data models.

In the case of Bayesian models, in addition to specifying f ( y \ f i ) ,  for the set of 

observations y  =  { y 1, y 2, ... y n}, for the vector of unknown parameters fa =

[P 1 , P 2, —Pn}, it is considered that fa is a random quantity sampled from a prior 

distribution n( P \ r ) ,  where t  is the vector of hyper-parameters, controlling how fa truly 

varies. When x is known, the inference about fa is based on the posterior distribution, 

given by the Bayes theorem:

(a \  1  =  P & ' P W  P & P W  f (y \ P ' ) ^ (P\^)  Equation (20)
P ( m ' T) p ( y \ T)  f p ( y , f a l z ) d f a  S ( y l P) K( f i \ T ) dp

Where:

p — conditional probability 

f -  likelihood function 

n — external knowledge prior



The Bayesian inference based on the theorem given in Equation 19 is considered to 

provide advantages over the frequentist inference as it includes a knowledge-based 

foundation through the incorporated priors. Another advantage of Bayesian framework is 

that it allows modeling parameters fa with random instead of fixed effects and allows the 

introduction of structures that capture spatial auto-correlation in the models, which is 

why Bayesian inference usage in statistical crash modeling significantly increased as the 

need to model crashes on the macroscopic level appeared.

Full Bayes Hierarchical Models

Based on the previously reviewed literature, spatial safety analysis was conducted by 

either applying the traditional models such as NB variations, and models with Bayesian 

inference. The advances in computing methods and the inability to estimate maximum 

likelihood function for data with less common distributions led to increased use of 

Bayesian estimating methods (Lord & Mannering, 2010). Bayesian approach allows the 

usage of sampling-based simulation methods to estimate more complex model forms, 

particularly when data exhibit spatio-temporal correlations (Huang & Abdel-Aty, 2010; 

Kim et al. 2007).

Previous studies found that the results of the safety analysis based on frequentist and 

Bayesian inference both agree or disagree (Aguero-Valverde & Jovanis, 2006; Quddus, 

2008; Siddiqui et al., 2012; Wang & Kockelman, 2013). Certain authors recommend the 

exclusive application of Bayesian models, considering that they are flexible enough to 

account for both spatial effects and overdispersion (Huang & Abdel-Aty, 2010; Quddus, 

2008;). Other authors found that frequentist and Bayesian models yield similar 

conclusions (Aguero-Valverde & Jovanis, 2006). Some authors consider that the
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complexity of Bayesian methods is a serious barrier to their application (Lord & 

Mannering, 2010).

Developing SASM under Bayesian framework has become more frequent over the 

past several years, as the computational capabilities increased to allow for more complex 

modeling processes (Lord & Mannering, 2010). Spatial autocorrelation issues may be 

resolved in models developed under Bayesian framework if spatial heterogeneity is 

accounted for through incorporation of Conditional Autoregressive (CAR) or Spatial 

Autoregressive (SAR) models. The majority of previous road safety studies use CAR 

model because of its suitability for the analysis of geographic regions (Wang & 

Kockelman, 2013). The combination of NB model and CAR model cannot be estimated 

by using maximum likelihood, and it has to be estimated by using Monte Carlo Markov 

Chain (MCMC) simulation (Park & Lord, 2007).

A Bayesian hierarchical model with Conditional Autoregressive (CAR) prior was used 

in this research, in order to compare the results obtained from previously explained 

modeling methods. This model is proposed by (Besag, 1975), and used by (Aguero- 

Valverde & Jovanis, 2006; Quddus, 2008). Acknowledging that more complex Bayesian 

models with more informative priors have been developed over the past several years 

(Wang et al., 2014), this paper uses the model with highly noninformative priors for 

parameter estimates, in order to provide a comparison between the estimates resulting 

from the Bayesian approach and models with frequentist inference explained in previous 

sections of this chapter.

In the Bayesian hierarchical model, the posterior distribution of all unknown 

parameters is proportional to the product of the likelihood and the prior distributions
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(Aguero-Valverde & Jovanis, 2006; Quddus, 2008). The modeling approach assumes that 

crash counts have Poisson distribution:

Where:

yi-observed number of crashes in entity i

0i- expected mean of total crash frequency for entity i

P0- intercept, assumed uniform distribution

Pi- coefficients, assumed normal prior ~N(0,1000)

X]̂  -  explanatory variables influencing 0i 

^  - spatially correlated random effect for entity i 

U  -  unobserved heterogeneity among entities 

Spatial dependence among entities, in this case census tracts, is incorporated through 

the CAR prior (Besag, 1975), which follows normal distribution with mean and variance

The term w tj  is 1 if  entities “I” and “j ” are adjacent, and 0 otherwise, while tv controls 

the variance of spatial correlation, and has the assumed prior Gamma distribution 

r v~Ga(0.5,0.0005). The unobserved heterogeneity among entities is assumed to follow 

a normal distribution, Ui ~N( 0 ,  tu2); where xu is the parameter that controls Poisson 

extra-variation with a prior Gamma distribution r u~Ga(0.5,0.0005), as previously used 

in (Aguero-Valverde & Jovanis, 2006; Quddus, 2008). The Bayesian hierarchical model

y i~ P o i s s o n ( 6 i) Equation (21)

Equation (22)

N(Si'Ti):

Equation (23)



was estimated using a Markov Chain Monte Carlo method (MCMC), with 10,000 

iterations where the first 2,000 iterations were removed as burn-ins.

Preliminary and Final Model Specifications

The SASM methods explained in this chapter were applied towards the estimation of 

the expected number of crashes for six identified response variables: total vehicular 

crashes, severe vehicular crashes, total pedestrian crashes, severe pedestrian crashes, total 

bicyclist crashes, and severe bicyclist crashes. As the dataset built for the purpose of this 

research includes roughly 100 variables, including all independent variables in 

preliminary model specifications was not feasible. Instead of including all defined 

variables in the preliminary models, the SASM process started with including different 

sets of variables. This way, preliminary models were developed including variables that 

showed higher significance level across various sets of model specifications, consistent 

sign and magnitude, and appeared in the previous research studies that used SASM 

methodology.

Preliminary statistical models were developed by running NB models only, rather than 

running all types of models described in the previous chapter. The reasoning behind the 

modeling process initiated this way is that given the modeling methods features, NB 

models were most likely to overestimate the significance of variables included in 

specifications. It is typical to use this approach and apply less complex SASM models 

first in order to explore many possible specifications. After using negative binomial 

models to obtain preliminary specifications, final model specifications were obtained for 

all modeling methods and all outcome variables. The variable selection process that led to 

obtaining the final model specifications was carried out by looking at the p -values and the
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significance of each variable, by relying on the previous research done and the reviewed 

literature, and by considering logical relationships that were expected to be found 

between the independent and dependent variables. In addition, once the model 

specification became close to final, several different SASM methods were applied to the 

same specification to obtain the most consistent set of variables.

Diagnostics and Final Model Recommendations

After obtaining final model specifications for all six response variables, based on the 

process described in the previous section, results from all five SASM methods applied in 

this research were evaluated in order to recommend the final model for each of the six 

response variables. The combination of model-specific parameters, goodness of fit 

measures, and overall comparison of estimated parameters for the explanatory variables 

was used to recommend the final six SASM models. Model-specific parameters that were 

used as the preliminary indicators of performance for each SASM method applied in this 

research included the following:

• Alpha: The over-dispersion parameter in the NB models accounting for the fact 

that crash data variance is greater than the mean

• Pseudo R2: Pseudo r-squared is calculated as {1 — LL(™-od£l\LL(ilU.ll)

•  LL: The value of the log likelihood function of the final model

• Ln(r), Ln(s): Beta distribution parameters, where ( 1 / 1  +  a l pha)  follows 

Beta (r,  s )  distribution

• Smooth terms: Two-dimensional smooth function parameters based on penalized 

thin-plate regression splines. Coefficient estimates of smooth terms provided with
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standard errors and p-values indicate statistical significance of smooth functions 

included to account for spatial autocorrelation

• Deviance explained: The percentage of deviance explained, based on the sum of 

squares of the deviance residuals, as the model deviance, and the sum of squares 

of the deviance residuals when the covariate effects are set to zero, as the null 

deviance

• Adj. R2: Adjusted r-squared as the proportion of variance explained in GAM 

models

• REML: The value of restricted (or penalized) maximum likelihood function in 

GAM models

• Tau2: Spatially correlated random effects in FBH models

• Sigma2: The variance of unobserved heterogeneity in the data in FBH models

• %accept: The probability of acceptance for the parameters in FBH models.

In addition, more general measures of model goodness of fit were calculated for all 

SASM methods applied in this research. These measures were calculated for all five 

SASM methods applied to estimate the expected number of crashes for six defined 

response variables. These diagnostics measures included the following:

• Akaike Information Criterion (AIC) is a measure of information lost using a 

specific model to represent the data generating process. Lower AIC values 

indicate better model goodness of fit. It is calculated as follows:

AIC =  2 Pd  — 2LL Equation (24)

Where:

108

P- the number of estimated model parameters



LL-log likelihood function

• Bayesian Information Criterion (BIC) is based on the likelihood function and used 

to avoid the “overfitting” the model by penalizing the number of parameters in the 

model. Lower BIC values indicate better model goodness of fit, and BIC is 

closely related to AIC. BIC is calculated as following:

BIC =  —2LL +  Pd  • ln(n) Equation (25)

Where:

P- the number of estimated model parameters 

LL- log likelihood function 

n - the number of observations

• Deviance Information Criterion (DIC): Bayesian generalization of AIC and BIC 

for hierarchical models where structured random effects are present. When a 

model contains only fixed effects, DIC value of the model is close to AIC value. 

Lower DIC values indicate better model goodness of fit. DIC is defined as:

DIC =  D ( § )  +  2 Pd  Equation (26)

Where:

D (0)- the deviance of 0 as an expectation of 0 

Pd- the number of effective model parameters 

Once the final model specification was obtained, the model-specific parameters were 

used to assess the overall model goodness of fit. Then AIC and BIC values were used to 

compare frequentist models among themselves, and finally, DIC values were used to 

evaluate how close Bayesian models are to the “best” frequentist models, and whether 

there is a strong presence of structured random effects. The comparison between
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Bayesian and frequentist models cannot be directly made, but the estimated coefficient 

values and standard errors were used to determine whether frequentist models can serve 

as a valid alternative in SASM process. The results of the applied SASM methods are 

presented in the following chapter.
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CHAPTER 4

STATISTICAL AREAL SAFETY MODELING RESULTS

This chapter presents the results of the SASM analysis methods. The results are 

presented by crash type, for each of the six crash types which were the focus of the 

analysis, and include the estimates obtained using all SASM methods described in the 

previous chapter. Preliminary and final model specifications were obtained using the 

approach for carrying out the variable selection described in the previous chapter. While 

preliminary model specifications are shown only for negative binomial models, final 

model specifications are shown for all crash types and all applied SASM methods 

including NB models, FENB and RENB models, GAM, and FBH models. The presented 

models include the method-specific goodness of fit indicators and the diagnostics used to 

evaluate all applied SASM methods for different crash types. The final models for each 

crash type are recommended based on the comparison of the final model specification 

estimated from different SASM methods. The end of this chapter is dedicated to the 

results extracted to demonstrate the effects of multimodal trips and multimodal 

accessibility on the multimodal crash outcomes estimated from the final model selection. 

The interpretation of the results presented in this chapter is provided in the following 

Discussion chapter.



Preliminary Model Specifications

Six dependent variables were modeled in the described SASM process, including the 

expected number of total vehicular crashes, severe vehicular crashes, total pedestrian 

crashes, severe pedestrian crashes, total bicyclist crashes, and severe bicyclist crashes. 

Tables 8 and 9 show the preliminary model specifications, based on negative binomial 

models. The preliminary models provided in Tables 8 and 9 were further used to obtain 

final model specifications for estimating each response variable. The coefficients 

estimated in preliminary models provided indications about the sets of variables that 

potentially may be a part of specifications that would adequately represent the data 

generating process.

Table 8 Preliminary Specification of NB Model Used to Obtain Final Model 
Specifications for Total Vehicular, Pedestrian, and Bicyclist Crashes

Model Vehicle-only eras h model Pedestrian crash model Bicyclist crash model

Variable Coef. Std. Err. Pr(>iz|) Coef. Std. Err. Pr(>lzj) Coef. Std. Err. Prdzl)
Population density (per mile2) 0.0000 0.0000 0.000 0.0000 0.0000 0.000 0.0000 0.0000 0.000
Unemployed Population (°b) -0.0023 0.0019 0.229 0.0114 0.0030 0.000 -0.0280 0.0033 0.000
In (Road miles) 0.9654 0.0666 0.000 1.1561 0.1043 0.000 0.7373 0.1175 0.000
In (DVMT) 0.2863 0.0213 0.000 -0.0167 0.0337 0.620 0.1696 0.0367 0.000
Intersection density 0.0010 0.0003 0.000 0.0012 0.0004 0.005 0.0024 0.0004 0.000
Signalized intersections (% ) 1.3023 0.1348 0.000 1.7251 0.2063 0.000 0.9257 0.2161 0.000
L Train line (miles) -0.0529 0.0509 0.299 -0.1840 0.0781 0.019 -0.0230 0.0844 0.785
L Train stops -0.0051 0.0539 0.925 0.0069 0.0790 0.931 -0.1477 0.0888 0.096
Bus routes (miles) -0.0049 0.0042 0.243 -0.0074 0.0060 0.216 -0.0352 0.0060 0.000
>'o. of Bus stops -0.0010 0.0042 0.808 0.0001 0.0063 0.993 0.0036 0.0066 0.588
Bike lanes (miles) -0.0151 0.0276 0.585 -0.0622 0.0421 0.140 0.1508 0.0440 0.001
No. of Bike racks 0.0033 0.0021 0.126 0.0135 0.0032 0.000 0.0299 0.0035 0.000
Sidewalk area (ft2) -0.1757 0.0441 0.000 -0.3383 0.0650 0.000 -0.3280 0.0724 0.000
Transit trips to work (% ) 0.0062 0.0013 0.000 0.0096 0.0020 0.000 0.0143 0.0022 0.000
Walk trips to work (% ) -0.0034 0.0047 0.474 0.0012 0.0066 0.857 -0.0049 0.0071 0.487
Trips to work by other means (% ) 0.0181 0.0055 0.001 0.0197 0.0084 0.020 0.0399 0.0089 0.000
Land use diversity -0.0235 0.0188 0.210 -0.0494 0.0286 0.084 -0.0111 0.0306 0.716
Land use entropy 0.0874 0.1569 0.577 0.1216 0.2384 0.610 -0.2312 0.2509 0.357
Weighted transit accessibility 0.0014 0.0006 0.029 0.0027 0.0009 0.004 0.0010 0.0010 0.3C9
Weighted bicy clist accessibility 0.0000 0.0000 0.184 0.0000 0.0000 0.654 0.0000 0.0000 0.841
15min walk destinations -0.0016 0.0006 0.005 -0.0037 0.0009 0.000 -0.0048 0.0009 0.000
Weighted pedestrian accessibility 0.0047 0.0014 0.001 0.0104 0.0021 0.000 0.0143 0.0022 0.000
Complete streets network (% ) 0.3483 0.1305 0.008 0.7620 0.1243 0.000 0.8141 0.1990 0.000
Intercept 0.7934 0.2198 0.000 0.1151 0.3442 0.738 -1.7066 0.3759 0.000
/In alpha -1.8760 0.0506 -1.2739 0.0642 -1.3634 0.0788
alpha 0.1532 0.0078 0.2797 0.0180 0.2558 0.0202
Pseudo R2 0.1050 0.0989 0.1478
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Table 9 Preliminary Specification of NB Model Used to Obtain Final Model 
Specifications for Vehicular, Pedestrian, and Bicyclist Severe Crashes

Final Model Specifications

The final SASM model specifications, obtained through a statistical modeling process 

that started with the preliminary specifications, are provided in Tables 10 through 15.

The results in this section are presented for each response variable and each SASM 

method applied. As described in the previous chapter, starting with the negative binomial 

models, leading to more complex models with frequentist inference, and Bayesian 

models. This chapter provides a total of thirty estimated models and each of the final



Table 10 Total Vehicular Crash Models

Vehicular Crashes ISegath e Binomial Model NB with Fixed Effects NB with Random Effects Generalized Additive Model Bayes Hierarchical Models

V ambles Coeff Std. Err. p>M Coeff Std. Err. p>M Coeff Std. Err. p>H Coeff Std. Err. P>N Median 2.50% 97.50%

Population Density 0.0103 0.0014 0.000 0.0082 0.0012 0.000 0.0085 0.0010 0.000 0.0086 0.0009 0.000 0.0089 0.0070 0.0102

In (Road Mileage) 0.8888 0.0646 0.000 1.0091 0.0639 0.000 0.8661 0.0555 0.000 0.9912 0.0600 0.000 1.0028 0.8699 1.1121

In (DVMT) 02864 0.0202 0.000 02164 0.0213 0.000 02438 0.0190 0.000 0.2607 0.0199 0.000 0.2719 0.2449 02893

Intersection Density 0.0013 0.0003 0.000 0.0013 0.0003 0.000 0.0017 0.0002 0.000 0.0011 0.0003 0.000 0.0014 0.0010 0.0020

Signalized Intersections (%) 1.4529 0.1283 0.000 1.6126 0.1244 0.000 1.3423 0.1006 0.000 1.5351 0.1202 0.000 1.6309 1.4934 1.7969

Bus Stops 0.0089 0.0023 0.000 0.0107 0.0022 0.000 0.0110 0.0014 0.000 0.0071 0.0023 0.002 0.0067 0.0035 0.0082

Sidewalk Area -02095 0.0434 0.000 -02532 0.0422 0.000 -02192 0.0285 0.000 -02282 0.0421 0.000 -0.1907 -0.2428 -0.0948

Region 1 - - - 02735 0.0358 0.000 - - - - - - - - -

Region 2 - - - 0.1507 0.0426 0.000 - - - - - - - - -

Region 3 - - - - - - - - - - - - - - -

Intercept 0.9567 0.1785 0.000 1.3622 0.1777 0.000 -10.4702 0.1706 0.000 1.1410 0.1737 0.000 0.8836 0.5548 1.0463

lpha lpha ln(r) Smooth terms tau2
0.1652 0.0083 0.1652 0.0083 4.71 0.75 7.7200 8.1730 0.000 0.2489 0.1611 0.3651

Model-specific indicators Pseudo R2 Pseudo R2 ln(s) Deviance explained Adj. R2 sigma2
0.0994 0.1044 8.57 0.75 76.30% 0.801 0.0870 0.0676 0.1093

LL = 4944 LL = 4916 LL = 4934 REML = 4923 % accept: 58.4



Table 11 Severe Vehicular Crash Models

Severe Veliiciila r Crashes Negative Binomial Model >"B tvU]] Fixed Effects N B nttl) RandoinEffects Geneiafeed Additive Model Bayes Hieia ichic a 1 Models

Variables Coeff Std. Err. P-Hzl Coeff Std. Err. P>|z| Coeff. SfcLEir. P>|z| Coeff Std. Err. P^zj Median 2.50% 97.50%

In (Road Mileage) 0.9408 0.0857 0.000 0.9685 0.0906 0.000 0.8103 0.0740 0.000 0.9600 0.0925 0.000 0.8601 0.6944 1.0587

In (DVMT) 0.2557 0.0279 0.000 0.2450 0.0300 0.000 0.2E57 0.0263 0.000 0.2641 0.0309 0.000 0.3118 0.2579 0.3678

Signalized Intersec fans (%) 1.4242 0.1706 0.000 1.4986 0.1940 0.000 1.2806 0.1361 0.000 1.3066 0.1707 0.000 1.4624 1.0971 1.8179

Bus Stops 0.0080 0.0029 0.005 0.0082 0.0029 0.005 0.0089 0.0021 0.000 0.0054 0.0030 0.000 0.0063 0.0002 0.0130

Sidewalk Area -0.1938 0.0521 0.000 -0.2024 0.0532 0.000 -0.1437 0.0400 0.000 -0.1536 0.0546 0.074 -0.0994 -0.2108 -0.0018

L Train Stops -0.1047 0.0603 0.083 -0.0939 0.0611 0.124 -0.0774 0.0479 0.106 -0.0S56 0.0614 0.005 -0.1119 -0.2397 0.0086

Land Use Entropy 0.4582 0.1697 0.007 0.4653 0.1758 0.008 0.4125 0.1523 0.007 0.3166 0.1798 0.163 0.2211 -0.2056 0.5740

Region 1 - - - 0.1112 0.1380 0.420 - - - - - - - - -

Region 2 - - - 0.1093 0.1431 0.445 - - - - - - - - -

Region 3 - - - 0.0608 0.1420 0.669 - - - - - - - - -

Intercept -2.5372 0.2400 0.000 -2.5709 0.2921 0.000 -10.8579 0.2314 0.000 -2.5875 0.2541 0.078 -3.0329 -3.5355 -2.5401

alpha alpha m Smooth terms tau2
-1.8230 0.1034 -1.8257 0.1034 4.7112 0.7502 6.0100 7.0520 0.001 0.2401 0.1285 0.4406

Model-specific indicators Pseudo R2 Pseudo R2 ln(s) Deviance explained Adj.R2 sigma2
0.158 0.158 8.5667 0.7545 63.20% 0.721 0.0829 0.0410 0.1253

LL =2107 LL = 2106 LL = 2102 REML = 2109 % accept: 61.1



Table 12 Total Pedestrian Crash Models

Pedestrian Clashes INegative Binomial Model >"B with Fixed Effects > B with Random Effects Generalized Additive Model Bayes HielaichicalModels

V ariables Coeff. Std. Err. P ^ Coeff Std. Err. P^z] Coeff Std. Err. Coeff Std. Err. P>|z] Median 2.50% 97.50%

li  (DVMT) 0.0375 0.0280 0.180 0.0549 0.0288 0.056 0.0506 0.0255 0.047 0.0493 0.0277 0.075 0.1027 0.0496 0.1529

hi (Pedestrian Tips) 0.2428 0.0322 0.000 0.2622 0.0338 0.000 0.2717 0.0285 0.000 0.2949 0.0363 0.000 0.3595 0.2559 0.4227

Weighted Ped. AocessfciKty 0.0122 0.0022 0.000 0.0128 0.0022 0.000 0.0100 0.0017 0.000 0.0114 0.0021 0.000 0.0072 0.0026 0.0104

Average Daity Transit Accessibility 0.0045 0.0006 0.000 0.0044 0.0006 0.000 0.0041 0.0004 0.000 0.0045 0.0006 0.000 0.0032 0.0021 0.0044

Destinations wittiii 15-irin. Walk -0.0045 0.0009 0.000 -0.0046 0.0009 0.000 -0.0038 0.0007 0.000 -0.0038 0.0009 0.000 -0.0024 -0.0037 -0.0007

Percentage of Arterials 0.1449 0.0401 0.000 0.1381 0.0401 0.001 0.0300 0.0377 0.426 0.1271 0.0421 0.003 0.0842 -0.0179 0.1749

Intersection Density 0.0025 0.0005 0.000 0.0026 0.0006 0.000 0.0030 0.0005 0.000 0.0027 0.0005 0.000 0.0027 0.0015 0.0037

Signalized Intersections (%) 1.0850 0.2065 0.000 1.0344 0.2073 0.000 0.8743 0.1507 0.000 1.1283 0.1909 0.000 0.8037 0.5020 1.2965

Street C otmectkity -0.0789 0.0196 0.000 -0.0817 0.0196 0.000 -0.0679 0.0182 0.000 -0.0834 0.0189 0.000 -0.0630 -0.1099 -0.0283

Sidewak Area 0.0159 0.0475 0.738 -0.0143 0.0486 0.768 0.0809 0.0371 0.029 -0.0585 0.0504 0.246 0.1108 -0.0419 0.2562

Network Completeness 0.5050 0.1913 0.008 0.4419 0.1916 0.021 0.1542 0.1094 0.159 0.5031 0.1741 0.004 0.3914 0.0531 0.6796

Region 1 - - - -0.1334 0.0558 0.017 - - - - - - - - -

Region 2 - - - -0.1198 0.0681 0.078 - - - - - - - - -
Region 3 - - - - - - - - - - - - - - -
Intercept 0.8739 0.2725 0.001 0.7602 0.2764 0.006 -9.0285 0.2510 0.000 0.6620 0.2694 0.014 -0.3054 -0.8550 0.0515

alpha alpha In(r) Smooth terns tau2
0.3396 0.0208 0.3359 0.0207 5.5197 1.0626 1.003 1.006 0.0011 0.6186 0.3736 0.9164

Model-specific indicators Pseudo R2 Pseudo R2 In(s) Dev iance explained Adj. R2 sigma2
0.07780 0.0788 7.216016 1.05945 43.70% 0.5600 0.1417 0.0935 0.1926

LL = 2857 LL = 2854 I I = 2854 REML = 2895 % accept: 57.2
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Table 13 Severe Pedestrian Crash Models

Severe Pedestrian Clashes Negative Binomial Model NB with Fixed Effects NB with Random Effects Generalized Additive Model Bayes Hierarchical Models

Variables Coeff Std. Err. Coeff Std. Err. Coeff. Std. Err. p>M Coeff Std. Err. P=1z| Median 2.50% 97.50%

In (DVMT) 0.1782 0.0345 0.000 0.1764 0.0342 0.000 0.1880 0.0323 0.000 0.16855 0.03511 0.000 0.2072 0.1316 0.2847

In (Pedestrian Trips) 0.2960 0.0412 0.000 0.3229 0.0418 0.000 0.3434 0.0413 0.000 0.34914 0.04410 0.000 0.4016 0.2962 0.5291

Weighted Ped. Accessibility 0.0135 0.0028 0.000 0.0143 0.0028 0.000 0.0137 0.0024 0.000 0.01302 0.00277 0.000 0.0093 0.0032 0.0174

Destinations within 15-nm Walk -0.0051 0.0012 0.000 -0.0052 0.0012 0.000 -0.0049 0.0010 0.000 -0.00448 0.00118 0.000 -0.0028 -0.0064 -0.0002

Signalized Intersections (%) 0.8555 0.2391 0.000 0.7808 0.2379 0.001 0.5668 0.1941 0.004 1.01953 0.22968 0.000 0.8184 0.2447 1.3658

Region 1 - - - -0.2357 0.0679 0.001 - - - - - - - - -

Region 2 - - - - - - - - - - - - - - -

Region 3 - - - - - - - - - - - - - - -

Intercept -2.3461 0.3337 0.000 -2.3208 0.3305 0 -10.3244 0.3408 0.000 -2.46641 0.33982 0.000 -3.1371 -3.9877 -2.4300

alpha alpha H r) Smooth terms tau2
0.3500 0.0464 0.3333 0.0454 5.0468 0.9542 1.7340 1.9980 0.000 0.4814 0.2762 0.8445

Model-specific indicators Pseudo R2 Pseudo R2 ln(s) Deviance explained Adj. R2 sigma2
0.0584 0.0622 4.8233 0.9413 20.80% 0.281 0.1689 0.0843 0.2556

LL = 1467 LL = 1461 LL = 1463 REML = 1479 % accept: 61.8
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Table 14 Total Bicycle Crash Models

Bicyclist Crashes

Variables

Negative Binomial Model

Coeff. Std Err. P>|z|

> B  with Fixed Effects

Coeff. Std. Err. P>|z|

> B  with Random Effects

Coeff. Std Err. P>|z|

Generalized Additive Model

Coeff. Std Err. P>|z|

Bayes Hierarchical Models

Median 2.50% 97.50%

h  (DVMT) 0.2191 0.0307 0.000 0.1784 0.0276 0.000 0.1589 0.0258 0.000 0.2183 0.0278 0.000 0.2280 0.1611 0.2900

In {Bicyclist Trips) 0.7478 0.0518 0.000 0.4926 0.0482 0.000 0.3996 0.0339 0.000 0.4933 0.0449 0.000 0.5202 0.4116 0.6028

Weighted Bicyclist Accessibility 0.0001 0.0000 0.016 0.0001 0.0000 0.003 0.0001 0.0000 0.000 0.0001 0.0000 0.006 0.0001 0.0000 0.0001

Intersection Density 0.0036 0.0005 0.000 0.0028 0.0004 0.000 0.0025 0.0003 0.000 0.0022 0.0004 0.000 0.0021 0.0011 0.0029

L Train Line (miles) -0.2727 0.0846 0.001 -0.1727 0.0764 0.024 -0.1064 0.0605 0.079 -0.1412 0.0743 0.057 -0.1738 -0.3055 -0.0239

Bike Lanes (miles) 0.2651 0.0449 0.000 0.3054 0.0395 0.000 0.2584 0.0266 0.000 0.2650 0.0365 0.000 0.2762 0.2037 0.3530

Central Business District -0.751S 0.1790 0.000 0.2520 0.1772 0.155 -0.5095 0.3455 0.140 -0.4601 0.1656 0.005 -0.3113 -0.9519 0.2209

Region 1 - - - 0.7803 0.0609 0.000 - - - - - - - - -
Region 2 - - - 0.2430 0.0755 0.001 - - - - - - - - -

Region 3 - - - - - - - - - - - - - - -

Intercept -1.3359 0.3110 0.000 -1.1895 0.2779 0.000 -9.3542 0.2702 0.000 -1.0690 0.2814 0.000 -1.2903 -1.9243 -0.6562
alpha alpha ln(r) Smooth terms tau2

0.3856 0.0261 0.2845 0.0214 2.1111 0.8326 7.351 7.955 0.000 0.4061 0.2139 0.7298
Model-specific indicators Pseudo R2 Pseudo R2 ln(s) Deviance explained M j. R2 sigmal

0.1080 0.1386 3.0624 0.8194 62.20% 0.578 0.1635 0.1048 0.2171

LL = 2359 LL = 2278 LL = 2313 REML =2297 % accept: 39.5



Table 15 Severe Bicycle Crash Models

Severe Bicyclist C lash es N egative  Binom ial M o d e l N B  w ith Fixed Effects N B  ™ th R an  do in Effects G eneialfeed  Additive M o d e l B ayes H ie la rc liica lM o d els
V ariables Coeff Std. Err. p>M Coeff Std. Err. P=Hz| Coeff Std. Etr. Coeff Std. Err. P>|z| Median 2.50% 97.50%

In (DVMT) 0.1911 0.0543 0.000 0.1601 0.0538 0.003 0.1561 0.0529 0.003 0.2199 0.0552 0.000 0.2338 0.1231 0.3416

In (BicyclistTrips) 0.5153 0.0644 0.000 0.3442 0.0825 0.000 0.3417 0.0698 0.000 0.2684 0.0639 0.000 0.3286 0.1551 0.4776

Weighted Bicyclist Aocessfciliy 0.0001 0.0000 0.009 0.0001 0.0000 0.012 0.0001 0.0000 0.006 0.0001 0.0000 0.046 0.0001 0.0000 0.0001

Bike Laces (miles) 0.2505 0.0665 0.000 0.310E 0.0625 0.000 0.2706 0.0497 0.000 0.2932 0.0605 0.000 0.2753 0.1684 0.3795

Region 1 - - - 0.1404 0.2649 0.596 - - - - - - - -

Region 2 - - - -0.3268 0.2904 0.260 - - - - - - - -

Region 3 - - - -0.8164 0.3103 0.009 - - - - - - - -
Intercept -2.9175 0.5316 0.000 -2.3427 0.6101 0.000 -9.0266 0.5722 0.000 -3.1670 0.5374 0.000 -3.4315 -4.5549 -2.3477

alpha alpha ln(r) Smooth terms tau2
0.4295 0.0934 0.2855 0.0792 3.7293 0.8281 6.5230 7.4470 0.000 0.5992 0.3100 1.2958

Model-specific indicators Pseudo R2 Pseudo R2 ln(s) Deviance explained Ad/.X2 sigma2
0.0926 0.1222 2.2835 0.7723 31.70% 0.35 0.0021 0.0003 0.0159

LL = 888 LL = 859 LL = 869 SEML = 874 % accept: 61.7%
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modeling specifications is provided with the model-specific indicators of goodness of fit 

that were used in the process of model comparison described in the following chapter.

The final model specification results for total vehicular crashes provided in Table 10 

includes the following variables: population density, total miles of road, DVMT, 

intersection density, percent of signalized intersections, bus stops, and sidewalk area. 

Table 11 provides the final modeling specification results for the frequency of severe 

vehicular crashes including road mileage, DVMT, percent of signalized intersections, bus 

stops, sidewalk area, L train stops, and land use entropy. The estimated statistical models 

for the expected number of total pedestrian crashes in census tracts are provided in Table 

12 and the following variables were associated with the expected number of pedestrian 

crashes: DVMT, the number of pedestrian trips within the census tract, weighted 

pedestrian accessibility, the number of destinations accessible within 15-minute walking 

time, average daily transit accessibility, percentage of arterials, intersection density, 

percent of signalized intersections, street connectivity, sidewalk area, and the percent of 

network with complete streets.

The final model specifications for the expected number of severe pedestrian crashes in 

census tracts are provided in Table 13 and include DVMT, the number of pedestrian trips 

within the census tract, weighted pedestrian accessibility, the number of destinations 

accessible within 15-minute walking time, and the percent of signalized intersections.

Table 14 provides the estimated final model specification for the total bicyclist crashes 

in census tracts, including the following variables that were associated with the expected 

number of bicyclist crashes: DVMT, the number of bike trips within the census tract, 

weighted bicyclist accessibility, intersection density, bus stops, bike lanes mileage,
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(Central Business District), and the presence of L Train lines. The final model 

specifications for the expected number of severe bicyclist crashes in census tracts are 

provided in Table 15 and include the following variables: DVMT, the number of bike 

trips within the census tract, weighted bicyclist accessibility, and bike lanes mileage. The 

visualization of the effects of selected variables from the final model specifications on 

crash outcomes for each crash type is provided using GAM models. These effects are 

presented in Figures 21 and 22.

Diagnostics and Final Model Recommendations

The diagnostics measures for all models presented in the previous section of this 

chapter are provided in Table 16. These measures were used to partially determine what 

model form is “the best” model given the final specification for each crash type. Tables 

17 through 22 present the recommended “best” model for each crash type analyzed in this 

research. The recommendation of final model specification by crash type was based on 

model diagnostics, the overall comparison of estimated parameters and their standard 

errors, the ability of the models to capture spatial effects in the data, as well as the 

potential of the model to be considered for future applications to some new datasets from 

different urban environments. The expanded discussion of how the final model selection 

for each crash type was conducted is provided in the following chapter.

Safety Effects of Multimodal Exposure and Accessibility

The variables that were included in the final model specifications for each crash type 

are discussed in detail in the following chapter. In addition, the last section of this chapter 

presents the effects of the variables that represent multimodal exposure and accessibility 

on each of the crash types analyzed in this research.
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a) Vehicle-only crashes b) Pedestrian crashes c) Bicyclist crashes

Figure 21 Visualization of GAM for Some of the Statistically Significant Explanatory
Variables in Total Crash Models
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a) Vehicle-only KA crashes b) Pedestrian KA crashes c) Bicyclist KA crashes

Figure 22 Visualization of GAM for Some of the Statistically Significant Explanatory
Variables in Severe Crash Models
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Table 16 Diagnostics for NB, FENB, RENB, GAM, and FBH Models

Areal Safety Statistical Model
NB

AIC
FENB RENB GAM NB

BIC
FENB RENB GAM

DIC
FBH

Vehicular Crashes 9908 9856 9888 9806 9950 9907 9935 9885 7516

Severe Vehicular Crashes 4232 4236 4225 4191 4274 4293 4272 4266 3966

Pedestrian Crashes 5740 5738 5737 5733 5801 5808 5803 5799 4925

Severe Pedestrian Crashes 2950 2940 2942 2936 2982 2977 2980 2978 2798

Bicyclist Crashes 4737 4579 4647 4535 4779 4630 4694 4613 4157

Severe Bicyclist Crashes 1788 1737 1754 1716 1817 1779 1786 1778 1704

Table 17 Recommended Model for Total Vehicle-only Crash Estimation

Vehicular Crashes Generalized Additive Model
Variables Coeff Std. Err. N>P

Population Density 0.0086 0.0009 0.000
ln (Road Mileage) 0.9912 0.0600 0.000
ln (DVMT) 0.2607 0.0199 0.000
Intersection Density 0.0011 0.0003 0.000
Signalized Intersections (%) 1.5351 0.1202 0.000
Bus Stops 0.0071 0.0023 0.002
Sidewalk Area -0.2282 0.0421 0.000
Intercept 1.1410 0.1737 0.000
Smooth terms 7.7200 8.1730 0.000
Deviance explained 76.30% Adj. R2 0.801

REML = 4923

Table 18 Recommended Model for Vehicle-only KA Crash Estimation

Severe Vehicular Crashes Generalized Additive Model
Variables Coeff Std. Err. P>|z|
ln (Road Mileage) 0.9600 0.0925 0.000
ln (DVMT) 0.2641 0.0309 0.000
Signalized Intersections (%) 1.3066 0.1707 0.000
Bus Stops 0.0054 0.0030 0.000
Sidewalk Area -0.1536 0.0546 0.074
L Train Stops -0.0856 0.0614 0.005
Intercept -2.5875 0.2541 0.078
Smooth terms 6.0100 7.0520 0.001
Deviance explained 63.20% Adj. R2 0.721

REML = 2109
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Table 19 Recommended Model for Total Pedestrian Crash Estimation

Pedestrian Crashes Generalized Additive Model
Variables Coeff. Std. Err. P>|z|
ln (DVMT) 0.0493 0.0277 0.075
ln (Pedestrian Trips) 0.2949 0.0363 0.000
Weighted Ped. Accessibility 0.0114 0.0021 0.000
Average Daily Transit Accessibility 0.0045 0.0006 0.000
Destinations within 15-min. Walk -0.0038 0.0009 0.000
Percentage of Arterials 0.1271 0.0421 0.003
Intersection Density 0.0027 0.0005 0.000
Signalized Intersections (%) 1.1283 0.1909 0.000
Street Connectivity -0.0834 0.0189 0.000
Network Completeness 0.5031 0.1741 0.004
Intercept 0.6620 0.2694 0.014
Smooth terms 1.003 1.006 0.0011
Deviance explained 43.70% Adj. R2 0.5600

REML = 2895

Table 20 Recommended Model for Pedestrian KA Crash Estimation

Severe Pedestrian Crashes Bayes Hierarchical Models
Variables Median 2.50% 97.50%
ln (DVMT) 0.2072 0.1316 0.2847
ln (Pedestrian Trips) 0.4016 0.2962 0.5291
Weighted Ped. Accessibility 0.0093 0.0032 0.0174
Destinations within 15-min. Walk -0.0028 -0.0064 -0.0002
Signalized Intersections (%) 0.8184 0.2447 1.3658
Intercept -3.1371 -3.9877 -2.4300
tau2 0.4814 0.2762 0.8445
sigma2 0.1689 0.0843 0.2556

% accept: 61.8
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Table 21 Recommended Model for Total Bicyclist Crash Estimation

Bicyclist Crashes Generalized Additive Model
Variables Coeff. Std. Err. P>|z|
ln (DVMT) 0.2183 0.0278 0.000
ln (Bicyclist Trips) 0.4933 0.0449 0.000
Weighted Bicyclist Accessibility 0.0000 0.0000 0.006
Intersection Density 0.0022 0.0004 0.000
L Train Line (miles) -0.1412 0.0743 0.057
Bike Lanes (miles) 0.2650 0.0365 0.000
Central Business District -0.4601 0.1656 0.005
Intercept -1.0690 0.2814 0.000
Smooth terms 7.351 7.955 0.000
Deviance explained 62.20% Adj. R2 0.578

REML = 2297

Table 22 Recommended Model for Bicyclist KA Crash Estimation

Severe Bicyclist Crashes Bayes Hierarchical Models
Variables Median 2.50% 97.50%
ln (DVMT) 0.2338 0.1231 0.3416
ln (Bicyclist Trips) 0.3286 0.1551 0.4776
Weighted Bicyclist Accessibility 0.0000 0.0000 0.0001
Bike Lanes (miles) 0.2753 0.1684 0.3795
Intercept -3.4315 -4.5549 -2.3477
tau2 0.5992 0.3100 1.2958
sigma2 0.0021 0.0003 0.0159

% accept: 61. 7%



Figure 23 presents the relationship between DVMT and the estimated vehicular crash 

rate for total and severe vehicular crashes, in the case when all other variables for these 

particular models are kept constant. Figure 24 presents the relationship between the 

exposure variables considered in the pedestrian crash models, including the DVMT and 

the estimated generated pedestrian trips. The effects of the variables that resulted from 

the multimodal accessibility analysis and were found to be associated with total and 

severe pedestrian crashes are provided in Figures 25 and 26. Figure 26 presents the 

relationship between the exposure variables in the bicyclist crash models that include 

DVMT and estimated generated bicyclist trips, and total and severe bicyclist crash 

outcome. Figure 27 presents the effects of bicyclist accessibility on total and severe 

bicyclist crashes.

These results presented in Figures 23 through 28 are extracted to support the further 

interpretation of the results provided in the finally recommended models that are 

provided in Tables 17 through 22. The estimated coefficient values and signs in the final 

model recommendations mostly show that the increase in exposure or accessibility is 

associated with the increase in crashes for different modes, but a more detailed 

representation of results shows nonlinear relationships between these variables and crash 

outcomes. The interpretation of the effects presented in Figures 23 through 27 is provided 

in the following Discussion chapter.
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Relationship between Total Vehicular Crash Rate and DVMT
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Figure 23 The “Safety in Numbers” Effect for Private Vehicle Users
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Relationship between Pedestrian Crash Rate and DVMT
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Figure 24 The “Safety in Numbers” Effect for Pedestrian Users
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Relationship between Pedestrian Crash Rate and Weighted Pedestrian Accessibility
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Figure 25 Relationship Between Total Pedestrian Crashes and Accessibility
Variables
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Relationship between Severe Pedestrian Crash Rate and Weighted Pedestrian Accessibility
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Figure 26 Relationship Between Severe Pedestrian Crashes and Accessibility
Variables
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Relationship between Bicyclist Crash Rate and DVMT

DVMT

Figure 27 The “Safety in Numbers” Effect for Bicyclist Users
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Relationship between Bicyclist Crash Rate and Weighted Bicyclist Accessibility
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CHAPTER 5

DISCUSSION OF STATISTICAL AREAL SAFETY 

MODELING RESULTS

This chapter presents the discussion of the SASM modeling results that are provided 

in the previous chapter. For each crash type, this chapter discusses all the variables that 

were associated with the expected number of crashes. Models are interpreted starting 

with the preliminary modeling specifications, to the final modeling specifications that 

were interpreted in detail. The SASM diagnostics provided in the previous chapter and 

the estimated final model specifications were used to explain how the final model 

recommendation was made. The end of this chapter provides the interpretation of the 

“Safety in Numbers” effect and the potential role of using accessibility measures to 

model multimodal safety outcomes.

Preliminary Model Specifications

Initial SASM analysis was based solely on the negative binomial models for all six 

crash types that were analyzed in this research. The preliminary models for each crash 

type were run iteratively using different groups of variables provided in the Data chapter, 

as the number of variables did not allow the inclusion of all variables into a single model, 

particularly considering that the dataset consisted of roughly 100 variables for 801 

observations/census tracts.



In order to obtain the preliminary set of potentially relevant variables that were further 

considered for the final model specifications, the variable selection was carried out using 

the approach described in the Methodology chapter. The groups of variables that proved 

to be potential candidates for the final model specifications for all crash types included 

variables related to demographics, exposure, accessibility, intersections and traffic 

control, multimodal infrastructure, land use, street connectivity, and network 

completeness. Variables that were excluded after the preliminary modeling process 

included economic characteristics, commuter trips to work by mode, and the majority of 

variables representing functional classification of the street network.

Final Model Specifications

Tables 10 through 15 present the final model specifications for each response variable 

by SASM method applied. This section provides a detailed discussion of the effects of 

each variable included in final model specifications by crash type.

Total Vehicular Crashes

The statistical modeling results for total vehicular crashes are provided in Table 10, 

for all modeling approaches applied to the dataset. The final model specification for 

vehicle crash frequency includes population density, total miles of road, DVMT, 

intersection density, percent of signalized intersections, bus stops, and sidewalk area.

The results indicate that the expected crash frequency increases as population density 

increases, and similar findings have been reported in the literature (Castro et al., 2013; 

Flask & Schneider, 2013; Noland & Quddus, 2004). Other socio-economic variables did 

not show significant effects on the expected frequency of vehicular crashes. This could be 

due to the level of mobility of vehicular traffic, as vehicular trips can be generated
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through the census tract areas regardless of economic status of the population. The 

natural logarithm of road mileage and DVMT were used as the exposure variables to 

estimate the expected number of vehicular crashes on the census tract level. Although 

DVMT is calculated from the ADT values related to each link in census tract multiplied 

by the length of corresponding links, thus incorporating road segments length into this 

measure, total road mileage is still included in vehicular crash models. Under the 

assumption that the dataset includes two census tracts with the same DVMT, one of these 

census tracts could have a denser road network and higher road mileage with lower 

volumes of traffic, while the other census tract could have fewer roads but higher traffic 

volumes resulting with the same DVMT value. It is expected that these two hypothetical 

census tract areas would have different number of vehicular crashes, even though their 

DVMT value is the same, due to differences in the road network structure, and traffic 

flow intensity and its distribution across the network. This is why road mileage variable 

is included as an additional exposure variable in vehicular crash models.

As expected, increases in total length of roads in miles and daily vehicle miles traveled 

were associated with an increase in expected crash frequency at the 99 % confidence 

level. Comparing the two measures of exposure, and their effect on the expected number 

of crashes, the length of roads contributes to the increase in the expected number of 

vehicular crashes more than the value of DVMT. If road mileage on the census tract level 

was doubled, according to the estimated models for total vehicle-only crashes, the 

expected number of crashes is expected to almost double. The impact of DVMT cannot 

be interpreted in the same manner, as the estimated model shows that if DVMT on a 

census tract level doubles, crashes are expected to increase by less than 20 %.
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Intersection-related variables, such as intersection density and the percentage of 

signalized intersections, were associated with expected crash frequency on census tract 

level, where increases in these variables were associated with increases in crashes. 

Intersections are considered to be major points of conflict, which could be the reason for 

the positive sign of the coefficients estimated for these variables. Previous studies have 

found some similar relationships between network and intersection densities and crash 

frequencies (Moeinaddini, 2014; Siddiqui, 2012). The estimated coefficients show that 

the increase in the share of signalized intersections contributes to associated increase in 

the expected number of crashes up to fifteen times more than the same change in the 

overall number of intersections per mile squared. The presence of traffic signals may be 

increasing certain types of crashes (e.g., rear-end crashes), which may be the reason for 

the positive parameter sign and significance of this variable in the models.

The presence of L Train lines in Chicago is usually associated with environments 

where multimodal transportation is encouraged, with more people walking, biking, or 

taking transit. Particularly, the areas around L Train stops in downtown are designed to 

discourage higher vehicle speeds, and perhaps even reduce the number of people driving. 

During the preliminary modeling process, the presence of L Train lines was statistically 

significant variable in the models, with the negative sign of the coefficient. The 

significance of the variable and the magnitude of the estimated coefficients, however, 

varied between different statistical models, so the variable was not included in the final 

model specification.

Presence of bus stops was associated with an increase in expected vehicle crash 

frequency. There are usually the areas where vehicles may be forced to change their
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speeds, which could lead to higher number of conflicts, and higher crash frequency. The 

increase in the number of bus stops by 1 % is estimated to contribute to 0.3 % increase in 

the expected number of vehicular crashes.

The total area of sidewalk was associated with decrease in vehicular crash frequency, 

where the addition of 500 feet squared of sidewalk could reduce the expected number of 

crashes by up to 2 %. This impact, however, is not as strong as the estimated impact of 

some previously discussed variables that are associated with the increase in crashes. 

Previous studies mostly relate this variable to nonmotorized crash frequency (Wang & 

Kockelman, 2013). In urban environments, presence of sidewalk and other features 

related to walkability may be a characteristic of areas where people drive less, or drive 

more cautiously, thus leading to lower number of vehicular crashes.

Severe Vehicular Crashes

Table 11 provides the results of the estimated statistical models for the frequency of 

severe vehicular crashes. The variables that are found to be associated with the expected 

number of severe vehicular crashes include road mileage, DVMT, percent of signalized 

intersections, bus stops, sidewalk area, L train stops, and land use entropy.

To account for the difference between census tracts with the same DVMT values, but 

different road network mileage, both road mileage and DVMT were used as the exposure 

variables in the estimated models for severe vehicular crashes. Similar to total vehicular 

crashes, the estimated model results show that it can be expected that the number of 

crashes follows the rate of change of road segment lengths, while the increase in traffic 

volumes is not followed by the proportional increase in crashes.
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The results from the estimated severe vehicular crash models also show that if  the 

share of signalized intersections in census tracts is increased by 1 %, the expected 

increase in severe vehicular crashes would be 1.39%. The presence of traffic signals 

contributes to increase in both total and severe vehicular crashes. The effect of this 

variable on crash frequency and severity implies that some additional research that would 

consider crash types (e.g., rear-end, angle crashes) would be beneficial when it comes to 

exploring urban safety. The impact of the presence of signals on the increase of 

frequency and severity of intersection related crashes is already proven in previous 

research and recognized in intersection crash predictive methods.

Presence of sidewalk was associated with the decrease in severe vehicular crashes.

The estimated results show that the addition of 500 feet squared of sidewalk would result 

in 1.29% reduction in severe vehicular crashes. The results from the estimated models for 

total vehicular and sever vehicular crashes indicate that sidewalk could be considered as a 

safety countermeasure in urban environments. The limitation that should be considered 

here is that very few cities would have the available data on sidewalk area coverage, so 

some approximations should be considered in order to use the model in different 

locations.

Just as in the case of the models developed for total vehicular crashes, the number of 

bus stops within the census tract was associated with the increase, while the number of L 

Train stops was associated with the reduction in the severe vehicular crashes. One percent 

increase in the number of bus stops is expected to lead to less than 0.2 % increase in 

severe vehicular crashes. The expected reduction of severe vehicular crashes with the 

addition of L Train stops (1 % increase in numbers) is lower than 0.1 %. The opposite
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signs of the effects of L Train facilities which are grade separated, and bus stops which 

are mostly alongside the lanes shared by both private vehicles and buses, indicate the 

potential benefits from investing in prioritizing transit and separating it from the rest of 

the traffic flow whenever possible.

The increase in land use mix expressed as entropy measure on a scale from zero 

(single land use) to one (all land uses) showed association with the increase of the 

number of severe crashes. This association is not very strong, as 1 % increase in entropy 

would result to 0.35% increase in the expected number of severe vehicular crashes. The 

influence of mixed land use on the expected number of crashes is explored in some 

previous studies, mostly related to pedestrian crashes. The possible explanation for the 

effect of land use mix on the increase on severe vehicular crashes is the diversity of land 

use mix characteristics that exists among census tracts in Chicago, ranging from 

predominantly single-use to very high land use mix areas, where the majority of trips, 

particularly work commute trips, are directed towards destinations in high land use mix 

parts of the city such as downtown. This variable is eventually excluded from the final 

model recommendation for the severe vehicular crashes due to inconsistent values of the 

estimated coefficients as well as lack of logical explanation for the interpretation of the 

relationship. However, the potential impact of entropy could be important to consider in 

order to distinguish between different aspects of urban environment, rather than just 

adopting the same effects on safety outcome for urban roads and networks in general, or 

simply categorizing area-wide effects as urban and suburban.
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The estimated statistical models for the expected number of total pedestrian crashes in 

census tracts are provided in Table 12. The variables that were associated with the 

expected number of pedestrian crashes include DVMT, the number of pedestrian trips 

within the census tract, weighted pedestrian accessibility, the number of destinations 

accessible within 15-minute walking time, average daily transit accessibility, percentage 

of arterials, intersection density, percent of signalized intersections, street connectivity, 

sidewalk area, and the percent of network with complete streets.

The expected pedestrian crash outcome depends on both DVMT and the number of 

pedestrian trips. Based on the results provided in Table 12, 1 % increase in the expected 

pedestrian crashes would result from 5 % increase in pedestrian trips, if  all other 

variables remain unchanged. The same increase of 1 % in pedestrian crashes is also 

expected to occur if  the value of DVMT increases by 15 %. This gives the impression 

that the presence of pedestrians contributes to the increase in pedestrian crashes. The 

estimated coefficients for the exposure variables, however, indicate that the expected 

number of crashes does not increase proportionally with the increase in vehicular or 

pedestrian trips, and this effect will be discussed in the last section of this chapter.

The accessibility indicators were used in the estimated statistical models as the 

additional variables that could indicate pedestrian activity within and between the census 

tracts. The accessibility indicators that were found to have statistically significant impact 

on the pedestrian crash outcome primarily refer to the ability of pedestrians whose trips 

origins are within census tracts to reach destinations by walking or transit. Pedestrian 

crashes are expected to increase as the pedestrian accessibility increases as a function of 

the number of accessible destinations and travel time to destinations. This relationship
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between the number of the accessible destinations and the travel time for pedestrians 

depends on the land use patterns and the street network structure. The increase in 

weighted accessibility could occur due to the increase in the number of opportunities 

within the given travel time, or due to the decrease in the travel time needed to reach the 

opportunities. The total number of destinations that pedestrians are able to reach within 

the 15-minute walk is associated with decrease in pedestrian crashes. These two variables 

have different signs, indicating that the concentration of opportunities in such a way that 

it decreases the length of pedestrian travel time could lead to pedestrian crash reduction. 

The reasoning behind this could be that shorter pedestrian trips to destinations, and 

developing land use patterns and transportation structuring networks in a way that 

enables pedestrians to reach the opportunities within shorter amount of time, could 

influence the reduction of their exposure to conflicts and as a result of that the reduction 

of crashes. As the number of pedestrian destinations outside of the 15-minute threshold 

increases, their weight will decrease but the overall accessibility can still gradually 

increase, and influence the creation of longer pedestrian trips and thus more opportunity 

to be exposed to crashes. One percent increase in the average daily transit accessibility is 

estimated to lead to 0.9% increase in the expected number of pedestrian crashes. The 

statistical significance of accessibility indicators in the estimated pedestrian crash models 

implies that these indicators could serve to provide additional information about 

pedestrian exposure to crashes in urban environments, particularly when estimating the 

expected number of crashes on a larger scale.

Variables that represent functional classification, street network connectedness, 

conflict points, and intersection traffic control are associated with the increase in
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pedestrian crashes. If the presence of arterials on the street network were to increase by 1 

%, it is expected that the frequency of pedestrian crashes would increase by 0.1 %. If the 

intersection density was increased in the similar way, it is estimated that it would have a 

slightly stronger effect on pedestrian crashes that are expected to increase by 0.2 %. 

Intersection density represents the number of intersections per mile squared of census 

tract area, while street connectivity is a better indicator of street network connectedness 

as is it obtained by dividing the number of nodes by the actual miles of road in the census 

tract. Street connectivity is associated with the reduction of pedestrian crashes, implying 

that two census tracts with the same intersection density may differ in terms of the 

expected number of pedestrian crashes if one of them has higher number of four-leg 

intersections, as according to the results census tracts with more three-leg intersections 

are expected to have lower pedestrian crash frequency. The presence of signalized 

intersections is associated with the expected number of pedestrian crashes, and appears to 

be the major driver of pedestrian crash occurrence among the variables in the pedestrian 

crash model. According to the estimated model, pedestrian crashes are expected to 

increase by 1.16 % in census tracts with the 1 % increase in signalized intersections. The 

estimated impact of signalized intersections on pedestrian crashes is expected as 

signalized intersections can be identified as the network locations with the major 

potential for vehicle-pedestrian conflicts. Similar effects of the presence of signalized 

intersections on pedestrian crashes were reported in previous research (Ukkusuri et al., 

2012).

The key for determining the final model specification for estimating pedestrian crash 

outcome was to select the adequate measures of exposure to capture the opportunities for
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pedestrian crashes to occur within census tracts. The product of DVMT and the number 

of pedestrian trips within census tract estimated from the CMAP trip generation model 

served as the main indicator of pedestrian exposure to crashes. It was assumed that if 

either of these two variables (DVMT or the number of pedestrian trips) is equal to zero, 

no pedestrian crashes would be expected. Additional measures that would serve as a 

proxy for exposure were considered during the statistical modeling process, including the 

total road mileage and sidewalk area. In the case where roadway mileage was included in 

the models, sidewalk area was treated as a form of pedestrian safety countermeasure and 

the statistical modeling results would show sidewalk as associated with crash reduction.

In the case where roadway mileage was excluded from the models, sidewalk served as 

the approximation for roadway facilities with pedestrian presence, and was associated 

with the increase in pedestrian crashes. A better, more complete measure that indicates 

pedestrian presence on roadway facilities, particularly in the context of the potential 

conflicts between multimodal users, was the indicator of network completeness, 

expressed as the percentage of network that serves all four modes. The estimated model 

results show that if the percentage of street network that serves all four modes is 

increased by 1 %, the expected increase in pedestrian crashes would be 0.39 %. Statistical 

models that serve to estimate pedestrian crash outcome, particularly on the areal level, 

should include some indicators related to pedestrian infrastructure that would 

complement the measures of exposure. Whether simply road mileage, or sidewalk area, 

or in this case, an indicator of the presence of complete streets in the network is used, will 

depend primarily on the data availability and the complexity of multimodal networks.
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Some other variables were also considered and included in the preliminary model 

specifications for pedestrian crashes, such as the population density and the percentage of 

unemployment in census tracts. Both of these variables were associated with the increase 

in the expected number of pedestrian crashes. The presence of L Train lines and stops 

was associated with the reduction of pedestrian crashes during the statistical modeling 

process, while bus routes appeared to be associated with the increase in pedestrian 

crashes. Some of these findings were expected. For example, it is more likely that people 

would walk in lower-income neighborhoods, which may be the reason why the 

percentage of unemployment showed some association with the increase in pedestrian 

crashes. The areas around L Train lines are usually highly walkable areas, where 

vehicular speeds tend to be lower despite the fact that trains are grade-separated. This 

explains the negative coefficient sign which indicated the association of the presence of L 

Train lines with a decrease in pedestrian crashes. Increases in the number of bus routes 

were also associated with increases in the expected number of pedestrian crashes, as 

pedestrian protection islands and similar measures are not too frequent along the bus 

routes, especially in higher density and mixed land use areas. These several variables 

were not included in the final model specification for total pedestrian crashes, as they did 

not remain statistically significant through the statistical modeling process, and some of 

them were unique to the City of Chicago and would be difficult to implement if  similar 

models were to be developed for other urban environments.

Severe Pedestrian Crashes

The estimated statistical models for the expected number of severe pedestrian crashes 

in census tracts are provided in Table 13. The variables that were associated with the
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expected number of severe pedestrian crashes include DVMT, the number of pedestrian 

trips within the census tract, weighted pedestrian accessibility, the number of destinations 

accessible within 15-minute walking time, and the percent of signalized intersections.

For the relevant measures of exposure for severe pedestrian crashes, the same 

approach was used as in the case of estimating total pedestrian crashes. The estimated 

DVMT and the number of pedestrian trips were used as the measures of exposure. 

Statistical models for severe pedestrian crashes are setup in such a way that if  one of 

these two variables (either DVMT or the number of pedestrian trips) in a particular 

census tract is zero, it is assumed that no pedestrian crashes are expected to occur in that 

census tract. According to the results presented in Table 13, if  DVMT within the census 

tract increases by 1 %, the expected increase in severe pedestrian crashes is estimated to 

be 0.2 %. The same 1 % increase in the number of generated pedestrian trips on the 

census tract level is expected to contribute to 0.39 % increase in severe pedestrian 

crashes. While the increase in pedestrian trips seems to have a stronger influence on the 

expected severe pedestrian crash outcome then the increase in DVMT, the expected 

increase in severe pedestrian crashes is not proportional to the increase in DVMT and 

pedestrian trips.

While weighted pedestrian accessibility shows association with the increase in severe 

pedestrian crashes, the number of destinations accessible within 15-minute walking time 

are associated with crash reduction. The 1 % increase in overall pedestrian accessibility 

may be contributing to up to 0.5 % of increase in severe pedestrian crashes. The 

estimated effects of the 15-minute cumulative pedestrian accessibility measure are less 

strong, as the number of destinations accessible by walking needs to be more than
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doubled in order to expect measurable crash reduction. Cumulative measures are 

capturing spatial distribution of activity points and pedestrian network robustness, while 

weighted accessibility is more representative of the travel efficiency expressed through 

travel time. These results indicate that while pedestrians are safer in environments where 

there are more opportunities to reach diverse destinations, more efficient trips are not 

always expected to be safer.

Just as in the case of total pedestrian crash model, the major driver of severe 

pedestrian crashes seems to be the percent of signalized intersections within the census 

tract. According to the results from the Table 13, if  the number of signalized intersections 

within census tracts was increased by 1 %, severe pedestrian crashes would increase by 

0.8 %. These results indicate that signalized intersections are associated with higher 

concentrations of total and severe pedestrian crashes, which could be an implication for 

future city-wide pedestrian safety investments.

Some other variables that showed association with the increase in severe pedestrian 

crashes included population density, intersection density, the number of bus stops, the 

number of bike racks, transit work trips, and land use diversity. Census tract sidewalk 

area showed association with the reduction of severe pedestrian crashes during the 

statistical modeling process included. The majority of these variables were similar to 

those included in the model specification for total pedestrian crash estimation. This is 

expected, as variables such as the intersection density or the number of bus stops relate to 

the number of conflicts to which pedestrians are exposed. An additional explanation 

could be that if  a pedestrian is in a crash, it is more likely that the pedestrian will be 

severely injured when compared to, for example, vehicle occupants. These variables
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varied in terms of their effect on severe pedestrian crashes as well as statistical 

significance in the models, and were excluded from the final model specification.

Total Bicyclist Crashes

The estimated statistical models for the expected number of bicyclist crashes in census 

tracts are provided in Table 14. The variables that were associated with the expected 

number of bicyclist crashes include the estimated DVMT, the number of bike trips within 

the census tract, weighted bicyclist accessibility, intersection density, bus stops, bike 

lanes mileage, CBD, and the presence of L Train lines.

The estimated DVMT and the number of generated bike trips were used as the primary 

measures of exposure. The estimated coefficients for volumes of vehicles and bicyclist 

trips in census tracts show nonlinear relationship with the bicyclist crash outcome.

Similar to pedestrian crashes, the expected number of bicyclist crashes is increasing at a 

significantly lower rate when compared to the increase in vehicular and bicyclist volume 

rates. It is estimated that it would take a 6 % increase in DVMT, or the alternative 3 % 

increase in the number of biking trips, to expect a 1 % increase in bicyclist crashes.

Bike lanes mileage, the weighted bicyclist accessibility, and the intersection density 

were used as the approximate measures of the opportunities for conflicts between 

bicyclists and vehicles. While in the case of vehicular crashes where doubling the road 

length would be expected to result in almost double number of crashes, the same 

conclusion cannot be drawn for the bicyclist crashes and bike lanes where doubling the 

mileage of bike lanes is not expected to be followed by the same increase in bicyclist 

crashes (bicyclist crashes are expected to increase by 24% rather than double). This is
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probably due to the fact that biking may also be present on the road segments that do not 

include bike lanes.

Weighted bicyclist accessibility is the indicator of the potential biking activities in the 

city, and is included in the model as a statistically significant variable. The estimated 

impact on crash outcome, however, is very small, as 1 % increase in bicyclist 

accessibility is estimated to result in 0.02% increase in bicyclist crashes. This effect is 

much less significant than the effect that pedestrian and transit accessibility indicators 

were estimated to have on pedestrian crashes. The overall destination accessibility is 

always higher for bicyclists than for pedestrians, and pedestrian mode is more sensitive to 

the way street network is integrated with land use patterns, which may be the cause of the 

estimated results. In addition, bicyclists are not always expected to use only biking 

infrastructure, while pedestrians movements are usually expected to be closely related to 

pedestrian facilities which influence the accessibility indicators and could potentially 

influence the exposure to crashes.

Intersection density proved to be statistically significant variable in the total bicyclist 

crashes model specification. While the presence of traffic signals was the major driver of 

vehicular and pedestrian crashes, the density of intersections appears to be more relevant 

for the expected number of bicyclist crashes. Pedestrians are mostly exposed to crashes at 

particular points along the roadway segments (pedestrian or mid-block crossings), where 

the exposure increases with the volumes of vehicles that are higher at signalized 

intersections. Bicyclists are more exposed to crashes than pedestrians in terms of spatial 

opportunities for conflicts, as the conflicts may occur anywhere along the roadway 

segments, which may be the reason why the type of intersection traffic control is less
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significant. The effect of intersection traffic control on bicyclist crashes on a smaller 

scale should be further explored.

The CBD area, presence of bus stops, and the presence of L Train facilities served as 

additional area-wide effects that proved to have significant influence on the expected 

number of bicyclist crashes. The downtown area in Chicago tends to be more oriented 

towards nonmotorized modes, with better defined biking facilities network. However, 

additional analysis is needed to determine if different types of biking facilities (e.g., 

protected bike lanes), tend to lead to reduction of biking crashes. Biking trips do have 

higher concentrations in the downtown area, and given the estimated coefficient that 

indicates that bicyclist crashes are less likely to occur in CBD area, this could confirm the 

nonlinear relationship between the number of people biking and bicyclist crash outcome.

The estimated model results (Table 14) show that 1 % increase in bicyclist crashes is 

expected to occur if  the number of bus stops in census tracts is increased by 2 %. The bus 

stops routes in Chicago rarely have dedicated lanes, and the bus stops are typical speed- 

changing areas due to bus traffic lane-changing and interfering with vehicular traffic. 

These types of interactions may be causing conflicts with bicyclists as well, especially 

because bike racks are usually located near the bus stations. Bike racks have appeared as 

a statistically significant variable during the statistical modeling process, but were 

excluded from the final model specification as they did not show stable effect through the 

iterative modeling process, and they showed smaller effect when compared to other 

variables included in total bicyclist crashes specification. This probably occurred due to 

the fact that the presence of bike racks is captured through other variables such as bike
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lanes or CBD. This, however, could be a promising variable to explore, particularly when 

exploring bicyclist crashes on a larger scale in the future.

The L Train facilities showed association with bicyclist crash reduction. The addition 

of 1 mile of train facilities is estimated to result in 13 % reduction in bicycle crashes. It is 

important to acknowledge here that the crash reduction may not be the result of the 

presence of train facilities, but the environment that is created due to the particular design 

of train line and station facilities, particularly in Chicago. In this case, having the elevated 

rail structures is very often followed by lower driving speed, more walking and biking, 

which could be the reason of association of L Train presence with the bicyclist crash 

reduction.

Among other variables, socio-economic variables do not appear to have statistically 

significant effects on crashes involving bicyclists. The effects of entropy and land uses 

were also explored, and did not show stable association with bicyclist crash outcome.

Severe Bicyclist Crashes

The estimated statistical models for the expected number of severe bicyclist crashes in 

census tracts are provided in Table 15. The variables that were associated with the 

expected number of severe bicyclist crashes include the estimated DVMT, the number of 

bike trips within the census tract, weighted bicyclist accessibility, and bike lanes mileage.

All variables that were statistically significant in the estimated severe bicyclist crash 

model were already included in the total bicyclist crashes model specification. The same 

exposure variables, the estimated DVMT and bicycle trips within the census tracts, were 

used to estimate the expected number of severe bicyclist crashes. These variables are 

estimated to have a nonlinear relationship with the expected number of severe bicyclist
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crashes, where a percent increase in bicycle trips or DVMT is followed by 0.2% to 0.25% 

increase in bicyclist crashes.

Bicyclist accessibility is included in the estimated model for severe bicyclist crashes, 

as a statistically significant variable. However, the effect is very small, similar to the 

effect present in the case of total bicyclist crashes. Unlike the pedestrian crashes, bicyclist 

crashes are less dependent on accessibility-related variables. As the ability to reach 

destinations by bike is much higher than the ability to reach destinations by walking, 

bicyclist accessibility (cumulative or weighted) did not show statistically significant 

impact on bicyclist crash frequency or severity.

Another predictor that was found to have a significant effect on the severe bicyclist 

crashes is the total length of bike lanes within census tracts. Severe bicyclist crashes are 

expected to increase in census tracts that have higher mileage of bike lanes, but not at the 

same rate at which the bike lane length increases.

Some other variables, including the sidewalk area and the land use entropy, showed 

some impact on the severe bicyclist crashes, but the direction of impact did not seem 

logical (e.g., increase in sidewalk area was associated with the increase in bicyclist 

crashes), and these variables were not included in the final model specification.

Diagnostics and Final Model Recommendations

The final model recommendation for each crash type depended on the comparison of 

final model specifications estimated by using the applied SASM methods, the model- 

specific goodness of fit indicators provided in Tables 10 through 15, and the model 

diagnostics provided in Table 16.
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Based on the results provided in Tables 10 through 15, the SASM approaches applied 

in this research were fairly consistent in terms of the variables that were influential and 

statistically significant in each crash model. Negative binomial models, although not able 

to capture spatial spillover effects, provided a strong indication about the variables that 

should be considered when modeling various types of crashes in urban multimodal 

environments. However, using only negative binomial models, without running other 

statistical models, would not lead to adequate final model specifications, as the 

application of different SASM methods helped to eliminate the variables with 

inconsistent signs and estimated coefficient values. Running different types of models 

with same sets of variables is what helped to determine first the final model specification, 

and then the best model recommended for the estimation of each crash type in the 

analysis.

As the data were spatially collected, accounting for spatial auto-correlation and 

generally spatial relationships between census tracts was an important part of SASM 

process. The first step to account for spatial effects in the data by simply assuming that 

larger spatial entities such as Planning Districts and Regions can capture spatial 

dependence between census tracts. This approach was modeled by incorporating fixed 

and then random effects into negative binomial models. Regions proved to be statistically 

significant in negative binomial models with fixed effects for all crash types. Looking at 

the model diagnostics presented in Table 16, models with fixed effects also outperformed 

negative binomial models with random effects, but further steps needed to be taken to 

ensure that the impact of certain variables is not overestimated due to spatial 

autocorrelation present in crash data for all users. This is why generalized additive
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models with smooth functions across the locations were used, as an alternative frequentist 

approach that has the ability to fit spatially collected data. When compared to negative 

binomial models, GAM showed that the smooth terms included in the model to represent 

spatial trends in the data were significant at the 99% confidence level for total and severe 

vehicular, pedestrian, and bicyclist crashes. The inclusion of smooth functions to account 

for spatial autocorrelation resulted in slightly higher standard errors and lower statistical 

significance levels for some variables in the models. For example, the presence of bus 

stops appears to be less significant in terms of its effects on vehicular crashes when 

modeled with spatial trend functions in GAM approach compared to other frequentist 

methods. Similar trends occur with land use entropy in severe vehicular crash models, 

with L Train lines in total bike crash models, and weighted bicyclist accessibility in 

severe bike crash models. The percent of deviance explained by the models is the highest 

for the total vehicular crash models (76.30%), and slightly lower for total bicyclist 

(62.20%) and total pedestrian crash models (43.70%). While the model for severe 

vehicular crashes has relatively high percent of deviance explained by using the 

generalized additive models (63.20%), the scores are significantly lower for severe 

bicyclist crashes (31.70%), and severe pedestrian crashes (20.80%).

The clear advantage of FBH models presented in Tables 10 through 15, over 

frequentist modeling approaches, is the estimation of two sets of random effects: one 

resulting from spatial correlation, and the other from unobserved heterogeneity among 

census tracts. The set of statistically significant variables is almost the same for Bayesian 

models when compared to negative binomial and GAM. The variables that are marginally 

significant in negative binomial models are not significant in the Bayesian hierarchical
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models, similar to GAM results. The variance due to spatial correlation estimated in 

Bayesian models is low but different from zero, confirming the findings from the GAM 

approach that spatial correlation is statistically significant.

Table 16 shows the model diagnostics for vehicle, pedestrian, and bicyclist crash 

models. The values of AIC and BIC were used for frequentist approaches, while DIC was 

used for FBH models. The DIC and BIC values provided in Table 16 were the lowest for 

GAM models among all frequentist models, indicating that GAM models are a more 

efficient approach than other explored frequentist SASM methods to represent the data 

generating process for different crash types. When comparing the AIC and BIC values for 

the methods based on frequentist statistical inference, GAM outperform linear forms of 

negative binomial model, including the models with fixed and random effects. While 

direct comparison of the statistical models based on frequentist and Bayesian approach 

cannot be made, the models can be compared in terms of the coefficients and the overall 

efficiency of executing the modeling process. It is well known that the major 

disadvantage of FBH modeling process is that it may be more time consuming and 

challenging in terms of the coefficient interpretation, as it provides the results in the form 

of a distribution rather than p-values and confidence intervals.

The results of the obtained models show very similar coefficient values for GAM and 

FBH models, with a relatively high percent of deviance explained by the GAM in the 

case of the models used to estimate total crash frequency for different modes of 

transportation. Similar conclusion can be made about the GAM models used to estimate 

severe vehicular crashes. The percentage of deviance explained and the similarity in the 

coefficients resulting from GAM and FBH estimation led to the selection of GAM
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approach as the recommended approach for vehicular (total and severe), total pedestrian, 

and total bicyclist crash estimation. In the case of these four crash types, the spatial auto

correlation is lower than in the case of severe nonmotorized crashes, and there are not too 

many census tracts with zero crash outcomes, meaning that the application of FBH would 

not significantly contribute in terms of treating these data issues. This is why GAM 

approach, which also outperforms other frequentist approaches in terms of diagnostics 

values and estimated coefficient standard errors, is selected as a valid SASM alternative 

to estimate these crash types.

In the case of severe pedestrian and severe bicyclist crashes, spatial auto-correlation is 

slightly higher than for the other analyzed crash types. The number of census tracts with 

zero crash outcomes is also higher for these two crash types. The FBH models have been 

known to handle the excessive number of zero observations in crash datasets, as the 

approach is based on MCMC simulation which allows more flexibility in terms of 

sampling values from the posterior distribution without actually declaring zero-state as a 

fixed state for any of the observations. This is why in the case of severe pedestrian and 

bicyclist crashes, FBH models were recommended as the most suitable.

Safety Effects of Multimodal Exposure and Accessibility

In addition to interpreting the variables that were included in the final model 

recommendations for each crash type, the variables related to multimodal exposure and 

accessibility were extracted and their effects on multimodal safety outcomes were 

separately presented in Figures 23 through 28. The estimated models for total and severe 

vehicular, pedestrian, and bicyclist crashes show that the increase in crashes for all crash 

types is associated with the increase in the majority of variables representing multimodal
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infrastructure, exposure, or accessibility. This section of the Discussion chapter is 

intended to clarify these relationships by taking a more detailed look into the effects of 

exposure and accessibility on multimodal safety outcomes.

Figures 23, 24, and 26 show the relationships between the exposure variables and 

associated crash rates for total and severe crashes. As previously explained, non

motorized crashes were estimated using the combinations of exposure measures for 

private vehicles (DVMT) and the adequate nonmotorized mode (pedestrian trips or 

bicyclist trips). The relationships between crash rates for all crash types and the related 

exposure measures are nonlinear. The estimated coefficients for the exposure variables in 

all estimated models have a value lower than one. This means that while the crashes are 

expected to increase as the exposure increases, the increase in crash rate is expected to be 

much lower than the rate at which the exposure increases, and this can be concluded for 

crash outcomes for all crash types. This effect where crashes increase at a lower rate (rate 

that is not proportional to exposure rate) than the exposure is known in the literature as 

the “Safety in Numbers” effect (Elvik, 2015; Hauer, 1982).

As the exposure increases for private vehicle users, total vehicular crashes are 

expected to increase at a much higher rate than the severe vehicular crashes, which can be 

observed from the Figure 23. Similar conclusions can be drawn for pedestrian and 

bicyclist crashes (Figures 23 and 26), as it is expected that with the increase in exposure 

(both vehicular and nonmotorized), less severe crashes are likely to increase at a higher 

rate than the severe crashes.

The estimated crash rates based on the models for severe vehicular and severe 

pedestrian crashes show that for the same rate of change in the estimated DVMT, while
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all other variables (including the pedestrian user exposure) remain constant, the expected 

rate of severe vehicular crashes is only two times higher than the expected rate of severe 

pedestrian crashes. As the vehicular mode share is usually more than double when 

compared to pedestrian mode share, these estimates are related to another expected 

outcome which is the result of user vulnerability: if  a nonmotorized user is involved in a 

crash, the crash is more likely to be severe for nonmotorized user than for a vehicle 

occupant. Severe pedestrian crashes are more sensitive to change in pedestrian exposure 

than to change in vehicular exposure, while according to the estimated models, severe 

bicyclist crashes almost equally depend on bicyclist and vehicular exposure.

Figures 25, 26, and 28 show the relationships between the variables that represent 

multimodal accessibility and total and severe pedestrian and bicyclist crashes. Based on 

the estimated crash models for pedestrians and bicyclists (Tables 17 through 22), 

pedestrian crash outcome is more dependent on the accessibility variables than bicyclist 

crash outcome. Both pedestrian and transit accessibility were found to be associated with 

pedestrian crashes, while bicyclist crashes were found to be related only to indicators of 

bicyclist accessibility.

In terms of the size of the effect of accessibility on total pedestrian crashes, Figure 25 

shows that pedestrian crash frequency is more sensitive to changes in cumulative 

pedestrian accessibility, as well as transit accessibility than weighted pedestrian 

accessibility that includes the component of travel time in its impedance function. 

Similarly, severe pedestrian crash outcome is more sensitive to cumulative than weighted 

pedestrian accessibility. As cumulative accessibility increases both total and severe 

pedestrian crashes are expected to decrease, indicating that census tracts with higher
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concentrations of potential pedestrian destinations are expected to have lower pedestrian 

crash frequency and severity.

The extracted SASM results from Figure 25 allow the estimation of the expected 

pedestrian crash rate based on the number of pedestrian trips and level of accessibility in 

the census tract. For example, if  a census tract generates fifty pedestrian trips, and the 

cumulative pedestrian accessibility is ten destinations accessible within a 15-minute 

walk, the expected crash rate for that census tract would be 0.120. If the cumulative 

accessibility increases up to one hundred destinations accessible within a 15-minute walk 

time, crash rate is expected to be reduced by half. Transit accessibility can be interpreted 

in the similar manner, but it has the opposite effect when compared to cumulative 

pedestrian accessibility (e.g., increase in transit accessibility is associated with increase in 

crashes). Figure 25 shows that the same census tract that generates fifty pedestrian trips, 

but has transit accessibility as high as being able to reach the average of one hundred stop 

times within a 15-minute budget time, is expected to have crash rate of 1.200. Figure 26 

can be used to derive conclusions about severe pedestrian crashes, based on the different 

accessibility and exposure levels.

Figure 28 shows the estimated relationships between total and severe bicyclist crashes 

and weighted bicyclist accessibility that includes bicyclist travel time as the impedance 

factor. As in the case of weighted pedestrian accessibility, changes in weighted bicyclist 

accessibility are statistically significant but not associated with major changes in bicyclist 

crash outcomes for both total and severe bicyclist crashes.

While some of the findings from the pedestrian and bicyclist crash models interpreted 

in this chapter appear, at first glance, counterintuitive and possibly controversial (e.g.,
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presence of bike infrastructure associated with increases in bike crashes), it is important 

to recognize that these types of variables are currently acting as surrogates for true 

exposure data. The models themselves are still useful for estimating the expected number 

of crashes at a spatial level for use in road safety management, but are still not quite to 

the stage where “cause-effect” relationships can be drawn using the estimated parameters 

for all of the right-hand-side variables.
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS

The main objective of this research was to explore the factors that are associated with 

safety outcomes in urban multimodal transportation systems, and develop SASM 

methods that can be used to estimate safety effects of investing in multimodal 

infrastructure and accessibility improvements. Cities are interested in improving 

accessibility for multimodal users in order to build healthier, more affordable and more 

sustainable transportation systems, while not compromising safety, particularly for more 

vulnerable nonmotorized users. This dissertation developed methods that can be used to 

measure city-wide multimodal transportation improvements and predict how those 

improvements could influence safety on the areal level. Data from Chicago aggregated on 

the census tract level were used to develop a comprehensive dataset that allowed to 

examine system-wide effects that may influence urban multimodal safety including 

socio-economic characteristics, land use characteristics, transportation infrastructure, 

exposure, and accessibility. This chapter presents the summary of research findings, 

describes major research contributions and limitations, and provides recommendations 

for the future research development.

Research Contributions

As cities across the U.S. attempt to “retrofit the suburbia” in an effort to improve 

accessibility for all modes of transportation, and thus move towards more sustainable



transportation and environment in general, transportation safety remains the primary 

concern. An additional challenge is the fact that our cities are already built in certain 

ways, and new sets of policy and measures will need to account for this barrier and 

“make the most” of what already exists. The lack of data, measures, and methods that can 

serve to evaluate multimodal urban safety is evident.

The idea behind the methodological approach developed in this research was to 

explore some options that will allow practitioners and researchers to “plan for safety”, 

rather than waiting for realization of system-wide transportation plans and then dealing 

with segment and intersection-level safety issues. The way we integrate transportation 

and land use, as well as the way we design our street networks and allow the users to 

access both transportation and their final destinations, will affect their amount of travel 

and opportunities for conflict in traffic, generally defined as exposure. While it is 

desirable that the exposure of transit and nonmotorized modes increases, we should be 

looking for ways to achieve this without increasing the number of crashes.

The analysis on the census tract level allowed for the inclusion of other factors 

that impact traveler behavior, and are already proven to impact transportation safety, such 

as socio-economic and land use variables. The described methods and findings of this 

research will help practitioners as they are planning for system-wide transportation 

investments, during the decision-making processes that debate between enhanced street 

connectivity or street widening, complete streets or balanced/complete networks (where 

not all streets need to meet the needs of all users, but network should allow everyone to 

reach their destinations), and building multimodal facilities within optimal distances from 

activity destinations.
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The data collection was conducted to acknowledge the complexity of multimodal 

transportation systems. The existing guidelines on safety evaluation methodology simply 

differentiate between urban and rural environments, and use limited amount of factors to 

estimate nonmotorized crashes. The research that acknowledges the diversity of factors 

that influence urban multimodal safety is still the emerging field, and this research is an 

important contribution as the developed dataset includes high level of detail on urban 

multimodal transportation features, and merges several groups of factors that could 

influence safety. The developed dataset integrates data obtained from various 

transportation agencies, acknowledges the importance of open transportation data by 

using open data sources, and includes additional variables calculated to represent 

multimodal accessibility. The dataset demonstrates the application of open transportation 

data platforms combined with other data sources, which makes the case for further 

expansion of Open Data initiatives in order to advance transportation decision making in 

the cities.

In addition to the traditional activity-based exposure measures or “summary” exposure 

measures that capture the number of trips for each mode, this research includes the 

variables representing multimodal infrastructure and connectivity, network completeness, 

and multimodal accessibility. These variables that capture characteristics of 

multimodality also represent travel opportunities, distances, and potential conflicts, 

serving as proxies for exposure of multimodal users to crashes. The particular 

contribution of this research is the acknowledgement that accessibility, with emphasis on 

destination accessibility, is not the same for different modes of transportation (e.g., 

pedestrians cannot reach the same number of destinations as transit users), which is rarely
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recognized in the existing literature. This inclusion of “multimodal” accessibility on a 

higher level is achieved through the developed frameworks that were focused specifically 

on pedestrians, bicyclists, and transit, while other measures related to network design 

served as more general accessibility indicators. The developed measures of accessibility 

and network completeness can also serve as indicators of success of multimodal 

transportation systems in terms of accommodating the needs of all transportation users on 

urban street networks.

The improved access to multimodal transportation options may lead to increase in 

crash frequency and severity, due to increased exposure and users’ vulnerability, but 

there are also findings that improved accessibility changes traveler behavior in a way that 

it makes it “safer” and may also lead to improved safety. This research adds to the 

existing literature, by further clarifying the nature of the relationship between 

accessibility and safety. Two different components of accessibility, cumulative and 

weighted measures, have different direction of impact on crash outcomes. While denser 

street networks and land use developments may lead to pedestrian crash reduction, 

pedestrian crashes may increase as travel time to destinations decreases, indicating that 

highly walkable environments should be equipped with adequate countermeasures to 

prevent or reduce conflicts between vehicles and pedestrians.

Particular attention should be paid to the way multimodal facilities such as bus stops, 

bike racks, and bike lanes are installed, as these facilities tend to be associated with the 

increased number of crashes for multimodal users. While complete streets are desirable in 

livable cities, the strategy of allocating complete streets should be re-established, as the 

obtained results show that networks that carefully prioritize different modes are safer than

164



networks that enforce all modes to be served on a single facility. Intersections, 

particularly signalized, remain the key points on the street network contributing to 

crashes that involve all users.

SASM is also an emerging field in transportation safety statistical modeling. With the 

recent advances in computational capabilities, the application of more complex statistical 

methods is becoming more common. This is particularly the case for spatially aggregated 

data which may exhibit a variety of issues such as spatial correlation and the dependence 

of estimated models on the selected units of analysis. The amount of research that applies 

Bayesian methods and frequentist methods based on additive models to resolve the issues 

in spatially aggregated crash data is still limited, especially in the context of urban 

multimodal transportation, which makes this study valuable for researchers from 

methodological perspective. GAM with smooth functions used to account for spatial 

trends were used in other research disciplines, and very few crash studies (Li et al., 2009; 

Xie & Zhang, 2008) use these models while not focusing on areal crash modeling. 

Previous crash studies which include areal analysis rarely consider bicyclist crashes, and 

this is another contribution of this research. As more complex statistical methods are 

becoming available, the applicability of classical statistical inference is still an option to 

be considered, as it is less computationally demanding, so the application of the main two 

methods in safety statistical modeling, frequentist and Bayesian, contributes in terms of 

the recommendation for the applicability of each approach.

The implications of the “Safety in Numbers” effect that is demonstrated through the 

relationships between multimodal exposure and crashes are three fold. First, the increase 

in multimodal exposure is expected to be associated with increase in crashes up to a
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certain point, when crash rate becomes almost constant even though the exposure 

increases. Second, while crashes (for all users) are expected to increase at a lower rate 

than the rate of exposure increase, the increase in multimodal exposure is even less likely 

to contribute to the increase in severe crashes for all users. Third, nonmotorized users are 

more sensitive to changes in nonmotorized exposure measures than to changes in 

vehicular exposure, in terms of the expected number of crashes.

The results obtained from different SASM methods also provide implications for 

urban road safety statistical modeling in terms of variables that should be included when 

modeling crashes on both macroscopic and microscopic levels. The amount of data 

available in urban environments is rapidly increasing, and this could improve the way the 

expected number of crashes is estimated. The results also show how each city can be 

unique in terms of the factors that may contribute to safety outcomes, particularly 

expected crash reductions. In the case of Chicago, the overall size of sidewalk areas and 

the presence of train facilities seemed to be associated with crash frequency reductions 

for various modes of transportation. The dataset used in this research accounted for 

various aspects of a true multimodal transportation system, and showed how different 

contributing factors may interact in multimodal environments to either increase or reduce 

crash frequency. This further provides implications for decision making related to future 

safety investments (e.g., designing streets to accommodate both buses and pedestrians).

What distinguishes this research from the existing literature is the level of detail in the 

developed dataset which should bring together a variety of factors that have the potential 

to influence urban multimodal safety with a particular emphasis on Open data, measures 

of availability and accessibility of multimodal transportation options that could serve as
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indicators of multimodal transportation system quality and performance, and methods 

used to establish the relationship between multimodal transportation features and safety 

for a variety of users. The application of two main statistical approaches in road safety 

statistical modeling in the context of urban multimodal transportation showed that GAM 

as the alternative frequentist approach has the ability to account for a variety of issues 

that researchers may encounter in spatially collected crash data, and recommend the most 

appropriate methods with regards to the ability to handle the system-wide effects in urban 

multimodal systems and barriers imposed due to computational complexity.

Research Limitations

The major limitation of this research is that the dataset is developed using the data 

from only one city, as the focus of the dissertation is primarily on the methods. This 

limits the application of the statistical models obtained from this study, and requires 

further data collection and research to test for transferability of the obtained results to 

other urban environments. As a part of the potential future research efforts, data should 

be collected from census tracts from the cities of different sizes, to check how the final 

models from the proposed study could be calibrated to other locations.

Another limitation of the presented research is the need to expand the regional 

analysis and establish what the implications would be for the segment-level studies in 

road safety. This could be achieved if the future research focuses on similar street 

segments from census tracts with various accessibility levels, in order to determine the 

effects of multimodal accessibility while controlling for the elements of street design and 

traffic conditions. Street segments with similar cross section design and traffic volumes 

from areas that are different in terms of network completeness and destinations
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accessibility might have different safety outcomes, and this should be a part of the 

potential future research efforts, after the proposed study is conducted.

The proposed dataset includes 8 years of crash data from the City of Chicago, 

disaggregated on the census tract level. This dataset could further be disaggregated on the 

annual level, and developed as a panel dataset. If more information is obtained on the 

temporal variation of independent variables, it would be beneficial to see how crash 

frequency and severity change over time. As temporal correlation could partially be 

overcome by aggregating the data over a longer period of time, the proposed study is 

focused on spatial correlation as a potentially more serious issue in the proposed dataset.

In terms of the statistical modeling methods, a multivariate approach to estimate crash 

outcomes for all users through a single model would be a logical step to improve the 

findings of this research. In addition, incorporating additive model form under Bayesian 

framework would be an innovative approach that has not been applied in previous road 

safety studies.

Future Research Needs

The success of a city, in terms of economic, environmental, and social development, 

highly depends on how well transportation serves the “needs, uses, and functions” of a 

city. The majority of “traffic problems” today are mostly prescribed to the invention and 

usage of automobiles and the convenience of travel they provide, neglecting the fact that 

the disintegration of city and transportation planning policies resulted in low accessibility 

auto-oriented cities that became quite common in the U.S. Automobiles and 

transportation in all its forms are simply a service that should be a response to users’ 

needs and city needs in general. While it is commonly accepted that cities well served by
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their transportation systems do not put auto-mode above other transportation modes, it is 

also recognized that “we blame automobiles for too much” (Jacobs, 1961; Lynch, 1961). 

The importance of distributing the right-of-way, particularly on urban streets, more 

equally across different modes of transportation in order to provide better “access for all”, 

as well as concerns about transportation safety for a variety of users, appeared at about 

the same time in transportation policy development.

This research was primarily focused on addressing the transportation safety issues in 

urban multimodal context. The results show how complex the relationship between 

multimodal features and transportation safety may be, particularly in major cities. There 

is, however, need to increase the focus on urban multimodal transportation safety 

research, and further explore how SASM can be used to improve city-wide decision 

making in terms of improving multimodal transportation options and preserving safety of 

multimodal transportation users.

Urban multimodal transportation systems are constantly changing and the potential of 

urban data is growing. Transportation decision making is becoming more and more data 

driven, as terabytes of data are collected on a daily basis. Transportation agencies today 

have the access to the amount of data that was never available before at a very low or no 

cost. Data are collected automatically and manually from the freeways, arterials, probe 

vehicles, and fused to provide more reliable information sources for a variety of decision 

makers. The “era of Big Data” is starting to have a large impact in urban environments, 

with predicted generation of over 4.1 terabytes of data per square kilometer of urban land 

per day by 2016 (Dobre, 2014). This influence is particularly visible in traffic and 

transportation field. Cities already design and develop data platforms based on automated
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data collection processes and built to handle large amounts of data from a wide range of 

sources for multiple applications (Rockafeller Foundation, 2014). Transportation research 

in general is starting to acknowledge the benefits of these innovative data resources, 

while transportation safety as a research area has yet to explore their potential.

The way we are measuring the performance of transportation systems is changing, and 

the inputs and methodologies for those measurements are advancing with the emerging 

technologies and needs for new transportation policies. The efforts towards building more 

sustainable transportation systems in urban context need to incorporate safety targets, in 

both long-range planning and short-range engineering projects. Data, measurements, and 

methods provided in this research demonstrate how to start exploiting the data sources 

potential, and expand the current methodologies in safety evaluation through SASM 

processes implemented in this study. This, however, is just a starting point in addressing 

the issues that exist with proper representation of multimodal exposure and quality 

performance measurement of multimodal systems. In order to further improve the 

existing transportation safety methodology and implementation, and bridge the gaps 

between research and practice, looking at transportation as a multimodal system 

integrated within its context and environment could be the key approach for future 

research contributions.
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