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ABSTRACT 

 

Traffic simulations, which attempt to describe how individual vehicles move on 

road segments in a network, rely on mathematical traffic flow models developed from 

empirical vehicle trajectory data (position, speed, acceleration, etc.). Many of these 

microscopic traffic flow models are described as car-following models, which assume 

that a driver will respond to the actions of the driver/s or vehicle/s located in front of 

them (stimulus-response behavior). Model calibration can be performed using regression 

and/or optimization techniques, but the process is often complicated by uncertainty and 

variation in human behavior, which can be described as driver heterogeneity. 

Driver heterogeneity is conceptually based on the idea that different drivers may 

have different reactions to the same stimuli (interdriver heterogeneity), and an individual 

driver may react differently to the same type of stimulus (intradriver heterogeneity). To 

capture interdriver heterogeneity, car-following model parameters must be estimated for 

each driver/vehicle in the dataset, which are then used to describe a probability 

distribution associated with those model parameters. Capturing intradriver heterogeneity 

requires going one step further, calculating those same model parameters over much 

smaller time periods (i.e., seconds, or fractions of sections) within one vehicle’s 

trajectory. This significantly reduces the amount of data available for calibration, limiting 

the ability to use traditional calibration procedures. 



 

iv 

 

This research introduces a new method for car-following model calibration based 

on the Dynamic Time Warping (DTW) algorithm. After first extending Newell’s car-

following model to incorporate time-dependent parameters, this thesis describes the 

DTW algorithm and its application for calibrating the extended microscopic simulation 

model by synthesizing driver trajectory data. The standard DTW algorithm is enhanced to 

address a number of estimation challenges in this specific application, and a numerical 

experiment is presented with vehicle trajectory data extracted from the Next Generation 

Simulation (NGSIM) project for demonstration purposes. The DTW algorithm is shown 

to be a reasonable method for processing large vehicle trajectory datasets and to produce 

reasonable results when working with high resolution vehicle trajectory data. 

Additionally, singularities present an interesting match solution set to potentially help 

identify changing driver behavior; however, they must be avoided to reduce analysis 

complexity. 
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CHAPTER 1 

 

INTRODUCTION 

 

In the past, various researchers have conducted car-following studies which 

attempt to describe a vehicle’s movements while following another vehicle. These studies 

often resulted in creating mathematical models designed to describe a car-following 

behavior or condition. Most models are described in terms of the vehicles’ relative 

position, speed, and acceleration, in addition to model parameters requiring calibration. 

Commonly studied car-following models include the GM Models (e.g., Chandler et al., 

1958; Gazis et al., 1961), Newell’s model (Newell, 2002), Gipps’ model (Gipps, 1981), 

and the Intelligent Driver model (Treiber et al., 2000), amongst many others. Interested 

readers are referred to Aghabayk et al. (2013) for a brief, comprehensive review on car-

following models with additional detail provided in Kesting and Treiber (2012). 

Many studies have calibrated car-following model parameters using experimental 

vehicle trajectory data (e.g., Kesting & Treiber, 2008; Ma & Andréasson, 2006; Ossen & 

Hoogendoorn, 2005) and various proposed calibration methods (e.g., Brockfeld et al., 

2004; Ossen and Hoogendoorn, 2008; Yang et al., 2011). An interesting issue arises 

when considering how those calibrated model parameters have been described. Even the 

earliest experiments based on simple stimulus-response models found that model 

parameters varied from driver to driver (e.g., Chandler et al., 1958). This is now 
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commonly referred to as a form of driver heterogeneity – the idea that drivers’ responses 

to stimuli while driving may not be constant. 

Within our experimental and conceptual understanding, several studies (e.g., 

Ossen and Hoogendoorn, 2005; Ossen and Hoogendoorn, 2007; Duret et al., 2008; 

Chiabaut et al., 2010) have confirmed that calibrated car-following model parameters can 

be different for different drivers. This is an example of interdriver heterogeneity. 

Generically, interdriver heterogeneity describes the idea that different drivers may have 

different reactions to the same stimulus. Extending this concept, other studies (e.g., Ossen 

et al., 2006) have found that the actions of different drivers in a group of vehicles may be 

better explained using multiple car-following models rather than a single model. Put 

simply, this indicates that different drivers may follow different driving rules or have 

different responses to stimuli that cannot be explained using a single model for all drivers 

in a group. 

More recent studies have also (e.g., Wang et al., 2010; Kim et al., 2013) found 

evidence which suggests that a single driver’s actions can be better described by using 

different car-following parameters and/or different car-following models to describe a 

single vehicle trajectory. This is an example of intradriver heterogeneity – the idea that 

the same driver may react differently to the same stimulus at different times or under 

different conditions. Most studies on this subject (e.g., Wang et al., 2010) have focused 

on how model parameters change between acceleration and deceleration phases in car-

following, or on which car-following models are most appropriate for these phases. 

However, the calibration techniques applied in these efforts tend to limit the temporal 

resolution at which model parameters may be estimated. For example, an acceleration or 
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deceleration phase may last several seconds, and the calibration technique may offer 

model parameter estimates which are applicable over several seconds. Thus far, however, 

few researchers have attempted to estimate how car-following model parameters might 

change second-by-second, or at subsecond temporal resolutions. 

 

1.1 Problem and Approach 

This thesis addresses the problem of estimating how car-following model 

parameters may change at high temporal resolutions, particularly in second-by-second or 

subsecond time frames. The proposed methodology adapts Dynamic Time Warping 

(DTW) for matching patterns in high-resolution vehicle trajectory data, and uses the 

matching results to estimate time-varying parameters for Newell’s simplified car-

following model. Within this framework, numerical experiments were performed in 

MATLAB
®
 (The MathWorks, 2010) using Next Generation Simulation (NGSIM) 

datasets to evaluate model performance and feasibility for large-scale applications.  

 

1.2 Thesis Contributions and Potential Applications 

The most important contribution from this work is the Dynamic Time Warping 

methodology in its application of estimating model parameters for Newell’s simplified 

car-following model. Since Newell’s model assumes that a following vehicle will 

replicate the speed of a leader vehicle, given some time lag and distance offset, the DTW 

algorithm can be used to match speed data for each trajectory over time and dynamically 

estimate the time lag between vehicle trajectories. This approach offers very high 

resolution parameter estimates, which could enable further investigations to develop 
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more advanced car-following models and traffic flow theories. Particularly interesting is 

the potential for car-following models with embedded state transition models to estimate 

how model parameters change over time and under different conditions. 

Numerous potential applications present themselves following this study. For 

example, pattern-matching results could be used to help estimate the safety effects of 

distracted driving (Przybyla et al., 2012). High-resolution model parameter estimates 

could be used to predict driving behavior in short time ranges, which could help 

automated vehicles predict driver’s actions in a heterogeneous driving environment (i.e., 

mixtures of autonomous and human drivers). Deviations from expected car-following 

behavior could be used to classify driver behavior (e.g., aggressive or defensive) in a 

method similar to that proposed by Laval and Leclercq (2011). Additionally, model 

parameter estimates could be translated to macroscopic traffic state estimates, potentially 

providing higher resolution information about traffic flow conditions. 

 

1.3 Thesis Outline 

This thesis consists of six chapters. A general introduction was provided in 

Chapter 1, with the need for this research demonstrated through a general discussion of 

car-following models and the potential usefulness of models with high time resolutions. 

Chapter 2 surveys the existing literature pertaining to car-following models, methods for 

calibrating these models, and finally, studies devoted to exploring driver heterogeneity. 

Chapter 3 describes the car-following model formulation used in the study, as well as the 

Dynamic Time Warping methodology used for estimating time-varying model 

parameters. Chapter 4 presents the numerical experiments and discusses their results. 
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Chapter 5 provides additional discussion related to some of the limitations of the 

proposed methodology, and Chapter 6 concludes the thesis. 



 

 

 

CHAPTER 2 

 

REVIEW OF LITERATURE 

 

2.1 Driving Behavior and Microscopic Simulation Models 

Driving behavior has been one of the most difficult human decision-making 

processes to model. A wide range of car-following models, psycho-physical models and 

multiphase traffic flow theories have been proposed in an attempt to capture the driving 

behavior at a microscopic level. In many existing simulations of driving models, the 

behavior of a driver is mainly determined by the relative headway, gap, speed and 

acceleration of the lead and surrounding vehicles. Although a number of traffic 

simulation models have considered multiple driver classes to accurately describe 

heterogeneous perception and preferences, most widely used models still assume the 

same behavioral characteristics under both congested and uncongested driving situations. 

Several recent studies have examined driver behavior heterogeneity and its impact 

on microscopic simulation models. Ossen and Hoogendoorn (2005) used high resolution 

trajectory data from a helicopter to find optimal sensitivity and reaction time parameters 

for individual drivers and for multiple car-following models. A later study in Ossen and 

Hoogendoorn (2007) showed that driver heterogeneity could not be explained only with 

model parameters, but must also include model specifications. Most recently, Ossen and 

Hoogendoorn (2011) studied vehicle trajectories for passenger vehicles and trucks in 
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different leader-follower scenarios. Their results showed large variations in how 

passenger car drivers react to different stimuli and which stimuli influence their behavior. 

Truck drivers maintained more consistent speeds over time. Ossen and Hoogendoorn 

(2011) also showed that driver behavior can change depending on the leader’s vehicle 

type. Kim and Mahmassani (2011) calibrated multiple car-following models using Next 

Generation Simulation (NGSIM) trajectory data to examine the effects of considering 

correlation between model parameters. When testing model parameter distributions in 

traffic simulations, their results indicate that there was a statistically-significant 

improvement in model performance (e.g., reduced variation in spacing between vehicles) 

when using correlated parameters rather than uncorrelated parameters. Kim and 

Mahmassani (2011) also showed that the performance impacts associated with using 

correlated parameters were more pronounced for nonlinear car-following models like 

Gipps’s model and the Intelligent Driver model. Laval and Leclercq (2010) presented a 

theory for modeling aggressive and timid driver behavior to partially describe traffic 

oscillations and their transformation into stop-and-go waves. They specifically identified 

traffic oscillations as a consequence of drivers’ heterogeneous reactions to deceleration 

waves, but aggressive and timid driving behavior alone could not produce the observed 

traffic oscillations. 

This thesis first focuses on extending Newell’s simplified Linear Car-Following 

model (LCF) (1962, 2002), which considers the following two driving modes: (i) under 

uncongested conditions, vehicles are driving at free-flow speed, and (ii) under congested 

conditions, a following vehicle changes speeds to maintain a minimum jam spacing and a 

reaction time lag with respect to the leading vehicle’s trajectory. Brockfeld et al. (2004) 
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calibrated and validated a number of well-known car-following models, and Newell’s 

simplified LCF model showed reasonable performance with limited calibration efforts. 

 

2.2 Intradriver Heterogeneity 

Several studies have examined driver heterogeneity using trajectory data in terms 

of driver-specific (interdriver) and/or time-varying (intradriver) car-following model 

parameters. However, while early studies incorporated interdriver heterogeneity, only 

more recent work has studied intradriver heterogeneity. For example, Ahn et al. (2004) 

confirmed driver-specific model parameters in Newell’s car-following model (inter-

driver heterogeneity), aligning with Newell’s model definition, but their study did not test 

whether a driver’s parameters remain constant over time (intradriver heterogeneity). 

Later, Ossen et al. (2006) used vehicle trajectory data to find optimal car-following 

model parameters and optimal car-following models to describe the actions of individual 

drivers. Their work indicated that inter-driver heterogeneity cannot be explained only by 

variations in car-following parameters because different drivers may follow different 

driving styles. Later, studies started expanding toward considering intradriver 

heterogeneity. Hamdar et al. (2009) noted that “heterogeneity observed in traffic 

dynamics may be attributed to intra-driver heterogeneity rather than inter-driver 

heterogeneity.” This matches Kesting and Treiber’s (2009) observation that “intra-driver 

variability accounts for a large part of the deviations between simulations and empirical 

observations.” Wang et al. (2010) used data from Dutch motorways to identify longer 

response times for drivers while accelerating compared to decelerating. They found that 

65 percent of drivers demonstrated different “driving styles” between the two states, 
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where the calibrated model in the acceleration state could not accurately describe the 

trajectory in the deceleration state. They suggested a multiphase car-following model to 

capture this heterogeneity for more reliable traffic simulation. While several studies point 

to intradriver variability in model parameters as a significant source of error in traffic 

simulation, few studies have thoroughly described intradriver heterogeneity. Wang et al. 

(2010) directly address the intradriver heterogeneity issue, but only to provide a 

comparison based on “car-following phases” (acceleration and deceleration phases). 

 

2.3 Car-Following Model Calibration 

Microscopic vehicle trajectory data have been used for calibrating car-following 

models by numerous authors, and several methods have been used for calibrating those 

models. For instance, Ma and Andréasson (2006) describe calibration as a nonlinear 

optimization problem, where the solution approaches can be divided into gradient-based 

methods or derivative-free methods, which include grid-search algorithms and the genetic 

algorithm. Their study calibrated a GM-type model with data collected using an 

instrumented Volvo vehicle. Ciuffo et al. (2011) provide a review of several 

methodologies used for microsimulation calibration, including simultaneous perturbation 

stochastic approximation, simulated annealing, genetic algorithms, and the 

OptQuest/Multistart heuristic algorithm. Genetic algorithms were noted as the most 

common in their study. Hamdar et al. (2009) used a genetic algorithm to calibrate a 

stochastic car-following model using NGSIM data. Kesting and Trieber (2008) used a 

method similar to a genetic algorithm to calibrate the Intelligent Driver model (IDM) and 

the Velocity Difference model from vehicle-mounted radar sensors.  
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Ossen and Hoogendoorn (2008a) took a critical look at calibrating car-following 

models with real-world vehicle trajectories. They began with speed data from real-world 

trajectories and developed 25 leader vehicle trajectories using a model with known 

calibration parameters. These synthetic datasets were then injected with artificial errors, 

representing different types of measurement errors, and a new calibration was performed. 

The new parameters were then compared with the known parameters to evaluate the 

effects of those errors in calibration. Their study reported several effects associated with 

measurement errors. First, they found that measurement errors can introduce bias when 

estimating model parameters. Their calibration process used an objective function to 

quantify how well simulated and observed data (e.g., speed or distance headway) match, 

using different model parameters to generate the simulated results. The goal then 

becomes to find the parameters which minimize this performance metric (i.e., the 

objective function). The objective function used in their calibration process (Theils’ U) 

became less sensitive (i.e., changing the model parameters had less of an effect on the 

performance metric) with measurement errors, and their optimization results did not 

produce the optimal model parameters used to create the synthetic calibration data. 

Additionally, they showed that the calibration results improved when using a simple 

moving average for smoothing to account for some measurement errors. Hoogendoorn et 

al. (2011) describe a piecewise linear approximation filtering technique, showing that 

speed profiles in NGSIM data can be represented well using periods of constant 

acceleration. A later study by Ossen and Hoogendoorn (2009) examined the degree of 

information contained in vehicle trajectories and the effects of measurement errors on the 

calibration objective function’s sensitivity. They provide an in-depth review of vehicle 
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trajectory data collection techniques, calibration and verification methods, and assess the 

influence of measurement errors in a guide available online (Ossen and Hoogendoorn, 

2008b). 

 

2.4 Dynamic Time Warping 

The Dynamic Time Warping (DTW) algorithm is used to measure the similarity 

between two time-series datasets, which can be viewed as an optimization problem that 

minimizes the effects of shifting and distortion in time through a flexible 

transformation/mapping of time series (Senin, 2008). This approach can also be used to 

identify the optimal alignment between two time-dependent data series, and the algorithm 

finds the alignment with the least cumulative cost, called the warp path (Keogh and 

Pazzani, 2001), using a shortest path algorithm which starts at the last pair and works 

back to the first pair. The commonly used cost is a quantitative measure of the similarity 

or difference between two points. 

Similar to the calibration method used by Yang et al. (2010) to find the optimal 

time delay between vehicle trajectories, the DTW algorithm may produce an estimate of 

the time delay along each vehicle trajectory, but does so for each discrete point in the 

time series. Once the time delay is known, simple car-following model parameters (i.e., 

jam spacing) can be calculated based on the best time delay estimates at each time stamp 

in the dataset, offering the ability to further investigate intradriver heterogeneity at higher 

time resolutions. 

 



 

 

 

CHAPTER 3 

 

METHODOLOGY 

 

3.1 Overview 

The goal of this research is to enable investigations into intradriver heterogeneity 

by estimating time-varying, car-following model parameters based on high-resolution 

vehicle trajectory datasets. This is accomplished by providing model parameter estimates 

at each discrete point in time along the vehicle trajectory, rather than providing one set of 

model parameter estimates for an entire trajectory or a “car-following phase.” In this 

research, the DTW algorithm is used to find the optimal alignment between two time-

series datasets. When applied to vehicle trajectory data, the alignment is considered an 

estimate of the stimulus-response relationship for a driver following a leading vehicle, 

and it is used to infer the time-varying, car-following model parameters for a driver 

during the observation time period. The underlying assumption is that the stimulus-

response driver behavior model can be represented in terms of time-series similarity and 

further estimated using the DTW algorithm. That is, time-series similarity techniques 

may help to identify the stimulus-response interactions observed in empirical data. 

The main methodological contribution of this work comes from the combination 

of Newell’s model and DTW. Newell’s simplified model parameters reduce calibration 

process complexity, and the DTW algorithm’s pattern-matching capabilities should 
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significantly improve the calibration solution for small datasets. With higher-resolution 

data, it may be possible to quantify the stochasticity present in the different model 

parameters and describe parameter sensitivity, providing information for incorporating 

time-varying parameters in car-following models which is not likely to be found in the 

literature. The data could also be analyzed for patterns based on different “car-following 

phases,” such as acceleration and deceleration states, which can be used to improve 

multiphase models. 

 

3.2 Car-Following Model Formulation 

3.2.1 Newell’s Car-Following Model 

Newell’s car-following model (Newell, 2002) is based upon one basic 

assumption: A vehicle following another vehicle (the leader vehicle) in a homogenous 

space replicates the trajectory of the leader vehicle, but their trajectories are separated by 

a time and distance offset. This relationship between vehicle trajectories is described 

mathematically in the following equation: 

 

   (    )      ( )     (1) 

 

where  

  = time index, 

  = vehicle number index, 

   = position of vehicle  , 

   = critical jam spacing, or distance offset, for vehicle  , and  
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   = time lag, or time offset, for vehicle  . 

The left side of Eq. (1) describes the position of the following vehicle at time 

(    ), where   refers to the following vehicle. The right side of Eq. (1) refers to the 

position of the leader vehicle at time   and the distance offset between the two 

trajectories, where     refers to the vehicle preceding the following vehicle. In this 

generalized formulation, the model parameters    and   , are associated with each 

vehicle, and may be assumed to be constant over time. This car-following model is also 

consistent with Newell’s simplified kinematic wave model (Newell, 1993), where the 

Fundamental Diagram of Traffic Flow takes a triangular shape, as shown in Fig. 1. Under 

this model, the critical jam spacing is the inverse of the jam density (         ), and 

the backward shockwave speed   is related to both car-following parameters (   

     ). 

Since vehicle trajectories are replicated in Newell’s simplified car-following 

model, the speeds of both vehicles are also replicated with a certain time lag. The first 

derivative of Eq. (1) indicates that the speed of the leader vehicle is replicated by the 

speed of the following vehicle after the time offset   , as derived in Eq. (2) and shown in 

Eq. (3). This is important because it identifies velocity time-series data as a good 

candidate for pattern matching, where matching the speed profile of two vehicles can 

help estimate the time offset. 

 

 
  

  
(  (    ))  

  

  
(    ( )    ) (2) 

 

  ̇ (    )   ̇   ( ) (3) 
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Newell makes an additional simplifying assumption by using a piecewise linear 

approximation to describe vehicle trajectories. The visual representation in Fig. 2 shows  

the position of the leader vehicle in a time-space diagram with both a solid line and a 

dashed line, where the solid line is the linear approximation to the observed dashed line. 

This implicitly assumes that all acceleration is instantaneous. If the velocity of the 

(   )   car and the     car are the same, the piecewise linear approximation is 

reasonable, but this may not be the case where drivers’ reactions to the change in speed 

are not homogeneous. 

Newell also describes a few fundamental relationships between the model 

parameters which are useful for model calibration purposes. Fig. 2 shows that the spacing 

   (or distance headway) between vehicles increases after the velocity increases. Newell 

described the relationship between velocity and spacing using a linear model, where the 

slope is    and the intercept is   , as shown in Fig. 3. This means that these parameters 

should be independent of velocity, and constant model parameters could be estimated 

using linear regression. 

 

3.2.2 Formulation with Time-Varying Parameters 

As stated before, the goal of this research is to investigate intradriver 

heterogeneity by estimating time-varying, car-following model parameters. That is, it is 

assumed that the manner by which those model parameters vary with time can be used to 

describe intradriver heterogeneity. More systematically, it can also be assumed that the 

underlying process shows a “disturbance” for tau and d because, even if these are 

allowed to vary with time, there will be additional variation from factors known (but 
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unmeasured) and unknown. 

Thus, this research begins with the hypothesis that car-following model 

parameters are not constant for each driver, but actually change over time. In order to test 

this hypothesis with Newell’s car-following model using the proposed methodology, 

Newell’s model needs to be re-formulated using time-varying parameters. As a result, Eq. 

(1) becomes Eq. (4): 

 

   (      )      ( )       (4) 

 

where 

     = time lag, or time offset, for vehicle   at time  ,  

     = critical jam spacing, or distance offset, for vehicle   at time  .  

Redefining Newell’s car-following model in order to use time-varying parameters 

introduces several potential issues. The most significant issues are related to the Newell’s 

modeling assumptions. For example, if   and   vary with time, the linear relationship 

between velocity and spacing described in Fig. 3 may no longer be valid. Additionally, 

Newell’s approach of using a piecewise linear approximation to describe a vehicle 

trajectory is no longer required because the spacing between vehicles may change 

continuously rather than just when the speed changes significantly. Alternatively, for 

consistency with Newell’s approach, one might assume that there is a piecewise linear 

approximation between each observed data point in a trajectory. Lastly, if the backward 

wave speed is allowed to change over time for a single vehicle, this might conflict with 

how Newell expected a backward wave to propagate upstream. 
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3.3. Dynamic Time Warping Algorithm 

The Dynamic Time Warping (DTW) algorithm is a dynamic programming 

technique used to find the optimal alignment, or mapping, between two time-series 

datasets. In this application, the DTW algorithm provides the estimated optimal time 

offset between two vehicle trajectories during a specific time period, indicating likely 

points in time where the following driver reacted to a stimulus (i.e., change in speed) 

from the leader vehicle.  

In order to better explain the inner workings of the algorithm and its components, 

this section first identifies the notation used to describe the algorithm. Next, the algorithm 

is explained step-by-step with illustrative elements which help to explain each component 

in the algorithm. Details are also provided for an alternative formulation where the 

algorithm is translated into an optimization problem which can be solved using linear 

programming. This section ends with an illustrative example aligning two sets of vehicle 

speed data time series. 

 

3.3.1 DTW Algorithm 

In its basic form, the DTW algorithm first assesses the cost for aligning each data 

point in one time series to all other points in the second time series, creating a cost 

matrix. It then begins at the first data series pair in the cost matrix, calculating the 

cumulative least cost for continuously moving from the first pair to the last pair in the 

matrix, creating a cumulative cost matrix. Lastly, the algorithm finds the alignment with 

the least cumulative cost, using a shortest path algorithm which starts at the last pair in 

the cumulative cost matrix and works back to the first pair. While the cost is a 

quantitative measure of the similarity or difference between two points in each time-
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series dataset (distance is commonly used), it can also be a flexible term which may be 

modified to suit the application. The algorithm is explained in further detail below with 

visual elements to help understand the different components. 

 

3.3.1.1 Input Data 

The DTW algorithm is based on the idea of measuring the similarity or distance 

between two or more elements or sets of data. This measurement is usually performed 

using a metric, such as the generalized norm, or Lp distance (the L2 norm, or Euclidean 

distance, is commonly chosen). The cost  (   ) of mapping two points (     ) together is 

based on this measured similarity or distance calculated from the input time series 

datasets   and  . In this study, the metric is based upon the input data taken from the 

underlying car-following model. For Newell’s car-following model, the similarity metric 

should be based on vehicle velocity because Eq. (3) showed that the velocities of the lead 

and following vehicles should be the same at a time offset from each other.  

Since Newell’s model assumes that the velocities are the same, the acceleration 

should also be the same and could be a potential candidate as input data for the DTW 

algorithm. However, high resolution observation data typically shows that acceleration 

data is more volatile and subject to greater uncertainty, often due to measurement error. 

DTW can be sensitive to noisy input data, so velocity data were selected as the input data 

for the DTW algorithm. An example of velocity input time series data is shown in Fig. 4. 
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3.3.1.2 Cost Matrix 

The first step in the DTW algorithm, after assembling the input data, is to 

construct the cost matrix. The cost matrix  (   ) is an     matrix which stores all 

pair-wise distances between X and Y. The cost in each cell of the cost matrix is 

calculated using Eq. 5. The cost matrix is created using Algorithm 1. An example of a 

cost matrix is shown in Fig. 5. 

 

  (   )  √(     )
 

 |     | (5) 

 

3.3.1.3 Cumulative Cost Matrix 

The next step is to calculate the cumulative cost matrix  (   ), which is an 

    matrix which stores the cumulative least cost required to arrive at any location in 

the matrix by following a specified search pattern from (   ) to (   ). The most 

common search pattern allows the algorithm to check costs in the next cell vertically, 

horizontally, or diagonally away from the current cell in the matrix. The cumulative least 

cost in each cell of the matrix is calculated using Eq. (6), which also identifies the search 

direction. 

 

  (   )    (   )     ( (       )  (     )  (     ))              (6) 

 

The cumulative cost matrix is created using Algorithm 2. An example of a 

cumulative cost matrix is shown in Fig. 6. 

  



20 

 

 

Algorithm 1: 

For i = 1 to N 

 For j = 1 to M 

   (   )  |     | 

 EndFor 

EndFor 

 

 

Algorithm 2: 

For i = 1 to N 

 For j = 1 to M 

If i = 1 and j = 1 

 (   )   (   ) 

ElseIf i = 1 

 (   )   (     )   (   ) 

ElseIf j = 1 

 (   )   (     )   (   ) 

Else 

   (   )      ( (       )  (     )  (     ))   (   ) 

EndIf 

 EndFor 

EndFor 
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3.3.1.4 Warp Path and Constraints 

The last step in the algorithm is to find the optimal alignment by calculating the 

warp path   through the cumulative cost matrix. The warp path is the shortest path from 

(   ) to (   ) through the cumulative cost matrix, following a specific search pattern. 

Similar to the process for constructing the cumulative cost matrix, the warp path search 

pattern typically allows searching the next cell vertically, horizontally, and diagonally 

away from the current cell in the warp path. 

Additionally, the warp path must satisfy the following three constraints: 

 Boundaries: The start and end points of the datasets must be the start and end 

points of the warp path.     (   )      (   ) 

 Continuity: The warp path cannot step forward more than one time index in any 

direction at one time. 

 

    (   )        (     )                          (7) 

 

 Monotonicity: The warp path must continuously step forward from beginning to 

end; the algorithm cannot step backward. 

 

    (   )        (     )                        (8) 

 

The warp path is created using Algorithm 3. An example of the warp path, and its 

relation to the cumulative cost matrix, is shown in Fig. 7.  

Once the warp path is assembled, the car-following model parameters are 
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Algorithm 3: 

Initialize i = N; j = M; k = 1 

While i ≥ 1 and j ≥ 1 

      

 If i = 1 and j = 1 

Break 

ElseIf i = 1 

      

ElseIf j = 1 

      

Else 

If  (     )     ( (       )  (     )  (     )) 

      

ElseIf  (     )     ( (       )  (     )  (     )) 

      

Else 

     ;       

EndIf 

   (   ) 

EndIf 

EndWhile 
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calculated based upon the matching coordinates for each time step in the warp path using 

Eqs. (9-10). 

 

   ( )              (9) 

 

   ( )         (10) 

 

The DTW algorithm allows one-to-many matching in each time series, so there 

may be more than one parameter estimate for each time index in the follower driver time 

series dataset. As a result, some additional filtering is necessary to remove duplicate 

estimates.  

 

3.3.2 Illustrative Example for Vehicle Trajectory Data 

To assist the reader in understanding how the algorithm works and how it is 

applied to vehicle trajectory data, this section describes an illustrative example in detail. 

The input data used in the algorithm, summarized in Table 1, consists of velocity data for 

two vehicles. Their trajectories are represented visually in a time-space diagram in Fig. 

8a, and the velocities are plotted in Fig. 8b. 

Following Algorithm 1, the cost matrix is first calculated based upon the input 

data. In this case,   {                     } and   {                    }, 

and each cell in the cost matrix is calculated as the difference between each pair of data 

points between the two time-series datasets. Since the cost  (   )  |     |, the cost in 

the first cell is  (   )  |     |  |     |   , and the cost at (   ) is  (   )  
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|     |  |   |   . The complete cost matrix for this illustrative example is shown 

in Fig. 9. 

The second step is to follow Algorithm 2 and calculate the cumulative cost matrix 

using the cost matrix calculated in the previous step. The cumulative cost matrix could be 

thought of as a network, where the objective is to travel from (   ) to (   ) by passing 

through the cells in the matrix. Each step along this path has a cost, and the search pattern 

restricts the “traveler’s” movement to only the next adjacent cell in the matrix 

horizontally, vertically, or diagonally. The least cost required to arrive at a cell in the 

matrix is the accumulation of the costs in the previously-used cells. In this example, the 

cost  (   ) at the start of the matrix is 0 because  (   )   . At location (   ) in the 

cumulative cost matrix, the cost  (   )     and the search pattern only allows 

horizontal movement at this boundary since no backward movement is allowed, so the 

cumulative least cost to reach this point is  (   )   (   )   (   )    . At location 

(   ), the search pattern allows searching in all three directions (horizontally, vertically, 

or diagonally). As a result, the cumulative least cost to arrive at location (   ) is 

 (   )     ( (   )  (   )  (   ))   (   ). The minimum cost in the adjacent 

cells is at location (   ), so the cumulative least cost at location (   ) is  (   )  

[ (   )   (   )]  [   ]   . The complete cumulative cost matrix for this 

illustrative example is shown in Fig.10. 

The last step in the DTW algorithm is to follow Algorithm 3 and find the warp 

path through the cumulative cost matrix. Similar to calculating the cumulative least cost 

matrix, it is convenient to think of the warp path as the shortest path through the matrix, 

where the matrix is actually a network composed of cells. Again, a search pattern restricts 
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the “traveler’s” movement to only the next adjacent cell in the matrix horizontally, 

vertically, or diagonally. However, rather than moving from the beginning to the end of 

the matrix, the warp path finds the shortest path from (   ) to (   ) by following the 

cumulative least cost. The next step through the matrix is selected based on the least cost 

at arriving at the potential next step.  

Consider the warp path shown in Fig. 11. Starting at location (   ), the algorithm 

checks the cumulative costs at the potential next steps (   ), (   ), and (   ). The least 

cumulative cost amongst the available cells is at location (   ) because  (   )   , so 

the algorithm adds location (   ) to the warp path and moves to this new location. This 

procedure continues until the algorithm reaches location (   ) at the beginning of the 

cumulative cost matrix. 

The warp path indicates the optimal alignment between points over time. For 

example, it matches point    in the leader trajectory with points    and    in the follower 

trajectory. Using this information, the velocity data points are matched in Fig. 12. 

Additionally, this matching can be translated into the time-space domain in Fig. 13. This 

alignment information is then used to estimate the time offset      and distance offset      

following the Eqs. (9-10). For example, at time     in the follower’s time-series 

(vehicle    ),      (   )    time unit, and           .  

 

3.4 DTW Algorithm Modifications 

While the DTW algorithm was designed to match time series data, the matching 

results for vehicle trajectory data may not always be consistent with our understanding of 

car-following behavior. For example, without modifications, the DTW algorithm could 
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return negative time offsets, which might indicate that the driver reacted to a change in 

the leading vehicle’s trajectory before it occurred. Also, similar to other calibration 

methods, the DTW algorithm may have difficulty in attempting to match trajectory 

datasets containing time periods with little variation (e.g., trajectories with constant 

speed). This section describes several algorithm modifications/adjustments to help 

address these issues, primarily related to changing the cost function and adding 

constraints. 

 

3.4.1 Constraints and Costs 

As mentioned above, the DTW algorithm (without modifications) can return 

matching results which produce negative car-following model parameters. Alternatively, 

the algorithm may also return extreme estimates with very large values for      and/or 

    . The logical solution to these issues would be to add constraints to the algorithm to 

prevent unreasonable matching results – essentially adding an upper and lower bound on 

     and     . Setting boundary conditions for these parameters is similar to the 

“windowing” methods described in the literature (e.g., Sakoe-Chiba bands by Sakoe and 

Chiba, 1978). However, an upper bound condition may artificially prevent the algorithm 

from identifying correct matches, dependent upon the leader-follower relationship. For 

example, an upper bound placed on an actual, abnormally long following distance may 

exclude several matches for a leader-follower pair. In the proposed methodology, a more 

conservative approach is implemented by only considering the lower bound constraint 

and implementing the lower bound constraint as a soft constraint by modifying the cost 
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function. In this way, the new cost function penalizes unacceptable matching pairs 

(      ,       ) between the trajectory time series datasets, as shown in Eq. 9. 

 

  (   )  {
        |     |                  

           |     |               
 (9) 

 

This soft constraint encourages the algorithm to make theoretically-acceptable 

matches, but also allows unacceptable matches when necessary to guarantee a continuous 

path for both trajectories. Additionally, the penalty is applied as a scaling factor to the 

calculated cost so that the similarity information at these locations is not lost. This is 

important because there may be situations in which the penalty is applied to a block of 

cells in the cost matrix. In one such situation, if the penalty simply replaced the cost in 

the cell, there would be no obvious best choice for the warp path through the matrix. This 

formulation for the cost function could be further adjusted to implement an upper bound 

limit, and the penalty could be adjusted as necessary (a reasonable Penalty value might 

ten times greater than the maximum speed difference in the datasets). 

When building the warp path, another potential issue arises in which the 

cumulative cost in the adjacent cells may be equal. When this occurs, the algorithm may 

not have an obvious best choice for the next step in the warp path. With a well-defined 

cost function and relatively precise measurements, there should be very few pairs of time-

series data which produce equal costs in close proximity in a matrix. In this application, 

however, this “equal-cost” situation may arise when the speeds are nearly constant for 

both vehicles over a short period of time. To resolve this issue, a prespecified warp path 

step direction (diagonal step is preferred) is specified to help guide the algorithm through 
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the cumulative cost matrix. While this may be the simplest option, it may create 

additional issues when the same situation arises consecutively because the shortest path is 

unknown beyond the current location in the cumulative cost matrix. In this way, using 

alternative (robust) optimization model formulations may produce more reliable warp 

paths. 

 

3.4.2 Incorporating Prior Information 

One of the challenges in calibrating Newell’s model with the DTW algorithm is 

time-series segments with nearly constant velocities. When the velocities are nearly 

constant over a period of several time units, the cost of matching multiple points is nearly 

the same. As a result, the cost matrix calculated in Algorithm 1 could produce a region in 

the matrix with little or no variation in cost. Essentially, the algorithm does not have 

enough information to reasonably quantify the similarity in speed in these situations. This 

often causes the DTW algorithm to produce unrealistic matching results and reduces the 

quality of the parameter estimates. To prevent these conditions an alternative cost matrix 

function, incorporating additional information, is proposed in the following section. 

 

3.4.2.1 Enhanced DTW Cost Formulation 

The proposed enhancements to the DTW cost function incorporate prior estimates 

for Newell’s model parameters (i.e., the time lag, critical spacing, and backward wave 

speed) in the cost calculation. This cost function formulation, which takes a similar form 

to those used in Chen et al. (2005), is described in the following equation: 
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 (   )  |     |   |           ̂   |   |       ̂   |   |
     

         
  ̂   | (10) 

 

where: 

  = weight on time lag similarity,  

  = weight on critical spacing similarity, 

  = weight on backward wave speed similarity, 

 ̂    = prior estimate for the time lag sample mean for vehicle n and time t , 

 ̂    = prior estimate for the critical spacing sample mean for vehicle n and time t, and 

 ̂    = prior estimate for the backward wave speed sample mean for vehicle n and time t. 

The implicit assumption in this approach is that an average model parameter value 

for an individual driver is representative of the sample mean for that estimated 

parameter’s distribution over time. As a result, an estimated parameter value at a given 

time instance should be expected to be similar to that average parameter value. In this 

way, the cost function is adapted to consider the similarity of each model parameter in 

terms of a prior estimate of its sample mean. This additional information generally helps 

to better describe similarity in the cost matrix, offering more guidance to the algorithm 

when speed data alone are not sufficient to produce reasonable pattern matching results. 

Incorporating additional information in the DTW cost function requires 

considering some complex issues about the fundamental nature of the algorithm. The cost 

function is used to quantify similarity. However, a similarity measure for one source of 

information may be different from a similarity measure for another source of information. 

In order to properly account for variations in similarity between sources of information, it 

is necessary to normalize the similarity measures in the cost function. This is 
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accomplished here using the weights α, β, and  . The process of normalization is 

generally represented in statistics by 
   

 
. In this case, where the prior estimate is an 

average value, the weight would be the inverse of the standard deviation for the estimate 

parameter distribution. 

 

3.4.2.2 Sources of Prior Estimates and Weights 

One of the difficulties in applying this proposed alternative cost function is in 

selecting values to use as the prior estimates and weights. The most obvious potential 

source of model parameter prior estimates is a textbook reference or the results of car-

following study (the source used in numerical experiments in Chapter 4). Alternatively, a 

prior estimate could be provided by using a common calibration technique to estimate a 

model parameter value for a single vehicle’s trajectory, or a group of trajectories. 

Estimating the weights, however, is more difficult due to their definitions. Since the prior 

estimate is assumed to be an estimate of the sample mean, it is easy to assume that a 

calibrated model parameter approximates this sample mean, but there are no obvious 

solutions to estimating the standard deviation for the sample distribution. One option is to 

use a trial-and-error approach (as is utilized in the numerical experiments). A more 

complicated approach might involve using an iterative process to estimate and adjust the 

weights (standard deviations) until the calculated and estimated sample standard 

deviations are nearly equal. This advanced technique is recommended for consideration 

in future research. 
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Figure 1: Flow-Density and Speed-Density diagrams associated with Newell’s car-

following model. Typical values:   = 19 KPH and      = 112 vehicles/km/lane, which 

leads to   
̅̅ ̅ = 9 meters,   ̅̅ ̅ = 1.7 seconds. 
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Figure 2: Visual representation of Newell's car-following model with piecewise linear 

approximation (adapted from Newell, 2002). 
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Figure 3: Velocity-spacing relationship in Newell’s model (adapted from Newell, 2002). 
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Figure 4: Example of position speed data for explaining DTW input data. (a) Raw vehicle 

trajectories, and (b) their corresponding velocity time series datasets. 
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Figure 5: Visual representation of the cost matrix. 
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Figure 6: Visual representation of the cumulative cost matrix.  
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Figure 7: Visual representation of the warp path (highlighted in grey) in the cumulative 

cost matrix. 

 

Table 1: Velocity time-series data for illustrative example. 

Time 1 2 3 4 5 6 7 8 

X (Leader Velocity) 25 25 25 5 5 30 30 30 

Y (Follower Velocity) 25 25 25 25 7 7 7 30 

 

  



35 

 

 

Time

P
o

si
ti

o
n

1 2 3 4 5 6 7 8

 (a)  Vehicle Trajectories in Time-Space Diagram

X:  Leader

Y:  Follower

Time

V
e
lo

c
it

y

X:  Leader
Y:  Follower

1 2 3 4 5 6 7 8

 (b)  Vehicle Velocity Time Series
 

Figure 8: Vehicle trajectory data for illustrative example, corresponding to the velocity 

data in Table 1. 

 

 

Figure 9: Cost matrix for the illustrative example, with visual orientation of the leader 

and follower velocity data along the dimensions of the matrix. 
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Figure 10: Cumulative cost matrix for illustrative example. 
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Figure 11: Warp path (highlighted in grey) through the cumulative cost matrix for the 

illustrative example. 
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Figure 12: Matching/alignment between vehicle velocity data for illustrative example. 
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Figure 13: Matching/alignment between vehicle trajectory data for illustrative example. 

 

 



 

 

 

CHAPTER 4 

 

NUMERICAL EXPERIMENTS WITH NGSIM DATA 

 

Starting with data from the NGSIM project for I-80 in California (NGSIM, 2006), 

we use the DTW algorithm to extract the optimal match points and analyze individual 

drivers’ car-following parameters as they change over time. For this numerical 

experiment, we have extracted a series of vehicles from Lane 4, including both trucks and 

passenger cars. Data for these vehicles are available at 0.1 second resolution, and the 

dataset was trimmed to approximately 60 seconds so that data was available for all 

vehicles for each time index. The DTW algorithm was applied using the calculated 

acceleration to develop the cost matrix, with a lower bound constraint applied when 

calculating the cost matrix (i.e., artificial cost = 100). The methodology was applied with 

and without reduced input data. All DTW calculations and visualizations were performed 

with MATLAB. 

 

4.1 Analysis Results with Data Reduction 

First, the DTW algorithm is applied to a time series which has undergone data 

reduction. This was performed manually, where best judgment was used to form a 

piecewise linear approximation for each vehicle trajectory. The algorithm produced nine 

match points for the first following vehicle (the truck, highlighted in the middle red line 
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in Fig. 14), and ten match points for the second following vehicle (the vehicle following 

the truck). The figure only shows six and seven plotted matches for the first and second 

following vehicles, respectively, because only acceptable solutions are plotted (i.e., τ > 0, 

d > 0). Complete results for the matches are shown in the time series in Fig. 15. 

The matching solution results, and especially in the congested region between t = 

5150 and t = 5400, appear to show consistent backward wave speeds in multiple locations 

along the trajectory. Additionally, the wave speed also appears to change in the 

deceleration and acceleration regions, showing a slight trend toward decreasing before 

congestion and increasing after congestion. This presents the possibility that situation-

dependent car-following parameters may exist, but does not conclusively prove or 

disprove their existence. Further study on a larger scale is required to investigate these 

characteristics. Further enhancements to the DTW algorithm which could also improve 

solution quality (which are not applied here) are discussed in the next section.  

Examining the complete solution set in Fig. 15, we observe multiple solutions 

which are not within the boundary constraints (τ > 0, d > 0) for the car-following model. 

The wave speeds at the end points (w = infinity) are ignored because the matching points 

create vertical lines with τ = 0. We also observe that singularities are located near points 

of extreme results in the time-series plots, but their influence at these locations is not 

clear from the simple analysis provided in this numerical experiment.  

 

4.2 Results without Data Reduction 

The datasets are approximately 60 times larger without using the data reduction 

algorithm (approximately 600 data points for each trajectory). This produces a very 
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different matching pattern compared to the reduced data matching solution. The match 

solution in Fig. 16 is focused upon an area within the plot shown in Fig. 14 so that the 

reader may inspect the solution quality. The changing slope is observed again here, 

indicating a changing wave speed. This plot presents a much stronger case for situation 

dependent parameters, where the reaction time increases greatly for the second following 

vehicle after congestion begins and increases after congestion ends. It appears that the 

matching solutions for both drivers align well with each other in some regions of the plot. 

However, singularities once again introduce an element of uncertainty in the matching 

solution. This uncertainty limits our ability to draw conclusions at this state in the 

research. 

 

4.3 Example of Time Series Results for Car-Following Parameters 

Translating the DTW matching results, following the procedures described in 

Chapter 3, produces car-following parameter estimates which can be represented as a 

time-series. An example is shown in Fig. 17 using a vehicle from the I-80 NGSIM 

dataset. Fig. 17 shows the estimated time lag, critical spacing, and backward wave speed 

(shown in blue, red, and green, respectively) at each time interval over the duration of the 

observed vehicle trajectory. Overlaid on top of this time-series data, the purple and gold 

lines show the space-time trajectory of the leader and follower, respectively. The DTW 

matching results in this case used prior estimates for the parameters to help reduce the 

effect of singularities in the experiment results.  

The experimental results show a decrease in the time lag and critical spacing 

during a deceleration period at the beginning of the time series. After a few seconds, 
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these parameters appear to recover back to some near-steady-state condition for each 

parameter (which is similar to the prior estimate values). In this case, the backward wave 

speed does not vary much over the duration of the time series, potentially indicating that 

the weight on this parameter is biasing the matching results to minimize its variation. 

When applied to the entire I-80 dataset, these high-resolution car-following 

parameter estimates can be aggregated to estimate distributions for these parameters. 

Experimental results are shown in Fig. 18. for the time lag, critical spacing, and backward 

wave speed. 

The time lag and critical spacing appear to have broad distributions with long tails 

at one end of the distribution. The frequency of parameter estimates in the tail could be 

attributed to unrealistic or inappropriate matching results (e.g., matching vehicles when 

they are too far apart), but they could also be related to different vehicle types in the 

dataset (e.g., trucks with long following distances). Further analysis by vehicle type 

would help to identify the source of these outlier parameter estimates. Additionally, the 

backward wave speed distribution appears to show a very tight distribution. This most 

likely can be attributed to an overestimated weight applied to the backward wave speed in 

the prior information formulation. That is, the higher weight on the backward wave term 

biases the matching results to minimize the deviation from the prior estimate for this 

parameter, thus providing an estimated distribution with a much narrower distribution. 
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Figure 14: Dynamic Time Warping trajectory match for reduced data. 
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Figure 15: Time-series plots for car-following parameters d, τ, and w. The position of the 

leader and follower is plotted alongside the wave speed, time lag, and critical spacing 

parameter estimates for Following Driver 1 (A) and Following Driver 2 (B). 
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Figure 16: DTW trajectory match for unreduced data. 

 

 

Figure 17: Model parameter estimates for a single following vehicle, displayed as a time 

series (produced using prior information method).  
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Figure 18: Estimated distributions for car-following parameters for the I-80 dataset. (A) 

Histogram describing the estimated time lag distribution. (B) Histogram describing the 

estimated critical spacing distribution. (C) Histogram describing the estimated backward 

wave speed distribution. 
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CHAPTER 5 

 

DISCUSSION ON LIMITATIONS AND CHALLENGES 

 

5.1 Limitations in DTW Input Data 

Applying the DTW algorithm when working with vehicle trajectories requires 

some considerations for selecting input data, including the type of data, its time 

resolution, and the size of the datasets. The time-series input data for the DTW algorithm 

is two time-series datasets – one for the lead vehicle, and one for the following vehicle. 

Since the goal is to determine the driver’s car-following parameters, the input data should 

come from the variable which forms the basis for the car-following model – velocity or 

acceleration. However, the algorithm is often applied with a distance measure used as the 

cost of aligning the datasets, where the distance is related to the difference in the two 

variables. This means that using velocity as the input will match the leader’s velocity to 

the follower’s velocity as it changes with time. If acceleration is chosen as the input, the 

match is performed based on the response to the change in velocity. From a purely data 

analysis standpoint, if the time series data are smoothed to the point of being composed 

of nearly constant velocities, matching based on velocity will result in a large number of 

singularities, making the results very unrealistic. 

Data resolution is another issue of concern when working with DTW for vehicle 

trajectory matching. High resolution (0.1 seconds) vehicle trajectory data is widely 
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available, but significantly increases the computational resources required by the DTW 

algorithm, especially for large datasets. It may be desirable to reduce the datasets to only 

the most important data points for each time series. However, more dispersed data points 

may result in unrealistic or undesirable matches, and data reduction further reduces the 

number of points available for analysis. A multiresolution approach may be necessary, 

where the matches are made between the reduced data points, followed by a second run 

through the algorithm for matching the trajectories between the reduced data points. 

In many cases, the datasets may have different sizes, especially after any kind of 

data reduction algorithm is applied to the raw input data. The DTW algorithm can 

analyze datasets with different sizes, but this increases the number of singularities in the 

output data. While singularities may be undesirable in some cases, they may also be 

useful for different analyses, which will be discussed in the following section. 

 

5.2 Singularities 

Several variations of the DTW algorithm exist, each with their own unique 

features and components. Examples include Derivative DTW (Keogh and Pazzani, 2001), 

Fast DTW (Salvador and Chan, 2004), Multiscale DTW (Zinke and Mayer, 2006), and 

DTW with Piecewise Aggregate Approximation or PDTW (14), among many others. 

Similarly, many modifications have been made to this algorithm to reduce the incidence 

of “singularities” – a case where a large section of one time series is matched with a 

single point in the other time series, sometimes in undesirable or unexpected 

combinations. For vehicle trajectory analysis, a singularity exists when the follower’s 

reaction is mapped to multiple actions by the leader, or multiple actions by the follower 
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are mapped to a single action by the leader. This also tends to occur in regions with 

constant velocity, and when a car-following parameter changes compared to that 

estimated in a previous time period. Viewed as part of a warp path in a matrix, as in Fig. 

19 (D), singularities occur when the path moves vertically or horizontally, rather than 

diagonally. Horizontal and vertical steps in the warp path indicate changes in the reaction 

time τ (horizontal = increases, vertical = decreases, diagonal = same). 

From a theoretical standpoint, singularities offer an interesting new perspective 

for analysis while simultaneously complicating that analysis. The match results for 

singularities imply a more complicated following behavior than the underlying model, 

where one stimulus could result in multiple responses, and vice versa. Additionally, 

singularities could also be used to classify drivers, where multiple responses to a single 

stimulus could indicate more aggressive behavior. However, the degree to which 

singularities truly represent the leader-follower relationship, as opposed to artifacts of the 

algorithm, needs further study and analysis. Singularities have been considered 

undesirable in most studies using DTW, and a singularity must exist when datasets are 

not of equal size so that all points are matched. Additionally, a singularity may present 

multiple solutions at one point for the time-dependent model parameters, which raises the 

issue of which value to use for calibration. 

As a result of these issues, we cannot conclude that a singularity accurately 

reflects the leader-follower response. At the same time, we can only assume that a more 

complicated driver behavior is not present. We can implement some algorithm 

enhancements to reduce the presence of singularities, but care must also be taken to 

ensure that the methods used to reduce singularities also do not produce undesirable 
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singularities which may also affect solution quality. For example, Fig. 20 highlights a 

singularity which helps the algorithm transition from an impossibly-high w (nearly 

vertical slope) to more reasonable results. 

 

5.3 Additional Enhancements for Singularity Reduction 

Methods used to reduce the occurrence of singularities include, but are not limited 

to, windowing, slope weighting, and using different step patterns. Windowing is a 

process which limits the available number of matches to a single point based on a 

selected window width, which limits the size of a singularity. For vehicle trajectories, this 

method simply limits the calculated τ value for any given match to a range of reasonable 

values. This can also be used in conjunction with calculated d and w values for those 

match points to force the algorithm to always provide theoretically-acceptable matches. 

Slope weighting adds coefficients to the cumulative cost terms in Eq. 6. Its 

implementation is a modified form of Eq. 6, which is shown in Eq. 11. The weight 

coefficients tend to encourage a more diagonal warp path through the cumulative cost 

matrix. 

 

  (   )    (   )     ( (       )    (     )    (     )) (11) 

 

As the coefficients increase, the warp path should become more diagonal in 

nature. A more diagonal warp path limits the presence of singularities, but may also have 

implications for the resulting model parameters from that warp path. Since the algorithm 

must produce matches near the beginning and end of the dataset, it may require some 
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“warm-up time” before it produces reasonable results. This transition usually requires 

singularities so that the reaction time changes from zero to a reasonable solution. Thus, 

an attempt to limit the formation of singularities may extend that “warm-up time.” 

Additionally, if the driver’s behavior changes such that the model parameters are 

different at that location in the trajectory, a singularity should be expected, but large slope 

weights may disguise that change. 

Different step patterns can also be implemented in the cumulative cost 

calculation. This requires changing Eq. 6 so that the algorithm works with cells in the 

cumulative cost matrix that are more than one step away in each direction. An example of 

this approach is given in Eq. 12 below. 

 

  (   )    (   )     ( (       )  (       )  (       ))  (12) 

 

Again, this method increases the likelihood for a more diagonal warp path by 

forcing the path to move diagonally in addition to when it moves vertically or 

horizontally. 
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Figure 19: Illustrative example of singularities as DTW results. (A) shows the vehicle 

trajectory data, (B) shows the velocity data representative of the trajectory data in (A), 

(C) shows the cost matrix calculated using the velocity data in (B), and (D) shows the 

warp path, with singularites represented by consecutive shaded cells in a column or row. 
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Figure 20: Example output for DTW vehicle trajectory match with 

highlighted singularity. 
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE STUDY 

 

This paper describes a method for using the Dynamic Time Warping algorithm to 

calibrate an extension of Newell’s car-following model incorporating time-dependent 

car-following parameters. The unique capabilities of the DTW algorithm may provide an 

efficient method for observing driver heterogeneity in car-following behavior, as well as 

the driver’s heterogeneous situation-dependent behavior within a trip. Although the 

algorithm was made to analyze time-series data, several modification techniques are 

described to address specific challenges in this application and the algorithm solution 

quality for analyzing vehicle trajectories. A brief numerical experiment is presented with 

vehicle trajectory data extracted from the Next Generation Simulation (NGSIM) project, 

demonstrating the algorithm’s ability to process large vehicle trajectory datasets, but 

significant data reduction and more algorithm modification may be necessary to produce 

more reasonable results. Additionally, singularities present an interesting match solution 

set to potentially help identify changing driver behavior, but they must be avoided to 

reduce analysis complexity and solution uncertainty. Future research could focus on 

algorithm enhancements with different traffic data sources (e.g., an extended version of 

Newell’s three detector model by Deng et al., 2013), parameter validation methods, 

comparisons with alternative calibration methods, evaluating potential applications with 
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other car-following models, and large-scale vehicle trajectory analysis to potentially 

explore situation-dependent driver behavior.  
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