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ABSTRACT

We study three problems in this dissertation. In the first problem, we derive

bounds on the volume occupied by an inclusion in a body through the use of a

single measurement of the complex voltage and current flux around the boundary

of the body. We assume that the conductivities of the inclusion and the body are

complex. In the second problem, we derive a formula that gives the exact volume

fraction occupied by a linearly elastic inclusion in a linearly elastic body when both the

inclusion and the body have the same shear modulus. The formula for the volume of

the inclusion is based on an appropriate measurement of the displacement and traction

around the boundary of the body, tailored to force the body to behave as if it were

embedded in an infinite medium. In the third problem, we prove that the power

dissipated in a nonsymmetric slab superlens blows up in the limit as the dissipation

parameters in the lens and the surrounding medium go to zero when certain charge

density distributions are placed within a critical distance of the slab. The critical

distance that leads to this blow-up of the power dissipation depends nontrivially

on the relative amount of dissipation in the slab and surrounding medium. This

behavior of the power dissipation, in combination with the fact that the potential

remains bounded far away from the slab as the dissipation parameters go to zero,

leads to cloaking by anomalous localized resonance.
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CHAPTER 1

INTRODUCTION

In this work we consider three problems. We provide a brief introduction to the

problems here; we give a more thorough introduction to each problem in its respective

chapter.

In the first problem, discussed in Chapter 2, we consider a body Ω that contains

an inclusion D; the body and inclusion are each characterized by a different complex

conductivity. We apply an electrical current flux around the boundary of the body

Ω and measure the resulting voltage around the boundary of Ω. (We may also apply

a voltage around the body of Ω and measure the resulting current flux.) Such

measurements are typical in the imaging modality known as electrical impedance

tomography. Using this measurement of the voltage and current flux we derive bounds

on the volume fraction occupied by the inclusion D.

In the second problem, we assume that the body Ω and inclusion D are linearly

elastic materials with the same shear modulus but different Lamé moduli. Using a

measurement of the displacement and traction around the boundary of Ω, we derive

an exact formula for the volume fraction occupied by the inclusion D. In order to do

this, the applied boundary conditions have to be tailored so that the body Ω behaves

as if it were embedded in an infinite medium. We establish the required boundary

conditions and obtain the exact volume fraction formula in Chapter 3.

In Chapter 4, we consider an unrelated problem. In particular, we study the effects

of placing a charge density distribution ρ in the vicinity of a slab in 2-D. This slab,

known as a “poor man’s superlens,” contains a material with a dielectric constant

equal to −1 + iδ, where δ is a small positive number that characterizes how the slab

dissipates energy in the presence of slowly oscillating electric fields. The dielectric

constants in the media to the left and to the right of the slab are 1 + i(δ + λδβ) and

1, respectively, where β > 0 and λ are parameters we are free to choose. The charge
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density distribution ρ is placed in the medium to the right of the slab. We show that

if ρ satisfies a certain explicit condition and is within a critical distance of the slab,

then the power dissipated in the slab tends to infinity as δ goes to zero. However,

the electric potential remains bounded far away from the slab in this limit; this leads

to cloaking by anomalous localized resonance — see, e.g., the work by Milton and

Nicorovici [91]. If ρ is further than the critical distance from the slab, then the power

dissipation does not blow up as δ goes to zero. Perhaps one of our most interesting

results is that the critical distance depends nontrivially on the parameter β.



CHAPTER 2

BOUNDS ON THE VOLUME OF AN

INCLUSION IN A BODY FROM A

COMPLEX CONDUCTIVITY

MEASUREMENT

In this chapter we use a single measurement of the electrical potential and current

flux around the boundary of a body to derive bounds on the volume fraction of an

inclusion in the body.

2.1 Introduction

Electrical impedance tomography (EIT) is a noninvasive imaging technique in

which one utilizes measurements of the voltage and current at the boundary of a body

Ω to determine information about the electrical properties (such as the conductivity

distribution) inside Ω. In particular, one typically places electrodes on the boundary

of Ω (denoted ∂Ω) and applies a current flux (or voltage) to ∂Ω and measures

the corresponding voltage (or current flux) around ∂Ω — the idea is illustrated in

Figure 2.1. One or several linearly independent current flux (or voltage) patterns

may be applied to ∂Ω in practice. The measurements of the voltage and current

flux around ∂Ω can then be used to reconstruct the conductivity distribution (or at

least discover some information about it) inside Ω. Summaries of the theory and

practice of electrical impedance tomography can be found in the article by Cheney,

Isaacson, and Newell [27] and the book by Mueller and Siltanen [97]. The problem

of determining the conductivity distribution inside a body Ω given knowledge of the

voltage and current flux on ∂Ω is known as the Calderón Problem in honor of the

mathematician Alberto Calderón who studied it in his famous 1980 paper [24].

The Calderón Problem is an example of an inverse problem (as opposed to a

forward problem). In this case, the corresponding forward problem can be loosely
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Ω

current flux voltage

D

Figure 2.1. This heuristic picture illustrates the idea behind electrical impedance
tomography. In practice one typically applies a current flux around ∂Ω and measures
the corresponding voltage around ∂Ω. The goal is to use this measurement in
combination with the fact that the inclusion D (red) and the surrounding material
Ω \D (blue) have different electrical properties to determine information about D.

stated as: given the conductivity distribution inside a bounded, open set Ω and

appropriate boundary conditions on ∂Ω (e.g., specification of the voltage or current

flux around ∂Ω), determine the voltage inside Ω. The inverse problem (Calderón

Problem) is: given knowledge of prescribed and measured boundary data (such as the

voltage and current flux around ∂Ω), determine the conductivity distribution inside

Ω. Unfortunately the inverse problem is severely ill-posed; for instance, solutions

may not be unique (this leads to cloaking — see the work by Greenleaf, Lassas, and

Uhlmann [44] and the work of Kohn, Shen, Vogelius, and Weinstein [73]). As discussed

by Mueller and Siltanen [97, Chapter 12], solutions may also be very sensitive to

measurement errors. These issues have received a lot of attention in the mathematical

literature — see the review article by Borcea [19] for a collection of several results

regarding feasibility and uniqueness of the reconstruction of the conductivity inside

Ω.

For example, Kohn and Vogelius [74] proved that boundary measurements of

the voltage and current flux uniquely determine the (isotropic) conductivity and

all of its normal derivatives on ∂Ω (assuming ∂Ω is smooth), and that this implies

that the conductivity inside Ω can be uniquely reconstructed if it is a real-analytic

function. Kohn and Vogelius [75] also extended their results to piecewise real-analytic

conductivities.
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Sylvester and Uhlmann [116] proved uniqueness results in the interior for smooth,

isotropic conductivities (that are not necessarily real-analytic anywhere) in Rd for

d ≥ 3. They were also able to prove uniqueness in 2-D if the conductivity was

close enough to a constant [115]. In addition, Sylvester and Uhlmann [117] rederived

the results of Kohn and Vogelius regarding uniqueness of the conductivity and its

normal derivatives on ∂Ω using microlocal analysis. Sylvester and Uhlmann [117]

also provided stability estimates — these estimates relate the error in measurements

to the error in the reconstruction of the conductivity on ∂Ω.

Nachman [100] extended the uniqueness results in the interior of Ω to domains

with less regular boundaries and (isotropic) conductivities in dimension d ≥ 3; he also

provided a reconstruction algorithm. The question of whether or not conductivities

could be uniquely reconstructed from boundary measurements in 2-D was answered

in the affirmative by Nachman [101] for Lipschitz Domains Ω with isotropic con-

ductivities that did not have to be too smooth. Brown and Uhlmann [22] extended

this uniqueness result to even less smooth conductivities. Astala and Päivärinta

[12] proved that the conductivity can be reconstructed uniquely from voltage and

current flux measurements on ∂Ω assuming only that Ω ⊂ R2 was bounded and

simply connected and that the conductivity was bounded away from zero and infinity

— in particular they assumed no smoothness of the boundary or the conductivity.

Finally, Haberman and Tataru [47] proved uniqueness results in dimension d ≥ 3

for continuously differentiable conductivities and Lipschitz conductivities close to the

identity.

All of the above results were derived under the assumption that the conductivity

inside Ω was isotropic and real which corresponds to the static case of zero frequency

(direct currents) — this is discussed in more detail below. In the complex conductivity

case (alternating currents), uniqueness of the reconstruction in 2-D was proved by

Francini [35].

Electrical impedance tomography has applications in the nondestructive testing

of materials, geophysical prospection, and medical imaging — see the review articles

by Cheney et al. [27] and Borcea [19] as well as the book by Mueller and Siltanen [97]

(and references therein). In the context of medical imaging, EIT can be used for breast
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cancer detection as discussed by Cheney et al. [27]; according to Griffiths [46] and

Beretta, Francini, and Vessella [14], EIT can also be used in the screening of organs

for degradation prior to transplantation surgery. In these applications the complex

conductivities of the healthy and cancerous/degraded tissues differ, so information

about the conductivity distribution would allow one to estimate the location and/or

size of the cancerous/degraded tissue. See the work by Hamilton and Mueller [49] for

additional medical applications.

Our goal in this chapter is to find bounds on the volume fraction occupied by an

inclusion D inside a body Ω. In the context of organ screening, for example, D could

represent the degraded tissue and Ω\D could represent the healthy tissue; as pointed

out by Griffiths [46] and Beretta et al. [14], it would be useful to estimate the volume

of degraded tissue (the volume of D) before the organ is transplanted.

We assume that the complex conductivity inside Ω is of the form

σ = σ(1)χ(D) + σ(2)χ(Ω \D),

where σ(α) = σ
(α)
1 + iσ

(α)
2 for α = 1, 2 and χ(D) is the indicator function of D. We

require σ
(α)
1 > 0 for α = 1, 2, which, as shown by Borcea [19], corresponds to energy

dissipation. More generally, we follow Kang, Kim, and Milton [64] and consider a

two-phase material with conductivity

σ(x) = σ(1)χ(1)(x) + σ(2)χ(2)(x)

where σ(1) and σ(2) are as before and χ(1) is the characteristic function of phase 1,

namely

χ(1)(x) = 1− χ(2)(x) =





1 if x ∈ phase 1,

0 if x ∈ phase 2.

We also assume that each phase is homogeneous and isotropic, so σ(1) and σ(2) are

constant complex scalars (as discussed by Beretta et al. [14], this is a reasonable

assumption in the contexts of breast cancer detection and organ screening).

Electrical impedance tomography operates in the quasistatic regime, where the

wavelengths of all relevant electric and magnetic fields are much larger than Ω. In EIT,
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one typically prescribes either the voltage or current on ∂Ω. Under these conditions,

and assuming Ω is simply connected, the voltage V satisfies

∇ · (σ∇V ) = 0 in Ω, (2.1)

subject to either the Dirichlet Boundary Condition

V = V0 on ∂Ω (2.2)

or the Neumann Boundary Condition




σ
∂V

∂n
= I0 on ∂Ω,

∫

∂Ω
I0 =

∫

∂Ω
V = 0,

(2.3)

where n is the outward unit normal to ∂Ω and ∂V
∂n

= ∇V · n — see the review article

by Borcea [19].

The partial differential equation (PDE) (2.1) can be equivalently written in the

form

E = −∇V, ∇ · J = 0, and J = σE, (2.4)

where E is the electric field and J is the current density — see the review article by

Borcea [19].

Heuristically, these equations can be derived from the Maxwell Equations as

follows (see the work by Francini [35]). The relevant Maxwell Equations are

∇× E = −∂(µ′H)

∂t
and ∇×H = σ′E +

∂(ε′E)

∂t
, (2.5)

where E is the electric field, H is the magnetic field, µ′ is the (real-valued) magnetic

permeability, J′ = σ′E is the current field (by Ohm’s Law), σ′ is the (real-valued)

conductivity, and ε′ is the (real-valued) electric permittivity. We assume that ε′ and

µ′ are independent of time. We also assume that the electric and magnetic fields are

time-harmonic, i.e., that E(x, t) = “E(x, ω)e−iωt and H(x, t) = Ĥ(x, ω)e−iωt. Inserting

these into (2.5) gives

∇× “E(x, ω) = iωµ′(x, ω)Ĥ(x, ω), (2.6a)

∇× Ĥ(x, ω) = σ′(x, ω)“E(x, ω)− iωε′(x, ω)“E(x, ω) = σ(x, ω)“E(x, ω), (2.6b)

where σ(x, ω) ≡ σ′(x, ω)− iωε′(x, ω) is the complex conductivity of the medium. In

the literature, σ is often referred to as the admittivity and represented by γ. (The
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electric and magnetic fields are sometimes assumed to have an eiωt time-dependence

instead of an e−iωt time-dependence, which gives σ(x, ω) = σ′(x, ω) + iωε′(x, ω).) If

ω = 0, we refer to σ(x, 0) = σ′(x, 0) as the real conductivity.

Hamilton [48] noted that µ′ is quite small in many applications and thus performed

a Taylor expansion of “E(x, ω) and Ĥ(x, ω) around µ′ = 0 to derive (2.1). Previously,

Cheney et al. [27] performed a scaling analysis to show that (2.1) gives a reasonable

approximation to the operation of electrical impedance tomography machines (at

low enough frequencies). The expression “low enough frequencies” deserves some

comment here. In practice, quasistatics is a good approximation as long as the

wavelengths and attenuation lengths of the electric and magnetic fields are large

compared with the body in question (where the wavelength used is the wavelength

of the field in the body, not the free space wavelength). For example, Cheney et al.

[27] stated that one system they utilized operated at 28.8 kilohertz when used with

bodies smaller than 1 meter and real conductivities smaller than 1 (Ohm-meter)−1.

(In particular, Cheney et al. [27] required that the quantity ωµ′σ′[x] is negligible,

where [x] is a typical length in the body.) As was also mentioned in that paper, other

systems work with higher real conductivities σ′ but they operate at lower frequencies.

At any rate, the above works justify the disregard of the right-hand side of (2.6a)

at low frequencies. Then ∇ × “E(x, ω) = 0 in Ω, so “E(x, ω) = −∇“V (x, ω) for a

potential “V as long as Ω is simply connected. Since the divergence of a curl is always

zero, if we take the divergence of (2.6b) we obtain

∇ · (σ(x, ω)“E(x, ω)) = 0. (2.7)

We obtain (2.1) by inserting “E = −∇“V into (2.7); we obtain (2.4) by defining

Ĵ(x, ω) = σ(x, ω)“E(x, ω). In both cases we remove the hats for notational conve-

nience. For a derivation of the boundary conditions (2.2)–(2.3) see the works by

Cheney et al. [27], Hamilton [48], and Mueller and Siltanen [97].

Our data are the measurements
(
V0, σ

∂V
∂n

∣∣∣
∂Ω

)
(where σ ∂V

∂n

∣∣∣
∂Ω

is the current flux

through ∂Ω) when the Dirichlet boundary condition (2.2) is prescribed or (I0, V |∂Ω)

when the Neumann Boundary Condition (2.3) is prescribed. (The measurements

σ ∂V
∂n

∣∣∣
∂Ω

and V |∂Ω are known as the Dirichlet-to-Neumann and Neumann-to-Dirichlet

Maps, respectively — see the review article by Borcea [19] and the references therein
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for a more complete description and properties of these maps.) Note that we are

assuming that we know the voltage and current around the entire boundary ∂Ω

[19, 50]. Our goal is to use a single measurement of the voltage and current on

∂Ω to derive lower and upper bounds on the volume fraction of phase 1, namely

f (1) = 〈χ(1)〉, where

〈u〉 =
1

|Ω|
∫

Ω
u dx (2.8)

denotes the average of a vector-valued (or scalar) function u over Ω and |Ω| denotes

the Lebesgue measure of Ω. We emphasize that we only apply one current flux

(or voltage) and measure the corresponding voltage (or current flux) around ∂Ω. It

turns out that this single measurement gives us enough information to derive bounds

on f (1). If more experiments are performed, that is, if several linearly independent

current fluxes (or voltages) are prescribed around ∂Ω and the corresponding voltages

(or current fluxes) are measured around ∂Ω, then tighter bounds can be derived. For

example, after our work was submitted, Kang, Kim, Lee, Li, and Milton [65] used

two measurements to derive bounds on f (1) that are tighter than ours. If one assumes

complete knowledge of the Neumann-to-Dirichlet or Dirichlet-to-Neumann Map, then

more information about the conductivity distribution inside Ω can be obtained [19].

Several methods for deriving these bounds on f (1) have been explored in the liter-

ature. In the real conductivity case (ω = 0), Kang, Seo, and Sheen [68], Alessandrini

and Rosset [112], Ikehata [62], and Alessandrini, Rosset, and Seo [6] utilized a single

boundary measurement of the voltage and current flux around ∂Ω and methods from

elliptic PDE to bound the volume of an inclusion D in Ω. Alessandrini et al. [6, 112]

made the technical assumption that

d(D, ∂Ω) ≥ d0 > 0 (2.9)

where d(D, ∂Ω) is the distance between D and ∂Ω. The bounds they derived involve

constants that are not easy to determine. Beretta et al. [14] used similar methods to

derive bounds in the complex conductivity case — however they were able to remove

the assumption (2.9) with certain restrictions on σ(1) and σ(2), which, as pointed

out in their paper, is important in the application to organ screening as some of

the degraded tissue may be present on the surface of the organ. Their bounds also
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involve constants that in general may be difficult to determine, although they can

be evaluated in some cases when special boundary conditions are imposed (see in

particular Proposition 3.3 in their paper).

Capdeboscq and Vogelius [26] utilized multiple boundary measurements of the

voltage and current flux around ∂Ω and the Lipton Bounds on polarization tensors

[79] in the real conductivity case to find optimal asymptotic estimates on the volume

of inclusions as the volume of the inclusions tends to 0. (To obtain multiple mea-

surements in practice, multiple experiments are performed in which several different

voltages or current fluxes are applied to the boundary and the corresponding current

fluxes and voltages are measured.)

If the body Ω contains a statistically homogeneous or periodic composite, then

bounds on the effective tensors of this composite can be used in an inverse fashion

to bound the volume fraction — see the work of McPhedran, McKenzie, and Milton

[85], Phan-Thien and Milton [111], McPhedran and Milton [86], and Cherkaeva and

Golden [29]. Similarly, Milton [89] showed that the universal bounds of Nemat-

Nasser and Hori [102] on the response of a body Ω containing two phases in any

configuration can be easily inverted to bound the volume fraction. Moreover, Milton

[89] used measurements of the voltage and current flux on ∂Ω with special boundary

conditions to determine properties of the effective tensor of a composite containing

rescaled copies of Ω packed to fill all space. Bounds on this effective tensor led to

universal bounds on the response of the body when the special boundary conditions

were applied; these bounds were then inverted to bound the volume fraction. We

note that all of the bounds described in this paragraph can be computed in terms

of known data (e.g., measurements of effective moduli or boundary measurements of

the voltage and current flux).

In the real conductivity case, variational methods have also been used to bound the

volume fraction. Berryman and Kohn [16] were the first to use variational methods in

the context of EIT to determine information about the conductivity in a body. Kang

et al. [64] used the translation method introduced by Murat and Tartar [98, 118, 119]

and independently by Lurie and Cherkaev [80, 81] (see also the book by Milton [88]) to

derive sharp bounds on the volume fraction using two boundary measurements of the
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voltage and current flux in two dimensions. The bounds are easily computed in terms

of these measurements. Kang et al. [64] also found geometries in which one of the

bounds gives the true volume fraction. Kang and Milton [66] applied the translation

method in three dimensions to find bounds on the volume fraction; these bounds

can be computed using three boundary measurements. Kang, Milton, and Wang [67]

also used the translation method to bound the size of an inclusion in the context

of the shallow shell equations. We also mention that, in the complex conductivity

case, several variational formulations of the PDE (2.1) were derived by Cherkaev and

Gibiansky [28].

Rather than using variational principles, we use the fact that certain variations are

nonnegative — see (2.23) and the paragraphs following it, for example. Matheron [84]

used this idea to re-derive the famous Hashin–Shtrikman Bounds [55] on the effective

conductivity of an isotropic composite — also see the book by Milton [88, Section

16.5]. We also apply the “splitting method,” introduced by Milton and Nguyen [90] in

the context of elasticity, in which one derives bounds by splitting Ω into its constituent

phases and correlating information about the facts that variations in each phase are

nonnegative and averages of certain quantities (null Lagrangians) are known. Using

this technique, in Theorems 2.1 and 2.3 we establish some elementary bounds that

can be computed from the single voltage and current flux measurement on ∂Ω.

In Theorems 2.2 and 2.4 we derive a method for numerically computing “better”

bounds — we say “better” because these bounds may or may not be tighter than

the above mentioned elementary bounds; see Sections 2.5 and 2.7. The method can

be described as follows. Let f ∈ Ae ⊆ (0, 1), where Ae is an interval determined by

the elementary bounds. We call f a test value. The splitting method implies that f

could potentially be the volume fraction of phase 1 if and only if certain 2×2 matrices

S
(1)
f (x, y) and S

(2)
f (x, y) (one for each phase) are simultaneously positive-semidefinite

at some point (x, y) ∈ R2. This, in turn, is equivalent to requiring that two elliptic

disks in the xy-plane have a nonempty intersection. (By elliptic disk we mean an

ellipse in the plane union its interior.) In other words, if the elliptic disks do intersect,

f could be the true volume fraction; if the elliptic disks do not intersect, f cannot

be the true volume fraction. This allows us to eliminate those values of f ∈ Ae for
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which the elliptic disks do not intersect, leaving us with a set A ⊆ Ae of admissible

values. Any f ∈ A could be the true volume fraction of phase 1, so bounds on

A give us bounds on f (1). Unfortunately these “better” bounds must be computed

numerically, but we emphasize that their computation is elementary and involves

finding the interval (or intervals) of values where a certain function is positive and

only requires a single measurement of the voltage and current flux on ∂Ω.

We find the bounds are exceedingly tight for a particular 2-D geometry consisting

of an annulus and surrounding material (the relative error between the true volume

fraction and the upper and lower bounds on the volume fraction is approximately

0.0013%). At this stage we have not explored the question as to whether the bounds

are tight for more general geometries nor the question as to how good the bounds are

for three-dimensional geometries.

Finally, since we use the fact that variations are nonnegative rather than PDE

methods or variational principles, we can easily determine attainability conditions

for the bounds, i.e., conditions on the electric field that guarantee that the lower or

upper elementary bound is exactly equal to the true volume fraction. Our method

also enables us to remove the assumption that the distance between the inclusion and

the boundary of the body is nonzero (2.9); in fact, as long as the PDE (2.1) subject

to the boundary conditions (2.2) or (2.3) has a unique (weak) solution, our method

can be applied.

It is worth mentioning the connection between the splitting method and the

translation method. The translation method uses the classical variational principles

in conjunction with constraints on the fields imposed by the null Lagrangians (or

more generally quasiconvex functions): each constraint is taken into account with a

Lagrange Multiplier. The classical variational principles can themselves be derived

from the positivity of variations and using integration by parts, or equivalently by

using the fact that certain quantities are null Lagrangians — see, for example, the

book by Milton [88, Section 13.1]. The idea of the splitting method is to directly

derive the bounds by using the positivity of the variations and the null Lagrangians.

Since they use the same ingredients the bounds we derive here could presumably be

derived using the translation method, but the application of this method when we
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take into account all the null Lagrangians simultaneously is less transparent since we

would need to introduce a Lagrange Multiplier for each of the many constraints. By

contrast the splitting method is ideally suited to problems where there are a lot of

null Lagrangians but relatively few relevant variations of which to keep track. Thus

it is well suited to the complex conductivity problem where one measurement is used

but less suited to the complex conductivity problem where two or more measurements

are used. Recently Kang et al. [65] successfully applied the translation method to the

two-measurement problem, but not while taking all null Lagrangians simultaneously

into account.

The remainder of this chapter is organized as follows. In Section 2.2 we introduce

our notation and assumptions. In Section 2.3 we apply the splitting method to several

null Lagrangians, which are functionals of the electric field and current density that

can be expressed in terms of the boundary voltage and current data. In Section 2.4

we derive the elementary bounds. We derive a geometrical method for computing

“better” bounds in Section 2.5. Our work in Sections 2.2–2.5 applies in two or three

dimensions. In Sections 2.6 and 2.7 we use two additional null Lagrangians to derive

even better bounds in the 2-D case, and in Section 2.8 we apply our method to a test

problem.

2.2 Preliminaries

As discussed in Section 2.1, we consider a two-phase mixture and also the case

of an inclusion in a body. The region of interest (the unit cell of periodicity in the

former case and the union of the inclusion and the body in the latter case) is denoted

by Ω. We assume that the conductivity in each phase is homogeneous and isotropic;

then for x ∈ Ω we have

σ(x) = σ(1)χ(1)(x) + σ(2)χ(2)(x),

where σ(α) = σ
(α)
1 + iσ

(α)
2 for α = 1, 2 are complex constants that we assume are

known, σ
(α)
1 > 0 (as required physically), 0 < |σ(α)| < ∞, and σ(1) 6= σ(2). We will

see later that, for technical reasons, we must also assume

β ≡ σ
(1)
1 σ

(2)
2 − σ(1)

2 σ
(2)
1 6= 0,
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so Arg σ(1) 6= Arg σ(2) (this condition ensures that a certain linear system has a unique

solution This implies that our results do not directly extend to the case when both

phases have real conductivities.

The average value of an integrable vector field (or scalar function) u is defined in

(2.8). The volume fraction of phase α is denoted by f (α), so

f (1) = 〈χ(1)〉 and f (2) = 1− f (1) = 〈χ(2)〉.

The electric potential, electric field, and current density are denoted by V = V1 + iV2,

E = E1 + iE2, and J = J1 + iJ2, respectively (so for m = 1, 2, Vm, Em, and Jm are

real). Recall that if Ω is simply connected, then V satisfies (2.1) subject to either

(2.2) or (2.3),

E = −∇V, and J = σE. (2.10)

We emphasize that we assume Ω is simply connected throughout the remainder of

this chapter.

As discussed by Borcea [19], the problem (2.1) with the Dirichlet Boundary Con-

dition (2.2) has a unique solution V ∈ H1(Ω) if V0 ∈ H1/2(∂Ω); similarly, the problem

(2.1) with the Neumann Boundary Condition (2.3) has a unique solution V ∈ H1(Ω)

if I0 ∈ H−1/2(∂Ω). (For more on the Sobolev space H1(Ω), see Section C.3.4 in

Appendix C; for more on the fractional Sobolev Spaces H1/2(∂Ω) and H−1/2(∂Ω), see

the book by Adams [1].) Thus we assume that V ∈ H1(Ω) throughout this chapter.

Next, note that (2.1) implies that V is harmonic in each phase. Since V ∈ H1(Ω),

V ∈ L2(Ω) by definition (see Section C.3.4 in Appendix C). The Cauchy–Schwarz

Inequality then implies that V ∈ L1(Ω), since

‖V ‖L1(Ω) =
∫

Ω
|V | ≤ ‖V ‖L2(Ω)‖1‖Ω = |Ω|‖V ‖L2(Ω) <∞;

thus V is locally integrable in each phase. Then the Weyl Theorem (see Theorem 18.G

in the book by Zeidler [125]) implies that V is infinitely continuously differentiable in

each phase.

Let u = u1 + iu2 be a complex-valued vector field in C2 or C3. Then we set

u(α)(x) ≡ χ(α)(x)u(x) and u(α)
m (x) ≡ χ(α)(x)um(x) for α,m = 1, 2. The symbol “·”

denotes the usual Euclidean dot product on R2 or R3, while the Euclidean norm of
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a real-valued vector field q(x) ∈ R2 or R3 is denoted by ‖q(x)‖ =
»

q(x) · q(x). For

any complex number z = z1 + iz2 the modulus of z is denoted by |z| =
»
z2

1 + z2
2 .

2.3 The Splitting Method

We assume that we have full knowledge of a single applied boundary voltage V0

and corresponding current flux σ ∂V
∂n
|∂Ω on ∂Ω (in the case of the Dirichlet Problem

— in the case of the Neumann Problem, we assume that we have complete knowledge

of the single applied current I0 and corresponding voltage V |∂Ω on ∂Ω. In order to

derive bounds on the volume fraction f (1) (and, hence, on f (2) = 1− f (1)) using these

data, we make use of certain null Lagrangians, which are functionals that can be

expressed in terms of boundary data.

2.3.1 Null Lagrangians

Recall that J = σE from (2.10). Then

J = J1 + iJ2 = (σ1 + iσ2)(E1 + iE2) = (σ1E1 − σ2E2) + i(σ2E1 + σ1E2);

in particular we have

J1 = σ1E1 − σ2E2 and J2 = σ2E1 + σ1E2. (2.11)

Lemma 2.1 For k, l = 1, 2 we have

〈Ek〉 = − 1

|Ω|
∫

∂Ω
Vkn dS; (2.12a)

〈Jl〉 =
1

|Ω|
∫

∂Ω
x (Jl · n) dS; (2.12b)

〈Ek · Jl〉 = − 1

|Ω|
∫

∂Ω
Vk (Jl · n) dS; (2.12c)

n is the outward unit normal to ∂Ω and, in the 2-D case, all boundary integrals are

taken in the positive (counterclockwise) direction. In two dimensions we have the

additional null Lagrangians

〈E1 ·R⊥E2〉 =
1

|Ω|
∫

∂Ω
V1
∂V2

∂t
dS (2.13a)

and 〈J1 ·R⊥J2〉 = − 1

|Ω|
∫

∂Ω

ñ
(J1 · n)

∫ x

x0

(J2 · n) dS

ô
dS, (2.13b)
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where R⊥ is the 2× 2 matrix for a 90 ◦ clockwise rotation, namely

R⊥ =

ñ
0 1
−1 0

ô
, (2.14)

t = −R⊥n = RT
⊥n is the unit tangent vector to ∂Ω, ∂V2

∂t
= ∇V2 · t, x0 ∈ ∂Ω is

arbitrary, x ∈ ∂Ω, and both of the integrals over ∂Ω in (2.13) are taken in the positive

(counterclockwise) direction.

Proof of Lemma 2.1: All three of the formulas in (2.12) are proven using integration

by parts. In particular we use the scalar integration by parts formula

∫

Ω
(∇u)w dx = −

∫

Ω
u(∇w) dx +

∫

∂Ω
uwn dS, (2.15)

and its vector generalizations

∫

Ω
(∇u) ·w dx = −

∫

Ω
u(∇ ·w) dx +

∫

∂Ω
u(w · n) dS (2.16)

and ∫

Ω
(∇u) ·w dx = −

∫

Ω
u(∇ ·w) dx +

∫

∂Ω
u(w · n) dS (2.17)

(see the book by Evans [32]).

To see (2.12a), recall the definition of the average value of a field from (2.8) and

that Ek = −∇Vk by (2.10). Then for k = 1, 2 we have

〈Ek〉 =
1

|Ω|
∫

Ω
Ek dx = − 1

|Ω|
∫

Ω
(∇Vk)1 dx.

Next we use (2.15) with u = Vk and w = 1 to see that the above equation is equivalent

to

〈Ek〉 = − 1

|Ω|
ï
−
∫

Ω
Vk∇(1) dx +

∫

∂Ω
Vkn dS

ò
= − 1

|Ω|
∫

∂Ω
Vkn dS.

To prove (2.12b), we first note that ∇x = I, where I is the d × d identity tensor

and d = 2 or d = 3 is the dimension. We use (2.17) with u = x and w = Jl to find

〈Jl〉 =
1

|Ω|
∫

Ω
Jl dx =

1

|Ω|
∫

Ω
(∇x) · Jl dx =

1

|Ω|
ï
−
∫

Ω
x(∇ · Jl) dx +

∫

∂Ω
x(Jl · n) dS

ò
.

(2.18)

Since 0 = ∇ · J = ∇ · J1 + i∇ · J2 in Ω by (2.4), we have ∇ · Jl = 0 in Ω for l = 1, 2.

Hence the first integral on the right-hand side of (2.18) vanishes and (2.18) becomes

〈Jl〉 =
1

|Ω|
∫

∂Ω
x(Jl · n) dS.
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Next we prove (2.12c). For k, l = 1, 2 we have

〈Ek · Jl〉 ≡
1

|Ω|
∫

Ω
Ek · Jl dx = − 1

|Ω|
∫

Ω
(∇Vk) · Jl dx.

We use (2.16) with u = Vk and w = Jl to find that the above equation is equivalent

to

〈Ek · Jl〉 = − 1

|Ω|
ï
−
∫

Ω
Vk(∇ · Jl) dx +

∫

∂Ω
Vk(Jl · n) dS

ò
= − 1

|Ω|
∫

∂Ω
Vk(Jl · n) dS

since ∇ · Jl = 0 in Ω.

Similarly, (2.13a) can be proved using (2.16). In particular we have

〈E1 ·R⊥E2〉 =
1

|Ω|
∫

Ω
E1 ·R⊥E2 dx = − 1

|Ω|
∫

Ω
(∇V1) ·R⊥E2 dx.

If we take u = V1 and w = R⊥E2 in (2.16) we see that the above equation is equivalent

to

〈E1 ·R⊥E2〉 = − 1

|Ω|
ï
−
∫

Ω
V1(∇ ·R⊥E2) dx +

∫

∂Ω
V1(R⊥E2 · n) dS

ò
. (2.19)

For p = 1, 2 we let E2,p denote the pth component of E2. Then

∇ ·R⊥E2 = ∇ ·
ñ

0 1
−1 0

ô ñ
E2,1

E2,2

ô
= ∇ ·

ñ
E2,2

−E2,1

ô
=
∂E2,2

∂x1

− ∂E2,1

∂x2

= ∇× E2. (2.20)

By (2.4), 0 = ∇ × E = ∇ × E1 + i(∇ × E2) in Ω, so ∇ × E1 = ∇ × E2 = 0 in Ω.

Combining (2.19) and (2.20) gives

〈E1 ·R⊥E2〉 = − 1

|Ω|
ï
−
∫

Ω
V1(∇× E2) dx +

∫

∂Ω
V1(R⊥E2 · n) dS

ò
= − 1

|Ω|
∫

∂Ω
V1(R⊥E2 · n) dS (2.21)

Note that

R⊥E2 · n = E2 ·RT
⊥n = −∇V2 · (−R⊥n) = ∇V2 · t =

∂V2

∂t
,

so (2.21) becomes

〈E1 ·R⊥E2〉 = − 1

|Ω|
∫

∂Ω
V1
∂V2

∂t
dS.

The following proof of (2.13b) is due to Kang et al. [64]. We begin by noting that

RT
⊥R⊥ =

ñ
0 −1
1 0

ô ñ
0 1
−1 0

ô
=

ñ
1 0
0 1

ô
,
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so R−1
⊥ = RT

⊥. Next, denoting the pth component of J2 by J2,p (for p = 1, 2) we have

∇× (R⊥J2) = ∇×
ñ

0 1
−1 0

ô ñ
J2,1

J2,2

ô
= ∇×

ñ
J2,2

−J2,1

ô
= −∂J2,1

∂x1

− ∂J2,2

∂x2

= −∇ · J2 = 0.

As long as Ω is simply connected and because ∇× (R⊥J2) = 0, there is a potential

φ such that R⊥J2 = ∇φ. Thus

〈J1 ·R⊥J2〉 ≡
1

|Ω|
∫

Ω
J1 ·R⊥J2 dx =

1

|Ω|
∫

Ω
J1 · ∇φ dx.

Inserting this into (2.16) with u = φ and w = J1 gives

〈J1·R⊥J2〉 =
1

|Ω|
ï
−
∫

Ω
φ(∇ · J1) dx +

∫

∂Ω
φ(J1 · n) dS

ò
=

1

|Ω|
∫

∂Ω
φ(J1·n) dS, (2.22)

because ∇ · J1 = 0 in Ω. In order to derive an expression for φ we note that

∇φ · t = ∇φ · (−R⊥n) = −RT
⊥∇φ · n = −R−1

⊥ ∇φ · n = −J2 · n.

Then for any fixed x0 ∈ ∂Ω and any x ∈ ∂Ω we have

φ(x) =
∫ x

x0

∇φ · t dS =
∫ x

x0

−(J2 · n) dS,

where the integral is taken from x0 to x in the positive (counterclockwise) direction

around ∂Ω. Inserting the above expression for φ into (2.22) gives

〈J1 ·R⊥J2〉 = − 1

|Ω|
∫

∂Ω

ñ
(J1 · n)

∫ x

x0

(J2 · n) dS

ô
dS,

as required. This completes the proof.

We emphasize here that the (real) values Vk|∂Ω and (Jl · n)|∂Ω = −σ ∂Vl
∂n

∣∣∣
∂Ω

are

known from our measurement. We note that if the material under consideration is a

periodic composite, it is well known that (2.12) and (2.13) become

〈Ek·Jl〉 = 〈Ek〉·〈Jl〉, 〈E1·R⊥E2〉 = 〈E1〉·R⊥〈E2〉, and 〈J1·R⊥J2〉 = 〈J1〉·R⊥〈J2〉.

2.3.2 Main Idea

For x ∈ Ω, c(α) ∈ R2, and α = 1, 2 we define

g(α)(x; c(α)) ≡
2∑

m=1

c(α)
m

[
E(α)
m (x)− χ(α)(x)

f (α)
〈E(α)

m 〉
]
, (2.23)

where E(α)
m (x) = χ(α)(x)Em(x).
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The meaning of the field g(α) can be understood in the following way. We let Ω(α)

denote the set occupied by phase α and |Ω(α)| denote the Lebesgue measure of Ω(α).

Then 1/|Ω| = f (α)/|Ω(α)| and

〈E(α)
m 〉 =

1

|Ω|
∫

Ω
χ(α)(x)Em(x) dx =

f (α)

|Ω(α)|
∫

Ω(α)
Em(x) dx = f (α)〈Em〉Ω(α) , (2.24)

where 〈Em〉Ω(α) denotes the average of the field Em over phase α. This implies we

can write g(α) as

g(α)(x; c(α)) =
2∑

m=1

c(α)
m

î
χ(α)(x)Em(x)− χ(α)(x)〈Em〉Ω(α)

ó
.

Thus, up to the constants c(α)
m , the field g(α) describes how the real and imaginary

parts of the electric field E vary from their average values over phase α. Also for any

field e(x), and in particular for

e(x) =
2∑

m=1

c(α)
m Em(x),

the minimum of 〈[χ(α)e − χ(α)w] · [χ(α)e − χ(α)w]〉 over constant vectors w occurs

when w = 〈e〉Ω(α) .

Note that 〈g(α)〉 = 0 for all c(α) ∈ R2 because

〈g(α)〉 =

〈
2∑

m=1

c(α)
m

[
E(α)
m (x)− χ(α)(x)

f (α)
〈E(α)

m 〉
]〉

=
2∑

m=1

〈
c(α)
m

[
E(α)
m (x)− χ(α)(x)

f (α)
〈E(α)

m 〉
]〉

=
2∑

m=1

c(α)
m

[
〈E(α)

m 〉 −
〈χ(α)〉
f (α)

〈E(α)
m 〉

]

=
2∑

m=1

c(α)
m

[
〈E(α)

m 〉 −
f (α)

f (α)
〈E(α)

m 〉
]

=
2∑

m=1

c(α)
m

î
〈E(α)

m 〉 − 〈E(α)
m 〉

ó
= 0.
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It must also be the case that 〈g(α) · g(α)〉 = 〈‖g(α)‖2〉 ≥ 0 for all c(α) ∈ R2. In

particular

〈g(α) · g(α)〉 =

〈{
2∑

m=1

c(α)
m

[
E(α)
m −

χ(α)

f (α)
〈E(α)

m 〉
]}
·
{

2∑

n=1

c(α)
n

[
E(α)
n −

χ(α)

f (α)
〈E(α)

n 〉
]}〉

=

∞
2∑

m,n=1

c(α)
m c(α)

n

{
E(α)
m · E(α)

n −
χ(α)

f (α)
E(α)
m · 〈E(α)

n 〉

−χ
(α)

f (α)
〈E(α)

m 〉 · E(α)
n +

[χ(α)]2

[f (α)]2
〈E(α)

m 〉 · 〈E(α)
n 〉

}〉

=
2∑

m,n=1

c(α)
m c(α)

n

®
〈E(α)

m · E(α)
n 〉 −

1

f (α)
〈χ(α)E(α)

m 〉 · 〈E(α)
n 〉

− 1

f (α)
〈E(α)

m 〉 · 〈χ(α)E(α)
n 〉+

〈[χ(α)]2〉
[f (α)]2

〈E(α)
m 〉 · 〈E(α)

n 〉
}
.

Since χ(α)E(α)
m = E(α)

m for m = 1, 2, [χ(α)]2 = χ(α), and 〈χ(α)〉 = f (α), the above

expression is equivalent to

〈g(α) · g(α)〉 =
2∑

m,n=1

c(α)
m c(α)

n

®
〈E(α)

m · E(α)
n 〉 −

1

f (α)
〈E(α)

m 〉 · 〈E(α)
n 〉

− 1

f (α)
〈E(α)

m 〉 · 〈E(α)
n 〉+

〈χ(α)〉
[f (α)]2

〈E(α)
m 〉 · 〈E(α)

n 〉
}

=
2∑

m,n=1

c(α)
m c(α)

n

®
〈E(α)

m · E(α)
n 〉 −

2

f (α)
〈E(α)

m 〉 · 〈E(α)
n 〉 (2.25)

+
f (α)

[f (α)]2
〈E(α)

m 〉 · 〈E(α)
n 〉

}

=
2∑

m,n=1

c(α)
m c(α)

n

®
〈E(α)

m · E(α)
n 〉 −

1

f (α)
〈E(α)

m 〉 · 〈E(α)
n 〉

´
= c(α) · S(α)c(α), (2.26)

where

S(α) =




A
(α)
11 −

〈E(α)
1 〉 · 〈E(α)

1 〉
f (α)

A
(α)
12 −

〈E(α)
1 〉 · 〈E(α)

2 〉
f (α)

A
(α)
21 −

〈E(α)
2 〉 · 〈E(α)

1 〉
f (α)

A
(α)
22 −

〈E(α)
2 〉 · 〈E(α)

2 〉
f (α)




(2.27)
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and

A(α)
mn = 〈E(α)

m · E(α)
n 〉 (2.28)

for α, m, n = 1, 2. Since 〈g(α) · g(α)〉 ≥ 0 for all c(α) ∈ R2, (2.26) implies that

c(α) · S(α)c(α) ≥ 0 for all c(α) ∈ R2. (2.29)

Because A(α)
mn = E(α)

m · E(α)
n = E(α)

n · E(α)
m = A(α)

nm and 〈E(α)
m 〉 · 〈E(α)

n 〉 = 〈E(α)
n 〉 · 〈E(α)

m 〉
for m, n, α = 1, 2, (2.27) and (2.28) imply that S(α) is symmetric for α = 1, 2; S(α)

must also be positive-semidefinite by (2.29).

Remark 2.1 In (2.23), we could have defined g(α)(x) in terms of the current field

J rather than the electric field E without changing anything. To see this, note that

(2.11) implies

2∑

m=1

c(α)
m

[
J(α)
m (x)− χ(α)(x)

f (α)
〈J(α)

m 〉
]

= c
(α)
1

[
J

(α)
1 (x)− χ(α)(x)

f (α)
〈J(α)

1 〉
]

+ c
(α)
2

[
J

(α)
2 (x)− χ(α)(x)

f (α)
〈J(α)

2 〉
]

= c
(α)
1

[
σ

(α)
1 E

(α)
1 (x)− σ(α)

2 E
(α)
2 (x)− χ(α)(x)

f (α)
〈σ(α)

1 E
(α)
1 − σ(α)

2 E
(α)
2 〉

]

+ c
(α)
2

[
σ

(α)
2 E

(α)
1 (x) + σ

(α)
1 E

(α)
2 (x)− χ(α)(x)

f (α)
〈σ(α)

2 E
(α)
1 + σ

(α)
1 E

(α)
2 〉

]

=
[
c

(α)
1 σ

(α)
1 + c

(α)
2 σ

(α)
2

] [
E

(α)
1 (x)− χ(α)(x)

f (α)
〈E(α)

1 〉
]

+
[
−c(α)

1 σ
(α)
2 + c

(α)
2 σ

(α)
1

] [
E

(α)
2 (x)− χ(α)(x)

f (α)
〈E(α)

2 〉
]

= c̃
(α)
1

[
E

(α)
1 (x)− χ(α)(x)

f (α)
〈E(α)

1 〉
]

+ c̃
(α)
2

[
E

(α)
2 (x)− χ(α)(x)

f (α)
〈E(α)

2 〉
]

=
2∑

m=1

c̃(α)
m

[
E(α)
m (x)− χ(α)(x)

f (α)
〈E(α)

m 〉
]
,

where

c̃
(α)
1 ≡ c

(α)
1 σ

(α)
1 + c

(α)
2 σ

(α)
2 and c̃

(α)
2 ≡ −c(α)

1 σ
(α)
2 + c

(α)
2 σ

(α)
1 .
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Since the constants c(α)
m are arbitrary, we can use either the current field J or the

electric field E in the definition of g(α).

We note that the quantities 〈E(α)
m 〉 are known; this can be seen as follows. Since

the average of a function is computed using integration, we can “split” the average

value of a field u over Ω into two parts:

〈u〉 = 〈χ(1)u〉+ 〈χ(2)u〉. (2.30)

Note that the averages in (2.30) are taken over Ω; in particular 〈χ(α)u〉 is not the

average of u over phase 1, although it is equal to f (α) times the average of u over

phase α.

We apply this “splitting method” to E and J and recall that the conductivity is

homogeneous in each phase to obtain the system

〈E〉 = 〈E(1)〉+ 〈E(2)〉 and 〈J〉 = σ(1)〈E(1)〉+ σ(2)〈E(2)〉,

which is easily solved for 〈E(1)〉 and 〈E(2)〉:

〈E(1)〉 =
σ(2)〈E〉 − 〈J〉
σ(2) − σ(1)

and 〈E(2)〉 =
−σ(1)〈E〉+ 〈J〉
σ(2) − σ(1)

. (2.31)

Since 〈E〉 and 〈J〉 are null Lagrangians, they are known by Lemma 2.1. Therefore,

the real and imaginary parts of 〈E(1)〉 and 〈E(2)〉 can be determined from (2.31)

by equating the real and imaginary parts of the left- and right-hand sides of each

equation.

Similarly, we may apply the splitting method to the null Lagrangians 〈Ek ·Jl〉; for

k, l = 1, 2 this gives

〈Ek · Jl〉 = 〈χ(1)Ek · Jl〉+ 〈χ(2)Ek · Jl〉. (2.32)

Using (2.11) and the fact that σ(α) is constant, the equations in (2.32) can be shown

to be equivalent to the linear system




σ
(1)
1 σ

(2)
1 −σ(1)

2 −σ(2)
2 0 0

σ
(1)
2 σ

(2)
2 σ

(1)
1 σ

(2)
1 0 0

0 0 σ
(1)
1 σ

(2)
1 −σ(1)

2 −σ(2)
2

0 0 σ
(1)
2 σ

(2)
2 σ

(1)
1 σ

(2)
1







A
(1)
11

A
(2)
11

A
(1)
21

A
(2)
21

A
(1)
22

A
(2)
22




=




〈E1 · J1〉
〈E1 · J2〉
〈E2 · J1〉
〈E2 · J2〉



. (2.33)
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Recall that the right-hand side of this system is known from our measurement (see

(2.12c)). Since this is an underdetermined system with infinitely many solutions, we

set x ≡ A
(1)
11 and y ≡ A

(2)
11 and solve the system (2.33) in terms of the “free variables”

x and y. In particular, we solve the system




−σ(1)
2 −σ(2)

2 0 0

σ
(1)
1 σ

(2)
1 0 0

σ
(1)
1 σ

(2)
1 −σ(1)

2 −σ(2)
2

σ
(1)
2 σ

(2)
2 σ

(1)
1 σ

(2)
1







A
(1)
21

A
(2)
21

A
(1)
22

A
(2)
22




=




〈E1 · J1〉 − σ(1)
1 x− σ(2)

1 y

〈E1 · J2〉 − σ(1)
2 x− σ(2)

2 y

〈E2 · J1〉
〈E2 · J2〉



. (2.34)

The system (2.34) has a unique solution if and only if the determinant of the matrix

on the left-hand side is nonzero, i.e., if and only if β ≡ σ
(1)
1 σ

(2)
2 − σ(1)

2 σ
(2)
1 6= 0, so for

the remainder of this paper we assume that β 6= 0.

Remark 2.2 We chose x = A
(1)
11 and y = A

(2)
11 arbitrarily. We could have taken

x = A(α)
mn for α, m, n either 1 or 2 and y = A(α)

mn such that y 6= x. In any of these

cases, we would still have arrived at an underdetermined system like that in (2.33);

this would have reduced to a system with a unique solution if and only if β 6= 0 similar

to that in (2.34). Thus the condition that β 6= 0 is independent of how x and y are

defined.

Remark 2.3 The requirement that β 6= 0 implies that the results of this chapter

cannot be applied if σ(1) and σ(2) are both real (more precisely, the results of this

chapter cannot be applied if σ(1) and σ(2) lie on the same line in the complex plane).

Using Maple, we solve (2.34) in terms of x and y, insert the results into the

matrices S(1) and S(2) (see (2.27)), and replace f (1) by a test value f . Denoting the

resulting matrices by S
(1)
f and S

(2)
f we find

S
(1)
f (x, y) ≡




x− ‖〈E
(1)
1 〉‖2

f
S

(1)
21 (x, y, f)

S
(1)
21 (x, y, f) −x+ η(1) − ‖〈E

(1)
2 〉‖2

f




and S
(2)
f (x, y) ≡




y − ‖〈E
(2)
1 〉‖2

1− f S
(2)
21 (x, y, f)

S
(2)
21 (x, y, f) −y + η(2) − ‖〈E

(2)
2 〉‖2

1− f




(2.35)
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for f ∈ (0, 1), where





S
(1)
21 (x, y, f) = −γx− ψ(1)y + ξ(1) − 〈E

(1)
1 〉 · 〈E(1)

2 〉
f

;

S
(2)
21 (x, y, f) = ψ(2)x+ γy − ξ(2) − 〈E

(2)
1 〉 · 〈E(2)

2 〉
1− f ;

β = σ
(1)
1 σ

(2)
2 − σ(1)

2 σ
(2)
1 ; γ =

σ
(1)
1 σ

(2)
1 + σ

(1)
2 σ

(2)
2

β
;

ψ(1) =
|σ(2)|2
β

; ψ(2) =
|σ(1)|2
β

;

ξ(1) =
σ

(2)
2 〈E1 · J2〉+ σ

(2)
1 〈E1 · J1〉

β
; ξ(2) =

σ
(1)
2 〈E1 · J2〉+ σ

(1)
1 〈E1 · J1〉

β
;

η(1) =
σ

(2)
1 (〈E2 · J1〉 − 〈E1 · J2〉) + σ

(2)
2 (〈E1 · J1〉+ 〈E2 · J2〉)

β
;

η(2) =
σ

(1)
1 (〈E1 · J2〉 − 〈E2 · J1〉)− σ(1)

2 (〈E1 · J1〉+ 〈E2 · J2〉)
β

.

(2.36)

Note that β, γ, ψ(1), ψ(2), ξ(1), ξ(2), η(1), and η(2) are known since they only depend

on null Lagrangians and the (constant) conductivities of each phase.

We can use the relationship J = σE to rewrite η(α) as

η(α) = 〈χ(α)
Ä
‖E1‖2 + ‖E2‖2

ä
〉 = 〈‖E(α)

1 ‖2〉+ 〈‖E(α)
2 ‖2〉. (2.37)

To see this, note that (2.11) and the fact that the conductivity in each phase is

constant imply

〈E2 · J1〉 − 〈E1 · J2〉 = 〈E2 · (σ1E1 − σ2E2)〉 − 〈E1 · (σ2E1 + σ1E2)〉

= 〈σ1E2 · E1〉 − 〈σ2E2 · E2〉 − 〈σ2E1 · E1〉 − 〈σ1E1 · E2〉

= −〈σ2‖E2‖2〉 − 〈σ2‖E1‖2〉

= −σ(1)
2 〈‖E(1)

2 ‖2〉 − σ(2)
2 〈‖E(2)

2 ‖2〉 − σ(1)
2 〈‖E(1)

1 ‖2〉 − σ(2)
2 〈‖E(2)

1 ‖2〉
(2.38)

and, similarly,

〈E1·J1〉+〈E2·J2〉 = σ
(1)
1 〈‖E(1)

1 ‖2〉+σ(2)
1 〈‖E(2)

1 ‖2〉+σ(1)
1 〈‖E(1)

2 ‖2〉+σ(2)
1 〈‖E(2)

2 ‖2〉. (2.39)

Inserting (2.38) and (2.39) into (2.36) we find

η(1) =
σ

(2)
1 (〈E2 · J1〉 − 〈E1 · J2〉) + σ

(2)
2 (〈E1 · J1〉+ 〈E2 · J2〉)

β
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=
1

σ
(1)
1 σ

(2)
2 − σ(1)

2 σ
(2)
1

·

{
−σ(2)

1

[
σ

(1)
2 〈‖E(1)

2 ‖2〉+ σ
(2)
2 〈‖E(2)

2 ‖2〉+ σ
(1)
2 〈‖E(1)

1 ‖2〉+ σ
(2)
2 〈‖E(2)

1 ‖2〉
]

+σ
(2)
2

[
σ

(1)
1 〈‖E(1)

1 ‖2〉+ σ
(2)
1 〈‖E(2)

1 ‖2〉+ σ
(1)
1 〈‖E(1)

2 ‖2〉+ σ
(2)
1 〈‖E(2)

2 ‖2〉
]}

=
1

σ
(1)
1 σ

(2)
2 − σ(1)

2 σ
(2)
1

·

{
−σ(2)

1

[
σ

(1)
2 〈‖E(1)

2 ‖2〉+ σ
(1)
2 〈‖E(1)

1 ‖2〉
]

+σ
(2)
2

[
σ

(1)
1 〈‖E(1)

1 ‖2〉+ σ
(1)
1 〈‖E(1)

2 ‖2〉
]}

=

[
σ

(1)
1 σ

(2)
2 − σ(1)

2 σ
(2)
1

] [
〈‖E(1)

1 ‖2〉+ 〈‖E(1)
2 ‖2〉

]

σ
(1)
1 σ

(2)
2 − σ(1)

2 σ
(2)
1

= 〈‖E(1)
1 ‖2〉+ 〈‖E(1)

2 ‖2〉.

Similarly, from (2.36), (2.38), and (2.39) we have

η(2) = 〈‖E(2)
1 ‖2〉+ 〈‖E(2)

2 ‖2〉.

Note from (2.37) that η(α) ≥ 0 with equality if and only if E(α) = E
(α)
1 + iE

(α)
2 ≡ 0

(up to a set of measure 0); that is, η(α) = 0 if and only if the electric field is 0 in

phase α. In two dimensions with D having smooth boundary the condition that the

field is zero in one phase implies that it is zero everywhere; thus η(α) = 0 only for

trivial boundary conditions. In three dimensions the situation is less clear [5], but

in practice the field will almost always be zero in one of the phases only for trivial

boundary conditions. Therefore we assume throughout the rest of this paper that

η(1) 6= 0 and η(2) 6= 0.

Definition 2.1 For f ∈ (0, 1) we set

F (α)
f ≡ {(x, y) ∈ R2 : S

(α)
f (x, y) is positive-semidefinite}.

Then the set Ff ≡ F (1)
f ∩ F (2)

f is called the feasible region associated with f . In

addition, the set A ≡ {f ∈ (0, 1) : Ff 6= ∅} is called the set of admissible test values.
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Because there must be at least one (x, y) ∈ R2 at which S
(1)

f (1)
(x, y) and S

(2)

f (1)
(x, y)

are both positive-semidefinite (see (2.29)), given f ∈ (0, 1) we check to see whether or

not there are regions in the xy-plane for which S
(1)
f (x, y) and S

(2)
f (x, y) are simulta-

neously positive-semidefinite — that is, whether or not Ff 6= ∅. If the feasible region

Ff is nonempty, then f is an admissible test value, so f ∈ A; that is, f may be the

true volume fraction of phase 1. If Ff = ∅ we can conclude that f is not the true

volume fraction of phase 1. This will leave us with an interval (or set of intervals) of

admissible test values, which we have defined as A.

Our goal is to find the setA. IfA is connected, the desired lower and upper bounds

on f (1) will be infA and supA, respectively. If A is not connected, the structure of

the bounds will be more complicated — see Figure 2.2. In Figure 2.2(b), the set of

admissible test values is A = A∗ ∪ A∗∗. In the examples we have encountered A has

always been connected.

0 1

[ ]
A

Lower Bound Upper Bound

(a) A connected

0 1

[ ]
A∗

Lower
Bound 1

Upper
Bound 1

[ ]
A∗∗

Lower
Bound 2

Upper
Bound 2

(b) A disconnected

Figure 2.2. In the example above, we know that either infA∗ ≤ f (1) ≤ supA∗ or
infA∗∗ ≤ f (1) ≤ supA∗∗. (a) When A (the darkened interval) is connected, we have
infA ≤ f (1) ≤ supA. (b) When A = A∗ ∪A∗∗ is disconnected, there will be multiple
bounds on f (1).
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2.4 Elementary Bounds

Recall that a symmetric 2× 2 matrix

L =

ñ
a b
b c

ô
is positive-semidefinite if and only if a ≥ 0, c ≥ 0, and ac − b2 = detL ≥ 0. In this

section we use the above requirements on the diagonal components of the matrices

S
(1)
f (x, y) and S

(2)
f (x, y) to derive elementary bounds on f (1).

By Definition 2.1 and the above statement, f ∈ A only if there is at least one

point (x, y) ∈ R2 such that S
(α)
f,mm(x, y) ≥ 0 for α, m = 1, 2. That is, the following

inequalities must hold for all admissible volume fractions f (see (2.35)):

‖〈E(1)
1 〉‖2

f
≤ x ≤ η(1) − ‖〈E

(1)
2 〉‖2

f
(2.40a)

‖〈E(2)
1 〉‖2

1− f ≤ y ≤ η(2) − ‖〈E
(2)
2 〉‖2

1− f . (2.40b)

Definition 2.2 For f ∈ (0, 1), the set

Ff,e ≡
¶
(x, y) ∈ R2 : both (2.40a) and (2.40b) hold

©
is called the elementary feasible region associated with f . The set

Ae ≡ {f ∈ (0, 1) : Ff,e 6= ∅}

is called the elementary set of admissible test values.

Geometrically, for each admissible f ∈ (0, 1), the set Ff,e will be the closed

rectangle in R2 defined by the inequalities in (2.40a) and (2.40b). For a given

f ∈ (0, 1), the set Ff,e will be nonempty if and only if both of the following inequalities

hold:

‖〈E(1)
1 〉‖2

f
≤ η(1) − ‖〈E

(1)
2 〉‖2

f
(2.41a)

‖〈E(2)
1 〉‖2

1− f ≤ η(2) − ‖〈E
(2)
2 〉‖2

1− f . (2.41b)

As stated earlier we assume that η(α) 6= 0 (⇔ E(α) 6≡ 0) for α = 1, 2. Then the

inequalities in (2.41a) and (2.41b) may be rewritten as

f ≥ fe,l ≡
‖〈E(1)

1 〉‖2 + ‖〈E(1)
2 〉‖2

η(1)
(2.42a)
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f ≤ fe,u ≡ 1− ‖〈E
(2)
1 〉‖2 + ‖〈E(2)

2 〉‖2

η(2)
, (2.42b)

so Ae = [fe,l, fe,u]. We obtain elementary bounds on f (1) by combining (2.42a) and

(2.42b) and noting that f (1) must be in Ae:

fe,l ≤ f (1) ≤ fe,u. (2.43)

We emphasize that fe,l and fe,u can be computed from the boundary measurements

— see (2.31) and (2.36).

To avoid minor technical difficulties, we henceforth assume fe,l 6= 0 (i.e., that

‖〈E(1)
1 〉‖2 + ‖〈E(1)

2 〉‖2 6= 0) and fe,u 6= 1 (i.e., that ‖〈E(2)
1 〉‖2 + ‖〈E(2)

2 〉‖2 6= 0) — see

(2.42). Note that 0 ≤ fe,l and fe,u ≤ 1. Also note that∞∥∥∥∥∥E(α)
m −

χ(α)

f (α)

¨
E(α)
m

∂∥∥∥∥∥2
∫
≥ 0 ⇔ ‖〈E(α)

m 〉‖2 ≤ f (α)〈‖E(α)
m ‖2〉. (2.44)

To see this we expand the left-hand side:∞∥∥∥∥∥E(α)
m −

χ(α)

f (α)

¨
E(α)
m

∂∥∥∥∥∥2
∫

=

〈[
E(α)
m −

χ(α)

f (α)

¨
E(α)
m

∂]
·
[
E(α)
m −

χ(α)

f (α)

¨
E(α)
m

∂]〉
= 〈E(α)

m · E(α)
m 〉 −

2

f (α)
〈χ(α)E(α)

m 〉 · 〈E(α)
m 〉+

1

f (α)
〈[χ(α)]2〉〈E(α)

m 〉 · 〈E(α)
m 〉

= 〈‖E(α)
m ‖2〉 − 1

f (α)
‖〈E(α)

m 〉‖2,

from which (2.44) follows. In particular (2.37), (2.42), and (2.44) imply that fe,l ≤ fe,u

since

fe,l − fe,u =
‖〈E(1)

1 〉‖2 + ‖〈E(1)
2 〉‖2

η(1)
+
‖〈E(2)

1 〉‖2 + ‖〈E(2)
2 〉‖2

η(2)
− 1

≤
f (1)

[
〈‖E(1)

1 ‖2〉+ 〈‖E(1)
2 ‖2〉

]

〈‖E(1)
1 ‖2〉+ 〈‖E(1)

2 ‖2〉
+
f (2)

[
〈‖E(2)

1 ‖2〉+ 〈‖E(2)
2 ‖2〉

]

〈‖E(2)
1 ‖2〉+ 〈‖E(2)

2 ‖2〉
− 1

= f (1) + f (2) − 1

= 0.
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We also note that (2.44) leads to a simpler proof of the elementary bounds. In

particular, (2.44) implies that

‖〈E(α)
1 〉‖2 + ‖〈E(α)

2 〉‖2 ≤ f (α)
[
〈‖E(α)

1 ‖2〉+ 〈‖E(α)
2 ‖2〉

]
= f (α)η(α).

The first and second inequalities in (2.43) follow from this by taking α = 1 and α = 2,

respectively (recall f (2) = 1− f (1)).

Now (2.44) holds as an equality if and only if

E(α)
m (x) = χ(α)(x)

〈E(α)
m 〉

f (α)
;

that is, (2.44) holds as an equality if and only if Em is a constant (almost everywhere)

in phase α. From this we see that fe,l = f (1) if and only if E(1) = χ(1)E is a constant

(which must be nonzero since we are assuming η(1) 6= 0 ⇔ E(1) 6≡ 0) and fe,u = f (1)

if and only if E(2) = χ(2)E is a (nonzero) constant. This implies that the bounds in

(2.43) are sharp in the sense that the lower bound (upper bound) is satisfied as an

equality for geometries in which the electric field is constant in phase 1 (phase 2).

For example, if phase 1 is a disk of radius r centered at the origin and phase 2 is

a concentric disk of radius R > r, then E(1) will be a constant for the affine Dirichlet

Boundary Condition V0 = u·x, where u 6= 0 ∈ C2. In this case fe,l = f (1). If we relabel

the phases then E(2) will be a constant, so fe,u = f (1). A simple laminate of materials

with conductivities σ(1) and σ(2) has the property that the electric field is constant

in both phases, so fe,l = fe,u = f (1) in that case. In 2-D there are many examples of

inclusions inside which the electric field is constant for certain boundary conditions.

Kang et al. [64] provided elegant constructions of these so-called EΩ inclusions;

although their argument was applied in the real conductivity case, it extends to

the complex conductivity case as well. So for appropriate boundary conditions the

field inside an EΩ inclusion will be uniform even when the conductivities are complex.

We have thus proven the following theorem, which states that Ae = [fe,l, fe,u].

Theorem 2.1 Assume that β 6= 0 (where β is defined in (2.36)), η(α) 6= 0 (⇔ E(α) 6≡
0) for α = 1, 2, fe,l 6= 0, and fe,u 6= 1 (where fe,l and fe,u are defined in (2.42)).

Then fe,l ≤ f (1) ≤ fe,u. Moreover, fe,l = f (1) if and only if E(1) is a nonzero constant

and fe,u = f (1) if and only if E(2) is a nonzero constant.



30

We illustrate these ideas by considering an example, shown in Figure 2.3. We con-

sider an annular ring with conductivity σ(2) and a discontinuous “inclusion phase” D

consisting of the core and surrounding material outside the annulus with conductivity

σ(1). Figure 2.3(a) is a sketch of the region Ω. In Figure 2.3(b) we plot the bounds

from (2.40a) and (2.40b) versus f . In particular, the lower bound in (2.40a) is plotted

as a red dashed line while the upper bound is plotted as a red solid line. The red

shaded region indicates the values of f for which the bounds in (2.40a) hold, i.e.,

the values of f for which there is at least one value of x such that (2.40a) holds.

Similarly, the lower bound in (2.40b) is plotted as a blue dash-dotted line while the

upper bound is plotted as a blue dotted line. The blue shaded region indicates the

values of f for which there is at least one value of y such that the bounds in (2.40b)

hold. The left and right black vertical lines indicate the elementary lower and upper

bounds fe,l and fe,u, respectively; the dashed magenta line indicates the true volume

fraction f (1). The elementary set of admissible test values, Ae, is indicated by the

darkened interval between fe,l and fe,u.

2.5 More Sophisticated Bounds

Throughout this section, we assume that η(1) and η(2) are both nonzero and that

fe,l 6= 0 and fe,u 6= 1. We derive a method to determine bounds by using the additional

requirement that S
(α)
f (x, y) is positive-semidefinite only if detS

(α)
f (x, y) ≥ 0. Using

(2.35) we find, for α = 1, 2, that

p
(α)
f (x, y) ≡ detS

(α)
f (x, y) = a

(α)
1 x2 + 2a

(α)
2 xy + a

(α)
3 y2 + 2a

(α)
4 x+ 2a

(α)
5 y + a

(α)
6 (2.45)

where





a
(1)
1 = −(1 + γ2); a

(1)
2 = −γψ(1); a

(1)
3 = −[ψ(1)]2;

a
(1)
4 =

1

2



η

(1) − ‖〈E
(1)
2 〉‖2

f
+
‖〈E(1)

1 〉‖2

f
+ 2γ


ξ(1) − 〈E

(1)
1 〉 · 〈E(1)

2 〉
f





 ;

a
(1)
5 = ψ(1)


ξ(1) − 〈E

(1)
1 〉 · 〈E(1)

2 〉
f


 ;

a
(1)
6 = −




‖〈E(1)

1 〉‖2

f


η(1) − ‖〈E

(1)
2 〉‖2

f


+


ξ(1) − 〈E

(1)
1 〉 · 〈E(1)

2 〉
f




2




(2.46)
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σ(1)

σ(2)

σ(1)

R1

R2

R3

B
ou

n
d
s

f

0.75 0.85fe,l fe,uf (1)

(a) (b)

Figure 2.3. In this figure, we sketch the region under consideration and provide an
illustration of the elementary bounds. (a) A sketch of the region under consideration
— our discontinuous “inclusion phase” D (with conductivity σ(1) and volume fraction
f (1)) is the core plus the surrounding material outside the annulus. (b) Construction
of the elementary bounds. The parameters that were used to create these plots are:
radii R1 = 2; R2 = 3; R3 = 5; conductivities σ(1) = 3 + 8i; σ(2) = 8 + 6i; the Dirichlet

Boundary Condition was V0 = u · x, where u =
Ä
−2 + i, 3

5
− 7

5
i
äT

. The elementary
lower and upper bounds are fe,l ≈ 0.794 and fe,u ≈ 0.808, respectively. The true
volume fraction is f (1) = 0.8.
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and




a
(2)
1 = −[ψ(2)]2; a

(2)
2 = −γψ(2); a

(2)
3 = −

Ä
1 + γ2

ä
;

a
(2)
4 = ψ(2)


ξ(2) +

〈E(2)
1 〉 · 〈E(2)

2 〉
1− f


 ;

a
(2)
5 =

1

2



η

(2) − ‖〈E
(2)
2 〉‖2

1− f +
‖〈E(2)

1 〉‖2

1− f + 2γ


ξ(2) +

〈E(2)
1 〉 · 〈E(2)

2 〉
1− f





 ;

a
(2)
6 = −




‖〈E(2)

1 〉‖2

1− f


η(2) − ‖〈E

(2)
2 〉‖2

1− f


+


ξ(2) +

〈E(2)
1 〉 · 〈E(2)

2 〉
1− f




2



.

(2.47)

Definition 2.3 For α = 1, 2 and for f ∈ Ae (= [fe,l, fe,u]) we define

E (α)
f ≡ {(x, y) ∈ R2 : p

(α)
f (x, y) ≥ 0} and Ef ≡ E (1)

f ∩ E (2)
f .

We now prove several lemmas in order to establish some useful properties of the

sets E (α)
f .

Lemma 2.2 Assume that β 6= 0, η(α) 6= 0 for α = 1, 2, fe,l 6= 0, and fe,u 6= 1. Then

the following properties hold.

(1) For f ∈ (fe,l, fe,u) and α = 1, 2, E (α)
f is a closed elliptic disk; its boundary is the

ellipse ∂E (α)
f = {(x, y) ∈ R2 : p

(α)
f (x, y) = 0};

(2) E (1)
fe,l

is a point and E (2)
fe,l

is a closed elliptic disk;

(3) E (1)
fe,u

is a closed elliptic disk and E (2)
fe,u

is a point.

Proof of Lemma 2.2: The discriminant of p
(α)
f is

a
(α)
1 a

(α)
3 − [a

(α)
2 ]2 = [ψ(α)]2 > 0

for all f ∈ Ae by (2.36). Thus the graph of p
(α)
f is an elliptic paraboloid for all f ∈ Ae.

The Hessian matrix of p
(α)
f is

H
(α)
f ≡


2a

(α)
1 2a

(α)
2

2a
(α)
2 2a

(α)
3


 .

By (2.36), (2.46), and (2.47), a
(α)
1 < 0 and

detH
(α)
f = 4

î
ψ(α)

ó2
> 0,
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so H
(α)
f is negative-definite for all f ∈ Ae; thus p

(α)
f is concave for all f ∈ Ae. By

Definition 2.3, therefore, E (α)
f is the intersection of the plane z = 0 with the graph of

p
(α)
f .

For f ∈ Ae we define

p
(α)
f,max ≡ max

(x,y)∈R2
p

(α)
f (x, y).

Then E (α)
f will be a closed elliptic disk with boundary

∂E (α)
f = {(x, y) ∈ R2 : p

(α)
f (x, y) = 0}

if and only if p
(α)
f,max > 0, a point if and only if p

(α)
f,max = 0, or the empty set if and

only if p
(α)
f,max < 0. Using calculus (i.e., setting the gradient of p

(α)
f (x, y) equal to 0

and solving for (x, y)), we find that the maximum of p
(α)
f occurs at the point

r
(α)
f ≡

(
x

(α)
f , y

(α)
f

)
≡
Ñ
a

(α)
2 a

(α)
5 − a(α)

3 a
(α)
4

[ψ(α)]
2 ,

a
(α)
2 a

(α)
4 − a(α)

1 a
(α)
5

[ψ(α)]
2

é
. (2.48)

Then we have

p
(α)
f,max = p

(α)
f

(
x

(α)
f , y

(α)
f

)
=

1

4f 2
∗

{
η(α)f∗ −

[
‖〈E(α)

1 〉‖2 + ‖〈E(α)
2 〉‖2

]}2
, (2.49)

where

f∗ ≡



f if α = 1

1− f if α = 2.
(2.50)

Thus p
(α)
f,max ≥ 0 for all f ∈ Ae; in particular, from (2.49), p

(1)
f,max = 0 if and only if

f = fe,l (see (2.42a)) while p
(2)
f,max = 0 if and only if f = fe,u (see (2.42b)). Therefore

E (α)
f is a closed elliptic disk for f ∈ (fe,l, fe,u), E (1)

fe,l
is a point and E (2)

fe,l
is a closed

elliptic disk, and E (1)
fe,u

is a closed elliptic disk and E (2)
fe,u

is a point. This completes the

proof.

Lemma 2.3 Suppose β 6= 0, η(α) 6= 0 for α = 1, 2, fe,l 6= 0, and fe,u 6= 1. Then for

each f ∈ Ae (= [fe,l, fe,u]), Ef ⊆ Ff,e.

Remark 2.4 This lemma states that, for each f ∈ Ae, the intersection of the elliptic

disks (the set Ef) is contained in the elementary feasible region associated with f (the

set Ff,e). Thus the feasible region associated with f (the set Ff) is simply the set Ef .

In other words, if the elliptic disks E (1)
f and E (2)

f intersect so that Ef 6= ∅, then f ∈ A;

if the elliptic disks do not intersect so that Ef = ∅, then f /∈ A.
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Proof of Lemma 2.3: For each f ∈ [fe,l, fe,u] the set Ff,e contains F (1)
f . The

boundary of the set F (1)
f is described by the equation p

(1)
f (x, y) = 0 which, according

to Lemma 2.2, is either an ellipse, a point, or the empty set. Therefore E (1)
f = F (1)

f ⊆
Ff,e. A similar argument shows that E (2)

f = F (2)
f ⊆ Ff,e. This completes the proof.

Remark 2.5 In fact, motivated by (2.40a) one can show that the ellipse ∂E (1)
f is

tangent to the boundary of the set

Xf ≡


(x, y) ∈ R2 :

‖〈E(1)
1 〉‖2

f
≤ x ≤ η(1) − ‖〈E

(1)
2 〉‖
f



 (2.51)

for f ∈ (fe,l, fe,u]. Similarly, motivated by (2.40b) one can also show that the ellipse

∂E (2)
f is tangent to the boundary of the set

Yf ≡


(x, y) ∈ R2 :

‖〈E(2)
1 〉‖2

1− f ≤ y ≤ η(2) − ‖〈E
(2)
2 〉‖2

1− f



 (2.52)

for f ∈ [fe,l, fe,u). The set Xf ∩ Yf is in fact the rectangle Ff,e and the test values f

where this rectangle collapses to a line segment are the elementary bounds.

See Appendix A for a proof of Remark 2.5.

Lemma 2.4 Suppose β 6= 0, η(α) 6= 0 for α = 1, 2, fe,l 6= 0, and fe,u 6= 1. Then for

each f ∈ Ae the set ∂E (1)
f ∩ ∂E (2)

f contains at most two points.

Proof of Lemma 2.4: Fix f ∈ Ae and suppose that the point (x, y) ∈ ∂E (1)
f ∩∂E (2)

f

(note that ∂E (α)
f 6= ∅ by Lemma 2.2). Then for α = 1, 2 we must have p

(α)
f (x, y) = 0,

where p
(α)
f is defined in (2.45). This implies that

0 = |σ(1)|2p(1)
f (x, y)− |σ(2)|2p(2)

f (x, y) = µ4x+ µ5y + µ6, (2.53)

where

µk ≡ |σ(1)|2a(1)
k − |σ(2)|2a(2)

k

for k = 1, 3, and 6, and

µk ≡ 2|σ(1)|2a(1)
k − 2|σ(2)|2a(2)

k

for k = 2, 4, and 5. By (2.46) and (2.47), µ1 = µ2 = µ3 = 0 for all f ∈ Ae. We solve

(2.53) for y to find

y = −µ4x+ µ6

µ5

. (2.54)
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Because fe,l > 0 and fe,u < 1, Lemma 2.3 implies that y is finite for all f ∈ Ae since

the set Ff,e is compact and (E (1)
f ∩ E (2)

f ) ⊂ Ff,e. Inserting (2.54) into the equation

p(1)(x, y) = 0 we find that x must be a root of the quadratic

q(x) ≡ ν1x
2 + ν2x+ ν3,

where 



ν1 = a
(1)
1 µ2

5 − 2a
(1)
2 µ4µ5 + a

(1)
3 µ2

4;

ν2 = 2
[
−a(1)

2 µ5µ6 + a
(1)
3 µ4µ6 + a

(1)
4 µ2

5 − a(1)
5 µ4µ5

]
;

ν3 = a
(1)
3 µ2

6 − 2a
(1)
5 µ5µ6 + a

(1)
6 µ2

5.

(Note that ν1, ν2, and ν3 are all functions of f .) The discriminant of q is

∆f ≡ ν2
2 − 4ν1ν3. (2.55)

Therefore the set ∂E (1)
f ∩ ∂E (2)

f will be two (real) points if ∆f > 0, one (real) point if

∆f = 0, and zero (real) points if ∆f < 0. This completes the proof.

Lemma 2.2 implies that E (1)
f and E (2)

f are nonempty for all f ∈ Ae, and Lemma 2.3

implies that Ff = Ef for all f ∈ Ae. Therefore f ∈ A if ∆f ≥ 0, since ∆f ≥ 0 implies

Ef 6= ∅. If ∆f < 0, Ef may be empty or nonempty. For example, if one of the elliptic

disks is completely inside the other, ∆f < 0 but Ef 6= ∅.
To determine whether or not Ef is empty when ∆f < 0 we examine the following

four possibilities (recall that r(α) is defined in (2.48)):

(1) if p
(1)
f (r(2)) < 0 and p

(2)
f (r(1)) < 0, then the elliptic disks (which may be points)

are disjoint since neither elliptic disk contains the center of the other. Thus

Ef = ∅, which implies that f /∈ A;

(2) if p
(1)
f (r(2)) ≥ 0 and p

(2)
f (r(1)) < 0, then the elliptic disk E (1)

f contains the center

of the elliptic disk E (2)
f but not vice versa. In this case E (2)

f ( E (1)
f ⇒ Ef 6= ∅ ⇒

f ∈ A;

(3) if p
(1)
f (r(2)) < 0 and p

(2)
f (r(1)) ≥ 0, then E (1)

f ( E (2)
f ⇒ Ef 6= ∅ ⇒ f ∈ A;

(4) if p
(1)
f (r(2)) ≥ 0 and p

(2)
f (r(1)) ≥ 0, we can conclude that Ef 6= ∅ and so f ∈ A.



36

Unfortunately ∆f is a complicated function of f , so it is difficult if not impossible

to determine the sign of ∆f analytically. The expressions for p(1)(r(2)) and p(2)(r(1)) are

nontrivial as well, so the above steps must be carried out numerically. (For example,

for the configuration considered in Figure 2.3, ∆f is essentially a rational function with

an irreducible polynomial of degree 8 in the numerator and an irreducible polynomial

of degree 2 in the denominator. The functions p
(1)
f (r(2)) and p

(2)
f (r(1)) are rational

functions with irreducible polynomials of degree 4 in the numerator.) We have thus

proven the following theorem.

Theorem 2.2 Suppose β 6= 0, η(α) 6= 0 for α = 1, 2, fe,l 6= 0, and fe,u 6= 1. Then

for f ∈ Ae (= [fe,l, fe,u]), if ∆f ≥ 0 then f ∈ A, where ∆f is defined in (2.55). If

∆f < 0, then f /∈ A if and only if p
(1)
f (r(2)) < 0 and p

(2)
f (r(1)) < 0.

The bounds derived in this section may or may not be tighter than the elementary

bounds from Section 2.4. For example, the bounds from this section would be the

same as the elementary bounds if ∆f ≥ 0 for all f ∈ Ae. We also note that

Lemmas 2.2 and 2.4 hold for all f ∈ (0, 1). This shows the importance of the

elementary bounds: if we did not take them into account and only looked at the set Ef
for all f ∈ (0, 1), it may be that Ef 6= ∅ for all f ∈ (0, 1) (we found this to be the case

for certain parameters in the configuration in Figure 2.3). This would only give the

trivial bounds 0 < f (1) < 1. Although we do not know if this is generally the case,

in all of the 2-D examples we have encountered thus far the “more sophisticated”

bounds determined using the elliptic disks have been the same as the elementary

bounds. So it is not clear if the “more sophisticated” bounds are ever better than

the elementary bounds. Irrespective of this, the analysis presented here is useful for

the treatment presented in the next section where we do obtain tighter bounds using

elliptic disks. Also, the more sophisticated bounds developed here are beneficial for

periodic composite materials, where one may be given the volume fraction and wish

to determine bounds on the possible values of the complex pair (〈E〉, 〈J〉).

In Figures 2.4(a)–2.4(h) we plot the sets E (1)
f (red) and E (2)

f (blue) at various values

of f ∈ Ae = [fe,l, fe,u]; the centers of each ellipse are indicated by dots. The black

box is the boundary of the set Ff,e, defined by the inequalities (2.40a) and (2.40b).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (g)(c) (d) (e) (f) (h)

∆f

p(1)(r(2))

p(2)(r(1))

(i)

Figure 2.4. The rectangle Ff,e (outlined in black) and the sets E (1)
f (in red) and

E (2)
f (in blue) are drawn for several test values. We took: (a) f = fe,l ≈ 0.794; (b)

f ≈ 0.795 (where ∆f = 0); (c) f ≈ 0.797 (where p(2)(r(1)) = 0); (d) f = f (1) = 0.80;
(e) f ≈ 0.802 (intersection of p(1)(r(2)) and p(2)(r(1))); (f) f ≈ 0.805 (where
p(1)(r(2)) = 0); (g) f ≈ 0.806 (where ∆f = 0); (h) f = fe,u ≈ 0.808. (i) this

is a plot of ∆f (black solid line), p
(1)
f (r(2)) (red dashed line), and p

(2)
f (r(1)) (blue

dash-dotted line) for f ∈ Ae = [fe,l, fe,u] (the horizontal gray line is the f -axis). The
dashed magenta line represents the true volume fraction f (1). The parameters used
to create this figure are the same as those in Figure 2.3. In this case we only recover
the elementary bounds 0.794 ≤ f (1) ≤ 0.808.
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Note that ∂E (1)
f is tangent to the vertical segments of the black box and ∂E (2)

f is

tangent to the horizontal segments, as remarked after Lemma 2.3. In particular, at

f = fe,l (Figure 2.4(a)), E (1)
fe,l

is a point (represented by the red dot); at f = fe,u

(Figure 2.4(h)), E (2)
fe,u

is a point (represented by the blue dot). In Figure 2.4(i) we plot

∆f (solid black line), p
(1)
f (r(2)) (red dashed line), and p

(2)
f (r(1)) (blue dash-dotted line)

over the interval Ae. The true volume fraction is represented by the magenta dashed

line and the horizontal gray line represents the f -axis. Figure 2.4(i) shows that each

f ∈ Ae is admissible; when ∆f < 0, we have either p(2)(r(1)) ≥ 0 and p(1)(r(2)) < 0

(so E (1)
f ⊂ E (2)

f ) or p(1)(r(2)) ≥ 0 and p(2)(r(1)) < 0 (so E (2)
f ⊂ E (1)

f ). Thus for each

f ∈ Ae the set Ff = Ef is nonempty and we conclude that A = Ae; in this example

the bounds computed using the ellipses are no better than the elementary bounds.

In the next section, we utilize two additional null Lagrangians to derive improved

elementary bounds that hold in 2-D. We also develop similar “more sophisticated”

bounds using elliptic disks; for the geometry sketched in Figure 2.3, these “more

sophisticated” bounds are indeed stronger than the improved elementary bounds.

2.6 Additional Null Lagrangians in 2-D

In two dimensions we can include information from the additional null Lagrangians

〈E1 ·R⊥E2〉 and 〈J1 ·R⊥J2〉 — see (2.13). The details presented below are similar in

nature to those in the previous two sections.

2.6.1 Improved Elementary Bounds

For arbitrary vectors c(α),d(α) in R2 and for α = 1, 2 we define

h(α)(x; c(α),d(α)) ≡
2∑

m=1

c(α)
m

[
E(α)
m (x)− χ(α)(x)

f (α)
〈E(α)

m 〉
]

+
2∑

n=1

d(α)
n

[
R⊥E(α)

n (x)− χ(α)(x)

f (α)
〈R⊥E(α)

n 〉
]
. (2.56)

For α = 1, 2, and up to the constants c(α)
m and d(α)

n , the field h(α) measures how the real

and imaginary parts of the fields E and R⊥E vary around their average values over

phase α. (The proof of this statement is exactly the same as that in the paragraph

following (2.23).)
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Note that 〈h(α)〉 = 0 (the proof is the same as the proof of the statement 〈g(α)〉 = 0

given in Section 2.3.2). We must have 〈h(α) · h(α)〉 ≥ 0 for all c(α),d(α) ∈ R2. Using

computations similar to those in Section 2.3.2, one can show this is equivalent to

C(α) ·M (α)C(α) ≥ 0, (2.57)

where we have written

C(α) ≡
ñ
c(α)

d(α)

ô
for arbitrary c(α) and d(α) ∈ R2. For α = 1, 2 the 4× 4 matrix M (α) is

M (α) ≡
ñ
S(α) T (α)

−T (α) S(α)

ô
,

where

T (α) ≡



B

(α)
11 −

1

f (α)
〈E(α)

1 〉 ·R⊥〈E(α)
1 〉 B

(α)
12 −

1

f (α)
〈E(α)

1 〉 ·R⊥〈E(α)
2 〉

B
(α)
21 −

1

f (α)
〈E(α)

2 〉 ·R⊥〈E(α)
1 〉 B

(α)
22 −

1

f (α)
〈E(α)

2 〉 ·R⊥〈E(α)
2 〉


 ,

B(α)
mn ≡ 〈χ(α)Em ·R⊥En〉 = 〈E(α)

m ·R⊥E(α)
n 〉 (for m,n = 1, 2), (2.58)

and R⊥ and S(α) are as before (see (2.14) and (2.27), respectively). In particular,

since 〈h(α) · h(α)〉 ≥ 0 (2.57) implies

C(α) ·M (α)C(α) ≥ 0 for all C(α) ∈ R4. (2.59)

Because w ·R⊥w = 0 for any vector w ∈ R2, we have, for m, α = 1, 2, that

T (α)
mm = 〈E(α)

m ·R⊥E(α)
m 〉 −

1

f (α)
〈E(α)

m 〉 ·R⊥〈E(α)
m 〉 = 0;

also, since RT
⊥ = −R⊥ we have

T
(α)
12 = B

(α)
12 −

1

f (α)
〈E(α)

1 〉 ·R⊥〈E(α)
2 〉

= 〈E(α)
1 ·R⊥E

(α)
2 〉 −

1

f (α)
〈E(α)

1 〉 ·R⊥〈E(α)
2 〉

= −〈R⊥E
(α)
1 · E(α)

2 〉+
1

f (α)
R⊥〈E(α)

1 〉 · 〈E(α)
2 〉

= −
ñ
B

(α)
21 −

1

f (α)
〈E(α)

2 〉 ·R⊥〈E(α)
1 〉

ô
= −T (α)

21 .
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Therefore T (α) is antisymmetric for α = 1, 2.

For f ∈ Ae we define

M
(α)
f (x, y) ≡


S

(α)
f (x, y) T

(α)
f

−T (α)
f S

(α)
f (x, y)


 , (2.60)

where S
(α)
f (x, y) is defined in (2.35),

T
(α)
f = −[T

(α)
f ]T =


 0

√
τ

(α)
f

−
√
τ

(α)
f 0




where

τ
(α)
f ≡ detT

(α)
f =

ñ
B

(α)
12 −

1

f∗
〈E(α)

1 〉 ·R⊥〈E(α)
2 〉

ô2

≥ 0, (2.61)

and f∗ is defined in (2.50). Since S
(α)
f is symmetric for all (x, y) ∈ R2 and all f ∈ (0, 1)

and T
(α)
f is antisymmetric, M

(α)
f (x, y) is symmetric for f ∈ Ae and all (x, y) ∈ R2.

Next we apply the splitting method to 〈E1 ·R⊥E2〉 and 〈J1 ·R⊥J2〉 (see (2.30)).

This gives

〈E1 ·R⊥E2〉 = 〈E(1)
1 ·R⊥E

(1)
2 〉+ 〈E(2)

1 ·R⊥E
(2)
2 〉 = B

(1)
12 +B

(2)
12 (2.62)

and

〈J1 ·R⊥J2〉 = 〈J(1)
1 ·R⊥J

(1)
2 〉+ 〈J(2)

1 ·R⊥J
(2)
2 〉

=
2∑

α=1

{〈[
σ

(α)
1 E

(α)
1 − σ(α)

2 E
(α)
2

]
·R⊥

[
σ

(α)
2 E

(α)
1 + σ

(α)
1 E

(α)
2

]〉}

=
2∑

α=1

{
σ

(α)
1 σ

(α)
2 〈E(α)

1 ·R⊥E
(α)
1 〉+ [σ

(α)
1 ]2〈E(α)

1 ·R⊥E
(α)
2 〉

−[σ
(α)
2 ]2〈E(α)

2 ·R⊥E
(α)
1 〉 − σ(α)

2 σ
(α)
1 〈E(α)

2 ·R⊥E
(α)
2 〉

}

=
2∑

α=1

{
[σ

(α)
1 ]2〈E(α)

1 ·R⊥E
(α)
2 〉+ [σ

(α)
2 ]2〈R⊥E

(α)
2 · E(α)

1 〉
}

=
2∑

α=1

{
[σ

(α)
1 ]2 + [σ

(α)
2 ]2

}
〈E(α)

1 ·R⊥E
(α)
2 〉

= |σ(1)|2B(1)
12 + |σ(2)|2B(2)

12 . (2.63)
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Combining (2.62) and (2.63) gives the systemñ
1 1

|σ(1)|2 |σ(2)|2
ô 
B

(1)
12

B
(2)
12


 =

[〈E1 ·R⊥E2〉
〈J1 ·R⊥J2〉

]
.

As long as |σ(1)| 6= |σ(2)|, we can solve this system for B
(1)
12 and B

(2)
12 ; in that case


B

(1)
12

B
(2)
12


 =

1

|σ(2)|2 − |σ(1)|2
[ |σ(2)|2〈E1 ·R⊥E2〉 − 〈J1 ·R⊥J2〉
−|σ(1)|2〈E1 ·R⊥E2〉+ 〈J1 ·R⊥J2〉

]
(2.64)

and B
(1)
12 and B

(2)
12 (hence T

(1)
f and T

(2)
f ) are known.

Definition 2.4 For f ∈ Ae we set‹F (α)
f ≡ {(x, y) ∈ R2 : M

(α)
f (x, y) is positive-semidefinite}.

Then the set ‹Ff ≡ ‹F (1)
f ∩ ‹F (2)

f is called the restricted feasible region associated with f .

In addition, the set ‹A ≡ {f ∈ Ae : ‹Ff 6= ∅} is called the restricted set of admissible

test values.

To find the set ‹A, we need to find the values of f ∈ Ae such that there is at least

one point (x, y) ∈ R2 at which both M
(1)
f (x, y) and M

(2)
f (x, y) are simultaneously

positive-semidefinite. We will see that ‹A ⊆ A, so the bounds in this section are in

general tighter than those in the previous sections.

Lemma 2.5 Assume β 6= 0, η(α) 6= 0 for α = 1, 2, fe,l 6= 0, fe,u 6= 1, and |σ(1)| 6=
|σ(2)|. Then for f ∈ Ae and α = 1, 2, the matrix M

(α)
f (x, y) defined in (2.60) is

positive-semidefinite if and only if p
(α)
f (x, y) = detS

(α)
f (x, y) ≥ τ

(α)
f , where τ

(α)
f is

defined in (2.61).

Proof of Lemma 2.5: Recall that a symmetric matrix is positive-semidefinite if

and only if all of its eigenvalues are nonnegative. For α = 1, 2 the eigenvalues of

M
(α)
f , each with algebraic multiplicity 2, are

λ
(α)
f,±(x, y) =

1

2

®
TrS

(α)
f ±

…
[TrS

(α)
f ]2 − 4[detS

(α)
f − detT

(α)
f ]

´
. (2.65)

(We have suppressed the dependence on x and y on the right-hand side for clarity.)
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By (2.35) and (2.41),

TrS
(α)
f (x, y) = η(α) − ‖E

(α)
1 ‖2 + ‖E(α)

2 ‖2

f∗

is independent of x and y and is nonnegative if and only if f ∈ Ae. We note that

the expression under the square root in (2.65) must be nonnegative for all points

(x, y) ∈ R2 and all f ∈ Ae since M
(α)
f (x, y) is symmetric for all such values of x, y,

and f .

The previous paragraph implies that the eigenvalues λ
(α)
f,±(x, y) will be nonnegative

for those points (x, y) ∈ R2 and those values of f ∈ Ae for which

4
[
detS

(α)
f (x, y)− detT

(α)
f

]
≥ 0⇔ detS

(α)
f (x, y) ≥ τ

(α)
f .

This completes the proof.

Now p
(α)
f ≥ τ

(α)
f if and only if p̃

(α)
f ≥ 0, where p̃

(α)
f ≡ p

(α)
f − τ (α)

f . Using calculus

(i.e., setting the gradient of p̃
(α)
f (x, y) equal to 0 and solving for (x, y)) we find that

p̃
(α)
f,max ≡ max

(x,y)∈R2
p̃

(α)
f (x, y)

= p̃
(α)
f

(
x

(α)
f , y

(α)
f

)

=
1

4f 2
∗

[
〈‖v(α)

+ ‖2〉f∗ − ‖〈v(α)
+ 〉‖2

] [
〈‖v(α)

− ‖2〉f∗ − ‖〈v(α)
− 〉‖2

]
, (2.66)

where f∗ is defined in (2.50), the point (x
(α)
f , y

(α)
f ) is defined in (2.48), and

v
(α)
± ≡ χ(α) (E1 ±R⊥E2) = E

(α)
1 ±R⊥E

(α)
2 .

Note that 〈v(α)
± 〉 = 〈E(α)

1 〉 ± R⊥〈E(α)
2 〉 is known (by the statement following (2.31)).

Also, by (2.37) and the fact that R⊥ is unitary (so it preserves lengths), the quantity

〈‖v(α)
± ‖2〉 = 〈v(α)

± · v(α)
± 〉

= 〈E(α)
1 · E(α)

1 〉 ± 〈E(α)
1 ·R⊥E

(α)
2 〉 ± 〈R⊥E

(α)
2 · E(α)

1 〉+ 〈R⊥E
(α)
2 ·R⊥E

(α)
2 〉

= 〈‖E(α)
1 ‖2〉 ± 2〈E(α)

1 ·R⊥E
(α)
2 〉+ 〈‖R⊥E

(α)
2 ‖2〉

= 〈‖E(α)
1 ‖2〉+ 〈‖E(α)

2 ‖2〉 ± 2B
(α)
12

= η(α) ± 2B
(α)
12

is known if and only if |σ(1)| 6= |σ(2)| (by (2.36) and (2.64)). For now we assume

that v
(α)
± 6≡ 0 and η(α) 6= 0 (physically, this means that we assume that the real
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and imaginary parts of the electric field are nonperpendicular and nonzero in both

phases). Also notice that

‖〈v(α)
± 〉‖2 = [〈E(α)

1 〉 ±R⊥〈E(α)
2 〉] · [〈E(α)

1 〉 ±R⊥〈E(α)
2 〉]

= ‖〈E(α)
1 〉‖2 ± [〈E(α)

1 〉 ·R⊥〈E(α)
2 〉]± [R⊥〈E(α)

2 〉 · 〈E(α)
1 〉] + ‖R⊥〈E(α)

2 〉‖2

= ‖〈E(α)
1 〉‖2 + ‖〈E(α)

2 〉‖2 ± 2[〈E(α)
1 〉 ·R⊥〈E(α)

2 〉].

This and (2.42) and (2.58) imply that




η(1)fe,l ± 2〈E(1)

1 〉 ·R⊥〈E(1)
2 〉 if α = 1,

η(2)(1− fe,u)± 2〈E(2)
1 〉 ·R⊥〈E(2)

2 〉 if α = 2.

We now show that p̃
(α)
f,max < 0 on a subset of Ae; such values of f are not admissible

by Lemma 2.5. Due to (2.66), p̃
(1)
f,max ≥ 0 if and only if

〈‖v(1)
+ ‖2〉f − ‖〈v(1)

+ 〉‖2 ≥ 0 and 〈‖v(1)
− ‖2〉f − ‖〈v(1)

− 〉‖2 ≥ 0

⇔ f ≥ ‖〈v
(1)
+ 〉‖2

〈‖v(1)
+ ‖2〉

and f ≥ ‖〈v
(1)
− 〉‖2

〈‖v(1)
− ‖2〉

⇔ f ≥ f̃e,l ≡max




‖〈v(1)

+ 〉‖2

〈‖v(1)
+ ‖2〉

,
‖〈v(1)

− 〉‖2

〈‖v(1)
− ‖2〉



 , (2.67)

or

〈‖v(1)
+ ‖2〉f − ‖〈v(1)

+ 〉‖2 ≤ 0 and 〈‖v(1)
− ‖2〉f − ‖〈v(1)

− 〉‖2 ≤ 0

⇔ f ≤ ‖〈v
(1)
+ 〉‖2

〈‖v(1)
+ ‖2〉

and f ≤ ‖〈v
(1)
− 〉‖2

〈‖v(1)
− ‖2〉

⇔ f ≤ Q(1) ≡min




‖〈v(1)

+ 〉‖2

〈‖v(1)
+ ‖2〉

,
‖〈v(1)

− 〉‖2

〈‖v(1)
− ‖2〉



 . (2.68)

The denominators in (2.67) and (2.68) are positive since we are assuming v
(1)
± 6≡ 0,

which implies 〈‖v(1)
± ‖2〉 6= 0. We explicitly compute Q(1) and f̃e,l in the following

lemma.
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Lemma 2.6 Suppose β 6= 0, η(α) 6= 0 for α = 1, 2, fe,l 6= 0, fe,u 6= 1, |σ(1)| 6= |σ(2)|,
and v

(α)
± 6= 0 for α = 1, 2. Then Q(1) ≤ fe,l ≤ f̃e,l,

f̃e,l =





‖〈v(1)
+ 〉‖2

〈‖v(1)
+ ‖2〉

if 〈E(1)
1 〉 ·R⊥〈E(1)

2 〉 > B
(1)
12 fe,l,

‖〈v(1)
− 〉‖2

〈‖v(1)
− ‖2〉

if 〈E(1)
1 〉 ·R⊥〈E(1)

2 〉 < B
(1)
12 fe,l,

‖〈v(1)
+ 〉‖2

〈‖v(1)
+ ‖2〉

=
‖〈v(1)

− 〉‖2

〈‖v(1)
− ‖2〉

if 〈E(1)
1 〉 ·R⊥〈E(1)

2 〉 = B
(1)
12 fe,l,

(2.69)

and

Q(1) =





‖〈v(1)
− 〉‖2

〈‖v(1)
− ‖2〉

if 〈E(1)
1 〉 ·R⊥〈E(1)

2 〉 > B
(1)
12 fe,l,

‖〈v(1)
+ 〉‖2

〈‖v(1)
+ ‖2〉

if 〈E(1)
1 〉 ·R⊥〈E(1)

2 〉 < B
(1)
12 fe,l,

‖〈v(1)
+ 〉‖2

〈‖v(1)
+ ‖2〉

=
‖〈v(1)

− 〉‖2

〈‖v(1)
− ‖2〉

if 〈E(1)
1 〉 ·R⊥〈E(1)

2 〉 = B
(1)
12 fe,l.

(2.70)

Proof of Lemma 2.6: We have the following inequalities:

‖〈v(1)
+ 〉‖2

〈‖v(1)
+ ‖2〉

=
η(1)fe,l + 2〈E(1)

1 〉 ·R⊥〈E(1)
2 〉

η(1) + 2B
(1)
12

≷ fe,l

⇔ 〈E(1)
1 〉 ·R⊥〈E(1)

2 〉 ≷ B
(1)
12 fe,l; (2.71a)

‖〈v(1)
− 〉‖2

〈‖v(1)
− ‖2〉

=
η(1)fe,l − 2〈E(1)

1 〉 ·R⊥〈E(1)
2 〉

η(1) − 2B
(1)
12

≶ fe,l

⇔ 〈E(1)
1 〉 ·R⊥〈E(1)

2 〉 ≷ B
(1)
12 fe,l. (2.71b)

Taking (2.67) and (2.68) into account, (2.71) implies Q(1) ≤ fe,l ≤ f̃e,l with equality

in both inequalities if and only if 〈E(1)
1 〉 ·R⊥〈E(1)

2 〉 = B
(1)
12 fe,l. In addition, (2.69) and

(2.70) follow from the inequalities (2.71) in combination with (2.67) and (2.68). This

completes the proof.

Since Q(1) ≤ fe,l ≤ f̃e,l, the inequality in (2.68) will not be satisfied for all f ≥ fe,l

and can safely be ignored. Moreover, we will have the chain of equalities Q(1) = fe,l =

f̃e,l if and only if

〈E(1)
1 〉 ·R⊥〈E(1)

2 〉 = B
(1)
12 fe,l. (2.72)
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If E(1) is a (nonzero) constant such that E
(1)
1 · R⊥E

(1)
2 6= 0, then (2.72) becomes

fe,l = f (1), which is consistent with our work in Section 2.4. To see this, note that if

E(1) is a constant then the left-hand side of (2.72) is

〈E(1)
1 〉 ·R⊥〈E(1)

2 〉 =

ñ
1

|Ω|
∫

Ω
χ(1)(x)E1 dx

ô
·R⊥

ñ
1

|Ω|
∫

Ω
χ(1)(x)E2 dx

ô
= [〈χ(1)〉]2[E

(1)
1 ·R⊥E

(1)
2 ]

= [f (1)]2[E
(1)
1 ·R⊥E

(1)
2 ], (2.73)

while the right-hand side of (2.72) is

B
(1)
12 fe,l = 〈χ(1)E1 ·R⊥E2〉fe,l

= fe,l〈χ(1)〉[E(1)
1 ·R⊥E

(1)
2 ]

= fe,lf
(1)[E

(1)
1 ·R⊥E

(1)
2 ]. (2.74)

As long as E
(1)
1 ·R⊥E

(1)
2 6= 0, the desired result follows by comparing (2.73) and (2.74).

The above computations are summarized in Figure 2.5, which is a plot of the

functions p̃
(α)
f,max as a function of f . The function p̃

(1)
f,max is plotted as a red solid curve.

If (2.72) does not hold, its zeros Q(1) and f̃e,l are below and above the elementary

lower bound fe,l, respectively. Thus all values of f ∈ [fe,l, f̃e,l) are not admissible,

giving us the improved elementary lower bound f̃e,l ≤ f (1). If (2.72) holds, then

Q(1) = f̃e,l = fe,l, and we do not obtain an improved elementary lower bound. In

Figure 2.5, fe,l is indicated with the left gray vertical line while f̃e,l is indicated by

the left black vertical line.

Due to (2.66), p̃
(2)
f,max ≥ 0 if and only if

〈‖v(2)
+ ‖2〉(1− f)− ‖〈v(2)

+ 〉‖2 ≥ 0 and 〈‖v(2)
− ‖2〉(1− f)− ‖〈v(2)

− 〉‖2 ≥ 0

⇔ f ≤ 1− ‖〈v
(2)
+ 〉‖2

〈‖v(2)
+ ‖2〉

and f ≤ 1− ‖〈v
(2)
− 〉‖2

〈‖v(2)
− ‖2〉

⇔ f ≤ f̃e,u ≡min



1− ‖〈v

(2)
+ 〉‖2

〈‖v(2)
+ ‖2〉

, 1− ‖〈v
(2)
− 〉‖2

〈‖v(2)
− ‖2〉



 (2.75)
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f
fe,l fe,uQ(1)

f̃e,l f̃e,u

Q(2)f (1)

f

fe,l fe,uf̃e,l f̃e,uf (1)

(a) (b)

Figure 2.5. These are plots of the improved elementary bounds in 2-D. (a) A plot

of p̃
(1)
f,max (red solid curve) and p̃

(2)
f,max (blue dashed curve) — the horizontal gray line

represents the f -axis. The geometry and parameters used to create these plots are
the same as those used to create Figure 2.3. (b) A zoomed-in version of (a) — here we

plot the functions over the interval [fe,l, fe,u]. In both figures the set ‹Ae = [f̃e,l, f̃e,u]
is highlighted by the darkened interval. Some relevant numbers are fe,l ≈ 0.794,

fe,u ≈ 0.808, f̃e,l ≈ 0.798, f̃e,u ≈ 0.802, Q(1) ≈ 0.776, Q(2) ≈ 0.828, and f (1) = 0.8. So
we obtain the better bounds 0.798 ≤ f (1) ≤ 0.802.
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or

〈‖v(2)
+ ‖2〉(1− f)− ‖〈v(2)

+ 〉‖2 ≤ 0 and 〈‖v(2)
− ‖2〉(1− f)− ‖〈v(2)

− 〉‖2 ≤ 0

⇔ f ≥ 1− ‖〈v
(2)
+ 〉‖2

〈‖v(2)
+ ‖2〉

and f ≥ 1− ‖〈v
(2)
− 〉‖2

〈‖v(2)
− ‖2〉

⇔ f ≥ Q(2) ≡max



1− ‖〈v

(2)
+ 〉‖2

〈‖v(2)
+ ‖2〉

, 1− ‖〈v
(2)
− 〉‖2

〈‖v(2)
− ‖2〉



 . (2.76)

Since we are assuming v
(2)
± 6≡ 0, 〈‖v(2)

± ‖2〉 6= 0; thus the denominators in (2.75) and

(2.76) are positive. We explicitly compute Q(2) and f̃e,u in the following lemma.

Lemma 2.7 Suppose β 6= 0, η(α) 6= 0 for α = 1, 2, fe,l 6= 0, fe,u 6= 1, |σ(1)| 6= |σ(2)|,
and v

(α)
± 6= 0 for α = 1, 2. Then f̃e,u ≤ fe,u ≤ Q(2),

f̃e,u =





1− ‖〈v
(2)
+ 〉‖2

〈‖v(2)
+ ‖2〉

if 〈E(2)
1 〉 ·R⊥〈E(2)

2 〉 > B
(2)
12 (1− fe,u),

1− ‖〈v
(2)
− 〉‖2

〈‖v(2)
− ‖2〉

if 〈E(2)
1 〉 ·R⊥〈E(2)

2 〉 < B
(2)
12 (1− fe,u),

1− ‖〈v
(2)
+ 〉‖2

〈‖v(2)
+ ‖2〉

= 1− ‖〈v
(2)
− 〉‖2

〈‖v(2)
− ‖2〉

if 〈E(2)
1 〉 ·R⊥〈E(2)

2 〉 = B
(2)
12 (1− fe,u),

(2.77)

and

Q(2) =





1− ‖〈v
(2)
− 〉‖2

〈‖v(2)
− ‖2〉

if 〈E(2)
1 〉 ·R⊥〈E(2)

2 〉 > B
(2)
12 (1− fe,u),

1− ‖〈v
(2)
+ 〉‖2

〈‖v(2)
+ ‖2〉

if 〈E(2)
1 〉 ·R⊥〈E(2)

2 〉 < B
(2)
12 (1− fe,u),

1− ‖〈v
(2)
+ 〉‖2

〈‖v(2)
+ ‖2〉

= 1− ‖〈v
(2)
− 〉‖2

〈‖v(2)
− ‖2〉

if 〈E(2)
1 〉 ·R⊥〈E(2)

2 〉 = B
(2)
12 (1− fe,u).

(2.78)

Proof of Lemma 2.7: The proof of Lemma 2.7 is similar to the proof of Lemma 2.6.

This completes the proof.

Since f̃e,u ≤ fe,u ≤ Q(2), the inequality in (2.76) will not be satisfied for f ≤ fe,u

so it can be ignored. We will have the chain of equalities f̃e,u = fe,u = Q(2) if and

only if

〈E(2)
1 〉 ·R⊥〈E(2)

2 〉 = B
(2)
12 (1− fe,u). (2.79)
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If E(2) is a (nonzero) constant such that E
(2)
1 · R⊥E

(2)
2 6= 0, then (2.79) becomes

fe,u = f (1), which is consistent with our work in Section 2.4. To see this, note that if

E(2) is a constant then the left-hand side of (2.79) is

〈E(2)
1 〉 ·R⊥〈E(2)

2 〉 =

ñ
1

|Ω|
∫

Ω
χ(2)(x)E1 dx

ô
·R⊥

ñ
1

|Ω|
∫

Ω
χ(2)(x)E2 dx

ô
= [〈χ(2)〉]2[E

(2)
1 ·R⊥E

(2)
2 ]

= [1− f (1)]2[E
(2)
1 ·R⊥E

(2)
2 ],

while the right-hand side of (2.79) is

B
(2)
12 (1− fe,u) = 〈χ(2)E1 ·R⊥E2〉(1− fe,u)

= (1− fe,u)〈χ(2)〉[E(2)
1 ·R⊥E

(2)
2 ]

= (1− fe,u)(1− f (1))[E
(2)
1 ·R⊥E

(2)
2 ],

which, if E
(2)
1 ·R⊥E

(2)
2 6= 0, implies 1− fe,u = 1− f (1) ⇔ fe,u = f (1).

The function p̃
(2)
f,max is plotted as a blue dashed curve in Figure 2.5. If (2.79) does

not hold, the values of f ∈ (f̃e,u, fe,u] are not admissible so we obtain the improved

elementary upper bound f ≤ f̃e,u; if (2.79) holds then Q(2) = f̃e,u = fe,u and we

do not obtain an improved elementary upper bound. In Figure 2.5, f̃e,u and fe,u are

indicated by the right black and gray vertical lines, respectively.

Finally, we can show that f̃e,l ≤ f̃e,u and provide a much simpler derivation of the

improved elementary bounds as follows. We begin by noting that∞∥∥∥∥∥v(α)
± −

χ(α)

f (α)
〈v(α)
± 〉

∥∥∥∥∥

2
∫
≥ 0.

Since ‖u‖2 = u · u for any vector u, this is equivalent to

〈v(α)
± · v(α)

± 〉 −
2

f (α)
〈χ(α)v

(α)
± 〉 · 〈v(α)

± 〉+
〈[χ(α)]2〉
[f (α)]2

〈v(α)
± 〉 · 〈v(α)

± 〉 ≥ 0

⇔ 〈‖v(α)
± ‖2〉 − 1

f (α)
‖〈v(α)

± 〉‖2 ≥ 0

⇔ ‖〈v(α)
± 〉‖2

〈‖v(α)
± ‖2〉

≤ f (α), (2.80)
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with equality if and only if v
(α)
± is a (nonzero) constant, i.e., if and only if v

(α)
± ≡

〈v(α)
± 〉/f (α). Then, in combination with (2.80), (2.67) and (2.75) imply that

f̃e,l ≤ f (1) and f̃e,u ≥ 1− f (2) = f (1),

respectively. The first inequality above will be satisfied as an equality if and only if

v
(1)
+ or v

(1)
− is a (nonzero) constant; the second inequality above will be satisfied as

an equality if and only if v
(2)
+ or v

(2)
− is a (nonzero) constant.

Definition 2.5 The set ‹Ae ≡ {f ∈ Ae : f̃e,l ≤ f ≤ f̃e,u} is called the restricted

elementary set of admissible test values.

We have thus proven the following theorem.

Theorem 2.3 Suppose β 6= 0, η(α) 6= 0 for α = 1, 2, fe,l 6= 0, fe,u 6= 1, |σ(1)| 6= |σ(2)|,
and v

(α)
± 6≡ 0 for α = 1, 2. Then the volume fraction f (1) = 〈χ(1)〉 satisfies the bounds

f̃e,l ≤ f (1) ≤ f̃e,u where f̃e,l and f̃e,u are defined in (2.67) and (2.75), respectively (also

see (2.69) and (2.77)). Moreover, the lower bound is satisfied as an equality (i.e.,

f̃e,l = f (1)) if and only if v
(1)
+ or v

(1)
− is a nonzero constant while the upper bound

is satisfied as an equality (i.e., f̃e,u = f (1)) if and only if v
(2)
+ or v

(2)
− is a nonzero

constant. Finally, these are tighter bounds than those discussed in Theorem 2.1, i.e.,

fe,l ≤ f̃e,l with equality if and only if (2.72) holds and f̃e,u ≤ fe,u with equality if and

only if (2.79) holds.

2.6.2 Attainment of the Improved Elementary Bounds

We now consider a configuration of concentric disks for which the improved

elementary lower bound from Section 2.6.1 gives the exact volume fraction while

the original elementary lower bound from Section 2.4 only gives a lower bound on the

volume fraction. Thus for this example we will see that

fe,l < f̃e,l = f (1) < f̃e,u < fe,u.

We denote the radii and conductivities of the inner disk (core) and outer annulus

(shell) by R1 and R2 and σ(1) and σ(2), respectively. Throughout this section we

take z = x + iy = reiθ; the complex conjugate of z is denoted by z and is given by



50

z = x − iy = re−iθ. We note that the condition v
(α)
+ being constant is equivalent to

the potential in phase α being the sum of function linear in z plus a function g(z),

or conversely, v
(α)
− being constant is equivalent to the potential in phase α being a

function linear in z plus a function g(z). We prove this statement for v
(α)
+ — the

proof for v
(α)
− is similar.

First, suppose that v
(α)
+ ≡ C = [C1, C2]T ∈ R2 in phase α, which we assume to

be connected. We claim that this implies V (α) = V
(α)

1 + iV
(α)

2 = ‹Cz + g(z) where

g is a holomorphic function of z, z = x + iy, z = x − iy, and ‹C ≡ 1
2
(−C1 + iC2) is

a constant. (If phase α is not connected, the constant C and the function g will be

different in each connected component of phase α.) Now,

v
(α)
+ = E

(α)
1 +R⊥E

(α)
2 = −∇V (α)

1 −R⊥∇V (α)
2 =




−∂V
(α)

1

∂x

−∂V
(α)

1

∂y



−




∂V
(α)

2

∂y

−∂V
(α)

2

∂x



.

Since v
(α)
+ = C, this implies

∂V
(α)

1

∂x
= −∂V

(α)
2

∂y
− C1 (2.81a)

∂V
(α)

1

∂y
=
∂V

(α)
2

∂x
− C2 (2.81b)

for all points z in phase α. Notice that if C1 = C2 = 0, then (2.81) are the Cauchy–

Riemann Equations up to a negative sign.

Next, using the Chain rule we have

∂V
(α)

1

∂x
+ i

∂V
(α)

2

∂x
=
∂V (α)

∂x
=
∂V (α)

∂z
+
∂V (α)

∂z
, (2.82a)

∂V
(α)

1

∂y
+ i

∂V
(α)

2

∂y
=
∂V (α)

∂y
= i

∂V (α)

∂z
− i

∂V (α)

∂z
. (2.82b)

We now insert (2.81) into (2.82b) and multiply the result by −i; then (2.82) becomes

∂V
(α)

1

∂x
+ i

∂V
(α)

2

∂x
=
∂V (α)

∂z
+
∂V (α)

∂z

−i
∂V

(α)
2

∂x
+ iC2 −

∂V
(α)

1

∂x
− C1 =

∂V (α)

∂z
− ∂V (α)

∂z
.
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Adding the two above equations and dividing by 2 gives

∂V (α)

∂z
=

1

2
(−C1 + iC2) = ‹C. (2.83)

This implies that V (α) = ‹Cz + g(z), where g is a holomorphic function of z. To see

this, we define ‹V (α) ≡ V (α) − ‹Cz. (2.84)

Then, by (2.83),

∂‹V (α)

∂z
=
∂V (α)

∂z
− ‹C = 0;

in other words,

∂‹V (α)
1

∂x
= −∂

‹V (α)
2

∂y
and

∂‹V (α)
1

∂y
=
∂‹V (α)

2

∂x
. (2.85)

Since ‹V (α)
1 and ‹V (α)

2 are differentiable (in fact, they are infinitely differentiable since

they are harmonic — see Section 2.2), we must have ‹V (α) = g(z) for some holomorphic

function g (this follows from Theorem 11.2 in the book by Rudin [113] — since our

function satisfies (2.85), the Cauchy–Riemann Equations up to a minus sign, it will

be a holomorphic function of z rather than z). Then (2.84) gives V (α) = ‹Cz + g(z).

Conversely, since g(z) = g′(x, y)+ig′′(x, y) is a holomorphic function of z = x− iy,

by the Cauchy–Riemann Equations we have

∂g′

∂x
(x, y) = −∂g

′′

∂y
(x, y) and

∂g′

∂y
(x, y) =

∂g′′

∂x
(x, y) (2.86)

for all (x, y) in phase α. Then, since V (α)(z) = ‹Cz + g(z) = 1
2
(−C1 + iC2)z + g(z),

we have

V
(α)

1 (x, y) + iV
(α)

2 (x, y) = −1

2
C1x−

1

2
C2y + g′(x, y) + i

ñ
1

2
C2x−

1

2
C1y + g′′(x, y)

ô
.

From this we have

∂V
(α)

1

∂x
+
∂V

(α)
2

∂y
= −1

2
C1 +

∂g′

∂x
(x, y)− 1

2
C1 +

∂g′′

∂y
(x, y) = −C1,

where the last equality follows from the first equation in (2.86); this is (2.81a). We

also have

∂V
(α)

1

∂y
− ∂V

(α)
2

∂x
= −1

2
C2 +

∂g′

∂y
(x, y)− 1

2
C2 −

∂g′′

∂x
(x, y) = −C2,

where the last equality follows from the second equation in (2.86); this is (2.81b).
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The proof of the fact that v
(α)
− is a constant in phase α if and only if the potential

in phase α is a linear function of z plus a holomorphic function h(z) is similar.

We take the Dirichlet Boundary Condition

V (R2, θ) ≡ V0(θ) ≡
Ç
aR2 +

b

R2

å
eiθ +

Ç
cR2

2 +
d

R2
2

å
e−2iθ,

where

a =
σ(1) + σ(2)

2σ(2)
, b = −R

2
1[σ(1) + σ(2)]

2σ(2)
,

c =
k[σ(1) + σ(2)]

2σ(2)
, d = −kR

4
1[σ(1) − σ(2)]

2σ(2)
,

(2.87)

and k ∈ R (entering (2.87)) is a given constant. The potential in the core (for

0 < r < R1) is then given by

V (1)(z, z) = z + k(z)2.

The potential in the shell (R1 < r < R2) can be found by using the continuity of

the potential V and the current flux −σ∇V · n across the boundary at r = R1; in

particular we find

V (2)(z, z) = az +
b

z
+ c(z)2 +

d

z2
,

where a, b, c, and d are given in (2.87).

Let

x̂ =

ñ
1
0

ô
and ŷ =

ñ
0
1

ô
be the standard orthonormal basis for R2. Then, since E = −∇V , the electric field

in each phase is given by

E(1) = − (1 + 2kz) x̂− i (1− 2kz) ŷ

E(2) = −
ñ
a− b

(z)2
+ 2cz − 2d

z3

ô
x̂− i

ñ
a+

b

(z)2
− 2cz − 2d

z3

ô
ŷ.

(2.88)

We emphasize that neither of these fields is constant; therefore Theorem 2.1 implies

fe,l < f (1) < fe,u.

In particular

fe,l =

Ç
1

1 + 2k2R2
1

å
R2

1

R2
2

. (2.89)

For k 6= 0 this is strictly less than f (1) = (R1/R2)2.
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Recall that v
(α)
± = E

(α)
1 ±R⊥E

(α)
2 . We can compute

v
(1)
+ = −2x̂ and v

(1)
− = 4k (−xx̂ + yŷ) ; (2.90)

thus v
(1)
+ is a constant. We note that both fields v

(2)
± are not uniform. Theorem 2.3

thus implies that f̃e,l = f (1) and f (1) < f̃e,u.

Finally, if k = 0 note that (2.88) implies that E(1) = −x̂− iŷ is a constant. Thus

Theorem 2.1 implies that fe,l = f (1), which is verified by (2.89). Additionally (2.90)

implies that v
(1)
− ≡ 0, so Theorem 2.3 implies that f̃e,l = fe,l.

2.7 More Sophisticated Bounds in 2-D

We now proceed to find improved bounds; the method is very similar to that in

Section 2.5.

Definition 2.6 For α = 1, 2 and for f ∈ ‹Ae we define

Ẽ (α)
f ≡ {(x, y) ∈ R2 : p

(α)
f (x, y) ≥ τ

(α)
f } and Ẽf ≡ Ẽ (1)

f ∩ Ẽ (2)
f .

Since τ
(α)
f ≥ 0 (see (2.61)), Lemma 2.5 implies that Ẽ (α)

f ⊆ E (α)
f ; that is, the elliptic

disks in this case are smaller than those in Section 2.5 (which can be obtained by

taking τ
(α)
f ≡ 0). For each f ∈ ‹Ae we check to see whether or not Ẽf is empty. If

Ẽf 6= ∅, then f ∈ ‹A; if Ẽf = ∅, then f /∈ ‹A. As in Section 2.5, we cannot work through

everything explicitly due to the complexity of the expressions involved. However,

Lemmas 2.2–2.4 (and therefore Theorem 2.2) extend immediately; we present their

extensions here for completeness.

Lemma 2.8 Assume that β 6= 0, η(α) 6= 0 for α = 1, 2, fe,l 6= 0, fe,u 6= 1, |σ(1)| 6=
|σ(2)|, and v

(α)
± 6= 0 for α = 1, 2. Then the following properties hold.

(1) For f ∈ (f̃e,l, f̃e,u) and α = 1, 2, Ẽ (α)
f is a closed elliptic disk; its boundary is the

ellipse ∂Ẽ (α)
f = {(x, y) ∈ R2 : p̃

(α)
f (x, y) = 0};

(2) Ẽ (1)

f̃e,l
is a point and Ẽ (2)

f̃e,l
is a closed elliptic disk;

(3) Ẽ (1)

f̃e,u
is a closed elliptic disk and Ẽ (2)

f̃e,u
is a point.
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Proof of Lemma 2.8: We simply apply the proof of Lemma 2.2 to p̃
(α)
f . This

completes the proof.

Lemma 2.9 Assume that β 6= 0, η(α) 6= 0 for α = 1, 2, fe,l 6= 0, fe,u 6= 1, |σ(1)| 6=
|σ(2)|, and v

(α)
± 6= 0 for α = 1, 2. Then for each f ∈ ‹Ae, Ẽf ⊆ Ff,e.

Proof of Lemma 2.9: For each f ∈ ‹Ae, Ẽf ⊆ Ef by Lemma 2.5; since Ef ⊆ Ff,e
for each f ∈ Ae ⊇ ‹Ae by Lemma 2.3, Ẽf ⊆ Ff,e for each f ∈ ‹Ae. This completes the

proof.

Lemma 2.10 Assume that β 6= 0, η(α) 6= 0 for α = 1, 2, fe,l 6= 0, fe,u 6= 1,

|σ(1)| 6= |σ(2)|, and v
(α)
± 6= 0 for α = 1, 2. Then for each f ∈ ‹Ae the set ∂Ẽ (1)

f ∩ ∂Ẽ (2)
f

contains at most two points.

Proof of Lemma 2.10: The proof is a word-for-word repeat of the proof of

Lemma 2.4 applied to p̃
(α)
f . This completes the proof.

Therefore we can numerically search for tighter bounds as follows. For each f ∈‹Ae, if ‹∆f ≥ 0 then f ∈ ‹A, where ‹∆f is the same as ∆f (defined in (2.55)) but with

a
(α)
6 replaced by ã

(α)
6 ≡ a

(α)
6 − τ (α)

f . If ‹∆f < 0, then f /∈ ‹A if and only if p̃
(1)
f (r(2)) < 0

and p̃(2)(r(1)) < 0, where r(1) and r(2) are defined in (2.48). Combining this analysis

with Lemmas 2.8–2.10 proves the following theorem.

Theorem 2.4 Assume that β 6= 0, η(α) 6= 0 for α = 1, 2, fe,l 6= 0, fe,u 6= 1,

|σ(1)| 6= |σ(2)|, and v
(α)
± 6= 0 for α = 1, 2. Then for f ∈ ‹Ae (= [f̃e,l, f̃e,u]), if ‹∆f ≥ 0,

then f ∈ ‹A where ‹∆f is defined in (2.55) by replacing a
(α)
6 by ã

(α)
6 ≡ a

(α)
6 − τ (α)

f . If‹∆f < 0, then f /∈ ‹A if and only if p̃
(1)
f (r(2)) < 0 and p̃

(2)
f

Ä
r(1)

ä
< 0, where p̃

(α)
f is

defined in (2.45) by replacing a
(α)
6 by ã

(α)
6 and r(α) is defined in (2.48).

The numerically computed bounds may or may not be tighter than the improved

elementary bounds, depending on the problem under consideration — see the last

paragraph in Section 2.4, in which we discussed this issue in the context of the bounds

from that section. If we consider concentric disks in which the inner disk is labeled

as phase 1, then the improved elementary lower bound will be exactly equal to the

volume fraction, i.e., f̃e,l = f (1). In this case the field inside the inner disk is constant,

so v
(1)
+ and v

(1)
− are both constants as well. This example is somewhat trivial in the
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sense that the original elementary lower bound is also equal to the volume fraction,

i.e., fe,l = f (1) (see the last paragraph in Section 2.4). In the case of a two-phase

simple laminate we find that fe,l = f̃e,l = f̃e,u = fe,u = f (1) since the electric field

is constant in both phases. In Section 2.6.2 we gave an example of a geometry and

boundary conditions in which the improved elementary lower bound f̃e,l is equal to

the true volume fraction f (1) but the elementary lower bound fe,l is strictly less than

the volume fraction.

In Figures 2.6(a)–2.6(h) we plot the sets Ẽ (1)
f (red) and Ẽ (2)

f (blue) at various values

of f ∈ ‹Ae = [f̃e,l, f̃e,u]; the centers of each ellipse are indicated by a dot while the

black box is the boundary of the set Ff,e (defined in Definition 2.2). For comparison

we plot E (1)
f (red dashed ellipse) and E (2)

f (blue dashed ellipse). Note that Ef 6= ∅ in

Figures 2.6(a)–2.6(h) but that Ẽf 6= ∅ only in Figures 2.6(c)–2.6(f). In Figure 2.6(i) we

plot ‹∆f (solid black line), p̃
(1)
f (r(2)) (red dashed line), and p̃

(2)
f (r(1)) (blue dash-dotted

line) over the interval ‹Ae. The true volume fraction is represented by the magenta

dashed line and the horizontal gray line represents the f -axis. In addition, the set ‹A
is indicated by the darkened interval. In this case ‹A ⊂ ‹Ae (which is in contrast to

the example in Figure 2.4 where A = Ae), so the bounds computed using the ellipses

are better than the improved elementary bounds. Since p̃(1)(r(2)) and p̃(2)(r(1)) are

both negative for all f ∈ ‹Ae, the set ‹A is simply the set on which ‹∆f ≥ 0.

To search for geometries for which these more sophisticated bounds are attained,

one could look for geometries such that for some choice of real vectors c(1),d(1) (that

are not both zero) and c(2),d(2) (that are not both zero) we have





h(1)(x; c(1),d(1)) ≡ 0 for x ∈ phase 1,

h(2)(x; c(2),d(2)) ≡ 0 for x ∈ phase 2.
(2.91)

In this case p̃
(1)
f and p̃

(2)
f will both be zero and (x, y) must be at an intersection

point of the boundary of the elliptic disk Ẽ (1)
f and the boundary of the elliptic disk

Ẽ (2)
f . Conversely, if (x, y) is at such an intersection point then (2.91) must hold.

Additionally we require that the two ellipses only touch at one point and the meaning

of this condition in terms of fields is not so clear. Therefore (2.91) is a necessary, but

not sufficient, condition for attainability of the bounds. A similar remark applies to

the attainability of the “more sophisticated” bounds derived in Section 2.5.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (c) (f)(b) (g)(d) (e) (h)

∆̃f

p̃(1)(r(2))

p̃(2)(r(1))

(i)

Figure 2.6. The rectangle Ff,e (outlined in black) and the sets Ẽ (1)
f (red) and

Ẽ (2)
f (blue) are drawn for several test values. We took: (a) f = f̃e,l ≈ 0.7982; (b)

f ≈ 0.7984; (c) f ≈ 0.7987 (where ‹∆f = 0); (d) f = f (1) = 0.80; (e) f ≈ 0.8006;

(f) f ≈ 0.8012 (where ‹∆f = 0); (g) f ≈ 0.8016; (h) f = f̃e,u ≈ 0.8020. The red

(blue) dashed ellipse is the boundary of E (1)
f (E (2)

f ). (i) This is a plot of ‹∆f (black

solid line), 1
5
p̃

(1)
f (r(2)) (red dashed line), and 1

5
p̃

(2)
f (r(1)) (blue dash-dotted line) for

f ∈ ‹Ae = [f̃e,l, f̃e,u]. The parameters used to create this figure are the same as those
in Figure 2.3. Thus, we obtain the bounds 0.7987 ≤ f (1) ≤ 0.8012, which are better
than the improved elementary bounds from Section 2.6.1 and Figure 2.5.
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2.7.1 Degenerate Cases

In this section we briefly discuss the degenerate cases. If v
(1)
+ or v

(1)
− ≡ 0 (v

(2)
+ or

v
(2)
− ≡ 0), then p̃

(1)
f,max ≡ 0 (p̃

(2)
f,max ≡ 0) for all f ∈ Ae by (2.66), so we are unable to

derive a tighter lower (upper) elementary bound. If v
(α)
± = 0 for α = 1, 2 we again

have ‹Ae = Ae. In summary we construct Table 2.1 for the restricted elementary set of

admissible volume fractions, ‹Ae, assuming η(α) 6= 0 for α = 1, 2. As the table shows,

if v
(α)
± = 0 we have ‹Ae = Ae = [fe,l, fe,u]. One can apply the procedure discussed in

the paragraph preceding Theorem 2.4 to try to improve these elementary bounds.

2.8 Numerical Example

In this section we present the results of several numerical experiments. We used

the 2-D configuration and boundary conditions from Figure 2.3 to create the plots in

Figure 2.7. In each subplot σ(1) is fixed and σ(2) = 1; we varied the volume fraction

by fixing R1 = 0.45 and R3 = 5 while varying R2 between approximately 0.6727 and

4.995.

Each subplot contains the following data scaled by f (1): fe,l (red stars); infA (red

circles); f̃e,l (red crosses); inf ‹A (red squares); fe,u (blue stars); supA (blue circles);

f̃e,u (blue crosses); sup ‹A (blue squares). In all of the plots, fe,l/f
(1) = infA/f (1) and

fe,u/f
(1) = supA/f (1), so the bounds obtained by using the elliptic disks E (1)

f and E (2)
f

from Section 2.5 (namely infA and supA) are simply the elementary bounds fe,l and

fe,u from Section 2.4.

For many cases in this 2-D example the bounds obtained by using the elliptic

disks Ẽ (1)
f and Ẽ (2)

f from Section 2.7 (namely inf ‹A and sup ‹A) are substantially better

than the improved elementary bounds f̃e,l and f̃e,u from Section 2.6.1. In particular,

Table 2.1. This table provides a summary of our elementary bounds on the volume
fraction.

v
(1)
± 6≡ 0

and v
(2)
± 6≡ 0

v
(1)
+ or v

(1)
− ≡ 0

and v
(2)
± 6≡ 0

v
(2)
+ or v

(2)
− ≡ 0

and v
(1)
± 6≡ 0

v
(1)
± ≡ 0

and v
(2)
± ≡ 0‹Ae [f̃e,l, f̃e,u] [fe,l, f̃e,u] [f̃e,l, fe,u] [fe,l, fe,u] = Ae
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fe,l/f
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fe,u/f
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supA/f (1)

f̃e,l/f
(1)

inf Ã/f (1)

f̃e,u/f
(1)

sup Ã/f (1)

Figure 2.7. These are plots of the bounds in the case of an annulus (see Figure 2.3(a))
for several volume fractions ranging from f (1) = 0.01 to f (1) = 0.99. In each
subfigure the conductivity of the annular ring is σ(2) = 1 while the conductivity
of the surrounding medium in each subfigure is: (a) σ(1) = 2 + 0.5i; (b) σ(1) = 2 + 10i;
(c) σ(1) = 10 + 10i; (d) σ(1) = 10 + 0.5i. The legend at the bottom indicates the
symbol used to represent each bound; in particular we used the following labels:
red circles: elementary lower bound (fe,l: see Section 2.4); red stars: “sophisticated”

lower bound (see Section 2.5); red crosses: improved elementary lower bound (f̃e,l: see
Section 2.6.1); red squares: improved “sophisticated” lower bound (see Section 2.7);
blue circles: elementary upper bound (fe,u: see Section 2.4); blue stars: “sophis-
ticated” upper bound (see Section 2.5); blue crosses: improved elementary upper

bound (f̃e,u: see Section 2.6.1); blue squares: improved “sophisticated” upper bound
(see Section 2.7).
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the extra information from the elliptic disks Ẽ (1) and Ẽ (2) gives us lower bounds that,

most of the time, are better than the improved elementary bounds f̃e,l and f̃e,u; this

extra information does not seem to improve the upper bound in most cases, however.

A summary of our results for this example is included in Table 2.2. The elementary

and ellipse bounds do quite well; also note how tight the improved elementary and

ellipse bounds are for this example.

Table 2.2. This table gives a summary of our bounds corresponding to the test
problem described in Figure 2.3.

true volume fraction f (1) 0.8

elementary bounds (fe,l ≤ f (1) ≤ fe,u) 0.794 ≤ f (1) ≤ 0.808

ellipse bounds (infA ≤ f (1) ≤ supA) 0.794 ≤ f (1) ≤ 0.808

improved elementary bounds (f̃e,l ≤ f (1) ≤ f̃e,u) 0.7982 ≤ f (1) ≤ 0.8020

improved ellipse bounds (inf ‹A ≤ f (1) ≤ sup ‹A) 0.7987 ≤ f (1) ≤ 0.8012



CHAPTER 3

EXACT DETERMINATION OF THE

VOLUME OF AN INCLUSION IN A

BODY HAVING CONSTANT

SHEAR MODULUS

In this chapter, we utilize a single measurement of the displacement and normal

stress around the boundary of a body to derive an exact formula for the volume of

an inclusion in the body.

3.1 Introduction

A fundamental and interesting problem in the study of materials is the estimation

of the volume fraction occupied by an inclusion D in a body Ω. Although the volume

fraction could be determined by weighing the body, the densities of the materials may

be close or unknown or weighing the body may be impractical. Because of this, many

methods have been developed which utilize measurements of certain fields around

∂Ω to derive bounds on the volume fraction |D|/|Ω| (where |U | is the Lebesgue

measure of the set U) [2–4, 7, 14, 25, 26, 29, 62, 64–68, 85, 86, 89, 90, 96, 111, 112, 120];

also see Chapter 2. In this chapter, we show that under certain circumstances the

volume fraction |D|/|Ω| can be computed exactly from a single appropriate boundary

measurement around ∂Ω. We note that many of the results in the literature (and our

results in this chapter) can also be applied when Ω contains a two-phase composite

with microstructure much smaller than the dimensions of Ω.

We consider an inclusion D in a body Ω (or a two-phase composite inside Ω),

where Ω is a subset of Rd (d = 2 or 3). In Chapter 2, we utilized an electrical

measurement around ∂Ω to derive bounds on the volume fraction of the inclusion; in

this chapter we utilize a linearly elastic boundary measurement to exactly determine

the volume fraction of the inclusion. We assume that the inclusion and body are
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filled with linearly elastic materials with the same shear modulus µ and Lamé Moduli

λ1 and λ2, respectively. Our goal is to determine the volume fraction occupied by

the inclusion, namely |D|/|Ω|, in terms of a measurement of the displacement and

traction around ∂Ω. The boundary conditions around ∂Ω are taken to be such that

they mimic the body Ω being placed in an infinite medium with a suitable field at

infinity. The starting point for our result is based on an exact relation due to Hill

[60], which we now describe.

One of the most important problems in the study of composite materials is

the determination of effective moduli given information about the local moduli —

see the work by Hashin [54] and the book by Milton [88] (Chapters 1 and 2 in

particular). In general, it is extremely difficult (if not impossible) to determine

effective parameters exactly, even if the microgeometry of the composite is known

and relatively uncomplicated. However, many useful approximation techniques and

bounds on effective properties of composites have been derived in the literature — see

the book by Milton [88] and the references therein for a vast collection of such results.

Surprisingly, there are several circumstances in which exact links between effective

moduli (or exact formulas for the moduli themselves) can be derived regardless of the

complexity of the microstructure; such links are known as exact relations.

Exact relations exist for a variety of problems including elasticity and coupled

problems such as thermoelasticity, thermoelectricity, piezoelectricity, thermo-piezo-

electricity and others — see the review article by Milton [87], the work by Grabovsky,

Milton, and Sage [42], and the works by Hegg [56, 57] for summaries of numerous

previous and current results on exact relations.

Perhaps even more surprising than the existence of exact relations is the existence

of a general mathematical theory of exact relations, developed by Grabovsky, Milton,

and Sage [39–43], that allows us to determine all of the above mentioned exact

relations and many more. For example, Hegg [56, 57] applied this general theory

to the study of fiber-reinforced elastic composites.

Rather than study the general theory, we focus on a specific exact relation de-

rived by Hill [60, 61]. In particular, Hill considered a two-phase composite material

consisting of two homogeneous and isotropic phases with the same shear modulus µ
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but different Lamé Moduli λ1 and λ2. Hill proved that such a composite is macro-

scopically elastically isotropic with shear modulus µ and effective Lamé Modulus λ∗;

he also derived an exact formula for λ∗ that holds regardless of the complexity of the

microgeometry — see (3.13). Hill’s [60, 61] derivation of this formula provides the

starting point of our work in this paper.

We begin by assuming that the body Ω is embedded in an infinite medium with

Lamé Modulus λE and shear modulus µ (we take λE = λ2 for simplicity) and that a

displacement u = ∇g is applied at infinity. Using a method similar to Hill’s derivation

of λ∗, we derive a formula for |D|/|Ω| in terms of a measurement of the displacement

around ∂Ω, the (known) parameters λ1, λ2, and µ, and the (known) function g. In

order to make the situation more practical, we derive a certain nonlocal boundary

condition that can be applied to ∂Ω that forces the body to behave as if it actually

were embedded in an infinite medium with Lamé Modulus λ2, shear modulus µ, and

an applied displacement u = ∇g at infinity. This nonlocal boundary condition couples

the measurements of the traction and displacement around ∂Ω.

Nonlocal boundary conditions which mimic infinite media similar to the one

mentioned above are common tools used in the numerical solution of PDEs and

ordinary differential equations (ODEs) in infinite domains — see the review article

by Givoli [38] for examples specific to scattering problems, the work by Han and Wu

on the Laplace and elasticity equations [52, 53], and the work by Lee, Caflisch, and

Lee [76] on the elasticity equations.

To illustrate the idea, consider an open, bounded set U ⊂ Rd containing the origin,

and suppose Rd \ U contains a linearly elastic, homogeneous, and isotropic material

with Lamé Modulus λ and shear modulus µ. Suppose also that we are interested in

solving the linear elasticity problem





−(λ+ µ)∇(∇ · u)− µ∆u = 0 in Rd \ U,
u = u0 or σ · n = t0 on ∂U,

u→ 0 as |x| → ∞,
(3.1)

where u is the displacement, σ is the Cauchy stress tensor, n is the outward unit

normal vector to ∂U , and u0 or t0 are a given displacement or traction around

∂U , respectively. Issues arise when one attempts to solve (3.1) using the finite
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element method, for example, since (3.1) is posed on an unbounded domain [52, 53].

Several approximate and exact resolutions to this problem have been proposed in the

literature.

For example, one can set up an artificial boundary (usually a circle or sphere of

radius R where R is large enough to contain the domain U) and solve the problem





−(λ+ µ)∇(∇ · u′)− µ∆u′ = 0 in BR \ U,
u′ = u0 or σ′ · n = t0 on ∂U,

appropriate boundary condition on ∂BR

(3.2)

on the finite domain BR\U instead, where BR denotes the ball of radius R centered at

the origin. There remains the important question of what boundary condition to apply

on ∂BR. One possibility would be to apply the homogeneous Dirichlet Boundary

Condition u′ = 0 on ∂BR, but such a boundary condition is only approximate and may

introduce large numerical errors in the solution [52, 53, 76]. To avoid such excessive

errors in this case, one has to takeR to be very large; this makes the numerical solution

computationally expensive due to the large region of interest under consideration,

namely BR \ U — see the work by Lee et al. [76] for more on this.

A second option is to use boundary conditions on ∂BR that are more accurate than

the homogeneous Dirichlet Condition u′ = 0 — see the work by Han and Bao [51] and

Bonnaillie-Noël, Dambrine, Hérau, and Vial [17, 18]. For example, Bonnaillie-Noël

et al. [18] derived Ventcel-Type Boundary Conditions (which involve the Laplace-

Beltrami Operator) on ∂BR [17, 18]. (These same authors derived analogous bound-

ary conditions for the Laplace Equation in their earlier work [17].) Although such

boundary conditions are still approximate, they provide a better approximation to the

true problem than the homogeneous Dirichlet boundary condition. Bonnaillie-Noël

et al. [18] showed that the error in the solution was O(R−2) for the Ventcel Boundary

Conditions on ∂BR while it was only O(R−1) for the Dirichlet Boundary Condition

on ∂BR — in particular they discussed this statement when the Neumann Boundary

Condition σ′ · n is imposed on ∂U and U is a smooth perturbation of a disk.

The Dirichlet and Ventcel-Type Boundary Conditions on ∂BR are local boundary

conditions since they only depend on the displacement and its tangential derivatives

on ∂BR. Han and Wu [52, 53] derived a nonlocal boundary condition on ∂BR with
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the following property: if this boundary condition is applied on ∂BR, then, in BR \U ,

the solution u′ to (3.2) will be exactly the same as the restriction to BR \ U of the

solution u to the infinite domain problem (3.1). In other words, u′ = u|BR\U .

As discussed above, our formula for the volume fraction |D|/|Ω| holds as long

as the body Ω is embedded in an infinite medium with an applied displacement

u = ∇g at infinity. In Section 3.5 we derive a nonlocal boundary condition such

that if this boundary condition is applied to ∂Ω the solution inside Ω will be equal

to the restriction to Ω of the solution to the infinite problem. In other words, when

these boundary conditions are applied, the body Ω will behave as if it actually were

embedded in an infinite medium with shear modulus µ. Our boundary condition

depends on the function g and on the Exterior Dirichlet-to-Neumann Map on ∂Ω

(which, when the body Ω is absent, maps the displacement on ∂Ω to the traction on

∂Ω when no fields are applied at infinity). Thus it is closely related to the boundary

condition of Han and Wu [52, 53] and Bonnaillie-Noël et al. [18] — see Section 3.5 for

complete details.

The rest of this chapter is organized as follows. In Section 3.2 we briefly review

the linear elasticity equations and relevant results from homogenization theory. In

Section 3.3 we summarize a selection of uniform field relations that lead to exact

relations for the effective elasticity tensors of certain composites. Next, in Section 3.4

we derive a formula that gives the exact volume fraction of an inclusion in a body

when the inclusion and the body have the same shear modulus µ and the body is

embedded in an infinite medium with shear modulus µ. We discuss the nonlocal

boundary condition relevant to our problem in Section 3.5 so we can focus on a (more

realistic) finite domain. Finally, in Section 3.6 we present the analytical expression

of the nonlocal boundary condition in the particular case when Ω is a disk in R2 —

this expression was first derived by Han and Wu [52, 53]. A complete derivation of

our nonlocal boundary condition is given in Section B.2 of Appendix B.

3.2 Elasticity

In this section we briefly recall some important facts from tensor algebra, linear

elasticity, and homogenization theory.
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3.2.1 Tensor Algebra

We begin by recalling a few definitions given by Hegg [56, 57]. Let d = 2 or 3 be

the dimension under consideration; then Sym(Rd) is the set of all symmetric linear

mappings from Rd to itself, i.e.,

Sym(Rd) ≡
¶
B ∈ Rd ⊗ Rd : B = BT

©
.

The contraction between two elements B,B′ ∈ Sym(Rd) is defined by

B : B′ ≡ BijB
′
ij,

where here and throughout this chapter we use the Einstein summation convention

that repeated indices are summed from 1 to d. We define an inner product on Sym(Rd)

by

〈B,B′〉 ≡ 1

2
B : B′ =

1

2
Tr(BB′) (3.3)

for B,B′ ∈ Sym(Rd) and where Tr(B) = Bii is the trace of B. The norm induced by

the inner product (3.3) is

‖B‖2 =
1

2
B : B.

The set Sym(Sym(Rd)) is defined as the set of symmetric linear mappings from

Sym(Rd) to itself. If A ∈ Sym(Sym(Rd)) and B ∈ Sym(Rd), then A : B ∈ Sym(Rd)

with elements

(A : B)ij = AijklBkl. (3.4)

We note that if A ∈ Sym(Sym(Rd)), then the elements of A satisfy the major sym-

metries Aijkl = Aklij (since A = AT ) and the minor symmetries Aijkl = Ajikl = Aijlk

for i, j, k, l = 1, . . . , d (the minor symmetries are due to (3.4) and the fact that

A : B ∈ Sym(Rd)).

The symbol ⊗ denotes the tensor product. The tensor product of two vectors q,

q′ ∈ Rd is in Rd ⊗ Rd and has elements

(q⊗ q′)ij = qiq
′
j

for i, j = 1, . . . , d; similarly, the tensor product of two tensors Q, Q′ ∈ Rd ⊗ Rd is in

Rd ⊗ Rd ⊗ Rd ⊗ Rd and has elements

(Q⊗Q′)ijkl = QijQ
′
kl

for i, j, k, l = 1, . . . , d.
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3.2.2 Linear Elasticity

For more details on the topics in this section, see the book by Atkin and Fox [13].

Consider a linearly elastic body which is either a periodic composite material with

unit cell Ω ⊂ Rd or which occupies an open, bounded set Ω ⊂ Rd. Let u(x), ε(x),

and σ(x) denote the displacement, linearized strain tensor, and Cauchy stress tensor,

respectively, at the point x ∈ Ω. Then u ∈ Rd while ε and σ belong to Sym(Rd)

for all x ∈ Ω. By Hooke’s Law, the stress and strain tensor are related through the

linear constitutive relation

σ(x) = C(x) : ε(x), (3.5)

where C ∈ Sym(Sym(Rd)) is the elasticity (or stiffness) tensor. We also assume C is

elliptic for all x ∈ Ω, i.e., there are positive constants a and b such that

B : (C(x) : B′) ≤ a‖B‖‖B′‖ and B : (C(x) : B) ≥ b‖B‖2

for all B, B′ ∈ Sym(Rd). If there are no body forces present, then at equilibrium the

elasticity equations are

∇ · σ(x) = 0, ε(x) =
1

2

Ä
∇u(x) +∇u(x)T

ä
, and ε(x) = C(x) : σ(x); (3.6)

see the book by Milton [88, Chapter 2]. (Analogously to Chapters 2 and 4, these may

also be considered as the quasistatic approximation to the time-harmonic dynamic

elasticity equations if the wavelengths and attenuation lengths of the relevant dis-

placement, strain, and stress fields are much larger than the dimensions of the body

under consideration.)

If the composite is locally isotropic (so its material parameters are independent

of direction), then the local elasticity tensor takes the form

C(x) = λ(x)I⊗ I + 2µ(x)I,

where λ is the Lamé Modulus, µ is the shear modulus, I ∈ Sym(Rd) is the second-order

identity tensor with elements Iij = δij (where δij is the Kronecker delta which is 1

if i = j and 0 otherwise), and I ∈ Sym(Sym(Rd)) is the fourth-order identity tensor

which maps an element in Sym(Rd) to itself under contraction, i.e., I : B = B for all

B ∈ Sym(Rd) [88].
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In this case, Hooke’s Law (3.5) reduces to

Su(x) ≡ σ(x) = λ(x) Tr (ε(x)) I + 2µ(x)ε(x) (3.7)

= λ(x) (∇ · u(x)) I + µ(x)
Ä
∇u(x) +∇u(x)T

ä
, (3.8)

where S : Rd → Sym(Rd) is the linear stress operator that maps the displacement u

to the stress σ (note that S itself depends on x through λ(x) and µ(x)). We provide

a more complete derivation of (3.7) and (3.8) in Section B.1 of Appendix B.

The bulk modulus, Young’s Modulus, and the Poisson Ratio are related to λ and

µ by

κ = λ+
2µ

d
, E =

2µ(dλ+ 2µ)

(d− 1)λ+ 2µ
, and ν =

λ

(d− 1)λ+ 2µ
,

respectively [88, Chapter 2]. As was done by Ammari and Kang [11], throughout this

chapter we assume

µ(x) > 0 and dλ(x) + 2µ(x) > 0. (3.9)

3.2.3 The Effective Elasticity Tensor

As in Chapter 2, we define the average of a tensor-valued function M(x) over a

set M⊂ Rd by

〈M〉M ≡
1

|M|
∫

M
M(x) dx, (3.10)

where |M| denotes the Lebesgue measure of the setM. The effective elasticity tensor

C∗ is defined at sample points x ∈ Ω through

〈σ〉Ω′(x) = C∗(x)〈ε〉Ω′(x), (3.11)

where Ω′(x) is a suitably chosen representative volume element centered at x. When

the composite is periodic, Ω′(x) is typically chosen to be the unit cell Ω; when the

composite fills an open bounded set Ω ⊂ Rd, Ω′(x) is typically a cube centered at

x that is small compared to Ω but large enough to ensure that the sample of the

composite contained within Ω′(x) is representative of the composite as a whole. The

effective tensor can then be defined for the remaining points in the composite by

interpolation — see the review article by Hashin [54] and the book by Milton [88,

Chapter 1] for brief introductions to homogenization theory and the references therein

for more thorough treatments.
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3.3 Uniform Field Relations

In this section we briefly summarize uniform field relations in the context of linear

elasticity. These ideas were first introduced by Hill [58, 60, 61]. The main idea is

contained in the following lemma, which in particular is due to Lurie, Cherkaev, and

Federov [82, 83].

Lemma 3.1 Let V,W ∈ Sym(Rd) be constant and let C ∈ Sym(Sym(Rd)) be the

elasticity tensor of a linearly elastic material in Ω such that C(x) : V = W for all

x ∈ Ω. Then C∗ : V = W as well.

Proof of Lemma 3.1: Let u(x) = Vx+u0, where u0 ∈ Rd is an arbitrary constant.

Then, since V = VT ,

ε(x) =
1

2

Ä
∇u(x) +∇u(x)T

ä
=

1

2
(V + VT ) = V

for all x ∈ Ω. If we set σ(x) ≡ W, then ∇ · σ(x) = ∇ ·W = 0 and σ(x) = W =

C(x) : V = C(x) : ε(x) for all x ∈ Ω. Thus ε(x) = V and σ(x) = W satisfy the

elasticity equations (3.6) in Ω.

Since ε and σ are constant, they satisfy 〈ε〉Ω′(x) = V and 〈σ〉Ω′(x) = W for any

set Ω′(x) ⊂ Ω, particularly if Ω′(x) is a representative volume element centered at

the sample point x. Therefore

W = 〈σ〉Ω′(x) = C∗(x) : 〈ε〉Ω′(x) = C∗(x) : V,

where the second equality holds by the definition of the effective elasticity tensor in

(3.11). This completes the proof.

We now consider n-phase composites consisting of n isotropic and homogeneous

materials with Lamé Moduli λ1, . . . , λn and shear modulus µ (Hill [60, 61] considered

the case n = 2, although his results directly generalize to n-phase composites [88,

Chapter 5]). The local elasticity tensor of such a material is

C(x) = λ(x)I⊗ I + 2µI, (3.12)

where λ(x) = λjχj(x) and χj is the characteristic function of phase j, namely

χj(x) =





1 if x ∈ phase j,

0 otherwise.
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To see that a uniform field relation holds for this material, let V ∈ Sym(Rd) be

constant and orthogonal to I, i.e., 〈V, I〉 = 1
2
V : I = 1

2
Tr(V) = 0. Then, by (3.12)

(see also (3.7)),

C(x) : V = λ(x) Tr(V)I + 2µV = 2µV,

which is constant. Lemma 3.1 then implies

C∗ : V = 2µV⇔ (C∗ − 2µI) : V = 0

for all V ∈ Sym(Rd) orthogonal to I. This implies that the nullspace of C∗ − 2µI at

least contains all tensors V ∈ Sym(Rd) orthogonal to I.

It is well known that if the local elasticity tensor C is symmetric, then the effective

elasticity tensor C∗ is symmetric as well [88, Section 12.10]. Thus C∗ − 2µI is

symmetric. The Fredholm Alternative Theorem states that the nullspace and range

of a tensor D ∈ Sym(Sym(Rd)) orthogonally decompose Rd⊗Rd; in other words, any

element B ∈ Sym(Rd) can be written as Br + Bn, where Br is in the range of D and

Bn is in the nullspace of D. Since the nullspace of the symmetric tensor C∗ − 2µI

contains at least all V ∈ Sym(Rd) orthogonal to I ∈ Sym(Rd), by the Fredholm

Alternative Theorem the range of C∗ − 2µI contains at most all tensors in Sym(Rd)

parallel to I. In other words, C∗ − 2µI is rank-one of the form

C∗ − 2µI = λ∗I⊗ I⇔ C∗ = λ∗I⊗ I + 2µI,

where λ∗ is the effective Lamé Modulus. Therefore, the effective medium with

elasticity tensor C∗ is elastically isotropic with shear modulus µ regardless of the

microstructural complexity (which is encoded in the functions χj) — this was first

recognized by Hill [61] in the two-phase composite case. See the review article of

Milton [87], the work by Grabovsky et al. [42], the book by Milton [88, Chapter 5],

and the thesis by Hegg [56] for collections of additional exact relations derived from

uniform field relations.

Using techniques similar to those outlined in Section 3.4, Hill [60, 61] also showed

that the effective Lamé Modulus λ∗ is given by the exact formula

(λ∗(x) + 2µ)−1 = 〈(λ+ 2µ)−1〉Ω′(x), (3.13)
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where Ω′(x) is a suitably chosen representative volume element centered at the sample

point x ∈ Ω (although Hill [60, 61] only directly worked with the case n = 2, the

formula (3.13) holds for all integers n > 2 as well [88, Chapter 5]).

We note that if the composite is a two-phase periodic or statistically homogeneous

material, then the left- and right-hand sides of (3.13) are independent of x and reduce

to

(λ∗ + 2µ)−1 = 〈(λ+ 2µ)−1〉Ω′

=
1

|Ω′|
∫

Ω′
(λ(x) + 2µ)−1 dx

=
1

|Ω′|
∫

Ω′
(λ1 + 2µ)−1χ1(x) dx +

1

|Ω′|
∫

Ω′
(λ2 + 2µ)−1χ2(x) dx

= (λ1 + 2µ)−1〈χ1〉Ω′ + (λ2 + 2µ)−1〈χ2〉Ω′

= (λ1 + 2µ)−1θ1 + (λ2 + 2µ)−1θ2, (3.14)

where, for j = 1, 2, θj ≡ 〈χj〉Ω′ is the volume fraction of phase j; note that θ1+θ2 = 1.

Therefore, if λ∗ is known (through an experimental measurement, for example), then

the volume fraction of phase 1 is given exactly by

θ1 =
(λ2 − λ∗)(λ1 + 2µ)

(λ2 − λ1)(λ∗ + 2µ)
(3.15)

(where we have used the fact that θ2 = 1− θ1 in (3.14)). In the n-phase case, (3.15)

would be an exact relation between the volume fractions θ1, θ2, . . . , θn rather than an

exact formula for θ1. For example, if n = 3, (3.13) gives the relationship

θ1 =
(λ1 + 2µ)[(λ2 + 2µ)(λ3 − λ∗) + θ2(λ∗ + 2µ)(λ2 − λ3)]

(λ∗ + 2µ)(λ2 + 2µ)(λ3 − λ1)

between θ1 and θ2, where we have also used the relationship θ1 + θ2 + θ3 = 1. If,

in addition, the individual densities ρ1, ρ2, and ρ3 are known and the overall density

ρ∗ = ρ1θ1 + ρ2θ2 + ρ3θ3 has been measured, then the volume fractions θ1, θ2, and θ3

can all be determined exactly, at least in the generic case.

3.4 Exact Volume Fraction

In this section we derive a formula that gives the exact volume fraction occupied

by an inclusion in a body, where our formula depends on a boundary measurement
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of the displacement rather than on a measurement of λ∗ as in (3.15). Let D and Ω

be open, bounded sets in Rd with D ⊂ Ω. Suppose Rd is filled with a linearly elastic,

locally isotropic material with constant shear modulus µ and Lamé Modulus

λ(x) = λ1χD(x) + λ2χRd\D(x). (3.16)

Since the material is locally isotropic, the elasticity tensor is

C(x) = λ(x)I⊗ I + 2µI. (3.17)

We can write Su(x) from (3.8) as

Su(x) =




S1u(x) ≡ λ1 (∇ · u(x)) I + µ

Ä
∇u(x) +∇u(x)T

ä
for x ∈ D,

S2u(x) ≡ λ2 (∇ · u(x)) I + µ
Ä
∇u(x) +∇u(x)T

ä
for x ∈ Rd \D.

(3.18)

According to the elasticity equations in (3.6), the displacement u satisfies





L1u = 0 in D,

L2u = 0 in Rd \D,
u,σ · nD = (Su) · nD continuous across ∂D,

u− f = O(|x|1−d) as |x| → ∞,

(3.19)

where Lju = −(λj + µ)∇(∇ · u) − µ∆u (for j = 1, 2) is the Lamé Operator, nD is

the outward unit normal vector to ∂D, σ = Su is the stress tensor associated with

u, and the function f = ∇g is given and satisfies L2f = L2∇g = 0 for all x ∈ Rd.

To avoid possible technical complications we assume that g is at least three times

continuously differentiable in Rd. The function f represents the “displacement at

infinity”; perhaps the simplest example of such a function is f(x) = x, in which case

g = 1
2
(x · x) + constant. As shown by Ammari and Kang [11, Chapters 9 and 10],

there exists a unique solution u to (3.19) if D is a Lipschitz Domain. For a derivation

of (3.19) from (3.6), see Section B.1 in Appendix B.

Following Hill’s work [60, 61], we assume there is a continuously differentiable

potential φ such that u = ∇φ. In particular, we assume φ and ∇φ are continuous

across ∂D (by (3.19), u = ∇φmust be continuous across ∂D). Also, for i, j = 1, . . . , d,

we have

(∇∇φ)ij =
∂2φ

∂xi∂xj
; (3.20)
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note that the matrix ∇∇φ is symmetric in each phase. We only assume that φ and

∇φ are continuous across ∂D (indeed, as shown by Hill [59], ∂2φ
∂xi∂xj

is discontinuous

across ∂D). Then from (3.6) we have

ε =
1

2

Ä
∇u +∇uT

ä
=

1

2

Ä
∇∇φ+ (∇∇φ)T

ä
= ∇∇φ. (3.21)

From (3.20) and (3.21) we have Tr(ε) = Tr(∇∇φ) = ∆φ, where ∆ = ∇ · ∇ = ∂2

∂xi∂xi

is the Laplacian. Then (3.7) and (3.21) imply

σ(x) = C(x) : ε(x) = λ(x)∆φI + 2µ∇∇φ. (3.22)

Finally, for j = 1 and j = 2 we have

Lju = −(λj + µ)∇ (∇ · ∇φ)− µ∆ (∇φ)

= −(λj + µ)∇ (∆φ)− µ∇ (∆φ)

= −(λj + 2µ)∇(∆φ). (3.23)

By assumption, we have

0 = L2f = −(λ2 + 2µ)∇(∆g)

for all x ∈ Rd, so ∇(∆g) = 0 for all x ∈ Rd. Then we must have ∆g = Cg 6= 0 for

all x ∈ Rd, where Cg is a constant. (The constant Cg is known since g is known;

later we discuss why we must take Cg 6= 0.) Thus the function g must be chosen so

that g = Cg
2

x · x + gh, where gh is harmonic in Rd. This implies that g is infinitely

differentiable in Rd [32, Chapter 2].

Recalling that u = ∇φ and f = ∇g, we see that (3.23) implies that (3.19) becomes





∇(∆φ) = 0 in D and Rd \D,
∇φ, σ · nD = (S∇φ) · nD continuous across ∂D,

∇φ−∇g = O(|x|1−d) as |x| → ∞,
(3.24)

where σ = S∇φ is given in (3.22).

3.4.1 Behavior of ∆φ

In this section we study the behavior of ∆φ. Recall that we assume φ to be at

least continuously differentiable in Rd; this implies that φ and u = ∇φ are continuous
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across ∂D (see (3.24)). According to Ammari and Kang [11, equation (10.2)], if f is

smooth the solution u to (3.19) is smooth in Rd \ D and in D (although it is only

continuous across ∂D).

Since φ is smooth in D and Rd \ D, (3.24) implies that ∆φ is constant in each

phase, i.e.,

∆φ =




C1 in D,

C2 in Rd \D. (3.25)

Recall from (3.6) that ∇ · σ = 0 in Rd. By (3.22), this becomes

0 = ∇ · σ(x)

= ∇ · (λ(x)∆φ(x)I + 2µ∇∇φ(x))

= ∇(λ(x)∆φ(x)) + 2µ∇ · ∇∇φ(x)

= ∇(λ(x)∆φ(x)) + 2µ∆(∇φ(x))

= ∇((λ(x) + 2µ)∆φ(x)). (3.26)

This implies that

(λ(x) + 2µ)∆φ(x) = C ⇔ ∆φ(x) =
C

λ(x) + 2µ
(3.27)

almost everywhere in Rd, where C is a constant — see the book by Evans and Gariepy

[33, Section 5.6.1]. Then, due to (3.25) and (3.27), we have

∆φ =





C1 =
C

λ1 + 2µ
in D,

C2 =
C

λ2 + 2µ
in Rd \D.

(3.28)

By (3.24), we have ∇φ − ∇g → 0 as |x| → ∞; thus ∆φ −∆g → 0 as |x| → ∞.

Since ∆g = Cg, ∆φ → Cg as |x| → ∞. Since λ(x) = λ2 for large enough x, we take

the limit of (3.27) and find that

C = lim
|x|→∞

((λ(x) + 2µ)∆φ(x)) = (λ2 + 2µ)Cg. (3.29)

Finally, (3.16), (3.27), and (3.29) imply that

∆φ = ∇ · u =





C1 =

Ç
λ2 + 2µ

λ1 + 2µ

å
Cg in D,

Cg in Rd \D.
(3.30)
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3.4.2 Main Result

The divergence theorem and (3.30) imply

∫

∂Ω
u · nΩ dS =

∫

Ω
∇ · u dx

=
∫

D
∇ · u dx +

∫

Ω\D
∇ · u dx

= C1|D|+ C2|Ω \D|

= C1|D|+ C2(|Ω| − |D|)

= (C1 − C2)|D|+ C2|Ω|.

Therefore the volume fraction of the inclusion is given by the formula

|D|
|Ω| =

1

C1 − C2

Ç
1

|Ω|
∫

∂Ω
u · nΩ dS − C2

å
, (3.31)

where C1 and C2 are related to Cg by (3.30), respectively. Since we are assuming we

have complete knowledge of u around ∂Ω from our measurement, and since Cg = ∆g

is given, (3.31) allows us to exactly determine |D|/|Ω|. Note also that we must take

Cg 6= 0. If Cg = 0, then (3.30) implies that C1 = C2 = 0, which makes the formula in

(3.31) undefined. We have thus proved the following theorem.

Theorem 3.1 Let D and Ω be open, bounded sets in Rd (d = 2 or 3) such that

D ⊂ Ω and ∂D, ∂Ω are smooth. Suppose Rd is filled with a material described by the

local elasticity tensor given by (3.17) and (3.16). Also suppose f = ∇g is given and

L2f = −(λ2 + µ)∇(∇ · f)− µ∆f = 0 (⇔ ∆g = Cg 6= 0) for all x ∈ Rd. Assume that

u · nΩ is known around ∂Ω. Then the volume fraction of the inclusion D is given by

(3.31).

3.5 Finite Medium

Consider again the linear elasticity problem from Section 3.4, namely that of an

inclusion D in a body Ω which in turn is embedded in an infinite medium Rd \Ω. The

isotropic and homogeneous materials in D and Rd \D have Lamé Moduli λ1 and λ2,

respectively; we also assume that both materials have the same shear modulus µ. If

a displacement f = ∇g is applied at infinity, then the displacement u = ∇φ satisfies

(3.19) (so φ satisfies (3.24)). Recall that we require L2f = 0 in Rd, which implies

∆g = Cg in Rd. Since g and f = ∇g are smooth in Rd, g, f , and S2f are continuous
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up to ∂D from outside D; in other words the limits g|∂D+ , f |∂D+ , and (S2f)|∂D+ exist

and are finite at each point of ∂D, where h|∂D+ and h|∂D− denote the restriction of

the function h to ∂D from outside and inside D, respectively.

We now derive a boundary condition P so that the solution u′ to





L1u
′ = 0 for x ∈ D,

L2u
′ = 0 for x ∈ Ω \D,

u′,σ′ · nD = (Su′) · nD continuous across ∂D,

P(u′0, t
′
0, f0,F0) = 0 on ∂Ω

(3.32)

is equal to the solution u to (3.19) restricted to Ω, i.e., u′ = u|Ω; we have defined

u′0 ≡ u′|∂Ω− , t′0 ≡ (σ′|∂Ω−) ·nΩ, f0 ≡ f |∂Ω+ , and F0 ≡ ((S2f)|∂Ω+) ·nΩ. (3.33)

This allows us to apply our formula (3.31) to the problem (3.32), which is posed

on the finite domain Ω. For details on a related problem (including proofs of the

well-posedness of problems similar to (3.32)), see Han and Wu’s work [52, 53].

To derive the boundary condition P, we begin by considering the following exterior

problem: 



LEũE = 0 for x ∈ Rd \ Ω,

ũE = ũ on ∂Ω,

ũE → 0 as |x| → ∞,
(3.34)

where LEu = −(λE + µ)∇(∇ · u)− µ∆u, λE = λ2, and ũ is a given displacement on

∂Ω. Ultimately we wish to find the normal stress distribution (‹σE|∂Ω+) · nΩ around

∂Ω given ũ — this mapping from the displacement on the boundary to the traction

on the boundary is defined as the Exterior Dirichlet-to-Neumann Map.

Definition 3.1 The Exterior Dirichlet-to-Neumann (DtN) Map ΛE is defined by

ΛE(ũE|∂Ω+) = ΛE(ũ) ≡ (‹σE|∂Ω+) · nΩ = ((SũE)|∂Ω+) · nΩ, (3.35)

where ũE solves (3.34) and ‹σE and SũE are given by (3.8) (with λ(x) = λE).

3.5.1 Equivalent Boundary Value Problems

We now return to the problem (3.19), which has a unique solution u. We introduce

exterior fields

uE(x) ≡ u|Rd\Ω and σE(x) ≡ σ|Rd\Ω; (3.36)
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we also introduce interior fields

uI(x) ≡ u|Ω and σI(x) ≡ σ|Ω. (3.37)

Recall that λE = λ2.

Lemma 3.2 Define ũE ≡ uE − f where uE is defined in (3.36) and f = ∇g satisfies

LEf = 0 in Rd. Then ũE solves (3.34) with ũ = (uI |∂Ω−) − f0, where f0 = f |∂Ω+ is

defined in (3.33).

Proof of Lemma 3.2: First, since LEuE = 0 in Rd \Ω (by (3.19)) and LEf = 0 in

Rd \ Ω, we have

LEũE = LE(uE − f) = LEuE − LEf = 0

in Rd \ Ω as well. Second, recall from (3.34) that ũ ≡ ũE|∂Ω+ ≡ (uE|∂Ω+) − f0.

Since λE = λ2, u must be continuous across ∂Ω, i.e., uE|∂Ω+ = uI |∂Ω− . Hence

ũ = (uI |∂Ω−)− f0. Finally, ũE = uE − f → 0 as |x| → ∞ by (3.19). Thus ũE solves

(3.34) with ũ = (uI |∂Ω−)− f0. This completes the proof.

Theorem 3.2 Suppose u solves (3.19) with f = ∇g and g = Cg
2

x · x + gh where

Cg 6= 0 is an arbitrary constant and ∆gh = 0 in Rd. Define uE, σE and uI , σI as in

(3.36) and (3.37), respectively. Finally, define ũE = uE − f . Then uI satisfies





L1uI = 0 in D,

L2uI = 0 in Ω \D,
uI ,σI · nD = (SuI) · nD continuous across ∂D,

P (uI |∂Ω− , (σI |∂Ω−) · nΩ, f0,F0) = 0 on ∂Ω,

(3.38)

where

P (uI |∂Ω− , (σI |∂Ω−) · nΩ, f0,F0) ≡ (σI |∂Ω−) · nΩ − ΛE((uI |∂Ω−)− f0)− F0 (3.39)

and f0 and F0 are defined in (3.33).

Proof of Theorem 3.2: By definition (see (3.19) and (3.37)), uI satisfies the

differential equations and continuity conditions in (3.38). By Lemma 3.2, ũE = uE−f

solves (3.34) with ũ = (uI |∂Ω−)− f |∂Ω+. By (3.35), then, we have

(‹σE|∂Ω+) · nΩ = ΛE(ũ) = ΛE((uI |∂Ω−)− f0). (3.40)
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Since SE is linear, we have

(‹σE|∂Ω+) · nΩ = ((SEũE)|∂Ω+) · nΩ = ((SEuE)|∂Ω+) · nΩ − F0. (3.41)

Then (3.40) and (3.41) imply

((SEuE)|∂Ω+) · nΩ = ΛE((uI |∂Ω−)− f0) + F0. (3.42)

Since λE = λ2, the traction across ∂Ω must be continuous, i.e.,

((SEuE)|∂Ω+) · nΩ = (σE|∂Ω+) · nΩ = (σI |∂Ω−) · nΩ.

Inserting this into (3.42) gives

ΛE((uI |∂Ω−)− f0) + F0 = (σI |∂Ω−) · nΩ. (3.43)

We define P(uI |∂Ω− , (σI |∂Ω−) · nΩ, f0,F0) as in (3.39). Then, due to (3.43), the

interior part of the solution u, namely uI , satisfies (3.38). This completes the proof.

We can thus identify the solution u′ of (3.32) with uI which solves (3.38), i.e.,

u′ = uI = u|Ω. In other words, the solution to (3.32) in the finite domain Ω will be

exactly the same as if Ω were placed in an infinite medium with Lamé Parameters

λE and µ and a displacement ∇g were applied at infinity. Therefore, if we apply the

boundary condition

P(u′0, t
′
0, f0,F0) = t′0 − ΛE(u′0 − f0)− F0 = 0 (3.44)

on ∂Ω, where u′0, t′0, f0, and F0 are defined in (3.33), we can use the measurement of

u′ · nΩ around ∂Ω (i.e., u′0 · nΩ) along with (3.31) (with u replaced by u′) to find the

volume fraction occupied by D.

Remark 3.1 Since the geometry inside the body Ω is unknown, we cannot write σ′·nΩ

in terms of u′ (since we would not know whether or not to use λ1 or λ2 in (3.8)).

Practically, we would typically apply a displacement u′0 around ∂Ω with a known f

and measure the resulting traction t′0 around ∂Ω. The displacement u′0 and traction

t′0 around ∂Ω must be tailored so that P(u′0, t
′
0, f0,F0) = 0 — see (3.44).
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3.6 2-D Example

The results presented here were first derived in a slightly different form by Han

and Wu [52, 53]. We consider the case when d = 2 and Ω is a disk of radius R

centered at the origin, denoted BR. In this geometry, it is possible to determine ΛE

exactly by first solving (3.34) for the displacement ũE in terms of ũ = ũE|∂BR and

then computing the corresponding traction around ∂BR, namely

(‹σE|∂B+
R

) · nBR =
Å‹σE · x

R

ã∣∣∣∣
∂B+

R

=
Å
SE(ũE) · x

R

ã∣∣∣∣
∂B+

R

.

We state the main results here and defer the calculations to Section B.2 in Ap-

pendix B. For more general regions, ΛE may have to be computed numerically.

3.6.1 Exterior Dirichlet-to-Neumann Map

We denote the polar components of ũE by ũE,r and ũE,θ. It is convenient to write

ũE(r, θ) = ũE,r(r, θ) + iũE,θ(r, θ),

where i =
√
−1; see Section B.2 in Appendix B and the books by Muskhelishvili [99]

and England [30] for more details.

We begin by expanding ũ(θ) = ũr(θ) + iũθ(θ) in a Fourier Series, namely

ũr(θ) + iũθ(θ) =
∞∑

n=−∞
ũneinθ, where ũn =

1

2π

∫ 2π

0
(ũr(θ

′) + iũθ(θ
′)) e−inθ′ dθ′,

(3.45)

for n ∈ Z. Then it can be shown that

ũE,r(r, θ) + iũE,θ(r, θ)

= ũ0Rr
−1 +

∞∑

n=1

ũ−nR
n−1r−(n−1)e−inθ

+
∞∑

n=1

Ç
ũnR

n+1r−(n+1) +

Ç
n− 1

ρE

å
ũ−nR

n−1r−(n+1)
Ä
r2 −R2

äå
einθ

(3.46)

for r ≥ R and where ρE ≡ (λE + 3µ)/(λ+ µ) — see Appendix B.

Next we recall from (3.35) that ΛE(ũ) = (‹σE|∂B+
R

) · nBR . In polar coordinates,

the components of the traction around the boundary of the disk of radius r ≥ R are

σ̃E,rr(r, θ) + iσ̃E,rθ(r, θ) (where σ̃E,rr is the radial component of the traction and σ̃E,rθ
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is the angular component of the traction). In particular, the traction around ∂BR is

given by

σ̃E,rr(R
+, θ) + iσ̃E,rθ(R

+, θ) = ΛE(ũ) =
∞∑

n=−∞
σ̃neinθ, (3.47)

where σ̃E,rr(R
+, θ) + iσ̃E,rθ(R

+, θ) = (σ̃E,rr + iσ̃E,rθ)|∂B+
R

,





σ̃n = −2µ

R
(n+ 1)ũn (n ≥ 0),

σ̃−n = − 2µ

RρE
(n− 1)ũ−n (n ≥ 1),

(3.48)

and the coefficients ũn are defined in (3.45).

3.6.2 Nonlocal Boundary Condition

Next, we derive an expression for the boundary condition P(u′0, t
′
0, f0,F0) = 0,

where P is defined in (3.44). We begin by expanding f0 in a Fourier Series around

∂BR; we have

(fr + ifθ)|∂B+
R

= fr(R
+, θ) + ifθ(R

+, θ) = f0,r(θ) + if0,θ(θ) =
∞∑

n=−∞
f0,neinθ, (3.49)

where

f0,n =
1

2π

∫ 2π

0
(f0,r(θ

′) + if0,θ(θ
′)) e−inθ′ dθ.

Next we define

F ≡ SEf = SE∇g = λE∆gI + 2µ∇∇g,

where the last equality holds by (3.18). Recall from (3.33) that F0 = (F|∂B+
R

) · nBR .

In complex notation, the normal components of F around the boundary of a disk of

radius r ≥ R are given by Frr(r, θ)+iFrθ(r, θ), where Frr is the radial component and

Frθ is the angular component. We can expand (Frr + iFrθ)|∂B+
R

in a Fourier Series as

(Frr+iFrθ)|∂B+
R

= Frr(R
+, θ)+iFrθ(R

+, θ) = F0,r(θ)+iF0,θ(θ) =
∞∑

n=−∞
F0,neinθ, (3.50)

where

F0,n =
1

2π

∫ 2π

0
(F0,r(θ

′) + iF0,θ(θ
′)) e−inθ′ dθ′.

Next we expand g in a Fourier Series around the disk of radius r ≥ R as

g(r, θ) =
∞∑

n=−∞
gn(r)einθ, where gn(r) =

1

2π

∫ 2π

0
g(r, θ′)e−inθ′ dθ′.
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We can write the Fourier Coefficients F0,n in terms of the coefficients gn as

F0,n = (λE + 2µ)
∂2gn(r)

∂r2

∣∣∣∣∣
r→R+

+ λE

(
1

R

∂gn(r)

∂r

∣∣∣∣∣
r→R+

− n2

R2
gn(R+)

)

+ 2µ

(
− n
R

∂gn(r)

∂r

∣∣∣∣∣
r→R+

+
n

R2
gn(R+)

)
.

(3.51)

Returning to (3.39), recall that (u′|∂B−R ) − f |∂B+
R

= u′0 − f0 = ũ, where u′ solves

(3.32). Thus if we write

(u′r + iu′θ)|∂B−R = u′r(R
−, θ) + iu′θ(R

−, θ) = u′0,r(θ) + iu′0,θ(θ) =
∞∑

n=−∞
u′0,neinθ,

where

u′0,n =
1

2π

∫ 2π

0

Ä
u′0,r(θ

′) + iu′0,θ(θ
′)
ä

einθ′ ,

then u′0,n−f0,n = ũn — see (3.45). The components of the traction (σ′|∂B−R )·nBR = t′0

can be written in polar coordinates as t′0,r(θ) + it′0,θ(θ). This can be expanded in a

Fourier Series as well, namely

(σ′rr + iσ′rθ)|∂B−R = σ′rr(R
−, θ) + iσ′rθ(R

−, θ) = t′0,r(θ) + it′0,θ(θ) =
∞∑

n=−∞
t′0,neinθ,

where

t′0,n =
1

2π

∫ 2π

0

Ä
t′0,r(θ

′) + it′0,θ(θ
′)
ä

e−inθ′ dθ′.

Recalling the Fourier Expansions of f0 given in (3.49), F0 given in (3.50) (and

(3.51)), and ΛE(ũ) = ΛE(u′0 − f0) given in (3.47)–(3.48), the boundary condition

P(u′0, t
′
0, f0,F0) = 0 is equivalent to

t′0 − F0 − ΛE(u′0 − f0) = 0

⇔
∞∑

n=−1

Ç
t′0,n − F0,n +

2µ

R
(n+ 1)

Ä
u′0,n − f0,n

äå
einθ

+
∞∑

n=2

Ç
t′0,−n − F0,−n +

2µ

RρE
(n− 1)

Ä
u′−n − f0,−n

äå
e−inθ = 0.

(3.52)

Therefore we have the following relationships between the Fourier Coefficients of the

polar components of the displacement, traction, and applied stress around ∂BR:




t′0,n − F0,n +
2µ

R
(n+ 1) (u′n − f0,n) = 0 (n ≥ −1),

t′0,−n − F0,−n +
2µ

RρE
(n− 1)

Ä
u′−n − f0,−n

ä
= 0 (n ≥ 2).

(3.53)
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Remark 3.2 Recall from (3.32) that t′0 is the traction around ∂BR due to the applied

displacement u′0. In practice, one could consider applying a displacement u′0 around

∂Ω with a known f and then measuring t′0 around ∂BR. The applied displacement u′0

and measured traction t′0 have to be such that (3.52) (and, hence, (3.53)) holds.

3.6.3 Previous Results

Previously, Han and Wu [52, 53] also derived an expression for the Exterior DtN

Map ΛE(ũ). They found the solution ũE to (3.34) by a method slightly different

from the one we used; they then computed the Cartesian Components of the traction‹σE · nΩ around ∂BR. In particular, if we denote the Cartesian Components of ũE by

ũE and ṽE, the Cartesian Components of ũE|∂B+
R

= ũ by ũ and ṽ, and the Cartesian

Components of the traction (‹σE|∂B+
R

) ·nBR by X̃ and ‹Y , then ΛE(ũ) = ΛE(ũ+ iṽ) =

X̃ + i‹Y . In particular, Han and Wu [53, equations (29) and (30)] showed that

X̃ =
2 + 2η

1 + 2η

µ

πR

∞∑

n=1

∫ 2π

0

d2ũ(θ′)

dθ′2
cosn(θ − θ′)

n
dθ′

− 2η

1 + 2η

µ

πR

∞∑

n=1

∫ 2π

0

d2ṽ(θ′)

dθ′2
sinn(θ − θ′)

n
dθ′;

‹Y =
2 + 2η

1 + 2η

µ

πR

∞∑

n=1

∫ 2π

0

d2ṽ(θ′)

dθ′2
cosn(θ − θ′)

n
dθ′

+
2η

1 + 2η

µ

πR

∞∑

n=1

∫ 2π

0

d2ũ(θ′)

dθ′2
sinn(θ − θ′)

n
dθ′

(3.54)

where ũ(θ′) = ũE(R+, θ′), ṽ(θ′) = ṽE(R+, θ′), and η = µ/(λE + µ). Also see the

books by Muskhelishvili [99, Section 83] and England [30, Section 4.2] for solutions to

problems related to (3.34) based on potential formulations. In Section B.3 Appendix B

we show that our formulas (3.47)–(3.48) agree with (3.54) as long as ũ is smooth

enough.



CHAPTER 4

SENSITIVITY OF ANOMALOUS

LOCALIZED RESONANCE

PHENOMENA TO

DISSIPATION

In this chapter we study the effects of placing charge density distributions in the

vicinity of a superlens, which, roughly speaking, is a slab of material with a negative

index of refraction. We will see that the electrical power dissipated in the lens has

quite interesting behavior.

4.1 Introduction

No matter how well a conventional lens is constructed, it cannot focus light to an

arbitrarily small point; in particular, the best resolution one can expect from even

a perfectly constructed lens is on the order of λ/2, where λ is the wavelength of

the light being used to image the object [37, 109]. In general there are two types

of waves present when an object is illuminated: propagating waves and evanescent

waves. Propagating waves can be collected and focused by conventional lenses, but

evanescent waves, which contain information about the finest details of the object to

be imaged, decay exponentially in amplitude away from the object and thus cannot

be focused by a conventional lens [37, 95, 109]. Pendry [109] pointed out that this

limitation of lenses to focus light to an arbitrarily small point is a physical restriction

that cannot be reduced by using a larger aperture or by constructing a perfect lens.

For example, in vacuum green light has a wavelength of about 500 nanometers.

Thus if one uses green light to illuminate an object and a conventional lens for imaging,

the best resolution one can expect is approximately 250 nanometers; in other words,

the smallest objects that could be distinguished in this setup are on the order of 250

nanometers in size. Many objects of biological interest, such as DNA and proteins,
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are smaller than this (many proteins can fit in a sphere with a radius on the order

of a few tens of nanometers [31]), so an improvement in the resolving power of lenses

would be welcomed by many people.

Pendry [109] suggested that certain materials, known as negative index materials

(due to their negative index of refraction), could be used to construct superlenses

with perfect resolving power; such lenses would be able to image arbitrarily small

objects perfectly, with no limitation on the resolution. Pendry claimed that such a

lens would operate by collecting and focusing both propagating waves and evanescent

waves. In particular, he argued that a superlens would amplify the evanescent waves

(in contrast to conventional lenses, in which evanescent waves decay), thus allowing

the finest details of the object to be imaged. Pendry also noted that this amplification

does not violate conservation of energy since evanescent waves do not transport any

energy.

The superlens discussed by Pendry [109] was in fact first formally studied by

Veselago in 1967 [121]. The geometry Veselago studied is illustrated in Figure 4.1.

It consists of a slab of material with dielectric constant (relative permittivity) ε

and relative permeability µ inserted in vacuum (which has dielectric constant 1 and

relative permeability 1). In the surrounding medium (vacuum), the index of refraction

is n0 = 1; the index of refraction in the slab is n = ±√εµ. As discussed by Veselago,

if ε and µ are both positive, then the positive sign must be chosen for n to ensure

causality; on the other hand, if ε and µ are both negative, then the negative sign

must be chosen for n to preserve causality. Veselago showed that materials with

ε = µ = −1 (hence with n = −1) have quite interesting behavior.

For example, consider Figure 4.1. We have a slab of material located in the region

0 ≤ x ≤ d with index of refraction n surrounded by vacuum; there is a point source

located at the point (−l, 0). In Figure 4.1(a), we trace the trajectories of four light

rays as they pass through a slab with index of refraction n = 2. Even though there

is a slight bending of the rays at the interfaces of the lens due to Snell’s Law, the

rays move farther apart as they travel from left to right. In particular, the rays on

each side of an interface are on opposite sides of the normal to that interface. In

Figure 4.1(b), we trace the trajectories of four rays in the case when the slab has an



84

source

l d d− l

n = 1 n = 2 n = 1

source

l d d− l

l

n = 1 n = -1 n = −1

(a) (b)

Figure 4.1. In this figure, we illustrate the behavior of light rays as they pass through
a conventional (positive-index) slab lens and a slab superlens (with a negative index
of refraction. (a) This is a plot of a slab with index of refraction n = 2 inserted in
vacuum (with index of refraction 1). The rays are traced using Snell’s Law and the
geometric optics approximation. Reflected waves are shown as dashed lines. (b) This
is the same plot as (a) but now the slab has an index of refraction n = −1. Note that
there are no reflected waves in this case.

index of refraction n = −1. Veselago showed that Snell’s Law still holds in this case,

so that the rays on each side of an interface appear on the same side of the normal

to the interface. Also, the rays focus at the points (l, 0) and (2d− l, 0). This slab is

impedance matched with vacuum, so there are no reflected waves [109, 121].

Veselago deemed materials with negative ε and µ left-handed materials since the

electric field, magnetic field, and wave vector form a left-handed set in these materials

(they form a right-handed set in materials with a positive index of refraction). He

also showed that the phase velocity is negative in the slab (i.e., from right to left

in Figure 4.1(b)) but that the Poynting Vector, which gives the direction of energy

transport, points from left to right in Figure 4.1(b). In other words, for a monochro-

matic wave in such a material the phase velocity is in the direction opposite to the

direction of energy flow. The Doppler Effect is reversed in left-handed materials, and

such materials also have several other interesting properties [121].

Pendry’s [109] suggestion that a slab like that in Figure 4.1(b) could amplify

evanescent waves and produce images with superresolution created quite a controversy
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— see the article by Minkel [95]. Garcia and Nieto-Vesperinas [37] showed that

there were mistakes in Pendry’s work, such as an inconsistent choice of the sign of

the wavenumber. However, there is an even more fundamental issue, discovered by

Nicorovici, McPhedran, and Milton in 1994 [104].

From now on we follow Nicorovici et al. [104] and Milton, Nicorovici, McPhedran,

and Podolskiy [94] and consider a cylindrical superlens in the quasistatic regime, in

which the wavelengths and attenuation lengths of the electric and magnetic fields

are much larger than relevant dimensions of the body (we review the results for the

Veselago Slab Lens later in this section). See Chapter 2 for more on the quasistatic

approximation.

The geometry of the problem is illustrated in Figure 4.2. In particular, Nicorovici

et al. [104] and Milton et al. [94] considered a core of radius rc with dielectric constant

εc surrounded by a shell of inner radius rc and outer radius rs with dielectric constant

εs; this in turn was embedded in a medium with dielectric constant εm which extended

out to rm. If εc = εm = 1 and εs = −1, this situation is analogous to the Veselago Lens

mentioned above. (Milton, Nicorovici, McPhedran, and Podolskiy [94] also studied

the slab lens — we review their results for that case, which are very similar to their

results for the cylindrical case, later in this section.) As pointed out by Nicorovici et

al. [104] and Milton et al. [94], the above choice of parameters is not feasible since

the quasistatic equations (discussed below — see (4.2)) do not have a solution unless

the lens in the annulus (or the slab) has some loss. Loss is typically represented by a

small positive imaginary part in the dielectric constant.

In particular, the dielectric constant is given by

ε(r) =





εc for 0 ≤ r < rc,

εs for rc ≤ r ≤ rs,

εm for rs < r ≤ rm.

We take εs to be of the form εs = −1 + iδ, where δ > 0 represents the loss in the lens.

In the quasistatic regime, the complex potential V satisfies

−∇ · [ε(r)∇V (r, θ)] = ρ, (4.1)

where ρ represents a charge density distribution. Similar to Chapter 2, the electric

field is given by E = −∇V and the displacement field is given by D = εE. The
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rc
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core

εs
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Figure 4.2. This is a sketch of the cylindrical superlens. The core is a cylinder of
radius rc containing a material with dielectric constant εc; the shell or superlens is
contained within the annulus rc < r < rs and has a dielectric constant of εs = −1+iδ
where δ > 0 is small; the matrix extends out to rm (which we generally take to be
quite large) and has a dielectric constant of εm.

complex permittivity ε is related to the complex conductivity σ from Chapter 2 by

ε = (i/ω)σ. See Section C.1 in Appendix C for more on this.

Following Nicorovici et al. [104] (also see the work by Milton et al. [94]), we take

ρ to be a dipole located at a distance r0 from the origin with rs < r0 < rm. Although

Nicorovici et al. [104] and Milton et al. [94] presented numerous interesting results,

we present only a selection of them here. We should also point out that the paper by

Nicorovici et al. [104] contains a minor error, but it was later corrected by Milton et

al. [94]; however, the results of Nicorovici et al. [104] still hold.

Nicorovici, McPhedran, and Milton assumed that ρ was a dipole scaled in such a

way that the potential due to ρ was given by 1/(z − r0), where z = reiθ = x + iy is

a complex variable and the dipole was located at the point (r0, 0). They then used

separation of variables and the requirements that the potential V and the normal

displacement −ε∂V
∂r

must be continuous across material boundaries to derive the

solution for the potential in the core, shell, and matrix.

Their first result is as follows. Define r∗ ≡ r2
s/rc > rs, and suppose that r0 >

r∗. Then the response of the coated cylinder (the core/shell configuration) to this
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applied (quasistatic) dipole field will be exactly the same as if the coated cylinder

were replaced by a solid cylinder of radius r∗ with dielectric constant εc [94, 104]. In

particular, if εc = εm, then the annulus in rc < r < rs will be completely invisible

to external observers. We note that this result holds for any applied quasistatic

field with sources outside the radius r∗, not just dipole sources. In Figure 4.3(a) we

provide a contour plot of the real part of V in the case when εc = 4, εm = 1, and

εs = −1 + i10−12. Figure 4.3(b) is a contour plot of the real part of the potential in

the case when only a solid cylinder of radius r∗ and dielectric constant εc is present.

Note the similarity between Figures 4.3(a) and (b) outside of the radius r∗. Note also

the similarity between the potential in the core in Figure 4.3(a) and the potential in

the solid cylinder in Figure 4.3(b). Figure 4.4 is the same as Figure 4.3, except in

this case we take εc = εm = 1. Notice that the annular lens is essentially invisible to

an external observer in this case, and that the potentials in Figures 4.4(a) and (b)

are the same all the way up to the radius rs. Finally, note the similarity of the

potential inside the radius rc in Figure 4.4(a) with the potential inside the radius r∗

in Figure 4.4(b). Figures 4.3 and 4.4 were created using equations (2.1), (2.3), (2.17),

and (3.7) from the work by Milton et al. [94] (we cut off the sums at N = 100).

The potential due to a dipole located at (r0, 0) with a solid cylinder of radius r∗ and

dielectric constant εc centered at the origin can be solved using the method of images

[63, Chapter 4], which can be described as follows. If the dipole is located at the point

(r0, 0), consider an image dipole located at the point (ri, 0), where (ri, 0) = (r2
∗/r0, 0)

is the image of the point (r0, 0) under reflection through the circle of radius r∗ centered

at the origin. (One must also take into account the reflection of the dipole moment

through the circle of radius r∗, but for our purposes the location of the image dipole

is sufficient.) Figure 4.5 provides an illustration of the method of images.

What Nicorovici et al. [104] noticed was that the image dipole, located at (ri, 0) =

(r2
∗/r0, 0), was inside the shell if and only if r0 > rcrit ≡ r3

s/r
2
c . To see this, note that

ri =
r2
∗
r0

=
r4
s

r0r2
c

=

Ç
rcrit

r0

å
rs,

so ri < rs if and only if r0 > rcrit. If ri > rs, the image dipole would be located in

the matrix in the physical configuration (the core surrounded by the shell). In other

words, the potential would have a singularity at (ri, 0) in the matrix in addition to the
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Figure 4.3. We illustrate the nonresonant potential in the case when the core and
the surrounding medium have different dielectric constants. (a) We plot the real part
of the potential V when the superlens is present. The dipole is located at the point
(r0, 0), where r0 > rcrit. The boundaries of the core and shell are illustrated by the
inner and outer solid white circles, respectively; the dashed circle at the radius r∗ is
drawn for reference. (b) The corresponding plot of the real part of the potential V
when a solid cylinder of radius r∗ = r2

s/rc with dielectric constant εc = 4 is present.
Note that both figures are the same outside the radius r∗ (shown by the dashed line
in (a) and the solid line in (b)). The relevant parameters are: rc = 1, rs = 2, r∗ = 4,
rcrit = 8, r0 = 12, εc = 4, εs = −1 + i10−12, and εm = 1. The values of the potential
range from −0.1008 (blue) to 0.1051 (red).
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Figure 4.4. This figure is the same as Figure 4.3, except now we have taken
εc = εm = 1. The values of the potential are between −0.1179 (blue) and 0.0833
(red). In (b) we plot a circle of radius rs (white dashed curve) for reference.

physical singularity at (r0, 0). This leads to a contradiction [94, 104]. In particular,

suppose rs < ri < r̃ < r∗ < r0. Then, since there are no physical sources in the

annulus rs < r < r̃ and the real and imaginary parts of the potential are harmonic

there due to (4.1), the maximum principle implies that the real and imaginary parts

of the potential must attain their maximum values on the boundary of this annulus,

namely at r = rs or r = r̃ [32, Chapter 2]. If the real or imaginary part of the

potential diverges at r = ri in the limit as δ → 0+, then the maximum of the real

or imaginary part of the potential (which occurs at r = rs or r = r̃) must diverge in

this limit as well. In other words, there cannot be an isolated singularity at the point

(ri, 0). Finally, note that this image dipole is only used to solve for the potential in

the matrix; thus if the image dipole is in the shell or core so that ri < rs there is no

problem — the shell potential does not contain this singularity.

This is what leads to the phenomenon of anomalous localized resonance: as δ →
0+, the potential diverges in regions with sharp boundaries not defined by physical

boundaries between different media; outside these regions the potential converges to a

smooth potential (we discuss this more below). A dramatic illustration of this is given
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Figure 4.5. This figure illustrates the method of images. The source (black dot),
located at the point (r0, 0), is reflected through the circle of radius r∗ (solid circle)
to obtain an image source (black triangle) inside the circle of radius r∗. The circle of
radius rcrit is drawn as a black dashed curve. The outer and inner boundaries of the
shell (at rs and rc, respectively) are drawn as red and blue dashed curves, respectively,
for reference. (a) Here the source is located beyond the critical radius, so r0 > rcrit.
Thus the image dipole is located inside the shell (i.e., ri < rs). (b) The source is
located within the critical radius (but outside the radius r∗), so rs < r0 < rcrit. The
image dipole is therefore located outside of the shell (i.e., ri > rs).
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in Figure 4.6, which is based on Figure 4 in the work of Milton et al. [94]. Figure 4.6(a)

is a plot of the real part of the potential when rs < r0 < rcrit and εc 6= εm. Note

that the resonance is localized to an annular region around the boundary of the shell.

Outside of this resonant region the potential is smooth — in particular, for r > r∗,

the potential in Figures 4.6(a) and (b) is the same in the limit δ → 0+. Also, near

the boundaries of the resonant region, the potential looks suspiciously like a reflected

version of the dipole source (it can be rigorously shown that the potential does indeed

converge to a reflected version of the dipole — see below for more on this). This was

discovered in 1994 by Nicorovici et al. [104], and, as mentioned by Milton et al. [94],

it may have been the first observation of perfect imaging of a point source.

Finally, note that r∗ takes the place of rcrit when εc = εm since there is no image

dipole in that case (the equivalent cylinder with dielectric constant εc = εm is really

just part of the matrix in that case). In Figure 4.7 we plot the (a) real and (b)

imaginary parts of the potential in the case when εc = εm = 1 and rs < r0 < r∗.
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Figure 4.6. This figure is the same as Figure 4.3, except now the dipole is located
within the critical radius, i.e., rs < r0 < rcrit. In particular, we took r0 = 6 and
rcrit = 8. The values of the potential in [−1, 1] are displayed on a color scale going
from dark blue (V ≤ −1) to dark red (V ≥ 1). The white dot represents the location
of the dipole at the point (r0, 0).
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Figure 4.7. The parameters used in this figure are exactly the same as those in
Figure 4.4, except now the dipole is located within the critical radius, i.e., rs < r0 < r∗
(since εc = εm = 1, the critical radius is now r∗). In particular, we took r0 = 3 and
r∗ = 4. The values of the potential in [−1, 1] are displayed on a color scale going from
dark blue (V ≤ −1) to dark red (V ≥ 1). The white dot represents the location of
the dipole at the point (r0, 0). (a) The real part of the potential — note the resonant
annulus around the boundary of the core and the (nearly) perfect and magnified
image dipoles near the boundaries of the resonant layer. (b) The imaginary part of
the potential — note that the resonant annulus surrounds the boundary of the shell.
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Figure 4.7 is also based on Figure 4 from the work of Milton et al. [94]. Notice

that there are resonant annuli around the boundary of the shell and around the

boundary of the core. In the case εc 6= εm there is no resonant region around the

core. Figures 4.6 and 4.7 were created using equations (2.1), (2.3), (2.17), and (3.7)

from the work by Milton et al. [94] (we cut off the sums at N = 100).

As shown by Milton and Nicorovici [91], perhaps the most surprising result is that

a polarizable dipole (one whose dipole moment depends on the external field acting

on the dipole) becomes cloaked in the limit as δ → 0+ if it is close enough to the

lens. In particular, suppose an external field with sources located only outside of the

radius rcrit is applied. Then, if εc = εm = 1 the polarizable dipole (and any finite

collection of polarizable dipoles) will be cloaked in the limit δ → 0+ as long as it is

located within the annulus rs < r <
»
r3
s/rc. See the works by Milton and Nicorovici

[91] and Nicorovici, McPhedran, Botten, and Milton [108] for numerical illustrations

of cloaking due to anomalous localized resonance.

4.1.1 Our Results

In this chapter, we discuss anomalous localized resonance phenomena observed at

the interface between positive index and negative index materials. Such phenomena

have been at the center of an interesting cloaking strategy [8–10, 15, 20, 23, 72, 91–94,

104–108, 122].

As illustrated in Figure 4.8, the (2-D) geometry we consider consists of a central

layer in S ≡ [0, a]×(−∞,∞) bordered by a layer to the left in C ≡ (−∞, 0)×(−∞,∞)

and a layer to the right in M ≡ (a,+∞) × (−∞,∞). We work in the nonmagnetic

quasistatic regime, i.e., the regime in which the magnetic permeability equals 1 and

relevant wavelengths and attenuation lengths are much larger than other dimensions

in the problem (such as a, the thickness of the slab S). In this regime the complex

electric potential V satisfies the Laplace equation

−∇ · [ε(x, y)∇V (x, y)] = ρ in R2, (4.2)

where V is also subject to certain continuity conditions and conditions at infinity

(these are discussed in more detail in Section 4.2), ε is the dielectric constant (relative
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Figure 4.8. We consider a slab geometry with a dielectric constant as illustrated
in the figure. The slab (shaded light gray) is in the region S = [0, a] × (−∞,∞).
The charge density ρ has compact support in the region x > a. For certain charge
densities ρ that are close enough to a, the energy dissipation in the slab (in particular
in the darkly shaded region a− ξ < x < a) tends to infinity as a sequence δj tends to
0.

permittivity), and ρ is a given charge density distribution. We assume that ρ is

real-valued and that ρ ∈ P , where

P ≡ {ρ ∈ L2(M) ∩ L∞(M) : ρ has compact support in M}. (4.3)

Throughout this chapter, we also assume that

0 < | supp ρ| <∞, (4.4)

where supp ρ is the smallest compact subset ofM such that ρ = 0 almost everywhere

outside of supp ρ and | supp ρ| denotes the Lebesgue Measure of supp ρ. Note that

the conditions we impose on ρ in (4.3) and (4.4) exclude the case when ρ is a dipole.

For a brief derivation of (4.2), see Section C.1 in Appendix C.

For the purposes of the current chapter we assume the layers are occupied by

three different materials such that the imaginary parts of their dielectric constants

are small (corresponding to small losses) and the real parts of their dielectric constants

are equal but with opposite signs. In particular we take the dielectric constant ε(x, y)

to be
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ε(x, y) ≡





εc = 1 + iµ if x < 0,

εs = −1 + iδ if 0 ≤ x ≤ a,

εm = 1 if x > a,

(4.5)

where 0 < δ < 1 and µ = δ + λδβ for some constants λ ∈ R and β > 0. In the

limit δ → 0+ the moduli (4.5) are that of a quasistatic 2-D superlens (“poor man’s

superlens”). The question we address in this chapter is to determine those ρ for which

the power dissipation in this superlens blows up as δ → 0+. As we shall explain shortly

this is closely tied with cloaking due to anomalous resonance. Curiously we will see

that the answer depends on the value of β, thus showing the sensitivity of the energy

dissipation rate to perturbations.

We say that λ is feasible if

λ > 0 for 0 < β < 1, λ ≥ −1 for β = 1, or λ 6= 0 for β > 1. (4.6)

We define 0 < δµ(β, λ) < 1 such that µ ≥ 0 for 0 < δ ≤ δµ (which is required

physically — the restrictions we placed on λ ensure that such a δµ exists).

Given a charge density ρ(x, y) ∈ P , we define

d0 ≡ min{x : (x, y) ∈ supp(ρ)} and d1 ≡ max{x : (x, y) ∈ supp(ρ)} (4.7)

(see Figure 4.8). Since ρ has compact support in M, we have

supp ρ ⊆ [d0, d1]× [h0, h1] (4.8)

for some (finite) constants h0 < h1. The physical charge density is <(ρe−iωt) and

the physical time-harmonic electric field is given by E = <
Ä
−∇V e−iωt

ä
. In order to

enforce charge conservation, we require

∫ d1

d0

∫ ∞

−∞
ρ(x, y) dy dx =

∫ d1

d0

∫ h1

h0
ρ(x, y) dy dx = 0. (4.9)

To see why (4.9) must hold, suppose that ρ is positive over its entire support. Then

the time-harmonic charge density is <(ρe−iωt) = ρ cos(ωt). At time t = 0, the charge

density is positive, but at time t = π/ω the charge density is negative, which violates

conservation of charge since the charge is assumed to be confined to the support of ρ.

We say anomalous localized resonance (ALR) occurs if the following two properties

hold as δ → 0+ [94]:
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1. |V | → ∞ in certain localized regions with boundaries that are not defined by

discontinuities in the relative permittivity and

2. V approaches a smooth limit outside these localized regions.

For example, when ρ is a dipole, εc = εm = 1, and when ALR occurs, as the loss in

the lens (represented by δ) tends to zero the potential diverges and oscillates wildly

in regions that contain the boundaries of the lens. It is important to note that the

boundaries of the resonant regions move as the dipole is moved. Outside the resonant

regions the potential converges to what we expect from perfect lensing [109, 110]. This

behavior and its relation to sub-wavelength resolution in imaging (superlensing) were

first discovered by Nicorovici et al. [104] and were analyzed in more depth by Milton

et al. [94].

Milton et al. [94] showed that if ρ is a dipole and εc = εm = 1, then ALR occurs if

a < d0 < 2a, where d0 is the location of the dipole. In this case there are two locally

resonant strips — one centered on each face of the slab. As mentioned above, outside

these regions the potential converges to a smooth function that satisfies mirroring

properties of a perfect lens. In particular, to an observer far enough to the right of

the lens it will appear only as if there is a dipole at d0; to an observer far enough to

the left of the lens it will appear only as if there is a dipole located at −d0 [94]. In

neither case can the observer determine whether or not a lens is present. (However, if

either observer is close to the lens, the presence of the lens will be obvious due to the

resonance.) If d0 > 2a, then there is no resonance and again the potential converges

to a smooth function that satisfies the mirroring properties expected of a perfect lens.

That is, to an observer far enough to the right of the lens (beyond the dipole) it will

appear as if there is a dipole at d0 and no lens, while to an observer to the left of the

lens it will appear as if there is a dipole at d0 − a and no lens [94, 109, 124].

Cloaking due to ALR (CALR) can be understood from an energetic perspective.

First, consider the quantity

E(δ) ≡ δ
∫ a

0

∫ ∞

−∞
|∇V |2 dy dx; (4.10)

E(δ) is proportional to the time-averaged electrical power dissipated in the slab [91].

Suppose ρ is independent of δ such that, in the limit δ → 0+, we have E(δ) → ∞
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and |V | ≤ C for some constant C for all (x, y) ∈ R2 with |x| > b for some b > 0.

This blow-up in the power dissipation is not physical, as it implies the fixed source

ρ must produce an infinite amount of power in the limit δ → 0+ [9, 91]. The power

dissipation was proved to blow up as δ → 0+ for finite collections of dipole sources

close enough to the lens by Milton et al. [91, 94]; also see Bergman’s work [15].

To make sense out of this we rescale the source ρ by defining ρr ≡ ρ/
»
E(δ). Since

(4.2) is linear, the associated potential will be Vr ≡ V/
»
E(δ) and thanks to (4.10)

the rescaled time-averaged electrical power dissipation will be

Er(δ) ≡ δ
∫ a

0

∫ ∞

−∞
|∇Vr|2 dy dx = δ

∫ a

0

∫ ∞

−∞

|∇V |2
E(δ)

dy dx = 1.

Thus the source ρr produces constant power independent of δ. Also, the rescaled

potential satisfies |Vr| = |V |/
»
E(δ) → 0 as δ → 0+ for |x| > b, implying that the

source ρr becomes invisible in this limit to observers beyond |x| = b. This idea was

introduced by Milton and Nicorovici [91]; also see the works by Kohn, Lu, Schweizer,

and Weinstein [72] and Ammari, Ciraolo, Kang, Lee, and Milton [9, 10].

Cloaking due to anomalous localized resonance in the quasistatic regime was first

analyzed by Milton and Nicorovici [91]. Milton and Nicorovici used separation of

variables and rigorous analytic estimates to prove that if εc = εm = 1 and a fixed

field is applied to the system (e.g., a uniform field at infinity), then a polarizable

dipole located in the region a < d0 < 3a/2 causes anomalous localized resonance and

is cloaked in the limit δ → 0+; if εc 6= εm = 1 (here εc has no relation to the value we

chose in (4.5)), then the cloaking region becomes a < d0 < 2a.

Milton and Nicorovici [91] also derived analogous results for circular cylindrical

lenses, some of which we discussed previously. In that case they assumed the relative

permittivity was εc for 0 ≤ r < rc, εs = −1+iδ for rc < r < rs, and εm = 1 for rs < r.

With r0 denoting the distance of the polarizable dipole from the origin, the cloaking

region was found to be rs < r0 < r∗ = r2
s/rc if εc 6= εm and rs < r0 < r# =

»
r3
s/rc

if εc = εm. In particular they proved that an arbitrary number of polarizable dipoles

within the cloaking region will be cloaked — see the work by Nicorovici et al. [108] for

numerical verification of this result. Milton and Nicorovici [91] also extended their

results to the finite-frequency and three-dimensional cases for the Veselago Slab Lens

[121] (where εc = εm = 1).
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To summarize, suppose εc = εm = 1 and the polarizable dipole is absent and a

uniform electric field at infinity is applied to the slab lens configuration. The lens will

not perturb this external field in the limit δ → 0+, and, hence, is invisible to external

observers [94, 104]. When the polarizable dipole is placed in this uniform field but

outside of the cloaking region (so d0 > 3a/2), it will become polarized and create a

dipole field of its own which interacts with the lens. If d0 > 2a as well there will be

no resonance in the limit δ → 0+; to an external observer, the lens will be invisible

but the dipole will be clearly visible in this limit. If 3a/2 < d0 < 2a, resonance

will occur as δ → 0+ but it will be localized to strips around the boundaries of the

lens — in particular the resonant fields will not interact with the dipole. The dipole

will still be visible in this limit but to an observer outside of the resonance region

(and outside the lens) the lens will be invisible. Finally, if a < d0 < 3a/2 (so the

polarizable dipole is within the cloaking region), the resonant field will interact with

the polarizable dipole and effectively cancel the effect of the external field on it. In

other words, the net field at the location of the polarizable dipole will be zero, and,

hence, its induced dipole moment will be zero (in the limit as δ → 0+) — both the

lens and the dipole will be invisible to external observers. See Figure 3 in the work

by Milton and Nicorovici [91] and the figures in the work by Nicorovici et al. [108]

for dramatic illustrations of this in the circular cylindrical case.

Nicorovici, McPhedran, Enoch, and Tayeb [107] studied CALR for the circular

cylindrical superlens in the finite-frequency case. For physically plausible values of δ

they discovered that the cloaking device (the superlens) can effectively cloak a tiny

cylindrical inclusion located within the cloaking region but that the superlens does

not necessarily cloak itself — they deemed this phenomenon the “ostrich effect.” In

the quasistatic (long-wavelength) limit, however, the lens can effectively cloak both

the inclusion and itself even at rather large values of δ, which was also pointed out

in the case of a polarizable dipole by Milton and Nicorovici [91].

Bouchitté and Schweizer [20] considered an annular lens with inner and outer radii

of 1 and R, respectively, and relative permittivity εs = −1 + iδ embedded in vacuum.

They proved that a small circular inclusion of radius γ(δ) (with γ(δ)→ 0 as δ → 0+) is

cloaked in the limit δ → 0+ if it is located within the annulus R < |x0| < R∗ = R3/2,
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where x0 is the position of the circular source. If |x0| > R∗, then the source is

visible but the annular superlens is not. Both of these results are consistent with the

previous results of Milton and Nicorovici [91]. Bruno and Lintner [23] considered a

similar scenario and showed numerically that a small dielectric disk is not perfectly

cloaked. They verified (numerically) that an annular superlens embedded in vacuum

by itself is invisible to an external applied field in the zero loss limit (assuming the

source is at a position farther than R∗ from the origin) — a fact that was first shown

analytically by Nicorovici et al. [104]; however, Bruno and Lintner also showed that

elliptical superlenses can cloak polarizable dipoles that are near enough to the lens

but that such lenses are not invisible themselves. That is, the polarizable dipole is

cloaked but it is obvious to external observers that something is being hidden — this

is another example of the “ostrich effect” [107].

Kohn et al. [72] used variational principles to derive resonance results in the

quasistatic regime in core/shell geometries (where the superlens resides in the shell)

that are not necessarily radial. They assumed the source was supported on the

boundary of a disk in R2; they obtained results similar to those described above.

Ammari et al. [9, 10] used properties of certain Neumann-Poincaré Operators to

prove results analogous to those of Milton and Nicorovici [91]. The most general

results they derived hold for very general core/shell geometries and charge density

distributions ρ with compact support in the quasistatic regime. In the circular

cylindrical case their requirements are more explicit and involve gap conditions on the

Fourier Coefficients of the Newtonian Potential of ρ. Although these gap conditions

may be difficult to deal with for a given source, they verified that their results are

consistent with those of Milton and Nicorovici [91] when ρ is a dipole or quadrupole.

Their results can be summarized as follows. First, if the support of ρ is completely

contained within the cloaking region (rs < r0 < r∗ if εc 6= εm = 1 and rs < r0 < r#

if εc = εm = 1), and if ρ satisfies the gap property, then CALR occurs. Second,

weak CALR (defined by lim supδ→0+ E(δ) =∞ and |V | < C for all δ where C > 0 is

independent of δ) occurs if the support of ρ is completely inside the cloaking region

and the Newtonian Potential does not extend harmonically to all of R2. Third,

if <(εs) 6= −1, then CALR does not occur. Fourth, CALR does not occur for any
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isotropic constant values of εc and εs when the core and shell are concentric spheres in

R3. Using a folded geometry approach (extending that of Leonhardt and Philbin [77]

and Leonhardt and Tyc [78]), Ammari, Ciraolo, Kang, Lee, and Milton [8] proved

that CALR can occur in 3-D when the core and shell are concentric spheres and

the shell has a certain anisotropic relative permittivity — see the work by Milton,

Nicorovici, McPhedran, Cherednichenko, and Jacob [93] for the analogous problem

in 2-D.

Nicorovici, McPhedran, Botten, and Milton [106] asked whether or not one can

enlarge the cloaking region by spatially overlapping the cloaking regions of identical

circular cylindrical superlenses. Curiously they found that doing so reduces the

cloaking effect (at least in the quasistatic regime). The cloaking region can be

extended by arranging the disks in such a way that their corresponding cloaking

regions just touch.

Milton and Nicorovici [92] utilized a correspondence (first discovered although

not fully exploited in the work of Yaghjian and Hansen [123]) between the perfect

Veselago Lens at a fixed frequency in the long-time limit and the lossy Veselago

Lens in the quasistatic limit to show that transverse magnetic dipole sources that

generate bounded power eventually become cloaked if they are within the cloaking

region (a < d0 < 3a/2). Xiao, Huang, Dong, and Chan [122] obtained similar results

in the case when both the permittivity and permeability of the Veselago Lens had a

positive imaginary part.

Finally, Nguyen [103] proved that arbitrary inhomogeneous objects are magni-

fied by properly constructed superlenses in both the quasistatic and finite-frequency

regimes in 2-D and 3-D.

In this chapter we consider the scenario sketched in Figure 4.8 and described by

(4.2)–(4.9). We study the behavior of

Eξ(δ) ≡ δ
∫ a

a−ξ

∫ ∞

−∞
|∇V |2 dy dx, (4.11)

where 0 < ξ < a is a small parameter. The quantity Eξ(δ) is proportional to the time-

averaged electrical power dissipated in the strip Rξ ≡ {(x, y) ∈ R2 : a− ξ < x < a},
illustrated by the darkened strip in Figure 4.8; Eξ(δ) is also a lower bound on the
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quantity defined in (4.10). In particular, we derive conditions on ρ that determine

whether or not lim supδ→0+ Eξ(δ) = ∞ (weak CALR), limδ→0+ Eξ(δ) = ∞ (strong

CALR), or Eξ(δ) < C for a constant C > 0 as δ → 0+ (no CALR).

In order to do this, we begin by taking the Fourier Transform of (4.2) in the

y-variable and calculating Eξ(δ) explicitly in terms of ρ̂(x, k) (the Fourier Transform

of ρ in the y-variable). We then derive upper and lower bounds on Eξ(δ) to obtain our

results. The result for unbounded energy is contained in Corollary 4.1. Essentially,

if there is a d∗ ∈ [d0, d1] such that

lim sup
k→∞

∣∣∣∣∣e
d∗k

∫ d1

d0
ρ̂(x, k)e−kx dx

∣∣∣∣∣ > 0

and a < d∗ < τ(β)a where

τ(β) =





β + 2

β + 1
for 0 < β < 1,

3

2
for β ≥ 1,

then lim supδ→0+ Eξ(δ) = ∞. As far as we are aware, there are two novelties to our

result. First, the blow-up in energy occurs only if ρ is within a critical distance of

the slab that depends nontrivially on β. Second, unlike in Theorem 5.3 of Ammari

et al. [9] and Theorem 4.1 of Ammari et al. [10], we do not assume that the support

of ρ is completely contained within the critical distance. In fact, there are examples

of charge density distributions ρ that cause a blow-up in energy if only part of the

support of ρ is within the critical distance — see Sections 4.6.1.1 and 4.6.1.2. (As

discussed by Ammari et al. [9, 10], it seems like their results of would hold even if only

part of the support of ρ is within the critical distance to the lens.) In Theorem 4.4

we show that limδ→0+ Eξ(δ) = 0 if ρ is supported outside the critical distance.

The remainder of this chapter is organized as follows. In Section 4.2 we derive

an expression for the potential in Fourier Space. In Section 4.4 we compute some

useful formulas. We derive the expression for Eξ(δ) in Section 4.5. In Section 4.6

we derive some lower bounds that are used to prove our result about the blow-up of

Eξ(δ) as δ → 0+. We then analytically and numerically illustrate our results for two

charge density distributions. In Section 4.7 we prove that Eξ(δ) remains bounded

(and, in fact, goes to 0) as δ → 0+ if ρ is outside of the critical distance. Finally, in
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Section 4.8, we prove that the potential remains bounded far enough away from the

slab regardless of the position of charge density distribution ρ.

4.2 Derivation of the Potential

In the quasistatic regime the potential V ∈ L2
loc(R2) solves the following problem:





−∇ · [ε(x, y)∇V (x, y)] = ρ(x, y) in R2,

V (x, y), ε
∂V

∂x
(x, y) continuous across x = 0, a for almost every y ∈ R,

∂V

∂x
(x, y)→ 0 as |x| → ∞ for almost every y ∈ R,

V (x, ·) ∈ H1(R) for almost every x ∈ R,

∂V

∂x
(x, ·) ∈ L2(R) for almost every x ∈ R,

(4.12)

where ε is given in (4.5). In this section, we take the Fourier Transform with respect

to the y-variable of the problem (4.12). Since V ∈ L2
loc(R2), the PDE (4.12) can

be understood in a distributional sense (since L2
loc functions are distributions [36]).

The continuity conditions in (4.12) ensure continuity of the potential and the normal

component of the electric displacement field D = −ε∇V across the left and right

edges of the slab (since the normal vector to the edges of the slab is in the negative

x-direction at x = 0, the normal component of D along the edge at x = 0 is D ·
n = ε∂V

∂x
; at the edge along x = a, the normal vector is in the positive x-direction,

so D · n = −ε∂V
∂x

there). The continuity conditions on the potential and normal

component of the displacement field are typical in quasistatic problems — see the

works by Griffiths [45, Section 4.4.2] and Milton et al. [94]. The condition at infinity

in (4.12) ensures that the x-component of the electric field, namely −∂V
∂x

, vanishes as

x → −∞ and x → ∞. It turns out that this condition is sufficient for our purposes

(for the problem stated in (4.12) one can show that the y-component of the electric

field, namely −∂V
∂y

, goes to 0 as |x| → ∞ as well). We only consider |x| → ∞
since the slab extends infinitely in the y-direction. The last two requirements are

regularity results that we impose to ensure that we can perform the computations

in this section. In Sections C.3–C.6 in Appendix C we prove that the solutions we
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derive in this section satisfy (4.12) (also see Section C.3.4 in Appendix C for more

about the Sobolev space H1(R)).

We recall the following definitions:





C ≡ {(x, y) ∈ R2 : x < 0};

S̊ ≡ {(x, y) ∈ R2 : 0 < x < a};

M≡ {(x, y) ∈ R2 : a < x}.

(4.13)

We then define
Vc(x, y) ≡ χC(x, y)V (x, y),

Vs(x, y) ≡ χS̊(x, y)V (x, y),

and Vm(x, y) ≡ χM(x, y)V (x, y),

(4.14)

where

χU(x, y) =





1 if (x, y) ∈ U,
0 if (x, y) 6∈ U, (4.15)

is the characteristic function of the set U ⊂ R2. We use the convention that the

Fourier Transform of a function f(x, y) with respect to the variable y is defined by

f̂(x, k) ≡
∫ ∞

−∞
f(x, y)e−iky dy. (4.16)

Now ∂V
∂x

(x, ·) ∈ L2(R) and ∂V
∂y

(x, ·) ∈ L2(R) for almost every x ∈ R thanks to (4.12).

Thus for almost every x ∈ R we have‘∂V
∂x

(x, k) =
∂“V
∂x

(x, k) and
‘∂V
∂y

(x, k) = ik“V (x, k) (4.17)

for almost every x ∈ R — see Section C.7 in Appendix C. We mention here that

we take k ∈ R throughout this chapter. We also let |z| =
»

(z′)2 + (z′′)2 denote the

modulus of the complex number z = z′ + iz′′.

4.2.1 The Solution in the Set C
Due to (4.5) and (4.12), in the set C the potential satisfies





∆Vc(x, y) = 0 for x < 0,

∂Vc
∂x

(x, y)→ 0 as x→ −∞.
(4.18)
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(There are also continuity conditions at the boundary x = 0, but deal with these in

Section 4.2.2.) We take the Fourier Transform of (4.18) and recall the properties of“Vc from (4.17) to find that “Vc satisfies





∂2“Vc
∂x2

(x, k)− k2“Vc(x, k) = 0 for x < 0,

∂“Vc
∂x

(x, k)→ 0 as x→ −∞.
(4.19)

Since k is real, the general solution to (4.19) is“Vc(x, k) = Ake
|k|x +Bke

−|k|x.

We have

lim
x→−∞

∂“Vc
∂x

(x, k) = lim
x→−∞

(|k|Ake|k|x − |k|Bke
−|k|x).

In order to force this limit to be 0 we take Bk = 0 (for k 6= 0 — B0 is arbitrary).

Thus the general form of the Fourier Transform of “Vc(x, k) is“Vc(x, k) = Ake
|k|x (4.20)

for arbitrary constants Ak.

4.2.2 The Solution in the Set S̊
Due to (4.5) and (4.12), in the set S̊ the potential satisfies





∆Vs(x, y) = 0 for 0 < x < a,

lim
x→0+

Vs(x, y) = lim
x→0−

Vc(x, y),

lim
x→0+

εs
∂Vs
∂x

(x, y) = lim
x→0−

εc
∂Vc
∂x

(x, y).

(4.21)

(There are analogous continuity conditions at the boundary x = a, but we deal with

these in Section 4.2.3.) Taking the Fourier Transform of (4.21) gives us the following

equation for “Vs(x, k):




∂2“Vs
∂x2

(x, k)− k2“Vs(x, k) = 0 for 0 < x < a,

lim
x→0+

“Vs(x, k) = lim
x→0−

“Vc(x, k),

lim
x→0+

εs
∂“Vs
∂x

(x, k) = lim
x→0−

εc
∂“Vc
∂x

(x, k).

(4.22)
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Again since k is real, the general solution to (4.22) is“Vs(x, k) = Cke
|k|x +Dke

−|k|x. (4.23)

Next we enforce the continuity conditions on the Fourier Transform of the potential

across the left boundary of the slab. First, by (4.20) and (4.23) we have

lim
x→0+

“Vs(x, k) = lim
x→0−

“Vc(x, k)⇔ Ck +Dk = Ak. (4.24)

Similarly, for k 6= 0, the continuity condition on the derivative of “Vs is

lim
x→0+

εs
∂“Vs
∂x

(x, k) = lim
x→0−

εc
∂“Vc
∂x

(x, k)⇔ Ck −Dk = χcAk, (4.25)

where

χc ≡ εs/εc. (4.26)

(Note that the derivative condition (4.25) is automatically satisfied when k = 0.)

Solving (4.24) and (4.25) for Ck and Dk gives“Vs(x, k) =
Ak
2χc

î
(χc + 1)e|k|x + (χc − 1)e−|k|x

ó
. (4.27)

4.2.3 The Solution in the Set M
Next we show the details of the derivation for the solution in the third layer, M.

From (4.5) and (4.12) we note that in the set M the potential satisfies




∆Vm(x, y) = −ρ(x, y) for x > a,

lim
x→a+

Vm(x, y) = lim
x→a−

Vs(x, y),

lim
x→a+

εm
∂Vm
∂x

(x, y) = lim
x→a−

εs
∂Vs
∂x

(x, y),

∂Vm
∂x

(x, y)→ 0 as x→∞.

After taking the Fourier Transform with respect to y we find that “Vm(x, k) satisfies




∂2“Vm
∂x2

(x, k)− k2“V (x, k) = −ρ̂(x, k) for x > a,

lim
x→a+

“Vm(x, k) = lim
x→a−

“Vs(x, k),

lim
x→a+

εm
∂“Vm
∂x

(x, k) = lim
x→a−

εs
∂“Vs
∂x

(x, k),

∂“Vm
∂x

(x, k)→ 0 as x→∞.

(4.28)



106

We make the change of variables z = x− a so that (4.28) becomes





∂2“Vm
∂z2

(z, k)− k2“Vm(z, k) = −ρ̂(z, k) for z > 0,

lim
z→0+

“Vm(z, k) = lim
z→0−

“Vs(z, k) = Akψ
+
k ,

lim
z→0+

∂“Vm
∂z

(z, k) = lim
z→0−

χm
∂“Vs
∂z

(z, k) = Akψ
−
k ,

(4.29)

where ρ̂(x, k) = ρ̂(x− a, k), “Vj(x, k) = “Vj(x− a, k) for j = m, s,

ψ+
k =

1

2χc

î
(χc + 1) e|k|a + (χc − 1) e−|k|a

ó
, (4.30)

ψ−k =
|k|χm
2χc

î
(χc + 1) e|k|a − (χc − 1) e−|k|a

ó
, (4.31)

and χm = εs/εm. (4.32)

(We have eliminated the condition at infinity for now — we will return to it later.)

In addition, we have used (4.27) to simplify the limits in (4.29).

We define Laplace Transform of “Vm(z, k) to be

u(s, k) ≡
∫ ∞

0

“Vm(z, k)e−sz dz

(since ∂V̂m
∂x
→ 0 as x → ∞, the function u(s, k) is well defined — the potential“Vm(x, k) cannot grow exponentially for large x). We use the notation L{g} to denote

the Laplace Transform of the function g. Recall that the Laplace Transform satisfies

L
®
dg

dx

´
(s) = sL{g}(s)− g(0);

see the book by Schiff [114, Section 2.3]. We need to solve the ODE in (4.29) for the

cases k = 0 and k 6= 0 separately.

Case I: k = 0

Here the Laplace-Transformed version of (4.29) is

s2u(s, 0)− sA0ψ
+
0 − A0ψ

−
0 = −L

¶
ρ̂(z, 0)

©
(s, 0),

Thus

u(s, 0) =
A0

s
− [L{ρ̂(z, 0)} (s, 0)] · 1

s2
,
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where we have used (4.30) and (4.31) to simplify the expression for u(s, 0). Since“Vm = 0 for z < 0 (see (4.13)–(4.15)), we can use the convolution theorem for Laplace

Transforms to find“Vm(z, 0) = A0 −
∫ z

0
(z − z′)ρ̂(z′, 0) dz′ ⇒ “Vm(x, 0) = A0 −

∫ x−a

0
(x− a− z′)ρ̂(z′, 0) dz′.

Next we make the change of variables z′ = x′ − a in the above integral to find“Vm(x, 0) = A0 −
∫ x

a
(x− x′)ρ̂(x′ − a, 0) dx′ = A0 +

∫ x

a
(x′ − x)ρ̂(x′, 0) dx′.

We now impose the condition as x→∞ — see (4.28). We require

lim
x→∞

∂“Vm
∂x

(x, 0) = lim
x→∞

®
∂

∂x

ï
A0 +

∫ x

a
(s− x)ρ̂(s, 0) ds

ò´
= 0.

By the Leibniz Rule (see Section C.2 in Appendix C), this is equivalent to the

requirement

lim
x→∞

ï
−
∫ x

a
ρ̂(s, 0) ds

ò
= 0.

For x > d1, (4.9) implies

∫ x

a
ρ̂(s, 0) ds =

∫ d1

d0
ρ̂(s, 0) ds =

∫ d1

d0

∫ h1

h0
ρ(s, y) dy ds = 0.

Thus the condition at infinity is automatically satisfied for any choice of A0.

Case 2: k 6= 0

Here the Laplace-Transformed version of (4.29) is

s2u(s, k)− sAkψ+
k − Akψ−k − k2u(s, k) = −L

¶
ρ̂(z, k)

©
(s, k).

Therefore

u(s, k) = Akψ
+
k

s

s2 − k2
+ Akψ

−
k

1

s2 − k2
− L

¶
ρ̂(z, k)

©
(s, k)

s2 − k2
.

Recalling that “Vm(z, k) = 0 for z < 0 (see (4.13)–(4.15)), by the convolution theorem

for Laplace Transforms we have“Vm(z, k) = Akψ
+
k cosh (|k|z) + Akψ

−
k

sinh (|k|z)

|k|

−
∫ z

0

sinh [|k|(z − z′)]
|k| ρ̂(z′, k) dz′
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⇔ “Vm(x, k) = Akψ
+
k cosh [|k|(x− a)] + Akψ

−
k

sinh [|k|(x− a)]

|k|

−
∫ x−a

0

sinh [|k|(x− a− z′)]
|k| ρ̂(z′, k) dz′.

We make the change of variables z′ = x′ − a in the above integral to find“Vm(x, k) = Akψ
+
k cosh [|k|(x− a)] +

Akψ
−
k

|k| sinh [|k|(x− a)]

+
1

|k|
∫ x

a
sinh [|k|(x′ − x)] ρ̂(x′, k) dx′,

(4.33)

where we have used the fact that ρ̂(x− a, k) = ρ̂(x, k).

We now impose the limit conditions at infinity from (4.28). We use the Leibniz

Rule (see Section C.2 in Appendix C) to find

lim
x→∞

∂“Vm
∂x

(x, k)

= lim
x→∞

Ä
Ak

¶
|k|ψ+

k sinh [|k|(x− a)] + ψ−k cosh [|k|(x− a)]
©ä

−
∫ x

a
ρ̂(x′, k) cosh [|k|(x′ − x)] dx′

ã
= lim

x→∞



|k|e

|k|x
[
Akψ

+
k e−|k|a

2
+
Akψ

−
k e−|k|a

2|k| − 1

2|k|
∫ d1

d0
ρ̂(s, k)e−|k|s ds

]

+ |k|e−|k|x
[
−Akψ

+
k e|k|a

2
+
Akψ

−
k e|k|a

2|k| − 1

2|k|
∫ d1

d0
ρ̂(s, k)e|k|s ds

]

︸ ︷︷ ︸
→ 0 as x→∞





= lim
x→∞

{
|k|e|k|x

[
Ake

−|k|a

2|k|
Ä
|k|ψ+

k + ψ−k
ä
− 1

2|k|
∫ d1

d0
ρ̂(s, k)e−|k|s ds

]}
.

This limit is 0 if and only if we choose

Ak ≡
Ik

e−|k|a
Ä
|k|ψ+

k + ψ−k
ä , (4.34)

where

Ik ≡
∫ d1

d0
ρ̂(s, k)e−|k|s ds. (4.35)
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By (4.5) and (4.26) we have

χc − 1

χc + 1
=

2i + δ − µ
δ + µ

,

so by (4.27) the potential in the set S̊ is

“Vs(x, k) =





A0 if k = 0,

Ik
|k|g

[
e|k|x +

(
2i− λδβ
2δ + λδβ

)
e−|k|x

]
if k 6= 0,

(4.36)

where

g ≡
2χce

−|k|a
(
ψ+
k + 1

|k|ψ
−
k

)

χc + 1
= iδ

[
1− (δ + 2i)(2i− λδβ)

δ(2δ + λδβ)
e−2|k|a

]
(4.37)

and A0 is an arbitrary complex constant.

4.3 Some Properties of Ik

In this section we study some of the properties of Ik, which is defined in (4.35).

Recall that ρ ∈ P where P is defined in (4.3). Since ρ ∈ L2(M), we have ρ ∈ L1(M)

as well: by the Cauchy–Schwarz Inequality and (4.4),

∫

M
|ρ| dx =

∫

supp(ρ)
|ρ| dx

≤
Ç∫

supp(ρ)
|ρ|2 dx

å 1
2
Ç∫

supp(ρ)
dx

å 1
2

= ‖ρ‖L2(M)| supp(ρ)| 12 .

We will need the following theorems [71, Section 6.3], which we reproduce here

in a form suited to our needs. In fact, in the book by Klenke [71], the theorems

were stated for functions f : R→ R (they are Theorems 6.27 and 6.28, respectively);

however, they also hold for functions f : R → C as can be seen by applying the

original theorems to the real and imaginary parts of f separately.

Theorem 4.1 Let k0 ∈ R and let f : [d0, d1] × R → C be a map with the following

properties.

(i) For any k ∈ R, the map s 7→ f(s, k) is in L1([d0, d1]).

(ii) For almost all s ∈ [d0, d1], the map k 7→ f(s, k) is continuous at the point k0.
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(iii) The map h : s 7→ supk∈R |f(s, k)| is in L1([d0, d1]).

Then the map F : R→ C, k 7→ ∫ d1
d0
f(s, k) ds is continuous at k0.

Theorem 4.2 Let K ⊂ R be a nontrivial open interval and let f : [d0, d1]×K → C

be a map with the following properties.

(i) For any k ∈ K, the map s 7→ f(s, k) is in L1([d0, d1]).

(ii) For almost all s ∈ [d0, d1], the map K → C, k 7→ f(s, k) is differentiable with

derivative ∂f
∂k

.

(iii) h ≡ supk∈K |∂f∂k (·, k)| ∈ L1([d0, d1]).

Then, for any k ∈ K, ∂f
∂k

(·, k) ∈ L1([d0, d1]) and the function F : k 7→ ∫ d1
d0
f(s, k) ds

is differentiable with derivative

F ′(k) =
∫ d1

d0

∂f

∂k
(s, k) ds.

In the following lemma, we collect a summary of important properties of Ik that

are used throughout the remainder of this chapter.

Lemma 4.1 Suppose ρ ∈ P (where P is defined in (4.3)) and that Ik is defined as

in (4.35). Then

1. for almost every s ∈ [d0, d1], ρ̂(s, k) is infinitely continuously differentiable as a

function of k for all k ∈ R;

2. for each k ∈ R,

|Ik|2 ≤ (d1 − d0) ‖ρ‖2
L2(M) e−2|k|d0 ;

3. if ρ is real-valued, then I−k = Ik; this implies that |Ik|2 is an even function of k

for k ∈ R;

4. the function Ik is continuous at k for each k ∈ R;

5. limk→0 Ik = I0 = 0;

6. limk→0(|Ik|/|k|) = |C0| < ∞, where C0 is defined in (4.41) and (4.42); more-

over, there is a positive constant CI such that |Ik|/|k| ≤ CI for all k ∈ R.
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Proof of Lemma 4.1:

1. For almost every x ∈ [d0, d1] and for each nonnegative integer n, the function

(−iy)nρ(x, y) is in L1(R) as a function of y since ρ has compact support and is

in L∞(M); in particular, for almost every x ∈ [d0, d1] we have

∫ ∞

−∞
|(−iy)nρ(x, y)| dy =

∫ h1

h0
|y|n|ρ(x, y)| dy ≤ ‖ρ‖L∞(M)C

n
h (h1 − h0) <∞,

where Ch ≡ max{|h0|, |h1|}. This implies that ρ̂ satisfies some very useful

properties.

First, by the Riemann–Lebesgue Lemma (see Theorem 1.7 in Chapter VI of the

book by Katznelson [70]),

lim
|k|→∞

ρ̂(x, k) = 0

for almost every x ∈ [d0, d1]. Second, by Theorem 1.2 in Chapter VI of the

book by Katznelson [70], ρ̂(x, k) is uniformly continuous in k for all k ∈ R and

for almost every x ∈ [d0, d1]. Third, since −iyρ(x, y) ∈ L1(R), Theorem 1.6 in

Chapter VI of the book by Katznelson [70] implies that ρ̂(x, k) is differentiable

with respect to k for almost all x ∈ [d0, d1] and that

∂ρ̂

∂k
(x, k) = ◊�(−iyρ)(x, k)

for almost every x ∈ [d0, d1]. Using induction on this third property in combi-

nation with the fact that (−iy)nρ(x, y) ∈ L1(R) as a function of y for almost

every x ∈ [d0, d1] implies that ρ̂(x, k) is infinitely differentiable as a function of

k; in particular
∂nρ̂

∂kn
(x, k) = ¤�((−iy)nρ)(x, k)

for almost every x ∈ [d0, d1], for all k ∈ R, and for all nonnegative integers n.

2. For k ∈ R we have

|Ik|2 =

∣∣∣∣∣

∫ d1

d0
ρ̂(s, k)e−|k|s ds

∣∣∣∣∣

2

≤
ñ∫ d1

d0
|ρ̂(s, k)|2 ds

ôÇ∫ d1

d0
e−2|k|s ds

å
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=

ñ∫ d1

d0

∣∣∣∣
∫ ∞

−∞
ρ(s, y)e−iky dy

∣∣∣∣
2

ds

ôÇ∫ d1

d0
e−2|k|s ds

å
≤
®∫ d1

d0

ñ∫ h1

h0
|ρ(s, y)|2 dy

ô
ds

´Ç∫ d1

d0
e−2|k|s ds

å
=

ñ∫ ∞
a

∫ h1

h0
|ρ(s, y)|2 dy ds

ôÇ∫ d1

d0
e−2|k|s ds

å
= ‖ρ‖2

L2(M)

∫ d1

d0
e−2|k|s ds

≤ (d1 − d0) ‖ρ‖2
L2(M) e−2|k|d0 .

3. First we note that Ik is well defined for each k ∈ R (by part (2) of this lemma).

Then, since ρ is real-valued, for each k ∈ R we have

I−k =
∫ d1

d0
ρ̂(s,−k)e−|−k|s ds

=
∫ d1

d0

∫ ∞

−∞
ρ(s, y)eiky dy e−|k|s ds

=
∫ d1

d0

∫ ∞

−∞
ρ(s, y)e−iky dy e−|k|s ds

= Ik.

Then |I−k|2 = I−kI−k = IkIk = |Ik|2.

4. The proof of this part of the lemma is based on Theorem 4.1. In particular, we

define f : [d0, d1]× R by

f(s, k) ≡ ρ̂(s, k)e−|k|s.

Then the function f satisfies the hypotheses of Theorem 4.1.

(i) For each k ∈ R, the map s 7→ f(s, k) = ρ̂(s, k)e−|k|s ∈ L1([d0, d1]) since

∫ d1

d0
|ρ̂(s, k)|e−|k|s ds ≤

∫ d1

d0

∫ ∞

−∞
|ρ(s, y)e−iky| dy ds = ‖ρ‖L1(M) <∞.

(ii) Part (1) of this lemma implies that for almost all s ∈ [d0, d1], ρ̂(s, k) is

(uniformly) continuous as a function of k for each k ∈ R. Since e−|k|s is
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continuous in R as a function of k for each s ∈ [d0, d1], f(s, k) is continuous

on R as a function of k for almost every s ∈ [d0, d1].

(iii) For almost every s ∈ [d0, d1] and every k ∈ R we have

|ρ̂(s, k)e−|k|s| ≤
∫ h1

h0
|ρ(s, y)e−iky| dy ≤ ‖ρ‖L∞(M)(h1 − h0),

where h0 and h1 are defined in (4.8). Since ρ has compact support, h1−h0

is finite. Thus

∫ d1

d0
sup
k∈R
|ρ̂(s, k)e−|k|s| ds ≤

∫ d1

d0
(h1 − h0)‖ρ‖L∞(M) ds

≤ ‖ρ‖L∞(M)(d1 − d0)(h1 − h0), (4.38)

and this is less than infinity. Thus the map h : s 7→ supk∈R |f(s, k)| is in

L1([d0, d1]).

Therefore Theorem 4.1 implies that the function Ik is continuous at k0 for each

k0 ∈ R.

5. Since Ik is continuous at each k ∈ R, we have

lim
k→0

Ik = I0 =
∫ d1

d0
ρ̂(s, 0) ds =

∫ d1

d0

∫ ∞

−∞
ρ(s, y) dy ds = 0

by (4.9).

6. Since Ik → 0 as k → 0+ by part (5) of this lemma,

lim
k→0+

Ik
k

is an indeterminate form of type 0/0. We now prove that Ik is differentiable for

k > 0 using Theorem 4.2. In this case we take the interval K from the theorem

to be K = (0,∞). Note that, since k > 0, we have Ik =
∫ d1
d0
ρ̂(s, k)e−ks ds.

(i) The proof of this is exactly the same as the proof of (i) in part (4) of this

lemma.

(ii) Part (1) of this lemma implies that, for almost every s ∈ [d0, d1], ρ̂(s, k)

is infinitely differentiable as a function of k for all k ∈ K. Since e−ks
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is infinitely differentiable as a function of k for all k ∈ K and for all

s ∈ [d0, d1], the function ρ̂(s, k)e−ks is infinitely differentiable as a function

of k for all k ∈ K and for almost every s ∈ [d0, d1].

(iii) For almost every s ∈ [d0, d1] and by part (1) of this lemma we have, for

each k ∈ K, that

∣∣∣∣∣
∂

∂k
[ρ̂(s, k)e−ks]

∣∣∣∣∣ =

∣∣∣∣∣
∂ρ̂

∂k
(s, k)e−ks − ρ̂(s, k)se−ks

∣∣∣∣∣

≤
ï
|◊�(−iyρ)(s, k)|+ |ρ̂(s, k)||s|

ò
e−ks

≤ e−ks
ñ∫ h1

h0
|y||ρ(s, y)| dy + |s|

∫ h1

h0
|ρ(s, y)| dy

ô
≤ e−ks‖ρ‖L∞(M)(Ch + |s|)(h1 − h0)

≤ ‖ρ‖L∞(M)(Ch + |s|)(h1 − h0). (4.39)

Then (4.39) implies

∫ d1

d0
sup
k∈K

∣∣∣∣∣
∂f

∂k
(s, k)

∣∣∣∣∣ ds ≤ ‖ρ‖L∞(M)(h1 − h0)
∫ d1

d0
(Ch + |s|) ds

≤ ‖ρ‖L∞(M)(Ch + d1)(d1 − d0)(h1 − h0).

Therefore Theorem 4.2 implies that

∂Ik
∂k

=
∫ d1

d0

∂

∂k
[ρ̂(s, k)e−ks] ds

=
∫ d1

d0
−sρ̂(s, k)e−ks ds+

∫ d1

d0

∂ρ̂

∂k
(s, k)e−ks ds (4.40)

= −
∫ d1

d0

∫ h1

h0
sρ(s, y)e−ikye−ks dy ds−

∫ d1

d0

∫ h1

h0
iyρ(s, y)e−ikye−ks dy ds

for k > 0. Note that the expression in (4.40) is well defined and continuous for

all k ∈ R by an argument similar to that given in items (1) and (4) (applied to

−sρ̂(s, k) and ∂ρ̂
∂k

(s, k)). In particular we have

lim
k→0+

∂Ik
∂k

= lim
k→0+

ñ∫ d1

d0
−sρ̂(s, k)e−ks ds+

∫ d1

d0

∂ρ̂

∂k
(s, k)e−ks ds

ô
=
∫ d1

d0
−sρ̂(s, 0) ds+

∫ d1

d0

∂ρ̂

∂k
(s, 0) ds (4.41)

= −
∫ d1

d0

∫ h1

h0
sρ(s, y) dy ds−

∫ d1

d0

∫ h1

h0
iyρ(s, y) dy ds (4.42)

≡ C0,
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which is well defined since ρ ∈ L1(M) (we note that one can also justify

passing the limit inside the integrals using the Lebesgue Dominated Convergence

Theorem — see Theorem 1.34 and Remark 9.3(a) in the book by Rudin [113]).

Then the l’Hospital Rule and the fact that the function | · | is continuous imply

that

lim
k→0+

|Ik|
|k| =

∣∣∣∣∣ lim
k→0+

Ik
k

∣∣∣∣∣ =

∣∣∣∣∣ lim
k→0+

∂Ik
∂k

∣∣∣∣∣ = |C0|.

Since |Ik| and |k| are even functions of k by item (3) of this lemma, we also

have limk→0− |Ik|/|k| = |C0|. Therefore limk→0 |Ik|/|k| = |C0|.

Finally, since |Ik|/|k| is continuous for all k ∈ R (if we define it to be equal to

|C0| when k = 0) and since limk→±∞ |Ik|/|k| = 0 by item (2) of this lemma, we

must have |Ik|/|k| ≤ CI for some positive constant CI .

This completes the proof.

4.4 Some Useful Computations

In this section we perform some useful calculations that are used frequently in the

remainder of this chapter.

Lemma 4.2 Let ψ+
k and ψ−k be defined as in (4.30) and (4.31), respectively. Then

for each k ∈ R,

||k|ψ+
k + ψ−k |2 =

|k|2
4(1 + δ2)

î
δ2(δ + µ)2e2|k|a + 2δ(δ + µ)(4 + δ(µ− δ))

+(4 + (µ− δ)2)(4 + δ2)e−2|k|aó . (4.43)

Proof of Lemma 4.2: From (4.30) and (4.31) we have

||k|ψ+
k + ψ−k |2 =

∣∣∣∣∣
|k|
2χc

î
(χc + 1) e|k|a + (χc − 1) e−|k|a

ó
+
|k|χm
2χc

î
(χc + 1) e|k|a − (χc − 1) e−|k|a

ó∣∣∣∣∣2
=
|k|2
4

∣∣∣∣∣
(χc + 1)(χm + 1)

χc
e|k|a +

(χc − 1)(1− χm)

χc
e−|k|a

∣∣∣∣∣

2

. (4.44)

From (4.5), (4.26), and (4.32) we have

(χc + 1)(χm + 1)

χc
=

(εs/εc + 1)(εs/εm + 1)

εs/εc
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=
(εs + εc)(εs + εm)

εsεm

=
(−1 + iδ + 1 + iµ)(−1 + iδ + 1)

(−1 + iδ)

=
i(δ + µ)(iδ)

(−1 + iδ)

=
δ(δ + µ)

1− iδ
(4.45)

and

(χc − 1)(1− χm)

χc
=

(εs/εc − 1)(1− εs/εm)

εs/εc

=
(εs − εc)(εm − εs)

εsεm

=
(−1 + iδ − (1 + iµ))(1− (−1 + iδ))

−1 + iδ

=
(2 + i(µ− δ))(2− iδ)

1− iδ
. (4.46)

Inserting (4.45) and (4.46) into (4.44) gives

||k|ψ+
k + ψ−k |2 =

|k|2
4

∣∣∣∣∣
δ(δ + µ)

1− iδ
e|k|a +

(2 + i(µ− δ))(2− iδ)

1− iδ
e−|k|a

∣∣∣∣∣

2

=
|k|2

4(1 + δ2)

î
δ(δ + µ)e|k|a + (2 + i(µ− δ))(2− iδ)e−|k|a

ó
·
î
δ(δ + µ)e|k|a + (2− i(µ− δ))(2 + iδ)e−|k|a

ó
=

|k|2
4(1 + δ2)

î
δ2(δ + µ)2e2|k|a + δ(δ + µ)(2− i(µ− δ))(2 + iδ)

+ δ(δ + µ)(2 + i(µ− δ))(2− iδ)

+(2 + i(µ− δ))(2− iδ)(2− i(µ− δ))(2 + iδ)e−2|k|aó
=

|k|2
4(1 + δ2)

î
δ2(δ + µ)2e2|k|a + 2δ(δ + µ)(4 + δ(µ− δ))

+(4 + (µ− δ)2)(4 + δ2)e−2|k|aó .
This completes the proof.
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Lemma 4.3 Let ψ+
k and ψ−k be defined as in (4.30) and (4.31), respectively. Then

for each k ∈ R,

∣∣∣∣∣ψ
+
k −

1

|k|ψ
−
k

∣∣∣∣∣

2

=
1

4(1 + δ2)

î
(δ + µ)2(4 + δ2)e2|k|a + 2δ(δ + µ)(δ(µ− δ)− 4)

+δ2(4 + (µ− δ)2)e−2|k|aó . (4.47)

Proof of Lemma 4.3: Performing calculations similar to those in Lemma 4.2 and

using (4.30) and (4.31) gives the desired result. This completes the proof.

4.5 Power Dissipation

Using the definition in (4.11), we compute the power dissipation in the strip Rξ

as follows. First, note that the integral in (4.11) is well defined because V ∈ H1(S̊)

(so, in particular, ∇V ∈ L2(S̊)); this is shown in Lemma C.9 in Appendix C. Note

that for any function f : R2 → C such that

∫ ∞

−∞
|f(x, y)|2 dy <∞ or

∫ ∞

−∞
|f̂(x, k)|2 dk <∞,

the Plancherel Theorem holds, namely

∫ ∞

−∞
|f(x, y)|2 dy =

1

2π

∫ ∞

−∞
|f̂(x, k)|2 dk. (4.48)

Using (4.48) together with the properties of the Fourier Transform (given in (4.17)),

we have

Eξ(δ) = δ
∫ a

a−ξ

[∫ ∞

−∞

∣∣∣∣∣
∂Vs
∂x

(x, y)

∣∣∣∣∣

2

dy +
∫ ∞

−∞

∣∣∣∣∣
∂Vs
∂y

(x, y)

∣∣∣∣∣

2

dy

]
dx

= δ
∫ a

a−ξ



∫ ∞

−∞

∣∣∣∣∣∣

‘∂Vs
∂x

(x, k)

∣∣∣∣∣∣

2

dk +
∫ ∞

−∞

∣∣∣∣∣∣

‘∂Vs
∂y

(x, k)

∣∣∣∣∣∣

2

dy


 dx

=
δ

2π

∫ a

a−ξ



∫ ∞

−∞

∣∣∣∣∣∣
∂“Vs
∂x

(x, k)

∣∣∣∣∣∣

2

dk +
∫ ∞

−∞
|k|2|“Vs(x, k)|2 dk


 dx. (4.49)

The first equality is a consequence of the Plancherel Theorem (4.48) and the fact

that ∂V
∂x

(x, ·) and ∂V
∂y

(x, ·) are in L2(R) for every 0 ≤ x ≤ a — see Lemma C.2 and

Lemma C.6 in Appendix C. Since “Vs(x, 0) and ∂V̂s
∂x

(x, 0) are finite for all x ∈ [d0, d1]

(see (4.36)), we can omit the point k = 0 from the integrals in (4.49) without changing
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the value of Eξ(δ). Inserting (4.36) into (4.49) gives (after some straightforward

computations)

Eξ(δ) =
2δ

2π

∫ a

a−ξ





∫

k 6=0

|Ik|2
|g|2


e2|k|x +

e−2|k|x Äλ2δ2β + 4
ä

(2δ + λδβ)2


 dk



 dx

=
δ

π

∫

k 6=0

|Ik|2
|g|2





∫ a

a−ξ


e2|k|x +

e−2|k|x Äλ2δ2β + 4
ä

(2δ + λδβ)2


 dx



 dk

=
δ

π

∫

k 6=0

|Ik|2
|g|2





e2|k|x

2|k|

∣∣∣∣∣

a

x=a−ξ
+

e−2|k|x îλ2δ2β + 4
ó

−2|k|(2δ + λδβ)2

∣∣∣∣∣∣

a

x=a−ξ



 dk

=
δ

π

∫

k 6=0

|Ik|2
|g|2 ·





e2|k|a − e2|k|(a−ξ)

2|k| +

Ä
e−2|k|(a−ξ) − e−2|k|aä îλ2δ2β + 4

ó
2|k|(2δ + λδβ)2



 dk

=
δ

2π

∫

k 6=0

|Ik|2
|k||g|2 ·



e2|k|a Ä1− e−2|k|ξä+

î
λ2δ2β + 4

ó
(2δ + λδβ)2

e−2|k|a Äe2|k|ξ − 1
ä
 dk

=
δ

2π

∫

k 6=0

|Ik|2
|k||g|2 e2|k|a ·


Ä1− e−2|k|ξä+

Ä
λ2δ2β + 4

ä
(2δ + λδβ)2

e−4|k|a Äe2|k|ξ − 1
ä dk

=
δ

π

∫ ∞

0

|Ik|2
k|g|2 e2ka ·


Ä1− e−2kξ

ä
+

Ä
λ2δ2β + 4

ä
(2δ + λδβ)2

e−4ka
Ä
e2kξ − 1

ä dk (4.50)

≥ ‹Eξ(δ) ≡ ∫ ∞
k̃

F dk, (4.51)

where k̃ > 0 is arbitrary,

F ≡
Ç
δ|Ik|2
πk|g|2

å
e2kaL, (4.52)

L ≡
Ä
1− e−2kξ

ä
+

Ä
λ2δ2β + 4

ä
(2δ + λδβ)2

e−4ka
Ä
e2kξ − 1

ä
, (4.53)

and (4.50) holds since |Ik|2 is an even function of k (see Lemma 4.1).

4.6 Lower Bound on Power Dissipation

In this section we derive some asymptotic estimates on the function F defined in

(4.52). From (4.37) we have

|g|2 = δ2





(
1 +

4 + λδβ+1

2δ2 + λδβ+1
e−2ka

)2

+

[
2(δ − λδβ)

2δ2 + λδβ+1
e−2ka

]2


 . (4.54)
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Upon inspection of (4.50) we see (heuristically) that if |g|2 = O(δ2) as δ → 0+, we

may be able to show that the power dissipation blows up as δ → 0+. To this end we

define

k0(δ) ≡ 1

2a
ln

Ç
1

δ(δ + µ)

å
=

1

2a
ln

Ç
1

2δ2 + λδβ+1

å
. (4.55)

Note that k0(δ)→∞ as δ → 0+. From (4.51) and recalling (4.37) and (4.52)–(4.53)

we see that

Eξ(δ) ≥
∫ ∞

k0(δ)
F dk (4.56)

for all 0 < δ ≤ δ0(β, λ) where 0 < δ0 ≤ δµ is such that k0(δ) > 0 for 0 < δ ≤ δ0 (recall

δµ(β, λ) is defined so that µ = δ + λδβ ≥ 0 for all δ ≤ δµ).

Lemma 4.4 Suppose β > 0, λ is feasible (see (4.6)), and C1 > 25. Then there exists

0 < δg(β, λ, C1) ≤ δµ(β, λ) such that if 0 < δ ≤ δg and k ≥ k0(δ) then

|g|2 ≤ C1δ
2.

Proof of Lemma 4.4: Note that (4.54) is equivalent to

|g|2 = δ2


1 +

2
Ä
4 + λδβ+1

ä
2δ2 + λδβ+1

e−2ka +
16 + 4δ2 + λ2δ2β (4 + δ2)

(2δ2 + λδβ+1)2 e−4ka


 .

All three terms in the above equation are positive for all 0 < δ ≤ δµ. To see this,

recall that, by definition, µ = δ + λδβ ≥ 0 if δ ≤ δµ. Hence the denominator in the

second term, namely 2δ2 + λδβ+1 = δ(δ+µ) ≥ 0 for δ ≤ δµ. Similarly, the numerator

in the second term is nonnegative since µ ≥ 0 if and only if λδβ ≥ −δ ≥ −1 since δµ

is assumed to be less than 1. Thus 4 + λδβ+1 ≥ 4− δ ≥ 3.

Also, since k ≥ k0(δ), e−2ka ≤ e−2k0(δ)a = 2δ2 + λδβ+1. Then, for 0 < δ ≤ δµ we

have

|g|2 ≤ δ2


1 +

2
Ä
4 + λδβ+1

ä
2δ2 + λδβ+1

e−2k0(δ)a +
16 + 4δ2 + λ2δ2β (4 + δ2)

(2δ2 + λδβ+1)2 e−4k0(δ)a




≤ δ2
î
25 + 2λδβ+1 + 4δ2 + λ2δ2β

Ä
4 + δ2

äó
.

We then choose δg(β, λ, C1) ≤ δµ(β, λ) small enough to ensure that the term in

brackets is less than or equal to C1 for all 0 < δ ≤ δg. This completes the proof.
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Lemma 4.5 Suppose β > 0, λ is feasible, 0 < ξ < a, and let 0 < CL < 1 be a

constant. Then there exists 0 < δL(β, λ, ξ
a
, CL) ≤ δµ(β, λ) such that if 0 < δ ≤ δL and

k ≥ k0(δ), then L ≥ CL.

Proof of Lemma 4.5: From (4.53) we have

L =
Ä
1− e−2kξ

ä
+

λ2δ2β + 4

(2δ + λδβ)2 e−4ka
Ä
e2kξ − 1

ä
≥ 1− e−2kξ

≥ 1− e−2k0(δ)ξ

= 1−
Ä
2δ2 + λδβ+1

ä ξ
a

≥ CL

for 0 < δ ≤ δL(β, λ, ξ
a
, CL), where 0 < δL ≤ δµ is such that

Ä
2δ2 + λδβ+1

ä ξ
a ≤ 1− CL

for 0 < δ ≤ δL. This completes the proof.

For 0 < δ ≤ min{δ0, δg, δL} we apply the bounds from Lemmas 4.4 and 4.5 to

(4.56) and, recalling (4.52)–(4.54), find

Eξ(δ) ≥
CL
πC1δ

∫ ∞

k0(δ)

|Ik|2
k

e2ka dk. (4.57)

Note that this integral converges by Lemma 4.1; in particular, for k ≥ k0(δ) > 0

we have k−1|Ik|2e2ka ≤ (d1 − d0)‖ρ‖2
L2(M)k0(δ)−1e−2k(d0−a), which is integrable on

(k0(δ),∞)) because d0 > a. Our goal is to show that Eξ(δ) tends to infinity as a

sequence δj tends to 0.

From (4.57) we have

Eξ(δ) ≥
CL
πC1δ

∫ k0(δ)+ 1

ln( e
δ )

k0(δ)

|Ik|2
k

e2ka dk. (4.58)

Since 0 < δ < 1, we have ln( e
δ
) ≥ 1; thus

k0(δ) +
1

ln
Ä

e
δ

ä ≤ k0(δ) + 1.

This in combination with (4.58) implies

Eξ(δ) ≥
Ç
CL
πC1

å(
e2k0(δ)a

δ [k0(δ) + 1]

)∫ k0(δ)+ 1

ln( e
δ )

k0(δ)
|Ik|2 dk.
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Since |Ik|2 is a continuous function of k for k > 0 by Lemma 4.1, we may apply the

mean value theorem for integrals to the expression above to obtain

Eξ(δ) ≥
Ç
CL
πC1

å
 e2k0(δ)a

δ ln
Ä

e
δ

ä
[k0(δ) + 1]


 |Ik0(δ)+t(δ)|2 (4.59)

for some 0 ≤ t(δ) ≤ 1

ln( e
δ )
≤ 1. Note that t(δ)→ 0 as δ → 0+. So now we must show

that the lower bound (4.59) tends to infinity as a sequence δj tends to 0.

Theorem 4.3 Let ρ ∈ P, β > 0, and λ be feasible. Assume there exist constants

d∗ ∈ [d0, d1] and Λ ∈ (0,∞] such that lim supk→∞ |Ikekd∗| = Λ. Then there exists a

sequence {δj}∞j=1 with δj → 0+ as j → ∞ and there exist positive constants C ′ ≡
CLe−2d∗

2πC1
, C2 ≡ C′aΛ2λ(d∗−a)/a

2
, C3 ≡ lnλ,and C4 ≡ C′aΛ2

4
such that

Eξ(δj) ≥





C2δ
(β+1)( d∗−aa )−1

j

(ln δj − 1) [C3 + (β + 1) ln δj]
for 0 < β < 1,

C4δ
2( d∗−aa )−1

j

(ln δj − 1) ln δj
for β ≥ 1.

(4.60)

(The constants C2 and C3 are well defined since λ > 0 if 0 < β < 1 — see (4.6).)

Moreover, if limk→∞ |Ikekd∗ | = Λ, then for δ small enough we have

Eξ(δ) ≥





C2δ
(β+1)( d∗−aa )−1

(ln δ − 1) [C3 + (β + 1) ln δ]
for 0 < β < 1,

C4δ
2( d∗−aa )−1

(ln δ − 1) ln δ
for β ≥ 1.

(4.61)

Proof of Theorem 4.3: If 0 < δ ≤ min{δ0, δg, δL}, then (4.59) holds. Since

0 ≤ t(δ) ≤ 1 and k0(δ) + 1 ≤ 2k0(δ) for δ small enough (equivalently k0(δ) large

enough), (4.59) implies

Eξ(δ) ≥
Ç
CL

2πC1

å
 e2k0(δ)a

δ ln
Ä

e
δ

ä
k0(δ)



∣∣∣[Ik0(δ)+t(δ)]e

[k0(δ)+t(δ)]d∗
∣∣∣
2

e−2[k0(δ)+t(δ)]d∗

=

(
CLe−2t(δ)d∗

2πC1

)
e−2k0(δ)(d∗−a)

δ ln
Ä

e
δ

ä
k0(δ)

∣∣∣Ik′(δ)ek
′(δ)d∗

∣∣∣
2
, (4.62)
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where k′(δ) ≡ k0(δ) + t(δ). Since 0 ≤ t(δ) ≤ 1, we have 0 ≥ −2t(δ)d∗ ≥ −2d∗, which

implies 1 ≥ e−2t(δ)d∗ ≥ e−2d∗ . Inserting this into (4.62) gives

Eξ(δ) ≥
C ′e−2k0(δ)(d∗−a)

δ ln
Ä

e
δ

ä
k0(δ)

∣∣∣Ik′(δ)ek
′(δ)d∗

∣∣∣
2
. (4.63)

Since lim sup
k→∞

|Ikekd∗ | = Λ, there exists a sequence {kj}∞j=1 with kj →∞ as j →∞
and

lim
j→∞
|Ikjekjd∗| = Λ. (4.64)

We choose a sequence {δj}∞j=1 such that δj → 0+ as j → ∞ and kj = k0(δj) (where

k0(δ) = − 1
2a

ln(2δ2 + λδβ+1) is defined in (4.55)).

We define k′j ≡ k′(δj) = k0(δj) + t(δj); note that k′j = kj + t(δj) → ∞ as j → ∞
(i.e., as δj → 0+). Also, |k′j−kj| = |t(δj)| → 0 as j →∞. Thus |k′j−kj| can be made

arbitrarily small by taking j large enough. Since |Ikekd∗| is a continuous function of

k, by taking j large enough we can ensure that |Ik′je
k′jd∗ − Ikekjd∗| is as small as we

wish; this, in combination with (4.64), implies

lim
j→∞
|Ik′je

k′jd∗| = Λ.

Thus, for j large enough (i.e., δj small enough), |Ik′je
k′jd∗| ≥ Λ/2 (if Λ = ∞ any

positive number here will do in place of Λ/2). Hence for large enough j we have (from

(4.63))

Eξ(δj) ≥
Ç
C ′Λ2

4

å
e−2k0(δj)(d∗−a)

δj ln
(

e
δj

)
k0(δj)

=

Ç
C ′Λ2

4

å Ä
2δ2
j + λδβ+1

j

ä(d∗−a)/a

δj ln
(

e
δj

)
k0(δj)

. (4.65)

With j large enough so that δj ≤ δµ we have µj ≡ δj +λδβj ≥ 0. Thus if β ≥ 1 and

j is large enough so that µj ≥ 0, then 2δ2
j + λδβ+1

j = δj(δj + µj) ≥ δ2
j . On the other

hand, if 0 < β < 1, then λ > 0 (by (4.6)) and so 2δ2
j + λδβ+1

j ≥ λδβ+1
j . In summary,

for j large enough so that δj ≤ δµ we have the inequality

2δ2
j + λδβ+1

j ≥



λδβ+1

j for 0 < β < 1,

δ2
j for β ≥ 1.

(4.66)

Recalling the definition of k0 in (4.55), we note that (4.66) implies

k0(δj) =
1

2a
ln

Ñ
1

2δ2
j + λδβ+1

j

é
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= − 1

2a
ln(2δ2

j + λδβ+1
j )

≤





− 1

2a
ln(λδβ+1

j ) for 0 < β < 1,

− 1

2a
ln(δ2

j ) for β ≥ 1.

(4.67)

To finish the proof, we apply the inequalities (4.66) to (4.65). In particular, if

0 < β < 1, (4.67) implies

Eξ(δj) ≥
Ç
C ′Λ2

4

å Ä
λδβ+1

j

ä(d∗−a)/a

δj ln
(

e
δj

) ·

− 2a

ln
Ä
λδβ+1

j

ä
=

(
C ′aΛ2λ(d∗−a)/a

2

)
δ

(β+1)( d∗−aa )
j

δj(ln δj − 1)[lnλ+ (β + 1) ln δj]

=
C2δ

(β+1)( d∗−aa )−1

j

(ln δj − 1) [C3 + (β + 1) ln δj]
.

Similarly, if β ≥ 1 then (4.65), (4.66)–(4.67) imply

Eξ(δ) ≥
Ç
C ′Λ2

4

å
(δ2
j )

(d∗−a)/a

δj ln
(

e
δj

) ·
[
− 2a

ln(δ2
j )

]

=

Ç
C ′aΛ2

4

å
δ

2( d∗−aa )
j

δj(ln δj − 1) ln δj

=
C4δ

2( d∗−aa )−1

j

(ln δj − 1) ln δj
.

Similarly, if the stronger condition lim
k→∞
|Ikekd∗| = Λ holds, since k′(δ) → ∞ as

δ → 0+ we have |Ik′(δ)ek′(δ)d∗| ≥ Λ
2

and

Eξ(δ) ≥
Ç
C ′Λ2

4

å Ä
2δ2 + λδβ+1

ä(d∗−a)/a

δ ln
Ä

e
δ

ä
k0(δ)

(4.68)

for δ small enough; this is the continuous analog of (4.65) and is a consequence of

(4.63). Finally, (4.61) is obtained by inserting the inequality

2δ2 + λδβ+1 ≥



λδβ+1 for 0 < β < 1,

δ2 for β ≥ 1,

which holds for δ small enough, into (4.68). This completes the proof.
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The next corollary follows from Theorem 4.3.

Corollary 4.1 Let ρ ∈ P, β > 0, and λ be feasible. Assume there exist constants

d∗ ∈ [d0, d1] and Λ ∈ (0,∞] such that

(a) lim sup
k→∞

|Ikekd∗ | = Λ; or

(b) lim
k→∞
|Ikekd∗| = Λ.

If d∗ < τ(β)a, where τ is the continuous function

τ(β) ≡





β + 2

β + 1
if 0 < β < 1,

3

2
if β ≥ 1,

(4.69)

then lim supδ→0+ Eξ(δ) =∞ if (a) holds (weak CALR) and limδ→0+ Eξ(δ) =∞ if (b)

holds (strong CALR).

Proof of Corollary 4.1: If 0 < β < 1, then, since δj → 0+ as j →∞, the l’Hospital

Rule implies

lim
j→∞





C2δ
(β+1)( d∗−aa )−1

j

(ln δj − 1) [C3 + (β + 1) ln δj]





=∞

if and only if

(β + 1)

Ç
d∗ − a
a

å
− 1 < 0 ⇔ d∗ < a+

a

β + 1
=

Ç
β + 2

β + 1

å
a. (4.70)

Since

Eξ(δj) ≥
C2δ

(β+1)( d∗−aa )−1

j

(ln δj − 1) [C3 + (β + 1) ln δj]

for j large enough by Theorem 4.3, lim
j→∞

Eξ(δj) =∞ if and only if the condition (4.70)

holds.

Similarly,

lim
j→∞



C4δ

2( d∗−aa )−1

j

(ln δj − 1) ln δj


 =∞

if and only if

2

Ç
d∗ − a
a

å
− 1 < 0⇔ d∗ <

a

2
+ a =

3

2
a. (4.71)
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Since

Eξ(δj) ≥
C4δ

2( d∗−aa )−1

j

(ln δj − 1) ln δj

for j large enough by Theorem 4.3, limj→∞Eξ(δj) = ∞ if and only if the condition

(4.71) holds.

The proof in the case where the hypothesis (b) holds is proved in the same way.

This completes the proof.

Remark 4.1 According to the previous corollary, the region of influence, i.e., the

region in which the charge density ρ should be placed to cause the power dissipation

blow-up near the inner right edge of the slab, is the interval (a, τ(β)a). In particular

we can take d1 < τ(β)a to guarantee that ρ is completely inside this region (assuming

the support of ρ is small enough so that d0 > a as well). This region of influence is

the same as that found in the cloaking paper by Milton and Nicorovici [91] and also

in the superlensing paper by Milton et al. [94] in the particular case when ρ is a dipole

source. Also see Bergman’s work [15].

4.6.1 Numerical Discussion

In this section, we study the behavior of two charge density distributions ρ. In

particular, we show that they satisfy the conditions of Theorem 4.3 that lead to weak

CALR, i.e., they satisfy lim supk→∞ |Ikekd∗| = Λ. We also provide plots illustrating

the blow-up of the dissipated electrical power as δ goes to 0+ for these charge density

distributions.

4.6.1.1 Rectangle

The first charge density distribution we consider has support in a rectangle cen-

tered at (x0, y0). The left and right edges of the rectangle are at d0 = x0 − d and

d1 = x0 + d, respectively, where d > 0. The bottom and top edges are at h0 = y0 − h
and h1 = y0 + h, respectively, where h > 0. These parameters are chosen so d0 > a.

We define the charge density distribution as

ρ(x, y) =





Q for (x, y) ∈ [d0, d1]× (y0, h1],

−Q for (x, y) ∈ [d0, d1]× [h0, y0),

0 otherwise,

(4.72)
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where Q 6= 0. Since ρ ∈ L1(M) ∩ L2(M), we can use calculus, (4.16), and (4.35) to

find

ρ̂(x, k) = −4Q

k
[sin(y0k) + i cos(y0k)] sin2

Ç
hk

2

å
(4.73)

and

|Ik| =
4|Q|
k2

sin2

Ç
hk

2

å
e−d0k

Ä
1− e−2dk

ä
(4.74)

for k > 0. If we take kj = (2j−1)π
h

for j = 1, 2, . . . and d∗ = d0 + α for α > 0 we have

|Ikjed∗kj | =
4|Q|
k2
j

eαkj
Ä
1− e−2dkj

ä
→∞ as j →∞.

This implies lim sup
k→∞

|Iked∗k| =∞, so ρ satisfies the conditions of Theorem 4.3. Thus

there is a sequence δj → 0+ as j →∞ such that Eξ(δj)→∞ as j →∞ if d0 + α <

τ(β)a; according to Theorem 4.4 in Section 4.7, if d0 > τ(β)a, then Eξ(δ) → 0 as

δ → 0+.

Since α > 0 is arbitrary, the limit superior of the power dissipation blows up as the

dissipation in the lens tends to 0 as long as any part of the charge density distribution

ρ is within the region of influence (a, τ(β)a).

In Figure 4.9 we plot Eξ(δ) for the rectangular charge density ρ studied above

for various values of β and δ. The support of ρ is centered at (6, 6), and has width

and height 2; thus d0 = h0 = 5, d1 = h1 = 7, and d = h = 1. We take 0 < β < 1

and a = d1/τ(β) = d1

(
β+1
β+2

)
, so the support of ρ is completely inside the region of

influence (see (4.69) and Remark 4.1). Figure 4.9(a) is a plot of the power dissipation

Eξ(δ) as a function of β and δ. We observe the divergence of Eξ(δ) as δ → 0+ for

0 < β < 1; in particular the divergence appears to be more severe for larger values

of β. In Figure 4.9(b) we fix δ = 10−16 and plot Eξ(δ) as a function of β. Note the

strong dependence of the divergence of Eξ(δ) on the relative dissipation parameter β.

Finally, in Figure 4.9(c) we plot Eξ(δ) as a function of δ for β = 0.8.

4.6.1.2 Circle

We now consider a charge density distribution with support in a circle of radius

R centered at (x0, y0). In this case we have d0 = x0 − R and d1 = x0 + R. Again we
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Figure 4.9. (Rectangular ρ) In all of these figures we take a = d1/τ(β) so ρ is
completely within the region of influence. (a) A plot of Eξ(δ) versus β and δ — the
z-axis scale is 107; (b) a plot of Eξ(δ) for δ = 10−16 as a function of β — the y-axis
scale is 108; (c) a plot of Eξ(δ) for β = 0.8 as a function of δ — the y-axis scale is 107.
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choose the parameters so that d0 > a. We define the charge density distribution as

ρ(x, y) =





Q for d0 ≤ x ≤ d1, y0 < y ≤ h1(x),

−Q for d0 ≤ x ≤ d1, h0(x) ≤ y < y0,

0 otherwise,

where Q 6= 0. Again, ρ ∈ L1(M) ∩ L2(M), so (4.16) and (4.35) imply

ρ̂(x, k) = −4Q

k
[sin(y0k) + i cos(y0k)] sin2

ñ
k

2

»
R2 − (x− x2

0)

ô
and

|Ik| =
4|Q|
k

∫ d1

d0
sin2

ñ
k

2

»
R2 − (s− x2

0)

ô
e−ks ds

for k > 0.

Claim: If d∗ = x0 + α for α > 0, then lim supk→∞ |Iked∗k| =∞.

Proof of Claim: Let {kj}∞j=1 be the sequence whose jth term is given by kj =

2
R

Ä
π
2

+ 2πj
ä
. Then

|Ikj | ≥
4|Q|
kj

∫ x0+γj

x0
sin2

ñ
kj
2

»
R2 − (s− x2

0)

ô
e−kjs dx, (4.75)

where γj = R
j

for j = 1, 2, . . ..

For s ∈ [x0, x0 + γj] we have

kj
2

√
R2 − γ2

j ≤
kj
2

»
R2 − (s− x0)2 ≤ kjR

2
. (4.76)

We also have

kj
2

√
R2 − γ2

j =
Åπ

2
+ 2πj

ã√
1− 1

j2
=
π

2
− ζj + 2πj, (4.77)

where

ζj ≡
π
2

+ 2πj

j2
(
1 +

√
1− 1

j2

) =
Åπ

2
+ 2πj

ã(
1−

√
1− 1

j2

)
.

Note ζj → 0+ as j → ∞, so 0 < ζj <
π
2

for j large enough. In combination with

(4.76) and (4.77) this implies

2πj <
π

2
− ζj + 2πj ≤ kj

2

»
R2 − (s− x0)2 ≤ kjR

2
=
π

2
+ 2πj (4.78)

for j large enough. Since sin θ is monotone increasing for θ ∈ (0, π
2
), (4.75) and (4.78)

imply

|Ikj | ≥
4|Q|
kj

sin2
Åπ

2
− ζj + 2πj

ã ∫ x0+γj

x0
e−kjs ds
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=
4|Q|
k2
j

sin2
Åπ

2
− ζj

ã
e−kjx0

Ä
1− e−kjγj

ä
. (4.79)

Now kjγj = π/j + 4π ≥ 4π so 1− e−kjγj ≥ 1− e−4π. Also, since ζj → 0+ as j →∞,

for j large enough we have sin(π/2− ζj) ≥ 1/2. Using the fact that d∗ = x0 + α, we

see that for j large enough (4.79) implies

|Ikjed∗kj | ≥
4|Q|
k2
j

sin2
Åπ

2
− ζj

ã
eαkj

Ä
1− e−kjγj

ä
≥ |Q|

Ä
1− e−4π

ä eαkj

k2
j

→∞ as j →∞.

This implies that lim supk→∞ |Iked∗k| =∞. This completes the proof of the claim.

Again we note that ρ need not be completely within the region of influence for

the limit superior of the power dissipation to blow-up as the dissipation in the lens

goes to 0. In particular, according to the above analysis, ρ only needs to be slightly

more than halfway inside the region of influence for the blow-up to occur. However,

numerical results seem to indicate that the power dissipation due to this charge density

distribution blows up even if ρ is just inside the region of influence (as is the case for

the rectangular charge density distribution analyzed in Section 4.6.1.1).

In Figure 4.10 we plot Eξ(δ) as a function of β and δ for the circular charge distri-

bution discussed above. We assume ρ is centered at (6, 6) so d0 = 5, d1 = 7, and d = 1.

as in the rectangular case. The only other difference between Figures 4.10 and 4.9

are the values of δ we used to construct the plots.

4.7 Upper Bound on Power Dissipation

In this section, we discuss what happens when d0 > τ(β)a ≥ 3
2
a. Recall that ρ

has compact support, so supp(ρ) ⊆ [d0, d1]× [h0, h1] for some constants a < d0 < d1

and h0 < h1.

Recall that the power dissipation is given exactly by

Eξ(δ) =
∫ ∞

0
F dk;

see (4.50) and (4.52)–(4.53). We now prove a series of lemmas that lead to an upper

bound on Eξ(δ). First we recall that δµ < 1 is such that µ = δ + λδβ ≥ 0 for δ ≤ δµ.

Also, we note that 3/2 < τ(β) < 2 for 0 < β < 1 due to (4.69).



130

2
4

6
8

x 10
−12

0.2

0.4

0.6

2

4

6

x 10
4

δβ

E
ξ(δ

)

(a)

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

x 10
5

β

E
ξ(δ

)

2 4 6 8 10

x 10
−12

2

3

4

5

6

7

x 10
4

δ

E
ξ(δ

)

(b) (c)

Figure 4.10. (Circular ρ) In all of these figures we take a = d1/τ(β) so ρ is completely
within the region of influence. (a) A plot of Eξ(δ) versus β and δ — the z-axis scale
is 104; (b) a plot of Eξ(δ) for δ = 10−12 as a function of β — the y-axis scale is 105;
(c) a plot of Eξ(δ) for β = 0.8 as a function of δ — the y-axis scale is 104.
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Lemma 4.6 Suppose β > 0 and λ is feasible, and let k0(δ) be defined as in (4.55).

Then for every 0 < δ ≤ δ0

|g|2 ≥





9e−4ka δ2

(2δ2 + λδβ+1)2 for 0 ≤ k ≤ k0(δ),

e−ka
δ2

(2δ2 + λδβ+1)
1
2

for k ≥ k0(δ).

Proof of Lemma 4.6: From (4.54) we have

|g|2 = δ2





(
1 +

4 + λδβ+1

2δ2 + λδβ+1
e−2ka

)2

+

[
2(δ − λδβ)

2δ2 + λδβ+1
e−2ka

]2




≥ δ2

(
1 +

4 + λδβ+1

2δ2 + λδβ+1
e−2ka

)2

. (4.80)

For 0 < δ ≤ δ0 ≤ δµ < 1 (for which µ = δ + λδβ ≥ 0) we have 4 + λδβ+1 ≥ 4− δ2 ≥
4− δ2

µ ≥ 3. Then, from (4.80), for fixed δ ≤ δ0 and for all k ∈ R we have

|g|2 ≥ δ2

Ç
3

2δ2 + λδβ+1
e−2ka

å2

= 9e−4ka δ2

(2δ2 + λδβ+1)2 .

This bound holds for all k; in particular it holds for 0 ≤ k ≤ k0(δ).

To prove the second part of the lemma we note that (4.80) implies that |g|2 ≥ δ2

when 0 < δ ≤ δ0 ≤ δµ (since 4 + λδβ+1 ≥ 3 for 0 < δ ≤ δµ as above). If k ≥ k0(δ)

holds as well we have

e−ka
δ2

(2δ2 + λδβ+1)
1
2

≤ e−k0(δ)a δ2

(2δ2 + λδβ+1)
1
2

= δ2 ≤ |g|2.

This completes the proof.

Combining the computations from Lemmas 4.6 and 4.1 we find that (4.50) implies

Eξ(δ) ≤
δ

π

∫ k0(δ)

0

(d1 − d0) ‖ρ‖2
L2(M) e−2kd0e4ka

Ä
2δ2 + λδβ+1

ä2

9kδ2
e2kaLdk

+
δ

π

∫ ∞

k0(δ)

(d1 − d0) ‖ρ‖2
L2(M) e−2kd0eka

Ä
2δ2 + λδβ+1

ä 1
2

kδ2
· e2kaLdk

= C5δ
∫ k0(δ)

0

e−2k(d0−3a)

k

Ä
2δ + λδβ

ä2
Ldk

+ 9C5δ
− 1

2

∫ ∞

k0(δ)

e−2k(d0− 3
2
a)

k

Ä
2δ + λδβ

ä 1
2 Ldk,



132

where

C5 ≡
(d1 − d0) ‖ρ‖2

L2(M)

9π

and 0 < δ ≤ δ0. Using (4.53) we can rewrite the above upper bound as

Eξ(δ) ≤ T1 + T2 + T3 + T4, (4.81)

where

T1 ≡ C5δ(2δ + λδβ)2
∫ k0(δ)

0
e−2k(d0−3a)

(
1− e−2kξ

k

)
dk; (4.82a)

T2 ≡ C5δ(λ
2δ2β + 4)

∫ k0(δ)

0
e−2k(d0−3a)e−4ka

(
e2kξ − 1

k

)
dk; (4.82b)

T3 ≡ 9C5δ
− 1

2 (2δ + λδβ)
1
2

∫ ∞

k0(δ)
e−2k(d0− 3

2
a)

(
1− e−2kξ

k

)
dk; (4.82c)

T4 ≡ 9C5δ
− 1

2 (2δ + λδβ)−
3
2 (λ2δ2β + 4)

∫ ∞

k0(δ)
e−2k(d0− 3

2
a)e−4ka

(
e2kξ − 1

k

)
dk. (4.82d)

We derive estimates of these integrals in the next four lemmas. Recall that 0 < δ0 ≤ δµ

is such that k0(δ) > 0 for 0 < δ ≤ δ0. In the next four lemmas, we assume 0 < δ ≤ δ0.

Lemma 4.7 Suppose β > 0, λ is feasible, 0 < ξ < a, 0 < δ ≤ δ0, and d0 ≥ τ(β)a.

Then

lim
δ→0+

T1 =





C6λ
[2+(d0−3a)/a] if 0 < β < 1 and d0 = τ(β)a,

C6(2 + λ)[2+(d0−3a)/a] if β = 1 and d0 = τ(β)a,

C62[2+(d0−3a)/a] if β > 1 and d0 = τ(β)a,

0 if d0 > τ(β)a,

where

C6 =
ξC5

d0 − 3a
.

Proof of Lemma 4.7: We begin by noting that (4.69) implies that (3/2)a ≤
τ(β)a < 2a for all β > 0.
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Next, the function k−1(1−e−2kξ) tends to 0 as k goes to infinity and is continuous

and decreasing for k ∈ [0,∞) as long as we define it to be equal to 2ξ at k = 0. To

see this, note that the l’Hospital Rule implies

lim
k→0

1− e−2kξ

k
= lim

k→0
2ξe−2kξ = 2ξ.

We also have
d

dk

(
1− e−2kξ

k

)
=

e−2kξ(2kξ + 1)− 1

k2
. (4.83)

The l’Hospital Rule implies that this function tends to −2ξ2 as k → 0.

For k 6= 0, the derivative in (4.83) is less than or equal to zero if and only if

e−2kξ(2kξ + 1)− 1 ≤ 0 ⇔ 2kξ + 1 ≤ e2kξ. (4.84)

The line 2ξk + 1 is tangent to the function e2kξ at the point k = 0. Since e2ξk is

convex for all k, the inequality (4.84) must hold for all k ∈ R and in particular for all

k ∈ (0,∞) [21, Section 3.1.3]. Therefore k−1(1− e−2kξ) ≤ 2ξ for all k ≥ 0. If d0 6= 3a,

then in combination with (4.82a) this implies

T1 ≤ 2ξC5δ(2δ + λδβ)2
∫ k0(δ)

0
e−2k(d0−3a) dk (4.85)

=
2ξC5

2(d0 − 3a)
δ(2δ + λδβ)2

î
1− e−2k0(δ)(d0−3a)

ó
= C6δ(2δ + λδβ)2 − C6δ(2δ + λδβ)2e−2k0(δ)(d0−3a). (4.86)

The first term in (4.86) goes to 0 as δ → 0+. The second term is equal to

−C6δ(2δ + λδβ)2(2δ2 + λδβ+1)(d0−3a)/a. (4.87)

If 0 < β < 1 we rewrite this as

−C6(2δ1−β + λ)2[2δ1−β + λ](d0−3a)/aδ[1+2β+(β+1)(d0−3a)/a].

This expression goes to 0 as δ → 0+ if and only if

1 + 2β + (β + 1)

Ç
d0 − 3a

a

å
> 0 ⇔ d0 >

Ç
β + 2

β + 1

å
a = τ(β)a,

and it goes to C6λ
[2+(d0−3a)/a] as δ → 0+ if and only if d0 = τ(β)a.
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If β ≥ 1 we rewrite (4.87) as

−C6(2 + λδβ−1)2(2 + λδβ−1)(d0−3a)/aδ[3+2(d0−3a)/a].

This term goes to 0 as δ → 0+ if and only if

3 + 2(d0 − 3a)/a > 0 ⇔ d0 >
3

2
a = τ(β)a,

and if d0 = τ(β)a it goes to C62[2+(d0−3a)/a] if β > 1 and C6(2+λ)[2+(d0−3a)/a] if β = 1.

If d0 = 3a, then from (4.85) we have

T1 ≤ 2ξC5δ(2δ + λδβ)2k0(δ)

= a−1ξC5δ(2δ + λδβ)2 ln

Ç
1

2δ2 + λδβ+1

å
→ 0 as δ → 0+

for all β > 0. This completes the proof.

Lemma 4.8 Suppose β > 0, λ is feasible, 0 < ξ < a
2
, 0 < δ ≤ δ0, and d0 ≥ τ(β)a.

Then

lim
δ→0+

T2 = 0. (4.88)

Proof of Lemma 4.8: We begin by noting that the function k−1(e2kξ − 1) is

continuous for k ∈ [0,∞) if we define it to be equal to 2ξ at k = 0. Also, since

d0 ≥ τ(β)a ≥ 3a/2, we have d0 − a ≥ a/2. This implies that e−2k(d0−3a)e−4ka =

e−2k(d0−a) ≤ e−ka for all k ≥ 0. Thus

∫ ∞

0
e−2k(d0−3a)e−4ka

(
e2kξ − 1

k

)
dk ≤

∫ ∞

0

(
e2k(ξ−a

2 )− e−ka

k

)
dk;

The second integral (and, hence, the first integral) converges to a positive constant

C as long as 0 < ξ < a
2
. Then, from (4.82b), T2 ≤ CC5δ(λ

2δ2β + 4) → 0 as δ → 0+.

This completes the proof.

Lemma 4.9 Suppose β > 0, λ is feasible, 0 < ξ < a, 0 < δ ≤ δ0, and d0 >
3
2
a. Then

lim
δ→0+

T3 =





C7λ
[ 1
2

+(d0− 3
2
a)/a] if 0 < β < 1 and d0 = τ(β)a,

0 if d0 > τ(β)a,

where

C7 =
9C5ξ

d0 − 3
2
a
> 0.
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Proof of Lemma 4.9: As in the proof of Lemma 4.7 we have k−1(1− e−2kξ) ≤ 2ξ

for all k ≥ 0. Thus, from (4.82c),

T3 ≤ 18C5ξδ
− 1

2 (2δ + λδβ)
1
2

∫ ∞

k0(δ)
e−2k(d0− 3

2
a) dk

=
18C5ξ

2(d0 − 3
2
a)
δ−

1
2 (2δ + λδβ)

1
2

ï
− e−2k(d0− 3

2
a)
∣∣∣
∞
k0(δ)

ò
= C7δ

− 1
2 (2δ + λδβ)

1
2 e−2k0(δ)(d0− 3

2
a)

= C7δ
− 1

2 (2δ + λδβ)
1
2 (2δ2 + λδβ+1)(d0− 3

2
a)/a. (4.89)

If 0 < β < 1, note that τ(β)a > 3
2
a — this implies that the above analysis holds

as long as d0 ≥ τ(β)a. We rewrite (4.89) as

C7(2δ1−β + λ)
1
2 (2δ1−β + λ)(d0− 3

2
a)/aδ[− 1

2
+β

2
+(β+1)(d0− 3

2
a)/a].

This expression will go to 0 as δ → 0+ if and only if

−1

2
+
β

2
+ (β + 1)

(
d0 − 3

2
a

a

)
> 0 ⇔ d0 > τ(β)a,

and if d0 = τ(β)a it goes to C7λ
[ 1
2

+(d0− 3
2
a)/a] as δ → 0+.

If β ≥ 1 we note that the analysis leading to (4.89) can only be applied if d0 >

τ(β)a = 3
2
a. In this case we rewrite (4.89) as

C7(2 + λδβ−1)
1
2 (2 + λδβ−1)(d0− 3

2
a)/aδ2(d0− 3

2
a)/a,

which goes to 0 as δ goes to 0 if and only if 2(d0 − 3
2
a)/a > 0 ⇔ d0 > τ(β)a = 3

2
a.

This completes the proof.

Lemma 4.10 Suppose β > 0, λ is feasible, 0 < ξ < a, 0 < δ ≤ δ0, and d0 ≥ τ(β)a.

Then

lim
δ→0+

T4 = 0.

Proof of Lemma 4.10: From (4.82d) we have

T4 = 9C5δ
− 1

2 (2δ + λδβ)−
3
2 (λ2δ2β + 4)

∫ ∞

k0(δ)
e−2k(d0− 3

2
a)e−4ka

(
e2kξ − 1

k

)
dk
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= 9C5δ
− 1

2 (2δ + λδβ)−
3
2 (λ2δ2β + 4)

∫ ∞

k0(δ)
e−k(2d0+a)

(
e2kξ − 1

k

)
dk

≤ 9C5
δ−

1
2 (2δ + λδβ)−

3
2 (λ2δ2β + 4)

k0(δ)

∫ ∞

k0(δ)
e−k(2d0+a−2ξ) dk

=

[
9C5(λ2δ2β + 4)

2d0 + a− 2ξ

] 
δ
− 1

2 (2δ + λδβ)−
3
2 (λ2δ2β + 4)

k0(δ)


 e−k0(δ)(2d0+a−2ξ)

= C8(λ2δ2β + 4)


δ
− 1

2 (2δ + λδβ)−
3
2

k0(δ)


 (2δ2 + λδβ+1)(2d0+a−2ξ)/(2a), (4.90)

where

C8 ≡
9C5

2d0 + a− 2ξ
> 0.

If 0 < β < 1 we rewrite (4.90) as

[
C8(λ2δ2β + 4)

k0(δ)

]
(2δ1−β + λ)−

3
2 (2δ1−β + λ)(2d0+a−2ξ)/(2a)δ[− 1

2
− 3

2
β+(β+1)(2d0+a−2ξ)/(2a)].

This expression will go to 0 as δ → 0+ if and only if

−1

2
− 3

2
β +

(β + 1)(2d0 + a− 2ξ)

2a
≥ 0 ⇔ d0 ≥

Ç
β

β + 1

å
a+ ξ.

Since ξ < a and 0 < β < 1 we haveÇ
β

β + 1

å
a+ ξ <

Ç
β

β + 1

å
a+ a =

Ç
2β + 1

β + 1

å
a <

Ç
β + 2

β + 1

å
a = τ(β)

Thus if 0 < β < 1 and d0 ≥ τ(β)a we have T4 → 0 as δ → 0+.

If β ≥ 1 we rewrite (4.90) as

[
C8(λ2δ2β + 4)

k0(δ)

]
(2 + λδβ−1)−

3
2 (2 + λδβ−1)(2d0+a−2ξ)/(2a)δ[−2+(2d0+a−2ξ)/a].

This expression goes to 0 as δ → 0+ if and only if

−2 + (2d0 + a− 2ξ)/a ≥ 0⇔ d0 ≥
a

2
+ ξ.

Since β ≥ 1 and 0 < ξ < a we have a
2

+ ξ < 3
2
a = τ(β)a; thus if β ≥ 1 and d0 ≥ τ(β)a

we have T4 → 0 as δ → 0+. This completes the proof.

We summarize our result from this section in the following theorem.
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Theorem 4.4 Let β > 0 and λ feasible be fixed. Suppose also that 0 < ξ < a
2

and

ρ ∈ P. If d0 > τ(β)a, then lim
δ→0+

Eξ(δ) = 0.

Proof of Theorem 4.4: If the hypotheses of the theorem hold and if δ ≤ δ0, then

(4.81) and Lemmas 4.6–4.10 imply

0 ≤ Eξ(δ) ≤ T1 + T2 + T3 + T4 → 0 as δ → 0+.

This completes the proof.

Remark 4.2 Notice that (4.81) and Lemmas 4.6–4.10 imply that Eξ(δ) remains

bounded as δ → 0+ if 0 < β < 1 and d0 = τ(β). Lemma 4.9 does not imply that T3

remains bounded as δ → 0+ if β ≥ 1.

Figures 4.11 and 4.12 are supporting numerical plots; they are the same as Fig-

ures 4.9 and 4.10, respectively, except in this case we have taken a = d0/τ(β) so ρ

just touches the region of influence (in order to accomplish this we have taken β = 0.5

in Figures 4.11(c) and 4.12(c) rather than β = 0.8 as in Figures 4.9(c) and 4.10(c)).

4.8 Boundedness of the Potential

In this section we derive bounds on the potential in regions far away from the

slab. In particular, we prove that the potentials Vc and Vm to the left and right of the

slab, respectively, are bounded by constants that are independent of δ (far enough

away from the slab). As discussed in Section 4.1.1, this is the second requirement for

cloaking by anomalous localized resonance to occur. At this point we do not address

questions regarding which portions of the (rescaled) charge distribution ρ/
»
Eξ(δ)

will be cloaked. For example, if the (rescaled) rectangular charge distribution from

Section 4.6.1.1 is halfway inside the cloaking region (so x0 = τ(β)a), we have not yet

determined whether it will be completely cloaked or if only the leading half will be

cloaked.

Recall from Section 4.2 (also see Theorem C.7 in Section C.6 in Appendix C)

that V ∈ L2
loc(R2). The Cauchy–Schwarz Inequality implies that V ∈ L1

loc(R2) as

well. To see this, let Br((x, y)) denote the disk of radius r > 0 centered at the point

(x, y) ∈ R2. Since V ∈ L2
loc(R2), we have
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Figure 4.11. (Rectangular ρ) In all of these figures we take a = d0/τ(β) so ρ is
completely outside the region of influence. (a) A plot of Eξ(δ) versus β and δ — the
z-axis scale is 10−6; (b) a plot of Eξ(δ) for δ = 10−16 as a function of β — the y-axis
scale is 10−6; (c) a plot of Eξ(δ) for β = 0.5 as a function of δ — the y-axis scale is
10−6.
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Figure 4.12. (Circular ρ) In all of these subfigures we take a = d0/τ(β) so ρ is
completely outside the region of influence. (a) A plot of Eξ(δ) versus β and δ — the
z-axis scale is 10−5; (b) a plot of Eξ(δ) for δ = 10−12 as a function of β — the y-axis
scale is 10−5; (c) a plot of Eξ(δ) for β = 0.5 as a function of δ — the y-axis scale is
10−5.
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‖V ‖L2(Br((x,y))) =

ñ∫
Br((x,y))

|V (x, y)|2 dx dy
ô 1

2

<∞.

By the Cauchy–Schwarz Inequality we have

‖V ‖L1(Br((x,y))) =
∫

Br((x,y))
|V (x, y)| dx dy

≤
ñ∫

Br((x,y))
|V (x, y)|2 dx dy

ô 1
2
ñ∫

Br((x,y))
dx dy

ô 1
2

=
√
πr

ñ∫
Br((x,y))

|V (x, y)|2 dx dy
ô 1

2

<∞,

so V ∈ L1
loc(R2).

Due to (4.12), V is harmonic on the set

G ≡ {(x, y) ∈ R2 : (x, y) /∈ supp ρ and x 6= 0 and x 6= a}.

In particular, if Br((x, y)) ⊂ G, then V is harmonic and locally integrable in Br(x, y).

Then the Weyl Theorem [125, Theorem 18.G] implies that V is infinitely differentiable

on Br((x, y)) (after modification on a set of measure zero); hence V is infinitely

differentiable in G.

4.8.1 The Potential Vc

The next lemma states that, far enough away from the slab, the potential Vc is

bounded for all 0 < δ ≤ δµ.

Lemma 4.11 Suppose ρ ∈ P. Then there is a positive constant C9, independent of

δ, such that |Vc(x, y)| ≤ C9 for all x < −3a and all 0 < δ ≤ δµ.

Proof of Lemma 4.11: From (4.20) and (4.34) we have

|“Vc(x, k)|2 = |Ak|2e2|k|x =
|Ik|2e2|k|x

e−2|k|a||k|ψ+
k + ψ−k |2

. (4.91)

As in the proof of Lemma 4.6, 4 + δ(µ − δ) = 4 + λδβ+1 ≥ 3 for 0 < δ ≤ δµ. Then,

for 0 < δ ≤ δµ < 1, Lemma 4.2 implies that

||k|ψ+
k + ψ−k |2 ≥

|k|2
4(1 + δ2)

(4 + (µ− δ)2)(4 + δ2)e−2|k|a ≥ 2|k|2e−2|k|a (4.92)

for each k ∈ R. In combination with (4.91), this implies that

|“Vc(x, k)|2 ≤ |Ik|
2

2|k|2 e2|k|(x+2a) (4.93)
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for x < 0, for all k ∈ R, and for all 0 < δ ≤ δµ. In particular, note that the expression

in (4.93) is an even function of k if ρ is real-valued due to Lemma 4.1. Then for x < 0

(4.93) implies that

∫ ∞

−∞
|“Vc(x, k)|2 dk ≤ 1

2

∫ ∞

−∞

|Ik|2
|k|2 e2|k|(x+2a) dk

=
∫ ∞

0

|Ik|2
|k|2 e2|k|(x+2a) dk

=
∫ 1

0

|Ik|2
k2

e2k(x+2a) dk +
∫ ∞

1

|Ik|2
k2

e2k(x+2a) dk

=
∫ 1

0

|Ik|2
k2

e2k(x+2a) dk + (d1 − d0)‖ρ‖2
L2(M)

∫ ∞

1

e2k(x+2a−d0)

k2
dk,

(4.94)

thanks to Lemma 4.1. Since
|Ik|2
k2
≤ C2

I

for k ≥ 0 by Lemma 4.1, the first integral in (4.94) converges for any x ∈ R. The

second integral in (4.94) converges if and only if x ≤ d0− 2a (note that d0− 2a > −a
since d0 > a). Then if x < −2a we have, from (4.94), that

∫ ∞

−∞
|“Vc(x, k)|2 ≤

∫ 1

0
C2
I dk + (d1 − d0)‖ρ‖2

L2(M)

∫ ∞

1

1

k2
dk

= C2
I + (d1 − d0)‖ρ‖2

L2(M).

Then the Plancherel Theorem (4.48) implies that for each x < −2a we have

∫ ∞

−∞
|Vc(x, y)|2 dy =

1

2π

∫ ∞

−∞
|“Vc(x, k)|2 dk ≤ 1

2π

î
C2
I + (d1 − d0)‖ρ‖2

L2(M)

ó
. (4.95)

Since Vc(x, y) is harmonic for x < −2a, it satisfies the mean value property: for any

point (x, y) with x < −3a we have

V (x, y) =
1

|Ba((x, y))|
∫

Ba((x,y))
V (x′, y′) dy′dx′,

where Ba((x, y)) is the ball of radius a centered at the point (x, y) [32, Chapter 2];

note that all points (x′, y′) ∈ Ba((x, y)) satisfy x′ < −2a since x < −3a. Finally, by

the Cauchy–Schwarz Inequality and (4.95) we have

|Vc(x, y)| = 1

|Ba((x, y))|

∣∣∣∣∣

∫

Ba((x,y))
V (x′, y′) dy′ dx′

∣∣∣∣∣
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≤ 1

|Ba((x, y))|
∫

Ba((x,y))
|V (x′, y′)| dy′ dx′

≤ 1

|Ba((x, y))|

ñ∫
Ba((x,y))

|V (x′, y′)|2 dy′ dx′
ô 1

2
ñ∫

Ba((x,y))
dy′ dx′

ô 1
2

≤ 1

|Ba((x, y))| 12

ñ∫ x+a

x−a

∫ ∞

−∞
|V (x′, y′)|2 dy′ dx′

ô 1
2

≤
∫ x+a

x−a

1

2π3/2a

î
C2
I + (d1 − d0)‖ρ‖2

L2(M)

ó
dx′

= C9,

where C9 = π−3/2
î
C2
I + (d1 − d0)‖ρ‖2

L2(M)

ó
. This completes the proof.

4.8.2 The Potential Vm

We now show that |Vm(x, y)| is bounded for x large enough. In particular, we at

least assume that x > d1. We begin with a lemma that is very similar to Lemma 4.1.

For x > d1 we define

Jk(x) ≡
∫ d1

d0
ρ̂(s, k)e−|k|(x−s) ds. (4.96)

Lemma 4.12 Suppose ρ ∈ P (where P is defined in (4.3)) and that, for x > d1,

Jk(x) is defined as in (4.96). Then, for every x > d1, Jk(x) satisfies the following

properties:

1. for all k ∈ R, |Jk(x)|2 ≤ (d1 − d0)‖ρ‖2
L2(M)e

−2k(x−d1);

2. if ρ is real-valued, then |Jk(x)|2 is an even function of k for k ∈ R;

3. Jk(x) is continuous at k for each k ∈ R;

4. limk→0 Jk(x) = J0(x) = 0;

5. for each x > d1, limk→0(|Jk(x)|/|k|) = |C0| <∞, where C0 is defined in (4.41)

and (4.42); moreover, there is a positive constant CJ , independent of x, such

that |Jk(x)|/|k| ≤ CJ for all x > d1 and all k ∈ [0, 1].

Proof of Lemma 4.12: The proofs of items (1)–(4) are word-for-word repeats of

the proofs of items (2)–(5) in Lemma 4.1. The proof of item (6) of Lemma 4.1 can
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be extended to prove item (5) of this lemma. However, we need to be a bit more

careful in deriving our bound on Jk(x)/k near k = 0 in this case. We will again use

Theorem 1.2.

We begin by defining K ≡ (0, k∗), where k∗ > 0 is arbitrary. We also define

f(s, k) ≡ ρ̂(s, k)e|k|s and F (k) ≡
∫ d1

d0
f(s, k) ds;

note that f is well defined for almost every s ∈ [d0, d1] and for each k ∈ K. We now

show that f satisfies items (i)–(iii) of Theorem 1.2. (In the proof of (i) that follows

we show that F is well defined for each k ∈ K.)

(i) For any k ∈ K we have

∫ d1

d0
|f(s, k)| ds =

∫ d1

d0
|ρ̂(s, k)eks| ds

≤ ekd1
∫ d1

d0

∫ h1

h0
|ρ(s, y)e−iky| dy ds

≤ ekd1‖ρ‖L1(M),

so the map s 7→ f(s, k) is in L1([d0, d1]) and F is well defined for each k ∈ K.

(ii) For all k ∈ K, ρ̂(s, k) is infinitely differentiable as a function of k for almost all

s ∈ [d0, d1] (by Lemma 4.1) and eks is infinitely differentiable for all s ∈ [d0, d1].

Hence f(s, k) is infinitely differentiable as a function of k for almost every

s ∈ [d0, d1].

(iii) Following the steps leading up to (4.39) we find that

∣∣∣∣∣
∂f

∂k

∣∣∣∣∣ ≤ ekd1‖ρ‖L∞(M)(Ch + |s|)(h1 − h0).

Thus

∫ d1

d0
sup
k∈K

∣∣∣∣∣
∂f

∂k
(s, k) ds

∣∣∣∣∣ ≤ ek∗d1‖ρ‖L∞(M)(h1 − h0)
∫ d1

d0
(Ch + |s|) ds

≤ ek∗d1‖ρ‖L∞(M)(Ch + d1)(d1 − d0)(h1 − h0).

Therefore Theorem 4.2 implies, for k ∈ K, that

∂F

∂k
=
∫ d1

d0

∂

∂k
[ρ̂(s, k)eks] ds
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=
∫ d1

d0
sρ̂(s, k)eks ds+

∫ d1

d0

∂ρ̂

∂k
(s, k)eks ds (4.97)

=
∫ d1

d0

∫ h1

h0
sρ(s, y)e−ikyeks dy ds−

∫ d1

d0

∫ h1

h0
iyρ(s, y)e−ikyeks dy ds

for 0 < k < k∗. Note that the expression in (4.97) is well defined and continuous

for all k ∈ (−k∗, k∗) by an argument similar to that given in items (1) and (4)

of Lemma 4.1 (applied to sρ̂(s, k)e|k|s and ∂ρ̂
∂k

(s, k)e|k|s). In particular we have

lim
k→0+

∂F

∂k
= lim

k→0+

ñ∫ d1

d0
sρ̂(s, k)eks ds+

∫ d1

d0

∂ρ̂

∂k
(s, k)eks ds

ô
=
∫ d1

d0
sρ̂(s, 0) ds+

∫ d1

d0

∂ρ̂

∂k
(s, 0) ds

=
∫ d1

d0

∫ h1

h0
sρ(s, y) dy ds−

∫ d1

d0

∫ h1

h0
iyρ(s, y) dy ds

= C0,

which is well defined since ρ ∈ L1(M) (just as in the proof of item (6) of

Lemma 4.1, the Lebesgue Dominated Convergence Theorem can also be used

to justify passing the limit inside the integral). Then the l’Hospital Rule and

the fact that the function | · | is continuous imply that

lim
k→0+

|F (k)|
|k| =

∣∣∣∣∣ lim
k→0+

F (k)

k

∣∣∣∣∣ =

∣∣∣∣∣ lim
k→0+

∂F (k)

∂k

∣∣∣∣∣ = |C10|.

Since |F (k)| and |k| are even functions of k, limk→0−(|F (k)|/|k|) = |C10| as well.

Therefore

lim
k→0

|F (k)|
|k| = |C10|.

Thanks to (4.96), this implies, for each x > d1, that

lim
k→0

|Jk(x)|
|k| = lim

k→0
e−kx
|F (k)|
|k| = |C10|.

Finally, since |F (k)|/|k| is continuous for all k ∈ (−k∗, k∗) (if we define it to

be equal to |C10| when k = 0) and k∗ is arbitrary, |F (k)|/|k| is continuous for

k ∈ [0, 1]; thus |F (k)|/|k| attains its maximum value on [0, 1]. Then (4.96)

implies, for x > d1 and k ∈ [0, 1], that

|Jk(x)|
|k| = e−|k|x

|F (k)|
|k| ≤

|F (k)|
|k| ≤ CJ ,

where CJ is a positive constant.
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This completes the proof.

Lemma 4.13 Suppose ρ ∈ P. Then there exists 0 < δψ−(β, λ) ≤ δµ and there exist

positive constants b > max{d1, 4a} and C11 such that |Vm(x, y)| ≤ C11 for all x > b

and for all 0 < δ ≤ δψ−.

Proof of Lemma 4.13: We choose 0 < δψ−(β, λ) ≤ δµ such that δ(µ − δ) − 4 =

λδβ+1 − 4 < 0 and 4 + (µ − δ)2 = 4 + λ2δ2β ≤ 5 for all 0 < δ ≤ δψ− . Then, for

0 < δ ≤ δψ− , Lemma 4.3 implies that
∣∣∣∣∣ψ

+
k −

1

|k|ψ
−
k

∣∣∣∣∣

2

=
1

4(1 + δ2)

î
(δ + µ)2(4 + δ2)e2|k|a + 2δ(δ + µ)(δ(µ− δ)− 4)

+δ2(4 + (µ− δ)2)e−2|k|aó
≤ 5

4
(δ + µ)2(e2|k|a + e−2|k|a)

≤ 5

2
(δ + µ)2e2|k|a (4.98)

since µ ≥ 0 for δ ≤ δψ− ≤ δµ.

Based on our choice of Ak and Ik in (4.34) and (4.35), respectively, for x > d1 we

have “Vm(x, k) = e−|k|x
(
Akψ

+
k e|k|a

2
− Akψ

−
k e|k|a

2|k|

)
+
Jk(x)

2|k| ; (4.99)

see (4.33). Then (4.34), the triangle inequality, and the fact that (p+ q)2 ≤ 2p2 + 2q2

for real numbers p and q (this inequality is equivalent to (p − q)2 ≥ 0) imply, for

x > d1, that

|“Vm(x, k)|2 =

∣∣∣∣∣e
−|k|x

(
Akψ

+
k e|k|a

2
− Akψ

−
k e|k|a

2|k|

)
+
Jk(x)

2|k|

∣∣∣∣∣

2

≤ e−2|k|(x−a)

2
|Ak|2

∣∣∣∣∣ψ
+
k −

1

|k|ψ
−
k

∣∣∣∣∣

2

+
|Jk(x)|2

2|k|2 .

Then (4.91)–(4.92) and (4.98) imply, for 0 < δ ≤ δψ− , that

|“Vm(x, k)|2 ≤ e−2|k|(x−a)

2

|Ik|2e4|k|a

2|k|2
∣∣∣∣∣ψ

+
k −

1

|k|ψ
−
k

∣∣∣∣∣

2

+
|Jk(x)|2

2|k|2

≤ 5e−2|k|(x−3a)|Ik|2
8|k|2 (δ + µ)2e2|k|a +

|Jk(x)|2
2|k|2
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≤ 5

8
(δ + µ)2 |Ik|2

|k|2 e−2|k|(x−4a) +
|Jk(x)|2

2|k|2 . (4.100)

Note that the expression in (4.100) is even as a function of k by Lemmas 4.1 and 4.12.

Then we have

∫ ∞

−∞
|“Vm(x, k)|2 dk ≤ 5

8
(δ + µ)2

∫ ∞

−∞

|Ik|2
|k|2 e−2|k|(x−4a) dk +

∫ ∞

−∞

|Jk(x)|2
2|k|2 dk

=
5

4
(δ + µ)2

ñ∫ 1

0

|Ik|2
k2

e−2k(x−4a) dk +
∫ ∞

1

|Ik|2
k2

e−2k(x−4a) dk

ô
+
∫ 1

0

|Jk(x)|2
k2

dk +
∫ ∞

1

|Jk(x)|2
k2

dk.

Then Lemmas 4.1 and 4.12 imply

∫ ∞

−∞
|“Vm(x, k)|2 dk

≤ 5

4
(δ + µ)2C2

0

∫ 1

0
e−2k(x−4a) dk + C2

J

+ (d1 − d0) ‖ρ‖2
L2(M)

[
5

4
(δ + µ)2

∫ ∞

1

e−2k(x−4a+d0)

k2
dk +

∫ ∞

1

e−2k(x−d1)

k2
dk

]
.

(4.101)

If x > max{d1, 4a}, then all of the integrals in (4.101) converge. In particular, the

integral from 0 to 1 and both of the integrals from 1 to ∞ converge to numbers less

than or equal to 1 in that case. Therefore (4.101) becomes

∫ ∞

−∞
|“Vm(x, k)|2 dk ≤ 5

4
(δ + µ)2C2

0 + C2
J + (d1 − d0) ‖ρ‖2

L2(M)

ñ
5

4
(δ + µ)2 + 1

ô
≡ ‹C11.

If we define b ≡ a + max{d1, 4a}, for example, then for x > b each point (x′, y′) ∈
Ba((x, y)) satisfies x′ > max{d1, 4a}. Since Vm is harmonic in the region where

x′ > d1, it satisfies the mean value property there. Using this in combination with

the Plancherel Theorem (just as in the proof of Lemma 4.11) gives

|Vm(x, y)| ≤
∫ x+a

x−a

‹C11

2π3/2a
dx′ ≡ C11,

where C11 ≡ π−3/2‹C11. This completes the proof.



APPENDIX A

APPENDIX TO CHAPTER 2

In this appendix we provide a proof of Remark 2.5. The proof is also an alternative

proof to Lemma 2.3. In particular, this proof shows that the set Ef ⊂ Ff,e for all

f ∈ Ae; moreover, we prove that the ellipses ∂E (1)
f and ∂E (2)

f are tangent to the sets

∂Xf and ∂Yf , respectively.

Proof of Remark 2.5: For f ∈ Ae and motivated by (2.40a) and (2.40b) we define

the strips

Xf ≡


(x, y) ∈ R2 :

‖〈E(1)
1 〉‖2

f
≤ x ≤ η(1) − ‖〈E

(1)
2 〉‖2

f



 (A.1a)

Yf ≡


(x, y) ∈ R2 :

‖〈E(2)
1 〉‖2

1− f ≤ y ≤ η(2) − ‖〈E
(2)
2 〉‖2

1− f



 . (A.1b)

Note that Ff,e = Xf ∩ Yf . We now prove that E (1)
f ⊆ Xf for all f ∈ Ae.

Let f = fe,l; then, by Lemma 2.2, E (1)
fe,l

is the point
(
x

(1)
fe,l
, y

(1)
fe,l

)
, which is defined

in (2.48). We note that, by (2.36), (2.42a), (2.46), and (2.48),

x
(1)
fe,l

=
‖〈E(1)

1 〉‖2

fe,l
and Xfe,l = x

(1)
fe,l
× (−∞,∞),

so E (1)
fe,l

=
(
x

(1)
fe,l
, y

(1)
fe,l

)
⊂ Xfe,l .

If f ∈ (fe,l, fe,u] , Lemma 2.2 implies that E (1)
f is a closed elliptic disk; its boundary

is the ellipse described by the equation p
(1)
f (x, y) = 0. We define

xf,min ≡ min
{
x ∈ R : p

(1)
f (x, y) = 0

}
and xf,max ≡ max

{
x ∈ R : p

(1)
f (x, y) = 0

}
.

One may use the method of Lagrange Multipliers to find xf,min and xf,max; however

we use a slightly different (equivalent) approach keeping the geometry of our problem

in mind.
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We consider the equation p(1)(x, y) = 0 as implicitly defining x as a function of y.

Implicitly differentiating this equation, we find that

dx

dy
= −a

(1)
2 x+ a

(1)
3 y + a

(1)
5

a
(1)
1 x+ a

(1)
2 y + a

(1)
4

. (A.2)

The numerator of dx/dy is 0 if and only if

y = −a
(1)
2 x+ a

(1)
5

a
(1)
3

. (A.3)

Note that a
(1)
3 6= 0 by (2.36) and (2.46). Inserting (A.3) into the equation p(1)(x, y) = 0

we find that x must satisfy

(x− xf,min) (x− xf,max) = 0

where

xf,min =
‖〈E(1)

1 〉‖2

f
and xf,max = η(1) − ‖〈E

(1)
2 〉‖2

f
.

Note that for f ∈ Ae, xf,min ≤ xf,max (with equality if and only if f = fe,l).

Finally, we note that the denominator in (A.2) is zero at xf,min and xf,max (where

the corresponding value of y is given by (A.3)) if and only if f = fe,l. Thus, for

f ∈ (fe,l, fe,u] , the ellipse ∂E (1)
f ⊂ Xf and so E (1)

f ⊂ Xf .

A similar proof shows that E (2)
f ⊆ Yf for all f ∈ Ae. Therefore, for each f ∈ Ae,

Ef =
[
E (1)
f ∩ E (2)

f

]
⊆ (Xf ∩ Yf ) = Ff,e. This completes the proof.



APPENDIX B

APPENDIX TO CHAPTER 3

In this appendix we provide a derivation of (3.19) (in Section B.1). In Section B.2,

we derive the nonlocal boundary condition discussed in Section 3.6.2 when Ω ⊂ R2 is

a disk of radius R.

B.1 Derivation of Lamé Operator

In this section we present a derivation of (3.19) from (3.6). We begin by introduc-

ing some notation. The vectors ei ∈ Rd form an orthonormal basis of Rd and contain

a 1 in the ith position and zeros elsewhere. In particular, note that ei ·ej = δij, where

δij is the Kronecker delta (which is 1 if i = j and 0 if i 6= j). Following Nemat-Nasser

and Hori [102], we also introduce the shorthand eij ≡ ei ⊗ ej; with this definition we

have

eij : ekl = δikδjl. (B.1)

Finally, we also define ∂i ≡ ∂/∂xi for i = 1, . . . , d. Recall that we are using the

Einstein summation convention so repeated indices are summed from 1, . . . , d; for

example the gradient operator can be written as ei∂i = e1∂1 + e2∂2 + e3∂3 in the case

d = 3.

B.1.1 Differential Constraints

We have

∇u = ei∂i ⊗ (ujej) = ∂iujeij and ∇uT = ∂juieij = ∂iujeji.

From (3.6) we then have

ε =
1

2
(∇u +∇uT ) =

1

2
(∂iujeij + ∂iujeji) =

1

2
∂iuj(eij + eji). (B.2)

In phase p (for p = 1, 2, and E), from (3.16) and (3.17) we have

Cp = λpI⊗ I + 2µI.
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Then

σ = Cp : ε

= (λpI⊗ I + 2µI) : ε

= λp(δijeij ⊗ δklekl) : εmnemn + 2µε

= λpδijeij(δklεmnekl : emn) + 2µε

= λpδijeij(δklεmnδkmδln) + 2µε (by (B.1))

= λpI(δklεkl) + 2µε

= λpI(εkk) + 2µε

= λp Tr(ε)I + 2µε, (B.3)

which is (3.7).

From (B.2) we have

Tr(ε) = εkk =
1

2
(∂kuk + ∂kuk) =

1

2
(2∇ · u) = ∇ · u.

Thus from this and (B.3) we have

σ = λp(∇ · u)I + 2µ
1

2
(∇u +∇uT ) = λp(∇ · u)I + µ(∇u +∇uT ),

which is (3.8). Using (B.2), the above equation can be equivalently written as

σ = λp(∂mum)δikeik + µ(∂iuk + ∂kui)eik. (B.4)

In each phase we have

0 = ∇ · σ = ei∂i · (σjkej ⊗ ek) = ∂iσjk(ei · ej)ek = ∂iσjkδijek = ∂iσikek. (B.5)

Thus, using our convention, the divergence of a matrix in Rd ⊗ Rd is a vector in Rd

whose kth entry is the divergence of the kth column of the matrix.

Inserting (B.4) into (B.5) gives (assuming u is smooth enough in each phase —

in other words, assuming φ is smooth enough in each phase)

0 = ∂i(λp(∂mum)δik + µ(∂iuk + ∂kui))ek

= λp∂i∂mumδikek + µ∂i∂iukek + µ∂i∂kuiek
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= λpek∂k∂mum + µ∂i∂iukek + µek∂k∂iui

= (λp + µ)ek∂k∂iui + µ∂i∂iukek

= (λp + µ)∇(∇ · u) + µ∆u,

which, up to a minus sign, is Lpu — see the explanation following (3.19). Therefore

in phase p the displacement u satisfies Lpu = 0 (for p = 1, 2, and E), which is what

we wanted to show.

B.1.2 Continuity Conditions

In this section we derive the continuity conditions on the displacement and normal

stress (traction) across ∂D and ∂Ω that are imposed in (3.19).

First, the displacement u is required to be continuous across ∂D and ∂Ω as

long as there are no dislocations. In other words, we assume the materials in D,

Ω \D, and Rd \Ω remain firmly bonded together — they are not allowed to separate

at the boundary (so the normal component of u remains continuous) and none of

the materials can rotate along its boundary while the material bonded to it stays

fixed or rotates by a different amount along the same boundary (this guarantees

that the tangential component of u remains continuous). These are reasonable

assumptions in the applications we have in mind — if one is interested in determining

the volume fraction of the inclusion it would be detrimental to damage the material

so substantially in the process of taking the measurements.

Second, we now show that the normal stress must be continuous across the

boundary of each component. (The argument presented here more or less follows

that given by Griffiths [45, Section 7.3.6] for the continuity of the normal component

of the magnetic field in electrodynamics, although we have adapted the terminology

to our situation.) We focus on ∂D for definiteness. Suppose x ∈ ∂D and that the

outward unit normal vector to ∂D at the point x is nD — see Figure B.1. We draw

an imaginary, wafer-thin cylinder C of height h � 1 and fixed infinitesimal radius

L, centered at the point x as shown in Figure B.1. Let C0, C+, and C− denote

the curved surface of the cylinder, the flat surface of the cylinder that is outside D,

and the flat surface of the cylinder that is inside D, respectively. We assume σ is

essentially constant on the ends of the cylinder, namely C+ and C− (we are implicitly
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n+

n−

n0

x ∂D

D

Ω
nD

h

L

C+

C−

C0

(σ|C+) · n+

(σ|C−) · n−

Figure B.1. The figure shows a plot of the cross-section of the cylinder discussed in
the text. Note that the figure is not drawn to scale. The cylinder, of height h � 1
and infinitesimal radius L, is centered at the point x ∈ ∂D. The outward unit normal
to ∂D at x is denoted nD. The boundary of D is indicated with a thick black line
— the set D is below this line while the set Ω \ D is above ∂D in the figure. The
curved surface of the cylinder is labeled C0; the flat surface of the cylinder that is
outside of D is labeled C+ and has outward unit normal vector n+; the flat surface of
the cylinder that is inside D is labeled C− and has outward unit normal vector n−.
Finally, the vectors (σ|C+) · n+ and (σ|C−) · n− denote the normal stress (traction)
on the surfaces C+ and C−, respectively.

assuming σ is smooth). Also, let n0, n+ and n− denote the outward unit normals to

C0, C+, and C−, respectively.

Since ∇ · σ = 0 by (3.6) on each side of ∂D, the divergence theorem implies

0 =
∫

C
∇ · σ dx =

∫

∂C
σ · n dS,

where n is the outward unit normal vector to ∂C. This is equivalent to

0 =
∫

C0

σ · n0 dS +
∫

C+

σ · n+ dS +
∫

C−
σ · n− dS. (B.6)

If |σ · n0| ≤ K for some constant K > 0 near ∂D, then the first integral vanishes in

the limit h→ 0+ since
∣∣∣∣
∫

C0

σ · n0 dS
∣∣∣∣ ≤

∫

C0

|σ · n0| dS ≤ K
∫

C0

dS = 2πKLh→ 0 as h→ 0+.

Since σ is assumed to be constant on the sets C+ and C−, (B.6) becomes

0 = ((σ|C+) · n+)
∫

C+

dS + ((σ|C−) · n−)
∫

C−
dS
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= πL2
Ä
((σ|C+) · n+) + (σ|C−) · n−

ä
. (B.7)

As long as ∂D is smooth enough, in the limit h→ 0+ we have

(σ|C+) · n+ → (σ|∂D+) · nD and (σ|C−) · n− → (σ|∂D−) · (−nD).

Thus in the limit as h→ 0+, (B.7) becomes (after dividing through by πL2)

0 = (σ|∂D+) · nD − (σ|∂−D) · nD ⇔ (σ|∂D+) · nD = (σ|∂D−) · nD.

Therefore the normal stress must be continuous across ∂D. A similar argument shows

that it must be continuous across ∂Ω as well.

B.2 Nonlocal Boundary Condition for a Disk

In this appendix we provide the details of the derivation of the boundary condition

P(u′0, t
′
0, f0,F0) when Ω is a disk of radius R in R2. The results are summarized in

Section 3.6. Much of this work can be found in the books by Muskhelishvili [99] and

England [30]. Recall that λE = λ2.

B.2.1 Preliminaries

Let ex = [1, 0]T and ey = [0, 1]T denote the standard orthonormal Cartesian Basis

for R2, and let

er = cos θex + sin θey and eθ = − sin θex + cos θey (B.8)

denote the standard orthonormal polar basis for R2, where θ denotes the angle

measured counterclockwise from the x-axis. The inverse of (B.8) is

ex = cos θer − sin θeθ and ey = sin θer + cos θeθ. (B.9)

We denote the Cartesian Components of ũE, the solution of (3.34), by ũE and

ṽE; thus ũE = ũEex + ṽEey. Similarly, we denote the polar components of ũE by ũE,r

and ũE,θ. By (B.9) we have

ũE = ũEex + ṽEey = ũE(cos θer − sin θeθ) + ṽE(sin θer + cos θeθ) = ũE,rer + ũE,θeθ,

where

ũE,r = ũE cos θ + ṽE sin θ and ũE,θ = −ũE sin θ + ṽE cos θ. (B.10)
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We now introduce the change-of-basis matrix

Rθ =

ñ
cos θ sin θ
− sin θ cos θ

ô
,

which will allow us to move back and forth between the Cartesian Basis {ex, ey}
and the polar basis {er, eθ}. For all θ ∈ R we have RT

θ Rθ = RθR
T
θ = I, where

I ∈ Sym(R2) is the identity matrix. Therefore R−1
θ = RT

θ , so Rθ is an orthogonal

matrix for each θ ∈ R. Using this matrix we see that the Cartesian Components and

polar components of the displacement are related as follows:ñ
ũE,r
ũE,θ

ô
= Rθ

ñ
ũE
ṽE

ô
and

ñ
ũE
ṽE

ô
= RT

θ

ñ
ũE,r
ũE,θ

ô
.

The stress tensor associated with the displacement ũE is denoted by ‹σE and

is in the space Sym(R2); note that dim(Sym(R2)) = 3, where dim(V ) denotes the

dimension of the subspace V ⊂ R2. On Sym(R2) we use the orthogonal basis

{ex ⊗ ex, (ex ⊗ ey + ey ⊗ ex), ey ⊗ ey} =

®ñ
1 0
0 0

ô
,

ñ
0 1
1 0

ô
,

ñ
0 0
0 1

ô´
,

where the tensor product between two vectors b and b′ in R2 is defined by (b⊗b′)ij =

(bb′T )ij = bib
′
j for i, j = 1, 2.

In the above basis, the stress tensor ‹σE = SEũE (where SE is defined in (3.18))

can be written as‹σE = σ̃E,xxex ⊗ ex + σ̃E,xy(ex ⊗ ey + ey ⊗ ex) + σ̃E,yy(ey ⊗ ey). (B.11)

Using (B.9), we find

ex ⊗ ex = (cos θer − sin θeθ)⊗ (cos θer − sin θeθ)

= cos2 θer ⊗ er − cos θ sin θ(er ⊗ eθ + eθ ⊗ er) + sin2 θeθ ⊗ eθ,

ex ⊗ ey = (cos θer − sin θeθ)⊗ (sin θer + cos θeθ)

= cos θ sin θer ⊗ er + cos2 θer ⊗ eθ − sin2 θeθ ⊗ er − cos θ sin θeθ ⊗ eθ

ey ⊗ ex = (sin θer + cos θeθ)⊗ (cos θer − sin θeθ)

= cos θ sin θer ⊗ er − sin2 θer ⊗ eθ + cos2 θeθ ⊗ er − cos θ sin θeθ ⊗ eθ

ey ⊗ ey = (sin θer + cos θeθ)⊗ (sin θer + cos θeθ)

= sin2 θer ⊗ er + cos θ sin θ(er ⊗ eθ + eθ ⊗ er) + cos2 θeθ ⊗ eθ.
(B.12)
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Inserting these expressions into (B.11) gives the following expression for the stress

tensor in the polar basis:‹σE = σ̃E,xx(cos2 θer ⊗ er − cos θ sin θ(er ⊗ eθ + eθ ⊗ er) + sin2 θeθ ⊗ eθ)

+ σ̃E,xy(cos θ sin θer ⊗ er + cos2 θer ⊗ eθ − sin2 θeθ ⊗ er − cos θ sin θeθ ⊗ eθ)

+ σ̃E,xy(cos θ sin θer ⊗ er − sin2 θer ⊗ eθ + cos2 θeθ ⊗ er − cos θ sin θeθ ⊗ eθ)

+ σ̃E,yy(sin
2 θer ⊗ er + cos θ sin θ(er ⊗ eθ + eθ ⊗ er) + cos2 θeθ ⊗ eθ)

= (σ̃E,xx cos2 θ + 2σ̃E,xy cos θ sin θ + σ̃E,yy sin2 θ)er ⊗ er

+ (−σ̃E,xx cos θ sin θ + σ̃E,xy(cos2 θ − sin2 θ) + σ̃E,yy cos θ sin θ)er ⊗ eθ

+ (−σ̃E,xx cos θ sin θ + σ̃E,xy(cos2 θ − sin2 θ) + σ̃E,yy cos θ sin θ)eθ ⊗ er

+ (σ̃E,xx sin2 θ − 2σ̃E,xy cos θ sin θ + σ̃E,yy cos2 θ)eθ ⊗ eθ

= σ̃E,rrer ⊗ er + σ̃E,rθ(er ⊗ eθ + eθ ⊗ er) + σ̃E,θθeθ ⊗ eθ, (B.13)

where the polar components of ‹σE are related to the Cartesian Components of ‹σE by

σ̃E,rr = σ̃E,xx cos2 θ + 2σ̃E,xy cos θ sin θ + σ̃E,yy sin2 θ;

σ̃E,rθ = −σ̃E,xx cos θ sin θ + σ̃E,xy(cos2 θ − sin2 θ) + σ̃E,yy cos θ sin θ;

σ̃E,θθ = σ̃E,xx sin2 θ − 2σ̃E,xy cos θ sin θ + σ̃E,yy cos2 θ.

We note that one obtains the same relationships through the change-of-basis formulañ
σ̃E,rr σ̃E,rθ
σ̃E,rθ σ̃E,θθ

ô
= Rθ

ñ
σ̃E,xx σ̃E,xy
σ̃E,xy σ̃E,yy

ô
RT
θ .

As in the book by England [30] (see also the book by Muskhelishvili [99]), it is

convenient for us to use complex notation; in particular we write ũE = ũE + iṽE,

where i =
√
−1. The complex variable z can be written as z = x + iy = reiθ. The

conjugate of z is z = x− iy = re−iθ and the modulus of z is |z|2 = zz = x2 + y2 = r2.

Thanks to (B.10) we can write

ũE,r + iũE,θ = e−iθ(ũE + iṽE). (B.14)

This relationship is essentially due to the fact that R⊥ represents a clockwise rotation

by angle θ in R2 — this same transformation is represented in the complex plane

by multiplication by e−iθ. There are similar relationships between the polar and
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Cartesian Components of the stress tensor, but we omit them since we do not

explicitly use them.

As discussed by England [30, Chapter 4], there exist complex potentials Ψ(z) and

ψ(z) such that

ũE,r + iũE,θ =
e−iθ

2µ

Ä
ρEΨ(z)− zΨ′(z)− ψ(z)

ä
,

σ̃E,rr + iσ̃E,rθ = Ψ′(z) + Ψ′(z)−
Å
zΨ′′(x) +

z

z
ψ′(z)

ã
,

σ̃E,rr + σ̃E,θθ = 2
Ä
Ψ′(z) + Ψ′(z)

ä
,

(B.15)

where Ψ′(z) = d
dz

Ψ(z), ψ′(z) = d
dz
ψ(z), and

ρE ≡
λE + 3µ

λE + µ
> 0 (B.16)

(ρE > 0 since λE > −(2/d)µ ≥ −µ by (3.9)).

As discussed by England [30, Section 4.1], the complex potentials are of the form

Ψ(z) = − X + iY

2π(1 + ρE)
log z + Ψ0(z) and ψ(z) =

ρE(X − iY )

2π(1 + ρE)
log z + ψ0(z),

where Ψ0 and ψ0 are single-valued holomorphic functions in the region |z| > R. Since

Ψ0 and ψ0 are holomorphic for |z| > R, they can be written as Laurent series:

Ψ(z) = − X + iY

2π(1 + ρE)
log z +

∞∑

n=1

Cnz
n +

∞∑

n=0

γnz
−n

ψ(z) =
ρE(X − iY )

2π(1 + ρE)
log z +

∞∑

n=1

Dnz
n +

∞∑

n=0

δnz
−n,

(B.17)

where the constants Cn, Dn, γn, and δn need to be determined.

B.2.2 The Solution ũE

Next, we use (B.15) and (B.17) to determine the solution ũE to the problem (3.34).

Inserting (B.17) into (B.15), we find

ũE,r + iũE,θ =
e−iθ

2µ

(
ρE

(
− X + iY

2π(1 + ρE)
log z +

∞∑

n=1

Cnz
n +

∞∑

n=0

γnz
−n
)

− z
(
− X − iY

2π(1 + ρE)

1

z
+
∞∑

n=1

nCnz
n−1 +

∞∑

n=0

−nγnz−n−1

)

−
(
ρE(X + iY )

2π(1 + ρE)
log z +

∞∑

n=1

Dnz
n +

∞∑

n=0

δnz
−n
))

.

(B.18)
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Evaluating this at z = reiθ for r ≥ R gives

(ũE,r + iũE,θ)|z=reiθ = ũE,r(r, θ) + iũE,θ(r, θ)

=
e−iθ

2µ

(
ρE

(
− X + iY

2π(1 + ρE)
(log r + iθ) +

∞∑

n=1

Cnr
neinθ +

∞∑

n=0

γnr
−ne−inθ

)

− reiθ

(
− X − iY

2π(1 + ρE)
r−1eiθ +

∞∑

n=1

nCnr
n−1e−i(n−1)θ +

∞∑

n=0

−nγnr−n−1ei(n+1)θ

)

−
(
ρE(X + iY )

2π(1 + ρE)
(log r − iθ) +

∞∑

n=1

Dnr
ne−inθ +

∞∑

n=0

δnr
−neinθ

))

=
e−iθ

2µ

(
−ρE(X + iY )

2π(1 + ρE)
2 log r +

∞∑

n=1

ρECnr
neinθ +

∞∑

n=0

ρEγnr
−ne−inθ

+
X − iY

2π(1 + ρE)
e2iθ −

∞∑

n=1

nCnr
ne−i(n−2)θ +

∞∑

n=0

nγnr
−nei(n+2)θ

−
∞∑

n=1

Dnr
ne−inθ −

∞∑

n=0

δnr
−neinθ

)
.

Distributing e−iθ gives

1

2µ

(
−ρE(X + iY )

2π(1 + ρE)
(2 log r)e−iθ +

∞∑

n=1

ρECnr
nei(n−1)θ +

∞∑

n=0

ρEγnr
−ne−i(n+1)θ

+
X − iY

2π(1 + ρE)
eiθ −

∞∑

n=1

nCnr
ne−i(n−1)θ +

∞∑

n=0

nγnr
−nei(n+1)θ

−
∞∑

n=1

Dnr
ne−i(n+1)θ −

∞∑

n=0

δnr
−nei(n−1)θ

)
.

Next, we change the sum indices to obtain

1

2µ

(
−ρE(X + iY )

2π(1 + ρE)
(2 log r)e−iθ +

∞∑

n=0

ρECn+1r
n+1einθ +

∞∑

n=1

ρEγn−1r
−(n−1)e−inθ

+
X − iY

2π(1 + ρE)
eiθ −

∞∑

n=0

(n+ 1)Cn+1r
n+1e−inθ +

∞∑

n=1

(n− 1)γn−1r
−(n−1)einθ

−
∞∑

n=2

Dn−1r
n−1e−inθ −

∞∑

n=−1

δn+1r
−(n+1)einθ

)
.

It will be convenient for us to separate the logarithmic terms, terms of order n = 0

and n = 1, and terms of order n ≥ 2. In particular, this will make it easier for us
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to compare terms in corresponding Fourier Expansions. Applying this to the above

expression gives

1

2µ

(
−ρE(X + iY )

2π(1 + ρE)
(2 log r)e−iθ + ρEC1r + ρEC2r

2eiθ +
∞∑

n=2

ρECn+1r
n+1einθ

+ ρEγ0e−iθ +
∞∑

n=2

ρEγn−1r
−(n−1)e−inθ +

X − iY

2π(1 + ρE)
eiθ

− C1r − 2C2r
2e−iθ −

∞∑

n=2

(n+ 1)Cn+1r
n+1e−inθ

+
∞∑

n=2

(n− 1)γn−1r
−(n−1)einθ −

∞∑

n=2

Dn−1r
n−1e−inθ

−δ0e−iθ − δ1r
−1 − δ2r

−2eiθ −
∞∑

n=2

δn+1r
−(n+1)einθ

)
.

Finally, we collect terms of the same order in einθ and find

ũE,r(r, θ) + iũE,θ(r, θ)

=
1

2µ

ÇÄ
ρEC1r − C1r − δ1r

−1
ä

+

Ç
ρEC2r

2 +
X − iY

2π(1 + ρE)
− δ2r

−2

å
eiθ

+

Ç
−ρE(X + iY )

2π(1 + ρE)
(2 log r) + ρEγ0 − 2C2r

2 − δ0

å
e−iθ (B.19)

+
∞∑

n=2

Ä
ρECn+1r

n+1 + (n− 1)γn−1r
−(n−1) − δn+1r

−(n+1)
ä

einθ

+
∞∑

n=2

Ä
ρEγn−1r

−(n−1) − (n+ 1)Cn+1r
n+1 −Dn−1r

n−1
ä

e−inθ

å
.

For r � 1 (B.19) implies

ũE,r(r, θ) + iũE,θ(r, θ)

≈ 1

2µ

ÇÄ
ρEC1 − C1

ä
r +

Ç
ρEC2r

2 +
X − iY

2π(1 + ρE)

å
eiθÇ

−ρE(X + iY )

2π(1 + ρE)
(2 log r) + (ρEγ0 − δ0)− 2C2r

2

å
e−iθ

+
∞∑

n=2

ρECn+1r
n+1einθ +

∞∑

n=2

Ä
−(n+ 1)Cn+1r

n+1 −Dn−1r
n−1

ä
e−inθ

)
.

(B.20)
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Since we are requiring (ũE,r + iũE,θ) → 0 as r = |x| → ∞, the coefficients of einθ in

(B.20) must be zero for each n ∈ Z (due to the uniqueness of Fourier Expansions).

In order to guarantee that this limit condition holds, for all large r we must haveÄ
ρEC1 − C1

ä
r + ρEC2r

2 +
X − iY

2π(1 + ρE)
= 0 (B.21a)

−ρE(X + iY )

2π(1 + ρE)
(2 log r) + (ρEγ0 − δ0)− 2C2r

2 = 0 (B.21b)

ρECn+1r
n+1 = 0 (n ≥ 2) (B.21c)

−(n+ 1)Cn+1r
n+1 −Dn−1r

n−1 = 0 (n ≥ 2). (B.21d)

From (B.21c) we immediately have Cn = 0 for n ≥ 3. Then (B.21d) implies Dn−1 = 0

for n ≥ 2, so Dn = 0 for n ≥ 1. Since (B.21b) must hold for all r � 1, we require

X = Y = 0, ρEγ0 − δ0 = 0, and C2 = 0, so C2 = 0. Since C2 = 0 and X = Y = 0,

(B.21a) implies ρEC1 −C1 = 0. If we add this equation to the negative its conjugate

we obtain

(ρE + 1)(C1 − C1) = 0. (B.22)

By (B.16) and (3.9),

ρE + 1 =
λE + 3µ

λE + µ
+ 1 =

2(λE + 2µ)

λE + µ
> 0.

This and (B.22) imply C1 is real. However, if C1 is real then (B.21a) implies (ρE −
1)C1 = 0, which implies C1 = 0 since

ρE − 1 =
λE + 3µ

λE + µ
− 1 =

2µ

λE + µ
> 0

by (3.9). To summarize, then, we have

ρEγ0 − δ0 = 0; X = Y = 0; Cn = Dn = 0 for n ≥ 1. (B.23)

Remark B.1 If we require the solution to remain bounded instead of going to zero,

(B.21) still implies X = Y = 0 and Cn = Dn = 0 for n ≥ 1. However, the coefficient

ρEγ0−δ0 remains undetermined. As we will see in Section B.2.3, the constant ρEγ0−
δ0 has no effect on the stress ‹σE.
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Finally, (B.17) and (B.23) imply

Ψ(x) =
∞∑

n=0

γnz
−n and ψ(x) =

∞∑

n=0

δnz
−n; (B.24)

by (B.18) and (B.23), the displacement ũE becomes

ũE,r + iũE,θ =
e−iθ

2µ

( ∞∑

n=0

ρEγnz
−n +

∞∑

n=0

nγnzz
−n−1 −

∞∑

n=0

δnz
−n
)
.

Using (B.19) we can evaluate this at z = Reiθ (assuming ũE,r + iũE,θ is continuous up

to ∂BR from outside BR); in particular we have

(ũE,r + iũE,θ)|∂B+
R

= ũE,r(R
+, θ) + iũE,θ(R

+, θ)

=
1

2µ

Ç
− δ1R

−1 − δ2R
−2eiθ +

Ä
ρEγ0 − δ0

ä
e−iθ

+
∞∑

n=2

Ä
(n− 1)γn−1R

−(n−1) − δn+1R
−(n+1)

ä
einθ

+
∞∑

n=2

ρEγn−1R
−(n−1)e−inθ

å
.

(B.25)

From (3.34), we must have ũE,r(R
+, θ) + iũE,θ(R

+, θ) = ũr(θ) + iũθ(θ). We now

expand ũr + iũθ in a Fourier Series, namely

ũr(θ)+iũθ(θ) =
∞∑

n=−∞
ũneinθ = ũ0 + ũ1eiθ+ ũ−1e−iθ+

∞∑

n=2

ũneinθ+
∞∑

n=2

ũ−ne−inθ, (B.26)

where for each n ∈ Z we have

ũn =
1

2π

∫ 2π

0
(ũr(θ) + iũθ(θ)) e−inθ dθ.

Terms of the same order in einθ in (B.25) and (B.26) must be equal. In other

words, we must have

1

2µ
(−δ1R

−1) = ũ0,

1

2µ
(−δ2R

−2) = ũ1,

1

2µ
(ρEγ0 − δ0) = ũ−1,

1

2µ

Ä
(n− 1)γn−1R

−(n−1) − δn+1R
−(n+1)

ä
= ũn (n ≥ 2),

and
1

2µ

Ä
ρEγn−1R

−(n−1)
ä

= ũ−n (n ≥ 2).
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From this we find that the coefficients γn and δn are

δ1 = −2µRũ0,

δ2 = −2µR2ũ1,

ρEγ0 − δ0 = 2µũ−1,

δn+1 = 2µRn+1

Ç
n− 1

ρE
ũ−n − ũn

å
(n ≥ 2),

and γn−1 =
2µRn−1

ρE
ũ−n (n ≥ 2).

(B.27)

Then by (B.25) and (B.27) we have

ũE,r(r, θ) + iũE,θ(r, θ)

=
1

2µ

Ç
− δ1r

−1 − δ2r
−2eiθ +

Ä
ρEγ0 − δ0

ä
e−iθ

+
∞∑

n=2

Ä
(n− 1)γn−1r

−(n−1) − δn+1r
−(n+1)

ä
einθ +

∞∑

n=2

ρEγn−1r
−(n−1)e−inθ

å
= ũ0Rr

−1 + ũ1R
2r−2eiθ + ũ−1e−iθ

+
∞∑

n=2

Ç
(n− 1)

Rn−1

ρE
ũ−nr

−(n−1) −Rn+1

Ç
n− 1

ρE
ũ−n − ũn

å
r−(n+1)

å
einθ

+
∞∑

n=2

ρE
Rn−1

ρE
ũ−nr

−(n−1)e−inθ

= ũ0Rr
−1 + ũ1R

2r−2eiθ + ũ−1e−iθ

+
∞∑

n=2

Ç
ũnR

n+1r−(n+1) +

Ç
n− 1

ρE

å
ũ−nR

n−1r−(n+1)
Ä
r2 −R2

äå
einθ

+
∞∑

n=2

ũ−nR
n−1r−(n−1)e−inθ.

This simplifies to

ũE,r(r, θ) + iũE,θ(r, θ)

= ũ0Rr
−1 +

∞∑

n=1

ũ−nR
n−1r−(n−1)e−inθ

+
∞∑

n=1

Ç
ũnR

n+1r−(n+1) +

Ç
n− 1

ρE

å
ũ−nR

n−1r−(n+1)
Ä
r2 −R2

äå
einθ,

(B.28)

which is (3.46). Note that as r → R+ we have (from (B.26) and (B.28))

ũE,r(R
+, θ) + iũE,θ(R

+, θ) = ũ0 +
∞∑

n=1

ũ−ne−inθ +
∞∑

n=1

ũneinθ = ũr(θ) + iũθ(θ),

as required.
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B.2.3 Derivation of ΛE

We now derive the Exterior Dirichlet-to-Neumann Map ΛE. Recall from (3.35)

that

ΛE(ũ) = (‹σE|∂B+
R

) · nBR .

Thus, we need to compute the traction around ∂BR due to the displacement ũE,r +

iũE,θ.

Using (B.13), the fact that nBR = er, and the identities er · er = 1 and er · eθ =

eθ · er = 0 we have

(‹σE|∂B+
R

) · er
=
(
(σ̃E,rr|∂B+

R
)er ⊗ er + (σ̃E,rθ|∂B+

R
)(er ⊗ eθ + eθ ⊗ er) + (σ̃E,θθ|∂B+

R
)eθ ⊗ eθ

)
· er

= (σ̃E,rr|∂B+
R

)er(er · er) + (σ̃E,rθ|∂B+
R

)er(eθ · er)

+ (σ̃E,rθ|∂B+
R

)eθ(er · er) + (σ̃E,θθ|∂B+
R

)eθ(eθ · er)

= (σ̃E,rr|∂B+
R

)er + (σ̃E,rθ|∂B+
R

)eθ.

Then (B.15) and (B.24) imply

σ̃E,rr + iσ̃E,rθ = Ψ′(z) + Ψ′(z)−
Å
zΨ′′(x) +

z

z
ψ′(z)

ã
=
∞∑

n=0

−nγnz−n−1 +
∞∑

n=0

−nγnz−n−1

−
∞∑

n=0

n(n+ 1)γnz
−n−1 −

∞∑

n=0

−nδn
z−n

z
.

If we evaluate this at z = reiθ we find

(σ̃E,rr + iσ̃E,rθ)|z=reiθ = σ̃E,rr(r, θ) + iσ̃E,rθ(r, θ)

= −
∞∑

n=0

nγnr
−(n+1)e−i(n+1)θ −

∞∑

n=0

nγnr
−(n+1)ei(n+1)θ

−
∞∑

n=0

n(n+ 1)γnr
−(n+1)ei(n+1)θ +

∞∑

n=0

nδnr
−(n+1)ei(n−1)θ

= −
∞∑

n=1

(n− 1)γn−1r
−ne−inθ −

∞∑

n=1

(n− 1)γn−1r
−neinθ

−
∞∑

n=1

(n− 1)nγn−1r
−neinθ +

∞∑

n=−1

(n+ 1)δn+1r
−(n+2)einθ.
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Next we simplify and collect like terms in einθ to find

σ̃E,rr(r, θ) + iσ̃E,rθ(r, θ)

= −
∞∑

n=2

(n− 1)γn−1r
−ne−inθ −

∞∑

n=2

(n− 1)(n+ 1)γn−1r
−neinθ

+ δ1r
−2 + 2δ2r

−3eiθ +
∞∑

n=2

(n+ 1)δn+1r
−(n+2)einθ

= δ1r
−2 + 2δ2r

−3eiθ −
∞∑

n=2

(n− 1)γn−1r
−ne−inθ

+
∞∑

n=2

Ä
δn+1r

−2 − (n− 1)γn−1

ä
(n+ 1)r−neinθ.

Note that this goes to zero as r = |x| → ∞.

We now evaluate this on ∂BR. Using (B.27) (and assuming σ̃E,rr + iσ̃E,rθ is

continuous up to ∂BR from outside BR) we have

σ̃E,rr(R
+, θ) + iσ̃E,rθ(R

+, θ)

= −2µũ0R
−1 − 4µũ1R

−1eiθ −
∞∑

n=2

(n− 1)
2µRn−1

ρE
ũ−nR

−ne−inθ

+
∞∑

n=2

Ç
2µRn+1

Ç
n− 1

ρE
ũ−n − ũn

å
R−2

−(n− 1)
2µRn−1

ρE
ũ−n

å
(n+ 1)R−neinθ

= −2µ

R
ũ0 −

4µ

R
ũ1eiθ −

∞∑

n=2

2µ(n− 1)

RρE
ũ−ne−inθ −

∞∑

n=2

2µ(n+ 1)

R
ũneinθ

=
∞∑

n=0

Ç
−2µ

R

å
(n+ 1)ũneinθ +

∞∑

n=2

Ç
− 2µ

RρE

å
(n− 1)ũ−ne−inθ. (B.29)

Finally, we expand σ̃E,rr(R
+, θ) + iσ̃E,rθ(R

+, θ) in a Fourier Series; we have

ΛE(ũr + iũθ) = σ̃E,rr(R
+, θ) + iσ̃E,rθ(R

+, θ)

=
∞∑

n=0

σ̃neinθ + σ̃−1e−iθ +
∞∑

n=2

σ̃−ne−inθ,
(B.30)

where

σ̃n =
1

2π

∫ 2π

0

Ä
σ̃E,rr(R

+, θ) + iσ̃E,rθ(R
+, θ)

ä
e−inθ dθ.

Terms of the same order in einθ in (B.29) and (B.30) must be equal. This implies




σ̃n = −2µ

R
(n+ 1)ũn (n ≥ 0),

σ̃−n = − 2µ

RρE
(n− 1)ũ−n (n ≥ 2),

σ̃−1 = 0,
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which is (3.48).

B.2.4 The Boundary Condition P(u′0, t
′
0, f0,F0) = 0

The main goal of this section is to write an explicit formula for the boundary

condition P(u′0, t
′
0, f0,F0) = 0, where u′ solves (3.32),

P(u′0, t
′
0, f0,F0) ≡ t′0 − ΛE(u′0 − f0)− F0,

and u′0, t′0, f0, and F0 are defined in (3.33).

First we define the stress tensor due to the displacement f by

F ≡ SEf = SE∇g = λE∆gI + 2µ∇∇g, (B.31)

where the last equality holds by (3.22) since f = ∇g. Since our goal is to write

everything in Fourier Space, we begin by rewriting the stress tensor F in the polar

basis {er, eθ}.
The second-order identity tensor I is invariant under the change from Cartesian

Coordinates to polar coordinates due to (B.12); in particular we have

I = ex ⊗ ex + ey ⊗ ey

= cos2 θer ⊗ er − cos θ sin θ(er ⊗ eθ + eθ ⊗ er) + sin2 θeθ ⊗ eθ

+ sin2 θer ⊗ er + cos θ sin θ(er ⊗ eθ + eθ ⊗ er) + cos2 θeθ ⊗ eθ

= (cos2 θ + sin2 θ)er ⊗ er + (sin2 θ + cos2 θ)eθ ⊗ eθ

= er ⊗ er + eθ ⊗ eθ. (B.32)

Note that (B.8) implies

∂

∂θ
er = eθ,

∂

∂θ
eθ = −er, and

∂

∂r
er =

∂

∂r
eθ = 0.

In the Cartesian Basis the gradient operator is

∇ = ex
∂

∂x
+ ey

∂

∂y
.

Using (B.8) this becomes

∇ = (cos θer − sin θeθ)
∂

∂x
+ (sin θer + cos θeθ)

∂

∂y
. (B.33)
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Since x = r cos θ, y = r sin θ, r =
√
x2 + y2, and θ = arctan(y/x) + C (where C = 0

or C = π depending on which quadrant the point (x, y) is in), we can compute the

derivatives of the polar coordinates with respect to the Cartesian Coordinates:

∂r

∂x
=
x

r
= cos θ

∂r

∂y
=
y

r
= sin θ

∂θ

∂x
= − y

r2
= −sin θ

r

∂θ

∂y
=

x

r2
=

cos θ

r
.

(B.34)

This in combination with the Chain Rule implies

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
;

∂

∂y
=
∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
.

(B.35)

Inserting (B.34) and (B.35) into (B.33) gives

∇ = (cos θer − sin θeθ)

Ç
cos θ

∂

∂r
− sin θ

r

∂

∂θ

å
+ (sin θer + cos θeθ)

Ç
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

å
= er

Ç
cos2 θ

∂

∂r
− cos θ sin θ

r

∂

∂θ
+ sin2 θ

∂

∂r
+

cos θ sin θ

r

∂

∂θ

å
+ eθ

(
− cos θ sin θ

∂

∂r
+

sin2 θ

r

∂

∂θ
+ cos θ sin θ

∂

∂r
+

cos2 θ

r

∂

∂θ

)

= er
∂

∂r
+ eθ

1

r

∂

∂θ
,

which is the gradient operator in polar coordinates. Using this we see that the

operator ∇∇ = ∇⊗∇ is given by

∇⊗∇ =

Ç
er
∂

∂r
+ eθ

1

r

∂

∂θ

å
⊗
Ç

er
∂

∂r
+ eθ

1

r

∂

∂θ

å
= er ⊗ er

∂2

∂r2
+ er ⊗ eθ

∂

∂r

Ç
1

r

∂

∂θ

å
+ eθ ⊗

1

r

∂

∂θ

Ç
er
∂

∂r

å
+

1

r2
eθ ⊗

∂

∂θ

Ç
eθ
∂

∂θ

å
= er ⊗ er

∂2

∂r2
+ er ⊗ eθ

Ç
1

r

∂2

∂r∂θ
− 1

r2

∂

∂θ

å
+ eθ ⊗

1

r

Ç
er

∂2

∂θ∂r
+ eθ

∂

∂r

å
+

1

r2
eθ ⊗

Ç
eθ
∂2

∂θ2
− er

∂

∂θ

å
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= er ⊗ er

Ç
∂2

∂r2

å
+ er ⊗ eθ

Ç
1

r

∂2

∂r∂θ
− 1

r2

∂

∂θ

å
+ eθ ⊗ er

Ç
1

r

∂2

∂θ∂r
− 1

r2

∂

∂θ

å
+ eθ ⊗ eθ

Ç
1

r

∂

∂r
+

1

r2

∂2

∂θ2

å
.

Since we are taking Ω = BR, we have nBR = er; then the above equation implies that

the radial component of the double gradient of g is

∇∇g · er =

Ç
er ⊗ er

Ç
∂2g

∂r2

å
+ er ⊗ eθ

Ç
1

r

∂2g

∂r∂θ
− 1

r2

∂g

∂θ

å
+eθ ⊗ er

Ç
1

r

∂2g

∂θ∂r
− 1

r2

∂g

∂θ

å
+ eθ ⊗ eθ

Ç
1

r

∂g

∂r
+

1

r2

∂2g

∂θ2

åå
· er

=
∂2g

∂r2
er(er · er) +

Ç
1

r

∂2g

∂r∂θ
− 1

r2

∂g

∂θ

å
er(eθ · er)

+

Ç
1

r

∂2g

∂θ∂r
− 1

r2

∂g

∂θ

å
eθ(er · er) +

Ç
1

r

∂g

∂r
+

1

r2

∂2g

∂θ2

å
eθ(eθ · er)

=
∂2g

∂r2
er +

Ç
1

r

∂2g

∂θ∂r
− 1

r2

∂g

∂θ

å
eθ. (B.36)

Finally, the Laplacian in polar coordinates is

∆ =

Ç
er
∂

∂r
+ eθ

1

r

∂

∂θ

å
·
Ç

er
∂

∂r
+ eθ

1

r

∂

∂θ

å
= (er · er)

∂2

∂r2
+ (er · eθ)

∂

∂r

Ç
1

r

∂

∂θ

å
+ eθ ·

1

r

∂

∂θ

Ç
er
∂

∂r

å
+

1

r2
eθ ·

∂

∂θ

Ç
eθ
∂

∂θ

å
=

∂2

∂r2
+ eθ ·

1

r

Ç
er

∂2

∂θ∂r
+ eθ

∂

∂r

å
+

1

r2
eθ ·

Ç
eθ
∂2

∂θ2
− er

∂

∂θ

å
=

∂2

∂r2
+ (eθ · er)

1

r

∂2

∂θ∂r
+ (eθ · eθ)

1

r

∂

∂r
+ (eθ · eθ)

1

r2

∂2

∂θ2
− (eθ · er)

1

r2

∂

∂θ

=
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
. (B.37)

Therefore by (B.31), (B.32), (B.36), and (B.37) we have

F · er = (λE∆gI + 2µ∇∇g) · er
= λE∆g((er ⊗ er) + (eθ ⊗ eθ)) · er + 2µ∇∇g · er
= λE∆g(er(er · er) + eθ(eθ · er)) + 2µ∇∇g · er
= λE∆ger + 2µ∇∇g · er

= λE

Ç
∂2g

∂r2
+

1

r

∂g

∂r
+

1

r2

∂2g

∂θ2

å
er + 2µ

Ç
∂2g

∂r2
er +

Ç
1

r

∂2g

∂θ∂r
− 1

r2

∂g

∂θ

å
eθ

å
.
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In complex notation, we write F · er = Frr + iFrθ where

Frr = (F · er) · er = (λE + 2µ)
∂2g

∂r2
+ λE

Ç
1

r

∂g

∂r
+

1

r2

∂2g

∂θ2

å
Frθ = (F · er) · eθ = 2µ

Ç
1

r

∂2g

∂θ∂r
− 1

r2

∂g

∂θ

å
.

(B.38)

We now expand Frr + iFrθ in a Fourier Series around ∂Br for r ≥ R. Then

(F|∂Br) · er = (Frr + iFrθ)|z=reiθ = Frr(r, θ) + iFrθ(r, θ) =
∞∑

n=−∞
Fn(r)einθ, (B.39)

where

Fn(r) =
1

2π

∫ 2π

0
(Frr(r, θ) + iFrθ(r, θ)) e−inθ dθ.

The coefficients Fn(r) can also be determined in terms of the function g. In

particular, we expand g in a Fourier Series around the circle ∂Br; we have

g(r, θ) =
∞∑

n=−∞
gn(r)einθ, where gn(r) =

1

2π

∫ 2π

0
g(r, θ)e−inθ dθ. (B.40)

Then, due to (B.40) and the fact that g is infinitely differentiable (as discussed in

Section 3.4), the following formula holds for any nonnegative integers p and q with

p+ q = m:

∂mg

∂rp∂θq
(r, θ) =

∞∑

n=−∞
(in)q

∂pgn(r)

∂rp
einθ. (B.41)

Then (B.38), (B.39), and (B.41) imply

Frr(r, θ) + iFrθ(r, θ) =
∞∑

n=−∞
Fn(r)einθ

= (λE + 2µ)
∂2g

∂r2
+ λE

Ç
1

r

∂g

∂r
+

1

r2

∂2g

∂θ2

å
+ i2µ

Ç
1

r

∂2g

∂θ∂r
− 1

r2

∂g

∂θ

å
= (λE + 2µ)

∞∑

n=−∞

∂2gn(r)

∂r2
einθ + λE

∞∑

n=−∞

1

r

∂gn(r)

∂r
einθ

+ λE
∞∑

n=−∞

(in)2

r2
gn(r)einθ + i2µ

( ∞∑

n=−∞

in

r

∂gn(r)

∂r
−

∞∑

n=−∞

in

r2
gn(r)

)

=
∞∑

n=−∞

Ç
(λE + 2µ)

∂2gn(r)

∂r2
+ λE

Ç
1

r

∂gn(r)

∂r
− n2

r2
gn(r)

å
+2µ

Ç
−n
r

∂gn(r)

∂r
+
n

r2
gn(r)

åå
einθ.
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Terms of the same order in einθ must be equal; this gives

Fn(r) = (λE + 2µ)
∂2gn(r)

∂r2
+λE

Ç
1

r

∂gn(r)

∂r
− n2

r2
gn(r)

å
+ 2µ

Ç
−n
r

∂gn(r)

∂r
+
n

r2
gn(r)

å
.

In particular, taking r → R+ and assuming all quantities in the above expression are

continuous up to ∂BR from outside BR gives

Fn(R+) = (λE + 2µ)
∂2gn(r)

∂r2

∣∣∣∣∣
r→R+

+ λE

(
1

R

∂gn(r)

∂r

∣∣∣∣∣
r→R+

− n2

R2
gn(R+)

)

+ 2µ

(
− n
R

∂gn(r)

∂r

∣∣∣∣∣
r→R+

+
n

R2
gn(R+)

)
,

(B.42)

where for a function h defined for r > R we define

h(r)|r→R+ ≡ lim
r→R+

h(r).

Recall from (3.33) that F0 ≡ (F|∂B+
R

) · er. Since

(F|∂B+
R

) · er =
∞∑

n=−∞
Fn(R+)einθ (B.43)

by (B.39), we define F0,n ≡ Fn(R+) so that

F0,r(θ) + iF0,θ(θ) =
∞∑

n=−∞
F0,neinθ. (B.44)

Inserting the last two equations into (B.42) gives (3.51). The remainder of the

derivation for P is given in Section 3.6.2.

B.3 Verification of Our Results

In this section we verify that our formula for the Exterior DtN Map in (3.47)–(3.48)

is equivalent to that in (3.54), which was obtained by Han and Wu [52, 53].

According to (3.47) and (3.48) we have

σ̃E,rr(R
+, θ) + iσ̃E,rθ(R

+, θ) = ΛE(ũr + iũθ)

=
∞∑

n=0

−2µ

R
(n+ 1)ũneinθ +

−1∑

n=−∞
− 2µ

RρE
(−n− 1)ũneinθ, (B.45)

where, by (3.45) and (B.14),

ũn =
1

2π

∫ 2π

0

Ä
ũE,r(R

+, θ′) + iũE,θ(R
+, θ′)

ä
e−inθ′ dθ′
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=
1

2π

∫ 2π

0
(ũr(θ

′) + iũθ(θ
′)) e−inθ′ dθ′

=
1

2π

∫ 2π

0
(ũ(θ′) + iṽ(θ′)) e−i(n+1)θ′ dθ′.

Inserting this into (B.45) we find

σ̃E,rr(R
+, θ) + iσ̃E,rθ(R

+, θ)

=
∞∑

n=0

−2µ(n+ 1)

2πR

Ç∫ 2π

0
(ũ(θ′) + iṽ(θ′))e−i(n+1)θ′ dθ′

å
einθ

+
−1∑

n=−∞

2µ(n+ 1)

2πRρE

Ç∫ 2π

0
(ũ(θ′) + iṽ(θ′))e−i(n+1)θ′ dθ′

å
einθ

=
∞∑

n=1

− 2µn

2πR

Ç∫ 2π

0
(ũ(θ′) + iṽ(θ′))e−inθ′ dθ′

å
ei(n−1)θ

+
0∑

n=−∞

2µn

2πRρE

Ç∫ 2π

0
(ũ(θ′) + iṽ(θ′))e−inθ′ dθ′

å
ei(n−1)θ.

We now multiply both sides of the above equation by eiθ; this givesÄ
σ̃E,rr(R

+, θ) + iσ̃E,rθ(R
+, θ)

ä
eiθ = (B.46)

∞∑

n=1

− 2µn

2πR

∫ 2π

0
(ũ(θ′) + iṽ(θ′)) ein(θ−θ′) dθ′

+
−1∑

n=−∞

2µn

2πRρE

∫ 2π

0
(ũ(θ′) + iṽ(θ′)) ein(θ−θ′) dθ′, (B.47)

where we have omitted the n = 0 term from the second sum in the last expression.

By (B.14), the left-hand side of this expression gives the Cartesian Components of

the traction around ∂BR. Denoting these components by X̃ and ‹Y , respectively, we

find Ä
σ̃E,rr(R

+, θ) + iσ̃E,rθ(R
+, θ)

ä
eiθ = X̃(R+, θ) + i‹Y (R+, θ). (B.48)

Using integration by parts and recalling that ũ+iṽ and einθ are periodic on [0, 2π]

for any integer n, we find

∫ 2π

0
(ũ(θ′) + iṽ(θ′)) e−in(θ−θ′) dθ′

= − (ũ(θ′) + iṽ(θ′))
ein(θ−θ′)

in

∣∣∣∣∣

2π

θ′=0

+
∫ 2π

0

Ç
d

dθ′
(ũ(θ′) + iṽ(θ′))

å
ein(θ−θ′)

in
dθ′

=
∫ 2π

0

Ç
d

dθ′
(ũ(θ′) + iṽ(θ′))

å
ein(θ−θ′)

in
dθ′. (B.49)
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We integrate by parts again to find

∫ 2π

0

Ç
d

dθ′
(ũ(θ′) + iṽ(θ′))

å
ein(θ−θ′)

in
dθ′ (B.50)

=

Ç
d

dθ′
(ũ(θ′) + iṽ(θ′))

å
ein(θ−θ′)

n2

∣∣∣∣∣

2π

θ′=0

−
∫ 2π

0

Ç
d2

dθ′2
(ũ(θ′) + iṽ(θ′))

å
ein(θ−θ′)

n2
dθ′

= −
∫ 2π

0

Ç
d2

dθ′2
(ũ(θ′) + iṽ(θ′))

å
ein(θ−θ′)

n2
dθ′. (B.51)

Thus (B.49) and (B.51) imply

∫ 2π

0
(ũ(θ′) + iṽ(θ′)) e−in(θ−θ′) dθ′ = −

∫ 2π

0

Ç
d2

dθ′2
(ũ(θ′) + iṽ(θ′))

å
ein(θ−θ′)

n2
dθ′. (B.52)

Inserting (B.52) into (B.47) and (B.48) gives

X̃(R+, θ) + i‹Y (R+, θ) =
∞∑

n=1

µ

πR

∫ 2π

0

Ç
d2

dθ′2
(ũ(θ′) + iṽ(θ′))

å
ein(θ−θ′)

n
dθ′

−
−1∑

n=−∞

µ

πRρE

∫ 2π

0

Ç
d2

dθ′2
(ũ(θ′) + iṽ(θ′))

å
ein(θ−θ′)

n
dθ′.

(B.53)

We begin with the real part of (B.53); we have

X̃(R+, θ) =
∞∑

n=1

µ

πR

∫ 2π

0

ÇÇ
d2ũ(θ′)

dθ′2

å
cosn(θ − θ′)

n
−
Ç
d2ṽ(θ′)

dθ′2

å
sinn(θ − θ′)

n

å
dθ′

−
−1∑

n=−∞

µ

πRρE

∫ 2π

0

ÇÇ
d2ũ(θ′)

dθ′2

å
cosn(θ − θ′)

n

−
Ç
d2ṽ(θ′)

dθ′2

å
sinn(θ − θ′)

n

å
dθ′

=
∞∑

n=1

µ

πR

∫ 2π

0

ÇÇ
d2ũ(θ′)

dθ′2

å
cosn(θ − θ′)

n
−
Ç
d2ṽ(θ′)

dθ′2

å
sinn(θ − θ′)

n

å
dθ′

+
∞∑

n=1

µ

πRρE

∫ 2π

0

ÇÇ
d2ũ(θ′)

dθ′2

å
cosn(θ − θ′)

n

+

Ç
d2ṽ(θ′)

dθ′2

å
sinn(θ − θ′)

n

å
dθ′
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=
∞∑

n=1

µ

πR

Ç
1 +

1

ρE

å ∫ 2π

0

Ç
d2ũ(θ′)

dθ′2

å
cosn(θ − θ′)

n
dθ′

+
∞∑

n=1

µ

πR

Ç
−1 +

1

ρE

å ∫ 2π

0

Ç
d2ṽ(θ′)

dθ′2

å
sinn(θ − θ′)

n
dθ′.

We handle the imaginary part of (B.53) similarly. In particular, we have‹Y (R+, θ) =
∞∑

n=1

µ

πR

∫ 2π

0

ÇÇ
d2ũ(θ′)

dθ′2

å
sinn(θ − θ′)

n
+

Ç
d2ṽ(θ′)

dθ′2

å
cosn(θ − θ′)

n

å
dθ′

+
∞∑

n=1

µ

πRρE

∫ 2π

0

Ç
−
Ç
d2ũ(θ′)

dθ′2

å
sinn(θ − θ′)

n

+

Ç
d2ṽ(θ′)

dθ′2

å
cosn(θ − θ′)

n

å
dθ′

=
∞∑

n=1

µ

πR

Ç
1− 1

ρE

å ∫ 2π

0

Ç
d2ũ(θ′)

dθ′2

å
sinn(θ − θ′)

n
dθ′

+
∞∑

n=1

µ

πR

Ç
1 +

1

ρE

å ∫ 2π

0

Ç
d2ṽ(θ′)

dθ′2

å
cosn(θ − θ′)

n
dθ′.

Finally, from the statement following (3.54) we have

η =
µ

λE + µ
⇔ λE =

µ(1− η)

η
.

Using this and (B.16), we find

1 +
1

ρE
= 1 +

λE + µ

λE + 3µ
=

2(λE + 2µ)

λE + 3µ
=

2
(
µ(1−η)

η
+ 2µ

)

µ(1−η)
η

+ 3µ
=

2µ(1 + η)

µ(1 + 2η)
=

2 + 2η

1 + 2η

and

−1 +
1

ρE
= −1 +

λE + µ

λE + 3µ
=
−2µ

λE + 3µ
=

−2µ
µ(1−η)

η
+ 3µ

=
−2µη

µ(1 + 2η)
=
−2η

1 + 2η
.

Inserting these expressions into (2.51) and (2.52) gives (3.54), so our formula for ΛE

agrees with that of Han and Wu [52, 53].



APPENDIX C

APPENDIX TO CHAPTER 4

In Section C.1, we provide a brief derivation of the relationship between the

complex conductivity and complex permittivity used in Chapters 2 and 4, respec-

tively. Next, we provide justification of the Leibniz Integration Rule in Section C.2.

Sections C.3–C.5 are devoted to proving that V satisfies the constraints imposed in

(4.12). In Section C.6, we prove that V ∈ L2
loc(R2). Finally, in Section C.7, we use

distribution theory to provide an heuristic justification of (4.17).

C.1 Complex Conductivity and Permittivity

In this section we discuss the relationship between the complex conductivity

utilized in Chapter 2 and the complex permittivity (also called the complex dielectric

constant if we choose units so that vacuum has permittivity equal to 1). In particular,

we wish to derive (4.2) from the Maxwell Equations in the same manner that we de-

rived (2.7). Beginning from (2.5), we arrive at (2.6a) and (2.6b) just as in Section 2.1.

However, we rewrite (2.6b) in a slightly different (equivalent) form. We have

∇× “E(x, ω) = iωµ′(x, ω)Ĥ(x, ω), (C.1a)

∇× Ĥ(x, ω) = σ′(x, ω)“E(x, ω)− iωε′(x, ω)“E(x, ω) = −iωε(x, ω)“E(x, ω), (C.1b)

where ε(x, ω) = ε′(x, ω)+iσ′(x, ω)/ω. The displacement field is defined by D̂(x, ω) ≡
ε(x, ω)“E(x, ω). In the medium under consideration, if the wavelengths and attenu-

ation lengths of the displacement and magnetic fields are large compared with the

dimensions of the body then we may neglect the right-hand side of (C.1a) (just as

in Section 2.1). This gives ∇ × “E(x, ω) = 0 so that “E(x, ω) = −∇“V (x, ω) for some

potential “V (x, ω) as long as the set under consideration is simply connected. In

the case of the slab or cylindrical superlens the set under consideration is typically

all of R2 or R3, or a large ball in the case of the cylindrical lens, all of which are
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simply connected. Since the divergence of a curl is always zero, taking the divergence

of (C.1b) gives ∇ · [ε(x, ω)∇“V (x, ω)] = 0. As in Chapter 2, we remove the hats

for notational convenience. Finally, comparing (C.1b) and (2.6b) we see that the

relationship between the complex conductivity and complex dielectric constant is

σ(x, ω) = −iωε(x, ω).

C.2 The Leibniz Integration Rule

In this section we present a proof of the following theorem, also known as the

Leibniz Integration Rule. In all of our applications of this theorem in the text, one

of the functions p, q is a constant while the other is linear.

Theorem C.1 Let X ⊂ R be a nontrivial open interval and let p, q : X → R be

differentiable on X such that p(x) ≤ q(x) for all x ∈ X. Define p̃ ≡ infx∈X p(x)

and q̃ ≡ supx∈X q(x). Suppose that f : (p̃, q̃) × X → C is a map with the following

properties.

(i) For any x ∈ X, the map s 7→ f(s, x) is in L1((p̃, q̃)).

(ii) For almost every s ∈ (p̃, q̃), the map X → C, x 7→ f(s, x) is differentiable with

derivative ∂f
∂x

.

(iii) h ≡ supx∈X |∂f∂x(·, x)| ∈ L1((p̃, q̃)).

Then, for almost every x ∈ X,

∂

∂x

∫ q(x)

p(x)
f(s, x) ds = f(q(x), x)q′(x)− f(p(x), x)p′(x) +

∫ q(x)

p(x)

∂f

∂x
(s, x) ds.

Proof of Theorem C.1: This proof is essentially the same as that given by Flanders

[34] and Kaplan [69, Section 4.9]. We define

Φ(u, v, x) ≡
∫ v

u
f(s, x) ds,

where u = p(x) and v = q(x). Then the Chain Rule implies that

d

dx
Φ(p(x), q(x), x) =

∂Φ

∂u
p′(x) +

∂Φ

∂v
q′(x) +

∂Φ

∂x
.
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Since (u, v) ⊆ (p̃, q̃), assumption (i) implies that f(·, x) ∈ L1((u, v)) for each x ∈ X.

Then the fundamental theorem of calculus [113, Theorem 7.11] implies that

∂Φ

∂u
= −f(u, x) and

∂Φ

∂v
= f(v, x)

for almost every u ∈ (p̃, supx∈X p(x)) and almost every v ∈ (infx∈X q(x), q̃).

Additionally, assumptions (i)–(iii) imply that f satisfies the hypotheses of Theo-

rem 4.2; thus
∂Φ

∂x
=
∫ v

u

∂f

∂x
(s, x) ds.

This completes the proof.

C.3 Some Properties of V̂

In this section we prove some useful lemmas regarding the Fourier Transform of the

potential, namely “V (x, k). The main result of this section is stated in Theorem C.3.

C.3.1 The Potential “Vc(x, k)

In this section we prove the following lemma.

Lemma C.1 Let ρ ∈ P, β > 0, and λ be feasible. Then for every 0 < δ ≤ δµ we

have (1 + | · |r)“Vc(x, ·) ∈ L2(R) for every r ≥ 0 and every x < 0.

Proof of Lemma C.1: Recall from (4.20) that “Vc(x, k) = Ake
|k|x, where Ak is given

in (4.34). Since µ = δ + λδβ ≥ 0 for 0 < δ ≤ δµ, we have λδβ ≥ −δ for 0 < δ ≤ δµ.

Then 4 + δ(µ− δ) = 4 + λδβ+1 ≥ 4− δ2 ≥ 4− δ2
µ ≥ 3 since δµ < 1. Then Lemma 4.2

implies

||k|ψ+
k + ψ−k |2 ≥

δ2(δ + µ)2

4(1 + δ2)
|k|2e2|k|a (C.2)

for all k ∈ R and for 0 < δ ≤ δµ.

Then, for every k ∈ R and each 0 < δ ≤ δµ, (C.2) implies that

|Ak|2 =
|Ik|2

e−2|k|a||k|ψ+
k + ψ−k |2

≤ 4(1 + δ2)

δ2(δ + µ)2
· |Ik|2
|k|2e−2|k|ae2|k|a = ‹Cc(δ) |Ik|2|k|2 , (C.3)

where ‹Cc(δ) ≡ 4(1 + δ2)

δ2(δ + µ)2
=

4(1 + δ2)

δ2(2δ + λδβ)2
> 0
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(‹Cc(δ) is not infinite for fixed δ > 0 since µ ≥ 0 for 0 < δ ≤ δµ). Then, thanks to

Lemma 4.1, the above bound on |Ak|2 becomes

|Ak|2 ≤ Cc(δ)
e−2|k|d0

|k|2 , (C.4)

where Cc(δ) is defined as

0 < Cc(δ) ≡ (d1 − d0) ‖ρ‖2
L2(M)

‹Cc(δ) <∞.
Note that |Ak|2 is an even function of k if ρ is real due to (4.30), (4.31), (4.34),

and Lemma 4.1. Thus, |“Vc(x, k)|2 is an even function of k as well (by (4.20)). Then

for every x < 0 and for every r ≥ 0 we have

∫ ∞

−∞
(1 + |k|r)2|“Vc(x, k)|2 dk = 2

∫ ∞

0
(1 + kr)2|“Vc(x, k)|2 dk. (C.5)

Then, for 0 ≤ k ≤ 1, x < 0, r ≥ 0, and 0 < δ ≤ δµ, we have, by (C.3) and Lemma 4.1,

that

|“Vc(x, k)|2 = |Ak|2e2|k|x ≤ ‹Cc(δ) |Ik|2
k2

e2kx ≤ ‹Cc(δ)C2
I . (C.6)

Analogously, for k ≥ 1, x < 0, r ≥ 0, and 0 < δ ≤ δµ, (C.4) and Lemma 4.1 imply

that we have

|“Vc(x, k)|2 = |Ak|2e2|k|x ≤ Cc(δ)
e−2kd0e2kx

k2
≤ Cc(δ)

e−2kd0

k2
. (C.7)

Inserting the bounds from (C.6) and (C.7) into (C.5) we find, for all x < 0 and r ≥ 0,

that

∫ ∞

−∞
(1 + |k|r)2|“Vc(x, k)|2 dk

≤ 2‹Cc(δ)C2
I

∫ 1

0
(1 + kr)2 dk + 2Cc(δ)

∫ ∞

1
(1 + kr)2 e−2kd0

k2
dk

≤ 8‹Cc(δ)C2
I + 2Cc(δ)

∫ ∞

1
(1 + kr)2 e−2kd0

k2
dk. (C.8)

The integral in (C.8) converges since d0 > 0. This completes the proof.
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C.3.2 The Potential “Vs(x, k)

The next lemma is the analogue of Lemma C.1 for “Vs(x, k).

Lemma C.2 Let ρ ∈ P, β > 0, and λ be feasible. Then for every 0 < δ ≤ δµ we

have (1 + | · |r)“Vs(x, ·) ∈ L2(R) for every r ≥ 0 and every 0 ≤ x ≤ a.

Proof of Lemma C.2: Recall from (4.27) that“Vs(x, k) =
Ak
2χc

î
(χc + 1)e|k|x + (χc − 1)e−|k|x

ó
. (C.9)

Performing computations similar to those leading up to (4.45) and (4.46), we find

that ∣∣∣∣∣
χc + 1

χc

∣∣∣∣∣

2

=
(δ + µ)2

1 + δ2
and

∣∣∣∣∣
χc − 1

χc

∣∣∣∣∣

2

=
4 + (µ− δ)2

1 + δ2
.

Then, for all 0 ≤ x ≤ a and k ∈ R, and since (p+ q)2 ≤ 2p2 + 2q2 for any p, q ∈ R,

|“Vs(x, k)|2 =
|Ak|2

4

∣∣∣∣∣

Ç
χc + 1

χc

å
e|k|x +

Ç
χc − 1

χc

å
e−|k|x

∣∣∣∣∣

2

(C.10)

≤ |Ak|
2

4

Ç∣∣∣∣∣χc + 1

χc

∣∣∣∣∣ e
|k|x +

∣∣∣∣∣
χc − 1

χc

∣∣∣∣∣ e
−|k|x

å2

≤ |Ak|
2

2

(∣∣∣∣∣
χc + 1

χc

∣∣∣∣∣

2

e2|k|x +

∣∣∣∣∣
χc − 1

χc

∣∣∣∣∣

2

e−2|k|x
)

≤
‹Cs(δ)|Ak|2

2

Ä
e2|k|x + e−2|k|xä

≤ ‹Cs(δ)|Ak|2e2|k|a; (C.11)

we have defined

‹Cs(δ) ≡ max

{∣∣∣∣∣
χc + 1

χc

∣∣∣∣∣

2

,

∣∣∣∣∣
χc − 1

χc

∣∣∣∣∣

2}
=





4 + (µ− δ)2

1 + δ2
if µδ ≤ 1,

(δ + µ)2

1 + δ2
otherwise.

Note that ‹Cs → 4 as δ → 0+.

For 0 ≤ k ≤ 1, 0 ≤ x ≤ a, r ≥ 0, and 0 < δ ≤ δµ, (C.3), (C.11), and Lemma 4.1

imply that

|“Vs(x, k)|2 ≤ ‹Cs(δ)|Ak|2e2|k|x ≤ ‹Cs(δ)‹Cc(δ) |Ik|2
k2

e2kx ≤ ‹Cs(δ)‹Cc(δ)C2
I e2a. (C.12)



177

Similarly, for k ≥ 1, 0 ≤ x ≤ a, r ≥ 0, and 0 < δ ≤ δµ, (C.4), (C.11), and Lemma 4.1

imply that

|“Vs(x, k)|2 ≤ ‹Cs(δ)|Ak|2e2|k|x ≤ ‹Cs(δ)Cc(δ)e−2kd0e2kx

k2
≤ ‹Cs(δ)Cc(δ)e−2k(d0−a)

k2
.

(C.13)

Since |“Vs(x, k)|2 is an even function of k (see (C.10)), (C.12) and (C.13) imply, for

0 ≤ x ≤ a, r ≥ 0, and 0 < δ ≤ δµ, that

∫ ∞

−∞
(1 + |k|r)2|“Vs(x, k)|2 dk

= 2
∫ ∞

0
(1 + kr)2|“Vs(x, k)|2 dk

= 2
∫ 1

0
(1 + kr)2|“Vs(x, k)|2 dk + 2

∫ ∞

1
(1 + kr)2|“Vs(x, k)|2 dk

≤ 2‹Cs(δ)‹Cc(δ)C2
I e2a

∫ 1

0
(1 + kr)2 dk + 2‹Cs(δ)Cc(δ) ∫ ∞

1
(1 + kr)2 e−2k(d0−a)

k2
dk

≤ 8‹Cs(δ)‹Cc(δ)C2
I e2a + 2‹Cs(δ)Cc(δ) ∫ ∞

1
(1 + kr)2 e−2k(d0−a)

k2
dk. (C.14)

The integral in (C.14) converges since d0 > a. This completes the proof.

C.3.3 The Potential “Vm(x, k)

The first lemma of this section is analogous to Lemmas 4.1 and 4.12. For x ∈
[d0, d1] we define

Hk(x) ≡ e|k|x
∫ d1

x
ρ̂(s, k)e−|k|s ds+ e−|k|x

∫ x

d0
ρ̂(s, k)e|k|s ds. (C.15)

Lemma C.3 Suppose ρ ∈ P (where P is defined in (4.3)) and that, for d0 ≤ x ≤
d1, Hk(x) is defined as in (C.15). Then, for every x ∈ [d0, d1], Hk(x) satisfies the

following properties:

1. for all k ∈ R, |Hk(x)|2 ≤ 2(d1 − d0)
∫ d1

d0
|ρ̂(s, k)|2 ds ≤ 2(d1 − d0)‖ρ‖2

L2(M);

2. if ρ is real-valued, then |Hk(x)|2 is an even function of k for k ∈ R;

3. Hk(x) is continuous at k for each k ∈ R;

4. lim
k→0

Hk(x) = H0(x) = 0;
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5. for each x ∈ [d0, d1], lim
k→0

|Hk(x)|
|k| = |C12(x)| <∞, where C12 is defined in (C.16)

and (C.17); moreover, there is a positive constant CH (defined in (C.19)),

independent of x, such that |Hk(x)|/|k| ≤ CH for all d0 ≤ x ≤ d1 and all

k ∈ [0, 1].

Proof of Lemma C.3: Although the proof of this lemma is essentially the same

as the proof of Lemma 4.12, we compute the bound in item (1) and the constants

C12 and CH to highlight the differences between this lemma and Lemma 4.12. By

definition we have

|Hk(x)|2 =

∣∣∣∣∣

∫ d1

x
ρ̂(s, k)e−|k|(s−x) ds+

∫ x

d0
ρ̂(s, k)e|k|(s−x) ds

∣∣∣∣∣

2

≤ 2

∣∣∣∣∣

∫ d1

x
ρ̂(s, k)e−|k|(s−x) ds

∣∣∣∣∣

2

+ 2
∣∣∣∣
∫ x

d0
ρ̂(s, k)e|k|(s−x) ds

∣∣∣∣
2

≤ 2
∫ d1

x
|ρ̂(s, k)|2 ds

∫ d1

x
e−2|k|(s−x) ds+ 2

∫ x

d0
|ρ̂(s, k)|2 ds

∫ x

d0
e2|k|(s−x) ds

≤ 2(d1 − x)
∫ d1

x
|ρ̂(s, k)|2 ds+ 2(x− d0)

∫ x

d0
|ρ̂(s, k)|2 ds

≤ 2(d1 − x)
∫ d1

d0
|ρ̂(s, k)|2 ds+ 2(x− d0)

∫ d1

d0
|ρ̂(s, k)|2 ds

= 2(d1 − d0)
∫ d1

d0
|ρ̂(s, k)|2 ds

= 2(d1 − d0)
∫ d1

d0

∫ h1

h0
|ρ(s, y)|2 dy ds

= 2(d1 − d0)‖ρ‖2
L2(M),

where the second-to-last step holds by the Plancherel Theorem. This bound holds for

all x ∈ [d0, d1] and all k ∈ R.

Next, just as in the proof of Lemma 4.12, one can show that Hk(x) is differentiable

as a function of k on (0, k∗), where k∗ > 0 is arbitrary. (In particular, one can prove

that the integrals
∫ d1
x ρ̂(s, k)e−ks ds and

∫ x
d0
ρ̂(s, k)eks ds are differentiable with respect

to k on (0, k∗) for any fixed x ∈ [d0, d1]; since e|k|x and e−|k|x are differentiable for all
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x and all k > 0, Hk(x) is differentiable with respect to k for k ∈ (0, k∗).) Then, by

item (4) of this lemma,

lim
k→0+

Hk(x)

k
= lim

k→0+

∂Hk(x)

∂k

= lim
k→0+

ñ
ekx

∫ d1

x
−sρ̂(s, k)e−ks +

∂ρ̂

∂k
(s, k)e−ks ds+ xekx

∫ d1

x
ρ̂(s, k)e−ks ds

+e−kx
∫ x

d0
sρ̂(s, k)eks +

∂ρ̂

∂k
(s, k)eks ds− xe−kx

∫ x

d0
ρ̂(s, k)eks ds

ô
=
∫ d1

x
−sρ̂(s, 0) +

∂ρ̂

∂k
(s, 0) ds+ x

∫ d1

x
ρ̂(s, 0) ds

+
∫ x

d0
sρ̂(s, 0) +

∂ρ̂

∂k
(s, 0) ds− x

∫ x

d0
ρ̂(s, 0) ds (C.16)

=
∫ d1

x

∫ h1

h0
−sρ(s, y)− iyρ(s, y) dy ds+ x

∫ d1

x

∫ h1

h0
ρ(s, y) dy ds

+
∫ x

d0

∫ h1

h0
sρ(s, y)− iyρ(s, y) dy ds− x

∫ x

d0

∫ h1

h0
ρ(s, y) dy ds (C.17)

≡ C12(x).

Since C12 depends on x, we have to be a bit careful when we derive the final bound

in item (5). Note that C12(x) is well defined and finite for each x ∈ [d0, d1] since

ρ ∈ L1(M). In fact, for x ∈ [d0, d1],

|C12(x)| ≤
∫ d1

d0

∫ h1

h0
|s||ρ(s, y)|+ |y||ρ(s, y)| dy ds+ |x|

∫ d1

d0

∫ h1

h0
|ρ(s, y)| dy ds

+
∫ d1

d0

∫ h1

h0
|s||ρ(s, y)|+ |y||ρ(s, y)| dy ds+ |x|

∫ d1

d0

∫ h1

h0
|ρ(s, y)| dy ds

≤ (4d1 + 2Ch)‖ρ‖L1(M); (C.18)

For x ∈ [d0, d1] and for k ∈ (0, k∗) we have
∣∣∣∣∣
∂Hk(x)

∂k

∣∣∣∣∣ ≤ ek∗d1
∫ d1

d0
|sρ̂(s, k)| ds+

∫ d1

d0

∣∣∣∣∣
∂ρ̂

∂k
(s, k)

∣∣∣∣∣ ds+ d1ek∗d1
∫ d1

d0
|ρ̂(s, k)| ds

+
∫ d1

d0
|sρ̂(s, k)ek∗d1| ds+

∫ d1

d0

∣∣∣∣∣
∂ρ̂

∂k
(s, k)

∣∣∣∣∣ e
k∗d1 ds

+ d1

∫ d1

d0
|ρ̂(s, k)|ek∗d1 ds
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≤ 4d1ek∗d1
∫ d1

d0

∫ h1

h0
|ρ(s, y)| dy ds+ (1 + ek∗d1)

∫ d1

d0

∫ h1

h0
|yρ(s, y)| dy ds

≤
î
4d1ek∗d1 + Ch(1 + ek∗d1)

ó
‖ρ‖L1(M)

≡ CH
2

; (C.19)

Note that (C.18) implies that |C12(x)| ≤ CH/2 for all x ∈ [d0, d1].

For each x ∈ [d0, d1], Hk(x) is continuous as a function of k on [0, k∗] (as long

as we define Hk(x)/k = C12(x) at k = 0) and differentiable as a function of k on

(0, k∗). Thus the real and imaginary parts of Hk(x), namely <Hk(x) and =Hk(x),

respectively, satisfy the same properties. In particular, <H0(x) = =H0(x) = 0 and,

since |<z| ≤ |z| and |=z| ≤ |z| for any complex number z,

∣∣∣∣∣
∂[<Hk(x)]

∂k

∣∣∣∣∣ ≤
CH
2

and

∣∣∣∣∣
∂[=Hk(x)]

∂k

∣∣∣∣∣ ≤
CH
2

for all k ∈ (0, k∗) due to (C.19). Then the mean value theorem for derivatives implies

that for each k ∈ (0, k∗) there is a 0 < k∗∗ < k∗ such that

∣∣∣∣∣
<Hk(x)−<H0(x)

k − 0

∣∣∣∣∣ =

∣∣∣∣∣
<Hk(x)

k

∣∣∣∣∣ =

∣∣∣∣∣
∂[<Hk(x)]

∂k

∣∣∣∣∣
k=k∗∗

∣∣∣∣∣ ≤
CH
2

for all k ∈ (0, k∗). Similarly, |=Hk(x)|/k ≤ CH/2 for all k ∈ (0, k∗). This implies that

|Hk(x)|
k

≤ |<Hk(x)|+ |=Hk(x)|
k

≤ CH

for all x ∈ [d0, d1] and for all k ∈ (0, k∗). Finally, (C.18) implies that k−1|Hk(x)| ≤
|C12(x)| ≤ CH/2 at k = 0. Since k∗ > 0 is arbitrary,

|Hk(x)|
k

≤ CH

for all x ∈ [d0, d1] and all k ∈ [0, 1]. This completes the proof.

Finally, the next lemma is the analogue of Lemmas C.1 and C.2 for “Vm(x, k).

Lemma C.4 Let ρ ∈ P, β > 0, and λ be feasible. Then there exists 0 < δm(β, λ) ≤
δµ such that, for every 0 < δ ≤ δm, (1 + | · |r)“Vm(x, ·) ∈ L2(R) for every r ≥ 0 and

every x ∈ (a, d0)∪(d1,∞); when x ∈ [d0, d1], (1+ | · |r)“Vm(x, ·) ∈ L2(R) for 0 ≤ r ≤ 1.
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Proof of Lemma C.4: First we choose 0 < δm(β, λ) ≤ δµ small enough so that

δ(µ− δ)− 4 ≤ 0 for 0 < δ ≤ δm. Then Lemma 4.3 implies, for 0 < δ ≤ δm, that

∣∣∣∣∣ψ
+
k −

1

|k|ψ
−
k

∣∣∣∣∣

2

≤ ‹Cm(δ)(e2|k|a + e−2|k|a) ≤ 2‹Cm(δ)e2|k|a, (C.20)

where ‹Cm(δ) =
1

4(1 + δ2)
max

¶
(δ + µ)2(4 + δ2), δ2(4 + (µ− δ)2)

©
.

Note that ‹Cm(δ)→ 0 as δ → 0+.

If necessary, we redefine δm so that the following inequalities hold for 0 < δ ≤ δm:

∣∣∣∣∣ψ
+
k +

1

|k|ψ
−
k

∣∣∣∣∣

2

=
1

4(1 + δ2)

î
δ2(δ + µ)2e2|k|a + 2δ(δ + µ)(4 + δ(µ− δ))

+(4 + (µ− δ)2)(4 + δ2)e−2|k|aó
≤ 1

4
(10e2|k|a + 10 + 20e−2|k|a)

≤ 1

4
(20e2|k|a + 20e−2|k|a)

= 5(e2|k|a + e−2|k|a)

≤ 10e2|k|a. (C.21)

From (4.33)) we have“Vm(x, k) = e|k|x
[
Akψ

+
k e−|k|a

2
+
Akψ

−
k e−|k|a

2|k| − 1

2|k|
∫ x

a
ρ̂(s, k)e−|k|s ds

]

+ e−|k|x
[
Akψ

+
k e|k|a

2
− Akψ

−
k e|k|a

2|k| +
1

2|k|
∫ x

a
ρ̂(s, k)e|k|s ds

]

=
e|k|x

2

ñ
Ake

−|k|a
Ç
ψ+
k +

ψ−k
|k|

å
− 1

|k|
∫ x

a
ρ̂(s, k)e−|k|s ds

ô
+

e−|k|x

2

ñ
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

å
+

1

|k|
∫ x

a
ρ̂(s, k)e|k|s ds

ô
. (C.22)

We break the proof into three cases, namely a < x < d0, x > d1, and d0 ≤ x ≤ d1.
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C.3.3.1 Case I: a < x < d0

Since supp ρ ⊆ [d0, d1] × [h0, h1], if a < x < d0, then
∫ x
a ρ̂(s, k)e±|k|sds = 0. Thus

for a < x < d0 we have, from (C.20), (C.21), and (C.22), that

|“Vm(x, k)|2 =

∣∣∣∣∣
e|k|x

2

ñ
Ake

−|k|a
Ç
ψ+
k +

ψ−k
|k|

åô
+

e−|k|x

2

ñ
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

åô∣∣∣∣∣2
=
|Ak|2

4

∣∣∣∣∣e
|k|(x−a)

Ç
ψ+
k +

ψ−k
|k|

å
+ e−|k|(x−a)

Ç
ψ+
k −

ψ−k
|k|

å∣∣∣∣∣2
≤ |Ak|

2

4

ñ
e|k|(x−a)

∣∣∣∣∣ψ
+
k +

ψ−k
|k|

∣∣∣∣∣+ e−|k|(x−a)

∣∣∣∣∣ψ
+
k −

ψ−k
|k|

∣∣∣∣∣

ô2

≤ |Ak|
2

2


e2|k|(x−a)

∣∣∣∣∣ψ
+
k +

ψ−k
|k|

∣∣∣∣∣

2

+ e−2|k|(x−a)

∣∣∣∣∣ψ
+
k −

ψ−k
|k|

∣∣∣∣∣

2



≤ |Ak|
2

2

Ä
10e2|k|(x−a)e2|k|a + 2‹Cm(δ)e−2|k|(x−a)e2|k|aä

≤ |Ak|2e2|k|a î5e2|k|(x−a) + ‹Cm(δ)e−2|k|(x−a)
ó

≤ Cm(δ)|Ak|2e2|k|x, (C.23)

where Cm(δ) = max{5, ‹Cm(δ)}. Since |“Vm(x, k)|2 is an even function of k (by (C.22)),

we have
∫ ∞

−∞
(1 + |k|r)2|“Vm(x, k)|2 dk

≤ 2Cm(δ)
∫ ∞

0
(1 + kr)2|Ak|2e2kx dk

= 2Cm(δ)

ñ∫ 1

0
(1 + kr)2|Ak|2e2kx dk +

∫ ∞

1
(1 + kr)2|Ak|2e2kx dk

ô
. (C.24)

Note that, up to multiplication by Cm(δ), (C.24) is the same as (C.5). Thus, we can

apply the computations following (C.5) to find, for a < x < d0, that
∫ ∞

−∞
(1 + |k|r)2|“Vm(x, k)|2 dk ≤ 8Cm(δ)‹Cc(δ)C2

I

+ 2Cm(δ)Cc(δ)
∫ ∞

1
(1 + kr)2 e2k(x−d0)

k2
dk

For r ≥ 0, the above integral on the right-hand side converges if a < x < d0, which

gives us the desired result.
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C.3.3.2 Case II: x > d1

By our choice of Ak in (4.34) and (4.35) and the fact that supp ρ ⊆ [d0, d1]×[h0, h1],

for x > d1 (C.22) becomes“Vm(x, k) =
e|k|x

2

ñ
Ake

−|k|a
Ç
ψ+
k +

ψ−k
|k|

å
− 1

|k|
∫ d1

d0
ρ̂(s, k)e−|k|s ds

ô
+

e−|k|x

2

ñ
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

å
+

1

|k|
∫ d1

d0
ρ̂(s, k)e|k|s ds

ô
=

e−|k|x

2

ñ
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

åô
+
Jk(x)

2|k| , (C.25)

where Jk(x) is defined in (4.96). Then, for x > d1 and 0 < δ ≤ δm, (C.20) implies

|“Vm(x, k)|2 =

∣∣∣∣∣
e−|k|x

2

ñ
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

åô
+
Jk(x)

2|k|

∣∣∣∣∣

2

≤
[

e−|k|(x−a)

2
|Ak|

∣∣∣∣∣ψ
+
k −

ψ−k
|k|

∣∣∣∣∣+
|Jk(x)|

2|k|

]2

≤ |Ak|
2e−2|k|(x−a)

2

∣∣∣∣∣ψ
+
k −

ψ−k
|k|

∣∣∣∣∣

2

+
|Jk(x)|2

2|k|2

≤ ‹Cm(δ)
|Ak|2e−2|k|(x−a)

2
(e2|k|a + e−2|k|a) +

|Jk(x)|2
2|k|2

≤ ‹Cm(δ)|Ak|2e−2|k|(x−2a) +
|Jk(x)|2

2|k|2 . (C.26)

Then

∫ ∞

−∞
(1 + |k|r)2|“Vm(x, k)|2 dk

≤
∫ ∞

−∞
(1 + |k|r)2

ñ‹Cm(δ)|Ak|2e−2|k|(x−2a) +
|Jk(x)|2

2|k|2
ô
dk

= 2‹Cm(δ)
∫ ∞

0
(1 + kr)2|Ak|2e−2k(x−2a) dk +

∫ ∞

0
(1 + kr)2 |Jk(x)|2

k2
dk

since for all x > d1, |Jk(x)|2 is an even function of k by Lemma 4.12. Next, we

combine the bounds from (C.3), (C.4), Lemma 4.1, and Lemma 4.12 to find a bound

on the above expression. We have
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∫ ∞

−∞
(1 + |k|r)2|“Vm(x, k)|2 dk

≤ 2‹Cm(δ)

ñ‹Cc(δ) ∫ 1

0
(1 + kr)2 |Ik|2

k2
e−2k(x−2a) dk

+Cc(δ)
∫ ∞

1
(1 + kr)2 e−2k(x−2a+d0)

k2
dk

]

+
∫ 1

0
(1 + kr)2 |Jk(x)|2

k2
dk +

∫ ∞

1
(1 + kr)2 |Jk(x)|2

k2
dk

≤ 2‹Cm(δ)

[
4‹Cc(δ)C2

I

∫ 1

0
e−2k(x−2a) dk + Cc(δ)

∫ ∞

1
(1 + kr)2 e−2k(x−2a+d0)

k2
dk

]

+ 4C2
J + (d1 − d0)‖ρ‖2

L2(M)

∫ ∞

1
(1 + kr)2 e−2k(x−d1)

k2
dk. (C.27)

The first integral in (C.27) converges for all x. The second integral converges for

x > 2a − d0; however, since d0 > a ⇔ 2a − d0 < a and x > d1 > d0 > a, we

have x > 2a − d0 and therefore the second integral converges. The last integral also

converges for x > d1. Thus

∫ ∞

−∞
(1 + |k|r)2|“Vm(x, k)|2 dk <∞

for all x > d1 and all r ≥ 0, which is what we wanted to show.

C.3.3.3 Case III: d0 ≤ x ≤ d1

From (C.22), (4.34), and (4.35) we have, for d0 ≤ x ≤ d1, that“Vm(x, k) =
e|k|x

2

ñ
Ake

−|k|a
Ç
ψ+
k +

ψ−k
|k|

å
− 1

|k|
∫ x

a
ρ̂(s, k)e−|k|s ds

ô
+

e−|k|x

2

ñ
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

å
+

1

|k|
∫ x

a
ρ̂(s, k)e|k|s ds

ô
=

e|k|x

2

ñ
1

|k|
∫ d1

d0
ρ̂(s, k)e−|k|s ds− 1

|k|
∫ x

d0
ρ̂(s, k)e−|k|s ds

ô
+

e−|k|x

2

ñ
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

å
+

1

|k|
∫ x

a
ρ̂(s, k)e|k|s ds

ô



185

=
e−|k|x

2
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

å
+
Hk(x)

2|k| , (C.28)

where Hk(x) is defined in (C.15). Then for x ∈ [d0, d1] and each k ∈ R we have

|“Vm(x, k)|2 =

∣∣∣∣∣
e−|k|x

2
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

å
+
Hk(x)

2|k|

∣∣∣∣∣

2

≤
[

e−|k|x

2
|Ak|e|k|a

∣∣∣∣∣ψ
+
k −

ψ−k
|k|

∣∣∣∣∣+
|Hk(x)|

2|k|

]2

≤ e−2|k|(x−a)

2
|Ak|2

∣∣∣∣∣ψ
+
k −

ψ−k
|k|

∣∣∣∣∣

2

+
|Hk(x)|2

2|k|2 . (C.29)

Note that this is an even function of k. Thus (C.20) and (C.29) imply, for x ∈ [d0, d1]

and 0 < δ ≤ δµ, that

∫ ∞

−∞
(1 + |k|r)2“Vm(x, k)|2 dk

≤
∫ ∞

−∞
(1 + |k|r)2


e−2|k|(x−a)

2
|Ak|2

∣∣∣∣∣ψ
+
k −

ψ−k
|k|

∣∣∣∣∣

2

+
|Hk(x)|2

2|k|2


 dk

=
∫ ∞

0
(1 + kr)2


e−2k(x−a)|Ak|2

∣∣∣∣∣ψ
+
k −

ψ−k
k

∣∣∣∣∣

2

+
|Hk(x)|2

k2


 dk

≤ 2‹Cm(δ)

ñ∫ 1

0
(1 + kr)2e−2k(x−2a)|Ak|2 dk +

∫ ∞

1
(1 + kr)2e−2k(x−2a)|Ak|2 dk

ô
+
∫ 1

0
(1 + kr)2 |Hk(x)|2

k2
dk +

∫ ∞

1
(1 + kr)2 |Hk(x)|2

k2
dk.

Then (C.3), (C.4), and Lemmas 4.1 and C.3 imply that this is less than or equal to

2‹Cm(δ)

{
4‹Cc(δ) ∫ 1

0
e−2k(x−2a) |Ik|2

k2
dk + Cc(δ)

∫ ∞

1
(1 + kr)2

[
e−2k(x−2a+d0)

k2

]
dk

}

+ 4
∫ 1

0
C2
H dk +

∫ ∞

1
(1 + kr)2 |Hk(x)|2

k2
dk

≤ 2‹Cm(δ)

{
4‹Cc(δ)C2

I

∫ 1

0
e−2k(x−2a) dk + Cc(δ)

∫ ∞

1
(1 + kr)2

[
e−2k(x−2a+d0)

k2

]
dk

}

+ 4C2
H +

∫ ∞

1
(1 + kr)2 |Hk(x)|2

k2
dk. (C.30)
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The first integral in (C.30) converges for all x ∈ [d0, d1]. The second integral converges

as long as x > 2a − d0; however, since d0 > a ⇔ 2a − d0 < a, x > 2a − d0 for all

x ∈ [d0, d1]. We now consider the last integral in the cases r = 0 and 0 < r ≤ 1

separately.

First take r = 0. Then Lemma C.3 implies

∫ ∞

1
(1 + k0)2 |Hk(x)|2

k2
dk ≤ (d1 − d0)‖ρ‖2

L2(M)

∫ ∞

1

1

k2
dk = (d1 − d0)‖ρ‖2

L2(M) <∞.
(C.31)

Next, we take 0 < r ≤ 1; then (C.31), Lemma C.3, the Plancherel Theorem, and

the fact that (1 + kr)2 ≤ 2 + 2k2r imply

∫ ∞

1
(1 + kr)2 |Hk(x)|2

k2
dk ≤ 2

∫ ∞

1

|Hk(x)|2
k2

dk + 2
∫ ∞

1
k2r−2|Hk(x)|2 dk

≤ 2
∫ ∞

1

|Hk(x)|2
k2

dk + 2
∫ ∞

1
|Hk(x)|2 dk

≤ 2(d1 − d0)‖ρ‖2
L2(M) + 2

∫ ∞

0
|Hk(x)|2 dk

= 2(d1 − d0)‖ρ‖2
L2(M) +

∫ ∞

−∞
|Hk(x)|2 dk

≤ 2(d1 − d0)‖ρ‖2
L2(M) + 2(d1 − d0)

∫ ∞

−∞

∫ d1

d0
|ρ̂(s, k)|2 ds dk

= 2(d1 − d0)‖ρ‖2
L2(M) + 2(d1 − d0)

∫ d1

d0

∫ ∞

−∞
|ρ̂(s, k)|2 dk ds

= 2(d1 − d0)‖ρ‖2
L2(M) + 2(d1 − d0)

∫ d1

d0

∫ ∞

−∞
|ρ(s, y)|2 dy ds

= 4(d1 − d0)‖ρ‖2
L2(M).

This completes the proof.

C.3.4 Summary

We begin by introducing some notation; the following definition can be found in

the book by Evans [32, Appendix A].

Definition C.1 (a) A vector of the form α = (α1, . . . , αn), where each component

αi is a nonnegative integer, is called a multiindex of order |α| = α1 + · · ·+ αn.
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(b) Given a multiindex α, define

Dαu(x) ≡ ∂|α|u(x)

∂xα1
1 · · · ∂xαnn

= ∂α1
x1
· · · ∂αnxn u.

The following two definitions can also be found in the book by Evans [32, Chapter 5].

Definition C.2 Let U ⊂ Rn be open (where n ≥ 1 is an integer); suppose u, v ∈
L1

loc(U) and α is a multiindex. We say that v is the αth-weak derivative of u, written

Dαu = v, provided ∫

U
uDαφ dx = (−1)|α|

∫

U
vφ dx

for all test functions φ ∈ C∞c (U) (which is the set of all infinitely differentiable

functions with compact support in U).

Definition C.3 Let r be a nonnegative integer. The Sobolev Space Hr(U) consists

of functions u : U → C with u ∈ L1
loc(U) such that for each multiindex α with |α| ≤ r,

Dαu exists in the weak sense and belongs to L2(U).

The statement and proof of the following theorem can be found in the book by Evans

[32, Chapter 5].

Theorem C.2 Let r be a nonnegative integer. A function u ∈ L2(R) belongs to

Hr(R) if and only if

(1 + |k|r)û ∈ L2(R).

Theorem C.3 Let ρ ∈ P, β > 0, and λ be feasible. Then there exists 0 < δm(β, λ) ≤
δµ such that, for every 0 < δ ≤ δm and almost every x ∈ R, V (x, ·) ∈ H1(R).

Proof of Theorem C.3: First, note that Lemmas C.1, C.2, and C.4 and the

Plancherel Theorem imply, for almost every x ∈ R, that

∫ ∞

−∞
|V (x, y)|2 dy =

∫ ∞

−∞
|“V (x, k)|2 dk <∞, (C.32)

so V (x, ·) ∈ L2(R) for almost every x ∈ R. Furthermore, according to Theorem C.2,

Lemmas C.1, C.2, and C.4 imply that V (x, ·) ∈ H1(R) for almost every x ∈ R. This

completes the proof.



188

Remark C.1 Lemmas C.1, C.2, and C.4 imply that “V (x, ·) ∈ Hr(R) for every

nonnegative integer r and for all x ∈ (−∞, d0) ∪ (d1,∞). In particular, (C.32) holds

for all x ∈ (−∞, d0) ∪ (d1,∞) since V is harmonic and therefore smooth there.

C.4 Some Properties of ∂V
∂x

In this section we prove that ∂V (x, ·)/∂x ∈ L2(R) for almost every x ∈ R.

C.4.1 The Field ∂Vc
∂x

We begin in the region x < 0.

Lemma C.5 Let ρ ∈ P, β > 0, and λ be feasible. Then for every 0 < δ ≤ δµ and

every x < 0 we have

∂Vc
∂x

(x, ·) ∈ L2(R).

Proof of Lemma C.5: Fix x < 0. By (4.20) we have

∂“V
∂x

(x, k) =
∂“Vc
∂x

(x, k) = |k|Ake|k|x = |k|“Vc(x, k).

Then, for every x < 0,

∫ ∞

−∞

∣∣∣∣∣∣
∂“V
∂x

(x, k)

∣∣∣∣∣∣

2

dk =
∫ ∞

−∞
|k|2|“Vc(x, k)|2 dk ≤

∫ ∞

−∞
(1 + |k|)2|“Vc(x, k)|2 dk <∞

by Lemma C.1. Then the Plancherel Theorem implies, for every x < 0, that

∫ ∞

−∞

∣∣∣∣∣
∂V

∂x
(x, y)

∣∣∣∣∣

2

dy =
∫ ∞

−∞

∣∣∣∣∣∣
∂“V
∂x

(x, k)

∣∣∣∣∣∣

2

dk <∞.

This completes the proof.

C.4.2 The Field ∂Vs
∂x

We now consider the region 0 ≤ x ≤ a.

Lemma C.6 Let ρ ∈ P, β > 0, and λ be feasible. Then for every 0 < δ ≤ δµ and

every 0 < x < a we have

∂V

∂x
(x, ·) ∈ L2(R).
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Proof of Lemma C.6: Thanks to (4.27), for every 0 < x < a we have

∂“V
∂x

(x, k) =
∂“Vs
∂x

(x, k) =
|k|Ak
2χc

î
(χc + 1)e|k|x − (χc − 1)e−|k|x

ó
.

Then for every 0 ≤ x ≤ a

∣∣∣∣∣∣
∂“V
∂x

(x, k)

∣∣∣∣∣∣

2

=
|k|2|Ak|2

4

∣∣∣∣∣

Ç
χc + 1

χc

å
e|k|x −

Ç
χc − 1

χc

å
e−|k|x

∣∣∣∣∣

2

≤ (1 + |k|)2|Ak|2
4

Ç∣∣∣∣∣χc + 1

χc

∣∣∣∣∣ e
|k|x +

∣∣∣∣∣
χc − 1

χc

∣∣∣∣∣ e
−|k|x

å2

≤ (1 + |k|)2|Ak|2
2

(∣∣∣∣∣
χc + 1

χc

∣∣∣∣∣

2

e2|k|x +

∣∣∣∣∣
χc − 1

χc

∣∣∣∣∣

2

e−2|k|x
)

≤
‹Cs(δ)(1 + |k|)2|Ak|2

2

Ä
e2|k|x + e−2|k|xä

≤ ‹Cs(δ)(1 + |k|)2|Ak|2e2|k|a.

In Lemma C.2 we proved that this expression is integrable as a function of k for every

0 < x < a (see (C.11)). Then, for every 0 < x < a, the Plancherel Theorem implies

∫ ∞

−∞

∣∣∣∣∣
∂V

∂x
(x, y)

∣∣∣∣∣

2

dy =
∫ ∞

−∞

∣∣∣∣∣∣
∂“Vs
∂x

(x, k)

∣∣∣∣∣∣

2

dk <∞.

This completes the proof.

C.4.3 The Field ∂Vm
∂x

Lemma C.7 Let ρ ∈ P, β > 0, and λ be feasible. Then there exists 0 < δm(β, λ) ≤
δµ such that, for every 0 < δ ≤ δm,

∂V

∂x
(x, ·) ∈ L2(R)

for almost every x > a.

Proof of Lemma C.7: We break the proof up into three cases. In all three cases

we assume that 0 < δ ≤ δm.
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C.4.3.1 Case I: a < x < d0

If a < x < d0, then (C.22) implies“V (x, k) = “Vm(x, k) =
e|k|x

2

ñ
Ake

−|k|a
Ç
ψ+
k +

ψ−k
|k|

åô
+

e−|k|x

2

ñ
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

åô
.

Then, for each x ∈ (a, d0),

∂“Vm
∂x

(x, k) =
|k|Ak

2

ñ
e|k|xe−|k|a

Ç
ψ+
k +

ψ−k
|k|

å
− e−|k|xe|k|a

Ç
ψ+
k −

ψ−k
|k|

åô
.

Using the fact that |k|2 ≤ (1 + |k|)2 for all k ∈ R and following the arguments leading

to (C.23) we see that

∣∣∣∣∣∣
∂“Vm
∂x

(x, k)

∣∣∣∣∣∣

2

=
|k|2|Ak|2

4

∣∣∣∣∣e
|k|xe−|k|a

Ç
ψ+
k +

ψ−k
|k|

å
− e−|k|xe|k|a

Ç
ψ+
k −

ψ−k
|k|

å∣∣∣∣∣2
≤ (1 + |k|)2|Ak|2

4

ñ
e|k|(x−a)

∣∣∣∣∣ψ
+
k +

ψ−k
|k|

∣∣∣∣∣+ e−|k|(x−a)

∣∣∣∣∣ψ
+
k −

ψ−k
|k|

∣∣∣∣∣

ô2

≤ (1 + |k|)2Cm(δ)|Ak|2e2|k|x;

this last expression was shown to be integrable (as a function of k) for all a < x < d0

in Case I of Lemma C.4. Then the Plancherel Theorem implies that

∫ ∞

−∞

∣∣∣∣∣
∂V

∂x
(x, y)

∣∣∣∣∣

2

dy =
∫ ∞

−∞

∣∣∣∣∣∣
∂“Vm
∂x

(x, k)

∣∣∣∣∣∣

2

dk <∞

for a < x < d0.

C.4.3.2 Case II: x > d1

For x > d1, (4.96) and (C.25) imply that“V (x, k) = “Vm(x, k) =
e−|k|x

2

ñ
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

å
+

1

|k|
∫ d1

d0
ρ̂(s, k)e|k|s ds

ô
.

Thus

∂“Vm
∂x

(x, k) = −|k|e
−|k|x

2

ñ
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

å
+

1

|k|
∫ d1

d0
ρ̂(s, k)e|k|s ds

ô
= −|k|“Vm(x, k),

(C.33)

so ∣∣∣∣∣∣
∂“Vm
∂x

(x, k)

∣∣∣∣∣∣

2

= |k|2|“Vm(x, k)|2 ≤ (1 + |k|)2|“Vm(x, k)|2.
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This last expression was shown to be integrable (as a function of k) for all x > d1 in

Case II of Lemma C.4. Thus the Plancherel Theorem implies, for every x > d1, that

∫ ∞

−∞

∣∣∣∣∣
∂V

∂x
(x, y)

∣∣∣∣∣

2

dy =
∫ ∞

−∞

∣∣∣∣∣∣
∂“Vm
∂x

(x, k)

∣∣∣∣∣∣

2

dk <∞.

C.4.3.3 Case III: d0 ≤ x ≤ d1

For x ∈ [d0, d1], (C.15) and (C.28) imply that“V (x, k) = “Vm(x, k)

=
e−|k|x

2
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

å
+
Hk(x)

2|k|

=
e−|k|x

2
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

å
+

1

2|k|

ñ
e|k|x

∫ d1

x
ρ̂(s, k)e−|k|s ds+ e−|k|x

∫ x

d0
ρ̂(s, k)e|k|s ds

ô
.

Then the Leibniz Rule (discussed in Section C.2) implies, for almost every x ∈ (d0, d1),

that

∂“Vm
∂x

(x, k) = −|k|e
−|k|x

2
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

å
+

1

2|k|

ñ
|k|e|k|x

∫ d1

x
ρ̂(s, k)e−|k|s ds− e|k|xρ̂(x, k)e−|k|x

−|k|e−|k|x
∫ x

d0
ρ̂(s, k)e|k|s ds+ e−|k|xρ̂(x, k)e|k|x

ô
= −|k|e

−|k|x

2
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

å
+

e|k|x

2

∫ d1

x
ρ̂(s, k)e−|k|s ds− e−|k|x

2

∫ x

d0
ρ̂(s, k)e|k|s ds.

Then, for almost every x ∈ (d0, d1),
∣∣∣∣∣∣
∂“Vm
∂x

(x, k)

∣∣∣∣∣∣

2

=

∣∣∣∣∣−|k|
e−|k|x

2
Ake

|k|a
Ç
ψ+
k −

ψ−k
|k|

å
+

e|k|x

2

∫ d1

x
ρ̂(s, k)e−|k|s ds− e−|k|x

2

∫ x

d0
ρ̂(s, k)e|k|s ds

∣∣∣∣∣

2
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≤ (1 + |k|)2e−2|k|(x−a)

2
|Ak|2

∣∣∣∣∣ψ
+
k −

ψ−k
|k|

∣∣∣∣∣

2

+
1

2

∣∣∣∣∣e
|k|x

∫ d1

x
ρ̂(s, k)e−|k|s ds− e−|k|x

∫ x

d0
ρ̂(s, k)e|k|s ds

∣∣∣∣∣

2

. (C.34)

The first term in (C.34) was shown to be integrable (as a function of k) for every

x ∈ [d0, d1] in Case III of Lemma C.4. We now show that the second term is integrable.

For all k ∈ R we have

1

2

∣∣∣∣∣e
|k|x

∫ d1

x
ρ̂(s, k)e−|k|s ds− e−|k|x

∫ x

d0
ρ̂(s, k)e|k|s ds

∣∣∣∣∣

2

≤ 1

2

ñ∣∣∣∣∣∫ d1

x
ρ̂(s, k)e−|k|(s−x) ds

∣∣∣∣∣+
∣∣∣∣
∫ x

d0
ρ̂(s, k)e|k|(s−x) ds

∣∣∣∣
ô2

≤
∣∣∣∣∣

∫ d1

x
ρ̂(s, k)e−|k|(s−x) ds

∣∣∣∣∣

2

+
∣∣∣∣
∫ x

d0
ρ̂(s, k)e|k|(s−x) ds

∣∣∣∣
2

≤
∫ d1

x
|ρ̂(s, k)|2 ds+

∫ x

d0
|ρ̂(s, k)|2 ds

=
∫ d1

d0
|ρ̂(x, k)|2 ds.

Then the Plancherel Theorem implies that
∫ ∞

−∞

∫ d1

d0
|ρ̂(x, k)|2 ds dk =

∫ d1

d0

∫ ∞

−∞
|ρ̂(x, k)|2 dk ds =

∫ d1

d0

∫ ∞

−∞
|ρ(x, y)|2 dy ds <∞.

Therefore the second term in (C.34) is integrable for almost every x ∈ (d0, d1).

Finally, the Plancherel Theorem and (C.34) imply, for almost every x ∈ (d0, d1),

that
∫ ∞

−∞

∣∣∣∣∣
∂V

∂x
(x, y)

∣∣∣∣∣

2

dy =
∫ ∞

−∞

∣∣∣∣∣∣
∂“Vm
∂x

(x, k)

∣∣∣∣∣∣

2

dk <∞.

This completes the proof.

C.4.4 Summary

The results from Lemmas C.5–C.7 lead immediately to the following theorem.

Theorem C.4 Let ρ ∈ P, β > 0, and λ be feasible. Then for every 0 < δ ≤ δm

(where δm is defined in Lemma C.4) and for almost every x ∈ R,

∂V

∂x
(x, ·) ∈ L2(R).
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Remark C.2 Since the operator ∂/∂x essentially turns into multiplication by |k| in

Fourier Space, Lemmas C.5–C.6 and Lemma C.7 (Cases I and II) can be extended to

show that
∂nV

∂xn
(x, ·) ∈ L2(R)

for every positive integer n and for every x ∈ (−∞, 0) ∪ (0, a) ∪ (a, d0) ∪ (d1,∞).

C.5 Continuity Conditions

In this section we prove that the potential V satisfies the continuity conditions at

x = 0 and x = a and the limit condition as |x| → ∞ from (4.12). The next theorem

can be found in the book by Rudin [113, Theorem 9.14].

Theorem C.5 If f ∈ L2(R) and f̂ ∈ L1(R), then

f(y) =
1

2π

∫ ∞

−∞
f̂(k)eiky dk

for almost every y ∈ R.

In the following theorem we prove that V satisfies the continuity conditions across the

boundaries of the slab. It is a consequence of the fact that “V (x, ·) ∈ L2(R) ∩ L1(R)

for x near the slab boundaries, Theorem C.5, the dominated convergence theorem,

the fact that “V (x, k) is continuous as a function of x near the edges of the slab, and

the fact that “V satisfies similar continuity conditions for all k ∈ R.

Theorem C.6 Let ρ ∈ P, β > 0, and λ be feasible. Then for every 0 < δ ≤ δm

(where δm is defined in Lemma C.4) and almost every y ∈ R the following hold:

1. limx→0− V (x, y) = limx→0+ V (x, y);

2. limx→0− εc[∂V (x, y)/∂x] = limx→0+ εs[∂V (x, y)/∂x];

3. limx→a− V (x, y) = limx→a+ V (x, y);

4. limx→a− εs[∂V (x, y)/∂x] = limx→a+ εm[∂V (x, y)/∂x];

5. limx→−∞[∂V (x, y)/∂x] = 0;

6. limx→∞[∂V (x, y)/∂x] = 0.
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Proof of Theorem C.6: We prove items (1) and (6) of this lemma; the proofs of

the remaining items are similar.

(1) First, for every x < 0, V (x, ·) ∈ L2(R) by Lemma C.1 (since “V (x, ·) ∈ L2(R)

for all x < 0 and by the Plancherel Theorem). Next, note that “Vc(x, k) is

continuous as a function of x for x < 0 and for each k ∈ R by (4.20).

From (C.6) and (C.7) we have, for all x < 0 and 0 < δ ≤ δµ, that

|“Vc(x, k)| ≤





[‹Cc(δ)]1/2CI for 0 ≤ k ≤ 1,

[Cc(δ)]
1/2

(
e−kd0

k

)
for k ≥ 1.

Since |“Vc(x, k)| is even as a function of k for each x < 0, similar bounds hold

for k ≤ 0; in particular we have

|“Vc(x, k)| ≤ ‹Vc(k) ≡





[‹Cc(δ)]1/2CI for |k| ≤ 1,

[Cc(δ)]
1/2

(
e−|k|d0

|k|

)
for |k| ≥ 1.

Because ‹Vc(k) ∈ L1(R), “V (x, ·) ∈ L1(R) for all x < 0. Then Theorem C.5

implies, for every x < 0 and almost every y ∈ R, that

V (x, y) = Vc(x, y) =
1

2π

∫ ∞

−∞
“Vc(x, k)eiky dk.

Furthermore, because ‹Vc(k) is in L1(R), the dominated convergence theorem

(see Theorem 1.34 and Remark 9.3(a) in the book by Rudin [113]) implies, for

almost every y ∈ R, that

lim
x→0−

V (x, y) =
1

2π
lim
x→0−

∫ ∞

−∞
“Vc(x, k)eiky dk

=
1

2π

∫ ∞

−∞
lim
x→0−

“Vc(x, k)eiky dk

=
1

2π

∫ ∞

−∞
“Vc(0, k)eiky dk

=
1

2π

∫ ∞

−∞
“Vs(0, k)eiky dk (C.35)

by (4.22).
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Similarly (see (C.12) and (C.13)), for every 0 ≤ x ≤ a and 0 < δ ≤ δµ,

|“Vs(x, k)| ≤ ‹Vs(k) ≡





[‹Cs(δ)‹Cc(δ)]1/2CIea for |k| ≤ 1,

[‹Cs(δ)Cc(δ)]1/2 (e−|k|(d0−a)

|k|

)
for |k| ≥ 1.

Then, since ‹Vs(k) ∈ L1(R), for almost every y ∈ R

lim
x→0+

V (x, y) =
1

2π
lim
x→0+

∫ ∞

−∞
“Vs(x, k)eiky dk

=
1

2π

∫ ∞

−∞
lim
x→0+

“Vs(x, k)eiky dk

=
1

2π

∫ ∞

−∞
“Vs(0, k)eiky dk. (C.36)

Then (C.35) and (C.36) imply

lim
x→0−

V (x, y) = lim
x→0+

V (x, y)

for almost every y ∈ R.

(6) Let x∗ > max{2a, d1}. Following the proof of Lemma C.4, Case II, we find, for

all x ≥ x∗ and 0 < δ ≤ δµ (see (C.26), (C.27), and (C.33)), that

∣∣∣∣∣
∂Vm
∂x

(x, k)

∣∣∣∣∣ ≤
‹Vm(k) ≡





[‹Cm(δ)‹Cc(δ)]1/2CI +
CJ
2

if |k| ≤ 1,

[‹Cm(δ)Cc(δ)]
1/2e−|k|(x∗−2a+d0)

+(d1 − d0)1/2‖ρ‖L2(M)e
−|k|(x∗−d1) if |k| ≥ 1.

Since x∗ > d0 − 2a and x∗ > d1, Vm(k) ∈ L1(R). Then Theorem C.5, the

dominated convergence theorem, and (4.28) imply, for almost every y ∈ R, that

lim
x→∞V (x, y) =

1

2π
lim
x→∞

∫ ∞

−∞
“Vm(x, k)eiky dk =

1

2π

∫ ∞

−∞
lim
x→∞

“Vm(x, k)eiky dk = 0.

This completes the proof.

C.6 Some Properties of V

In this section we prove several lemmas that establish useful properties of the

complex potential V . In particular, we prove that V ∈ L2
loc(R2) ∩H1(S̊). The main

results are summarized in Theorem C.7.



196

C.6.1 The Potential Vc

In this section we prove the following lemma.

Lemma C.8 Let ρ ∈ P, β > 0, and λ be feasible. Then for every 0 < δ ≤ δµ we

have V ∈ L2
loc(C).

Proof of Lemma C.8: Let (x, y) ∈ C = {(x, y) ∈ R2 : x < 0}, η > 0 be arbitrary,

and define

Cη ≡ {(x, y) ∈ R2 : −η < x < 0}.

Then, by (4.48),

∫

Cη
|V |2 dx =

∫ 0

−η

∫ ∞

−∞
|Vc(x, y)|2 dy dx =

∫ 0

−η

∫ ∞

−∞
|“Vc(x, k)|2 dk dx. (C.37)

(The Plancherel Theorem holds in this case since Vc(x, ·) ∈ L2(R) for each x < 0 by

Lemma C.1.)

Lemma C.1 implies, for x < 0 and 0 < δ ≤ δµ, that

∫ ∞

−∞
|“Vc(x, k)|2 dk ≤ C,

where C is a positive constant independent of x — see (C.8). Inserting this into

(C.37) gives
∫

Cη
|V |2 dx ≤ C

∫ 0

−η
dx = Cη <∞.

This completes the proof.

Remark C.3 Even if we used a tighter bound on |“Vc(x, k)|2 in the proof of Lemma C.8

(e.g., the second to last expressions in (C.6) and (C.7)), switched the order of inte-

gration in (C.37), and computed the integral with respect to x exactly, we would still

only obtain Vc ∈ L2
loc(C).

C.6.2 The Potential Vs

In this section we prove the following lemma.

Lemma C.9 Let ρ ∈ P, β > 0, and λ be feasible. Then for every 0 < δ ≤ δµ we

have V ∈ H1(S̊).
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Proof of Lemma C.9: Let (x, y) ∈ S̊ = {(x, y) ∈ R2 : 0 ≤ x ≤ a}. Then by (4.48)

(which holds since Vs(x, ·) ∈ L2(R) for all x ∈ [0, a] by Lemma C.2) we have

∫

S
|V |2 dx =

∫ a

0

∫ ∞

−∞
|Vs(x, y)|2 dy dx =

∫ a

0

∫ ∞

−∞
|“Vs(x, k)|2 dk dx. (C.38)

In Lemma C.2, we showed that there is a constant C > 0, independent of x, such

that ∫ ∞

−∞
|“Vs(x, k)|2 dk ≤ C

for all 0 ≤ x ≤ a and 0 < δ ≤ δµ (see (C.14)). Then (C.38) implies that V ∈ L2(S)

since ∫

S
|V |2 dx ≤ C

∫ a

0
dx = Ca <∞.

Similarly, by the Plancherel Theorem, we have

∫

S̊
|∇V |2 dx =

∫ a

0

∫ ∞

−∞

∣∣∣∣∣
∂Vs
∂x

(x, y)

∣∣∣∣∣

2

+

∣∣∣∣∣
∂Vs
∂y

(x, y)

∣∣∣∣∣

2

dy dx

=
∫ a

0

∫ ∞

−∞

∣∣∣∣∣∣

‘∂Vs
∂x

(x, k)

∣∣∣∣∣∣

2

+

∣∣∣∣∣∣

‘∂Vs
∂y

(x, k)

∣∣∣∣∣∣

2

dk dx

=
∫ a

0

∫ ∞

−∞

∣∣∣∣∣∣
∂“Vs
∂x

(x, k)

∣∣∣∣∣∣

2

+ |k|2|“Vs(x, k)|2 dk dx. (C.39)

In Lemmas C.6 and C.2 we showed that there exist positive constants C and C ′,

independent of x such that

∫ ∞

−∞

∣∣∣∣∣∣
∂“Vs
∂x

(x, k)

∣∣∣∣∣∣

2

dk ≤ C and
∫ ∞

−∞
|k|2|“Vs(x, k)|2dk ≤ C ′,

respectively, for 0 < x < a and 0 < δ ≤ δµ. Inserting these bounds into (C.39) gives

∫

S̊
|∇V |2 dx ≤ (C + C ′)

∫ a

0
dx = (C + C ′)a <∞.

Thus ∇V ∈ L2(S̊); since V ∈ L2(S̊) as well, V ∈ H1(S̊). This completes the proof.

C.6.3 The Potential Vm

Finally, in this section we prove the following lemma.

Lemma C.10 Let ρ ∈ P, β > 0, and λ be feasible. Then for every 0 < δ ≤ δm

(where δm is defined in Lemma C.4) we have V ∈ L2
loc(M).
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Proof of Lemma C.10: Let (x, y) ∈ M = {(x, y) ∈ R2 : x > a}, η > 0 be

arbitrary, and define

Mη ≡ {(x, y) ∈ R2 : a < x < η}.

Then for every a < x < η, V (x, ·) ∈ L2(R) by Lemma C.4. Thus the Plancherel

Theorem implies
∫

Mη

|V |2 dx =
∫ η

a

∫ ∞

−∞
|Vm(x, y)|2 dy dx =

∫ η

a

∫ ∞

−∞
|“Vm(x, k)|2 dk dx.

If η > d1 this becomes
∫

Mη

|V |2 dx =
∫ ∞

−∞

∫ d0

a
|“Vm(x, k)|2 dx dk

+
∫ ∞

−∞

∫ d1

d0
|“Vm(x, k)|2 dx dk +

∫ ∞

−∞

∫ η

d1
|“Vm(x, k)|2 dx dk. (C.40)

We begin by considering the first integral in (C.40). From (C.3), (C.4), (C.23),

and Lemma 4.1 we have, for 0 < δ ≤ δm, that
∫ ∞

−∞

∫ d0

a
|“Vm(x, k)|2 dx dk

≤ Cm(δ)
∫ ∞

−∞

∫ d0

a
|Ak|2e2|k|x dx dk

≤ Cm(δ)(d0 − a)
∫ ∞

−∞
|Ak|2e2|k|d0 dk

= 2Cm(δ)(d0 − a)
∫ ∞

0
|Ak|2e2kd0 dk

= 2Cm(δ)(d0 − a)

Ç∫ 1

0
|Ak|2e2kd0 dk +

∫ ∞

1
|Ak|2e2kd0 dk

å
≤ 2Cm(δ)(d0 − a)

[‹Cc(δ) ∫ 1

0

|Ik|2
k2

e2kd0 dk + Cc(δ)
∫ ∞

1

e−2kd0

k2
e2kd0 dk

]

≤ 2Cm(δ)(d0 − a)
î‹Cc(δ)C2

I e2d0 + Cc(δ)
ó
.

We now focus our efforts on the third integral in (C.40). From (C.3), (C.4),

(C.26), Lemma 4.1, and Lemma 4.12 we find that the following bounds hold for for

0 < δ ≤ δm:
∫ ∞

−∞

∫ η

d1
|“Vm(x, k)|2 dx dk ≤ ‹Cm(δ)

∫ ∞

−∞

∫ η

d1
|Ak|2e−2|k|(x−2a) +

|Jk(x)|2
2|k|2 dx dk
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= 2‹Cm(δ)

ñ∫ 1

0

∫ η

d1

‹Cc(δ) |Ik|2
k2

e−2k(x−2a) +
|Jk(x)|2

2k2
dx dk

+
∫ ∞

1

∫ η

d1
Cc(δ)

e−2kd0

k2
e−2k(x−2a) +

|Jk(x)|2
2k2

dx dk

]

≤ 2‹Cm(δ)

ñ∫ 1

0

∫ η

d1

‹Cc(δ)C2
I e−2k(x−2a) +

C2
J

2
dx dk

+
∫ ∞

1

∫ η

d1
Cc(δ)

e−2kd0

k2
e−2k(x−2a) + (d1 − d0)‖ρ‖2

L2(M)

e−2k(x−d1)

2k2
dx dk

]

= 2‹Cm(δ)

{∫ 1

0

‹Cc(δ)C2
I

[
e−2k(d1−2a) − e−2k(η−2a)

2k

]
+
C2
J

2
(η − d1) dk

+
∫ ∞

1
Cc(δ)

[
e−2k(d1+d0−2a) − e−2k(η+d0−2a)

2k3

]

+(d1 − d0)‖ρ‖2
L2(M)

[
1− e−2k(η−d1)

2k3

]
dk

}
.

The first integral converges since (2k)−1[e−2k(d1−2a) − e−2k(η−2a)]→ η− d1 as k → 0+.

The second integral converges since d1 + d0 − 2a > 0 and η > d1.

Finally, we consider the second integral in (C.40). Performing computations

similar to those that led to (C.30) (omitting the (1+|k|r)2 term) and using Lemma C.3,

we find that the following bounds hold for 0 < δ ≤ δm:
∫ ∞

−∞

∫ d1

d0
|“Vm(x, k)|2 dx dk

≤ 2‹Cm(δ)

ñ‹Cc(δ)C2
I

∫ 1

0

∫ d1

d0
e−2k(x−2a) dx dk +Cc(δ)

∫ ∞

1

∫ d1

d0

e−2k(x−2a+d0)

k2
dx dk

]

+
∫ 1

0

∫ d1

d0
C2
H dx dk + 2(d1 − d0)‖ρ‖2

L2(M)

∫ ∞

1

∫ d1

d0

1

k2
dx dk.

= 2‹Cm(δ)

[‹Cc(δ)C2
I

∫ 1

0

e−2k(d0−2a) − e−2k(d1−2a)

2k
dk

+Cc(δ)
∫ ∞

1

e−4k(d0−a) − e−2k(d1+d0−2a)

2k3
dk

]
+
∫ 1

0
C2
H(d1 − d0) dk

+ 2(d1 − d0)2‖ρ‖2
L2(M)

∫ ∞

1

1

k2
dx dk.
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The first integral above converges since (2k)−1[e−2k(d0−2a) − e−2k(d1−2a)]→ d1 − d0 as

k → 0+; the second integral converges since d0 > a and d1 + d0 > 2a; the third and

fourth integrals converge as well. This completes the proof.

C.6.4 Summary

The results from Lemmas C.8–C.10 lead immediately to the following theorem.

Theorem C.7 Let ρ ∈ P, β > 0, and λ be feasible. Then for every 0 < δ ≤ δm

(where δm is defined in Lemma C.4), V ∈ L2
loc(R2) ∩H1(S̊).

C.7 Properties of the Fourier Transform

In this section, we provide a heuristic justification of (4.17) based on the theory of

tempered distributions. See the book by Freidlander and Joshi [36] for more details.

Let φ : R2 → C be a Schwartz Function, i.e., an infinitely differentiable function

that, together with all of its derivatives, decays to zero faster than any polynomial

as x2 + y2 →∞. The set of tempered distributions is defined as the topological dual

space of the set of Schwartz Functions; i.e., the set of tempered distributions is the

set of all continuous (equivalently, bounded) linear functionals acting on Schwartz

Functions. The pairing between a tempered distribution T and a Schwartz Function

φ is denoted 〈T, φ〉.
The distributional partial derivative of a tempered distribution T is the tempered

distribution ∂T
∂xi

such that Æ
∂T

∂xi
, φ

∏
= −

Æ
T,

∂φ

∂xi

∏
(C.41)

for all Schwartz Functions φ. Similarly, the Fourier Transform of a tempered distri-

bution T is defined as the tempered distribution “T that satisfies¨“T , φ∂ =
¨
T, φ̂

∂
(C.42)

for all Schwartz Functions φ.

Since “V (x, k) ∈ L2
loc(R2) (by Theorem C.7 — the proof we used for V holds

for “V as well by the Plancherel Theorem), “V and all of its distributional partial

derivatives are tempered distributions. Thus, by the definitions of distributional
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partial derivatives and Fourier Transforms given in (C.41) and (C.42), we have, for

any Schwartz Function φ, that

〈
∂“V
∂x

, φ

〉
= −

Æ“V , ∂φ
∂x

∏
= −

〈
V,
∂̂φ

∂x

〉
. (C.43)

Since Schwartz Functions behave very nicely (in particular Schwartz Functions

and all of their partial derivatives are integrable), Theorem 4.2 implies

∂̂φ

∂x
(x, k) =

∫ ∞

−∞

∂φ

∂x
(x, y)e−iky dy =

∂

∂x

∫ ∞

−∞
φ(x, y)e−iky dy =

∂φ̂

∂x
(x, k). (C.44)

Inserting (C.44) into (C.43) and using the definitions of distributional partial

derivative and Fourier Transforms in (C.41) and (C.42), respectively, gives

〈
∂“V
∂x

, φ

〉
= −

〈
V,
∂̂φ

∂x

〉
= −

〈
V,
∂φ̂

∂x

〉
=

Æ
∂V

∂x
, φ̂

∏
=

∞‘∂V
∂x

, φ

∫
for all Schwartz Functions φ. Hence

∂“V
∂x

=
‘∂V
∂x

.

A similar proof with ∂
∂x

replaced by ∂
∂y

shows that

−ik“V =
‘∂V
∂y

.
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[20] G. Bouchitté and B. Schweizer, Cloaking of small objects by anomalous
localized resonance, The Quarterly Journal of Mechanics and Applied Mathe-
matics, 63 (2010), pp. 437–463.

[21] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Univer-
sity Press, Cambridge, UK, 2004.

[22] R. Brown and G. Uhlmann, Uniqueness in the inverse conductivity problem
for nonsmooth conductivities in two dimensions, Communications in Partial
Differential Equations, 22 (1997), pp. 1009–1027.

[23] O. P. Bruno and S. Lintner, Superlens-cloaking of small dielectric bodies
in the quasistatic regime, Journal of Applied Physics, 102 (2007), p. 124502.

[24] A. P. Calderón, On an inverse boundary value problem, in Seminar on Nu-
merical Analysis and its Applications to Continuum Physics, W. H. Meyer and
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