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ABSTRACT 

 

  Previous research has suggested a link between cognitive workload and gaze 

concentration.  As mental workload increases, humans begin to stare straight ahead.  If 

drivers’ scanning behaviors are attenuated as a result of secondary in-vehicle tasks, then 

their situation awareness and their ability to react to unpredictable events may be 

impaired.  Using video-based eye tracking technology in a naturalistic setting is 

notoriously difficult; however, electrooculography (EOG) may provide a reliable, real-

time measure of changes in visual scanning under manipulated levels of cognitive 

workload.  This study assessed the viability of EOG to measure changes in scanning 

behavior when drivers performed common in-vehicle tasks while driving an automobile.  

Notably, EOG measures were not sensitive to driver’s workload, but instead 

demonstrated that speech production inherent to a task contributes to an additive effect in 

identified eye movements.   
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INTRODUCTION 

 

Humans cannot attend to a region’s visual information unless we look at that 

region (Hoffman & Subramaniam, 1995), even though we often look at a region without 

processing the visual information (i.e., inattention blindness; Simons & Chabris, 1999; 

Strayer, Drews, & Johnston, 2003; Taylor et al., 2013).  These issues are relevant to 

driving because how the eyes scan the driving environment directly influences drivers’ 

ability to respond to the real time demands of operating a motor vehicle.  If secondary-

task activities that drivers perform affect visual scanning behavior, then the wisdom of 

performing those secondary-to-driving tasks should be reconsidered.  

 

Cognitive Distractions in the Vehicle 

 Obvious forms of distraction occur when drivers are glancing away from the road 

to read printed directions or when they remove their hands from the wheel to return a text 

message.  In 2010, over 416,000 individuals were injured and 3,092 were killed in 

crashes due to distracted driving (National Highway Traffic Safety Administration 

[NHTSA], September, 2012).  Regan, Hallet, and Gordon (2011) define driver 

distraction as a subset of driver inattention that occurs when attention is diverted away 

from the task of driving toward a nondriving secondary task, all to the detriment of safe 

driving. 

One source of distraction is that of cognitive distraction induced by performing 

tasks that are mentally demanding.  Sirevaag et al. explain that this source occurs when 
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an individual faces the “cost of performing one task in terms of a reduction in the 

capacity to perform additional tasks, given that the two tasks overlap in their resource 

demands” (1993, p. 1121).  With this form of distraction, drivers’ eyes can be on the 

roadway and their hands on the wheel; however, their minds are not actively processing 

the incoming information.  In this case, attention has been directed to processing the 

internal information associated with the secondary task instead of the driving 

environment (Recarte & Nunes, 2000).  Strayer and Drews (2007) describe the concept of 

inattentional blindness that can occur as a result of drivers engaging in cellphone 

conversations.  While drivers have their hands on the steering wheel and eyes on the 

road, their ability to process information in their environment is reduced by the 

attentional demands of talking on a cell phone.  This cognitive source of distraction is 

much more difficult to study because the typical outward signs of distraction are often 

missing.  The driver appears to be looking ahead at the roadway with both hands on the 

wheel, but their ability to perceive, process, and predict changes in their surroundings is 

reduced (Muhrer & Vollrath, 2011, p. 557).   

The ability to perceive, process, and predict one’s surroundings has been defined 

as situation awareness.  Using the acronym SPIDER, Fisher and Strayer (2014) delineate 

the processes necessary for a driver to maintain this alert state.  The crucial first step is a 

driver’s Scanning of their environment, followed by Predicting possible changes and 

Identifying ongoing hazards in the environment.  Lastly, situation awareness requires 

drivers to be able to utilize this processed information to Decide and then Execute their 

selected Response.  If the driver is not able to perform these processes due to the 
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cognitive demand of a secondary task, their ability to safely navigate their vehicle is 

impaired: in effect, they have become distracted.   

With the number of electronic devices currently available in the vehicle resulting 

in more varied forms of communication, the potential sources of driver distraction are 

growing rapidly.  How might we assess cognitive distraction when drivers perform non-

driving secondary tasks, such as conversing on a phone or interacting with auditory 

messaging services— tasks that drivers are beginning to perform with regularity?  When 

are drivers’ attentional capacities overloaded and their ability to safely operate a vehicle 

impaired?  The need for clearly understanding cognitive distraction has never been 

greater, especially given that automotive giants, such as Ford Motor Company, claim that 

having “eyes on the road, hands on the wheel” is sufficient for safely operating a motor 

vehicle (Levin, 2011).  In fact, when NHTSA published their driver distraction guidelines 

in the federal register (2012), they stated that these guidelines currently apply to manual 

and visual sources of distraction because “it is far less clear how to measure the level of 

cognitive distraction” (NHTSA, 2012, p. 22).  Because research on cognitive distraction 

is ongoing, industry developers are taking advantage of the absence of knowledge in this 

area and are developing auditory systems low in visual or manual interaction demands 

without fully vetting the system’s mental demand.  Mental workload’s links to cognitive 

distraction must be better clarified in order to inform the development and application of 

in-vehicle technology. 
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Cognitive Workload and Gaze Concentration 

However, measuring cognitive distraction is challenging because one cannot look 

at a driver and determine if they are cognitively overloaded.  One promising methodology 

is to examine how drivers’ visual scanning behavior changes under cognitive load.  If a 

direct link between visual scanning and mental workload is identified, then we may 

understand how auditory secondary tasks alter drivers’ processing of their environment.  

This link is being explored by research on the visual tunneling phenomenon, also called 

gaze concentration (Dirkin, 1983).  Gaze concentration is so called because individuals 

under cognitive workload have been shown to stare straight ahead, making fewer 

saccades to the peripheral (Engström, Johansson, & Östlund, 2005; Harbluk, Noy, 

Trbovich, & Eizenman, 2007; He, Becic, Lee, & McCarley, 2011; Rantanen & Goldberg, 

1999; Recarte & Nunes, 2000; Reimer, 2009; Reimer, Mehler, Wang, & Coughlin, 2012; 

Victor, Harbluk, & Engström, 2005).  In fact, in Figure 1 from a driving and eye-tracking 

study conducted by Reimer (2009), we can clearly observe a concentration of gaze as 

cognitive workload increased.  Figure 1a displays the spread of gaze during a pretask 

baseline while Figures 1b, c, and d demonstrate the decreased spread of gaze as 0-back, 

1-back, and 2-back tasks are performed, respectively.  While the gaze concentration 

differences between the increased levels of workload did not significantly differ from 

each other, they did differ from the single task driving condition. 

If drivers’ hands are on the steering wheel and their eyes are on the road, why 

should their eye movements change under cognitive workload?  Gaze concentration is 

thought to occur not as a sensory decrease; instead, Dirkin and Hancock (1985) argue 

that as cognitive workload increases, the fact that an individual’s functional visual field 
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narrows is due to selective attending rather than to a sensory decrease.  Additionally, 

Cooper, Medeiros-Ward, and Strayer (2013) dissociated the influence of eye movements 

and cognitive workload on lane deviation.  Their research demonstrated that cognitive 

workload, rather than eye movements, was the proximal cause of reduced standard 

deviation of lane position.  These two lines of research reflect the idea that cognitive 

workload appears to be a causal factor in changing drivers’ behaviors as seen in how they 

scan their environment.   

Manipulated levels of cognitive workload have been used in many studies to 

demonstrate this concentration of gaze that narrows in direct relation to the difficulty of 

the cognitive task (Harbluk et al., 2007; Reimer et al., 2012).  However, these studies 

compared baseline driving to a limited number of conditions in which mental workload 

was increased.  On the other hand, in a series of four studies, May, Kennedy, Williams, 

and Dunlap (1990) found significantly different degrees of gaze concentration in a 

laboratory free-viewing task as workload increased.  A wider range of cognitive 

workload when driving a real vehicle needs to be examined (Recarte & Nunes, 2000).   

With scanning behaviors reduced by cognitive workload, drivers’ ability to 

process relevant driving cues and unexpected events is impaired.  However, even if there 

are minimal differences in cognitively loaded scanning behaviors, there still remains the 

possibility of inattention blindness whereby individuals may “look” at environmental 

content without “seeing” or processing that information (Reyes & Lee, 2008; Strayer et 

al., 2003; Strayer & Drews, 2007; Strayer, Watson, & Drews, 2011).  Scanning patterns 

are crucial to navigating a vehicle through the real world, but the information must be 

attended to in order for it to be acted upon (cf. SPIDER, Fisher & Strayer, 2014): if 
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attention is not allocated to the external information, then it cannot be realized (Recarte & 

Nunes, 2000, p. 31).   

 

Eye Tracking Limitations in Gaze Concentration 

Until now, gaze concentration has been measured in naturalistic settings via 

invasive head-mounted (Bulling, Ward, Gellersen, & Troster, 2011) or expensive dash 

mounted eye trackers and software (Taylor et al., 2013).  Using eye tracking equipment, a 

few researchers have been able to measure changes in eye movements due to manipulated 

cognitive workload (Reimer, 2009; Reimer et al., 2012; Victor et al., 2005).  However, 

eye tracking technology faces limitations in the field due to environmental conditions 

such as glare, participant’s use of eyeglasses or contacts, the discomfort from wearing the 

device for extended periods, and the restriction of free movement (Joyce, Gorodnitsky, 

King, & Kutas, 2002; Taylor et al., 2013).  The use of video to manually code eye 

movements also faces similar environmental constraints, such as glare or loss of 

calibration due to head movements, in addition to its scoring being tedious and time-

consuming.   

 

The Poor Man’s Solution: Electrooculography 

Electrooculography (EOG) may provide a noninvasive, economical method for 

tracking changes in eye movements between various conditions (Bulling et al., 2011; 

Joyce et al., 2002; Koga & Osaka, 1983; Woestenburg, Verbaten, & Slangen, 1984).  

EOG is a measurement of the changes in the electrical potential field that occur when the 

eye moves either horizontally or vertically (Bulling et al., 2011; Luck, 2005).  Of 

particular interest is horizontal EOG (hEOG), which is sensitive to the scanning behavior
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of the participant.  These horizontal glances are necessary for drivers to anticipate 

changes in their driving environment (Taylor et al., 2013).  EOG has been used 

successfully to trace eye movements during reading (Fisher & Rothkopf, 1982), has 

implications for wheelchair control, and can provide an interface for disabled persons to 

access and control computer programs (Merino, Rivera, Gomez, Molina, & Dorronzoro, 

2010).   

EOG has even been successfully matched to participants’ gaze locations in a 

controlled laboratory study (Joyce et al., 2002).  Joyce and colleagues mapped 

participants’ glances to x, y coordinates on a screen, but only after extensive calibrations 

and with the use of a bite board to stabilize participants’ head movements.  

Encouragingly, Koga and Osaka concluded that EOG was the best option when compared 

to corneal reflection methods (1983, p. 189).  They added that EOG can measure eye 

movements when a stabilizing bite board is not feasible, such as when infants are the 

subject of interest.  Although specific coordinates might not be attainable, hEOG has the 

potential to track real-time changes in continuous eye movements within a naturalistic 

driving setting.   

 

Applying EOG to the Field 

 

This study proposes to examine hEOG collected from an on-road study that 

examined realistic, in-vehicle tasks that are commonly performed by drivers today (cf. 

Strayer et al., in press).  Recarte and Nunes (2000) described the need for more tasks to 

be studied while driving.  Researchers over the past decade have risen to this challenge 

by manipulating drivers’ cognitive workload and measuring changes in visual scanning 

patterns to give support to the gaze concentration hypothesis (Harbluk et al., 2007; 
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Reimer, 2009; Reimer et al., 2012; Victor et al., 2005).  However, this body of previous 

work has used surrogate tasks to manipulate cognitive workload, such as auditory 

working memory tasks (n-back task, Reimer et al., 2012; counting n number of targets, 

Victor et al., 2005).  Following the lead of Greenberg and colleagues (2003), we sought 

to assess driver distraction in terms of current in-vehicle activities.  hEOG could turn out 

to be the “poor man’s” solution in terms of cost, usability, and noninvasive measures to 

assess the cognitive distraction potential of various tasks within a wide variety of 

contexts. 

Within the framework of the gaze concentration hypothesis and because eye 

tracking technology is problematic when used in naturalistic settings, our goal is to assess 

whether hEOG would be sensitive to the changes in eye movements that occur under 

varying cognitive workload.  The tasks to be examined in this study were carefully 

selected to represent a broad range of activities that are being performed while driving 

and that provide a range of cognitive load.  The collection of eye movement data 

remained constant across each of these conditions.  Beginning with single-task driving to 

provide a baseline of performance, mental workload is hypothesized to increase as 

participants listen to the radio or an audio book excerpt, talk with a passenger, and then 

converse on a handheld cellphone and handsfree device.  Participants received brief 

training before performing the final two tasks.  Participants interacted with a text to 

speech messaging system to send and receive text and email messages, and completed the 

Operation Span Task (OSPAN; Engle, 2002).  
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Figure 1. Gaze distribution for (a) pretask baseline, (b) 0-back, (c) 1-back, and (d) 2-back 

(adapted from Reimer, 2009). 

 

  



 

PURPOSE OF CURRENT RESEARCH 

 

The purpose of this research is to develop a method to systematically assess 

changes in eye movements while driving as cognitive workload was manipulated.  To this 

end, we propose two Aims as discussed below.   

 

Aim 1 

By combining the concept of gaze concentration and the utility of hEOG as 

described in previous research, we wish to examine the effectiveness of hEOG in 

detecting changes in eye movements amongst a wide variety of realistic in-vehicle tasks.   

 

Aim 2 

Our prior research has focused on the use of cellphones while driving (Cooper & 

Strayer, 2008; Drews, Yazdani, Godfrey, Cooper, & Strayer, 2009; Strayer, Drews, 

Albert, Johnston, 2001; Strayer & Drews, 2004;).  However, each of these studies has 

used different measurements, procedures, and populations across the past decade.  Not 

only has the technology advanced within that time, but so has the way in which we use 

our cellphones while driving (GPS, SIRI, handsfree communication, etc.).  Because of 

the difficulty in assessing cognitive distraction, understanding how mental workload 

affects one’s scanning behavior across various tasks will enable consumers to make more 

informed decisions when choosing what activities to perform while driving.  Moreover, 

as Strayer, Watson, and Drews suggest, any new devices that are to be installed in 
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vehicles should first be vetted for their “distraction potential” to the driver (2011, p. 56).  

Thus, we wish to assess the effects of the described activities on gaze concentration in a 

realistic driving environment. 

  



 

METHODS 

 

Participants 

 Thirty-five participants (14 men and 21 women) from the University of Utah 

participated in the experiment.  Participants ranged in age from 18 to 33, with an average 

age of 23.8 years.  All reported normal neurological functioning, normal or corrected-to-

normal visual acuity, normal color vision (Ishihara, 1993), a valid driver’s license, and 

were fluent in English.  Participants’ years of driving experience ranged from 2 to 17, 

with an average of 7.4 years.  All participants owned a cellular phone and 94% reported 

that they used their phone regularly while driving.  They were recruited via university 

approved flyers posted on campus bulletin boards and via word of mouth within the 

community.  Interested individuals contacted an e-mail address for further information 

and to schedule an appointment.   

 

Materials 

The OSPAN task, developed by Engle (2002), creates a challenging dual-task 

condition.  Participants completed an auditory version of the OSPAN in which they 

attempted to recall single syllable words in serial order while solving mathematical 

problems.  The OSPAN is thought to require executive attention (Watson & Strayer, 

2010) and is considered to be an attentionally demanding task.  In the auditory OSPAN 

task, participants were asked to remember a series of two to five words that are 
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interspersed with math-verification problems (e.g., given “[3 / 1] – 1 = 2?” – “cat” – “[2 x 

2] + 1 = 4?” – “box” – RECALL, the participant should have answered “true” and “false” 

to the math problems when they were presented and recalled “cat” and “box” in the order 

in which they were presented when given the recall probe).   

 

Equipment 

 The study used an instrumented 2010 Subaru Outback.  The vehicle was 

augmented with four 1080p LifeCam USB cameras that captured the driving environment 

and participants’ facial features.    

A Neuroscan 32-electrode channel QuikCap was connected to a NuAmp 

amplifier.  Hosted on a research laptop, Neuroscan 4.5 software was used to collect 

continuous EOG from the NuAmp amplifier throughout each condition.   

Cellular service was provided by Sprint.  The cellular phone was manufactured by 

Samsung (Model M360) and the handsfree earpiece was manufactured by Jawbone 

(Model Era).  Participants dialed a friend or family member and the volume for both the 

cellular phone and the handsfree earpiece was adjusted prior to driving.   

NaturalReader 10.0 software was used to simulate an interactive messaging 

service with text to speech features.  Participants indicated names of friends prior to 

beginning the study that were then entered into a template containing generic e-mail and 

text messages (e.g., “Text from Alice.  ‘Hey!  Let’s meet for lunch sometime this week.  

When are you free?’”).  Participants were given a short list of commands that must be 

used in order for the messaging program to respond.  The NaturalReader program was 

controlled by the experimenter who reacted to the participants’ verbal commands, 
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mimicking a speech detection system with perfect fidelity.  If a participant did not use the 

correct command, the experimenter would not allow the NaturalReader program to 

continue, but would wait for the participant to give the correct command.   

 

Procedure 

Prior to their appointment time, participants were sent the Informed Consent 

form, general demographic surveys, and instructions for completing the 20 minute online 

defensive driving course and the certification test.  Prior to participation, the Division of 

Risk Management Department at the University of Utah ran a Motor Vehicles Record 

(MVR) report on each prospective participant to ensure participation eligibility based on 

a clean driving history (e.g., no at-fault accidents in the past 5 years or history of traffic 

violations).  In addition, following university policy, each prospective participant was 

required to complete a university devised 20-minute online defensive driving course and 

pass the certification test. 

Upon arrival at the lab in the Behavioral Sciences building, the research team 

placed Ag/AgCl-sintered EOG electrodes on the participant and ensured that impedances 

were on average below 10kΩ.  A reference electrode was placed behind the left ear on the 

mastoid bone and electrode site FP1 served as the ground.  The EOG electrodes were 

placed at the lateral canthi of both eyes (horizontal) and above and below the left eye 

(vertical) to track eye movements and record eye blinks.  Participants’ field of view and 

normal range of motion were not impeded when wearing the electrodes. 

Before beginning the study, the driver was familiarized with the controls of the 

instrumented vehicle, adjusted the mirrors and seat, and was informed of the tasks to be 

completed while driving.  The participant drove around a parking lot in order to become 
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familiar with the handling of the vehicle.  Next, participants drove one circuit on a 2.75 

mile loop in the Avenues of Salt Lake City, UT in order to become familiar with the route 

itself.  The route provided a suburban driving environment and contains nine all-way 

controlled stop signs, one two-way stop sign, and two stoplights.  A research assistant 

and an experimenter accompanied the participant in the vehicle at all times.  The research 

assistant sat in the rear and the experimenter was in the front passenger seat in order to 

have ready access to the redundant braking system and to notify the driver of any 

potential roadway hazards.   

The driver’s task was to follow the route defined above while complying with all 

local traffic rules, including a 25 mph speed restriction.  Throughout each condition, 

continuous EOG was collected.  Each condition lasted approximately 9 minutes, which is 

the equivalent of one loop around the track.  At the conclusion of the study, participants 

returned to the Behavioral Sciences building where the EOG electrodes were removed 

and the participants were compensated for their time and debriefed.  

Participants were asked to complete eight distinct conditions that were chosen to 

provide a range of cognitive workload.  These tasks were counterbalanced across 

participants using a balanced Latin square design.  Presented in hypothesized ascending 

order of cognitive workload, single task driving was selected to provide a baseline of 

undistracted driving performance.  Participants’ attention was fully available for the task 

of driving.   

In the second condition, participants were allowed to select a radio station to 

which they normally listen.  They selected the station before beginning to drive and 

adjusted the volume to within a comfortable level.  Once they begin driving, they were 
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not allowed to change the station to avoid the influence of manual distraction on task 

demands.   

In the third condition, participants chose an excerpt from three available audio 

books.  They selected an excerpt from the first chapter of The Giver by Lois Lowry, the 

twentieth chapter from Water for Elephants by Sara Gruen, or the tenth chapter from 

Harry Potter and the Sorcerer’s Stone by J. K. Rowling.  Once again, all manual 

adjustments to volume were made before the driver began the loop.  Participants were 

informed that at the end of the audio book, they would take a simple quiz about the 

events of their chosen audio book.  This quiz was to ensure that participants attended to 

the story, and participants scored an average of 83%.  

Conditions four through six focused on different forms of conversation.  The 

fourth condition entailed conversation with the experimenter in the passenger seat.  

Participants indicated desired conversation topics at the beginning of the study.  

Experimenters asked the participant to start telling an interesting story from the list and 

then helped to maintain an engaging conversation for the duration of the drive by asking 

questions about the story or by responding with a story of their own.   

The fifth condition required the participant to call a friend or family member and 

talk with that person on a handheld cellular phone.  The call was initiated and the volume 

adjusted before the drive began to avoid the visual distraction that occurs when trying to 

dial a phone number or adjust volume.  Due to the microswitch that was attached to left 

thumb, participants held the phone with their right hand.  The majority of participants 

indicated that this was the hand they normally used when conversing on a cell phone. 
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Similarly, the sixth condition was a conversation with a friend or family member, 

but it occurred via our handsfree Bluetooth earpiece.  Participants indicated in which ear 

they wished to use the handsfree earpiece.  The adjustable earpiece was selected to fit the 

participant’s unique ear size and shape, and then the volume of the call was adjusted 

before beginning the drive.  Once again, the call was placed before the drive began.   

For condition seven, the participant interacted with a text to speech program, 

NaturalReader 10.0, that simulated current e-mail and text messaging services.  

Participants did not know that they were interacting with a text-to-speech only program 

that was controlled by the research assistant in the back seat.  The research assistant was 

trained to control the program as if it were an automated program that responded only to 

specific commands.  Similar, full-use programs are now being regularly integrated into 

vehicles for the driver’s use (e.g., Toyota’s Entune, Ford’s Sync and MyFord Touch).  

Prior to beginning to drive, the participant was familiarized with the program’s basic 

commands, such as Repeat, Reply, Forward, Delete, and Next Message.  The participant 

completed a simple tutorial so as to become familiar with how the commands functioned.  

Participants were asked to dictate responses to the messages as needed.   

The final condition was expected to provide the greatest cognitive workload, that 

of solving simple math problems and remembering words.  The OSPAN task requires 

participants to solve sets ranging from two to five math problems and remember as many 

words in serial order).  Participants were given a short example of the OSPAN before 

beginning the drive.   

Continuous EOG was collected throughout each condition.  The EOG was 

amplified and recorded using NuAmps NeuroScan system, which was mounted in the 



18 

backseat of the instrumented vehicle.  The EOG was filtered online with a low pass filter 

of 50 Hz and a high pass set to DC with a sample A/D rate of 250.  In addition to gain set 

at 19, a notch filter of 60 Hz was selected to attenuate surrounding electrical noise.   

  



 

RESULTS 

 

The presented data are a part of a larger dataset within this study procedure.  The 

other dependent measures will not be detailed here, but made reference to in Strayer et al. 

(in press).   

Using Neuroscan 4.5 Edit software, the hEOG was first cleaned, removing 

sections of visible environmental artifacts.  Next, the individual left and right hEOG 

channels were combined and subsequent analysis applied to a single channel that 

encompassed both left and right eye movements.  A band-pass, zero phase shift filter of 

.1 to 30 Hz was applied (Merino et al., 2010).  An in-lab calibration of our system at 

visual angles of 3.5° and 8° combined with current literature recommendations resulted in 

the following parameters for saccade identification: a threshold function of ±100μV 

(Luck, 2005) was used to identify eye movements that exceeded a minimum horizontal 

visual angle of c. 6° with a refractory period of 200ms (cf. Bulling et al., 2011).  The Edit 

software ascribed markers to each eye movement that met these parameters.  The number 

of markers was then summed to give a total number of identified eye movements for each 

participant and each condition.  Because the experimental conditions varied slightly in 

duration, we divided the total number of identified eye movements by the duration of that 

condition, resulting in a total number of eye movements per minute for each condition.  

The individual participant averages were then combined across participants for each of 

the eight conditions.   



20 

Descriptive statistics for the resulting eye movements per minute data, including 

the mean, standard deviation (SD), and standard error (SE), are presented in Table 1.  Eye 

movements per minute, and all subsequent analyses, were analyzed using a Repeated 

Measures ANOVA with eight levels of workload.  There was a significant main effect of 

workload, F(7, 238) = 54.95, p < .001, partial 2 = .62 (see Figure 2).  The significant 

mean differences of the number of eye movements per minute (p < .05) between the 

various workload conditions are presented in Table 2.  Taken from the larger study of 

which the hEOG is a part, Figure 3 presents the cognitive distraction scale for each of the 

conditions as assessed by a series of dependent variables (Strayer, et al., in press).  

Clearly, the pattern identified by examining changes in hEOG does not match cognitive 

workload as assessed by the combined force of multiple other dependent measures.  The 

eye movements change dependent upon the tasks, but not directly as a result of the task’s 

cognitive workload.  The significant main effect of condition appears to be linked to the 

amount of speech production that a task required rather than the task’s assessed cognitive 

workload.  

To ensure that the pattern seen in Figure 2 was not an artifact of the algorithms 

that the Edit software used to process the data, we conducted three additional analyses 

checks.  First, we examined the standard deviation of the hEOG by exporting the cleaned 

data to MATLAB.  If total scanning excursions to the peripheral were reduced, the range 

of the hEOG should reflect reduced variation as cognitive workload increased.  After 

calculating the standard deviation for each condition by participant, we performed a 

Repeated Measures ANOVA with eight levels of workload.  There was a significant main 

effect of condition, F(7, 238) = 8.24, p < .001, partial 2 = .20, but the pattern seen in the
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previous eye movements per minute analysis was again confirmed (see Figure 4).  

Secondly and in addition to the standard deviation analysis check that bypassed 

the Edit software, we performed a subsidiary fast Fourier transform (FFT) analysis that 

examined the spectral characteristics of the hEOG.  This analysis does not make 

assumptions about the size or refractory periods of saccades; instead, FFT examines the 

energy distributed across the frequencies of eye movements.  Energy, or power, is 

computed as the square of the average of the waveform’s amplitude (Quantitative 

Electroencephalography, 2013, December 13).  There was a significant main effect of 

workload, F(7, 238) = 34.00, p < .001, partial 2 = .50 (see Figure 5).  This methodology 

examined the same data as the eye movements per minute analysis, and provided a 

similar pattern as seen in Figures 2 and 4.  What hEOG is measuring appears to be 

different from the cognitive workload measures seen in Figure 3.  We can see that both 

the eye movements per minute in Figure 2 and the FFT analysis in Figure 5 have 

matching patterns showing greater activity in conditions that demanded speech 

production.  Similarly, both of these analyses’ patterns do not map onto the cognitive 

distraction scale seen in Figure 3.  

However, because the pattern showed that the greatest eye movement activity 

occurred in conditions with speech production, we were concerned that hEOG was 

contaminated by, and merely a reflection of, muscle movement artifact.  To control for 

the muscle movement during speech production, we also analyzed the spectral 

characteristics of electrode site A2, which was placed on the right mastoid behind the ear.  

By doing so, we were able to covary electrode A2’s recorded muscle movements from 

the hEOG spectral distributions.  There was a significant main effect of workload, F(7, 
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238) = 3.54, p < .001, partial 2 = .09 (see Figure 6).  Once again, a pattern similar to that 

as observed in the eye movement per minute counts and the initial FFT analyses was 

obtained, which again differs from the workload metric seen in Figure 3 but matches the 

patterns seen in Figures 2, 4, and 5.  

We have already ruled out the fact that the pattern is a result of the analysis 

methods counting the number of eye movements per minute by conducting the FFT 

spectral analysis that provided the same pattern.  Initial concerns that muscle movements 

from the jaw during talking conditions were allayed by the analysis of covariance for 

muscle movements, which resulted in this consistent pattern.  However, since increased 

muscle movements in a naturalistic driving environment were a concern, we examined 

similar data from two separate environments in the third analysis check.   

As mentioned before, the instrumented vehicle hEOG analyzed previously was 

from a third experiment in a larger study consisting of three experiments (Strayer et al., in 

press).  In order to better understand the pattern that hEOG was reflecting, the third 

analysis check we performed was the same as described for the in-car eye movements per 

minute.  In the first experiment from Strayer et al. (in press), participants performed the 

same eight tasks, but were seated in front of a stationary computer screen in lieu of 

driving a vehicle.  Participants were asked to stare straight ahead and a fixation cross on 

the screen was provided.  We examined the hEOG of 10 participants from this first 

experiment.  While the total number of identified eye movements per minute were fewer, 

the same significant pattern held, F(7, 63) = 2.18, p < .05, partial 2 = .20 (see Figure 7).   

Continuing the third analysis check, we examined the hEOG of 10 participants
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from the second experiment of Strayer et al. (in press) wherein participants drove a fixed-

base high fidelity driving simulator (made by L-3 Communications) with high-resolution 

displays providing a 180-degree field of view.  These participants completed the same 

eight tasks while driving in a simulated freeway environment.  Using the eye movements 

per minute analysis on this hEOG from the driving simulator, the significant pattern held 

yet again, F(7, 63) = 3.44, p < .01, partial 2 = .28 (see Figure 8). 

We can make several conclusions regarding the pattern discerned in the hEOG 

from this study.  The pattern is not a result of the eye movements per minute analysis 

because it is also found by examining the spectral characteristics of the signal.  Based on 

covarying the muscle movement recorded by A2, we can determine that this consistent 

pattern is not purely motor artifact from speaking.  However, the pattern is also not 

purely an effect of cognitive workload.  Criticisms against using hEOG in a naturalistic 

setting due to the increased number of head movements have also been answered: The 

third analysis check using the hEOG from both the laboratory and the driving simulator 

experiments resulted in that pattern of increased activity in talking conditions. 

Thus, this pattern is not an artifact of the hEOG from the instrumented vehicle 

because the pattern is found in the driving simulator experiment.  It is not an artifact of 

driving because it is found once again in the laboratory-based experiment where 

participants who performed the eight tasks were asked to refrain from making eye 

movements.  This pattern is consistently uncovered in each of these analyses.  The pattern 

seems to be something characteristic about the way the eye movements are working that 

is associated with the tasks, some of which show a pattern linked to the amount of speech 

production paired with the cognitive workload.   
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One explanation for these findings is that hEOG could be a reflection of the 

combined effects of cognitive workload and speech production.  Speech production 

appears to be contributing in an additive manner to an underlying pattern in the hEOG.  

The addition of speech production is the only consistent difference amongst the 

conditions that explains the observed pattern.  hEOG from tasks with speech production 

suggests the insertion of additional processes that are affecting the way the eyes are 

moving.  The influence of speech production appears to be independent of the way that 

the eyes are seen to move in the gaze concentration hypothesis as measured by eye 

tracking equipment.  While a viable explanation, further research examining these 

Sternberg-like additive processes from speech production on eye movements is merited 

(cf. Sternberg, 1998).  Every analyses presented here converge on a consistent pattern: 

that eye movement activity as identified in these analyses increases with the amount of 

speech production performed by the participant.  
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Table 1 

Descriptive Statistics for Eye Movements per Minute 
 Mean SD SE 

Single 39.79 9.55 1.61 

Radio 41.35 10.25 1.73 

Audiobook 39.20 11.09 1.87 

Passenger 67.98 23.20 3.92 

Handheld 61.42 20.00 3.38 

Handsfree 59.09 16.07 2.72 

Text to Speech 55.86 16.61 2.81 

OSPAN 46.81 15.02 2.54 
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Figure 2.  Eye movements per minute.  Whiskers indicate 95% confidence intervals. 
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Table 2 

Eye Movements per Minute: Significant Mean Differences 

 Radio Audiobook Passenger Handheld Handsfree 

Text to 

Speech OSPAN 

Single ns ns 28.19 21.63 19.30 16.08 7.03 

Radio  ns 26.63 20.06 17.74 14.51 5.46 

Audiobook   28.78 22.22 19.89 16.67 7.62 

Passenger    6.56 8.89 12.12 21.17 

Handheld     ns 5.56 14.61 

Handsfree      ns 12.28 

Text to 

Speech       9.05 
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Figure 3.  Cognitive distraction scale as assessed by reaction time, driving performance, 

and subjective ratings.  
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Figure 4.  Standard deviation of hEOG.  Whiskers indicate 95% confidence intervals. 

 

110

120

130

140

150

160

170

Single Radio Audiobook Passenger Handheld Handsfree TextSpeech OSPAN

St
D

ev



30 

 
 

Figure 5.  Amount of FFT power for 20-40 Hz range of eye movements.  Whiskers 

indicate 95% confidence intervals.   
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Figure 6.  Amount of FFT power for 20-40 Hz range of eye movements covarying A2 

mastoid muscle movement.  Whiskers indicate 95% confidence intervals. 
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Figure 7.  Eye movements per minute for experiment 1, laboratory setting (n = 10).  

Whiskers indicate 95% confidence intervals. 
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Figure 8.  Eye movements per minute for experiment 2, driving simulator setting (n = 

10).  Whiskers indicated 95% confidence intervals.   
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DISCUSSION 

 

In light of the wealth of information showing a concentration of gaze under 

cognitive workload, the application to distracted driving is obvious and concerning.  In 

citing Recarte and Nunes (2000), Hammel and colleagues also found that drivers spend 

“less time gathering new information” from their driving environment when engaged in 

“verbal or spatial tasks” whether participants drove in an actual car or in a driving 

simulator (Hammel, Fisher, & Pradhan, 2002, p. 2175).  Speech production tasks provide 

an increased cognitive workload (Horrey & Wickens, 2004; Recarte & Nunes, 2003), and 

increased cognitive workload has been linked to concentration of gaze (Harbluk et al., 

2007; Reimer et al., 2012).  When we talk about cognitive distractions in the vehicle, we 

are concerned that drivers cease to scan their peripheral environment for unexpected 

events, such as child chasing a ball into the street.  Eye trackers can provide a reliable 

measurement in simulator studies; however, since eye tracking equipment is notoriously 

difficult to assess eye movements in a real-world setting, hEOG could be a promising, 

noninvasive technique to examine a variety of secondary tasks while participants drove 

an actual vehicle.   

In order to narrow our possible interpretations of these hEOG results, we discuss 

three experimental checks.  We were first concerned that participants may have treated 

the study differently than their own driving, which is a critique often associated with 

driving simulator studies.  However, we assume that participants’ perceptions of risk in 
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this study were realistic because the environment entailed driving an actual vehicle in a 

suburb: the “attentional requirements” (Recarte & Nunes, 2000, p. 32) and consequences 

were the same that participants’ experienced in their own vehicles.  

Secondly, based on Strayer et al. (in press), we know that the tasks in this study 

manipulated cognitive workload as measured by reaction times and subjective ratings, 

increasing as the task demands required production of speech (Recarte & Nunes, 2003) 

and greater working memory involvement (see Figure 2).  Lastly, time-consuming 

manual coding of video recordings of participants’ eye movements at designated hazard 

locations showed that participants had significantly lower probabilities of scanning the 

driving environment under greater cognitive workload (Strayer et al., in press; see Figure 

9).   

These video coded results match Taylor and colleagues’ findings (2013) which 

measured glance probabilities at hazardous locations in a driving simulator while 

cognitive workload was manipulated.  The Strayer et al. (in press) reduced glance 

probabilities suggest that gaze concentration was occurring as cognitive workload 

increased, at least as coded at specified locations throughout the drive.  hEOG did not 

reflect the pattern found in the glance probabilities.   

hEOG sought to establish cognitive workload differences via changes in eye 

movements as a continual effect discernable throughout the entire drive and not just at 

specific locations that may have exogenously demanded attention (e.g., a changing 

stoplight).  Using hEOG, we were able to detect that there was a significant pattern in eye 

movement behaviors amongst these conditions; however, this pattern appears to be the 

result of an additive effect wherein tasks requiring greater speech production, such as 
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found in the conversations, dictating voice to text messages, and in the brief verbal 

responses to the OSPAN, contribute to greater eye movement activity being identified 

within the hEOG.  While speech production can be used to manipulate cognitive 

workload, cognitive workload does not place the same demands on hEOG as robustly as 

speech production.  When speech production is a task requirement, using hEOG to 

measure the cognitive workload associated with dual-task naturalistic driving is not 

supported as a viable methodology.   

The idea that speech production affects the functioning of the visual system as 

recorded by hEOG should be examined more closely in future research.  One possibility 

arises from the examining the application of hEOG to understanding drivers’ behaviors.  

Tasks that require participants to produce speech affect hEOG differently than “pure” 

cognitive workload.  It is possible that hEOG could be sensitive to tasks that are able to 

manipulate mental workload while controlling for the additive effect of speech 

production.   

While future work on the “best practices” for the application of hEOG in a natural 

driving environment are needed, this link on an additive nature between speech 

production and visual scanning behaviors provides a basis for further research. If 

individuals are not Scanning their environment, the remaining processes in SPIDER 

break down and a driver’s situation awareness deteriorates.  As auto manufacturers 

design their in-vehicle infotainment systems to be controlled by speech, the effect that 

speech production has on safe driving should be considered.  
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Figure 9.  Glance probabilities at hazard locations from video coded eye movements 

(Strayer, et al., in press).  Whiskers indicate standard error of the mean. 
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