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ABSTRACT 

 Sandwich composites are being considered for several automotive applications 

due to their high strength-to-weight and stiffness-to-weight ratios.  Since crashworthiness 

is an important consideration for automotive applications, energy absorption under 

impact loading is also a key property.  This investigation focused on the effects of 

material and geometric variables of automotive sandwich composites on failure 

progressions and energy absorption during edgewise impact loading.  The baseline 

sandwich configurations consisted of woven carbon-epoxy or P4 carbon-epoxy 

facesheets and either end-grain balsa or polyurethane foam cores.  In an effort to explore 

the feasibility of designing a sandwich composite configuration for energy absorption, 

variations on facesheet thickness, core thickness, and core density were investigated.  By 

varying each of these parameters, the effects on failure mode and energy absorption could 

be determined.  Results suggest that sandwich composites may be designed for enhanced 

energy absorption through the proper selection of facesheet and core materials and 

geometries such that high energy absorbing failure progressions are produced. 
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DESIG:" CONSIDERATIO)'\;"S FOR E)'\;"ERGY ABSORPTIO:" 
Th" AUTO~"IOTI\,E SANDWICH CO~\'lPOSITES 

hIM'> V>.II Orren, Sean E. Stapl<lon. >.lid Daniel 0 AdllU' 
Department of Mechanical Enginuring 

Uniwr'i/}' of Utah 
Sail Lake Or}" UT 8411] 

ABST RACT 

S.ndwich compo;it"' are being comiduw for .. ' ....... l.utomotin applic'llons 00. 10 m.ir high 
.treng!h-Io-weigbt and mffu",Ho-w.ight "'ho> Sinee crashwonbine<" " >.II impor13D! 
ConSl<kr3hon for .utommi\'e .ppliC.hon', ......-gy .b""l'hon UIlder Ullp3<t 10.dJng is . 1",. k.y 
pwp ... ty TIu, in"".hgu ion focused on m. eff..:t' of !WI ...... 1 and gwmetrie variable, of 
aUlomohve >andwich eOrnp<>'>it •• on failure progre'>Slon, and energy .b"''lltlon dU!lng wgew'", 
""P.ctlo.ding_ The bJ.""lme ,"ndwich c()!digumiOll' eon,i,Tffi o(wo\'.." cartxm-q>O"y or P4 
cartxm-epo~y (3<"shut' and either end-gr.m hal .. or pol)"retha,.. foam core, . In an effort {o 
explore m. f.asibility of deSlgrung • =dw,eh compo," e cOllfigumiOll for energy .bsorphOll, 
varIahOll' 011 f.c"sh..,t tbickoe<.s, cor. Ihick"..,s, and core demity w .... in"e.hgat.d . By \"'f)iog 
each of tll= par.meler<;. the eff..:t' on f'ilure mode and energy .bsorpUOIl could be det ... mlOw 
R •• uJ" ,ugge<.t that ,"ndwlch compos" e<. may be deSIgned for enhaneed ..".,rgy .bsorption 
through m. proper .. lectiOll o( faee<.l!etl and core !Wlt1lal, 20d g...,""'trie<. .ueh that high 
energy .bsorbing (ail"", progre"ioos are produced 

KEY WORDS: Sandwich S!ruC1Ufe" E.,..,gy AbSOfJ>1lO0, App~c.tions-AUlomohve 

I. I.\"TRO DU(:TIO.\" 

One oflhe major deSlgo COllSl<kr3hon, w" hm the .Ulomohve indumy i, cra,hwonhi",,,, Thm 
for fiber r.mforcw com"""it"' 10 be milizw m !Wn)" .ulomollvt app!ic'llons, they mmt exhibu 
•• ume,..,,1 degr .. of cu.hwortlu"..,.. The COmposlle M,{eri,l, Handbook (CMH-I7) del<:ribe<. 
the obj..:llvt of deSlgrung fOf e""hworthi".." 10 «,,!imina" lOJU!le<. aod f~l~liu., lo relatively 
mild ""P.ct., and to mioimize m.m m ~ll senre coll"ions [II ' To dat., much of the re .. arch 
to im'. 'tigate composite erashworthi".." h .. focused 011 mOllo~tluc compo'''"' with .ither glass 
Of c.rbon fiber remforcemeoB_ How~" ... ,. mort r..:ent mt...-.,t musing s.ndwlch compos" . , 
for roof and floor app!ieahom ha, led to an lOl....,t lo explorlOg m. crashworthme" of ,"odwich 
composu",_ 
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For 11m Purp<>'><, a r=arch mVe<Tigallon wa, lllJ1laT~d 10 mVe<TigaTe Tit< ... ergy absorpTion 
characTtfi'llc, of compoSIte sandwich 'Truc1\R5 undtr crush lo,dmg, Tb< firl.1 pha", of 11m 
[lfOj«1 im'e<TigaT«I a TOTal of 13 ruITer ... T .:mdwlch configur'llon, of comparable weighT and 
Tluc~" , M<charuc'IT~.ltng was pnform«l 10 mV~'Tigalt f'C~shttTlcore compatibilny '''lIeS 
and .. rul\",:.11 p<'fformanc~ Ufid<r tkXUf~ and ~dg"\1'" cOlllp<""on l"a<lmg R"ult, of 11u, 
mni.l ~valuaTi"n pha", ... pr~=T~d el",w.htr~ [2, 3[. In Tit< "",ond pha", oflhe [lfojtcl, fOOf 
Top-pnfomung .. ndwlch configuraTiOll' wert .. 1tc1~d for funbtr ,,·.luanou The energy 
absorption and ,mti.l failUft mechanism, . nd fail",e [lfogr~"ion' of Tbe", fOOf .. lecltd 
",ndwlch configuraTion, wtr:~ evaluaT«I under ooth qua,i-M:llic and dynamic t<!g~w, .. 
compr<, ... on lo. rung in order To determine lugh ...... gy-.b5Ofbmg ruech:!msm,lprogr .. , iOll' 
R~,uI" of this .tcood pha", :1ft .vailable in .. f ..... ce [41-

In Tbe tlurd pha .. of thi' r ... arch [lfojtcl, further r=arch wa, pnf""""d uSlllg lhe ,arne fOOf 
top-pnfomung sandw,ch configuraTion, evaluaToed dunng Tbe "",ODd pha"" Ba>«lOll [If'''0m 
finrung', vmarion, in energy .b""l'non .. """alt<! WiTh Thrtt .. ndwlch Corupo'iT~ p.""neler<; 
were illve.ugaled; lhe lluff pararnel .... c",,,,dertd were core densn)", cor~ thicru.." ,nd 
f.c"heel thickne<" Entrgy absorplioo w"' enlualtd undtr dynamic «Ig",-i .. comp .. " iOll 
loa<lmg mmg drOP-WeighT unpacll"hllg_ Empha,i, was placed on " ', luallng chang" in inili.1 
f.,lur~ m«:hani''''', fail",e [lfogrt''''on" and ...... gy absOfpllon r"ulltng from ~ach par.meTer 
Knowl~dge of l it< IllJIUI fail"", m~dl.m"'" and failure progr""on, I~.rung To lugh ...... gy 
absorption i, ~lieved 10 be a key '1'1' in the de\-"Iopmem of cras.hw<>f1hy . andwich cOlllp<>'>il~ 
.1ruCrur .. for . 1II0m0n\·e 'pphcaliOll' 

2. :'IL\ TERIALS 

2.\' Ta<~,h"'T/C ... '. ~1a 1'l'ial, 

AU fOUf ""ndwlch configuraliOll' im'''lig~l«I w= f.bricaled allhe Uni\,<"fSlly ofUI~h Table 1 .= , the malmal, .nd manufacturing """thod, u .. d for the", fOUf configuraliOll' , Tb< 
",ndwlch configur'llon, Wllh Wo\· ... c.rbon fxt'illttt' con,iSled of a B OOB 3K plam wea,-" 
cartxm fabrlc _ Tb< IWO ",ndwlch configuralion, wlIh N cartxm faceshttt' u>«l a c .. oon 
raodom mal made by lbe Powder Progr-.mm:lble Prefomung Proce" (N ), Both I)-~ of caroon 
fiber pr<form. wtfe infiJlJal«l "'lh EPO)J 862 q>Oxy r.,lll.nd EPO)J 9S S3 hardener [S]. Tb< 
COf< rnaltfial, included polyUf~lhane fo,m .od end-grain bal .. wood_ The polyureth""" fo.m" 
"'lh denslli" of 160 2nd 320 kglm' wtfe 'upplied by Gtne'f,1 Plasnc. J\1:mufacruring Company 
[6}_ The end-gram bal .. wood" " "h demili~s of 97. 112, and lS6 kglm' were .uppli~d by 
B:lII~k Corporation [7} 

Tb< IWO .:mdMch configuraliOll' wllh woven c .rbonlrpoxy factshttt, wtr:~ falmc:lled u,ing • 
• ingl~-"ep VacU\llll A''''I~d R"in Tran,fer Molding (VARThi) [lfoce,,_ A qua,i-''iOuopic 
[(0J90)/(±45)}1I lay-up of pl.m we3\'e f.bric was plac«l on ooTh , ide<. of The cor~ malmal The 
",ndwlch panel wa, w'Upped ill a layer of porou, Tdlon-eoaled fibergla" follow«l by a r",in 
u .u,fer m«Ilum (pla,nc me'h)_ The . , .. mbly w"' pLoc«l on • lIal melal plale and vacuwn 
bagged , Onee W \'3cuum bag w. , ",.1«1, a n cuum pwnp w"' u>«l 10 pull the rtsm through.n 
,uleT lUbe , Followmg complete mfiluauon of Ihe c .. bon fabric facesbtt", lbe I'.nel wa, cured 
undtr \·.cuom for Iwohour •• T 5O"C 
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T abl~ I Swnma<y of four undwicb cOllfiguratiOll matenal'/lIl3nufacturulg mttbod!.. 

Sanduirb Confignntion Ta<~,h.~t Mato .. ial Con Matni"1 

".,....+-
Ont-, topVARThi 

Polyurttbant Ont-, tepVARThi 

Two-' top VARThi 

PolYUfetllaM Two-' topVARTM 

A two-.. op VARD .. j mttllod w .. u",d 10 flbrieale Ibe P4 faeeiliut configuration. Tbt 
, ;md"1<b wa, placrd bet"..,n two full acr}'~c plat~., wrueb .e,,:ed as a mold. Acry~e wa, 
",1..,lrd f"" 1M mold matenal .. ",b that r.sm infilmmon could be '''Dally monitOfrd. After wel
out of the faceiliut' , ~ddl1lonal pr..,'Ufe was appli.d to the panel 10 rrduee tbe faceiliut 
truekne" by placing the \"aeuum-bagg~d .. ",mbly into a bealrd pr.., •. A pr." , Uf. of 1.0 MPa 
was ""Iectrd fOf u'" based OIl the compr~"l\"' 'trtngtb of the Coft IlI3t<1lal and the requir.d 
pr""urt 10 obtain. fac. iliut tb,ckne" <ompar.obl. to the woven c.rbon f.ceiliu ... Pres>Uf~ 

was applird fOf two boUfl. while the temper.ture of the platens w"' held.t 5O"C V.CIlIIffi wa, 
IlI3mTalned on tb. b.gged as",",bly throughoul the cure proce" 

2,2. D.,cl"iptinn of Sand..-ich Para mot .. y.rialinn, 

Thr.., , andwicb pararnet ... were im"'hg;lt~d : COf. d.mity. c""e 11ucJrne<" and f.ceiliut 
truckne" . V .. i'tions in eacb of tll= tIIr.., undwicb """met .... rt Ikseribed below 

1.1,1. C(l'~Dn"ilJ ' 

By varying the denSJIy of the two COrt IlI3lenal, used m the ... nd",c.b eonmuchom. the , trengtb 
and mflhc", of the eor. "vanrd AddltionaUy. the strengtb of the eore/face,beel bond" 
affeclrd by the c""e density. Ibm . cbangc, m 1M uuwl fulurc n><><lt and failUfe progrc"ion .. c 
J>O'sib~. lnereasmg <""e denSJIy w", expectrd 10 produce lugh = gy -ab>orbing fulure, if the 
,mtial load requlf~d to dtbond the face,b..,t, from the <""e could be ek'votrd to a 1."..1 that 
excero, the load reqUlled to fai l the fac~t in eompr .. , ion. 

1.1,1. C(I'~ Thirkn~" 

By varymg the truckness of the un(twicb core, the moment of ,nertla fOf tb. undw,cb compo;itr 
can be ta!I",,~d 10 pre\"enl bucklmg and mduec faceiliut eompr."ion fa!lur~ . A tbicker c""~ 
place, the fac~t' further from the neutral axi •. incrcasing the load reqUllrd far buckling, and 
promoting fac..,b..,t comprcssion fai1ur~ "' thc initi, 1 f, iIUf' In<><k, wbicb " dtS1Rd f"" 
,ncrtased energy abso'll1lon. f "" botb Coft materi,ls eOll,,<lerro, eor. tbickn .. "" of 5 mm (0.2 
m.), 8 mm (0.3 m.), 10 rum (OA m.). .nd 13 mm (O.) in.) were n>ed 



5 

 

1.1.3. FMnhu/ Thickn~" 

Fac~~! thick ... " . lik~ cor~ lluclrn .... aIT~cts ~ moment of in~f1i. of!1lt s.andwich cO!UpO'>i!~ 
a, w~ll a, the bendmg s!iIT,....,. of !Ilt ,ndI"dual fac~~t' them,. lv~' Allhough thick .. 
fac~~!, JIl.>y r~,i'l global buckling. tllty a .. mor~ pro"" !o ~1.1.minat~ from lilt COft prior!o 
fac~~! fuillJ[~ ~ ~dg~wi" compr~",iou loading. In thi' mv~.ugahou. woven 
c.1rt>olli'1"'xy f.c~,h..,!, of thick,...." 4 ply. 6 ply, aud 8 ply w .. ~ u>W. Th~ P4 carbou ''1'''xy 
fac~,~!, w .. ~ Usffl m thicku~"." of 1 and 2 ply 

3. EDGEWISE DIP ACT TESTI!\""G 

Drop welghl t~Ming w", u>w to "'''''' !Ilt t<!g~wi" compr..., .. on p<1form:mc~ of lilt four 
s.andwlch configurahon, UIld<-r dYllamlc loading. "I"bt ~,t configufatlOlI Usffl for tdg~wi" drop
weigh! ,mpacl !",!ing was.1 modlfit<! form of ASTh1 C 364 [S[ and" shown in FiglJ[~ I "I"bt 
cH,<,>M.d of tbe nnpac! lown had a m: ... , of 46 .6 kg and tbt fixlU!~ .bov. !Ilt force huk had. 
ma" of 10.0 kg . Vernc.1 .1hgnment of tbt cro;r.head was mam"'in~d using \"tfIical gui<lt rod, 
and h"" .. ball bearing' Spring' and "",,,,I S!opp<"f'> we .. Usffl to krq> the lop [IXru .. from 
con"'cting th~ bottom fixlU!~ during impacting "I"bt rtquirtd drop Ilt'ght for ~ach sandwich 
configur.lIlon wa, ~!.-munt<I basffl on tbt amount of en.rgy absorbtd in quaSl-'I:mc t<!g~w,se 
compr..., .. on t"ling. Tilt drop !>tight' r>ngt<! from 1.2 to 3 .0 mtt~rs, producing llUnal cfO"lltad 
v"loci!i~s btlW..,." 4.4 and 6.9 mi. 

S"i!cb 

TOH. 
T,'ou,dn<u 

Lam'al 
R.' tnj n!, 

Finu,'. 

lb. enngy absorp!ion. ~ak load. and f.,l",. progr .. "on wn~ ~lemunt<! for each sandwich 
,!,"",men ~'tt<!. Elltfgy ab""'l'tion was ,..,or~ O\"tf • S 1 mm crush I .... gth . A KI'tler 9372A 
quanz fOfc~ lmk was .. ffixt<! be!W~ tbt lown [IXru .. and tilt lown b.se !o provi~ forc~ 
,.....,us !i"", da!3 Tbt cha'g' output of tilt fo,e. link was convent<! mlo 3 proportionally 
con!rollt<! voll .. g~ usmg a Kmln 50lOB charge amphfi.r. Da! .. was coll~ctt<! al a .... mpling u!~ 
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of 50 kHz ming N.ti",,"l Imtrum<1us LabVIEW 7.1 [9) with 00 filtering. Tbt ",ftwar. ",al.d 
tM dota and provid.d a forc. v ... .u, tim. hi,tory of tM imp.:lcl ,,'.n!. Numnical int.gntion 
t.roniqu.<. w .... employ.d 10 obtain vdocity and displacement '"'pon"" A [""c. "",,m 
d1'plac<1llent plot was g ..... nled for .ach t." and nwneric al1y mt.grat.d to obtain tM tot.1 
=gy . bsorplloo. A manual ,wnch loc . t.d 00 tM Cf<>,>r.Mad and the lap of the damping ,pring 
w. , u>e<\ '" "gnal the end of tM 'l'«imen crush length ,uch lhat tM ,pring, and 'tapp .... w .... 
oot InCluded in tM unpact event A high-speed Camer3 wa, u",d '" capM. the ImpaCT .v.."l.t 
2,000 frame<; per second 

F.,lur. progressIOn, pe3k force, :lnd weight-n<>rlll3bzed ..... rgy absorption wer. determmed ["" 
.ach 'l'«'1ll<1l t.,ted P.ak f""ce was defined as the Iughe't force "'." m lhe f""ce \'=m 
d1,pl.c<1llent plol (Figure 2) . E .... gy .b""PhOO wa> fouod by calcul.ting lhe are. below the 
force vs. dispLocemenl curve a> shm", m Figur. 1. B..,.u", w.ight "'VUlg' is . primary C<>Dcern 
for automotl\'. >aodwich 'trucTUre" tM ."...gy absorbed w .. .-.poned in a w.ight-b.",d 
n""mahzed [""m, euerg)' per areal Weight Th. areal weight, or weight per WIlt ,urlace are., wa> 
calculated a> 

A W - ar.al Weight (kg/m') 
W - 'l'«,men welghl (kg) 
b - 'pe<imen width (m) 
h - 'pe<imen h.ight (ml . 

• 

AW _;;', « ) 

F lEU!" 2 TYPlc.1 [""c. ,....-..us disp Locement plot illustrating 1M peak fOfC. and ...... gy absorbed 



7 

 

" . RESULTS '-\!\,"D DISCUSSIO.'> 

~ , 1. Ba,eline Sa ndwich Configuration, 

Figu .. 3 >how, lh~ n<mnaliz~d <1IfiU absOfpu on oblaintd fo, ~aeb of tbr .. '~imnl' of m. 
four b.",li". "nd\\lcb configur'llOn, li'ttd in Tabl~ I All ba",bn~ >andwicb configurauon, 
bad eOf~ TbJcknt."" of '[lI'fo,,"wldy 13 rum For m. Woven C.ubonlB.I" configurah""_ 
.~,=, I and 3 fail~d by f.c~>h"1 curling foUowtd by buckling a, .J\OWll in Figur~ 4a 
Al tbough 1M faet'illttt curlmg f,ilur~ ll1C>dt i, f.vOf.b l< fOf .... rgy .b'orplion, tilt ,u~ll<'D1 
buckling .bSOfbtd lil1l~ ~uergy. S~imnl 2 f., ltd d"" 10 . fac~ilittl compre'Slon failUf~ aboul 
IS rum from tilt 101' of lilt .~itD<1l (Figurt 4b)_ hen Ibougb m. fac~ilitt" In thi' '~imnl 
rud 1101 ap"'i<1lC~ curling. Ib~ '~itD<1l eomim,.d 10 .. load and eruilitd progr~",i,'dy, 

absclbing ""arly m. """'~ amounl of ~!l<'fgy as 1M OIM' Iwo 'l"""""'"' (I and 3) from 11m 
configurah"" Forc~ , .... 'us di,plac~tD<1It curves from ~acb I}'p~ of f.,lur~ progr~"ion ar~ 
.00\\'11 in Figur~ S_ 

100.0 ..-._-_.-, --, 000 

• < 80 .0 , 
Z 

• 70 .0 
., 

l' 60 .0 
0 • < 

~o 

> • 40 .0 , 
w ~o 

.~ 20 .0 • '" ~ 

! 10 .0 
Z 

eo 
WC·B WC·PU P4 ·B P4 ·PU 

F'gur~ 3 NOf1IlJilHd <1Ifigy . bsorphOO ,~.uJt:s fo, tdg~'\1'" drojrweighl ""Pact ofba",lm~ 
configur-.tion,_ 
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.~-----~ 
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•• ... 1 ___ _ 

., r.«,b«, Car~n ~ 

• 
' . Bud J r Rrload 

• j. 

'. . ' .. . . 
, .. 

fL=,~ .. =:~::"''''""::=::::::'j . " L 
o " ~ ~ ~ ~ _-_I 

For th~ Wo\".n Carooo/l'oIYUfrthan. Conflgur.lhOO. ill Ihr,"" ba",bnr .~i""'n' ,..,t.d 
eJ:p<'fi<1lCffl "mila, failur .... ." tbt facr ,b'""t. budl<1l ontw3fd in:m "I'P"'ing manner" rJ\OWlI 
In F igurr 6. This f3c.,b~ buckling ocrurrro n,,., lb. mp of lb. 'pttitl1<'D producing a f.<.~{ 
dtbond ",bleh prop>.g;urd along lb • ..,~ l..,gth of tbt ,~c'm.... A, . [.,WI of tm,,. dtbonds, 
=gy ab<,mplJon for 11u, b.",h"" configuntion was ",.U btlow ,"", mt.m,rd m th. Woyen 
C.rbonIBaI", b. ",lint configuution. 

F.,lurr progI",,,om ob""".d In lh. N Cart>onlBal", '~im.n' indicalro that lb. loc . !i"" of 
tit< initi.! f.crr.h,"", compr' ''''lIl f.;lor ••• nd Ih. ,.,ulltng '~i""'n alignmnu .,-. pi'"ct.l for 
..,erg)' ab>O!p!ion S~im<1l 1, tbt high." tiler!)" .b<.ort>er. f.,I<1l nr., lb. oonom of the 
,~j= (figur. 7a) and rrm;"nro ahgnM dunng ,ub>filuent loading. lb. om.",wo sp"",,,,,,m 
(1 and 3) fail<1l aw.y from tbt 'p«:n11t'll ""d, (figuR lb). Sp«:im<1l I fta~gn~d la~ m Ih~ 
!!"P.ct """"1, w!u.l~ Sp«:imeo 3 f.,lffl 10 r~lo.d 10. , ignific3111 l~\'~l Fore. ,"""m di'plac<1l1t'll1 
nil"'" from ~.ch I)l'" of fullur~ proV""'OIl at. iliowlI m Figur~ 8 
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• . hilur~ at bottom or.~itD<1l b _ f aiJU!~ .way from '~"n<1l tnd, 
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. r-------------,C.C,.:-C.-.C,C ... C-.--... CC. -,-----, 
• .. ('.) ......... __ ...... -
• 

~ • • • 
l. 

For tit< P4 C3rt>oDlPol}1lf~!h>n~ Configurallon, V>fymg failur~, occUlT~d with ,ub~ll<1l! 
d>ffn<1lC~' In en.rgy ab"'!p!ion . In '~im~n~ 1 and 3 both f3<~~t' <klaminat~d from tbt 
cor. producing low ..... rgy ab""'l'tion. In '~'lIltn 2, """' f:lc~,b«1 fail~ ",11<..-.., 1M milt, 
buckl.d and delaminat.d away from 1M cor. '" r.hown in Figur. 9. Addmonal ..... ,gy w., 
absofbW by Ih. fa<.~t th:I! r~d atuchtd to tbt cor., makmg it til< hlSh<'! en.rgy 
absoroing 'Jl"'C"ll<1l of tbt lb ... ~"«I_ H"""vef, lb ...... rgy absorption for rbi. b. ",lin. 
configurallOO wa, ,nU btlo\\' that 1M."..-«1 m til< Wov.." C. rbonIBal\.3 .nd P.JIB.I", h:I",[int 
configur:lllom 

Figur< 9. P4 CarbooiPo]yuwhan. ,pttJlll<1l 2 .xhibmng f""..,b«, failur. with ,ub~U<1l! 
debondiog .od buckling 
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~ , 2. Eff .. " or Con DemiT}' ,""iaTion< 

To in\·~'tig.te tm, eff"'" of core densit)' on =gy absorption. tm, followmg core /lUterial, wn~ 
u"hzed: 

• Low demity b.11", wood, ~LDB" (Baltek Sl¥rLJle 556. 97 kg/m'l 
• B.",li". den, it}' bal>3 wood, "B" (B.ltek SuperLJle 567. 11 2 kglml 
• High denSlt}' balsa wood. "HDB" (Baltek SuperLJle 14115. 256 kglml 
• B.",li". den, it}' polyurethane foam, ~PlJ' (<knef31 Pla,tlC' L.,,-A-Foam FR-6710, 160 

kg/m'l 
• High Ikn"T}' Polyurethane foam, "HDPlJ' (<knn,1 Pl.-tics L;a,,-A-Fo.m FR-672 0, 320 

kg/m'l 

Figur~ 10 iliows!he effect of core dn"ity van>1lom on tm, oonnaliz~d energy absorption from 
eacb of !he four ""ndwlcb configuration, li" ed in T.ble 1 Reml"..oow tbat for !he Wov ... 
C:lfbonll'olyurethane cOl1figuration, mere.,ing!he core densit)' iocr~.",d tbel1armalized energy 
absorption . nu" r~.uJt1S bebend to be m.. to tm, IOCr .. ",d .utlh ... s oftb. h1gbet' densit)' cor~ 
berrer , upportmg the fac~". AJthough tm, bigb core den",y 'p«imens from thi' ""ndwieb 
configura"on experienced f>ce,bttt deoondmg failur ... Sltnllar to tbe b.1"'lme coofigur3lion, !he 
lugh den",y core aware<! to produce a monger corelf>ces.heet bond, and thm more =gy w"' 
requlfed to debond!he f.ce.bttts . Tm, improved bond .Iso re.ulted m , ign;ficantly lugbet' peak 
load, for tm, bigb core den,ity configurauon (103 kN \'..,m 51 110."< for b . ",li". 'pecimen,) 
Thi' inerea"'" ... ngy ,bsorpuon . ud peak load" illum.ted by .pecimen :> (rigur~ II ), wbicb 
f.,1ed m buckling atler tbe f3<~ili..," debonded from tm, core .nd buckled .way from eacb 
otbn A , imilar mere.", in Dorm:llized =u ab""'l'tion "'lib lncRasmg cor~ den,ity w", 
~f\'ed for tm, N /Poly"retbane configur.tlOD. However, oo "'gmficant illere.", m nonnaliHd 
=gy absorj>"oD was obsef,.-.d with inCf~",ing cor~ demn)' for either ,"l1dwicb configur3lioD 
wlIb the b.>.lsa wood core . 
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F Jgur~ 11 \\'0\''''' CaroonlHigh !kn'Jly Polyumha"" (\\'C-HDPUl 'preimnl 2 rxhibllmg 
dtbondingibuckhng 
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~ .J. Eff .. " ofCo r~ Tbidm~" ,"oria rioa.' 

By changmg tb~ cor. !bJckn< ... tit< ffiOm<1l1 of m.f1i. for !It< ...,dwlcb compo;i!~ can ~ alln.d 
",tooU! changing tit< fac<~!, or tb. cor. <ko,i!),. A, ,, f..,oll, tb< ",mlanc.!o glob.l buckling 
under «IS'''"'' cOlllJ'f<',ion loadmg " inc .. a>«l f or ",.lualtng cor. !bickn .. , dT",!" 
!.3ndw,ch cor .. wi!h !hick~= of:; mm (0.2 m .), 8 mm (0.3 m.), 10 rum (OA m .) w ... u",d in 
aMillon to !h. ha",lm< cor. tluckn<" of 13 rum (0. S m.). 

figu .. 12 show, tb< eff"'l of core !hicrn.." \':u-i.!ion. on tit< oonnaliz«l enngy absorption for 
.acb of tb< four "ndw,ch configof3I101l' h'l«I in T .bl. 1 Of p'f1icular in!e"'.t 3fe tb. ".01" 
from tb. P4 CarbonIB.l", .nd P4 C.rboniPolyuwha"" ConfigUf3l1on, lncr .. se<I !lOfllIJ.lu.d 
=gy .b""P!ion was ob .... -«I for tb< N Cart>onlJJ.l ... configUf3llOn with inc .. asmg co .. 
tluckn< .. , producmg lit< higbeu nonnahz«l ..,.fgy .bsorpuon of!1t< four configuuuon, . All of 
tit< N CartxmlB.l", .p<ei"".." 'pp"ar!o h.v< fa,l«lml1l'Uy in f:iC.-h«1 COmpr~,"lon, but wi!b 
lugbly nfiable r.-ull. . Th.:; rum (0.1 m.) core !bJckn< ... p<Cilllffi' eJ<p"finlC«I . ub"",,,,,,! 
buckling, reml!;ng m low =gy .bsorpllon", .oown ;n fIgure 13. n.. 8 mm (0 .3 in.) and 10 
rum (0. ~ m.) cor. !bJckn<" 'p<eim<-n. eXperienced , ub"",ueU! ern,bmg .. ,11u.o"I«I ill f;gur. 
14. Tb;. f.,lUf~ prog .. "ion r .. ult«lm DOflnahz«l =gy absorpllOO \,.lue, th.t were """lar !O 

tit< b.",hn. configur.tion .nd "Srufic.mly b;grn,r lhan = m tb< 5 rum (O.lm.) .p<e''''''o< 

l~'°T"~~~~OO,"OC------------------------------l 

100.0t----------------------= 
., 

ooo t---------------------
0' 

., 0 +-------
40.0 

"0 

00 

lllllllA"lllllll i 
'1i '1i 9! i' i' i' ~. 9! 9! 9! ;:;;:;;:; Q. 

~(j P ji ~(j i' i' tl' tl' tl' i i Q.~ 
F igor. 12 Norlllilhz~ =gy absorption re'>lll!. for «Ig"";'" dmp-,n,ght imp. ct of co .. 

!b;ckn<" vanallOD coofigur.t;on,. 
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-
- Initi.1 r .", h .. , failu .. 

• ,/ • -i - Bu<1d< 

• 

~ - - - - -- , '_I 

F;gur~ U. P-t-B- 2c<>r~ '~im~n I ~rl!ibiting IWddl. f"".,bt~ comp .. ,,,on,bu<kling md 10'" 
=gy .b<;o{pnOll. 

-
-

Initi. l fo<"h ... , r .ilu , .. - ,/ 

- P"'V''';''' C rm hin l 

• 

, ,l~ - - - - -- , , 'I_I 

Figure 1 .. _ N -B- kor. '~imm 1 exbJblllng face,bttT comp .. , ,,on'crmbing >lid tocr •• ",d 
tIl<"!D' .bwJpUOIl. 

As with lilt N C~rbonlBal\.3 configur.llIon. lilt N C.roonIPOiYUf<1b.:i"" configur.I1lOll rxhibitcd 
an app>r<1U fac~t COlllp,,.'"O,HYl''' failure in .ach '~i"""n How",'", tilt N 
C;lfboulPoi)'Ilrcthanc configuration JlfOOuctd lowe, Dormalizffl ..... rgy ab'orption compartd to 
tit< N CarbonlB.)sa configuration. Thl' =ult i, bt1i .. 'M 10 bt due to tbt ,.l.:!ti,..,ly low 
"iff~, of ~ pol)'IIfcth.n< core COIllp",ffl to balsa, which can.w po5t-fadUft buckling ill aU of 
tit< 5 rum (0.2 in .) thick COfC ,pt<im<ns (FlgufC 15). Energy . br.orpllon iocrc.",d slightly", 
core Tlud",." incru,w_ The 8 mm (0.3 m.) cor. ,pt<;~ (Figure 16) .b~ 'hghtly more 
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=gy th:m tbt 5 mm (0 .2 m.) cor~', wb ..... as tilt to mm (0.4 in.) core '~Clmtn' (FIgure 1 T) 
tlpnienctd higbfi p<ak loads and simil .. [~I().dmg 10 tbt 8 mm core 'pecimen, _ [ ... nlting in 
=gy absorption values , imilar to the ba~1me confignr.lhon 

-~-----~ 

• 

• 

Budd. 

• • • • • 

Figur~ 15. N -PU-.lcore '!'"C'm<1l 1 exhibiting fac~iliut compr~",ionlbuckhng 

-~-----~ 

• 

• 
Init;"1 Fo<",h .. t Foilu .. 

/ 

Figur~ 16. N -PU-.3core '!'"C= 2 ~xbibiting fac~'>hut compr~",ionlr~loadJng 
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-
• 

• lnit;"1 h«"5h .. , fai lu .. , ,/ 
i • 

• , 
• • • • 

Figur~ 17. P4-PU-Acor~ 'Jl"'C=1 ~xbibi!iDg fac~~t comJlf~",ionlulo.dJng 

~ , J. [ff~rI.' "f h cf5b .... r TbkkD~" Y" i aTinn, 

Vartauom in f.c~~t 11uckM<;, w ... explortd for both the wO\· ... carbon-'rpoxy and the P4 
cart>on'rpoxy f.c.ili~I' Woven carbon'rpoxy f:oc.,~t thick=.." of 2 ply. 4 ply. 6 ply, 
(b.",1w.), and 8 ply w= mv.,IJ!u.d N r.cc,!lttt thiem.,,,,, u>W wn. 1 ply (hasd lllc) and 
2 ply 

Figurc 18 ,.1"",,, m. .ff~1 of r,c"~1 thid::nes. '-arIahom on the OOfIll>.liztd Cntfgy .l»o!]llioD 
fPf •• cb of 1M four r.andwieb configunlions ]"iffl III Tabl. 1 Of pamrular mt ... " :n. the 
, ..,,,Its from the Wo\"cn Cam"",1!>!" and \\'0\-"" CarbonlPolyurcthan. ConflgUfll1lon,_ The 
\\'0\= C. rbonlB.l,. configuration productd th. hi~l Donnaliz"" ...... gy .bsoJphon v.l"", 
fPf 1M intmr.e<liat< tluckn." (4-pJy) bce,httl'> 'I'ht Ihi!lM!>l fac."mt (l -ply) sJl«'=' 
eXp<'ficocro apparml facrshw comprc"ion r .. 1Uf<S wilb vaf)lng ~gr~ ofr.lo.dmg!CfU'ohing 
a, ,howII in Fig"'" 19. Th. mtennrdi.>t. thid,,,,,,, ( I-ply) fa<~~t 'p«1lllm, rxbibit'" m. 
lugh~,t.nergy ab"o'luion 00. to rrp<atrd rrlo.dmg during th. progr",".~ ern.lung (flgur~ 20) 
As 1M fae~shut thiekll"" iD<rr.~ to 8 p~~._ howr"",, th~ normaliz'" =gy al><o'l'tion 
~~.",d a, 1." progr~'m'~ ern.hing w .. prod""",. (figur~ 21). 
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F Jgur~ 18 Nonnaliztd tnergy .b""Ption , ..,u1t' for ~dg .. wi~ drop-w .. igbt impaet of fx.-b«! 
tbic~" vanahon configuration,_ 

-,--------, 
-
-

Flgur .. 19 l -ply Woven C:lfbonIB.l" '~im<1l 1 ~ibilmg f:oc .. ,h~t c~'lOnl""loo.diDg 
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,/ 
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FigUf~ 11. 8-pJy WO\'~ CarbowB.l" 'p"cimen 2 .xpm~ing proj!rt%.v. f3C.~t 
ComJlfe!.SlO!1 f. ilur •• 

For lb. \\'0\-'0 C>fboo.'Polyw<"th.lM conflguull~ .n~gy 3b""l'l1on iocr ..... d wLth iocr."ing 
f.c.'~t thick". " . Both tM l -ply and 4-ply configurations 'Waf to 00'-' exp".riencro loc.! 
f.c.~t dtbonding ~.dJng to buckbng (rtpf=ot.d ill r,~ 21). Thi' dtbonrnng i. btb .. nd 
to bt due to tilt rrouc.d ~ding mffu ... of the tbmn.r fac.,h~r" which illow.d tllt f.c.shttt 
to budd. locally aDd dtbond from lb. cor • . Tbt initial fai lur"" occurring in lb. S-ply 'p"',,,,,,m 
wer. difficult to ~r.rmm.; rugh·,pttd ,.,dro <h<m-td global buckJmg and f.c.~t cOmpr.";OD 
ocrumng '~f1""lly sunultan<ilu,ly (Figur. 23). How." .... it i, bth.vtd th:u ., t it< f.c.r.httt 
lluc~s, w", iucru",d 10 S p1i"" lb. fac.r.hut, did nO! <"xpn1<1lc. budding .. ol>sn>-w in Ill. 
2-p!y .nd 4-ply f.c.'~t configur.olJons _ Rather, it "W'f]; that tht 8-ply .. udw,eh 'p"",,,,,,m 
may ha\"~ exp<'fi""effl global buckling, ~admg to ,lI<ar fuilur.." iu III< foam cor~, and ,u~"""t 
fac~r.h~t COIIl[>f"'''on failur~, .t th~", IOC.h",,-, Tbt", fac~,h~t cOlllpft.",on f.ilur ... and 
,ub""!",,,,1 'p""~ Kloading =ult~d in lUcKa'ffl =gy .b""'l'ti<m 
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-,--------, 
• 

• 
! ! . Initiol r.o..h .. , D<oondin, · / . 

1\ B~<1d< 

• • • • • 

F,!urt n l -p]y WOVtll Cart>onIPOlYllftlb.:l!lt 'preimm 1 <?:hibittng local f.c.'~t 
~bonding,buddmg and low .nt'SY absOfpuOll 

-
• Ini'i.al Budd. 

/ h • .,h .... Foilu .. • 
! 
! • 

• 

V • • • • - ""P' -, 
Figor.21 . S-pJy WO\'.u C.ubonIPolyuKlhant ,pttimen I txhibJllng bucldmgl('C'~1 

comp""SJOIl 

5. SU:o.I:\lARY A:\'D COl'CLUSI01'S 

Edg.w;", impacT tt ,ltng was p<flonned u,ing four s.a.ndwteh configur.tion. tb:!l 
lnCorporalM ,".",in! COf< d<n,,"~> <Oft truckn.,,,,,,. and fac~b«llluckM<,= . Of p.nirular 
,m=l w~. chang., in t~ progr."ion of failurt and 1M cOfItsponding eD<'fg)' .b""'l'lion 
, ."ulting from lb..,. ,";nt"lioos_ R"",l" '>ho,nd that eD<'fgy ''''<><plioD could ~ signific :mlly 
lmprO\''''' wnb chang'" In tbt", lluff p.r>mtl=, . lthough (!It 'Wdf~t mmai f. i!urt 
mtchani"m did nol chang. for !lI3ny of tbt ,""ri'li"", InV."l;g.!"". TM gr'."'! .ff~t d"" !O 

chang .. in cor. <lto'it)' w", obonv"" Ul 1M WO\'''' C,nbonlPolyurttb:mt cOIIfigur:lllon. in 
which 1M higb<1c Ikmny COf. ""'tmal app< ... d to prod"" •• 'trong..- f>c~.,b<'l'CO" bond and 
.. ,ult.d in. gr •• !« .. , i'tlne. to f.c.,btt! dtoon ding. En..-gy .bsOfpllOll wa, found to inc ... ", 
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"'th mcr~ .. mg eor~ thlckM" for TM N CaroOll!lhlsa .nd N C:lfbonIPol)'ur~lban< sandwieh 
configurallOll' ThIS ~ff"'" is be1J~..,d to ~ d"" to iocr~a>w .~"n<1l stab,hty aft .. initi.l 
fac~~t Comp<"'''0!1 fail",. with iner~a",d cor. tluclrn ... , fimtlly, eu.rgy absorption w"' 
fOUlld 10 not iner .... con"'t<1ltly ",ib mer~a",. m fxt<J>t" tluclrn ... , Ram..., an optitn:ll 
fac~,h..,t thieru..., aW3f~d to ~xi" for eMrgy . bsorpIlOll, ~.~ially for tM WOVnI 
C:lfbonlBal" cOllfig",ation lbi. finding ,ugg~'t' that although m. u", of y.ater tluckn~", 

fac~,h..,t' tn:Iy produ<~ •• :mdwlch compo .. t. with lugher fl.xural " ilT=. and 'tr<1lgth, th~y 
do noT n~ ... s.anl)' r ... ult in hi~ <1lergy absorption unikf t<!g~wi'" unpxt 10.dmg. Fnnher, 
tM r ... ult, ohio, in'''''hg~tion sngg ... t th:!t. >andwieh eOmpo'iT~ lll>.y ~ &mgnt<! for enhanc~d 
=gy .bsorphon through m. prop.r "'~1l0ll of f.c~,h..,t .nd cor~ lll>.~ri.l. and gtom<m ... 
M",h th:!t lugh .nergy .bsorbing fail",. progr~"ion .... product<! 
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CHAPTER 2 

 
PREDICTION OF FAILURE PROGRESSIONS IN SANDWICH 

COMPOSITES FOR CRASHWORTHINESS APPLICATIONS 

 
Abstract 

 
 Sandwich composites are being considered for several automotive applications 

due to their high strength-to-weight and stiffness-to-weight ratios.  Since crashworthiness 

is an important consideration for automotive applications, energy absorption under 

impact loading is also a key property.  This investigation focused on the effects of 

material and geometric variables of automotive sandwich composites on failure 

progressions and energy absorption during edgewise impact loading.  The baseline 

sandwich configurations consisted of woven carbon-epoxy or P4 carbon-epoxy 

facesheets and either end-grain balsa or polyurethane foam cores.  In an effort to explore 

the feasibility of designing a sandwich composite configuration for energy absorption, 

variations on facesheet thickness, core thickness, and core density were investigated.  By 

varying each of these parameters, the effects on failure mode and energy absorption could 

be determined.  Results suggest that sandwich composites may be designed for enhanced 

energy absorption through the proper selection of facesheet and core materials and 

geometries such that high energy absorbing failure progressions are produced. 
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Introduction 

Sandwich composites are used in a variety of applications today, from automotive 

to aerospace.  A sandwich composite is made up of two relatively thin, stiff facesheets on 

either side of a relatively thick, compliant core material.  The role of the facesheets is to 

lend stiffness and strength to the structure, whereas the core material separates the 

facesheets to increase the structure’s bending stiffness without adding significant weight.  

Sandwich composites have recently been investigated for use as floorboards and roof 

panels in automotive applications with a focus on crashworthiness [1].  For automotive 

applications a crashworthy structure is one that prevents/minimizes injury to occupants 

during a collision; this is accomplished by designing the structure to maximize energy 

absorption during a collision.   

Through previous studies, sandwich composites under edgewise compression 

loading were observed to fail under various failure modes, with high and low energy 

absorbing modes typically being crushing/progressive facesheet fractures and 

core/facesheet debonding, respectively [1].  Thus, in order to maximize energy absorption 

it is necessary to design toward facesheet fractures and away from core/facesheet debond.  

In the current study two competing failure modes were investigated for sandwich 

composites with a preexisting core/facesheet debond: facesheet fracture and 

core/facesheet debond growth.  An analytical model was developed and used to find the 

“transition crack length” (htrans), defined as the crack length where the predicted failure 

mode switches from facesheet fracture to core/facesheet debond growth with increasing 

crack length.  Analyses were performed with several different sets of material 

properties/sandwich geometries and the results were used to construct plots showing the 
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variation of htrans with properties of interest.  Using these plots, sandwich composites can 

be tailored to produce facesheet fractures and increased energy absorption. 

 
Analytical Model – Elastica Approach 

 In order to predict crack growth versus facesheet fracture in sandwich composites 

with a core/facesheet debond, the Elastica theory was utilized following previous 

research performed by Aristizabal-Ochoa [2] to calculate large deflections in buckled 

beam-columns.  Once the deflected shape of the beam-column is known, the associated 

forces and moments can be calculated and the beam-column can be analyzed to predict 

whether facesheet fracture or crack growth has occurred.  The methods used to obtain this 

solution are described in more detail below. 

 The adaptation of a general sandwich composite to the Elastica approach is shown 

in Figure 2.1.  The sandwich composite is first identified as symmetric about the core’s 

midplane, and only one-half of the sandwich is analyzed.  The beam-column used in the 

Elastica approach is taken as the debonded section of facesheet, extending from the 

facesheet tip to the crack tip (points A and B, respectively) with length h.  Coordinate 

system x’y’ is oriented such that the x’ axis is directed along the line of action of force PA.  

For any value of s along the arclength of the beam-column, there exists angle ξ between 

the tangent to the beam-column and the x’ axis. 

 The Elastica approach calculates deflections in the debonded section of the 

facesheet, from the facesheet tip to the crack tip.  Thus, effects from both the core and the 

facesheet material in the bonded region of the sandwich composite are neglected.  

However, because core materials are generally several orders of magnitude more 

compliant than facesheet materials they act as an elastic foundation for the facesheet, 
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Figure 2.1.  Adaptation of (a.) a general sandwich composite to (b.) the Elastica approach 

 
 

 

 

 



25 
allowing for deflection and rotation at the crack tip.  For this reason it was necessary to 

treat the crack tip as an elastic boundary condition.  This was accomplished through the 

use of a torsional spring of stiffness κB at the crack tip, which allows for rotation of the 

debonded facesheet at the crack tip.  Details on the calculation and use of κB will be 

discussed in later sections. 

 
Assumptions 

 The analytical model discussed in the following sections begins with the 

assumption that an initial damage event has occurred such that a through-thickness 

core/facesheet debond exists along both facesheet/core interfaces at one end of the 

sandwich composite.  With this existing debond two modes of failure were considered for 

use in the analytical model: facesheet fracture and core/facesheet debond growth 

(illustrated in Figure 2.2). 

 Both core and facesheet materials are assumed to be linear elastic and 

homogeneous.  The debonded facesheet is treated as an ideal column that is initially 

straight before load PA is applied.  PA is applied through the centroid of the beam-

column’s cross section.  Bending is restricted to the x’y’ plane. 

 
Equation Derivation 

 Derivation of the equations describing the deflections of the deformed beam-

column begins with the governing equation for bending of the beam-column, 
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Figure 2.2.  Illustration of (a.) facesheet fracture and (b.) core/facesheet debond growth 
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where M is the bending moment at position s along the beam-column, Efs is Young’s 

Modulus for the facesheet in the x’ direction, I is the moment of inertia of the facesheet, 

PA is the applied force at A, and y’ and y’A are the y’ locations of the beam-column at 

position s and point A, respectively.  Taking the derivative of equation (2.1) with respect 

to s, 
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ξ  .                                                       (2.2) 

 
 It is convenient to introduce the constant β for simplification of future 

expressions, where 
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 By acknowledging from Figure 2.1b that dy’/ds = sin ξ , equation (2.2) may be 

written as 
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 Through the use of double-angle formulas, this expression may be written as  
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 Both sides of equation (2.5) are now multiplied by dξ/ds and the entire expression 

is integrated to yield 
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 Variables k and ψ are now introduced such that the constant of integration 

C1 = k2, and a change of variables is made such that 
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 Thus, equation (2.6) may be written as 
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 The Pythagorean identity sin2ψ + cos2ψ = 1 is applied to the rightmost expression 

in equation (2.8a), and by taking the square root of this expression we obtain 
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 We now leave equation (2.8b) in this form and return to equation (2.7).  Taking its 

derivative with respect to s, 
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 Solving equation (2.9a) for dξ/ds, the Pythagorean identity is applied and equation 

(2.7) is substituted to produce 
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 Equations (2.8b) and (2.9b) are both solved for dξ/ds.  Equating these expressions 

and simplifying, 
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 Integrating equation (2.10) yields 

 

),(),(
sin1sin1sin1 0 0

222222 B

B

B

kFkF
k
d

k
d

k
d

h
s ψψ

ψ
ψ

ψ
ψ

ψ
ψβ ψ ψψ

ψ
−=

−
−

−
=

−
= ∫ ∫∫    (2.11) 

 
where F(k,ψ) is the elliptic integral of the first kind. 

 Next, the equations describing the shape of the beam-column are found.  From 

Figure 2.1b it is seen that dx’/ds = cosξ.  Through the use of double-angle formulas, dx’ 

can be written in terms of ξ/2 as 
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 Equation (2.12a) may be written as 
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 Substituting equation (2.10),  
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 After substituting equation (2.7) into the numerator, equation (2.12c) can be 

rewritten as 
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 Similarly, from Figure 2.1b it is seen that dy’/ds = sinξ.  Through the use of 

double-angle formulas this expression can be written in terms of ξ/2 as 
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 Substituting equation (2.10), 
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 Equation (2.7) is substituted for sin(ξ/2), and cos(ξ/2) is manipulated through the 

Pythagorean identity and equation (2.7) such that 
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 Integrating equations (2.12d) and (2.13c), we have 
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and 
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where E(k,ψ) is the elliptic integral of the second kind. 

 
Application of Boundary Conditions 

 Now that the general equations have been developed it is possible to analyze the 

beam-column shown in Figure 2.1b.  The following approach follows a similar 

progression to that of Aristizabal-Ochoa [2]. 

 First, boundary conditions at point A (tip of the facesheet) are specified.  It is first 

recognized that at point A (where s=h) MA = 0.  Substituting into equation (2.1), (dξ/ds)A 

= 0.  Substituting into equation (2.8b), 
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 Recognizing that β, k, and h are all nonzero to avoid a trivial solution, it is found 

that ψA=π/2. Applying equation (2.7) at point A and solving for k,  
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 Applying equation (2.11) at point A, 
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 Similarly, equations (2.14a) and (2.14b) can be evaluated at point A as 
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 The expression for rotation ξB at the crack tip (s=0) is defined as 
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 Substituting this into equation (2.7),  
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 Equating equations (2.1) and (2.8b) at point B with MB = -PA y’A, we have 
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 For a given set of values for Efs, I, κB, and h, from the equations listed in the 

previous section there exists a set of four nonlinear equations with five unknowns: β, PA, 

y’A, ψB and k.   
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 By substituting the expressions for PA and β into the other equations the problem 

is reduced to 2 equations and 3 unknowns.  These equations, presented below, must be 

solved in order to describe the system’s forces and deflections. 
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Determining Values for κB 

 Using the two nonlinear equations (2.27) and (2.28) and specified values for Efs, I, 

h, and κB, GI (defined as the Mode I strain energy release rate) and facesheet stresses can 

be calculated.  Whereas h is specified and Efs and I are known for a given facesheet 

material and geometry, κB is not a fundamental material property of the core or facesheet 

alone and thus requires calculation.  It can be seen from Figure 2.1 that the torsional 

spring with stiffness κB at the crack tip is used in place of all core material as well as the 

facesheet in the bonded region of the sandwich composite.  Thus the value of κB depends 

on both core and facesheet properties, and each sandwich will have a unique κB value. 

 To determine κB values, the sandwich composite was treated as a Beam On an 

Elastic Foundation (BOEF).  Figure 2.3 shows how the BOEF approach is utilized. 

 From Figure 2.3 it can be seen that the resultant shear force at the crack tip from 

force PA is unaccounted for and thus only its resultant bending moment MB at the crack 

tip is accounted for.  Following the derivation of Cook and Young [3] the slope along the 

length of the beam may be expressed as 
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Figure 2.3.  Adaptation of a general sandwich composite (a.) to a Beam on Elastic 

Foundation (b.) 
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and b is specimen width. 

 Evaluating equation (2.29) at the crack tip B (x=0), 
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 Thus, the BOEF method yields a simplified expression for κB.  For a given 

sandwich composite equation (2.34) can be evaluated and used in equation (2.27). 

 
Using MATLAB to Solve Analytical Model 

 Solutions of the two nonlinear equations for a specific sandwich configuration 

were obtained through the use of MATLAB [4].  The following describes the basic steps 

and iterations used to generate plots designers can use to design sandwich composites for 

increased energy absorption. 

 
Calculation of GI 

 The mode I strain energy release rate GI is defined as 
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where U is the total strain energy, b is specimen width and h is crack length.  The 

derivative dU/dh is approximated with ΔU/Δh over a small spacing, and equation (2.35) 

may be written as 

 

h
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GI Δ

Δ
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 Thus, GI can be calculated as shown in Figure 2.4 by comparing energy states 1 

and 3 representative of the crack just before and after crack growth, respectively. 

 Energy state 1 in Figure 2.4 corresponds to the deformed state of a given 

sandwich composite at the instant that GI reaches GIc, just before crack growth.  In a 

displacement-driven test it is assumed that there is no change in x’-deflection during 

crack growth, such that just after crack growth energy state 3 is reached.  Energy state 2 

is a nonphysical intermediate step used in finding energy state 3, and will be discussed in 

a later section. Once energy states at 1 and 3 are known GI can be calculated from 

equation (2.36) as 
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 The method used for calculation of energy states 1 through 3 is discussed in the 

following section.   

 
Steps Used in MATLAB to Solve Analytical Model 

 The steps outlined in the following section describe the iterative approach utilized 

to solve the analytical model and create plots which can be used to design for increased  
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energy absorption.  The general MATLAB procedure is shown in Figure 2.5 and 

discussed in detail in the following paragraphs. 

 
Step 0 – Specify material properties and sandwich geometry 

 In order to solve the analytical model, values must be prescribed for specimen 

width b, facesheet thickness tfs, facesheet modulus of elasticity Efs, core thickness tc, core 

modulus of elasticity Ec, mode I critical strain energy release rate GIc, allowable facesheet 

stress σfs,allowable, crack length h and the appropriate value for κB as described previously. 

 
Step 1 – Give an initial guess for ξA 

 As stated previously, the shape of the facesheet is described by two nonlinear 

equations with three unknowns.  In order to solve this set of equations one of the 

variables must be known – or specified.  In this case it makes sense to specify a value for 

an unknown that carries physical meaning – specifically, either y’A (facesheet tip outward 

deflection) or k (calculated by specification of facesheet tip angle ξA where k = sin(ξA/2) 

as defined previously).  In this case it was chosen to specify ξA, although specifying either 

of the two would result in a solvable set of equations.  Ideally one would specify the 

value for ξA whose corresponding GI = GIc; however, since this state is unknown an 

iterative approach is necessary.  To begin the iterative process, a value of ξA should be 

selected such that the calculated value of GI will be significantly lower than GIc. 

 
Step 2 – Solve the nonlinear equations and find Strain Energy U1 

 With ξA specified the deflected facesheet shape is now described by two equations 

with two unknowns and can be solved using MATLAB’s fsolve command.  It is 

important to note that elliptic integrals are evaluated numerically by breaking the function  
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into n discrete bins and performing a trapezoidal integration.  After solving for the 

unknowns the value of s (Equation 2.11) and bending moment are then calculated at each 

of these discrete points, and the strain energy for each bin is calculated and summed to 

find U1 as 
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Step 3 – Increase crack length by Δh and calculate U3 

 Energy U3 is calculated by first increasing the crack size a small amount from h to 

h+Δh.  The tip angle is taken as ξA from step 1 and step 2 is then repeated, resulting in 

energy state 2 shown in Figure 2.4.  It is apparent from Figure 2.4 that the tip deflection 

in the x’ direction is larger than for energy state 1, thus an iterative procedure is then 

taken where the tip angle ξA is repeatedly decreased until energy state 3 is reached, where 

x’A,1 + Δh = x’A,3.  GI is then calculated using equation (2.37) and compared to GIc.  If GI 

< GIc, a slightly larger ξA value is chosen in step 1 and the process is repeated until the 

resulting GI = GIc. 

 
Step 4 – Calculate σfs 

 Once the conditions for GI = GIc have been met, it is necessary to calculate the 

stress in the facesheet.  Stresses in the facesheet are a combination of bending and 

compressive stresses, and the location of the largest stress in the facesheet is at the outer 

surface of the facesheet and at the cross section located at the crack tip.  The compressive 

axial stress and compressive bending stress combine at this point to produce a maximum 

facesheet stress of 
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 If the calculated stress value differs from the allowable facesheet stress σfs,allowable 

the crack length is changed and the entire process is repeated until σfs = σfs,allowable.  The 

corresponding crack length represents the “transition crack length” (htrans), where GI 

reaches GIc and σfs reaches σfs,allowable simultaneously.  Below this crack length the 

facesheets are predicted to fail in bending before further crack growth can occur and 

increased energy absorption is expected.  Conversely, larger cracks are predicted to 

experience continual crack growth until total core/facesheet debond or an external 

constraint is reached.  Thus, a sandwich design with a high htrans value would be deemed 

more crashworthy than one with a low htrans value.  

 
Materials 

 
Description of Sandwich Parameter Variations 

 In order to create the plots mentioned previously it was necessary to define a 

realistic range for each of the material properties and facesheet/core geometries to be 

considered in the model.  It was also necessary to define a “baseline” value for each 

parameter that would be used while varying other material properties and geometries. 

 
 
Facesheet thickness (tfs) 

 Facesheet thicknesses used in the study ranged from 0.5-3.0 mm (0.02-0.12 in.).  

This represents a realistic range for use in sandwich composites when paired with the 
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other material property/geometry ranges described below.  The “baseline” value used was 

1.0 mm. 

 
Facesheet modulus (Efs) 

 Due to the wide variety of facesheet materials that could be used in sandwich 

construction it was necessary to include a wide variety of facesheet modulus values in the 

study.  However, the other material property/geometry ranges discussed in this section 

limited the range of possible facesheet values; thus, facesheet modulus values used in the 

study ranged from 25-50 GPa, with the lower and upper limits representative of a typical 

quasi-isotropic E-glass/epoxy facesheet and a typical quasi-isotropic carbon/epoxy 

facesheet, respectively.  When paired with the other material properties and geometries 

described in this section, 25 GPa and 50 GPa represent the upper and lower limits of 

model functionality, respectively.  Facesheet moduli below 25 GPa result in beam-

columns that may fail in compression before buckling occurs for some facesheet 

thicknesses, whereas facesheet moduli above 50 GPa may reach tip angles ξA greater than 

90° for thin facesheet thicknesses.  The “baseline” value for facesheet modulus was 50 

GPa. 

 
Core thickness (tc) 

 The typical role of the core material in sandwich composite application is to carry 

shear loads and to separate the facesheets in order to increase the bending stiffness of the 

plate without adding significant weight.  Common core thicknesses range anywhere from 

a few millimeters up to several centimeters; for this study core thickness was varied from 
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3.175-25.4 mm (0.125-1.0 in.).  The “baseline” value used in the study was 12.7 mm (0.5 

in.). 

 
Core modulus (Ec) 

 As with facesheet modulus, core modulus is another sandwich property where a 

large range was necessary due to the wide variety of core materials available.  The range 

of core modulus values used in the study was 50-1000 MPa, representative of materials 

ranging from low-density polyurethane foam to aluminum honeycomb.  The “baseline” 

value used in the study was 500 MPa, typical of a Nomex honeycomb. 

 
Mode I critical strain energy release rate (GIc) 

 Values for GIc are highly dependant on the facesheet and core materials used.  For 

this reason a wide range of values was chosen for GIc, from 175-1000 J/m2.  In the realm 

of typical sandwich composites, this range incorporates both “weak” and “strong” 

interfaces.  The “baseline” value used in this study was 500 J/m2. 

 
Other Sandwich Properties/Geometries 

 The following additional material properties and sandwich geometries were used 

in the solution of the analytical model: facesheet allowable stress σfs,allowable = 600 MPa, 

specimen width b = 25.4 mm (1.0 in.), and Δh = 0.25 mm. 

 
Analytical Model Results 

 Solutions obtained through the methods described previously are presented in the 

following sections.  The plots shown in the following sections were made by solving the 

analytical model for htrans while varying numerous different pairs of material 
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properties/sandwich geometries (such as core modulus and core thickness) using 

“baseline” values for all other material properties and sandwich geometries.  Golden 

Software Surfer 7 [5] was used to transform the resulting 3-D table into a 2-D contour 

plot displaying lines of constant htrans. 

 
Core Design 1 (varying Ec and tc) 

 The results obtained by varying core modulus (Ec) and core thickness (tc) are 

shown in Figure 2.6.  Figure 2.6 shows that the transition crack length htrans increases 

with decreasing core modulus and increasing core thickness.  For the range of core 

modulus and core thicknesses studied, htrans ranges from approximately 10-24 mm (0.39-

0.94 in.).  It can be seen in Figure 2.4 that a core modulus of 200 MPa and core thickness 

of 10 mm yields an htrans value of approximately 15 mm.  Thus, a sandwich with these 

specific property and geometry values is predicted to experience facesheet fracture with 

any core/facesheet debond smaller than 15 mm, whereas a debond larger than 15 mm is 

expected to experience core/facesheet debond growth. 

 A contour plot of htrans as a function of core modulus Ec and core thickness tc 

could be useful as a general tool for designers.  If given a facesheet material and a choice 

of potential core materials, a designer could generate a contour plot of htrans as a function 

of core modulus Ec and core thickness tc to determine the most suitable core for their 

specific energy absorption or failure mode requirements.  The plot could also be used to 

determine how sensitive a core material might be to variability in the core Young’s 

Modulus or core thickness.  It can be seen from Figure 2.6 that for a high core modulus 

and low core thickness (lower-right quadrant of plot) a significant change in core  
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Figure 2.6.  Plot of htrans as a function of Ec and tc 
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modulus or core thickness yields only a small change in htrans.  Alternately, for low core 

modulus and large core thickness (upper-left quadrant of plot) a small change in core 

modulus or core thickness yields a significant change in htrans, suggesting that candidate 

cores lying within this area of the plot are more sensitive to variability in stated core 

modulus and thickness. 

 
Core Design 2 (varying GIc and tc) 

 The results obtained by varying mode I critical strain energy release rate (GIc) and 

core thickness (tc) are shown in Figure 2.7.  From Figure 2.7 it can be seen that the 

transition crack length htrans increases with increasing critical strain energy release rate 

and increasing core thickness.  For the range of GIc and core thicknesses studied, htrans 

ranges from approximately 5-80 mm (0.20-3.15 in.).  The plot suggests that htrans is 

highly dependent on GIc; a small change in GIc produces a significant change in htrans.  

This is due to the squared relationship between applied load and strain energy seen in 

equation (2.38), where a small increase in applied load PA yields a large change in strain 

energy and thus a large change in the calculated GI value. 

 A contour plot of htrans as a function of mode I critical strain energy release rate 

GIc and core thickness tc could be used by a designer to help choose facesheet/core 

combinations.  If the goal is to prevent core/facesheet debonding it is apparent that one 

would want to choose the combination with a high GIc or a low σfs,allowable such that the 

facesheet is likely to fail before crack growth occurs.  Due to the large sensitivity of GIc 

to bond quality, it is apparent from Figure 2.7 that steps must be taken in the 

manufacturing stage of sandwich composites to create consistent, high quality bonds or 

else the sandwich may become more vulnerable to crack growth. 
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Figure 2.7.  Plot of htrans as a function of GIc and tc 
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Facesheet Design (varying Efs and tfs) 

 The results obtained by varying facesheet modulus (Efs) and facesheet thickness 

(tfs) are shown in Figure 2.8.  For the range of facesheet modulus and facesheet thickness 

values used htrans ranges from approximately 5-40 mm (0.2-1.6 in.).  The general trend 

seen in Figure 2.8 is quite different from the trends seen in Figures 2.6 and 2.7.   The plot 

shows that htrans increases with increasing facesheet modulus Efs.  However, htrans first 

decreases then increases with increasing facesheet thickness tfs.  This trend was not seen 

in the other two plots (Figures 2.6 and 2.7), where htrans tended to either increase or 

decrease continually with increasing core properties. 

 The reason for the decrease then increase in htrans with increasing facesheet 

thickness is illustrated in Figure 2.9.  As seen in Figure 2.9, at short crack lengths there is 

a higher level of facesheet stress at crack growth for thicker facesheets.  However, at long 

crack lengths the facesheet stress at crack growth is higher for thin facesheets.  The value 

for σfs,allowable used in obtaining Figure 2.8 was 600 MPa, which lies in the region of 

facesheet stress where this change is occurring; this may be a contributor to the trend 

seen in Figure 2.8.   

 Another possible contributor to the trend seen in Figure 2.8 is the nature of the 

stresses corresponding to extreme thin and thick facesheets.  Thin facesheets tend to have 

a relatively large deflection at htrans such that bending stresses due to MB are large even 

though the applied load PA and thus axial stresses are small.  As facesheet thickness 

increases, the force required for buckling increases such that PA and the axial stresses 

increase while MB and bending stresses decrease due to the reduced deflection.  The 

relative rates of these changes may contribute to the trends seen in Figure 2.8.   
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Figure 2.8.  Plot of htrans as a function of Efs and tfs 
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Figure 2.9.  Facesheet stress versus crack length for variation of facesheet thickness 
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A plot of htrans as a function of facesheet modulus Efs and facesheet thickness tfs could be 

used by a designer in several ways.  If given a core material and a choice of potential 

facesheet materials, a designer could generate a plot of htrans as a function of facesheet 

modulus Efs and facesheet thickness tfs to determine the most suitable core for their 

specific energy absorption or failure mode requirements. 

 
Using ANSYS to Validate κB Calculation Method 

 In order to validate the elastic foundation values used for κB, a 2-D geometrically 

nonlinear finite element analysis was performed using ANSYS 11 with PLANE42 

elements [6].  Figure 2.10 shows a typical ANSYS mesh used in the study.  Due to the 

buckling nature of the problem, a force-driven approach was not feasible and instead x 

and y-displacements were applied at the tip of the facesheet along the centerline; this 

effectively served to prevent buckling and allow the model to reach an equilibrium 

solution.  In order to compare κB values, the facesheet tip x-displacement used in the 

finite element model was set equal to the x-displacement value at crack growth from the 

analytical model.  The finite element model was then iterated with varying y-

displacement values until the resulting facesheet tip outward force FY was 0, thus 

matching the loading scheme used in the analytical model (Figure 2.1). 

 
Materials Used in ANSYS Model  

 Material properties used in the model validation investigation are shown in Table 

2.1 with coordinate directions consistent with Figure 2.10.  The facesheet material 

properties used in the study are representative of a T300B 3K plain weave carbon fabric  
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Figure 2.10.  Representation of a typical mesh used in ANSYS 
 

Table 2.1.  Material properties used with ANSYS 

 
Material Property Value (SI) Value (ENG) 

Facesheet 

Ex 30.8 GPa 4.47 Msi 
Ey 10.6 GPa 1.54 Msi 
Ez 30.8 GPa 4.47 Msi 
νxy 0.26 0.26 
νxz 0.35 0.35 
νyz 0.26 0.26 
Gxz 3.86 GPa 0.56 Msi 
Gxy 4.14 GPa 0.60 Msi 

Core - Balsa 

Ex 42.5 MPa 6.16 ksi 
Ey 322 MPa 46.7 ksi 
Ez 42.5 MPa 6.16 ksi 
νxy 0.01 0.01 
νxz 0.34 0.34 
νyz 0.34 0.34 
Gxy 120 MPa 17.4 ksi 

Core -    
Polyurethane 

E (isotropic) 86.2 MPa 12.5 ksi 
ν (isotropic) 0.30 0.30 
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(referred to as WC subsequently) oriented in a quasi-isotropic ([(0/90)/(±45)]nT) layup 

(where n=1, 2, or 3) and infiltrated with a matrix comprised of EPON 862 epoxy resin 

and EPON 9553 hardener.  The core materials included polyurethane foam and end-grain 

balsa wood (referred to subsequently as PU and B, respectively). The polyurethane foam 

properties are representative of Last-A-Foam FR-6710, with a density of 160 kg/m3 

supplied by General Plastics Manufacturing Company.  The end-grain balsa wood 

properties are representative of SuperLite S67, with a density of 112 kg/m3 supplied by 

Baltek Corporation. 

 
κB Calculation Method 

 Following the solution of the finite element model, κB was calculated using 

applied forces and crack tip deflections.  Figure 2.11 illustrates the calculation of the 

angle of rotation of the facesheet at the crack tip.  Using nodes 1 and 2 originally 

separated by node spacing So, the facesheet rotation angle θ was found from trigonometry 

as 
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 Referring to Figure 2.12, the bending moment at the crack tip was calculated as 

 
)( ,, ycracktipyfsxcracktip uuFM −=  .                                               (2.35) 
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Figure 2.11.  Progressive zooming of mesh showing dimensions used in calculation 

 

 
Figure 2.12.  Finite element mesh showing dimensions for calculation of Mcracktip 

 
 

ucracktip,y 
ufs,y 

Fx 

u1,x

u2,x 

original locations 1 2

u2,y 

θ

So 

u1,y 

1 

2 



56 
 After finding θ and Mcracktip, the value for κB was calculated as κB = Mcracktip / θ.  

This value could then be compared against the values found using the Beam on Elastic 

Foundation method discussed previously. 

 
Finite Element Analysis Results 

 Table 2.2 compares κB values obtained from the Beam On Elastic Foundation 

(BOEF) and finite element analyses for varying thicknesses of the woven carbon 

facesheets with each core material.  The BOEF calculated value for κB is lower than the 

finite element calculation for each of the sandwich configurations tested, with the 

difference increasing with decreasing facesheet thickness.  This trend is expected, as all 

core material within the debonded region is neglected in elastic foundation calculations.  

In reality the debonded core material near the crack tip is displaced outward, thus 

providing resistance to rotation. 

 Because the percent differences from Table 2.2 are significant, a sensitivity study 

was performed to determine the analytical model sensitivity to κB values.  Increasing κB 

by 25% and 50% in the analytical model using “baseline” values yielded 11.3% and 

20.5% decreases in htrans, respectively, which is significant and suggests that an alteration 

to the BOEF method of calculating κB may be necessary.  However, it is expected that 

this decrease in htrans will occur for all sandwich configurations such that the trends seen 

in Figures 2.6-2.8 would be consistent with those observed using updated κB values. 

 
Summary and Conclusions 

 Designing sandwich composites for energy absorption under edgewise 

compression loading requires the sandwich to be tailored towards high energy-absorbing  
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Table 2.2.  Comparison of ANSYS and BOEF calculations for κB 

 
Sandwich 

Configuration
κB (N-m/rad) 

ANSYS BOEF % Difference 
6-ply WC-PU 37.72 32.09 -14.92 
4-ply WC-PU 17.33 12.89 -25.61 
2-ply WC-PU 4.25 2.71 -36.23 
6-ply WC-B 55.61 44.62 -19.76 
4-ply WC-B 24.56 17.92 -27.03 
2-ply WC-B 6.02 3.77 -37.45 
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failure modes.  For sandwich composites with a preexisting core/facesheet debond, two 

competing failure modes exist: facesheet fracture and core/facesheet debond growth.  A 

given sandwich configuration can be analyzed through the use of an analytical model in 

order to determine the “transition crack length”, htrans.  Below this crack length the  

facesheets are predicted to fail in bending before further crack growth can occur and 

increased energy absorption is expected.  Conversely, larger cracks are predicted to 

experience continual crack growth until total core/facesheet debond or an external 

constraint is reached.  Thus, a sandwich design with a high htrans value would be deemed 

more crashworthy than one with a low htrans value. 

 By varying pairs of core or facesheet properties/geometries, plots were 

constructed showing the variation of htrans with these parameters.  Results showed that 

htrans increased with decreasing core modulus and increasing core thickness.  Transition 

crack length htrans was found to be highly sensitive to bond strength, where a small 

increase in GIc yielded a significant increase in htrans.  A varying trend was seen with 

facesheet thickness, where htrans first decreased then increased with increasing facesheet 

thickness; this is believed to be due to the changing nature of the stresses for the specific 

range of properties used in this study.  A finite element analysis showed that the Beam 

On Elastic Foundation method underpredicted κB values, which suggest that a change in 

calculation method may be necessary. 

 Contour plots of htrans as a function of two varying properties/geometries could be 

useful as a tool for a designer in several ways.  If given a facesheet material and several 

candidate core materials, a designer could generate a contour plot similar to those 

presented in this paper.  Candidate core materials could then be compared against each 
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other to find the core with the largest htrans value; this core material would then be 

deemed the most crashworthy.  At this stage the designer could also take into account 

variables such as weight or material and manufacturing costs such that the tool becomes 

customized to their specific design problem. 

 A contour plot such as those presented in this paper could also be used to 

investigate the sensitivity of a given sandwich composite to variability in a specific 

property/geometry.  For example, if significant variability in a core material’s Young’s 

Modulus is possible (as is inherent in end-grain balsa wood), a contour plot which varies 

core Young’s Modulus could be created.  From this plot the change in htrans with core 

Young’s Modulus could be determined and the sandwich could be analyzed for any 

added susceptibility to core/facesheet debond growth due to this variability. 

 A sandwich composite with prior damage or manufacturing error resulting in a 

core/facesheet debond could be analyzed using contour plots such as those presented in 

this paper.  Using the sandwich’s specific properties as input, the model presented in this 

paper could be solved and the value of htrans for the sandwich could be calculated.  This 

number could then be compared to the length of the sandwich’s existing debond. If htrans 

is approximately equal to or smaller than the existing debond length, the sandwich is at 

high risk of experiencing core/facesheet debond growth and low energy absorption 

during a subsequent impact event.  This would suggest that the sandwich should be either 

repaired or replaced such that core/facesheet debond growth is prevented and maximum 

energy absorption is achieved. 
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Notation 

 The following symbols are used in this paper: 

  b = sandwich composite width; 

  Ec = modulus of elasticity of core material; 

  Efs = modulus of elasticity in x’-direction of facesheet material; 

   

  GI and GIc = strain energy release rate and critical strain energy release 

   rate, respectively; 

  h = crack length; 

  htrans = transition crack length, crack length at which GI=GIc and 

   σfs = σfs, allowable simultaneously; 

  I = principal moment of inertia of the beam-column; 

  M = bending moment at any point s along the length of the beam-column; 

  PA = force applied at point A along the centerline of the beam-column; 

  tc = core thickness; 

  tfs = facesheet thickness; 

  U = strain energy stored within the beam-column; 

  x'A and y’A = displacements of point A in the x’ and y’ directions, 

   respectively; 

  κB = stiffness of the torsional spring at point B; 

  σfs = Maximum stress (compressive) in beam-column at 

    point B = PA/(tfsb) – MB(tfs/2)/I; 

  σfs, allowable = Maximum allowable stress in beam-column before 
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   failure occurs; and 

   ξ, ξA, and ξB = angle between x’ axis and tangent to beam-column at s, 

    point A, and point B, respectively; 
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